Science.gov

Sample records for field joint coating

  1. Tar-polyurethane joint coating for the three-layer polyethylene pipeline coating

    SciTech Connect

    Rogers, R.H.

    1996-12-31

    This article describes a new joint coating system implemented by Bechtel for a major international, 48 inch diameter gas pipeline. Despite the long history of use as a pipe and valve coating, the new implementation is the industry`s first significant use of a thermoset hot spray coating applied to field weld areas of pipe, mill coated with a three layer polyethylene system. In the laboratory and in field trials, the coating demonstrated integrity, was applied much quicker than the traditional heat shrink sleeve, and eliminated several application contingencies. Laboratory investigators undertaken in Houston, Texas and Lyon, France were key steps in selecting the 100% solids tar-polyurethane coating. Additionally, the testing assisted in developing the surface preparation technique, and demonstrating the coating`s ability to adhere to the polyethylene coating as well as the steel pipe. Serious localized corrosion, and cathodic protection shielding associated with other joint coatings are less probable with the new joint coating system. Actual field cathodic protection testing indicated very low current consumption for the completed pipeline. The efficient joint coating operation contributed to setting new construction records.

  2. Cryopumping Field Joint Can Testing

    NASA Technical Reports Server (NTRS)

    Johnson, Wesley L.; Fesmire, James E.; Meneghelli, Barry E.

    2011-01-01

    For long installations, vacuum jacketed piping often comes in 40 foot sections that are butt welded together in the field. A short can is then welded over the bare pipe connection to allow for insulation to be protected from the environment. Traditionally, the field joint is insulated with multilayer insulation and a vacuum is pulled on the can to minimize heat leak through the bare section and prevent frost from forming on the pipe section. The vacuum jacketed lines for the Ares I mobile launch platform were to be a combined 2000 feet long, with 60+ pipe sections and field joint cans. Historically, Kennedy Space Center has drilled a hole in the long sections to create a common vacuum with the field joint can to minimize maintenance on the vacuum jacketed piping. However, this effort looked at ways to use a passive system that didn't require a vacuum, but may cryopump to create its own vacuum. Various forms of aerogel, multilayer insulations, and combinations thereof were tested to determine the best method of insulating the field joint while minimizing maintenance and thermal losses.

  3. Development of molded, coated fabric joints: Fabric construction criteria for a spacesuit elbow joint

    NASA Technical Reports Server (NTRS)

    Olson, L. H.

    1981-01-01

    The design and fabrication of a molded, coated fabric elbow joint capable of operating reliably at 8 psi internal pressure for extended periods of flexure is considered. The overall design of the joint includes: (1) selection of heatsettable fiber of sufficient strengths; (2) choosing an optimum fabric construction; (3) a fatigue resistant; flexible coating; and (4) a molding technique. A polyester yarn of type 56 Dacron and a urethane coating system were selected. The relationships between yarn and weave parameters which lead to an optimum fabric construction for the 8 psi elbow joint are defined.

  4. Dissolution behaviour of silicon nitride coatings for joint replacements.

    PubMed

    Pettersson, Maria; Bryant, Michael; Schmidt, Susann; Engqvist, Håkan; Hall, Richard M; Neville, Anne; Persson, Cecilia

    2016-05-01

    In this study, the dissolution rate of SiNx coatings was investigated as a function of coating composition, in comparison to a cobalt chromium molybdenum alloy (CoCrMo) reference. SiNx coatings with N/Si ratios of 0.3, 0.8 and 1.1 were investigated. Electrochemical measurements were complemented with solution (inductively coupled plasma techniques) and surface analysis (vertical scanning interferometry and x-ray photoelectron spectroscopy). The dissolution rate of the SiNx coatings was evaluated to 0.2-1.4nm/day, with a trend of lower dissolution rate with higher N/Si atomic ratio in the coating. The dissolution rates of the coatings were similar to or lower than that of CoCrMo (0.7-1.2nm/day). The highest nitrogen containing coating showed mainly Si-N bonds in the bulk as well as at the surface and in the dissolution area. The lower nitrogen containing coatings showed Si-N and/or Si-Si bonds in the bulk and an increased formation of Si-O bonds at the surface as well as in the dissolution area. The SiNx coatings reduced the metal ion release from the substrate. The possibility to tune the dissolution rate and the ability to prevent release of metal ions encourage further studies on SiNx coatings for joint replacements. PMID:26952452

  5. Iron aluminide alloy coatings and joints, and methods of forming

    DOEpatents

    Wright, Richard N.; Wright, Julie K.; Moore, Glenn A.

    1994-01-01

    A method of joining two bodies together, at least one of the bodies being predominantly composed of metal, the two bodies each having a respective joint surface for joining with the joint surface of the other body, the two bodies having a respective melting point, includes the following steps: a) providing aluminum metal and iron metal on at least one of the joint surfaces of the two bodies; b) after providing the aluminum metal and iron metal on the one joint surface, positioning the joint surfaces of the two bodies in juxtaposition against one another with the aluminum and iron positioned therebetween; c) heating the aluminum and iron on the juxtaposed bodies to a temperature from greater than or equal to 600.degree. C. to less than the melting point of the lower melting point body; d) applying pressure on the juxtaposed surfaces; and e) maintaining the pressure and the temperature for a time period effective to form the aluminum and iron into an iron aluminide alloy joint which bonds the juxtaposed surfaces and correspondingly the two bodies together. The method can also effectively be used to coat a body with an iron aluminide coating.

  6. Iron aluminide alloy coatings and joints, and methods of forming

    DOEpatents

    Wright, R.N.; Wright, J.K.; Moore, G.A.

    1994-09-27

    Disclosed is a method of joining two bodies together, at least one of the bodies being predominantly composed of metal, the two bodies each having a respective joint surface for joining with the joint surface of the other body, the two bodies having a respective melting point, includes the following steps: (a) providing aluminum metal and iron metal on at least one of the joint surfaces of the two bodies; (b) after providing the aluminum metal and iron metal on the one joint surface, positioning the joint surfaces of the two bodies in juxtaposition against one another with the aluminum and iron positioned therebetween; (c) heating the aluminum and iron on the juxtaposed bodies to a temperature from greater than or equal to 600 C to less than the melting point of the lower melting point body; (d) applying pressure on the juxtaposed surfaces; and (e) maintaining the pressure and the temperature for a time period effective to form the aluminum and iron into an iron aluminide alloy joint which bonds the juxtaposed surfaces and correspondingly the two bodies together. The method can also effectively be used to coat a body with an iron aluminide coating.

  7. 21 CFR 888.3565 - Knee joint patellofemorotibial metal/polymer porous-coated uncemented prosthesis.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Knee joint patellofemorotibial metal/polymer... Devices § 888.3565 Knee joint patellofemorotibial metal/polymer porous-coated uncemented prosthesis. (a) Identification. A knee joint patellofemorotibial metal/polymer porous-coated uncemented prosthesis is a...

  8. 21 CFR 888.3565 - Knee joint patellofemorotibial metal/polymer porous-coated uncemented prosthesis.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Knee joint patellofemorotibial metal/polymer... Devices § 888.3565 Knee joint patellofemorotibial metal/polymer porous-coated uncemented prosthesis. (a) Identification. A knee joint patellofemorotibial metal/polymer porous-coated uncemented prosthesis is a...

  9. 21 CFR 888.3565 - Knee joint patellofemorotibial metal/polymer porous-coated uncemented prosthesis.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Knee joint patellofemorotibial metal/polymer... Devices § 888.3565 Knee joint patellofemorotibial metal/polymer porous-coated uncemented prosthesis. (a) Identification. A knee joint patellofemorotibial metal/polymer porous-coated uncemented prosthesis is a...

  10. 21 CFR 888.3565 - Knee joint patellofemorotibial metal/polymer porous-coated uncemented prosthesis.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Knee joint patellofemorotibial metal/polymer... Devices § 888.3565 Knee joint patellofemorotibial metal/polymer porous-coated uncemented prosthesis. (a) Identification. A knee joint patellofemorotibial metal/polymer porous-coated uncemented prosthesis is a...

  11. 21 CFR 888.3565 - Knee joint patellofemorotibial metal/polymer porous-coated uncemented prosthesis.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Knee joint patellofemorotibial metal/polymer... Devices § 888.3565 Knee joint patellofemorotibial metal/polymer porous-coated uncemented prosthesis. (a) Identification. A knee joint patellofemorotibial metal/polymer porous-coated uncemented prosthesis is a...

  12. QM-8 field joint protection system, volume 7

    NASA Technical Reports Server (NTRS)

    Hale, Elgie

    1989-01-01

    The pre-launch functioning data of the Field Joint Protection System (JPS) used on QM-8 are presented. Also included is the post fire condition of the JPS components following the test firing of the motor. The JPS components are: field joint heaters; field joint sensors; field joint moisture seal; moisture seal kevlar retaining straps; field joint external extruded cork insulation; vent valve; power cables; and igniter heater.

  13. Conductance Degradation in HTS Coated Conductor Solder Joints

    NASA Astrophysics Data System (ADS)

    Canavan, Edgar R.; Leidecker, Henning; Panashchenko, Lyudmyla

    2015-12-01

    Solder joints between YBCO coated conductors and normal metal traces have been analysed as part of an effort to develop a robust HTS lead assembly for a spaceflight mission. Measurements included critical current and current transfer profiles. X-ray micrographs were used to verify proper solder flow and to determine the extent of voiding. SEM of cross-sections with EDS analysis was crucial in understanding the diffusion of the protective silver layer over the YBCO into the solder for different solder processes. The assembly must be stored for an extended period of time prior to final cool-down and operation. Measurements of the joint resistance over the course of months show a significant increase with time. Understanding the interface condition suggests an explanation for the change.

  14. Architectural design of diamond-like carbon coatings for long-lasting joint replacements.

    PubMed

    Liu, Yujing; Zhao, Xiaoli; Zhang, Lai-Chang; Habibi, Daryoush; Xie, Zonghan

    2013-07-01

    Surface engineering through the application of super-hard, low-friction coatings as a potential approach for increasing the durability of metal-on-metal replacements is attracting significant attention. In this study innovative design strategies are proposed for the development of diamond-like-carbon (DLC) coatings against the damage caused by wear particles on the joint replacements. Finite element modeling is used to analyze stress distributions induced by wear particles of different sizes in the newly-designed coating in comparison to its conventional monolithic counterpart. The critical roles of architectural design in regulating stress concentrations and suppressing crack initiation within the coatings is elucidated. Notably, the introduction of multilayer structure with graded modulus is effective in modifying the stress field and reducing the magnitude and size of stress concentrations in the DLC diamond-like-carbon coatings. The new design is expected to greatly improve the load-carrying ability of surface coatings on prosthetic implants, in addition to the provision of damage tolerance through crack arrest. PMID:23623097

  15. Silicon oxynitride: A field emission suppression coating

    NASA Astrophysics Data System (ADS)

    Theodore, Nimel D.

    We have studied coatings deposited using our inductively-coupled RF plasma ion implantation and desposition system to suppress field emission from large, 3-D electrode structures used in high voltage applications, like those used by Thomas Jefferson National Accelerator Facility in their DC-field photoelectron gun. Currently time and labor-intensive hand-polishing procedures are used to minimize field emission from these structures. Previous work had shown that the field emission from polished stainless steel (27 muA of field-emitted current at 15 MV/m) could be drastically reduced with simultaneous deposition of sputtered silicon dioxide during nitrogen implantation (167 pA of field-emitted current at 30 MV/m). We have determined that this unique implantation and deposition procedure produces high-purity silicon oxynitride films that can suppress field emission from stainless steel regardless of their initial surface polish. However, when this implantation procedure was applied to large, 3-D substrates, arcs occurred, damaging the coating and causing unreliable and unrepeatable field emission suppression. We have developed a novel reactive sputtering procedure to deposit high-purity silicon oxynitride coatings without nitrogen ion implantation. We can control the stoichometry and deposition rate of these coatings by adjusting the nitrogen pressure and incident RF-power. Using profilometry, Auger electron spectroscopy, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, Rutherford backscattering spectrometry, elastic recoil detection analysis, and current-voltage measurements, we have determined that the elemental composition, chemical bonding, density, and electrical properties of the reactively-sputtered silicon oxynitride coatings are similar to those produced by nitrogen implantation during silicon dioxide deposition. Furthermore, high voltage tests determined that both coatings similarly suppress field emission from 6" diameter, polished

  16. Joint of REBa2Cu3O7-δ Coated Conductors Using Metal Organic Deposition

    NASA Astrophysics Data System (ADS)

    Hiramatsu, K.; Teranishi, R.; Yamada, K.; Sato, Y.; Kaneko, K.

    Joint techniques connecting REBa2Cu3O7-δ(REBCO) coated conductors (CCs) are required to fabricate long length CCs and to repair locally damaged one. Two pieces of REBCO CC were attempted to be jointed using a metal organic deposition (MOD) method. The starting solution for YBCO layer was coated on GdBCO layer of CCs and calcined to fabricate precursor films, two of which were stuck together in a face to face manner, and then these films were pressurized and crystallized to joint them. Two CCs were successfully jointed together with c-axis oriented YBCO without pores and reacted phases at the joint interface.

  17. Structural behavior of solid rocket motor field joints

    NASA Technical Reports Server (NTRS)

    Card, Michael F.; Wingate, Robert T.

    1987-01-01

    Structural analysis studies conducted on three concepts for the Space Shuttle Solid Rocket Motor field joints are summarized. Deflections and stresses in the Challenger clevis-tang joint are compared with a proposed capture-tang replacement joint and with an alternate bolted joint design. Results indicate deflections and stresses are subsequently reduced in both the capture-tang and bolted joint concepts. The capture-tang and bolted joint designs are respectively 24 and 70 percent heavier than the baseline clevis-tang joint.

  18. PAINT COATINGS: CONTROLLED FIELD AND CHAMBER EXPERIMENTS

    EPA Science Inventory

    To determine the impact of pollution levels on the weathering rates of coatings, laboratory chamber experiments and controlled field exposures at North Carolina and Ohio sites were conducted in such a manner to separate the contributions due to dry deposition, wet deposition, pre...

  19. Hexavalent Chrome Free Coatings for Electronics Applications: Joint Test Report

    NASA Technical Reports Server (NTRS)

    Rothgeb, Matt; Kessel, Kurt

    2013-01-01

    The overall objective of the Hexavalent Chrome Free Coatings for Electronics Applications project is to evaluate and test pretreatments not containing hexavalent chrome in avionics and electronics housing applications. This objective will be accomplished by testing strong performing coating systems from prior NASA and DoD testing or new coating systems as determined by the stakeholders.

  20. 21 CFR 888.3358 - Hip joint metal/polymer/metal semi-constrained porous-coated uncemented prosthesis.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Hip joint metal/polymer/metal semi-constrained... Devices § 888.3358 Hip joint metal/polymer/metal semi-constrained porous-coated uncemented prosthesis. (a) Identification. A hip joint metal/polymer/metal semi-constrained porous-coated uncemented prosthesis is a...

  1. 21 CFR 888.3358 - Hip joint metal/polymer/metal semi-constrained porous-coated uncemented prosthesis.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Hip joint metal/polymer/metal semi-constrained... Devices § 888.3358 Hip joint metal/polymer/metal semi-constrained porous-coated uncemented prosthesis. (a) Identification. A hip joint metal/polymer/metal semi-constrained porous-coated uncemented prosthesis is a...

  2. Surface pressure field mapping using luminescent coatings

    NASA Technical Reports Server (NTRS)

    Mclachlan, B. G.; Kavandi, J. L.; Callis, J. B.; Gouterman, M.; Green, E.; Khalil, G.; Burns, D.

    1993-01-01

    In recent experiments we demonstrated the feasibility of using the oxygen dependence of luminescent molecules for surface pressure measurement in aerodynamic testing. This technique is based on the observation that for many luminescent molecules the light emitted increases as the oxygen partial pressure, and thus the air pressure, the molecules see decreases. In practice the surface to be observed is coated with an oxygen permeable polymer containing a luminescent molecule and illuminated with ultraviolet radiation. The airflow induced surface pressure field is seen as a luminescence intensity distribution which can be measured using quantitative video techniques. Computer processing converts the video data into a map of the surface pressure field. The experiments consisted of evaluating a trial luminescent coating in measuring the static surface pressure field over a two-dimensional NACA-0012 section model airfoil for Mach numbers ranging from 0.3 and 0.66. Comparison of the luminescent coating derived pressures were made to those obtained from conventional pressure taps. The method along with the experiment and its results will be described.

  3. Fabrication and evaluation of SixNy coatings for total joint replacements.

    PubMed

    Olofsson, J; Pettersson, M; Teuscher, N; Heilmann, A; Larsson, K; Grandfield, K; Persson, C; Jacobson, S; Engqvist, H

    2012-08-01

    Wear particles from the bearing surfaces of joint implants are one of the main limiting factors for total implant longevity. Si(3)N(4) is a potential wear resistant alternative for total joint replacements. In this study, Si(x)N(y)-coatings were deposited on cobalt chromium-discs and Si-wafers by a physical vapour deposition process. The tribological properties, as well as surface appearance, chemical composition, phase composition, structure and hardness of these coatings were analysed. The coatings were found to be amorphous or nanocrystalline, with a hardness and coefficient of friction against Si(3)N(4) similar to that found for bulk Si(3)N(4). The low wear rate of the coatings indicates that they have a potential as bearing surfaces of joint replacements. The adhesion to the substrates remains to be improved. PMID:22689010

  4. Tantalum as a buffer layer in diamond-like carbon coated artificial hip joints.

    PubMed

    Kiuru, Mirjami; Alakoski, Esa; Tiainen, Veli-Matti; Lappalainen, Reijo; Anttila, Asko

    2003-07-15

    The acid resistance of tantalum coated and uncoated human hip joint prostheses was studied with commercial CrCoMo acetabular cups. The samples were exposed to 10% HCl solution and the quantities of dissolved Cr, Co, and Mo were measured with proton-induced X-ray emission (PIXE). The absolute quantities were obtained with the use of Cr and Se solution standards. Tantalum coatings (thicknesses 4-6 microm) were prepared in vacuum with magnetron sputtering. Tantalum coating decreased the corrosion rate by a factor of 10(6). As a spinoff from recent wear tests on artificial hip joints it was shown that tantalum has excellent mechanical properties as an intermediate layer of diamond-like carbon (DLC) coatings. When tantalum was tested together with DLC on three metal-on-metal hip joint pairs in a hip simulator, no observable defects occurred during 15 million walking cycles with a periodic 50-300-kg load (Paul curve). PMID:12808604

  5. Diamond coated silicon field emitter array

    SciTech Connect

    S. Albin; W. Fu; A. Varghese; A. C. Lavarias; G. R. Myneni

    1999-07-01

    Diamond coated silicon tip arrays, with and without a self-aligned gate, were fabricated, and current-voltage characteristics of 400 tips were measured. Diamond films were grown uniformly on Si tips using microwave plasma after nucleation with 10 nm diamond suspension and substrate bias. An emission current of 57 ?A was obtained at 5 V from the ungated array tips separated from an anode at 2 ?m. In the case of the gated arrays with 1.5 ?m aperture, an emission current of 3.4 ?A was measured at a gate voltage of 80 V for an anode separation of 200 ?m. The turn-on voltages for these two types of devices were 0.2 and 40 V, respectively. Diamond coated Si tip arrays have potential applications in field emission based low voltage vacuum electronic devices and microsensors.

  6. Solid rocket motor aft field joint flow field analysis

    NASA Technical Reports Server (NTRS)

    Sabnis, Jayant S.; Gibeling, Edward J.; Mcdonald, Henry

    1987-01-01

    An efficient Navier-Stokes analysis was successfully applied to simulate the complex flow field in the vicinity of a slot in a solid rocket motor with segment joints. The capability of the computer code to resolve the flow near solid surfaces without using a wall function assumption was demonstrated. In view of the complex nature of the flow field in the vicinity of the slot, this approach is considered essential. The results obtained from these calculations provide valuable design information, which would otherwise be extremely difficult to obtain. The results of the axisymmetric calculations indicate the presence of a region of reversed axial flow at the aft-edge of the slot and show the over-pressure in the slot to be only about 10 psi. The results of the asymmetric calculations indicate that a pressure asymmetry more than two diameters downstream of the slot has no noticeable effect on the flow field in the slot. They also indicate that the circumferential pressure differential caused in the slot due to failure of a 15 deg section of the castable inhibitor will be approximately 1 psi.

  7. Portable power tool machines weld joints in field

    NASA Technical Reports Server (NTRS)

    Spier, R. A.

    1966-01-01

    Portable routing machine for cutting precise weld joints required by nonstandard pipe sections used in the field for transfer of cryogenic fluids. This tool is adaptable for various sizes of pipes and has a selection of router bits for different joint configurations.

  8. Protective coatings for columbium applied in the field.

    NASA Technical Reports Server (NTRS)

    Carter, J.; Culp, J.

    1971-01-01

    The various aspects of field repair of columbium alloy panels with protective coatings designed as part of the Space Shuttle thermal protection system are examined. The field repair of the coatings is accomplished by employing ceramic cement repairs, and reapplying the fused slurry silicide coating. Techniques are described which improve the practicality of these repairs by employing torch heating. The repair coating quality is demonstrated by testing which simulates flight temperature, pressure, stress and acoustic vibration conditions as a function of time. Conclusions on the present status of field repair coatings are presented and recommendations are given for appropriate future activities relative to the use on an operational Space Shuttle system.

  9. 21 CFR 888.3535 - Knee joint femorotibial (uni-compartmental) metal/polymer porous-coated uncemented prosthesis.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    .../polymer porous-coated uncemented prosthesis. 888.3535 Section 888.3535 Food and Drugs FOOD AND DRUG... Devices § 888.3535 Knee joint femorotibial (uni-compartmental) metal/polymer porous-coated uncemented prosthesis. (a) Identification. A knee joint femorotibial (uni-compartmental) metal/polymer...

  10. 21 CFR 888.3535 - Knee joint femorotibial (uni-compartmental) metal/polymer porous-coated uncemented prosthesis.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    .../polymer porous-coated uncemented prosthesis. 888.3535 Section 888.3535 Food and Drugs FOOD AND DRUG... Devices § 888.3535 Knee joint femorotibial (uni-compartmental) metal/polymer porous-coated uncemented prosthesis. (a) Identification. A knee joint femorotibial (uni-compartmental) metal/polymer...

  11. Hexavalent Chrome Free Coatings for Electronics Applications: Joint Test Report

    NASA Technical Reports Server (NTRS)

    Kessel, Kurt

    2012-01-01

    Regardless of the corrosivity of the environment, all metals require periodic maintenance activity to guard against the insidious effects of corrosion and thus ensure that alloys meet or exceed design or performance life. The standard practice for protecting metallic substrates is the application of a coating system. Applied coating systems work via a variety of methods (barrier, galvanic, and/or inhibitor) and adhere to the substrate through a combination of chemical and physical bonds. For years hexavalent chromium has been a widely used element within applied coating systems because of its self healing and corrosion resistant properties. Occupational Safety and Health Administration (OSHA) studies have concluded that hexavalent chromium (hex chrome) is carcinogenic and poses significant risk to human health. On May 5, 2011 amendments to the Defense Federal Acquisition Regulation Supplement (DFARS) were issued in the Federal Register. Subpart 223.73 prohibits contracts from requiring hexavalent chromium in deliverables unless certain exceptions apply. These exceptions include authorization from a general or flag officer and members of the Senior Executive Service from a Program Executive Office, and unmodified legacy systems. Otherwise, Subpart 252.223-7008 provides the contract clause prohibiting contractors from using or delivering hexavalent chromium in a concentration greater than 0.1 percent by weight for all new contracts and to be included down to subcontractors for supplies, maintenance and repair services, and construction materials. National Aeronautics and Space Administration (NASA), Department of Defense (DoD), and industry stakeholders continue to search for alternatives to hex chrome in coatings applications that meet their performance requirements in corrosion protection, cost, operability, and health and safety, while typically specifying that performance must be equal to or greater than existing systems.

  12. VOLTAGE DISTRIBUTION AND MECHANICAL STRENGTH IN SPLICE JOINTS MADE FROM AS-MANUFACTURED YBCO COATED CONDUCTORS

    SciTech Connect

    Duckworth, Robert C; Zhang, Yifei; Gouge, Michael J; Rey, Christopher M; Van der Laan, Danko; Clickner, Cam

    2010-01-01

    With recommendations from wire manufacturers as a starting point, a series of solder joints were fabricated and characterized to determine the best method to produce repeatable, low-resistance and high-mechanical-strength splices in as-manufactured, stabilized YBCO coated conductors. From the 2.54 cm long splice joints that were fabricated, parameters such as solder material, stabilization material, fabrication method, and conductor geometry were varied to determine the impact of each on splice joint properties. Results indicate that the lowest resistance splice joints were influenced primarily by the tape orientation in the joint and the stabilization material. The lowest resistances were between 2 10-8 and 1.0 10-7 in 4-mm wide tapes and were obtained from pure copper stabilized tapes oriented with the YBCO layers in closest proximity. The voltage drop along the splice length indicated that only a fraction of the splice length contributes to the splice joint resistance. Mechanical characterization of splice joints showed that the joint resistance remained unchanged under axial stress up to a stress level at which the critical current of the tapes forming the joint degrades irreversibly.

  13. 21 CFR 888.3535 - Knee joint femorotibial (uni-compartmental) metal/polymer porous-coated uncemented prosthesis.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Knee joint femorotibial (uni-compartmental) metal... Devices § 888.3535 Knee joint femorotibial (uni-compartmental) metal/polymer porous-coated uncemented prosthesis. (a) Identification. A knee joint femorotibial (uni-compartmental) metal/polymer...

  14. 21 CFR 888.3535 - Knee joint femorotibial (uni-compartmental) metal/polymer porous-coated uncemented prosthesis.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Knee joint femorotibial (uni-compartmental) metal... Devices § 888.3535 Knee joint femorotibial (uni-compartmental) metal/polymer porous-coated uncemented prosthesis. (a) Identification. A knee joint femorotibial (uni-compartmental) metal/polymer...

  15. 21 CFR 888.3535 - Knee joint femorotibial (uni-compartmental) metal/polymer porous-coated uncemented prosthesis.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Knee joint femorotibial (uni-compartmental) metal... Devices § 888.3535 Knee joint femorotibial (uni-compartmental) metal/polymer porous-coated uncemented prosthesis. (a) Identification. A knee joint femorotibial (uni-compartmental) metal/polymer...

  16. 21 CFR 888.3670 - Shoulder joint metal/polymer/metal nonconstrained or semi-constrained porous-coated uncemented...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Shoulder joint metal/polymer/metal nonconstrained... ORTHOPEDIC DEVICES Prosthetic Devices § 888.3670 Shoulder joint metal/polymer/metal nonconstrained or semi-constrained porous-coated uncemented prosthesis. (a) Identification. A shoulder joint...

  17. 21 CFR 888.3670 - Shoulder joint metal/polymer/metal nonconstrained or semi-constrained porous-coated uncemented...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Shoulder joint metal/polymer/metal nonconstrained... ORTHOPEDIC DEVICES Prosthetic Devices § 888.3670 Shoulder joint metal/polymer/metal nonconstrained or semi-constrained porous-coated uncemented prosthesis. (a) Identification. A shoulder joint...

  18. A robotic apparatus that dictates torque fields around joints without affecting inherent joint dynamics.

    PubMed

    Oytam, Yalchin; Lloyd, David; Reid, Campbell S; de Rugy, Aymar; Carson, Richard G

    2010-10-01

    This manuscript describes how motor behaviour researchers who are not at the same time expert roboticists may implement an experimental apparatus, which has the ability to dictate torque fields around a single joint on one limb or single joints on multiple limbs without otherwise interfering with the inherent dynamics of those joints. Such an apparatus expands the exploratory potential of the researcher wherever experimental distinction of factors may necessitate independent control of torque fields around multiple limbs, or the shaping of torque fields of a given joint independently of its plane of motion, or its directional phase within that plane. The apparatus utilizes torque motors. The challenge with torque motors is that they impose added inertia on limbs and thus attenuate joint dynamics. We eliminated this attenuation by establishing an accurate mathematical model of the robotic device using the Box-Jenkins method, and cancelling out its dynamics by employing the inverse of the model as a compensating controller. A direct measure of the remnant inertial torque as experienced by the hand during a 50 s period of wrist oscillations that increased gradually in frequency from 1.0 to 3.8 Hz confirmed that the removal of the inertial effect of the motor was effectively complete. PMID:20728232

  19. Retrospective lifetime estimation of failed and explanted diamond-like carbon coated hip joint balls.

    PubMed

    Hauert, R; Falub, C V; Thorwarth, G; Thorwarth, K; Affolter, Ch; Stiefel, M; Podleska, L E; Taeger, G

    2012-08-01

    Diamond-like carbon (DLC) coatings are known to have extremely low wear in many technical applications. The application of DLC as a coating has aimed at lowering wear and to preventing wear particle-induced osteolysis in artificial hip joints. In a medical study femoral heads coated with diamond-like amorphous carbon, a subgroup of DLC, articulating against polyethylene cups were implanted between 1993 and 1995. Within 8.5 years about half of the hip joints had to be revised due to aseptic loosening. The explanted femoral heads showed many spots of local coating delamination. Several of these explanted coated TiAlV femoral heads have been analyzed to investigate the reason for this failure. Raman analysis and X-ray photoelectron spectroscopy (XPS) depth profiling showed that the coating consists of diamond-like amorphous carbon, several Si-doped layers and an adhesion-promoting Si interlayer. Focused ion beam (FIB) transverse cuts revealed that the delamination of the coatings is caused by in vivo corrosion of the Si interlayer. Using a delamination test set-up dissolution of the silicon adhesion-promoting interlayer at a speed of more than 100 μm year(-1) was measured in vitro in solutions containing proteins. Although proteins are not directly involved in the corrosion reactions, they can block existing small cracks and crevices under the coating, hindering the exchange of liquid. This results in a build-up of crevice corrosion conditions in the crack, causing a slow dissolution of the Si interlayer. PMID:22521966

  20. Flight Set 360L002 (STS-27) field joint protection system, volume 7

    NASA Technical Reports Server (NTRS)

    Hale, Elgie

    1989-01-01

    This report contains the pre-launch functioning data of the Field Joint Protection System (JPS) used on STS-27. Also included is the post flight condition of the JPS components following the launch and recovery of the two redesigned solid rocket motors (RSRM) boosters. The JPS components are: (1) field joint heaters; (2) field joint sensors; (3) field joint moisture seal; (4) moisture seal Kevlar retaining straps; (5) field joint external insulation; (6) vent valve; (7) power cables; and (8) igniter heater.

  1. Jointing of Coated Conductors by Using Nano-particle Metal Pastes

    NASA Astrophysics Data System (ADS)

    Nakanishi, Tsuyoshi; Machi, Takato; Izumi, Teruo; Teranishi, Ryo; Kato, Tomohiro; Kato, Takeharu; Hirayama, Tsukasa

    Development of a jointing technique of coated conductors is important for all applications, such as superconducting magnets, cables, etc. Low resistance jointing techniques by means of silver diffusion [1] and for superconducting joints[2] have been reported so far. Since these processes were carried out at higher temperatures than the O2 annealing temperature for appropriate carrier doping to the REBa2Cu3O7-d (REBCO) crystals and resulted in oxygen deficiency in the REBCO crystals, long time O2 annealing was required for compensation of this oxygen deficiency. Because the long time and high temperature post annealing is an inappropriate process as on-site technology, solder jointing technology has been widely accepted, in general, for practical applications. However, the resistance of the solder joint is 50 - 100 nΩ, and then the Joule heat generation in the joint region is a serious problem and must be solved. Consequently, we have studied a new jointing technique by using the pastes containing of silver or gold nano-particles. Because the Ic value of GdBCO was deteriorated with higher temperature heat treatment, we have tried to develop a jointing technology with the low temperature (below 200°C). We used the nano-particle metal pastes (∼5 nm) which contained dispersants around the chemically active surface of nano-particles and dissociates at low temperatures and achieved the low resistance joint (∼ 3nΩ, 10 x 160 mm2, 77 K) as well as no Ic degradation without O2 post annealing.

  2. Mechanical and tribological behavior of silicon nitride and silicon carbon nitride coatings for total joint replacements.

    PubMed

    Pettersson, M; Tkachenko, S; Schmidt, S; Berlind, T; Jacobson, S; Hultman, L; Engqvist, H; Persson, C

    2013-09-01

    Total joint replacements currently have relatively high success rates at 10-15 years; however, increasing ageing and an active population places higher demands on the longevity of the implants. A wear resistant configuration with wear particles that resorb in vivo can potentially increase the lifetime of an implant. In this study, silicon nitride (SixNy) and silicon carbon nitride (SixCyNz) coatings were produced for this purpose using reactive high power impulse magnetron sputtering (HiPIMS). The coatings are intended for hard bearing surfaces on implants. Hardness and elastic modulus of the coatings were evaluated by nanoindentation, cohesive, and adhesive properties were assessed by micro-scratching and the tribological performance was investigated in a ball-on-disc setup run in a serum solution. The majority of the SixNy coatings showed a hardness close to that of sintered silicon nitride (~18 GPa), and an elastic modulus close to that of cobalt chromium (~200 GPa). Furthermore, all except one of the SixNy coatings offered a wear resistance similar to that of bulk silicon nitride and significantly higher than that of cobalt chromium. In contrast, the SixCyNz coatings did not show as high level of wear resistance. PMID:23726925

  3. Field joint environmental protection system vibration/pressurization qualification

    NASA Technical Reports Server (NTRS)

    Cook, M.

    1989-01-01

    The procedures used and results obtained from vibration testing the redesigned solid rocket motor (RSRM) field joint environmental protection system (FJEPS), hereafter referred to as the joint protection system (JPS) are documented. The major purposes were to certify that the flight-designed JPS will withstand the dynamic environmental conditions of the redesigned solid rocket booster, and to certify that the cartridge check valve (vent valve) will relieve pressure build-up under the JPS during the initial 120 sec of flight. Also, an evaluation of the extruded cork insulation bonding was performed after the vibration testing.

  4. Improved Photoresist Coating for Making CNT Field Emitters

    NASA Technical Reports Server (NTRS)

    Toda, Risaku; Manohara, Harish

    2009-01-01

    An improved photoresist-coating technique has been developed for use in the fabrication of carbon-nanotube- (CNT) based field emitters is described. The improved photoresist coating technique overcomes what, heretofore, has been a major difficulty in the fabrication process.

  5. Field repair of coated columbium Thermal Protection System (TPS)

    NASA Technical Reports Server (NTRS)

    Culp, J. D.

    1972-01-01

    The requirements for field repair of coated columbian panels were studied, and the probable cause of damage were identified. The following types of repair methods were developed, and are ready for use on an operational system: replacement of fused slurrey silicide coating by a short processing cycle using a focused radiant spot heater; repair of the coating by a glassy matrix ceramic composition which is painted or sprayed over the defective area; and repair of the protective coating by plasma spraying molybdenum disilicide over the damaged area employing portable equipment.

  6. Development of a superconducting joint between a GdBa2Cu3O7-δ-coated conductor and YBa2Cu3O7-δ bulk: towards a superconducting joint between RE (Rare Earth) Ba2Cu3O7-δ-coated conductors

    NASA Astrophysics Data System (ADS)

    Jin, Xinzhe; Yanagisawa, Yoshinori; Maeda, Hideaki; Takano, Yoshiki

    2015-07-01

    We have started to develop a superconducting bridge joint between two GdBa2Cu3O7-δ (Gd123)-coated conductors, where both conductors are placed in an end-to-end arrangement on the surface of a melt-textured YBCO (including Y2BaCuO5 and YBa2Cu3O7-δ) bulk, which acts as a superconducting medium between the coated conductors. As a first step in the development, one half of the bridge joint assembly was modeled and investigated. Experimental results achieved are as follows: (a) the higher-melting-temperature textured Gd123-coated conductor acts as a seed for the melt texture of the YBa2Cu3O7-δ (Y123) bulk, and (b) the superconducting phase continues across the Y123/Gd123 boundary. The critical current of the joint model is 10 A, which is about 10% of the original Gd123-coated conductor, at 77 K in a self-magnetic field. These results are considered to be extensible to the superconducting bridge joint between the Gd123-coated conductors.

  7. NATO TG-25 joint field experiment in distributed sensor networks

    NASA Astrophysics Data System (ADS)

    Mays, Brian; Vu, Hao; Srour, Nino

    2003-09-01

    NATO's Task Group (TG-25) on acoustic and seismic sensing is responsible for assessing the potential technologies that can be cooperatively developed and shared within NATO's countries to provide effective, robust and low-cost battlefield sensor systems. The primary applications will be detection and/or classification of ground troops, ground vehicles, airborne vehicles, artillery and sniper. TG-25 has 3 main objectives: (1) to establish acoustic and seismic standards and data exchange procedures, (2) to compare, analyze, exchange, and develop analytical techniques, computational models and signal processing algorithms, and (3) to plan and conduct joint field experiments. In this paper, we discuss participation in the joint NATO field experiment conducted in France in October 2002. The experiment's goal is to demonstrate interoperability of unattended ground sensors from various participating nations. Results of the experiments will be briefed and discussed. Keywords: TG-25, unattended ground sensor, vehicle tracking

  8. NATO SET-093 joint field experiment at Bourges, France

    NASA Astrophysics Data System (ADS)

    Marty, C.; Bruel, F.; Prieur, D.; Naz, P.; Miller, L. S.

    2009-05-01

    This paper describes the NATO Task Group SET-093/RTG53/MSE (referred to as TG-53 in this report) Acoustic Detection of Weapons Firing Joint Field Experiment II conducted at the Etablissement Technique de Bourges (ETBS), Bourges, France, during 16 to 27 June 2008. This field experiment is a follow-on to the NATO TG-53 Acoustic Detection of Weapons Firing Joint Field Experiment I conducted at the Yuma Proving Grounds (YPG), Yuma, Arizona, USA, during 31 October to 4 November 2005 [1]. The objectives of the joint experiment were: (i) to collect acoustic signatures of direct and indirect firings from weapons' such as small arms, mortars, artillery, rockets, and C4 explosives, (ii) to analyze the propagation effects of grassy, wooded, and urban terrains, (iii) to share signatures collected from a variety of acoustic sensors, on the ground and in the air, distributed over a wide area, and (iv) to demonstrate the interoperability of disparate sensors developed by the various nations involved. The participating NATO countries , including France, the Netherlands, the United Kingdom, Canada, and the United States of America, and Israel as well as part of the Mediterranean dialogue countries, deployed nearly 90 sensors and sensor systems over the test range area.

  9. The High performance of nanocrystalline CVD diamond coated hip joints in wear simulator test.

    PubMed

    Maru, M M; Amaral, M; Rodrigues, S P; Santos, R; Gouvea, C P; Archanjo, B S; Trommer, R M; Oliveira, F J; Silva, R F; Achete, C A

    2015-09-01

    The superior biotribological performance of nanocrystalline diamond (NCD) coatings grown by a chemical vapor deposition (CVD) method was already shown to demonstrate high wear resistance in ball on plate experiments under physiological liquid lubrication. However, tests with a close-to-real approach were missing and this constitutes the aim of the present work. Hip joint wear simulator tests were performed with cups and heads made of silicon nitride coated with NCD of ~10 μm in thickness. Five million testing cycles (Mc) were run, which represent nearly five years of hip joint implant activity in a patient. For the wear analysis, gravimetry, profilometry, scanning electron microscopy and Raman spectroscopy techniques were used. After 0.5 Mc of wear test, truncation of the protruded regions of the NCD film happened as a result of a fine-scale abrasive wear mechanism, evolving to extensive plateau regions and highly polished surface condition (Ra<10nm). Such surface modification took place without any catastrophic features as cracking, grain pullouts or delamination of the coatings. A steady state volumetric wear rate of 0.02 mm(3)/Mc, equivalent to a linear wear of 0.27 μm/Mc favorably compares with the best performance reported in the literature for the fourth generation alumina ceramic (0.05 mm(3)/Mc). Also, squeaking, quite common phenomenon in hard-on-hard systems, was absent in the present all-NCD system. PMID:26024650

  10. An analysis of the flow field in the region of the ASRM field joints

    NASA Technical Reports Server (NTRS)

    Dill, Richard A.; Whitesides, Harold R.

    1992-01-01

    The flow field in the region of a solid rocket motor field joint is very important since fluid dynamic and mechanical propellant stresses can couple to cause a motor failure at a joint. Presented here is an examination of the flow field in the region of the Advanced Solid Rocket Motor (ASRM) field joints. The analyses were performed as a first step in assessing the design of the ASRM forward and aft field joints in order to assure the proper operation of the motor prior to further development of test firing. The analyses presented here were performed by employing a two-dimensional axisymmetric assumption. Fluent/BFC, a three dimensional full Navier-Stokes flow field code, was used to make the numerical calculations. This code utilizes a staggered grid formulation along with the SIMPLER numerical algorithm. Wall functions are used to determine the character of the laminar sublayer, and a standard kappa-epsilon turbulence model is used to close the fluid dynamic equations. The analyses performed to this date verify that the ASRM field joint design operates properly. The fluid dynamic stresses at the field joints are small due to the inherent design of the field joints. A problem observed in some other solid rocket motors is that large fluid dynamic stresses are generated at the motor joint on the downstream propellant grain due to forward facing step geometries. The design of the ASRM field joints are such that this is not a problem as shown by the analyses. Also, the analyses of the inhibitor stub left protruding into the port flow from normal propellant burn back show that more information is necessary to complete these analyses. These analyses were performed as parametric analyses in relation to the height of the inhibitor stub left protruding into the motor port. A better estimate of the amount of the inhibitor stub remaining at later burn times must be determined since the height which the inhibitor stub protrudes into the port flow drastically affects the fluid

  11. An analysis of the flow field in the region of the ASRM field joints

    NASA Astrophysics Data System (ADS)

    Dill, Richard A.; Whitesides, Harold R.

    1992-07-01

    The flow field in the region of a solid rocket motor field joint is very important since fluid dynamic and mechanical propellant stresses can couple to cause a motor failure at a joint. Presented here is an examination of the flow field in the region of the Advanced Solid Rocket Motor (ASRM) field joints. The analyses were performed as a first step in assessing the design of the ASRM forward and aft field joints in order to assure the proper operation of the motor prior to further development of test firing. The analyses presented here were performed by employing a two-dimensional axisymmetric assumption. Fluent/BFC, a three dimensional full Navier-Stokes flow field code, was used to make the numerical calculations. This code utilizes a staggered grid formulation along with the SIMPLER numerical algorithm. Wall functions are used to determine the character of the laminar sublayer, and a standard kappa-epsilon turbulence model is used to close the fluid dynamic equations. The analyses performed to this date verify that the ASRM field joint design operates properly. The fluid dynamic stresses at the field joints are small due to the inherent design of the field joints. A problem observed in some other solid rocket motors is that large fluid dynamic stresses are generated at the motor joint on the downstream propellant grain due to forward facing step geometries. The design of the ASRM field joints are such that this is not a problem as shown by the analyses. Also, the analyses of the inhibitor stub left protruding into the port flow from normal propellant burn back show that more information is necessary to complete these analyses. These analyses were performed as parametric analyses in relation to the height of the inhibitor stub left protruding into the motor port. A better estimate of the amount of the inhibitor stub remaining at later burn times must be determined since the height which the inhibitor stub protrudes into the port flow drastically affects the fluid

  12. Nondestructive Evaluation of Friction Stir-Welded Aluminum Alloy to Coated Steel Sheet Lap Joint

    NASA Astrophysics Data System (ADS)

    Das, H.; Kumar, A.; Rajkumar, K. V.; Saravanan, T.; Jayakumar, T.; Pal, Tapan Kumar

    2015-11-01

    Dissimilar lap joints of aluminum sheet (AA 6061) of 2 mm thickness and zinc-coated steel sheet of 1 mm thickness were produced by friction stir welding with different combinations of rotational speed and travel speed. Ultrasonic C- and B-scanning, and radiography have been used in a complementary manner for detection of volumetric (cavity and flash) and planar (de bond) defects as the defects are in micron level. Advanced ultrasonic C-scanning did not provide any idea about the defects, whereas B-scanning cross-sectional image showed an exclusive overview of the micron-level defects. A digital x-ray radiography methodology is proposed for quality assessment of the dissimilar welds which provide three-fold increase in signal-to-noise ratio with improved defect detection sensitivity. The present study clearly shows that the weld tool rotational speed and travel speed have a decisive role on the quality of the joints obtained by the friction stir welding process. The suitability of the proposed NDE techniques to evaluate the joint integrity of dissimilar FSW joints is thus established.

  13. Pursuing low joint resistivity in Cu-stabilized REBa2Cu3O δ coated conductor tapes by the ultrasonic weld-solder hybrid method

    NASA Astrophysics Data System (ADS)

    Shin, Hyung-Seop; Kim, Jong-min; Dedicatoria, Marlon J.

    2016-01-01

    Development of a coated conductor tape joint with good quality and low joint resistivity, R sj, in terms of transport and mechanical properties, was attempted by direct bonding at the interface of the Cu-Cu stabilizers in overlapped GdBCO CC tapes. In this study, we attempted to achieve a low R sj by introducing hybrid joining, soldering and ultrasonic welding (UW), and its mechanism was analyzed theoretically. Coated conductor tapes were experimentally joined using various methods of soldering, UW, and combinations of the two. As a result, a much lower R sj of about 57 nΩ · cm2 was obtained for RCE-DR-processed GdBCO CC tape joints using the hybrid joining method. The mechanical properties of the jointed CC tapes were also evaluated at room temperature and 77 K under self-field. Load-displacement curves of joined CC tapes followed the curve of the single CC tape. Critical current and joint resistance, R j, of hybrid-joined CC tape were retained after double bending at room temperature up to 20 mm bending diameter.

  14. Joint analysis of spikes and local field potentials using copula.

    PubMed

    Hu, Meng; Li, Mingyao; Li, Wu; Liang, Hualou

    2016-06-01

    Recent technological advances, which allow for simultaneous recording of spikes and local field potentials (LFPs) at multiple sites in a given cortical area or across different areas, have greatly increased our understanding of signal processing in brain circuits. Joint analysis of simultaneously collected spike and LFP signals is an important step to explicate how the brain orchestrates information processing. In this contribution, we present a novel statistical framework based on Gaussian copula to jointly model spikes and LFP. In our approach, we use copula to link separate, marginal regression models to construct a joint regression model, in which the binary-valued spike train data are modeled using generalized linear model (GLM) and the continuous-valued LFP data are modeled using linear regression. Model parameters can be efficiently estimated via maximum-likelihood. In particular, we show that our model offers a means to statistically detect directional influence between spikes and LFP, akin to Granger causality measure, and that we are able to assess its statistical significance by conducting a Wald test. Through extensive simulations, we also show that our method is able to reliably recover the true model used to generate the data. To demonstrate the effectiveness of our approach in real setting, we further apply the method to a mixed neural dataset, consisting of spikes and LFP simultaneously recorded from the visual cortex of a monkey performing a contour detection task. PMID:27012500

  15. Diamond-Coated Carbon Nanotubes for Efficient Field Emission

    NASA Technical Reports Server (NTRS)

    Dimitrijevic, Stevan; Withers, James C.

    2005-01-01

    Field-emission cathodes containing arrays of carbon nanotubes coated with diamond or diamondlike carbon (DLC) are undergoing development. Multiwalled carbon nanotubes have been shown to perform well as electron field emitters. The idea underlying the present development is that by coating carbon nanotubes with wideband- gap materials like diamond or DLC, one could reduce effective work functions, thereby reducing threshold electric-field levels for field emission of electrons and, hence, improving cathode performance. To demonstrate feasibility, experimental cathodes were fabricated by (1) covering metal bases with carbon nanotubes bound to the bases by an electrically conductive binder and (2) coating the nanotubes, variously, with diamond or DLC by plasma-assisted chemical vapor deposition. In tests, the threshold electric-field levels for emission of electrons were reduced by as much as 40 percent, relative to those of uncoated- nanotube cathodes. Coating with diamond or DLC could also make field emission-cathodes operate more stably by helping to prevent evaporation of carbon from nanotubes in the event of overheating of the cathodes. Cathodes of this type are expected to be useful principally as electron sources for cathode-ray tubes and flat-panel displays.

  16. EMAA thermoplastic powder coatings: Shop and field application of powder coatings for aggressive environments

    SciTech Connect

    Loustaunau, P.J.; Horton, D.

    1994-12-31

    This paper deals with how Ethylene Methacrylic Acid thermoplastic powder coatings are allowing asset owners to meet tightening environmental regulations while solving some of their most difficult coating problems. It discusses the versatility of traditional shop application methods and field application/repair methods in the rail and water/waste water treatment areas. EMAA coatings typically perform well in aggressive environments due to their high flexibility and impact resistance. The material`s inherent toughness also provides for excellent abrasion resistance. EMAA demonstrates excellent resistance to chemical attack and is highly resistant to permeation by liquids. Because some aromatic, cyclic and higher aliphatic hydrocarbon solvents may cause swelling and permeate through the coating, caution should be used in immersion applications with this group of solutions.

  17. Study on the anti-wear performance of Ni-base composite coating sucker joint that contains nano-diamond and nano-polytetrafluoroethylene.

    PubMed

    Wang, Wei-Zhang; Yan, Xiang-Zhen; Wang, Hai-Wen; Wang, Ming-Bo

    2009-02-01

    With the development of oilfields, the problem of eccentric wear between casing and sucker rod in rod-pumped wells operation is more and more severe. Investigations on the eccentric wear show that the abrasion of sucker rod joint is more serious than the sucker rod itself. A new method of producing the Ni-base composite coating that contains nano-diamond and nano-polytetrafluoroethylene (PTFE) on sucker joint obtained by electrodeposition is presented in this paper. The test results show that the anti-wear performance and hardness of the sucker rod improve significantly with the increase of nano-diamond. The addition of nano-PTFE particle is useful in reducing the friction factor. Field tests demonstrate that the life of the sucker rod joint is increased and the maintenance cycle of the rod-pumped well is prolonged. PMID:19441509

  18. Strength testing of Ti-vapor-coated silicon nitride braze joints

    SciTech Connect

    Santella, M.L.

    1994-09-01

    Sintered silicon nitride was vacuum brazed to itself at 1130{degree}C with a Au-25Ni-25Pd wt % filler metal. Wetting was obtained by coating the Si{sub 3}N{sub 4} surfaces with titanium prior to brazing by electron beam evaporation. The brazed joints were virtually free of porosity. Metallographic analysis showed that Ti reacted with the Si{sub 3}N{sub 4}, to form a TiN reaction layer during brazing. Small amounts of Si and Ti dissolved in the filler metal layers but they did not appear to influence the mechanical properties of the braze layer. Flexure bars were made from the brazed coupons and tested at room temperature, 600C, 700C, and 800C in air. At 700C and below, fracture of the test bars occurred in the Si{sub 3}N{sub 4}, either near the brazed surfaces or at some distance into the monolithic material. The measured strength of joint specimens decreased slightly with increasing test temperature, and generally exceeded the intrinsic braze filler metal strength in this temperature range. It was also found that lapping the Si{sub 3}N{sub 4}, prior to Ti coating reduced the number of near-surface flaws and produced joints with higher average strength and lower scatter than those left in a ground condition. Specimens tested at 800C had very low strengths, and this behavior was related to the microstructure at the brazed Si{sub 3}N{sub 4} surfaces.

  19. Field joint protection system rain qualification test report

    NASA Technical Reports Server (NTRS)

    Cook, M.

    1989-01-01

    This report documents the procedures, performance, and results obtained from the Field Joint Protection System (FJPS) rain test. This test was performed to validate that the flight configuration FJPS prevents the accumulation of moisture in the redesigned solid rocket motor (RSRM) field joints when subjected to simulated prelaunch natural rain environments. The FJPS test article was exposed to rain simulation for approximately 50 minutes. During the test, water entered through the open upper end of the systems tunnel and was funneled down between the tunnel and case. A sealant void at the moisture seal butt splice allowed this water to flow underneath the FJPS. The most likely cause of voids was improper bondline preparation, particularly on the moisture seal surface. In total, water penetrated underneath approximately 60 percent of the FJPS circumference. Because the test article was substantially different from flight configuration (no systems tunnel closeout), results of this test will not affect current flight motors. Due to the omission of systems tunnel covers and systems tunnel floor plate closeout, the test assembly was not representative of flight hardware and resulted in a gross overtest. It is therefore recommended that the test be declared void. It is also recommended that the test be repeated with a complete closeout of the systems tunnel, sealed systems tunnel ends, and improved adhesive bondline preparation.

  20. NDE of Space Shuttle Solid Rocket Motor field joint

    NASA Astrophysics Data System (ADS)

    Johnston, Patrick H.

    One of the most critical areas for inspection in the Space Shuttle Solid Rocket Motors is the bond between the steel case and rubber insulation in the region of the field joints. The tang-and-clevis geometry of the field joints is sufficiently complex to prohibit the use of resonance-based techniques. One approach we are investigating is to interrogate the steel-insulation bondline in the tang and clevis regions using surface-travelling waves. A low-frequency contact surface wave transmitting array transducer is under development at our laboratory for this purpose. The array is placed in acoustic contact with the steel and surface waves are launched on the inside surface or the clevis leg which propagate along the steel-insulation interface. As these surface waves propagate along the bonded surface, the magnitude of the ultrasonic energy leaking into the steel is monitored on the outer surface of the case. Our working hypothesis is that the magnitude of energy received at the outer surface of the case is dependent upon the integrity of the case-insulation bond, with less attenuation for propagation along a disbond due to imperfect acoustic coupling between the steel and rubber. Measurements on test specimens indicate a linear relationship between received signal amplitude and the length of good bend between the transmitter and receiver, suggesting the validity of this working hypothesis.

  1. NDE of Space Shuttle Solid Rocket Motor field joint

    NASA Technical Reports Server (NTRS)

    Johnston, Patrick H.

    1987-01-01

    One of the most critical areas for inspection in the Space Shuttle Solid Rocket Motors is the bond between the steel case and rubber insulation in the region of the field joints. The tang-and-clevis geometry of the field joints is sufficiently complex to prohibit the use of resonance-based techniques. One approach we are investigating is to interrogate the steel-insulation bondline in the tang and clevis regions using surface-travelling waves. A low-frequency contact surface wave transmitting array transducer is under development at our laboratory for this purpose. The array is placed in acoustic contact with the steel and surface waves are launched on the inside surface or the clevis leg which propagate along the steel-insulation interface. As these surface waves propagate along the bonded surface, the magnitude of the ultrasonic energy leaking into the steel is monitored on the outer surface of the case. Our working hypothesis is that the magnitude of energy received at the outer surface of the case is dependent upon the integrity of the case-insulation bond, with less attenuation for propagation along a disbond due to imperfect acoustic coupling between the steel and rubber. Measurements on test specimens indicate a linear relationship between received signal amplitude and the length of good bend between the transmitter and receiver, suggesting the validity of this working hypothesis.

  2. Influence of Microstructure of Friction Stir Welded Joints on Growth and Properties of Microarc Oxidation Coatings on AZ31B Magnesium Alloy

    NASA Astrophysics Data System (ADS)

    Chen, Tingfang; Li, Yongliang; Xue, Wenbin; Yang, Chaolin; Qu, Yao; Hua, Ming

    2015-03-01

    Ceramic coatings on friction stir welded (FSW) joints of AZ31B magnesium alloy were fabricated by microarc oxidation (MAO) method in silicate electrolyte. Microstructure, phase constituents, microhardness and electrochemical corrosion behaviors of bare and coated magnesium alloys at different zones of FSW joints for different oxidation time were investigated. The influence of microstructure at different zones on the growth of MAO coatings was analyzed. The results show that the MAO coatings on FSW joints are uniform, and they have almost the same morphology, phase constituents, hardness and corrosion resistance at base metal, stir zone and heat-affected zone. The properties of MAO coatings are independent on the microstructures of AZ31B alloy. In addition, the microstructures of magnesium alloy near the coating/alloy interface at different zones of FSW joint was not changed by microarc discharge process.

  3. Diamond-like carbon coatings enhance the hardness and resilience of bearing surfaces for use in joint arthroplasty.

    PubMed

    Roy, M E; Whiteside, L A; Xu, J; Katerberg, B J

    2010-04-01

    The purpose of this study was to evaluate the potential of a hard diamond-like carbon (DLC) coating to enhance the hardness and resilience of a bearing surface in joint replacement. The greater hardness of a magnesium-stabilized zirconium (Mg-PSZ) substrate was expected to provide a harder coating-substrate composite microhardness than the cobalt-chromium alloy (CoCr) also used in arthroplasty. Three femoral heads of each type (CoCr, Mg-PSZ, DLC-CoCr and DLC-Mg-PSZ) were examined. Baseline (non-coated) and composite coating/substrate hardness was measured by Vickers microhardness tests, while nanoindentation tests measured the hardness and elastic modulus of the DLC coating independent of the Mg-PSZ and CoCr substrates. Non-coated Mg-PSZ heads were considerably harder than non-coated CoCr heads, while DLC coating greatly increased the microhardness of the CoCr and Mg-PSZ substrates. On the nanoscale the non-coated heads were much harder than on the microscale, with CoCr exhibiting twice as much plastic deformation as Mg-PSZ. The mechanical properties of the DLC coatings were not significantly different for both the CoCr and Mg-PSZ substrates, producing similar moduli of resilience and plastic resistance ratios. DLC coatings greatly increased hardness on both the micro and nano levels and significantly improved resilience and resistance to plastic deformation compared with non-coated heads. Because Mg-PSZ allows less plastic deformation than CoCr and provides a greater composite microhardness, DLC-Mg-PSZ will likely be more durable for use as a bearing surface in vivo. PMID:19861184

  4. Field Enhanced Thermionic Electron Emission from Oxide Coated Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Day, Christopher; Jin, Feng; Liu, Yan; Little, Scott

    2006-03-01

    We have created a novel nanostructure by coating carbon nanotubes with a thin functional oxide layer. The structure was fabricated by sputter deposition of a thin film of oxide materials on aligned carbon nanotubes, which were grown on a tungsten substrate with plasma enhanced chemical vapor deposition. This structure combines the low work function of the oxide coating with a high field enhancement factor introduced by carbon nanotubes and we have demonstrated that it can be used as a highly efficient electron source. A field enhancement factor as high as 2000 was observed and thermionic electron emission current at least an order of magnitude higher than the emission from a conventional oxide cathode was obtained.

  5. Surface treatment and surface coating of silicon field emitter array

    NASA Astrophysics Data System (ADS)

    Hajra, Mahua Sudhakrishna

    The objectives of this research were to fabricate ungated Si field emitter arrays (FEA's), and then to identify ways to improve the performance of the emitters. In the first and second chapters, the basis of the research, including background, theory, and the goals of the research is presented. The third chapter discusses the fabrication methods used to form the ungated Si FEA's. The fourth chapter gives the details about surface treatment procedures used to improve initial operation. The fifth and the sixth chapter discuss the different surface coating materials used to study the emission properties of the Si field emitters. The seventh chapter summarizes the work and suggests possible follow up research. The four surface treatments discussed in chapter four employ, respectively, residual gas ions, low-energy electron-stimulated desorption, a hydrogen-enhanced residual gas atmosphere, and a plasma of a Ar (96%) and H2 (4%) gas mixture. The method, using the hydrogen-enriched residual gas atmosphere is very unique in that it uses getters to produce the hydrogen rich atmosphere. The method, using a plasma of Ar (96%) and H2 (4%) gas mixture, is an effective in-situ cleaning procedure, which can be performed prior to packaging the devices. In chapters five and six is a comparison of the field-emission properties of the Si FEA coated with various materials, including (1) nanoparticle clusters of diamond and gallium nitride (GaN), (2) a thin film of ultrananocrystalline diamond (UNCD), (3) a lead zirconate titanate (PZT) coating, and (4) carbon nanotubes. Among the above coatings, the conformal coating of UNCD produced electron emission at an extremely low threshold field of between 2 to 5 V/mum. A further study of the behavior of electron emission from UNCD-coated Si FEA during in-situ exposure to H2, N2, and Ar respectively showed that when the emitting surface is exposed to H 2, at 10-5 Torr and 10-4 Torr, the initial emission current (2 muA) increases by a factor

  6. Field homogeneity improvement of maglev NdFeB magnetic rails from joints.

    PubMed

    Li, Y J; Dai, Q; Deng, C Y; Sun, R X; Zheng, J; Chen, Z; Sun, Y; Wang, H; Yuan, Z D; Fang, C; Deng, Z G

    2016-01-01

    An ideal magnetic rail should provide a homogeneous magnetic field along the longitudinal direction to guarantee the reliable friction-free operation of high temperature superconducting (HTS) maglev vehicles. But in reality, magnetic field inhomogeneity may occur due to lots of reasons; the joint gap is the most direct one. Joint gaps inevitably exist between adjacent segments and influence the longitudinal magnetic field homogeneity above the rail since any magnetic rails are consisting of many permanent magnet segments. To improve the running performance of maglev systems, two new rail joints are proposed based on the normal rail joint, which are named as mitered rail joint and overlapped rail joint. It is found that the overlapped rail joint has a better effect to provide a competitive homogeneous magnetic field. And the further structure optimization has been done to ensure maglev vehicle operation as stable as possible when passing through those joint gaps. The results show that the overlapped rail joint with optimal parameters can significantly reduce the magnetic field inhomogeneity comparing with the other two rail joints. In addition, an appropriate gap was suggested when balancing the thermal expansion of magnets and homogenous magnetic field, which is considered valuable references for the future design of the magnetic rails. PMID:27066380

  7. Anti-Relaxation Coatings at High Magnetic Field

    NASA Astrophysics Data System (ADS)

    Olsen, Ben; Happer, Will; Patton, Brian; Budker, Dmitry; Balabas, Mikhail

    2011-05-01

    Polarized alkali metal vapors are the basis for many technologies and experiments in atomic physics such as magnetometers, atomic clocks, precision measurements and spin exchange optical pumping (SEOP). These applications all rely on long relaxation times of the populations and coherences in the vapor, and considerable effort has been spent developing techniques to extend these times. The significant relaxation due to the glass walls of vapor cells can be drastically reduced by applying a coating of organic molecules such as paraffin to the cell's interior. To study the effects of anti-relaxation coatings on alkali vapors, we measured the ground-state populations of cesium vapor in coated vapor cells at high magnetic field. In this regime, each ground-state sublevel population can be individually measured with a weak D1 (S1 / 2 -->P1 / 2) laser while a stronger D2 (S1 / 2 -->P3 / 2) laser depopulates a single sublevel. We physically translated the probe beam to measure the populations at different distances from the wall of the vapor cell, over a range of pump laser frequencies. We also measured the longitudinal relaxation rates of the cesium populations in the coated vapor cells by monitoring absorption of the probe while modulating the pump laser intensity.

  8. CFD Simulations of Joint Urban Atmospheric Dispersion Field Study

    SciTech Connect

    Lee, R; Humphreys III, T; Chan, S

    2004-06-17

    The application of Computational Fluid Dynamics (CFD) to the understanding of urban wind flow and dispersion processes has gained increasing attention over recent years. While many of the simpler dispersion models are based on a set of prescribed meteorology to calculate dispersion, the CFD approach has the ability of coupling the wind field to dispersion processes. This has distinct advantages when very detailed results are required, such as for the case where the releases occur around buildings and within urban areas. CFD also has great flexibility as a testbed for turbulence models, which has important implications for atmospheric dispersion problems. In the spring of 2003, a series of dispersion field experiments (Joint Urban 2003) were conducted at Oklahoma City (Allwine, et. al, 2004). These experiments were complimentary to the URBAN 2000 field studies at Salt Lake City (Shinn, et. al, 2000) in that they will provide a second set of comprehensive field data for evaluation of CFD as well as for other dispersion models. In contrast to the URBAN 2000 experiments that were conducted entirely at night, these new field studies took place during both daytime and nighttime thus including the possibility of convective as well as stable atmospheric conditions. Initially several CFD modeling studies were performed to provide guidance for the experimental team in the selection of release sites and in the deployment of wind and concentration sensors. Also, while meteorological and concentration measurements were taken over the greater Oklahoma City urban area, our CFD calculations were focused on the near field of the release point. The proximity of the source to a large commercial building and to the neighboring buildings several of which have multistories, present a significant challenge even for CFD calculations involving grid resolutions as fine as 1 meter. A total of 10 Intensive Observations Periods (IOP's) were conducted within the 2003 field experiments. SF6

  9. Axisymmetric shell analysis of the space shuttle solid rocket booster field joint

    NASA Technical Reports Server (NTRS)

    Nemeth, Michael P.; Anderson, Melvin S.

    1991-01-01

    The Space Shuttle Challenger (STS 51-L) accident led to an intense investigation of the structural behavior of the solid rocket booster (SRB) tang and clevis field joints. Results are presented of axisymmetric shell analyses that parametrically assess the structural behavior of SRB field joints subjected to quasi-steady-state internal pressure loading for both the original joint flown on mission STS 51-L and the redesigned joint flown for the first time after the STS 51-L accident on the Space Shuttle Discovery. Discussion of axisymmetric shell modeling issues and details is presented and a generic method for simulating contact between adjacent shells of revolution is described. Results are presented that identify the performance trends of the joints for a wide range of joint parameters. An important finding is that the redesigned joint exhibits significantly smaller O-ring gap changes and much less sensitivity to joint clearances than the original joint. For a wide range of joint parameters, the result presented indicate that the redesigned joint provides a much better pressure seal than the original joint.

  10. Axisymmetric shell analysis of the Space Shuttle solid rocket booster field joint

    NASA Technical Reports Server (NTRS)

    Nemeth, Michael P.; Anderson, Melvin S.

    1989-01-01

    The Space Shuttle Challenger (STS 51-L) accident led to an intense investigation of the structural behavior of the solid rocket booster (SRB) tang and clevis field joints. The presence of structural deformations between the clevis inner leg and the tang, substantial enough to prevent the O-ring seals from eliminating hot gas flow through the joints, has emerged as a likely cause of the vehicle failure. This paper presents results of axisymmetric shell analyses that parametrically assess the structural behavior of SRB field joints subjected to quasi-steady-state internal pressure loading for both the original joint flown on mission STS 51-L and the redesigned joint recently flown on the Space Shuttle Discovery. Discussion of axisymmetric shell modeling issues and details is presented and a generic method for simulating contact between adjacent shells of revolution is described. Results are presented that identify the performance trends of the joints for a wide range of joint parameters.

  11. Electric-field-assisted convective assembly of colloidal crystal coatings.

    PubMed

    Kleinert, Jairus; Kim, Sejong; Velev, Orlin D

    2010-06-15

    A new technique that combines evaporative convective deposition of colloidal crystal coatings with an electric field to achieve more rapid assembly and reduce the defects in the crystal structure is reported. When an ac voltage is applied across the particle suspension and the substrate in the convective assembly process, a longer film spreads from the meniscus by the electrowetting-on-dielectric (EWOD) effect. The data suggest that the EWOD-increased liquid surface area results in increased evaporation-driven particle flux and crystal assembly that is up to five times more rapid. The extended drying film also provides more time for particle rearrangement before the structure becomes fixed, resulting in formation of crystal domains an order of magnitude larger than those deposited by convective assembly alone. The results demonstrate that EWOD is a facile tool for controlling particle assembly processes in wetting films. The technique could be used in improved large-scale colloidal crystal coating processes. PMID:20465234

  12. Abrasion resistance of oxidized zirconium in comparison with CoCrMo and titanium nitride coatings for artificial knee joints.

    PubMed

    Galetz, Mathias C; Fleischmann, Ernst W; Konrad, Christian H; Schuetz, Adelheid; Glatzel, Uwe

    2010-04-01

    Most total knee replacement joints consist of a metal femoral component made from a cobalt-chromium- molybdenum (CoCrMo)-alloy and a tibial component with an ultrahigh molecular weight polyethylene (UHMWPE) bearing surface. Wear of the UHMWPE remains the primary disadvantage of these implants. The allergic potential ascribed to CoCrMo-alloys is a further concern. Other metallic alloys with and without ceramic coatings are clinically used to avoid these problems. This study compared the mechanical surface properties of an oxidized zirconium alloy with those of cast and wrought CoCrMo and TiAlV6-4. Additionally, the influence of a titanium nitride (TiN)-plasma coating on the surface properties was investigated. The composition of the oxidized zirconium layer was analyzed. Micro- and macrohardness tests as well as adhesion tests were used to reveal material differences in terms of their abrasive wear potential in artificial joints. PMID:20162723

  13. Diamond-like carbon coatings enhance scratch resistance of bearing surfaces for use in joint arthroplasty: hard substrates outperform soft.

    PubMed

    Roy, Marcel E; Whiteside, Leo A; Katerberg, Brian J

    2009-05-01

    The purpose of this study was to test the hypotheses that diamond-like carbon (DLC) coatings will enhance the scratch resistance of a bearing surface in joint arthroplasty, and that a hard ceramic substrate will further enhance scratch resistance by reducing plastic deformation. We tested these hypotheses by applying a hard DLC coating to medical-grade cobalt chromium alloy (CoCr) and magnesia-stabilized zirconia (Mg-PSZ) femoral heads and performing scratch tests to determine the loads required to cause cohesive and adhesive fracture of the coating. Scratch tracks of DLC-coated and noncoated heads were then scanned by optical profilometry to determine scratch depth, width, and pile-up (raised edges), as measures of susceptibility to scratching. DLC-coated CoCr specimens exhibited cohesive coating fracture as wedge spallation at an average load of 9.74 N, whereas DLC-coated Mg-PSZ exhibited cohesive fracture as arc-tensile cracks and chipping at a significantly higher average load of 41.3 N (p < 0.0001). At adhesive coating fracture, DLC-CoCr delaminated at an average load of 35.2 N, whereas DLC-Mg-PSZ fractured by recovery spallation at a significantly higher average load of 46.8 N (p < 0.05). Both DLC-CoCr and DLC-Mg-PSZ specimens exhibited significantly shallower scratches and less pile-up than did uncoated specimens (p < 0.005 and p < 0.01, respectively). However, the harder ceramic substrate of DLC-Mg-PSZ better resisted plastic deformation, requiring significantly higher loads for cohesive and adhesive coating fracture. These findings supported both of our hypotheses. PMID:18985791

  14. Intractable sacroiliac joint pain treated with peripheral nerve field stimulation

    PubMed Central

    Chakrabortty, Shushovan; Kumar, Sanjeev; Gupta, Deepak; Rudraraju, Sruthi

    2016-01-01

    As many as 62% low back pain patients can have sacroiliac joint (SIJ) pain. There is limited (to poor) evidence in regards to long-term pain relief with therapeutic intra-articular injections and/or conventional (heat or pulsed) radiofrequency ablations (RFAs) for SIJ pain. We report our pain-clinic experience with peripheral nerve field stimulation (PNFS) for two patients of intractable SIJ pain. They had reported absence of long-term pain relief (pain relief >50% for at least 2 weeks postinjection and at least 3 months post-RFA) with SIJ injections and SIJ RFAs. Two parallel permanent 8-contact subcutaneous stimulating leads were implanted under the skin overlying their painful SIJ. Adequate stimulation in the entire painful area was confirmed. For implantable pulse generator placement, a separate subcutaneous pocket was made in the upper buttock below the iliac crest level ipsilaterally. During the pain-clinic follow-up period, the patients had reduced their pain medications requirements by half with an additional report of more than 50% improvement in their functional status. The first patient passed away 2 years after the PNFS procedure due to medical causes unrelated to his chronic pain. The second patient has been comfortable with PNFS-induced analgesic regimen during her pain-clinic follow-up during last 5 years. In summary, PNFS can be an effective last resort option for SIJ pain wherein conventional interventional pain techniques have failed, and analgesic medication requirements are escalating or causing unwarranted side-effects. PMID:27625495

  15. Intractable sacroiliac joint pain treated with peripheral nerve field stimulation.

    PubMed

    Chakrabortty, Shushovan; Kumar, Sanjeev; Gupta, Deepak; Rudraraju, Sruthi

    2016-01-01

    As many as 62% low back pain patients can have sacroiliac joint (SIJ) pain. There is limited (to poor) evidence in regards to long-term pain relief with therapeutic intra-articular injections and/or conventional (heat or pulsed) radiofrequency ablations (RFAs) for SIJ pain. We report our pain-clinic experience with peripheral nerve field stimulation (PNFS) for two patients of intractable SIJ pain. They had reported absence of long-term pain relief (pain relief >50% for at least 2 weeks postinjection and at least 3 months post-RFA) with SIJ injections and SIJ RFAs. Two parallel permanent 8-contact subcutaneous stimulating leads were implanted under the skin overlying their painful SIJ. Adequate stimulation in the entire painful area was confirmed. For implantable pulse generator placement, a separate subcutaneous pocket was made in the upper buttock below the iliac crest level ipsilaterally. During the pain-clinic follow-up period, the patients had reduced their pain medications requirements by half with an additional report of more than 50% improvement in their functional status. The first patient passed away 2 years after the PNFS procedure due to medical causes unrelated to his chronic pain. The second patient has been comfortable with PNFS-induced analgesic regimen during her pain-clinic follow-up during last 5 years. In summary, PNFS can be an effective last resort option for SIJ pain wherein conventional interventional pain techniques have failed, and analgesic medication requirements are escalating or causing unwarranted side-effects. PMID:27625495

  16. Space Shuttle production verification motor 1 (PV-1) field joint protection system, volume 7

    NASA Technical Reports Server (NTRS)

    Wilkinson, J. P.

    1990-01-01

    The performance of the field joint protection system (FJPS) of the Space Shuttle Production Verification Motor 1 (PV-1), as evaluated by postfire hardware inspection. Compliance with the specifications is shown for the FJPS assembly and components. The simplified FJPS and field joint heaters performed nominally, maintaining all joint seal temperatures within the required range. One anomally was noted on the igniter-to-case joint heater during postfire inspection. The heater buckled off the surface in two areas, resulting in two hot spots on the heater and darkened heater insulation. The condition did not affect heater performance during ignition countdown and all igniter seals were maintained within required temperature limits.

  17. Gold Coating of Fiber Tips in Near-Field Scanning Optical Microscopy

    NASA Technical Reports Server (NTRS)

    Vikram, Chandra S.; Witherow, William K.

    2000-01-01

    We report what is believed to be the first experimental demonstration of gold coating by a chemical baking process on tapered fiber tips used in near-field scanning optical microscopy. Many tips can be simultaneously coated.

  18. Performance assessment and optimization of the ITER toroidal field coil joints

    NASA Astrophysics Data System (ADS)

    Rolando, G.; Foussat, A.; Knaster, J.; Ilin, Y.; Nijhuis, A.

    2013-08-01

    The ITER toroidal field (TF) system features eighteen coils that will provide the magnetic field necessary to confine the plasma. Each winding pack is composed of seven double pancakes (DP) connected through praying hands joints. Shaking hands joints are used to interface the terminals of the conductor with the feeder and inter-coil U-shaped bus bars. The feasibility of operating plasma scenarios depends on the ability of the magnets to retain sufficient temperature and current margins. In this respect, the joints represent a possible critical region due to the combination of steady state Joule heating in the resistance of the joint and coupling losses and currents in ramped operation. The temperature and current margins of both DP and terminal joints are analysed during the 15 and 17 MA plasma scenarios. The effect on the joint performance of feasible optimization solutions, such as rotation of the terminal joints and sole RRR increase, is explored. The characterization of the TF coil joints is completed by the estimation of the coupling loss time constant for different inter-strand and strand-to-joint resistance values. The study is carried out with the code JackPot-ACDC, allowing the analysis of lap-type joints with a strand-level detail.

  19. A parametric shell analysis of the shuttle 51-L SRB AFT field joint

    NASA Technical Reports Server (NTRS)

    Davis, Randall C.; Bowman, Lynn M.; Hughes, Robert M., IV; Jackson, Brian J.

    1990-01-01

    Following the Shuttle 51-L accident, an investigation was conducted to determine the cause of the failure. Investigators at the Langley Research Center focused attention on the structural behavior of the field joints with O-ring seals in the steel solid rocket booster (SRB) cases. The shell-of-revolution computer program BOSOR4 was used to model the aft field joint of the solid rocket booster case. The shell model consisted of the SRB wall and joint geometry present during the Shuttle 51-L flight. A parametric study of the joint was performed on the geometry, including joint clearances, contact between the joint components, and on the loads, induced and applied. In addition combinations of geometry and loads were evaluated. The analytical results from the parametric study showed that contact between the joint components was a primary contributor to allowing hot gases to blow by the O-rings. Based upon understanding the original joint behavior, various proposed joint modifications are shown and analyzed in order to provide additional insight and information. Finally, experimental results from a hydro-static pressurization of a test rocket booster case to study joint motion are presented and verified analytically.

  20. Regional jointing and hydrocarbon generation in Big Sandy gas field, Kentucky

    SciTech Connect

    Loar, S.J.

    1986-05-01

    Producing wells in the Big Sandy gas field depend on well-developed subsurface joint systems to enhance migration into the borehole. To examine the joint systems, the surface joints were studied. Statistical analysis revealed eight regional joint sets: N30/sup 0/W, N10/sup 0/W, N20/sup 0/E, N30/sup 0/E, N40/sup 0/E, N60/sup 0/E, N80/sup 0/E, and east-west. These sets have the same orientations as reservoir joints observed in oriented cores, indicating that they are part of the same systems. Field observations suggest that the regional joint sets formed in at least three phases, which can be classified as hydraulic, tectonic, and unloading. The timing of hydrocarbons was calculated from a subsidence curve for Devonian and younger formations, which was constructed on the basis of published isopach, conodont alteration index, and well data. Plotting the maturation of the Ohio Shale with the regional jointing phases shows that the hydraulic joint sets formed before hydrocarbon generation began, and that the tectonic joint sets formed while the Ohio Shale was in the oil window. The oil and wet gas generated from the Ohio Shale have since migrated through the subsurface joint systems into younger reservoirs.

  1. High-field thermal transport properties of REBCO coated conductors

    NASA Astrophysics Data System (ADS)

    Bonura, Marco; Senatore, Carmine

    2015-02-01

    The use of REBCO coated conductors (CCs) is envisaged for many applications, extending from power cables to high-field magnets. Whatever the case, thermal properties of REBCO tapes play a key role for the stability of superconducting devices. In this work, we present the first study on the longitudinal thermal conductivity (κ) of REBCO CCs in magnetic fields up to 19 T applied both parallel and perpendicularly to the thermal-current direction. Copper-stabilized tapes from six industrial manufacturers have been investigated. We show that zero-field κ of CCs can be calculated with an accuracy of +/- 15% from the residual resistivity ratio of the stabilizer and the Cu/non-Cu ratio. Measurements performed at high fields have allowed us to evaluate the consistency of the procedures generally used for estimating in-field κ in the framework of the Wiedemann-Franz law from an electrical characterization of the materials. In-field data are intended to provide primary ingredients for the thermal stability analysis of high-temperature superconductor-based magnets.

  2. Flight set 360T004 (STS-30) field joint protection system, volume 7

    NASA Technical Reports Server (NTRS)

    Hale, Elgie

    1989-01-01

    The Redesigned Solid Rocket Motors (RSRM) of the Space Transportation System have three field joints that are protected by the Joint Protection Systems (JPS). The igniter heater was mounted on the igniter flange. This report documents the performance of the JPS and igniter heaters on the pad and the post-flight condition of the JPS components. All observations that were written up as Squawks and/or Problem Reports are also discussed. The primary heaters performed satisfactorily and maintained the field joint temperatures within the required temperature range. A secondary heater failed Dielectric Withstanding Voltage (DWV) test during the joint closeout prior to launch. This heater was not used, however, since the primary heater functioned properly. Post-test inspection revealed that pin A of the heater power cable was shorted to the connector shell. Design changes have been implemented to resolve the heater power cable problem. All field joint assemblies met all of the performance requirements.

  3. Structural optimization of an alternate design for the Space Shuttle solid rocket booster field joint

    NASA Technical Reports Server (NTRS)

    Barthelemy, Jean-Francois M.; Rogers, James L., Jr.; Chang, Kwan J.

    1987-01-01

    A structural optimization procedure is used to determine the shape of an alternate design for the Shuttle's solid rocket booster field joint. In contrast to the tang and clevis design of the existing joint, this alternate design consists of two flanges bolted together. Configurations with 150 studs of 1 1/8 in diameter and 135 studs of 1 3/16 in diameter are considered. Using a nonlinear programming procedure, the joint weight is minimized under constraints on either von Mises or maximum normal stresses, joint opening and geometry. The procedure solves the design problem by replacing it by a sequence of approximate (convex) subproblems; the pattern of contact between the joint halves is determined every few cycles by a nonlinear displacement analysis. The minimum weight design has 135 studs of 1 3/16 in diameter and is designed under constraints on normal stresses. It weighs 1144 lb per joint more than the current tang and clevis design.

  4. Structural optimization of an alternate design for the space shuttle solid rocket booster field joint

    NASA Technical Reports Server (NTRS)

    Barthelemy, J.-F. M.; Chang, K. J.; Rogers, J. L., Jr.

    1987-01-01

    A structural optimization procedure is used to determine the shape of an alternate design for the shuttle solid rocket booster field joint. In contrast to the tang and clevis design of the existing joint, this alternate design consists of two flanges bolted together. Configurations with 150 studs of 1 1/8 in. diameter and 135 studs of 1 3/16 in. diameter are considered. Using a nonlinear programming procedure, the joint weight is minimized under constraints on either von Mises or maximum normal stresses, joint opening and geometry. The procedure solves the design problem by replacing it by a sequence of approximate (convex) subproblems; the pattern of contact between the joint halves is determined every few cycles by a nonliner displacement analysis. The minimum weight design has 135 studs of 1 3/16 in. diameter and is designed under constraints on normal stresses. It weighs 1144 lb per joint more than the current tang and clevis design.

  5. Hexagonal Boron Nitride Coated Carbon Nanotubes: Interlayer Polarization Improved Field Emission.

    PubMed

    Chang, Han-Chen; Tsai, Hsin-Jung; Lin, Wen-Yi; Chu, Yung-Chi; Hsu, Wen-Kuang

    2015-07-01

    Coating of h-BN onto carbon nanotubes induces polarization at interfaces, and charges become localized at N and C atoms. Field emission of coated tubes is found to be highly stable, and current density fluctuates within 4%. Study further reveals that the electric field established between coatings and tubes facilitates charge transfer across interfaces and electrons are emitted through occupied and unoccupied bands of N and B atoms. PMID:26070100

  6. Scanning Hall probe measurements of field distributions of a coated conductor under applied fields

    NASA Astrophysics Data System (ADS)

    Yoo, Jaeun; Jung, Yonghwan; Lee, Jaeyoung; Lim, Sunme; Moo Lee, Sang; Jung, Ye Hyun; Youm, Dojun; Kim, Hosup; Ha, Hong Soo; Oh, Sangsoo

    2006-12-01

    We measured the field profiles near the surface of a coated conductor (CC) under various applied fields by using the scanning Hall probe method. The field, applied in the normal direction, was increased from zero to 171.5 Oe and then decreased to -58.8 Oe. We could not analyse our data completely by the direct use of Brandt's calculation but by a modification with unusual field dependences of the introduced parameters. Since Brandt's original calculation was based on homogeneous films, it was not suitable for CCs with coarse granular structures. The modified calculations with appropriate parameters are related to the coarse granular structures. Those parameters, D, Jc, and R, represent the three characteristics of the flux penetration network: the average distance of flux penetrations, the density of critical sheet currents, and the range of meandering of the flux penetration front, respectively. The external field dependences of these parameters were different from those of the classical critical state model.

  7. Optical properties of microfabricated fully-metal-coated near-field probes in collection mode.

    PubMed

    Descrovi, Emiliano; Vaccaro, Luciana; Aeschimann, Laure; Nakagawa, Wataru; Staufer, Urs; Herzig, Hans-Peter

    2005-07-01

    A study of the optical properties of microfabricated, fully-metal-coated quartz probes collecting longitudinal and transverse optical fields is presented. The measurements are performed by raster scanning the focal plane of an objective, focusing azimuthally and radially polarized beams by use of two metal-coated quartz probes with different metal coatings. A quantitative estimation of the collection efficiencies and spatial resolutions in imaging both longitudinal and transverse fields is made. Longitudinally polarized fields are collected with a resolution approximately 1.5 times higher as compared with transversely polarized fields, and this behavior is almost independent of the roughness of the probe's metal coating. Moreover, the coating roughness is a critical parameter in the relative collection efficiency of the two field orientations. PMID:16053165

  8. Final Report on Portable Laser Coating Removal Systems Field Demonstrations and Testing

    NASA Technical Reports Server (NTRS)

    Rothgeb, Matthew J.; McLaughlin, Russell L.

    2008-01-01

    Processes currently used throughout the National Aeronautics and Space Administration (NASA) to remove corrosion and coatings from structures, ground service equipment and small components results in waste streams consisting of toxic chemicals, spent media blast materials, and waste water. When chemicals are used in these processes they are typically high in volatile organic compounds (VOC) and are considered hazardous air pollutants (HAP). When blast media is used, the volume of hazardous waste generated is increased significantly. Many of the coatings historically used within NASA contain toxic metals such as hexavalent chromium, and lead. These materials are highly regulated and restrictions on worker exposure continue to increase. Most recently the EPA reduced the permissible exposure limit (PEL) for hexavalent chromium. The new standard lowers OSHA's PEL for hexavalent chromium from 52 to 5 micrograms of Cr(V1) per cubic meter of air as an 8-hour time-weighted average. Hexavalent chromium is found in the pretreatment and primer coatings used within the Shuttle Program. In response to the need to continue to protect assets within the agency and the growing concern over these new regulations, NASA is researching different ways to continue the required maintenance of both facility and flight equipment in a safe, efficient and environmentally preferable manner. The use of laser energy to remove prepare surfaces for a variety of processes, such as corrosion and coating removal, weld preparation and non destructive evaluation is a relatively new technology that has shown itself to be environmentally preferable and in many cases less labor intensive than currently used removal methods. The development of a Portable Laser Coating Removal System (PLCRS) started as the goal of a Joint Group on Pollution Prevention (JG-PP) project, led by the Air Force, where several types of lasers in several configurations were thoroughly evaluated. Following this project, NASA decided

  9. Diamond/diamond-like carbon coated nanotube structures for efficient electron field emission

    NASA Technical Reports Server (NTRS)

    Dimitrijevic, Steven (Inventor); Withers, James C. (Inventor); Loutfy, Raouf O. (Inventor)

    2005-01-01

    The present invention is directed to a nanotube coated with diamond or diamond-like carbon, a field emitter cathode comprising same, and a field emitter comprising the cathode. It is also directed to a method of preventing the evaporation of carbon from a field emitter comprising a cathode comprised of nanotubes by coating the nanotube with diamond or diamond-like carbon. In another aspect, the present invention is directed to a method of preventing the evaporation of carbon from an electron field emitter comprising a cathode comprised of nanotubes, which method comprises coating the nanotubes with diamond or diamond-like carbon.

  10. Atmospheric corrosion of coated steel; Relationship between laboratory and field testing

    NASA Astrophysics Data System (ADS)

    Cambier, Severine Marie Noelle

    The lifetime prediction for corrosion-protective coatings on metals is a challenge that has been studied for several decades. Accelerated tests are used in the hope to reproduce in few days the damage that would develop during several years of field exposure. Field exposures are also used because accelerated tests are not always reliable. Several approaches have been taken to reduce the duration of field exposures. One of them is the use of sensitive techniques to assess the coating degradation before visual inspection indicates any damage. Cathodic delamination measured by the scanning Kelvin probe (CD-SKP) was introduced here as a sensitive technique to assess the degradation at the coating/metal interface after weathering exposure. This technique was shown to predict the failure of the coating/steel interface. Several climates were tested in the US continent and on the islands of Hawaii. PVB coated steel environmental degradation was characterized in the field and reproduced in the laboratory. A second approach to shorten coated metal field exposure is to accelerate the degradation using intentionally added through-film scribes. In service, most corrosion mechanism for painted metals, such as filiform corrosion and cathodic delamination, initiate from a mechanical defect. The iron oxides formed under PVB and Eponol were identified with Raman spectroscopy to determine the environment factors that participated in their formation. This investigation was complemented by laboratory exposure. An accelerated test for PVB coated steel was designed to reproduce the environmental degradation observed in the field. The CD-SKP technique to assess interface degradation after weathering exposure was also applied to other coating systems. E-coated, sprayed epoxy primers with a conversion coating or grit blasting treatment, and one full coating system were tested.

  11. Controlling electroosmotic flows by polymer coatings: A joint experimental-theoretical investigation

    NASA Astrophysics Data System (ADS)

    Monteferrante, Michele; Sola, Laura; Cretich, Marina; Chiari, Marcella; Marini Bettolo Marconi, Umberto; Melchionna, Simone

    2015-11-01

    We analyze the electroosmotic flow (EOF) of an electrolytic solution in a polymer coated capillary electrophoresis tube. The polymeric density, charge, thickness, and the capillary tube charge vary as a function of pH and produce a non-trivial modulation of the EOF, including a flow reversal at acid pH conditions. By means of a theoretical argument and numerical simulations, we recover the experimental curve for the EOF, providing a firm approach for predictive analysis of electroosmosis under different polymeric coating conditions. A proposed application of the approach is to determine the near-wall charge of the coating to be used for further quantitative analysis of the electroosmotic flow and mobility.

  12. Polymer coating of glass microballoons levitated in a focused acoustic field

    NASA Technical Reports Server (NTRS)

    Young, A. T.; Lee, M. C.; Feng, I.-A.; Elleman, D. D.; Wang, T. G.

    1982-01-01

    Inertial confinement fusion (ICF) glass microballoons (GMBs) levitated in a focusing radiator acoustic device can be coated with liquid materials by deploying the liquid into the levitation field with a stepped-horn atomizer. The GMB can be forced to the center of the coating liquid with a strong acoustically generated centering force. Water solutions of organic polymers, UV-curable liquid organic monomers, and paraffin waxes have been used to prepare solid coatings on the surface of GMBs using this technique.

  13. Coatings.

    ERIC Educational Resources Information Center

    Anderson, Dennis G.

    1989-01-01

    This review covers analytical techniques applicable to the examination of coatings, raw materials, and substrates upon which coatings are placed. Techniques include chemical and electrochemical methods, chromatography, spectroscopy, thermal analysis, microscopy, and miscellaneous techniques. (MVL)

  14. Study on the pulse reverse electrodeposition of Fe-nano-Si composite coatings in magnetic field

    NASA Astrophysics Data System (ADS)

    Zhong, Yunbo; Zhou, Pengwei; Zhou, Junfeng; Wang, Huai; Fan, Lijun; Dong, Licheng; Zheng, Tianxiang; Shen, Weiwen

    2014-08-01

    Composite iron deposits containing nano-silicon particles were prepared under direct current (DCED) and pulse reverse current electrodeposition (PRED) conditions in the presence of magnetic field. The influences of magnetic field and pulse reverse current on the co-deposition of silicon particles as well as the surface morphology of coatings were investigated respectively. Results showed that PRED regime exhibits fewer incorporated silicon particles than those obtained under DCED condition when no magnetic field was applied. Under the influence of magnetic field, the silicon particles of coatings increased significantly, meanwhile, many projecting deposits named “mountain ranges” appeared on the surface of coatings. However, the numbers of “mountain ranges” showed a trend of reduce with increasing the pulse frequency under magnetic field and therefore the surface morphology of coatings became more smooth and flat.

  15. Joint and angle-covariant spin measurements with a quadrupole magnetic field

    NASA Technical Reports Server (NTRS)

    Martens, Hans; Demuynck, Willem M.

    1994-01-01

    We study a Stern-Gerlach type setup, with a quadrupole magnetic field, for neutral particles of arbitrary spin. The Hamiltonian is of a form proposed for joint measurements of the incompatible observables. The measurement results are discussed, showing the limitation of such Hamiltonians. Some remarks are made on the relevance of covariance as a criterion for measurement schemes.

  16. Test Data of Flow Field of Shuttle SRM Nozzle Joint with Bond Defects, Using Unheated Air

    NASA Technical Reports Server (NTRS)

    Hair, Leroy M.; McAnally, James V.; Hengel, John E.

    1989-01-01

    The nozzle-to-case joint on the Shuttle SRM (as redesigned after the Challenger accident) features an adhesive sealant filling and bonding the joint, with a wiper O-ring to prevent the adhesive from reaching and disabling the closure O-ring. Flawless implementation of that joint design would ensure that hot, corrosive propellant combustion gases never reach the closure O-ring. However, understanding the flow field related to bonding defects is prudent. A comprehensive test program was conducted to quantify such flow fields and associated heating environments. A two-dimensional, full-scale model represented 65 inches of the nozzle joint, using unheated air as the test medium, in a blowdown mode. Geometry variations modeled RSRM assembly tolerances, and two types of bonding defects: pullaways and blowholes. A range of the magnitude of each type defect was tested. Also a range of operational parameters was tested, representative of the RSRM flow environment, including duplication of RSRM Mach and Reynolds numbers. Extensive instrumentation was provided to quantify pressures, heat rates, and velocities. The resulting data established that larger geometric defects cause larger pressure and larger heating, at the closure O-ring region. Velocity trends were not so straight-forward. Variations in assembly tolerances did not generally affect flow fields or heating. Operational parameters affected flow fields and heating as might be expected, increasing density or velocity increased heating. Complete details of this test effort are presented.

  17. Biotribological behavior of Ag-ZrCxN1-x coatings against UHMWPE for joint prostheses devices.

    PubMed

    Calderon V, S; Sánchez-López, J C; Cavaleiro, A; Carvalho, S

    2015-01-01

    This study aims to evaluate the structural, mechanical and tribological properties of zirconium carbonitrides (ZrCxN1-x) coatings with embedded silver nanoparticles, produced with the intention of achieving a material with enhanced multi-functional properties, including mechanical strength, corrosion resistance, tribological performance and antibacterial behavior suitable for their use in joint prostheses. The coatings were deposited by direct current (DC) reactive magnetron sputtering onto 316 L stainless steel, changing the silver content from 0 to 20 at% by modifying the current density applied to the targets. Different nitrogen and acetylene gas fluxes were used as reactive gases. The coatings revealed different mixtures of crystalline ZrCxN1-x, silver nanoparticles and amorphous carbon phases. The hardness of the films was found to be mainly controlled by the ratio between the hard (ZrCxN1-x) and soft (Ag and amorphous carbon) phases in the films, fluctuating between 7.4 and 20.4 GPa. The coefficient of friction, measured against ultra-high molecular weight polyethylene (UHMWPE) in Hank's balanced salt solution with 10 gL(-1) albumin, is governed by the surface roughness and hardness. The UHMWPE wear rates were in the same order of magnitude (between 1.4 and 2.0 × 10(-6)mm(3)N(-1)m(-1)), justified by the effect of the protective layer of albumin formed during the tests. The small differences were due to the hydrophobic/hydrophilic character of the surface, as well as to the silver content. PMID:25460405

  18. Electroless copper coating of epoxide plates in an ultrasonic field.

    PubMed

    Touyeras, F; Hihn, J Y; Doche, M L; Roizard, X

    2001-07-01

    This paper reports the study of ultrasonic irradiation effects on electroless copper coating on an epoxide resin. Several parameters were monitored, such as plating rates, practical adhesion and internal stress, versus varying acoustic powers at a constant frequency of 530 kHz. Exposure conditions were characterised by both transmitted power and interfacial mass transfer coefficients. Optimum conditions expressed in irradiation time and power were determined. The use of ultrasound during electroless copper plating affects the plating rates and the deposits properties, particularly the practical adhesion which increases whereas the internal stress decreases. Then, the changes in the coating mechanisms are discussed. PMID:11441612

  19. Practical field repair of fused slurry silicide coating for space shuttle t.p.s.

    NASA Technical Reports Server (NTRS)

    Reznik, B. D.

    1971-01-01

    Study of short-time high-temperature diffusion treatments as part of a program of development of methods of reapplying fused slurry silicide coating in the field. The metallographic structure and oxidation behavior of R512E applied to Cb-752 coated under simulated field repair conditions was determined. Oxidation testing in reduced pressure environment has shown that performance equivalent to furnace-processed specimens can be obtained in a two-minute diffusion at 2700 F.

  20. The joint use of the tangential electric field and surface Laplacian in EEG classification.

    PubMed

    Carvalhaes, C G; de Barros, J Acacio; Perreau-Guimaraes, M; Suppes, P

    2014-01-01

    We investigate the joint use of the tangential electric field (EF) and the surface Laplacian (SL) derivation as a method to improve the classification of EEG signals. We considered five classification tasks to test the validity of such approach. In all five tasks, the joint use of the components of the EF and the SL outperformed the scalar potential. The smallest effect occurred in the classification of a mental task, wherein the average classification rate was improved by 0.5 standard deviations. The largest effect was obtained in the classification of visual stimuli and corresponded to an improvement of 2.1 standard deviations. PMID:23864444

  1. NATO TG-53: acoustic detection of weapon firing joint field experiment

    NASA Astrophysics Data System (ADS)

    Robertson, Dale N.; Pham, Tien; Scanlon, Michael V.; Srour, Nassy; Reiff, Christian G.; Sim, Leng K.; Solomon, Latasha; Thompson, Dorothea F.

    2006-05-01

    In this paper, we discuss the NATO Task Group 53 (TG-53) acoustic detection of weapon firing field joint experiment at Yuma Proving Ground during 31 October to 4 November 2005. The participating NATO countries include France, the Netherlands, UK and US. The objectives of the joint experiments are: (i) to collect acoustic signatures of direct and indirect firings from weapons such as sniper, mortar, artillery and C4 explosives and (ii) to share signatures among NATO partners from a variety of acoustic sensing platforms on the ground and in the air distributed over a wide area.

  2. Modeling and analysis of magnetic field distribution of square pane permanent magnet for intelligent ball joint

    NASA Astrophysics Data System (ADS)

    Zhu, Liang; Hu, Penghao; Yang, Wenguo; Dang, Xueming; Zhang, Lisong

    2016-01-01

    The reasonable permanent magnetic field distribution has an important influence on improving the measuring accuracy in intelligent ball joint. In view of the defects on the ring permanent magnet in the previous experiment scheme, a new method on Square Pane Permanent Magnet (SPPM) is put forward. It possesses distinct advantages on orientation identification and model simplification. This paper proposes an optimized theory model of the magnetic field distribution of SPPM and gives the magnetic field theoretical expressions. The experiments have shown that the experimental data basically agreed with the theory value which is less than 4.3% error in full scale. This result verified the correctness of the analytic work and paves the way for improving the measurement accuracy in intelligent ball joint.

  3. Circumferential flow analysis at the aft field joint of the Space Shuttle solid rocket motor

    NASA Technical Reports Server (NTRS)

    Majumdar, Alok K.; Whitesides, R. Harold; Jenkins, Susan L.; Bacchus, David L.

    1988-01-01

    Flow analyses have been performed to determine the nature of the three-dimensional flow field in the vicinity of the aft-most field joint of the Space Shuttle Redesigned Solid Rocket Motor (RSRM). Specific objectives included the quantification of the circumferential pressure and velocity gradients at the joint location which might be caused by the non-uniform erosion of the rubber inhibitor which protrudes from the wall into the flow field. Three-dimensional Navier-Stokes equations have been solved in conjunction with the conservation equation for the turbulence energy and the dissipation rate. The numerical predictions have been compared with the measurements from a 7.5 percent scale cold flow model of the redesigned solid rocket motor.

  4. Multi-field coupled sensing network for health monitoring of composite bolted joint

    NASA Astrophysics Data System (ADS)

    Wang, Yishou; Qing, Xinlin; Dong, Liang; Banerjee, Sourav

    2016-04-01

    Advanced fiber reinforced composite materials are becoming the main structural materials of next generation of aircraft because of their high strength and stiffness to weight ratios, and excellent designability. As key components of large composite structures, joints play important roles to ensure the integrity of the composite structures. However, it is very difficult to analyze the strength and failure modes of composite joints due to their complex nonlinear coupling factors. Therefore, there is a need to monitor, diagnose, evaluate and predict the structure state of composite joints. This paper proposes a multi-field coupled sensing network for health monitoring of composite bolted joints. Major work of this paper includes: 1) The concept of multifunctional sensor layer integrated with eddy current sensors, Rogowski coil and arrayed piezoelectric sensors; 2) Development of the process for integrating the eddy current sensor foil, Rogowski coil and piezoelectric sensor array in multifunctional sensor layer; 3) A new concept of smart composite joint with multifunctional sensing capability. The challenges for building such a structural state sensing system and some solutions to address the challenges are also discussed in the study.

  5. Enhanced field emission from lanthanum hexaboride coated multiwalled carbon nanotubes: Correlation with physical properties

    SciTech Connect

    Patra, Rajkumar; Ghosh, S.; Sheremet, E.; Rodriguez, R. D.; Lehmann, D.; Zahn, D. R. T.; Jha, Menaka; Ganguli, A. K.; Schmidt, H.; Schulze, S.; Hietschold, M.; Schmidt, O. G.

    2014-10-28

    Detailed results from field emission studies of lanthanum hexaboride (LaB{sub 6}) coated multiwalled carbon nanotube (MWCNT) films, pristine LaB{sub 6} films, and pristine MWCNT films are reported. The films have been synthesized by a combination of chemical and physical deposition processes. An impressive increase in field enhancement factor and temporal stability as well as a reduction in turn-on field and threshold field are observed in LaB{sub 6}-coated MWCNTs compared to pristine MWCNT and pristine LaB{sub 6} films. Surface morphology of the films has been examined by scanning electron microscopy. Introduction of LaB{sub 6} nanoparticles on the outer walls of CNTs LaB{sub 6}-coated MWCNTs films is confirmed by transmission electron microscopy. The presence of LaB{sub 6} was confirmed by X-ray photoelectron spectroscopy results and further validated by the Raman spectra. Raman spectroscopy also shows 67% increase in defect concentration in MWCNTs upon coating with LaB{sub 6} and an upshift in the 2D band that could be attributed to p-type doping. Ultraviolet photoelectron spectroscopy studies reveal a reduction in the work function of LaB{sub 6}-coated MWCNT with respect to its pristine counterpart. The enhanced field emission properties in LaB{sub 6}-coated MWCNT films are correlated with a change in microstructure and work function.

  6. Extension joints: a tool to infer the active stress field orientation (case study from southern Italy)

    NASA Astrophysics Data System (ADS)

    De Guidi, Giorgio; Caputo, Riccardo; Scudero, Salvatore; Perdicaro, Vincenzo

    2013-04-01

    An intense tectonic activity in eastern Sicily and southern Calabria is well documented by the differential uplift of Late Quaternary coastlines and by the record of the strong historical earthquakes. The extensional belt that crosses this area is dominated by a well established WNW-ESE-oriented extensional direction. However, this area is largely lacking of any structural analysis able to define the tectonics at a more local scale. In the attempt to fill this gap of knowledge, we carried out a systematic analysis of extension joint sets. In fact, the systematic field collection of these extensional features, coupled with an appropriate inversion technique, allows to determine the characteristic of the causative tectonic stress field. Joints are defined as outcrop-scale mechanical discontinuities showing no evidence of shear motion and being originated as purely extensional fractures. Such tectonic features are one of the most common deformational structures in every tectonic environment and particularly abundant in the study area. A particular arrangement of joints, called "fracture grid-lock system", and defined as an orthogonal joint system where mutual abutting and crosscutting relationships characterize two geologically coeval joint sets, allow to infer the direction and the magnitude of the tectonic stress field. We performed the analyses of joints only on Pleistocene deposits of Eastern Sicily and Southern Calabria. Moreover we investigated only calcarenite sediments and cemented deposits, avoiding claysh and loose matrix-supported clastic sediments where the deformation is generally accomodated in a distributed way through the relative motion between the single particles. In the selection of the sites, we also took into account the possibility to clearly observe the geometric relationships among the joints. For this reason we chose curvilinear road cuts or cliffs, wide coastal erosional surfaces and quarries. The numerical inversions show a similar stress

  7. Supporting the joint warfighter by development, training, and fielding of man-portable UGVs

    NASA Astrophysics Data System (ADS)

    Ebert, Kenneth A.; Stratton, Benjamin V.

    2005-05-01

    The Robotic Systems Pool (RSP), sponsored by the Joint Robotics Program (JRP), is an inventory of small robotic systems, payloads, and components intended to expedite the development and integration of technology into effective, supportable, fielded robotic assets. The RSP loans systems to multiple users including the military, first-responders, research organizations, and academia. These users provide feedback in their specific domain, accelerating research and development improvements of robotic systems, which in turn allow the joint warfighter to benefit from such changes more quickly than from traditional acquisition cycles. Over the past year, RSP assets have been used extensively for pre-deployment operator and field training of joint Explosive Ordnance Disposal (EOD) teams, and for the training of Navy Reservist repair technicians. These Reservists are part of the Robotic Systems Combat Support Platoon (RSCSP), attached to Space and Naval Warfare Systems Center, San Diego. The RSCSP maintains and repairs RSP assets and provides deployable technical support for users of robotic systems. Currently, a small team from the RSCSP is deployed at Camp Victory repairing and maintaining man-portable unmanned ground vehicles (UGVs) used by joint EOD teams in Operation Iraqi Freedom. The focus of this paper is to elaborate on the RSP and RSCSP and their role as invaluable resources for spiral development in the robotics community by gaining first-hand technical feedback from the warfighter and other users.

  8. Joint service lightweight standoff chemical agent detector reduced field-of-view

    NASA Astrophysics Data System (ADS)

    Popa, Mirela O.; Flanagan, Michael J.; Despard, V. Boyd; Griffin, Matthew T.; Engel, James R.

    2010-04-01

    A Reduced Field of View (RFOV) Fourier Transform Infrared (FTIR) system for standoff detection of chemical agents demonstrated improved detection at range during field testing. The RFOV system, from the original design parameter of 1.5 degree (27 milliradians) to 0.5 degrees (9 milliradians), includes novel modifications to the scanner assembly optical design to reduce the FOV without sacrificing existing radiometric sensitivity performance. The design modifications also allow for a straightforward retrofit of existing Joint Service Lightweight Standoff Chemical Agent Detectors (JSLSCAD). This paper will deliver an overview of the design and test results from field trials of the system as a function of range and environmental conditions.

  9. Joint reconstruction of non-overlapping magnetic particle imaging focus-field data.

    PubMed

    Knopp, T; Them, K; Kaul, M; Gdaniec, N

    2015-04-21

    The focus field is a key component to enable clinical applications in magnetic particle imaging (MPI). Due to physiological constraints, the method of choice is to place the focus of a small acquisition volume at various static positions in space and acquire the full field-of-view using a multi-station approach. In the first experiments, overlapping drive-field patches were used and boundary artifacts between drive-field patches were reduced using image processing. In this work we show that artifact-free reconstruction of non-overlapping focus-field data is feasible by using a joint reconstruction algorithm. This enables maximum scanning efficiency in multi-station focus-field experiments, which is key for reaching sufficiently short acquisition times to image the human heart. PMID:25803656

  10. Joint reconstruction of non-overlapping magnetic particle imaging focus-field data

    NASA Astrophysics Data System (ADS)

    Knopp, T.; Them, K.; Kaul, M.; Gdaniec, N.

    2015-04-01

    The focus field is a key component to enable clinical applications in magnetic particle imaging (MPI). Due to physiological constraints, the method of choice is to place the focus of a small acquisition volume at various static positions in space and acquire the full field-of-view using a multi-station approach. In the first experiments, overlapping drive-field patches were used and boundary artifacts between drive-field patches were reduced using image processing. In this work we show that artifact-free reconstruction of non-overlapping focus-field data is feasible by using a joint reconstruction algorithm. This enables maximum scanning efficiency in multi-station focus-field experiments, which is key for reaching sufficiently short acquisition times to image the human heart.

  11. Joint development and tectonic stress field evolution in the southeastern Mesozoic Ordos Basin, west part of North China

    NASA Astrophysics Data System (ADS)

    Jiang, Lin; Qiu, Zhen; Wang, Qingchen; Guo, Yusen; Wu, Chaofan; Wu, Zhijie; Xue, Zhenhua

    2016-09-01

    Major joint sets trending E-W (J1), ENE-WSW (J2), NE-SW (J3), N-S (J4), NNW-SSE (J5), NNE-SSW (J6), NW-SE (J7), and WNW-ESE (J8) respectively are recognized in Mesozoic strata within the southeast of Ordos Basin. Among them, the J1, J2 and J3 joint sets are systematic joints, while the other five joint sets (J4, J5, J6, J7, J8) are nonsystematic joints. There are three groups of orthogonal joint systems (i.e. J1 and J4 sets, J2 and J5 sets, and J6 and J8 sets) and two groups of conjugate shear fractures (ENE-WSW and NNE-SSW, ENE-WSW and ESE-WNW) in the study area. Joint spacing analysis indicates that: (1) layer thickness has an effect on the joint spacing, but the correlation of joint spacing and layer thickness is low; (2) joint density of systematic joints is greater than nonsystematic joints, and the joint density of a thin layer is also greater than that of a thick layer; and (3) the joints of Mesozoic strata in the basin are the result of tectonic events affected by multiple stress fields. All these joints in the Mesozoic strata are formed in the two main tectonic events since Late Mesozoic times. One is the westward subduction of the Pacific Plate beneath the Eurasia Plate, which formed the approximately E-W-trending compressive stress field in the China continent. The trends of the J1 joint set (E-W) and the bisector of conjugate shear fractures composed of ENE-WSW and ESE-WNW fractures are all parallel to the trend of maximum compressive stress (E-W). The other stress field is related to the collision of the Indian and Eurasian Plates, which formed the NE-SW-trending compressive stress field in the China continent. The trends of the J3 joint set and bisector of conjugate shear fractures composed of ENE-WSW and NNE-SSW fractures are all parallel to the trend of maximum compressive stress (NE-SW). Finally, we conclude that the J1 and J4 sets are formed in the E-W-trending compressive stress field, and the J2, J3, J5, J6, J7 and J8 sets are formed in the NE

  12. The effect of magnetic field on electrochemically deposited calcium phosphate/collagen coatings.

    PubMed

    Zhao, Xueni; He, Jianpeng; Zhang, Jing; Wang, Xudong; Wang, Wanying

    2014-01-01

    Nanostructured calcium phosphate/collagen (CaP/COL) coatings were deposited on the carbon/carbon (C/C) composites through electrochemical deposition (ECD) under magnetic field. The effect of magnetic fields with different orientations on the morphology and composition was investigated. Both the morphology and composition of the coatings could be altered by superimposed magnetic field. Under zero magnetic field and magnetic field, three-dimensional network structure consisting of collagen fibers and CaP were formed on the C/C substrate. The applied magnetic field in the electric field helped to form nanostructured and plate-like CaP on collagen fibers. For the ECD under magnetic field, the Ca/P molar ratio of the coatings was lower than the one under B=0. This may be contributed to the decreased electrical resistance or the increased electrical conductivity of electrolyte solutions under magnetic field. The nanosized CaP/COL coatings exhibited the similar morphology to the human bone and could present excellent cell bioactivity and osteoblast functions. PMID:25201398

  13. The fabrication of carbon-nanotube-coated electrodes and a field-emission-based luminescent device.

    PubMed

    Agarwal, Sanjay; Yamini Sarada, B; Kar, Kamal K

    2010-02-10

    Tungsten substrates were coated with an Ni or Ni-Co catalyst by the electroless dip coating technique. Various carbon nanotubes were synthesized by the catalytic chemical vapor deposition (CVD) method under different growth conditions. It was observed that Ni-and Ni-Co-coated tungsten substrates give very good growth of carbon nanotubes (CNT) in terms of yield, uniformity and alignment at a growth temperature of 600 degrees C. We fabricated a field-emission-based luminescent light bulb where a tungsten wire coated with carbon nanotubes served as a cathode. Results show lower threshold voltage, better emission stability and higher luminescence for CNT cathodes in comparison with uncoated tungsten cathodes. We found that aligned-coiled carbon nanotubes are superior to straight CNTs in terms of field emission characteristics and luminescence properties. PMID:20057034

  14. Effects of CaF2 Coating on the Microstructures and Mechanical Properties of Tungsten Inert Gas Welded AZ31 Magnesium Alloy Joints

    NASA Astrophysics Data System (ADS)

    Shen, Jun; Wang, Linzhi; Peng, Dong; Wang, Dan

    2012-11-01

    The effects of CaF2 coating on the macromorphologies of the welded seams were studied by morphological analysis. Microstructures and mechanical properties of butt joints welded with different amounts of CaF2 coatings were investigated using optical microscopy and tensile tests. The welding defects formed in the welded seams and the fracture surfaces were analyzed by scanning electron microscopy. An increase in the amount of CaF2 coating deteriorated the appearances of the welded seams but it improved the weld penetration depth and the depth/width ( D/ W) ratio of the tungsten inert gas (TIG) welded joints. The α-Mg grains and Mg17(Al,Zn)12 intermetallic compound (IMC) were coarser in the case of a higher amount of CaF2 coating. The increase in the amount of CaF2 coating reduced the porosities and total length of solidification cracks in the fusion zone (FZ). The ultimate tensile strength (UTS) value and elongation increased at first and then decreased sharply.

  15. Fabrication of PbS nanoparticle coated amorphous carbon nanotubes: Structural, thermal and field emission properties

    SciTech Connect

    Jana, S.; Banerjee, D.; Jha, A.; Chattopadhyay, K.K.

    2011-10-15

    Graphical abstract: Simple chemical synthesis of PbS nanoparticle coated amorphous carbon nanotubes have shown better thermal stability and enhanced electron field emission properties. Highlights: {yields} PbS nanocrystals coated amorphous carbon nanotubes have been synthesized through a simple chemical route at low temperature. {yields} The composite is thermally more stable than amorphous CNTs. {yields} Composite have shown excellent cold cathode field emission property. -- Abstract: A simple chemical route for the synthesis of PbS nanoparticle coated amorphous carbon nanotubes (aCNTs) was described. The nanocomposite was prepared from an aqueous suspension of acid functionalized aCNTs, lead acetate (PbAc), and thiourea (TU) at room temperature. The phase formation and composition of the samples were characterized by X-ray diffraction and energy dispersive analysis of X-ray studies. The Fourier transformed infrared spectra analysis revealed the attachment of PbS nanoparticles on the acid functionalized aCNT surfaces. Morphology of the samples was analyzed with a field emission scanning electron microscope. UV-Vis study also confirmed the attachment of PbS nanoparticles on the walls of aCNTs. Thermal gravimetric analysis showed that the PbS coated aCNTs are more thermally stable than functionalized aCNTs. The PbS coated aCNTs showed enhanced field emission properties with a turn-on field 3.34 V {mu}m{sup -1} and the result is comparable to that of pure crystalline CNTs.

  16. Preparation research of Nano-SiC/Ni-P composite coating under a compound field

    NASA Astrophysics Data System (ADS)

    Zhou, H. Z.; Wang, W. H.; Gu, Y. Q.; Liu, R.; Zhao, M. L.

    2016-07-01

    In this paper, the preparation process of Ni-P-SiC composite coatings on 45 steel surfaces with the assistance of magnetic and ultrasound fields was researched. The influence of external field on the surface morphology and performance of the composite layer is also discussed. Experimental results showed that when prepared under magnetic and ultrasonic fields, composite layers are significantly more dense and uniform than coatings made without external fields. Nano-SiC particles, dispersed uniformly in the layer, significantly improve the hardness of the composite layer, and the composite layer under the external field had the highest hardness at 680 HV The external fields can also accelerate deposition and increase the thickness of the layer. Compared to layers processed without the assistance of external fields, the thickness of the layers increased by nearly ten µm.

  17. A computer program to perform flow and thermal analysis during pressurization of the Space Shuttle Solid Rocket Motor field joint

    NASA Technical Reports Server (NTRS)

    Clayton, J. Louie; Colbert, R. F.; Ghaffarian, B.; Majumdar, Alok

    1991-01-01

    A computational technique for prediction of the flow and thermal environment in the SRM field joint cavities is described. The SRM field joint hardware was tested with a defect in the insulation, and due to this defect, the O-ring gland cavities are pressurized during the early part of the ignition. A computer model is developed to predict the thermal environment and flow through the simulated flaw, during the pressurization of the field joint. The transient mass, momentum, and energy conservation equations in the flow passage together with the thermodynamic equation of state are solved by a fully implicit iterative numerical procedure.

  18. Released Plasmonic Electric Field of Ultrathin Tetrahedral-Amorphous-Carbon Films Coated Ag Nanoparticles for SERS

    PubMed Central

    Liu, Fanxin; Tang, Chaojun; Zhan, Peng; Chen, Zhuo; Ma, Hongtao; Wang, Zhenlin

    2014-01-01

    We have demonstrated the plasmonic characteristics of an ultrathin tetrahedral amorphous carbon (ta-C) film coated with Ag nanoparticles. The simulation result shows that, under resonant and non-resonant excitations, the strongest plasmonic electric field of 1 nm ta-C coated Ag nanoparticle is not trapped within the ta-C layer but is released to its outside surface, while leaving the weaker electric field inside ta-C layer. Moreover, this outside plasmonic field shows higher intensity than that of uncoated Ag nanoparticle, which is closely dependent on the excitation wavelength and size of Ag particles. These observations are supported by the SERS measurements. We expect that the ability for ultrathin ta-C coated Ag nanoparticles as the SERS substrates to detect low concentrations of target biomolecules opens the door to the applications where it can be used as a detection tool for integrated, on-chip devices. PMID:24675437

  19. Thiokol/Wasatch installation evaluation of the redesigned field joint protection system (concepts 1 and 3)

    NASA Technical Reports Server (NTRS)

    Cook, M.

    1989-01-01

    The procedures, performance, and results obtained from the Thiokol Corporation/Wasatch Redesigned Field Joint Protection System (FJPS) Installation Evaluation are documented. The purpose of the evaluation was to demonstrate and develop the procedures required to install two different concepts (referred to as Concepts 1 and 3) of the redesigned FJPS. The processing capability of each configuration was then evaluated and compared. The FJPS is installed on redesigned solid rocket motors (RSRM) to protect the field joints from rain intrusion and to maintain the joint temperature sensor measurement between 85 and 122 F while the boosters are on the launch pad. The FJPS is being redesigned to reduce installation timelines at KSC and to simplify or eliminate installation processing problems related to the present design of an EPDM moisture seal/extruded cork combination. Several installation techniques were evaluated, and a preferred method of application was developed for each concept. The installations were performed with the test article in the vertical (flight) position. Comparative timelines between the two concepts were also developed. An additional evaluation of the Concept 3 configuration was performed with the test article in the horizontal position, to simulate an overhead installation on a technical evaluation motor (TEM).

  20. Thermal and electrical joint test for the helical field coils in the Advanced Toroidal Facility

    SciTech Connect

    Brown, R.L.; Johnson, R.L.

    1985-01-01

    Initial feasibility studies of a number of configurations for the Advanced Toroidal Facility (ATF) resulted in the selection of a resistive copper continuous-coil torsatron as the optimum device considering the physics program, cost, and schedule. Further conceptual design work was directed toward optimization of this configuration and, if possible, a shorter schedule. It soon became obvious that in order to shorten the schedule, a number of design and fabrication activities should proceed in parallel. This was most critical for the vacuum vessel and the helical field (HF) coils. If the HF coils were wound in place on a completed vacuum vessel, the overall schedule would be significantly (greater than or equal to12 months) longer. The approach of parallel scheduel paths requires that the HF coils be segmented into parts of less than or equal to180 of poloidal angle and that joints be made on a turn-by-turn basis when the segments are installed. It was obvious from the outset that the compact and complex geometry of the joint design presented a special challenge in the areas of reliability, assembly, maintenance, disassembly, and cost. Also, electrical, thermal, and force excursions are significant for these joints. A number of soldered, welded, brazed, electroplated, and bolted joints were evaluated. The evaluations examined fabrication feasibility and complexity, thermal-electrical performance at approximately two-thirds of the steady-state design conditions, and installation and assembly processes. Results of the thermal-electrical tests were analyzed and extrapolated to predict performance at peak design parameters. The final selection was a lap-type joint clamped with insulated bolts that pass through the winding packing. 3 refs., 4 figs.

  1. Measurement of the light-field amplitude-correlation function through joint photon-count distributions.

    NASA Technical Reports Server (NTRS)

    Furcinitti, P.; Kuppenheimer, J. D.; Narducci, L. M.; Tuft , R. A.

    1972-01-01

    When an amplitude-stabilized He-Ne laser beam is scattered by a rotating ground glass with small surface inhomogeneities, the probability density of the instantaneous scattered-wave amplitude is Gaussian. In this paper, we suggest the use of the joint photon-count probability distribution to measure the absolute value of the electric-field amplitude-correlation function for random Gaussian light fields, and report the results of an experiment in which the Gaussian field is produced by scattering a light beam through a rotating ground glass. This procedure offers an alternative to other conventional methods, such as self-beating spectroscopy and irradiance-correlation techniques. The correlation time of the scattered-field amplitude in the present experiment has been measured with an accuracy of approximately 0.8%.

  2. Magnetic Field Measurements Based on Terfenol Coated Photonic Crystal Fibers

    PubMed Central

    Quintero, Sully M. M.; Martelli, Cicero; Braga, Arthur M. B.; Valente, Luiz C. G.; Kato, Carla C.

    2011-01-01

    A magnetic field sensor based on the integration of a high birefringence photonic crystal fiber and a composite material made of Terfenol particles and an epoxy resin is proposed. An in-fiber modal interferometer is assembled by evenly exciting both eigenemodes of the HiBi fiber. Changes in the cavity length as well as the effective refractive index are induced by exposing the sensor head to magnetic fields. The magnetic field sensor has a sensitivity of 0.006 (nm/mT) over a range from 0 to 300 mT with a resolution about ±1 mT. A fiber Bragg grating magnetic field sensor is also fabricated and employed to characterize the response of Terfenol composite to the magnetic field. PMID:22247655

  3. Assessment of S-phase coated medical grade stainless steel (Ortron 90) for use in the human joint replacement corrosion wear environment

    NASA Astrophysics Data System (ADS)

    Dearnley, P. A.; Figueiredo Pina, C. G.; Fisher, J.

    2008-05-01

    Hard and corrosion resistant coating materials such as S-phase, a nitrogen supersaturated Fe-Ni-Cr-Mo phase, have the potential to limit the corrosion-wear (tribo-corrosion) damage that can affect the metallic bearing surfaces of joint replacement devices in vivo, but hitherto have not been much investigated. To test their suitability, a range of S-phase coatings (with five nitrogen concentrations [N]) was applied to several polished Ortron 90 (biomedical grade austenitic stainless steel) test pieces via magnetron sputter deposition. Crevice attack, via intergranular corrosion, was found to be worse for most S-phase coated and uncoated Ortron 90 materials when tested in bovine serum compared with testing in 0.89% NaCl solution. Measurements of the breakdown potentials and the anodic passive current density, for a given test solution, revealed the crevice corrosion response of uncoated Ortron 90 to be more severe than the S-phase coated materials, although this was not unequivocally supported by 2D profilometry measurements. Corrosion-wear tests made using a sliding contact Al2O3 counterface showed the surface degradation to be more aggressive in saline solution than in bovine serum. All S-phase coatings were very effective in mitigating corrosion-wear of Ortron 90 in bovine serum solution, but only one S-phase coating composition, containing 21 at% N, gave improved resistance when tested in 0.89% NaCl solution.

  4. The 1995 revision of the joint US/UK geomagnetic field models. II: Main field

    USGS Publications Warehouse

    Quinn, J.M.; Coleman, R.J.; Macmillan, S.; Barraclough, D.R.

    1997-01-01

    This paper presents the 1995 main-field revision of the World Magnetic Model (WMM-95). It is based on Project MAGNET high-level (??? 15,000 ft.) vector aeromagnetic survey data collected between 1988 and 1994 and on scalar total intensity data collected by the Polar Orbiting Geomagnetic Survey (POGS) satellite during the period 1991 through 1993. The spherical harmonic model produced from these data describes that portion of the Earth's magnetic field generated internal to the Earth's surface at the 1995.0 Epoch. When combined with the spherical harmonic model of the Earth's secular variation described in paper I, the Earth's main magnetic field is fully characterized between the years 1995 and 2000. Regional magnetic field models for the conterminous United States, Alaska and, Hawaii were generated as by-products of the global modeling process.

  5. Joint Estimation of Water/Fat Images and Field Inhomogeneity Map

    PubMed Central

    Hernando, D.; Haldar, J. P.; Sutton, B. P.; Ma, J.; Kellman, P.; Liang, Z.-P.

    2012-01-01

    Water/fat separation in the presence of B0 field inhomogeneity is a problem of considerable practical importance in MRI. This article describes two complementary methods for estimating the water/fat images and the field inhomogeneity map from Dixon-type acquisitions. One is based on variable projection (VARPRO) and the other on linear prediction (LP). The VARPRO method is very robust and can be used in low signal-to-noise ratio conditions because of its ability to achieve the maximum-likelihood solution. The LP method is computationally more efficient, and is shown to perform well under moderate levels of noise and field inhomogeneity. These methods have been extended to handle multicoil acquisitions by jointly solving the estimation problem for all the coils. Both methods are analyzed and compared and results from several experiments are included to demonstrate their performance. PMID:18306409

  6. Final Report on NASA Portable Laser Coating Removal Systems Field Demonstrations and Testing

    NASA Technical Reports Server (NTRS)

    Rothgeb, Matthew J; McLaughlin, Russell L.

    2008-01-01

    Portable Laser Coating Removal System (PLCRS) started as the goal of a Joint Group on Pollution Prevention (JG-PP) project, led by the Air Force, where several types of lasers in several configurations were thoroughly evaluated. Following this project, NASA decided to evaluate the best performers on processes and coatings specific to the agency. Laser systems used during this project were all of a similar design, between 40 and 500 Watts, most of which had integrated vacuum systems in order to collect materials removed from substrate surfaces during operation.

  7. Nitrous Oxide Gas Fluxes in a Potato Field Following Application of Urea and Coated Urea Fertilizers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Application of urea and other forms of nitrogen (N) fertilizer can generate atmospheric emissions of nitrous oxide (N2O), which is a potent greenhouse gas. Field experiments were conducted on a loamy sand soil in Becker, Minnesota to evaluate the effects of soluble and coated forms of urea on N2O fl...

  8. Comparisons between laser damage and optical electric field behaviors for hafnia/silica antireflection coatings

    SciTech Connect

    Bellum, John; Kletecka, Damon; Rambo, Patrick; Smith, Ian; Schwarz, Jens; Atherton, Briggs

    2011-03-20

    We compare designs and laser-induced damage thresholds (LIDTs) of hafnia/silica antireflection (AR) coatings for 1054 nm or dual 527 nm/1054 nm wavelengths and 0 deg. to 45 deg. angles of incidence (AOIs). For a 527 nm/1054 nm, 0 deg. AOI AR coating, LIDTs from three runs arbitrarily selected over three years are {approx}20 J/cm{sup 2} or higher at 1054 nm and <10 J/cm{sup 2} at 527 nm. Calculated optical electric field intensities within the coating show two intensity peaks for 527 nm but not for 1054 nm, correlating with the lower (higher) LIDTs at 527 nm (1054 nm). For 1054 nm AR coatings at 45 deg. and 32 deg. AOIs and S and P polarizations (Spol and Ppol), LIDTs are high for Spol (>35 J/cm{sup 2}) but not as high for Ppol (>30 J/cm{sup 2} at 32 deg. AOI; {approx}15 J/cm{sup 2} at 45 deg. AOI). Field intensities show that Ppol discontinuities at media interfaces correlate with the lower Ppol LIDTs at these AOIs. For Side 1 and Side 2 dual 527 nm/1054 nm AR coatings of a diagnostic beam splitter at 22.5 deg. AOI, Spol and Ppol LIDTs (>10 J/cm{sup 2} at 527 nm; >35 J/cm{sup 2} at 1054 nm) are consistent with Spol and Ppol intensity behaviors.

  9. Enhanced giant magnetoimpedance effect and field sensitivity in Co-coated soft ferromagnetic amorphous ribbons

    NASA Astrophysics Data System (ADS)

    Laurita, Nicholas; Chaturvedi, Anurag; Bauer, Christopher; Jayathilaka, Priyanga; Leary, Alex; Miller, Casey; Phan, Manh-Huong; McHenry, Michael E.; Srikanth, Hariharan

    2011-04-01

    A 50 nm-thick Co film has been grown either on the free surface (surface roughness, ˜6 nm) or on the wheel-side surface (surface roughness, ˜147 nm) of Co84.55Fe4.45Zr7B4 amorphous ribbons. A comparative study of the giant magnetoimpedance (GMI) effect and its field sensitivity (η) in the uncoated and Co-coated ribbons is presented. We show that the presence of the Co coating layer enhances both the GMI ratio and η in the Co-coated ribbons. Larger values for GMI ratio and η are achieved in the sample with Co coated on the free ribbon surface. The enhancement of the GMI effect in the Co-coated ribbons originates mainly from the reduction in stray fields due to surface irregularities and the enhanced magnetic flux paths closure. These findings provide good guidance for tailoring GMI in surface-modified soft ferromagnetic ribbons for use in highly sensitive magnetic sensors.

  10. The effects of surface and interface structure on field electron from diamond coatings

    SciTech Connect

    Choi, W.; Myers, A.; Cuomo, J.; Hren, J.

    1996-12-31

    A number of investigators have reported that coating silicon and metal substrates with several forms of diamond has led to significant improvement in the electron emission properties. The authors restrict this report to the effects on field electron emission from needle-shaped substrates before and after coating. Several forms of diamond and the influence of subsequent surface and thermal treatments were investigated. Needle shaped emitters were chosen because the same specimen could be extensively characterized by conventional Field Emitters methods before and after coating and/or after each subsequent treatment. The emitters are also conveniently shaped for detailed electron microscopic studies of the same interface and coating microstructure through which the emitted electrons must be supplied from the substrate. The substrates studied include: silicon, molybdenum, and nickel; diamond coatings were performed by: plasma CVD using bias enhanced nucleation and other nucleation techniques, as well as by dielectrophoresis, using different powders and thermal treatments. Surface treatments by O{sub 2} and Cs were also investigated, as were several environmental ambients (including H{sub 2} and D{sub 2}). Thermal treatment of the powders, after dielectrophoretic deposition was also studied in an attempt to maximize emission while retaining optimal stability.

  11. Multi-layer carbon-based coatings for field emission

    DOEpatents

    Sullivan, John P.; Friedmann, Thomas A.

    1998-01-01

    A multi-layer resistive carbon film field emitter device for cold cathode field emission applications. The multi-layered film of the present invention consists of at least two layers of a conductive carbon material, preferably amorphous-tetrahedrally coordinated carbon, where the resistivities of adjacent layers differ. For electron emission from the surface, the preferred structure can be a top layer having a lower resistivity than the bottom layer. For edge emitting structures, the preferred structure of the film can be a plurality of carbon layers, where adjacent layers have different resistivities. Through selection of deposition conditions, including the energy of the depositing carbon species, the presence or absence of certain elements such as H, N, inert gases or boron, carbon layers having desired resistivities can be produced.

  12. Multi-layer carbon-based coatings for field emission

    DOEpatents

    Sullivan, J.P.; Friedmann, T.A.

    1998-10-13

    A multi-layer resistive carbon film field emitter device for cold cathode field emission applications is disclosed. The multi-layered film of the present invention consists of at least two layers of a conductive carbon material, preferably amorphous-tetrahedrally coordinated carbon, where the resistivities of adjacent layers differ. For electron emission from the surface, the preferred structure can be a top layer having a lower resistivity than the bottom layer. For edge emitting structures, the preferred structure of the film can be a plurality of carbon layers, where adjacent layers have different resistivities. Through selection of deposition conditions, including the energy of the depositing carbon species, the presence or absence of certain elements such as H, N, inert gases or boron, carbon layers having desired resistivities can be produced. 8 figs.

  13. Magnetic field sensor based on fiber taper coupler coated with magnetic fluid

    NASA Astrophysics Data System (ADS)

    Lin, Wei; Zhang, Hao; Song, Binbin; Liu, Bo; Lin, Yandong; Liu, Haifeng; Miao, Yinping; Liu, Yange

    2015-09-01

    In this paper, we have demonstrated a magnetic field sensor based on the fiber taper coupler coated with Magnetic fluid. The proposed sensor is fabricated by immersing a fiber taper coupler into the Magnetic fluid and then sealing it with the paraffin. The sensor exhibits high response as a function of the magnetic field with sensitivities of 0.154 nm/Oe with measurement range from 50 Oe to 200 Oe and -0.06301 dB/ Oe from 75 Oe to 200 Oe. Owing to the advantages of high sensitivity, small footprint, and ease of fabrication, the proposed sensor would find potential applications in magnetic field sensing field.

  14. Magnetic flux penetration into twisted multifilamentary coated superconductors subjected to ac transverse magnetic fields

    NASA Astrophysics Data System (ADS)

    Amemiya, Naoyuki; Sato, Susumu; Ito, Takeshi

    2006-12-01

    ac losses in superconductors are generated by the magnetic flux and current penetration into them. To reveal the magnetic flux and current penetration processes in twisted multifilamentary coated superconductors in which the thin superconductor layer is subdivided into filaments and then twisted as a whole for ac loss reduction, a theoretical model for electromagnetic field analysis was developed based on the power law E-J (electric-field-current-density) characteristic for the superconductor and a thin strip approximation of the conductor. The developed theoretical model was implemented into a numerical code using the finite element method to calculate and visualize the current and magnetic flux distributions. The magnetization losses in twisted multifilamentary coated superconductors exposed to ac transverse magnetic fields were calculated from the temporal evolutions of the current distribution to demonstrate the effect of the twisted multifilamentary architecture on ac loss reduction.

  15. Results of field application and laboratory testing of thermal spray UNS N10276 coating for sour amine vessels

    SciTech Connect

    Baron, J.J.; Hay, M.G.; Goerz, K.G.; Schubert, R.W.; Easterly, F.B.

    1998-12-31

    The Caroline sour gas processing plant pressure vessels were constructed of bare carbon-manganese steel. Early detection of internal surface corrosion and hydrogen blistering led to a decision to field-apply a UNS N10276 coating. The dual-wire arc-spray technique was chosen following a careful review of the technical merits and costs of the alternatives. It was used to coat portions of eight vessels during a planned plant turnaround in 1995. A laboratory program was subsequently initiated in order to define the coating`s corrosion resistance and its effectiveness in preventing corrosion of, and hydrogen damage to, the steel substrate. This program examined the effect of variations in coating thickness and coverage, and steel substrate surface topography on coating performance in simulated rich amine (plant) and standard NACE International sour environments. In addition, an effective field repair procedure was qualified. The results of the inspection of the coating in three vessels after eighteen months` service justified the selection of the coating material and application technique. Only minor repairs to the coating in one vessel were required. This paper gives the results of the laboratory program and plant inspections, and provides guidelines for the application of thermal spray coatings in the field.

  16. Durability and shielding performance of borated Ceramicrete coatings in beta and gamma radiation fields

    NASA Astrophysics Data System (ADS)

    Wagh, Arun S.; Sayenko, S. Yu.; Dovbnya, A. N.; Shkuropatenko, V. A.; Tarasov, R. V.; Rybka, A. V.; Zakharchenko, A. A.

    2015-07-01

    Ceramicrete™, a chemically bonded phosphate ceramic, was developed for nuclear waste immobilization and nuclear radiation shielding. Ceramicrete products are fabricated by an acid-base reaction between magnesium oxide and mono potassium phosphate. Fillers are used to impart desired properties to the product. Ceramicrete's tailored compositions have resulted in several commercial structural products, including corrosion- and fire-protection coatings. Their borated version, called Borobond™, has been studied for its neutron shielding capabilities and is being used in structures built for storage of nuclear materials. This investigation assesses the durability and shielding performance of borated Ceramicrete coatings when exposed to gamma and beta radiations to predict the composition needed for optimal shielding performance in a realistic nuclear radiation field. Investigations were conducted using experimental data coupled with predictive Monte Carlo computer model. The results show that it is possible to produce products for simultaneous shielding of all three types of nuclear radiations, viz., neutrons, gamma-, and beta-rays. Additionally, because sprayable Ceramicrete coatings exhibit excellent corrosion- and fire-protection characteristics on steel, this research also establishes an opportunity to produce thick coatings to enhance the shielding performance of corrosion and fire protection coatings for use in high radiation environment in nuclear industry.

  17. Probing Emissions of Military Cargo Aircraft: Description of a Joint Field Measurement Program

    SciTech Connect

    Cheng, Mengdawn; Corporan, E.; DeWitt, M.; Spicer, C.; Holdren, M.; Cowen, K.; Harris, B.; Shores, R.; Hashmonay, R.; Kaganan, R.

    2008-01-01

    Direct emissions of NOx, volatile organic compounds, and particulate matter (PM) by aircraft contribute to the pollutant levels found in the atmosphere. Aircraft emissions can be injected at the ground level or directly at the high altitude in flight. Conversion of the precursor gases into secondary PM is one of the pathways for the increased atmospheric PM. Atmospheric PM interacts with solar radiation altering atmospheric radiation balance and potentially contributing to global and regional climate changes. Also, direct emissions of air toxics, ozone precursors and PM from aircraft in and around civilian airports and military air bases can worsen local air quality in non-attainment and/or maintenance areas. These emissions need to be quantified. However, the current EPA methods for particle emission measurements from such sources, modified Method 5 and Conditional Test Method 039, are gravimetric-based, and it is anticipated that these methods will not be suitable for current and future generations of aircraft turbine engines, whose particle mass emissions are low. To evaluate measurement approaches for military aircraft emissions, two complementary projects were initiated in 2005. A joint field campaign between these two programs was executed during the first week of October 2005 at the Kentucky Air National Guard (KYANG) base in Louisville, KY. This campaign represented the first in a series of field studies for each program funded by the DoD Strategic Environmental Research and Development Program (SERDP) and provided the basis for cross-comparison of the sampling approaches and measurement techniques employed by the respective program teams. This paper describes the overall programmatic of the multi-year SERDP aircraft emissions research and presents a summary of the results from the joint field campaign.

  18. Influences of surface coating, UV irradiation and magnetic field on the algae removal using magnetite nanoparticles.

    PubMed

    Ge, Shijian; Agbakpe, Michael; Wu, Zhiyi; Kuang, Liyuan; Zhang, Wen; Wang, Xianqin

    2015-01-20

    Magnetophoretic separation is a promising and sustainable technology for rapid algal separation or removal from water. This work demonstrated the application of magnetic magnetite nanoparticles (MNPs) coated with a cationic polymer, polyethylenimine (PEI), toward the separation of Scenedesmus dimorphus from the medium broth. The influences of surface coating, UV irradiation, and magnetic field on the magnetophoretic separation were systematically examined. After PEI coating, zeta potential of MNPs shifted from −7.9 ± 2.0 to +39.0 ± 3.1 mV at a pH of 7.0, which improved MNPs-algae interaction and helped reduce the dose demand of MNPs (e.g., from 0.2 to 0.1 g·g(–1) while the harvesting efficiency (HE) of over 80% remained unchanged). The extended Derjaguin–Landau–Verwey–Overbeek theory predicted a strong attractive force between PEI-coated MNPs and algae, which supported the improved algal harvesting. Moreover, the HE was greater under the UV365 irradiation than that under the UV254, and increased with the irradiation intensity. Continuous application of the external magnetic field at high strength remarkably improved the algal harvesting. Finally, the reuse of MNPs for multiple cycles of algal harvesting was studied, which aimed at increasing the sustainability and lowering the cost. PMID:25486124

  19. Joint Instability of Differential Rotation and Toroidal Magnetic Fields below the Solar Convection Zone, II

    NASA Astrophysics Data System (ADS)

    Gilman, P. A.; Fox, P.

    1997-05-01

    At the 1996 AAS/SPD meeting in Madison we reported first results for the joint instability of differential rotation and toroidal magnetic fields to 2D disturbances (see also Gilman and Fox, Paper I, July 20 1997 issue of ApJ). This analysis was for the toroidal field profile B=a*sin(LAT)cos(LAT). This paper reports results for the profile B=(a*sin(LAT)+b*(sin(LAT))(3) ))cos(LAT), which, with b<-a<0, allows for a node in the toroidal field at latitude arcsin (-a/b). This generalization is of interest because we should expect such a node to appear and migrate equatorward as the sun proceeds from one sunspot cycle to the next. As with the simpler profile, instability occurs for virtually all differential rotation amplitudes, and all toroidal field amplitudes and shapes, and remains confined to disturbances with longitudinal wave number m=1. For a, b>0, the instability is enhanced for the same a compared to the b=0 case, particularly in high latitudes. For 0>b>-a (so no node is present) the instability is similar to the b=0 case but with diminished growth rates, due to the reduction of toroidal fields at high latitudes. At b=-a, the symmetric mode of instability vanishes, but the antisymmetric mode remains. For b<-a<0, both symmetric and antisymmetric modes are unstable, but with disturbances confined largely to the domain poleward of the node, unless the toroidal field energy greatly exceeds the kinetic energy of differential rotation. Unstable disturbances spread and migrate toward the equator as the field strength is increased and as the node is moved equatorward. Thus, the instability may still contribute to the existence of the solar butterfly diagram, and to other solar dynamo presses.

  20. Dynamic Resistance of YBCO-Coated Conductors in Applied AC Fields with DC Transport Currents and DC Background Fields

    SciTech Connect

    Duckworth, Robert C; Zhang, Yifei; Ha, Tam T; Gouge, Michael J

    2011-01-01

    In order to predict heat loads in future saturable core fault-current-limiting devices due to ac fringing fields, dynamic resistance in YBCO-coated conductors was measured at 77 K in peak ac fields up to 25 mT at 60 Hz and in dc fields up to 1 T. With the sample orientation set such that the conductor face was either parallel or perpendicular to the ac and dc applied fields, the dynamic resistance was measured at different fractions of the critical current to determine the relationship between the dc transport current and the applied fields. With respect to field orientation, the dynamic resistance for ac fields that were perpendicular to the conductor face was significantly higher than when the ac fields were parallel to the conductor face. It was also observed that the dynamic resistance: (1) increased with increasing fraction of the dc transport current to the critical current, (2) was proportional to the inverse of the critical current, and (3) demonstrated a linear dependence with the applied ac field once a threshold field was exceeded. This functional behavior was consistent with a critical state model for the dynamic resistance, but discrepancies in absolute value of the dynamic resistance suggested that further theoretical development is needed.

  1. Near-field radiative heat transfer between metamaterials coated with silicon carbide thin films

    SciTech Connect

    Basu, Soumyadipta Yang, Yue; Wang, Liping

    2015-01-19

    In this letter, we study the near-field radiative heat transfer between two metamaterial substrates coated with silicon carbide (SiC) thin films. It is known that metamaterials can enhance the near-field heat transfer over ordinary materials due to excitation of magnetic plasmons associated with s polarization, while strong surface phonon polariton exists for SiC. By careful tuning of the optical properties of metamaterial, it is possible to excite electrical and magnetic resonances for the metamaterial and surface phonon polaritons for SiC at different spectral regions, resulting in the enhanced heat transfer. The effect of the SiC film thickness at different vacuum gaps is investigated. Results obtained from this study will be beneficial for application of thin film coatings for energy harvesting.

  2. Joint actions of environmental nonionizing electromagnetic fields and chemical pollution in cancer promotion.

    PubMed Central

    Adey, W R

    1990-01-01

    Studies of environmental electromagnetic (EM) field interactions in tissues have contributed to a new understanding of both normal growth and the biology of cancer in cell growth. From cancer research comes a floodtide of new knowledge about the disruption of communication by cancer-promoting chemicals with an onset of unregulated growth. Bioelectromagnetic research reveals clear evidence of joint actions at cell membranes of chemical cancer promoters and environmental electromagnetic fields. The union of these two disciplines has resulted in the first major new approach to tumor formation in 75 years, directing attention to dysfunctions in inward and outward streams of signals at cell membranes, rather than to damage DNA in cell nuclei, and to synergic actions of chemical pollutants and environmental electromagnetic fields. We are witnesses and, in great measure, participants in one of the great revolutions in the history of biology. In little more than a century, we have moved from organs, to tissues, to cells, and finally to the molecules that are the elegant fabric of living tissues. Today, we stand at a new frontier. It may be more difficult to comprehend, but it is far more significant; for it is at the atomic level, rather than the molecular, that physical, rather than chemical, processes appear to shape the flow of signals that are at the essence of living matter. To pursue these problems in the environment and in the laboratory, our needs for further research with appropriate budgets are great.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2205491

  3. Joint inference of groundwater-recharge and hydraulic-conductivity fields from head data using the ensemble Kalman filter

    NASA Astrophysics Data System (ADS)

    Erdal, D.; Cirpka, O. A.

    2016-02-01

    Regional groundwater flow strongly depends on groundwater recharge and hydraulic conductivity. Both are spatially variable fields, and their estimation is an ongoing topic in groundwater research and practice. In this study, we use the ensemble Kalman filter as an inversion method to jointly estimate spatially variable recharge and conductivity fields from head observations. The success of the approach strongly depends on the assumed prior knowledge. If the structural assumptions underlying the initial ensemble of the parameter fields are correct, both estimated fields resemble the true ones. However, erroneous prior knowledge may not be corrected by the head data. In the worst case, the estimated recharge field resembles the true conductivity field, resulting in a model that meets the observations but has very poor predictive power. The study exemplifies the importance of prior knowledge in the joint estimation of parameters from ambiguous measurements.

  4. Superior properties of SmBCO coated conductors at high magnetic fields and elevated temperatures

    NASA Astrophysics Data System (ADS)

    Fuger, R.; Eisterer, M.; Oh, S. S.; Weber, H. W.

    2010-03-01

    In addition to the well investigated YBa 2Cu 3O 7-δ (Y-123, YBCO) compound, many other rare earth-123 compounds are candidate materials for the production of coated conductors. Sm-123 seems to be an excellent alternative because of its higher transition temperature ( T c) and higher critical current densities ( J c) in external magnetic fields. Because of the fast decrease of J c in YBCO at elevated temperatures, especially around the boiling point of liquid nitrogen, the slightly higher T c can be an important advantage. Recently, significant progress has been made in the production of long length Sm-123 based coated conductors. We report here on transport measurements on these conductors in the liquid nitrogen temperature range. The critical current densities were determined as a function of the applied field and the crystallographic orientation under maximum Lorentz force configuration. A shift of the c-axis (∼7°) from the tape normal was found. The conductor properties were compared to those of commercially available YBCO coated conductors. The critical current densities as well as the irreversibility fields are higher in the SmBCO tapes, thus demonstrating the superior properties of the Sm-123 compound.

  5. Optical coatings and thin films for display technologies using closed-field magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Gibson, Desmond R.; Brinkley, Ian; Walls, J. M.

    2004-11-01

    "Closed field" magnetron (CFM) sputtering offers high throughput, flexible deposition process for optical coatings and thin films required in display technologies. CFM sputtering uses two or more different metal targets to deposit multilayers comprising a wide range of dielectrics, metals and conductive oxides. CFM provides a room temperature deposition process with high ion current density, low bias voltage and reactive oxidation in the entire volume around the rotating substrate drum carrier, depositing films over a large surface area at a high rate with excellent and reproducible properties. Machines based on CFM are scaleable to meet a range of batch and in-line size requirements. Thin film thickness control to <+/-1% is accomplished using time, although quartz crystal or optical monitoring are used for more demanding applications. Fine layer thickness control and deposition of graded index layers is also assisted with a special rotating shutter mechanism. This paper presents data on optical properties for CFM deposited coatings relevant to displays, including anti-reflection, IR blocker and color and thermal control filters, graded coatings, barrier coatings as well as conductive transparent oxides such as indium tin oxide. Benefits of the CFM process for a range of display technologies; OLED, EL and projection are described.

  6. 3D stochastic inversion and joint inversion of potential fields for multi scale parameters

    NASA Astrophysics Data System (ADS)

    Shamsipour, Pejman

    In this thesis we present the development of new techniques for the interpretation of potential field (gravity and magnetic data), which are the most widespread economic geophysical methods used for oil and mineral exploration. These new techniques help to address the long-standing issue with the interpretation of potential fields, namely the intrinsic non-uniqueness inversion of these types of data. The thesis takes the form of three papers (four including Appendix), which have been published, or soon to be published, in respected international journals. The purpose of the thesis is to introduce new methods based on 3D stochastical approaches for: 1) Inversion of potential field data (magnetic), 2) Multiscale Inversion using surface and borehole data and 3) Joint inversion of geophysical potential field data. We first present a stochastic inversion method based on a geostatistical approach to recover 3D susceptibility models from magnetic data. The aim of applying geostatistics is to provide quantitative descriptions of natural variables distributed in space or in time and space. We evaluate the uncertainty on the parameter model by using geostatistical unconditional simulations. The realizations are post-conditioned by cokriging to observation data. In order to avoid the natural tendency of the estimated structure to lay near the surface, depth weighting is included in the cokriging system. Then, we introduce algorithm for multiscale inversion, the presented algorithm has the capability of inverting data on multiple supports. The method involves four main steps: i. upscaling of borehole parameters (It could be density or susceptibility) to block parameters, ii. selection of block to use as constraints based on a threshold on kriging variance, iii. inversion of observation data with selected block densities as constraints, and iv. downscaling of inverted parameters to small prisms. Two modes of application are presented: estimation and simulation. Finally, a novel

  7. On the potential for fibronectin/phosphorylcholine coatings on PTFE substrates to jointly modulate endothelial cell adhesion and hemocompatibility properties

    PubMed Central

    Montaño-Machado, Vanessa; Chevallier, Pascale; Mantovani, Diego; Pauthe, Emmanuel

    2015-01-01

    The use of biomolecules as coatings on biomaterials is recognized to constitute a promising approach to modulate the biological response of the host. In this work, we propose a coating composed by 2 biomolecules susceptible to provide complementary properties for cardiovascular applications: fibronectin (FN) to enhance endothelialization, and phosphorylcholine (PRC) for its non thrombogenic properties. Polytetrafluoroethylene (PTFE) was selected as model substrate mainly because it is largely used in cardiovascular applications. Two approaches were investigated: 1) a sequential adsorption of the 2 biomolecules and 2) an adsorption of the protein followed by the grafting of phosphorylcholine via chemical activation. All coatings were characterized by immunofluorescence staining, X-Ray Photoelectron Spectroscopy and Scanning Electron Microscopy analyses. Assays with endothelial cells showed improvement on cell adhesion, spreading and metabolic activity on FN-PRC coatings compared with the uncoated PTFE. Platelets adhesion and activation were both reduced on the coated surfaces when compared with uncoated PTFE. Moreover, clotting time tests exhibited better hemocompatibility properties of the surfaces after a sequential adsorption of FN and PRC. In conclusion, FN-PRC coating improves cell adhesion and non-thrombogenic properties, thus revealing a certain potential for the development of this combined deposition strategy in cardiovascular applications. PMID:25785369

  8. Structural characterization of electric-field assisted dip-coating of gold nanoparticles on silicon

    NASA Astrophysics Data System (ADS)

    Dushaq, Ghada H.; Alkhatib, Amro; Rasras, Mahmoud S.; Nayfeh, Ammar M.

    2015-09-01

    We report the effect of applying an electric field on the surface coverage of 40nm gold colloidal nanoparticles on silicon wafer using dip-coating and electrochemical cell set up. By applying electric field during the dip-coating of silicon wafer in a solution of gold nano particles (GNP) the surface coverage increased by 10% when the electric field varied from 5V/cm to 25V/cm at fixed deposition time of 90s. Ultra High Resolution Scanning Electron Microscopy (HRSEM) images shows that the particle agglomeration becomes more noticeable at higher electric field and as the deposition time increases from 90 s to 20 min a thin film of gold is achieved. Moreover, the results are discussed in terms of chemical bonding, electrostatic force and electrophoretic mobility of Au nano particles during the electric field enhanced deposition on the Si surface. Applied voltage, time of dipping, concentration of the aqueous solution, and particles zeta potential are all can be controlled to enhance the uniformity and particles profile on the silicon surface.

  9. Structural characterization of electric-field assisted dip-coating of gold nanoparticles on silicon

    SciTech Connect

    Dushaq, Ghada H.; Alkhatib, Amro; Rasras, Mahmoud S.; Nayfeh, Ammar M.

    2015-09-15

    We report the effect of applying an electric field on the surface coverage of 40nm gold colloidal nanoparticles on silicon wafer using dip-coating and electrochemical cell set up. By applying electric field during the dip-coating of silicon wafer in a solution of gold nano particles (GNP) the surface coverage increased by 10% when the electric field varied from 5V/cm to 25V/cm at fixed deposition time of 90s. Ultra High Resolution Scanning Electron Microscopy (HRSEM) images shows that the particle agglomeration becomes more noticeable at higher electric field and as the deposition time increases from 90 s to 20 min a thin film of gold is achieved. Moreover, the results are discussed in terms of chemical bonding, electrostatic force and electrophoretic mobility of Au nano particles during the electric field enhanced deposition on the Si surface. Applied voltage, time of dipping, concentration of the aqueous solution, and particles zeta potential are all can be controlled to enhance the uniformity and particles profile on the silicon surface.

  10. Inhibition of pyrite oxidation by surface coating agents: Batch and field studies

    NASA Astrophysics Data System (ADS)

    Choi, Jaeyoung; Do Gee, Eun; Yun, Hyun-Shik; Ram Lee, Woo; Park, Young-Tae

    2013-04-01

    The potential of several surface coating agents to inhibit the oxidation of metal sulfide minerals from Young-Dong coal mine and the Il-Gwang gold mine was examined by conducting laboratory scale batch experiments and field tests. Powdered pyrite as a standard sulfide mineral and rock samples from two mine outcrops were mixed with six coating agents (KH2PO4, MgO and KMnO4 as chemical agents, and apatite, cement and manganite as mineral agents) and incubated with oxidizing agents (H2O2 or NaClO). For the observed time period (8 days), Young-Dong coal mine samples exhibited the least sulfate (SO42-) production in the presence of KMnO4 (16%) or cement (4%) while, for Il-Gwang mine samples, the least SO42- production was observed in presence of KH2PO4 (8%) or cement (2%) compared to control. Field-scale pilot tests at the Il-Gwang site also showed that addition of KH2PO4 decreased SO42- production from 200 to 13 mg L-1 and it also reduced Cu and Mn from 8 and 3 mg L-1, respectively to <0.05 mg L-1 (below ICP-OES detection limits). The experimental results suggested that the use of surface coating agents is a promising alternative for sulfide oxidation inhibition at acid mine drainage sites.

  11. Inhibition of sulfide mineral oxidation by surface coating agents: batch and field studies.

    PubMed

    Ji, Min-Kyu; Gee, Eun-Do; Yun, Hyun-Shik; Lee, Woo-Ram; Park, Young-Tae; Khan, Moonis Ali; Jeon, Byong-Hun; Choi, Jaeyoung

    2012-08-30

    The potential of several surface coating agents to inhibit the oxidation of metal sulfide minerals from Young-Dong coal mine and the Il-Gwang gold mine was examined by conducting laboratory scale batch experiments and field tests. Powdered pyrite as a standard sulfide mineral and rock samples from two mine outcrops were mixed with six coating agents (KH(2)PO(4), MgO and KMnO(4) as chemical agents, and apatite, cement and manganite as mineral agents) and incubated with oxidizing agents (H(2)O(2) or NaClO). For the observed time period (8 days), Young-Dong coal mine samples exhibited the least sulfate (SO(4)(2-)) production in the presence of KMnO(4) (16%) or cement (4%) while, for Il-Gwang mine samples, the least SO(4)(2-) production was observed in presence of KH(2)PO(4) (8%) or cement (2%) compared to control. Field-scale pilot tests at the Il-Gwang site also showed that addition of KH(2)PO(4) decreased SO(4)(2-) production from 200 to 13 mg L(-1) and it also reduced Cu and Mn from 8 and 3 mg L(-1), respectively to <0.05 mg L(-1) (below ICP-OES detection limits). The experimental results suggested that the use of surface coating agents is a promising alternative for sulfide oxidation inhibition at acid mine drainage sites. PMID:22727481

  12. Influence of magnetization on field quality in cosine-theta and block design dipole magnets wound with coated conductors

    NASA Astrophysics Data System (ADS)

    Sogabe, Yusuke; Sakashita, Masaki; Nakamura, Taketsune; Ogitsu, Toru; Amemiya, Naoyuki

    2016-04-01

    We carried out electromagnetic field analyses on the cross sections of two dipole magnets wound with coated conductors. One was a cosine-theta magnet, and the other was a block design magnet. The electric field-current density characteristics of the coated conductors were formulated using a percolation depinning model based on the measured voltage-current characteristics. We calculated the temporal evolutions of the current-density distributions in all the turns of each magnet and used these evolutions to calculate the multipole components of the magnetic field. We compared the two magnets, which differed in coated-conductor orientations, regarding the influence of coated-conductor magnetization on the field qualities.

  13. Uniform trapped fields produced by stacks of HTS coated conductor tape

    NASA Astrophysics Data System (ADS)

    Mitchell-Williams, T. B.; Baskys, A.; Hopkins, S. C.; Kalitka, V.; Molodyk, A.; Glowacki, B. A.; Patel, A.

    2016-08-01

    The trapped magnetic field profile of stacks of GdBa2Cu3O7‑x superconducting tape was investigated. Angled stacks of superconducting tape were magnetized and found to produce very uniform trapped field profiles. The angled stacks were made of 12 mm × 24 mm solder coated tape pieces and were bonded together following a brief consolidation heat treatment. Layering multiple stacks together and adding a ferromagnetic plate beneath the samples were both found to enhance the magnitude and uniformity of the trapped field profiles. Stationary and time-dependent critical state finite element models were also developed to complement the experimental results and investigate the magnetization process. The size and shapes possible with the angled stacks make them attractive for applications requiring uniform magnetic fields over larger areas than can be achieved with existing bulk rings or tape annuli.

  14. Development of superlattice CrN/NbN coatings for joint replacements deposited by high power impulse magnetron sputtering.

    PubMed

    Hovsepian, Papken Ehiasarian; Ehiasarian, Arutiun Papken; Purandare, Yashodhan; Sugumaran, Arunprabhu Arunachalam; Marriott, Tim; Khan, Imran

    2016-09-01

    The demand for reliable coating on medical implants is ever growing. In this research, enhanced performance of medical implants was achieved by a CrN/NbN coating, utilising nanoscale multilayer/superlattice structure. The advantages of the novel high power impulse magnetron sputtering technology, namely, its unique highly ionised plasma, were exploited to deposit dense and strongly adherent coatings on CoCr implants. Transmission electron microscopy analysis revealed coating superlattice structure with bi-layer thickness of 3.5 nm. CrN/NbN deposited on CoCr samples showed exceptionally high adhesion, critical load values of LC2 = 50 N in scratch adhesion tests. Nanoindentation tests showed high hardness of 34 GPa and Young's modulus of 447 GPa. Low coefficient of friction (μ) 0.49 and coating wear coefficient (K C) = 4.94 × 10(-16) m(3) N(-1) m(-1) were recorded in dry sliding tests. Metal ion release studies showed a reduction in Co, Cr and Mo release at physiological and elevated temperatures (70 °C) to almost undetectable levels (<1 ppb). Rotating beam fatigue testing showed a significant increase in fatigue strength from 349 ± 59 MPa (uncoated) to 539 ± 59 MPa (coated). In vitro biological testing has been performed in order to assess the safety of the coating in biological environment; cytotoxicity, genotoxicity and sensitisation testing have been performed, all showing no adverse effects. PMID:27571960

  15. Enhanced Field Emission from Vertically Oriented Graphene by Thin Solid Film Coatings

    NASA Astrophysics Data System (ADS)

    Bagge-Hansen, Michael

    Recent progress and a coordinated national research program have brought considerable effort to bear on the synthesis and application of carbon nanostructures for field emission. At the College of William and Mary, we have developed field emission arrays of vertically oriented graphene (carbon nanosheets, CNS) that have demonstrated promising cathode performance, delivering emission current densities up to 2 mA/mm2 and cathode lifetime >800 hours. The work function (φ) of CNS and other carbonaceous cathode materials has been reported to be φ˜4.5-5.1 eV. The application of low work function thin films can achieve several orders of magnitude enhancement of field emission. Initially, the intrinsic CNS field emission was studied. The mean height of the CNS was observed to decrease as a function of operating time at a rate of ˜0.05 nm/h (I 1˜40 muA/mm2). The erosion mechanism was studied using a unique UHV diode design which allowed line-of-site assessment from the field emission region in the diode to the ion source of a mass spectrometer. The erosion of CNS was found to occur by impingement of hyperthermal H and O neutrals and ions generated at the surface oxide complex of the Cu anode by electron stimulated desorption. Techniques for minimizing this erosion are presented. The Mo2C (φ˜3.7 eV) beading on CNS at previously reported carbide formation temperatures of ˜800°C was circumvented by physical vapor deposition of Mo and vacuum annealing at ˜300°C which resulted in a conformal Mo2C coating and stable field emission of 1˜50 muA/mm2. For a given applied field, the emission current was >102 greater than uncoated CNS. ThO2 thin film coatings were presumed to be even more promising because of a reported work function of φ ˜2.6 eV. The fundamental behavior of the initial oxidation of polycrystalline Th was studied in UHV (p<1x10-11 Torr), followed by studies of thin film coatings on Ir and thermionic emission characteristics. Although a work function of 3

  16. Outstanding field emission properties of wet-processed titanium dioxide coated carbon nanotube based field emission devices

    SciTech Connect

    Xu, Jinzhuo; Ou-Yang, Wei Chen, Xiaohong; Guo, Pingsheng; Piao, Xianqing; Sun, Zhuo; Xu, Peng; Wang, Miao; Li, Jun

    2015-02-16

    Field emission devices using a wet-processed composite cathode of carbon nanotube films coated with titanium dioxide exhibit outstanding field emission characteristics, including ultralow turn on field of 0.383 V μm{sup −1} and threshold field of 0.657 V μm{sup −1} corresponding with a very high field enhancement factor of 20 000, exceptional current stability, and excellent emission uniformity. The improved field emission properties are attributed to the enhanced edge effect simultaneously with the reduced screening effect, and the lowered work function of the composite cathode. In addition, the highly stable electron emission is found due to the presence of titanium dioxide nanoparticles on the carbon nanotubes, which prohibits the cathode from the influence of ions and free radical created in the emission process as well as residual oxygen gas in the device. The high-performance solution-processed composite cathode demonstrates great potential application in vacuum electronic devices.

  17. Quantitative assessments of residual stress fields at the surface of alumina hip joints.

    PubMed

    Pezzotti, Giuseppe; Munisso, Maria Chiara; Lessnau, Kristina; Zhu, Wenliang

    2010-11-01

    In-depth and in-plane response functions of photo- and electro-stimulated probes have been modeled and quantitatively evaluated in order to assess their suitability to detect the highly graded residual stress fields generated at the surface of alumina hip joints. Optical calibrations revealed large differences in probe size, which strongly affected the detected magnitude of residual stress. A comparison between the responses of Raman and fluorescence probes in polycrystalline alumina showed that the depth of those probes spread to an extent in the order of the tens of microns even with using a confocal probe configuration. On the other hand, the electro-stimulated luminescence emitted by oxygen vacancy sites (F(+) center) in the alumina lattice represented the most suitable choice for confining to a shallow volume the stress probe. This latter probe enabled us to reduce the measurement depth to the order of the tens of nanometers. We show maps of surface residual stress as collected on both main-wear and nonwear zones of an alumina femoral head. A comparison among stress maps taken at exactly the same location, but employing different probes, revealed averaging effects on the stress magnitude detected with photo-stimulated probes, while proving the superior spatial resolution of the electron probe. PMID:20848660

  18. Jointed goatgrass (Aegilops cylindrica) by imidazolinone-resistant wheat hybridization under field conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Gene flow between jointed goatgrass and winter wheat is a concern because transfer of herbicide resistance genes from imidazolinone-resistant (IR) winter wheat cultivars to jointed goatgrass could restrict weed management options for this serious weed of winter wheat cropping systems. The objective...

  19. Magnetorheological fluid based on submicrometric silica-coated magnetite particles under an oscillatory magnetic field

    NASA Astrophysics Data System (ADS)

    Agustín-Serrano, R.; Donado, F.; Rubio-Rosas, E.

    2013-06-01

    An experimental study conducted on the rheological properties of a magnetorheological fluid based on submicrometric silica-coated magnetite particles dispersed in silicone oil is presented. We investigated the rheological behaviour when the system is simultaneously exposed to a static field and a sinusoidal field used as a perturbation. The results show that the perturbation modifies the rheological behaviour of the system and can be used to control its physical properties; however, the changes that are induced are smaller than expected from previous results for the aggregation of particles under magnetic perturbations. We discussed this difference in terms of the ratio between the magnetic energy and the thermal energy. We observed that a threshold magnetic field exists; below it, the yield stress is practically zero, whereas above it, the yield stress grows quickly. We discuss this result in terms of a model based on chain length distribution.

  20. In-situ arsenic remediation by aquifer iron coating: Field trial in the Datong basin, China.

    PubMed

    Xie, Xianjun; Pi, Kunfu; Liu, Yaqing; Liu, Chongxuan; Li, Junxia; Zhu, Yapeng; Su, Chunli; Ma, Teng; Wang, Yanxin

    2016-01-25

    An aquifer Fe-coating technology was evaluated for in-situ As remediation. The groundwater in the aimed aquifer has low dissolved Fe(II) concentration and high As(III) concentration, which has a low affinity toward Fe-oxides/hydroxides. To overcome these challenges, dissolved Fe(II) (5.0 mM) and NaClO (2.6 mM) were injected into the studied aquifer to promote the formation of Fe oxides/hydroxides and to oxidize As(III) into As(V), thus removing aqueous As via adsorption and/or co-precipitation. During field experiment, As concentration in groundwater from the pumping well significantly decreased. Fe and As speciation calculations indicate that incorporation of negatively charged As(V) into goethite was the probable mechanism for As removal. Both chemical sequential extraction results and spectroscopic data also support that alternating injection of Fe(II) and NaClO can achieve aquifer Fe coating and immobilize As via adsorption onto Fe oxides/hydroxides. Geochemical modelling further confirms that although competition for sorption sites between As and other dissolved species is expected in the natural groundwater system, high surface area of the Fe oxides/hydroxides can provide sufficient sites for As retention. The ability to effectively decrease As concentration of in-situ aquifer Fe-coating technology indicates that this approach should have extensive applicability to similar high As groundwater occurred worldwide. PMID:26448490

  1. Microbe repelling coated stainless steel analysed by field emission scanning electron microscopy and physicochemical methods.

    PubMed

    Raulio, Mari; Järn, Mikael; Ahola, Juhana; Peltonen, Jouko; Rosenholm, Jarl B; Tervakangas, Sanna; Kolehmainen, Jukka; Ruokolainen, Timo; Narko, Pekka; Salkinoja-Salonen, Mirja

    2008-07-01

    Coating of stainless steel with diamond-like carbon or certain fluoropolymers reduced or almost eliminated adhesion and biofilm growth of Staphylococcus epidermidis, Deinococcus geothermalis, Meiothermus silvanus and Pseudoxanthomonas taiwanensis. These species are known to be pertinent biofilm formers on medical implants or in the wet-end of paper machines. Field emission scanning electron microscopic analysis showed that Staph. epidermidis, D. geothermalis and M. silvanus grew on stainless steel using thread-like organelles for adhesion and biofilm formation. The adhesion threads were fewer in number on fluoropolymer-coated steel than on plain steel and absent when the same strains were grown in liquid culture. Psx. taiwanensis adhered to the same surfaces by a mechanism involving cell ghosts on which the biofilm of live cells grew. Hydrophilic (diamond-like carbon) or hydrophobic (fluoropolymer) coatings reduced the adherence of the four test bacteria on different steels. Selected topographic parameters, including root-mean-square roughness (S (q)), skewness (S (sk)) and surface kurtosis (S (ku)), were analysed by atomic force microscopy. The surfaces that best repelled microbial adhesion of the tested bacteria had higher skewness values than those only slightly repelling. Water contact angle, measured (theta (m)) or roughness corrected (theta (y)), affected the tendency for biofilm growth in a different manner for the four test bacteria. PMID:18379832

  2. Physical insight toward electric field enhancement at nodular defects in optical coatings.

    PubMed

    Cheng, Xinbin; Tuniyazi, Abudusalamu; Wei, Zeyong; Zhang, Jinlong; Ding, Tao; Jiao, Hongfei; Ma, Bin; Li, Hongqiang; Li, Tongbao; Wang, Zhanshan

    2015-04-01

    Although the finite-difference time-domain (FDTD) technique has been prevailingly used to calculate the electric field intensity (EFI) enhancement at nodular defects in high-reflection (HR) coatings, the physical insight as to how the nodular features contribute to the intensified EFI is not explicitly revealed yet, which in turn limits the solutions that improve the laser-induced damage threshold (LIDT) of nodules by decreasing the EFI enhancement. Here, a simplified model is proposed to describe the intensified EFI in nodules: 1) the nodule works as a microlens and its focal length can be predicted using a simple formula, 2) the portion of incident light that penetrates through the HR coating can be estimated by knowing the angular dependent transmittance (ADT) of the nodule, 3) strong EFI enhancement is created when the focal point is within the nodule and simultaneously a certain portion of light penetrates to the focal position. In the light of the proposed model, a broadband HR coating was used to reduce the EFI enhancement at the seed by a factor about 10, which leads to a 20 times increment of the LIDT. This work therefore not only deepens the physical understanding of EFI enhancement at nodules but also provides a new way to increase the LIDT of multilayer reflective optics. PMID:25968699

  3. Field and temperature scaling of the critical current density in commercial REBCO coated conductors

    NASA Astrophysics Data System (ADS)

    Senatore, Carmine; Barth, Christian; Bonura, Marco; Kulich, Miloslav; Mondonico, Giorgio

    2016-01-01

    Scaling relations describing the electromagnetic behaviour of coated conductors (CCs) greatly simplify the design of REBCO-based devices. The performance of REBCO CCs is strongly influenced by fabrication route, conductor architecture and materials, and these parameters vary from one manufacturer another. In the present work we have examined the critical surface for the current density, J c(T, B, θ), of coated conductors from six different manufacturers: American Superconductor Co. (US), Bruker HTS GmbH (Germany), Fujikura Ltd (Japan), SuNAM Co. Ltd (Korea), SuperOx ZAO (Russia) and SuperPower Inc. (US). Electrical transport and magnetic measurements were performed at temperatures between 4.2 K and 77 K and in magnetic fields of up to 19 T. Experiments were conducted at three different orientations of the field with respect to the crystallographic c-axis of the REBCO layer, θ = 0°, 45° and 90°, in order to probe the angular anisotropy of J c. In spite of the large variability of the CCs’ performance, we show here that field and temperature dependences of J c at a given angle can be reproduced over wide ranges using a scaling relation based only on three parameters. Furthermore, we present and validate a new approach combining magnetic and transport measurements for the determination of the scaling parameters with minimal experimental effort.

  4. 21 CFR 888.3358 - Hip joint metal/polymer/metal semi-constrained porous-coated uncemented prosthesis.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... titanium-aluminum-vanadium (Ti-6Al-4V) alloy and an acetabular component composed of an ultra-high... titanium or Ti-6Al-4V alloy. The porous coating has a volume porosity between 30 and 70 percent, an...

  5. 21 CFR 888.3358 - Hip joint metal/polymer/metal semi-constrained porous-coated uncemented prosthesis.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... titanium-aluminum-vanadium (Ti-6Al-4V) alloy and an acetabular component composed of an ultra-high... titanium or Ti-6Al-4V alloy. The porous coating has a volume porosity between 30 and 70 percent, an...

  6. 21 CFR 888.3358 - Hip joint metal/polymer/metal semi-constrained porous-coated uncemented prosthesis.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... titanium-aluminum-vanadium (Ti-6Al-4V) alloy and an acetabular component composed of an ultra-high... titanium or Ti-6Al-4V alloy. The porous coating has a volume porosity between 30 and 70 percent, an...

  7. Very Stable Electron Field Emission From Strontium Titanate Coated Carbon Nanotube Matrices With Low Emission Thresholds

    SciTech Connect

    Pandey, Archana; Prasad, Abhishek; Moscatello, Jason; Engelhard, Mark H.; Wang, Chong M.; Yap, Yoke K.

    2013-01-22

    PMMA-STO-CNT matrices were created by opened-tip vertically-aligned multiwalled carbon nanotubes (VA-MWCNTs) with conformal coating of strontium titanate and Poly(methyl methacrylate). Emission threshold of 0.8 V/μm was demonstrated, about five-fold lower than that of the as-grown VAMWCNTs. Theoretical simulation and modeling suggest that PMMA-STO-CNT matrices have suppressed screening effects and Coulombs’ repulsion forces between electrons in adjacent CNTs, leading to low emission threshold, high emission density, and prolong emission stability. These findings are important for practical application of VA-MWCNTs in field emission devices.

  8. Insert Coil Test for HEP High Field Magnets Using YBCO Coated Conductor Tapes

    SciTech Connect

    Lombardo, V.; Barzi, E.; Turrioni, D.; Zlobin, A.V.; /Fermilab

    2011-06-15

    The final beam cooling stages of a Muon Collider may require DC solenoid magnets with magnetic fields of 30-50 T. In this paper we present progress in insert coil development using commercially available YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} Coated Conductor. Technological aspects covered in the development, including coil geometry, insulation, manufacturing process and testing are summarized and discussed. Test results of double pancake coils operated in liquid nitrogen and liquid helium are presented and compared with the performance of YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} tape short samples.

  9. Transparent Conductive Coating Based on Carbon Nanotubes Using Electric Field Deposition Method

    SciTech Connect

    Latununuwe, Altje; Hattu, Nikmans; Setiawan, Andhy; Winata, Toto; Abdullah, Mikrajuddin; Darma, Yudi

    2010-10-24

    The transparent conductive coating based on carbon nanotubes (CNTs) had been fabricated using the electric field deposition method. The scanning electron microscope (SEM) results show a quite uniform CNTs on Corning glass substrates. Moreover the X-ray Diffraction (XRD) results shows the peak at around 25 deg. which proves the existence of CNT materials. The CNT thin films obtained with different deposition times have different transmittance coefficients at wavelength of 550 nm. I-V measurement results shows higher sheet resistance value which relates with bigger transmittance coefficients and vice versa.

  10. Conjugate (solid/fluid) computational fluid dynamics analysis of the space shuttle solid rocket motor nozzle/case and case field joints

    NASA Technical Reports Server (NTRS)

    Doran, D.; Keeton, L. W.; Dionne, P. J.; Singhal, A. K.

    1989-01-01

    Three-dimensional, conjugate (solid/fluid) heat transfer analyses of new designs of the Solid Rocket Motor (SRM) nozzle/case and case field joints are described. The main focus was to predict the consequences of multiple rips (or debonds) in the ambient cure adhesive packed between the nozzle/case joint surfaces and the bond line between the mating field joint surfaces. The models calculate the transient temperature responses of the various materials neighboring postulated flow/leakpaths into, past, and out from the nozzle/case primary O-ring cavity and case field capture O-ring cavity. These results were used to assess if the design was failsafe (i.e., no potential O-ring erosion) and reusable (i.e., no excessive steel temperatures). The models are adaptions and extensions of the general purpose PHOENICS fluid dynamics code. A non-orthogonal coordinate system was employed and 11,592 control cells for the nozzle/case and 20,088 for the case field joints are used with non-uniform distribution. Physical properties of both fluid and solids are temperature dependent. A number of parametric studies were run for both joints with results showing temperature limits for reuse for the steel case on the nozzle joint being exceeded while the steel case temperatures for the field joint were not. O-ring temperatures for the nozzle joint predicted erosion while for the field joint they did not.

  11. A comparative study of spin coated and floating film transfer method coated poly (3-hexylthiophene)/poly (3-hexylthiophene)-nanofibers based field effect transistors

    NASA Astrophysics Data System (ADS)

    Tiwari, Shashi; Takashima, Wataru; Nagamatsu, S.; Balasubramanian, S. K.; Prakash, Rajiv

    2014-09-01

    A comparative study on electrical performance, optical properties, and surface morphology of poly(3-hexylthiophene) (P3HT) and P3HT-nanofibers based "normally on" type p-channel field effect transistors (FETs), fabricated by two different coating techniques has been reported here. Nanofibers are prepared in the laboratory with the approach of self-assembly of P3HT molecules into nanofibers in an appropriate solvent. P3HT (0.3 wt. %) and P3HT-nanofibers (˜0.25 wt. %) are used as semiconductor transport materials for deposition over FETs channel through spin coating as well as through our recently developed floating film transfer method (FTM). FETs fabricated using FTM show superior performance compared to spin coated devices; however, the mobility of FTM films based FETs is comparable to the mobility of spin coated one. The devices based on P3HT-nanofibers (using both the techniques) show much better performance in comparison to P3HT FETs. The best performance among all the fabricated organic field effect transistors are observed for FTM coated P3HT-nanofibers FETs. This improved performance of nanofiber-FETs is due to ordering of fibers and also due to the fact that fibers offer excellent charge transport facility because of point to point transmission. The optical properties and structural morphologies (P3HT and P3HT-nanofibers) are studied using UV-visible absorption spectrophotometer and atomic force microscopy , respectively. Coating techniques and effect of fiber formation for organic conductors give information for fabrication of organic devices with improved performance.

  12. A comparative study of spin coated and floating film transfer method coated poly (3-hexylthiophene)/poly (3-hexylthiophene)-nanofibers based field effect transistors

    SciTech Connect

    Tiwari, Shashi; Balasubramanian, S. K.; Takashima, Wataru; Nagamatsu, S.; Prakash, Rajiv

    2014-09-07

    A comparative study on electrical performance, optical properties, and surface morphology of poly(3-hexylthiophene) (P3HT) and P3HT-nanofibers based “normally on” type p-channel field effect transistors (FETs), fabricated by two different coating techniques has been reported here. Nanofibers are prepared in the laboratory with the approach of self-assembly of P3HT molecules into nanofibers in an appropriate solvent. P3HT (0.3 wt. %) and P3HT-nanofibers (∼0.25 wt. %) are used as semiconductor transport materials for deposition over FETs channel through spin coating as well as through our recently developed floating film transfer method (FTM). FETs fabricated using FTM show superior performance compared to spin coated devices; however, the mobility of FTM films based FETs is comparable to the mobility of spin coated one. The devices based on P3HT-nanofibers (using both the techniques) show much better performance in comparison to P3HT FETs. The best performance among all the fabricated organic field effect transistors are observed for FTM coated P3HT-nanofibers FETs. This improved performance of nanofiber-FETs is due to ordering of fibers and also due to the fact that fibers offer excellent charge transport facility because of point to point transmission. The optical properties and structural morphologies (P3HT and P3HT-nanofibers) are studied using UV-visible absorption spectrophotometer and atomic force microscopy , respectively. Coating techniques and effect of fiber formation for organic conductors give information for fabrication of organic devices with improved performance.

  13. Inhibition of pyrite oxidation by surface coating: a long-term field study.

    PubMed

    Kang, Chan-Ung; Jeon, Byong-Hun; Park, Seong-Sook; Kang, Jin-Soo; Kim, Kang-Ho; Kim, Dong-Kwan; Choi, Ui-Kyu; Kim, Sun-Joon

    2016-10-01

    Pyrite and other iron sulfides are readily oxidized by dissolved oxygen in aqueous phase, producing acidity and Fe(2+), which causes significant environmental problems. Applications of surface coating agents (Na2SiO3 and KH2PO4) were conducted at Boeun (Chungbuk, South Korea) outcrop site, and their efficiencies to inhibit the oxidation of sulfide minerals were monitored for a long-term period (449 days). The rock sample showed positive Net Acid Production Potential (NAPP = 20.23) and low Net Acid Generation pH (NAGpH = 2.42) values, suggesting that the rock sample was categorized in the potential acid-forming group. For the monitored time period (449 days), field study results showed that the application of Na2SiO3 effectively inhibited the pyrite oxidation as compared to KH2PO4. Na2SiO3 as a surface coating agent maintained pH 5-6 and reduced oxidation of pyrite surface up to 99.95 and 97.70 % indicated by Fe(2+) and SO4 (2-) release, respectively. The scanning electron microscope and energy-dispersive X-ray spectrometer analysis indicated that the morphology of rock surface was completely changed attributable to formation of iron silicate coating. The experimental results suggested that the treatment with Na2SiO3 was highly effective and it might be applicable on field for inhibition of iron sulfide oxidation. PMID:26493832

  14. Joints at high angles to normal fault strike: an explanation using 3-D numerical models of fault-perturbed stress fields

    NASA Astrophysics Data System (ADS)

    Kattenhorn, Simon A.; Aydin, Atilla; Pollard, David D.

    2000-01-01

    Structural methods based on homogeneous stress states predict that joints growing in an extending crust form with strike orientations identical to normal faults. However, we document a field example where the strikes of genetically related normal faults and joints are almost mutually perpendicular. Field relationships allowed us to constrain the fracture sequence and tectonic environment for fault and joint growth. We hypothesize that fault slip can perturb the surrounding stress field in a manner that controls the orientations of induced secondary structures. Numerical models were used to examine the stress field around normal faults, taking into consideration the effects of 3-D fault shape, geometrical arrangement of overlapping faults, and a range of stress states. The calculated perturbed stress fields around model normal faults indicate that it is possible for joints to form at high angles to fault strike. Such joint growth may occur at the lateral tips of an isolated fault, but is most likely in a relay zone between overlapping faults. However, the angle between joints and faults is also influenced by the remote stress state, and is particularly sensitive to the ratio of fault-parallel to fault-perpendicular stress. As this ratio increases, joints can propagate away from faults at increasingly higher angles to fault strike. We conclude that the combined remote stress state and perturbed local stress field associated with overlapping fault geometries resulted in joint growth at high angles to normal fault strike at a field location in Arches National Park, Utah.

  15. Voltage-ampere characteristics of YBCO coated conductor under inhomogeneous oscillating magnetic field

    NASA Astrophysics Data System (ADS)

    Geng, J.; Shen, B.; Li, C.; Zhang, H.; Matsuda, K.; Li, J.; Zhang, X.; Coombs, T. A.

    2016-06-01

    Direct current carrying type II superconductors present a dynamic resistance when subjected to an oscillating magnetic field perpendicular to the current direction. If a superconductor is under a homogeneous field with high magnitude, the dynamic resistance value is nearly independent of transport current. Hoffmann and coworkers [Hoffmann et al., IEEE Trans. Appl. Supercond. 21, 1628 (2011)] discovered, however, flux pumping effect when a superconducting tape is under an inhomogeneous field orthogonal to the tape surface generated by rotating magnets. Following their work, we report the whole Voltage-Ampere (V-I) curves of an YBCO coated conductor under permanent magnets rotating with different frequencies and directions. We discovered that the two curves under opposite rotating directions differ from each other constantly when the transport current is less than the critical current, whereas the difference gradually reduces after the transport current exceeds the critical value. We also find that for different field frequencies, the difference between the two curves decreases faster with lower field frequency. The result indicates that the transport loss is dependent on the relative direction of the transport current and field travelling, which is distinct from traditional dynamic resistance model. The work may be instructive for the design of superconducting motors.

  16. Flight Set 360L006 STS-34 field joint protection system, thermal protection system, and systems tunnel components, volume 4

    NASA Technical Reports Server (NTRS)

    Wilkinson, J. P.

    1990-01-01

    The performance of the thermal protection system, field joint protection system, and systems tunnel components of Flight Set 360L006, are documented, as evaluated by postflight hardware inspection. The condition of both motors was similar to previous flights. Sixteen aft edge hits were noted on the ground environment instrumentation thermal protection system. Each hit left a clean substrate, indicating that the damage was caused by nozzle severance debris and/or water impact. No National Space and Transporation System debris criteria for missing thermal protection system were violated. One 5.0 by 1.0 in. unbond was observed on the left hand center field joint K5NA closeout and was elevated to an in-flight anomaly (STS-34-M-4) by the NASA Ice/Debris team. Aft edge damage to the K5NA and an associated black streak indicate that burning debris from the nozzle severance system was the likely cause of the damage. Minor divots caused by debris were seen on previous flights, but this is the first occurrence of a K5NA unbond. Since the unbond occurred after booster separation there is no impact on flight safety and no corrective actions was taken. The right hand center field joint primary heater failed the dielectric withstanding voltage test after joint closeout. The heater was then disabled by opening the circuit breaker, and the redundant heater was used. The redundant heater performed nominally during the launch countdown. A similar condition occurred on Flight 4 when a secondary joint heater failed the dielectric withstanding voltage test.

  17. Deposition and field emission properties of highly crystallized silicon films on aluminum-coated polyethylene napthalate

    NASA Astrophysics Data System (ADS)

    Li, Junshuai; Wang, Jinxiao; Yin, Min; Gao, Pingqi; He, Deyan; Chen, Qiang; Shirai, Hajime

    2007-08-01

    Highly crystallized silicon films were deposited on aluminum-coated polyethylene napthalate (PEN) substrates by inductively coupled plasma (ICP-) chemical vapor deposition (CVD) at room temperature. The films with uniform grains about 50 nm have the (1 1 1) preferred orientation. By studying the relation of the silicon film crystallinity to the flow ratio of SiH 4 to H 2, it was found that the interaction between precursors and aluminum layers plays an important role in the crystallization process. The surface roughness of the resultant films was analyzed by atomic force microscopy (AFM). The results reveal that the roughness of the silicon films on aluminum-coated PEN substrates, compared to the films on bare PEN substrates, is dependent on the film phase rather than the substrate morphology. The measurement of field electron emission of the crystalline silicon film indicates that the threshold field is about 8.3 V/μm and the emission is reproducible in the emission region.

  18. Field Emission Lamps Prepared with Dip-Coated and Nickel Electroless Plated Carbon Nanotube Cathodes.

    PubMed

    Pu, N W; Youh, M J; Chung, K J; Liu, Y M; Ger, M D

    2015-07-01

    Fabrication and efficiency enhancement of tubal field emission lamps (FELs) using multi-walled carbon nanotubes (MWNTs) as the cathode field emitters were studied. The cathode filaments were prepared by eletrolessly plating a nickel (Ni) film on the cathode made of a 304 stainless steel wire dip-coated with MWNTs. The 304 wire was dip-coated with MWNTs and nano-sized Pd catalyst in a solution, and then eletrolessly plated with Ni to form an MWNT-embedded composite film. The MWNTs embedded in Ni not only had better adhesion but also exhibited a higher FE threshold voltage, which is beneficial to our FEL system and can increase the luminous efficiency of the anode phosphor. Our results show that the FE cathode prepared by dipping three times in a solution containing 400 ppm Pd nano-catalysts and 0.2 wt.% MWNTs and then eletrolessly plating a Ni film at a deposition temperature of 60 °C, pH value of 5, and deposition time of 7 min has the best FE uniformity and efficiency. Its emission current can stay as low as 2.5 mA at a high applied voltage of 7 kV, which conforms to the high-voltage-and-low-current requirement of the P22 phosphor and can therefore maximize the luminous efficiency of our FEL. We found that the MWNT cathodes prepared by this approach are suitable for making high-efficiency FELs. PMID:26373085

  19. Wear studies on plasma-sprayed Al2O3 and 8mole% of Yttrium-stabilized ZrO2 composite coating on biomedical Ti-6Al-4V alloy for orthopedic joint application

    PubMed Central

    Ganapathy, Perumal; Manivasagam, Geetha; Rajamanickam, Asokamani; Natarajan, Alagumurthi

    2015-01-01

    This paper presents the wear characteristics of the composite ceramic coating made with Al2O3-40wt%8YSZ on the biomedical grade Ti-6Al-4V alloy (grade 5) used for total joint prosthetic components, with the aim of improving their tribological behavior. The coatings were deposited using a plasma spraying technique, and optimization of plasma parameters was performed using response surface methodology to obtain dense coating. The tribological behaviors of the coated and uncoated substrates were evaluated using a ball-on-plate sliding wear tester at 37°C in simulated body-fluid conditions. The microstructure of both the titanium alloy and coated specimen were examined using an optical microscope and scanning electron microscope. The hardness of the plasma-sprayed alumina–zirconia composite coatings was 2.5 times higher than that of the Ti-6Al-4V alloy, while the wear rate of Ti-6Al-4V alloy was 253 times higher than that of the composite-coated Ti-6Al-4V alloy. The superior wear resistance of the alumina–zirconia coated alloy is attributed to its enhanced hardness and intersplat bonding strength. Wear-track examination showed that the predominant wear mechanism of Ti-6Al-4V alloy was abrasive and adhesive wear, whereas, in the case of alumina–zirconia composite coated alloy, the wear was dominated by microchipping and microcracking. PMID:26491323

  20. The 2000 revision of the joint UK/US geomagnetic field models and an IGRF 2000 candidate model

    USGS Publications Warehouse

    Macmillan, S.; Quinn, J.M.

    2000-01-01

    The method of derivation of the joint UK/US spherical harmonic geomagnetic main-field and secular-variation models is presented. Early versions of these models, with the main field truncated at degree 10, are the UK/US candidates for the IGRF 2000 model. The main-field model describes the Earth's magnetic field at the 2000.0 epoch, while the secular-variation model predicts the evolution of this field between 2000.0 and 2005.0. A revised 1995.0 main-field model was also generated. Regional models for the continental US, Alaska and Hawaii were also produced as a by-product of the UK/US global modelling effort. Copy right?? The Society of Geomagnetism and Earth, Planetary and Space Sciences (SGEPSS); The Seismological Society of Japan; The Volcanological Society of Japan; The Geodetic Society of Japan; The Japanese Society for Planetary Sciences.

  1. Pipeline joint protector

    SciTech Connect

    Baker, R.

    1989-02-28

    This patent describes a weight coated pipeline joint protective apparatus for protecting pipeline joints against impact or high stress concentrations. It consists of a high density plastic sheet wrapped around a pipeline joint with the opposite edges of such sheet overlaying the weight of coat material on the abutting pipes forming the joint. The first end of the sheet overlaps the wrapped sheet with means for securing such first end to the sheet surface near or adjacent to the opposite end of such sheet.

  2. Insights on formation mechanism of colorful silica coatings on Kilauean basalts from field observations and silicon isotopes

    NASA Astrophysics Data System (ADS)

    Chemtob, S. M.; Stebbins, J. F.; Guan, Y.; Ziegler, K. G.; Hurowitz, J. A.; Eiler, J. M.; Rossman, G. R.

    2011-12-01

    Many young basalts from Kilauea, on the big island of Hawai'i, feature visually striking white, yellow, orange and blue coatings. These coatings represent an opportunity to study the early onset of acid-sulfate weathering in volcanic environments. The coatings, first investigated on 1974 flows in the Ka'u Desert, consist of a 10-50 μm thick layer of amorphous silica, capped, in some cases, by a ~1 μm layer of Fe-Ti oxide. Both layers contain %-level enrichments of S, and jarosite is present as a minor phase. The coatings often display residual morphologies consistent with formation by leaching, but occasionally demonstrate depositional or accumulative morphology. Coated basalts of various ages (1969-2010) were collected from several sites along the SW and E rift zones of Kilauea to characterize variability in coating properties and the timing of coating formation. As early as one month after emplacement, some lava surfaces feature translucent, discontinuous 2-3 μm silica glazes, and lavas emplaced as recently as 2007 feature mature coating morphologies. Coatings tend to occur most prominently on smooth, low-vesicularity lavas, such as spatter and volcanic bombs. Rougher surfaces tend not to preserve coatings due to enhanced erosion. Older but recently exposed or broken surfaces away from active eruptions appear to regrow bright glazes with similar qualities, suggesting the importance of regional vog or acid rain in coating formation. Field observations illustrate the timing and complexity of silica coating growth, but do not address the coating formation mechanism and degree of Si mobility. Recent work, including in situ silicon isotope analysis via SIMS and detailed structural analysis via 29Si NMR and Raman spectroscopy, strongly suggests that the coatings are depositional and that Si was mobile during coating formation. 29Si NMR spectra indicate that the coating is structurally identical to amorphous silica gel and contains unusually high structural water

  3. East Meets West on "Double Star", a Joint Mission to Explore Earth's Magnetic Field

    NASA Astrophysics Data System (ADS)

    2001-07-01

    ESA Director General Antonio Rodotà and Luan Enjie, Administrator of the CNSA, signed an official agreement that will enable European experiments to be flown on Chinese satellites for the first time. "This agreement marks a significant advance for international cooperation in the exploration and peaceful use of outer space," said Mr. Rodotà. "It is one of the most important landmarks in scientific collaboration since ESA and the People's Republic of China first agreed to exchange scientific information more than 20 years ago." "The Double Star programme will be just the first step in substantial cooperation between the Chinese National Space Administration and ESA" said Mr Luan Enjie. "The signing of today's agreement paves the way not only for reciprocal cooperation between scientists, but for the establishment of comprehensive cooperation between the two agencies". Double Star will follow in the footsteps of ESA's groundbreaking Cluster mission by studying the effects of the Sun on the Earth's environment. Conducting joint studies with Cluster and Double Star should increase the overall scientific return from both missions. A key aspect of ESA's participation in the Double Star project is the inclusion of 10 instruments that are identical to those currently flying on the four Cluster spacecraft. A further eight experiments will be provided by Chinese institutes. "We hope it will be possible to make coordinated measurements with both Cluster and Double Star." said Cluster Project Scientist Philippe Escoubet. "For example, we would hope to carry out a joint exploration of the magnetotail, a region where storms of high energy particles are generated. When these particles reach Earth, they can cause power cuts, damage satellites and disrupt communications." Six of the eleven Cluster principal investigators have agreed to provide flight spares or duplicates of the experiments that are currently revolutionising our understanding of near-Earth space. This reuse of

  4. Applied electric field enhances DRG neurite growth: influence of stimulation media, surface coating and growth supplements

    NASA Astrophysics Data System (ADS)

    Wood, Matthew D.; Willits, Rebecca Kuntz

    2009-08-01

    Electrical therapies have been found to aid repair of nerve injuries and have been shown to increase and direct neurite outgrowth during stimulation. This enhanced neural growth existed even after the electric field (EF) or stimulation was removed, but the factors that may influence the enhanced growth, such as stimulation media or surface coating, have not been fully investigated. This study characterized neurite outgrowth and branching under various conditions: EF magnitude and application time, ECM surface coating, medium during EF application and growth supplements. A uniform, low-magnitude EF (24 or 44 V m-1) was applied to dissociated chick embryo dorsal root ganglia seeded on collagen or laminin-coated surfaces. During the growth period, cells were either exposed to NGF or N2, and during stimulation cells were exposed to either unsupplemented media (Ca2+) or PBS (no Ca2+). Parallel controls for each experiment included cells exposed to the chamber with no stimulation and cells remaining outside the chamber. After brief electrical stimulation (10 min), neurite length significantly increased 24 h after application for all conditions studied. Of particular interest, increased stimulation time (10-100 min) further enhanced neurite length on laminin but not on collagen surfaces. Neurite branching was not affected by stimulation on any surface, and no preferential growth of neurites was noted after stimulation. Overall, the results of this report suggest that short-duration electric stimulation is sufficient to enhance neurite length under a variety of conditions. While further data are needed to fully elucidate a mechanism for this increased growth, these data suggest that one focus of those investigations should be the interaction between the growth cone and the substrata.

  5. Applied electric field enhances DRG neurite growth: influence of stimulation media, surface coating and growth supplements.

    PubMed

    Wood, Matthew D; Willits, Rebecca Kuntz

    2009-08-01

    Electrical therapies have been found to aid repair of nerve injuries and have been shown to increase and direct neurite outgrowth during stimulation. This enhanced neural growth existed even after the electric field (EF) or stimulation was removed, but the factors that may influence the enhanced growth, such as stimulation media or surface coating, have not been fully investigated. This study characterized neurite outgrowth and branching under various conditions: EF magnitude and application time, ECM surface coating, medium during EF application and growth supplements. A uniform, low-magnitude EF (24 or 44 V m(-1)) was applied to dissociated chick embryo dorsal root ganglia seeded on collagen or laminin-coated surfaces. During the growth period, cells were either exposed to NGF or N2, and during stimulation cells were exposed to either unsupplemented media (Ca(2+)) or PBS (no Ca(2+)). Parallel controls for each experiment included cells exposed to the chamber with no stimulation and cells remaining outside the chamber. After brief electrical stimulation (10 min), neurite length significantly increased 24 h after application for all conditions studied. Of particular interest, increased stimulation time (10-100 min) further enhanced neurite length on laminin but not on collagen surfaces. Neurite branching was not affected by stimulation on any surface, and no preferential growth of neurites was noted after stimulation. Overall, the results of this report suggest that short-duration electric stimulation is sufficient to enhance neurite length under a variety of conditions. While further data are needed to fully elucidate a mechanism for this increased growth, these data suggest that one focus of those investigations should be the interaction between the growth cone and the substrata. PMID:19494423

  6. Semi-coupled flow and thermal analysis of the field joint during rapid pressurization of the redesigned solid rocket motor

    NASA Technical Reports Server (NTRS)

    Ghaffarian, Benny; Majumdar, Alok K.; Colbert, Robert; Clayton, J. L.

    1992-01-01

    A transient, semi-coupled, multi-dimensional thermal and flow analysis methodology was developed to predict the thermal/gas dynamic conditions in the field joint region of the Redesigned Solid Rocket Motor (RSRM). Transient temperature response, pressure history, and combustion gas flow rate (within the field joint region), were of principle interest, in the course of this study. The thermal environment in the field joint was modeled using SINDA, a finite difference based thermal network analyzer. The combustion gas flow boundary condition was generated using the FLAP code; this code performs a transient, lumped-parameter, control volume analysis to solve the mass, momentum, and energy conservation equations. The FLAP computer code was modified to account for erosion of the NBR insulation material, following ignition. An independent grid sensitivity study was conducted to determine an appropriate grid distribution near the wall. The predicted results, obtained using an optimum grid distribution and computer generated flow boundary condition, were compared with subscale test data.

  7. Stray magnetic field influence on the CPT resonance in a coated Rb vacuum cell

    NASA Astrophysics Data System (ADS)

    Taskova, E.; Alipieva, E.; Todorov, G.

    2016-03-01

    Interaction of a resonant laser beam with an atomic absorption medium creates population redistribution and interference between atomic levels. This anisotropy of the medium is experimentally observed as coherent population trapping (CPT) or electromagnetically induced transparency (EIT). Due to the small sub-natural width of the CPT and EIT resonances, they find wide applications in metrology, quantum optics, atom cooling. A non-compensated stray magnetic field (SMF) can change the shape and sign of the resonance or destroy it completely. In this work, we present an experimental and theoretical investigation of the influence of a stray magnetic field on the CPT resonances obtained on Zeeman sublevels of the D1 line of 87Rb in a paraffin-coated vacuum cell. The role is clarified of the polarization moments with different rank in creating the integral registered fluorescent signal in the presence of a stray magnetic field. It is shown that a transverse magnetic field plays an important role in changing the shape of the signal.

  8. Highly enhanced and temporally stable field emission from MWCNTs grown on aluminum coated silicon substrate

    SciTech Connect

    Sreekanth, M.; Ghosh, S. Patra, R.; Srivastava, P.

    2015-06-15

    In this work, a detailed field emission study of multi-walled carbon nanotubes (MWCNTs) grown on Si and Al coated Si substrates is reported. Morphological and microstructural studies of the films show higher entanglement of CNTs in the case of CNT/Si film as compared to CNT/Al/Si film. Raman studies show that the defect mediated peak (D) is substantially suppressed as compared to graphitic peak (G) resulting in significant reduction in I{sub D}/I{sub G} value in CNT/Al/Si film. Field emission (FE) current density of CNT/Al/Si film (∼25 mA/cm{sup 2}) is significantly higher as compared to that of CNT/Si film (∼1.6 mA/cm{sup 2}). A substantial improvement in temporal stability is also observed in CNT/Al/Si film. This enhancement in field emission current is attributed to strong adhesion between substrate and CNTs, low work function, high local field enhancement factor at the CNT tips and less entanglement of CNTs grown on Al/Si. The temporally stable CNT/Al/Si cold cathode can be a potential candidate to replace conventional electron sources in prototype devices.

  9. Highly enhanced and temporally stable field emission from MWCNTs grown on aluminum coated silicon substrate

    NASA Astrophysics Data System (ADS)

    Sreekanth, M.; Ghosh, S.; Patra, R.; Srivastava, P.

    2015-06-01

    In this work, a detailed field emission study of multi-walled carbon nanotubes (MWCNTs) grown on Si and Al coated Si substrates is reported. Morphological and microstructural studies of the films show higher entanglement of CNTs in the case of CNT/Si film as compared to CNT/Al/Si film. Raman studies show that the defect mediated peak (D) is substantially suppressed as compared to graphitic peak (G) resulting in significant reduction in ID/IG value in CNT/Al/Si film. Field emission (FE) current density of CNT/Al/Si film (˜25 mA/cm2) is significantly higher as compared to that of CNT/Si film (˜1.6 mA/cm2). A substantial improvement in temporal stability is also observed in CNT/Al/Si film. This enhancement in field emission current is attributed to strong adhesion between substrate and CNTs, low work function, high local field enhancement factor at the CNT tips and less entanglement of CNTs grown on Al/Si. The temporally stable CNT/Al/Si cold cathode can be a potential candidate to replace conventional electron sources in prototype devices.

  10. Stretching surfactant- or protein-coated droplets in a high frequency electric field

    NASA Astrophysics Data System (ADS)

    Randall, Greg

    2015-11-01

    Surfactant-stabilized and protein-coated droplets are stretched in a high-frequency AC electric field. This is the first work to study aqueous droplets stretching at a frequency (20 MHz) high enough that water behaves as a pure dielectric. Consequently, the water/oil system is free of steady electrohydrodynamic flow. The absence of a steady flow provides a potential way to measure interfacial rheological properties of water soluble additives with droplet stretching models. Results are presented for both the wide gap and thin gap geometries. Adding dilute protein additives (e.g. bovine serum albumin, switchable peptides, hydrophobins) to form interfacial elastic layers inhibits stretching, which is an important milestone in our efforts to engineer a continuous, uniform wall thickness shell production process. Work supported by General Atomics IR&D Funds.

  11. Line-patterning of polyaniline coated MWCNT on stepped substrates using DC electric field

    NASA Astrophysics Data System (ADS)

    Ko, Young Gun; Do, Tae Gu; Oh, Hyun Chul; Lee, Hyun Jeong; Han, Hung-Gu; Kim, Choong Hyun; Choi, Ung Su

    2014-10-01

    Printing electronic components on a chip edge and a stepped substrate with functional inks are an attractive approach for achieving flexible and inexpensive circuits for applications such as flexible displays and large-area chemo/bio/radioactivity sensors. However, it is still challenging because a sufficient cover of the 100 μm high step at the chip edge with a high-resolution pattern is the hardest part of the layer assembling by inkjet printing. Herein, we present a simple and effective strategy to generate electrically conductive line-patterns on stepped substrates by applying the DC electric field. On the surface of flat polyimide substrate, the fine line-pattern (less than 850 nm in line width) is achieved with a polyaniline coated MWCNT dispersed ink. Furthermore, 9.9 μm of line width is successfully patterned on the high stepped poly(dimethylsiloxane) substrate, higher than 100 μm, by printing only 1 time.

  12. Gold-coated graphene field-effect transistors for quantitative analysis of protein-antibody interactions

    NASA Astrophysics Data System (ADS)

    Tarasov, Alexey; Tsai, Meng-Yen; Flynn, Erin M.; Joiner, Corey A.; Taylor, Robert C.; Vogel, Eric M.

    2015-12-01

    Field-effect transistors (FETs) based on large-area graphene and other 2D materials can potentially be used as low-cost and flexible potentiometric biological sensors. However, there have been few attempts to use these devices for quantifying molecular interactions and to compare their performance to established sensor technology. Here, gold-coated graphene FETs are used to measure the binding affinity of a specific protein-antibody interaction. Having a gold surface gives access to well-known thiol chemistry for the self-assembly of linker molecules. The results are compared with potentiometric silicon-based extended-gate sensors and a surface plasmon resonance system. The estimated dissociation constants are in excellent agreement for all sensor types as long as the active surfaces are the same (gold). The role of the graphene transducer is to simply amplify surface potential changes caused by adsorption of molecules on the gold surface.

  13. Do joints initiate as sharp mode I fractures or finite thickness dilatancy bands? Insights from laboratory experiments and field data

    NASA Astrophysics Data System (ADS)

    Petit, J.; Chemenda, A. I.; Jorand, C.

    2011-12-01

    Terminology on fracture and discontinuities in geological objects mainly relies on distinguishing between tabular and sharp forms of deformation localization/failure structures (Aydin et al, JSG 2006; Shultz and Fossen, AAPG, 2009). On this basis joints (considered as mode I fractures) and dilation bands (very rarely observed) are distinguished among extension discontinuities. The former propagate with the separation of the fracture walls due to strong stress concentration at the fracture tips. The plumose features or hackles typical of joints (these terms cover a wide variety of diverging fractographic features) are believed to result from the fracture front breakdown due to the loading mode change (the origin of this change remains unclear). This view is called into question by recent experimental results of extension tests conducted on a synthetic physical rock analogue (granular, frictional, cohesive and dilatant) material (GRAM1) and by field observations of embryonic (not yet open) joints in highly jointed dolomicrite Chemenda et al., JGR, 2011). The initial porosity and grain size of both materials are very different, but at SEM scale, both experimental and natural unopened discontinuities reveal a comparable dilatancy (dilation) band structure with a porosity increase over a width of several grains. This suggests that the distinction between tabular and sharp is a matter of observation scale. Both axisymetric and poly-axial extension tests show that dilatancy bands form at elevated mean stress and have plumose morphology. Mode I cracking occurs only at very low mean stres and the forming fractures do not bear plumose features. Thus the absence of plumose structures can be considered as the signature of mode I fracturing. Consequently, we propose that non- plumose bearing natural joints (provided their fractography is not eroded) could originate as mode I fractures and call them "mode I joints". We call the joints formed as closed dilatancy bands propagating

  14. Sensorimotor Results from the Joint NASA and Russian Pilot Field Test

    NASA Technical Reports Server (NTRS)

    Reschke, Millard; Kozlovskaya, I. B.; Kofman, I. S.; Tomilovskaya, E. S.; Cerisano, J. M.; Bloomberg, J. J.; Stenger, M. B.; Lee, S. M. C.; Laurie, S. S.; Rukavishnikov, I. V.; Fomina, E. V.; Wood, S. J.; Mulavara, A. P.; Feiveson, A. H.; Fisher, E. A.; Rosenberg, M. J. F.; Kitov, V. V.; Lysova, N. Yu

    2016-01-01

    Testing of crew responses following long-duration flights has not previously been possible until a minimum of 24 hours after landing. As a result, it has not been possible to estimate the nonlinear trend of the early (<24 hours) recovery process, nor has it been possible to accurately assess the full impact of the decrements associated with long-duration flight. To overcome these limitations, both the Russian and U.S. programs have implemented testing at the Soyuz landing site. This research effort has been identified as the Field Test (FT). For operational reasons the FT has been divided into two phases: the full FT and a preliminary pilot version (PFT) of the FT that is reduced in both length and scope. The PFT has now been completed with the landing of the crew of International Space Station Increment 42/43 (Soyuz expedition 41S). RESEARCH: The primary goal of this research was to determine functional abilities associated with long-duration space flight crews beginning as soon after landing as possible (< 2 hours) with an additional two follow-up measurement sessions within 24 hours after landing. This study goal has both sensorimotor and cardiovascular elements. The PFT represented a initial evaluation of the feasibility of testing in the field and was comprised of a jointly agreed upon subset of tests drawn from the full FT and relied heavily on Russia's Institute of Biomedical Problems Sensory-Motor and Countermeasures Department for content and implementation. Data from the PFT was collected following several ISS missions. Testing on the U.S. side has included: (1) a sit-to-stand test, (2) recovery from a fall stand test where the crewmember begins in the prone position on the ground and then stands for 3.5 minutes while cardiovascular performance and postural ataxia data are acquired, and (3) a tandem heel-to-toe walk test to determine changes in the central locomotor program. Video, cardiovascular parameters (heart rate and blood pressure), data from body

  15. Design and implementation of coating hardware for the Hobby-Eberly Telescope wide-field corrector

    NASA Astrophysics Data System (ADS)

    Good, John; Lee, Hanshin; Hill, Gary J.; Vattiat, Brian; Perry, David; Kriel, Herman; Savage, Richard

    2014-07-01

    A major upgrade of the HET is in progress that will substantially increase the pupil size to 10 meters and the field of view to 22 arc-minutes by replacing the spherical aberration corrector. The new Wide Field Corrector is a 4-element assembly weighing 750kg and measuring 1.34 meters diameter by 2.1 meter in length. Special fixtures were required in order to support the mirrors of the Wide-Field Corrector and adapt them to the coaters chamber, during the vacuum coating process. For the 1 meter-class mirrors, the only suitable support interface was located on a 80mm wide cylindrical surface on the periphery of each mirror. The vacuum compatible system had to support the mirrors with the surface facing downward, and accommodate thermal ranges from ambient to 100C without inducing stresses in the substrate. The fixture also had to accommodate washing, as well as support of witness samples during testing and production runs, and provide masking for alignment fixtures in the center apertures of each mirror. Design principles, materials, implementation details, as well as lessons learned are covered*.

  16. Iron coated sand/glauconite filters for phosphorus removal from artificially drained agricultural fields

    NASA Astrophysics Data System (ADS)

    Vandermoere, Stany; De Neve, Stefaan

    2016-04-01

    Flanders (Belgium) is confronted with reactive phosphorus concentrations in streams and lakes which are three to four times higher than the 0.1 ppm P limit set by the Water Framework Directive. Much of the excessive P input in surface waters is derived from agriculture. Direct P input from artificially drained fields (short-circuiting the buffering capacity of the subsoil) is suspected to be one of the major sources. We aim to develop simple and cheap filters that can be directly installed in the field to reduce P concentration from the drain water. Here we report on the performance of such filters tested at lab scale. As starting materials for the P filter, iron coated sand and acid pre-treated glauconite were used. These materials, both rich in Fe, were mixed in ratios of 75/25, 65/35, 50/50 and 0/100 (iron coated sand/glauconite ratio based on weight basis) and filled in plastic tubes. A screening experiment using the constant head method with a 0.01 M CaCl2 solution containing 1 ppm P showed that all four types of mixtures reduced the P concentration in the outflowing water to almost zero, and that the 75/25, 65/35 and 0/100 mixtures had a sufficiently large hydraulic conductivity of 0.9 to 6.0 cm/min, while the hydraulic conductivity of the 50/50 mixture was too low (< 0.4 cm/min). In a second experiment the iron coated sand and acid pre-treated glauconite were mixed in ratios of 75/25, 65/35 and 0/100 and filled in the same plastic tubes as in the first experiment. Subsequently a 0.01 M CaCl2 solution containing 1 ppm P was passed through the filters over several days, in amounts equivalent to half of the yearly water volume passing through the drains. This experiment firstly showed that in all cases the hydraulic conductivity fluctuated strongly: it decreased from 4.0-6.0 cm/min to 2.0-1.5 cm/min for the 75/25 filter, and to values < 0.4 cm/min for the 65/35 filter, whereas it increased from 0.8 to 1.4 cm/min for the 0/100 filter. Secondly, we observed a

  17. Pilot Sensorimotor and Cardiovascular Results from the Joint Russian/U.S. Field Test

    NASA Technical Reports Server (NTRS)

    Reschke, M. F.; Kozlovskaya, I. B.; Kofman, I. S.; Tomilovskya, E. S.; Cerisano, J. M.; Bloomberg, J. J.; Stenger, M. B.; Platts, S. H.; Rukavishnikov, I. V.; Fomina, E. V.; Lee, S. M. C.; Wood, S. J.; Mulavara, A. P.; Feiveson, A. H.; Fisher, E. A.

    2014-01-01

    The primary goal of this research is to determine functional abilities associated with long-duration space flight crews beginning as soon after landing as possible (< 2 hours) with an additional two follow-up measurements sessions on the day of landing. This goal has both sensorimotor and cardiovascular elements, including evaluations of NASA's new anti-orthostatic compression garment and the Russian Kentavr garment. Functional sensorimotor measurements will include, but are not limited to, assessing hand/eye coordination, standing from a seated position (sit-to-stand), walking normally without falling, measurement of dynamic visual acuity, discriminating different forces generated with both the hands and legs, recovering from a fall (standing from a prone position), coordinated walking involving tandem heel-to-toe placement, and determining postural ataxia while standing. The cardiovascular portion of the investigation includes measuring blood pressure and heart rate during a timed stand test in conjunction with postural ataxia testing (quiet stance sway) as well as cardiovascular responses during the other functional tasks. In addition to the immediate post-landing collection of data for the full FT, postflight data is being acquired twice more within the 24 hours after landing and will continue over the subsequent weeks until functional sensorimotor and cardiovascular responses have returned to preflight normative values. The PFT represents a initial evaluation of the feasibility of testing in the field, and is comprised of a jointly agreed upon subset of tests from the full FT and relies heavily on Russia's Institute of Biomedical Problems Sensory-Motor and Countermeasures Laboratories for content and implementation. The PFT has been collected on several ISS missions. Testing on the U.S. side has included: (1) a sit-to-stand test, (2) recovery from a fall where the crewmember began in the prone position on the ground and then stood for 3 minutes while

  18. Urban runoff treatment using nano-sized iron oxide coated sand with and without magnetic field applying

    PubMed Central

    2013-01-01

    Increase of impervious surfaces in urban area followed with increases in runoff volume and peak flow, leads to increase in urban storm water pollution. The polluted runoff has many adverse impacts on human life and environment. For that reason, the aim of this study was to investigate the efficiency of nano iron oxide coated sand with and without magnetic field in treatment of urban runoff. In present work, synthetic urban runoff was treated in continuous separate columns system which was filled with nano iron oxide coated sand with and without magnetic field. Several experimental parameters such as heavy metals, turbidity, pH, nitrate and phosphate were controlled for investigate of system efficiency. The prepared column materials were characterized with Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray analysis (EDXA) instruments. SEM and EDXA analyses proved that the sand has been coated with nano iron oxide (Fe3O4) successfully. The results of SEM and EDXA instruments well demonstrate the formation of nano iron oxide (Fe3O4) on sand particle. Removal efficiency without magnetic field for turbidity; Pb, Zn, Cd and PO4 were observed to be 90.8%, 73.3%, 75.8%, 85.6% and 67.5%, respectively. When magnetic field was applied, the removal efficiency for turbidity, Pb, Zn, Cd and PO4 was increased to 95.7%, 89.5%, 79.9%, 91.5% and 75.6% respectively. In addition, it was observed that coated sand and magnetic field was not able to remove NO3 ions. Statistical analyses of data indicated that there was a significant difference between removals of pollutants in two tested columns. Results of this study well demonstrate the efficiency of nanosized iron oxide-coated sand in treatment of urban runoff quality; upon 75% of pollutants could be removed. In addition, in the case of magnetic field system efficiency can be improved significantly. PMID:24360061

  19. Enhanced field emission from cerium hexaboride coated multiwalled carbon nanotube composite films: A potential material for next generation electron sources

    SciTech Connect

    Patra, Rajkumar; Ghosh, S.; Sheremet, E.; Rodriguez, R. D.; Lehmann, D.; Gordan, O. D.; Zahn, D. R. T.; Jha, M.; Ganguli, A. K.; Schmidt, H.; Schulze, S.; Schmidt, O. G.

    2014-03-07

    Intensified field emission (FE) current from temporally stable cerium hexaboride (CeB{sub 6}) coated carbon nanotubes (CNTs) on Si substrate is reported aiming to propose the new composite material as a potential candidate for future generation electron sources. The film was synthesized by a combination of chemical and physical deposition processes. A remarkable increase in maximum current density, field enhancement factor, and a reduction in turn-on field and threshold field with comparable temporal current stability are observed in CeB{sub 6}-coated CNT film when compared to pristine CeB{sub 6} film. The elemental composition and surface morphology of the films, as examined by scanning electron microscopy, transmission electron microscopy, and energy dispersive X-ray measurements, show decoration of CeB{sub 6} nanoparticles on top and walls of CNTs. Chemical functionalization of CNTs by the incorporation of CeB{sub 6} nanoparticles is evident by a remarkable increase in intensity of the 2D band in Raman spectrum of coated films as compared to pristine CeB{sub 6} films. The enhanced FE properties of the CeB{sub 6} coated CNT films are correlated to the microstructure of the films.

  20. Alkali-vapor cell with metal coated windows for efficient application of an electric field

    NASA Astrophysics Data System (ADS)

    Sarkisyan, D.; Sarkisyan, A. S.; Guéna, J.; Lintz, M.; Bouchiat, M.-A.

    2005-05-01

    We describe the implementation of a cylindrical T-shaped alkali-vapor cell for laser spectroscopy in the presence of a longitudinal electric field. The two windows are used as two electrodes of the high-voltage assembly, which is made possible by a metallic coating which entirely covers the inner and outer sides of the windows except for a central area to let the laser beams in and out of the cell. This allows very efficient application of the electric field, up to 2kV/cm in a rather dense superheated vapor, even when significant photoemission takes place at the windows during pulsed laser irradiation. The body of the cell is made of sapphire or alumina ceramic to prevent large currents resulting from surface conduction observed in cesiated glass cells. The technique used to attach the monocrystalline sapphire windows to the cell body causes minimal stress birefringence in the windows. In addition, reflection losses at the windows can be made very small. The vapor cell operates with no buffer gas and has no magnetic part. The use of this kind of cell has resulted in an improvement of the signal-to-noise ratio in the measurement of parity violation in cesium vapor underway at ENS, Paris. The technique can be applied to other situations where a brazed assembly would give rise to unacceptably large birefringence in the windows.

  1. Joint influences of aerodynamic flow field and aerodynamic heating of the dome on imaging quality degradation of airborne optical systems.

    PubMed

    Xiao, Haosu; Zuo, Baojun; Tian, Yi; Zhang, Wang; Hao, Chenglong; Liu, Chaofeng; Li, Qi; Li, Fan; Zhang, Li; Fan, Zhigang

    2012-12-20

    We investigated the joint influences exerted by the nonuniform aerodynamic flow field surrounding the optical dome and the aerodynamic heating of the dome on imaging quality degradation of an airborne optical system. The Spalart-Allmaras model provided by FLUENT was used for flow computations. The fourth-order Runge-Kutta algorithm based ray tracing program was used to simulate optical transmission through the aerodynamic flow field and the dome. Four kinds of imaging quality evaluation parameters were presented: wave aberration of the exit pupil, point spread function, encircled energy, and modulation transfer function. The results show that the aero-optical disturbance of the aerodynamic flow field and the aerodynamic heating of the dome significantly affect the imaging quality of an airborne optical system. PMID:23262604

  2. Exact results for the local fields and the effective moduli of fibrous composites with thickly coated fibers

    NASA Astrophysics Data System (ADS)

    Benveniste, Y.

    2014-11-01

    Fibrous composites that consist of thickly coated cylindrical fibers embedded in a matrix are considered. All of the three phases of the composite are assumed to be transversely isotropic. The study consists of three parts. In the first part exact relations are derived for the influence functions that connect applied uniform overall fields to the induced local fields in piezomagnetoelectric systems. We consider the case of coated fibers with a concentrically circular cross section, and contrast the derived relations with the more limited ones that could be obtained in the case of coated fibers with an arbitrary cross section. The derivation is based on the ability to create uniform strain, electric and magnetic fields in the composite by the application of certain mechanical, electric, magnetic and thermal loadings. In the second part of the study, exact microstructure-independent connections are derived for a subgroup of the effective moduli of the homogenized piezomagnetoelectric composite which exhibits overall transverse isotropy. In the third part of the study, the derived exact connections between the effective moduli are reduced to the setting of thermoelasticity; allowing the coating to be thin and highly stiff or highly compliant, we make contact with the exact connections derived lately in the literature for two-phase fibrous thermoelastic composites with surface-stress-type and spring-type imperfect interfaces.

  3. ITPA Joint Experiment to Measure Threshold E-fields and Densities for Runaway Electron Onset and Suppression

    NASA Astrophysics Data System (ADS)

    Granetz, Robert

    2013-10-01

    Recent results from an ITPA joint experiment to study the onset, growth, and decay of relativistic electrons (REs) indicate that energy loss mechanisms other than collisional damping may play a dominant role in the dynamics of the RE population. Understanding the physics of RE growth and mitigation is motivated by the theoretical prediction that disruptions of full-current ITER discharges could generate ~10 MA of REs (10-20 MeV) through an avalanche growth process. A necessary condition for avalanche growth is that the Coulomb acceleration due to the toroidal electric field has to be at least high enough to counter the collisional drag on background electrons, i.e. E>Ec, where Ec is the critical E-field derived in. Ec scales linearly with electron density, ne, so one way to suppress avalanche growth is to quickly raise ne sufficiently high, but this is problematic on ITER. However, if there are other energy loss mechanisms in addition to collisions, then the actual threshold E-field will be greater than Ec, i.e. REs become more difficult to generate and sustain due to the additional loss mechanism(s). Due to the importance of Ec to the issue of REs in ITER, the ITPA MHD group is conducting a joint experiment to measure the threshold E-field on a number of tokamaks under steady-state, low Zeff conditions in which Vloop , ne, and REs can be well-diagnosed, and compared to theory. The analysis must take into account the RE growth time, which can be comparable to the discharge timescale. Data from DIII-D, C-Mod, TEXTOR, and FTU have been obtained so far, and the consensus to date is that the threshold E-field is significantly higher than Ec, or conversely, the ne required to damp REs is significantly less than predicted, suggesting that other loss mechanisms are involved. Implications for RE mitigation in ITER will be discussed.

  4. RAPID COMMUNICATION: Effect of strain, magnetic field and field angle on the critical current density of Y Ba2Cu3O7-δ coated conductors

    NASA Astrophysics Data System (ADS)

    van der Laan, D. C.; Ekin, J. W.; Douglas, J. F.; Clickner, C. C.; Stauffer, T. C.; Goodrich, L. F.

    2010-07-01

    A large, magnetic-field-dependent, reversible reduction in critical current density with axial strain in Y Ba2Cu3O7-δ coated conductors at 75.9 K has been measured. This effect may have important implications for the performance of Y Ba2Cu3O7-δ coated conductors in applications where the conductor experiences large stresses in the presence of a magnetic field. Previous studies have been performed only under tensile strain and could provide only a limited understanding of the in-field strain effect. We now have constructed a device for measuring the critical current density as a function of axial compressive and tensile strain and applied magnetic field as well as magnetic field angle, in order to determine the magnitude of this effect and to create a better understanding of its origin. The reversible reduction in critical current density with strain becomes larger with increasing magnetic field at all field angles. At 76 K the critical current density is reduced by about 30% at - 0.5% strain when a magnetic field of 5 T is applied parallel to the c-axis of the conductor or 8 T is applied in the ab-plane, compared to a reduction of only 13% in self-field. Differences in the strain response of the critical current density at various magnetic field angles indicate that the pinning mechanisms in Y Ba2Cu3O7-δ coated conductors are uniquely affected by strain. Contribution of NIST, not subject to US copyright.

  5. Method for reinforcing tubing joints

    NASA Technical Reports Server (NTRS)

    Kinzler, J.; Lee, W. S.

    1968-01-01

    Joint repair technique uses a longitudinally split aluminum shield over the joint ferrule and immediately adjacent tubing to reseal or reinforce leaking or weak joints in small tubing. Epoxy resin coating on inside surfaces of the two shield halves provides a tightly sealed bond between shield and tubing.

  6. Development of compact 500 kV 8000 A gas insulated transmission line-dust control during field jointing and method for detecting conductive particles

    SciTech Connect

    Kaminaga, K.; Koshiishi, M.; Hayashi, T.; Matsuki, M.; Hara, T.; Sugiyama, N.

    1987-10-01

    This paper describes the results of studies made on dust control during field jointing and a method for detecting conductive particles after installation in the development of a compact 500 kV 8000 A gas insulated transmission line (GIL). The study on dust control during field jointing proved that field jointing of the compact GIL can be done like conventional GIL in an easily fabricated vinyl shelter without a clean air flow. Harmful conductive particles can be detected with an Acoustic Emission (AE) sensor. This sensor is effective in improving the reliability of the compact GIL when used with a suitable ac voltage during field test. A 120 m long test line of compact 500 kV 8000 A GIL was constructed and, in a long-term field test, proved to have properties sufficient for practical use.

  7. Neonicotinoid-Coated Zea mays Seeds Indirectly Affect Honeybee Performance and Pathogen Susceptibility in Field Trials

    PubMed Central

    Alburaki, Mohamed; Boutin, Sébastien; Mercier, Pierre-Luc; Loublier, Yves; Chagnon, Madeleine; Derome, Nicolas

    2015-01-01

    Thirty-two honeybee (Apis mellifera) colonies were studied in order to detect and measure potential in vivo effects of neonicotinoid pesticides used in cornfields (Zea mays spp) on honeybee health. Honeybee colonies were randomly split on four different agricultural cornfield areas located near Quebec City, Canada. Two locations contained cornfields treated with a seed-coated systemic neonicotinoid insecticide while the two others were organic cornfields used as control treatments. Hives were extensively monitored for their performance and health traits over a period of two years. Honeybee viruses (brood queen cell virus BQCV, deformed wing virus DWV, and Israeli acute paralysis virus IAPV) and the brain specific expression of a biomarker of host physiological stress, the Acetylcholinesterase gene AChE, were investigated using RT-qPCR. Liquid chromatography-mass spectrometry (LC-MS) was performed to detect pesticide residues in adult bees, honey, pollen, and corn flowers collected from the studied hives in each location. In addition, general hive conditions were assessed by monitoring colony weight and brood development. Neonicotinoids were only identified in corn flowers at low concentrations. However, honeybee colonies located in neonicotinoid treated cornfields expressed significantly higher pathogen infection than those located in untreated cornfields. AChE levels showed elevated levels among honeybees that collected corn pollen from treated fields. Positive correlations were recorded between pathogens and the treated locations. Our data suggests that neonicotinoids indirectly weaken honeybee health by inducing physiological stress and increasing pathogen loads. PMID:25993642

  8. Neonicotinoid-Coated Zea mays Seeds Indirectly Affect Honeybee Performance and Pathogen Susceptibility in Field Trials.

    PubMed

    Alburaki, Mohamed; Boutin, Sébastien; Mercier, Pierre-Luc; Loublier, Yves; Chagnon, Madeleine; Derome, Nicolas

    2015-01-01

    Thirty-two honeybee (Apis mellifera) colonies were studied in order to detect and measure potential in vivo effects of neonicotinoid pesticides used in cornfields (Zea mays spp) on honeybee health. Honeybee colonies were randomly split on four different agricultural cornfield areas located near Quebec City, Canada. Two locations contained cornfields treated with a seed-coated systemic neonicotinoid insecticide while the two others were organic cornfields used as control treatments. Hives were extensively monitored for their performance and health traits over a period of two years. Honeybee viruses (brood queen cell virus BQCV, deformed wing virus DWV, and Israeli acute paralysis virus IAPV) and the brain specific expression of a biomarker of host physiological stress, the Acetylcholinesterase gene AChE, were investigated using RT-qPCR. Liquid chromatography-mass spectrometry (LC-MS) was performed to detect pesticide residues in adult bees, honey, pollen, and corn flowers collected from the studied hives in each location. In addition, general hive conditions were assessed by monitoring colony weight and brood development. Neonicotinoids were only identified in corn flowers at low concentrations. However, honeybee colonies located in neonicotinoid treated cornfields expressed significantly higher pathogen infection than those located in untreated cornfields. AChE levels showed elevated levels among honeybees that collected corn pollen from treated fields. Positive correlations were recorded between pathogens and the treated locations. Our data suggests that neonicotinoids indirectly weaken honeybee health by inducing physiological stress and increasing pathogen loads. PMID:25993642

  9. Line-patterning of polyaniline coated MWCNT on stepped substrates using DC electric field.

    PubMed

    Ko, Young Gun; Do, Tae Gu; Gu, Tae; Oh, Hyun Chul; Lee, Hyun Jeong; Han, Hung-gu; Kim, Choong Hyun; Choi, Ung Su

    2014-01-01

    Printing electronic components on a chip edge and a stepped substrate with functional inks are an attractive approach for achieving flexible and inexpensive circuits for applications such as flexible displays and large-area chemo/bio/radioactivity sensors. However, it is still challenging because a sufficient cover of the 100 μm high step at the chip edge with a high-resolution pattern is the hardest part of the layer assembling by inkjet printing. Herein, we present a simple and effective strategy to generate electrically conductive line-patterns on stepped substrates by applying the DC electric field. On the surface of flat polyimide substrate, the fine line-pattern (less than 850 nm in line width) is achieved with a polyaniline coated MWCNT dispersed ink. Furthermore, 9.9 μm of line width is successfully patterned on the high stepped poly(dimethylsiloxane) substrate, higher than 100 μm, by printing only 1 time. PMID:25325776

  10. Counterintuitive energy shifts in joint electron-nuclear-energy spectra of strong-field fragmentation of H2+

    NASA Astrophysics Data System (ADS)

    Wang, Zhuo; Li, Min; Zhou, Yueming; Li, Yang; Lan, Pengfei; Lu, Peixiang

    2016-01-01

    By numerically solving the time-dependent Schrödinger equation, we investigate electron-nuclear-energy sharing in strong-field fragmentation of the H2+ molecule. We find a counterintuitive energy shift in the joint electron-nuclear-energy spectrum. This energy shift becomes larger for lower nuclear energies. Through tracing the time evolution of the electron wave packet of bound states, we identify that the energy shift originates from the Stark effect due to the coupling of the ground state and the first exited state of the H2+ molecule in strong laser fields. We achieve a good agreement between the ab initio result and the analytic method that includes the Stark effect of molecules.

  11. Design of A Large Oxide Coated Cathode Plasma Source for Operation in High Magnetic Fields at the New LAPD

    NASA Astrophysics Data System (ADS)

    Leneman, David

    2001-10-01

    We use a Barium Oxide coated cathode to supply accelerated electrons as an energy source to from our plasma. Oxide coated cathodes have been used for decades in vacuum tubes and plasma research. Most of these have been small (1 cm dia.) or designed to operate in a low magnetic field where the J×B \\unboldmath forces on them are negligible. At the new LAPD we will have large diameter plasma sources at both ends of the machine which must operate in a 3.5 kG ambient magnetic field. We have designed and built one such source which is 72 cm in diameter. It will supply up to 20 kA of pulsed beam current and uses a 1 m by 1 m, 2.5 kA (dc), 150 kW heater. Solutions to various engineering issues will be discussed. These pertain to differential thermal expansion over 1 m distances, J×B \\unboldmath forces on the heater and cathode, heat containment and uniformity of the oxide coating and of plasma production. These issues are important to any experimenter who plans to build an oxide coated plasma source.

  12. Observations of flux motion in niobium films. [study of magnetic field trapped in superconducting coatings of gyroscope rotor

    NASA Technical Reports Server (NTRS)

    Xiao, Y. M.; Keiser, G. M.

    1991-01-01

    A magnetic field trapped in a superconducting sphere was examined at temperatures from 4.6 K to 5.5 K. The sphere was the rotor of a precision gyroscope and was made of fused quartz and coated with a sputtered niobium film. The rotor diameter was 3.8 cm. The film thickness was 2.5 microns. The tests were carried out at an ambient magnetic field of about 1 mG. Unexpected instability of the trapped field was observed. The experimental results and possible explanations are presented.

  13. MISR JOINT_AS Data

    Atmospheric Science Data Center

    2014-07-21

    Joint Aerosol Product (JOINT_AS) The MISR Level 3 Products are global or regional ... field campaigns at daily and monthly time scales. The Joint Aerosol product provides a monthly global statistical summary of MISR ...

  14. Strain concentrations in pipelines with concrete coating full scale bending tests and analytical calculations

    SciTech Connect

    Verley, R.; Ness, O.B.

    1995-12-31

    This paper presents the results of full scale bending tests on 16 in. and 20 in. diameter, concrete coated pipes with polyethene and asphalt corrosion coatings. Constant moment, four-point bending was applied to a pipe string consisting of one pipe joint welded between two half-length joints. The strain concentration factor (SCF) at the field joints (FJ), expressing the ratio between the strain in the FJ and the average strain for the pipe joint, was investigated and compared to predictions using an analytical model presented in an accompanying paper (Ness and Verley, 1995). Material tests on the pipe steel, the corrosion coating and the concrete were conducted. The analytical model is found to give a good prediction of the strain distribution along the pipe joint, for both the steel and the concrete, and therefore also of the SCF. The sliding of the concrete over the steel is also predicted reasonably well.

  15. Spatial resolution and switching field of magnetic force microscope tips prepared by coating Fe/Co-Pt layers

    NASA Astrophysics Data System (ADS)

    Nagatsu, Ryo; Ohtake, Mitsuru; Futamoto, Masaaki; Kirino, Fumiyoshi; Inaba, Nobuyuki

    2016-05-01

    Magnetic force microscope tips are prepared by coating Si tips of 4 nm radius with magnetic bi-layer film consisting of soft magnetic material of Fe(x nm) and hard magnetic material Co-Pt alloy (20-x nm), 0 ≤ x ≤ 20. The effects of layer thickness ratio and stacking sequence on the spatial resolution and the switching field are investigated. Higher resolutions are observed for tips prepared by coating Co-Pt alloy followed by Fe film deposition compared with those prepared by employing the opposite deposition sequence. The resolution improves from 11.0 to 8.2 nm whereas the switching field decreases from 1525 to 475 Oe with increasing the x value from 0 to 20 nm. The present study has shown a possibility of tuning MFM tip performance by employing a soft/hard dual layer structure.

  16. An equation for the quench propagation velocity valid for high field magnet use of REBCO coated conductors

    NASA Astrophysics Data System (ADS)

    Bonura, M.; Senatore, C.

    2016-06-01

    Based on a study of the thermophysical properties, we derived a practical formula for the normal zone propagation velocity appropriate for REBa2Cu3O7-x coated conductors in high magnetic fields. An analytical expression to evaluate the current sharing temperature as a function of the operating conditions is also proposed. The presented study has allowed us to account for experimental results not fully understood in the framework of the models widely used in the literature. In particular, we provided a fundamental understanding of the experimental evidence that the normal zone propagation velocity in REBa2Cu3O7-x coated conductors can be mainly determined by the operating current, regardless of the applied field and temperature.

  17. Automated bone segmentation from large field of view 3D MR images of the hip joint.

    PubMed

    Xia, Ying; Fripp, Jurgen; Chandra, Shekhar S; Schwarz, Raphael; Engstrom, Craig; Crozier, Stuart

    2013-10-21

    Accurate bone segmentation in the hip joint region from magnetic resonance (MR) images can provide quantitative data for examining pathoanatomical conditions such as femoroacetabular impingement through to varying stages of osteoarthritis to monitor bone and associated cartilage morphometry. We evaluate two state-of-the-art methods (multi-atlas and active shape model (ASM) approaches) on bilateral MR images for automatic 3D bone segmentation in the hip region (proximal femur and innominate bone). Bilateral MR images of the hip joints were acquired at 3T from 30 volunteers. Image sequences included water-excitation dual echo stead state (FOV 38.6 × 24.1 cm, matrix 576 × 360, thickness 0.61 mm) in all subjects and multi-echo data image combination (FOV 37.6 × 23.5 cm, matrix 576 × 360, thickness 0.70 mm) for a subset of eight subjects. Following manual segmentation of femoral (head-neck, proximal-shaft) and innominate (ilium+ischium+pubis) bone, automated bone segmentation proceeded via two approaches: (1) multi-atlas segmentation incorporating non-rigid registration and (2) an advanced ASM-based scheme. Mean inter- and intra-rater reliability Dice's similarity coefficients (DSC) for manual segmentation of femoral and innominate bone were (0.970, 0.963) and (0.971, 0.965). Compared with manual data, mean DSC values for femoral and innominate bone volumes using automated multi-atlas and ASM-based methods were (0.950, 0.922) and (0.946, 0.917), respectively. Both approaches delivered accurate (high DSC values) segmentation results; notably, ASM data were generated in substantially less computational time (12 min versus 10 h). Both automated algorithms provided accurate 3D bone volumetric descriptions for MR-based measures in the hip region. The highly computational efficient ASM-based approach is more likely suitable for future clinical applications such as extracting bone-cartilage interfaces for potential cartilage segmentation. PMID:24077264

  18. Automated bone segmentation from large field of view 3D MR images of the hip joint

    NASA Astrophysics Data System (ADS)

    Xia, Ying; Fripp, Jurgen; Chandra, Shekhar S.; Schwarz, Raphael; Engstrom, Craig; Crozier, Stuart

    2013-10-01

    Accurate bone segmentation in the hip joint region from magnetic resonance (MR) images can provide quantitative data for examining pathoanatomical conditions such as femoroacetabular impingement through to varying stages of osteoarthritis to monitor bone and associated cartilage morphometry. We evaluate two state-of-the-art methods (multi-atlas and active shape model (ASM) approaches) on bilateral MR images for automatic 3D bone segmentation in the hip region (proximal femur and innominate bone). Bilateral MR images of the hip joints were acquired at 3T from 30 volunteers. Image sequences included water-excitation dual echo stead state (FOV 38.6 × 24.1 cm, matrix 576 × 360, thickness 0.61 mm) in all subjects and multi-echo data image combination (FOV 37.6 × 23.5 cm, matrix 576 × 360, thickness 0.70 mm) for a subset of eight subjects. Following manual segmentation of femoral (head-neck, proximal-shaft) and innominate (ilium+ischium+pubis) bone, automated bone segmentation proceeded via two approaches: (1) multi-atlas segmentation incorporating non-rigid registration and (2) an advanced ASM-based scheme. Mean inter- and intra-rater reliability Dice's similarity coefficients (DSC) for manual segmentation of femoral and innominate bone were (0.970, 0.963) and (0.971, 0.965). Compared with manual data, mean DSC values for femoral and innominate bone volumes using automated multi-atlas and ASM-based methods were (0.950, 0.922) and (0.946, 0.917), respectively. Both approaches delivered accurate (high DSC values) segmentation results; notably, ASM data were generated in substantially less computational time (12 min versus 10 h). Both automated algorithms provided accurate 3D bone volumetric descriptions for MR-based measures in the hip region. The highly computational efficient ASM-based approach is more likely suitable for future clinical applications such as extracting bone-cartilage interfaces for potential cartilage segmentation.

  19. Strain concentrations in pipelines with concrete coating

    SciTech Connect

    Ness, O.B.; Verley, R.

    1996-08-01

    This paper concerns the strain distribution, and in particular strain concentration in field joints, for concrete-covered pipelines during laying. A semi-analytical model, full-scale tests to verify the model, and results of a parameter study are described. The model is used to establish nonlinear moment-curvature curves at a number of cross sections on the concrete-coated pipe and in the field joint (FJ). These are used to establish a strain concentration factor (SCF) for the FJ, or characteristics for a varying stiffness model of a pipe for direct use in lay analyses. Constant moment, four-point bending tests have been conducted on 16-in and 20-in dia, concrete-coated pipes as well as material tests on the pipe steel, corrosion coating and concrete. The behavior of the pipe, and in particular the SCF at the field joints, is investigated and compared to predictions using the semi-analytical model. The model is found to give a good prediction of the SCF and strain distribution along the pipe joint, for both the steel and the concrete, and is suitable for use in lay analyses for the overbend of S-mode lay vessels.

  20. Distribution patterns of MCA-coated granules aerially applied to corn fields of Southern Hungary between 2000 and 2002.

    PubMed

    Wennemann, L; Hummel, H E

    2003-01-01

    Field studies in corn (Zea mays L.) were conducted to evaluate distribution patterns of 4-methoxy-cinnamaldehyde (MCA) coated corn grits after aerial application with a Dromader fixed wing aircraft. The kairomone mimic MCA is synthetically available and a quite specific and efficient adult attractant for the invasive alien maize pest western corn rootworm (WCR) Diabrotica virgifera virgifera LeConte. Orientation disruptive properties of MCA for WCR when applied at unphysiologically high concentrations are currently under investigation. For successful implementation of the MCA disruption technique, the distribution patterns of MCA coated corn granules ('grits') in the field are important. Grits are degrained corn cobs, shredded to different sizes, coated with MCA and used as a carrier material to disseminate MCA vapors into corn fields. Granules of 10-12 mesh size were aerially applied eight times at rates ranging from 12.4 to 25.0 kg/ha. The goal is to evaluate distribution patterns of corn grits treated with MCA in three fields located at Csanadpalota, Kardoskút and Mezöhegyes in Southern Hungary between 2000 and 2002. Increasing rates reflect our attempts in finding and optimising the most even distribution of granules in the field. Field experiments were evaluated by collecting grits in 30-cm plastic saucers and by counting grits accumulated on corn plant parts. Variation in grit number per unit area and frequency of corn granule number per plant showed some transient technical application problems. Analysis of grits collected in the saucers revealed some statistical difference between the different application dates as well as differences in rates applied. Altogether grits in saucers were more evenly distributed in comparison to the grits collected on plant parts. As the corn plants age, their leaves and whorls present a smaller and smaller surface area where granules can accumulate. Altogether, however, grit distribution patterns indicate that aerial

  1. Development of Long Coated Conductors with High In-field Ic Performance by PLD Method at High Production Rate

    NASA Astrophysics Data System (ADS)

    Ibi, Akira; Yoshida, Tomo; Izumi, Teruo; Shiohara, Yuh; Yokoe, Daisaku; Kato, Takeharu; Hirayama, Tsukasa

    We fabricated short samples and a 93 m long coated conductor (C. C.) of EuBa2Cu3O7-δ (EuBCO) with BaHfO3 (BHO) by the IBAD and the PLD methods, which exhibited the high in-field minimum Ic value, (Ic(min)), performance of 141.2 (77 K in 3 T) and 411.3 (65 K in 3 T) A/cm-w for a short sample, and 133.9 (77 K in 3 T) A/cm-w for 93 m long C. C. with 3.6 μm in thickness, respectively. Moreover, this long EuBCO with BHO coated conductor also showed high uniform longitudinal Ic distributions and n-value in magnetic fields. However, the deposition rate for obtaining the high in-field Ic performance was comparatively slow down to 10 μm/h. To realize the low production cost for EuBCO with BHO coated conductors, improvement of the deposition rate of the EuBCO with BHO layer with high Ic is required. To solve this problem, we optimized growth conditions including deposition conditions. One of the objectives of this work was changing the layer growth mode from the vapor-solid (VS) mode to the vapor-liquid-solid (VLS) one to fabricate EuBCO with BHO layers for achievement of high production rate and maintaining the high in-field Ic and Jc performance of the films deposited at slow deposition rates. As a result, we fabricated EuBCO with BHO coated conductors at a high deposition rate of about 40 μm/h and production rate of about 10 m/h, which revealed the Ic(min) value of 48.7 A/cm-w at 77 K in 3 T for 1.35 μm in thickness.

  2. Filling-in by joint interpolation of vector fields and gray levels.

    PubMed

    Ballester, C; Bertalmio, M; Caselles, V; Sapiro, G; Verdera, J

    2001-01-01

    A variational approach for filling-in regions of missing data in digital images is introduced. The approach is based on joint interpolation of the image gray levels and gradient/isophotes directions, smoothly extending in an automatic fashion the isophote lines into the holes of missing data. This interpolation is computed by solving the variational problem via its gradient descent flow, which leads to a set of coupled second order partial differential equations, one for the gray-levels and one for the gradient orientations. The process underlying this approach can be considered as an interpretation of the Gestaltist's principle of good continuation. No limitations are imposed on the topology of the holes, and all regions of missing data can be simultaneously processed, even if they are surrounded by completely different structures. Applications of this technique include the restoration of old photographs and removal of superimposed text like dates, subtitles, or publicity. Examples of these applications are given. We conclude the paper with a number of theoretical results on the proposed variational approach and its corresponding gradient descent flow. PMID:18255537

  3. Joint swelling

    MedlinePlus

    Swelling of a joint ... Joint swelling may occur along with joint pain . The swelling may cause the joint to appear larger or abnormally shaped. Joint swelling can cause pain or stiffness. After an ...

  4. On unique determination of partially coated polyhedral scatterers with far field measurements

    NASA Astrophysics Data System (ADS)

    Liu, Hongyu; Zou, Jun

    2007-02-01

    This work is a continuation of our early study in Liu and Zou (2006 Uniqueness in an inverse acoustic obstacle scattering problem for both sound-hard and sound-soft polyhedral scatterers Inverse Problems 22 515-24 2006 Uniqueness in determining multiple polygonal or polyhedral scatterers of mixed type Technical Report 2006-03(337) The Chinese University of Hong Kong) and addresses the unique determination of partially coated polyhedral scatterers in {\\bb R}^N (N >= 2) along with their surface impedance from far field data. Two global uniqueness results are established for this inverse problem with a scatterer consisting of multiple solid polyhedra: the first one is to determine such a scatterer of mixed sound-soft and impedance type by a single incident plane wave and the other is to determine such a scatterer of mixed sound-soft, sound-hard and impedance type by N different incident waves in the N-dimensional case with N >= 3 and by only one incident wave for the two-dimensional case. Then we present some examples to show that as long as a scatterer admits the presence of (sound-hard) crack-type obstacles, then one cannot determine the scatterer uniquely by any less than N different incident plane waves. These examples also reveal that the uniqueness results achieved earlier in [15, 16] for polyhedral scatterers are optimal. Finally, the uniqueness results that have been solved or are still unsolved for the polyhedral-type scatterers with both solid and crack components are summarized in the conclusion.

  5. The 1995 revision of the joint US/UK geomagnetic field models - I. Secular variation

    USGS Publications Warehouse

    Macmillan, S.; Barraclough, D.R.; Quinn, J.M.; Coleman, R.J.

    1997-01-01

    We present the methods used to derive mathematical models of global secular variation of the main geomagnetic field for the period 1985 to 2000. These secular-variation models are used in the construction of the candidate US/UK models for the Definitive Geomagnetic Reference Field at 1990, the International Geomagnetic Reference Field for 1995 to 2000, and the World Magnetic Model for 1995 to 2000 (see paper II, Quinn et al., 1997). The main sources of data for the secular-variation models are geomagnetic observatories and repeat stations. Over the areas devoid of these data secular-variation information is extracted from aeromagnetic and satellite data. We describe how secular variation is predicted up to the year 2000 at the observatories and repeat stations, how the aeromagnetic and satellite data are used, and how all the data are combined to produce the required models.

  6. Momentum and Turbulent Kinetic Energy Budgets Within the Park Avenue Street Canyon During the Joint Urban 2003 Field Campaign

    NASA Astrophysics Data System (ADS)

    Nelson, Matthew A.; Pardyjak, Eric R.; Klein, Petra

    2011-07-01

    Very few attempts have so far been made to quantify the momentum and turbulent kinetic energy (TKE) budgets within real urban canopies. In this study, sonic anemometer data obtained during the Joint Urban 2003 field campaign in Oklahoma City, U.S.A. were used for calculating the momentum and TKE budgets within a real-world urban street canyon. Sonic anemometers were deployed on multiple towers in the lower half of the canyon. Gradients in all three principal directions were included in the analyses. The storage and buoyancy terms were found to have negligible contributions to both the momentum and TKE budgets. The momentum budgets were generally found to be more complex than a simple balance of two physical processes. The horizontal terms were found to have significant and sometimes dominant contributions to the momentum and TKE budgets.

  7. Accuracy of low-field magnetic resonance imaging versus radiography for guiding injection of equine distal interphalangeal joint collateral ligaments.

    PubMed

    Lamb, Megan M; Barrett, Jennifer G; White, Nathaniel A; Werre, Stephen R

    2014-01-01

    Desmopathy of the distal interphalangeal joint collateral ligament is a common cause of lameness in the horse and carries a variable prognosis for soundness. Intralesional treatment has been proposed for improving outcome; however, limited reports describe methods for injecting this ligament. The purpose of this study was to compare accuracy of low-field magnetic resonance imaging (MRI) vs. radiography for injecting the collateral ligament of the distal interphalangeal joint. Equine cadaver digit pairs (n = 10) were divided by random assignment to injection of the ligament by either technique. An observer unaware of injection technique determined injection success based on postinjection MRI and/or gross sections acquired from the proximal, middle, and distal portions of the ligament. McNemar's test was performed to determine statistical difference between injection techniques, the number of injection attempts, and injection of the medial or lateral collateral ligament. Magnetic resonance imaging guided injection was successful more frequently than radiographic-guided injection based on postinjection MRI (24 of 30 vs. 9 of 30; P = 0.0006) and gross sections (26 of 30 vs. 13 of 30; P = 0.0008). At each level of the ligament (proximal, middle, and distal), MRI-guided injection resulted in more successful injections than radiographic guidance. Statistical significance occurred at the proximal aspect of the collateral ligament based on postinjection MRI (P = 0.0143) and the middle portion of the ligament based on gross sections (P = 0.0253). Findings supported future testing of standing, low-field MRI as a technique for delivering intralesional regenerative therapy in live horses with desmopathy of these collateral ligaments. PMID:24102665

  8. Joint use of laboratory bioassays and field-collected plants to evaluate toxicity and contaminant bioaccumulation

    SciTech Connect

    Long, S.P.; Byron, E.R.; Ohlendorf, H.M.

    1995-12-31

    Soil toxicity tests using lettuce (Latuca saliva) were conducted using soil samples collected as part of ecological risk assessments at two facilities in California. At some sites, terrestrial plants were collected in the field for chemical analysis. Ecological concerns focused on exposures to plants, phytophagous insects, and their secondary consumers, such as birds and small mammals. The toxicity tests were used to assess potential exposures to a variety of site-specific contaminants including organochlorine pesticides, PCBs, PAHs, petroleum hydrocarbons, heavy metals, and other inorganic substances. Site soils were combined with clean control soils to produce toxicity test soil dilutions containing 100%, 75%, 50%, 25%, and 0% site soils. Observations of seed germination and growth were made at day 0, 7, 14, 21 and 28. Toxicity test results were combined with soil chemical analytical results and physical characteristics to establish NOAELs and LOAELs. Bioaccumulation in the lettuce and field-collected plants was evaluated by comparing plant contaminant to soil contaminant concentrations. Allometric equations and sublethal toxicity data were used to predict potential effects on birds and small mammals. Whole-body contaminant concentrations in insects collected on some of the plants in the field were also considered in evaluating the potential for toxicity to insectivorous birds. The study indicated that contaminant uptake was occurring in the field-collected and bioassay plants but not the insects. Site factors in addition to soil contaminant concentration influenced the potential for plant toxicity and bioaccumulation.

  9. A comparison of iron oxide-rich joint coatings and rock chips as geochemical sampling media in exploration for disseminated gold deposits

    USGS Publications Warehouse

    Crone, W.; Larson, L.T.; Carpenter, R.H.; Chao, T.T.; Sanzolone, R.F.

    1984-01-01

    We evaluated the effectiveness of iron oxide-rich fracture coatings as a geochemical sampling medium for disseminated gold deposits, as compared with conventional lithogeochemical methods, for samples from the Pinson mine and Preble prospect in southeastern Humboldt County, Nevada. That disseminated gold mineralization is associated with Hg, As, and Sb is clearly demonstrated in these deposits for both fracture coatings and rock chip samples. However, the relationship is more pronounced for fracture coatings. Fracture coatings at Pinson contain an average of 3.61, 5.13, 14.37, and 3.42 times more Au, As, Sb and Hg, respectively, than adjacent rock samples. At Preble, fracture coatings contain 3.13, 9.72, 9.18, and 1.85 times more Au, As, Sb and Hg, respectively, than do adjacent rock samples. Geochemical anomalies determined from fracture coatings are thus typically more intense than those determined from rock samples for these elements. The sizes of anomalies indicated by fracture coatings are also somewhat larger, but this is less obvious. In both areas, Sb anomalies are more extensive in fracture coatings. At Preble, some Hg and Au anomalies are also more extensive in fracture coatings. In addition to halos formed by the Hg, As and Sb, high values for Au/Ag and Zn/(Fe + Mn) are closely associated with gold mineralization at the Pinson mine. The large enhancement in geochemical response afforded by fracture coatings indicates a definite potential in the search for buried disseminated gold deposits. ?? 1984.

  10. Estimation of field-scale soil hydraulic and dielectric parametersthrough joint inversion of GPR and hydrological data

    SciTech Connect

    Kowalsky, Michael B.; Finsterle, Stefan; Peterson, John; Hubbard,Susan; Rubin, Yoram; Majer, Ernest; Ward, Andy; Gee, Glendon

    2005-05-05

    A method is described for jointly using time-lapse multiple-offset cross-borehole ground-penetrating radar (GPR) travel time measurements and hydrological measurements to estimate field-scale soil hydraulic parameters and parameters of the petrophysical function, which relates soil porosity and water saturation to the effective dielectric constant. We build upon previous work to take advantage of a wide range of GPR data acquisition configurations and to accommodate uncertainty in the petrophysical function. Within the context of water injection experiments in the vadose zone, we test our inversion methodology with synthetic examples and apply it to field data. The synthetic examples show that while realistic errors in the petrophysical function cause substantial errors in the soil hydraulic parameter estimates,simultaneously estimating petrophysical parameters allows for these errors to be minimized. Additionally, we observe in some cases that inaccuracy in the GPR simulator causes systematic error in simulated travel times, making necessary the simultaneous estimation of a correction parameter. We also apply the method to a three-dimensional field setting using time-lapse GPR and neutron probe (NP) data sets collected during an infiltration experiment at the U.S. Department of Energy (DOE) Hanford site in Washington. We find that inclusion of GPR data in the inversion procedure allows for improved predictions of water content, compared to predictions made using NP data alone.

  11. Research of Arc Chamber Optimization Techniques Based on Flow Field and Arc Joint Simulation

    NASA Astrophysics Data System (ADS)

    Zhong, Jianying; Guo, Yujing; Zhang, Hao

    2016-03-01

    The preliminary design of an arc chamber in the 550 kV SF6 circuit breaker was proposed in accordance with the technical requirements and design experience. The structural optimization was carried out according to the no-load flow field simulation results and verified by no-load pressure measurement. Based on load simulation results such as temperature field variation at the arc area and the tendency of post arc current under different recovery voltage, the second optimal design was completed and its correctness was certificated by a breaking test. Results demonstrate that the interrupting capacity of an arc chamber can be evaluated by the comparison of the gas medium recovery speed and post arc current growth rate.

  12. Dual-coated lactic acid bacteria: an emerging innovative technology in the field of probiotics.

    PubMed

    Alvarez-Calatayud, Guillermo; Margolles, Abelardo

    2016-01-01

    Probiotics are living micro-organisms that do not naturally have shelf life, and normally are weakly protected against the digestive action of the GI tract. A new dual coating technology has been developed in an effort to maximize survival, that is, to be able to reach the intestine alive and in sufficient numbers to confer the beneficial health effects on the host. Dual-coating of lactic acid bacteria (LAB) is the result of fourth-generation coating technology for the protection of these bacteria at least 100-fold or greater than the uncoated LAB. This innovative technique involves a first pH-dependent protein layer that protects bacteria from gastric acid and bile salt, and a second polysaccharide matrix that protects bacteria from external factors, such as humidity, temperature and pressure, as well as the digestive action during the passage through the GI tract. Dual-coated probiotic formulation is applicable to different therapeutic areas, including irritable bowel syndrome, atopic dermatitis, acute diarrhea, chronic constipation, Helicobacter pylori eradication, and prevention of antibiotic-associated diarrhea. An updated review of the efficacy of doubly coated probiotic strains for improving bacterial survival in the intestinal tract and its consequent clinical benefits in humans is here presented. PMID:26780116

  13. Joint Offshore Wind Field Monitoring with Spaceborne SAR and Platform-Based Doppler LIDAR Measurements

    NASA Astrophysics Data System (ADS)

    Jacobsen, S.; Lehner, S.; Hieronimus, J.; Schneemann, J.; Kuhn, M.

    2015-04-01

    The increasing demand for renewable energy resources has promoted the construction of offshore wind farms e.g. in the North Sea. While the wind farm layout consists of an array of large turbines, the interrelation of wind turbine wakes with the remaining array is of substantial interest. The downstream spatial evolution of turbulent wind turbine wakes is very complex and depends on manifold parameters such as wind speed, wind direction and ambient atmospheric stability conditions. To complement and validate existing numerical models, corresponding observations are needed. While in-situ measurements with e.g. anemometers provide a time-series at the given location, the merits of ground-based and space- or airborne remote sensing techniques are indisputable in terms of spatial coverage. Active microwave devices, such as Scatterometer and Synthetic Aperture Radar (SAR), have proven their capabilities of providing sea surface wind measurements and particularly SAR images reveal wind variations at a high spatial resolution while retaining the large coverage area. Platform-based Doppler LiDAR can resolve wind fields with a high spatial coverage and repetition rates of seconds to minutes. In order to study the capabilities of both methods for the investigation of small scale wind field structures, we present a direct comparison of observations obtained by high resolution TerraSAR-X (TS-X) X-band SAR data and platform-based LiDAR devices at the North Sea wind farm alpha ventus. We furthermore compare the results with meteorological data from the COSMO-DE model run by the German Weather Service DWD. Our study indicates that the overall agreement between SAR and LiDAR wind fields is good and that under appropriate conditions small scale wind field variations compare significantly well.

  14. Joint Application of TDR, GPR and Inverse Hydraulic Modeling to Infer Field Scale Hydraulic Properties

    NASA Astrophysics Data System (ADS)

    Wollschläger, U.; Gerhards, H.; Schneider, S.; Roth, K.

    2007-12-01

    Estimating field scale hydraulic properties is still a challenge in hydrology. Most classical methods require undisturbed soil samples that have to be excavated during time consuming and labour intensive field work which is often followed by tedious measurements of hydraulic properties in the laboratory. Since these methods can only be applied with a limited number of samples, often only a few point measurements need to be used to characterize field scale hydraulic properties while layer geometry has to be derived from interpolation of these values and additional drilling. The combination of geophysical measurement techniques and hydraulic modeling offers an attractive alternative to bridge the gap between i) few accurate point measurements that are used to infer local hydraulic properties and ii) spatial mapping of the respective layers over large scales. We use a time series of water contents measured in a soil profile with time domain reflectometry to estimate hydraulic properties of the different soil layers with a 1D hydraulic inverse model. Here, hydraulic properties are estimated from \\it in situ \

  15. Formation of tough composite joints

    SciTech Connect

    Brun, M.K.

    1997-05-01

    Joints which exhibit tough fracture behavior were formed in a composite with a Si/SiC matrix reinforced with Textron SCS-6 fibers with either boron nitride or silicon nitride fiber coatings. In composites with BN coatings fibers were aligned uniaxially, while composites with Si{sub 3}N{sub 4}-coated fibers had a 0/90{degree} architecture. Lapped joints (joints with overlapping fingers) were necessary to obtain tough behavior. Geometrical requirements necessary to avoid brittle joint failure have been proposed. Joints with a simple overlap geometry (only a few fingers) would have to be very long in order to prevent brittle failure. Typical failure in these joints is caused by a crack propagating along the interfaces between the joint fingers. Joints of the same overall length, but with geometry changed to be symmetric about the joint centerline and with an extra shear surface exhibited tough fractures accompanied with extensive fiber pullout. The initial matrix cracking of these joints was relatively low because cracks propagated easily through the ends of the fingers. Joints with an optimized stepped sawtooth geometry produced composite-like failures with the stress/strain curves containing an elastic region followed by a region of rising stress with an increase of strain. Increasing the fiber/matrix interfacial strength from 9 to 25 MPa, by changing the fiber coating, increased matrix cracking and ultimate strength of the composite significantly. The best joints had matrix cracking stress and ultimate strength of 138 and 240 MPa, respectively. Joint failure was preceded by multiple matrix cracking in the entire composite. The high strength of the joints will permit building of structures containing joints with only a minor reduction of design stresses.

  16. Complex frequencies and field distributions of localized surface plasmon modes in graphene-coated subwavelength wires

    NASA Astrophysics Data System (ADS)

    Cuevas, Mauro; Riso, Máximo A.; Depine, Ricardo A.

    2016-04-01

    In this work we study the modal characteristics of localized surface plasmons in graphene-coated, circular cross-section wires. Localized surface plasmons are represented in terms of cylindrical multipole partial waves characterized by discrete, complex frequencies that depend on the size of the wire and can be dynamically tuned via a gate voltage. We consider both intrinsically nonplasmonic wires and intrinsically plasmonic wires. In the first case the localized surface plasmons are introduced by the graphene coating, whereas in the second case the localized eigenmodes of the graphene coating are expected to hybridize those already existing in the bare wire. We show that the approach presented here, valid for particle sizes where the retardation effects can be significant, is in good agreement with analytical expressions obtained in the limit when particle size is very small compared to the wavelength of the eigenmode and with results indirectly determined from scattering cross-section spectra.

  17. Micellar-polymer joint demonstration project, Wilmington Field, California. Third annual report, June 1978-July 1979

    SciTech Connect

    Staub, H.L.

    1981-08-01

    The micellar-polymer demonstration project to be conducted - through the design phase - in the HXa sand of Wilmington Field is proceeding satisfactorily but has fallen behind schedule. Results of some core floods were unsatisfactory. The recovery efficiencies were much lower than those achieved using the laboratory sample cosurfactant final design slug. Nearly six months of reformulating and additional core testing were required to finally achieve satisfactory laboratory results. Other laboratory tests were performed to optimize the polymer buffer for size and concentration. Other reservoir and reservoir fluid problems have been encountered in production and injection operations during the pre-flush period.

  18. Development of the cryo-rotary joint for a HTS synchronous motor with Gd-bulk HTS field-pole magnets

    NASA Astrophysics Data System (ADS)

    Miki, M.; Felder, B.; Tsuzuki, K.; Izumi, M.; Hayakawa, H.

    2010-06-01

    We have studied a prototype of an axial-gap type synchronous motor with Gd-bulk HTS field-pole magnets since 2001. At the liquid nitrogen temperature, these bulks have trapped over 1 T inside the motor after being applied the pulsed field magnetization method. Increasing the flux of the field poles is the most straightforward way of improving the output power of the motor. Cooling down the bulk HTS magnets below the liquid nitrogen temperature provides an effective alternative to increase the magnetic flux trapping. In 2007, we exchanged the cryogen from liquid nitrogen to condensed neon. The key technology of this challenge is a rotary joint, introducing a fluid cryogen into the rotating body in the motor from the static reservoir. We have successfully developed a compact rotary joint which is smaller and lighter than the existent one (1/10 volume, 1/3 length and 1/12 weight). The present joint was manufactured and evaluated with liquid nitrogen and condensed neon. We presume a total heat loss of this rotary joint of less than 10 watts. Successful cooling and rotating tests of the bulk-HTS motor with this novel rotary joint are conducted.

  19. Joint use of laboratory bioassays and field-collected invertebrates to evaluate toxicity and contaminant bioaccumulation

    SciTech Connect

    Long, S.P.; Byron, E.R.; Ohlendorf, H.M.

    1995-12-31

    Soil toxicity tests using earthworms (Eisenia andrei) were conducted using soil samples collected as part of ecological risk assessments for several sites at two facilities in California. At some sites, earthworms or other terrestrial invertebrates were collected in the field for chemical analysis. Ecological concerns focused on exposures to soil invertebrates and their secondary consumers, such as birds and small mammals. The toxicity tests were used to assess potential exposures to a variety of site-specific contaminants including organochlorine pesticides, PCBs, PAHs, petroleum hydrocarbons, heavy metals, and other inorganic substances. Site soils were combined with clean control soils to produce toxicity test soil dilutions containing 100%, 75%, 50%, 25%, and 0% site soils. Earthworm mortality and other observations were made at day 0, 7, 14, 21 and 28. Toxicity test results were combined with soil chemical analytical results and physical characteristics to establish NOAELs and LOAELs. Bioaccumulation in the laboratory earthworms and field-collected invertebrates was evaluated by comparing whole-body contaminant to soil contaminant concentrations. Allometric equations and sublethal toxicity data were used to predict potential effects on birds and small mammals. Earthworm toxicity tests indicated a wide range of sensitivity to on-site contaminants and showed the importance of considering potential confounding influences due to soil parameters other than contaminant concentration.

  20. A joint geophysical analysis of the Coso geothermal field, south-eastern California

    NASA Astrophysics Data System (ADS)

    Wamalwa, Antony M.; Mickus, Kevin L.; Serpa, Laura F.; Doser, Diane I.

    2013-01-01

    Three-dimensional density models derived from gravity data and two-dimensional resistivity models derived from magnetotelluric data collected in the vicinity of the Coso geothermal field are analyzed in order to determine the source region of the geothermal field. The derived models show zones of both low resistivity and low density at and below 6 km depth in the Devils Kitchen and the Coso Hot Springs areas. These zones agree with seismic reflection and tomography results which found a high amplitude reflector at 5 km and low velocities zones below 5 km. We interpret the density and resistivity zones to indicate the presence of cooling magmatic material that provides the heat for the shallower geothermal system in these regions. A zone marked by high resistivity and low density was found to lie directly above the interpreted partially melted region extending to within 1 km depth below the surface in the reservoir region where it is capped by a low resistivity clay zone. In addition, the density models indicate that the high density bodies occurring under volcanic outcrops may be mafic intrusions.

  1. THE APOKASC CATALOG: AN ASTEROSEISMIC AND SPECTROSCOPIC JOINT SURVEY OF TARGETS IN THE KEPLER FIELDS

    SciTech Connect

    Pinsonneault, Marc H.; Epstein, Courtney; Johnson, Jennifer A.; Elsworth, Yvonne; Chaplin, William J.; Hekker, Saskia; Silva Aguirre, Victor; Stello, Dennis; Mészáros, Sz.; García, Rafael A.; Beck, Paul; Mathur, Savita; García Pérez, Ana; Girardi, Léo; Basu, Sarbani; Shetrone, Matthew; Allende Prieto, Carlos; Beers, Timothy C.; and others

    2015-01-01

    We present the first APOKASC catalog of spectroscopic and asteroseismic properties of 1916 red giants observed in the Kepler fields. The spectroscopic parameters provided from the Apache Point Observatory Galactic Evolution Experiment project are complemented with asteroseismic surface gravities, masses, radii, and mean densities determined by members of the Kepler Asteroseismology Science Consortium. We assess both random and systematic sources of error and include a discussion of sample selection for giants in the Kepler fields. Total uncertainties in the main catalog properties are of the order of 80 K in T {sub eff}, 0.06 dex in [M/H], 0.014 dex in log g, and 12% and 5% in mass and radius, respectively; these reflect a combination of systematic and random errors. Asteroseismic surface gravities are substantially more precise and accurate than spectroscopic ones, and we find good agreement between their mean values and the calibrated spectroscopic surface gravities. There are, however, systematic underlying trends with T {sub eff} and log g. Our effective temperature scale is between 0 and 200 K cooler than that expected from the infrared flux method, depending on the adopted extinction map, which provides evidence for a lower value on average than that inferred for the Kepler Input Catalog (KIC). We find a reasonable correspondence between the photometric KIC and spectroscopic APOKASC metallicity scales, with increased dispersion in KIC metallicities as the absolute metal abundance decreases, and offsets in T {sub eff} and log g consistent with those derived in the literature. We present mean fitting relations between APOKASC and KIC observables and discuss future prospects, strengths, and limitations of the catalog data.

  2. The APOKASC Catalog: An Asteroseismic and Spectroscopic Joint Survey of Targets in the Kepler Fields

    NASA Astrophysics Data System (ADS)

    Pinsonneault, Marc H.; Elsworth, Yvonne; Epstein, Courtney; Hekker, Saskia; Mészáros, Sz.; Chaplin, William J.; Johnson, Jennifer A.; García, Rafael A.; Holtzman, Jon; Mathur, Savita; García Pérez, Ana; Silva Aguirre, Victor; Girardi, Léo; Basu, Sarbani; Shetrone, Matthew; Stello, Dennis; Allende Prieto, Carlos; An, Deokkeun; Beck, Paul; Beers, Timothy C.; Bizyaev, Dmitry; Bloemen, Steven; Bovy, Jo; Cunha, Katia; De Ridder, Joris; Frinchaboy, Peter M.; García-Hernández, D. A.; Gilliland, Ronald; Harding, Paul; Hearty, Fred R.; Huber, Daniel; Ivans, Inese; Kallinger, Thomas; Majewski, Steven R.; Metcalfe, Travis S.; Miglio, Andrea; Mosser, Benoit; Muna, Demitri; Nidever, David L.; Schneider, Donald P.; Serenelli, Aldo; Smith, Verne V.; Tayar, Jamie; Zamora, Olga; Zasowski, Gail

    2014-12-01

    We present the first APOKASC catalog of spectroscopic and asteroseismic properties of 1916 red giants observed in the Kepler fields. The spectroscopic parameters provided from the Apache Point Observatory Galactic Evolution Experiment project are complemented with asteroseismic surface gravities, masses, radii, and mean densities determined by members of the Kepler Asteroseismology Science Consortium. We assess both random and systematic sources of error and include a discussion of sample selection for giants in the Kepler fields. Total uncertainties in the main catalog properties are of the order of 80 K in T eff, 0.06 dex in [M/H], 0.014 dex in log g, and 12% and 5% in mass and radius, respectively; these reflect a combination of systematic and random errors. Asteroseismic surface gravities are substantially more precise and accurate than spectroscopic ones, and we find good agreement between their mean values and the calibrated spectroscopic surface gravities. There are, however, systematic underlying trends with T eff and log g. Our effective temperature scale is between 0 and 200 K cooler than that expected from the infrared flux method, depending on the adopted extinction map, which provides evidence for a lower value on average than that inferred for the Kepler Input Catalog (KIC). We find a reasonable correspondence between the photometric KIC and spectroscopic APOKASC metallicity scales, with increased dispersion in KIC metallicities as the absolute metal abundance decreases, and offsets in T eff and log g consistent with those derived in the literature. We present mean fitting relations between APOKASC and KIC observables and discuss future prospects, strengths, and limitations of the catalog data.

  3. Influence of the flow field in curtain coating onto a prewet substrate

    NASA Astrophysics Data System (ADS)

    Marston, J. O.; Simmons, M. J. H.; Decent, S. P.; Kirk, S. P.

    2006-11-01

    The onset of air entrainment for curtain coating onto a surface prewetted with the coating fluid was studied. The substrate used was a polished, scraped steel wheel and coating was performed over ranges of dimensionless parameters observed in commercial coating processes (Reynolds number, 0.14coating is possible at higher substrate velocities than would be predicted by conventional theory. This "intense assist" exhibits a complex relationship with the prewet film thickness. The results presented in this paper demonstrate that hydrodynamic assist is not exclusive to wetting, but is a generic phenomenon of fluid flows.

  4. Sensorimotor Results From a Joint NASA and Russian Pilot Field Test

    NASA Technical Reports Server (NTRS)

    Reschke, Millard F.; Kozlovskaya, Inessa B.

    2016-01-01

    Assessing the full impact of sensorimotor decrements associated with long-duration spaceflight has not been undertaken until 24 hours after landing. To overcome this limitation, both the Russian and U.S. space programs have implemented crew testing at the Soyuz landing site with additional follow-up measurements within 24 hours. Identified as the Pilot Field Test (PFT) this research on NASA’s side included: (1) a sit-to-stand test, (2) recovery from a simulated fall stand test where the crewmember begins in the prone position and then stands for 3.5 minutes while cardiovascular and postural ataxia data are acquired, and (3) a tandem heel-to-toe walk. Video, cardiovascular parameters (heart rate and blood pressure), data from body-worn inertial sensors, and severity of postflight motion sickness were collected during each test session. Russian investigators made measurements associated with: (a) obstacle avoidance, (b) muscle compliance, (c) postural adjustments to perturbations (pushes) applied to the subject’s chest area and (d) center of mass measurements made across most test objectives with insoles inserted into the subjects’ shoes. Data from 18 subjects have been obtained. Additional measurements on functional tests are now being obtained. The increased level of functional deficits not attributable to strength observed in crewmembers has been substantially greater than previously observed when compared with measurements obtained after 24 hours. Full recovery requires 6 to 16 days. Measureable performance parameters such as those associated with functional behaviors are required to provide an evidence base for characterizing programmatic risks for undertaking exploration missions where crewmembers will be unassisted after landing.

  5. Invariant joint distribution of a stationary random field and its derivatives: Euler characteristic and critical point counts in 2 and 3D

    SciTech Connect

    Pogosyan, Dmitry; Gay, Christophe; Pichon, Christophe

    2009-10-15

    The full moments expansion of the joint probability distribution of an isotropic random field, its gradient, and invariants of the Hessian are presented in 2 and 3D. It allows for explicit expression for the Euler characteristic in ND and computation of extrema counts as functions of the excursion set threshold and the spectral parameter, as illustrated on model examples.

  6. High mobility organic field-effect transistor based on water-soluble deoxyribonucleic acid via spray coating

    SciTech Connect

    Shi, Wei; Han, Shijiao; Huang, Wei; Yu, Junsheng

    2015-01-26

    High mobility organic field-effect transistors (OFETs) by inserting water-soluble deoxyribonucleic acid (DNA) buffer layer between electrodes and pentacene film through spray coating process were fabricated. Compared with the OFETs incorporated with DNA in the conventional organic solvents of ethanol and methanol: water mixture, the water-soluble DNA based OFET exhibited an over four folds enhancement of field-effect mobility from 0.035 to 0.153 cm{sup 2}/Vs. By characterizing the surface morphology and the crystalline structure of pentacene active layer through atomic force microscope and X-ray diffraction, it was found that the adoption of water solvent in DNA solution, which played a key role in enhancing the field-effect mobility, was ascribed to both the elimination of the irreversible organic solvent-induced bulk-like phase transition of pentacene film and the diminution of a majority of charge trapping at interfaces in OFETs.

  7. Insert coil test for HEP high field magnets using yba2cu3o7-δ coated conductor tapes

    NASA Astrophysics Data System (ADS)

    Lombardo, Vito; Barzi, Emanuela; Turrioni, Daniele; Zlobin, Alexander

    2012-06-01

    The final beam cooling stages of a Muon Collider require DC solenoid magnets with magnetic fields of 30-50 T. In this paper we present progress in insert coil development using commercially available YBa2Cu3O7.δ Coated Conductor. Technological aspects covered in the development, including coil geometry, insulation, manufacturing process and testing are summarized and discussed. Test results of double pancake coils operated in liquid nitrogen and liquid helium are presented and compared with the performance of YBa2Cu3O7.δ tape short samples.

  8. Multifunctional coatings to simultaneously promote osseointegration and prevent infection of orthopaedic implants.

    PubMed

    Raphel, Jordan; Holodniy, Mark; Goodman, Stuart B; Heilshorn, Sarah C

    2016-04-01

    The two leading causes of failure for joint arthroplasty prostheses are aseptic loosening and periprosthetic joint infection. With the number of primary and revision joint replacement surgeries on the rise, strategies to mitigate these failure modes have become increasingly important. Much of the recent work in this field has focused on the design of coatings either to prevent infection while ignoring bone mineralization or vice versa, to promote osseointegration while ignoring microbial susceptibility. However, both coating functions are required to achieve long-term success of the implant; therefore, these two modalities must be evaluated in parallel during the development of new orthopaedic coating strategies. In this review, we discuss recent progress and future directions for the design of multifunctional orthopaedic coatings that can inhibit microbial cells while still promoting osseointegration. PMID:26851394

  9. Joint inversion of teleseismic, geodetic, and near-field waveform datasets for rupture process of the 2015 Gorkha, Nepal, earthquake

    NASA Astrophysics Data System (ADS)

    Kobayashi, Hiroaki; Koketsu, Kazuki; Miyake, Hiroe; Takai, Nobuo; Shigefuji, Michiko; Bhattarai, Mukunda; Sapkota, Soma Nath

    2016-04-01

    The 2015 Gorkha earthquake and its aftershocks caused severe damage mostly in Nepal, while countries around the Himalayan region were warned for decades about large Himalayan earthquakes and the seismic vulnerability of these countries. However, the magnitude of the Gorkha earthquake was smaller than those of historical earthquakes in Nepal, and the most severe damage occurred in the north and northeast of Kathmandu. We explore reasons for these unexpected features by performing a joint source inversion of teleseismic, geodetic, and near-field waveform datasets to investigate the rupture process. Results indicate that the source fault was limited to the northern part of central Nepal and did not reach the Main Frontal Thrust. The zone of large slip was located in the north of Kathmandu, and the fault rupture propagated eastward with an almost constant velocity. Changes in the Coulomb failure function (ΔCFF) due to the Gorkha earthquake were computed, indicating that southern and western regions neighboring the source fault are potential source regions for future earthquakes related to the Gorkha earthquake. These two regions may correspond to the historical earthquakes of 1866 and 1344. Possible future earthquakes in the regions are predicted, and the warning for Himalayan seismic hazards remains high even after the Gorkha earthquake.

  10. Easy-to-clean property and durability of superhydrophobic flaky γ-alumina coating on stainless steel in field test at a paper machine

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoxue; Liu, Xuwen; Laakso, Jarmo; Levänen, Erkki; Mäntylä, Tapio

    2012-01-01

    Superhydrophobic flaky γ-alumina coating was prepared on AISI 316 2B stainless steel and was field-tested near size roll at a paper machine in a paper mill for 6 weeks consisting of two running periods of machine to check the easy-to-clean property and durability, as compared to an uncoated reference stainless steel. In the end of the field test, both the superhydrophobic and the reference stainless steel were fully covered with substances from the testing environment. Major part of the collected substances on the superhydrophobic stainless steel can be washed away by pressurized water; however, the collected substances remained on the reference stainless steel after washing. The field-tested samples were characterized visually and by stereomicroscopy, field emission scanning electron microscopy, laser profilometry and contact angle tester. The field test revealed the easy-to-clean property of the superhydrophobic surface and the superhydrophobic coating survived rather well after the first running period of 16 days in the field test. The resistance and durability of the superhydrophobic surface still needs to be further improved for longer term application in paper industry. Nanoindentation was used to further study the mechanical properties of the γ-alumina coating. It was found that the γ-alumina coating became much softer after transforming from flat to flaky form. In addition, the flaky γ-alumina coating demonstrated a phenomenon of time-dependent plasticity and some flexibility.

  11. The Effect of the Gas Inlet on the Fluid Field during Fabricating Hfcvd Diamond-Coated Cutting Tools

    NASA Astrophysics Data System (ADS)

    Shen, Bin; Chen, Sulin; Cheng, Lei; Sun, Fanghong

    2014-07-01

    In the present study, the fluid field in a process of fabricating diamond coated cutting tools using the hot filament chemical vapor deposition (HFCVD) method is investigated using the finite volume method (FVM), in which the effects of the inlet height, gas initial velocity, inlet radius and arrangement are illustrated in terms of the gas velocity magnitude and vector distribution near the filaments and the flute surface of cutting tools. In the simulations, the coupling effect of the temperature and the gas field is also considered by simultaneously calculating the temperature distribution. The simulation results suggest that either shortening the distance between the gas inlet and filaments, or increasing the gas initial velocity is helpful for the reactive gas arriving at filaments surface and being dissociated. Furthermore, increasing the inlet area is able to significantly increase the velocity of gas field around the filaments, as well as produce a much more uniform gas velocity field. Based on this conclusion, two novel multi-inlets setups are proposed to further improve the generated gas field and the simulation results show that the most superior gas field can be achieved with the one including 8 larger central inlets and 24 smaller outskirt inlets. Finally, an actual deposition experiment is carried out and its result indicates that adopting the optimized such inlet arrangement could generate a highly uniform and homogeneous growth environment on whole deposition area.

  12. Control of evanescent field using a dynamic waveguide composed of gelatin-coated few-layer fiber.

    PubMed

    Chatterjee, Sudip K; Chaudhuri, Partha Roy

    2016-07-01

    We report here the results of our studies on dynamic refractive-index (RI) profile few-layer fibers in view of controlling the mode-field profile, in particular the evanescent tails under varying structural configuration. We experimentally fabricate dynamic RI profile few-layer fibers using thin gelatin coating on selectively etched fibers and illustrate how the excitation of various modes and the evanescent field at the interface can be controlled with changing humidity parameter. As a technology outcome of this research, we demonstrate through an optimized structural configuration a well performing fiber-optic high (70%-98%) relative humidity (RH) sensor with sensitivity as high as -1.07  dBm/%RH. PMID:27409181

  13. Electric-Field Enhancement by Nodular Defects in Multilayer Coatings Irradiated at Normal and 45 (degree) Incidence

    SciTech Connect

    Stolz, C J; Genin, F Y; Pistor,T V

    2003-09-18

    The standing-wave electric-field profile within multilayer coatings is significantly perturbated by a nodular defect. The intensity, which is proportional to the electric field squared, is increased in the high index material by {>=}3x at normal incidence and {>=}12x at 45 degrees incidence angle. Therefore it is not surprising that nodular defects are initiation sites of laser-induced damage. In this study, the impact of reflectance-band centering and incident angle are explored for a 1 {micro}m diameter nodular defect seed overcoated with a 24 layer high-reflector constructed of quarter-wave thick alternating layers of hafnia and silica. The modeling was performed using a three-dimensional finite-element analysis code.

  14. Effect of Reflow Time on Wetting Behavior, Microstructure Evolution, and Joint Strength of Sn-2.5Ag-0.5Cu Solder on Bare and Nickel-Coated Copper Substrates

    NASA Astrophysics Data System (ADS)

    Sona, Mrunali; Prabhu, K. Narayan

    2016-04-01

    The effect of reflow time on wetting behavior of Sn-2.5Ag-0.5Cu lead-free solder on bare and nickel-coated copper substrates has been investigated. The solder alloy was reflowed at 270°C for various reflow times of 10 s, 100 s, 300 s, and 500 s. On bare copper substrate, the intermetallic compound (IMC) thickness increased with increase in reflow time, whereas on Ni-coated Cu substrate, the IMC thickness increased up to 300 s followed by a drop for solder alloy reflowed for 500 s. The spreading behavior of the solder alloy was categorized into capillary, gravity (diffusion), and viscous zones. Gravity zone was obtained from 3.8 ± 0.43 s to 38.97 ± 3.38 s and from 5.99 ± 0.5 s to 77.82 ± 8.84 s for the Sn-2.5Ag-0.5Cu/Cu and Sn-2.5Ag-0.5Cu/Ni/Cu system, respectively. Sn-2.5Ag-0.5Cu solder alloy was also reflowed for the period corresponding to the end of the gravity zone (40 s and 80 s on bare and Ni-coated Cu, respectively). The joint strength was maximum at reflow time of 40 s and 80 s for the Sn-2.5Ag-0.5Cu/Cu and Sn-2.5Ag-0.5Cu/Ni/Cu system, respectively. The dynamic contact angle at the end of the gravity (diffusion) zone (θ gz) was found to be a better parameter compared with the stabilized contact angle (θ f) to assess the effect of the wettability of the liquid solder on the microstructure and joint strength. The present investigation reveals the significance of the gravity zone in assessment of optimum reflow time for lead-free solder alloys.

  15. Effect of Reflow Time on Wetting Behavior, Microstructure Evolution, and Joint Strength of Sn-2.5Ag-0.5Cu Solder on Bare and Nickel-Coated Copper Substrates

    NASA Astrophysics Data System (ADS)

    Sona, Mrunali; Prabhu, K. Narayan

    2016-07-01

    The effect of reflow time on wetting behavior of Sn-2.5Ag-0.5Cu lead-free solder on bare and nickel-coated copper substrates has been investigated. The solder alloy was reflowed at 270°C for various reflow times of 10 s, 100 s, 300 s, and 500 s. On bare copper substrate, the intermetallic compound (IMC) thickness increased with increase in reflow time, whereas on Ni-coated Cu substrate, the IMC thickness increased up to 300 s followed by a drop for solder alloy reflowed for 500 s. The spreading behavior of the solder alloy was categorized into capillary, gravity (diffusion), and viscous zones. Gravity zone was obtained from 3.8 ± 0.43 s to 38.97 ± 3.38 s and from 5.99 ± 0.5 s to 77.82 ± 8.84 s for the Sn-2.5Ag-0.5Cu/Cu and Sn-2.5Ag-0.5Cu/Ni/Cu system, respectively. Sn-2.5Ag-0.5Cu solder alloy was also reflowed for the period corresponding to the end of the gravity zone (40 s and 80 s on bare and Ni-coated Cu, respectively). The joint strength was maximum at reflow time of 40 s and 80 s for the Sn-2.5Ag-0.5Cu/Cu and Sn-2.5Ag-0.5Cu/Ni/Cu system, respectively. The dynamic contact angle at the end of the gravity (diffusion) zone ( θ gz) was found to be a better parameter compared with the stabilized contact angle ( θ f) to assess the effect of the wettability of the liquid solder on the microstructure and joint strength. The present investigation reveals the significance of the gravity zone in assessment of optimum reflow time for lead-free solder alloys.

  16. Temperature and Magnetic Field Dependence of Critical Currents in YBCO Coated Conductors with Processing-Induced Variations in Pinning Properties

    SciTech Connect

    Gapud, Albert Agcaoili; Feenstra, Roeland; Christen, David K; Thompson, James R; Holesinger, T. G.

    2005-01-01

    Several applications of high-temperature super-conducting wire require high currents at intermediate magnetic fields B and over a range of orientations; however, such conditions are at present achievable only at low temperatures (-30 K). The goal of this study is to determine the feasibility of higher operating temperatures for these applications by investigating temperature dependent, low- and high-field pinning properties of YBCO coated conductor samples. The YBCO films were grown on RABiTS templates by a PVD ex situ BaF{sub 2} process. Variations in pinning properties were induced by introducing excess yttrium (Y) in the precursor and controllably increasing the growth rate. The main result is a more uniform dependence of J{sub c} over all orientations of B, along with high irreversibility field B{sub irr} and high critical current densities J{sub c}. Results also show that for films with various pinning properties and processed under different conditions the self-field J{sub c} at 77 K is an effective indicator of performance in the temperatures and fields of interest.

  17. Formation of tough composite joints

    SciTech Connect

    Brun, M.K.

    1998-12-01

    Joints that exhibited tough fracture behavior were formed in a Si/SiC matrix reinforced with Textron SCS-6 fibers with either boron nitride or silicon nitride fiber coatings. Lapped joints (joints with overlapping fingers) were necessary to obtain tough behavior. Geometrical requirements necessary to avoid brittle joint failure were proposed. Joints with a simple overlap geometry (only a few fingers) had to be very long in order to prevent brittle failure. Joints with an optimized stepped sawtooth geometry produced composite-like failures with the stress/strain curves containing an elastic region followed by a region of rising stress with an increase of strain. Increasing the fiber/matrix interfacial strength, by changing the fiber coating, significantly increased matrix cracking and ultimate strength of the joints. The best joints had matrix cracking stress and ultimate strength of 138 and 240 MPa, respectively. Joint failure was preceded by multiple matrix cracking in the entire composite. The high strength of the joints should permit building of structures containing joints with only a minor reduction of design stresses.

  18. 75 FR 24973 - Notice Pursuant to the National Cooperative Research and Production Act of 1993-Advanced Coatings...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-06

    ... Coatings for Infrastructure Joint Venture Agreement Notice is hereby given that, on March 10, 2010... seq. (``the Act''), Advanced Coatings for Infrastructure Joint Venture Agreement (``Advanced Coatings... EMTEC, The Edison Materials Technology Center, Dayton, OH. The general area of Advanced...

  19. Comparison of laboratory and field testing performance evaluations of siloxane-polyurethane fouling-release marine coatings.

    PubMed

    Stafslien, Shane J; Sommer, Stacy; Webster, Dean C; Bodkhe, Rajan; Pieper, Robert; Daniels, Justin; Vander Wal, Lyndsi; Callow, Maureen C; Callow, James A; Ralston, Emily; Swain, Geoff; Brewer, Lenora; Wendt, Dean; Dickinson, Gary H; Lim, Chin-Sing; Teo, Serena Lay-Ming

    2016-09-01

    A series of eight novel siloxane-polyurethane fouling-release (FR) coatings were assessed for their FR performance in both the laboratory and in the field. Laboratory analysis included adhesion assessments of bacteria, microalgae, macroalgal spores, adult barnacles and pseudobarnacles using high-throughput screening techniques, while field evaluations were conducted in accordance with standardized testing methods at three different ocean testing sites over the course of six-months exposure. The data collected were subjected to statistical analysis in order to identify potential correlations. In general, there was good agreement between the laboratory screening assays and the field assessments, with both regimes clearly distinguishing the siloxane-polyurethane compositions comprising monofunctional poly(dimethyl siloxane) (PDMS) (m-PDMS) as possessing superior, broad-spectrum FR properties compared to those prepared with difunctional PDMS (d-PDMS). Of the seven laboratory screening techniques, the Cellulophaga lytica biofilm retraction and reattached barnacle (Amphibalanus amphitrite) adhesion assays were shown to be the most predictive of broad-spectrum field performance. PMID:27494780

  20. High Critical Field Superconductivity in FeSe0.1 Te0.9 Coated Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Wang, Haiyan; Cornell, Nicholas; Huang, Jijie; Salamon, Myron; Zakhidov, Anvar; Anvar Zakhidov; Haiyan Wang Team; Utd; Tamu Afosr Team

    2015-03-01

    Thin films of FeSe0.1Te0.9, grown on SrTi03, have been shown to possess an increased critical temperature, field, and current relative to both bulk samples of FeSe0.1Te0.9 and thin films of the related compound FeSe0.5Te0.5. Empirical measurement of FeSe0.1Te0.9 thin films reveal a zero temperature Hc2(0) ~ 45T. Carbon nanotubes are a promising lightweight flexible material for superconducting applications and have proven a robust substrate when conformally coated by superconducting MgB2. Thin film coatings of FeSe0.1Te0.9 have been deposited via pulsed laser deposition on dry- drawn multiwall carbon nanotube sheets drawn from CVD grown forests. While true zero resistance isn't achieved due to inter-connectivity issues or junction effects in multiwall CNT case, clear superconducting transitions with R reaching zero can be seen on other single wall CNT, and non-oriented carbon nanotube substrates. Properties of these superconducting FeSe0.1Te0.9@SWCNT thin films are discussed.

  1. Structural and tribological properties of CrTiAlN coatings on Mg alloy by closed-field unbalanced magnetron sputtering ion plating

    NASA Astrophysics Data System (ADS)

    Shi, Yongjing; Long, Siyuan; Yang, Shicai; Pan, Fusheng

    2008-09-01

    In this paper, a series of multi-layer hard coating system of CrTiAlN has been prepared by closed-field unbalanced magnetron sputtering ion plating (CFUBMSIP) technique in a gas mixture of Ar + N 2. The coatings were deposited onto AZ31 Mg alloy substrates. During deposition step, technological temperature and metallic atom concentration of coatings were controlled by adjusting the currents of different metal magnetron targets. The nitrogen level was varied by using the feedback control of plasma optical emission monitor (OEM). The structural, mechanical and tribological properties of coatings were characterized by means of X-ray photoelectron spectrometry, high-resolution transmission electron microscope, field emission scanning electron microscope (FESEM), micro-hardness tester, and scratch and ball-on-disc tester. The experimental results show that the N atomic concentration increases and the oxide on the top of coatings decreases; furthermore the modulation period and the friction coefficient decrease with the N 2 level increasing. The outstanding mechanical property can be acquired at medium N 2 level, and the CrTiAlN coatings on AZ31 Mg alloy substrates outperform the uncoated M42 high speed steel (HSS) and the uncoated 316 stainless steel (SS).

  2. Combustion Synthesis of TiB2-TiC/42CrMo4 Composites with Gradient Joint Prepared in Different High-Gravity Fields

    NASA Astrophysics Data System (ADS)

    Huang, Xuegang; Huang, Jie; Zhao, Zhongmin; Yin, Chun; Zhang, Long; Wu, Junyan

    2015-12-01

    The novel TiB2-TiC/42CrMo4-laminated composite materials were successfully fabricated by combustion synthesis in different high-gravity fields. This ceramic/metal composite material possesses continuously graded composition, and multilevel gradient microstructure, which is composed of TiB2-TiC ceramic substrate, ceramic-based intermediate layer, metal-based intermediate layer, and 42CrMo4 substrate. The ceramic-based intermediate layer is the main gradient transition region in the joint which shows that the TiB2 and TiC grains decrease gradually in size and volume fraction from the ceramic substrate to metal substrate. The experiment reveals that the increased high-gravity field not only leads to the higher combustion temperature and the remarkable thermal explosion mode, but also attributes to the enhanced interdiffusion and convection between the molten steel surface and liquid TiB2-based ceramic. So, the reliable fusion bonding of TiB2-TiC/42CrMo4 composite materials is achieved. Moreover, the phase separation and forced filling effect of high-gravity field is the key to improve the densification and bond performance of the joint. The ceramic/metal joint in the continuous gradient composition and microstructure represents not only the transitional change of Vickers hardness, but also the high shear bond strength of 420 ± 25 MPa.

  3. Enhanced crosslimb transfer of force-field learning for dynamics that are identical in extrinsic and joint-based coordinates for both limbs

    PubMed Central

    de Rugy, Aymar; Howard, Ian S.; Ingram, James N.; Wolpert, Daniel M.

    2015-01-01

    Humans are able to adapt their motor commands to make accurate movements in novel sensorimotor environments, such as when wielding tools that alter limb dynamics. However, it is unclear to what extent sensorimotor representations, obtained through experience with one limb, are available to the opposite, untrained limb and in which form they are available. Here, we compared crosslimb transfer of force-field compensation after participants adapted to a velocity-dependent curl field, oriented either in the sagittal or the transverse plane. Due to the mirror symmetry of the limbs, the force field had identical effects for both limbs in joint and extrinsic coordinates in the sagittal plane but conflicting joint-based effects in the transverse plane. The degree of force-field compensation exhibited by the opposite arm in probe trials immediately after initial learning was significantly greater after sagittal (26 ± 5%) than transverse plane adaptation (9 ± 4%; P < 0.001), irrespective of whether participants learned initially with the left or the right arm or via abrupt or gradual exposure to the force field. Thus transfer was impaired when the orientation of imposed dynamics conflicted in intrinsic coordinates for the two limbs. The data reveal that neural representations of novel dynamics are only partially available to the opposite limb, since transfer is incomplete even when force-field perturbation is spatially compatible for the two limbs, according to both intrinsic and extrinsic coordinates. PMID:26581867

  4. Method of depositing multi-layer carbon-based coatings for field emission

    DOEpatents

    Sullivan, J.P.; Friedmann, T.A.

    1999-08-10

    A novel field emitter device is disclosed for cold cathode field emission applications, comprising a multi-layer resistive carbon film. The multi-layered film of the present invention is comprised of at least two layers of a resistive carbon material, preferably amorphous-tetrahedrally coordinated carbon, such that the resistivities of adjacent layers differ. For electron emission from the surface, the preferred structure comprises a top layer having a lower resistivity than the bottom layer. For edge emitting structures, the preferred structure of the film comprises a plurality of carbon layers, wherein adjacent layers have different resistivities. Through selection of deposition conditions, including the energy of the depositing carbon species, the presence or absence of certain elements such as H, N, inert gases or boron, carbon layers having desired resistivities can be produced. Field emitters made according the present invention display improved electron emission characteristics in comparison to conventional field emitter materials. 8 figs.

  5. Method of depositing multi-layer carbon-based coatings for field emission

    DOEpatents

    Sullivan, John P.; Friedmann, Thomas A.

    1999-01-01

    A novel field emitter device for cold cathode field emission applications, comprising a multi-layer resistive carbon film. The multi-layered film of the present invention is comprised of at least two layers of a resistive carbon material, preferably amorphous-tetrahedrally coordinated carbon, such that the resistivities of adjacent layers differ. For electron emission from the surface, the preferred structure comprises a top layer having a lower resistivity than the bottom layer. For edge emitting structures, the preferred structure of the film comprises a plurality of carbon layers, wherein adjacent layers have different resistivities. Through selection of deposition conditions, including the energy of the depositing carbon species, the presence or absence of certain elements such as H, N, inert gases or boron, carbon layers having desired resistivities can be produced. Field emitters made according the present invention display improved electron emission characteristics in comparison to conventional field emitter materials.

  6. Self-fields in thin superconducting tapes: Implications for the thickness effect in coated conductors

    SciTech Connect

    Sanchez, Alvaro; Navau, Carles; Del-Valle, Nuria; Chen, Du-Xing; Clem, John R.

    2010-02-18

    A large decrease in transport current density has been observed in high-temperature superconducting films for increasing film thickness. In this work we theoretically explain the nature and the ubiquitous presence of this so-called thickness effect by analyzing the self-field created by the transport currents in the superconductor, assuming a realistic field-dependent critical-current density J{sub c}. This knowledge can help in finding ways to improve transport current in superconducting films.

  7. Quantify Plasma Response to Non-Axisymmetric (3D) Magnetic Fields in Tokamaks, Final Report for FES (Fusion Energy Sciences) FY2014 Joint Research Target

    SciTech Connect

    Strait, E. J.; Park, J. -K.; Marmar, E. S.; Ahn, J. -W.; Berkery, J. W.; Burrell, K. H.; Canik, J. M.; Delgado-Aparicio, L.; Ferraro, N. M.; Garofalo, A. M.; Gates, D. A.; Greenwald, M.; Kim, K.; King, J. D.; Lanctot, M. J.; Lazerson, S. A.; Liu, Y. Q.; Lore, J. D.; Menard, J. E.; Nazikian, R.; Shafer, M. W.; Paz-Soldan, C.; Reiman, A. H.; Rice, J. E.; Sabbagh, S. A.; Sugiyama, L.; Turnbull, A. D.; Volpe, F.; Wang, Z. R.; Wolfe, S. M.

    2014-09-30

    The goal of the 2014 Joint Research Target (JRT) has been to conduct experiments and analysis to investigate and quantify the response of tokamak plasmas to non-axisymmetric (3D) magnetic fields. Although tokamaks are conceptually axisymmetric devices, small asymmetries often result from inaccuracies in the manufacture and assembly of the magnet coils, or from nearby magnetized objects. In addition, non-axisymmetric fields may be deliberately applied for various purposes. Even at small amplitudes of order 10-4 of the main axisymmetric field, such “3D” fields can have profound impacts on the plasma performance. The effects are often detrimental (reduction of stabilizing plasma rotation, degradation of energy confinement, localized heat flux to the divertor, or excitation of instabilities) but may in some case be beneficial (maintenance of rotation, or suppression of instabilities). In general, the magnetic response of the plasma alters the 3D field, so that the magnetic field configuration within the plasma is not simply the sum of the external 3D field and the original axisymmetric field. Typically the plasma response consists of a mixture of local screening of the external field by currents induced at resonant surfaces in the plasma, and amplification of the external field by stable kink modes. Thus, validated magnetohydrodynamic (MHD) models of the plasma response to 3D fields are crucial to the interpretation of existing experiments and the prediction of plasma performance in future devices. The non-axisymmetric coil sets available at each facility allow well-controlled studies of the response to external 3D fields. The work performed in support of the 2014 Joint Research Target has included joint modeling and analysis of existing experimental data, and collaboration on new experiments designed to address the goals of the JRT. A major focus of the work was validation of numerical models through quantitative comparison to experimental data, in

  8. Simulation of automotive wrist pin joint and tribological studies of tin coated Al-Si alloy, metal matrix composites and nitrogen ceramics under mixed lubrication

    NASA Astrophysics Data System (ADS)

    Wang, Qian

    Development of automotive engines with high power output demands the application of high strength materials with good tribological properties. Metal matrix composites (MMC's) and some nitrogen ceramics are of interest to replace some conventional materials in the piston/pin/connecting rod design. A simulation study has been developed to explore the possibility to employ MMC's as bearing materials and ceramics as journal materials, and to investigate the related wear mechanisms and the possible journal bearing failure mechanisms. Conventional tin coated Al-Si alloy (Al-Si/Sn) have been studied for the base line information. A mixed lubrication model for journal bearing with a soft coating has been developed and applied to the contact and temperature analysis of the Al-Si/Sn bearing. Experimental studies were performed to reveal the bearing friction and wear behavior. Tin coating exhibited great a advantage in friction reduction, however, it suffered significant wear through pitting and debonding. When the tin wore out, the Al-Si/steel contact experienced higher friction. A cast and P/M MMC's in the lubricated contact with case hardened steel and ceramic journals were studied experimentally. Without sufficient material removal in the conformal contact situation, MMC bearings in the MMC/steel pairs gained weight due to iron transfer and surface tribochemical reactions with the lubricant additives and contact failure occurred. However, the MMC/ceramic contacts demonstrated promising tribological behavior with low friction and high wear resistance, and should be considered for new journal bearing design. Ceramics are wear resistant. Ceramic surface roughness is very crucial when the journals are in contact with the tin coated bearings. In contact with MMC bearings, ceramic surface quality and fracture toughness seem to play some important roles in affecting the friction coefficient. The wear of silicon nitride and beta sialon (A) journals is pitting due to grain

  9. Double disordered YBCO coated conductors of industrial scale: high currents in high magnetic field

    NASA Astrophysics Data System (ADS)

    Abraimov, D.; Ballarino, A.; Barth, C.; Bottura, L.; Dietrich, R.; Francis, A.; Jaroszynski, J.; Majkic, G. S.; McCallister, J.; Polyanskii, A.; Rossi, L.; Rutt, A.; Santos, M.; Schlenga, K.; Selvamanickam, V.; Senatore, C.; Usoskin, A.; Viouchkov, Y. L.

    2015-11-01

    A significant increase of critical current in high magnetic field, up to 31 T, was recorded in long tapes manufactured by employing a double-disorder route. In a double-disordered high-temperature superconductor (HTS), a superimposing of intrinsic and extrinsic disorder takes place in a way that (i) the intrinsic disorder is caused by local stoichiometry deviations that lead to defects of crystallinity that serve as pining centers in the YBa2Cu3O x-δ matrix and (ii) the extrinsic disorder is introduced via embedded atoms or particles of foreign material (e.g. barium zirconate), which create a set of lattice defects. We analyzed possible technological reasons for this current gain. The properties of these tapes over a wider field-temperature range as well as field anisotropy were also studied. Record values of critical current as high as 309 A at 31 T, 500 A at 18 Tm and 1200 A at 5 T were found in 4 mm wide tape at 4.2 K and B perpendicular to tape surface. HTS layers were processed in medium-scale equipment that allows a maximum batch length of 250 m while 22 m long batches were provided for investigation. Abnormally high ratios (up to 10) of critical current density measured at 4.2 K, 19 T to critical current density measured at 77 K, self-field were observed in tapes with the highest in-field critical current. Anisotropy of the critical current as well as angular dependences of n and α values were investigated. The temperature dependence of critical current is presented for temperatures between 4.2 and 40 K. Prospects for the suppression of the dog-bone effect by Cu plating and upscale of processing chain to >500 m piece length are discussed.

  10. Online Coupling of Flow-Field Flow Fractionation and Single Particle Inductively Coupled Plasma-Mass Spectrometry: Characterization of Nanoparticle Surface Coating Thickness and Aggregation State

    EPA Science Inventory

    Surface coating thickness and aggregation state have strong influence on the environmental fate, transport, and toxicity of engineered nanomaterials. In this study, flow-field flow fractionation coupled on-line with single particle inductively coupled plasma-mass spectrometry i...

  11. The Prediction of Long-Term Coating Performance from Short-Term Electrochemical Data. Part 2; Comparison of Electrochemical Data to Field Exposure Results for Coatings on Steel

    NASA Technical Reports Server (NTRS)

    Contu, F.; Taylor, S. R.; Calle, L. M.; Hintze, P. E.; Curran, J. P.; Li, W.

    2009-01-01

    The pace of coatings development is limited by the time required to assess their corrosion protection properties. This study takes a step f orward from Part I in that it correlates the corrosion performance of organic coatings assessed by a series of short-term electrochemical measurement with 18-month beachside exposure results of duplicate pan els. A series of 19 coating systems on A36 steel substrates were test ed in a completely blind study using the damage tolerance test (DTT). In the DTT, a through-film pinhole defect is created, and the electro chemical characteristics of the defect are then monitored over the ne xt 4 to 7 days while immersed in 0.SM NaCl. The open circuit potentia l, anodic potentiostatic polarization tests and electrochemical imped ance spectroscopy were used to study the corrosion behavior of the co ating systems. The beachside exposure tests were conducted at the Ken nedy Space Center according to ASTM D610-01. It was found that for 79 % of the coatings systems examined, the 18 month beachside exposure r esults could be predicted by two independent laboratory tests obtained within 7 days.

  12. MgB2 Coated Ellipsoids as an Approach to Investigate the Possible Enhancement of the Vortex Penetrating Field of SRF Cavities

    NASA Astrophysics Data System (ADS)

    Tan, Teng; Wolak, Matthaeus; Tajima, Tsuyoshi; Xi, Xiaoxing; Civale, Leonardo

    2015-03-01

    Superconducting rf (SRF) cavities fabricated from bulk niobium (Nb) are a key component for modern particle accelerators. The magnetic field distribution on the inner wall of an SRF cavity is inversely similar to the field distribution on top of a superconducting ellipsoid when we put it in a magnetic field parallel to its axis. By measuring the vortex penetration into the magnetized superconducting ellipsoids, we can deduct the behavior of SRF cavities. Magnesium diboride (MgB2) has potential to replace Nb as it has a higher Tc of 39 K, a lower residual resistivity of ~ 0.1 μΩ cm (at 42 K), and a higher thermodynamic critical field Hc value compared to Nb. In this work, we successfully coated uniform MgB2 layers on top of molybdenum and niobium ellipsoids. SQUID magnetometer measurements showed that the coated MgB2 layer has a Tc above 38.5 K, and can provide a perfect magnetic shielding up to ~ 500 Oe at 1.8K. By coating MgB2 on Nb ellipsoids, we increased the vortex penetration field (the maximum field at which a cavity can be operated) by ~ 500 Oe at 2 K.

  13. Flux distributions in jointed ? tapes

    NASA Astrophysics Data System (ADS)

    Koblischka, M. R.; Johansen, T. H.; Bratsberg, H.; Vase, P.

    1998-06-01

    Superconducting joints between monofilamentary, Ag-sheathed 0953-2048/11/6/005/img8 tapes were investigated by means of magneto-optic imaging. Two types of joint were studied; one joint with direct contact between the tape cores, and the other one with an Ag layer between them. The local flux distributions directly reveal the obstacles hindering the current flow through the joints. The direct contact of the tape cores provides joints which can carry about 80% of the current of the original tape, whereas the joints with the Ag layer are considerably worse. This difference becomes even more drastic in applied magnetic fields.

  14. Correlation between effective and ambient neutron doses in radiation fields of nuclear-physics facilities at the joint institute for nuclear research

    NASA Astrophysics Data System (ADS)

    Guseva, S. V.; Lesovaya, E. N.; Timoshenko, G. N.

    2015-01-01

    The questions of a correlation between normative and operational quantities in the dosimetry of ionizing radiation still attract the attention of professionals working in the field. Since the neutron fields of nuclear-physics facilities at the Joint Institute for Nuclear Research (JINR) are highly varied, the question of whether the ambient neutron dose always serves as a conservative estimate of the effective dose (in the terms of which the dose limits are set) is of practical importance for radiation monitoring at JINR. We studied the correlation between the calculated values of effective and ambient neutron doses obtained based on a representative set of neutron spectra measured at JINR with the use of a multisphere neutron spectrometer. It is demonstrated that measuring the ambient neutron dose may not serve as a confirmation of compliance with the set dose limits in "hard" neutron fields.

  15. Preliminary Sensorimotor and Cardiovascular Results from the Joint Russian/U.S. Pilot Field Test in Preparation for the Full Field Test

    NASA Technical Reports Server (NTRS)

    Reschke, M. F.; Kozlovskaya, I. B.; Tomilovskaya, E. S.; Bloomberg, J. J.; Platts, S. H.; Rukavishnikov, I. V.; Fomina, E. V.; Stenger, M. B.; Lee, S. M. C.; Wood, S. J.; Mulavara, A. P.; Feiveson, A. H.; Cerisano, J. M..; Kofman, I. S.; Fisher, E. A.

    2014-01-01

    Ongoing collaborative research efforts between NASA's Neuroscience and Cardiovascular Laboratories, and the Institute of Biomedical Problems' (IBMP) Sensory-Motor and Countermeasures Laboratories have been measuring functional sensorimotor, cardiovascular and strength responses following bed rest, dry immersion, short-duration (Space Shuttle) and long-duration (Mir and International Space Station [ISS]) space flights. While the unloading paradigms associated with dry immersion and bed rest does serve as acceptable flight analogs, testing of crew responses following the long-duration flights previously has not been possible until a minimum of 24 hours after landing. As a result, it is not possible to estimate the nonlinear trend of the early (<24 hours) recovery process nor is it possible to accurately assess the full impact of the decrements associated with long-duration flight. To overcome these limitations, both the Russian and U.S. programs have implemented testing at the landing site. By joint agreement, this research effort has been identified as the functional Field Test (FT). For practical reasons the FT has been divided into two phases: the full FT and a preliminary pilot version (PFT) of the FT that is reduced in both length and scope. The primary goal of this research is to determine functional abilities in long-duration space-flight crews beginning as soon after landing as possible (< 2 hours) with one to three immediate follow-up measurements on the day of landing. This goal has both sensorimotor and cardiovascular elements, including evaluations of NASA's new anti-orthostatic compression garment and the Russian Kentavr garment. Functional sensorimotor measurements will include, but are not limited to, assessing hand/eye coordination, egressing from a seated position, walking normally without falling, measuring of dynamic visual acuity, discriminating different forces generated with both the hands and legs, recovering from a fall, coordinated walking

  16. Early jointing in coal and black shale: Evidence for an Appalachian-wide stress field as a prelude to the Alleghanian orogeny

    SciTech Connect

    Engelder, T.; Whitaker, A.

    2006-07-15

    Early ENE-striking joints (present coordinates) within both Pennsylvanian coal and Devonian black shale of the Central and Southern Appalachians reflect an approximately rectilinear stress field with a dimension > 1500 km. This Appalachian-wide stress field (AWSF) dates from the time of joint propagation, when both the coal and shale were buried to the oil window during the 10-15 m.y. period straddling the Pennsylvanian-Permian boundary. The AWSF was generated during the final assembly of Pangea as a consequence of plate-boundary tractions arising from late-stage oblique convergence, where maximum horizontal stress, S-H, of the AWSF was parallel to the direction of closure between Gondwana and Laurentia. After closure, the AWSF persisted during dextral slip of peri-Gondwanan microcontinents, when SH appears to have crosscut plate-scale trans-current faults at around 30{sup o}. Following > 10 m.y. of dextral slip during tightening of Gondwana against Laurentia, the AWSF was disrupted by local stress fields associated with thrusting on master basement decollements to produce the local orocline-shaped Alleghanian map pattern seen today.

  17. Hypermobile joints

    MedlinePlus

    ... too far. In children with hypermobility syndrome, those ligaments are loose or weak. This may lead to: Arthritis, which may develop over time Dislocated joints, which is a separation of two bones where they meet at a joint Sprains and strains Children with hypermobile joints also often have flat ...

  18. Joint Disorders

    MedlinePlus

    A joint is where two or more bones come together, like the knee, hip, elbow, or shoulder. Joints can be damaged by many types of injuries or diseases, including Arthritis - inflammation of a joint. It causes pain, stiffness, and swelling. Over time, ...

  19. Cellular Pressure-Actuated Joint

    NASA Technical Reports Server (NTRS)

    McGuire, John R.

    2003-01-01

    A modification of a pressure-actuated joint has been proposed to improve its pressure actuation in such a manner as to reduce the potential for leakage of the pressurizing fluid. The specific joint for which the modification is proposed is a field joint in a reusable solid-fuel rocket motor (RSRM), in which the pressurizing fluid is a mixture of hot combustion gases. The proposed modification could also be applicable to other pressure-actuated joints of similar configuration.

  20. The Scientific Use of the UKRVO Joint Digital Archive: GRBs Fields, Pluto, and Satellites of Outer Planets

    NASA Astrophysics Data System (ADS)

    Vavilova, I.; Golovnya, V.; Andruk, V.; Pakuliak, L.; Yizhakevych, O.; Shatokhina, S.; Protsyuk, Yu.; Kazantseva, L.; Lukianchuk, V.

    In the framework of UkrVO national project the new methods of plate digital image processing are developed. The photographic material of the UkrVO Joint Digital Archive (JDA - http://gua.db.ukr-vo.org/vo-mao/DB/archivespecial.php) is used for the solution of classic astrometric problem - positional and photometric determinations of objects registered on the plates. The results of tested methods show that the positional rms errors are better than ±150 mas for both coordinates and photometric ones are better than ±0.20m with the Tycho-2 catalogue as reference.

  1. High-Performance Stable Field Emission with Ultralow Turn on Voltage from rGO Conformal Coated TiO2 Nanotubes 3D Arrays.

    PubMed

    Agrawal, Yogyata; Kedawat, Garima; Kumar, Pawan; Dwivedi, Jaya; Singh, V N; Gupta, R K; Gupta, Bipin Kumar

    2015-01-01

    A facile method to produce conformal coated reduced graphene oxide (rGO) on vertically aligned titanium oxide (TiO2) nanotubes three dimensional (3D) arrays (NTAs) is demonstrated for enhanced field emission display applications. These engineered nano arrays exhibit efficient electron field emission properties such as high field emission current density (80 mA/cm(2)), low turn-on field (1.0 V/μm) and field enhancement factor (6000) with high emission current stability. Moreover, these enhancements observed in nano arrays attribute to the contribution of low work function with non-rectifying barriers, which allow an easy injection of electrons from the conduction band of TiO2 into the Fermi level of reduced graphene oxide under external electric field. The obtained results are extremely advantageous for its potential application in field emission devices. PMID:26152895

  2. High-Performance Stable Field Emission with Ultralow Turn on Voltage from rGO Conformal Coated TiO2 Nanotubes 3D Arrays

    PubMed Central

    Agrawal, Yogyata; Kedawat, Garima; Kumar, Pawan; Dwivedi, Jaya; Singh, V. N.; Gupta, R. K.; Gupta, Bipin Kumar

    2015-01-01

    A facile method to produce conformal coated reduced graphene oxide (rGO) on vertically aligned titanium oxide (TiO2) nanotubes three dimensional (3D) arrays (NTAs) is demonstrated for enhanced field emission display applications. These engineered nano arrays exhibit efficient electron field emission properties such as high field emission current density (80 mA/cm2), low turn-on field (1.0 V/μm) and field enhancement factor (6000) with high emission current stability. Moreover, these enhancements observed in nano arrays attribute to the contribution of low work function with non-rectifying barriers, which allow an easy injection of electrons from the conduction band of TiO2 into the Fermi level of reduced graphene oxide under external electric field. The obtained results are extremely advantageous for its potential application in field emission devices. PMID:26152895

  3. New method of determination of spot welding-adhesive joint fatigue life using full field strain evolution

    NASA Astrophysics Data System (ADS)

    Sadowski, T.; Kneć, M.

    2016-04-01

    Fatigue tests were conducted since more than two hundred years ago. Despite this long period, as fatigue phenomena are very complex, assessment of fatigue response of standard materials or composites still requires a long time. Quite precise way to estimate fatigue parameters is to test at least 30 standardized specimens for the analysed material and further statistical post processing is required. In case of structural elements analysis like hybrid joints (Figure 1), the situation is much more complex as more factors influence the fatigue load capacity due to much more complicated structure of the joint in comparison to standard materials specimen, i.e. occurrence of: welded hot spots or rivets, adhesive layers, local notches creating the stress concentrations, etc. In order to shorten testing time some rapid methods are known: Locati's method [1] - step by step load increments up to failure, Prot's method [2] - constant increase of the load amplitude up to failure; Lehr's method [2] - seeking for the point during regular fatigue loading when an increase of temperature or strains become non-linear. The present article proposes new method of the fatigue response assessment - combination of the Locati's and Lehr's method.

  4. Qualification of the RSRM field joint CF case-to-insulation bondline inspection using the Thiokol Corporation ultrasonic RSRM bondline inspection system

    NASA Technical Reports Server (NTRS)

    Cook, M.

    1990-01-01

    Qualification testing of Combustion Engineering's AMDATA Intraspect/98 Data Acquisition and Imaging System that applies to the redesigned solid rocket motor field joint capture feature case-to-insulation bondline inspection was performed. Testing was performed at M-111, the Thiokol Corp. Inert Parts Preparation Building. The purpose of the inspection was to verify the integrity of the capture feature area case-to-insulation bondline. The capture feature scanner was calibrated over an intentional 1.0 to 1.0 in. case-to-insulation unbond. The capture feature scanner was then used to scan 60 deg of a capture feature field joint. Calibration of the capture feature scanner was then rechecked over the intentional unbond to ensure that the calibration settings did not change during the case scan. This procedure was successfully performed five times to qualify the unbond detection capability of the capture feature scanner. The capture feature scanner qualified in this test contains many points of mechanical instability that can affect the overall ultrasonic signal response. A new generation scanner, designated the sigma scanner, should be implemented to replace the current configuration scanner. The sigma scanner eliminates the unstable connection points of the current scanner and has additional inspection capabilities.

  5. Analysis of Thermal-Hydraulic Gravity/ Buoyancy Effects in the Testing of the ITER Poloidal Field Full Size Joint Sample (PF-FSJS)

    SciTech Connect

    Zanino, R.; Savoldi Richard, L.; Bruzzone, P.; Ciazynski, D.; Nicollet, S.

    2004-06-23

    The PF-FSJS is a full-size joint sample, based on the NbTi dual-channel cable-in-conduit conductor (CICC) design currently foreseen for the International Thermonuclear Experimental Reactor (ITER) Poloidal Field coil system. It was tested during the summer of 2002 in the Sultan facility of CRPP at a background peak magnetic field of typically 6 T. It includes about 3 m of two jointed conductor sections, using different strands but with identical layout. The sample was cooled by supercritical helium at nominal 4.5-5.0 K and 0.9-1.0 MPa, in forced convection from the top to the bottom of the vertical configuration. A pulsed coil was used to test AC losses in the two legs resulting, above a certain input power threshold, in bundle helium backflow from the heated region. Here we study the thermal-hydraulics of the phenomenon with the M and M code, with particular emphasis on the effects of buoyancy on the helium dynamics, as well as on the thermal-hydraulic coupling between the wrapped bundles of strands in the annular cable region and the central cooling channel. Both issues are ITER relevant, as they affect the more general question of the heat removal capability of the helium in this type of conductors.

  6. Transition of PS300 Solid Lubricant Coating Technology to Field Aided by Demonstration on Key Substrate Alloys

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher

    2003-01-01

    PS300 is a high-temperature solid lubricant coating originally developed to lubricate nickel-based superalloy shafts operating against foil air bearings in Oil-Free turbomachinery applications. PS300 is a plasma-spray-deposited coating developed at the NASA Glenn Research Center. It is available for non-exclusive licensing and has found applications in aerospace and industry. PS300 reduces friction and wear from below room temperature to over 650 C in both oxidizing and reducing environments. Early development centered on coating nickel-based shafts for use in turbomachinery. Potential industrial and aerospace customers, however, expressed interest in using the coating on a wide variety of substrates including steels, stainless steels, and nonferrous alloys like aluminum and titanium. To support this interest, a research program was carried out at Glenn in which nine different substrate candidate materials were evaluated for suitability with the PS300 coating. The materials were first coated with PS300 and then tested for coating strength and adhesion both before and after exposure to high-temperature air.

  7. A study of lubrication, processing conditions, and material combinations that affect the wear of micro-textured-carbide coated cobalt-chromium-molybdenum alloy surfaces used for artificial joints implants

    NASA Astrophysics Data System (ADS)

    Ettienne-Modeste, Geriel A.

    Total joint replacement remains one of the most successful treatments for arthritis. The most common materials used for artificial joints are metals (e.g., cobalt-chrome alloys or titanium alloys), which articulate against ultra-high molecular weight polyethylene. Wear related failures of artificial joints may be reduced with the use of novel micro-textured carbide surfaces. The micro-textured carbide surfaces were deposited on a CoCrMo alloy using microwave plasma-assisted chemical vapor deposition. Wear tests were conducted to determine wear mechanisms and properties of the micro-textured surfaces. The research presented in this thesis addresses: (1) rheolgoical behavior of bovine calf serum with and without antibacterial agents to determine whether they can be used as appropriate models for synovial fluid, (2) the wear behavior of the micro-textured CoCrMo surface system, and (3) the mechanical and material properties of the micro-textured CoCrMo alloy surface relevant to wear performance. The rheological studies showed that the apparent viscosity of bovine calf serum increased with an increase in concentration before and after the serum was used for wear testing. The wear analysis showed that the processing conditions (2hr deposition vs. 4hr deposition times) affected the wear properties. The 2hr carbide-on-carbide lubricated in 50% BCS produced the lowest wear factor and rate for the five wear couple systems containing the carbide disk or plate material. Greater wear was produced in serum without penicillin/streptomycin (P/S) compared to the serum containing P/S. A greater carbide coating thickness 10 (micrometers) was produced during the 4hr deposition time than for the 2hr deposition (˜3mum). The nano-hardness value was higher than the micro-hardness for both the 4hr and 2hr carbide surfaces. The micro-hardness results of the worn carbide surfaces showed that an increase in BCS concentration from 0% to 100% increased the micro-hardness (HV) for carbide

  8. Joint inversion of marine seismic AVA and CSEM data using statistical rock-physics models and Markov random fields: Stochastic inversion of AVA and CSEM data

    SciTech Connect

    Chen, J.; Hoversten, G.M.

    2011-09-15

    Joint inversion of seismic AVA and CSEM data requires rock-physics relationships to link seismic attributes to electrical properties. Ideally, we can connect them through reservoir parameters (e.g., porosity and water saturation) by developing physical-based models, such as Gassmann’s equations and Archie’s law, using nearby borehole logs. This could be difficult in the exploration stage because information available is typically insufficient for choosing suitable rock-physics models and for subsequently obtaining reliable estimates of the associated parameters. The use of improper rock-physics models and the inaccuracy of the estimates of model parameters may cause misleading inversion results. Conversely, it is easy to derive statistical relationships among seismic and electrical attributes and reservoir parameters from distant borehole logs. In this study, we develop a Bayesian model to jointly invert seismic AVA and CSEM data for reservoir parameter estimation using statistical rock-physics models; the spatial dependence of geophysical and reservoir parameters are carried out by lithotypes through Markov random fields. We apply the developed model to a synthetic case, which simulates a CO{sub 2} monitoring application. We derive statistical rock-physics relations from borehole logs at one location and estimate seismic P- and S-wave velocity ratio, acoustic impedance, density, electrical resistivity, lithotypes, porosity, and water saturation at three different locations by conditioning to seismic AVA and CSEM data. Comparison of the inversion results with their corresponding true values shows that the correlation-based statistical rock-physics models provide significant information for improving the joint inversion results.

  9. Experimental Demonstration of Extended Depth-of-Field F/1.2 Visible High Definition Camera with Jointly Optimized Phase Mask and Real-Time Digital Processing

    NASA Astrophysics Data System (ADS)

    Burcklen, M.-A.; Diaz, F.; Lepretre, F.; Rollin, J.; Delboulbé, A.; Lee, M.-S. L.; Loiseaux, B.; Koudoli, A.; Denel, S.; Millet, P.; Duhem, F.; Lemonnier, F.; Sauer, H.; Goudail, F.

    2015-10-01

    Increasing the depth of field (DOF) of compact visible high resolution cameras while maintaining high imaging performance in the DOF range is crucial for such applications as night vision goggles or industrial inspection. In this paper, we present the end-to-end design and experimental validation of an extended depth-of-field visible High Definition camera with a very small f-number, combining a six-ring pyramidal phase mask in the aperture stop of the lens with a digital deconvolution. The phase mask and the deconvolution algorithm are jointly optimized during the design step so as to maximize the quality of the deconvolved image over the DOF range. The deconvolution processing is implemented in real-time on a Field-Programmable Gate Array and we show that it requires very low power consumption. By mean of MTF measurements and imaging experiments we experimentally characterize the performance of both cameras with and without phase mask and thereby demonstrate a significant increase in depth of field of a factor 2.5, as it was expected in the design step.

  10. Regional gravity field modeling using radial basis functions: results from IAG's Joint Study Group JSG0.3 and real data GOCE applications

    NASA Astrophysics Data System (ADS)

    Eicker, Annette; Schall, Judith; Lieb, Verena; Bentel, Katrin; Schmidt, Michael; Buße, Kirsten; Kusche, Jürgen; Gerlach, Christian

    2014-05-01

    Traditionally, the gravity field of the Earth is modeled as a series expansion into globally defined spherical harmonic basis functions. However, it is well-known that spherical harmonic approaches have problems to properly represent data of heterogeneous density and quality. These and other deficiencies can be overcome using regional modeling approaches, which allow to more flexibly adjust the analysis procedure to the gravity field signal in certain geographical areas. Therefore, different sophisticated regional gravity field modeling approaches have been developed in recent years. In order to systematically compare the different approaches, the IAG ICCT Joint Study Group JSG0.3 "Comparison of Current Methodologies in Regional Gravity Field Modeling" has recently created synthetic test data sets. In this presentation we will discuss and compare the results obtained from the test data sets using a parameterization by different types of radial basis functions as provided by the groups of the University of Bonn, the German Geodetic Research Institute (DGFI) and the Norwegian University of Life Sciences. Furthermore, we will present the improvements that can be obtained by regional processing techniques compared to global spherical harmonic modeling at the example of GOCE real data applications.

  11. Fabrication of cone-shaped CNF/SiC-coated Si-nanocone composite structures and their excellent field emission performance

    NASA Astrophysics Data System (ADS)

    Teng, I.-Ju; Hsu, Hui-Lin; Jian, Sheng-Rui; Kuo, Cheng-Tzu; Juang, Jenh-Yih

    2012-11-01

    Novel cone-shaped carbon nanofiber (CNF)/silicon carbide (SiC)-coated Si-nanocone (Si-NC) composite structures with excellent field emission (FE) performance have been fabricated by a simple microwave plasma chemical vapour deposition process. Transmission electron microscopy analyses reveal that the newly developed cone-shaped composite structures are composed of bamboo-like herringbone CNFs grown vertically on the tips of conical SiC layers with a flat-top Si cone embedded underneath. For this CNF/SiC-coated Si-NC composite array, a ultra-low threshold field of 0.32 V μm-1 (at 10 mA cm-2), a large emission current density of 668 mA cm-2 at 1.05 V μm-1, and a field enhancement factor as high as ~48 349 are obtained. In addition, the FE lifetime test performed at a large emission current density of 200 mA cm-2 under an applied field of 1 V μm-1 shows no discernible decay during a period of over 260 minutes. We deduce that this superior FE performance can be attributed to the specific bamboo-like herringbone CNFs with numerous open graphitic edges and a faceted top end, and the conical base SiC/Si structures with sufficient adhesion to the substrate surface. Such a novel structure with promising emission characteristics makes it a potential material for electron field emitters.

  12. Fabrication of cone-shaped CNF/SiC-coated Si-nanocone composite structures and their excellent field emission performance.

    PubMed

    Teng, I-Ju; Hsu, Hui-Lin; Jian, Sheng-Rui; Kuo, Cheng-Tzu; Juang, Jenh-Yih

    2012-12-01

    Novel cone-shaped carbon nanofiber (CNF)/silicon carbide (SiC)-coated Si-nanocone (Si-NC) composite structures with excellent field emission (FE) performance have been fabricated by a simple microwave plasma chemical vapour deposition process. Transmission electron microscopy analyses reveal that the newly developed cone-shaped composite structures are composed of bamboo-like herringbone CNFs grown vertically on the tips of conical SiC layers with a flat-top Si cone embedded underneath. For this CNF/SiC-coated Si-NC composite array, a ultra-low threshold field of 0.32 V μm(-1) (at 10 mA cm(-2)), a large emission current density of 668 mA cm(-2) at 1.05 V μm(-1), and a field enhancement factor as high as ~48,349 are obtained. In addition, the FE lifetime test performed at a large emission current density of 200 mA cm(-2) under an applied field of 1 V μm(-1) shows no discernible decay during a period of over 260 minutes. We deduce that this superior FE performance can be attributed to the specific bamboo-like herringbone CNFs with numerous open graphitic edges and a faceted top end, and the conical base SiC/Si structures with sufficient adhesion to the substrate surface. Such a novel structure with promising emission characteristics makes it a potential material for electron field emitters. PMID:23108379

  13. Magnetisation and field quality of a cosine-theta dipole magnet wound with coated conductors for rotating gantry for hadron cancer therapy

    NASA Astrophysics Data System (ADS)

    Amemiya, Naoyuki; Sogabe, Yusuke; Sakashita, Masaki; Iwata, Yoshiyuki; Noda, Koji; Ogitsu, Toru; Ishii, Yusuke; Kurusu, Tsutomu

    2016-02-01

    Electromagnetic field analyses were carried out to study the influence of coated-conductor magnetisation, i.e. the screening (shielding) current, on the field quality of a dipole magnet in a rotating gantry for hadron cancer therapy. The analyses were made on the cross section of a cosine-theta dipole magnet in a rotating gantry for carbon ions, which generated 2.90 T of magnetic field. The temporal profile (temporal variation) of the magnet current was determined based on the actual excitation schemes of the magnets in the rotating gantry. The experimentally determined superconducting property of a coated conductor was considered, and we calculated the temporal evolutions of the current-density distributions in all the turns of coated conductors in the magnet. From the obtained current-density distributions, we calculated the multipole components of the magnetic field and evaluated the field quality of the magnet. The deviation in the dipole component from its designed value was up to approximately 25 mT, which was approximately 1% of the designed maximum dipole component. Its variation between repeated excitations was approximately 0.03%, and it drifted approximately 0.06% in 10 s. Some compensation schemes might be required to counteract such influence of magnetisation on the dipole component. Meanwhile, the higher multipole components were small, stable, and sufficiently reproducible for a magnet in rotating gantries, i.e. |b 3| ˜ 1.1 × 10-3 and |Δb 3| ˜ 0.2 × 10-3 in 10 s.

  14. Ceramic joints

    DOEpatents

    Miller, Bradley J.; Patten, Jr., Donald O.

    1991-01-01

    Butt joints between materials having different coefficients of thermal expansion are prepared having a reduced probability of failure of stress facture. This is accomplished by narrowing/tapering the material having the lower coefficient of thermal expansion in a direction away from the joint interface and not joining the narrow-tapered surface to the material having the higher coefficient of thermal expansion.

  15. Study of the efficacy of a Wheaton coated bottle with permethrin and deltamethrin in laboratory conditions and a WHO impregnated paper with bendiocarb in field conditions

    PubMed Central

    Aïzoun, Nazaire; Azondekon, Roseric; Aïkpon, Rock; Gnanguenon, Virgile; Osse, Razaki; Asidi, Alex; Akogbéto, Martin

    2014-01-01

    Objective To determine the efficacy of WHO impregnated paper and CDC coated bottle based on number of storage days and number of times of consecutive use, in the assessment of insecticide vector susceptibility tests in laboratory and field conditions. Methods Larvae and pupae of Anopheles gambiae s.l. mosquitoes were collected from the breeding sites in Seme-Kpodji and Cotonou districts in Southern Benin in April 2013 during the first rainy season. Anopheles gambiae s.l. mosquitoes were also collected from the breeding sites in Parakou district in Northern Benin in May 2013 at the beginning of the rainy season. Susceptibility tests were done using impregnated paper with bendiocarb (0.1%) following WHO protocol and stock solutions of permethrin (21.5 µg per bottle) and deltamethrin (12.5 µg per bottle) following CDC protocol on unfed female mosquitoes aged 2–5 days old. These bioassays were repeated a certain number of times. The temperature and relative humidity were monitored and recorded during the susceptibility tests. Results This study showed that a WHO impregnated paper with bendiocarb could be used four times during four consecutive days in field conditions. Regarding a Wheaton coated bottle with permethrin or deltamethrin, they could be used at least three times during four consecutive days in laboratory conditions. Conclusions The day storage and the number of times that a WHO impregnated paper and a CDC coated bottle maintained their efficacy are useful in the assessment of insecticide vectors susceptibility tests. PMID:25182952

  16. Joint Geosat-NASA/JPL Test Case Program: field evaluation of future geological satellite remote-sensing systems

    SciTech Connect

    Henderson, F.B.

    1985-02-01

    The principal industrial users of land-observation satellite systems are several hundred oil and gas, mining, and engineering or environmental companies worldwide. The primary system used is Landsat/MSS (Multispectral Scanner), the data from which are now used operationally as an improved geologic mapping tool to help direct more expensive geophysical surveying and drilling, thus assisting exploration decision making. Use is also made of SKYLAB photography, SEASAT and SIR-A (Shuttle Imaging Radar) radar, and the new Landsat/TM (Thematic Mapper) data. Industrial use will soon be made of data from France's SPOT (1985), India's IRS (1986), the European Space Agency's ERS (1987), Canada's RADARSAT (1990), and Japan's JERS (1991) remote-sensing satellites. Data representing these systems were evaluated during the 7-yr, $10 million joint Geosat Committee-NASA/JPL Test Case Program. Begun in 1977, the objective of this program was to assess, in known geologic areas, the value of existing and potential satellite remote-sensing methods for petroleum exploration, mineral exploration, and engineering geology applications. The published study includes an evaluation of sensors, data-processing techniques, and interpretation methods. Some conclusions include the following. The Landsat/TM combines the visible and very near Infrared (IR) spectral bands of the MSS, with the shortwave IR 1.6-2.2 ..mu..m band region, which can indicate the presence of clays, carbonates, and sulfates. This system allows greater rock and soil discrimination than the MSS alone. Similarly, the TM bands demonstrate numerous, as yet little understood, geobotanical anomalies clearly related to leaking gas over oil and gas deposits.

  17. Self-Cleaning Coatings and Materials for Decontaminating Field-Deployable Land and Water-Based Optical Systems

    NASA Technical Reports Server (NTRS)

    Ryan, Robert; Underwood, Lauren; Holekamp, Kara; May, George; Spiering, Bruce; Davis, Bruce

    2011-01-01

    This technology exploits the organic decomposition capability and hydrophilic properties of the photocatalytic material titanium dioxide (TiO2), a nontoxic and non-hazardous substance, to address contamination and biofouling issues in field-deployed optical sensor systems. Specifically, this technology incorporates TiO2 coatings and materials applied to, or integrated as a part of, the optical surfaces of sensors and calibration sources, including lenses, windows, and mirrors that are used in remote, unattended, ground-based (land or maritime) optical sensor systems. Current methods used to address contamination or biofouling of these optical surfaces in deployed systems are costly, toxic, labor intensive, and non-preventative. By implementing this novel technology, many of these negative aspects can be reduced. The functionality of this innovative self-cleaning solution to address the problem of contamination or biofouling depends on the availability of a sufficient light source with the appropriate spectral properties, which can be attained naturally via sunlight or supplemented using artificial illumination such as UV LEDs (light emitting diodes). In land-based or above-water systems, the TiO2 optical surface is exposed to sunlight, which catalyzes the photocatalytic reaction, facilitating both the decomposition of inorganic and organic compounds, and the activation of superhydrophilic properties. Since underwater optical surfaces are submerged and have limited sunlight exposure, supplementary UV light sources would be required to activate the TiO2 on these optical surfaces. Nighttime operation of land-based or above-water systems would require this addition as well. For most superhydrophilic self-cleaning purposes, a rainwater wash will suffice; however, for some applications an attached rainwater collector/ dispenser or other fresh water dispensing system may be required to wash the optical surface and initiate the removal of contaminates. Deployment of this

  18. Joint NASA/USAF Airborne Field Mill Program - Operation and safety considerations during flights of a Lear 28 airplane in adverse weather

    NASA Technical Reports Server (NTRS)

    Fisher, Bruce D.; Phillips, Michael R.; Maier, Launa M.

    1992-01-01

    A NASA Langley Research Center Learjet 28 research airplane was flown in various adverse weather conditions in the vicinity of the NASA Kennedy Space Center from 1990-1992 to measure airborne electric fields during the Joint NASA/USAF Airborne Field Mill Program. The objective of this program was to characterize the electrical activity in various weather phenomena common to the NASA-Kennedy area in order to refine Launch Commit Criteria for natural and triggered lightning. The purpose of the program was to safely relax the existing launch commit criteria, thereby increasing launch availability and reducing the chance for weather holds and delays. This paper discusses the operational conduct of the flight test, including environmental/safety considerations, aircraft instrumentation and modification, test limitations, flight procedures, and the procedures and responsibilities of the personnel in the ground station. Airborne field mill data were collected for all the Launch Commit Criteria during two summer and two winter deployments. These data are now being analyzed.

  19. A Case Study of the Weather Research and Forecasting Model Applied to the Joint Urban 2003 Tracer Field Experiment. Part 1: Wind and Turbulence

    NASA Astrophysics Data System (ADS)

    Nelson, Matthew A.; Brown, Michael J.; Halverson, Scot A.; Bieringer, Paul E.; Annunzio, Andrew; Bieberbach, George; Meech, Scott

    2016-02-01

    Numerical-weather-prediction models are often used to supply the mean wind and turbulence fields for atmospheric transport and dispersion plume models as they provide dense horizontally- and vertically-resolved geographic coverage in comparison to typically sparse monitoring networks. Here, the Weather Research and Forecasting (WRF) model was run over the month-long period of the Joint Urban 2003 field campaign conducted in Oklahoma City and the simulated fields important to transport and dispersion models were compared to measurements from a number of sodars, tower-based sonic anemometers, and balloon soundings located in the greater metropolitan area. Time histories of computed wind speed, wind direction, turbulent kinetic energy ( e), friction velocity (u_*), and reciprocal Obukhov length (1 / L) were compared to measurements over the 1-month field campaign. Vertical profiles of wind speed, potential temperature (θ ), and e were compared during short intensive operating periods. The WRF model was typically able to replicate the measured diurnal variation of the wind fields, but with an average absolute wind direction and speed difference of 35°c and 1.9 m s^{-1}, respectively. Using the Mellor-Yamada-Janjic (MYJ) surface-layer scheme, the WRF model was found to generally underpredict surface-layer TKE but overpredict u_* that was observed above a suburban region of Oklahoma City. The TKE-threshold method used by the WRF model's MYJ surface-layer scheme to compute the boundary-layer height ( h) consistently overestimated h derived from a θ gradient method whether using observed or modelled θ profiles.

  20. A Case Study of the Weather Research and Forecasting Model Applied to the Joint Urban 2003 Tracer Field Experiment. Part 1. Wind and Turbulence

    SciTech Connect

    Nelson, Matthew A.; Brown, Michael J.; Halverson, Scot A.; Bieringer, Paul E.; Annunzio, Andrew; Bieberbach, George; Meech, Scott

    2015-09-25

    We found that numerical-weather-prediction models are often used to supply the mean wind and turbulence fields for atmospheric transport and dispersion plume models as they provide dense horizontally- and vertically-resolved geographic coverage in comparison to typically sparse monitoring networks. Here, the Weather Research and Forecasting (WRF) model was run over the month-long period of the Joint Urban 2003 field campaign conducted in Oklahoma City and the simulated fields important to transport and dispersion models were compared to measurements from a number of sodars, tower-based sonic anemometers, and balloon soundings located in the greater metropolitan area. Time histories of computed wind speed, wind direction, turbulent kinetic energy (e), friction velocity (u* ), and reciprocal Obukhov length (1 / L) were compared to measurements over the 1-month field campaign. Vertical profiles of wind speed, potential temperature (θ ), and e were compared during short intensive operating periods. The WRF model was typically able to replicate the measured diurnal variation of the wind fields, but with an average absolute wind direction and speed difference of 35° and 1.9 m s-1 , respectively. Then, using the Mellor-Yamada-Janjic (MYJ) surface-layer scheme, the WRF model was found to generally underpredict surface-layer TKE but overpredict u* that was observed above a suburban region of Oklahoma City. The TKE-threshold method used by the WRF model’s MYJ surface-layer scheme to compute the boundary-layer height (h) consistently overestimated h derived from a θ gradient method whether using observed or modelled θ profiles.

  1. A Case Study of the Weather Research and Forecasting Model Applied to the Joint Urban 2003 Tracer Field Experiment. Part 1. Wind and Turbulence

    DOE PAGESBeta

    Nelson, Matthew A.; Brown, Michael J.; Halverson, Scot A.; Bieringer, Paul E.; Annunzio, Andrew; Bieberbach, George; Meech, Scott

    2015-09-25

    We found that numerical-weather-prediction models are often used to supply the mean wind and turbulence fields for atmospheric transport and dispersion plume models as they provide dense horizontally- and vertically-resolved geographic coverage in comparison to typically sparse monitoring networks. Here, the Weather Research and Forecasting (WRF) model was run over the month-long period of the Joint Urban 2003 field campaign conducted in Oklahoma City and the simulated fields important to transport and dispersion models were compared to measurements from a number of sodars, tower-based sonic anemometers, and balloon soundings located in the greater metropolitan area. Time histories of computed windmore » speed, wind direction, turbulent kinetic energy (e), friction velocity (u* ), and reciprocal Obukhov length (1 / L) were compared to measurements over the 1-month field campaign. Vertical profiles of wind speed, potential temperature (θ ), and e were compared during short intensive operating periods. The WRF model was typically able to replicate the measured diurnal variation of the wind fields, but with an average absolute wind direction and speed difference of 35° and 1.9 m s-1 , respectively. Then, using the Mellor-Yamada-Janjic (MYJ) surface-layer scheme, the WRF model was found to generally underpredict surface-layer TKE but overpredict u* that was observed above a suburban region of Oklahoma City. The TKE-threshold method used by the WRF model’s MYJ surface-layer scheme to compute the boundary-layer height (h) consistently overestimated h derived from a θ gradient method whether using observed or modelled θ profiles.« less

  2. A Case Study of the Weather Research and Forecasting Model Applied to the Joint Urban 2003 Tracer Field Experiment. Part 2: Gas Tracer Dispersion

    NASA Astrophysics Data System (ADS)

    Nelson, Matthew A.; Brown, Michael J.; Halverson, Scot A.; Bieringer, Paul E.; Annunzio, Andrew; Bieberbach, George; Meech, Scott

    2016-07-01

    The Quick Urban & Industrial Complex (QUIC) atmospheric transport, and dispersion modelling, system was evaluated against the Joint Urban 2003 tracer-gas measurements. This was done using the wind and turbulence fields computed by the Weather Research and Forecasting (WRF) model. We compare the simulated and observed plume transport when using WRF-model-simulated wind fields, and local on-site wind measurements. Degradation of the WRF-model-based plume simulations was cased by errors in the simulated wind direction, and limitations in reproducing the small-scale wind-field variability. We explore two methods for importing turbulence from the WRF model simulations into the QUIC system. The first method uses parametrized turbulence profiles computed from WRF-model-computed boundary-layer similarity parameters; and the second method directly imports turbulent kinetic energy from the WRF model. Using the WRF model's Mellor-Yamada-Janjic boundary-layer scheme, the parametrized turbulence profiles and the direct import of turbulent kinetic energy were found to overpredict and underpredict the observed turbulence quantities, respectively. Near-source building effects were found to propagate several km downwind. These building effects and the temporal/spatial variations in the observed wind field were often found to have a stronger influence over the lateral and vertical plume spread than the intensity of turbulence. Correcting the WRF model wind directions using a single observational location improved the performance of the WRF-model-based simulations, but using the spatially-varying flow fields generated from multiple observation profiles generally provided the best performance.

  3. Temporomandibular Joint, Closed

    MedlinePlus

    ... Oral Health > The Temporomandibular Joint, Closed The Temporomandibular Joint, Closed Main Content Title: The Temporomandibular Joint, Closed Description: The temporomandibular joint connects the lower ...

  4. Distribution of MCA-coated grits in maize fields after high wheel tractor application for disrupting orientation of Diabrotica virgifera virgifera LeConte.

    PubMed

    Wennemann, Ludger; Hummel, Hans E

    2002-01-01

    High wheel tractor applications of 4-methoxycinnamaldehyde (MCA)-coated corn granules ('grits') were conducted in Ruski Krstur (Serbia) in summer 2001 in a 5 ha corn field. Grits are a by-product after corn is harvested and separated from the cob and used as a carrier medium to disseminate MCA into the corn field. MCA is a kairomone mimic derived form Cucurbita maxima (Duchesne) used to disrupt orientation of Diabrotica virgifera virgifera LeConte towards different MCA and pheromone baited traps. The ultimate goal is to investigate the use of MCA as a mating disruptant. MCA was dissolved in an organic solvent and mixed in a cement machine with the grits. Grits were applied at rates of 17.39, 17.1 and 12.45 kg/ha on July 4th, July 19th and August 3rd. Before the impact of MCA as a disruptant can be addressed, the distribution patterns of MCA coated grits have to be thoroughly investigated. They were evaluated by counting girts deposited in 16 or 20 plastic dishes of 30-cm diameter positioned along 2 rows through the field directly after the grit application by tractor. Additionally, grits deposited on corn plant surface such as leaves, leaf axils and corn cobs were counted. Total number of grits collected in plastic dishes revealed even application rates at the first and second application but not on the third application date. Number of grits collected on plant surfaces were significantly different from each other regarding each application date. Altogether, grit distribution in the dishes as well as on the plant surface was variable. However, distribution patterns achieved so far hold promise to disseminate MCA coated grits into corn fields for orientation disruption or mating disruption of D. virgifera virgifera. PMID:12696417

  5. A Markov random field-based approach for joint estimation of differentially expressed genes in mouse transcriptome data.

    PubMed

    Lin, Zhixiang; Li, Mingfeng; Sestan, Nenad; Zhao, Hongyu

    2016-04-01

    The statistical methodology developed in this study was motivated by our interest in studying neurodevelopment using the mouse brain RNA-Seq data set, where gene expression levels were measured in multiple layers in the somatosensory cortex across time in both female and male samples. We aim to identify differentially expressed genes between adjacent time points, which may provide insights on the dynamics of brain development. Because of the extremely small sample size (one male and female at each time point), simple marginal analysis may be underpowered. We propose a Markov random field (MRF)-based approach to capitalizing on the between layers similarity, temporal dependency and the similarity between sex. The model parameters are estimated by an efficient EM algorithm with mean field-like approximation. Simulation results and real data analysis suggest that the proposed model improves the power to detect differentially expressed genes than simple marginal analysis. Our method also reveals biologically interesting results in the mouse brain RNA-Seq data set. PMID:26926866

  6. Preliminary design of a special casing joint for a well equipped twin horizontal drainholes in the Oxnard field

    SciTech Connect

    Not Available

    1993-12-31

    The Oxnard field is presently under production,with a typical average monthly oil production of about 70,000 B, of which the Vaca Tar sand represents more than half.It is Unitized and operated under cyclic steam injection.The hot Tar and produced water are lifted to the surface with rod pumps equipped for injection of a diluent. The produced WOR is about 2.5 and the GOR is about 150 scf/B. The Vaca Tar sand originally contained about 400 million STB. The estimated recoverable reserve under full-scale cyclic steam injection is 100 to 120 Million STB. Under steamflood, it might reach 240 million STB. The objectives of this field test are: (1) increase well productivity by using a vertical well equipped with twin horizontal drainholes, each of about 1,000 ft. reach; (2) maximize the well draw-down by locating the horizontal wells near the base of the sand layer; (3) reduce capital cost by using twin drainholes connected to the same vertical cased well; (4) reduce operating expenses by eliminating the need for a service rig to pull-out the rods and pump before each steam injection cycle; and (5) be adaptable to other operating modes.

  7. Probing emissions of military cargo aircraft: description of a joint field measurement Strategic Environmental Research and Development Program.

    PubMed

    Cheng, Meng-Dawn; Corporan, Edwin; DeWitt, Matthew J; Spicer, Chester W; Holdren, Michael W; Cowen, Kenneth A; Laskin, Alex; Harris, David B; Shores, Richard C; Kagann, Robert; Hashmonay, Ram

    2008-06-01

    To develop effective air quality control strategies for military air bases, there is a need to accurately quantify these emissions. In support of the Strategic Environmental Research and Development Program project, the particulate matter (PM) and gaseous emissions from two T56 engines on a parked C-130 aircraft were characterized at the Kentucky Air National Guard base in Louisville, KY. Conventional and research-grade instrumentation and methodology were used in the field campaign during the first week of October 2005. Particulate emissions were sampled at the engine exit plane and at 15 m downstream. In addition, remote sensing of the gaseous species was performed via spectroscopic techniques at 5 and 15 m downstream of the engine exit. It was found that PM mass and number concentrations measured at 15-m downstream locations, after dilution-correction generally agreed well with those measured at the engine exhaust plane; however, higher variations were observed in the far-field after natural dilution of the downstream measurements was accounted for. Using carbon dioxide-normalized data we demonstrated that gas species measurements by extractive and remote sensing techniques agreed reasonably well. PMID:18581808

  8. Surface NO2 fields derived from joint use of OMI and GOME-2A observations with EMEP model output

    NASA Astrophysics Data System (ADS)

    Schneider, Philipp; Svendby, Tove; Stebel, Kerstin

    2016-04-01

    Nitrogen dioxide (NO2) is one of the most prominent air pollutants. Emitted primarily by transport and industry, NO2 has a major impact on health and economy. In contrast to the very sparse network of air quality monitoring stations, satellite data of NO2 is ubiquitous and allows for quantifying the NO2 levels worldwide. However, one drawback of satellite-derived NO2 products is that they provide solely an estimate of the entire tropospheric column, whereas what is generally needed for air quality applications are the concentrations of NO2 near the surface. Here we derive surface NO2 concentration fields from OMI and GOME-2A tropospheric column products using the EMEP chemical transport model as auxiliary information. The model is used for providing information of the boundary layer contribution to the total tropospheric column. For preparation of deriving the surface product, a comprehensive model-based analysis of the spatial and temporal patterns of the NO2 surface-to-column ratio in Europe was carried out for the year 2011. The results from this analysis indicate that the spatial patterns of the surface-to-column ratio vary only slightly. While the highest ratio values can be found in some shipping lanes, the spatial variability of the ratio in some of the most polluted areas of Europe is not very high. Some but not all urban agglomeration shows high ratio values. Focusing on the temporal behavior, the analysis showed that the European-wide average ratio varies throughout the year. The surface-to-column ratio increases from January all the way through April when it reaches its maximum, then decreases relatively rapidly to average levels and then stays mostly constant throughout the summer. The minimum ratio is observed in December. The knowledge gained from analyzing the spatial and temporal patterns of the surface-to-column ratio was then used to produce surface NO2 products from the daily NO2 data for OMI and GOME-2A. This was carried out using two methods

  9. Joint Problems

    MedlinePlus

    ... ankles and toes. Other types of arthritis include gout or pseudogout. Sometimes, there is a mechanical problem ... for more information on osteoarthritis, rheumatoid arthritis and gout. How Common are Joint Problems? Osteoarthritis, which affects ...

  10. Joint pain

    MedlinePlus

    ... or conditions. It may be linked to arthritis , bursitis , and muscle pain . No matter what causes it, ... Autoimmune diseases such as rheumatoid arthritis and lupus Bursitis Chondromalacia patellae Crystals in the joint: gout (especially ...

  11. Compliant joint

    NASA Technical Reports Server (NTRS)

    Eklund, Wayne D. (Inventor); Kerley, James J. (Inventor)

    1990-01-01

    A compliant joint is provided for prosthetic and robotic devices which permits rotation in three different planes. The joint provides for the controlled use of cable under motion. Perpendicular outer mounting frames are joined by swaged cables that interlock at a center block. Ball bearings allow for the free rotation of the second mounting frame relative to the first mounting frame within a predetermined angular rotation that is controlled by two stop devices. The cables allow for compliance at the stops and the cables allow for compliance in six degrees of freedom enabling the duplication or simulation of the rotational movement and flexibility of a natural hip or knee joint, as well as the simulation of a joint designed for a specific robotic component for predetermined design parameters.

  12. Biofilm development in a hotspot of mixing between shallow and deep groundwater in a fractured aquifer: field evidence from joint flow, chemical and microbiological characterization

    NASA Astrophysics Data System (ADS)

    Bochet, Olivier; Le Borgne, Tanguy; Pédrot, Mathieu; Labasque, Thierry; Lavenant, Nicolas; Petton, Christophe; Dufresne, Alexis; Ben Maamar, Sarah; Chatton, Eliot; De la Bernardie, Jérôme; Aquilina, Luc

    2015-04-01

    Biofilm development in a hotspot of mixing between shallow and deep groundwater in a fractured aquifer: field evidence from joint flow, chemical and microbiological characterization Olivier Bochet1, Tanguy Le Borgne1, Mathieu Pédrot1, Thierry Labasque1, Nicolas Lavenant1, Christophe Petton1, Alexis Dufresne2,Sarah Ben Maamar1-2, Eliot Chatton1, Jérôme de la Bernardie1, Luc Aquilina1 1: Géosciences Rennes, CNRS UMR 6118, Université de Rennes 1, Campus de Beaulieu bât 14B, Rennes, France 2: Ecobio, CNRS UMR 6553, Université de Rennes 1, Campus de Beaulieu, bât 14, Rennes, France Biofilms play a major role in controlling the fluxes and reactivity of chemical species transported in hydrological systems. Their development can have either positive impacts on groundwater quality (e.g. attenuation of contaminants under natural or stimulated conditions), or possible negative effects on subsurface operations (e.g. bio-clogging of geothermal dipoles or artificial recharge systems). Micro-organisms require both electron donors and electron acceptors for cellular growth, proliferation and maintenance of their metabolic functions. The mechanisms controlling these reactions derive from the interactions occurring at the micro-scale that depend on mineral compositions, the biota of subsurface environment, but also fluid mixing, which determines the local concentrations of nutriments, electron donors and electron acceptors. Hence, mixing zones between oxygen and nutriment rich shallow groundwater and mineralized deep groundwater are often considered as potential hotspots of microbial activity, although relatively few field data document flow distributions, transport properties, chemical gradients and micro-organisms distributions across these mixing interfaces. Here we investigate the origin of a localized biofilm development observed in the fractured granite aquifer at the Ploemeur observatory (H+ network hplus.ore.fr).This biofilm composed of ferro-oxidizing bacteria is

  13. Applied magnetic field rejects the coating of ferromagnetic carbon from the surface of ferromagnetic cobalt: RAPET of CoZr2(acac)2(OiPr)8.

    PubMed

    Pol, Vilas G; Pol, Swati V; Gedanken, Aharon; Kessler, Vadim G; Seisenbaeva, Gulaim A; Sung, Mun-Gyu; Asai, Shigeo

    2005-04-01

    We present the results of the RAPET (reaction under autogenic pressure at elevated temperatures) dissociation of CoZr(2)(acac)(2)(O(i)Pr)(8) at 700 degrees C in a closed Swagelok cell under an applied magnetic field of 10 T. It produces a mixture of carbon-coated and noncoated metastable ZrO(2) nanoparticles, bare metallic Co nanoparticles, and bare carbon. The same reaction in the absence of a magnetic field produces spherical Co and ZrO(2) particles in sizes ranging from 11 to 16 nm and exhibiting, at room temperature, metastable phases: fcc for cobalt and a tetragonal phase for zirconia. The metastable phases of Co and ZrO(2) are manifested because of a carbon shell of approximately 4 nm thickness anchored to their surfaces. The effect of an applied magnetic field to synthesize morphologically different, but structurally the same, products is the key topic of the present paper. PMID:16851674

  14. Electro-mechanical properties of REBCO coated conductors from various industrial manufacturers at 77 K, self-field and 4.2 K, 19 T

    NASA Astrophysics Data System (ADS)

    Barth, C.; Mondonico, G.; Senatore, C.

    2015-04-01

    Rare-Earth-barium-copper-oxide tapes are now available from several industrial manufacturers and are very promising conductors in high field applications. Due to diverging materials and deposition processes, these manufacturers’ tapes can be expected to differ in their electro-mechanical and mechanical properties. For magnets designers, these are together with the conductors’ in-field critical current performance of the highest importance in choosing a suitable conductor. In this work, the strain and stress dependence of the current carrying capabilities as well as the stress and strain correlation are investigated for commercial coated conductors from Bruker HTS, Fujikura, SuNAM, SuperOx and SuperPower at 77 K, self-field and 4.2 K, 19 T.

  15. SAYANI'91 - A joint United States/Commonwealth of Independent States field campaign to investigate forest decline damage in the Krasnoyarsk region of southcentral Siberia

    NASA Technical Reports Server (NTRS)

    Williams, D. L.; Kharuk, V. I.; Zhirin, V. M.; Rock, B. N.; Ranson, K. J.; Wessman, C. A.; Curtiss, B.

    1992-01-01

    The field experiment described took place in the Sayani Mountains of Siberia. The purpose of the joint field campaign was to observe and exchange methodologies with Russian scientists with regard to the development of remote sensing techniques for the early detection and assessment of forest decline damage believed to be associated with atmospheric deposition and/or insect and disease infestations. Several types of passive and active remote sensing measurements were made in conjunction with biophysical measurements on vegetative samples collected from four study sites representing a strong elevational gradient. Relatively cloud-free SPOT data were also acquired over the study area. Moderate canopy damage was recorded at the mid-elevation site (3400 ft/1037 m). The lowest levels of damage were recorded at the lowest elevation site (2300 ft/701 m.) At all sites, east versus west flagging of the canopy was noted (i.e., full canopy on the west-facing side of the canopy, significantly less foliage on the east-facing side).

  16. Joint Solar Dynamics Project data summary (3rd): Solar magnetic field, chromospheric and coronal observations near the time of the 18 March 1988 solar eclipse. Technical note

    SciTech Connect

    Sime, D.G.; Garcia, C.J.; Lundin, W.E.; Yasukawa, E.A.

    1988-11-01

    The general goal of the HAO/University of Hawaii Joint Solar Dynamics Project is to establish the relationships that exist between the solar magnetic field, detected in the photosphere, and the structure and evolution of the corona. The SOLDYN programs of 1982 and 1983 demonstrated the ability to use existing instruments to gather data of value in the pursuit of that goal. The goals for the observations in 1988 are as follows: (1) document the state of the sun, from the photosphere up through the chromosphere and out into the corona for the approximately four-week interval around the total solar eclipse of 18 March 1988, and (2) identify the relationship between the photospheric magnetic fields and the temperature and density structure of the corona. This report contains the reduced observations made during this SOLDYN III period necessary to achieve these goals. They are presented both in the form of daily photographic and photoelectric measurements, and in synoptic format for the period.

  17. A model of the general ocean circulation determined from a joint solution for the Earth's gravity field

    NASA Technical Reports Server (NTRS)

    Nerem, R. S.; Tapley, B. D.; Shum, C. K.; Yuan, D. N.

    1989-01-01

    If the geoid and the satellite position are known accurately, satellite altimetry can be used to determine the geostrophic velocity of the surface ocean currents. The purpose of this investigation is to simultaneously estimate the sea surface topography, zeta, the model for the gravity field, and the satellite orbit. Satellite tracking data from fourteen satellites were used; along with Seasat and Geosat altimeter data as well as surface gravity data for the solution. The estimated model of zeta compares well at long wavelengths with the hydrographic model of zeta. Covariance studies show that the geoid is separable from zeta up to degree 9, at which point geoid error becomes comparable to the signal of zeta.

  18. Low power loss and field-insensitive permeability of Fe-6.5%Si powder cores with manganese oxide-coated particles

    SciTech Connect

    Li, Junnan E-mail: rzhgong@hust.edu.cn; Wang, Xian; Xu, Xiaojun; Gong, Rongzhou E-mail: rzhgong@hust.edu.cn; Feng, Zekun; Chen, Yajie; Harris, V. G.

    2015-05-07

    Fe-6.5%Si alloy powders coated with manganese oxides using an innovative in situ process were investigated. The in-situ coating of the insulating oxides was realized with a KMnO{sub 4} solution by a chemical process. The insulating manganese oxides with mixed valance state were verified by X-ray photoelectron spectroscopy analysis. The thickness of the insulating layer on alloy particles was determined to be in a range of 20–210 nm, depending upon the KMnO{sub 4} concentration. The powder core loss and the change in permeability under a DC-bias field were measured at frequencies ranging from 50 to 100 kHz. The experiments indicated that the Fe-6.5%Si powder cores with a 210 nm-thick manganese oxide layer not only showed a low core loss of 459 mW/cm{sup 3} at 100 kHz but also showed a small reduction in permeability (μ(H)/μ(0) = 85% for μ = 42) at a DC-bias field of 80 Oe. This work has defined a novel pathway to realizing low core loss and field-insensitive permeability for Fe-Si powder cores.

  19. Nanocluster of superparamagnetic iron oxide nanoparticles coated with poly (dopamine) for magnetic field-targeting, highly sensitive MRI and photothermal cancer therapy

    NASA Astrophysics Data System (ADS)

    Wu, Ming; Zhang, Da; Zeng, Yongyi; Wu, Lingjie; Liu, Xiaolong; Liu, Jingfeng

    2015-03-01

    In this paper, a core-shell nanocomposite of clusters of superparamagnetic iron oxide nanoparticles coated with poly(dopamine) (SPION clusters@PDA) is fabricated as a magnetic field-directed theranostic agent that combines the capabilities of highly sensitive magnetic resonance imaging (MRI) and photothermal cancer therapy. The highly concentrated SPION cluster core is suitable for sensitive MRI due to its superparamagnetic properties, and the poly(dopamine) coating layer can induce cancer cell death under near-infrared (NIR) laser irradiation because of the photothermal conversion ability of PDA. MRI scanning reveals that the nanocomposite has relatively high r2 and r2* relaxivities, and the r2* values are nearly threefold higher than the r2 values because of the clustering of the SPIONs in the nanocomposite core. Due to the rapid response to magnetic field gradients, enhanced cellular uptake of our nanocomposite mediated by an external magnetic field can be achieved, thus producing significantly enhanced local photothermal killing efficiency against cancer cells under NIR irritation.

  20. The induction of a graphite-like phase on diamond films by a Fe-coating/post-annealing process to improve their electron field emission properties

    SciTech Connect

    Huang, Pin-Chang; Shih, Wen-Ching; Chen, Huang-Chin; Lin, I-Nan

    2011-04-15

    The electron field emission (EFE) process for diamond films was tremendously enhanced by Fe-coating and post-annealing processes. Microstructural analysis indicates that the mechanism for the improvement in the EFE process is the formation of nanographites with good crystallinity that surround the Fe (or Fe{sub 3}C) nanoclusters. Presumably the nanographites were formed via the reaction of Fe clusters with diamond films, viz. by the dissolution of carbons into Fe (or Fe{sub 3}C) clusters and the reprecipitation of carbon species to the surface of the clusters, a process similar to the growth of carbon nanotubes via Fe clusters as catalyst. Not only is a sufficiently high post-annealing temperature (900 deg. C) required but also a highly active reducing atmosphere (NH{sub 3}) is needed to give a proper microstructure for enhancing the EFE process. The best EFE properties are obtained by post-annealing the Fe-coated diamond films at 900 deg. C in an NH{sub 3} environment for 5 min. The EFE behavior of the films can be turned on at E{sub 0} = 1.9 V/{mu}m, attaining a large EFE current density of 315 {mu}A/cm{sup 2} at an applied field of 8.8 V/{mu}m (extrapolation using the Fowler-Nordheim model leads to J{sub e} = 40.7 mA/cm{sup 2} at a 20 V/{mu}m applied field).

  1. Locations and monitoring well completion logs of wells surveyed by U.S. Geological Survey at Air Force Plant 4 and Naval Air Station, Joint Reserve Base, Carswell Field, Fort Worth area, Texas

    USGS Publications Warehouse

    Williams, M.D.; Kuniansky, E.L.

    1996-01-01

    Completion logs are presented for 16 monitoring wells installed by the U.S. Geological Survey at Air Force Plant 4 and Naval Air Station, Joint Reserve Base, Carswell Field, in the Fort Worth area, Texas. Natural gamma-ray logs are presented for selected monitoring wells. Also included are survey data for eight wells installed by Geo-Marine, Inc.

  2. The steady flying of a plasmonic flying head over a photoresist-coated surface in a near-field photolithography system

    NASA Astrophysics Data System (ADS)

    Ji, Jiaxin; Hu, Yueqiang; Meng, Yonggang; Zhang, Jun; Xu, Jian; Li, Shayu; Yang, Guoqiang

    2016-05-01

    The near-field photolithography technique (NFPT) offers a new approach of nanolithography for a dramatic increase in the resolution with high throughput and low cost. The NFPT utilizes the same flight principle as that of the magnetic head of hard-disk drives but replacing the magnetic head with a plasmonic flying head. The plasmonic flying head, which can focus the incident laser beam to a spot size of sub-20 nm with an enhanced field intensity by exciting surface plasmon polaritons, takes off and then flies steadily above the revolving disk coated by a photoresist film to be patterned with a narrow gap of tens of nanometers. As a key foundation of the NFPT, the take off and flight stability of the plasmonic flying head affects the pattern density and the fabrication efficiency. This work proposed and investigated a molecular glass photoresist, named FPT-8Boc, for the large-scale consistent fabrication with the NFPT. To overcome the take-off problem of the head over the soft photoresist film, a transition zone is intentionally formed by washing off the coated photoresist in the outer area of the disk using a solvent. The simulation results by COMSOL Multiphysics software and quasi-Newton iteration method review that the matched transition zone height with spreading length can guarantee the flight stability of the plasmonic flying head on the soft photoresist. Using this method, a preliminary photolithography result with a 31 nm line width has been achieved.

  3. The steady flying of a plasmonic flying head over a photoresist-coated surface in a near-field photolithography system.

    PubMed

    Ji, Jiaxin; Hu, Yueqiang; Meng, Yonggang; Zhang, Jun; Xu, Jian; Li, Shayu; Yang, Guoqiang

    2016-05-01

    The near-field photolithography technique (NFPT) offers a new approach of nanolithography for a dramatic increase in the resolution with high throughput and low cost. The NFPT utilizes the same flight principle as that of the magnetic head of hard-disk drives but replacing the magnetic head with a plasmonic flying head. The plasmonic flying head, which can focus the incident laser beam to a spot size of sub-20 nm with an enhanced field intensity by exciting surface plasmon polaritons, takes off and then flies steadily above the revolving disk coated by a photoresist film to be patterned with a narrow gap of tens of nanometers. As a key foundation of the NFPT, the take off and flight stability of the plasmonic flying head affects the pattern density and the fabrication efficiency. This work proposed and investigated a molecular glass photoresist, named FPT-8Boc, for the large-scale consistent fabrication with the NFPT. To overcome the take-off problem of the head over the soft photoresist film, a transition zone is intentionally formed by washing off the coated photoresist in the outer area of the disk using a solvent. The simulation results by COMSOL Multiphysics software and quasi-Newton iteration method review that the matched transition zone height with spreading length can guarantee the flight stability of the plasmonic flying head on the soft photoresist. Using this method, a preliminary photolithography result with a 31 nm line width has been achieved. PMID:27010406

  4. A portable x-ray source with a nanostructured Pt-coated silicon field emission cathode for absorption imaging of low-Z materials

    NASA Astrophysics Data System (ADS)

    Basu, Anirban; Swanwick, Michael E.; Fomani, Arash A.; Velásquez-García, Luis Fernando

    2015-06-01

    We report the design, fabrication, and characterization of a portable x-ray generator for imaging of low-atomic number materials such as biological soft tissue. The system uses a self-aligned, gated, Pt-coated silicon field emitter cathode with two arrays of 62 500 nano-sharp tips arranged in a square grid with 10 μm emitter pitch, and a natural convection-cooled reflection anode composed of a Cu bar coated with a thin Mo film. Characterization of the field emitter array demonstrated continuous emission of 1 mA electron current (16 mA cm  -  2) with  >95% current transmission at a 150 V gate-emitter bias voltage for over 20 h with no degradation. The emission of the x-ray source was characterized across a range of anode bias voltages to maximize the fraction of photons from the characteristic K-shell peaks of the Mo film to produce a quasi-monochromatic photon beam, which enables capturing high-contrast images of low-atomic number materials. The x-ray source operating at the optimum anode bias voltage, i.e. 35 kV, was used to image ex vivo and nonorganic samples in x-ray fluoroscopic mode while varying the tube current; the images resolve feature sizes as small as ~160 µm.

  5. Enzyme-functionalized gold-coated magnetite nanoparticles as novel hybrid nanomaterials: synthesis, purification and control of enzyme function by low-frequency magnetic field.

    PubMed

    Majouga, Alexander; Sokolsky-Papkov, Marina; Kuznetsov, Artem; Lebedev, Dmitry; Efremova, Maria; Beloglazkina, Elena; Rudakovskaya, Polina; Veselov, Maxim; Zyk, Nikolay; Golovin, Yuri; Klyachko, Natalia; Kabanov, Alexander

    2015-01-01

    The possibility of remotely inducing a defined effect on NPs by means of electromagnetic radiation appears attractive. From a practical point of view, this effect opens horizons for remote control of drug release systems, as well as modulation of biochemical functions in cells. Gold-coated magnetite nanoparticles are perfect candidates for such application. Herein, we have successfully synthesized core-shell NPs having magnetite cores and gold shells modified with various sulphur containing ligands and developed a new, simple and robust procedure for the purification of the resulting nanoparticles. The carboxylic groups displayed at the surface of the NPs were utilized for NP conjugation with a model enzyme (ChT). In the present study, we report the effect of the low-frequency AC magnetic field on the catalytic activity of the immobilized ChT. We show that the enzyme activity decreases upon exposure of the NPs to the field. PMID:25460600

  6. Electromagnetic fields backscattered from an s-shaped inlet cavity with an absorber coating on its inner walls

    NASA Technical Reports Server (NTRS)

    Burkholder, R. J.; Chuang, C. W.; Pathak, P. H.

    1987-01-01

    The EM backscatter from a two-dimensional S-shaped inlet cavity is analyzed using three different techniques, namely a hybrid combination of asymptotic high frequency and modal methods, an integral equation method, and the geometrical optics ray method, respectively. This inlet has a thin absorber coating on its perfectly conducting inner walls and the planar interior termination is made perfectly conducting. The effect of the absorber on the inner wall is treated via a perturbation scheme in the hybrid approach where it is assumed that the loss is sufficiently small for the method to be valid. The results are compared with the backscatter from a straight inlet cavity to evaluate the effect of offsetting the termination in the S-bend configuration such that it is not visible from the open end of the inlet. The envelope of the backscatter pattern for the straight inlet is always seen to peak around the forward axis due to the large return from the directly visible termination, and the pattern envelope tapers off away from the forward axis. Offsetting the termination causes the envelope of the backscatter pattern to flatten out, thereby reducing the return near the forward axis by several dB. The absorber coating reduces the pattern level of the straight inlet in directions away from the forward axis but has little effect on the peak near the axis; furthermore, the absorber coating is seen to consistently reduce the backscatter from the S-bend inlet for almost all incidence angles. The hybrid method gives excellent agreement with experimental data and with the integral equation solution, whereas, the geometrical optics ray tracing method is able to generally predict the average of the bachscatter pattern but not the pattern details.

  7. The CoRoT-GES Collaboration: the joint-action of asteroseismology and spectroscopy in the field of Galactic Archaeology

    NASA Astrophysics Data System (ADS)

    Valentini, Marica; Chiappini, Cristina; Miglio, Andrea; Montalbàn, Josefina; Mosser, Benoit; Morel, Thierry; Rodrigues, Thaise; Anders, Friedrich; Steinmetz, Matthias; Girardi, Leo

    2015-08-01

    Nowadays large spectroscopic surveys, as the GAIA-ESO Survey, provide unique stellar databases for better investigating the formation and evolution of our Galaxy. Great attention must be paid to the accuracy of the basic stellar properties derived: large uncertainties in stellar parameters lead to large uncertainties in abundances, distances and ages. Asteroseismology has a key role in this context: when seismic information is combined with information derived from spectroscopic analysis, highly precise constraints on distances, masses, extinction and ages of Red Giants can be obtained.In the light of this promising joint-action, we started the CoRoT-GES collaboration. GES has observed a set of 1,718 CoRoT Red Giants located in the inner disk (CoRoT field LRc01) and among these stars, 979 have reliable global seismic parameters.We present precise stellar parameters, ages, kinematical and orbital parameters and detailed element abundances for this sample of stars. We also show that, thanks to asteroseismology, we are able to obtain an higher precision than what can be achieved by the standard spectroscopic means.This sample of CoRoT Red Giants, spanning Galactocentric distances from 5 to 8 kpc and a wide age interval, provides us a unique dataset for testing modern chemo-dynamical models, by investigating the age-metallicy relation, chemical gradients and kinematics.

  8. SALINE ARTHROGRAPHY OF THE DISTAL INTERPHALANGEAL JOINT FOR LOW-FIELD MAGNETIC RESONANCE IMAGING OF THE EQUINE PODOTROCHLEAR BURSA: FEASIBILITY STUDY.

    PubMed

    McGill, Shannon L; Gutierrez-Nibeyro, Santiago D; Schaeffer, David J; Hartman, Susan K; O'Brien, Robert T; Joslyn, Stephen K

    2015-01-01

    Abnormalities of the deep digital flexor tendon, navicular bone, and collateral sesamoidean ligament can be difficult to visualize using magnetic resonance imaging (MRI) if bursal fluid is absent. The use of saline podotrochlear bursography improves podotrochlear apparatus evaluation, however, the technique has disadvantages. The objective of this prospective feasibility study was to describe saline arthrography of the distal interphalangeal joint as an alternative technique for improving MRI visualization of the deep digital flexor tendon, navicular bone, collateral sesamoidean ligament, and podotrochlear bursa, and to compare this technique with saline podotrochlear bursography. Eight paired cadaver forelimbs were sampled. Saline podotrochlear bursography or saline arthrography techniques were randomly assigned to one limb, with the alternate technique performed on the contralateral limb. For precontrast and postcontrast studies using each technique, independent observers scored visualization of the dorsal aspect of the deep digital flexor tendon, palmar aspect of the navicular bone, collateral sesamoidean ligament, and podotrochlear bursa. Both contrast techniques improved visualization of structures over precontrast MR images and visualization scores for both techniques were similar. Findings from this study demonstrated that saline arthrography is feasible and comparable to saline podotrochlear bursography for producing podotrochlear bursa distension and separation of the structures of the podotrochlear apparatus on nonweight bearing limbs evaluated with low-field MRI. Clinical evaluation of saline arthrography on live animals is needed to determine if this technique is safe and effective as an alternative to saline podotrochlear bursography in horses with suspected pathology of the podotrochlear apparatus. PMID:25857430

  9. Biofilm development in a hotspot of mixing between shallow and deep groundwater in a fractured aquifer: field evidence from joint flow, chemical and microbiological measurements

    NASA Astrophysics Data System (ADS)

    Bochet, O.; Dufresne, A.; Pédrot, M.; Chatton, E.; Labasque, T.; Ben Maamar, S.; Burté, L.; de la Bernardie, J.; Guihéneuf, N.; Lavenant, N.; Petton, C.; Bour, O.; Aquilina, L.; Le Borgne, T.

    2015-12-01

    Biofilms play a major role in controlling the fluxes and reactivity of chemical species transported in hydro-logical systems. Micro-organisms require both electron donors and electron acceptors for cellular growth, proliferation and maintenance of their metabolic functions. The mechanisms controlling these reactions derive from the interactions occurring at the micro-scale that depend on mineral compositions, the biota of subsurface environment, but also fluid mixing, which determines the local concentrations of nutriments, electron donors and electron acceptors. Hence, mixing zones between oxygen and nutriment rich shallow groundwater and mineralized deep groundwater are often considered as potential hotspots of microbial activity, although relatively few field data document flow distributions, transport properties, chemical gradients and micro-organisms distributions across these mixing interfaces. Here we investigate the origin of a localized biofilm development observed in the fractured granite aquifer at the Ploemeur observatory (H+ network hplus.ore.fr).This biofilm composed of ferro-oxidizing bacteria is observed in an 130m deep artesian well. Borehole video logs show an important colonization of the well by the biofilm in the shallower part (0 to 60m), while it is inexistent in the deeper part (60 to 130m). As flow is localized in a few deep and shallow fractures, we presume that the spatial distribution of biofilm is controlled by mixing between shallow and deep groundwater. To verify this hypothesis we conducted a field campaign with joint characterization of the flow and chemical composition of water flowing from the different fractures, as well as the microbiological composition of the biofilm at different depth, using pyrosequencing techniques. We will discuss in this presentation the results of this interdisciplinary dataset and their implications for the occurrence of hotspots of microbiological activity in the subsurface.

  10. Aluminide coatings

    DOEpatents

    Henager, Jr; Charles, H [Kennewick, WA; Shin, Yongsoon [Richland, WA; Samuels, William D [Richland, WA

    2009-08-18

    Disclosed herein are aluminide coatings. In one embodiment coatings are used as a barrier coating to protect a metal substrate, such as a steel or a superalloy, from various chemical environments, including oxidizing, reducing and/or sulfidizing conditions. In addition, the disclosed coatings can be used, for example, to prevent the substantial diffusion of various elements, such as chromium, at elevated service temperatures. Related methods for preparing protective coatings on metal substrates are also described.

  11. COATED ALLOYS

    DOEpatents

    Harman, C.G.; O'Bannon, L.S.

    1958-07-15

    A coating is described for iron group metals and alloys, that is particularly suitable for use with nickel containing alloys. The coating is glassy in nature and consists of a mixture containing an alkali metal oxide, strontium oxide, and silicon oxide. When the glass coated nickel base metal is"fired'' at less than the melting point of the coating, it appears the nlckel diffuses into the vitreous coating, thus providing a closely adherent and protective cladding.

  12. Efficiency of surface cleaning by a glow discharge for plasma spraying coating

    NASA Astrophysics Data System (ADS)

    Kadyrmetov, A. M.; Kashapov, N. F.; Sharifullin, S. N.; Saifutdinov, A. I.; Fadeev, S. A.

    2016-06-01

    The article presents the results of experimental studies of the quality of cleaning steel surfaces by a glow discharge for plasma spraying. Shows the results of measurements of the angle of surface wetting and bond strength of the plasma coating to the surface treated. The dependence of the influence of the glow discharge power, chamber pressure, distance between the electrodes and the processing time of the surface on cleaning efficiency. Optimal fields of factors is found. It is shown increase joint strength coating and base by 30-80% as a result of cleaning the substrate surface by a glow discharge plasma spraying.

  13. Metal-ceramic joint assembly

    DOEpatents

    Li, Jian

    2002-01-01

    A metal-ceramic joint assembly in which a brazing alloy is situated between metallic and ceramic members. The metallic member is either an aluminum-containing stainless steel, a high chromium-content ferritic stainless steel or an iron nickel alloy with a corrosion protection coating. The brazing alloy, in turn, is either an Au-based or Ni-based alloy with a brazing temperature in the range of 9500 to 1200.degree. C.

  14. Molecular breeding of transgenic white clover (Trifolium repens L.) with field resistance to Alfalfa mosaic virus through the expression of its coat protein gene.

    PubMed

    Panter, S; Chu, P G; Ludlow, E; Garrett, R; Kalla, R; Jahufer, M Z Z; de Lucas Arbiza, A; Rochfort, S; Mouradov, A; Smith, K F; Spangenberg, G

    2012-06-01

    Viral diseases, such as Alfalfa mosaic virus (AMV), cause significant reductions in the productivity and vegetative persistence of white clover plants in the field. Transgenic white clover plants ectopically expressing the viral coat protein gene encoded by the sub-genomic RNA4 of AMV were generated. Lines carrying a single copy of the transgene were analysed at the molecular, biochemical and phenotypic level under glasshouse and field conditions. Field resistance to AMV infection, as well as mitotic and meiotic stability of the transgene, were confirmed by phenotypic evaluation of the transgenic plants at two sites within Australia. The T(0) and T(1) generations of transgenic plants showed immunity to infection by AMV under glasshouse and field conditions, while the T(4) generation in an agronomically elite 'Grasslands Sustain' genetic background, showed a very high level of resistance to AMV in the field. An extensive biochemical study of the T(4) generation of transgenic plants, aiming to evaluate the level and composition of natural toxicants and key nutritional parameters, showed that the composition of the transgenic plants was within the range of variation seen in non-transgenic populations. PMID:21947755

  15. Joint lubrication.

    PubMed

    McCutchen, C W

    1983-01-01

    The fine-pored, easily compressed articular cartilage provides animal joints with self-pressurized hydrostatic (weeping) lubrication. The solid skeletons of the cartilages press against each other, but so lightly that their rubbing is lubricated successfully by synovial fluid--a boundary lubricant too weak to lubricate ordinary bearings. PMID:6317095

  16. A nanoplate-like α-Al2O3 out-layered Al2O3-ZrO2 coating fabricated by micro-arc oxidation for hip joint prosthesis

    NASA Astrophysics Data System (ADS)

    Zhang, Lan; Zhang, Wenting; Han, Yong; Tang, Wu

    2016-01-01

    A nanoplate-like α-Al2O3 out-layered Al2O3-ZrO2 coating was fabricated on Zr substrate by micro-arc oxidation (MAO). The structure, formation mechanism, anti-wear property and aging behavior of the coating were explored. The obtained results show that the coating is composed of Al2O3 and ZrO2; the amount and crystallinity of Al2O3 increase gradually from inner layer to the coating surface; monoclinic ZrO2 (m-ZrO2) and tetragonal ZrO2 (t-ZrO2) are both present in the coating, and the ratio of t-ZrO2/m-ZrO2 increases with closing to the coating surface by a "constraint" mechanism of Al2O3; the coating surface mainly consists of nanoplate-like α-Al2O3, and a small amount of nanocrystallized m- and t-ZrO2. The superimposition of α-Al2O3 growth unit on {0 0 0 1} face should be prohibited by PO43- during the MAO process, resulting in the formation of nanoplate-like α-Al2O3 on the coating surface. Compared with pure Zr, the coating shows noticeable improvement in wear-resistance. For aging behavior, although more t-ZrO2 in the coating is transformed to m-ZrO2 with increasing aging time, wear loss increases slightly. It indicates that the nanoplate-like α-Al2O3 out-layered Al2O3-ZrO2 is a potential coating for articular head replacement.

  17. Part I. From the lab to the field: Recent developments in polymer coated ATR sensing for the determination of volatile organic compounds. Part II. From the field to the lab: Investigating IR signatures for remote sensing applications

    NASA Astrophysics Data System (ADS)

    Karlowatz, Manfred

    Part I. Successful transition of polymer coated, ATR-FTIR sensor devices from a laboratory environment to real world field applications for detecting and quantifying VOCs in water is shown. Simultaneous, quantitative detection of BTX mixtures in water during enrichment into polymer coated ZnSe ATR elements has been performed. The obtained results showed accurate detection and quantification to the low ppb concentration region. Fiber-optic evanescent field measurement campaigns have been conducted at simulated field conditions during which concentration gradients of various VOCs in the mg/L range have been monitored successfully. The first test of an ATR based, polymer coated sensor system under real world field conditions, the chlorobenzene concentration in groundwater at mg/L levels was determined. An interesting aspect of these measurements was the experimental proof for the dependence of analyte extraction dynamics on the flow conditions of the sample matrix surrounding the extractive polymer membrane. The obtained results demonstrate that MIR evanescent field sensors are suitable for in-situ analysis at real world field conditions for environmental monitoring applications. Part II. Recently, measurements of disturbed soils have shown different spectral contrast in comparison to undisturbed soils. In this work first measurements at controlled laboratory conditions have been performed to investigate individual minerals of the soil matrix and their spectral characteristics under various environmental conditions. ATR spectroscopy has been applied to investigate multi-disperse quartz sand and mono-disperse soda lime glass spheres samples. For the investigation of spectral differences between pristine and disturbed quartz sand, a wetting/drying procedure with subsequent sample aerating has been developed. In addition to established differences in spectral contrast of disturbed and undisturbed soil, a strong spectral shift of absorption features was observed. When

  18. Effect of external magnetic field on IV 99mTc-labeled aminosilane-coated iron oxide nanoparticles: demonstration in a rat model: special report.

    PubMed

    Liberatore, Mauro; Barteri, Mario; Megna, Valentina; D'Elia, Piera; Rebonato, Stefania; Latini, Augusto; De Angelis, Francesca; Scaramuzzo, Francesca Anna; De Stefano, Maria Egle; Guadagno, Noemi Antonella; Chondrogiannis, Sotirios; Maffione, Anna Margherita; Rubello, Domenico; Pala, Alessandro; Colletti, Patrick M

    2015-02-01

    Among the most interesting applications of ferromagnetic nanoparticles (NPs) in medicine is the potential for localizing pharmacologically or radioactively tagged agents directly to selected tissues selected by an adjustable external magnetic field. This concept is demonstrated by the application external magnetic field on IV Tc-labeled aminosilane-coated iron oxide NPs in a rat model. In a model comparing a rat with a 0.3-T magnet over a hind paw versus a rat without a magnet, a static acquisition at 45 minutes showed that 27% of the administered radioactivity was in the area subtended by the magnet, whereas the liver displays a percentage of binding of 14% in the presence of the magnet and of 16% in the absence of an external magnetic field. These preliminary results suggest that the application of an external magnetic field may be a viable route for the development of methods for the confinement of magnetic NPs labeled with radioactive isotopes targeted for predetermined sites of the body. PMID:25551623

  19. Growth, microstructure, and field-emission properties of synthesized diamond film on adamantane-coated silicon substrate by microwave plasma chemical vapor deposition

    SciTech Connect

    Tiwari, Rajanish N.; Chang Li

    2010-05-15

    Diamond nucleation on unscratched Si surface is great importance for its growth, and detailed understanding of this process is therefore desired for many applications. The pretreatment of the substrate surface may influence the initial growth period. In this study, diamond films have been synthesized on adamantane-coated crystalline silicon {l_brace}100{r_brace} substrate by microwave plasma chemical vapor deposition from a gaseous mixture of methane and hydrogen gases without the application of a bias voltage to the substrates. Prior to adamantane coating, the Si substrates were not pretreated such as abraded/scratched. The substrate temperature was {approx}530 deg. C during diamond deposition. The deposited films are characterized by scanning electron microscopy, Raman spectrometry, x-ray diffraction, and x-ray photoelectron spectroscopy. These measurements provide definitive evidence for high-crystalline quality diamond film, which is synthesized on a SiC rather than clean Si substrate. Characterization through atomic force microscope allows establishing fine quality criteria of the film according to the grain size of nanodiamond along with SiC. The diamond films exhibit a low-threshold (55 V/{mu}m) and high current-density (1.6 mA/cm{sup 2}) field-emission (FE) display. The possible mechanism of formation of diamond films and their FE properties have been demonstrated.

  20. Ultrasonic Probing Of Complexly Shaped Joints

    NASA Technical Reports Server (NTRS)

    Madaras, Eric I.

    1993-01-01

    Technique developed involves use of ultrasonics to inspect first bond surfaces of solid-rocket-motor joints. By fitting pieces of insulating materials to mate exactly with complicated shapes of affected parts of insulation, complicated shapes redefined into simpler ones probed more easily. When technique used to insonify from insulation side, one readily detects difference between disbond and good bond. Same technique applied to field tang joints, field clevis joints, and aft-dome-to-fixed-nozzle-housing attachment points. Although developed for inspecting joints in solid rocket motors, also applicable to nondestructive evaluation of other complicated joints.

  1. Application effects of coated urea and urease and nitrification inhibitors on ammonia and greenhouse gas emissions from a subtropical cotton field of the Mississippi delta region.

    PubMed

    Tian, Zhou; Wang, Jim J; Liu, Shuai; Zhang, Zengqiang; Dodla, Syam K; Myers, Gerald

    2015-11-15

    Nitrogen (N) fertilization affects both ammonia (NH3) and greenhouse gas (GHG) emissions that have implications in air quality and global warming potential. Different cropping systems practice varying N fertilizations. The aim of this study was to investigate the effects of applications of polymer-coated urea and urea treated with N process inhibitors: NBPT [N-(n-butyl)thiophosphoric triamide], urease inhibitor, and DCD [Dicyandiamide], nitrification inhibitor, on NH3 and GHG emissions from a cotton production system in the Mississippi delta region. A two-year field experiment consisting of five treatments including the Check (unfertilized), urea, polymer-coated urea (ESN), urea+NBPT, and urea+DCD was conducted over 2013 and 2014 in a Cancienne loam (Fine-silty, mixed, superactive, nonacid, hyperthermic Fluvaquentic Epiaquepts). Ammonia and GHG samples were collected using active and passive chamber methods, respectively, and characterized. The results showed that the N loss to the atmosphere following urea-N application was dominated by a significantly higher emission of N2O-N than NH3-N and the most N2O-N and NH3-N emissions were during the first 30-50 days. Among different N treatments compared to regular urea, NBPT was the most effective in reducing NH3-N volatilization (by 58-63%), whereas DCD the most significant in mitigating N2O-N emissions (by 75%). Polymer-coated urea (ESN) and NBPT also significantly reduced N2O-N losses (both by 52%) over urea. The emission factors (EFs) for urea, ESN, urea-NBPT, urea+DCD were 1.9%, 1.0%, 0.2%, 0.8% for NH3-N, and 8.3%, 3.4%, 3.9%, 1.0% for N2O-N, respectively. There were no significant effects of different N treatments on CO2-C and CH4-C fluxes. Overall both of these N stabilizers and polymer-coated urea could be used as a mitigation strategy for reducing N2O emission while urease inhibitor NBPT for reducing NH3 emission in the subtropical cotton production system of the Mississippi delta region. PMID:26172600

  2. Directing assembly of DNA-coated colloids with magnetic fields to generate rigid, semiflexible, and flexible chains.

    PubMed

    Byrom, Julie; Han, Patric; Savory, Michael; Biswal, Sibani Lisa

    2014-08-01

    We report the formation of colloidal macromolecules consisting of chains of micron-sized paramagnetic particles assembled using a magnetic field and linked with DNA. The interparticle spacing and chain flexibility were controlled by varying the magnetic field strength and the linker spring constant. Variations in the DNA lengths allowed for the generation of chains with an improved range of flexibility as compared to previous studies. These chains adopted the rigid-rod, semiflexible, and flexible conformations that are characteristic of linear polymer systems. These assembly techniques were investigated to determine the effects of the nanoscale DNA linker properties on the properties of the microscale colloidal chains. With stiff DNA linkers (564 base pairs) the chains were only stable at moderate to high field strengths and produced rigid chains. For flexible DNA linkers (8000 base pairs), high magnetic field strengths caused the linkers to be excluded from the gap between the particles, leading to a transition from very flexible chains at low field strengths to semiflexible chains at high field strengths. In the intermediate range of linker sizes, the chains exhibited predictable behavior, demonstrating increased flexibility with longer DNA linker length or smaller linking field strengths. This study provides insight into the process of directed assembly using magnetic fields and DNA by precisely tuning the components to generate colloidal analogues of linear macromolecular chains. PMID:25052952

  3. Joint assembly

    NASA Technical Reports Server (NTRS)

    Wilson, Andrew (Inventor); Punnoose, Andrew (Inventor); Strausser, Katherine (Inventor); Parikh, Neil (Inventor)

    2010-01-01

    A joint assembly is provided which includes a drive assembly and a swivel mechanism. The drive assembly features a motor operatively associated with a plurality of drive shafts for driving auxiliary elements, and a plurality of swivel shafts for pivoting the drive assembly. The swivel mechanism engages the swivel shafts and has a fixable element that may be attached to a foundation. The swivel mechanism is adapted to cooperate with the swivel shafts to pivot the drive assembly with at least two degrees of freedom relative to the foundation. The joint assembly allows for all components to remain encased in a tight, compact, and sealed package, making it ideal for space, exploratory, and commercial applications.

  4. Collaborative Navigation as a Solution for PNT Applications in GNSS Challenged Environments - Report on Field Trials of a Joint FIG/IAG Working Group

    NASA Astrophysics Data System (ADS)

    Kealy, Allison; Retscher, Guenther; Toth, Charles; Hasnur-Rabiain, Azmir; Gikas, Vassilis; Grejner-Brzezinska, Dorota; Danezis, Chris; Moore, Terry

    2015-12-01

    PNT stands for Positioning, Navigation, and Timing. Space-based PNT refers to the capabilities enabled by GNSS, and enhanced by Ground and Space-based Augmentation Systems (GBAS and SBAS), which provide position, velocity, and timing information to an unlimited number of users around the world, allowing every user to operate in the same reference system and timing standard. Such information has become increasingly critical to the security, safety, prosperity, and overall qualityof-life of many citizens. As a result, space-based PNT is now widely recognized as an essential element of the global information infrastructure. This paper discusses the importance of the availability and continuity of PNT information, whose application, scope and significance have exploded in the past 10-15 years. A paradigm shift in the navigation solution has been observed in recent years. It has been manifested by an evolution from traditional single sensor-based solutions, to multiple sensor-based solutions and ultimately to collaborative navigation and layered sensing, using non-traditional sensors and techniques - so called signals of opportunity. A joint working group under the auspices of the International Federation of Surveyors (FIG) and the International Association of Geodesy (IAG), entitled `Ubiquitous Positioning Systems' investigated the use of Collaborative Positioning (CP) through several field trials over the past four years. In this paper, the concept of CP is discussed in detail and selected results of these experiments are presented. It is demonstrated here, that CP is a viable solution if a `network' or `neighbourhood' of users is to be positioned / navigated together, as it increases the accuracy, integrity, availability, and continuity of the PNT information for all users.

  5. Collaborative Navigation as a Solution for PNT Applications in GNSS Challenged Environments - Report on Field Trials of a Joint FIG / IAG Working Group

    NASA Astrophysics Data System (ADS)

    Kealy, Allison; Retscher, Guenther; Toth, Charles; Hasnur-Rabiain, Azmir; Gikas, Vassilis; Grejner-Brzezinska, Dorota; Danezis, Chris; Moore, Terry

    2015-12-01

    PNT stands for Positioning, Navigation, and Timing. Space-based PNT refers to the capabilities enabled by GNSS, and enhanced by Ground and Space-based Augmentation Systems (GBAS and SBAS), which provide position, velocity, and timing information to an unlimited number of users around the world, allowing every user to operate in the same reference system and timing standard. Such information has become increasingly critical to the security, safety, prosperity, and overall qualityof-life of many citizens. As a result, space-based PNT is now widely recognized as an essential element of the global information infrastructure. This paper discusses the importance of the availability and continuity of PNT information, whose application, scope and significance have exploded in the past 10-15 years. A paradigm shift in the navigation solution has been observed in recent years. It has been manifested by an evolution from traditional single sensor-based solutions, to multiple sensor-based solutions and ultimately to collaborative navigation and layered sensing, using non-traditional sensors and techniques - so called signals of opportunity. A joint working group under the auspices of the International Federation of Surveyors (FIG) and the International Association of Geodesy (IAG), entitled `Ubiquitous Positioning Systems' investigated the use of Collaborative Positioning (CP) through several field trials over the past four years. In this paper, the concept of CP is discussed in detail and selected results of these experiments are presented. It is demonstrated here, that CP is a viable solution if a `network' or `neighbourhood' of users is to be positioned / navigated together, as it increases the accuracy, integrity, availability, and continuity of the PNT information for all users.

  6. Two-dimensional resistivity investigation along West Fork Trinity River, Naval Air Station-Joint Reserve Base, Carswell Field, Fort Worth, Texas, October 2004

    USGS Publications Warehouse

    Shah, Sachin D.; Stanton, Gregory P.

    2006-01-01

    Naval Air Station-Joint Reserve Base Carswell Field (NAS-JRB) at Fort Worth, Tex., constitutes a government-owned, contractor-operated facility that has been in operation since 1942. Contaminants, primarily volatile organic compounds and metals, have entered the ground-water-flow system through leakage from waste-disposal sites and manufacturing processes. Ground water flows from west to east toward the West Fork Trinity River. During October 2004, the U.S. Geological Survey conducted a two-dimensional (2D) resistivity investigation at a site along the West Fork Trinity River at the eastern boundary of NAS-JRB to characterize the distribution of subsurface resistivity. Five 2D resistivity profiles were collected, which ranged from 500 to 750 feet long and extended to a depth of 25 feet. The Goodland Limestone and the underlying Walnut Formation form a confining unit that underlies the alluvial aquifer. The top of this confining unit is the top of bedrock at NAS-JRB. The bedrock confining unit is the zone of interest because of the potential for contaminated ground water to enter the West Fork Trinity River through saturated bedrock. The study involved a capacitively-coupled resistivity survey and inverse modeling to obtain true or actual resistivity from apparent resistivity. The apparent resistivity was processed using an inverse modeling software program. The results of this program were used to generate distributions (images) of actual resistivity referred to as inverted sections or profiles. The images along the five profiles show a wide range of resistivity values. The two profiles nearest the West Fork Trinity River generally showed less resistivity than the three other profiles.

  7. Innovations in coating technology.

    PubMed

    Behzadi, Sharareh S; Toegel, Stefan; Viernstein, Helmut

    2008-01-01

    Despite representing one of the oldest pharmaceutical techniques, coating of dosage forms is still frequently used in pharmaceutical manufacturing. The aims of coating range from simply masking the taste or odour of drugs to the sophisticated controlling of site and rate of drug release. The high expectations for different coating technologies have required great efforts regarding the development of reproducible and controllable production processes. Basically, improvements in coating methods have focused on particle movement, spraying systems, and air and energy transport. Thereby, homogeneous distribution of coating material and increased drying efficiency should be accomplished in order to achieve high end product quality. Moreover, given the claim of the FDA to design the end product quality already during the manufacturing process (Quality by Design), the development of analytical methods for the analysis, management and control of coating processes has attracted special attention during recent years. The present review focuses on recent patents claiming improvements in pharmaceutical coating technology and intends to first familiarize the reader with the available procedures and to subsequently explain the application of different analytical tools. Aiming to structure this comprehensive field, coating technologies are primarily divided into pan and fluidized bed coating methods. Regarding pan coating procedures, pans rotating around inclined, horizontal and vertical axes are reviewed separately. On the other hand, fluidized bed technologies are subdivided into those involving fluidized and spouted beds. Then, continuous processing techniques and improvements in spraying systems are discussed in dedicated chapters. Finally, currently used analytical methods for the understanding and management of coating processes are reviewed in detail in the last section of the review. PMID:19075909

  8. Qualification of improved joint heaters

    NASA Technical Reports Server (NTRS)

    Cook, M.

    1989-01-01

    Qualification testing of the Redesigned Solid Rocket Motor improved igniter-to-case joint and field joint heaters was conducted on the fired TEM-04 static test motor and was completed on 7 Sep. 1989. The purpose of the test was to certify the installation and performance of the improved joint heaters for use on flight motors. The changes incorporated in the improved heaters improve durability and should reduce handling damage. The igniter-to-case joint and field joint primary heater circuits were subjected to five 20-hr ON cycles. The heater redundant circuits were then subjected to one 20-hr ON cycle. Voltage, current, and temperature set point values were maintained within the specified limits for both heaters during each ON cycle. When testing was complete, both heaters were removed and inspected. No discolorations or any other anomalies were found on either of the heaters. Based on the successful completion of this test, it is recommended that the improved igniter-to-case joint and field joint heaters be used on future flight motors.

  9. Short-channel polymer field-effect-transistor fabrication using spin-coating-induced edge template and ink-jet printing

    SciTech Connect

    Li, S.P.; Chu, D.P.; Newsome, C.J.; Russell, D.M.; Kugler, T.; Ishida, M.; Shimoda, T.

    2005-12-05

    A method to fabricate polymer field-effect transistors with submicron channel lengths is described. A thin polymer film is spin coated on a prepatterned resist with a low resolution to create a thickness contrast in the overcoated polymer layer. After plasma and solvent etching, a submicron-sized line structure, which templates the contour of the prepattern, is obtained. A further lift-off process is applied to define source-drain electrodes of transistors. With a combination of ink-jet printing, transistors with channel length down to 400 nm have been fabricated by this method. We show that drive current density increases as expected, while the on/off current ratio 10{sup 6} is achieved.

  10. Monodisperse poly(2-methylaniline) coated polystyrene core-shell microspheres fabricated by controlled releasing process and their electrorheological stimuli-response under electric fields.

    PubMed

    Kwon, Seung Hyuk; Liu, Ying Dan; Choi, Hyoung Jin

    2015-02-15

    A core-shell structured electro-responsive electrorheological (ER) particle system comprised of monodisperse poly(2-methylaniline)-coated polystyrene (PS/PMAN) microspheres was fabricated by applying a controlled swelling-releasing technique to pre-fabricated micron-sized PS seeds using a dispersion polymerization method. Compact wrapping of the PS microparticles with semiconducting PMAN without a de-doping process was examined by scanning electron microscopy and transmission electron microscopy. Fourier-transform infrared spectroscopy and thermogravimetric analysis also confirmed the chemical composition and thermal stability of the particles, respectively. Rheological characteristics of the PS/PMAN microsphere based ER fluid dispersed in silicone oil at various electric field strengths revealed a typical ER response under both steady shear flow and dynamic oscillation, demonstrating its mechanism of a conductivity model with a slope of 1.5. PMID:25460683

  11. A novel EIS field effect structures coated with TESUD-PPy-PVC-dibromoaza[7]helicene matrix for potassium ions detection.

    PubMed

    Tounsi, Moncef; Ben Braiek, Mourad; Barhoumi, Houcine; Baraket, Abdoullatif; Lee, Michael; Zine, Nadia; Maaref, Abderrazak; Errachid, Abdelhamid

    2016-04-01

    In this work, we describe the development of new Aza[7]helicene-containing PVC-based membranes for the K(+) ions quantification. Here, silicon nitride-based structures (Si-p/SiO2/Si3N4) were developed and the surface was activated, functionalized with an aldehyde-silane (11-(Triethoxysilyl)undecanal (TESUD)), functionalized with polypyrrole (PPy), and coated with the polyvinylchloride (PVC)-membrane containing the Aza[7]helicene as ionophore. All stages of functionalization process have been thoroughly studied by contact angle measurements (CAMs) and atomic force microscopy (AFM). The developed ion-selective electrode (ISE) was then applied using electrochemical impedance spectroscopy (EIS) for the detection of potassium ions. A linear range was observed between 1.0 × 10(-8) M to 1.0 × 10(-3) M and a detection limit of 1.0 × 10(-8) M was observed. The EIS results have showed a good sensitivity to potassium ion using this novel technique. The target helicene exhibited good solubility and excellent thermal stability with a high decomposition temperature (Td > 300 °C) and it indicates that helicene may be a promising material as ionophore for ion-selective electrodes (ISEs) elaboration. PMID:26838889

  12. Better Actuation Through Chemistry: Using Surface Coatings to Create Uniform Director Fields in Nematic Liquid Crystal Elastomers.

    PubMed

    Xia, Yu; Lee, Elaine; Hu, Hao; Gharbi, Mohamed Amine; Beller, Daniel A; Fleischmann, Eva-Kristina; Kamien, Randall D; Zentel, Rudolf; Yang, Shu

    2016-05-18

    Controlling the molecular alignment of liquid crystal monomers (LCMs) within nano- and microstructures is essential in manipulating the actuation behavior of nematic liquid crystal elastomers (NLCEs). Here, we study how to induce uniformly vertical alignment of nematic LCMs within a micropillar array to maximize the macroscopic shape change using surface chemistry. Landau-de Gennes numerical modeling suggests that it is difficult to perfectly align LCMs vertically in every pore within a poly(dimethylsiloxane) (PDMS) mold with porous channels during soft lithography. In an untreated PDMS mold that provides homeotropic anchoring of LCMs, a radially escaped configuration of LCMs is observed. Vertically aligned LCMs, a preferred configuration for actuation, are only observed when using a PDMS mold with planar anchoring. Guided by the numerical modeling, we coat the PDMS mold with a thin layer of poly(2-hydroxyethyl methacrylate) (PHEMA), leading to planar anchoring of LCM. Confirmed by polarized optical microscopy, we observe monodomains of vertically aligned LCMs within the mold, in agreement with modeling. After curing and peeling off the mold, the resulting NLCE micropillars showed a relatively large and reversible radial strain (∼30%) when heated above the nematic to isotropic transition temperature. PMID:27152975

  13. Coating Process

    NASA Technical Reports Server (NTRS)

    1983-01-01

    A black chrome coating, originally developed for spacecraft solar cells, led to the development of an efficient flat plate solar collector. The coating, called Chromonyx, helps the collector absorb more heat. Olympic Solar Corporation was formed to electroplate the collector. The coating technique allows 95% of the sun's energy to be utilized. The process is widely used.

  14. Molecular and serological detection of Babesia bovis- and Babesia bigemina-infection in bovines and water buffaloes raised jointly in an endemic field.

    PubMed

    Romero-Salas, Dora; Mira, Anabela; Mosqueda, Juan; García-Vázquez, Zeferino; Hidalgo-Ruiz, Mario; Vela, Noot Aditya Ortiz; de León, Adalberto Angel Perez; Florin-Christensen, Monica; Schnittger, Leonhard

    2016-02-15

    Babesia bovis and Babesia bigemina are causative agents of bovine babesiosis, a tick-borne disease of cattle in tropical and subtropical regions. Babesia spp. infection adversely affects cattle health and can be fatal resulting in considerable economic loss worldwide. Under endemic stability conditions, herds contain high numbers of chronically infected, asymptomatic carrier animals, in which no parasitemia is detected by microscopic blood smear examination. In addition to bovines, also water buffaloes are infected by both Babesia spp. commonly leading to a subclinical infection. The infection rate (by nPCR) and herd exposure (by IFAT) of bovines and water buffaloes reared under similar field conditions in an area of endemic stability were determined and compared. In order to optimize direct parasite detection, highly sensitive nPCR assays were developed and applied, allowing the detection of as little as 0.1 fg DNA of each Babesia pathogen. Significantly lower percentages (p<0.001) of seropositive water buffaloes compared to bovines were observed for B. bovis (71.4% vs. 98%) and B. bigemina (85% vs. 100%). Interestingly, in comparison, differences noticed between water buffaloes and bovines were considerably larger with direct parasite detection by nPCR (16.2% vs. 82.3% and 24% vs. 94.1% for B. bovis and B. bigemina, respectively). As expected, bovines subjected to monthly acaricide applications exhibited a significant lower infection rate as determined by nPCR than bovines not subjected to these measures (B. bovis 33.3% vs. 90.7%, p<0.001; B. bigemina 80% vs. 96.5%, p<0.001, for treated vs. untreated animals). Interestingly no differences between these groups were observed with respect to seropositivity, suggesting similar rates of parasite exposure (B. bovis 100% vs. 97.7%, p<0.001; B. bigemina 100% vs. 100%, p<0.001). Importantly, a significantly higher number of water buffaloes as determined by nPCR were infected when reared jointly with bovines not subjected

  15. Preliminary Results from the Joint Russian and US Field Test: Measurement of Sensorimotor and Cardiovascular Responses Immediately Following Landing of the Soyuz Spacecraft

    NASA Technical Reports Server (NTRS)

    Reschke, M. F.; Kozlovskaya, I. B.; Tomilovskaya, E. S.; Bloomberg, J. J.; Platts, S. H.; Rukavishnikov, I. V.; Fomina, E. V.; Stenger, M. B.; Lee, S. M. C.; Wood, S. J.; Mulavara, A. P.; Fieveson, A. H.; Cerisano, J. M.; Kofman, I. S.; Fisher, E. A.

    2013-01-01

    Ongoing collaborative research efforts between NASA's Neuroscience and Cardiovascular Laboratories, and the Institute of Biomedical Problems' (IBMP) Sensory-Motor and Countermeasures Laboratories have been measuring functional sensorimotor, cardiovascular and strength responses following bed rest, dry immersion, short duration (Space Shuttle) and long duration (Mir and International Space Station) space flights. While the unloading paradigms associated with dry immersion and bed rest have do serve as acceptable flight analogs, testing of crew responses following the long duration flights does not begin until a minimum of 24 hours after landing. As a result it is not possible to estimate the nonlinear trend of the early (<24 hr) recovery process nor is it possible to accurately assess the full impact of the decrements associated with long duration flight. To overcome these limitations both the Russian and U.S. sides have implemented testing at the time of landing and before the flight crews have left the landing site. By joint agreement this research effort has been identified as the functional Field Test (FT). For practical reasons the FT has been divided into two phases: the full FT and a preliminary pilot version (PFT) of the FT that is reduced in both length and scope. The primary goal of this research is to determine functional abilities in long duration space flight crews beginning as soon after landing as possible (< 2 hr) with one to three immediate follow-up measurements on the day of landing. This goal has both sensorimotor and cardiovascular elements including an evaluation of NASA's new anti-orthostatic compression garment as compared with the Russian Kentavr garment. Functional sensorimotor measurements will include, but are not limited to, assessment of hand/eye coordination, ability to egress from a seated position, walk normally without falling, measurement of dynamic visual acuity, ability to discriminate different forces generated with both the

  16. Coatings and alternatives for SEM microscopy

    SciTech Connect

    Lee, R.H.

    1995-03-01

    Several methods of preparing samples of low electrical conductivity for conventional scanning electron microscopy are reviewed. Two new methods are chromium sputter-coating and low-voltage electron microscopy with a field emission gun. Photomicrographs of different coatings at high magnification show the structure of each coating. Advantages and disadvantages of each material are presented. Results with sputtered coatings are compared to an evaporated carbon coating.

  17. Metal Coatings

    NASA Technical Reports Server (NTRS)

    1994-01-01

    During the Apollo Program, General Magnaplate Corporation developed process techniques for bonding dry lubricant coatings to space metals. The coatings were not susceptible to outgassing and offered enhanced surface hardness and superior resistance to corrosion and wear. This development was necessary because conventional lubrication processes were inadequate for lightweight materials used in Apollo components. General Magnaplate built on the original technology and became a leader in development of high performance metallurgical surface enhancement coatings - "synergistic" coatings, - which are used in applications from pizza making to laser manufacture. Each of the coatings is designed to protect a specific metal or group of metals to solve problems encountered under operating conditions.

  18. Sideline Management of Joint Dislocations.

    PubMed

    Schupp, Christian M; Rand, Scott E; Hanson, Travis W; Lee, Bryan M; Jafarnia, Korsh; Jia, Yuhang; Moseley, J Bruce; Seaberg, John P; Seelhoefer, Gregory M

    2016-01-01

    Athletes can sustain a large variety of injuries from simple soft tissue sprains to complex fractures and joint dislocations. This article reviews and provides the most recent information for sports medicine professionals on the management of simple and complex joint dislocations, i.e., irreducible and/or associated with a fracture, from the sidelines without the benefit of imaging. For each joint, the relevant anatomy, common mechanisms, sideline assessment, reduction techniques, initial treatment, and potential complications will be discussed, which allow for the safe and prompt return of athletes to the field of play. PMID:27172077

  19. Switching fields of high-resolution magnetic force microscope tips coated with Co, Co75Pt10Cr15, Co75Pt25, and Co50Pt50 films

    NASA Astrophysics Data System (ADS)

    Ishihara, Shinji; Ohtake, Mitsuru; Futamoto, Masaaki

    2014-07-01

    Magnetic force microscope (MFM) tips are prepared by coating Si tips of 4 nm radius with Co, Co75Pt10Cr15, Co75Pt25, and Co50Pt50 (at. %) films of 20 nm thickness at 300 °C. The effects of coating film material on the spatial resolution and the switching field are investigated. Higher resolutions are observed in the order of Co75Pt10Cr15 < (Co50Pt50, Co75Pt25) < Co. The Co-coated tip shows the highest resolution of 7.3 nm, which seems to be depending on a high detection sensitivity related with the magnetic moment of Co material. The saturation magnetization increases in the order of Co75Pt10Cr15 < Co50Pt50 < Co75Pt25 < Co. Higher switching fields are observed in the order of Co < Co75Pt10Cr15 < Co75Pt25 < Co50Pt50. The Co50Pt50-coated tip shows the highest switching field of 1.675±0.025 kOe, which is due to a high coercive field of the magnetic film involving L11 ordered phase with high magnetocrystalline anisotropy energy. The coercive field is recognized in the order of Co < Co75Pt10Cr15 < Co75Pt25 < Co50Pt50. A tip prepared by coating Co50Pt50 film which has high resolution and high switching field is useful for MFM observations of high-density recording media and permanent magnets.

  20. Analysis of NSTX TF Joint Voltage Measurements

    SciTech Connect

    R, Woolley

    2005-10-07

    This report presents findings of analyses of recorded current and voltage data associated with 72 electrical joints operating at high current and high mechanical stress. The analysis goal was to characterize the mechanical behavior of each joint and thus evaluate its mechanical supports. The joints are part of the toroidal field (TF) magnet system of the National Spherical Torus Experiment (NSTX) pulsed plasma device operating at the Princeton Plasma Physics Laboratory (PPPL). Since there is not sufficient space near the joints for much traditional mechanical instrumentation, small voltage probes were installed on each joint and their voltage monitoring waveforms have been recorded on sampling digitizers during each NSTX ''shot''.

  1. Nanostructured diamond coatings for orthopaedic applications

    PubMed Central

    CATLEDGE, S.A.; THOMAS, V.; VOHRA, Y.K.

    2013-01-01

    With increasing numbers of orthopaedic devices being implanted, greater emphasis is being placed on ceramic coating technology to reduce friction and wear in mating total joint replacement components, in order to improve implant function and increase device lifespan. In this chapter, we consider ultra-hard carbon coatings, with emphasis on nanostructured diamond, as alternative bearing surfaces for metallic components. Such coatings have great potential for use in biomedical implants as a result of their extreme hardness, wear resistance, low friction and biocompatibility. These ultra-hard carbon coatings can be deposited by several techniques resulting in a wide variety of structures and properties. PMID:25285213

  2. Superelastic Orthopedic Implant Coatings

    NASA Astrophysics Data System (ADS)

    Fournier, Eric; Devaney, Robert; Palmer, Matthew; Kramer, Joshua; El Khaja, Ragheb; Fonte, Matthew

    2014-07-01

    The demand for hip and knee replacement surgery is substantial and growing. Unfortunately, most joint replacement surgeries will fail within 10-25 years, thereby requiring an arduous, painful, and expensive revision surgery. To address this issue, a novel orthopedic implant coating material ("eXalt") has been developed. eXalt is comprised of super elastic nitinol wire that is knit into a three-dimensional spacer fabric structure. eXalt expands in vivo to conform to the implantation site and is porous to allow for bone ingrowth. The safety and efficacy of eXalt were evaluated through structural analysis, mechanical testing, and a rabbit implantation model. The results demonstrate that eXalt meets or exceeds the performance of current coating technologies with reduced micromotion, improved osseointegration, and stronger implant fixation in vivo.

  3. Corrosion-protective coatings from electrically conducting polymers

    SciTech Connect

    Thompson, K.G.; Bryan, C.J.; Benicewicz, B.C.; Wrobleski, D.A.

    1991-12-31

    In a joint research effort involving the Kennedy Space Center and the Los Alamos National Laboratory, electrically conductive polymer coatings have been developed as corrosion-protective coatings for metal surfaces. At the Kennedy Space Center, the launch environment consists of marine, severe solar, and intermittent high acid/elevated temperature conditions. Electrically conductive polymer coatings have been developed which impart corrosion resistance to mild steel when exposed to saline and acidic environments. Such coatings also seem to promote corrosion resistance in areas of mild steel where scratches exist in the protective coating. Such coatings appear promising for many commercial applications.

  4. Corrosion-protective coatings from electrically conducting polymers

    NASA Technical Reports Server (NTRS)

    Thompson, Karen Gebert; Bryan, Coleman J.; Benicewicz, Brian C.; Wrobleski, Debra A.

    1991-01-01

    In a joint effort between NASA Kennedy and LANL, electrically conductive polymer coatings were developed as corrosion protective coatings for metal surfaces. At NASA Kennedy, the launch environment consist of marine, severe solar, and intermittent high acid and/or elevated temperature conditions. Electrically conductive polymer coatings were developed which impart corrosion resistance to mild steel when exposed to saline and acidic environments. Such coatings also seem to promote corrosion resistance in areas of mild steel where scratches exist in the protective coating. Such coatings appear promising for many commercial applications.

  5. Morbus Coats

    PubMed Central

    Förl, B.; Schmack, I.; Grossniklaus, H.E.; Rohrschneider, K.

    2010-01-01

    Der fortgeschrittene Morbus Coats stellt im Kleinkindalter eine der schwierigsten Differenzialdiagnosen zum Retinoblastom dar. Wir beschreiben die klinischen und histologischen Befunde zweier Jungen im Alter von 9 und 21 Monaten mit einseitiger Leukokorie. Trotz umfassender Diagnostik mittels Narkoseuntersuchung, MRT und Ultraschall konnte ein Retinoblastom nicht sicher ausgeschlossen werden, und es erfolgte eine Enukleation. Histologisch wurde die Diagnose eines Morbus Coats gesichert. Da eine differenzialdiagnostische Abgrenzung zwischen Morbus Coats und Retinoblastom schwierig sein kann, halten wir in zweifelhaften Fällen auch angesichts der eingeschränkten Visusprognose und potenzieller Sekundärkomplikationen beim fortgeschrittenen Morbus Coats eine Enukleation für indiziert. PMID:18299842

  6. Enhancement in ion adsorption rate and desalination efficiency in a capacitive deionization cell through improved electric field distribution using electrodes composed of activated carbon cloth coated with zinc oxide nanorods.

    PubMed

    Laxman, Karthik; Myint, Myo Tay Zar; Bourdoucen, Hadj; Dutta, Joydeep

    2014-07-01

    Electrodes composed of activated carbon cloth (ACC) coated with zinc oxide (ZnO) nanorods are compared with plain ACC electrodes, with respect to their desalination efficiency of a 17 mM NaCl solution at different applied potentials. Polarization of the ZnO nanorods increased the penetration depth and strength of the electric field between the electrodes, leading to an increase in the capacitance and charge efficiency at reduced input charge ratios. Uniform distribution of the electric field lines between two electrodes coated with ZnO nanorods led to faster ion adsorption rates, reduced the electrode saturation time, and increased the average desalination efficiency by ∼45% for all applied potentials. The electrodes were characterized for active surface area, capacitance from cyclic voltammetry, theoretical assessment of surface area utilization, and the magnitude of electric field force acting on an ion of unit charge for each potential. PMID:24940607

  7. Microstructure, Mechanical, and Scratch Resistance Properties of TiAlCrNbN-Graded Composite Coating Deposited on AISI H13 Steel Substrate with Pulsed DC Closed Field Unbalanced Magnetron Sputtering Method

    NASA Astrophysics Data System (ADS)

    Kara, Levent; Küçükömeroğlu, Tevfik; Baran, Özlem; Efeoğlu, İhsan; Yamamoto, Kenji

    2014-04-01

    Structure and adhesion properties of TiAlCrNbN coatings were investigated. These coatings were deposited onto AISI H13 steel substrate using pulsed dc closed field unbalanced magnetron sputtering at different deposition parameters including duty cycle, bias voltage, and working pressure. The coatings have been characterized by X-ray diffraction, scanning electron microscopy and energy dispersive spectroscopy. The TiAlCrNbN-graded composite coatings have a dense and columnar structure. The X-ray diffraction patterns of coatings exhibited predominantly c-TiAlCrN, h-NbN, and h-TiAlN reflections. Scratch resistance test showed that the highest adhesion strength was attained as 68 N at 2.5 μs duty time, 100 V bias voltages, and 3 × 10-3 Torr deposition parameters. The lowest adhesion strength was obtained as 55 N at 0.5 μs duty time, 50V bias voltage, and 2 × 10-3 Torr deposition parameters.

  8. Joint instability and osteoarthritis.

    PubMed

    Blalock, Darryl; Miller, Andrew; Tilley, Michael; Wang, Jinxi

    2015-01-01

    Joint instability creates a clinical and economic burden in the health care system. Injuries and disorders that directly damage the joint structure or lead to joint instability are highly associated with osteoarthritis (OA). Thus, understanding the physiology of joint stability and the mechanisms of joint instability-induced OA is of clinical significance. The first section of this review discusses the structure and function of major joint tissues, including periarticular muscles, which play a significant role in joint stability. Because the knee, ankle, and shoulder joints demonstrate a high incidence of ligament injury and joint instability, the second section summarizes the mechanisms of ligament injury-associated joint instability of these joints. The final section highlights the recent advances in the understanding of the mechanical and biological mechanisms of joint instability-induced OA. These advances may lead to new opportunities for clinical intervention in the prevention and early treatment of OA. PMID:25741184

  9. Joint x-ray

    MedlinePlus

    X-ray - joint; Arthrography; Arthrogram ... x-ray technologist will help you position the joint to be x-rayed on the table. Once in place, pictures are taken. The joint may be moved into other positions for more ...

  10. Joint Instability and Osteoarthritis

    PubMed Central

    Blalock, Darryl; Miller, Andrew; Tilley, Michael; Wang, Jinxi

    2015-01-01

    Joint instability creates a clinical and economic burden in the health care system. Injuries and disorders that directly damage the joint structure or lead to joint instability are highly associated with osteoarthritis (OA). Thus, understanding the physiology of joint stability and the mechanisms of joint instability-induced OA is of clinical significance. The first section of this review discusses the structure and function of major joint tissues, including periarticular muscles, which play a significant role in joint stability. Because the knee, ankle, and shoulder joints demonstrate a high incidence of ligament injury and joint instability, the second section summarizes the mechanisms of ligament injury-associated joint instability of these joints. The final section highlights the recent advances in the understanding of the mechanical and biological mechanisms of joint instability-induced OA. These advances may lead to new opportunities for clinical intervention in the prevention and early treatment of OA. PMID:25741184

  11. Evaluation of oxidative response and tissular damage in rat lungs exposed to silica-coated gold nanoparticles under static magnetic fields

    PubMed Central

    Ferchichi, Soumaya; Trabelsi, Hamdi; Azzouz, Inès; Hanini, Amel; Rejeb, Ahmed; Tebourbi, Olfa; Sakly, Mohsen; Abdelmelek, Hafedh

    2016-01-01

    The purpose of our study was the evaluation of toxicological effects of silica-coated gold nanoparticles (GNPs) and static magnetic fields (SMFs; 128 mT) exposure in rat lungs. Animals received a single injection of GNPs (1,100 µg/kg, 100 nm, intraperitoneally) and were exposed to SMFs, over 14 days (1 h/day). Results showed that GNPs treatment induced a hyperplasia of bronchus-associated lymphoid tissue. Fluorescence microscopy images showed that red fluorescence signal was detected in rat lungs after 2 weeks from the single injection of GNPs. Oxidative response study showed that GNPs exposure increased malondialdehyde level and decreased CuZn-superoxide dismutase, catalase, and glutathione peroxidase activities in rat lungs. Furthermore, the histopathological study showed that combined effects of GNPs and SMFs led to more tissular damages in rat lungs in comparison with GNPs-treated rats. Interestingly, intensity of red fluorescence signal was enhanced after exposure to SMFs indicating a higher accumulation of GNPs in rat lungs under magnetic environment. Moreover, rats coexposed to GNPs and SMFs showed an increased malondialdehyde level, a fall of CuZn-superoxide dismutase, catalase, and glutathione peroxidase activities in comparison with GNPs-treated group. Hence, SMFs exposure increased the accumulation of GNPs in rat lungs and led to more toxic effects of these nanocomplexes. PMID:27354800

  12. Evaluation of oxidative response and tissular damage in rat lungs exposed to silica-coated gold nanoparticles under static magnetic fields.

    PubMed

    Ferchichi, Soumaya; Trabelsi, Hamdi; Azzouz, Inès; Hanini, Amel; Rejeb, Ahmed; Tebourbi, Olfa; Sakly, Mohsen; Abdelmelek, Hafedh

    2016-01-01

    The purpose of our study was the evaluation of toxicological effects of silica-coated gold nanoparticles (GNPs) and static magnetic fields (SMFs; 128 mT) exposure in rat lungs. Animals received a single injection of GNPs (1,100 µg/kg, 100 nm, intraperitoneally) and were exposed to SMFs, over 14 days (1 h/day). Results showed that GNPs treatment induced a hyperplasia of bronchus-associated lymphoid tissue. Fluorescence microscopy images showed that red fluorescence signal was detected in rat lungs after 2 weeks from the single injection of GNPs. Oxidative response study showed that GNPs exposure increased malondialdehyde level and decreased CuZn-superoxide dismutase, catalase, and glutathione peroxidase activities in rat lungs. Furthermore, the histopathological study showed that combined effects of GNPs and SMFs led to more tissular damages in rat lungs in comparison with GNPs-treated rats. Interestingly, intensity of red fluorescence signal was enhanced after exposure to SMFs indicating a higher accumulation of GNPs in rat lungs under magnetic environment. Moreover, rats coexposed to GNPs and SMFs showed an increased malondialdehyde level, a fall of CuZn-superoxide dismutase, catalase, and glutathione peroxidase activities in comparison with GNPs-treated group. Hence, SMFs exposure increased the accumulation of GNPs in rat lungs and led to more toxic effects of these nanocomplexes. PMID:27354800

  13. Fracture strength and principal stress fields during crush testing of the SiC layer in TRISO-coated fuel particles

    NASA Astrophysics Data System (ADS)

    Davis, Brian C.; Ward, Logan; Butt, Darryl P.; Fillery, Brent; Reimanis, Ivar

    2016-08-01

    Diametrical compression testing is an important technique to evaluate fracture properties of the SiC layer in TRISO-coated nuclear fuel particles. This study was conducted to expand the understanding and improve the methodology of the test. An analytic solution and multiple FEA models are used to determine the development of the principal stress fields in the SiC shell during a crush test. An ideal fracture condition where the diametrical compression test best mimics in-service internal pressurization conditions was discovered. For a small set of empirical data points, results from different analysis methodologies were input to an iterative Weibull equation set to determine characteristic strength (332.9 MPa) and Weibull modulus (3.80). These results correlate well with published research. It is shown that SiC shell asphericity is currently the limiting factor of greatest concern to obtaining repeatable results. Improvements to the FEA are the only apparent method for incorporating asphericity and improving accuracy.

  14. Coatings Guide

    EPA Science Inventory

    The Coatings Guide is a free online information resource that focuses on alternative, low-emission coatings for metal, plastic, and architectural substrates. Developed cooperatively by the U.S. EPA's Office of Research and Development and Research Triangle Institute (RTI) Interna...

  15. Antibacterial and biological characteristics of silver containing and strontium doped plasma sprayed hydroxyapatite coatings.

    PubMed

    Fielding, Gary A; Roy, Mangal; Bandyopadhyay, Amit; Bose, Susmita

    2012-08-01

    Infection in primary total joint prostheses is estimated to occur in up to 3% of all surgery. As a measure to improve the antimicrobial properties of implant materials silver (Ag) was incorporated into plasma sprayed hydroxyapatite (HA) coatings. To offset potential cytotoxic effects of Ag in the coatings strontium (Sr) was also added as a binary dopant. HA powder was doped with 2.0 wt.% Ag(2)O, 1.0 wt.% SrO and was then heat treated at 800 °C. Titanium substrates were coated using a 30 kW plasma spray system equipped with a supersonic nozzle. X-ray diffraction confirmed the phase purity and high crystallinity of the coatings. Samples were evaluated for mechanical stability by adhesive bond strength testing. The results show that the addition of dopants did not affect the overall bond strength of the coatings. The antibacterial efficacies of the coatings were tested against Pseudomonas aeruginosa. Samples that contained the Ag(2)O dopant were found to be highly effective against bacterial colonization. In vitro cell-material interactions using human fetal osteoblast cells were characterized by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay for cell viability, field emission scanning electron microscopy for cell morphology and confocal imaging for the important differentiation marker alkaline phosphatase (ALP). Our results showed evidence of cytotoxic effects of the Ag-HA coatings, characterized by poor cellular morphology and cell death and nearly complete loss of functional ALP activity. The addition of SrO to the Ag-HA coatings was able to effectively offset these negative effects and improve performance compared with pure HA-coated samples. PMID:22487928

  16. Antibacterial and biological characteristics of plasma sprayed silver and strontium doped hydroxyapatite coatings

    PubMed Central

    Fielding, Gary A.; Roy, Mangal; Bandyopadhyay, Amit

    2012-01-01

    Infection in primary total joint prostheses is estimated to occur in up to 3% of all surgeries. As a measure to improve the antimicrobial properties of implant materials, silver (Ag) was incorporated into plasma sprayed hydroxyapatite (HA) coatings. To offset potential cytotoxic effects of Ag in the coatings, strontium (Sr) was also added as a binary dopant. HA powder were doped with 2.0 wt% Ag2O, 1.0 wt% SrO and the powder was then heat treated at 800° C. Titanium substrates were coated using a 30 kW plasma spray system equipped with a supersonic nozzle. X-ray diffraction (XRD) confirmed the phase purity and high crystallinity of the coatings. Samples were evaluated for mechanical stability by adhesive bond strength testing. Results show that the addition of dopants did not affect the overall bond strength of the coatings. The antibacterial efficacies of the coatings were tested against Pseudomonas aeruginosa. Samples that contained the Ag2O dopant were found to be highly effective against the bacterial colonization. In vitro cell-material interactions using human fetal osteoblast (hFOB) cells were characterized by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay for cell viability, field emission scanning electron microscopy (FESEM) for cell morphology and confocal imaging for the important differentiation marker alkaline phosphatase (ALP). Our results showed evidence of cytotoxic effects in the Ag-HA coatings, characterized by poor cellular morphology and cell death and nearly complete impediment of functional ALP activity. The addition of SrO to Ag-HA coatings was able to effectively offset these negative effects and improve the performance when compared to pure HA coated samples. PMID:22487928

  17. Spacesuit mobility knee joints

    NASA Technical Reports Server (NTRS)

    Vykukal, H. C. (Inventor)

    1979-01-01

    Pressure suit mobility joints are for use in interconnecting adjacent segments of an hermetically sealed spacesuit in which low torques, low leakage and a high degree of reliability are required. Each of the joints is a special purpose joint characterized by substantially constant volume and low torque characteristics and includes linkages which restrain the joint from longitudinal distension and includes a flexible, substantially impermeable diaphragm of tubular configuration spanning the distance between pivotally supported annuli. The diaphragms of selected joints include rolling convolutions for balancing the joints, while various joints include wedge-shaped sections which enhance the range of motion for the joints.

  18. Spacesuit mobility joints

    NASA Technical Reports Server (NTRS)

    Vykukal, H. C. (Inventor)

    1978-01-01

    Joints for use in interconnecting adjacent segments of an hermetically sealed spacesuit which have low torques, low leakage and a high degree of reliability are described. Each of the joints is a special purpose joint characterized by substantially constant volume and low torque characteristics. Linkages which restrain the joint from longitudinal distension and a flexible, substantially impermeable diaphragm of tubular configuration spanning the distance between pivotally supported annuli are featured. The diaphragms of selected joints include rolling convolutions for balancing the joints, while various joints include wedge-shaped sections which enhance the range of motion for the joints.

  19. The use of matrix coating assisted by an electric field (MCAEF) to enhance mass spectrometric imaging of human prostate cancer biomarkers.

    PubMed

    Wang, Xiaodong; Han, Jun; Hardie, Darryl B; Yang, Juncong; Borchers, Christoph H

    2016-01-01

    In this work, we combined a newly developed matrix coating technique - matrix coating assisted by an electric field (MCAEF) and matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) to enhance the imaging of peptides and proteins in tissue specimens of human prostate cancer. MCAEF increased the signal-to-noise ratios of the detected proteins by a factor of 2 to 5, and 232 signals were detected within the m/z 3500-37500 mass range on a time-of-flight mass spectrometer and with the sinapinic acid MALDI matrix. Among these species, three proteins (S100-A9, S100-A10, and S100-A12) were only observed in the cancerous cell region and 14 proteins, including a fragment of mitogen-activated protein kinase/extracellular signal-regulated kinase kinase kinase 2, a fragment of cAMP-regulated phosphoprotein 19, 3 apolipoproteins (C-I, A-I, and A-II), 2 S100 proteins (A6 and A8), β-microseminoprotein, tumor protein D52, α-1-acid glycoprotein 1, heat shock protein β-1, prostate-specific antigen, and 2 unidentified large peptides at m/z 5002.2 and 6704.2, showed significantly differential distributions at the p < 0.05 (t-test) level between the cancerous and the noncancerous regions of the tissue. Among these 17 species, the distributions of apolipoprotein C-I, S100-A6, and S100-A8 were verified by immunohistological staining. In summary, this study resulted in the imaging of the largest group of proteins in prostate cancer tissues by MALDI-MS reported thus far, and is the first to show a correlation between S100 proteins and prostate cancer in a MS imaging study. The successful imaging of the three proteins only found in the cancerous tissues, as well as those showing differential expressions demonstrated the potential of MCAEF-MALDI/MS for the in situ detection of potential cancer biomarkers. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26757076

  20. Regulatory Aspects of Coatings

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This chapter gives a history of the development and uses of edible coating regulations, detailed chapters on coating caracteristics, determination of coating properties, methods for making coatings, and discription of coating film formers (polysaccharieds, lipids, resins, proteins). The chapter also...

  1. Joint Test Report For Validation of Alternatives to Aliphatic Isocyanate Polyurethanes

    NASA Technical Reports Server (NTRS)

    Lewis, Pattie

    2007-01-01

    National Aeronautics and Space Administration (NASA) and Air Force Space Command (AFSPC) have similar missions and therefore similar facilities and structures in similar environments. The standard practice for protecting metallic substrates in atmospheric environments is the application of an applied coating system. The most common topcoats used in coating systems are polyurethanes that contain isocyanates. Isocyanates are classified as potential human carcinogens and are known to cause cancer in animals. The primary objective of this effort was to demonstrate and validate alternatives to aliphatic isocyanate polyurethanes resulting in one or more isocyanate-free coatings qualified for use at AFSPC and NASA installations participating in this project. This joint Test Report (JTR) documents the results of the laboratory and field testing as well as any test modifications made during the execution of the testing. The technical stakeholders agreed upon test procedure modifications documented in this document. This JTR is made available as a reference for future pollution prevention endeavors by other NASA centers, the Department of Defense and commercial users to minimize duplication of effort. All coating system candidates were tested using approved NASA and AFSPC standard coating systems as experimental controls. This study looked at eight alternative coating systems and two control coating systems and was divided into Phase I Screening Tests, Phase II Tests, and Field Testing. The Phase I Screening Tests were preliminary tests performed on all the selected candidate coating systems. Candidate coating systems that did not meet the acceptance criteria of the screening tests were eliminated from further testing. Phase I Screening Tests included: Ease of Application, Surface Appearance, Dry-To-Touch (Sanding), Accelerated Storage Stability, Pot Life (Viscosity), Cure Time (Solvent Rubs), Cleanability, Knife Test, Tensile (pull-off) Adhesion, and X-Cut Adhesion by Wet

  2. In vitro antibiotic susceptibility of Dutch Mycoplasma synoviae field isolates originating from joint lesions and the respiratory tract of commercial poultry.

    PubMed

    Landman, W J M; Mevius, D J; Veldman, K T; Feberwee, A

    2008-08-01

    The in vitro susceptibility of 17 Dutch Mycoplasma synoviae isolates from commercial poultry to enrofloxacin, difloxacin, doxycycline, tylosin and tilmicosin was examined. Three isolates originated from joint lesions and 14 were from the respiratory tract. The type strain M. synoviae WVU 1853 was included as a control strain. Antibiotic susceptibility was tested quantitatively using the broth microdilution test. Based on initial and final minimum inhibitory concentration values, all tested isolates were susceptible to doxycycline, tylosin and tilmicosin. Two isolates from the respiratory tract were resistant to enrofloxacin and showed intermediate resistance to difloxacin. PMID:18622859

  3. Manipulation of isolated brain nerve terminals by an external magnetic field using D-mannose-coated γ-Fe2O3 nano-sized particles and assessment of their effects on glutamate transport

    PubMed Central

    Krisanova, Natalia; Borуsov, Arsenii; Sivko, Roman; Ostapchenko, Ludmila; Babic, Michal; Horak, Daniel

    2014-01-01

    Summary The manipulation of brain nerve terminals by an external magnetic field promises breakthroughs in nano-neurotechnology. D-Mannose-coated superparamagnetic nanoparticles were synthesized by coprecipitation of Fe(II) and Fe(III) salts followed by oxidation with sodium hypochlorite and addition of D-mannose. Effects of D-mannose-coated superparamagnetic maghemite (γ-Fe2O3) nanoparticles on key characteristics of the glutamatergic neurotransmission were analysed. Using radiolabeled L-[14C]glutamate, it was shown that D-mannose-coated γ-Fe2O3 nanoparticles did not affect high-affinity Na+-dependent uptake, tonic release and the extracellular level of L-[14C]glutamate in isolated rat brain nerve terminals (synaptosomes). Also, the membrane potential of synaptosomes and acidification of synaptic vesicles was not changed as a result of the application of D-mannose-coated γ-Fe2O3 nanoparticles. This was demonstrated with the potential-sensitive fluorescent dye rhodamine 6G and the pH-sensitive dye acridine orange. The study also focused on the analysis of the potential use of these nanoparticles for manipulation of nerve terminals by an external magnetic field. It was shown that more than 84.3 ± 5.0% of L-[14C]glutamate-loaded synaptosomes (1 mg of protein/mL) incubated for 5 min with D-mannose-coated γ-Fe2O3 nanoparticles (250 µg/mL) moved to an area, in which the magnet (250 mT, gradient 5.5 Т/m) was applied compared to 33.5 ± 3.0% of the control and 48.6 ± 3.0% of samples that were treated with uncoated nanoparticles. Therefore, isolated brain nerve terminals can be easily manipulated by an external magnetic field using D-mannose-coated γ-Fe2O3 nanoparticles, while the key characteristics of glutamatergic neurotransmission are not affected. In other words, functionally active synaptosomes labeled with D-mannose-coated γ-Fe2O3 nanoparticles were obtained. PMID:24991515

  4. Development and test of the ITER SC conductor joints

    SciTech Connect

    Gung, C. Y.; Jayakumar, R.; Manahan, R.; Martovetsky, N.; Michael, P.; Minervini, J.; Randall, A.

    1998-08-05

    Joints for the ITER superconducting Central Solenoid should perform in rapidly varying magnetic field with low losses and low DC resistance. This paper describes the design of the ITER joint and presents its assembly process. Two joints were built and tested at the PTF facility at MIT. Test results are presented; losses in transverse and parallel field and the DC performance are discussed. The developed joint demonstrates sufficient margin for baseline ITRR operating scenarios.

  5. Development and test of the ITER conductor joints

    SciTech Connect

    Martovetsky, N., LLNL

    1998-05-14

    Joints for the ITER superconducting Central Solenoid should perform in rapidly varying magnetic field with low losses and low DC resistance. This paper describes the design of the ITER joint and presents its assembly process. Two joints were built and tested at the PTF facility at MIT. Test results are presented, losses in transverse and parallel field and the DC performance are discussed. The developed joint demonstrates sufficient margin for baseline ITER operating scenarios.

  6. Protective Coatings

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Ameron International Protective Coatings Group developed a special coating for NASA that would withstand the high temperatures generated by the Space Shuttle rocket engines. The coating remains intact for at least 10 minutes, and insulates the launch pad so that it does not exceed 150 degrees and buckle. The NASA formulation was from Ameron's Engineered Siloxane (PSX) chemistry, which employs an inorganic silicon-oxygen structure which the company states is stronger and more reliable than organic polymers. Some of Ameron's PSX product line is based on the NASA technology, used for everything from industrial equipment to bridges.

  7. Sprayed coatings

    NASA Astrophysics Data System (ADS)

    Steffens, H. D.

    1980-03-01

    Thermal spraying is shown to be an efficient means for the protection of surface areas against elevated temperature, wear, corrosion, hot gas corrosion, and erosion in structural aircraft components. Particularly in jet engines, numerous parts are coated by flame, detonation, or plasma spraying techniques. The applied methods of flame, detonation, and plasma spraying are explained, as well as electric arc spraying. Possibilities for spray coatings which meet aircraft service requirements are discussed, as well as methods for quality control, especially nondestructive test methods. In particular, coating characteristics and properties obtained by different spray methods are described, and special attention is paid to low pressure plasma spraying.

  8. Joint fluid Gram stain

    MedlinePlus

    Gram stain of joint fluid ... A sample of joint fluid is needed. The fluid sample is sent to a lab where a small drop is placed in a ... on how to prepare for the removal of joint fluid, see joint fluid aspiration .

  9. Versatile Coating

    NASA Technical Reports Server (NTRS)

    1990-01-01

    A radome at Logan Airport and a large parabolic antenna at the Wang Building in Massachusetts are protected from weather, corrosion and ultraviolet radiation by a coating, specially designed for antennas and radomes, known as CRC Weathertite 6000. The CRC 6000 line that emerged from Boyd Coatings Research Co., Inc. is a solid dispersion of fluorocarbon polymer and polyurethane that yields a tough, durable film with superior ultraviolet resistance and the ability to repel water and ice over a long term. Additionally, it provides resistance to corrosion, abrasion, chemical attacks and impacts. Material can be used on a variety of substrates, such as fiberglass, wood, plastic and concrete in addition to steel and aluminum. In addition Boyd Coatings sees CRC 6000 applicability as an anti-icing system coated on the leading edge of aircraft wings.

  10. Protective Coating

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Inorganic Coatings, Inc.'s K-Zinc 531 protective coating is water-based non-toxic, non-flammable and has no organic emissions. High ratio silicate formula bonds to steel, and in 30 minutes, creates a very hard ceramic finish with superior adhesion and abrasion resistance. Improved technology allows application over a minimal commercial sandblast, fast drying in high humidity conditions and compatibility with both solvent and water-based topcoats. Coating is easy to apply and provides long term protection with a single application. Zinc rich coating with water-based potassium silicate binder offers cost advantages in materials, labor hours per application, and fewer applications over a given time span.

  11. RSRM Nozzle-to-Case Joint J-leg Development

    NASA Technical Reports Server (NTRS)

    Albrechtsen, Kevin U.; Eddy, Norman F.; Ewing, Mark E.; McGuire, John R.

    2003-01-01

    Since the beginning of the Space Shuttle Reusable Solid Rocket Motor (RSRM) program, nozzle-to-case joint polysulfide adhesive gas paths have occurred on several flight motors. These gas paths have allowed hot motor gases to reach the wiper O-ring. Even though these motors continue to fly safely with this condition, a desire was to reduce such occurrences. The RSRM currently uses a J-leg joint configuration on case field joints and igniter inner and outer joints. The J-leg joint configuration has been successfully demonstrated on numerous RSRM flight and static test motors, eliminating hot gas intrusion to the critical O-ring seals on these joints. Using the proven technology demonstrated on the case field joints and igniter joints, a nozzle-to-case joint J-leg design was developed for implementation on RSRM flight motors. This configuration provides an interference fit with nozzle fixed housing phenolics at assembly, with a series of pressurization gaps incorporated outboard of the joint mating surface to aid in joint pressurization and to eliminate any circumferential flow in this region. The joint insulation is bonded to the nozzle phenolics using the same pressure sensitive adhesive used in the case field joints and igniter joints. An enhancement to the nozzle-to-case joint J-leg configuration is the implementation of a carbon rope thermal barrier. The thermal barrier is located downstream of the joint bondline and is positioned within the joint in a manner where any hot gas intrusion into the joint passes through the thermal barrier, reducing gas temperatures to a level that would not affect O-rings downstream of the thermal barrier. This paper discusses the processes used in reaching a final nozzle-to-case joint J-leg design, provides structural and thermal results in support of the design, and identifies fabrication techniques and demonstrations used in arriving at the final configuration.

  12. Preliminary Sensorimotor and Cardiovascular Results from the Joint Russian and U.S. Pilot Field Test with Planning for the Full Field Test Beginning with the Year Long Intenational Space Station

    NASA Technical Reports Server (NTRS)

    Reschke, M. F.; Kozlovskaya, I. B.; Tomilovskaya, E. S.; Bloomberg, J. J.; Platts, S. H.; Rukavishnikov, I. V.; Fomina, E. V.; Stenger, M. B.; Lee, S. M. C.; Wood, S. J.; Mulavara, A. P.; Feiveson, A. H.; Cerisano, J. M.; Kofman, I. S.; Fisher, E. A.

    2014-01-01

    Ongoing collaborative research efforts between NASA's Neuroscience and Cardiovascular Laboratories, and the Institute of Biomedical Problems' (IBMP) Sensory-Motor and Countermeasures Laboratories have been measuring functional sensorimotor, cardiovascular and strength responses following bed rest, dry immersion, short duration (Space Shuttle) and long duration (Mir and International Space Station) space flights. While the unloading paradigms associated with dry immersion and bed rest does serve as acceptable flight analogs, testing of crew responses following the long duration flights previously has not been possible until a minimum of 24 hours after landing. As a result, it is not possible to estimate the nonlinear trend of the early (<24 hr) recovery process, nor is it possible to accurately assess the full impact of the decrements associated with long duration flight. To overcome these limitations, both the Russian and U.S. sides have implemented testing at landing site. By joint agreement, this research effort has been identified as the functional Field Test (FT). For practical reasons the FT has been divided into two phases: the full FT and a preliminary pilot version (PFT) of the FT that is reduced in both length and scope. The primary goal of this research is to determine functional abilities in long duration space flight crews beginning as soon after landing as possible (< 2 hr) with one to three immediate follow-up measurements on the day of landing. This goal has both sensorimotor and cardiovascular elements, including evaluations of NASA's new anti-orthostatic compression garment and the Russian Kentavr garment. Functional sensorimotor measurements will include, but are not limited to, assessment of hand/eye coordination, ability to egress from a seated position, walk normally without falling, measurement of dynamic visual acuity, ability to discriminate different forces generated with both the hands and legs, recovery from a fall, a coordinated walk

  13. Microstructural developments in TLP bonds using thin interlayers based on Ni-B coatings

    SciTech Connect

    Saha, R.K.; Khan, T.I.

    2009-09-15

    Oxide dispersion strengthened alloy MA 758 was transient liquid phase (TLP) bonded using thin interlayers based on Ni-B electrodeposited coatings and the microstructural developments across the joint region were studied. The bonding surfaces were electrodeposited with a coat thickness of 2-9 {mu}m and microstructural features were characterized by scanning electron microscopy and energy dispersive X-ray spectroscopy. The homogeneity of the joint was assessed performing micro-hardness test. The results showed that the coating thickness as well as the amount of melting point depressants (boron) in the coatings had a significant effect on the microstructural developments within the joint region. TLP bonds made using a 2 {mu}m thick coating interlayer produced a joint with no visible precipitate formation and parent metal dissolution, and the absence of precipitates was attributed to the lower volume concentration of boron in the 2 {mu}m thick coating interlayer.

  14. Butt Joint Tool Commissioning

    SciTech Connect

    Martovetsky, N N

    2007-12-06

    ITER Central Solenoid uses butt joints for connecting the pancakes in the CS module. The principles of the butt joining of the CICC were developed by the JAPT during CSMC project. The difference between the CSMC butt joint and the CS butt joint is that the CS butt joint is an in-line joint, while the CSMC is a double joint through a hairpin jumper. The CS butt joint has to carry the hoop load. The straight length of the joint is only 320 mm, and the vacuum chamber around the joint has to have a split in the clamp shell. These requirements are challenging. Fig.1 presents a CSMC joint, and Fig.2 shows a CS butt joint. The butt joint procedure was verified and demonstrated. The tool is capable of achieving all specified parameters. The vacuum in the end was a little higher than the target, which is not critical and readily correctable. We consider, tentatively that the procedure is established. Unexpectedly, we discover significant temperature nonuniformity in the joint cross section, which is not formally a violation of the specs, but is a point of concern. All testing parameters are recorded for QA purposes. We plan to modify the butt joining tool to improve its convenience of operation and provide all features necessary for production of butt joints by qualified personnel.

  15. Antireflective Coatings for Glass and Transparent Polymers.

    PubMed

    Buskens, Pascal; Burghoorn, Marieke; Mourad, Maurice Christian Danho; Vroon, Zeger

    2016-07-12

    Antireflective coatings (ARCs) are applied to reduce surface reflections. We review coatings that reduce the reflection of the surface of the transparent substrates float glass, polyethylene terephthalate, poly(methyl methacrylate), and polycarbonate. Three main coating concepts exist to lower the reflection at the interface of a transparent substrate and air: multilayer interference coatings, graded index coatings, and quarter-wave coatings. We introduce and discuss these three concepts, and zoom in on porous quarter-wave coatings comprising colloidal particles. We extensively discuss the four routes for introducing porosity in quarter-wave coatings through the use of colloidal particles, which have the highest potential for application: (1) packing of dense nanospheres, (2) integration of voids through hollow nanospheres, (3) integration of voids through sacrificial particle templates, and (4) packing of nonspherical nanoparticles. Finally, we address the remaining challenges in the field of ARCs, and elaborate on potential strategies for future research in this area. PMID:27187719

  16. Hardfacing of Bulk Nanophase Coatings

    NASA Astrophysics Data System (ADS)

    Reisgen, Uwe; Balashov, Boris; Stein, Lars; Geffers, Christoph

    2012-01-01

    This paper discusses the production of iron-based nanophase hardfaced coatings by means of common arc welding methods. The key is the exact, close-to-eutectic composition of the newly developed alloys. In combination with a precise control of the dilution of the base metal, this results in an eutectic composition of the coating, which allows the in-situ generation of nanoscale hardphases during solidification. The applied cooling rates are only of secondary importance. The self-organizing nanophase structures within the hardfaced coatings show phase dimensions of approximately 100-300 nm. The generation of nanoscale structures in hardfaced coatings allows the improvement of mechanical properties, wear resistance and corrosion resistance. The article further demonstrates a potential application for these types of hardfaced coatings in the field of cutting edges.

  17. Diamond Coatings

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Advances in materials technology have demonstrated that it is possible to get the advantages of diamond in a number of applications without the cost penalty, by coating and chemically bonding an inexpensive substrate with a thin film of diamond-like carbon (DLC). Diamond films offer tremendous technical and economic potential in such advances as chemically inert protective coatings; machine tools and parts capable of resisting wear 10 times longer; ball bearings and metal cutting tools; a broad variety of optical instruments and systems; and consumer products. Among the American companies engaged in DLC commercialization is Diamonex, Inc., a diamond coating spinoff of Air Products and Chemicals, Inc. Along with its own proprietary technology for both polycrystalline diamond and DLC coatings, Diamonex is using, under an exclusive license, NASA technology for depositing DLC on a substrate. Diamonex is developing, and offering commercially, under the trade name Diamond Aegis, a line of polycrystalline diamond-coated products that can be custom tailored for optical, electronic and engineering applications. Diamonex's initial focus is on optical products and the first commercial product is expected in late 1990. Other target applications include electronic heat sink substrates, x-ray lithography masks, metal cutting tools and bearings.

  18. Failure modes of protective coatings: Who`s at fault?

    SciTech Connect

    Vincent, L.D.

    1999-04-01

    This article abstracts information from 42 articles in industry journals and magazines, and 41 case studies of failure analyses conducted by consultants. The studies demonstrate that 75% of all coating failures are not solely the fault of the contractor, as is commonly believed. Owners, engineers, specifiers, and contractors/applicators share most of the responsibility. A joint responsibility among all parties involved in a coating project is required. The most effective answer to preventing coating failures is training.

  19. Protective Coatings

    NASA Technical Reports Server (NTRS)

    1980-01-01

    General Magnaplate Corporation's pharmaceutical machine is used in the industry for high speed pressing of pills and capsules. Machine is automatic system for molding glycerine suppositories. These machines are typical of many types of drug production and packaging equipment whose metal parts are treated with space spinoff coatings that promote general machine efficiency and contribute to compliance with stringent federal sanitation codes for pharmaceutical manufacture. Collectively known as "synergistic" coatings, these dry lubricants are bonded to a variety of metals to form an extremely hard slippery surface with long lasting self lubrication. The coatings offer multiple advantages; they cannot chip, peel or be rubbed off. They protect machine parts from corrosion and wear longer, lowering maintenance cost and reduce undesired heat caused by power-robbing friction.

  20. Geodatabase of environmental information for Air Force Plant 4 and Naval Air Station-Joint Reserve Base Carswell Field, Fort Worth, Texas, 1990-2004

    USGS Publications Warehouse

    Shah, Sachin D.; Quigley, Sean M.

    2005-01-01

    Air Force Plant 4 (AFP4) and adjacent Naval Air Station-Joint Reserve Base (NAS-JRB) at Fort Worth, Tex., constitute a government-owned, contractor-operated (GOCO) facility that has been in operation since 1942. Contaminants from the facility, primarily volatile organic compounds (VOCs) and metals, have entered the groundwater-flow system through leakage from waste-disposal sites (landfills and pits) and from manufacturing processes (U.S. Air Force, Aeronautical Systems Center, 1995). The U.S. Geological Survey (USGS), in cooperation with the U.S. Air Force (USAF), Aeronautical Systems Center, Environmental Management Directorate (ASC/ENVR), developed a comprehensive database (or geodatabase) of temporal and spatial environmental information associated with the geology, hydrology, and water quality at AFP4 and NAS-JRB. The database of this report provides information about the AFP4 and NAS-JRB study area including sample location names, identification numbers, locations, historical dates, and various measured hydrologic data. This database does not include every sample location at the site, but is limited to an aggregation of selected digital and hardcopy data of the USAF, USGS, and various consultants who have previously or are currently working at the site.

  1. Electromagnetic properties of material coated surfaces

    NASA Technical Reports Server (NTRS)

    Beard, L.; Berrie, J.; Burkholder, R.; Dominek, A.; Walton, E.; Wang, N.

    1989-01-01

    The electromagnetic properties of material coated conducting surfaces were investigated. The coating geometries consist of uniform layers over a planar surface, irregularly shaped formations near edges and randomly positioned, electrically small, irregularly shaped formations over a surface. Techniques to measure the scattered field and constitutive parameters from these geometries were studied. The significance of the scattered field from these geometries warrants further study.

  2. Bioactive Coatings for Orthopaedic Implants—Recent Trends in Development of Implant Coatings

    PubMed Central

    Zhang, Bill G. X.; Myers, Damian E.; Wallace, Gordon G.; Brandt, Milan; Choong, Peter F. M.

    2014-01-01

    Joint replacement is a major orthopaedic procedure used to treat joint osteoarthritis. Aseptic loosening and infection are the two most significant causes of prosthetic implant failure. The ideal implant should be able to promote osteointegration, deter bacterial adhesion and minimize prosthetic infection. Recent developments in material science and cell biology have seen the development of new orthopaedic implant coatings to address these issues. Coatings consisting of bioceramics, extracellular matrix proteins, biological peptides or growth factors impart bioactivity and biocompatibility to the metallic surface of conventional orthopaedic prosthesis that promote bone ingrowth and differentiation of stem cells into osteoblasts leading to enhanced osteointegration of the implant. Furthermore, coatings such as silver, nitric oxide, antibiotics, antiseptics and antimicrobial peptides with anti-microbial properties have also been developed, which show promise in reducing bacterial adhesion and prosthetic infections. This review summarizes some of the recent developments in coatings for orthopaedic implants. PMID:25000263

  3. Gold Coating

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Epner Technology Inc. responded to a need from Goddard Space Flight Center for the ultimate in electroplated reflectivity needed for the Mars Global Surveyor Mars Orbiter Laser Altimeter (MOLA). Made of beryllium, the MOLA mirror was coated by Epner Technology Laser Gold process, specially improved for the project. Improved Laser Gold- coated reflectors have found use in an epitaxial reactor built for a large semiconductor manufacturer as well as the waveguide in Braun-Thermoscan tympanic thermometer and lasing cavities in various surgical instruments.

  4. Thickness effect on HVOF coatings

    SciTech Connect

    Thorpe, R.

    1994-12-31

    Hobart/Tafa`s JP-5000`s particle velocity has a unique effect on coatings. This paper discusses the effect of thickness on coating properties such as: integrity, bond strength, stresses and coating performance. Much has been said about the advantages of these coatings. The goal of this paper if to provide additional substantiation. Higher operating pressure gun with high particle velocity yields coating properties that allow them to be applied thicker than ever before. the properties of these thicker coatings are evaluated versus micro-integrity, porosity, bond strength, oxide content and performance. Other comparisons are considered. Stresses in those coatings are a key part of this evaluation. Due to the unique coating stresses, corrosion and stress-corrosion resistance properties are improved. Also, mechanical and thermal fatigue properties are enhanced. A few case histories will be examined as documentation of actual field history. The types of applications involved are high and low temperature particle erosion; impact and sliding wear; immersion and heat corrosion; dimensional restoration of superalloys.

  5. First-order phase transition from an antiferromagnetic ferroelectric to a cycloidal multiferroic with weak ferromagnetism during the joint action of applied magnetic and electric fields

    SciTech Connect

    Pikin, S. A. Lyubutin, I. S.

    2013-09-15

    The thermodynamics of the phase transition in a perovskite-like multiferroic, in which an antiferromagnetic ferroelectric transforms into a new magnetic state where a spiral spin structure and weak ferromagnetism can coexist in applied magnetic field H, is described. This state forms as a result of a first-order phase transition at a certain temperature (below Neel temperature T{sub N}), where a helicoidal magnetic structure appears due to the Dzyaloshinskii-Moriya effect. In this case, the axes of electric polarization and the helicoid of magnetic moments are mutually perpendicular and lie in the ab plane, which is normal to principal axis c. Additional electric polarization p, which decreases the total polarization of the ferroelectric P, appears in the ab plane. The effect of applied magnetic and electric fields on the properties of a multiferroic with a helicoidal magnetic structure is described. An alternating electric field is shown to cause a field-linear change in magnetic moment m, whose sign is opposite to the sign of the change of electric field E. The detected hysteretic phenomena that determine the temperature ranges of overheating and supercooling of each phase are explained. A comparison with the experimental data is performed.

  6. Metatarsal phalangeal joint arthroscopy.

    PubMed

    Shonka, T E

    1991-01-01

    An overview of metatarsophalangeal joint (MPJ) arthroscopy is presented. Indications, technique, and perioperative management are discussed. The author believes it is the operative treatment of choice for various pathology encountered in this joint. PMID:2002183

  7. Culture - joint fluid

    MedlinePlus

    Joint fluid culture ... fungi, or viruses grow. This is called a culture. If these germs are detected, other tests may ... is no special preparation needed for the lab culture. How to prepare for the removal of joint ...

  8. Hip joint replacement - slideshow

    MedlinePlus

    ... this page: //medlineplus.gov/ency/presentations/100006.htm Hip joint replacement - series—Normal anatomy To use the sharing ... to slide 5 out of 5 Overview The hip joint is made up of two major parts: the ...

  9. Hip joint injection

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/007633.htm Hip joint injection To use the sharing features on this ... injection is a shot of medicine into the hip joint. The medicine helps relieve pain and inflammation. It ...

  10. Hip joint replacement

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/002975.htm Hip joint replacement To use the sharing features on this page, please enable JavaScript. Hip joint replacement is surgery to replace all or part ...

  11. Knee joint replacement - slideshow

    MedlinePlus

    ... page: //medlineplus.gov/ency/presentations/100088.htm Knee joint replacement - series—Normal anatomy To use the sharing ... of 4 Overview The knee is a complex joint. It contains the distal end of the femur ( ...

  12. Knee joint replacement

    MedlinePlus

    ... page: //medlineplus.gov/ency/article/002974.htm Knee joint replacement To use the sharing features on this page, please enable JavaScript. Knee joint replacement is a surgery to replace a knee ...

  13. Large displacement spherical joint

    DOEpatents

    Bieg, Lothar F.; Benavides, Gilbert L.

    2002-01-01

    A new class of spherical joints has a very large accessible full cone angle, a property which is beneficial for a wide range of applications. Despite the large cone angles, these joints move freely without singularities.

  14. Temporomandibular Joint Dysfunction

    MedlinePlus

    The temporomandibular joint (TMJ) connects your jaw to the side of your head. When it works well, it enables you to ... For people with TMJ dysfunction, problems with the joint and muscles around it may cause Pain that ...

  15. Sacroiliac joint pain - aftercare

    MedlinePlus

    ... page: //medlineplus.gov/ency/patientinstructions/000610.htm Sacroiliac joint pain - aftercare To use the sharing features on this page, please enable JavaScript. The sacroiliac joint (SIJ) is a term used to describe the ...

  16. An investigation into the accuracy of the albedo dosimeter DVGN-01 in measuring personnel irradiation doses in the fields of neutron radiation at nuclear power installations of the joint institute for nuclear research

    NASA Astrophysics Data System (ADS)

    Beskrovnaya, L. G.; Goroshkova, E. A.; Mokrov, Yu. V.

    2010-05-01

    The calculated results of research into the accuracy of an individual albedo dosimeter DVGN-01 as it corresponds to the personal equivalent dose for neutrons H p (10) and to the effective dose for neutrons E eff in the neutron fields at Joint Institute for Nuclear Research Nuclear Power Installations (JNPI) upon different geometries of irradiations are presented. It has been shown that correction coefficients are required for the specific estimation of doses by the dosimeter. These coefficients were calculated using the energy sensitivity curve of the dosimeter and the known neutron spectra at JNPI. By using the correction factors, the uncertainties of both doses will not exceed the limits given to the personnel according to the standards.

  17. Corrosion resistant coating

    NASA Technical Reports Server (NTRS)

    Khanna, S. K.; Thakoor, A. P.; Williams, R. M. (Inventor)

    1985-01-01

    A method of coating a substrate with an amorphous metal is described. A solid piece of the metal is bombarded with ions of an inert gas in the presence of a magnetic field to provide a vapor of the metal which is deposited on the substrate at a sufficiently low gas pressure so that there is formed on the substrate a thin, uniformly thick, essentially pinhole-free film of the metal.

  18. Sacroiliac joint imaging.

    PubMed

    Tuite, Michael J

    2008-03-01

    The sacroiliac (SI) joint has several unique anatomical features that make it one of the more challenging joints to image. The joint is difficult to profile well on radiographic views, and therefore the radiographic findings of sacroiliitis are often equivocal. Computed tomography images can usually show the findings of sacroiliitis and osteoarthritis earlier than radiographs. Magnetic resonance imaging performed with proper sequences is excellent for diagnosing even very early sacroiliitis and for following treatment response. The SI joint is often involved in patients with osteoarthritis or one of the inflammatory spondyloarthritides, most notably ankylosing spondylitis. Ankylosing spondylitis often presents with sacroiliitis, which appears as erosions, sclerosis, and joint space narrowing, eventually leading to ankylosis. Several disorders can cause sacroiliitis-like changes of the joint, including hyperparathyroidism and repetitive shear-stress injuries in athletes. The joint can become painful during pregnancy as it widens and develops increased motion, and some postpartum women develop iliac sclerosis adjacent to the joint termed osteitis condensans ilii. Another cause of SI joint pain is a disorder called sacroiliac joint dysfunction, which typically has few abnormal imaging findings. Patients with SI joint dysfunction, as well as sacroiliitis, often get relief from image-guided SI joint therapeutic injections. PMID:18382946

  19. Joint Enrollment Report, 2014

    ERIC Educational Resources Information Center

    Iowa Department of Education, 2014

    2014-01-01

    The Iowa Department of Education collects information on joint enrollment in Iowa's 15 community colleges. Jointly enrolled students are high school students enrolled in community college credit coursework. Most jointly enrolled students enroll through Senior Year Plus (SYP) programs such as Postsecondary Enrollment Options (PSEO) and concurrent…

  20. Assessing The Role Of Integrated Learning In The BSc International Field Geosciences (IFG) Joint Degree Programme At University College Cork, the University of Montana and the University of Potsdam.

    NASA Astrophysics Data System (ADS)

    Meere, Patrick; Hendrix, Marc; Strecker, Manfred; Berger, Andreas

    2010-05-01

    The Department of Geology at University College Cork (UCC), Ireland, in conjunction with the Universities of Montana (UM) and Potsdam (UP) launched a new BSc in International Field Geosciences in Autumn 2008. In this program superb natural field geoscience laboratories available in Europe and the western United States are utilized as learning environments forming the basis for a ‘Joint' Bachelor of Science undergraduate degree. This programme focuses on the documentation, interpretation, and synthesis of critical geological issues in the field. It rests upon a backbone of existing modules that are the foundation of current geology programs at three partner institutions complemented by an emphasis on the development of field-based learning in an intercultural setting. The core curriculum is identical to that required for the existing BSc Geology at UCC except the third Year is spent abroad at UM while additional courses are taken at the UP at the start the fourth year. The mobility component of the programme is funded as part of a joint EU/US ATLANTIS project. The motivation for the new programme was primarily driven by the growing international demand for geoscientists with integrated field skills. Over the last two decades existing geoscience programmes in Europe and the US have tended to progressively reduce their field based learning components. One of the major reasons for this neglect is the increasing cost associated with physically transporting students into the field and maintaining a safe outdoor working environment. Heath and safety considerations in an increasingly litigious society have led to increasingly limited choices for suitable field areas in the last few decades. Lastly, recent technological advances such as GIS and various other forms of remote sensing have led to new ways of analyzing geospatial data that, while certainly useful, divert the attention of the Geoscience community away from collecting ‘ground truth' data and making direct

  1. Arch & Chord Joint Detail; Crossbracing Center Joint Detail; Chord, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Arch & Chord Joint Detail; Crossbracing Center Joint Detail; Chord, Panel Post, Tie & Diagonal Brace Joint Detail; Chord, Panel Post, Tie & Crossbracing Joint Detail - Dunlapsville Covered Bridge, Spanning East Fork Whitewater River, Dunlapsville, Union County, IN

  2. Joint solar dynamics project data summary (2nd): solar magnetic field, chromospheric and coronal observations near the time of the 11 June 1983 solar eclipse. Technical note

    SciTech Connect

    Sime, D.G.; Fisher, R.R.; Garcia, C.J.; Najita, J.R.; Rock, K.A.

    1983-07-01

    A comprehensive set of observations of the solar photosphere, chromosphere and corona is presented for one week on either side of the 11 June 1983 total solar eclipse. These observations, made at the Mauna Loa Solar Observatory and at the University of Hawaii's Mees Solar Observatory on Haleakala, include H images of the disk and the limb, off-band H sunspot and Ca-II K-line images, together with observations of the white light corona. Also included are photospheric longitudinal magnetic field estimates made from the Fe line at 6302.5, by the Mees observatory Stokes photo-polarimeter. The data are presented as daily observations. In the case of the k-coronal observations and the magnetic field data, synoptic maps have been constructed for this interval.

  3. Influence of random point defects introduced by proton irradiation on the flux creep rates and magnetic field dependence of the critical current density J c of co-evaporated GdBa2Cu3O7-δ coated conductors

    NASA Astrophysics Data System (ADS)

    Haberkorn, N.; Kim, Jeehoon; Suárez, S.; Lee, Jae-Hun; Moon, S. H.

    2015-12-01

    We report the influence of random point defects introduced by 3 MeV proton irradiation (doses of 0.5 × 1016, 1 × 1016, 2 × 1016 and 6 × 1016 cm-2) on the vortex dynamics of co-evaporated 1.3 μm thick, GdBa2Cu3O7-δ coated conductors. Our results indicate that the inclusion of additional random point defects reduces the low field and enhances the in-field critical current densities J c. The main in-field J c enhancement takes place below 40 K, which is in agreement with the expectations for pinning by random point defects. In addition, our data show a slight though clear increase in flux creep rates as a function of irradiation fluence. Maley analysis indicates that this increment can be associated with a reduction in the exponent μ characterizing the glassy behavior.

  4. Engine Coatings

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Increasing the operating temperature of turbine engines reduces fuel consumption and increases engine efficiency. However, engine components must be protected from excessive heat. Lewis Research Center has successfully developed thermal barrier coatings (TBCs), which are deposited on the components. They insulate, offer oxidation and corrosion resistance and increase adherence. Surface temperatures can be reduced by 200 degrees centigrade or more. G. E. Aircraft Engines, a Lewis contractor, now uses a TBC based on the one developed at Lewis, on production engines. The system, which consists of a bond and a top coat extends component life from 1.3 to 2 times. The company is also testing TBCs on components that operate at higher temperatures.

  5. COATING METHOD

    DOEpatents

    Townsend, R.G.

    1959-08-25

    A method is described for protectively coating beryllium metal by etching the metal in an acid bath, immersing the etched beryllium in a solution of sodium zincate for a brief period of time, immersing the beryllium in concentrated nitric acid, immersing the beryhlium in a second solution of sodium zincate, electroplating a thin layer of copper over the beryllium, and finally electroplating a layer of chromium over the copper layer.

  6. Extension of a regularizing algorithm for the determination of equilibrium geometry and force field of free molecules from joint use of electron diffraction, molecular spectroscopy and ab initio data on systems with large-amplitude oscillatory motion

    NASA Astrophysics Data System (ADS)

    Kochikov, I. V.; Tarasov, Yu. I.; Spiridonov, V. P.; Kuramshina, G. M.; Yagola, A. G.; Saakjan, A. S.; Popik, M. V.; Samdal, S.

    1999-08-01

    The previously developed integrated algorithm for the joint treatment of gas-phase electron diffraction and vibrational spectroscopic data is extended to include systems with large-amplitude oscillatory motion. In addition, the treatment is augmented by the inclusion of microwave rotational constants. As in the previous work, the analysis of data from experimental sources is guided by quantum mechanical molecular geometry and force field optimization results. The computed force field matrix can be corrected empirically with the aid of suitable scale factors. Centrifugal distortion corrections to interatomic distances are included. The standard deviations of the parameters determined and the correlation coefficients can now be estimated. The principal design of the developed computer program is outlined, and some methodological problems associated with diffraction analysis of molecules with large-amplitude motion are discussed. To provide an example of a problem susceptible to attack by the present method an account is made of the re-analysis of diffraction data for 4-fluorobenzaldehyde collected earlier on the Balzers apparatus in Oslo.

  7. Equine rehabilitation therapy for joint disease.

    PubMed

    Porter, Mimi

    2005-12-01

    The principles of physical rehabilitation therapy can be applied to the horse to provide a reduction in discomfort and dysfunction associated with the various forms of joint disease. Physical agents,such as ice, heat, electricity, sound, light, magnetic fields, compression, and movement, can be used by the rehabilitation therapist to attempt to control pain, reduce swelling, and restore optimal movement and function in the affected joint. The equine therapist's attention is focused not only on the affected joint but on the body as a whole to manage secondary or compensatory problems. PMID:16297723

  8. Seismic response of rock joints and jointed rock mass

    SciTech Connect

    Ghosh, A.; Hsiung, S.M.; Chowdhury, A.H.

    1996-06-01

    Long-term stability of emplacement drifts and potential near-field fluid flow resulting from coupled effects are among the concerns for safe disposal of high-level nuclear waste (HLW). A number of factors can induce drift instability or change the near-field flow patterns. Repetitive seismic loads from earthquakes and thermal loads generated by the decay of emplaced waste are two significant factors. One of two key technical uncertainties (KTU) that can potentially pose a high risk of noncompliance with the performance objectives of 10 CFR Part 60 is the prediction of thermal-mechanical (including repetitive seismic load) effects on stability of emplacement drifts and the engineered barrier system. The second KTU of concern is the prediction of thermal-mechanical-hydrological (including repetitive seismic load) effects on the host rock surrounding the engineered barrier system. The Rock Mechanics research project being conducted at the Center for Nuclear Waste Regulatory Analyses (CNWRA) is intended to address certain specific technical issues associated with these two KTUs. This research project has two major components: (i) seismic response of rock joints and a jointed rock mass and (ii) coupled thermal-mechanical-hydrological (TMH) response of a jointed rock mass surrounding the engineered barrier system (EBS). This final report summarizes the research activities concerned with the repetitive seismic load aspect of both these KTUs.

  9. Periprosthetic Joint Infections: Clinical and Bench Research

    PubMed Central

    Legout, Laurence; Senneville, Eric

    2013-01-01

    Prosthetic joint infection is a devastating complication with high morbidity and substantial cost. The incidence is low but probably underestimated. Despite a significant basic and clinical research in this field, many questions concerning the definition of prosthetic infection as well the diagnosis and the management of these infections remained unanswered. We review the current literature about the new diagnostic methods, the management and the prevention of prosthetic joint infections. PMID:24288493

  10. Periprosthetic joint infections: clinical and bench research.

    PubMed

    Legout, Laurence; Senneville, Eric

    2013-01-01

    Prosthetic joint infection is a devastating complication with high morbidity and substantial cost. The incidence is low but probably underestimated. Despite a significant basic and clinical research in this field, many questions concerning the definition of prosthetic infection as well the diagnosis and the management of these infections remained unanswered. We review the current literature about the new diagnostic methods, the management and the prevention of prosthetic joint infections. PMID:24288493

  11. Modeling Progressive Failure of Bonded Joints Using a Single Joint Finite Element

    NASA Technical Reports Server (NTRS)

    Stapleton, Scott E.; Waas, Anthony M.; Bednarcyk, Brett A.

    2010-01-01

    Enhanced finite elements are elements with an embedded analytical solution which can capture detailed local fields, enabling more efficient, mesh-independent finite element analysis. In the present study, an enhanced finite element is applied to generate a general framework capable of modeling an array of joint types. The joint field equations are derived using the principle of minimum potential energy, and the resulting solutions for the displacement fields are used to generate shape functions and a stiffness matrix for a single joint finite element. This single finite element thus captures the detailed stress and strain fields within the bonded joint, but it can function within a broader structural finite element model. The costs associated with a fine mesh of the joint can thus be avoided while still obtaining a detailed solution for the joint. Additionally, the capability to model non-linear adhesive constitutive behavior has been included within the method, and progressive failure of the adhesive can be modeled by using a strain-based failure criteria and re-sizing the joint as the adhesive fails. Results of the model compare favorably with experimental and finite element results.

  12. Enhancing University Courses and Field Schools through Cross-cultural Exchange: Joint US-Bangladeshi Trips to the Ganges-Brahmaputra and Mississippi Deltas

    NASA Astrophysics Data System (ADS)

    Steckler, M. S.; Goodbred, S. L., Jr.; Lowes, S.; Gilligan, J. M.; Ackerly, B.; Ahmed, K. M.; Akhter, S. H.; Sousa, D.; Wilson, C.; Datta, D. K.; Roy, K.; Mondal, D. R.

    2014-12-01

    As part of an NSF PIRE grant, we have led four field trips for undergraduate, MS and PhD students to large deltaic systems. Three trips took US students to the Ganges-Brahmaputra (GB) delta in Bangladesh and one brought Bangladeshi faculty and students to the Mississippi (Miss.) delta in the US. An essential component in the learning process and overall experience of each trip was that ~2/5 of the participants were students and professors from Bangladesh. In all cases, the involvement of a substantial international cohort greatly broadened perspectives on the topics being covered. For example, in GBD the local geologic and cultural knowledge of the Bangladeshis deepened the learning and engagement of the US students, an outcome that was almost universally noted in student reviews. The trips received similar feedback from Bangladeshi participants, as they had an enthusiastic and engaged audience of peers from the US. Even for the Miss. delta trip, the Bangladeshis added a unique perspective from a nation that faces similar environmental issues. These overwhelmingly positive contributions have been experienced in several different contexts. Three trips were associated with US courses and run over Spring Break. One matched sustainable development undergrads at Columbia U. with geology undergrads from Dhaka U., and two others matched a mixed group of graduate and undergrad students from Vanderbilt U. with cohorts from Bangladesh. The fourth trip was a stand-alone Field School for PhD students from 14 US universities and mostly MS students from 4 Bangladeshi universities. The focus of each trip ranged from broader surveys of tectonic, fluvial and coastal processes to investigations of geology and people affected by tropical storms. Of particular interest was the success of mixing undergrad and graduate students in the Vanderbilt course, which centered on the intersection of social sciences, physical sciences, and engineering. In this case, undergrads engaged in a

  13. Joint Test Report for Validation of Alternative Low-Emission Surface Preparation/Depainting Technologies for Structural Steel

    NASA Technical Reports Server (NTRS)

    Lewis, Pattie

    2007-01-01

    Headquarters National Aeronautics and Space Administration (NASA) chartered the NASA Acquisition Pollution Prevention (AP2) Office to coordinate agency activities affecting pollution prevention issues identified during system and component acquisition and sustainment processes. The primary objectives of the AP2 Office are to: (1) Reduce or eliminate the use of hazardous materials or hazardous processes at manufacturing, remanufacturing, and sustainment locations. (2) Avoid duplication of effort in actions required to reduce or eliminate hazardous materials through joint center cooperation and technology sharing. The objective of this project was to qualify candidate alternative Low-Emission Surface Preparation/Depainting Technologies for Structural Steel applications at NASA facilities. This project compares the surface preparation/depainting performance of the proposed alternatives to existing surface preparation/depainting systems or standards. This Joint Test Report (JTR) contains the results of testing as per the outlines of the Joint Test Protocol (JTP), Joint Test Protocol for Validation of Alternative Low-Emission Surface Preparation/Depainting Technologies for Structural Steel, and the Field Test Plan (FTP), Field Evaluations Test Plan for Validation of Alternative Low-Emission Surface Preparation/Depainting Technologies for Structural Steel, for critical requirements and tests necessary to qualify alternatives for coating removal systems. These tests were derived from engineering, performance, and operational impact (supportability) requirements defined by a consensus of government and industry participants. This JTR documents the results of the testing as well as any test modifications made during the execution of the project. This JTR is made available as a reference for future pollution prevention endeavors by other NASA Centers, the Department of Defense and commercial users to minimize duplication of effort. The current coating removal processes

  14. Thermal radiative properties: Coatings.

    NASA Technical Reports Server (NTRS)

    Touloukian, Y. S.; Dewitt, D. P.; Hernicz, R. S.

    1972-01-01

    This volume consists, for the most part, of a presentation of numerical data compiled over the years in a most comprehensive manner on coatings for all applications, in particular, thermal control. After a moderately detailed discussion of the theoretical nature of the thermal radiative properties of coatings, together with an overview of predictive procedures and recognized experimental techniques, extensive numerical data on the thermal radiative properties of pigmented, contact, and conversion coatings are presented. These data cover metallic and nonmetallic pigmented coatings, enamels, metallic and nonmetallic contact coatings, antireflection coatings, resin coatings, metallic black coatings, and anodized and oxidized conversion coatings.

  15. INSPECTION OF FUSION JOINTS IN PLASTIC PIPE

    SciTech Connect

    Alex Savitski; Connie Reichert; John Coffey

    2005-07-13

    The standard method of joining plastic pipe in the field is the butt fusion process. As in any pipeline application, joint quality greatly affects overall operational safety of the system. Currently no simple, reliable, cost effective method of assessing the quality of fusion joints in the field exists. Visual examination and pressure testing are current non-destructive approaches, which do not provide any assurance about the long-term pipeline performance. This project will develop, demonstrate, and validate an in-situ non-destructive inspection method for butt fusion joints in gas distribution plastic pipelines. The inspection system will include a laser based image-recognition system that will automatically generate and interpret digital images of pipe joints and assign them a pass/fail rating, which eliminates operator bias in evaluating joint quality. A Weld Zone Inspection Method (WZIM) is being developed in which local heat is applied to the joint region to relax the residual stresses formed by the original joining operation and reveal the surface condition of the joint. In cases where the joint is not formed under optimal conditions, and the intermolecular forces between contacting surfaces are not strong enough, the relaxation of macromolecules in the surface layer causes the material to pull back, revealing a fusion line. If the joint is sound, the bond line image does not develop. To establish initial feasibility of the approach, welds were performed under standard and nonstandard conditions. These welds were subjected to the WZIM and tensile testing. There appears to be a direct correlation between the WZIM and tensile testing results. Although WZIM appears to be more sensitive than tensile testing can verify, the approach appears valid.

  16. INSPECTION OF FUSION JOINTS IN PLASTIC PIPE

    SciTech Connect

    Alex Savitski; Connie Reichert; John Coffey

    2004-07-13

    The standard method of joining plastic pipe in the field is the butt fusion process. As in any pipeline application, joint quality greatly affects overall operational safety of the system. Currently no simple, reliable, cost effective method of assessing the quality of fusion joints in the field exists. Visual examination and pressure testing are current non-destructive approaches, which do not provide any assurance about the long-term pipeline performance. This project will develop, demonstrate, and validate an in-situ non-destructive inspection method for butt fusion joints in gas distribution plastic pipelines. The inspection system will include a laser based image-recognition system that will automatically generate and interpret digital images of pipe joints and assign them a pass/fail rating, which eliminates operator bias in evaluating joint quality. A Weld Zone Inspection Method (WZIM) is being developed in which local heat is applied to the joint region to relax the residual stresses formed by the original joining operation and reveal the surface condition of the joint. In cases where the joint is not formed under optimal conditions, and the intermolecular forces between contacting surfaces are not strong enough, the relaxation of macromolecules in the surface layer causes the material to pull back, revealing a fusion line. If the joint is sound, the bond line image does not develop. To establish initial feasibility of the approach, welds were performed under standard and non-standard conditions. These welds were subjected to the WZIM and tensile testing. There appears to be a direct correlation between the WZIM and tensile testing results. Although WZIM appears to be more sensitive than tensile testing can verify, the approach appears valid.

  17. INSPECTION OF FUSION JOINTS IN PLASTIC PIPE

    SciTech Connect

    Alex Savitski; Connie Reichert; John Coffey

    2004-10-29

    The standard method of joining plastic pipe in the field is the butt fusion process. As in any pipeline application, joint quality greatly affects overall operational safety of the system. Currently no simple, reliable, cost effective method of assessing the quality of fusion joints in the field exists. Visual examination and pressure testing are current non-destructive approaches, which do not provide any assurance about the long-term pipeline performance. This project will develop, demonstrate, and validate an in-situ non-destructive inspection method for butt fusion joints in gas distribution plastic pipelines. The inspection system will include a laser based image-recognition system that will automatically generate and interpret digital images of pipe joints and assign them a pass/fail rating, which eliminates operator bias in evaluating joint quality. A Weld Zone Inspection Method (WZIM) is being developed in which local heat is applied to the joint region to relax the residual stresses formed by the original joining operation and reveal the surface condition of the joint. In cases where the joint is not formed under optimal conditions, and the intermolecular forces between contacting surfaces are not strong enough, the relaxation of macromolecules in the surface layer causes the material to pull back, revealing a fusion line. If the joint is sound, the bond line image does not develop. To establish initial feasibility of the approach, welds were performed under standard and non-standard conditions. These welds were subjected to the WZIM and tensile testing. There appears to be a direct correlation between the WZIM and tensile testing results. Although WZIM appears to be more sensitive than tensile testing can verify, the approach appears valid.

  18. Inspection of Fusion Joints in Plastic Pipe

    SciTech Connect

    Connie Reichert

    2005-09-01

    The standard method of joining plastic pipe in the field is the butt fusion process. As in any pipeline application, joint quality greatly affects overall operational safety of the system. Currently no simple, reliable, cost-effective method exists for assessing the quality of fusion joints in the field. Visual examination and pressure testing are current nondestructive approaches, which do not provide any assurance about the long-term pipeline performance. This project developed, demonstrated, and validated an in-situ nondestructive inspection method for butt fusion joints in gas distribution plastic pipelines. The inspection system includes a laser-based image-recognition system that automatically generates and interprets digital images of pipe joints and assigns them a pass/fail rating, which eliminates operator bias in evaluating joint quality. An EWI-patented process, the Weld Zone Inspection Method (WZIM) was developed in which local heat is applied to the joint region to relax the residual stresses formed by the original joining operation, which reveals the surface condition of the joint. In cases where the joint is not formed under optimal conditions, and the intermolecular forces between contacting surfaces are not strong enough, the relaxation of macromolecules in the surface layer causes the material to pull back, revealing a fusion line. If the joint is sound, the bond line image does not develop. To establish initial feasibility of the approach, welds were performed under standard and nonstandard conditions. These welds were subjected to the WZIM and two destructive forms of testing: short-term tensile testing and long-term creep rupture testing. There appears to be a direct correlation between the WZIM and the destructive testing results. Although WZIM appears to be more sensitive than destructive testing can verify, the approach appears valid.

  19. Prevention of Periprosthetic Joint Infection

    PubMed Central

    Shahi, Alisina; Parvizi, Javad

    2015-01-01

    Prosthetic joint infection (PJI) is a calamitous complication with high morbidity and substantial cost. The reported incidence is low but it is probably underestimated due to the difficulty in diagnosis. PJI has challenged the orthopaedic community for several years and despite all the advances in this field, it is still a real concern with immense impact on patients, and the healthcare system. Eradication of infection can be very difficult. Therefore, prevention remains the ultimate goal. The medical community has executed many practices with the intention to prevent infection and treat it effectively when it encounters. Numerous factors can predispose patients to PJI. Identifying the host risk factors, patients’ health modification, proper wound care, and optimizing operative room environment remain some of the core fundamental steps that can help minimizing the overall incidence of infection. In this review we have summarized the effective prevention strategies along with the recommendations of a recent International Consensus Meeting on Surgical Site and Periprosthetic Joint Infection. PMID:26110171

  20. Assessment of Runoff Toxicity from Coated Surfaces

    EPA Science Inventory

    Presented in this paper are results from a field and laboratory study of the potential runoff toxicity from coated surfaces. The study results qualified and quantified the types and concentrations of pollutants in runoff from surfaces sealed with a variety of products. Coatings a...

  1. Tests Of Protective Coats For Carbon Steel

    NASA Technical Reports Server (NTRS)

    Macdowell, Louis G., III

    1995-01-01

    Report describes laboratory and field tests of candidate paints (primers, tie coats, and topcoats) for use in protecting carbon-steel structures against corrosion in seaside environment at Kennedy Space Center. Coating materials selected because of utility in preventing corrosion, also on basis of legal requirements, imposed in several urban areas, for reduction of volatile organic contents.

  2. Observations of Upwelling Filaments in the Southern North-West African Upwelling System : a Joint Effect of the Bottom Topography and the Offshore Eddy Field?

    NASA Astrophysics Data System (ADS)

    Meunier, T.; Barton, E. D.; Torres, R.; Barreiro, B.

    2010-12-01

    the upwelling front. The presence of the Cabo Verde frontal zone in the vicinity of the upwelling system is assumed to be responsible for the different behavior in the evolution of the 2 surveyed filaments : previous studies (Spall, 1992; Onken and Klein, 1991; Joyce et al., 1998) showed that the Cabo Verde front was baroclinically unstable and thus an important source of eddy activity in the region. The variability in the evolution of the offshore extension of the observed filaments are believed to be related with this external mesoscale activity. As the topographic eddies can trigger permanent meanders on the upwelling front, the resulting structures can be stretched and evolve into more complex and variable patterns by the interaction with the external eddy field.

  3. Joint application of local earthquake tomography and Curie depth point analysis give evidence of magma presence below the geothermal field of Central Greece.

    NASA Astrophysics Data System (ADS)

    Karastathis, Vassilios; Papoulia, Joanna; di Fiore, Boris; Makris, Jannis; Tsambas, Anestis; Stampolidis, Alexandros; Papadopoulos, Gerassimos

    2010-05-01

    Along the coast of the North Evian Gulf, Central Greece, there are significant geothermal sites, thermal springs as Aedipsos, Yaltra, Lichades, Ilia, Kamena Vourla, Thermopylae etc. but also volcanoes of the Quaternary - Pleistocene age as Lichades and Vromolimni. Since for these local volcanoes and geothermal fields, their deep origin and their relation with the ones of the wider region have not been clarified yet in detail, we attempted a deep structure investigation by conducting a 3D local earthquake tomography study in combination with Curie Depth analysis from aeromagnetic data. A seismographic network of 23 portable land-stations and 7 OBS was deployed in the area of North Evian Gulf to record the microseismic activity for a 4-month period. Two thousand events were located with ML 0.7 to 4.5. To build the 3D seismic velocity structure for the investigation area, we implemented traveltime inversion with algorithm SIMULPS14 on the 540 best located events. The code performed simultaneous inversion of the model parameters Vp, Vp/Vs and hypocenter locations. In order to select a reliable 1D starting model for the tomography inversion, the seismic arrivals were inverted at first with the algorithm VELEST (minimum 1D velocity model). The values of the damping factor parameter were chosen with the aid of the trade-off curve between the model variance and data variance. Six horizontal slices of the 3D P-wave velocity model and the respective ones of the Poisson ratio are constructed. We also set a reliability limit on the sections based on the comparison between the graphical representations of the diagonal elements of the resolution matrix (RDE) and the recovery ability of "checkerboard" models. To estimate the Curie Depth Point we followed the centroid procedures so, the filtered residual dataset of the area was subdivided in 5 square subregions, named C1 up to C5, sized 90x90 km2 and overlapped each other by 70%. In each subregion the radially averaged power

  4. Laboratory experiments on columnar jointing

    NASA Astrophysics Data System (ADS)

    Goehring, L.; Morris, S. W.

    2003-12-01

    The mechanism causing columnar jointing has remained an enticing mystery since the basalt columns of the Giant's Causeway in N. Ireland were first reported to science in the 17th century. This phenomenon, in which shrinkage cracks form a quasi-hexagonal arrangement, has been shown to produce columns in starch, glass, coal, sandstone, and ice, as well as in a variety of lava flows. This suggests that this pattern-forming process is very general in nature. However, most studies of columnar jointing have been confined to field studies of basalt flows. Following Muller, we have experimented with desiccating corn starch in an effort to understand this pattern from a more general point of view. The diffusion and evaporation of water in starch is thought to be analogous to the diffusion and extraction of heat from a basalt flow. By combining direct sampling and x-ray tomography, fully 3D descriptions of columnar jointing were obtained with starch samples. We have characterized the pattern with several statistical indices, which describe its structure and relative disorder. These methods can resolve the ordering of the colonnade near the free surface. We identified two distinct mechanisms by which the mean column area increases during pattern evolution. We found both a slow, almost power-law increase in column area, as well as episodes of sudden catastrophic jumps in scale. The latter suggests that the column scale is not a simple single-valued function of drying rate, but rather a metastable state subject to hysteresis. Such metastable behaviour might explain a fundamental question about columnar jointing -- why the columns are so regular in the direction of their growth. Moreover, these experiments may help discriminate between the various theoretical models of this pattern forming process. Finally, our results lead to predictions that could be tested by field measurements on basaltic colonnades.

  5. Detection and characterization of cultural noise sources in magnetotelluric data: individual and joint analysis of the polarization attributes of the electric and magnetic field time-series in the time-frequency domain

    NASA Astrophysics Data System (ADS)

    Escalas, M.; Queralt, P.; Ledo, J.; Marcuello, A.

    2012-04-01

    Magnetotelluric (MT) method is a passive electromagnetic technique, which is currently used to characterize sites for the geological storage of CO2. These later ones are usually located nearby industrialized, urban or farming areas, where man-made electromagnetic (EM) signals contaminate the MT data. The identification and characterization of the artificial EM sources which generate the so-called "cultural noise" is an important challenge to obtain the most reliable results with the MT method. The polarization attributes of an EM signal (tilt angle, ellipticity and phase difference between its orthogonal components) are related to the character of its source. In a previous work (Escalas et al. 2011), we proposed a method to distinguish natural signal from cultural noise in the raw MT data. It is based on the polarization analysis of the MT time-series in the time-frequency domain, using a wavelet scheme. We developed an algorithm to implement the method, and was tested with both synthetic and field data. In 2010, we carried out a controlled-source electromagnetic (CSEM) experiment in the Hontomín site (the Research Laboratory on Geological Storage of CO2 in Spain). MT time-series were contaminated at different frequencies with the signal emitted by a controlled artificial EM source: two electric dipoles (1 km long, arranged in North-South and East-West directions). The analysis with our algorithm of the electric field time-series acquired in this experiment was successful: the polarization attributes of both the natural and artificial signal were obtained in the time-frequency domain, highlighting their differences. The processing of the magnetic field time-series acquired in the Hontomín experiment has been done in the present work. This new analysis of the polarization attributes of the magnetic field data has provided additional information to detect the contribution of the artificial source in the measured data. Moreover, the joint analysis of the

  6. Method for fluidizing and coating ultrafine particles, device for fluidizing and coating ultrafine particles

    DOEpatents

    Li, Jie; Liu, Yung Y

    2015-01-20

    The invention provides a method for dispersing particles within a reaction field, the method comprising confining the particles to the reaction field using a standing wave. The invention also provides a system for coating particles, the system comprising a reaction zone; a means for producing fluidized particles within the reaction zone; a fluid to produce a standing wave within the reaction zone; and a means for introducing coating moieties to the reaction zone. The invention also provides a method for coating particles, the method comprising fluidizing the particles, subjecting the particles to a standing wave; and contacting the subjected particles with a coating moiety.

  7. NICKEL COATED URANIUM ARTICLE

    DOEpatents

    Gray, A.G.

    1958-10-01

    Nickel coatings on uranium and various methods of obtaining such coatings are described. Specifically disclosed are such nickel or nickel alloy layers as barriers between uranium and aluminum- silicon, chromium, or copper coatings.

  8. Tribological characterization of zirconia coatings deposited on Ti6Al4V components for orthopedic applications.

    PubMed

    Berni, M; Lopomo, N; Marchiori, G; Gambardella, A; Boi, M; Bianchi, M; Visani, A; Pavan, P; Russo, A; Marcacci, M

    2016-05-01

    One of the most important issues leading to the failure of total joint arthroplasty is related to the wear of the plastic components, which are generally made of ultra high molecular weight polyethylene (UHMWPE). Therefore, the reduction of joint wear represents one of the main challenges the research in orthopedics is called to address nowadays. Surface treatments and coatings have been recognized as innovative methods to improve tribological properties, also in the orthopedic field. This work investigated the possibility to realize hard ceramic coatings on the metal component of a prosthesis, by means of Pulsed Plasma Deposition, in order to reduce friction and wear in the standard coupling against UHMWPE. Ti6Al4V substrates were coated with a 2 μm thick yttria-stabilized zirconia (YSZ) layer. The mechanical properties of the YSZ coatings were assessed by nanoindentation tests performed on flat Ti6Al4V substrates. Tribological performance was evaluated using a ball-on-disk tribometer in dry and lubricated (i.e. with fetal bovine serum) highly-stressing conditions, up to an overall distance of 10 km. Tribology was characterized in terms of coefficient of friction (CoF) and wear rate of the UHMWPE disk. After testing, specimens were analyzed through optical microscopy and SEM images, in order to check the wear degradation mechanisms. Progressive loading scratch tests were also performed in dry and wet conditions to determine the effects of the environment on the adhesion of the coating. Our results supported the beneficial effect of YSZ coating on metal components. In particular, the proposed solution significantly reduced UHMWPE wear rate and friction. At 10 km of sliding distance, a wear rate reduction of about 18% in dry configuration and of 4% in presence of serum, was obtained by the coated group compared to the uncoated group. As far as friction in dry condition is concerned, the coating allowed to maintain low CoF values until the end of the tests, with an

  9. Compound solder joints

    NASA Technical Reports Server (NTRS)

    Batista, R. I.; Simonson, R. B.

    1976-01-01

    Joining technique prevents contamination, may be used to join dissimilar metal tubes, minimizes fluid and gas entrapment, expedites repairs, and can yield joints having leakage rates less than 0.000001 standard cubic cm He/min. Components of joint are solder sleeve, two solder rings, Teflon sleeve, and tubing to be joined.

  10. Wedge Joints for Trusses

    NASA Technical Reports Server (NTRS)

    Wood, Kenneth E.

    1987-01-01

    Structure assembled rapidly with simple hand tools. Proposed locking wedge joints enable rapid assembly of lightweight beams, towers, scaffolds, and other truss-type structures. Lightweight structure assembled from tubular struts joined at nodes by wedge pins fitting into mating slots. Joint assembled rapidly by seating wedge pin in V-shaped slots and deforming end of strut until primary pawl engages it.

  11. "Nonfloating" universal joint

    NASA Technical Reports Server (NTRS)

    Appleberry, W. T.

    1978-01-01

    Modified crowned-spline joint is lightweight, durable, and requires minimum of parts. It does not use rubber cushions to limit play and is useful over wide temperature range. It has inner ball and socket to provide rigid connection with no axial play. Joint can be adapted to form pinned connection between segmented torque tubes.

  12. Sacroiliac joint pain - aftercare

    MedlinePlus

    The sacroiliac joint (SIJ) is a term used to describe the place where the sacrum and the iliac bones join. The ... The main purpose of the joint is to connect the spine and the pelvis. As a result, there is very little movement at the SIJ. Major reasons ...

  13. A frictional study of total hip joint replacements

    NASA Astrophysics Data System (ADS)

    Scholes, S. C.; Unsworth, A.; Goldsmith, A. A. J.

    2000-12-01

    Polymeric wear debris produced by articulation of the femoral head against the ultra-high-molecular-weight polyethylene socket of a total hip replacement has been implicated as the main cause of osteolysis and subsequent failure of these implants. Potential solutions to this problem are to employ hard bearing surface combinations such as metal-on-metal or ceramic-on-ceramic prostheses. The aim of this study was to investigate the difference in lubrication modes and friction of a range of material combinations using synthetic and biological fluids as the lubricants. The experimental results were compared with theoretical predictions of film thicknesses and lubrication modes. A strong correlation was observed between experiment and theory when employing carboxy methyl cellulose (CMC) fluids as the lubricant. Under these conditions the ceramic-on-ceramic joints showed full fluid film lubrication while the metal-on-metal, metal-on-plastic, diamond-like carbon-coated stainless steel (DLC)-on-plastic and ceramic-on-plastic prostheses operated under a mixed lubrication regime. With bovine serum as the lubricant in the all ceramic joints, however, the full fluid film lubrication was inhibited due to adsorbed proteins. In the metal-on-metal joints this adsorbed protein layer acted to reduce the friction while in the ceramic coupling the friction was increased. The use of bovine serum as the lubricant also significantly increased the friction in both the metal-on-plastic and ceramic-on-plastic joints. The friction produced by the DLC-on-plastic joints depended on the quality of the coating. Those joints with a less consistent coating and therefore a higher surface roughness gave significantly higher friction than the smoother, more consistently coated heads.

  14. Corrosion resistant coating

    DOEpatents

    Wrobleski, Debra A.; Benicewicz, Brian C.; Thompson, Karen G.; Bryan, Coleman J.

    1997-01-01

    A method of protecting a metal substrate from corrosion including coating a metal substrate of, e.g., steel, iron or aluminum, with a conductive polymer layer of, e.g., polyaniline, coating upon said metal substrate, and coating the conductive polymer-coated metal substrate with a layer of a topcoat upon the conductive polymer coating layer, is provided, together with the resultant coated article from said method.

  15. Corrosion resistant coating

    DOEpatents

    Wrobleski, D.A.; Benicewicz, B.C.; Thompson, K.G.; Bryan, C.J.

    1997-08-19

    A method of protecting a metal substrate from corrosion including coating a metal substrate of, e.g., steel, iron or aluminum, with a conductive polymer layer of, e.g., polyaniline, coating upon said metal substrate, and coating the conductive polymer-coated metal substrate with a layer of a topcoat upon the conductive polymer coating layer, is provided, together with the resultant coated article from said method.

  16. Stress analyses of joint arthroplasty in the proximal humerus.

    PubMed

    Orr, T E; Carter, D R

    1985-01-01

    Finite element stress analyses were performed on the proximal humerus before and after the simulated implantation of stemmed, metallic prosthetic components with porous sintered surfaces for direct bony attachment. Design geometries with surfaces at the prosthetic head/bone interface that were (a) convex, (b) flat, and (c) concave were studied. Analyses for each of the three geometries were conducted to reflect (a) bone ingrowth on all the prosthesis/bone surfaces and (b) bone ingrowth only along the underside of the prosthetic humeral head (assuming the stem was not coated with a porous material). Three loading conditions were used to model various degrees of abduction of the arm. Results indicated that in the normal humerus the compressive joint forces are transmitted from the articular surface through cancellous bone to the inferior cortical shell. Contraction of the rotator cuff muscles created tensile stresses in the superolateral cancellous bone and the superior cortical shell of the humerus. Results of the implanted humeral component models indicated that the use of a prosthesis with bone ingrowth along the stem would cause marked stress shielding proximally whereas the use of implants with porous ingrowth only on the underside of the humeral head replacement produced stress fields more similar to the normal humerus. The convex, flat, and concave surfaces provided similar load transfer from the component to the underlying bone in all loading cases. Other prosthetic head designs that may offer better initial stability produced stress fields similar to those of existing prostheses. PMID:4032107

  17. Analyses and estimates of hydraulic conductivity from slug tests in alluvial aquifer underlying Air Force Plant 4 and Naval Air Station-Joint Reserve Base Carswell Field, Fort Worth, Texas

    USGS Publications Warehouse

    Houston, Natalie A.; Braun, Christopher L.

    2004-01-01

    This report describes the collection, analyses, and distribution of hydraulic-conductivity data obtained from slug tests completed in the alluvial aquifer underlying Air Force Plant 4 and Naval Air Station-Joint Reserve Base Carswell Field, Fort Worth, Texas, during October 2002 and August 2003 and summarizes previously available hydraulic-conductivity data. The U.S. Geological Survey, in cooperation with the U.S. Air Force, completed 30 slug tests in October 2002 and August 2003 to obtain estimates of horizontal hydraulic conductivity to use as initial values in a ground-water-flow model for the site. The tests were done by placing a polyvinyl-chloride slug of known volume beneath the water level in selected wells, removing the slug, and measuring the resulting water-level recovery over time. The water levels were measured with a pressure transducer and recorded with a data logger. Hydraulic-conductivity values were estimated from an analytical relation between the instantaneous displacement of water in a well bore and the resulting rate of head change. Although nearly two-thirds of the tested wells recovered 90 percent of their slug-induced head change in less than 2 minutes, 90-percent recovery times ranged from 3 seconds to 35 minutes. The estimates of hydraulic conductivity range from 0.2 to 200 feet per day. Eighty-three percent of the estimates are between 1 and 100 feet per day.

  18. The Chemistry of Coatings.

    ERIC Educational Resources Information Center

    Griffith, James R.

    1981-01-01

    The properties of natural and synthetic polymeric "coatings" are reviewed, including examples and uses of such coatings as cellulose nitrate lacquers (for automobile paints), polyethylene, and others. (JN)

  19. Microneedle Coating Techniques for Transdermal Drug Delivery.

    PubMed

    Haj-Ahmad, Rita; Khan, Hashim; Arshad, Muhammad Sohail; Rasekh, Manoochehr; Hussain, Amjad; Walsh, Susannah; Li, Xiang; Chang, Ming-Wei; Ahmad, Zeeshan

    2015-01-01

    Drug administration via the transdermal route is an evolving field that provides an alternative to oral and parenteral routes of therapy. Several microneedle (MN) based approaches have been developed. Among these, coated MNs (typically where drug is deposited on MN tips) are a minimally invasive method to deliver drugs and vaccines through the skin. In this review, we describe several processes to coat MNs. These include dip coating, gas jet drying, spray coating, electrohydrodynamic atomisation (EHDA) based processes and piezoelectric inkjet printing. Examples of process mechanisms, conditions and tested formulations are provided. As these processes are independent techniques, modifications to facilitate MN coatings are elucidated. In summary, the outcomes and potential value for each technique provides opportunities to overcome formulation or dosage form limitations. While there are significant developments in solid degradable MNs, coated MNs (through the various techniques described) have potential to be utilized in personalized drug delivery via controlled deposition onto MN templates. PMID:26556364

  20. Microneedle Coating Techniques for Transdermal Drug Delivery

    PubMed Central

    Haj-Ahmad, Rita; Khan, Hashim; Arshad, Muhammad Sohail; Rasekh, Manoochehr; Hussain, Amjad; Walsh, Susannah; Li, Xiang; Chang, Ming-Wei; Ahmad, Zeeshan

    2015-01-01

    Drug administration via the transdermal route is an evolving field that provides an alternative to oral and parenteral routes of therapy. Several microneedle (MN) based approaches have been developed. Among these, coated MNs (typically where drug is deposited on MN tips) are a minimally invasive method to deliver drugs and vaccines through the skin. In this review, we describe several processes to coat MNs. These include dip coating, gas jet drying, spray coating, electrohydrodynamic atomisation (EHDA) based processes and piezoelectric inkjet printing. Examples of process mechanisms, conditions and tested formulations are provided. As these processes are independent techniques, modifications to facilitate MN coatings are elucidated. In summary, the outcomes and potential value for each technique provides opportunities to overcome formulation or dosage form limitations. While there are significant developments in solid degradable MNs, coated MNs (through the various techniques described) have potential to be utilized in personalized drug delivery via controlled deposition onto MN templates. PMID:26556364

  1. Experimental demonstration of all-optical weak magnetic field detection using beam-deflection of single-mode fiber coated with cobalt-doped nickel ferrite nanoparticles.

    PubMed

    Pradhan, Somarpita; Chaudhuri, Partha Roy

    2015-07-10

    We experimentally demonstrate single-mode optical-fiber-beam-deflection configuration for weak magnetic-field-detection using an optimized (low coercive-field) composition of cobalt-doped nickel ferrite nanoparticles. Devising a fiber-double-slit type experiment, we measure the surrounding magnetic field through precisely measuring interference-fringe yielding a minimum detectable field ∼100  mT and we procure magnetization data of the sample that fairly predicts SQUID measurement. To improve sensitivity, we incorporate etched single-mode fiber in double-slit arrangement and recorded a minimum detectable field, ∼30  mT. To further improve, we redefine the experiment as modulating fiber-to-fiber light-transmission and demonstrate the minimum field as 2.0 mT. The device will be uniquely suited for electrical or otherwise hazardous environments. PMID:26193403

  2. Automatic segmentation of cartilage in high-field magnetic resonance images of the knee joint with an improved voxel-classification-driven region-growing algorithm using vicinity-correlated subsampling.

    PubMed

    Öztürk, Ceyda Nur; Albayrak, Songül

    2016-05-01

    Anatomical structures that can deteriorate over time, such as cartilage, can be successfully delineated with voxel-classification approaches in magnetic resonance (MR) images. However, segmentation via voxel-classification is a computationally demanding process for high-field MR images with high spatial resolutions. In this study, the whole femoral, tibial, and patellar cartilage compartments in the knee joint were automatically segmented in high-field MR images obtained from Osteoarthritis Initiative using a voxel-classification-driven region-growing algorithm with sample-expand method. Computational complexity of the classification was alleviated via subsampling of the background voxels in the training MR images and selecting a small subset of significant features by taking into consideration systems with limited memory and processing power. Although subsampling of the voxels may lead to a loss of generality of the training models and a decrease in segmentation accuracies, effective subsampling strategies can overcome these problems. Therefore, different subsampling techniques, which involve uniform, Gaussian, vicinity-correlated (VC) sparse, and VC dense subsampling, were used to generate four training models. The segmentation system was experimented using 10 training and 23 testing MR images, and the effects of different training models on segmentation accuracies were investigated. Experimental results showed that the highest mean Dice similarity coefficient (DSC) values for all compartments were obtained when the training models of VC sparse subsampling technique were used. Mean DSC values optimized with this technique were 82.6%, 83.1%, and 72.6% for femoral, tibial, and patellar cartilage compartments, respectively, when mean sensitivities were 79.9%, 84.0%, and 71.5%, and mean specificities were 99.8%, 99.9%, and 99.9%. PMID:27017069

  3. Generalized Models for Rock Joint Surface Shapes

    PubMed Central

    Du, Shigui; Hu, Yunjin; Hu, Xiaofei

    2014-01-01

    Generalized models of joint surface shapes are the foundation for mechanism studies on the mechanical effects of rock joint surface shapes. Based on extensive field investigations of rock joint surface shapes, generalized models for three level shapes named macroscopic outline, surface undulating shape, and microcosmic roughness were established through statistical analyses of 20,078 rock joint surface profiles. The relative amplitude of profile curves was used as a borderline for the division of different level shapes. The study results show that the macroscopic outline has three basic features such as planar, arc-shaped, and stepped; the surface undulating shape has three basic features such as planar, undulating, and stepped; and the microcosmic roughness has two basic features such as smooth and rough. PMID:25152901

  4. Experimental measurement of characteristic I(c) (ε, θ, B) response in GdBa2Cu3Oδ coated conductor tapes under low magnetic field at 77 K.

    PubMed

    Shin, Hyung-Seop; Dedicatoria, Marlon J; Gorospe, Alking; Lee, Sang-Heon

    2015-03-01

    The continued development in the design technology of practical superconducting devices adopting high temperature superconductors tapes has led to a deeper understanding of their electromechanical behaviors. Rare-earth-barium-copper-oxide coated conductor (CC) tapes exhibit anisotropy of transport property (Ic) under magnetic field and its intrinsic strain effect is much significant depending on the orientation to the tape surface and the magnetic field intensity applied. Different experimental systems have already been developed to measure the relation of Ic with mechanical strain ε, magnetic field intensity B, and its angle of orientation, θ. However, few systems and instruments can measure these relationships simultaneously; either Ic-B-θ or Ic-ε-B is usually measured. In this study, a device which can measure these influences simultaneously based on a pair of permanent magnet systems was constructed and the characteristic responses of critical current Ic with strain, magnetic field, and its orientation with respect to the CC tape surface were investigated. The angular dependence of Ic with strain at 77 K in reactive co-evaporation by deposition and reaction GdBCO CC tapes has been measured using the permanent magnet system. The orientation angle of magnetic field with respect to the tape's surface was varied by rotating the rig fixture that holds a pair of permanent magnets. The strain sensitivity of Ic at different angles under low magnetic field was evaluated. As a result, a characteristic surface Ic (ε, θ, B) has been constructed as the characteristic response of Ic with strain and varying orientation under magnetic field. PMID:25832245

  5. Characterization of hydrophilic coated gold nanoparticles via capillary electrophoresis and Taylor dispersion analysis. Part II: Determination of the hydrodynamic radius distribution - Comparison with asymmetric flow field-flow fractionation.

    PubMed

    Pyell, Ute; Jalil, Alaa H; Urban, Dominic A; Pfeiffer, Christian; Pelaz, Beatriz; Parak, Wolfgang J

    2015-11-01

    In the first paper of this series we have shown for hydrophilic coated Au nanoparticles that capillary electrophoresis in combination with Taylor dispersion analysis in fused silica capillaries with an inner diameter of 75 μm allows for the unbiased precise determination of the number-weighted mean hydrodynamic diameter, the zeta potential and the effective charge number, although mobility corrected double layer polarization has to be taken into account. In this second paper we investigate whether the modified approximate analytic expression developed by Ohshima (2001) permits the calculation of calibration lines and the concomitant conversion of electropherograms into number-weighted particle radius distributions. We show that with the method developed size distributions are obtained which are independent of the measurement conditions. These size distributions are much narrower than those obtained via dynamic light scattering and data evaluation by the CONTIN algorithm. Capillary electrophoresis together with the proposed data evaluation method reveals that the analyzed nanoparticle populations have very narrow size distributions with a width of 2-4 nm. The hydrodynamic radius distributions of the coated NPs are only slightly broader than the solid particle radius distribution of the Au-NP cores. The presence of monomodal/bimodal size distributions is confirmed by asymmetric flow field-flow fractionation. PMID:26164244

  6. Pressure vessel flex joint

    NASA Technical Reports Server (NTRS)

    Kahn, Jon B. (Inventor)

    1992-01-01

    An airtight, flexible joint is disclosed for the interfacing of two pressure vessels such as between the Space Station docking tunnel and the Space Shuttle Orbiter bulkhead adapter. The joint provides for flexibility while still retaining a structural link between the two vessels required due to the loading created by the internal/external pressure differential. The joint design provides for limiting the axial load carried across the joint to a specific value, a function returned in the Orbiter/Station tunnel interface. The flex joint comprises a floating structural segment which is permanently attached to one of the pressure vessels through the use of an inflatable seal. The geometric configuration of the joint causes the tension between the vessels created by the internal gas pressure to compress the inflatable seal. The inflation pressure of the seal is kept at a value above the internal/external pressure differential of the vessels in order to maintain a controlled distance between the floating segment and pressure vessel. The inflatable seal consists of either a hollow torus-shaped flexible bladder or two rolling convoluted diaphragm seals which may be reinforced by a system of straps or fabric anchored to the hard structures. The joint acts as a flexible link to allow both angular motion and lateral displacement while it still contains the internal pressure and holds the axial tension between the vessels.

  7. The Future of Biologic Coatings for Orthopaedic Implants

    PubMed Central

    Goodman, Stuart B.; Yao, Zhenyu; Keeney, Michael; Yang, Fan

    2013-01-01

    Implants are widely used for othopaedic applications such as fixing fractures, repairing nonunions, obtaining a joint arthrodesis, total joint arthroplasty, spinal reconstruction, and soft tissue anchorage. Previously, orthopaedic implants were designed simply as mechanical devices; the biological aspects of the implant were a byproduct of stable internal/external fixation of the device to the surrounding bone or soft tissue. More recently, biologic coatings have been incorporated into orthopaedic implants in order to modulate the surrounding biological environment. This opinion article reviews current and potential future use of biologic coatings for orthopaedic implants to facilitate osseointegration and mitigate possible adverse tissue responses including the foreign body reaction and implant infection. While many of these coatings are still in the preclinical testing stage, bioengineers, material scientists and surgeons continue to explore surface coatings as a means of improving clinical outcome of patients undergoing orthopaedic surgery. PMID:23391496

  8. First metatarsophalangeal joint arthrodesis.

    PubMed

    Rajczy, Robert M; McDonald, Patrick R; Shapiro, Howard S; Boc, Steven F

    2012-01-01

    Arthrodesis of the first metatarsophalangeal joint (MTPJ) is used primarily for end-stage hallux rigidus whereby pain, crepitus, and limitation of motion is noted at the joint. Arthrodesis at the first MTPJ also has it uses as a primary procedure for rheumatoid arthritis when severe deformity is present, as well as for salvage procedures for failed joint arthroplasties with or without implant, fractures with intra-articular extension, avascular necrosis, and infection management. A first MTPJ arthrodesis should provide stable fixation, attain suitable positioning for a reasonable gait, maintain adequate length, and create a stable platform for a plantigrade foot type. PMID:22243568

  9. Compliant Joints For Robots

    NASA Technical Reports Server (NTRS)

    Kerley, James J., Jr.

    1990-01-01

    Compliant joints devised to accommodate misalignments of tools and/or workpieces with respect to robotic manipulators. Has characteristics and appearance of both universal-joint and cable-spring-type flexible shaft coupling. Compliance derived from elastic properties of short pieces of cable. Compliance of joint determined by lengths, distances between, relative orientations, thickness of strands, number of strands, material, amount of pretwist, and number of short pieces of cable. Worm-drive mechanism used to adjust lengths to vary compliance as needed during operation.

  10. Adaptive strategy for joint measurements

    NASA Astrophysics Data System (ADS)

    Uola, Roope; Luoma, Kimmo; Moroder, Tobias; Heinosaari, Teiko

    2016-08-01

    We develop a technique to find simultaneous measurements for noisy quantum observables in finite-dimensional Hilbert spaces. We use the method to derive lower bounds for the noise needed to make incompatible measurements jointly measurable. Using our strategy together with recent developments in the field of one-sided quantum information processing we show that the attained lower bounds are tight for various symmetric sets of quantum measurements. We use this characterisation to prove the existence of so called 4-Specker sets, i.e. sets of four incompatible observables with compatible subsets in the qubit case.

  11. Electrocurtain coating process for coating solar mirrors

    SciTech Connect

    Kabagambe, Benjamin; Boyd, Donald W.; Buchanan, Michael J.; Kelly, Patrick; Kutilek, Luke A.; McCamy, James W.; McPheron, Douglas A.; Orosz, Gary R.; Limbacher, Raymond D.

    2013-10-15

    An electrically conductive protective coating or film is provided over the surface of a reflective coating of a solar mirror by flowing or directing a cation containing liquid and an anion containing liquid onto the conductive surface. The cation and the anion containing liquids are spaced from, and preferably out of contact with one another on the surface of the reflective coating as an electric current is moved through the anion containing liquid, the conductive surface between the liquids and the cation containing liquid to coat the conductive surface with the electrically conductive coating.

  12. Improved orthopedic arm joint

    NASA Technical Reports Server (NTRS)

    Dane, D. H.

    1971-01-01

    Joint permits smooth and easy movement of disabled arm and is smaller, lighter and less expensive than previous models. Device is interchangeable and may be used on either arm at the shoulder or at the elbow.

  13. Knee joint replacement

    MedlinePlus

    The results of a total knee replacement are often excellent. The operation relieves pain for most people. Most people do not need help walking after they fully recover. Most artificial knee joints last 10 ...

  14. Joint fluid Gram stain

    MedlinePlus

    Gram stain of joint fluid ... result means no bacteria are present on the Gram stain. Normal value ranges may vary slightly among ... Abnormal results mean bacteria were seen on the Gram stain. This may be a sign of a ...

  15. Temporomandibular Joint Disorder

    MedlinePlus

    ... 2008 Previous Next Related Articles: Temporomandibular Joint Disorder (TMD) Are You Biting Off More Than You Can Chew? Equilibration May Lessen TMD Pain Fender-benders: Source of TMD? First Comes ...

  16. Pedestal substrate for coated optics

    DOEpatents

    Hale, Layton C.; Malsbury, Terry N.; Patterson, Steven R.

    2001-01-01

    A pedestal optical substrate that simultaneously provides high substrate dynamic stiffness, provides low surface figure sensitivity to mechanical mounting hardware inputs, and constrains surface figure changes caused by optical coatings to be primarily spherical in nature. The pedestal optical substrate includes a disk-like optic or substrate section having a top surface that is coated, a disk-like base section that provides location at which the substrate can be mounted, and a connecting cylindrical section between the base and optics or substrate sections. The connecting cylindrical section may be attached via three spaced legs or members. However, the pedestal optical substrate can be manufactured from a solid piece of material to form a monolith, thus avoiding joints between the sections, or the disk-like base can be formed separately and connected to the connecting section. By way of example, the pedestal optical substrate may be utilized in the fabrication of optics for an extreme ultraviolet (EUV) lithography imaging system, or in any optical system requiring coated optics and substrates with reduced sensitivity to mechanical mounts.

  17. Multi-layer coatings

    DOEpatents

    Maghsoodi, Sina; Brophy, Brenor L.; Abrams, Ze'ev R.; Gonsalves, Peter R.

    2016-06-28

    Disclosed herein are coating materials and methods for applying a top-layer coating that is durable, abrasion resistant, highly transparent, hydrophobic, low-friction, moisture-sealing, anti-soiling, and self-cleaning to an existing conventional high temperature anti-reflective coating. The top coat imparts superior durability performance and new properties to the under-laying conventional high temperature anti-reflective coating without reducing the anti-reflectiveness of the coating. Methods and data for optimizing the relative thickness of the under-layer high temperature anti-reflective coating and the top-layer thickness for optimizing optical performance are also disclosed.

  18. A symptomatic coracoclavicular joint.

    PubMed

    Cheung, T F S; Boerboom, A L; Wolf, R F E; Diercks, R L

    2006-11-01

    Bilateral coracoclavicular joints were found in a 44-year-old male patient following a fall. He had an Indonesian mother and a Dutch father. Prior to the injury he was asymptomatic and had full range of movement in both shoulders but the trauma resulted in pain and limitation of movement in the left shoulder which required resection of the anomalous joint, after which full pain-free movement was restored. PMID:17075101

  19. Development of Thermal Barriers For Solid Rocket Motor Nozzle Joints

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M.; Dunlap, Patrick H., Jr.

    2000-01-01

    Joints in the Space Shuttle solid rocket motors are sealed by O-rings to contain combustion gases inside the rocket that reach pressures of up to 900 psi and temperatures of up to 5500 F. To provide protection for the O-rings, the motors are insulated with either phenolic or rubber insulation. Gaps in the joints leading up to the O-rings are filled with polysulfide joint-fill compounds as an additional level of protection. The current RSRM nozzle-to-case joint design incorporating primary, secondary, and wiper O-rings experiences gas paths through the joint-fill compound to the innermost wiper O-ring in about one out of every seven motors. Although this does not pose a safety hazard to the motor, it is an undesirable condition that NASA and rocket manufacturer Thiokol want to eliminate. Each nozzle-to-case joint gas path results in extensive reviews and evaluation before flights can be resumed. Thiokol and NASA Marshall are currently working to improve the nozzle-to-case joint design by implementing a more reliable J-leg design that has been used successfully in the field and igniter joint. They are also planning to incorporate the NASA Glenn braided carbon fiber thermal barrier into the joint. The thermal barrier would act as an additional level of protection for the O-rings and allow the elimination of the joint-fill compound from the joint.

  20. High pressure ceramic joint

    DOEpatents

    Ward, M.E.; Harkins, B.D.

    1993-11-30

    Many recuperators have components which react to corrosive gases and are used in applications where the donor fluid includes highly corrosive gases. These recuperators have suffered reduced life, increased service or maintenance, and resulted in increased cost. The present joint when used with recuperators increases the use of ceramic components which do not react to highly corrosive gases. Thus, the present joint used with the present recuperator increases the life, reduces the service and maintenance, and reduces the increased cost associated with corrosive action of components used to manufacture recuperators. The present joint is comprised of a first ceramic member, a second ceramic member, a mechanical locking device having a groove defined in one of the first ceramic member and the second ceramic member. The joint and the mechanical locking device is further comprised of a refractory material disposed in the groove and contacting the first ceramic member and the second ceramic member. The present joint mechanically provides a high strength load bearing joint having good thermal cycling characteristics, good resistance to a corrosive environment and good steady state strength at elevated temperatures. 4 figures.

  1. High pressure ceramic joint

    DOEpatents

    Ward, Michael E.; Harkins, Bruce D.

    1993-01-01

    Many recuperators have components which react to corrosive gases and are used in applications where the donor fluid includes highly corrosive gases. These recuperators have suffered reduced life, increased service or maintenance, and resulted in increased cost. The present joint when used with recuperators increases the use of ceramic components which do not react to highly corrosive gases. Thus, the present joint used with the present recuperator increases the life, reduces the service and maintenance, and reduces the increased cost associated with corrosive action of components used to manufacture recuperators. The present joint is comprised of a first ceramic member, a second ceramic member, a mechanical locking device having a groove defined in one of the first ceramic member and the second ceramic member. The joint and the mechanical locking device is further comprised of a refractory material disposed in the groove and contacting the first ceramic member and the second ceramic member. The present joint mechanically provides a high strength load bearing joint having good thermal cycling characteristics, good resistance to a corrosive environment and good steady state strength at elevated temperatures.

  2. Panel Post & Diagonal Brace Joint Detail; Crossbracing Center Joint ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Panel Post & Diagonal Brace Joint Detail; Crossbracing Center Joint Detail; Chord, Panel Post, Tie Bar, & Diagonal Brace Joint Detail; Chord, Tie Bar, & Crossbracing Joint Detail - Medora Bridge, Spanning East Fork of White River at State Route 235, Medora, Jackson County, IN

  3. [Prevalence of disability among leprosy patients and effectiveness of leprosy reaction services with standard prednisolone treatment at field level in an endemic country--some data from joint leprosy research collaboration in Myanmar].

    PubMed

    Ishida, Yutaka

    2009-09-01

    Prevalence of disability among leprosy patients and effectiveness of standard predonisolone treatment for leprosy reaction at field level in some place of Myanmar are shown in this paper as results of joint leprosy research collaboration. WHO disability grading was measured for all newly registered leprosy patients through 2007 in 5 selected townships of Ayeyarwaddy Division, with the results of G0 = 66.3%, GI = 18.9%, GII = 14.7% (N = 95). The cross-sectional disability survey at selected 9 townships in Mandalay, Sagaing and Magway Division for all registered patients who had completed WHO/MDT done by JICA project in 2003/4 showed G0 = 62.5%, GI = 2.4%, GII = 35.1% (N = 10,528). From these two data, it is supposed that considerable number of patients with G1 at registered time developed worsening of disability from G1 to G2. Proportion of G0 also reduced a little bit in patients who completed WHO/MDT. Early detection and proper treatment of leprosy reaction are one of the main issues of prevention of disability. Effectiveness of leprosy reaction services were evaluated at Mandalay Special Skin Clinic, where WHO fixed regimen of prednisolone were given as routine service. 100 cases were evaluated who developed leprosy reactions from 1st December 2007 to 31st December 2008 and identified severe reaction who needed oral prednisolone treatment. Evaluation criteria of "effective" was defined as "no more signs and symptoms of reactions were present after treatment. And "less effective" was defined as "more than one of signs and symptoms were still remained after treatment". Over all "effective" was 36 (36%) and "less effective" was 64 (64%). It was also found that rates of improvement of nerve functions, either in sensory or in motor, were little after the standard treatment. PMID:19803379

  4. Coating life prediction

    NASA Technical Reports Server (NTRS)

    Nesbitt, James A.; Gedwill, Michael A.

    1985-01-01

    The investigation combines both experimental studies and numerical modeling to predict coating life in an oxidizing environment. The experimental work provides both input to and verification of two numerical models. The coatings being examined are an aluminide coating on Udimet 700 (U-700), a low-pressure plasma spray (LPPS) Ni-18Co-17Cr-24Al-0.2Y overlay coating also on U- 700, and bulk deposits of the LPPS NiCoCrAlY coating.

  5. Properties of ``Sonarc`` sprayed coatings

    SciTech Connect

    Steffens, H.D.; Wilden, J.; Nassenstein, K.

    1995-12-31

    The combination of electric arc and HVOF-spraying offers a lot of opportunities to enlarge the field of application for thermal spray technology. If hard material powders are processed by HVOF and simultaneously metal wires by arc spraying, metal matrix composites (MMC) can be formed out. NiCr8020 and aluminum coatings were reinforced by applying various contents of SiC and tested by a taber abraser device. Beside the investigations of the microstructure and the determination of the volume percentage of the hard particle content bond strength tests according European standard EN 582 were carried out. Furthermore, the coatings were tested by corrosion tests. The results are compared to other coating systems and discussed in relation to the obtained microstructure.

  6. Generalized antireflection coatings for complex bulk metamaterials

    NASA Astrophysics Data System (ADS)

    Maas, Ruben; Mann, Sander A.; Sounas, Dimitrios L.; Alù, Andrea; Garnett, Erik C.; Polman, Albert

    2016-05-01

    We present the optimized design of an antireflection coating to efficiently couple an incident plane wave into a metamaterial with a complex field profile. We show that such an antireflection coating must enable spatial engineering of the field profiles at the coating/metamaterial interface to achieve high transmission, and therefore it is required to be inhomogeneous. As a demonstration, we investigate theoretically a waveguide-based negative-index metamaterial, which under normal incidence cannot be excited due to the antisymmetric propagating eigenmode. Through careful engineering of the field profile, lateral position, and thickness of the coating layer, we enhance the transmission under normal incidence from 0 % to 100 % . This principle may generally be applied to overcome low coupling efficiency between incident plane waves and complex mode profiles in metamaterials.

  7. Issues related to SPR joints subjected to fatigue loads

    NASA Astrophysics Data System (ADS)

    De Luca, A.; Senatore, F.; Greco, A.

    2016-05-01

    SPR joints will represent an alternative solution to spot welding in automotive field. However, their fatigue behavior shows several critical issues. After a brief introduction of this new solution, different crack modes are described, emphasizing the parameters that characterize them, i.e. the applied loads, the geometry of the joint and other phenomenon as fretting, vibration and corrosion.

  8. Development of the bus joint for the ITER Central Solenoid

    SciTech Connect

    Martovetsky, Nicolai N; Irick, David Kim; Kenney, Steven J

    2013-01-01

    The terminations of the Central Solenoid (CS) modules are connected to the bus extensions by joints located outside the CS in the gap between the CS and Torodial Field (TF) assemblies. These joints have very strict space limitations. Low resistance is a common requirement for all ITER joints. In addition, the CS bus joints will experience and must be designed to withstand significant variation in the magnetic field of several tenths of a Tesla per second during initiation of plasma. The joint resistance is specified to be less than 4 nOhm. The joints also have to be soldered in the field and designed with the possibility to be installed and dismantled in order to allow cold testing in the cold test facility. We have developed coaxial joints that meet these requirements and have demonstrated the feasibility to fabricate and assemble them in the vertical configuration. We introduced a coupling cylinder with superconducting strands soldered to the surface of the cable that can be installed in the ITER assembly hall and at the Cold Test Facility. This cylinder serves as a transition area between the CS module and the bus extension. We made two racetrack samples and tested four bus joints in our Joint Test Apparatus. Resistance of the bus joints was measured by a decay method and by a microvoltmeter; the value of the current was measured by the Hall probes. This measurement method was verified in the previous tests. The resistance of the joints varied insignificantly from 1.5 to 2 nOhm. One of the challenges associated with a soldered joint is the inability to use corrosive chemicals that are difficult to clean. This paper describes our development work on cable preparation, chrome removal, compaction, soldering, and final assembly and presents the test results.

  9. Flow coating apparatus and method of coating

    SciTech Connect

    Hanumanthu, Ramasubrahmaniam; Neyman, Patrick; MacDonald, Niles; Brophy, Brenor; Kopczynski, Kevin; Nair, Wood

    2014-03-11

    Disclosed is a flow coating apparatus, comprising a slot that can dispense a coating material in an approximately uniform manner along a distribution blade that increases uniformity by means of surface tension and transfers the uniform flow of coating material onto an inclined substrate such as for example glass, solar panels, windows or part of an electronic display. Also disclosed is a method of flow coating a substrate using the apparatus such that the substrate is positioned correctly relative to the distribution blade, a pre-wetting step is completed where both the blade and substrate are completed wetted with a pre-wet solution prior to dispensing of the coating material onto the distribution blade from the slot and hence onto the substrate. Thereafter the substrate is removed from the distribution blade and allowed to dry, thereby forming a coating.

  10. Modification of implant material surface properties by means of oxide nano-structured coatings deposition

    NASA Astrophysics Data System (ADS)

    Safonov, Vladimir; Zykova, Anna; Smolik, Jerzy; Rogowska, Renata; Lukyanchenko, Vladimir; Kolesnikov, Dmitrii

    2014-08-01

    The deposition of functional coatings on the metal surface of artificial joints is an effective way of enhancing joint tribological characteristics. It is well-known that nanostructured oxide coatings have specific properties advantageous for future implant applications. In the present study, we measured the high hardness parameters, the adhesion strength and the low friction coefficient of the oxide magnetron sputtered coatings. The corrosion test results show that the oxide coating deposition had improved the corrosion resistance by a factor of ten for both stainless steel and titanium alloy substrates. Moreover, the hydrophilic nature of coated surfaces in comparison with the metal ones was investigated in the tensiometric tests. The surfaces with nanostructured oxide coatings demonstrated improved biocompatibility for in vitro and in vivo tests, attributed to the high dielectric constants and the high values of the surface free energy parameters.

  11. Measurement of the thermal contact conductance and thermal conductivity of anodized aluminum coatings

    SciTech Connect

    Peterson, G.P.; Fletcher, L.S. )

    1990-08-01

    An experimental investigation was conducted to determine the thermal contact conductance and effective thermal conductivity of anodized coatings. One chemically polished Aluminum 6061-T6 test specimen and seven specimens with anodized coatings varying in thickness from 60.9 {mu}m to 163.8 {mu}m were tested while in contact with a single unanodized aluminum surface. Measurements of the overall joint conductance, composed of the thermal contact conductance between the anodized coating and the bare aluminum surface and the bulk conductance of the coating material, indicated that the overall joint conductance decreased with increasing thickness of the anodized coating and increased with increasing interfacial load. Using the experimental data, a dimensionless expression was developed that related the overall joint conductance to the coating thickness, the surface roughness, the interfacial pressure, and the properties of the aluminum substrate. By subtracting the thermal contact conductance from the measured overall joint conductance, estimations of the effective thermal conductivity of the anodized coating as a function of pressure were obtained for each of the seven anodized specimens. At an extrapolated pressure of zero, the effective thermal conductivity was found to be approximately 0.02 W/m-K. In addition to this extrapolated value, a single expression for predicting the effective thermal conductivity as a function of both the interface pressure and the anodized coating thickness was developed and shown to be within {plus minus}5 percent of the experimental data over a pressure range of 0 to 14 MPa.

  12. Apparatus for coating powders

    DOEpatents

    Makowiecki, Daniel M.; Kerns, John A.; Alford, Craig S.; McKernan, Mark A.

    2000-01-01

    A process and apparatus for coating small particles and fibers. The process involves agitation by vibrating or tumbling the particles or fibers to promote coating uniformly, removing adsorbed gases and static charges from the particles or fibers by an initial plasma cleaning, and coating the particles or fibers with one or more coatings, a first coating being an adhesion coating, and with subsequent coatings being deposited in-situ to prevent contamination at layer interfaces. The first coating is of an adhesion forming element (i.e. W, Zr, Re, Cr, Ti) of a 100-10,000 .ANG. thickness and the second coating or final coating of a multiple (0.1-10 microns) being Cu or Ag, for example for brazing processes, or other desired materials that defines the new surface related properties of the particles. An essential feature of the coating process is the capability to deposit in-situ without interruption to prevent the formation of a contaminated interface that could adversely affect the coating adhesion. The process may include screening of the material to be coated and either continuous or intermittent vibration to prevent agglomeration of the material to be coated.

  13. Coated laser mirror and method of coating

    SciTech Connect

    Shuskus, A.J.; Cowher, M.E.

    1984-04-24

    A method of applying an intermediate bond coat on a laser mirror substrate is described comprising surface polishing the mirror substrate followed by depositing a layer of amorphous silicon, amorphous germanium, or mixtures thereof on the mirror surface, and polishing the thus coated mirror surface to a substantially void-free surface finish. Laser mirror substrates such as graphite fiber reinforced glass, molybdenum and silicon carbide coated by such process are also described.

  14. Distal radioulnar joint injuries.

    PubMed

    Thomas, Binu P; Sreekanth, Raveendran

    2012-09-01

    Distal radioulnar joint is a trochoid joint relatively new in evolution. Along with proximal radioulnar joint, forearm bones and interosseous membrane, it allows pronosupination and load transmission across the wrist. Injuries around distal radioulnar joint are not uncommon, and are usually associated with distal radius fractures,fractures of the ulnar styloid and with the eponymous Galeazzi or Essex_Lopresti fractures. The injury can be purely involving the soft tissue especially the triangular fibrocartilage or the radioulnar ligaments. The patients usually present with ulnar sided wrist pain, features of instability, or restriction of rotation. Difficulty in carrying loads in the hand is a major constraint for these patients. Thorough clinical examination to localize point of tenderness and appropriate provocative tests help in diagnosis. Radiology and MRI are extremely useful, while arthroscopy is the gold standard for evaluation. The treatment protocols are continuously evolving and range from conservative, arthroscopic to open surgical methods. Isolated dislocation are uncommon. Basal fractures of the ulnar styloid tend to make the joint unstable and may require operative intervention. Chronic instability requires reconstruction of the stabilizing ligaments to avoid onset of arthritis. Prosthetic replacement in arthritis is gaining acceptance in the management of arthritis. PMID:23162140

  15. Dissimilar metals joint evaluation

    NASA Technical Reports Server (NTRS)

    Wakefield, M. E.; Apodaca, L. E.

    1974-01-01

    Dissimilar metals tubular joints between 2219-T851 aluminum alloy and 304L stainless steel were fabricated and tested to evaluate bonding processes. Joints were fabricated by four processes: (1) inertia (friction) weldings, where the metals are spun and forced together to create the weld; (2) explosive welding, where the metals are impacted together at high velocity; (3) co-extrusion, where the metals are extruded in contact at high temperature to promote diffusion; and (4) swaging, where residual stresses in the metals after a stretching operation maintain forced contact in mutual shear areas. Fifteen joints of each type were prepared and evaluated in a 6.35 cm (2.50 in.) O.D. size, with 0.32 cm (0.13 in.) wall thickness, and 7.6 cm (3.0 in) total length. The joints were tested to evaluate their ability to withstand pressure cycle, thermal cycle, galvanic corrosion and burst tests. Leakage tests and other non-destructive test techniques were used to evaluate the behavior of the joints, and the microstructure of the bond areas was analyzed.

  16. Finite-element simulations of hysteretic alternating current losses in a magnetically coated superconducting tubular wire subject to an oscillating transverse magnetic field

    NASA Astrophysics Data System (ADS)

    Genenko, Y. A.; Rauh, H.; Kurdi, S.

    2015-06-01

    Numerical simulations of hysteretic ac losses in a tubular superconductor/paramagnet heterostructure subject to an oscillating transverse magnetic field are performed within the quasistatic approach, calling upon the COMSOL finite-element software package and exploiting magnetostatic-electrostatic analogues. It is shown that one-sided magnetic shielding of a thin, type-II superconducting tube by a coaxial paramagnetic support results in a slight increase of hysteretic ac losses as compared to those for a vacuum environment, when the support is placed inside; a spectacular shielding effect with a possible reduction of hysteretic ac losses by orders of magnitude, however, ensues, depending on the magnetic permeability and the amplitude of the applied magnetic field, when the support is placed outside.

  17. Microstructure characterization of hypereutectoid aluminium bronze composite coating

    NASA Astrophysics Data System (ADS)

    Kucita, P.; Wang, S. C.; Li, W. S.; Cook, R. B.; Starink, M. J.

    2015-10-01

    Hypereutectoid aluminium bronze coating was deposited onto an E.N. 10503 steel substrate using plasma transferred arc welding (PTA). Microstructure characterisation of the coating and a section near the steel substrate joint was carried out using SEM, EBSD, EDS in conjunction with XRD and depth-sensing nano-indentation. The constituent phases in the coating were identified as: martensitic Cu3Al β1' phase, solid solution of Al in Cu α phase and the intermetallic Fe3Al κ1 phase. The region near the steel substrate was characterised by high hardness, large grains and presence of Cu precipitates. No cracks were observed in this region. The coating has high hardness of 4.9GPa and Young's modulus of 121.7GPa. This is attributed to homogeneous distribution of sub microns size Fe3Al intermetallic phase. The implications of the coating to the engineering application of sheet metal forming are discussed.

  18. Periprosthetic joint infection.

    PubMed

    Kapadia, Bhaveen H; Berg, Richard A; Daley, Jacqueline A; Fritz, Jan; Bhave, Anil; Mont, Michael A

    2016-01-23

    Periprosthetic joint infections are a devastating complication after arthroplasty and are associated with substantial patient morbidity. More than 25% of revisions are attributed to these infections, which are expected to increase. The increased prevalence of obesity, diabetes, and other comorbidities are some of the reasons for this increase. Recognition of the challenge of surgical site infections in general, and periprosthetic joint infections particularly, has prompted implementation of enhanced prevention measures preoperatively (glycaemic control, skin decontamination, decolonisation, etc), intraoperatively (ultraclean operative environment, blood conservation, etc), and postoperatively (refined anticoagulation, improved wound dressings, etc). Additionally, indications for surgical management have been refined. In this Review, we assess risk factors, preventive measures, diagnoses, clinical features, and treatment options for prosthetic joint infection. An international consensus meeting about such infections identified the best practices and further research needs. Orthopaedics could benefit from enhanced preventive, diagnostic, and treatment methods. PMID:26135702

  19. Quick acting gimbal joint

    NASA Technical Reports Server (NTRS)

    Wood, William B. (Inventor); Krch, Gary D. (Inventor)

    1993-01-01

    The present invention relates to an adjustable linkage assembly for selectively retaining the position of one member pivotable with respect to another member. More specifically, the invention relates to a linkage assembly commonly referred to as a gimbal joint, and particularly to a quick release or quick acting gimbal joint. The assembly is relatively simple in construction, compact in size, and has superior locking strength in any selected position. The device can be quickly and easily actuated, without separate tooling, by inexperienced personnel or by computer controlled equipment. It also is designed to prevent inadvertent actuation.

  20. Prosthetic Joint Infection

    PubMed Central

    Tande, Aaron J.

    2014-01-01

    SUMMARY Prosthetic joint infection (PJI) is a tremendous burden for individual patients as well as the global health care industry. While a small minority of joint arthroplasties will become infected, appropriate recognition and management are critical to preserve or restore adequate function and prevent excess morbidity. In this review, we describe the reported risk factors for and clinical manifestations of PJI. We discuss the pathogenesis of PJI and the numerous microorganisms that can cause this devastating infection. The recently proposed consensus definitions of PJI and approaches to accurate diagnosis are reviewed in detail. An overview of the treatment and prevention of this challenging condition is provided. PMID:24696437