Science.gov

Sample records for field nevada usa

  1. Use of slim holes for reservoir evaluation at the Steamboat Hills Geothermal Field, Nevada, USA

    SciTech Connect

    Combs, Jim; Goranson, Colin

    1994-01-20

    Three slim holes were drilled at the Steamboat Hills Geothermal Field in northwestern Nevada about 15 km south of Reno. The slim holes were drilled to investigate the geologic conditions, thermal regime and productive characteristics of the geothermal system. They were completed through a geologic sequence consisting of alluvium cemented by geothermal fluids, volcaniclastic materials, and granodiorite. Numerous fractures, mostly sealed, were encountered throughout the drilled depth; however, several open fractures in the granodiorite, dipping between 65 and 90{degree}, had apertures up to 13 mm in width. The depths of the slim holes vary from 262 to 277 m with open-hole diameters of 76 mm. Pressure and temperature logs gave bottom-hole temperatures ranging from 163 to 166{degree} C. During injection testing, downhole pressures were measured using capillary tubing with a surface quartz transducer while temperatures were measured with a Kuster temperature tool located below the capillary tubing pressure chamber. No pressure increase was measured at reservoir depths in any of the three slim holes while injecting 11 kg/s of 29{degree}C water indicating a very high permeability in the geothermal reservoir. These injection test results suggested that productive geothermal fluids could be found at depths sufficient for well pumping equipment and at temperatures needed for electrical power production using binary-type conversion technology.

  2. Pliocene to late Pleistocene magmatism in the Aurora Volcanic Field, Nevada and California, USA

    NASA Astrophysics Data System (ADS)

    Kingdon, S.; Cousens, B.; John, D. A.; du Bray, E. A.

    2013-12-01

    The 3.9- 0.1 Ma Aurora Volcanic Field (AVF) covers 325 km2 east and southeast of the Bodie Hills, north of Mono Lake, California, USA. The AVF is located immediately northwest of the Long Valley magmatic system and adjacent and overlapping the Miocene Bodie Hills Volcanic Field (BHVF). Rock types range from trachybasalt to trachydacite, and high-silica rhyolite. The trachybasalts to trachydacites are weakly to moderately porphyritic (1-30%) with variable phenocryst assemblages that are some combination of plagioclase, hornblende, clinopyroxene, and lesser orthopyroxene, olivine, and/or biotite. Microphenocrysts are dominated by plagioclase, and include opaque oxides, clinopyroxene, and apatite. These rocks are weakly to strongly devitrified. The high-silica rhyolites are sparsely porphyritic with trace to 10% phenocrysts of quartz, sanidine, plagioclase, biotite, (+/- hornblende), accessory opaque oxide minerals, titanite, allanite, (+/-apatite, zircon), and have glassy groundmasses. Rocks in the AVF are less strongly porphyritic than those of BHVF. Plagioclase phenocrysts are often oscillatory zoned and many have sieve texture. Amphiboles have distinct black opaque rims. Xenocrystic quartz and plagioclase are rare. AVF lavas have bimodal SiO2 compositions, ranging from 49 to 78 wt%, with a gap between 65 and 75 wt%. They are high-K calc-alkaline to shoshonitic in composition, and are metaluminous to weakly peraluminous. They are enriched in rare earth elements (REE), especially light REEs, compared to the Miocene BHVF rocks. Primordial mantle-normalized incompatible element patterns show arc- or subduction-related signatures, with enrichment in Ba and Pb, and depletion in Nb and Ta. Enrichment in K and Sr and depletion in Ti are less pronounced than in the BHVF rocks. There is no correlation between lead isotope ratios and silica (initial 206Pb/204Pb ratios range from 18.974 to 19.151). Neodymium isotope ratios show a moderate negative correlation with silica

  3. Twilight of a Volcanic Field: 11 Million Years of Basaltic Volcanism in the Southwestern Nevada Volcanic Field, USA

    NASA Astrophysics Data System (ADS)

    Perry, F. V.; Valintine, G. A.

    2007-12-01

    Following the end of major caldera-forming silicic volcanism in the Southwestern Nevada Volcanic Field (SNVF), at least 10 episodes of alkalic basaltic volcanism have occurred over the last ~11 Ma. An understanding of the past behavior of the volcanic field provides insight for forecasting future eruptive behavior for use in hazard assessment for the high-level radioactive waste repository at Yucca Mountain. A program of geophysics, drilling, Ar-Ar dating and geochemistry conducted since 2004 by Los Alamos National Laboratory and the U.S. Geological Survey, combined with previous and ongoing petrogenetic and physical volcanology studies, sheds more light on the early and middle evolution of the volcanic field, much of which has been buried in alluvial basins. Volumes of erupted basalt have drastically declined over the history of the field, from as much as 50 km3 in the Miocene to about 0.5 km3 in the Pleistocene. The volume decrease is accompanied by a drastic decrease in extension rate, suggesting a close link between magmatism and tectonism. Neodymium and strontium isotopic analyses indicate that enriched lithospheric mantle has been the source of basalt throughout the history of the field. Decreasing eruption volumes are accompanied by an approximate doubling of Ce/Yb ratios, indicating that the volume decrease reflects a decrease in degree of partial melting of the lithospheric source. Eruption style has also changed with time, reflecting an increase in magma volatile content, consistent with decreased amounts of partial melting of a volatile-bearing source. These observations are consistent with a model in which the lithospheric mantle source was hottest during the period of major silicic volcanism and the presence of an active subduction system. After the breakdown of subduction, continued thermal input into the lithosphere ceased, and the lithosphere began to conductively cool. Melt accumulation in non-convecting, static lithosphere is probably related to

  4. Characterization of injection wells in a fractured reservoir using PTS logs, Steamboat Hills Geothermal Field, Nevada, USA

    SciTech Connect

    Goranson, Colin; Combs, Jim

    1995-01-26

    The Steamboat Hills Geothermal Field in northwestern Nevada, about 15 km south of Reno, is a shallow (150m to 825m) moderate temperature (155 C to 168 C) liquid-dominated geothermal reservoir situated in highly-fractured granodiorite. Three injection wells were drilled and completed in granodiorite to dispose of spent geothermal fluids from the Steamboat II and III power plants (a 30 MW air-cooled binary-type facility). Injection wells were targeted to depths below 300m to inject spent fluids below producing fractures. First, quasi-static downhole pressure-temperature-spinner (PTS) logs were obtained. Then, the three wells were injection-tested using fluids between 80 C and 106 C at rates from 70 kg/s to 200 kg/s. PTS logs were run both up and down the wells during these injection tests. These PTS surveys have delineated the subsurface fracture zones which will accept fluid. The relative injectivity of the wells was also established. Shut-in interzonal flow within the wells was identified and characterized.

  5. How do vegetation bands form in dry lands? Insights from numerical modeling and field studies in southern Nevada, USA

    NASA Astrophysics Data System (ADS)

    Pelletier, Jon D.; Delong, Stephen B.; Orem, Caitlin A.; Becerra, Patricio; Compton, Kathleen; Gressett, Katrina; Lyons-Baral, John; McGuire, Luke A.; Molaro, Jamie L.; Spinler, Joshua C.

    2012-12-01

    Vegetation bands are periodic bands of vegetation, separated by interband spaces devoid of vegetation, oriented parallel to the topographic contour in some gently sloping arid to semiarid environments. Models of vegetation band formation attribute their formation to positive feedbacks among vegetation density, soil porosity/permeability, and infiltration rates. Here we present an alternative model based on field measurements at our study sites in southern Nevada. In this model, interband spaces between vegetation bands form because topographic mounds beneath vegetation bands detain water upslope from vegetation bands, leading to hydrologic and sedimentologic conditions that inhibit the survival of plants in interband spaces. We used terrestrial laser scanning (TLS) to create high-resolution (˜10 cm2/pixel) raster data sets of bare-earth topography and canopy height for four study sites. Analyses of the TLS data, in addition to measurements of soil shear strength and particle size, document the potential for detention in interband spaces and a near-inverse proportionality between band spacing and regional slope. We describe a cellular automaton model (herein called model 1) for vegetation band formation that includes just two user-defined parameters and that generates vegetation bands similar to those at our field sites, including the inverse proportionality between spacing and regional slope. A second model (model 2) accurately predicts the width of vegetation bands in terms of the number and spacing of plants and the geometry of individual plant mounds. We also present a GIS-based analysis that predicts where bands occur within a region based on topographic and hydroclimatic controls.

  6. Assessing Past Fracture Connectivity in Geothermal Reservoirs Using Clumped Isotopes: Proof of Concept in the Blue Mountain Geothermal Field, Nevada USA

    NASA Astrophysics Data System (ADS)

    Huntington, K. W.; Sumner, K. K.; Camp, E. R.; Cladouhos, T. T.; Uddenberg, M.; Swyer, M.; Garrison, G. H.

    2015-12-01

    Subsurface fluid flow is strongly influenced by faults and fractures, yet the transmissivity of faults and fractures changes through time due to deformation and cement precipitation, making flow paths difficult to predict. Here we assess past fracture connectivity in an active hydrothermal system in the Basin and Range, Nevada, USA, using clumped isotope geochemistry and cold cathodoluminescence (CL) analysis of fracture filling cements from the Blue Mountain geothermal field. Calcite cements were sampled from drill cuttings and two cores at varying distances from faults. CL microscopy of some of the cements shows banding parallel to the fracture walls as well as brecciation, indicating that the cements record variations in the composition and source of fluids that moved through the fractures as they opened episodically. CL microscopy, δ13C and δ18O values were used to screen homogeneous samples for clumped isotope analysis. Clumped isotope thermometry of most samples indicates paleofluid temperatures of around 150°C, with several wells peaking at above 200°C. We suggest that the consistency of these temperatures is related to upwelling of fluids in the convective hydrothermal system, and interpret the similarity of the clumped isotope temperatures to modern geothermal fluid temperatures of ~160-180°C as evidence that average reservoir temperatures have changed little since precipitation of the calcite cements. In contrast, two samples, one of which was associated with fault gauge observed in drill logs, record significantly cooler temperatures of 19 and 73°C and anomalous δ13C and δ18Owater values, which point to fault-controlled pathways for downwelling meteoric fluid. Finally, we interpret correspondence of paleofluid temperatures and δ18Owater values constrained by clumped isotope thermometry of calcite from different wells to suggest past connectivity of fractures among wells within the geothermal field. Results show the ability of clumped isotope

  7. Plumbing of continental basaltic volcanoes from the mantle to the surface, 1: Insights from field relationships at the Lunar Crater Volcanic Field (Nevada, USA)

    NASA Astrophysics Data System (ADS)

    Valentine, G. A.; Cortes, J. A.; Widom, E.; Smith, E. I.

    2011-12-01

    Monogenetic intraplate volcanoes offer unique insights into the linkages between magma sources, crustal ascent, and eruption processes. We focus here on the northernmost part of the Lunar Crater Volcanic Field (LCVF), Nevada, with ~45 monogenetic volcanoes in a 10 km long, 5 km wide band. Within that band, many volcanoes occur in localized clusters with up to 5 volcanoes (of different ages) per square kilometer. Most of the clusters are elongated in a direction that parallels the trend of the LCVF as a whole. Currently it is uncertain whether such clusters are related to faults in the underlying rocks because of the thick, young cover of basaltic volcanic products. However, in other areas, especially along the periphery of the volcanic field, vents often correspond with pre-existing normal faults, and it seems likely that elongated clusters represent areas of repeated (over time scales of ~1-2 Ma) injection of feeder dikes into faults in the shallow crust. The edges of the volcanic field in the northernmost part are defined by sharp boundaries, where there is a sharp transition from high volcano concentration on one side, to no volcanoes on the other. A fundamental question is whether this transition reflects a similar spatial distribution in the mantle source area, or whether it is due entirely to shallow structural controls on magma ascent. The northernmost part of the LCVF provides an ideal case study for testing relationships between physical parameters (volume, fissure length, eruptive style) and geochemistry. We focus on three volcanoes, two of which are closely spaced (~500 m) but occurred at times separated by 100s ka (based upon surface morphology). The older of these two, informally called the OPB volcano (older, phenocryst bearing) is likely mid-Pleistocene in age; the younger is referred to as YMB (younger, megacrysts bearing). The third volcano, previously named Marcath/Black Rock, is the youngest in the volcanic field, located ~4 km southwest of OPB

  8. The Pliocene-Quaternary Buffalo Valley volcanic field, Nevada: Post-extension, intraplate magmatism in the north-central Great Basin, USA

    NASA Astrophysics Data System (ADS)

    Cousens, Brian; Wetmore, Stacey; Henry, Christopher D.

    2013-12-01

    The Buffalo Valley volcanic field consists of Pliocene through Quaternary lava flows and spatter cones located south of Battle Mountain and adjacent to the Fish Creek Mountains, north-central Nevada. The volcanic rocks are split into two groups by age and geochemistry. The Pliocene sequence (4.02 to 2.75 Ma) consists of olivine- and plagioclase-bearing alkali basaltic lava flows with minor pyroclastic deposits, found primarily along the south flank of Battle Mountain and also at the north end of the Fish Creek Mountains and within the Fish Creek Mountains caldera. The Quaternary series (1.99 to 1.14 Ma) includes nearly a dozen trachybasaltic spatter cones with short lava flows erupted along the northwest flank of the Fish Creek Mountains. Normalized rare earth element and incompatible element plots for both groups are light rare earth and Nb-Ta enriched, resembling alkali basalts from ocean islands, but the Quaternary lavas are more light rare earth element-enriched and cross the Pliocene basalt patterns at Eu. Radiogenic and stable isotope ratios are consistent with an asthenospheric mantle source, and the rare earth element patterns indicate a shift from melting in the spinel to garnet peridotite field with time. Basaltic rocks from other intraplate fields in the Great Basin, including the Lunar Crater and Cima fields, only include lavas that originated at depth in the garnet peridotite field. Buffalo Valley is located at the margin of a proposed lithospheric drip (delamination) and within a zone of lithospheric thinning that extends across northern Nevada, both of which may control where melting in the asthenosphere may occur. The proximity to the edge of Precambrian-Phanerozoic lithosphere boundary may also be a factor in melt generation.

  9. Complex plumbing of monogenetic scoria cones and implications for Strombolian-style eruptions: examples from the Lunar Crater Volcanic Field (Nevada, USA)

    NASA Astrophysics Data System (ADS)

    Hintz, A. R.; Valentine, G. A.

    2010-12-01

    Monogenetic volcanoes represent a major proportion of terrestrial volcanoes, often occurring in groups or clusters (i.e. volcanic fields), or in association with polygenetic volcanoes. Historical observations of eruptions from such volcanoes have been few, though the increased knowledge gained from these direct observations has greatly improved our understanding of monogenetic eruptive dynamics. Two eroded remnants of scoria cones, located within the Lunar Crater Volcanic Field, Nevada were examined and have been shown to reveal internal complexities of lateral and vertical dike growth, lava bocca formation and wandering, as well as information about their early eruptive phases and eruptive styles. These eroded remnants represent several of the many older (Early-Pliocene) monogenetic volcanoes in this field and are inferred to be good analogues for the younger (Pleistocene and Quaternary) less eroded volcanoes within the field. The preserved internal plumbing geometries including dikes, dike sets, radial dikes, and spatter mounds, along with analyses of local variations in crystal distributions and vesicle bands/layers in the near-vent areas allow for application of the field-based observations to current models of Strombolian-style eruptions.

  10. Ammonia at Blodgett Forest, Sierra Nevada, USA

    SciTech Connect

    Fischer, Marc L.; Littlejohn, David

    2007-11-06

    Ammonia is a reactive trace gas that is emitted in large quantities by animal agriculture and other sources in California, which subsequently forms aerosol particulate matter, potentially affecting visibility, climate, and human health. We performed initial measurements of NH{sub 3} at the Blodgett Forest Research Station (BFRS) during a two week study in June, 2006. The site is used for ongoing air quality research and is a relatively low-background site in the foothills of the Sierra Nevada. Measured NH{sub 3} mixing ratios were quite low (< 1 to {approx} 2 ppb), contrasting with typical conditions in many parts of the Central Valley. Eddy covariance measurements showed NH{sub 3} fluxes that scaled with measured NH{sub 3} mixing ratio and calculated aerodynamic deposition velocity, suggesting dry deposition is a significant loss mechanism for atmospheric NH{sub 3} at BFRS. A simple model of NH{sub 3} transport to the site supports the hypothesis that NH{sub 3} is transported from the Valley to BFRS, but deposits on vegetation during the summer. Further work is necessary to determine whether the results obtained in this study can be generalized to other seasons.

  11. Particle Tracking-Based Strategies For Simulating Transport in a Transient Groundwater Flow Field at Yucca Flat, Nevada Test Site, USA

    NASA Astrophysics Data System (ADS)

    Keating, E. H.; Srinivasan, G.; Kang, Q.; Li, C.; Dash, Z.; Kwicklis, E. M.

    2009-12-01

    Developing probabilistic-based calculations of contaminant concentrations over the next 1000 years at Yucca Flat, Nevada Test site, require tremendous computational effort in this highly complex hydrogeologic surface environment. The sources of contamination, underground nuclear tests conducted between 1951 and 1992, not only released radionuclides to the subsurface but also created abrupt, significant changes in rock properties and caused large transients in the measured hydraulic gradients. To efficiently model contaminant migration from these sources we use a particle-based approach within a transient flow field. Here, we present results using two methods; first, an explicit representation of time-varying sources using large numbers of particles introduced at source-specific rates over time, each representing a unique mass of solute. This method provides good results, but is computationally expensive since sensitivity to uncertainty in source term and transport parameters can only be explored with discrete process-model runs. The second method employs a convolution method (PLUMECALC) which can efficiently consider a large number of variations in the source terms and in certain transport parameters with a single process-model run. Implementation of this second approach required extension of the existing methodology to conditions of transient flow. We find very good comparison between the two methods on small test problems and excellent computational advantages when applying the convolution method in the NTS application

  12. Stress orientation determined from fault slip data in Hampel Wash area, Nevada, and its relation to contemporary regional stress field ( USA).

    USGS Publications Warehouse

    Frizzell, V.A., Jr.; Zoback, M.L.

    1987-01-01

    Fault-slip data were collected from an area of relatively young faulting in a seismically active part of the Nevada Test Site 12 km NW of Mercury, Nevada. The data come primarily from intensely faulted Miocene tuffaceous sedimentary rocks in Hampel Wash, which is bounded on the north by the Quaternary ENE trending Rock Valley fault and on the south by a parallel unnamed fault. Analysis of the data using a least squares iterative inversion to determine a mean deviatoric principal stress tensor indicates a normal-faulting stress regime (S1 vertical) with principal stress axes in approximately horizontal and vertical directions (S1, trend = N19oE and plunge = 82oN; S2,, N30oE and 8oS; and S3, N60oW and 2oE). The N60oW least horizontal principal stress orientation obtained from the fault-slip inversion agrees with our geometric analysis of the data and is consistent with a modern least horizontal principal stress orientation of N50o-70oW inferred from earthquake focal mechanisms, well bore breakouts, and hydraulic fracturing measurements in the vicinity of the Nevada Test Site. -from Authors

  13. Cyanide and migratory birds at gold mines in Nevada, USA.

    PubMed

    Henny, C J; Hallock, R J; Hill, E F

    1994-03-01

    : Since the mid-1980s, cyanide in heap leach solutions and mill tailings ponds at gold mines in Nevada has killed a large but incompletely documented number of wildlife (>9,500 individuals, primarily migratory birds). This field investigation documents the availability of cyanide at a variety of 'typical' Nevada gold mines during 1990 and 1991, describes wildlife reactions to cyanide solutions, and discusses procedures for eliminating wildlife loss from cyanide poisoning. Substantial progress has been made to reduce wildlife loss. About half of the mill tailings ponds (some up to 150 ha) in Nevada have been chemically treated to reduce cyanide concentrations (the number needing treatment is uncertain) and many of the smaller heap leach solution ponds and channels are now covered with netting to exclude birds and most mammals. The discovery of a cyanide gradient in mill tailings ponds (concentration usually 2-3 times higher at the inflow point than at reclaim point) provides new insight into wildlife responses (mortality) observed in different portions of the ponds. Finding dead birds on the tops of ore heaps and associated with solution puddling is a new problem, but management procedures for eliminating this source of mortality are available. A safe threshold concentration of cyanide to eliminate wildlife loss could not be determined from the field data and initial laboratory studies. New analytical methods may be required to assess further the wildlife hazard of cyanide in mining solutions. PMID:24201865

  14. Estimating recharge at Yucca Mountain, Nevada, USA: comparison of methods

    NASA Astrophysics Data System (ADS)

    Flint, Alan L.; Flint, Lorraine E.; Kwicklis, Edward M.; Fabryka-Martin, June T.; Bodvarsson, Gudmundur S.

    2002-02-01

    Obtaining values of net infiltration, groundwater travel time, and recharge is necessary at the Yucca Mountain site, Nevada, USA, in order to evaluate the expected performance of a potential repository as a containment system for high-level radioactive waste. However, the geologic complexities of this site, its low precipitation and net infiltration, with numerous mechanisms operating simultaneously to move water through the system, provide many challenges for the estimation of the spatial distribution of recharge. A variety of methods appropriate for arid environments has been applied, including water-balance techniques, calculations using Darcy's law in the unsaturated zone, a soil-physics method applied to neutron-hole water-content data, inverse modeling of thermal profiles in boreholes extending through the thick unsaturated zone, chloride mass balance, atmospheric radionuclides, and empirical approaches. These methods indicate that near-surface infiltration rates at Yucca Mountain are highly variable in time and space, with local (point) values ranging from zero to several hundred millimeters per year. Spatially distributed net-infiltration values average 5 mm/year, with the highest values approaching 20 mm/year near Yucca Crest. Site-scale recharge estimates range from less than 1 to about 12 mm/year. These results have been incorporated into a site-scale model that has been calibrated using these data sets that reflect infiltration processes acting on highly variable temporal and spatial scales. The modeling study predicts highly non-uniform recharge at the water table, distributed significantly differently from the non-uniform infiltration pattern at the surface.

  15. Estimating recharge at Yucca Mountain, Nevada, USA: Comparison of methods

    USGS Publications Warehouse

    Flint, A.L.; Flint, L.E.; Kwicklis, E.M.; Fabryka-Martin, J. T.; Bodvarsson, G.S.

    2002-01-01

    Obtaining values of net infiltration, groundwater travel time, and recharge is necessary at the Yucca Mountain site, Nevada, USA, in order to evaluate the expected performance of a potential repository as a containment system for high-level radioactive waste. However, the geologic complexities of this site, its low precipitation and net infiltration, with numerous mechanisms operating simultaneously to move water through the system, provide many challenges for the estimation of the spatial distribution of recharge. A variety of methods appropriate for arid environments has been applied, including water-balance techniques, calculations using Darcy's law in the unsaturated zone, a soil-physics method applied to neutron-hole water-content data, inverse modeling of thermal profiles in boreholes extending through the thick unsaturated zone, chloride mass balance, atmospheric radionuclides, and empirical approaches. These methods indicate that near-surface infiltration rates at Yucca Mountain are highly variable in time and space, with local (point) values ranging from zero to several hundred millimeters per year. Spatially distributed net-infiltration values average 5 mm/year, with the highest values approaching 20 mm/year near Yucca Crest. Site-scale recharge estimates range from less than 1 to about 12 mm/year. These results have been incorporated into a site-scale model that has been calibrated using these data sets that reflect infiltration processes acting on highly variable temporal and spatial scales. The modeling study predicts highly non-uniform recharge at the water table, distributed significantly differently from the non-uniform infiltration pattern at the surface.

  16. Estimating recharge at yucca mountain, nevada, usa: comparison of methods

    SciTech Connect

    Flint, A. L.; Flint, L. E.; Kwicklis, E. M.; Fabryka-Martin, J. T.; Bodvarsson, G. S.

    2001-11-01

    Obtaining values of net infiltration, groundwater travel time, and recharge is necessary at the Yucca Mountain site, Nevada, USA, in order to evaluate the expected performance of a potential repository as a containment system for high-level radioactive waste. However, the geologic complexities of this site, its low precipitation and net infiltration, with numerous mechanisms operating simultaneously to move water through the system, provide many challenges for the estimation of the spatial distribution of recharge. A variety of methods appropriate for and environments has been applied, including water-balance techniques, calculations using Darcy's law in the unsaturated zone, a soil-physics method applied to neutron-hole water-content data, inverse modeling of thermal profiles in boreholes extending through the thick unsaturated zone, chloride mass balance, atmospheric radionuclides, and empirical approaches. These methods indicate that near-surface infiltration rates at Yucca Mountain are highly variable in time and space, with local (point) values ranging from zero to several hundred millimeters per year. Spatially distributed net-infiltration values average 5 mm/year, with the highest values approaching 20 nun/year near Yucca Crest. Site-scale recharge estimates range from less than I to about 12 mm/year. These results have been incorporated into a site-scale model that has been calibrated using these data sets that reflect infiltration processes acting on highly variable temporal and spatial scales. The modeling study predicts highly non-uniform recharge at the water table, distributed significantly differently from the non-uniform infiltration pattern at the surface. [References: 57

  17. Fault seals in oil fields in Nevada

    SciTech Connect

    Foster, N.H.; Veal, H.K.; Bortz, L.C.

    1987-08-01

    Faults forms seals for oil accumulations in the Eagle Springs, Trap Spring, and Blackburn fields, and probably in the Grant Canyon field, in Nevada. The main boundary fault on the east side of the Pine Valley graben forms a seal in the Blackburn field. A fault on the west side of the trap Spring field forms a seal. In Grant Canyon field, it is interpreted that the main boundary fault on the east side of the Railroad Valley graben forms a seal. Calcite is deposited by hot spring activity, plugging up many fault zones and, in some cases, forming seals. Some fault zones have calcite mineralization up to several thousand feet wide. Within the Eagle Springs field on the east side of the Railroad Valley graben, a northeast-trending fault separates oil accumulations with different oil-water contacts. This separation indicates that the fault forms at least a partial seal within the accumulation.

  18. Foundering lithosphere imaged beneath the southern Sierra Nevada, California, USA.

    PubMed

    Boyd, Oliver S; Jones, Craig H; Sheehan, Anne F

    2004-07-30

    Seismic tomography reveals garnet-rich crust and mantle lithosphere descending into the upper mantle beneath the southeastern Sierra Nevada. The descending lithosphere consists of two layers: an iron-rich eclogite above a magnesium-rich garnet peridotite. These results place descending eclogite above and east of high P wave speed material previously imaged beneath the southern Great Valley, suggesting a previously unsuspected coherence in the lithospheric removal process. PMID:15286370

  19. Geology and thermal regime, geothermal test USA No. 11-36, Grass Valley, Nevada

    SciTech Connect

    Wilde, Walter R.; Koenig, James B.

    1980-08-01

    This report summarizes the results of drilling of an 8,565 foot geothermal test near Leach Hot Springs, Pershing County, Nevada, by Sunoco Energy Development Company. USA No.11-36 is located 500 feet south and 500 feet east of the northwest corner of Section 36, T. 32 N., R. 38 E (Mount Diablo Meridian), elevation 4,573 feet. It was drilled between May 15 and July 2, 1980. USA No.11-36 was deemed unsuccessful, having encountered no temperature higher than 270 F and no significant permeability, and was plugged and abandoned without testing prior to releasing the rig.

  20. Public and occupational risks of the Nevada (USA) Test Site.

    PubMed

    Inhaber, H

    2001-10-01

    The Nevada Test Site (NTS), north of Las Vegas, was the scene of hundreds of nuclear weapons tests over four decades, both above- and below ground. There is considerable interest, both in neighboring communities and elsewhere, in the risks it poses. Overall, the greatest risks are nonradioactive in origin, with occupational risks to employees and accident risks in transporting low-level nuclear wastes to the NTS from other Department of Energy (DOE) sites ranking highest. For radiation risks, that to workers handling radioactive materials is much higher than that to the surrounding population, either present or future. Overall, annual risks are small, with all fatalities approximately 0.008% of total Nevada deaths. At the NTS, the government spends about 5000 times more on radiation as opposed to nonradiation deaths. This suggests that at least some resources may be misallocated towards cleanup of public risks and that the occupational risk of cleanup may be much higher than the public risk. Thus risk may be multiplied by well-meaning programs. PMID:11494069

  1. Measurement of surface mercury fluxes at active industrial gold mines in Nevada (USA).

    PubMed

    Eckley, C S; Gustin, M; Marsik, F; Miller, M B

    2011-01-01

    Mercury (Hg) may be naturally associated with the rock units hosting precious and base metal deposits. Active gold mines are known to have point source releases of Hg associated with ore processing facilities. The nonpoint source release of Hg to the air from the large area (hundreds to thousands of hectares) of disturbed and processed material at industrial open pit gold mines has not been quantified. This paper describes the field data collected as part of a project focused on estimating nonpoint source emissions of Hg from two active mines in Nevada, USA. In situ Hg flux data were collected on diel and seasonal time steps using a dynamic flux chamber from representative mine surfaces. Hg fluxes ranged from <1500 ng m(-2) day(-1) for waste rock piles (0.6-3.5 μg g(-1)) to 684,000 ng m(-2) day(-1) for tailings (2.8-58 μg g(-1)). Releases were positively correlated with material Hg concentrations, surface grain size, and moisture content. Highest Hg releases occurred from materials under active cyanide leaching and from tailings impoundments containing processed high-grade ore. Data collected indicate that as mine sites are reclaimed and material disturbance ceases, emissions will decline. Additionally local cycling of atmospheric Hg (deposition and re-emission) was found to occur. PMID:21078520

  2. USA Track & Field Coaching Manual. USA Track & Field.

    ERIC Educational Resources Information Center

    USA Track and Field, Inc., Indianapolis, IN.

    This book presents comprehensive, ready-to-apply information from 33 world-class coaches and experts about major track and field events for high school and college coaches. The volume features proven predictive testing procedures; detailed event-specific technique instruction; carefully crafted training programs; and preparation and performance…

  3. Scoria cone construction mechanisms, Lathrop Wells volcano, southern Nevada, USA

    NASA Astrophysics Data System (ADS)

    Valentine, Greg A.; Krier, Don; Perry, Frank V.; Heiken, Grant

    2005-08-01

    Scoria cones are commonly assumed to have been constructed by the accumulation of ballistically ejected clasts from discrete, relatively coarse-grained Strombolian bursts and subsequent avalanching such that the cone slopes are at or near the angle of repose for loose scoria. The cone at the hawaiitic Lathrop Wells volcano, southern Nevada, contains deposits that are consistent with these processes during early cone-building phases; these early deposits are composed mainly of coarse lapilli and fluidal bombs and are partially welded, indicating relatively little cooling during flight. However, the bulk of the cone is composed of relatively fine-grained (ash and lapilli) planar beds with no welding, even within a few tens of meters of the vent. This facies is consistent with deposition by direct fallout from sustained eruption columns of relatively well-fragmented material, primarily mantling cone slopes and with a lesser degree of avalanching than is commonly assumed. A laterally extensive fallout deposit (as much as 20 km from the vent) is inferred to have formed contemporaneously with these later cone deposits. This additional mechanism for construction of scoria cones may also be important at other locations, particularly where the magmas are relatively high in volatile content and where conditions promote the formation of abundant microlites in the rising mafic magma.

  4. Grant Canyon oil field, Nye County, Nevada

    SciTech Connect

    Duey, H.D.; Veal, H.K.; Bortz, L.C.; Foster, N.H.

    1988-03-01

    The Grant Canyon field is located on the east side of Railroad Valley, Nevada, 8 mi south of the Eagle Springs oil field. The discovery well, 1 Grant Canyon Unit (SW1/4NW1/4, Sec. 21, T7S, T57E), was completed by Northwest Exploration Company on September 11, 1983, flowing 1816 BOPD, probably from the Devonian Simonson Dolomite (4375-4448 ft). Two additional wells have been completed in the field. Cumulative oil production through December 31, 1986, is 5,260,430 bbl of oil. During December 1986, wells 3 and 4 flowed an average of 5189 BOPD. Well 4 averaged 4065 BOPD for a recent month. The discovery well has been shut-in. The productive area is about 240 ac. The trap is a high fault block in the boundary fault zone that separates Railroad Valley from the Grant Range to the east. The Devonian Simonson reservoir is an intensely fractured, vuggy dolomite with some intercrystalline porosity. The top seal is the Tertiary valley fill, which unconformably overlies the Simonson Dolomite. The oil column is about 400 ft and the field apparently has an active water drive, inasmuch as the 1 Grant Canyon Unit had to be shut-in because of water production. The oil is black, 26/sup 0/API gravity, with a pour point of 10/sup 0/F and 0.5% sulfur. Estimated ultimate recoverable oil reserves are 13,000,000 bbl. The adjacent Bacon Flat field is a one-well field (SW1/4SW1/4, Sec. 17, T7N, R57E) that was completed by Northwest Exploration Company on July 5, 1981, for 200 BOPD and 1050 BWPD from the Devonian Guilmette Limestone (5316-5333 ft). Cumulative production through December 31, 1986, was 209,649 bbl of oil. This well averaged 215 BOPD during December 1986.

  5. Blue Mountain, Humboldt County, Nevada, U.S.A

    SciTech Connect

    Ted Fitzpatrick, Brian D. Fairbank

    2005-04-01

    The report documents the drilling of well Deep Blue No.2, the second deep geothermal test hole at the Blue Mountain Geothermal Area, Humboldt County, Nevada. The well was drilled by Noramex Corp, a Nevada company, with funding support from the US Department of Energy, under the DOE’s GRED II Program. Deep Blue No.2 was drilled as a ‘step-out’ hole from Deep Blue No.1, to further evaluate the commercial potential of the geothermal resource. Deep Blue No.2 was designed as a vertical, slim observation test hole to a nominal target depth of 1000 meters (nominal 3400 feet). The well tests an area of projected high temperatures at depth, from temperature gradients measured in a group of shallow drill holes located approximately one kilometer to the northeast of observation hole Deep Blue No.1. The well is not intended for, or designed as, a commercial well or a production well. Deep Blue No.2 was spudded on March 25, 2004 and completed to a total depth of 1127.76m (3700 ft) on April 28, 2004. The well was drilled using conventional rotary drilling techniques to a depth of 201.17 m (660 ft), and continuously cored from 201.17m (660 ft) to 1127.76m (3700 ft). A brief rig-on flow-test was conducted at completion to determine basic reservoir parameters and obtain fluid samples. A permeable fracture zone with measured temperatures of 150 to 167°C (302 to 333°F) occurs between 500 to 750m (1640 to 2461ft). The well was left un-lined in anticipation of the Phase III - Flow and Injection Testing. A further Kuster temperature survey was attempted after the well had been shut in for almost 3 weeks. The well appears to have bridged off at 439m (1440ft) as the Kuster tool was unable to descend past this point. Several attempts to dislodge the obstruction using tube jars were unsuccessful. Deep Blue No.2 encountered variably fractured and veined, fine-grained rocks of the Singas Formation, and intruded by minor strongly altered fine-grained felsic dikes, and less altered

  6. Practical post-calibration uncertainty analysis: Yucca Mountain, Nevada, USA

    NASA Astrophysics Data System (ADS)

    James, S. C.; Doherty, J.; Eddebbarh, A.

    2009-12-01

    The values of parameters in a groundwater flow model govern the precision of predictions of future system behavior. Predictive precision, thus, typically depends on an ability to infer values of system properties from historical measurements through calibration. When such data are scarce, or when their information content with respect to parameters that are most relevant to predictions of interest is weak, predictive uncertainty may be high, even if the model is “calibrated.” Recent advances help recognize this condition, quantitatively evaluate predictive uncertainty, and suggest a path toward improved predictive accuracy by identifying sources of predictive uncertainty and by determining what observations will most effectively reduce this uncertainty. We demonstrate linear and nonlinear predictive error/uncertainty analyses as applied to a groundwater flow model of Yucca Mountain, Nevada, the US’s proposed site for disposal of high-level radioactive waste. Both of these types uncertainty analysis are readily implemented as an adjunct to model calibration with medium to high parameterization density. Linear analysis yields contributions made by each parameter to a prediction’s uncertainty and the worth of different observations, both existing and yet-to-be-gathered, toward reducing this uncertainty. Nonlinear analysis provides more accurate characterization of the uncertainty of model predictions while yielding their (approximate) probability distribution functions. This paper applies the above methods to a prediction of specific discharge and confirms the uncertainty bounds on specific discharge supplied in the Yucca Mountain Project License Application. Furthermore, Monte Carlo simulations confirm that hydrogeologic units thought to be flow barriers have probability distributions skewed toward lower permeabilities.

  7. Non-Impact Origin for Nevada's Elko Crater Field

    NASA Astrophysics Data System (ADS)

    McHone, J. F.; Killgore, M.; Verish, R. S.; Roddy, D. J.

    2003-03-01

    Field examination of rimmed depressions near Elko, Nevada reveals no conclusive evidence for meteorite impact. Their limited occurrence within similar geological units along valley flanks suggests slumping and subsidence due to groundwater sapping.

  8. Gaseous Oxidized Mercury Flux from Substrates Associated with Industrial Scale Gold Mining in Nevada, USA

    NASA Astrophysics Data System (ADS)

    Miller, M. B.

    2015-12-01

    Gaseous elemental and oxidized mercury (Hg) fluxes were measured in a laboratory setting from substrate materials derived from industrial-scale open pit gold mining operations in Nevada, USA. Mercury is present in these substrates at a range of concentrations (10 - 40000 ng g-1), predominantly of local geogenic origin in association with the mineralized gold ores, but altered and redistributed to a varying degree by subsequent ore extraction and processing operations, including deposition of Hg recently emitted to the atmosphere from large point sources on the mines. Waste rock, heap leach, and tailings material usually comprise the most extensive and Hg emission relevant substrate surfaces. All three of these material types were collected from active Nevada mine sites in 2010 for previous research, and have since been stored undisturbed at the University of Nevada, Reno. Gaseous elemental Hg (GEM) flux was previously measured from these materials under a variety of conditions, and was re-measured in this study, using Teflon® flux chambers and Tekran® 2537A automated ambient air analyzers. GEM flux from dry undisturbed materials was comparable between the two measurement periods. Gaseous oxidized Hg (GOM) flux from these materials was quantified using an active filter sampling method that consisted of polysulfone cation-exchange membranes deployed in conjunction with the GEM flux apparatus. Initial measurements conducted within greenhouse laboratory space indicate that in dry conditions GOM is deposited to relatively low Hg cap and leach materials, but may be emitted from the much higher Hg concentration tailings material.

  9. Antiparasitic and antimicrobial indolizidines from the leaves of Prosopis glandulosa var glandulosa from Nevada and Texas USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A new indolizidine alkaloid, named (Delta) 1,6-juliprosopine (1), together with previously known indolizidine analogs (2-6), was isolated from the leaves of Prosopis glandulosa var. glandulosa, collected from Nevada, USA; while two other known indolizidines juliprosopine (6) and juliprosine (7) were...

  10. DENSE GAS PLUME FIELD MEASUREMENTS AT THE NEVADA TEST SITE

    EPA Science Inventory

    Field experiments on dense gas diffusion carried out at the Spills Test Facility on the Nevada Test Site are briefly described, including four "baseline" releases made in July 1993 and two new series planned for August-September 1995. he first series will target neutral to very s...

  11. Sensitivity analysis of hydrological parameters in modeling flow and transport in the unsaturated zone of Yucca Mountain, Nevada, USA

    NASA Astrophysics Data System (ADS)

    Zhang, Keni; Wu, Yu-Shu; Houseworth, James E.

    2006-12-01

    The unsaturated fractured volcanic deposits at Yucca Mountain in Nevada, USA, have been intensively investigated as a possible repository site for storing high-level radioactive waste. Field studies at the site have revealed that there exist large variabilities in hydrological parameters over the spatial domain of the mountain. Systematic analyses of hydrological parameters using a site-scale three-dimensional unsaturated zone (UZ) flow model have been undertaken. The main objective of the sensitivity analyses was to evaluate the effects of uncertainties in hydrologic parameters on modeled UZ flow and contaminant transport results. Sensitivity analyses were carried out relative to fracture and matrix permeability and capillary strength (van Genuchten α) through variation of these parameter values by one standard deviation from the base-case values. The parameter variation resulted in eight parameter sets. Modeling results for the eight UZ flow sensitivity cases have been compared with field observed data and simulation results from the base-case model. The effects of parameter uncertainties on the flow fields were evaluated through comparison of results for flow and transport. In general, this study shows that uncertainties in matrix parameters cause larger uncertainty in simulated moisture flux than corresponding uncertainties in fracture properties for unsaturated flow through heterogeneous fractured rock.

  12. Paleoenvironmental reconstruction of ~40ka stromatolites from the ancient Lake Lahontan, Nevada, USA

    NASA Astrophysics Data System (ADS)

    van Maldegem, L.; Chou, L.; Buongiorno, J.; Zinke, L. A.; Petryshyn, V. A.; Shapiro, R. S.; Piazza, O.; Loyd, S. J.; Tripati, A.; Spear, J. R.; Corsetti, F. A.

    2015-12-01

    During the Late Pleistocene, present day Walker Lake, Nevada was part of Lake Lahontan, an extensive lake covering large portions of northwestern Nevada, USA. The water level of Lake Lahontan has fluctuated significantly over time, reaching maximum high stands during the last glacial maxima (MIS stages 2 and 4). Fossil stromatolites are found sixty meters above the present day shoreline of Walker Lake. Like other lacustrine sedimentary features, stromatolites are laminated and may preserve a geochemical record of their environment of formation. As accretionary growth structures, stromatolites also have the potential to preserve in situ lake conditions that constrain water depth. Preliminary petrographic analysis of Walker Lake stromatolites suggests that they have undergone minimal diagenesis and appear to contain predominantly abiogenic features. Using radiocarbon dating, we found a formation age from ~41,460 to ~35,680 (calibrated YBP, IntCal13) over 14 cm, placing the age of formation within late MIS 3--a time noted for severe climatic shifts including Dansgaard-Oeschger (DO) events. Clumped isotope (Δ₄₇) analysis revealed large temperature fluctuation of the surrounding water column during formation of the stromatolites. Using geochemical data of conservative trace metals we modeled the fluctuation of volume of Walker Lake to be almost 50% over the course of the ~5780 years of stromatolite accretion. The Walker Lake stromatolites formed under dynamic temperature and lake level conditions. Based on both the fine laminations and overall complexity of macrostructure, the Walker Lake stromatolites show more similarities to stromatolites formed in the Proterozoic then to modern day stromatolites. Therefore, the Walker Lake stromatolites offer an interesting and unique analog for studying stromatolite formation, climate dynamics and water chemistry in the Proterozoic.

  13. Lithium and strontium isotopic systematics in playas in Nevada, USA: constraints on the origin of lithium

    NASA Astrophysics Data System (ADS)

    Araoka, Daisuke; Kawahata, Hodaka; Takagi, Tetsuichi; Watanabe, Yasushi; Nishimura, Koshi; Nishio, Yoshiro

    2014-03-01

    Lithium-rich brine in playas is a major raw material for lithium production. Recently, lithium isotopic ratios (δ7Li) have been identified as a tool for investigating water-rock interactions. Thus, to constrain the origin of lithium in playas by the use of its isotopes, we conducted leaching experiments on various lacustrine sediment and evaporite deposit samples collected from playas in Nevada, USA. We determined lithium and strontium isotopic ratios and contents and trace element contents of the leachate, estimated the initial δ7Li values in the water flowing into the playas, and examined the origin of lithium in playas by comparison with δ7Li values of the possible sources. In samples from the playas, δ7Li values show some variation, reflecting differences both in isotopic fractionation during mineral formation and in initial δ7Li value in water flowing into each playa. However, all δ7Li values in this study are much lower than those in river water and groundwater samples from around the world, but they are close to those of volcanic rocks. Considering the temperature dependence of lithium isotopic fractionation between solid and fluid, these results indicate that the lithium concentrated in playas in Nevada was supplied mainly through high-temperature water-rock interaction associated with local hydrothermal activity and not directly by low-temperature weathering of surface materials. This study, which is the first to report lithium isotopic compositions in playas, demonstrates that δ7Li may be a useful tracer for determining the origin of lithium and evaluating its accumulation processes in playas.

  14. Magmatic construction and duration of solidification of Searchlight pluton, Eldorado Mountains, Nevada (USA)

    NASA Astrophysics Data System (ADS)

    Miller, J. S.; Cates, N. L.; Miller, C. F.; Wooden, J. L.; Means, M. A.; Ericksen, S.

    2003-12-01

    The process of chamber construction and the residence time of magma in mid- to upper crustal magma bodies have been illuminated by recent advances in high-resolution geochronology. Most work has so far concentrated on young volcanic systems; few geochrononlogic data have addressed magma chamber longevity and history from studying plutons. Plutons offer an important complementary record of magma processing and solidification, and can therefore reveal much about the internal workings of magma chambers. The Miocene Searchlight pluton (Nevada, USA) is a spectacular example of a very thick magma chamber (10-12 km). Crystal accumulation (mafic quartz monzonite cumulate), coupled with roof-down solidification (upper quartz monzonite) resulted in segregation of evolved felsic melt in the chamber interior (middle granite). Initially horizontal and gradational internal contacts and coplanar magmatic fabrics between all major units, geochemical mass balance, and very limited isotopic variation among major units, suggest that the entire pluton was molten at one time. However, the time inteval over which the chamber solidified was not well known. New TIMS and in situ ion microprobe U/Pb dating of zircon, combined with our earlier and ongoing field and isotopic studies, now appear to document a protracted magma chamber history. TIMS and ion microprobe dating (Stanford/USGS SHRIMP-RG) was done on two samples, and a third sample was dated by ion microprobe only. A multi-grain, multi-fraction discordia lower intercept age of 16.7+/-0.5 Ma (MSWD=22) was obtained by TIMS from the lower mafic quartz monzonite cumulate. Ion probe dating of zircons from the same sample yielded a 206Pb/238U age of 16.9+/-0.2 Ma (MSWD=1.3; N=24) in agreement with the TIMS lower intercept age. A discordia lower intercept age of 15.7+/-0.4 Ma (MSWD=3.7, one concordant point at 15.8 Ma) was obtained from the middle granite unit. Ion probe dating of zircons from the same sample yielded a 206Pb/238U age of 16

  15. Surface and Airborne Arsenic Concentrations in a Recreational Site near Las Vegas, Nevada, USA

    PubMed Central

    Goossens, Dirk

    2015-01-01

    Elevated concentrations of arsenic, up to 7058 μg g-1 in topsoil and bedrock, and more than 0.03 μg m-3 in air on a 2-week basis, were measured in the Nellis Dunes Recreation Area (NDRA), a very popular off-road area near Las Vegas, Nevada, USA. The elevated arsenic concentrations in the topsoil and bedrock are correlated to outcrops of yellow sandstone belonging to the Muddy Creek Formation (≈ 10 to 4 Ma) and to faults crossing the area. Mineralized fluids moved to the surface through the faults and deposited the arsenic. A technique was developed to calculate airborne arsenic concentrations from the arsenic content in the topsoil. The technique was tested by comparing calculated with measured concentrations at 34 locations in the NDRA, for 3 periods of 2 weeks each. We then applied it to calculate airborne arsenic concentrations for more than 500 locations all over the NDRA. The highest airborne arsenic concentrations occur over sand dunes and other zones with a surficial layer of aeolian sand. Ironically these areas show the lowest levels of arsenic in the topsoil. However, they are highly susceptible to wind erosion and emit very large amounts of sand and dust during episodes of strong winds, thereby also emitting much arsenic. Elsewhere in the NDRA, in areas not or only very slightly affected by wind erosion, airborne arsenic levels equal the background level for airborne arsenic in the USA, approximately 0.0004 μg m-3. The results of this study are important because the NDRA is visited by more than 300,000 people annually. PMID:25897667

  16. Blackburn field, Eureka County, Nevada: a cast history

    SciTech Connect

    Scott, C.; Chamberlain, A.K.

    1987-05-01

    The Blackburn field lies along a late Mesozoic thrust-fault trend in east-central Nevada. All Nevada production is located along this thrust system, although traps are mostly Tertiary block-fault related. The thrust places porous Devonian carbonates reservoir rock over organic-rich Mississippian source rock. A Devonian fractured dolomitic limestone provides major production in the Blackburn field. Good intercrystalline shows are also evident. Some production comes from fractured and intercrystalline porosity developed in Mississippian/Devonian arkosic sandstones. Another producing horizon, the Tertiary Indian Wells formation, produces from porous, poorly consolidated tuffaceous sandstones and nonwelded tuffs. Gamma-ray signatures of the Mississippian-Devonian in Blackburn wells can be correlated along strike with surface gamma-ray signatures of measured sections in the Diamond Range. These gamma-ray correlations, in addition to detailed cuttings description and interpretation of well-log data, have prompted correlation of limestone and sandstone units in the lower part of the Blackburn field. Adequate seals are a major concern in eastern Nevada. Mississippian/Devonian shales provide seal for Paleozoic limestone and sandstone reservoirs, while welded tuff traps oil in poorly consolidated tuffaceous sandstones of the Tertiary Indian Wells formation. The apparent simple structure of the Blackburn field is interrupted by a fault on the western edge of the field. This fault can be seen on magnetic lines across the field and in wells adjacent to it. Other minor faults also cut the field. The Blackburn field shows as a positive gravity anomaly, suggesting an intervalley horst block.

  17. Three-Dimensional Geologic Characterization of Geothermal Systems: Astor Pass, Nevada, USA

    SciTech Connect

    Siler, Drew L; Mayhew, Brett; Faulds, James E

    2012-09-30

    Geothermal systems in the Great Basin, USA, are controlled by a variety of fault intersection and fault interaction areas. Understanding the specific geometry of the structures most conducive to geothermal circulation is crucial in order to both mitigate the costs of geothermal exploration (especially drilling) and to identify blind geothermal systems (no surface expression). Astor Pass, Nevada, one such blind geothermal system, lies near the boundary between two distinct structural domains, the Walker Lane and the Basin and Range, and exhibits characteristics of each setting. Both northwest-striking, left-stepping dextral faults of the Walker Lane and kinematically linked northerly striking normal faults associated with the Basin and Range are present at Astor Pass. Previous studies identified a blind geothermal system controlled by the intersection of northwest-striking dextral and north-northwest-striking normal faults. Wells drilled into the southwestern quadrant of the fault intersection yielded 94˚C fluids, with geothermometers suggesting significantly higher maximum temperatures. Additional data, including reprocessed 2D seismic data and petrologic analysis of well cuttings, were integrated with existing and reinterpreted geologic maps and cross-sections to aid construction of a 3D geologic model. This comprehensive 3D integration of multiple data sets allows characterization of the structural setting of the Astor Pass blind geothermal system at a level of detail beyond what independent data interpretation can provide. Our analysis indicates that the blind geothermal system is controlled by two north- to northwest-plunging fault intersections.

  18. Tracing long-term vadose zone processes at the Nevada Test Site, USA

    PubMed Central

    Hunt, James R.; Tompson, Andrew F. B.

    2010-01-01

    The nuclear weapons testing programme of the USA has released radionuclides to the subsurface at the Nevada Test Site. One of these tests has been used to study the hydrological transport of radionuclides for over 25 years in groundwater and the deep unsaturated zone. Ten years after the weapon’s test, a 16 year groundwater pumping experiment was initiated to study the mobility of radionuclides from that test in an alluvial aquifer. The continuously pumped groundwater was released into an unlined ditch where some of the water infiltrated into the 200 m deep vadose zone. The pumped groundwater had well-characterized tritium activities that were utilized to trace water migration in the shallow and deep vadose zones. Within the near-surface vadose zone, tritium levels in the soil water are modelled by a simple one-dimensional, analytical wetting front model. In the case of the near-surface soils at the Cambric Ditch experimental site, water flow and salt accumulation appear to be dominated by rooted vegetation, a mechanism not included within the wetting front model. Simulation results from a two-dimensional vadose groundwater flow model illustrate the dominance of vertical flow in the vadose zone and the recharge of the aquifer with the pumped groundwater. The long-time series of hydrological data provides opportunities to understand contaminant transport processes better in the vadose zone with an appropriate level of modelling. PMID:21785525

  19. Blackburn field, Eureka County, Nevada: a case history

    SciTech Connect

    Scott, C.; Chamberlain, A.K.

    1987-08-01

    The Blackburn field lies along a late Mesozoic thrust-fault trend, in east-central Nevada. All production in Nevada is located along this thrust system, although traps are mostly Tertiary block-fault related. The thrust places porous Devonian carbonate reservoir rock over organic-rich Mississippian source rock. A Devonian fractured dolomitic limestone provides major production in the Blackburn field. Good intercrystalline shows are also evident. Another producing horizon - the Tertiary Indian Wells Formation - produces from porous, poorly consolidated tuffaceous sandstones and non-welded tuffs. Some production comes from fractured and intercrystalline porosity developed in Mississippian/Devonian arkosic sandstones, Gamma-ray signatures of the Mississippian-Devonian in Blackburn wells can be correlated along strike with surface gamma-ray signatures of measured sections in the Diamond Range. The apparently simple structure of the Blackburn field is interrupted by a fault on the western edge of the field. This fault can be seen on magnetic lines across the field, and in wells adjacent to it. Other minor faults also cut the field. The Blackburn field shows as a positive gravity anomaly, suggesting an inter-valley horst block.

  20. Competing risks and the development of adaptive management plans for water resources: Field reconnaissance investigation of risks to fishes and other aquatic biota exposed to endocrine disrupting chemicals (edcs) in lake mead, Nevada USA

    USGS Publications Warehouse

    Linder, G.; Little, E.E.

    2009-01-01

    The analysis and characterization of competing risks for water resources rely on a wide spectrum of tools to evaluate hazards and risks associated with their management. For example, waters of the lower Colorado River stored in reservoirs such as Lake Mead present a wide range of competing risks related to water quantity and water quality. These risks are often interdependent and complicated by competing uses of source waters for sustaining biological resources and for supporting a range of agricultural, municipal, recreational, and industrial uses. USGS is currently conducting a series of interdisciplinary case-studies on water quality of Lake Mead and its source waters. In this case-study we examine selected constituents potentially entering the Lake Mead system, particularly endocrine disrupting chemicals (EDCs). Worldwide, a number of environmental EDCs have been identified that affect reproduction, development, and adaptive behaviors in a wide range of organisms. Many EDCs are minimally affected by current treatment technologies and occur in treated sewage effluents. Several EDCs have been detected in Lake Mead, and several substances have been identified that are of concern because of potential impacts to the aquatic biota, including the sport fishery of Lake Mead and endangered razorback suckers (Xyrauchen texanus) that occur in the Colorado River system. For example, altered biomarkers relevant to reproduction and thyroid function in fishes have been observed and may be predictive of impaired metabolism and development. Few studies, however, have addressed whether such EDC-induced responses observed in the field have an ecologically significant effect on the reproductive success of fishes. To identify potential linkages between EDCs and species of management concern, the risk analysis and characterization in this reconnaissance study focused on effects (and attendant uncertainties) that might be expressed by exposed populations. In addition, risk reduction

  1. Grant Canyon oil field, Nye County, Nevada

    SciTech Connect

    Veal, H.K.; Duey, H.D.; Bortz, L.C.; Foster, N.H.

    1987-08-01

    The Grant Canyon field is located on the east side of Railroad Valley, 8 mi south of the Eagle Springs oil field. The discovery well, 1 Grant Canyon Unit (SW 1/4 NW 1/4, Sec. 21, T7S, R57E), was completed by Northwest Exploration Co. on September 11, 1983, flowing 1816 BOPD from the Devonian Simonson(.) dolomite (4374-4448 ft). Two additional wells have been completed in the field. Cumulative oil production through December 31, 1986, is 5,260,430 bbl of oil. During December 1986, wells 3 and 4 flowed an average of 5189 BOPD. Well 4 averaged 4065 BOPD for a recent monthly total. The discovery well (1) has been shut-in. The productive area is about 240 acres. The trap is a high fault block in the boundary fault zone that separates Railroad Valley from the Grant Range to the east. The Devonian Simonson(.) reservoir is an intensely fractured, vuggy dolomite with some intercrystalline porosity. The top seal is the Tertiary valley fill which unconformably overlies the Simonson(.) dolomite. The oil column is about 400 ft thick and the field apparently has an active water drive, inasmuch as the 1 Unit had to be shut-in because of water production. The oil is black, 26/sup 0/ API gravity, a pour point of 10/sup 0/F and 0.5% sulfur. Estimated ultimate recoverable oil reserves are 13,000,000 bbl of oil. The adjacent Bacon Flat field is a one-well field (SW 1/4 SW 1/4, Sec. 17, T7N, R57E) that was completed by Northwest Exploration Co. on July 5, 1981, for 200 BOPD and 1050 BWPD from the Devonian Guilmette(.) limestone (5316-5333 ft). Cumulative production through December 31, 1986, is 209,649 bbl of oil, and this well averaged 215 BOPD during December 1986.

  2. Holocene dune formation at Ash Meadows National Wildlife Area, Nevada, USA

    USGS Publications Warehouse

    Lancaster, Nicholas; Mahan, Shannon

    2012-01-01

    Small isolated dune fields in the northern Mojave Desert are important centers of biodiversity and archaeological occupation sites. Currently dunes at Ash Meadows, Nevada, are stabilized by vegetation and are experiencing erosion of their upwind margins, indicating a negative sediment budget. New OSL ages from dunes at Ash Meadows indicate continuous eolian accumulation from 1.5 to 0.8 ka, with further accumulation around 0.2 ka. Prior studies (e.g., Mehringer and Warren, 1976) indicate periods of dune accumulation prior to 3.3 ka; 1.9–1 ka; and after 0.9 ka. These periods of eolian accumulation are largely synchronous with those identified elsewhere in the Mojave Desert. The composition of the Ash Meadows dunes indicates their derivation from regional fluvial sources, most likely during periods when axial washes were active as a result of enhanced winter precipitation.

  3. Morphology and genesis of carbonate soils on the Kyle Canyon fan, Nevada, U.S.A.

    USGS Publications Warehouse

    Reheis, M.C.; Sowers, J.M.; Taylor, E.M.; McFadden, L.D.; Harden, J.W.

    1992-01-01

    The physical and chemical properties of soils formed in an arid climate on calcareous alluvium of the Kyle Canyon alluvial fan, southern Nevada, were studied in order to infer the rates and relative importance of various soil-forming processes. These studies included field and microscopic observations and analyses of thin sections, major oxides, extractable iron, and clay minerals. The results are interpreted to reflect five major pedogenic processes: (1) The calcic horizons and calcretes of Kyle Canyon soils form by precipitation of CaCO3, derived from eolian dust and alluvium, as clast coats, matrix cement, and massive layers. (2) The A and uppermost B horizons are essentially dust-derived, for they contain large amounts of detrital material not present in the alluvial parent material, and their major-oxide content is similar to that of modern dust. (3) Clay particles are translocated from A into B horizons. (4) Iron-bearing minerals in the near-surface B horizons are slowly oxidized. (5) Carbonate and aluminosilicate grains are both displaced and replaced by pedogenic CaCO3; the silica released by replacement of aluminosilicates may be locally precipitated as amorphous or opaline silica and (or) incorporated into newly formed palygorskite and sepiolite. Rates of soil development at Kyle Canyon are approximate due to uncertainties in age estimates. Some soil field properties change at rates that are similar to rates for soils formed in rhyolitic parent material near Mercury, Nevada. The rate of accumulation of CaCO3 (3-5 g m-2 yr-1) at Kyle Canyon is an order of magnitude faster than that near Mercury, but is comparable to rates calculated for soils in southern New Mexico and Utah. ?? 1992.

  4. Multiple Magmatic Events Over 40 Ma in the Fish Creek Mountains, North-central Great Basin, Nevada, USA

    NASA Astrophysics Data System (ADS)

    Cousens, B.; Henry, C. D.; Stevens, C.; Varve, S.

    2011-12-01

    basalt to rhyolite and rare trachyte. These rocks are linked to the Columbia River flood basalt event. Along the northwestern margin of the Fish Creek Mountains and in the center of the caldera complex are exposed late Pliocene to Quaternary lava flows and cinder cones of the Buffalo Valley volcanic field. The Buffalo Valley volcanic rocks are alkalic basalts that are locally vesicular, with rare plagioclase and olivine phenocrysts as well as plagioclase megacrysts up to several centimeters in size. Trace element and isotopic characteristics are similar to those of the Pliocene-Pleistocene Lunar Craters volcanic field in central Nevada. Ongoing geochemical analyses will outline variations in mantle sources and post-melting processes in the multiple volcanic systems of north-central Nevada.

  5. Ground motion measurement in the lake Mead (Nevada, USA) area by temporal analysis of multiple interferograms.

    NASA Astrophysics Data System (ADS)

    Cavalie, O.; Doin, M.; Lasserre, C.; Briole, P.

    2004-12-01

    SAR interferometry has proven to be a reliable method for detecting small displacements due to ground subsidence. In this study, we propose to measure ground motion around the lake Mead (Nevada, USA) using InSAR. This artificial lake has been filled with water in 1935. An earlier studie, based on levelling measurements, has shown that the lake impoundement has induced a subsidence of 17 centimeters (Kaufmann et al., 2000). This relaxation process is analogous to the postglacial rebound, but at a smaller scale. To quantify the deformation and constrain the crust and mantle rheological parameters in the lake area, we have analysed multiple interferograms (245) based on 45 ERS images between 1992 and 2001. The interferometric phase contains information about deformation occurring between two satellite passes, as well as satellite orbits errors, topographic, and atmospheric artefacts. The topographic signature is removed using the 3-arc seconds SRTM data. To correct for orbital errors, we remove a best fitting linear ramp. Atmospheric artefact, in our interferograms, are mainly due to the variation of water vapor vertical stratification between the two passes. This results in a interferometric phase correlation with altitude which we remove by minimization. These corrections are then refined through an iterative procedure and validated using data from global atmospheric models. Corrected interferograms are then inverted to solve for deformation using a method based on the large spatial coverage of coherent pixels, allowing to strengthen the signal to noise ratio (Schmidt and Burgmann, 2003). This data inversion provides a time series of the expected deformation in the lake Mead area. The analysis of the deformation evolution during the period covered by the ERS satellites (1992-2001) shows a correlation between the vertical motion and the water level changes. So, we observe a subsidence of up to 1.5 cm between 1996 and 1998, followed by an uplift due to the drop of the

  6. Ground Motion Measurement in the Lake Mead Area (Nevada, USA), by Temporal Analysis of Multiple Interferograms.

    NASA Astrophysics Data System (ADS)

    Doin, M.; Cavalie, O.; Lasserre, C.; Briole, P.

    2005-12-01

    SAR interferometry has proven to be a reliable method for detecting small displacements due to ground subsidence. In this study, we measure ground motion around the lake Mead (Nevada, USA) using InSAR. This artificial lake has been filled with water in 1935. An earlier study, based on leveling measurements, has shown that the load associated with lake impoundment has induced a delayed subsidence of 17 centimeters. This relaxation process has been argued to be due to viscous displacement in the uppermost mantle, analogous to the postglacial rebound, but at a smaller spatial scale and with a much lower viscous relaxation scale. To quantify the deformation and thus constrain the crust and mantle rheological parameters in the lake area, we analyse multiple interferograms (~280) based on 43 ERS images acquired between 1992 and 2001 and on 12 Envisat images acquired between 2003 and 2005. ERS-Envisat interferograms are performed to merge the two data sets in one time series. With baselines smaller than 300 m, all interferograms have a very good coherence due to the desert region. Most interferograms show strong atmospheric artefacts that are partly due to the variation of water vapor vertical stratification between two satellite passes. Tropospheric delay is computed for each interferogram using the correlation between phase and elevation far from the lake area. It is then inverted for each date of SAR images before interferograms correction. These corrections are validated using data from global atmospheric models (ERA40). Corrected interferograms are then inverted to solve for time series of the expected deformation in the lake Mead area . The linear inversion treats each pixel independently from its neighbours and use the data redundancy to reduce errors such as local decorrelations. Smoothing constraints added in the inversion efficiently eliminate local atmospheric artefacts. We obtain a time series of the expected deformation in the lake Mead area. The analysis of

  7. Climate and hillslope degradation vary in concert; 85 ka to present, eastern Sierra Nevada, CA, USA

    NASA Astrophysics Data System (ADS)

    Madoff, Risa D.; Putkonen, Jaakko

    2016-08-01

    Degradation in the landscape results when the interactions of climate, substrate, and biota dislodge and transport sediment that is mantling landforms. Rates of degradation through time control landform stability and resiliency. Therefore, records of past degradation rates can be used to inform us on how a given landscape responded to significant changes in past climates. For example, climate has varied at many temporal scales, and some of the largest recent shifts enabled the glacial advances and retreats in time scales of 20-100 ka. Therefore, it is reasonable to expect that the rate of landscape degradation has also varied at similar time scales. However, the general hillslope diffusion equation that is commonly used to model cross-profiles of hillslopes on time scales of thousands to tens of thousands of years typically relies on a constant and optimized rate parameter to generate a model cross-profile approximating the current observed landform cross-profile. Using a time-varying diffusivity parameter, we generated three separate degradation scenarios for the Mono Basin moraine in the eastern Sierra Nevada, CA, USA, in order to assess the potential impact of varying past climates on sediment transport. We used published paleoclimate records in the study area and modern rates of surface degradation from climates that correspond broadly to those paleoclimates. The results indicate that, in this case, the climate driven and, therefore, time-dependent degradation model produces a good fit between the modeled and observed landform profiles. Results showed that, when the surface elevations of the reference case (constant optimized diffusivity) were compared through time to the surface elevations of the time-dependent model, the differences were relatively small. The largest deviation was found to occur during the Last Glacial Maximum (LGM). We found that for investigations into the geological effects of climate change in glacial and polar regions, the use of time

  8. Polychlorinated biphenyls and toxaphene in Pacific tree frog tadpoles (Hyla regilla) from the California Sierra Nevada, USA.

    PubMed

    Angermann, Jeffrey E; Fellers, Gary M; Matsumura, Fumio

    2002-10-01

    Pacific tree frog (Hyla regilla) tadpoles were collected throughout the Sierra Nevada mountain range, California, USA, in 1996 and 1997 and analyzed for the presence of polychlorinated biphenyls (PCBs) and toxaphene. Whole-tadpole sigma PCB levels ranged from 244 ng/g (wet wt) at lower elevations on the western slope to 1.6 ng/g high on the eastern slope, whereas sigma toxaphene levels ranged from 15.6 to 1.5 ng/g. Linear regression of PCB and toxaphene residue levels versus elevation indicated a significant relationship, with an r2 value of 0.33 for PCB and 0.45 for toxaphene indicating a significant elevation effect on PCB and toxaphene bioaccumulation in Sierra Nevada H. regilla. Tadpole samples from sites in east-facing versus west-facing drainage basins showed significant differences in PCB and toxaphene residue levels, suggesting the possibility of a rain-shadow effect in the long-range atmospheric transport of these contaminants to the Sierra Nevada Mountains. PMID:12371500

  9. Simulation of gas phase transport of carbon-14 at Yucca Mountain, Nevada, USA

    USGS Publications Warehouse

    Lu, N.; Ross, B.

    1994-01-01

    We have simulated gas phase transport of Carbon-14 at Yucca Mountain, Nevada. Three models were established to calculate travel time of Carbon-14 from the potential repository to the mountain surface: a geochemical model for retardation factors, a coupled gas-flow and heat transfer model for temperature and gas flow fields, and a particle tracker for travel time calculation. The simulations used three parallel, east-west cross-sections that were taken from the Sandia National Laboratories Interactive Graphics Information System (IGIS). Assuming that the repository is filled with 30- year-old waste at an initial areal power density of 57 kw/acre, we found that repository temperatures remain above 60??C for more than 10,000 years. For a tuff permeability of 10-7 cm2, Carbon-14 travel times to the surface are mostly less than 1,000 years, for particles starting at any time within the first 10,000 years. If the tuff permeability is 10-8 cm2, however, Carbon- 14 travel times to the surface range from 3,000 to 12,000 years, for particle starting within the 10,000 years.

  10. Paleomagnetism and Anisotropy of Magnetic Susceptibility study of the Miocene Jack Springs Tuff (Nevada, USA)

    NASA Astrophysics Data System (ADS)

    Shields, S.; Petronis, M. S.; Pluhar, C. J.; Gordon, L.

    2014-12-01

    The mid-Miocene Jack Springs Tuff (JST) outcrops across the western Mina Deflection accommodation zone, west-central Nevada and into eastern California. Previously, the source location for the JST was unknown, yet recent studies northwest of Mono Lake, CA have identified a relatively un-rotated structural block in which to reference the paleomagnetic data. Although new studies have indicated that this block may be rotated up to 13º, we argue that the probable source area is located near the Bodie Hills, CA. At this site, the paleomagnetic reference direction is D = 353°, I = 43°, α95 = 7.7° (Carlson et al, 2013). Based on these data, the JST can be used to measure absolute vertical-axis rotation as well as enable reconstruction of the paleo-topography using the corrected anisotropy of magnetic susceptibility (AMS) data. A total of 19 sites were sampled to constrain Cenozoic to recent vertical axis rotation within the region and AMS experiments were conducted to determine the flow direction of the JST. Curie point estimates indicate that the JST ranges in titanium concentration from 0.042 to 1.10, indicating a low to moderate titanomagnetite phase (Akimoto, 1962). Demagnetization experiments reveal mean destructive fields of the NRM ranging between 15mT and 40mT suggesting that both multi-domain to pseudo-single domain grains are the dominant ferromagnetic phases that carry the remanence and AMS fabric. Preliminary paleomagnetic data yield stable single component demagnetization behavior for most sites that, after structural correction, indicate clockwise vertical axis rotation ranging from +20°± 10° to +60°± 11° between multiple fault blocks. The uncorrected AMS data yield oblate magnetic fabrics that can be used to infer the transport direction, source region, and paleovalley geometry of the JST. These data are tentatively interpreted to indicate west to east transport of the JST across the Mono Basin region into the Mina Deflection that was erupted and

  11. Water's arrival to prompt drilling in Nevada's Grant Canyon field

    SciTech Connect

    Petzet, G.A.

    1991-08-12

    This paper reports that water has sharply reduced the oil flow in Nevada at what for several years has been the highest producing rate well in the Lower 48 states, and a well will be drilled in an attempt to reestablish higher oil flow rates. Apache Corp., which operates three well Grant Canyon field in Railroad Valley 65 miles southwest of Ely, staked two close in locations but plans to drill only one well. Estimates of the areal extent of the structure are from less than 200 acres to about 240 acres, making the new well a risky proposition. Grant Canyon field has been important ever since its discovery in 1983. Four authors involved in the field's discovery, in an exploration paper published in 1988, indicated that the field's ultimate reserves might be about 13 million bbl of black, 26{degrees} gravity crude oil with 0.5% sulfur and a pour point of 10{degrees} F. The producing zone is intensely fractured Devonian Guilmette dolomite at about 4,400 ft. Through February 1991 it had produced more than 8.7 million bbl through the 3 Grant Canyon and 5.1 million bbl through the 4 Grant Canyon. One well Bacon Flat field, a Guilmette reservoir in a separate, structurally lower fault block, is shut-in. It was discovered in 1981.

  12. Digital field trip to the Central Nevada Thrust Belt

    SciTech Connect

    Chamberlain, A.K.; Hook, S.C.; Frost, K.R.

    1996-12-31

    Hydrocarbon exploration in the Central Nevada Thrust Belt is still in its infancy. However, this thrust belt contains all the elements necessary for hydrocarbon accumulations: thick, organically-rich shales; reefs, regional unconformities, karst surfaces, porous sandstones, and extensive and pervasive fractures; anticlines tens of miles long by miles wide; thrust faults that juxtapose potential source and reservoir rocks; and oil seeps. Along a fairway from Las Vegas to Elko, for example, thick Mississippian shales contain 4-6% total organic carbon and are oil-prone and thermally mature. This presentation from a laptop computer and LCD projector is a multimedia version of our October 12-14, 1995 field trip to document the hydrocarbon potential of the thrust belt in Clark, Lincoln, and Nye Counties. Outcrop images were recorded by a digital camera that has a resolution equivalent to a 14 inch computer screen; these images were then downloaded to the computer. All of the images were processed digitally on location to enhance picture quality and color contrast. Many were annotated on location with our observations, measurements, and interpretations. These field annotations are supplemented in this presentation by laboratory analyses. The presentation includes full-color, annotated outcrop images, sounds, and animations. The results show the viability of the new, inexpensive digital cameras to geologic field work in which a multimedia report, ready for presentation to management, can be generated in the field.

  13. Carbon isotope chemostratigraphy and precise dating of middle Frasnian (lower Upper Devonian) Alamo Breccia, Nevada, USA

    USGS Publications Warehouse

    Morrow, J.R.; Sandberg, C.A.; Malkowski, K.; Joachimski, M.M.

    2009-01-01

    At Hancock Summit West, Nevada, western USA, uppermost Givetian (upper Middle Devonian) and lower and middle Frasnian (lower Upper Devonian) rocks of the lower Guilmette Formation include, in stratigraphic sequence, carbonate-platform facies of the conodont falsiovalis, transitans, and punctata Zones; the type Alamo Breccia Member of the middle punctata Zone; and slope facies of the punctata and hassi Zones. The catastrophically deposited Alamo Breccia and related phenomena record the ~ 382??Ma Alamo event, produced by a km-scale bolide impact into a marine setting seaward of an extensive carbonate platform fringing western North America. Re-evaluation of conodonts from the lower Guilmette Formation and Alamo Breccia Member, together with regional sedimentologic and conodont biofacies comparisons, now firmly locates the onset of the Johnson et al. (1985) transgressive-regressive (T-R) cycle IIc, which occurred after the start of the punctata Zone, within a parautochthonous megablock low in the Alamo Breccia. Whole-rock carbon isotope analyses through the lower Guilmette Formation and Alamo Breccia Member reveal two positive ??13Ccarb excursions: (1) a small, 3??? excursion, which is possibly correlative with the falsiovalis Event previously identified from sections in Western Europe and Australia, occurs below the breccia in the Upper falsiovalis Zone to early part of the transitans Zone; and (2) a large, multi-part excursion, dominated by a 6??? positive shift, begins above the start of the punctata Zone and onset of T-R cycle IIc and continues above the Alamo Breccia, ending near the punctata- hassi zonal boundary. This large excursion correlates with the punctata Event, a major positive ??13C excursion previously recognized in eastern Laurussia and northern Gondwana. Consistent with previous studies, at Hancock Summit West the punctata Event is apparently not associated with any regional extinctions or ecosystem reorganizations. In the study area, onset of the

  14. Using restored cross sections to evaluate magma emplacement, White Horse Mountains, Eastern Nevada, U.S.A.

    NASA Astrophysics Data System (ADS)

    Marko, Wayne T.; Yoshinobu, Aaron S.

    2011-03-01

    New field observations and cross section restoration from the Jurassic White Horse pluton-host rock system, Goshute Range, eastern Nevada, USA, indicate a sequential variation of host rock rheology attending magma emplacement. The pluton intruded weakly to nondeformed Devonian-Mississippian limestone, argillite and quartzite at shallow crustal levels (ca. 7 km). The contact aureole is well exposed along the southern, eastern and northern margin of the intrusive body and is less than 1 km wide. Rocks outside of the aureole are sub-horizontal and do not contain a penetrative fabric or are gently folded (interlimb angles > 120°) about sub-vertical axial planes. Within the contact aureole, continuous and discontinuous spaced, axial planar foliations and harmonic to disharmonic, tight to isoclinal folds wrap around the eastern margin of the pluton. Folds verge toward and away from the pluton and rim anticlines, synclines, and monoclines with wavelength in excess of 250 m are preserved along the pluton margin. The spatial proximity of these ductile structures to the pluton and the apparent increase in intensity of structure development approaching the pluton is compatible with contraction within the aureole attending pluton emplacement. However, all of the above structures are truncated by the intrusive contact at various scales. Granodioritic dikes ranging in thickness from 1 m up to ˜ 10 m emanate from the intrusion and cut host rock structure at high angles and turn to propagate towards one another, parallel to the pluton margin and host rock anisotropy. Such features are interpreted to reflect the last stages of diking and brittle deformation that modified the pluton contact after emplacement-related folding of the carbonate rocks, but before final solidification of the pluton. Eight serial geologic cross sections were constructed and evaluated to place geometric constraints on the shape and growth of the White Horse intrusion. Based on line-length restoration of

  15. ORGANIC POLLUTANT DEPOSITION TO THE SIERRA NEVADA (CALIFORNIA, USA) SNOWPACK AND ASSOCIATED LAKE AND STREAM ECOSYSTEM

    EPA Science Inventory

    High elevation ecosystems in the western USA and Canada are receiving deposition of persistent organic pollutants (POPs) that presumably originate in the USA as well as outside its borders. In April 1992 we obtained paired snowpack samples from each of two watersheds located in t...

  16. Spectral anomaly over Railroad Valley oil field, Nevada

    SciTech Connect

    Feldman, S.C. ); Honey, F.R. ); Ballew, G.I. )

    1990-05-01

    Oil was first discovered in Railroad Valley, south-central Nevada in 1954. Since that time, over 195 wells have been drilled and six oil fields have been found: Bacon Flat, Currant, Trap Spring, Eagle Springs, Grant Canyon and Kate Spring. Two wells in the Grant Canyon field had flows between 2,480 and 4,108 bbl/day in 1987 and may be the most prolific wells onshore in the continental US. Production in the Railroad Valley fields is from Oligocene volcanic and sedimentary rocks and Paleozoic carbonate formations. Traps are structural or structural and stratigraphic, and reservoir seals are indurated or clayey valley fill, weathered tuff, and shales in Tertiary sediments. Reservoir temperatures range between 95 and 309{degree}F. Previous workers have identified a statistically significant positive correlation between hydrocarbon microseepage and vegetation anomalies over the Railroad Valley oil fields with Landsat Multispectral Scanner (MSS) imagery. Several flight lines of high spectral and spatial resolution imagery in the visible, near infrared, shortwave infrared, and thermal infrared regions of the spectrum were flown with Geoscan's MkII Airborne Multispectral Scanner to determine if there was a mineralogical signature associated with the oil fields. The 24-channel scanner collected 8-m resolution picture elements over a swath of about 8 km. Image processing strategies were developed from a knowledge of the spectral curves of minerals in the laboratory. The results from processing Geoscans MkII data were also compared with those obtained from processing Landsat Thematic Mapper (TM) imagery over the same area. An 8 {times} 6 km carbonate and iron anomaly was detected on the processed MkII imagery over the Trap Spring oil field. This anomaly may be related to hot spring activity, reported by other workers, that has formed extensive calcite deposits along faults.

  17. The relative contributions of summer and cool-season precipitation to groundwater recharge, Spring Mountains, Nevada, USA

    USGS Publications Warehouse

    Winograd, I.J.; Riggs, A.C.; Coplen, T.B.

    1998-01-01

    A comparison of the stable-isotope signatures of spring waters, snow, snowmelt, summer (July thru September) rain, and cool season (October thru June) rain indicates that the high-intensity, short-duration summer convective storms, which contribute approximately a third of the annual precipitation to the Spring Mountains, provide only a small fraction (perhaps 10%) of the recharge to this major upland in southern Nevada, USA. Late spring snowmelt is the principal means of recharging the fractured Paleozoicage carbonate rocks comprising the central and highest portion of the Spring Mountains. Daily discharge measurements at Peak Spring Canyon Creek during the period 1978-94 show that snowpacks were greatly enhanced during E1 Nin??o events.

  18. Characterizing the extreme 2015 snowpack deficit in the Sierra Nevada (USA) and the implications for drought recovery

    NASA Astrophysics Data System (ADS)

    Margulis, Steven A.; Cortés, Gonzalo; Girotto, Manuela; Huning, Laurie S.; Li, Dongyue; Durand, Michael

    2016-06-01

    Analysis of the Sierra Nevada (USA) snowpack using a new spatially distributed snow reanalysis data set, in combination with longer term in situ data, indicates that water year 2015 was a truly extreme (dry) year. The range-wide peak snow volume was characterized by a return period of over 600 years (95% confidence interval between 100 and 4400 years) having a strong elevational gradient with a return period at lower elevations over an order of magnitude larger than those at higher elevations. The 2015 conditions, occurring on top of three previous drought years, led to an accumulated (multiyear) snowpack deficit of ~ -22 km3, the highest over the 65 years analyzed. Early estimates based on 1 April snow course data indicate that the snowpack drought deficit will not be overcome in 2016, despite historically strong El Niño conditions. Results based on a probabilistic Monte Carlo simulation show that recovery from the snowpack drought will likely take about 4 years.

  19. Recognition of Macluritella ( Gastropoda) from the Upper Cambrian of Missouri and Nevada ( USA).

    USGS Publications Warehouse

    Yochelson, E.L.; Stinchcomb, B.L.

    1987-01-01

    Open-coiled euomphalacean gastropods have been identified for the first time in the Upper Cambrian Eminence Dolomite of Missouri. These gastropods have a triangular whorl profile and are conspecific with Hyolithes walcotti described from the Upper Cambrian of Nevada. That species is questionably reassigned to the gastropod genus Macluritella, hitherto known only from the Lower Ordovician of Colorado. -Authors Ordovician Colorado

  20. Mercury in Tadpoles Collected from Remote Alpine Sites in the Southern Sierra Nevada Mountains, California, USA

    EPA Science Inventory

    Amphibians in alpine wetlands of the Sierra Nevada mountains comprise key components of an aquatic-terrestrial food chain, and mercury contamination is a concern because concentrations in fish from this regin exceed thresholds of risk to piscivorous wildlife. Total mercury conc...

  1. Bottom Sediment as a Source of Organic Contaminants in Lake Mead, Nevada, USA

    EPA Science Inventory

    Treated wastewater effluent from Las Vegas, Nevada and surrounding communities’ flow through Las Vegas Wash (LVW) into the Lake Mead National Recreational Area at Las Vegas Bay (LVB). Lake sediment is a likely sink for many hydrophobic synthetic organic compounds (SOCs); however,...

  2. Structural Controls of the Tuscarora Geothermal Field, Elko County, Nevada

    NASA Astrophysics Data System (ADS)

    Dering, Gregory M.

    Detailed geologic mapping, structural analysis, and well data have been integrated to elucidate the stratigraphic framework and structural setting of the Tuscarora geothermal area. Tuscarora is an amagmatic geothermal system that lies in the northern part of the Basin and Range province, ˜15 km southeast of the Snake River Plain and ˜90 km northwest of Elko, Nevada. The Tuscarora area is dominated by late Eocene to middle Miocene volcanic and sedimentary rocks, all overlying Paleozoic metasedimentary rocks. A geothermal power plant was constructed in 2011 and currently produces 18 MWe from an ˜170°C reservoir in metasedimentary rocks at a depth of 1740 m. Analysis of drill core reveals that the subsurface geology is dominated to depths of ˜700-1000 m by intracaldera deposits of the Eocene Big Cottonwood Canyon caldera, including blocks of basement-derived megabreccia. Furthermore, the Tertiary-Paleozoic nonconformity within the geothermal field has been recognized as the margin of this Eocene caldera. Structural relations combined with geochronologic data from previous studies indicate that Tuscarora has undergone extension since the late Eocene, with significant extension in the late Miocene-Pliocene to early Pleistocene. Kinematic analysis of fault slip data reveal an east-west-trending least principal paleostress direction, which probably reflects an earlier episode of Miocene extension. Two distinct structural settings at different scales appear to control the geothermal field. The regional structural setting is a 10-km wide complexly faulted left step or relay ramp in the west-dipping range-bounding Independence-Bull Run Mountains normal fault system. Geothermal activity occurs within the step-over where sets of east- and west-dipping normal faults overlap in a northerly trending accommodation zone. The distribution of hot wells and hydrothermal surface features, including boiling springs, fumaroles, and siliceous sinter, indicate that the geothermal

  3. An Investigation of Summertime Inland Water Body Temperatures in California and Nevada (USA): Recent Trends and Future Projections

    NASA Astrophysics Data System (ADS)

    Healey, Nathan; Hook, Simon; Piccolroaz, Sebastiano; Toffolon, Marco; Radocinski, Robert

    2016-04-01

    Inland water body temperature has been identified as an ideal indicator of potential climate change. Understanding inland water body temperature trends is important for forecasting impacts to limnological, biological, and hydrological resources. Many inland water bodies are situated in remote locations with incomplete data records of in-situ monitoring or lack in-situ observations altogether. Thus, the utilization of satellite data is essential for understanding the behavior of global inland water body temperatures. Part of this research provides an analysis of summertime (July-September) temperature trends in the largest California/Nevada (USA) inland water bodies between 1991 and 2015. We examine satellite temperature retrievals from ATSR (ATSR-1, ATSR-2, AATSR), MODIS (Terra and Aqua), and VIIRS sensors. Our findings indicate that inland water body temperatures in the western United States were rapidly warming between 1991 and 2009, but since then trends have been decreasing. This research also includes implementation of a model called air2water to predict future inland water body surface temperature through the sole input of air temperature. Using projections from CMIP5-CCSM4 output, our model indicates that Lake Tahoe (USA) is expected to experience an increase of roughly 3 °C by 2100.

  4. Holocene tephra stratigraphy in four lakes in southeastern Oregon and northwestern Nevada, USA

    NASA Astrophysics Data System (ADS)

    Foit, Franklin F.; Mehringer, Peter J.

    2016-03-01

    To better understand the regional tephra stratigraphy and chronology of northern Nevada and southern Oregon, tephras in archived cores, taken as part of the Steens Mountain Prehistory Project from four lakes, Diamond Pond, Fish and Wildhorse lakes in southeastern Oregon and Blue Lake in northwestern Nevada, were reexamined using more advanced electron microprobe analytical technology. The best preserved and most complete core from Fish Lake along with Wildhorse Lake hosted two tephras from Mt. Mazama (Llao Rock and the Climactic Mazama), a mid-Holocene basaltic tephra from Diamond Craters, Oregon, two Medicine Lake tephras and an unexpected late Holocene Chaos Crags (Mt. Lassen volcanic center) tephra which was also found in the other lakes. Blue Lake was the only lake that hosted a Devils Hill tephra from the Three Sisters volcano in west central Oregon. Another tephra from the Three Sisters Volcano previously reported in sediments of Twin Lakes in NE Oregon, has now been confirmed as Rock Mesa tephra. The Chaos Crags, Devils Hill and Rock Mesa tephras are important late Holocene stratigraphic markers for central and eastern Oregon and northwestern Nevada.

  5. A Holocene pollen record of persistent droughts from Pyramid Lake, Nevada, USA

    USGS Publications Warehouse

    Mensing, S.A.; Benson, L.V.; Kashgarian, Michaele; Lund, S.

    2004-01-01

    Pollen and algae microfossils preserved in sediments from Pyramid Lake, Nevada, provide evidence for periods of persistent drought during the Holocene age. We analyzed one hundred nineteen 1-cm-thick samples for pollen and algae from a set of cores that span the past 7630 years. The early middle Holocene, 7600 to 6300 cal yr B.P., was found to be the driest period, although it included one short but intense wet phase. We suggest that Lake Tahoe was below its rim for most of this period, greatly reducing the volume and depth of Pyramid Lake. Middle Holocene aridity eased between 5000 and 3500 cal yr B.P. and climate became variable with distinct wet and dry phases. Lake Tahoe probably spilled intermittently during this time. No core was recovered that represented the period between 3500 and 2600 cal yr B.P. The past 2500 years appear to have had recurrent persistent droughts. The timing and magnitude of droughts identified in the pollen record compares favorably with previously published ??18O data from Pyramid Lake. The timing of these droughts also agrees with the ages of submerged rooted stumps in the Eastern Sierra Nevada and woodrat midden data from central Nevada. Prolonged drought episodes appear to correspond with the timing of ice drift minima (solar maxima) identified from North Atlantic marine sediments, suggesting that changes in solar irradiance may be a possible mechanism influencing century-scale drought in the western Great Basin. ?? 2004 University of Washington. All rights reserved.

  6. Potential environmental effects of pack stock on meadow ecosystems of the Sierra Nevada, USA

    USGS Publications Warehouse

    Ostoja, Steven M.; Brooks, Matthew L.; Moore, Peggy E.; Berlow, Eric L.; Robert Blank; Roche, Jim; Chase, Jennifer T.; Sylvia Haultain

    2014-01-01

    Pack and saddle stock, including, but not limited to domesticated horses, mules, and burros, are used to support commercial, private and administrative activities in the Sierra Nevada. The use of pack stock has become a contentious and litigious issue for land management agencies in the region inter alia due to concerns over effects on the environment. The potential environmental effects of pack stock on Sierra Nevada meadow ecosystems are reviewed and it is concluded that the use of pack stock has the potential to influence the following: (1) water nutrient dynamics, sedimentation, temperature, and microbial pathogen content; (2) soil chemistry, nutrient cycling, soil compaction and hydrology; (3) plant individuals, populations and community dynamics, non-native invasive species, and encroachment of woody species; and (4) wildlife individuals, populations and communities. It is considered from currently available information that management objectives of pack stock should include the following: minimise bare ground, maximise plant cover, maintain species composition of native plants, minimise trampling, especially on wet soils and stream banks, and minimise direct urination and defecation by pack stock into water. However, incomplete documentation of patterns of pack stock use and limited past research limits current understanding of the effects of pack stock, especially their effects on water, soils and wildlife. To improve management of pack stock in this region, research is needed on linking measurable monitoring variables (e.g. plant cover) with environmental relevancy (e.g. soil erosion processes, wildlife habitat use), and identifying specific environmental thresholds of degradation along gradients of pack stock use in Sierra Nevada meadows.

  7. Spatial Patterns of Atmospherically Deposited Organic Contaminants at High-Elevation in the Southern Sierra Nevada Mountains, California, USA

    PubMed Central

    Bradford, David F.; Stanley, Kerri; McConnell, Laura L.; Tallent-Halsell, Nita G.; Nash, Maliha S.; Simonich, Staci M.

    2011-01-01

    Atmospherically deposited contaminants in the Sierra Nevada mountains of California, USA have been implicated as adversely affecting amphibians and fish, yet little is known about the distributions of contaminants within the mountains, particularly at high elevation. We tested the hypothesis that contaminant concentrations in a high-elevation portion of the Sierra Nevada decrease with distance from the adjacent San Joaquin Valley. We sampled air, sediment, and tadpoles twice at 28 water bodies in 14 dispersed areas in Sequoia and Kings Canyon National Parks (2785 – 3375 m elevation; 43 – 82 km from Valley edge). We detected up to 15 chemicals frequently in sediment and tadpoles, including current- and historic-use pesticides, polychlorinated biphenyls, and polycyclic aromatic hydrocarbons. Only β-endosulfan was found frequently in air. Concentrations of all chemicals detected were very low, averaging in the parts-per-billion range or less in sediment and tadpoles, and on the order of 10 pg/m3 for β-endosulfan in air. Principal components analysis indicated that chemical compositions were generally similar among sites, suggesting that chemical transport patterns were likewise similar among sites. In contrast, transport processes did not appear to strongly influence concentration differences among sites because variation in concentrations among nearby sites was high relative to sites far from each other. Moreover, a general relationship for concentrations as a function of distance from the valley was not evident across chemical, medium, and time. Nevertheless, concentrations for some chemical/medium/time combinations showed significant negative relationships with metrics for distance from the Valley. However, the magnitude of these distance effects among high-elevation sites was small relative to differences found in other studies between the valley edge and the nearest high-elevation sites. PMID:20821540

  8. Radionuclides in bats using a contaminated pond on the Nevada National Security Site, USA

    DOE PAGESBeta

    Warren, Ronald W.; Hall, Derek B.; Greger, Paul D.

    2014-01-03

    In this study, perched groundwater percolating through radionuclide contamination in the E Tunnel Complex on the Nevada National Security Site, formerly the Nevada Test Site, emerges and is stored in a series of ponds making it available to wildlife, including bats. Since many bat species using the ponds are considered sensitive or protected/regulated and little information is available on dose to bats from radioactive water sources, bats were sampled to determine if the dose they were receiving exceeded the United States Department of Energy dose limit of 1.0E-3 Gy/day. Radionuclide concentrations in water, sediment, and flying insects were also measuredmore » as input parameters to the dose rate model and to examine trophic level relationships. The RESRAD-Biota model was used to calculate dose rates to bats using different screening levels. Efficacy of RESRAD-Biota and suggested improvements are discussed. Finally, dose to bats foraging and drinking at these ponds is well below the dose limit set to protect terrestrial biota populations.« less

  9. Radionuclides in bats using a contaminated pond on the Nevada National Security Site, USA

    SciTech Connect

    Warren, Ronald W.; Hall, Derek B.; Greger, Paul D.

    2014-01-03

    In this study, perched groundwater percolating through radionuclide contamination in the E Tunnel Complex on the Nevada National Security Site, formerly the Nevada Test Site, emerges and is stored in a series of ponds making it available to wildlife, including bats. Since many bat species using the ponds are considered sensitive or protected/regulated and little information is available on dose to bats from radioactive water sources, bats were sampled to determine if the dose they were receiving exceeded the United States Department of Energy dose limit of 1.0E-3 Gy/day. Radionuclide concentrations in water, sediment, and flying insects were also measured as input parameters to the dose rate model and to examine trophic level relationships. The RESRAD-Biota model was used to calculate dose rates to bats using different screening levels. Efficacy of RESRAD-Biota and suggested improvements are discussed. Finally, dose to bats foraging and drinking at these ponds is well below the dose limit set to protect terrestrial biota populations.

  10. Mercury in tadpoles collected from remote alpine sites in the southern Sierra Nevada mountains, California, USA.

    PubMed

    Bradford, David F; Kramer, Joanna L; Gerstenberger, Shawn L; Tallent-Halsell, Nita G; Nash, Maliha S

    2012-01-01

    Amphibians in alpine wetlands of the Sierra Nevada mountains comprise key components of an aquatic-terrestrial food chain, and mercury contamination is a concern because concentrations in fish from this region exceed thresholds of risk to piscivorous wildlife. Total mercury concentrations were measured in whole tadpoles of the Sierra chorus frog, Pseudacris sierra, two times at 27 sites from high elevations (2786-3375 m) in the southern Sierra Nevada. Median mercury concentrations were 14 ng/g wet weight (154 ng/g dry weight), which were generally low in comparison to tadpoles of 15 other species/location combinations from studies that represented both highly contaminated and minimally contaminated sites. Mercury concentrations in P. sierra were below concentrations known to be harmful in premetamorphic tadpoles of another species and below threshold concentrations for risk to predaceous wildlife. Concentrations in tadpoles were also lower than those observed in predaceous fish in the study region presumably because tadpoles in the present study were much younger (1-2 months) than fish in the other study (3-10 years), and tadpoles represent a lower trophic level than these fish. Mercury concentrations were not related to distance from the adjacent San Joaquin Valley, a source of agricultural and industrial pollutants. PMID:21505867

  11. Organosulfates and Carboxylic Acids in Secondary Organic Aerosols in Coniferous Forests in Rocky Mountains (USA), Sierra Nevada Mountains (USA) and Northern Europe (Finland and Denmark)

    NASA Astrophysics Data System (ADS)

    Glasius, M.; Hansen, A. M. K.; Kristensen, K.; Kristensen, T. B.; Mccubbin, I. B.; Hallar, A. G.; Petäjä, T.; Surratt, J. D.; Worton, D. R.; Bilde, M.; Kulmala, M. T.; Goldstein, A. H.

    2014-12-01

    Levels and chemical composition of secondary organic aerosols affect their climate effects and properties. Organosulfates (OS) are formed through heterogeneous reactions involving oxidized sulfur compounds, primarily originating from anthropogenic sources. Availability of authentic standards have until now been an obstacle to quantitative investigations of OS in atmospheric aerosols. We have developed a new, facile method for synthesis and purification of OS standards. Here we have used 7 standards to quantify OS and nitrooxy organosulfates (NOS) observed in aerosols collected at four sites in coniferous forests in USA and Europe during spring or summer. The two American sites were Storm Peak Laboratory, Colorado (Rocky Mountains, elevation 3220 m a.s.l) and Sierra Nevada Mountains, California (as part of BEARPEX 2007 and 2009). The European sites were Hyytiälä Forest Station, Finland (in the boreal zone) and Silkeborg, Denmark (temperate forest). Aerosol filter samples were extracted and analyzed using a high performance liquid chromatograph coupled through an electrospray inlet to a quadrupole time-of-flight mass spectrometer (HPLC-QTOF-MS). We identified 11 carboxylic acids using authentic standards, while 16 different OS and 8 NOS were identified based on their molecular mass and MS fragmentation patterns, as well as comparison with available standards. OS were ubiquitous in the atmospheric aerosol samples, even at the high elevation mountain station. Levels of carboxylic acids from oxidation of monoterpenes were 8-25 ng m-3 at Silkeborg and Storm Peak Laboratory, while concentrations at the sites with strong regional monoterpene emissions (Sierra Nevada Mountains and Hyytiälä) were much higher (10-200 ng m-3). At all sites, the dominant group of OS were derived from isoprene (IEPOX) and related compounds, while OS of monoterpenes showed lower concentrations, except at Hyytiälä during periods of north-westerly winds when monoterpene OS were at similar or

  12. Mineralogy and geochemistry of two metamorphosed sedimentary manganese deposits, Sierra Nevada, California, USA

    NASA Astrophysics Data System (ADS)

    Flohr, Marta J. K.; Huebner, J. Stephen

    1992-12-01

    Laminated to massive rhodochrosite, hausmannite, and Mn-silicates from the Smith prospect and Manga-Chrome mine, Sierra Nevada, California were deposited as ocean floor sediments associated with chert and shale. The principal lithologies at Smith are chert, argillite, rhodochrosite-, hausmannite- and chlorite-rich layers, and relatively uncommon layers of jacobsite. The Manga-Chrome mine also contains layers rich in manganoan calcite and caryopilite. Tephroite, rhodonite, spessartine, and accessory alleghanyite and sonolite formed during metamorphism. Volcaniclastic components are present at Manga-Chrome as metavolcanic clasts and as Mn-poor, red, garnet- and hematite-rich layers. There is no evidence, such as relict lithologies, that Mn was introduced into Mn-poor lithologies such as chert, limestone or mudstone. Replacement of Mn-poor phases by Mn-rich phases is observed only in the groundmass of volcanic clasts that appear to have fallen into soft Mn-rich mud. Manganiferous samples from the Smith prospect and Manga-Chrome mine have high {Mn}/{Fe} and low concentrations of Ni, Cu, Zn, Co, U, Th and the rare-earth elements that are similar to concentrations reported from other ancient Mn deposits found in chert-greenstone complexes and from manganiferous sediments and crusts that are forming near modern sea floor vents. The Sierra Nevada deposits formed as precipitates of Mn-rich sediments on the sea floor, probably from mixtures of circulating hydrothermal fluids and seawater. The composition of a metabasalt from the Smith prospect is consistent with those of island-arc tholeiites. Metavolcanic clasts from the Manga-Chrome mine are compositionally distinct from the Smith metabasalt and have alkaline to calc-alkaline affinities. A back-arc basin is considered to be the most likely paleoenvironment for the formation of the Mn-rich lenses at the Manga-Chrome mine and, by association, the Smith prospect. Layers of rhodochrosite, hausmannite and chert preserve the

  13. Mercury methylation at mercury mines in the Humboldt River Basin, Nevada, USA

    USGS Publications Warehouse

    Gray, J.E.; Crock, J.G.; Lasorsa, B.K.

    2002-01-01

    Total Hg and methylmercury concentrations were measured in mine-waste calcines (retorted ore), sediment, and water samples collected in and around abandoned mercury mines in western Nevada to evaluate Hg methylation at the mines and in the Humboldt River Basin. Mine-waste calcines contain total Hg concentrations as high as 14 000 ??g g-1. Stream-sediment samples collected within 1 km of the mercury mines contain total Hg concentrations as high as 170 ??g g-1, whereas stream sediments collected at a distance >5 km from the mines, and those collected from the Humboldt River and regional baseline sites, contain total Hg concentrations 8 km from the nearest mercury mines. Our data indicate little transference of Hg and methylmercury from the sediment to the water column due to the lack of mine runoff in this desert climate.

  14. Thermal and Hydrologic Attributes of Rock Glaciers and Periglacial Talus Landforms; Sierra Nevada, California, USA

    NASA Astrophysics Data System (ADS)

    Millar, C. I.; Westfall, R. D.; Delany, D. L.

    2012-12-01

    To explore thermal regimes and hydrologic capacity of rock glaciers and related periglacial talus landforms, we deployed mini-thermochrons in and around potentially ice-embedded features of the Sierra Nevada. Results from studies at 13 rock glaciers and 8 taluses indicate that outlet springs from these landforms generally do not desiccate but persist year-round as ice (frozen) in winter and flowing water in the warm season. Temperatures of water (liquid and ice) in rock-glacier outlet springs had an annual mean of -0.2°C and mean of 0.6°C during the warm season with very low diurnal fluctuation. These and other attributes suggest the existence of internal ice and/or permafrost supplying the springs. Air temperatures of rock-glacier matrices (1 m below the surface) versus surface air corroborate the periglacial nature of internal environments: annual air temperatures of matrices were below freezing (mean, -0.8°C). Compared to surface air, especially during the warm season, matrix air temperatures were significantly colder and fluctuated less. Talus landforms followed a similar pattern, although water- and matrix air temperatures were warmer, and contrasts with surface air were not as strong as for rock glaciers. For rock glaciers and talus slopes, matrix air temperatures showed resistance (buffering) to changes in external air temperatures. Unique geomorphic conditions of rock glaciers and periglacial taluses in the Sierra Nevada appear to maintain cool-buffered thermal regimes at least partly decoupled from external air. Springs support persistent wetlands and lakes at their snouts, retaining water in otherwise semi-arid high cirques, and contribute as hydrologic reserves and critical habitat for alpine biota. Daily and seasonal lags and buffering effects suggest that ice within these landforms might resist surface warming on the longer term, which could make these landforms increasingly important as regional climates change.

  15. Pesticides in mountain yellow-legged frogs (Rana muscosa) from the Sierra Nevada Mountains of California, USA

    USGS Publications Warehouse

    Fellers, G.M.; McConnell, L.L.; Pratt, D.; Datta, S.

    2004-01-01

    In 1997, pesticide concentrations were measured in mountain yellow-legged frogs (Rana muscosa) from two areas in the Sierra Nevada Mountains of California, USA. One area (Sixty Lakes Basin, Kings Canyon National Park) had large, apparently healthy populations of frogs. A second area (Tablelands, Sequoia National Park) once had large populations, but the species had been extirpated from this area by the early 1980s. The Tablelands is exposed directly to prevailing winds from agricultural regions to the west. When an experimental reintroduction of R. muscosa in 1994 to 1995 was deemed unsuccessful in 1997, the last 20 (reintroduced) frogs that could be found were collected from the Tablelands, and pesticide concentrations in both frog tissue and the water were measured at both the Tablelands and at reference sites at Sixty Lakes. In frog tissues, dichlorodiphenyldichloroethylene (DDE) concentration was one to two orders of magnitude higher than the other organochlorines (46 ?? 20 ng/g wet wt at Tablelands and 17 ?? 8 Sixty Lakes). Both ??-chlordane and trans-nonachlor were found in significantly greater concentrations in Tablelands frog tissues compared with Sixty Lakes. Organophosphate insecticides, chlorpyrifos, and diazinon were observed primarily in surface water with higher concentrations at the Tablelands sites. No contaminants were significantly higher in our Sixty Lakes samples.

  16. Thermal and compositional evolution of the Mid-Miocene Searchlight magmatic system (Nevada, USA) as recorded in zircon

    NASA Astrophysics Data System (ADS)

    Johnson, Brent M.

    The middle Miocene Searchlight pluton (˜17-15.8 Ma) in southern Nevada, USA, located in the Colorado River Extensional Corridor, has an extensive spatially and temporally associated volcanic record. Regional extension has rotated a large crustal block ca. 90° to expose a 12-13 km section of crust that included parts of the Searchlight pluton and its volcanic cover in the adjacent Highland Range. Recent geochronology and geochemistry of the pluton and volcanic strata have shown that the construction of the Searchlight magma system was piecemeal. We examined the growth and dynamics of the Searchlight magma system using zircon trace elements from U/Pb age-dated plutonic and volcanic rocks. Zircon trace element indices for magmatic temperature and evolution, including Ti, Hf, Th, U, Th/U, Yb/Gd, and Eu/Eu*, showed a strong correlation to rock type and age. The Searchlight magmatic system has recorded a complex solidification history, a progression from a trachyandesitic to rhyolitic composition with time, and clear cogenetic links between some of the plutonic and volcanic rocks.

  17. Establishing Baseline environmental Conditions for the Proposed Yucca Mountain Repository, Nevada, U.S.A.

    SciTech Connect

    D.S. Shafer; K.F. Pohlmann; C.E. Russell; D. Hovey-Spencer; M. Ye

    2004-12-21

    Research is underway to develop baseline site conditions and design monitoring programs for assurance to offsite residents and for performance confirmation for the proposed Yucca Mountain (YM) high-level waste repository in Nevada. This includes evaluation of existing and potential impacts on the proposed ''land withdrawal'' for the repository. A significant portion of the proposed land withdrawal includes areas now managed as part of the Nevada Test Site (NTS), and there is both contamination and land disturbance associated with past NTS activities. Establishing baseline conditions for the land withdrawal is important to distinguish potential impacts from repository operations from those resulting from previous activities, including some that took place from activities outside the land withdrawal. Among existing contamination is mixed fission products associated with the Nuclear Rocket Testing Program on the NTS in the 1960s. Some of these sites are being remediated as part of a federal facility agreement between the U.S. Department of Energy and the State of Nevada. However, even where radionuclides exist at levels below regulatory concern, characterizing them may be desirable if they are above background. In addition, Forty Mile Wash, the major drainage on the east side of YM, may be transporting radionuclides created from Plowshare project nuclear cratering experiments on Buckboard Mesa on the NTS. Although contaminant levels are not anticipated to present a risk, the point at which Forty Mile Wash leaves the proposed land withdrawal would be the closest point for an offsite receptor to YM. In addition, there is existing land disturbance (not necessarily associated with contamination) on both the NTS, as well as the portions of the proposed land withdrawal currently managed by the U.S. Bureau of Land Management and the U.S. Air Force. To establish a land disturbance baseline, high resolution multispectral satellite imagery collected in 2004 as well as

  18. Calibrating Late Quaternary terrestrial climate signals: radiometrically dated pollen evidence from the southern Sierra Nevada, USA

    USGS Publications Warehouse

    Litwin, Ronald J.; Smoot, Joseph P.; Durika, Nancy J.; Smith, George I.

    1999-01-01

    We constructed a radiometrically calibrated proxy record of Late Pleistocene and Holocene climate change exceeding 230,000 yr duration, using pollen profiles from two cores taken through age-equivalent dry lakes - one core having greater age control (via 230Th alpha mass-spectrometry) and the other having greater stratigraphic completeness. The better dated of these two serial pollen records (Searles Lake) served as a reference section for improving the effective radiometric age control in a nearby and more complete pollen record (Owens Lake) because they: (1) are situated ~90 km apart in the same drainage system (on, and immediately leeward of, the eastern flank of the Sierra Nevada), and (2) preserved strikingly similar pollen profiles and concordant sequences of sedimentological changes. Pollen assemblages from both lakes are well preserved and diverse, and document serial changes in Late Pleistocene and Holocene plant zone distribution and composition in the westernmost Great Basin; they consist of taxa now inhabiting montane forest, woodland, steppe, and desert-scrub environments. The studied core intervals are interpreted here to be the terrestrial equivalent of marine δ18O stages 1 through 9; these pollen profiles now appear to be among the best radiometrically dated Late Pleistocene records of terrestrial climate change known.

  19. 20th century atmospheric deposition and acidification trends in lakes of the Sierra Nevada, California, USA.

    PubMed

    Heard, Andrea M; Sickman, James O; Rose, Neil L; Bennett, Danuta M; Lucero, Delores M; Melack, John M; Curtis, Jason H

    2014-09-01

    We investigated multiple lines of evidence to determine if observed and paleo-reconstructed changes in acid neutralizing capacity (ANC) in Sierra Nevada lakes were the result of changes in 20th century atmospheric deposition. Spheroidal carbonaceous particles (SCPs) (indicator of anthropogenic atmospheric deposition) and biogenic silica and δ(13)C (productivity proxies) in lake sediments, nitrogen and sulfur emission inventories, climate variables, and long-term hydrochemistry records were compared to reconstructed ANC trends in Moat Lake. The initial decline in ANC at Moat Lake occurred between 1920 and 1930, when hydrogen ion deposition was approximately 74 eq ha(-1) yr(-1), and ANC recovered between 1970 and 2005. Reconstructed ANC in Moat Lake was negatively correlated with SCPs and sulfur dioxide emissions (p = 0.031 and p = 0.009). Reconstructed ANC patterns were not correlated with climate, productivity, or nitrogen oxide emissions. Late 20th century recovery of ANC at Moat Lake is supported by increasing ANC and decreasing sulfate in Emerald Lake between 1983 and 2011 (p < 0.0001). We conclude that ANC depletion at Moat and Emerald lakes was principally caused by acid deposition, and recovery in ANC after 1970 can be attributed to the United States Clean Air Act. PMID:25078969

  20. Bottom sediment as a source of organic contaminants in Lake Mead, Nevada, USA.

    PubMed

    Alvarez, David A; Rosen, Michael R; Perkins, Stephanie D; Cranor, Walter L; Schroeder, Vickie L; Jones-Lepp, Tammy L

    2012-07-01

    Treated wastewater effluent from Las Vegas, Nevada and surrounding communities' flow through Las Vegas Wash (LVW) into the Lake Mead National Recreational Area at Las Vegas Bay (LVB). Lake sediment is a likely sink for many hydrophobic synthetic organic compounds (SOCs); however, partitioning between the sediment and the overlying water could result in the sediment acting as a secondary contaminant source. Locating the chemical plumes may be important to understanding possible chemical stressors to aquatic organisms. Passive sampling devices (SPMDs and POCIS) were suspended in LVB at depths of 3.0, 4.7, and 6.7 (lake bottom) meters in June of 2008 to determine the vertical distribution of SOCs in the water column. A custom sediment probe was used to also bury the samplers in the sediment at depths of 0-10, 10-20, and 20-30cm. The greatest number of detections in samplers buried in the sediment was at the 0-10cm depth. Concentrations of many hydrophobic SOCs were twice as high at the sediment-water interface than in the mid and upper water column. Many SOCs related to wastewater effluents, including fragrances, insect repellants, sun block agents, and phosphate flame retardants, were found at highest concentrations in the middle and upper water column. There was evidence to suggest that the water infiltrated into the sediment had a different chemical composition than the rest of the water column and could be a potential risk exposure to bottom-dwelling aquatic organisms. PMID:22464858

  1. Potential contaminant transport in the regional Carbonate Aquifer beneath Yucca Mountain, Nevada, USA

    NASA Astrophysics Data System (ADS)

    Bredehoeft, John; King, Michael

    2010-05-01

    Yucca Mountain, Nevada is the site of the proposed US geologic repository for spent nuclear fuel and high-level radioactive waste. The repository is to be a mine, sited approximately 300 m below the crest of the mountain, in a sequence of variably welded and fractured mid-Miocene rhylolite tuffs, in the unsaturated zone, approximately 300 m above the water table. Beneath the proposed repository, at a depth of 2 km, is a thick sequence of Paleozoic carbonate rocks that contain the highly transmissive Lower Carbonate Aquifer. In the area of Yucca Mountain the Carbonate Aquifer integrates groundwater flow from north of the mountain, through the Amargosa Valley, through the Funeral Mountains to Furnace Creek in Death Valley, California where the groundwater discharges in a set of large springs. Data that describe the Carbonate Aquifer suggest a concept for flow through the aquifer, and based upon the conceptual model, a one-layer numerical model was constructed to simulate groundwater flow in the Carbonate Aquifer. Advective transport analyses suggest that the predicted travel time of a particle from Yucca Mountain to Death Valley through the Carbonate Aquifer might be as short as 100 years to as long 2,000 years, depending upon the porosity.

  2. Environmental geochemistry of abandoned mercury mines in West-Central Nevada, USA

    USGS Publications Warehouse

    Gray, J.E.; Crock, J.G.; Fey, D.L.

    2002-01-01

    The Humboldt River is a closed basin and is the longest river in Nevada. Numerous abandoned Hg mines are located within the basin, and because Hg is a toxic heavy metal, the potential transport of Hg from these mines into surrounding ecosystems, including the Humboldt River, is of environmental concern Samples of ore, sediment, water, calcines (roasted ore), and leachates of the calcines were analyzed for Hg and other heavy metals to evaluate geochemical dispersion from the mines. Cinnabar-bearing ore samples collected from the mines contain highly elevated Hg concentrations, up to 6.9 %, whereas calcines collected from the mines contain up to 2000 mg Hg/kg. Stream-sediment samples collected within 1 km of the mines contain as much as 170 mg Hg/kg, but those collected distal from the mines (> 5 km) contain 8 km from the Humboldt River, and Hg is transported and diluted through a large volume of pediment before it reaches the Humboldt River. ?? 2002 Elsevier Science Ltd. All rights reserved.

  3. Biofilm exopolymers control microbialite formation at thermal springs discharging into the alkaline Pyramid Lake, Nevada, USA

    NASA Astrophysics Data System (ADS)

    Arp, Gernot; Thiel, Volker; Reimer, Andreas; Michaelis, Walter; Reitner, Joachim

    1999-07-01

    Calcium carbonate precipitation and microbialite formation at highly supersaturated mixing zones of thermal spring waters and alkaline lake water have been investigated at Pyramid Lake, Nevada. Without precipitation, pure mixing should lead to a nearly 100-fold supersaturation at 40°C. Physicochemical precipitation is modified or even inhibited by the properties of biofilms, dependent on the extent of biofilm development and the current precipitation rate. Mucus substances (extracellular polymeric substances, EPS, e.g., of cyanobacteria) serve as effective Ca 2+-buffers, thus preventing seed crystal nucleation even in a highly supersaturated macroenvironment. Carbonate is then preferentially precipitated in mucus-free areas such as empty diatom tests or voids. After the buffer capacity of the EPS is surpassed, precipitation is observed at the margins of mucus areas. Hydrocarbon biomarkers extracted from (1) a calcifying Phormidium-biofilm, (2) the stromatolitic carbonate below, and (3) a fossil `tufa' of the Pleistocene pinnacles, indicate that the cyanobacterial primary producers have been subject to significant temporal changes in their species distribution. Accordingly, the species composition of cyanobacterial biofilms does not appear to be relevant for the formation of microbial carbonates in Pyramid Lake. The results demonstrate the crucial influence of mucus substances on carbonate precipitation in highly supersaturated natural environments.

  4. Thermoluminescence dating of soils in a semi-arid environment, Yucca Mountain area, Southern Nevada, USA

    SciTech Connect

    Mahan, S.A.; Paces, J.B.; Peterman, Z.E.

    1995-12-31

    Yucca Mountain, Nevada, is currently being investigated as a potential nuclear waste repository. Because radionuclides must be isolated over a ten to several hundred thousand year time span, an assessment of the performance depends in part on accurate reconstruction of the Quaternary geologic and hydrologic history of the mountain. Reliable geochronology in an oxidizing environment dominated by coarse-grained, clastic surficial deposits has become a central issue for several studies including paleoseismic reconstruction, determination of rates of erosion and deposition, and the history of regional water-table fluctuations documented by ground-water discharge deposits. Thermoluminescence (TL) dating of polymineralic silt fractions in a variety of surface deposits has become an important component of the Quaternary dating strategy, along with uranium-series disequilibrium dating of secondary carbonate and opaline silica, and to a lesser extent, radiocarbon dating of carbonate components. Although the complex mineralogy of these materials contributes to greater amounts of scatter in their TL response relative to typical quartzofeldspathic loess and dune deposits, the derived ages are reproducible, consistent with internal stratigraphy, and generally concordant with other available geochronology.

  5. Sources of Fe in eolian and soil detritus at Yucca Mountain, Nevada, USA

    SciTech Connect

    Vaniman, D.; Chipera, S.; Bish, D.

    1997-12-31

    Eolian deposits and adjacent soil horizons at Exile Hill near Yucca Mountain, Nevada, provide a desert environment where the origins of exotic eolian materials can be discerned. Petrographic, chemical, X-ray diffraction, and electron microprobe data allow an assessment of Fe mineral sources. Fe-rich minerals in local rhyolitic tuff bedrock consist of distinctive biotite and amphibole phenocrysts and groundmass Mn-hematites. Although the local tuffs contain only 1% FeO, detrital components of eolian and soil deposits have {approximately}3% FeO. Exotic minerals from distant sources provide most of the excess Fe in the surficial deposits. The exotic Fe sources are principally smectite, low-Mn hematite, low-F biotite, and high-Fe amphibole not found in local tuffs. Iron contents and the exotic Fe fraction increase with decreasing grain size, such that the clay fractions have {approximately}5--6% FeO, almost all of which is in exotic smectites. The distant origin of these smectites is evident in their high Fe content and distinct Sc/FeO enrichment trends, which differ from the strong local Sc/FeO control defined by coarser soil detritus. Approximate crustal average lanthanide composition in soil and eolian smectites rule out any significant contribution of local smectite derived from tuff alteration. The eolian and soil smectites instead inherit their high Fe content from eolian biotite.

  6. Contractional deformation of porous sandstone: Insights from the Aztec Sandstone, SE Nevada, USA

    NASA Astrophysics Data System (ADS)

    Fossen, Haakon; Zuluaga, Luisa F.; Ballas, Gregory; Soliva, Roger; Rotevatn, Atle

    2015-05-01

    Contractional deformation of highly porous sandstones is poorly explored, as compared to extensional deformation of such sedimentary rocks. In this work we explore the highly porous Aztec Sandstone in the footwall to the Muddy Mountain thrust in SE Nevada, which contains several types of deformation bands in the Buffington tectonic window: 1) Distributed centimeter-thick shear-enhanced compaction bands (SECBs) and 2) rare pure compaction bands (PCBs) in the most porous parts of the sandstone, cut by 3) thin cataclastic shear-dominated bands (CSBs) with local slip surfaces. Geometric and kinematic analysis of the SECBs, the PCBs and most of the CSBs shows that they formed during ∼E-W (∼100) shortening, consistent with thrusting related to the Cretaceous to early Paleogene Sevier orogeny of the North American Cordilleran thrust system. Based on stress path modeling, we suggest that the compactional bands (PCBs and SECBs) formed during contraction at relatively shallow burial depths, before or at early stages of emplacement of the Muddy Mountains thrust sheet. The younger cataclastic shear bands (CSBs, category 3), also related to E-W Sevier thrusting, are thinner and show larger shear offsets and thus more intense cataclasis, consistent with the initiation of cataclastic shear bands in somewhat less porous materials. Observations made in this work support earlier suggestions that contraction lead to more distributed band populations than what is commonly found in the extensional regime, and that shear-enhanced compaction bands are widespread only where porosity (and permeability) is high.

  7. Bottom sediment as a source of organic contaminants in Lake Mead, Nevada, USA

    USGS Publications Warehouse

    Alvarez, David A.; Rosen, Michael R.; Perkins, Stephanie D.; Cranor, Walter L.; Schroeder, Vickie L.; Jones-Lepp, Tammy L.

    2012-01-01

    Treated wastewater effluent from Las Vegas, Nevada and surrounding communities' flow through Las Vegas Wash (LVW) into the Lake Mead National Recreational Area at Las Vegas Bay (LVB). Lake sediment is a likely sink for many hydrophobic synthetic organic compounds (SOCs); however, partitioning between the sediment and the overlying water could result in the sediment acting as a secondary contaminant source. Locating the chemical plumes may be important to understanding possible chemical stressors to aquatic organisms. Passive sampling devices (SPMDs and POCIS) were suspended in LVB at depths of 3.0, 4.7, and 6.7 (lake bottom) meters in June of 2008 to determine the vertical distribution of SOCs in the water column. A custom sediment probe was used to also bury the samplers in the sediment at depths of 0–10, 10–20, and 20–30 cm. The greatest number of detections in samplers buried in the sediment was at the 0–10 cm depth. Concentrations of many hydrophobic SOCs were twice as high at the sediment–water interface than in the mid and upper water column. Many SOCs related to wastewater effluents, including fragrances, insect repellants, sun block agents, and phosphate flame retardants, were found at highest concentrations in the middle and upper water column. There was evidence to suggest that the water infiltrated into the sediment had a different chemical composition than the rest of the water column and could be a potential risk exposure to bottom-dwelling aquatic organisms.

  8. 3-Dimensional Geologic Modeling Applied to the Structural Characterization of Geothermal Systems: Astor Pass, Nevada, USA

    SciTech Connect

    Siler, Drew L; Faulds, James E; Mayhew, Brett

    2013-04-16

    Geothermal systems in the Great Basin, USA, are controlled by a variety of fault intersection and fault interaction areas. Understanding the specific geometry of the structures most conducive to broad-scale geothermal circulation is crucial to both the mitigation of the costs of geothermal exploration (especially drilling) and to the identification of geothermal systems that have no surface expression (blind systems). 3-dimensional geologic modeling is a tool that can elucidate the specific stratigraphic intervals and structural geometries that host geothermal reservoirs. Astor Pass, NV USA lies just beyond the northern extent of the dextral Pyramid Lake fault zone near the boundary between two distinct structural domains, the Walker Lane and the Basin and Range, and exhibits characteristics of each setting. Both northwest-striking, left-stepping dextral faults of the Walker Lane and kinematically linked northerly striking normal faults associated with the Basin and Range are present. Previous studies at Astor Pass identified a blind geothermal system controlled by the intersection of west-northwest and north-northwest striking dextral-normal faults. Wells drilled into the southwestern quadrant of the fault intersection yielded 94°C fluids, with geothermometers suggesting a maximum reservoir temperature of 130°C. A 3-dimensional model was constructed based on detailed geologic maps and cross-sections, 2-dimensional seismic data, and petrologic analysis of the cuttings from three wells in order to further constrain the structural setting. The model reveals the specific geometry of the fault interaction area at a level of detail beyond what geologic maps and cross-sections can provide.

  9. Comparison of the native antimony-bearing Paiting gold deposit, Guizhou Province, China, with Carlin-type gold deposits, Nevada, USA

    NASA Astrophysics Data System (ADS)

    Xie, Zhuo-Jun; Xia, Yong; Cline, Jean S.; Yan, Bao-Wen; Wang, Ze-Peng; Tan, Qin-Ping; Wei, Dong-Tian

    2016-03-01

    The Paiting gold deposit, Guizhou Province, China, has been regarded as a Carlin-type gold deposit by several researchers. Alteration and ore-related minerals from the Paiting deposit were examined, and results were compared with the Cortez Hills Carlin-type gold deposit, Nevada, USA. Similarities include the structural and stratigraphic controls on the orebodies in both deposits and the occurrence of invisible gold ionically bound in arsenian pyrite. Significant differences include the following: (1) The gold-bearing mineral in Nevada is arsenian pyrite. However, gold-bearing minerals in the Paiting deposit include arsenopyrite, arsenian pyrite, and trace pyrrhotite. Also, euhedral or subhedral gold-bearing arsenian pyrite at Paiting contains significantly less As, Cu, and Hg than gold-bearing pyrite from Nevada. (2) Alteration in the Paiting deposit displays significantly less decarbonatization. Instead, dolomite precipitation, which has not been described in Nevada deposits, is associated with deposition of gold-bearing sulfide minerals. (3) Stibnite and minor native antimony typify Paiting late-ore-stage minerals, whereas in Nevada, realgar, orpiment, and calcite are common late-ore-stage minerals. Precipitation of native antimony in the Paiting deposit reflects the evolution of a late-ore fluid with unusually low sulfur and oxygen fugacities. Some characteristics of the Paiting gold deposit, including formation of ore-stage dolomite and precipitation from CO2-rich ore fluids at temperatures in excess of 250 °C, are more typical of orogenic deposits than Nevada Carlin deposits. The presence of similarities in the Paiting deposit to both Carlin type and orogenic deposits is consistent with formation conditions intermediate to those typical of Carlin type and orogenic systems.

  10. Tree-Ring Extension of Precipitation Variability for Eastern Nevada: Implications for Drought Analysis in the Great Basin Region, USA

    NASA Astrophysics Data System (ADS)

    Biondi, F.; Strachan, S. D.

    2011-12-01

    In the Great Basin of North America, ecotonal environments characterized as lower forest border sites are ideally suited for tree-ring reconstructions of hydroclimatic variability. A network of 22 tree-ring chronologies, some longer than 800 years, from single-leaf pinyon (Pinus monophylla) tree-ring samples for eastern Nevada, in the central Great Basin of North America was used to analyze long-term precipitation variability. The period in common among all tree-ring chronologies, i.e. 1650-1976, was used to reconstruct October-May total precipitation using the Line of Organic Correlation (LOC) method. Individual site reconstructions were then combined using spatio-temporal kriging to produce annual maps of drought on a 12x12 km grid. Hydro-climatic episodes were numerically identified and modeled using their duration, magnitude, and peak, to estimate the likelihood of severe and sustained drought in this region. According to a numerical scoring rule explained in detail by Biondi et al. 2008, the most remarkable episode in the entire reconstruction was the early 1900s pluvial, followed by the late 1800s drought. The 1930s 'Dust Bowl' drought was in 8th position, making it one of the more remarkable episodes in the past few centuries. This result is consistent with other studies that show how regional drought severity varies going from western to eastern Nevada, and directly addresses the needs of water managers with respect to planning for 'worst case' scenarios of drought duration and magnitude. For instance, it is possible to analyze which geographical areas and hydrographic basins are more likely to be impacted during the most extreme droughts, at the annual (see Figure) or multiannual timescale. In the semi-arid western USA, multi-century long dendroclimatic records with km-scale spatial resolution can therefore provide water managers with a quantitative evaluation of climate episodes well beyond the envelope of instrumental records, thereby increasing the

  11. Aerosol Light Absorption and Scattering at Four Sites in and Near Mexico City: Comparison with Las Vegas, Nevada, USA

    NASA Astrophysics Data System (ADS)

    Arnott, W. P.; Miranda, G. P.; Gaffney, J. S.; Marley, N. A.

    2007-05-01

    Four photoacoustic spectrometers (PAS) for aerosol light scattering and absorption measurements were deployed in and near Mexico City in March 2006 as part of the Megacity Impacts on Regional and Global Environments (MIRAGE). The four sites included: an urban site at Instituto Mexicano del Petroleo (Mexican Oil Institute, denoted by IMP); a suburban site at the Technological University of Tecamac; a rural site at "La Biznaga" ranch; and a site at the Paseo de Cortes (altitude 3,810 meters ASL) in the rural area above Amecameca in the State of Mexico, on the saddle between the volcanoes Popocatepetl and Iztaccihuatl. A similar campaign was held in Las Vegas, Nevada, USA in January-February, 2003. The IMP site gave in-situ characterization of the Mexico City plume under favorable wind conditions while the other sites provided characterization of the plume, mixed in with any local sources. The second and third sites are north of Mexico City, and the fourth site is south. The PAS used at IMP operates at 532 nm, and conveniently allowed for characterization of gaseous absorption at this wavelength as well. Instruments at the second and third sites operate at 870 nm, and the one at the fourth site at 780 nm. Light scattering measurements are accomplished within the PAS by the reciprocal nephelometery method. In the urban site the aerosol absorption coefficient typically varies between 20 and 180 Mm-1 during the course of the day and significant diurnal variation of the aerosol single scattering albedo was observed probably as a consequence of secondary aerosol formation. Comparisons with TSI nephelometer scattering at the T0 site will be presented. We will present the diurnal variation of the scattering and absorption as well as the single scattering albedo and fraction of absorption due to gases at the IMP site and compare with Las Vegas diurnal variation. Mexico City 'breaths' more during the course of the day than Las Vegas, Nevada in part because the latitude of

  12. Unraveling the volcanic and post-volcanic history at Upsal Hogback, Fallon, Nevada, USA

    NASA Astrophysics Data System (ADS)

    Anderson, E.; Cousens, B.

    2013-12-01

    Upsal Hogback is a < 25 ka phreatomagmatic volcanic center situated near Fallon, Nevada. The volcano neighbors two other young volcanic complexes: the Holocene Soda Lakes maars and Rattlesnake Hill, a ~ 1 Ma volcanic neck (Shevenell et al., 2005). These volcanoes lie on the transition between the Sierra Nevada and the Basin and Range province, as well as on the edge of the Walker Lane. Upsal Hogback includes two to four vents, fewer than mapped by Morrison (1964), and can be divided into north (one vent) and south (three potential vents) complexes. The vents all produced phreatomagmatic eruptions resulting in tuff rings composed primarily of coarse, indurated lapilli tuffs with abundant volcanic bombs. Ash tuffs are infrequent, as are structures such as crossbedding. The bombs and lapilli include olivine and plagioclase phenocrysts. The basalts are alkaline and have intraplate-type normalized incompatible element patterns. Both complexes are enriched in LREE compared to HREE, though the north complex overall has lower concentrations of the REE. The flat HREE pattern is indicative of spinel peridotite mantle source. Epsilon Nd values for the north complex are +2.50+/-0.02 and for the south complex are +2.83+/-0.02. The magmas appear to have an enriched asthenospheric mantle source. Bomb samples show that eruptions from the two complexes are geochemically distinguishable both in major and trace elements, suggesting that the two complexes tapped different magma types during eruptions that likely occurred at slightly different times. The proximity of Upsal Hogback to Fallon makes constraining its age important to characterize the hazard to the city. It lies above the Wono ash bed, dated at 25,000 years (Fultz et al., 1983), and tufa deposited over the edifice is dated at 11,100 +/- 100 and 8,600 +/- 200 years (Benson et al., 1992; Broecker and Kaufman, 1965). 40Ar/39Ar total gas age by Shevenell et al. (2005) dated the volcano at 0.60 +/- 0.09 Ma, but with no plateau

  13. Using Dissolved Organic Carbon Isotopes for Groundwater Age Dating in Southern Nevada, USA

    NASA Astrophysics Data System (ADS)

    Thomas, James; Hershey, Ronald; Fereday, Wyatt

    2016-04-01

    Dissolved organic carbon (DOC) 14C offers a method to calculate groundwater ages that is more straightforward than dissolved inorganic carbon (DIC) 14C. To obtain corrected DIC 14C groundwater ages requires models that account for chemical and physical processes that affect both 13C and 14C. This is especially true in carbonate-rock aquifers where a fair amount of dissolution and precipitation of carbonate minerals can occur. A first important step in calculating 14C DOC groundwater ages is to determine the initial 14C DOC (A0) values of the groundwater recharge. For this study, recharge area groundwater samples of DOC 14C, collected from 14 different sites, were used to determine the recharge DOC 14C values. These values ranged from 96 to 120 percent modern carbon (pmc), with an average value of 106.2 pmc. These 14C A0 values support the use of a 100 pmc 14C A0 pre-bomb value to calculate DOC 14C groundwater ages for southern Nevada. Several conditions to successfully use DOC 14C to date groundwater need to be met. First, soluble organic carbon content of aquifers needs to be low, so that little DOC is added to the groundwater as it flows from recharge areas down gradient in an aquifer. For this study, volcanic and carbonate aquifer outcrop rocks showed that these rocks contained low soluble organic carbon. Second, it is important that the DOC does not change character down a flow path, which could indicate transformation of DOC along a flow path and/or addition of DOC to the groundwater. Although specific DOC compounds could not be identified for samples collected at four sites, all four groundwater sample spectra show the same general shape over the duration of the HPLC run indicating that the DOC compound composition of groundwater does not significantly change from up-gradient to down-gradient. Third, another factor that could greatly affect DOC 14C groundwater age calculations is matrix diffusion/adsorption of DOC 14C. Laboratory experiments showed that

  14. Earthquake Interactions at Different Scales: an Example from Eastern California and Western Nevada, USA.

    NASA Astrophysics Data System (ADS)

    Verdecchia, A.; Carena, S.

    2015-12-01

    Earthquakes in diffuse plate boundaries occur in spatially and temporally complex patterns. The region east of the Sierra Nevada that encompasses the northern Eastern California Shear Zone (ECSZ), Walker Lane (WL), and the westernmost part of the Basin and Range province (B&R) is such a kind of plate boundary. In order to better understand the relationship between moderate-to major earthquakes in this area, we modeled the evolution of coseismic, postseismic and interseismic Coulomb stress changes (∆CFS) in this region at two different spatio-temporal scales. In the first example we examined seven historical and instrumental Mw ≥ 6 earthquakes that struck the region around Owens Valley (northern ECSZ) in the last 150 years. In the second example we expanded our study area to all of the northern ECSZ, WL and western B&R, examining seventeen paleoseismological and historical major surface-rupturing earthquakes (Mw ≥ 6.5) that occurred in the last 1400 years. We show that in both cases the majority of the studied events (100% in the first case and 80% in the second) are located in areas of combined coseismic and postseismic positive ∆CFS. This relationship is robust, as shown by control tests with random earthquake sequences. We also show that the White Mountain fault has accumulated up to 30 bars of total ∆CFS (coseismic + postseismic + interseismic) in the last 150 years, and the Hunter Mountain, Fish Lake Valley, Black Mountain, and Pyramid Lake faults have accumulated 40, 45, 54 and 37 bars respectively in the last 1400 years. Such values are comparable to the average stress drop in a major earthquake, and all these faults may be therefore close to failure.

  15. Distribution of total and methyl mercury in sediments along Steamboat Creek (Nevada, USA)

    USGS Publications Warehouse

    Stamenkovic, J.; Gustin, M.S.; Marvin-DiPasquale, M. C.; Thomas, B.A.; Agee, J.L.

    2004-01-01

    In the late 1800s, mills in the Washoe Lake area, Nevada, used elemental mercury to remove gold and silver from the ores of the Comstock deposit. Since that time, mercury contaminated waste has been distributed from Washoe Lake, down Steamboat Creek, and to the Truckee River. The creek has high mercury concentrations in both water and sediments, and continues to be a constant source of mercury to the Truckee River. The objective of this study was to determine concentrations of total and methyl mercury (MeHg) in surface sediments and characterize their spatial distribution in the Steamboat Creek watershed. Total mercury concentrations measured in channel and bank sediments did not decrease downstream, indicating that mercury contamination has been distributed along the creek's length. Total mercury concentrations in sediments (0.01-21.43 ??g/g) were one to two orders of magnitude higher than those in pristine systems. At 14 out of 17 sites, MeHg concentrations in streambank sediments were higher than the concentrations in the channel, suggesting that low banks with wet sediments might be important sites of mercury methylation in this system. Both pond/wetland and channel sites exhibited high potential for mercury methylation (6.4-30.0 ng g-1 day-1). Potential methylation rates were positively correlated with sulfate reduction rates, and decreased as a function of reduced sulfur and MeHg concentration in the sediments. Potential demethylation rate appeared not to be influenced by MeHg concentration, sulfur chemistry, DOC, sediment grain size or other parameters, and showed little variation across the sites (3.7-7.4 ng g-1 day-1). ?? 2003 Elsevier B.V. All rights reserved.

  16. 150 Years of Coulomb Stress History Along the California-Nevada Border, USA.

    NASA Astrophysics Data System (ADS)

    Carena, S.; Verdecchia, A.

    2014-12-01

    The temporal and spatial correlation among earthquakes in diffuse plate boundary zones is not well understood yet. The region north of the Garlock fault between the Sierra Nevada and Death Valley is part of a diffuse plate boundary zone, which absorbs a significant fraction of the plate motion between Pacific and North America. This area has experienced at least eight Mw ≥ 6 earthquakes in historical times, beginning with the 1872 Mw 7.5 Owens Valley earthquake. Furthermore, since 1978 Long Valley caldera has been undergoing periods of unrest, with earthquake swarms and resurgence. Our goal is to determine whether the 1872 Owens Valley earthquake has influenced the seismicity and volcanic activity in the area. We model the evolution of coseismic, interseismic and postseismic Coulomb stress (ΔCFS) in the region due to both earthquakes and caldera activity in the last 150 years. Our results show that the 1872 Owens Valley earthquake strongly encourages faulting in northern Owens Valley. In addition, there is a correlation among smaller events, in the form of a west-to-east migration of earthquakes from Long Valley caldera toward the White Mountains immediately following the 1978 caldera inflation event. The last event in this sequence, the 1986 Mw 6.3 Chalfant Valley earthquake, controls the location of over 80% of its own aftershocks, which occur in areas of positive ΔCFS and reach Mw 5.7. We also calculate the cumulative ΔCFS on several major active faults in the region. Stresses up to 30 bars and 10 bars respectively have accumulated on the White Mountains (Central section) and Deep Springs faults, comparable to the expected stress drop in an average earthquake. Because no surface ruptures more recent than 1.8 ka have been identified on these faults [dePolo, 1989; Lee et al., 2001], we consider them as likely candidates for the next major earthquake in the region.

  17. Distribution of total and methyl mercury in sediments along Steamboat Creek (Nevada, USA).

    PubMed

    Stamenkovic, Jelena; Gustin, Mae S; Marvin-DiPasquale, Mark C; Thomas, Beth A; Agee, Jennifer L

    2004-04-25

    In the late 1800s, mills in the Washoe Lake area, Nevada, used elemental mercury to remove gold and silver from the ores of the Comstock deposit. Since that time, mercury contaminated waste has been distributed from Washoe Lake, down Steamboat Creek, and to the Truckee River. The creek has high mercury concentrations in both water and sediments, and continues to be a constant source of mercury to the Truckee River. The objective of this study was to determine concentrations of total and methyl mercury (MeHg) in surface sediments and characterize their spatial distribution in the Steamboat Creek watershed. Total mercury concentrations measured in channel and bank sediments did not decrease downstream, indicating that mercury contamination has been distributed along the creek's length. Total mercury concentrations in sediments (0.01-21.43 microg/g) were one to two orders of magnitude higher than those in pristine systems. At 14 out of 17 sites, MeHg concentrations in streambank sediments were higher than the concentrations in the channel, suggesting that low banks with wet sediments might be important sites of mercury methylation in this system. Both pond/wetland and channel sites exhibited high potential for mercury methylation (6.4-30.0 ng g(-1) day(-1)). Potential methylation rates were positively correlated with sulfate reduction rates, and decreased as a function of reduced sulfur and MeHg concentration in the sediments. Potential demethylation rate appeared not to be influenced by MeHg concentration, sulfur chemistry, DOC, sediment grain size or other parameters, and showed little variation across the sites (3.7-7.4 ng g(-1) day(-1)). PMID:15081746

  18. Quantifying cambial activity of high-elevation conifers in the Great Basin, Nevada, USA

    NASA Astrophysics Data System (ADS)

    Ziaco, E.; Biondi, F.; Rossi, S.; Deslauriers, A.

    2013-12-01

    Understanding the physiological mechanisms that control the formation of tree rings provides the necessary biological basis for developing dendroclimatic reconstructions and dendroecological histories. Studies of wood formation in the Great Basin are now being conducted in connection with the Nevada Climate-ecohydrological Assessment Network (NevCAN), a recently established transect of valley-to-mountaintop instrumented stations in the Snake and Sheep Ranges of the Great Basin. Automated sensors record meteorological, soil, and vegetational variables at these sites, providing unique opportunities for ecosystem science, and are being used to investigate the ecological implications of xylogenesis. We present here an initial study based on microcores collected during summer 2013 from mountain and subalpine conifers (including Great Basin bristlecone pine, Pinus longaeva) growing on the west slope of Mt. Washington. Samples were taken from the mountain west (SM; 2810 m elevation) and the subalpine west (SS, 3355 m elevation) NevCAN sites on June 16th and 27th, 2013. The SS site was further subdivided in a high (SSH) and a low (SSL) group of trees, separated by about 10 m in elevation. Microscopic analyses showed the effect of elevation on cambial activity, as annual ring formation was more advanced at the lower (mountain) site compared to the higher (subalpine) one. At all sites cambium size showed little variations between the two sampling dates. The number of xylem cells in the radial enlargement phase decreased between the two sampling dates at the mountain site but increased at the subalpine site, confirming a delayed formation of wood at the higher elevations. Despite relatively high within-site variability, a general trend of increasing number of cells in the lignification phase was found at all sites. Mature cells were present only at the mountain site on June 27th. Spatial differences in the xylem formation process emerged at the species level and, within

  19. Modeling Potential Climatic Treeline of Great Basin Bristlecone Pine in the Snake Mountain Range, Nevada, USA

    NASA Astrophysics Data System (ADS)

    Bruening, J. M.; Tran, T. J.; Bunn, A. G.; Salzer, M. W.; Weiss, S. B.

    2015-12-01

    Great Basin bristlecone pine (Pinus longaeva) is a valuable paleoclimate resource due to the climatic sensitivity of its annually-resolved rings. Recent work has shown that low growing season temperatures limit tree growth at the upper treeline ecotone. The presence of precisely dated remnant wood above modern treeline shows that this ecotone shifts at centennial timescales; in some areas during the Holocene climatic optimum treeline was 100 m higher than at present. A recent model from Paulsen and Körner (2014, doi:10.1007/s00035-014-0124-0) predicts global potential treeline position as a function of climate. The model develops three parameters necessary to sustain a temperature-limited treeline; a growing season longer than 94 days, defined by all days with a mean temperature >0.9 °C, and a mean temperature of 6.4 °C across the entire growing season. While maintaining impressive global accuracy in treeline prediction, these parameters are not specific to the semi-arid Great Basin bristlecone pine treelines in Nevada. In this study, we used 49 temperature sensors arrayed across approximately one square kilometer of complex terrain at treeline on Mount Washington to model temperatures using topographic indices. Results show relatively accurate prediction throughout the growing season (e.g., July average daily temperatures were modeled with an R2 of 0.80 and an RMSE of 0.29 °C). The modeled temperatures enabled calibration of a regional treeline model, yielding different parameters needed to predict potential treeline than the global model. Preliminary results indicate that modern Bristlecone pine treeline on and around Mount Washington occurs in areas with a longer growing season length (~160 days defined by all days with a mean temperature >0.9 °C) and a warmer seasonal mean temperature (~9 °C) than the global average. This work will provide a baseline data set on treeline position in the Snake Range derived only from parameters physiologically relevant to

  20. Isotope-Geochmical Evidence For Uranium Retardation in Zeolitized Tuffs at Yucca Mountain, Nevada, USA

    SciTech Connect

    L.A. Neymark; J.B. Paces

    2007-02-14

    Retardation of radionuclides by sorption on minerals in the rocks along downgradient groundwater flow paths is a positive attribute of the natural barrier at Yucca Mountain, Nevada, the site of a proposed high-level nuclear waste repository. Alteration of volcanic glass in nonwelded tuffs beneath the proposed repository horizon produced thick, widespread zones of zeolite- and clay-rich rocks with high sorptive capacities. The high sorptive capacity of these rocks is enhanced by the large surface area of tabular to fibrous mineral forms, which is about 10 times larger in zeolitic tuffs than in devitrified tuffs and about 30 times larger than in vitric tuffs. The alteration of glass to zeolites, however, was accompanied by expansion that reduced the matrix porosity and permeability. Because water would then flow mainly through fractures, the overall effectiveness of radionuclide retardation in the zeolitized matrix actually may be decreased relative to unaltered vitric tuff. Isotope ratios in the decay chain of {sup 238}U are sensitive indicators of long-term water-rock interaction. In systems older than about 1 m.y. that remain closed to mass transfer, decay products of {sup 238}U are in secular radioactive equilibrium where {sup 234}U/{sup 238}U activity ratios (AR) are unity. However, water-rock interaction along flow paths may result in radioactive disequilibrium in both the water and the rock, the degree of which depends on water flux, rock dissolution rates, {alpha}-recoil processes, adsorption and desorption, and the precipitation of secondary minerals. The effects of long-term water-rock interaction that may cause radionuclide retardation were measured in samples of Miocene-age subrepository zeolitized tuffs of the Calico Hills Formation (Tac) and the Prow Pass Tuff (Tcp) from borehole USW SD-9 near the northern part of the proposed repository area (sampled depth interval from 451.1 to 633.7 m; Engstrom and Rautman, 1996). Mineral abundances and whole

  1. Nutrient and mercury deposition and storage in an alpine snowpack of the Sierra Nevada, USA

    NASA Astrophysics Data System (ADS)

    Pearson, C.; Schumer, R.; Trustman, B. D.; Rittger, K.; Johnson, D. W.; Obrist, D.

    2015-01-01

    Bi-weekly snowpack core samples were collected at seven sites along two elevation gradients in the Tahoe Basin during two consecutive snow years to evaluate total wintertime snowpack accumulation of nutrients and pollutants in a high elevation watershed of the Sierra Nevada. Additional sampling of wet deposition and detailed snow pit profiles was conducted the following year to compare wet deposition to snowpack storage and assess the vertical dynamics of snowpack chemicals. Results show that on average organic N comprised 48% of all snowpack N, while nitrate (NO3--N) and TAN (total ammonia nitrogen) made up 25 and 27%, respectively. Snowpack NO3--N concentrations were relatively uniform across sampling sites over the sampling seasons and showed little difference between seasonal wet deposition and integrated snow pit concentrations in agreement with previous studies that identify wet deposition as the dominant source of wintertime NO3--N deposition. However, vertical snow pit profiles showed highly variable concentrations of NO3--N within the snowpack indicative of additional deposition and in snowpack dynamics. Unlike NO3--N, snowpack TAN doubled towards the end of winter and in addition to wet deposition, had a strong dry deposition component. Organic N concentrations in snowpack were highly variable (from 35 to 70%) and showed no clear temporal or spatial dependence throughout the season. Integrated snowpack organic N concentrations were up to 2.5 times higher than seasonal wet deposition, likely due to microbial immobilization of inorganic N as evident by coinciding increases of organic N and decreases of inorganic N, in deeper, aged snowpack. Spatial and temporal deposition patterns of snowpack P were consistent with particulate-bound dry deposition inputs and strong impacts from in-basin sources causing up to 6 times enrichment at urban locations compared to remote sites. Snowpack Hg showed little temporal variability and was dominated by particulate

  2. The relative contributions of summer and cool-season precipitation to groundwater recharge, Spring Mountains, Nevada, USA

    NASA Astrophysics Data System (ADS)

    Winograd, Isaac J.; Riggs, Alan C.; Coplen, Tyler B.

    A comparison of the stable-isotope signatures of spring waters, snow, snowmelt, summer (July thru September) rain, and cool season (October thru June) rain indicates that the high-intensity, short-duration summer convective storms, which contribute approximately a third of the annual precipitation to the Spring Mountains, provide only a small fraction (perhaps 10%) of the recharge to this major upland in southern Nevada, USA. Late spring snowmelt is the principal means of recharging the fractured Paleozoic-age carbonate rocks comprising the central and highest portion of the Spring Mountains. Daily discharge measurements at Peak Spring Canyon Creek during the period 1978-94 show that snowpacks were greatly enhanced during El Niño events. Résumé La comparaison des signatures isotopiques stables des eaux de sources, de neige, de fonte de neige, des pluies d'été (juillet à septembre) et de saison froide (octobre à juin) montre que les précipitations convectives d'été de forte intensité et de courte durée, apportant un tiers des précipitations annuelles reçues par les Monts Spring, ne participent que pour une faible part (10%) à la recharge de cette importante zone d'altitude du sud du Nevada (États-Unis). La fonte tardive de la neige au printemps constitue l'essentiel de la recharge des roches carbonatées fracturées d'âge paléozoïque formant la partie centrale et la plus haute des Monts Spring. Les données journalières de débit sur la rivière du canyon de Peak Spring, entre 1978 et 1994, montrent que les hauteurs de neige ont été plus élevées pendant les événements El Niño. Resumen La comparación entre las marcas isotópicas de aguas de manantiales, nieve, deshielo, lluvias de verano (julio a septiembre) y resto de lluvias (octubre a junio) indican que las tormentas de verano, de corta duración y gran intensidad, las cuales suponen alrededor de un tercio de la precipitación total anual en las Spring Mountains, proporcionan sólo una

  3. Land reclamation on the Nevada Test Site: A field tour

    SciTech Connect

    Winkel, V.K.; Ostler, W.K.

    1993-12-31

    An all-day tour to observe and land reclamation on the Nevada Test Site was conducted in conjunction with the 8th Wildland Shrub and Arid Land Restoration Symposium. Tour participants were introduced to the US Department of Energy reclamation programs for Yucca Mountain Site Characterization Project and Treatability Studies for Soil Media (TSSM) Project. The tour consisted of several stops that covered a variety of topics and studies including revegetation by seeding, topsoil stockpile stabilization, erosion control, shrub transplanting, shrub herbivory, irrigation, mulching, water harvesting, and weather monitoring.

  4. Assessing an exotic plant surveying program in the Mojave Desert, Clark County, Nevada, USA.

    PubMed

    Abella, Scott R; Spencer, Jessica E; Hoines, Joshua; Nazarchyk, Carrie

    2009-04-01

    Exotic species can threaten native ecosystems and reduce services that ecosystems provide to humans. Early detection of incipient populations of exotic species is a key step in containing exotics before explosive population growth and corresponding impacts occur. We report the results of the first three years of an exotic plant early detection and treatment program conducted along more than 3,000 km of transportation corridors within an area >1.5 million ha in the Mojave Desert, USA. Incipient populations of 43 exotic plant species were mapped using global positioning and geographic information systems. Brassica tournefortii (Sahara mustard) infested the most soil types (47% of 256) surveyed in the study area, while Nicotiana glauca (tree tobacco) and others currently occupy less than 5% of soil types. Malcolmia africana (African mustard) was disproportionately detected on gypsum soils, occurring on 59% of gypsum soil types compared to 27% of all surveyed soils. Gypsum soils constitute unique rare plant habitat in this region, and by conventional wisdom were not previously considered prone to invasion. While this program has provided an initial assessment of the landscape-scale distribution of exotic species along transportation corridors, evaluations of both the survey methods and the effectiveness of treating incipient populations are needed. An exotic plant information system most useful to resource mangers will likely include integrating planning oriented coarse-scale surveys, more detailed monitoring of targeted locations, and research on species life histories, community invasibility, and treatment effectiveness. PMID:18369728

  5. 500,000 years of water table fluctuations recorded in Devils Hole 2 cave from southwestern Nevada, USA

    NASA Astrophysics Data System (ADS)

    Wendt, Kathleen A.; Moseley, Gina E.; Dublyansky, Yuri V.; Spötl, Christoph; Edwards, R. Lawrence

    2016-04-01

    Evidence for large reoccurring Pleistocene lakes in the Great Basin region of North America suggests that this modern day arid landscape underwent drastic climate fluctuations in the past. We aim to reconstruct the history of water table fluctuations in the discharge area of the Ash Meadow groundwater flow system since 500 ka BP. To do so, we have analyzed a series of carbonate cores drilled at varying elevations above the modern day water table from the walls of Devils Hole 2 cave in southwest Nevada, USA. Petrographic and morphologic differences between calcite precipitated below (mammillary calcite) or at (folia) the water table in this cave record past variations in water table elevation. A total of ten cores were drilled between 0.8 and 15.1 m above the modern day water table. Each core includes alternations between mammillary calcite to folia, with an increasing occurrence of folia in higher elevation cores, suggesting multi-meter variations in past water table elevation. Over 50 high-precision 230Th dates have been measured at the mammillary calcite to folia boundaries of each core. Preliminary results show multi-meter water table fluctuations which appear to follow interglacial-glacial cycles from 500 ka to present day, such that water table high-stands coincide with glacial periods. Observed maxima in water table levels are likely correlated to periods of increased precipitation within the catchment area during glacial (pluvial) periods, which is consistent with paleoclimate records in this region. Preliminary results suggest water table levels peaked (reaching +5.5 m or higher than present day water table) at 461 kyr, between 320 and 250 kyr, between 196 and 137 kyr, and between 67 and 20 kyr BP, largely coinciding with glacial periods. Periods in which water table levels reached the lowest elevation sampled (+0.8 m) occurred at 240 kyr, 116 kyr, and 5.7 kyr BP, largely coinciding with interglacial periods.

  6. Episodic growth of a Late Cretaceous and Paleogene intrusive complex of pegmatitic leucogranite, Ruby Mountains core complex, Nevada, USA

    USGS Publications Warehouse

    Howard, K.A.; Wooden, J.L.; Barnes, C.G.; Premo, W.R.; Snoke, A.W.; Lee, S.-Y.

    2011-01-01

    Gneissic pegmatitic leucogranite forms a dominant component (>600 km3) of the midcrustal infrastructure of the Ruby Mountains-East Humboldt Range core complex (Nevada, USA), and was assembled and modified episodically into a batholithic volume by myriad small intrusions from ca. 92 to 29 Ma. This injection complex consists of deformed sheets and other bodies emplaced syntectonically into a stratigraphic framework of marble, calc-silicate rocks, quartzite, schist, and other granitoids. Bodies of pegmatitic granite coalesce around host-rock remnants, which preserve relict or ghost stratigraphy, thrusts, and fold nappes. Intrusion inflated but did not disrupt the host-rock structure. The pegmatitic granite increases proportionally downward from structurally high positions to the bottoms of 1-km-deep canyons where it constitutes 95%-100% of the rock. Zircon and monazite dated by U-Pb (sensitive high-resolution ion microprobe, SHRIMP) for this rock type cluster diffusely at ages near 92, 82(?), 69, 38, and 29 Ma, and indicate successive or rejuvenated igneous crystallization multiple times over long periods of the Late Cretaceous and the Paleogene. Initial partial melting of unexposed pelites may have generated granite forerunners, which were remobilized several times in partial melting events. Sources for the pegmatitic granite differed isotopically from sources of similar-aged interleaved equigranular granites. Dominant Late Cretaceous and fewer Paleogene ages recorded from some pegmatitic granite samples, and Paleogene-only ages from the two structurally deepest samples, together with varying zircon trace element contents, suggest several disparate ages of final emplacement or remobilization of various small bodies. Folded sills that merge with dikes that cut the same folds suggest that there may have been in situ partial remobilization. The pegmatitic granite intrusions represent prolonged and recurrent generation, assembly, and partial melting modification of a

  7. Does prescribed fire promote resistance to drought in low elevation forests of the Sierra Nevada, California, USA?

    USGS Publications Warehouse

    van Mantgem, Phillip J.; Caprio, Anthony C.; Stephenson, Nathan L.; Das, Adrian J.

    2016-01-01

    Prescribed fire is a primary tool used to restore western forests following more than a century of fire exclusion, reducing fire hazard by removing dead and live fuels (small trees and shrubs).  It is commonly assumed that the reduced forest density following prescribed fire also reduces competition for resources among the remaining trees, so that the remaining trees are more resistant (more likely to survive) in the face of additional stressors, such as drought.  Yet this proposition remains largely untested, so that managers do not have the basic information to evaluate whether prescribed fire may help forests adapt to a future of more frequent and severe drought.During the third year of drought, in 2014, we surveyed 9950 trees in 38 burned and 18 unburned mixed conifer forest plots at low elevation (<2100 m a.s.l.) in Kings Canyon, Sequoia, and Yosemite national parks in California, USA.  Fire had occurred in the burned plots from 6 yr to 28 yr before our survey.  After accounting for differences in individual tree diameter, common conifer species found in the burned plots had significantly reduced probability of mortality compared to unburned plots during the drought.  Stand density (stems ha-1) was significantly lower in burned versus unburned sites, supporting the idea that reduced competition may be responsible for the differential drought mortality response.  At the time of writing, we are not sure if burned stands will maintain lower tree mortality probabilities in the face of the continued, severe drought of 2015.  Future work should aim to better identify drought response mechanisms and how these may vary across other forest types and regions, particularly in other areas experiencing severe drought in the Sierra Nevada and on the Colorado Plateau.

  8. Soil Science as a Field Discipline - Experiences in Iowa, USA

    NASA Astrophysics Data System (ADS)

    Burras, C. Lee

    2015-04-01

    Effective field understanding of soils is crucial. This is true everywhere but especially so in Iowa, a 15 million hectare state in the central USA's "corn belt." Iowa is intensely farmed and almost exclusively privately owned. Many regions of Iowa have had over 90% of their land area in row crops for the past 60 years. In these regions two very common land management strategies are tile drainage (1.5 million km total) and high rates of fertilization (e.g., 200 kg N/ha-yr for cropland) Iowa also has problematic environmental issues including high rates of erosion, excessive sediment and nutrient pollution in water bodies and episodic catastrophic floods. Given the preceding the Agronomy, Environmental Science and Sustainable Agriculture programs at Iowa State University (ISU) offer a strong suite of soil science classes - undergraduate through graduate. The objective of this presentation is to review selected field based soil science courses offered by those programs. This review includes contrasting and comparing campus-based and immersion classes. Immersion classes include ones offered at Iowa Lakeside Laboratory, as "soil judging" and internationally. Findings over the past 20 years are consistent. Students at all levels gain soil science knowledge, competency and confidence proportional to the amount of time spent in field activities. Furthermore their professional skepticism is sharpened. They are also preferentially hired even in career postings that do not require fieldwork. In other words, field learning results in better soil science professionals who have highly functional and sought after knowledge.

  9. Nutrient and mercury deposition and storage in an alpine snowpack of the Sierra Nevada, USA

    NASA Astrophysics Data System (ADS)

    Pearson, C.; Schumer, R.; Trustman, B. D.; Rittger, K.; Johnson, D. W.; Obrist, D.

    2015-06-01

    Biweekly snowpack core samples were collected at seven sites along two elevation gradients in the Tahoe Basin during two consecutive snow years to evaluate total wintertime snowpack accumulation of nutrients and pollutants in a high-elevation watershed of the Sierra Nevada. Additional sampling of wet deposition and detailed snow pit profiles were conducted the following year to compare wet deposition to snowpack storage and assess the vertical dynamics of snowpack nitrogen, phosphorus, and mercury. Results show that, on average, organic N comprised 48% of all snowpack N, while nitrate (NO3--N) and TAN (total ammonia nitrogen) made up 25 and 27%, respectively. Snowpack NO3--N concentrations were relatively uniform across sampling sites over the sampling seasons and showed little difference between seasonal wet deposition and integrated snow pit concentrations. These patterns are in agreement with previous studies that identify wet deposition as the dominant source of wintertime NO3--N deposition. However, vertical snow pit profiles showed highly variable concentrations of NO3--N within the snowpack indicative of additional deposition and in-snowpack dynamics. Unlike NO3--N, snowpack TAN doubled towards the end of winter, which we attribute to a strong dry deposition component which was particularly pronounced in late winter and spring. Organic N concentrations in the snowpack were highly variable (from 35 to 70%) and showed no clear temporal, spatial, or vertical trends throughout the season. Integrated snowpack organic N concentrations were up to 2.5 times higher than seasonal wet deposition, likely due to microbial immobilization of inorganic N as evident by coinciding increases in organic N and decreases in inorganic N in deeper, aged snow. Spatial and temporal deposition patterns of snowpack P were consistent with particulate-bound dry deposition inputs and strong impacts from in-basin sources causing up to 6 times greater enrichment at urban locations compared

  10. Thermal history of the unsaturated zone at Yucca Mountain, Nevada, USA

    USGS Publications Warehouse

    Whelan, J.F.; Neymark, L.A.; Moscati, R.J.; Marshall, B.D.; Roedder, E.

    2008-01-01

    Secondary calcite, silica and minor amounts of fluorite deposited in fractures and cavities record the chemistry, temperatures, and timing of past fluid movement in the unsaturated zone at Yucca Mountain, Nevada, the proposed site of a high-level radioactive waste repository. The distribution and geochemistry of these deposits are consistent with low-temperature precipitation from meteoric waters that infiltrated at the surface and percolated down through the unsaturated zone. However, the discovery of fluid inclusions in calcite with homogenization temperatures (Th) up to ???80 ??C was construed by some scientists as strong evidence for hydrothermal deposition. This paper reports the results of investigations to test the hypothesis of hydrothermal deposition and to determine the temperature and timing of secondary mineral deposition. Mineral precipitation temperatures in the unsaturated zone are estimated from calcite- and fluorite-hosted fluid inclusions and calcite ??18O values, and depositional timing is constrained by the 207Pb/235U ages of chalcedony or opal in the deposits. Fluid inclusion Th from 50 samples of calcite and four samples of fluorite range from ???35 to ???90 ??C. Calcite ??18O values range from ???0 to ???22??? (SMOW) but most fall between 12 and 20???. The highest Th and the lowest ??18O values are found in the older calcite. Calcite Th and ??18O values indicate that most calcite precipitated from water with ??18O values between -13 and -7???, similar to modern meteoric waters. Twenty-two 207Pb/235U ages of chalcedony or opal that generally postdate elevated depositional temperatures range from ???9.5 to 1.9 Ma. New and published 207Pb/235U and 230Th/Uages coupled with the Th values and estimates of temperature from calcite ??18O values indicate that maximum unsaturated zone temperatures probably predate ???10 Ma and that the unsaturated zone had cooled to near-present-day temperatures (24-26 ??C at a depth of 250 m) by 2-4 Ma. The evidence

  11. Dune field reactivation from blowouts: Sevier Desert, UT, USA

    NASA Astrophysics Data System (ADS)

    Barchyn, Thomas E.; Hugenholtz, Chris H.

    2013-12-01

    Dune field reactivation (a shift from vegetated to unvegetated state) has important economic, social, and environmental implications. In some settings reactivation is desired to preserve environmental values, but in arid regions reactivation is typically a form of land degradation. Little is known about reactivation due to a lack of published records, making modeling and prediction difficult. Here we detail dune reactivations from blowout expansion in the Sevier Desert, Utah, USA. We use historical aerial photographs and satellite imagery to track the transition from stable, vegetated dunes to actively migrating sediment in 3 locations. We outline a reactivation sequence: (i) disturbance breaches vegetation and exposes sediment, then (ii) creates a blowout with a deposition apron that (iii) advances downwind with a slipface or as a sand sheet. Most deposition aprons are not colonized by vegetation and are actively migrating. To explore causes we examine local sand flux, climate data, and stream flow. Based on available data the best explanation we can provide is that some combination of anthropogenic disturbance and climate may be responsible for the reactivations. Together, these examples provide a rare glimpse of dune field reactivation from blowouts, revealing the timescales, behaviour, and morphodynamics of devegetating dune fields.

  12. Origin and Evolution of Li-rich Brines at Clayton Valley, Nevada, USA

    NASA Astrophysics Data System (ADS)

    Munk, L. A.; Bradley, D. C.; Hynek, S. A.; Chamberlain, C. P.

    2011-12-01

    Lithium is the key component in Li-ion batteries which are the primary energy storage for electric/hybrid cars and most electronics. Lithium is also an element of major importance on a global scale because of interest in increasing reliance on alternative energy sources. Lithium brines and pegmatites are the primary and secondary sources, respectively of all produced Li. The only Li-brine in the USA that is currently in production exists in Clayton Valley, NV. The groundwater brines at Clayton Valley are located in a closed basin with an average evaporation rate of 142 cm/yr. The brines are pumped from six aquifer units that are composed of varying amounts of volcanic ash, gravel, salt, tufa, and fine-grained sediments. Samples collected include spring water, fresh groundwater, groundwater brine, and meteoric water (snow). The brines are classified as Na-Cl waters and the springs and fresh groundwater have a mixed composition and are more dilute than the brines. The Li content of the waters in Clayton Valley ranges from less than 1 μg/L (snow) up to 406.9 mg/L in the lower ash aquifer system (one of six aquifers in the basin). The cold springs surrounding Clayton Valley have Li concentrations of about 1 mg/L. A hot spring located just east of Clayton Valley contains 1.6 mg/L Li. The Li concentration of the fresh groundwater is less than 1 mg/L. Hot groundwater collected in the basin contain 30-40 mg/L Li. Water collected from a geothermal drilling north of Silver Peak, NV, had water with 4.9 mg/L Li at a depth of >1000m. The δD and δ18O isotopic signatures of fresh groundwater and brine form an evaporation path that extends from the global meteoric water line toward the brine from the salt aquifer system (the most isotopically enriched brine with ave. δD = -3.5, ave. δ18O = -67.0). This suggests that mixing of inflow water with the salt aquifer brine could have played an important role in the evolution of the brines. Along with mixing, evaporation appears to

  13. Quantification of unsaturated-zone alteration and cation exchange in zeolitized tuffs at Yucca Mountain, Nevada, USA

    NASA Astrophysics Data System (ADS)

    Vaniman, David T.; Chipera, Steve J.; Bish, David L.; Carey, J. William; Levy, Schön S.

    2001-10-01

    Zeolitized horizons in the unsaturated zone (UZ) at Yucca Mountain, Nevada, USA, are an important component in concepts for a high-level nuclear waste repository at this site. The use of combined quantitative X-ray diffraction and geochemical analysis allows measurement of the chemical changes that accompanied open-system zeolitization at Yucca Mountain. This approach also provides measures of the extent of chemical migration that has occurred in these horizons as a result of subsequent cation exchange. Mass-balance analysis of zeolitized horizons with extensive cation exchange (drill hole UZ-16) and with only minimal cation exchange (drill hole SD-9) shows that Al is essentially immobile. Although zeolitization occurred in an open system, the mass transfer of constituents other than water is relatively small in initial zeolitization, in contrast to the larger scales of cation exchange that can occur after zeolites have formed. Cation exchange in the clinoptilolite ± mordenite zeolitized horizons is seen in downward-diminishing concentration gradients of Ca, Mg, and Sr exchanged for Na and (to lesser extent) K. Comparison with data from drill hole SD-7, which has multiple zeolitized horizons above the water table, shows that the upper horizons accumulate Ca, Mg, and Sr to such an extent that transport of these elements to the deepest UZ zeolitized horizon can be blocked. Quantitative analysis of zeolite formation yields insight into processes that are implied from laboratory studies and modeling efforts but are otherwise unverified at the site. Such analysis also yields information not provided by or contradicted by some models of flow and transport. The results include the following: (1) evidence of effective downward flow through zeolitic horizons despite the low permeability of these horizons, (2) evidence that alkaline-earth elements accumulated by zeolites are mostly derived from eolian materials in surface soils, (3) validation of the very effective

  14. Using classification and NDVI differencing methods for monitoring sparse vegetation coverage: a case study of saltcedar in Nevada, USA.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A change detection experiment for an invasive species, saltcedar, near Lovelock, Nevada, was conducted with multi-date Compact Airborne Spectrographic Imager (CASI) hyperspectral datasets. Classification and NDVI differencing change detection methods were tested, In the classification strategy, a p...

  15. Method development and strategy for the characterization of complexly faulted and fractured rhyolitic tuffs, Yucca Mountain, Nevada, USA

    SciTech Connect

    Karasaki, K.; Galloway, D.

    1990-10-01

    Field experimental and analytical methods development is underway to define the hydraulic and transport properties of a thick saturated zone that underlies the planned high-level nuclear waste repository at Yucca Mountain, Nevada. The characterization strategy for the highly heterogeneous hydrology is that of hypothesis testing and confidence building. Three test wells, the UE-25c-holes, have been drilled and preliminary data have been collected. Hydro-mechanical analyses indicate formation fluid at depth is hydraulically connected to the water table. Preliminary hydraulic tests indicate highly localized, fracture-controlled transmissivity. Cross-hole seismic tomography is planned to assess the inter-borehole structure of fractures and faults. Multi-level cross-hole hydraulic interference and tracer tests are planned using up to 5 packed-off zones in each of the c-holes to assess the hydraulic conductivity and transport structure in a crude tomographic fashion. An equivalent discontinuum model conditioned with the observed hydraulic measurements will be applied to interpret the hydraulic test responses. As an approach to the scale problem the tests will be designed and analyzed to examine the hypothesis that the flow system may be represented by fractal geometry. 12 refs., 4 figs.

  16. Variability and sources of surface ozone at rural sites in Nevada, USA: Results from two years of the Nevada Rural Ozone Initiative.

    PubMed

    Fine, Rebekka; Miller, Matthieu B; Burley, Joel; Jaffe, Daniel A; Pierce, R Bradley; Lin, Meiyun; Gustin, Mae Sexauer

    2015-10-15

    Ozone (O3) has been measured at Great Basin National Park (GBNP) since September 1993. GBNP is located in a remote, rural area of eastern Nevada. Data indicate that GBNP will not comply with a more stringent National Ambient Air Quality Standard (NAAQS) for O3, which is based upon the 3-year average of the annual 4th highest Maximum Daily 8-h Average (MDA8) concentration. Trend analyses for GBNP data collected from 1993 to 2013 indicate that MDA8 O3 increased significantly for November to February, and May. The greatest increase was for May at 0.38, 0.35, and 0.46 ppb yr(-1) for the 95th, 50th, and 5th percentiles of MDA8 O3 values, respectively. With the exception of GBNP, continuous O3 monitoring in Nevada has been limited to the greater metropolitan areas. Due to the limited spatial detail of O3 measurements in rural Nevada, a network of rural monitoring sites was established beginning in July 2011. For a period ranging from July 2011 to June 2013, maximum MDA8 O3 at 6 sites occurred in the spring and summer, and ranged from 68 to 80ppb. Our analyses indicate that GBNP, in particular, is ideally positioned to intercept air containing elevated O3 derived from regional and global sources. For the 2 year period considered here, MDA8 O3 at GBNP was an average of 3.1 to 12.6 ppb higher than at other rural Nevada sites. Measured MDA8 O3 at GBNP exceeded the current regulatory threshold of 75 ppb on 7 occasions. Analyses of synoptic conditions, model tracers, and air mass back-trajectories on these days indicate that stratospheric intrusions, interstate pollution transport, wildfires, and Asian pollution contributed to elevated O3 observed at GBNP. We suggest that regional and global sources of ozone may pose challenges to achieving a more stringent O3 NAAQS in rural Nevada. PMID:25548133

  17. Fine Resolution Tree Height Estimation from Lidar Data and Its Application in SRTM DEM Correction across Forests of Sierra Nevada, California, USA

    NASA Astrophysics Data System (ADS)

    Su, Y.; Guo, Q.; Ma, Q.; Li, W.

    2015-12-01

    Sierra Nevada (SN) is a mountain range located in the northeastern California, USA, covering an area of 63,100 km2. As one of the most diverse temperate conifer forests on the Earth, forests of SN serve a series of ecosystem functions and are valuable natural heritages for the region and even the country. The still existed gap of accurate fine-resolution tree height estimation has lagged ecological, hydrological and forestry studies within the region. Moreover, the Shuttle Radar Topography Mission (SRTM) digital elevation model (DEM), as one of the most frequently used land surface elevation product in the region, has been proved systematically higher than actual land surface in vegetated mountain areas due to the absorption and reflection effects of canopy on the SRTM radar signal. An accurate fine resolution tree height product across the region is urgently needed for developing models to correct SRTM DEM. In this study, we firstly developed a method to estimate SN tree height distribution (defined by Lorey's height) through the combination of airborne lidar data, spaceborne lidar data, optical imagery, climate surfaces, and field measurements. Over 5 470 km2airborne lidar data and 1 000 plot measurements were collected across the SN to address this mission. Our method involved three main steps: 1) estimate tree heights within airborne lidar footprints using step-wise regression; 2) link the airborne lidar derived tree height to spaceborne lidar data and compute tree heights at spaceborne lidar footprints; 3) extrapolate tree height estimation from spaceborne lidar footprints to the whole region using Random Forest. The obtained SN tree height product showed good correspondence with independent field plot measurements. The coefficient of determination is higher than 0.65, and the root-mean-square error is around 5 m. With the obtained tree height product, we further explored the possibility of correcting SRTM DEM. The results showed that the obtained tree height

  18. The structure of Nevada`s Grant Canyon and Bacon Flat oil fields from 3-D seismic data

    SciTech Connect

    Johnson, E.H.; Zwart, D.W.

    1995-06-01

    The 20 million barrel Grant Canyon structure and its satellite feature, the one million barrel Bacon Flat field, are located at the eastern edge of Railroad Valley, Nevada. Utilizing an eleven square mile 3-D seismic survey, we have unraveled the complicated structure of the field area. The seismic data were calibrated to known geology with 21 wells drilled prior to the 1993 3-D survey, and 4 recent wells. The 3-D data cube provided vertical 2-D seismic lines every 60 feet. Horizontal slices of the data cube rendered {open_quotes}map views{close_quotes} of the structural trends. Still, the interpretation of this complex area was difficult, hampered by extreme velocity variations in the valley fill sediments that degraded data resolution and skewed the imaged structures. The Grant Canyon and Bacon Flat reservoirs are shown to be remnants of detached Devonian rocks that rest upon a northwest-trending salient of younger Paleozoic rocks. The Paleozoic rocks that form the salient are truncated to the southeast against the Troy Intrusive. Beneath the salient, the flank of the intrusive dips about 30 degrees northwest. We show Bacon Flat to be an isolated closure northwest of Grant Canyon field. However, on the south flank of the Grant Canyon reservoir, a significant oil accumulation was trapped on the down side of a normal fault, 400 feet low to the oil column of the field. This appears to be anomalous for a carbonate reservoir with extraordinary permeability, but suggests that more oil may be trapped in the area, on the flanks of producing structures.

  19. Field trip report: Observations made at Yucca Mountain, Nye County, Nevada. Special report No. 2

    SciTech Connect

    Hill, C.A.

    1993-03-01

    A field trip was made to the Yucca Mountain area on December 5-9, 1992 by Jerry Frazier, Don Livingston, Christine Schluter, Russell Harmon, and Carol Hill. Forty-three separate stops were made and 275 lbs. of rocks were collected during the five days of the field trip. Key localities visited were the Bare Mountains, Yucca Mountain, Calico Hills, Busted Butte, Harper Valley, Red Cliff Gulch, Wahmonie Hills, Crater Flat, and Lathrop Wells Cone. This report only describes field observations made by Carol Hill. Drawings are used rather than photographs because cameras were not permitted on the Nevada Test Site during this trip.

  20. The local effects of groundwater pumpage within a fault-influenced groundwater basin, Ash Meadows, Nye County, Nevada, U.S.A.

    USGS Publications Warehouse

    Rojstaczer, S.

    1987-01-01

    Large-scale groundwater pumpage and water-level decline data are used in a preliminary attempt to identify the hydraulic connection between several wells and Devils Hole, a small pond in Nye County, Nevada, U.S.A. Results indicate that despite the discontinuous nature of the local aquifers, many wells have good hydraulic connection with Devils Hole. Hydraulic connection between the wells and Devils Hole exhibits a complex spatial variability typical of carbonate terrane. Zones or directions of minimal hydraulic connection may result from fault-controlled structural discontinuities. Zones or directions of enhanced hydraulic connection point to the presence of large-scale groundwater flow through fractures or conduits. The orientation of waterbearing fractures or conduits inferred from this study is qualitatively consistent with the major orientation of local and regional structural features. ?? 1987.

  1. Spatial patterns of atmospherically deposited organic contaminants at high elevation in the southern Sierra Nevada mountains, California, USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Airborne contaminants in the Sierra Nevada mountains of California have been implicated as a factor adversely affecting biological resources like amphibians and fish, yet the distributions of contaminants within the mountains are poorly known, particularly at high elevation. we evaluated contaminan...

  2. Oil fields of northern Railroad Valley, Nye County, Nevada

    SciTech Connect

    Duey, H.D.

    1989-03-01

    Since 1954 four oil fields have been discovered in northern Railroad Valley: Eagle Springs, Trap Springs, Currant, and Kate Spring. Though similar in many aspects, each is unique in structure, stratigraphy, and reservoir conditions. Oil accumulation in all four fields is related to faulting, and all reservoirs are either fractured or enhanced by fractures. The reservoir rocks vary from Tertiary ignimbrites to Tertiary lacustrine sediments to Paleozoic carbonates. A Tertiary unconformity controls the seal at Trap Spring, Eagle Springs, and Kate Spring. At Currant the seal is the Tertiary Sheep Pass shale. There are two basic oil types. Oil has been generated from shales of the Tertiary Sheep Pass Formation and the Mississippian Chainman Formation. Oil generation is probably recent and continuing. These oils are mixed in at least two reservoirs. Over 10 million bbl of oil have been produced in northern Railroad Valley, and despite the variability of the stratigraphy, structure, and oil generation, the area is still a viable hunting ground for modest reserves. Using these fields along with their permutations and combinations as models makes exploration in the rest of the Basin and Range province inspiring.

  3. Geochemical and C, O, Sr, and U-series isotopic evidence for the meteoric origin of calcrete at Solitario Wash, Crater Flat, Nevada, USA

    NASA Astrophysics Data System (ADS)

    Neymark, L. A.; Paces, J. B.; Marshall, B. D.; Peterman, Z. E.; Whelan, J. F.

    2005-08-01

    Calcite-rich soils (calcrete) in alluvium and colluvium at Solitario Wash, Crater Flat, Nevada, USA, contain pedogenic calcite and opaline silica similar to soils present elsewhere in the semi-arid southwestern United States. Nevertheless, a ground-water discharge origin for the Solitario Wash soil deposits was proposed in a series of publications proposing elevation-dependent variations of carbon and oxygen isotopes in calcrete samples. Discharge of ground water in the past would raise the possibility of future flooding in the unsaturated zone at Yucca Mountain, Nevada, site of a proposed high-level nuclear waste repository. New geochemical and carbon, oxygen, strontium, and uranium-series isotopic data disprove the presence of systematic elevation-isotopic composition relations, which are the main justification given for a proposed ground-water discharge origin of the calcrete deposits at Solitario Wash. Values of δ13C (-4.1 to -7.8 per mil [‰]), δ18O (23.8-17.2‰), 87Sr/86Sr (0.71270-0.71146), and initial 234U/238U activity ratios of about 1.6 in the new calcrete samples are within ranges previously observed in pedogenic carbonate deposits at Yucca Mountain and are incompatible with a ground-water origin for the calcrete. Variations in carbon and oxygen isotopes in Solitario Wash calcrete likely are caused by pedogenic deposition from meteoric water under varying Quaternary climatic conditions over hundreds of thousands of years.

  4. Geochemical and C, O, Sr, and U-series isotopic evidence for the meteoric origin of calcrete at Solitario Wash, Crater Flat, Nevada, USA

    USGS Publications Warehouse

    Neymark, L.A.; Paces, J.B.; Marshall, B.D.; Peterman, Z.E.; Whelan, J.F.

    2005-01-01

    Calcite-rich soils (calcrete) in alluvium and colluvium at Solitario Wash, Crater Flat, Nevada, USA, contain pedogenic calcite and opaline silica similar to soils present elsewhere in the semi-arid southwestern United States. Nevertheless, a ground-water discharge origin for the Solitario Wash soil deposits was proposed in a series of publications proposing elevation-dependent variations of carbon and oxygen isotopes in calcrete samples. Discharge of ground water in the past would raise the possibility of future flooding in the unsaturated zone at Yucca Mountain, Nevada, site of a proposed high-level nuclear waste repository. New geochemical and carbon, oxygen, strontium, and uranium-series isotopic data disprove the presence of systematic elevation-isotopic composition relations, which are the main justification given for a proposed ground-water discharge origin of the calcrete deposits at Solitario Wash. Values of ??13C (-4.1 to -7.8 per mil [???]), ??18O (23.8-17.2???), 87Sr/ 86Sr (0.71270-0.71146), and initial 234U/238U activity ratios of about 1.6 in the new calcrete samples are within ranges previously observed in pedogenic carbonate deposits at Yucca Mountain and are incompatible with a ground-water origin for the calcrete. Variations in carbon and oxygen isotopes in Solitario Wash calcrete likely are caused by pedogenic deposition from meteoric water under varying Quaternary climatic conditions over hundreds of thousands of years. ?? Springer-Verlag 2005.

  5. Integration of genotoxicity and population genetic analyses in kangaroo rats (Dipodomys merriami) exposed to radionuclide contamination at the Nevada Test Site, USA

    USGS Publications Warehouse

    Theodorakis, Christopher W.; Bickham, John W.; Lamb, Trip; Medica, Philip A.; Lyne, T. Barrett

    2001-01-01

    We examined effects of radionuclide exposure at two atomic blast sites on kangaroo rats (Dipodomys merriami) at the Nevada Test Site, Nevada, USA, using genotoxicity and population genetic analyses. We assessed chromosome damage by micronucleus and flow cytometric assays and genetic variation by randomly amplified polymorphic DNA (RAPD) and mitochondrial DNA (mtDNA) analyses. The RAPD analysis showed no population structure, but mtDNA exhibited differentiation among and within populations. Genotoxicity effects were not observed when all individuals were analyzed. However, individuals with mtDNA haplotypes unique to the contaminated sites had greater chromosomal damage than contaminated-site individuals with haplotypes shared with reference sites. When interpopulation comparisons used individuals with unique haplotypes, one contaminated site had greater levels of chromosome damage than one or both of the reference sites. We hypothesize that shared-haplotype individuals are potential migrants and that unique-haplotype individuals are potential long-term residents. A parsimony approach was used to estimate the minimum number of migration events necessary to explain the haplotype distributions on a phylogenetic tree. The observed predominance of migration events into the contaminated sites supported our migration hypothesis. We conclude the atomic blast sites are ecological sinks and that immigration masks the genotoxic effects of radiation on the resident populations.

  6. Application of an extreme winter storm scenario to identify vulnerabilities, mitigation options, and science needs in the Sierra Nevada mountains, USA

    USGS Publications Warehouse

    Albano, Christine M.; Dettinger, Michael; McCarthy, Maureen; Schaller, Kevin D.; Wellborn, Toby; Cox, Dale A.

    2016-01-01

    In the Sierra Nevada mountains (USA), and geographically similar areas across the globe where human development is expanding, extreme winter storm and flood risks are expected to increase with changing climate, heightening the need for communities to assess risks and better prepare for such events. In this case study, we demonstrate a novel approach to examining extreme winter storm and flood risks. We incorporated high-resolution atmospheric–hydrologic modeling of the ARkStorm extreme winter storm scenario with multiple modes of engagement with practitioners, including a series of facilitated discussions and a tabletop emergency management exercise, to develop a regional assessment of extreme storm vulnerabilities, mitigation options, and science needs in the greater Lake Tahoe region of Northern Nevada and California, USA. Through this process, practitioners discussed issues of concern across all phases of the emergency management life cycle, including preparation, response, recovery, and mitigation. Interruption of transportation, communications, and interagency coordination were among the most pressing concerns, and specific approaches for addressing these issues were identified, including prepositioning resources, diversifying communications systems, and improving coordination among state, tribal, and public utility practitioners. Science needs included expanding real-time monitoring capabilities to improve the precision of meteorological models and enhance situational awareness, assessing vulnerabilities of critical infrastructure, and conducting cost–benefit analyses to assess opportunities to improve both natural and human-made infrastructure to better withstand extreme storms. Our approach and results can be used to support both land use and emergency planning activities aimed toward increasing community resilience to extreme winter storm hazards in mountainous regions.

  7. Chemical and colloidal analyses of natural seep water collected from the exploratory studies facility inside Yucca Mountain, Nevada, USA.

    PubMed

    Cizdziel, James V; Guo, Caixia; Steinberg, Spencer M; Yu, Zhongbo; Johannesson, Karen H

    2008-02-01

    Yucca Mountain is being considered as a geological repository for the USA's spent nuclear fuel and high-level nuclear waste. Numerous groundwater seeps appeared during March 2005 within the exploratory studies facility (ESF), a tunnel excavated in the mountain. Because of the relevance to radionuclide transport and unsaturated zone-modeling studies, we analyzed the seep samples for major anions and cations, rare earth elements, and colloids. Major ion species and elemental concentrations in seep samples reflect interaction of the water with the volcanic rock and secondary calcites. Elemental fractograms from flow-injection field-flow fractionation ICP-MS scans detected Br, Ca, Cl, Cu, Fe, I, Mg, Si, Sr, W, and U at void fractions, suggesting they may be present in the form of dissolved anions. Colloids approximately 10 nm in hydrodynamic diameter, possibly calcite, were also present in the seepage samples. Geochemical calculations indicate, however, these may be an artifact (not present in the groundwater) which arose because of loss of CO2 during sample collection and storage. PMID:17505890

  8. Placing the 2012-2015 California-Nevada drought into a paleoclimatic context: Insights from Walker Lake, California-Nevada, USA

    NASA Astrophysics Data System (ADS)

    Hatchett, Benjamin J.; Boyle, Douglas P.; Putnam, Aaron E.; Bassett, Scott D.

    2015-10-01

    Assessing regional hydrologic responses to past climate changes can offer a guide for how water resources might respond to ongoing and future climate change. Here we employed a coupled water balance and lake evaporation model to examine Walker Lake behaviors during the Medieval Climate Anomaly (MCA), a time of documented hydroclimatic extremes. Together, a 14C-based shoreline elevation chronology, submerged subfossil tree stumps in the West Walker River, and regional paleoproxy evidence indicate a ~50 year pluvial episode that bridged two 140+ year droughts. We developed estimates of MCA climates to examine the transient lake behavior and evaluate watershed responses to climate change. Our findings suggest the importance of decadal climate persistence to elicit large lake-level fluctuations. We also simulated the current 2012-2015 California-Nevada drought and found that the current drought exceeds MCA droughts in mean severity but not duration.

  9. Sans Spring Field Exploration Model, Nye County, Nevada

    SciTech Connect

    Mitchell, M.H.

    1995-06-01

    The existing model for Oligocene volcanic reservoir production in Railroad Valley was expanded with the discovery of oil at Sans Spring field by CENEX, et. al in March, 1993. Prior to drilling the CENEX No. 5-14 Federal (SWNW, section 14, T7N-R56E), economic production had only been established along the east and west borders of the valley, in structures associated with large offset normal faults. The location of Sans Spring field is on an east-west structural high that separates the productive central Railroad Valley sub-basin from the as yet unproductive southern sub-basin. Gravity, regional and detailed conventional 2-D seismic data coverage was employed to define the structure. This geophysical data further suggested that the structure had remained relatively undeformed, providing seal and trap integrity, during the post Oligocene extensional structural development of Railroad Valley. The location also met a critical criterion of being along a potential hydrocarbon migration pathway for oil generated by the Mississippian Chainman shale source rocks. The discovery well found reservoir development in a moderately welded and altered rhyolitic ignimbrite, with an IPF 1253 BOPD. The trap is an angular unconformity, with truncation to the west that has been modified and complicated by cut and fill channeling and faulting. Definition of the structural configuration, fault geometries and offsets has been greatly enhanced with the acquisition of a 3-D seismic survey. However, the data volume does not as yet provide an unambiguous solution to stratigraphic variations.

  10. Downhole seismic noise measurements in the Beowawe geothermal field, Nevada

    SciTech Connect

    Rutledge, J.T.; Albright, J.N.; Batra, R.

    1985-01-01

    A downhole seismic noise study was conducted at The Geysers area of Chevron's Beowawe geothermal field. Four wells were acoustically monitored with sensors placed simultaneously downhole and at the wellhead. Analyses included the correlation of downhole to surficial noise characteristics, well-to-well data correlations for noise source location or direction, and testing for the presence of borehole acoustic coupling between downhole and wellhead receivers. Intrawell cross-correlations in cased or lined boreholes clearly indicate acoustic coupling between wellhead and downhole receivers. Mean-integrated power values calculated over three frequency intervals indicate that the coupled signal is in the frequency interval 30 to 85 Hz and is the dominant component of signal downhole. Surficial variations of noise intensity in the frequency interval 0.5 to 15 Hz show little relation to simultaneously monitored downhole noise integrity. Downhole noise measurement appears to be predominantly a function of near-borehole phenomena in lined or cased holes. Measurements in an uncased borehole showed good correlations with surficial variations. Interwell correlations of noise could not be found. Reservoir noise in the Beowawe field indicated by conventional geophysical surveys could not be corroborated. 8 refs., 4 figs.

  11. Pseudotachylyte and Fluid Alteration at Seismogenic Depths (Glacier Lakes and Granite Pass Faults, Central Sierra Nevada, USA)

    NASA Astrophysics Data System (ADS)

    Prante, Mitchell R.; Evans, James P.

    2015-05-01

    We present evidence for ancient seismicity in the form of tectonic pseudotachylyte and coeval, cyclic hydrothermal alteration, and cataclasis along fault zones exhumed from 2.4 to 6.0 km in the central Sierra Nevada, CA. The Glacier Lakes fault (GLF) and Granite Pass fault (GPF) are exhumed left-lateral to left-lateral oblique, strike-slip faults with up to 125 m of left-lateral separation exposed in Mesozoic granite and granodiorite plutons. Precipitation of epidote along fault slip-surfaces, chloritization of biotite, saussurite and sericite alteration of plagioclase, and quartz- and-calcite filled veins are present in the GLF and GPF zones. One difficulty encountered in studying exhumed fault zones is providing convincing evidence for a frictional melt origin of pseudotachylyte. Rocks in the field may preserve convincing evidence for frictional melt (i.e., aphanitic, dark, injection structures) that are later shown to be related to cataclasis or injection of hydrothermal fluids. Another challenge results from the low preservation potential of several of the microscopic features that are convincing evidence of a frictional melt origin (microlites, amygdules, and glassy matrix). Here we test the usefulness of grain shape and nearest neighbor distribution analysis of pseudotachylyte and cataclasites from the GLF and GPF to discriminate between these fault rocks and to determine a frictional melt origin for pseudotachylyte. Fabric analyses of the clasts within the pseudotachylytes examined are more circular and exhibit a random nearest neighbor clast distribution relative to adjacent cataclasites. With increased comminution and melting the mean clast circularity increases and the nearest neighbor distances approach a random distribution. We conclude that this observed pattern can be applied to other fault zones as an indicator of a frictional melt origin for fault-related rocks. Mutually cross-cutting zones of hydrothermal alteration and calcite deformation twins

  12. Fracture Characterization in the Astor Pass Geothermal Field, Nevada

    NASA Astrophysics Data System (ADS)

    Walsh, D. C.; Reeves, D. M.; Pohll, G.; Lyles, B. F.; Cooper, C. A.

    2011-12-01

    The Astor Pass geothermal field, near Pyramid Lake, NV, is under study as a site of potential geothermal energy production. Three wells have been completed in the graben of this typical Basin and Range geologic setting. Lithologies include a layer of unconsolidated sediment (basin fill) underlain by various tertiary volcanic units and granodiorite and metavolcanic basement rock. Characterization of fractures within the relatively impermeable rock matrix is being conducted for the three wells. Statistical analysis of fracture orientation, densities, and spacing obtained from borehole imaging logs is used to determine stress orientation and to generate a statistically equivalent Discrete Fracture Network (DFN) model. Fractures at depth are compared to fracture data collected in nearby outcrops of the same lithologic stratigraphy. Fracture geometry and density is correlated to mechanically discrete layers within the stratigraphy to test whether variations in fracturing can be attributed to variations in Young's modulus. Correlation of fracture geometry and densities with spinner flowmeter logs and distributed temperature sensor records are made in an effort to identify potential flowing fracture zones intersecting the borehole. Mean fracture aperture is obtained from open fracture counts and reservoir-scale transmissivity values (computed from a 30 day pump test) in the absence of readily available aperture data. The goal of this thorough fracture characterization is to create a physically relevant model which may be coupled with a multipurpose fluid flow and thermal simulator for investigation of geothermal reservoir behavior, particularly at the borehole scale.

  13. Geochemistry of natural components in the near-field environment, Yucca Mountain, Nevada

    USGS Publications Warehouse

    Peterman, Z.E.; Oliver, T.A.

    2007-01-01

    The natural near-field environment in and around the emplacement drifts of the proposed nuclear waste repository at Yucca Mountain, Nevada, includes the host rock, dust, seepage, and pore water. The chemical compositions of these components have been determined for assessing possible chemical and mineralogical reactions that may occur after nuclear waste is emplaced. The rock hosting the proposed repository is relatively uniform as shown by a mean coefficient of variation (CV) of 9 percent for major elements. In contrast, compositional variations of dust (bulk and water-soluble fractions), pore water, and seepage are large with mean CVs ranging from 28 to 64 percent. ?? 2007 Materials Research Society.

  14. Geochemistry of Natural Components in the Near-Field Environment, Yucca Mountain, Nevada

    SciTech Connect

    Peterman, Zell E.; Oliver, Thomas A.

    2007-07-01

    The natural near-field environment in and around the emplacement drifts of the proposed nuclear waste repository at Yucca Mountain, Nevada, includes the host rock, dust, seepage, and pore water. The chemical compositions of these components have been determined for assessing possible chemical and mineralogical reactions that may occur after nuclear waste is emplaced. The rock hosting the proposed repository is relatively uniform as shown by a mean coefficient of variation (CV) of 9 percent for major elements. In contrast, compositional variations of dust (bulk and water-soluble fractions), pore water, and seepage are large with mean CVs ranging from 28 to 64 percent. (authors)

  15. A look at Bacon Flat, Grant Canyon oil fields of Railroad Valley, Nevada

    SciTech Connect

    Johnson, E.H. )

    1993-05-17

    The prolific wells at Grant Canyon, and the puzzling geology, have intrigued explorationists and promoters. Many a Nevada prospect has been touted as 'another Grand Canyon.' But what processes formed Grant Canyon, and can others be found Last August, Equitable Resources Energy Co,'s Balcron Oil Division spudded a well at Bacon Flat, a mile west of Grant Canyon. A one well field, Bacon Flat had been abandoned in 1988. But just 900 ft north of the field opener, Balcron's well tested oil at a rate or 5,400 b/d. It turns out that Bacon Flat and Grant Canyon fields have a common geological history and, in fact, share the same faulted horst. However, they formed by an unusual combination of events that may be unique to those fields. This paper describes the geologic history, well logging interpretations, structures, the Jebco C seismic line, a geologic cross section, and the author's conclusions.

  16. Time scales of pulsatory magmatic construction and solidification in Miocene subvolcanic magma systems, Eldorado Mountains, Nevada (USA)

    NASA Astrophysics Data System (ADS)

    Miller, J. S.; Miller, C. F.; Cates, N. L.; Wooden, J. L.; Means, M. A.; Ericksen, S.

    2004-05-01

    Recent advances in high-resolution geochronology applied to volcanic rocks have illuminated residence times of magma in subvolcanic magma chambers, and thereby provided valuable constraints on the evolution of upper crustal magmatic systems. Subvolcanic plutons record an important complementary physical and temporal record of magma processing and solidification of shallowly emplaced magma bodies. Our detailed field, geochemical, and isotopic investigations of the Miocene Aztec Wash and Searchlight plutons (Eldorado Mountains, Nevada) have shown that both systems experienced mafic and felsic input, both solidified primarily by vertical accumulation of solidified products, and both were vented during their life spans. However, the final captured records are different in that Searchlight is dominated by relatively homogeneous felsic cumulates, whereas Aztec Wash records repeated input and mingling of mafic and felsic magmas. New in situ ion microprobe U/Pb dating (Stanford/USGS SHRIMP-RG) of zircon (partially corroborated by U/Pb TIMS), combined with our earlier and ongoing field and isotopic studies, now reveal clear differences in the magmatic life spans and lifecycles of the two systems. U/Pb ion probe ages of 123 zircon spots from 5 samples from Aztec Wash document 200 ky of construction. Three samples from the lower middle part of the pluton are all 15.8 Ma (1σ ) errors for individual samples ~0.15 Ma; MSWD's ~1.0), and a single sample at the top is 15.6±0.2 Ma (MSWD 0.3); a late dike is 15.5±0.1 Ma (MSWD 1.0). Ages from 136 spots from 6 samples from the Searchlight pluton record 2 million years of construction (all age errors are 1σ )). The oldest dated unit is a mafic pod from lower Searchlight pluton that yielded a 206Pb/238U age of 17.7±0.3 Ma (MSWD 0.6). A granite from a thick felsic sheet in the interior of Searchlight pluton, interpreted to be the last material to crystallize, yielded a 206Pb/238U age of 16.2±0.2 (MSWD 3.5), but has a distinct 15

  17. Geophysical framework of the southwestern Nevada volcanic field and hydrogeologic implications

    SciTech Connect

    Grauch, V.J.S.; Sawyer, D.A.; Fridrich, C.J.; Hudson, M.R.

    2000-06-08

    Gravity and magnetic data, when integrated with other geophysical, geological, and rock-property data, provide a regional framework to view the subsurface geology in the southwestern Nevada volcanic field. The authors have loosely divided the region into six domains based on structural style and overall geophysical character. For each domain, they review the subsurface tectonic and magmatic features that have been inferred or interpreted from previous geophysical work. Where possible, they note abrupt changes in geophysical fields as evidence for potential structural or lithologic control on ground-water flow. They use inferred lithology to suggest associated hydrogeologic units in the subsurface. The resulting framework provides a basis for investigators to develop hypotheses for regional ground-water pathways where no drill-hole information exists. The authors discuss subsurface features in the northwestern part of the Nevada Test Site and west of the Nevada Test Site in more detail to address potential controls on regional ground-water flow away from areas of underground nuclear-weapons testing at Pahute Mesa. Subsurface features of hydrogeologic importance in these areas are (1) the resurgent intrusion below Timber Mountain, (2) a NNE-trending fault system coinciding with western margins of the Silent Canyon and Timber Mountain caldera complexes, (3) a north-striking, buried fault east of Oasis Mountain extending for 15 km, which they call the Hogback fault, and (4) an east-striking transverse fault or accommodation zone that, in part, bounds Oasis Valley basin on the south, which they call the Hot Springs fault. In addition, there is no geophysical nor geologic evidence for a substantial change in subsurface physical properties within a corridor extending from the northwestern corner of the Rainier Mesa caldera to Oasis Valley basin (east of Oasis Valley discharge area). This observation supports the hypothesis of other investigators that regional ground water

  18. Paleomagnetic record of a geomagnetic field reversal from late miocene mafic intrusions, southern nevada.

    PubMed

    Ratcliff, C D; Geissman, J W; Perry, F V; Crowe, B M; Zeitler, P K

    1994-10-21

    Late Miocene (about 8.65 million years ago) mafic intrusions and lava flows along with remagnetized host rocks from Paiute Ridge, southern Nevada, provide a high-quality paleomagnetic record of a geomagnetic field reversal. These rocks yield thermoremanent magnetizations with declinations of 227 degrees to 310 degrees and inclinations of -7 degrees to 49 degrees , defining a reasonably continuous virtual geomagnetic pole path over west-central Pacific longitudes. Conductive cooling estimates for the intrusions suggest that this field transition, and mafic magmatism, lasted only a few hundred years. Because this record comes principally from intrusive rocks, rather than sediments or lavas, it is important in demonstrating the longitudinal confinement of the geomagnetic field during a reversal. PMID:17816684

  19. Effect of Tree-to-Shrub Type Conversion in Lower Montane Forests of the Sierra Nevada (USA) on Streamflow.

    PubMed

    Bart, Ryan R; Tague, Christina L; Moritz, Max A

    2016-01-01

    Higher global temperatures and increased levels of disturbance are contributing to greater tree mortality in many forest ecosystems. These same drivers can also limit forest regeneration, leading to vegetation type conversion. For the Sierra Nevada of California, little is known about how type conversion may affect streamflow, a critical source of water supply for urban, agriculture and environmental purposes. In this paper, we examined the effects of tree-to-shrub type conversion, in combination with climate change, on streamflow in two lower montane forest watersheds in the Sierra Nevada. A spatially distributed ecohydrologic model was used to simulate changes in streamflow, evaporation, and transpiration following type conversion, with an explicit focus on the role of vegetation size and aspect. Model results indicated that streamflow may show negligible change or small decreases following type conversion when the difference between tree and shrub leaf areas is small, partly due to the higher stomatal conductivity and the deep rooting depth of shrubs. In contrast, streamflow may increase when post-conversion shrubs have a small leaf area relative to trees. Model estimates also suggested that vegetation change could have a greater impact on streamflow magnitude than the direct hydrologic impacts of increased temperatures. Temperature increases, however, may have a greater impact on streamflow timing. Tree-to-shrub type conversion increased streamflow only marginally during dry years (annual precipitation < 800 mm), with most streamflow change observed during wetter years. These modeling results underscore the importance of accounting for changes in vegetation communities to accurately characterize future hydrologic regimes for the Sierra Nevada. PMID:27575592

  20. A detailed 2,000-year late holocene pollen record from lower Pahranagat Lake, Southern Nevada, USA

    SciTech Connect

    Hemphill, M.L.; Wigand, P.E.

    1995-09-01

    Preliminary analysis of 128 pollen samples and seven radiocarbon dates from a 5-meter long, 10-cm diameter sediment core retrieved from Lower Pahranagat Lake (elevation - 975 in), Lincoln County, Nevada, gives us a rare, continuous, record of vegetation change at an interval of every 14 years over the last 2,000 years. During this period increasing Pinus (pine) pollen values with respect to Juniperus Ouniper pollen values reflect the increasing dominance of pinyon in southern Nevada woodlands during the last 2,000 years. Today Pinus pollen values indicate that pinyon pine is more frequent in the southern Great Basin since the end of the Neoglacial 2,000 years ago. During the same time frame, a general decrease in Poaceae (grass) pollen values with respect to Artemisia (sagebrush) pollen values reflect the general trend of increasing dominance of steppe and desert scrub species with respect to grasses. Variations in these two species reflect not only the generally more xeric nature of climate during the last 2,000 years, but also periods of summer shifted rainfall - 1,500 years ago that encouraged both a period of grass and pinyon expansion. The ratio of aquatic to littoral pollen types indicates generally deeper water conditions 2 to 1 ka and more variable, but predominately more marshy, conditions at the site during most of the last 1 ka. Investigation of ostracodes from the same record being conducted by Dr. R. Forester at the USGS corroborate the pollen record by evidencing shifts between open and closed hydrologic systems including lake, marsh and even stream habitats. Analysis of an additional 10 meters of core recovered in the summer of 1994 with a basal date of 5.6 ka promises to provide the best record of middle through late Holocene vegetation and climate history for southern Nevada.

  1. Effect of Tree-to-Shrub Type Conversion in Lower Montane Forests of the Sierra Nevada (USA) on Streamflow

    PubMed Central

    Tague, Christina L.; Moritz, Max A.

    2016-01-01

    Higher global temperatures and increased levels of disturbance are contributing to greater tree mortality in many forest ecosystems. These same drivers can also limit forest regeneration, leading to vegetation type conversion. For the Sierra Nevada of California, little is known about how type conversion may affect streamflow, a critical source of water supply for urban, agriculture and environmental purposes. In this paper, we examined the effects of tree-to-shrub type conversion, in combination with climate change, on streamflow in two lower montane forest watersheds in the Sierra Nevada. A spatially distributed ecohydrologic model was used to simulate changes in streamflow, evaporation, and transpiration following type conversion, with an explicit focus on the role of vegetation size and aspect. Model results indicated that streamflow may show negligible change or small decreases following type conversion when the difference between tree and shrub leaf areas is small, partly due to the higher stomatal conductivity and the deep rooting depth of shrubs. In contrast, streamflow may increase when post-conversion shrubs have a small leaf area relative to trees. Model estimates also suggested that vegetation change could have a greater impact on streamflow magnitude than the direct hydrologic impacts of increased temperatures. Temperature increases, however, may have a greater impact on streamflow timing. Tree-to-shrub type conversion increased streamflow only marginally during dry years (annual precipitation < 800 mm), with most streamflow change observed during wetter years. These modeling results underscore the importance of accounting for changes in vegetation communities to accurately characterize future hydrologic regimes for the Sierra Nevada. PMID:27575592

  2. Identifying sources of ozone to three rural locations in Nevada, USA, using ancillary gas pollutants, aerosol chemistry, and mercury.

    PubMed

    Miller, Matthieu B; Fine, Rebekka; Pierce, Ashley M; Gustin, Mae S

    2015-10-15

    Ozone (O3) is a secondary air pollutant of long standing and increasing concern for environmental and human health, and as such, the US Environmental Protection Agency will revise the National Ambient Air Quality Standard of 75 ppbv to ≤ 70 ppbv. Long term measurements at the Great Basin National Park (GBNP) indicate that O3 in remote areas of Nevada will exceed a revised standard. As part of the Nevada Rural Ozone Initiative, measurements of O3 and other air pollutants were made at 3 remote sites between February 2012 and March 2014, GBNP, Paradise Valley (PAVA), and Echo Peak (ECHO). Exceptionally high concentrations of each air pollutant were defined relative to each site as mixing ratios that exceeded the 90th percentile of all hourly data. Case studies were analyzed for all periods during which mean daily O3 exceeded the 90th percentile concurrently with a maximum 8-h average (MDA8) O3 that was "exceptionally high" for the site (65 ppbv at PAVA, 70 ppbv at ECHO and GBNP), and of potential regulatory significance. An MDA8 ≥ 65 ppbv occurred only five times at PAVA, whereas this occurred on 49 and 65 days at GBNP and ECHO, respectively. The overall correlation between O3 and other pollutants was poor, consistent with the large distance from significant primary emission sources. Mean CO at these locations exceeded concentrations reported for background sites in 2000. Trajectory residence time calculations and air pollutant concentrations indicate that exceedances at GBNP and ECHO were promoted by air masses originating from multiple sources, including wildfires, transport of pollution from southern California and the marine boundary layer, and transport of Asian pollution plumes. Results indicate that the State of Nevada will exceed a revised O3 standard due to sources that are beyond their control. PMID:25957787

  3. Manganoan fayalite [(Fe,Mn){sub 2}SiO{sub 4}]: A new occurrence in rhyolitic ash-flow tuff, southwestern Nevada, U.S.A.

    SciTech Connect

    Mills, J.G. Jr.; Rose, T.P.

    1991-01-01

    Manganoan fayalite is usually found associated with sedimentary iron-manganese ore deposits. Phenocrysts of manganoan fayalite were recently discovered in high-silica rhyolite pumice fragments from the Ammonia Tanks Member of the Timber Mountain Tuff in the Southwestern Nevada Volcanic Field. Twenty-one electron microprobe analyses (major-element oxides, NiO, BaO) are reported for the newly discovered phenocrysts. The slightly zoned phenocrysts range in composition from Fa{sub 63}Fo{sub 0}Te{sub 37}La{sub 0.2} to Fa{sub 72}Fo{sub 0.2}Te{sub 28}La{sub 0.1}.

  4. Field examination of shale and argillite in northern Nye County, Nevada

    SciTech Connect

    Connolly, J. R.; Woodward, L. A.; Emanuel, K. M.; Keil, K.

    1981-12-01

    Thirty-two locales underlain by clay-rich strata ranging from Cambrian Pioche Shale to Mississippian Chainman Shale and equivalents were examined in northern Nye County, Nevada. The text of the report summarizes data for each stratigraphic unit examined. Checklists for tabulating field data at each locale are included in an appendix. Working guidelines used to evaluate the locales include a minimum thickness of 150 m (500 ft) of relatively pure clay-rich bedrock, subsurface depth between 150 m (500 ft) and 900 m (3000 ft), low topographic relief, low seismic and tectonic activity, and avoidance of areas with mineral resource production or potential. Field studies indicate that only the Chainman Shale, specifically in the central and northern parts of the Pancake Range, appears to contain sites that meet these guidelines.

  5. Contributions to Astrogeology: Geology of the lunar crater volcanic field, Nye County, Nevada

    NASA Technical Reports Server (NTRS)

    Scott, D. H.; Trask, N. J.

    1971-01-01

    The Lunar Crater volcanic field in east-central Nevada includes cinder cones, maars, and basalt flows of probably Quaternary age that individually and as a group resemble some features on the moon. Three episodes of volcanism are separated by intervals of relative dormancy and erosion. Changes in morphology of cinder cones, degree of weathering, and superposition of associated basalt flows provide a basis for determining the relative ages of the cones. A method has been devised whereby cone heights, base radii, and angles of slope are used to determine semiquantitatively the age relationships of some cinder cones. Structural studies show that cone and crater chains and their associated lava flows developed along fissures and normal faults produced by tensional stress. The petrography of the basalts and pyroclastics suggests magmatic differentiation at depth which produced interbedded subalkaline basalts, alkali-olivine basalts, and basanitoids. The youngest flows in the field are basanitoids.

  6. Calcite growth-rate inhibition by fulvic acids isolated from Big Soda Lake, Nevada, USA, The Suwannee River, Georgia, USA and by polycarboxylic acids

    USGS Publications Warehouse

    Reddy, Michael M.; Leenheer, Jerry

    2011-01-01

    Calcite crystallization rates are characterized using a constant solution composition at 25°C, pH=8.5, and calcite supersaturation (Ω) of 4.5 in the absence and presence of fulvic acids isolated from Big Soda Lake, Nevada (BSLFA), and a fulvic acid from the Suwannee River, Georgia (SRFA). Rates are also measured in the presence and absence of low-molar mass, aliphatic-alicyclic polycarboxylic acids (PCA). BSLFA inhibits calcite crystal-growth rates with increasing BSLFA concentration, suggesting that BSLFA adsorbs at growth sites on the calcite crystal surface. Calcite growth morphology in the presence of BSLFA differed from growth in its absence, supporting an adsorption mechanism of calcite-growth inhibition by BSLFA. Calcite growth-rate inhibition by BSLFA is consistent with a model indicating that polycarboxylic acid molecules present in BSLFA adsorb at growth sites on the calcite crystal surface. In contrast to published results for an unfractionated SRFA, there is dramatic calcite growth inhibition (at a concentration of 1 mg/L) by a SRFA fraction eluted by pH 5 solution from XAD-8 resin, indicating that calcite growth-rate inhibition is related to specific SRFA component fractions. A cyclic PCA, 1, 2, 3, 4, 5, 6-cyclohexane hexacarboxylic acid (CHXHCA) is a strong calcite growth-rate inhibitor at concentrations less than 0.1 mg/L. Two other cyclic PCAs, 1, 1 cyclopentanedicarboxylic acid (CPDCA) and 1, 1 cyclobutanedicarboxylic acid (CBDCA) with the carboxylic acid groups attached to the same ring carbon atom, have no effect on calcite growth rates up to concentrations of 10 mg/L. Organic matter ad-sorbed from the air onto the seed crystals has no effect on the measured calcite crystal-growth rates.

  7. Using Groundwater Temperatures and Heat Flow Patterns to Assess Groundwater Flow in Snake Valley, Nevada and Utah, USA

    NASA Astrophysics Data System (ADS)

    Masbruch, M. D.; Chapman, D. S.

    2009-12-01

    The Southern Nevada Water Authority’s (SNWA) proposal to develop groundwater resources in Snake Valley and adjacent basins in eastern Nevada has focused attention on understanding the links between basin-fill and carbonate aquifer systems, groundwater flow paths, and the movement of groundwater between basins. The SNWA development plans are contentious in part because (1) there are few perennial streams that flow into the basins and these surface-water resources are fully appropriated; (2) groundwater resources that sustain streams, springs, wetlands, and the local agricultural economy are also limited; and (3) because Snake Valley straddles the Utah-Nevada state line. We report groundwater temperatures and estimates of heat flow used to constrain estimates of groundwater flow into and through Snake Valley. Thermal logs have been collected from 24 monitoring wells in the Utah part of the valley. Natural, undisturbed geothermal gradients within the Basin and Range are generally 30 °C/km, which correspond to heat flow values of approximately 90 mW/m2. Geothermal gradients in the southern portion of Snake Valley are lower than typical Basin and Range geothermal gradients, with the majority ranging between 10 and 20 °C/km, corresponding to heat flow values of 30 to 60 mW/m2. In the northern portion of the basin, however, geothermal gradients are generally higher than typical Basin and Range geothermal gradients, with thermal logs of two wells indicating gradients of 39 °C/km and 51 °C/km, which correspond to heat flow values of approximately 117 and 153 mW/m2, respectively. These observations suggest heat is being redistributed by groundwater flow to discharge points in northern Snake Valley. This interpretation is also supported by spring temperatures in northern Snake Valley and at Fish Springs National Wildlife Refuge to the northeast that are higher than ambient (12 °C) surface temperature. These thermal data are being used together with water levels and

  8. Structural control of tertiary Au-Ag-bearing breccias in an extensional environment, Nelson area, Southern Nevada, USA

    NASA Astrophysics Data System (ADS)

    Craw, D.; McKeag, S. A.

    1995-02-01

    Gold-silver mineralization in the Nelson area of southern Nevada was controlled by structures associated with intrusion of an east-west oriented pluton. Flatlying breccias formed during intrusion have allowed passive flooding of highly permeable zones and deposition of mineralized quartz and calcite. Steep fractures were formed in the pluton and immediate country rock during cooling, and later reactivated by north-south extension. These fractures have channelled fluids, and some have been the sites of hydrothermal eruptions which produced further brecciation and deposition of mineralized quartzcalcite veins. The mineralizing fluid was water which was boiling at or near 100 °C. The calcite deposited by this water has δ 13C = -5.4 to -7.1, and δ 18O = +5.8 to +11.3, and the water was probably meteoric in origin. Mineralization had an epithermal style, with strong local structural control, rather than deep-sourced regional detachment-related hydrothermal origin.

  9. Projected changes in seasonal drought and flood conditions in the Sierra Nevada and Colorado River basins (USA)

    NASA Astrophysics Data System (ADS)

    Stewart-Frey, Iris; Ficklin, Darren; Carrillo, Carlos; McIntosh, Russell

    2014-05-01

    The Sierra Nevada and Colorado River mountain ranges are the principal source of water for large urban and agricultural demands in the North American Southwest. In this region, GCM ensemble output suggests varying and modest precipitation changes, while air surface temperatures are expected to increase by several degrees by the end of the century. This study used the downscaled output of an ensemble of 16 GCMs and 2 emission scenarios to drive the SWAT watershed model, and to assess the impact of projected climatic changes on water availability and water quality through 2100. We then assess the changes in likelihood of occurrence of high (> 125%, > 150%) and low (< 75%, 150% of historic averages in high elevation regions and in main channels. The occurrence of extreme low flows are likely to significantly increase for the spring and summer seasons, with low flows of

  10. Early impacts of biological control on canopy cover and water use of the invasive saltcedar tree (Tamarix spp.) in western Nevada, USA

    USGS Publications Warehouse

    Pattison, R.R.; D'Antonio, C. M.; Dudley, T.L.; Allander, K.K.; Rice, B.

    2011-01-01

    The success of biological control programs is rarely assessed beyond population level impacts on the target organism. The question of whether a biological control agent can either partially or completely restore ecosystem services independent of population level control is therefore still open to discussion. Using observational and experimental approaches, we investigated the ability of the saltcedar leaf beetle [Diorhabda carinulata (Brull??) (Coleoptera: Chrysomelidae)] to reduce the water use of saltcedar trees (Tamarix ramosissima Ledeb.) in two sites (Humboldt and Walker Rivers) in Nevada, USA. At these sites D. carinulata defoliated the majority of trees within 25 and 9 km, respectively, of the release location within 3 years. At the Humboldt site, D. carinulata reduced the canopy cover of trees adjacent to the release location by >90%. At a location 4 km away during the first year of defoliation, D. carinulata reduced peak (August) stem water use by 50-70% and stand transpiration (July to late September) by 75% (P = 0. 052). There was, however, no reduction in stem water use and stand transpiration during the second year of defoliation due to reduced beetle abundances at that location. At the Walker site, we measured stand evapotranspiration (ET) in the center of a large saltcedar stand and found that ET was highest immediately prior to D. carinulata arrival, dropped dramatically with defoliation, and remained low through the subsequent 2 years of the study. In contrast, near the perimeter of the stand, D. carinulata did not reduce sap flow, partly because of low rates of defoliation but also because of increased water use per unit leaf area in response to defoliation. Taken together, our results provide evidence that in the early stages of population expansion D. carinulata can lead to substantial declines in saltcedar water use. The extent of these declines varies spatially and temporally and is dependent on saltcedar compensatory responses along with D

  11. Field trips in the southern Rocky Mountains, USA

    SciTech Connect

    Nelson, E.P.; Erslev, E.A.

    2004-07-01

    The theme of the 2004 GSA Annual Meeting and Exposition, 'Geoscience in a Changing World' covers both new and traditional areas of the earth sciences. The Front Range of the Rocky Mountains and the High Plains preserve an outstanding record of geological processes from Precambrian through Quaternary times, and thus served as excellent educational exhibits for the meeting. The chapters in this field guide all contain technical content as well as a field trip log describing field trip routes and stops. Of the 25 field trips offered at the Meeting. 14 are described in the guidebook, covering a wide variety of geoscience disciplines, with chapters on tectonics (Precambrian and Laramide), stratigraphy and paleoenvironments (e.g., early Paleozoic environments, Jurassic eolian environments, the K-T boundary, the famous Oligocene Florissant fossil beds), economic deposits (coal and molybdenum), geological hazards, and geoarchaeology. Two papers have been abstracted separately for the Coal Abstracts database.

  12. High Abundances of Potentially Active Ammonia-Oxidizing Bacteria and Archaea in Oligotrophic, High-Altitude Lakes of the Sierra Nevada, California, USA

    PubMed Central

    Hayden, Curtis J.; Beman, J. Michael

    2014-01-01

    Nitrification plays a central role in the nitrogen cycle by determining the oxidation state of nitrogen and its subsequent bioavailability and cycling. However, relatively little is known about the underlying ecology of the microbial communities that carry out nitrification in freshwater ecosystems—and particularly within high-altitude oligotrophic lakes, where nitrogen is frequently a limiting nutrient. We quantified ammonia-oxidizing archaea (AOA) and bacteria (AOB) in 9 high-altitude lakes (2289–3160 m) in the Sierra Nevada, California, USA, in relation to spatial and biogeochemical data. Based on their ammonia monooxygenase (amoA) genes, AOB and AOA were frequently detected. AOB were present in 88% of samples and were more abundant than AOA in all samples. Both groups showed >100 fold variation in abundance between different lakes, and were also variable through time within individual lakes. Nutrient concentrations (ammonium, nitrite, nitrate, and phosphate) were generally low but also varied across and within lakes, suggestive of active internal nutrient cycling; AOB abundance was significantly correlated with phosphate (r2 = 0.32, p<0.1), whereas AOA abundance was inversely correlated with lake elevation (r2 = 0.43, p<0.05). We also measured low rates of ammonia oxidation—indicating that AOB, AOA, or both, may be biogeochemically active in these oligotrophic ecosystems. Our data indicate that dynamic populations of AOB and AOA are found in oligotrophic, high-altitude, freshwater lakes. PMID:25402442

  13. Sphene and zircon in the Highland Range volcanic sequence (Miocene, southern Nevada, USA): Elemental partitioning, phase relations, and influence on evolution of silicic magma

    USGS Publications Warehouse

    Colombini, L.L.; Miller, C.F.; Gualda, G.A.R.; Wooden, J.L.; Miller, J.S.

    2011-01-01

    Sphene is prominent in Miocene plutonic rocks ranging from diorite to granite in southern Nevada, USA, but it is restricted to rhyolites in coeval volcanic sequences. In the Highland Range volcanic sequence, sphene appears as a phenocryst only in the most evolved rocks (72-77 mass% SiO2; matrix glass 77-78 mass% SiO2). Zr-in-sphene temperatures of crystallization are mostly restricted to 715 and 755??C, in contrast to zircon (710-920??C, Ti-in-zircon thermometry). Sphene rim/glass Kds for rare earth elements are extremely high (La 120, Sm 1200, Gd 1300, Lu 240). Rare earth elements, especially the middle REE (MREE), decrease from centers to rims of sphene phenocrysts along with Zr, demonstrating the effect of progressive sphene fractionation. Whole rocks and glasses have MREE-depleted, U-shaped REE patterns as a consequence of sphene fractionation. Within the co-genetic, sphene-rich Searchlight pluton, only evolved leucogranites show comparable MREE depletion. These results indicate that sphene saturation in intruded and extruded magmas occurred only in highly evolved melts: abundant sphene in less silicic plutonic rocks represents a late-stage 'bloom' in fractionated interstitial melt. ?? 2011 Springer-Verlag.

  14. The total column of CO2 and CH4 with a grating-based desktop optical spectrum analyzer at Railroad Valley, Nevada, USA

    NASA Astrophysics Data System (ADS)

    Kawakami, S.; Ohyama, H.; Shiomi, K.; kuze, A.; Takuya, F.; Arai, K.; Okumura, H.

    2013-12-01

    The total column of carbon dioxide (CO2) and methane (CH4) was measured with a grating-based desktop optical spectrum analyzer (OSA) at Railroad Valley, Nevada, USA during a vicarious calibration campaign in June 2013 which has been performed to estimate change in the radiometric response of the Thermal and Near Infrared Sensor for carbon Observations Fourier Transform Spectrometer (TANSO-FTS) and the Cloud and Aerosol Imager (TANSO-CAI) aboard Greenhouse gases Observing SATellite (GOSAT). TANSO-FTS measures spectra of radiance scattered by the Earth surface with high- and medium-gain depending on the surface reflectance. At high reflectance areas, such as deserts over the Sahara, Arabian and Australian deserts, TANSO-FTS collects spectra with medium-gain. There was differences on atmospheric surface pressure retrieved from O2 A band spectra obtained between high-gain and medium-gain of a previous version (L1B V100). Because the retrieved products are useful for evaluating the difference of spectral qualities between high- and medium-gain, this work is an attempt to collect validation data for spectra with medium-gain of TANSO-FTS at remote and desert area with the compact and medium-spectral resolution instrument. Before the campaign the OSA was well characterized. The OSA was compared with a ground-based FTS (Bruker IFS 125HR) at University of Saga. The OSA agreed with the FTS within 1ppm.

  15. Preliminary investigation of scale formation and fluid chemistry at the Dixie Valley Geothermal Field, Nevada

    SciTech Connect

    Bruton, C.J.; Counce, D.; Bergfeld, D.; Goff, F.; Johnson, S.D.; Moore, J.N.; Nimz, G.

    1997-06-27

    The chemistry of geothermal, production, and injection fluids at the Dixie Valley Geothermal Field, Nevada, was characterized to address an ongoing scaling problem and to evaluate the effects of reinjection into the reservoir. Fluids generally followed mixing-dilution trends. Recharge to the Dixie Valley system apparently originates from local sources. The low-pressure brine and injection waters were saturated with respect to amorphous silica, which correlated with the ongoing scaling problem. Local shallow ground water contains about 15% geothermal brine mixed with regional recharge. The elevated Ca, Mg, and HCO{sub 3} content of this water suggests that carbonate precipitation may occur if shallow groundwater is reinjected. Downhole reservoir fluids are close to equilibrium with the latest vein mineral assemblage of wairakite-epidote-quartz-calcite. Reinjection of spent geothermal brine is predicted to affect the region near the wellbore differently than it does the region farther away.

  16. Reservoir-scale fracture permeability in the Dixie Valley, Nevada, geothermal field

    SciTech Connect

    Barton, C.A.; Zoback, M.D.; Hickman, S.; Morin, R.; Benoit, D.

    1998-08-01

    Wellbore image data recorded in six wells penetrating a geothermal reservoir associated with an active normal fault at Dixie Valley, Nevada, were used in conjunction with hydrologic tests and in situ stress measurements to investigate the relationship between reservoir productivity and the contemporary in situ stress field. The analysis of data from wells drilled into productive and non-productive segments of the Stillwater fault zone indicates that fractures must be both optimally oriented and critically stressed to have high measured permeabilities. Fracture permeability in all wells is dominated by a relatively small number of fractures oriented parallel to the local trend of the Stillwater Fault. Fracture geometry may also play a significant role in reservoir productivity. The well-developed populations of low angle fractures present in wells drilled into the producing segment of the fault are not present in the zone where production is not commercially viable.

  17. Phosphorus losses from monitored fields with conservation practices in the Lake Erie Basin, USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Conservation practices are placed on farm fields in the USA through Farm Bill programs; however, there has been very little verification that these practices provide environmental benefits. This study was conducted to assess the impact of placing Farm Bill eligible conservation practices on soluble ...

  18. Investigating the Seismicity and Stress Field of the Truckee -- Lake Tahoe Region, California -- Nevada

    NASA Astrophysics Data System (ADS)

    Seaman, Tyler

    The Lake Tahoe basin is located in a transtensional environment defined by east-dipping range--bounding normal faults, northeast--trending sinistral, and northwest-trending dextral strike-slip faults in the northern Walker Lane deformation belt. This region accommodates as much as 10 mm/yr of dextral shear between the Sierra Nevada and Basin and Range proper, or about 20% of Pacific-North American plate motion. There is abundant seismicity north of Lake Tahoe through the Truckee, California region as opposed to a lack of seismicity associated with the primary normal faults in the Tahoe basin (i.e., West Tahoe fault). This seismicity study is focused on the structural transition zone from north-striking east-dipping Sierran Range bounding normal faults into the northern Walker Lane right-lateral strike-slip domain. Relocations of earthquakes between 2000-2013 are performed by initially applying HYPOINVERSE mean sea level datum and station corrections to produce higher confidence absolute locations as input to HYPODD. HYPODD applies both phase and cross-correlation times for a final set of 'best' event relocations. Relocations of events in the upper brittle crust clearly align along well-imaged, often intersecting, high-angle structures of limited lateral extent. In addition, the local stress field is modeled from 679 manually determined short-period focal mechanism solutions, between 2000 and 2013, located within a fairly dense local seismic network. Short-period focal mechanisms were developed with the HASH algorithm and moment tensor solutions using long-period surface waves and the MTINV code. Resulting solutions show a 9:1 ratio of strike-slip to normal mechanisms in the transition zone study area. Stress inversions using the application SATSI (USGS Spatial And Temporal Stress Inversion) generally show a T-axis oriented primarily E-W that also rotates about 30 degrees counterclockwise, from a WNW-ESE trend to ENE-WSW, moving west to east across the California--Nevada

  19. Middle Devonian to Early Carboniferous event stratigraphy of Devils Gate and Northern Antelope Range sections, Nevada, U.S.A

    USGS Publications Warehouse

    Sandberg, C.A.; Morrow, J.R.; Poole, F.G.; Ziegler, W.

    2003-01-01

    The classic type section of the Devils Gate Limestone at Devils Gate Pass is situated on the eastern slope of a proto-Antler forebulge that resulted from convergence of the west side of the North American continent with an ocean plate. The original Late Devonian forebulge, the site of which is now located between Devils Gate Pass and the Northern Antelope Range, separated the continental-rise to deep-slope Woodruff basin on the west from the backbulge Pilot basin on the east. Two connections between these basins are recorded by deeper water siltstone beds at Devils Gate; the older one is the lower tongue of the Woodruff Formation, which forms the basal unit of the upper member of the type Devils Gate, and the upper one is the overlying, thin lower member of the Pilot Shale. The forebulge and the backbulge Pilot basin originated during the middle Frasnian (early Late Devonian) Early hassi Zone, shortly following the Alamo Impact within the punctata Zone in southern Nevada. Evidence of this impact is recorded by coeval and reworked shocked quartz grains in the Northern Antelope Range and possibly by a unique bypass-channel or megatsunami-uprush sandy diamictite within carbonate-platform rocks of the lower member of the type Devils Gate Limestone. Besides the Alamo Impact and three regional events, two other important global events are recorded in the Devils Gate section. The semichatovae eustatic rise, the maximum Late Devonian flooding event, coincides with the sharp lithogenetic change at the discordant boundary above the lower member of the Devils Gate Limestone. Most significantly, the Devils Gate section contains the thickest and most complete rock record in North America across the late Frasnian linguiformis Zone mass extinction event. Excellent exposures include not only the extinction shale, but also a younger. Early triangularis Zone tsunamite breccia, produced by global collapse of carbonate platforms during a shallowing event that continued into the next

  20. Crustal-scale perspective on the rapid development of Oligocene silicic calderas and related underlying plutonic systems, western Nevada USA

    NASA Astrophysics Data System (ADS)

    Colgan, J. P.; John, D. A.; Henry, C.; Watts, K. E.

    2015-12-01

    Geologic mapping, U-Pb zircon ages, and 40Ar/39Ar sanidine ages document the timing and extent of Oligocene magmatism in the southern Stillwater Range and Clan Alpine Mountains of western Nevada, where Miocene extension has exposed five nested silicic calderas and related granitic plutons to crustal depths locally ≥9 km. The ≤29.4-28.8 Ma Job Canyon caldera in the Stillwater Range is filled with ~4 km of intracaldera tuff and lava flows; the 28.4 Ma IXL pluton intrudes intracaldera tuff and extends to ≥9 km depth. The 29 Ma Deep Canyon caldera covers ~250 km2 of the Clan Alpine Mountains, but only the upper ~1 km is exposed. The ≤26.0-25.2 Ma Poco Canyon caldera in the Stillwater Range is filled with two distinct intracaldera tuffs totaling 4.5 km thick, underlain by the 24.8 Ma Freeman Creek pluton exposed to depths ≥8 km. The small 25.3 Ma Louderback Mountains caldera in the SW Clan Alpine Mountains is filled with ~600 m of intracaldera tuff deposited on Oligocene rhyolite lava flows. The 25.1 Ma Elevenmile Canyon caldera spans ~1600 km2 in the Stillwater Range, Clan Alpine Mountains, and Desatoya Mountains, where it overlaps or cross cuts older calderas. Its total volume is ≥2500 km3, mostly consisting of the 1-4 km thick tuff of Elevenmile Canyon. 24.9-25.5 Ma silicic intrusive rocks underlie the Louderback Mountains and Elevenmile Canyon calderas to depths ≥6-8 km, locally surrounding septa of basement rock and older Oligocene igneous rocks. Two magmatic pulses, each lasting ~1 m.y. and associated with the 29 and 25 Ma caldera complexes, replaced almost the entire Mesozoic upper crust with Oligocene intrusive and extrusive rock to depths ≥9 km over a 1500 km2 area (pre-extension). Magma emplacement was most likely accommodated by downward transfer of country rocks and accompanied by isostatic surface uplift. If other Great Basin calderas are similar, the dense concentration of shallowly exposed calderas in central Nevada may be underlain by a

  1. The 21 February 2008 Wells, Nevada, USA Earthquake-Impacts of a Major Background Earthquake on a Rural Community

    NASA Astrophysics Data System (ADS)

    Depolo, C. M.

    2008-12-01

    The 2008 Wells, Nevada Earthquake (Mw 6) was a background event that did not rupture the surface and occurred on a fault that was previously unrecognized as a seismic hazard. The earthquake occurred just north of the town of Wells and residents generally reported about 20 to 40 seconds of shaking. Ground motion caused severe structural and nonstructural damage to several older buildings, especially two-story buildings. About 60% of the unreinforced masonry buildings were damaged, causing bricks and concrete crowns from walls and parapets to fall onto sidewalks, alleys, and adjacent buildings. Newer construction generally faired well, but commonly had cosmetic interior cracks. Over 60 masonry chimneys (approximately 10% to 15% of the total chimneys) were broken or thrown down and most homes and businesses suffered the some content loss. There were no deaths and only a few minor injuries associated with the event, partly because it occurred in the morning when many people were still home. Damage to the town's infrastructure included water-main breaks, two home propane-line leaks, a few electric-line breaks, and a couple of sewer- line breaks. One large propane tank rolled over, sheared off its valve, and leaked liquid propane, creating a critical-response situation. Several objects slid, fell, or were shaken in different dominant directions. The people of Wells, Elko County, and neighboring Utah and Idaho used an effective pioneering spirit to help the community respond and recover.

  2. Reconnaissance estimates of natural recharge to desert basins in Nevada, U.S.A., by using chloride-balance calculations

    USGS Publications Warehouse

    Dettinger, M.D.

    1989-01-01

    A chloride-balance method for estimating average natural recharge to groundwater basins in the Basin and Range Province of the western United States may be a useful alternative or complement to current techniques. The chloride-balance method, as presented in this paper, equates chloride in recharge water and runoff to chloride deposited in mountainous recharge-source areas by precipitation and dry fallout. Given estimates of annual precipitation on these source areas and chloride concentrations of bulk precipitation and recharge water, the rate of recharge can be estimated providing that: (1) no other major sources of chloride exist; (2) direct runoff to discharge areas in the basin is small or can otherwise be taken in account in the balance; and (3) the recharge sources for the basin are correctly delineated. The estimates are sensitive to the estimated rate of input of chloride from the atmosphere; this is the greatest data need for future applications of the method. Preliminary applications of the method to sixteen basins in Nevada, including Las Vegas Valley, indicate that the method can be a useful tool for hydrologists and resource managers. Correlation coefficients between recharge efficiencies for the basins - estimated on the basis of recharge estimates that use the chloride-balance method and two other currently used techniques - range from 0.54 to 0.95, depending on assumptions about where the method may be applied. ?? 1989.

  3. Relationships of ozone exposure to pine injury in the Sierra Nevada and San Bernardino Mountains of California, USA.

    PubMed

    Arbaugh, M J; Miller, P R; Carroll, J J; Takemoto, B; Procter, T

    1998-01-01

    Hourly ambient ozone exposure data and crown injury measurements were gathered in the Sierra Nevada and San Bernardino Mountains of California to develop relationships between the Ozone Injury Index (OII), the Forest Pest Management Index (FPM), chlorotic mottle, fascicle retention (OII index components) and cumulative ambient ozone indices for Pinus ponderosa Dougl. ex Laws and Pinus jeffreyi Grev. and Balf. Eleven sites located in the mixed conifer forest near ambient ozone monitoring sites were evaluated annually for 4 years. Four other sites in the San Bernardino Mountains were evaluated for 1 year. Analyses showed OII to be functionally equivalent (r2 = 0.96) to the FPM, and to depend only on fascicle retention and chlorotic mottle (R2 = 0.95) of the fourth whorl (or if four whorls are not present at the site, then the last whorl present for the majority of trees). Significant associations were found between OII and 4-year 24-h. summer SUM0, SUM06, W126 and HRS80 ozone indices. Three sites had higher levels of cumulative chlorotic mottle for individual whorls and larger numbers of trees with visible crown injury than other sites with similar cumulative ambient ozone levels. Including an indicator variable to discriminate between these two groups of sites increased R2 and decreased root mean square (RMSE) for all indices, especially SUM0 (R2 = 0.93, RMSE reduced by 46%). PMID:15093091

  4. Geology and geothermal origin of Grant Canyon and Bacon Flat Oil Fields, Railroad Valley, Nevada

    SciTech Connect

    Hulen, J.B. ); Goff, F. ); Ross, J.R. ); Bortz, L.C. ); Bereskin, S.R. )

    1994-04-01

    Eastern Nevada's Grant Canyon and Bacon Flat oil fields show strong evidence of formation in a still-active, moderate-temperature geothermal system. Modern manifestations of this system include unusually elevated oil-reservoir temperature at shallow depth, 116-122[degrees]C at 1.1-1.6 km, and dilute Na-HCO[sub 3]Cl thermal waters directly associated with hot oil. Hydrogen and oxygen isotopic compositions indicate that these thermal waters are meteoric in origin, but were probably recharged prior to the Holocene (before 10 ka). The waters apparently ascended to oil-reservoir elevations after deep heating in response to the normal regional thermal gradient; there is no evidence for a modern magmatic heat source. The beginning of oil-reservoir evolution at both fields is recorded by late-stage, fracture-filling quartz in the vuggy, brecciated, Paleozoic dolostone reservoir rocks. Oil and aqueous solutions were trapped as fluid inclusions in the quartz at temperatures comparable to those now prevailing in the reservoirs. Present day and fluid-inclusion temperatures define essentially coincident isothermal profiles through and beneath the oil-reservoir interval, a phenomenon consistent with near-constant convective heat transfer since inception of the geothermal system. Some basin and range oil fields have arisen as valuable byproducts of actively circulating geothermal systems and blending this concept into current exploration stratigies could hasten discovery of the 100 mbbl fields many geologists believe remain to be found in this region. 100 refs., 13 figs., 5 tabs.

  5. High Field Magnet R&D in the USA

    SciTech Connect

    Gourlay, S.A.

    2003-10-01

    Accelerator magnet technology is currently dominated by the use of NbTi superconductor. New and more demanding applications for superconducting accelerator magnets require the use of alternative materials. Several programs in the US are taking advantage of recent improvements in Nb{sub 3}Sn to develop high field magnets for new applications. Highlights and challenges of the US R and D program are presented along with the status of conductor development. In addition, a new R and D focus, the US LHC Accelerator Research Program, will be discussed.

  6. Reference Directions, Rotations, and Magnetostratigraphy: Utilization of Oligocene Ignimbrite Paleomagnetism to Better Understand Walker Lane Tectonics, Western Nevada, USA

    NASA Astrophysics Data System (ADS)

    Carlson, C. W.; Faulds, J. E.

    2015-12-01

    The Walker Lane accommodates ~20% of dextral strain between the Pacific and North American Plates on discontinuous sets of predominately northwest-striking right- and easterly striking left-lateral faults. Located west of dextral faults of the central Walker Lane and east of the Sierra Nevada frontal fault system is a region of normal faults and asymmetric basins where geodetic studies define ~5 mm/yr of northwest-directed dextral strain. As this region is devoid of major strike-slip fault systems, how strain is accommodated is poorly understood. To elucidate the long-term tectonic development of this region, we are compiling paleomagnetic data from late Oligocene ash-flow tuffs to determine magnitudes of vertical-axis rotation. This data set will be compared with ongoing and complementary studies of subsurface basin geometry and recent fault-slip motions to ultimately understand the tectonic development of this enigmatic part of the Walker Lane.Paleomagnetic directions were collected from structural-blocks where multiple ash-flow tuffs crop out in stratigraphic succession, and at least one sampled unit has a previously established reference direction. This approach will allow for determination of the magnitude of vertical-axis rotation at each locality and provide an opportunity to infer paleomagnetic reference directions for other ash-flow tuffs. Preliminary paleomagnetic data have identified statistically-significant magnitudes of vertical-axis rotation (~20-50° clockwise) west of central Walker Lane dextral faults. Magnetostratigraphic correlations to the geomagnetic time scale have refined ages for several ash-flow tuffs, and span ~5 Ma of the late Oligocene (chrons: 6Cn.3n-10r). The results of this research will not only elucidate the manner in which dextral shear is accommodated in this portion of the Walker Lane, but also provide an extensive data set for establishing Oligocene ash-flow tuff paleomagnetic reference directions and regional correlations.

  7. Sierra Nevada, California, U.S.A., Snow Algae: Snow albedo changes, algal-bacterial interrelationships and ultraviolet radiation effects

    SciTech Connect

    Thomas, W.H.; Duval, B.

    1995-11-01

    In the Tioga Pass area (upper LeeVining Creek watershed) of the Sierra Nevada (California), snow algae were prevalent in the early summers of 1993 and 1994. Significant negative correlations were found between snow water content. However, red snow caused by algal blooms did not decrease mean albedos in representative snowfields. This was due to algal patchiness; mean albedos would not decrease over the whole water catchment basin; and water supplies would not be affected by the presence of algae. Albedo was also reduced by dirt on the snow, and wind-blown dirt may provide a source of allochthonous organic matter for snow bacteria. However, several observations emphasize the importance of an autochthonous source for bacterial nutrition. Bacterial abundances and production rates were higher in red snow containing algae than in noncolored snow. Bacterial production was about two orders-of-magnitude lower than photosynthetic algal production. Bacteria were also sometimes attached to algal cells. In experiments where snow algae were contained in UV-transmitting quartz tubes, ultraviolet radiation inhibited red snow (collected form open, sunlit areas) photosynthesis about 25%, while green snow (collected from forested, shady locations) photosynthesis was inhibited by 85%. Methanol extracts of red snow algae had greater absorbances in blue and UV spectral regions than did algae from green snow. These differences in UV responses and spectra may be due to habitat (sun vs shade) differences, or may be genetic, since different species were found in the two snow types. However, both habitat and genetic mechanisms may be operating together to cause these differences. 53 refs., 5 figs., 5 tabs.

  8. Zircon and apatite (U-Th)/He evidence for Paleogene and Neogene extension in the Southern Snake Range, Nevada, USA

    NASA Astrophysics Data System (ADS)

    Evans, Sarah L.; Styron, Richard H.; Soest, Matthijs C.; Hodges, Kip V.; Hanson, Andrew D.

    2015-10-01

    Despite decades of study, the timing, rates, and magnitude of extension in the Basin and Range are poorly quantified in some areas. This study integrates new zircon and apatite (U-Th)/He analyses (ZrnHe and ApHe) with published thermochronologic data to quantify these extensional parameters in the Southern Snake Range (SSR) of east-central Nevada. The new ZrnHe dates range from 40.7 ± 4.9 Ma in the western SSR to 21.0 ± 3.3 Ma near the present-day trace of the Southern Snake Range Décollement (SSRD), and the ApHe dates range from 15.1 ± 2.4 Ma in the central SSR to 13.6 ± 0.7 Ma closest to the SSRD trace. These new and previously published low-temperature thermochronologic cooling ages were inverted for the extensional history of the SSR using a Bayesian Monte Carlo method incorporating Pecube. The posterior extensional histories indicate three significant pulses of extension occurred during the Paleogene and Neogene: (1) ~50-45 to ~38 Ma (Eocene), (2) ~33-30 to ~23 Ma (Oligocene), and (3) ~23-20 to ~10-8 Ma (Miocene). Modeled rates of extension were low at ≤ 0.5 mm a-1; however, more rapid rates possibly occurred during the Eocene and the Miocene based on posterior histories. Net cumulative extension from posterior histories is 19.8 to 34.9 km, with a mean of 29.7 km. About 10-18 km of extension occurred during the Eocene and Oligocene. Model results indicate no relationship between extension and magmatism in the SSR. Our new model results and interpretations also indicate extensional collapse of the Nevadaplano initiated prior to ~17 Ma.

  9. The influence of faults in basin-fill deposits on land subsidence, Las Vegas Valley, Nevada, USA

    NASA Astrophysics Data System (ADS)

    Burbey, Thomas

    2002-07-01

    The role of horizontal deformation caused by pumping of confined-aquifer systems is recognized as contributing to the development of earth fissures in semiarid regions, including Las Vegas Valley, Nevada. In spite of stabilizing water levels, new earth fissures continue to develop while existing ones continue to lengthen and widen near basin-fill faults. A three-dimensional granular displacement model based on Biot's consolidation theory (Biot, MA, 1941, General theory of three-dimensional consolidation. Jour. Applied Physics 12:155-164) has been used to evaluate the nature of displacement in the vicinity of two vertical faults. The fault was simulated as (1) a low-permeability barrier to horizontal flow, (2) a gap or structural break in the medium, but where groundwater flow is not obstructed, and (3) a combination of conditions (1) and (2). Results indicate that the low-permeability barrier greatly enhances horizontal displacement. The fault plane also represents a location of significant differential vertical subsidence. Large computed strains in the vicinity of the fault may suggest high potential for failure and the development of earth fissures when the fault is assumed to have low permeability. Results using a combination of the two boundaries suggest that potential fissure development may be great at or near the fault plane and that horizontal deformation is likely to play a key role in this development. Résumé. On considère que la déformation horizontale provoquée par un pompage dans un aquifère captif joue un rôle dans le développement des fissures du sol en régions semi-arides, comme la vallée de Las Vegas (Nevada). Malgré des niveaux d'eau stabilisés, de nouvelles fissures du sol continuent de se développer en longueur et en largeur au voisinage de failles dans les bassins sédimentaires. Un modèle de déplacement granulaire tri-dimensionnel, basé sur la théorie de la consolidation de Biot (Biot, M A, 1941, General theory of three

  10. The influence of faults in basin-fill deposits on land subsidence, Las Vegas Valley, Nevada, USA

    NASA Astrophysics Data System (ADS)

    Burbey, Thomas

    2002-07-01

    The role of horizontal deformation caused by pumping of confined-aquifer systems is recognized as contributing to the development of earth fissures in semiarid regions, including Las Vegas Valley, Nevada. In spite of stabilizing water levels, new earth fissures continue to develop while existing ones continue to lengthen and widen near basin-fill faults. A three-dimensional granular displacement model based on Biot's consolidation theory (Biot, MA, 1941, General theory of three-dimensional consolidation. Jour. Applied Physics 12:155-164) has been used to evaluate the nature of displacement in the vicinity of two vertical faults. The fault was simulated as (1) a low-permeability barrier to horizontal flow, (2) a gap or structural break in the medium, but where groundwater flow is not obstructed, and (3) a combination of conditions (1) and (2). Results indicate that the low-permeability barrier greatly enhances horizontal displacement. The fault plane also represents a location of significant differential vertical subsidence. Large computed strains in the vicinity of the fault may suggest high potential for failure and the development of earth fissures when the fault is assumed to have low permeability. Results using a combination of the two boundaries suggest that potential fissure development may be great at or near the fault plane and that horizontal deformation is likely to play a key role in this development. Résumé. On considère que la déformation horizontale provoquée par un pompage dans un aquifère captif joue un rôle dans le développement des fissures du sol en régions semi-arides, comme la vallée de Las Vegas (Nevada). Malgré des niveaux d'eau stabilisés, de nouvelles fissures du sol continuent de se développer en longueur et en largeur au voisinage de failles dans les bassins sédimentaires. Un modèle de déplacement granulaire tri-dimensionnel, basé sur la théorie de la consolidation de Biot (Biot, M A, 1941, General theory of three

  11. Spectral reflectance analysis of hydrothermal alteration in drill chips from two geothermal fields, Nevada

    NASA Astrophysics Data System (ADS)

    Lamb, A. K.; Calvin, W. M.

    2010-12-01

    We surveyed drill chips with a lab spectrometer in the visible-near infrared (VNIR) and short-wave infrared (SWIR) regions, 0.35-2.5 μm, to evaluate hydrothermal alteration mineralogy of samples from two known geothermal fields in western Nevada. Rock is fractured into small pieces or “chips” during drilling and stored in trays by depth interval. The drill chips are used to determine subsurface properties such as lithology, structure, and alteration. Accurately determining alteration mineralogy in the geothermal reservoir is important for indicating thermal fluids (usually associated with fluid pathways such as faults) and the highest temperature of alteration. Hydrothermal minerals, including carbonates, iron oxides, hydroxides, sheet silicates, and sulfates, are especially diagnostic in the VNIR-SWIR region.. The strength of reflectance spectroscopy is that it is rapid and accurate for differentiating temperature-sensitive minerals that are not visually unique. We examined drill chips from two western Nevada geothermal fields: Hawthorne (two wells) and Steamboat Springs (three wells) using an ASD lab spectrometer with very high resolution. The Steamboat Hills geothermal field has produced electricity since 1988 and is well studied, and is believed to be a combination of extensional tectonics and magmatic origin. Bedrocks are Cretaceous granodiorite intruding into older metasediments. Hot springs and other surface expressions occur over an area of about 2.6 km2. In contrast, the Hawthorne geothermal reservoir is a ‘blind’ system with no surface expressions such as hot springs or geysers. The geothermal field is situated in a range front fault zone in an extensional area, and is contained in Mesozoic mixed granite and meta-volcanics. We collected spectra at each interval in the chip trays. Interval length varied between 10’ and 30’. - Endmember analysis and mineral identification were performed -using standard analysis approaches used to map mineralogy

  12. Mapping variations in weight percent silica measured from multispectral thermal infrared imagery - Examples from the Hiller Mountains, Nevada, USA and Tres Virgenes-La Reforma, Baja California Sur, Mexico

    USGS Publications Warehouse

    Hook, S.J.; Dmochowski, J.E.; Howard, K.A.; Rowan, L.C.; Karlstrom, K.E.; Stock, J.M.

    2005-01-01

    Remotely sensed multispectral thermal infrared (8-13 ??m) images are increasingly being used to map variations in surface silicate mineralogy. These studies utilize the shift to longer wavelengths in the main spectral feature in minerals in this wavelength region (reststrahlen band) as the mineralogy changes from felsic to mafic. An approach is described for determining the amount of this shift and then using the shift with a reference curve, derived from laboratory data, to remotely determine the weight percent SiO2 of the surface. The approach has broad applicability to many study areas and can also be fine-tuned to give greater accuracy in a particular study area if field samples are available. The approach was assessed using airborne multispectral thermal infrared images from the Hiller Mountains, Nevada, USA and the Tres Virgenes-La Reforma, Baja California Sur, Mexico. Results indicate the general approach slightly overestimates the weight percent SiO2 of low silica rocks (e.g. basalt) and underestimates the weight percent SiO2 of high silica rocks (e.g. granite). Fine tuning the general approach with measurements from field samples provided good results for both areas with errors in the recovered weight percent SiO2 of a few percent. The map units identified by these techniques and traditional mapping at the Hiller Mountains demonstrate the continuity of the crystalline rocks from the Hiller Mountains southward to the White Hills supporting the idea that these ranges represent an essentially continuous footwall block below a regional detachment. Results from the Baja California data verify the most recent volcanism to be basaltic-andesite. ?? 2005 Elsevier Inc. All rights reserved.

  13. Eruptive styles and inferences about plumbing systems at Hidden Cone and Little Black Peak scoria cone volcanoes (Nevada, U.S.A.)

    NASA Astrophysics Data System (ADS)

    Valentine, Greg A.; Keating, Gordon N.

    2007-09-01

    We describe two small scoria cone volcanoes, Hidden Cone and Little Black Peak (ages between ~320-390 ka), in the Southwestern Nevada Volcanic Field and discuss their eruption mechanisms and inferences about their plumbing systems. Cone-forming pyroclastic deposits are consistent with eruptive styles ranging from Strombolian to violent Strombolian, and lavas emanated from near the bases of the cones. The volcanoes are monogenetic (rather than polycyclic, as allowed by previous geomorphic interpretations). Vents at each volcano appear to coincide with pre-existing normal faults, consistent with observations at older, deeply eroded volcanoes in the region. The existence of these two volcanoes on a topographically high area (particularly Hidden Cone) provides evidence for short feeder dike lengths (~500 m at the surface). We infer that this short length reflects the small length scale of the mantle source region that was tapped to feed each volcano.

  14. Evaluation of Pleistocene groundwater flow through fractured tuffs using a U-series disequilibrium approach, Pahute Mesa, Nevada, USA

    USGS Publications Warehouse

    Paces, James B.; Nichols, Paul J.; Neymark, Leonid A.; Rajaram, Harihar

    2013-01-01

    Groundwater flow through fractured felsic tuffs and lavas at the Nevada National Security Site represents the most likely mechanism for transport of radionuclides away from underground nuclear tests at Pahute Mesa. To help evaluate fracture flow and matrix–water exchange, we have determined U-series isotopic compositions on more than 40 drill core samples from 5 boreholes that represent discrete fracture surfaces, breccia zones, and interiors of unfractured core. The U-series approach relies on the disruption of radioactive secular equilibrium between isotopes in the uranium-series decay chain due to preferential mobilization of 234U relative to 238U, and U relative to Th. Samples from discrete fractures were obtained by milling fracture surfaces containing thin secondary mineral coatings of clays, silica, Fe–Mn oxyhydroxides, and zeolite. Intact core interiors and breccia fragments were sampled in bulk. In addition, profiles of rock matrix extending 15 to 44 mm away from several fractures that show evidence of recent flow were analyzed to investigate the extent of fracture/matrix water exchange. Samples of rock matrix have 234U/238U and 230Th/238U activity ratios (AR) closest to radioactive secular equilibrium indicating only small amounts of groundwater penetrated unfractured matrix. Greater U mobility was observed in welded-tuff matrix with elevated porosity and in zeolitized bedded tuff. Samples of brecciated core were also in secular equilibrium implying a lack of long-range hydraulic connectivity in these cases. Samples of discrete fracture surfaces typically, but not always, were in radioactive disequilibrium. Many fractures had isotopic compositions plotting near the 230Th-234U 1:1 line indicating a steady-state balance between U input and removal along with radioactive decay. Numerical simulations of U-series isotope evolution indicate that 0.5 to 1 million years are required to reach steady-state compositions. Once attained, disequilibrium 234U/238U

  15. Differential tolerance of native and nonnative fish exposed to ultraviolet radiation and fluoranthene in Lake Tahoe (California/Nevada), USA.

    PubMed

    Gevertz, Amanda K; Tucker, Andrew J; Bowling, Anna M; Williamson, Craig E; Oris, James T

    2012-05-01

    Within Lake Tahoe (CA/NV), USA, multiple environmental stressors are present that can affect both native and nonnative fish species. Stressors include natural ultraviolet radiation (UVR) and polycyclic aromatic hydrocarbons (PAHs). Many PAHs, such as fluoranthene (FLU) are phototoxic to aquatic organisms in the presence of UVR. Decreasing levels of UVR due to eutrophication and increasing levels of PAHs due to recreational activities may combine to affect the relative ability of native versus nonnative fish species to survive in the lake. The objective of the present study was to examine the differential effects of exposure to different levels of UVR and phototoxic FLU in native and nonnative fish species. Responses to these changes in the native Lahontan redside minnow (Richardsonius egregius) and the nonnative warm-water bluegill sunfish (Lepomis macrochirus) were compared during toxicity tests, which were conducted in controlled outdoor exposures. Physiological defenses were also investigated in an attempt to elucidate ways each species may tolerate UVR and UVR + FLU exposures. It was determined that the native redside minnow is more tolerant to UVR and UVR + FLU exposure when compared to the nonnative bluegill. In addition, a natural UVR coping mechanism, increased pigmentation, is exhibited to a greater extent in the native redside. The present study will help determine the potential for a future successful invasion of the bluegill and similar species in Lake Tahoe and other oligotrophic, montane lakes that are susceptible to habitat alteration, nutrient inputs, and recreational activity. PMID:22407869

  16. A comparison of in-situ aircraft measurements of carbon dioxide to GOSAT data measured over Railroad Valley playa, Nevada, USA

    NASA Astrophysics Data System (ADS)

    Tadić, J. M.; Loewenstein, M.; Frankenberg, C.; Iraci, L. T.; Yates, E. L.; Gore, W.; Kuze, A.

    2012-08-01

    In this paper we report vertical profiles of CO2 measured with a cavity ring-down spectrometer (CRDS, Picarro, Inc., 2301-m) on a research aircraft from near ground level to 8 km above mean sea level (a.m.s.l.). The airborne platform employed in this study is an Alpha Jet aircraft operated from NASA Ames Research Center. Flights were undertaken to Railroad Valley, Nevada, USA, to coincide with overpasses of the Greenhouse Gases Observing Satellite (GOSAT). Ground based CO2 was simultaneously measured using CRDS, also at the time and location of the airborne and satellite measurements. Results of three GOSAT coordinated aircraft profiles and ground based measurements in June 2011 are presented and discussed in this paper. The accuracy of the CO2 measurements has been determined based upon laboratory calibrations (WMO traceable standard) and pressure/temperature flight simulations in a test chamber. The 2-σ error bars for the CO2 data presented here are ± 0.4 ppm. Our column CO2 measurements, which include about 85% of the tropospheric mass, are extrapolated, using two different techniques, to include the remainder of the tropospheric and stratospheric CO2. The data are then analyzed using the ACOS (Atmospheric CO2 observations from space; JPL algorithm used to analyze XCO2 from GOSAT data) averaging kernels. ACOS version 2.9 is used to interpret the GOSAT data in a collaborative effort between JPL and the GOSAT team. Column averaged CO2, XCO2, measured by GOSAT and analyzed from our data ranged from 388.1 to 390.5 ppm. Values of XCO2 determined from our Alpha Jet measurements and from the GOSAT on three overflight days agree within 1 ppm or better (<0.3%).

  17. Hazard area and recurrence rate time series for determining the probability of volcanic disruption of the proposed high-level radioactive waste repository at Yucca Mountain, Nevada, USA

    NASA Astrophysics Data System (ADS)

    Ho, Chih-Hsiang

    2010-03-01

    The post-12-Ma volcanism at Yucca Mountain (YM), Nevada, a potential site for an underground geologic repository of high-level radioactive waste in the USA, is assumed to follow a Poisson process and is characterized by a sequence of empirical recurrence rate time series. The last ten time series are used as a prediction set to check the predictive ability of the candidate model produced by a training sample using autoregressive integrated moving average modeling techniques. The model is used to forecast future recurrence rates that, in turn, are used to develop a continuous mean function of the volcanic process, which is not only required to evaluate the probability of site disruption by volcanic activity but accommodates a long period of compliance. At the model validation stage, our candidate model forecasts a mean number of 6.196 eruptions for the prediction set which accounts for seven volcanic events of the 33 post-12-Ma eruptions at the YM site. For a full-scaled forecasting, our fitted model predicts a waning volcanism producing only 3.296 new eruptions in the next million years. We then present the site disruption probability as the chance that a new eruption will occur in the “hazard area” based on a model developed for licensing commercial space launch and reentry operations in the space transportation industry. The results of the site disruption probability and sensitivity analysis are summarized with a numerical table generated from a simple equation sufficient for practical use. We also produce three-dimensional plots to visualize the nonlinearity of the intensity function associated with the underlying model of a nonhomogeneous Poisson process and emphasize that the interpretation of site disruption probability should always be accompanied by a compliance period.

  18. Hydrogeologic influence on changes in snowmelt runoff with climate warming: Numerical experiments on a mid-elevation catchment in the Sierra Nevada, USA

    NASA Astrophysics Data System (ADS)

    Jepsen, S. M.; Harmon, T. C.; Meadows, M. W.; Hunsaker, C. T.

    2016-02-01

    The role of hydrogeology in mediating long-term changes in mountain streamflow, resulting from reduced snowfall in a potentially warmer climate, is currently not well understood. We explore this by simulating changes in stream discharge and evapotranspiration from a mid-elevation, 1-km2 catchment in the southern Sierra Nevada of California (USA) in response to reduced snowfall under warmer conditions, for a plausible range in subsurface hydrologic properties. Simulations are performed using a numerical watershed model, the Penn State Integrated Hydrologic Model (PIHM), constrained by observations from a meteorological station, stream gauge, and eddy covariance tower. We predict that the fraction of precipitation occurring as snowfall would decrease from approximately 47% at current conditions to 25%, 12%, and 5% for air temperature changes of +2, +4, and +6 °C. For each of these warming scenarios, changes in mean annual discharge and evapotranspiration simulated by the different plausible soil models show large ranges relative to averages, with coefficients of variation ranging from -3 to 3 depending on warming scenario. With warming and reduced snowfall, substrates with greater storage capacity show less soil moisture limitation on evapotranspiration during the late spring and summer, resulting in greater reductions in annual stream discharge. These findings indicate that the hydrologic response of mountain catchments to atmospheric warming and reduced snowfall may substantially vary across elevations with differing soil and regolith properties, a relationship not typically accounted for in approaches relying on space-for-time substitution. An additional implication of our results is that model simulations of annual stream discharge in response to snowfall-to-rainfall transitions may be relatively uncertain for study areas where subsurface properties are not well constrained.

  19. Cluster analyses of 20th century growth patterns in high elevation Great Basin bristlecone pine in the Snake Mountain Range, Nevada, USA

    NASA Astrophysics Data System (ADS)

    Tran, T. J.; Bruening, J. M.; Bunn, A. G.; Salzer, M. W.; Weiss, S. B.

    2015-12-01

    Great Basin bristlecone pine (Pinus longaeva) is a useful climate proxy because of the species' long lifespan (up to 5000 years) and the climatic sensitivity of its annually-resolved rings. Past studies have shown that growth of individual trees can be limited by temperature, soil moisture, or a combination of the two depending on biophysical setting at the scale of tens of meters. We extend recent research suggesting that trees vary in their growth response depending on their position on the landscape to analyze how growth patterns vary over time. We used hierarchical cluster analysis to examine the growth of 52 bristlecone pine trees near the treeline of Mount Washington, Nevada, USA. We classified growth of individual trees over the instrumental climate record into one of two possible scenarios: trees belonging to a temperature-sensitive cluster and trees belonging to a precipitation-sensitive cluster. The number of trees in the precipitation-sensitive cluster outnumbered the number of trees in the temperature-sensitive cluster, with trees in colder locations belonging to the temperature-sensitive cluster. When we separated the temporal range into two sections (1895-1949 and 1950-2002) spanning the length of the instrumental climate record, we found that most of the 52 trees remained loyal to their cluster membership (e.g., trees in the temperature-sensitive cluster in 1895-1949 were also in the temperature sensitive cluster in 1950-2002), though not without exception. Of those trees that do not remain consistent in cluster membership, the majority changed from temperature-sensitive to precipitation-sensitive as time progressed. This could signal a switch from temperature limitation to water limitation with warming climate. We speculate that topographic complexity in high mountain environments like Mount Washington might allow for climate refugia where growth response could remain constant over the Holocene.

  20. Simmonsite, Na2LiAlF6, a new mineral from the Zapot amazonite-topazzinnwaldite pegmatite, Hawthorne, Nevada, U.S.A

    USGS Publications Warehouse

    Foord, E.E.; O'Connor, J. T.; Hughes, J.M.; Sutley, S.J.; Falster, A.U.; Soregaroli, A.E.; Lichte, F.E.; Kile, D.E.

    1999-01-01

    Simmonsite, Na2LiAlF6, a new mineral of pegmatitic-hydrothermal origin, occurs in a late-stage breccia pipe structure that cuts the Zapot amazonite-topaz-zinnvvaldite pegmatite located in the Gillis Range, Mineral Co., Nevada, U.S.A. The mineral is intimately intergrown with cryolite, cryolithionite and trace elpasolite. A secondary assemblage of other alumino-fluoride minerals and a second generation of cryolithionite has formed from the primary assemblage. The mineral is monoclinic, P21 or P21/m, a = 7.5006(6) A??, b = 7.474(1) A??, c = 7.503(1) A??, ??= 90.847(9) ??, V=420.6(1) A??3, Z = 4. The four strongest diffraction maxima [d(A??), likl, I/I100] are (4.33, 111 and 111, 100); (1.877, 400 and 004, 90); (2.25, 13T, 113, 131 and 311, 70); and (2.65, 220, 202, 022, 60). Simmonsite is pale buff cream with white streak, somewhat greasy, translucent to transparent, Mohs hardness of 2.5-3, no distinct cleavage, subconchoidal fracture, no parting, not extremely brittle, Dm is 3.05(2) g/cm3, and Dc is 3.06(1) g/cm3. The mineral is biaxial, very nearly Isotropie, N is 1.359(1) for ?? = 589 nm, and birefringence is 0.0009. Electron microprobe analyses gave (wt%) Na = 23.4, Al = 13.9, F = 58.6, Li = 3.56 (calculated), with a total of 99.46. The empirical formula (based on 6 F atoms) is Na1.98Li1.00 ooAl|ooF6. The crystal structure was not solved, presumably because of unit-cell scale twinning, but similarities to the perovskite-type structure exist. The mineral is named for William B. Simmons, Professor of Mineralogy and Petrology, University of New Orleans, New Orleans.

  1. Anthropogenic impacts on mercury concentrations and nitrogen and carbon isotope ratios in fish muscle tissue of the Truckee River watershed, Nevada, USA.

    PubMed

    Sexauer Gustin, Mae; Saito, Laurel; Peacock, Mary

    2005-07-15

    The lower Truckee River originates at Lake Tahoe, California/Nevada (NV), USA and ends in the terminal water body, Pyramid Lake, NV. The river has minimal anthropogenic inputs of contaminants until it encounters the cities of Reno and Sparks, NV, and receives inflows from Steamboat Creek (SBC). SBC originates at Washoe Lake, NV, where there were approximately six mills that used mercury for gold and silver amalgamation in the late 1800s. Since then, mercury has been distributed down the creek to the Truckee River. In addition, SBC receives agricultural and urban nonpoint source pollution, and treated effluent from the Reno-Sparks water reclamation facility. Fish muscle tissue was collected from different species in SBC and the Truckee River and analyzed for mercury and stable isotopes. Nitrogen (delta(15)N) and carbon (delta(13)C) isotopic values in these tissues provide insight as to fish food resources and help to explain their relative Hg concentrations. Mercury concentrations, and delta(15)N and delta(13)C values in fish muscle from the Truckee River, collected below the SBC confluence, were significantly different than that found in fish collected upstream. Mercury concentrations in fish tissue collected below the confluence for all but three fish sampled were significantly greater (0.1 to 0.65 microg/g wet wt.) than that measured in the tissue collected above the confluence (0.02 to 0.1 microg/g). Delta(15)N and delta(13)C isotopic values of fish muscle collected from the river below the confluence were higher and lower, respectively, than that measured in fish collected up river, most likely reflecting wastewater inputs. The impact of SBC inputs on muscle tissue isotope values declined down river whereas the impact due to Hg inputs showed the opposite trend. PMID:16084983

  2. Early impacts of biological control on canopy cover and water use of the invasive saltcedar tree (Tamarix spp.) in western Nevada, USA.

    PubMed

    Pattison, Robert R; D'Antonio, Carla M; Dudley, Tom L; Allander, Kip K; Rice, Benjamin

    2011-03-01

    The success of biological control programs is rarely assessed beyond population level impacts on the target organism. The question of whether a biological control agent can either partially or completely restore ecosystem services independent of population level control is therefore still open to discussion. Using observational and experimental approaches, we investigated the ability of the saltcedar leaf beetle [Diorhabda carinulata (Brullé) (Coleoptera: Chrysomelidae)] to reduce the water use of saltcedar trees (Tamarix ramosissima Ledeb.) in two sites (Humboldt and Walker Rivers) in Nevada, USA. At these sites D. carinulata defoliated the majority of trees within 25 and 9 km, respectively, of the release location within 3 years. At the Humboldt site, D. carinulata reduced the canopy cover of trees adjacent to the release location by >90%. At a location 4 km away during the first year of defoliation, D. carinulata reduced peak (August) stem water use by 50-70% and stand transpiration (July to late September) by 75% (P = 0.052). There was, however, no reduction in stem water use and stand transpiration during the second year of defoliation due to reduced beetle abundances at that location. At the Walker site, we measured stand evapotranspiration (ET) in the center of a large saltcedar stand and found that ET was highest immediately prior to D. carinulata arrival, dropped dramatically with defoliation, and remained low through the subsequent 2 years of the study. In contrast, near the perimeter of the stand, D. carinulata did not reduce sap flow, partly because of low rates of defoliation but also because of increased water use per unit leaf area in response to defoliation. Taken together, our results provide evidence that in the early stages of population expansion D. carinulata can lead to substantial declines in saltcedar water use. The extent of these declines varies spatially and temporally and is dependent on saltcedar compensatory responses along with D

  3. Integrating remote sensing techniques at Cuprite, Nevada: AVIRIS, Thematic Mapper, and field spectroscopy

    NASA Technical Reports Server (NTRS)

    Hill, Bradley; Nash, Greg; Ridd, Merrill; Hauff, Phoebe L.; Ebel, Phil

    1992-01-01

    The Cuprite mining district in southwestern Nevada has become a test site for remote sensing studies with numerous airborne scanners and ground sensor data sets collected over the past fifteen years. Structurally, the Cuprite region can be divided into two areas with slightly different alteration and mineralogy. These zones lie on either side of a postulated low-angle structural discontinuity that strikes nearly parallel to US Route 95. Hydrothermal alternation at Cuprite was classified into three major zones: silicified, opalized, and argillized. These alteration types form a bulls-eye pattern east of the highway and are more linear on the west side of the highway making a striking contrast from the air and the imagery. Cuprite is therefore an ideal location for remote sensing research as it exhibits easily identified hydrothermal zoning, is relatively devoid of vegetation, and contains a distinctive spectrally diagnostic mineral suite including the ammonium feldspar buddingtonite, several types of alunite, different jarosites, illite, kaolinite, smectite, dickite, and opal. This present study brings a new dimension to these previous remote sensing and ground data sets compiled for Cuprite. The development of a higher resolution field spectrometer now provides the capability to combine extensive in-situ mineralogical data with a new geologic field survey and detailed Airborne Visible/Infrared Imaging Spectrometers (AVIRIS) images. The various data collection methods and the refinement of the integrated techniques are discussed.

  4. DOE Nevada Field Office Environmental Protection Implementation Plan, November 9, 1992--November 9, 1993

    SciTech Connect

    Townsend, Y.E. ); Allen, G.C. ); Latham, A.R.; Black, S.C. )

    1992-11-01

    DOE Order 5400.1, General Environmental Protection Program,'' established environmental protection program requirements, authorities, and responsibilities to assure that the Department of Energy (DOE) operations are in compliance with applicable federal, state, and local environmental protection laws and regulations, executive orders, and internal department policies. Chapter III of DOE Order 5400.1 required that each field organization prepare a plan for implementing the requirements of this order by no later than November 9, 1989, and update the plan annually. Therefore, the Department of Energy/Nevada Field Office (DOE/NV) has prepared this third annual update of its Environmental Protection implementation Plan (EPIP). The Order and corresponding guidances also require estimated budgetary resources necessary for implementation of the Order be identified in the Environmental Protection Implementation Plan. To satisfy this requirement, the estimated costs to effectuate necessary changes in existing programs or processes and to institute new programs or processes for compliance with the Order are provided in the following sections of this plan. The DOE/NV Assistant Manager for Operations (AMO), in consultation with other organizations responsible for line management of plan implementation, is responsible for annual plan revisions.

  5. DOE Nevada Field Office Environmental Protection Implementation Plan, November 9, 1992--November 9, 1993

    SciTech Connect

    Townsend, Y.E.; Allen, G.C.; Latham, A.R.; Black, S.C.

    1992-11-01

    DOE Order 5400.1, ``General Environmental Protection Program,`` established environmental protection program requirements, authorities, and responsibilities to assure that the Department of Energy (DOE) operations are in compliance with applicable federal, state, and local environmental protection laws and regulations, executive orders, and internal department policies. Chapter III of DOE Order 5400.1 required that each field organization prepare a plan for implementing the requirements of this order by no later than November 9, 1989, and update the plan annually. Therefore, the Department of Energy/Nevada Field Office (DOE/NV) has prepared this third annual update of its Environmental Protection implementation Plan (EPIP). The Order and corresponding guidances also require estimated budgetary resources necessary for implementation of the Order be identified in the Environmental Protection Implementation Plan. To satisfy this requirement, the estimated costs to effectuate necessary changes in existing programs or processes and to institute new programs or processes for compliance with the Order are provided in the following sections of this plan. The DOE/NV Assistant Manager for Operations (AMO), in consultation with other organizations responsible for line management of plan implementation, is responsible for annual plan revisions.

  6. Development of a mercury speciation, fate, and biotic uptake (BIOTRANSPEC) model: application to Lahontan Reservoir (Nevada, USA).

    PubMed

    Gandhi, Nilima; Bhavsar, Satyendra P; Diamond, Miriam L; Kuwabara, James S; Marvin-Dipasquale, Mark; Krabbenhoft, David P

    2007-11-01

    A mathematically linked mercury transport, speciation, kinetic, and simple biotic uptake (BIOTRANSPEC) model has been developed. An extension of the metal transport and speciation (TRANSPEC) model, BIOTRANSPEC estimates the fate and biotic uptake of inorganic (Hg(II)), elemental (Hg(0)) and organic (MeHg) forms of mercury and their species in the dissolved, colloidal (e.g., dissolved organic matter [DOM]), and particulate phases of surface aquatic systems. A pseudo-steady state version of the model was used to describe mercury dynamics in Lahontan Reservoir (near Carson City, NV, USA), where internal loading of the historically deposited mercury is remobilized, thereby maintaining elevated water concentrations. The Carson River is the main source of total mercury (THg), of which more than 90% is tightly bound in a gold-silver-mercury amalgam, to the system through loadings in the spring, with negligible input from the atmospheric deposition. The speciation results suggest that aqueous species are dominated by Hg-DOM, Hg(OH)(2), and HgClOH. Sediment-to-water diffusion of MeHg and Hg-DOM accounts for approximately 10% of total loadings to the water column. The water column acts as a net sink for MeHg by reducing its levels through two competitive processes: Uptake by fish, and net MeHg demethylation. Although reservoir sediments produce significant amounts of MeHg (4 g/d), its transport from sediment to water is limited (1.6 g/d), possibly because of its adsorption on metal oxides of iron and manganese at the sediment-water interface. Fish accumulate approximately 45% of the total MeHg mass in the water column, and 9% of total MeHg uptake by fish leaves the system because of fishing. Results from this new model reiterate the previous conclusion that more than 90% of THg input is retained in sediment, which perpetuates elevated water concentrations. PMID:17941724

  7. Development of a mercury speciation, fate, and biotic uptake (BIOTRANSPEC) model: Application to Lahontan Reservoir (Nevada, USA)

    USGS Publications Warehouse

    Gandhi, N.; Bhavsar, S.P.; Diamond, M.L.; Kuwabara, J.S.; Marvin-DiPasquale, M.; Krabbenhoft, D.P.

    2007-01-01

    A mathematically linked mercury transport, speciation, kinetic, and simple biotic uptake (BIOTRANSPEC) model has been developed. An extension of the metal transport and speciation (TRANSPEC) model, BIOTRANSPEC estimates the fate and biotic uptake of inorganic (Hg(II)), elemental (Hg(0)) and organic (MeHg) forms of mercury and their species in the dissolved, colloidal (e.g., dissolved organic matter [DOM]), and particulate phases of surface aquatic systems. A pseudo-steady state version of the model was used to describe mercury dynamics in Lahontan Reservoir (near Carson City, NV, USA), where internal loading of the historically deposited mercury is remobilized, thereby maintaining elevated water concentrations. The Carson River is the main source of total mercury (THg), of which more than 90% is tightly bound in a gold-silver-mercury amalgam, to the system through loadings in the spring, with negligible input from the atmospheric deposition. The speciation results suggest that aqueous species are dominated by Hg-DOM, Hg(OH)2, and HgClOH. Sediment-to-water diffusion of MeHg and Hg-DOM accounts for approximately 10% of total loadings to the water column. The water column acts as a net sink for MeHg by reducing its levels through two competitive processes: Uptake by fish, and net MeHg demethylation. Although reservoir sediments produce significant amounts of MeHg (4 g/d), its transport from sediment to water is limited (1.6 g/d), possibly because of its adsorption on metal oxides of iron and manganese at the sediment-water interface. Fish accumulate approximately 45% of the total MeHg mass in the water column, and 9% of total MeHg uptake by fish leaves the system because of fishing. Results from this new model reiterate the previous conclusion that more than 90% of THg input is retained in sediment, which perpetuates elevated water concentrations. ?? 2007 SETAC.

  8. Eruption of Deep Mushy Magma from the Searchlight Magma System, Southern Nevada (USA): a Crystal Size Distribution and Geochemical Analysis

    NASA Astrophysics Data System (ADS)

    Bazar, D.; Miller, J.; Miller, C.; Dodge, M.; Hodge, K.; Faulds, J.

    2006-12-01

    The Miocene Searchlight pluton and overlying volcanic rocks are exposed in the Eldorado Mountains of southern Nevada within the Colorado River Extensional Corridor. Steep tilting of the pluton and its cover provides an exceptional opportunity to study the magmatic plumbing system from bottom to top, including possible eruptions of magma from the Searchlight magma system. The pluton is approximately 10 km thick and divided into three compositionally distinct units that solidified in monotonic fashion: a 2 km thick upper fine-grained quartz monzonite (solidification front), a 6 km thick lower, more mafic quartz monzonite (cumulate), and a 2 km thick middle granite (extracted melt) [ref]. In addition, near E-W-striking rhyolite and trachydacite porphyry dikes intrude the upper quartz monzonite unit (but not the lower or middle units), and identical trachydacite porphyries (locally > 45 vol. % crystals) occur as irregular pods and masses in the roof area. The trachydacite porphyries superficially resemble trachydacite lavas in part of the overlying volcanic section. Ion probe zircon ages are identical within error for the upper unit, the lower unit, and the trachydacite dikes and pods (206Pb/238U age for samples of each ranging from 16.6±0.3 Ma to 16.9±0.2 Ma 2σ). Ages for the middle granite unit and rhyolite dikes are consistently younger (15.8-16.0 Ma). Crystal size distribution (CSD) analysis on plagioclase has been undertaken on samples from the upper Searchlight and overlying volcanic rocks in order to establish and corroborate linkages between the volcanic and intrusive units and to better understand the growth and solidification history of the Searchlight magma system. The CSD's for the intermediate porphyry dikes and pods that intrude upper Searchlight pluton are identical to trachydacite lava flows and domes erupted onto Proterozoic gneiss and earlier lava flows that comprise the roof of the pluton. The CSD's for these rocks are distinctly concave up and

  9. A 2 Million Year History of Plutonism and Volcanism in the Searchlight Magma System, Eldorado Mountains, Nevada (USA)

    NASA Astrophysics Data System (ADS)

    Miller, J.; Miller, C.; Wooden, J.; Perrault, D.; Hodge, K.; Faulds, J.; Cates, N.; Means, M.

    2006-12-01

    Subvolcanic plutons provide an important record of magma processing and solidification of upper crustal magma bodies but rarely can they be compared with volcanic output from the same magma system. In the Colorado River extensional corridor of southern Nevada, steep tilting caused by crustal extension has exposed outstanding examples of large intrusions that have complementary volcanic output. One of the best examples is the 12 km thick Searchlight pluton and its overlying volcanic cover. Earlier work in the pluton documented vertical growth, wherein crystal accumulation (mafic quartz monzonite cumulate) and roof-down solidification (upper quartz monzonite) resulted in segregation of evolved felsic melt in the chamber interior (middle granite). This general evolutionary sequence is mirrored by lava flow stratigraphy in steeply tilted volcanic sections that are structurally above the roof of Searchlight pluton. We have obtained more than 400 ion microprobe U/Pb zircon ages (Stanford/USGS SHRIMP-RG) on more than 20 samples for the pluton and overlying volcanic rocks in order to temporally link the volcanic rocks with the intrusive rocks. The oldest unit from Searchlight pluton is a gabbro pod near the northern margin of the lower Searchlight quartz monzonite that yielded a 206Pb/238U age of 17.7±0.3 Ma (all age errors reported are 1σ; MSWD ~1 or lower except where noted) but the main lower quartz monzonite from structurally deep has a 206Pb/238U age of 16.9±0.2 Ma. This age is the same age as trachydacite porphyry dikes and pods (16.6±0.3 Ma) that intrude upper Searchlight (but not lower Searchlight) and an identical trachydacite lava flow from near the base of a sequence of trachydacite flows above the pluton (16.9±0.4 Ma; MSWD 1.9). Samples of the middle granite and a gabbro that interacts with the granite are interpreted to be the last materials to solidify in the pluton and have 206Pb/238U ages ranging from 15.9-16.2 Ma but with MSWD's >3. Distinct age peaks

  10. Thermal modeling of step-out targets at the Soda Lake geothermal field, Churchill County, Nevada

    NASA Astrophysics Data System (ADS)

    Dingwall, Ryan Kenneth

    Temperature data at the Soda Lake geothermal field in the southeastern Carson Sink, Nevada, highlight an intense thermal anomaly. The geothermal field produces roughly 11 MWe from two power producing facilities which are rated to 23 MWe. The low output is attributed to the inability to locate and produce sufficient volumes of fluid at adequate temperature. Additionally, the current producing area has experienced declining production temperatures over its 40 year history. Two step-out targets adjacent to the main field have been identified that have the potential to increase production and extend the life of the field. Though shallow temperatures in the two subsidiary areas are significantly less than those found within the main anomaly, measurements in deeper wells (>1,000 m) show that temperatures viable for utilization are present. High-pass filtering of the available complete Bouguer gravity data indicates that geothermal flow is present within the shallow sediments of the two subsidiary areas. Significant faulting is observed in the seismic data in both of the subsidiary areas. These structures are highlighted in the seismic similarity attribute calculated as part of this study. One possible conceptual model for the geothermal system(s) at the step-out targets indicated upflow along these faults from depth. In order to test this hypothesis, three-dimensional computer models were constructed in order to observe the temperatures that would result from geothermal flow along the observed fault planes. Results indicate that the observed faults are viable hosts for the geothermal system(s) in the step-out areas. Subsequently, these faults are proposed as targets for future exploration focus and step-out drilling.

  11. Field-Scale Migration of 99Tc and 129I at the Nevada Test Site

    SciTech Connect

    Hu, Q; Smith, D K

    2004-03-29

    The groundwater at the Nevada Test Site (NTS) contains many long-lived radionuclides, including {sup 99}Tc (technetium) and {sup 129}I (iodine), as a result of 828 underground nuclear weapons tests conducted between 1951 and 1992. We synthesized a body of data collected on the distribution of {sup 99}Tc and {sup 129}I in groundwater to assess their migration at NTS, at field scales over distances of hundreds of meters and for durations up to forty years and under hydrogeologic conditions very similar to the proposed geological repository at Yucca Mountain. The results of our study show that Tc does not necessarily exist as a mobile and conservative species TcO{sub 4}{sup -}, as has been commonly assumed. This conclusion is corroborated by recent in situ redox potential measurements, which show that groundwaters at multiple locations of the NTS are not oxidizing, and mobility of reduced Tc species (TcO{sub 2} {center_dot} nH{sub 2}O) is greatly decreased. Speciation of iodine and its associated reactivity is also complex in the groundwater at the NTS, and its effect on the mobility of iodine should be the subject of future studies.

  12. Corrigendum to "Dune field reactivation from blowouts: Sevier Desert, UT, USA" [Aeolian Res. 11 (2013) 75-84

    NASA Astrophysics Data System (ADS)

    Barchyn, Thomas E.; Hugenholtz, Chris H.

    2016-06-01

    This corrigendum corrects an error made in the flux calculations in 'Dune field reactivation from blowouts: Sevier Desert, UT, USA'. The corrected data differ only slightly from the original publication and do not affect the conclusions of the paper.

  13. A review of aerial radiological surveys of Nevada Test Site fallout fields 1951 through 1970

    SciTech Connect

    1987-12-01

    Aerial surveys of offsite fallout radiation fields from the Nevada Test Site began in the early 1950s and continued throughout the above-ground testing period. The results of the aerial surveys were used to support ground data in determining the extent of the fallout patterns. For the series of tests conducted in 1953 and 1955, the primary uncertainty of the results was knowing the location of the aircraft. Navigation was made from aeronautical charts of a scale 1:1,000,000, and errors in location of several miles were experienced. Another problem was that exposure rate readings made in the aircraft of 1 milliroentgen per hour or lower were not reliable. Exposure rate measurements above 1 milliroentgen per hour were more accurate, however, and are considered reliable to within a factor of two or three in predicting 3-foot exposure rate levels. For the 1957 series, the aircraft position data were quite accurate. Ground-level exposure rates predicted from aerial data obtained by the United States Geological Survey aircraft for the five-detector array were considered reliable to within +-40% or better for most of the surveys. When the single detector was used, the accuracy decreased to about a factor of two. Relative count rates obtained by the aircraft operated by the Atomic Energy Commission, Raw Materials Division, are probably valid, but quantitative determination of 3-foot exposure rates are not. The Aerial Radiological Monitoring System performed all the aerial surveys in the 1960s. However, the air-to-ground conversion factors used were too low. Using a corrected conversion factor, the predicted 3-foot exposure rates should be valid to +-40% in most fallout fields if all other parameters are considered. 40 refs., 30 figs., 6 tabs.

  14. Assessing field-scale migration of mobile radionuclides at the Nevada Test Site

    SciTech Connect

    Hu, Q; Rose, T P; Smith, D K; Moran, J E; Zavarin, M

    2006-09-26

    Numerous long-lived radionuclides, including {sup 99}Tc (technetium) and {sup 129}I (iodine), are present in groundwater at the Nevada Test Site (NTS) as a result of 828 underground nuclear weapons tests conducted between 1951 and 1992. We synthesize a body of groundwater data collected on the distribution of a number of radionuclides ({sup 3}H, {sup 14}C, {sup 36}Cl, {sup 99}Tc and {sup 129}I), which are presumably mobile in the subsurface and potentially toxic to down-gradient receptors, to assess their migration at NTS, at field scales over distances of hundreds of meters and for durations of more than thirty years. Qualitative evaluation of field-scale migration of these radionuclides in the saturated zone provides an independent approach to validating their presumably conservative transport in the performance assessment of the proposed geological repository at Yucca Mountain, which is located on the western edge of NTS. The analyses show that the interaction of {sup 3}H with a solid surface via an isotopic exchange with clay lattice hydroxyls may cause a slight delay in the transport of {sup 3}H. The transport of {sup 14}C could be retarded by its isotopic exchange with carbonate minerals, and the exchange may be more pronounced in the alluvial aquifer. In particular, {sup 99}Tc may not necessarily exist as a mobile and conservative species {sup 99}TcO{sub 4}{sup -}, as commonly assumed for NTS groundwater. This is corroborated with recent in situ redox potential measurements, both across and near Yucca Mountain, showing that groundwater at multiple locations is not oxidizing. Speciation of iodine and its associated reactivity and mobility is also complex in the groundwater at the NTS and deserves further attention. The assumption of no retardation for the transport of {sup 99}Tc (especially) and {sup 129}I, used at the performance assessment of Yucca Mountain repository, is probably overly conservative and results in unrealistically high estimated doses for

  15. The total column of CO2 and CH4 measured with a compact Fourier transform spectrometer at NASA Armstrong Flight Research Center and Railroad Valley, Nevada, USA

    NASA Astrophysics Data System (ADS)

    Kawakami, S.; Shiomi, K.; Suto, H.; Kuze, A.; Hillyard, P. W.; Tanaka, T.; Podolske, J. R.; Iraci, L. T.; Albertson, R. T.

    2014-12-01

    The total columns of carbon dioxide (XCO2) and methane (XCH4) were measured with a compact Fourier transform spectrometer (FTS) at NASA Armstrong Flight Research Center (AFRC) and Railroad Valley, Nevada, USA (RRV) during a vicarious calibration campaign in June 2014. The campaign was performed to estimate changes in the radiometric response of the Thermal and Near Infrared Sensor for carbon Observations Fourier Transform Spectrometer (TANSO-FTS) and the Cloud and Aerosol Imager (TANSO-CAI) aboard Greenhouse gases Observing SATellite (GOSAT). TANSO-FTS measures spectra of radiance scattered by the Earth surface with high- and medium-gain depending on the surface reflectance. At high reflectance areas, such as deserts over north Africa and Australia, TANSO-FTS collects spectra with medium-gain. There was differences on atmospheric pressure and XCO2 retrieved from spectra obtained between high-gain and medium-gain. Because the retrieved products are useful for evaluating the difference of spectral qualities between high- and medium-gain, this work is an attempt to collect validation data for spectra with medium-gain of TANSO-FTS at remote and desert area with a compact and medium-spectral resolution instrument. As a compact FTS, EM27/SUN was used. It was manufactured and newly released on April 1, 2014 by Bruker. It is robust and operable in a high temperature environment. It was housed in a steel box to protect from dust and rain and powered by Solar panels. It can be operated by such a remote and desert area, like a RRV. Over AFRC and RRV, vertical profiles of CO2 and CH4 were measured using the Alpha Jet research aircraft as part of the Alpha Jet Atmospheric eXperiment (AJAX) of ARC, NASA. The values were calibrated to standard gases. To make the results comparable to WMO (World Meteorological Organization) standards, the retrieved XCO2 and XCH4 values are divided by a calibration factor. This values were determined by comparisons with in situ profiles measured by

  16. Phase-equilibrium geobarometers for silicic rocks based on rhyolite-MELTS—Part 3: Application to the Peach Spring Tuff (Arizona-California-Nevada, USA)

    NASA Astrophysics Data System (ADS)

    Pamukcu, Ayla S.; Gualda, Guilherme A. R.; Ghiorso, Mark S.; Miller, Calvin F.; McCracken, Reba G.

    2015-03-01

    Establishing the depths of magma accumulation is critical to understanding how magmas evolve and erupt, but developing methods to constrain these pressures is challenging. We apply the new rhyolite-MELTS phase-equilibria geobarometer—based on the equilibrium between melt, quartz, and two feldspars—to matrix glass compositions from Peach Spring Tuff (Arizona-California-Nevada, USA) high-silica rhyolite. We compare the results to those from amphibole geothermobarometry, projection of glass compositions onto the haplogranitic ternary, and glass SiO2 geobarometry. Quartz + 2 feldspar rhyolite-MELTS pressures span a relatively small range (185-230 MPa), consistent with nearly homogeneous crystal compositions, and are similar to estimates based on projection onto the haplogranitic ternary (250 ± 50 MPa) and on glass SiO2 (255-275 MPa). Amphibole geothermobarometry gives much wider pressure ranges (temperature-independent: ~65-300 MPa; temperature-dependent: ~75-295 MPa; amphibole-only: ~80-950 MPa); average Anderson and Smith (Am Mineral 80:549-559, 1995) + Blundy and Holland (Contrib Miner Petrol 104:208-224, 1990) or Holland and Blundy (Contrib Miner Petrol 116:433-447, 1994—Thermometer A, B) pressures are most similar to phase-equilibria results (~220, 210, 190 MPa, respectively). Crystallization temperatures determined previously with rhyolite-MELTS (742 °C), Zr-in-sphene (769 ± 20 °C), and zircon saturation (770-780 °C) geothermometry are similar, but temperatures from amphibole geothermometry (~450-955 °C) are notably different; the average Anderson and Smith + Holland and Blundy (1994—Thermometer B; ~710 °C) temperature is most consistent with previous estimates. The rhyolite-MELTS geobarometer effectively culls glass compositions affected by alteration or analytical issues; Peach Spring glass compositions that yield pressure estimates reveal a tight range of plausible Na2O and K2O contents, suggesting that low Na2O and high K2O contents of many

  17. Ground Motion Measurement in the Lake Mead Area (Nevada, USA), by DinSAR Time Series Analysis : Probing of the Lithosphere Rheological Structure

    NASA Astrophysics Data System (ADS)

    Doin, M.; Cavalié, O.; Laserre, C.; Briole, P.

    2006-12-01

    SAR interferometry has proven to be a reliable method for detecting small displacements due to ground subsidence. In this study, we measure ground motion around the lake Mead (Nevada, USA) using InSAR. This artificial lake has been filled with water in 1935. An earlier study, based on leveling measurements, has shown that the load associated with lake impoundement induced a subsidence of 17 centimeters. This relaxation process has been argued as analogous to the postglacial rebound, but at a smaller spatial scale and with a much lower viscous relaxation scale. To quantify the deformation and thus constrain the crust and mantle rheological parameters in the lake area, we analyze multiple interferograms (241) based on 43 ERS images acquired between 1992 and 2001. With baselines smaller than 300 m, all interferograms have a very good coherence due to the desert region. Most of interferograms show strong atmospheric artefacts that are partly due to the variation of water vapor vertical stratification between two satellite passes. This tropospheric delay is computed for each interferogram and then inverted for each date of SAR images before interferogram correction. These corrections are validated using data from global atmospheric models (ERA40). Corrected interferograms are then inverted to solve for the time series of ground motion in the lake Mead area. The linear inversion treats each pixel independently from its neighbours and uses the data redundancy to reduce errors such as local decorrelations. Additionnal constraints such as temporal smoothing allow to reduce the local atmospheric artefacts. We obtain a time series of the deformation in the lake Mead area with a millimetric accuracy. The deformation is non linear in time and spreads over a large spatial scale. In particular, we observe a subsidence of up to 16 mm between 1995 and 1998 due to a 10 meters water level increase, followed by an uplift due to the drop of the water level after 2000. The deformation

  18. Uranium in Holocene valley-fill sediments, and uranium, radon, and helium in waters, Lake Tahoe-Carson Range area, Nevada and California, U.S.A.

    USGS Publications Warehouse

    Otton, J.K.; Zielinski, R.A.; Been, J.M.

    1989-01-01

    Uraniferous Holocene sediments occur in the Carson Range of Nevada and California, U.S.A., between Lake Tahoe and Carson Valley. The hosts for the uranium include peat and interbedded organic-rich sand, silt, and mud that underly valley floors, fens, and marshes along stream valleys between the crest of the range and the edge of Lake Tahoe. The known uranium accumulations extend along the Carson Range from the area just southeast of South Lake Tahoe northward to the area just east of Carson City; however, they almost certainly continue beyond the study area to the north, west, and south. Due to the young age of the accumulations, uranium in them is in gross disequilibrium with its highly radioactive daughter products. These accumulations have thus escaped discovery with radiation detection equipment in the past. The uranium content of these sediments approaches 0.6 percent; however, the average is in the range of 300-500 ppm. Waters associated with these sediments locally contain as much as 177 ppb uranium. Modest levels of helium and radon also occur in these waters. Uraniferous waters are clearly entering the private and public water supply systems in some parts of the study area; however, it is not known how much uranium is reaching users of these water supplies. Many of the waters sampled in the study area exceed the published health effects guidance level of the Environmental Protection Agency. Regulatory standards for uranium in waters have not been published, however. Much uranium is stored in the sediments along these stream valleys. Estimates for a marsh and a fen along one drainage are 24,000 and 15,000 kg, respectively. The potential effects of man-induced environmental changes on the uranium are uncertain. Laboratory studies of uraniferous sediment rich in organic matter may allow us to evaluate the potential of liberating uranium from such sediments and creating transient increases in the level of uranium moving in water in the natural environment

  19. Use of Weighted Regressions on Time, Discharge, and Season to Assess Effectiveness of Agricultural and Environmental Best Management Practices in California and Nevada, USA

    NASA Astrophysics Data System (ADS)

    Domagalski, J. L.; Schlegel, B.; Hutchins, J.

    2014-12-01

    Long-term data sets on stream-water quality and discharge can be used to assess whether best management practices (BMPs) are restoring beneficial uses of impaired water as required under the Clean Water Act. In this study, we evaluated a greater than 20-year record of water quality from selected streams in the Central Valley (CV) of California and Lake Tahoe (California and Nevada, USA). The CV contains a mix of agricultural and urbanized land, while the Lake Tahoe area is mostly forested, with seasonal residents and tourism. Because nutrients and fine sediments cause a reduction in water clarity that impair Lake Tahoe, BMPs were implemented in the early 1990's, to reduce nitrogen and phosphorus loads. The CV does not have a current nutrient management plan, but numerous BMPs exist to reduce pesticide loads, and it was hypothesized that these programs could also reduce nutrient levels. In the CV and Lake Tahoe areas, nutrient concentrations, loads, and trends were estimated by using the recently developed Weighted Regressions on Time, Discharge, and Season (WRTDS) model. Sufficient data were available to compare trends during a voluntary and enforcement period for seven CV sites within the lower Sacramento and San Joaquin Basins. For six of the seven sites, flow-normalized mean annual concentrations of total phosphorus and nitrate decreased at a faster rate during the enforcement period than during the earlier voluntary period. Concentration changes during similar years and ranges of flow conditions suggest that BMPs designed for pesticides also reduced nutrient loads in the CV. A trend analysis using WRTDS was completed for six streams that enter Lake Tahoe during the late 1980's through 2008. The results of the model confirm that nutrient loading is influenced strongly by season, such as by spring runoff from snowmelt. The highest nutrient concentrations in the late 1980's and early 1990's correlate with high flows, followed by statistically significant decreases

  20. Mechanisms for transition in eruptive style at a monogenetic scoria cone revealed by microtextural analyses (Lathrop Wells volcano, Nevada, U.S.A.)

    NASA Astrophysics Data System (ADS)

    Genareau, Kimberly; Valentine, Greg A.; Moore, Gordon; Hervig, Richard L.

    2010-07-01

    Explosive activity at Lathrop Wells volcano, Nevada, U.S.A. originated with weak Strombolian (WS) eruptions along a short fissure, and transitioned to violent Strombolian (VS) activity from a central vent, with lava effusion during both stages. The cause for this transition is unknown; it does not reflect a compositional change, as evidenced by the consistent bulk geochemistry of all the eruptive products. However, comparison of agglutinate samples from the early, WS events with samples of scoria from the later, VS events reveal differences in the abundance and morphology of groundmass phases and variable textures in the rims of olivine phenocrysts. Scanning electron microscope (SEM) examination of thin sections from the WS samples show euhedral magnetite microlites in the groundmass glass and olivine phenocrysts show symplectite lamellae in their rims. Secondary ion mass spectrometry (SIMS) depth profiles of these symplectites indicate they are diffusion-controlled. The calculated DFe-Mg allows an estimation of the oxygen fugacity ( fO2) and indicates an increased fO2 during eruption of the WS products. Conversely, the VS samples show virtually no magnetite microlites in the groundmass glass, a lack of symplectites in the olivines, and a lower calculated fO2. These microtextural features suggest that the Lathrop Wells trachybasalt experienced increased oxidation during WS activity. As magma ascended through the original fissure, exsolved bubbles were concentrated in the wider part(s) (the protoconduit) and this bubble flux drove convective circulation that oxidized the magma through exposure to atmosphere and recirculation. This oxidation resulted in groundmass crystallization of magnetite within the melt and formation of symplectites within the olivine phenocrysts. Bubble-driven convection mixed magma vertically within the protoconduit, keeping it fluid and driving Strombolian bursts, while microlite crystallization in narrower parts of the fissure helped to

  1. A gravity slide origin for the Mormon Peak detachment: Re-examining the evidence for extreme extension in the Mormon Mountains, southeastern Nevada, U.S.A

    NASA Astrophysics Data System (ADS)

    Walker, Christopher David

    The Mormon Peak detachment is an enigmatic, low-angle surface that cuts almost all other structures in the Mormon Mountains of southeast Nevada. It has been described as both a large-magnitude offset, low-angle normal fault and as a rootless gravity slide. The two models have been tested, and the gravity slide model explains the geology exposed in the range better than the extreme extension model. Kinematic indicators on the detachment show down-dip motion. Structure contours delimit discrete domains. Exhumed structures reveal no large-magnitude offset between the Meadow Valley and Mormon Mountains. Thermochronological modeling indicates basin-wide exhumation beginning at ˜23--17 Ma. Field mapping documents a pervasive role for long-lived high-angle normal faults with spatially and temporally restricted detachment formation events, and measurements of the volume of rock contained in the hanging wall show it required only a small source area with respect to the size of the range. Regional crustal extension from the Meadow Valley Mountains to the Beaver Dam Mountains is approximately 25%, an order of magnitude less than previously interpreted. The conclusions from the Mormon Mountains were applied to several interpreted detachment faults elsewhere and a set of criteria developed to help future workers distinguish between rooted structures that accommodate crustal extension and rootless structures that do not.

  2. Field-based description of rhyolite lava flows of the Calico Hills Formation, Nevada National Security Site, Nevada

    USGS Publications Warehouse

    Sweetkind, Donald S.; Bova, Shiera C.

    2015-01-01

    In the area south of the Rainier Mesa caldera, surface and subsurface geologic data are combined to interpret the overall thickness of the Calico Hills Formation and the proportion of lava flow lithology across the study area. The formation is at least 500 meters (m) thick and contains the greatest proportion of rhyolite lava flow to the northeast of Yucca Mountain in the lower part of Fortymile Canyon. The formation thins to the south and southwest where it is between 50 and 200 m thick beneath Yucca Mountain and contains no rhyolite lavas. Geologic mapping and field-based correlation of individual lava flows allow for the interpretation of the thickness and extent of specific flows and the location of their source areas. The most extensive flows have widths from 2 to 3 kilometers (km) and lengths of at least 5–6 km. Lava flow thickness varies from 150 to 250 m above interpreted source vents to between 30 and 80 m in more distal locations. Rhyolite lavas have length-to-height ratios of 10:1 or greater and, in one instance, a length-to-width ratio of 2:1 or greater, implying a tongue-shaped geometry instead of circular domes or tabular bodies. Although geologic mapping did not identify any physical feature that could be positively identified as a vent, lava flow thickness and the size of clasts in subjacent pyroclastic deposits suggest that primary vent areas for at least some of the flows in the study area are on the east side of Fortymile Canyon, to the northeast of Yucca Mountain.

  3. Geometry and kinematics of the Grant Range brittle detachment system, eastern Nevada, U.S.A.: An end-member style of upper crustal extension

    NASA Astrophysics Data System (ADS)

    Long, Sean P.; Walker, Jerome P.

    2015-09-01

    Documenting the range of styles of normal faulting is fundamental to understanding crustal extension. Here geologic mapping, field relationships, and deformed and restored cross sections illustrate the geometry and kinematic development of a system of west-vergent detachment faults in the Grant Range in eastern Nevada. Faults exhibit brecciation and stratigraphic cutoff angles of 5-15° at all structural levels and deform a 10 km thick section of Paleozoic and Paleogene rocks. The fault system is folded across an anticlinal culmination, which grew during extension, as indicated by progressively increasing interlimb angles and incision in the axial zone. The eastern limb consists of an imbricate stack of faults that were emplaced from bottom to top. In the western limb, several faults exhibit apparent thrust relationships. The oldest faults are cut by a ~29 Ma dike, and the highest preserved fault cuts ~32 Ma volcanic rocks that restore to paleodepths of ~1 km. Retrodeformation of folding and minimal structural relief and angularity across a Paleogene unconformity indicate the faults were active at 5-15° angles. Retrodeformation of offset indicates ≥49 km (98%) extension. We propose a model of stationary, sustained isostatic uplift and incision at the culmination axis (a "fixed hinge"), with updip excision producing bottom-to-top growth of the imbricate stack and downdip excision producing apparent thrust relationships. The fault system exhibits similarities to core complex detachment systems, though it is confined to upper crustal levels, and there are no preserved high-angle or listric normal faults, indicating a unique extension style dominated by low-angle excision.

  4. Molecular identification and pathogenic behavior of Albugo sp., a potential bioherbicide of perennial pepperweed in northern Nevada

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Perennial pepperweed (PPW, Lepidium latifolium) is a cruciferous plant native to Eurasia that is a noxious weed in the western USA. In northern Nevada, PPW plants in the field are commonly infected with white rust fungus (Albugo sp.), exhibiting white pustules on the leaves and stems of mature plan...

  5. Potential for bias in using hybrids between common carp (Cyprinus carpio) and goldfish (Carassius auratus) in endocrine studies: a first report of hybrids in Lake Mead, Nevada, U.S.A

    USGS Publications Warehouse

    Goodbred, Steven L.; Patino, Reynaldo; Orsak, Erik; Sharma, Prakash; Ruessler, Shane

    2013-01-01

    During a 2008 study to assess endocrine and reproductive health of common carp (Cyprinus carpio) in Lake Mead, Nevada (U.S.A.) we identified two fish, one male and one female, as hybrids with goldfish (Carassius auratus) based on morphology, lateral line scale count, and lack of anterior barbels. Gross examination of the female hybrid ovaries indicated presence of vitellogenic ovarian follicles; whereas histological evaluation of the male hybrid testes showed lobule-like structures with open lumens but without germ cells, suggesting it was sterile. Because common carp/goldfish hybrids are more susceptible to gonadal tumors and may have different endocrine profiles than common carp, researchers using common carp as a model for endocrine/reproductive studies should be aware of the possible presence of hybrids.

  6. Testing the 14C ages and conservative behavior of dissolved 14C in a carbonate aquifer in Yucca Flat, Nevada (USA), using 36Cl from groundwater and packrat middens

    NASA Astrophysics Data System (ADS)

    Kwicklis, Edward; Farnham, Irene

    2014-09-01

    Corrected groundwater 14C ages from the carbonate aquifer in Yucca Flat at the former Nevada Test Site (now the Nevada National Security Site), USA, were evaluated by comparing temporal variations of groundwater 36Cl/Cl estimated with these 14C ages with published records of meteoric 36Cl/Cl variations preserved in packrat middens (piles of plant fragments, fecal matter and urine). Good agreement between these records indicates that the groundwater 14C ages are reasonable and that 14C is moving with chloride without sorbing to the carbonate rock matrix or fracture coatings, despite opposing evidence from laboratory experiments. The groundwater 14C ages are consistent with other hydrologic evidence that indicates significant basin infiltration ceased 8,000 to 10,000 years ago, and that recharge to the carbonate aquifer is from paleowater draining through overlying tuff confining units along major faults. This interpretation is supported by the relative age differences as well as hydraulic head differences between the alluvial and volcanic aquifers and the carbonate aquifer. The carbonate aquifer 14C ages suggest that groundwater velocities throughout much of Yucca Flat are about 2 m/yr, consistent with the long-held conceptual model that blocking ridges of low-permeability rock hydrologically isolate the carbonate aquifer in Yucca Flat from the outlying regional carbonate flow system.

  7. Investigating the influence of long-range transport on surface O3 in Nevada, USA, using observations from multiple measurement platforms.

    PubMed

    Fine, Rebekka; Miller, Matthieu B; Yates, Emma L; Iraci, Laura T; Gustin, Mae Sexauer

    2015-10-15

    The current United States (US) National Ambient Air Quality Standard (NAAQS) for O3 (75 ppb) is expected to be revised to between 60 and 70 ppb. As the NAAQS becomes more stringent, characterizing the extent of O3 and precursors transported into the US is increasingly important. Given the high elevation, complex terrain, and location in the Intermountain West, the State of Nevada is ideally situated to intercept air transported into the US. Until recently, measurements of O3 and associated pollutants were limited to areas in and around the cities of Las Vegas and Reno. In 2011, the Nevada Rural Ozone Initiative began and through this project 13 surface monitoring sites were established. Also in 2011, the NASA Ames Alpha Jet Atmospheric eXperiment (AJAX) began making routine aircraft measurements of O3 and other greenhouse gases in Nevada. The availability of aircraft and surface measurements in a relatively rural, remote setting in the Intermountain West presented a unique opportunity to investigate sources contributing to the O3 observed in Nevada. Our analyses indicate that stratosphere to troposphere transport, long-range transport of Asian pollution, and regional emissions from urban areas and wildfires influence surface observations. The complexity of sources identified here along with the fact that O3 frequently approaches the threshold being considered for a revised NAAQS indicate that interstate and international cooperation will be necessary to achieve compliance with a more stringent regulatory standard. Further, on a seasonal basis we found no significant difference between daily 1-h maximum O3 at surface sites, which ranged in elevation from 888 to 2307 m, and aircraft measurements of O3 <2500 m which suggests that similar processes influence daytime O3 across rural Nevada and indicates that column measurements from Railroad Valley, NV are useful in understanding these processes. PMID:25845306

  8. Geochemistry of Natural Components in the Near-Field Environment, Yucca Mountain, Nevada

    SciTech Connect

    Z.E. Peterman; T.A. Oliver

    2006-06-19

    The natural near-field environment in and around the emplacement drifts of the proposed nuclear waste repository at Yucca Mountain, Nevada, includes the host rock, dust, seepage water, and pore water. The chemical compositions of these components have been analyzed to provide a basis for assessing possible chemical and mineralogical reactions that may occur in and around the emplacement drifts during the heating and cooling cycle. The crystal-poor rhyolite of the Topopah Spring Tuff of Miocene age with an average silica (SiO{sub 2}) content of 76 percent will host the proposed repository. Samples of the rhyolite are relatively uniform in chemical composition as shown by an average coefficient of variation (CV) of 8.6 percent for major elements. The major component of underground dust is comminuted tuff generated during construction of the tunnel. Average CVs for major elements of dust samples collected from the main tunnel (Exploratory Studies Facility, ESF) and a cross drift (Enhanced Characterization of the Repository Block, ECRB) are 25 and 28 percent, respectively. This increased variability is due to a variable amount of dust derived from trachyte with SiO{sub 2} contents as low as 66 percent (from overlying crystal-rich members) and from surface dust with an even lower average SiO{sub 2} content of 60 percent (from the abundance of trachyte in outcrop and carbonate dust derived from nearby ranges). The composition of the water-soluble fraction of dust is of interest with regard to possible salt deliquescence on waste canisters. The nitrate-to-chloride (NO{sub 3}{sup -}/Cl{sup -}) ratio (weight) is used to assess the potential corrosive nature of the salts because an excess of NO{sub 3}{sup -} over Cl{sup -} may inhibit the formation of the more corrosive calcium chloride brines in deliquescing salts. The soluble fractions of dust samples typically have NO{sub 3}{sup -}/Cl{sup -} ratios between 1 and 10. About 30 samples of seepage into the south ramp of the

  9. Comparative geology and geochemistry of sedimentary-rock-hosted (Carlin Type) gold deposits in the People's Republic of China and in Nevada, USA

    USGS Publications Warehouse

    Li, Zhiping; Peters, Stephen G.

    1998-01-01

    Sedimentary-rock-hosted (Carlin-type) gold deposits have been considered economically significant and geologically distinct since the early 1960's. This report consists of a nine-part text and an interactive database. This small database is to help Western companies get more information about these gold deposits in China, and to help geologists who are interested in world Carlin-type deposits conduct research on them. Because of their economic significance and geological distinctiveness, these deposits have caught the interest of economic geologists all over the world since the early 1960's. Similar deposits have been discovered in China, Australia, Dominican Republic, Spain, and Russia besides Nevada. Perhaps most significant are the 165 Carlin-type gold deposits that were found in southwest China during the past 15 years. Of these, at least 19 deposits have proven to be of substantial tonnage, making China the second leading country to exploit such deposits. With the increasing interest in Chinese Carlin-type gold deposits, some western companies and geologists desire to get more information about these Chinese deposits. This seems to have been very difficult because the literature was in Chinese. It is estimated that several hundred scientific publications (including papers, books, and technical reports) have been published. This database of Chinese Carlin-type Gold deposits is built on the documentation published during the most recent 10 years and includes six subjects, which consist of 165 records and 30 fields. A new Proterozoic-age sedimentary-rock-hosted gold deposit in northeastern P.R. China also is described. Note that for the old version 1.1 on the CD-ROM, the latitude and longitude locations of the mineral occurrences have been estimated from sketch maps and journal articles and are not intended for digital analysis. One of the improvements in this version 1.2 is the accuracy of geographic data. Version 1.3 updates to the database and includes maps

  10. Some New Constraints On The Stratigraphic And Structural Setting Of The Soda Lake Geothermal Field, Churchill County, Nevada - McLACHLAN, Holly S. and FAULDS, James E., Nevada Bureau of Mines and Geology, University of Nevada, Reno, NV 89557

    NASA Astrophysics Data System (ADS)

    McLachlan, H. S.

    2012-12-01

    Our research group is currently conducting a regional survey to identify favorable structural settings of producing and prospective geothermal fields in the Great Basin. The Soda Lake geothermal field - one of the oldest consistently producing fields in this study region - is located in west-central Nevada near the heart of the Carson Sink. Producing and prospective geothermal fields in the surrounding highlands are hosted in 1) fault termination zones (Desert Queen), 2) accommodation zones (Brady's Hot Springs) and 3) fault step-overs (Desert Peak). However, the structural setting is challenging to identify at the Soda Lake field, because it lies in the central part of a large basin with no nearby bedrock exposures. The well field at Soda Lake is centered ~3.5 km NNE of the Holocene Soda Lake maar, from which it takes its name. The geothermal field was identified serendipitously during the drilling of an irrigation survey well in the early 20th century. Modern exploratory drilling at the field began in the mid-1970s and has continued sporadically to the present. There are currently more than 28 500+ m wells at and near the production site. The exceptional drilling density at Soda Lake allows for comparatively reliable correlation of stratigraphy in the subsurface below the feature-poor Carson Sink. Stratigraphy in the Soda Lake geothermal area is relatively "layer cake" at the scale of the well field. Unconsolidated sediments extend more than 1000 m below surface. The upper few hundred meters are composed of fluvial and lacustrine sediments derived from Sierran batholith source rocks. The deeper basin fill derives from more proximal mafic to felsic Miocene volcanic rocks along the basin margins. At ~450-650 m depth, basin sediments are interrupted by a 5.11 Ma trachytic basalt of restricted lateral extent and variable thickness. Most wells intercept ~50-250 m of fine lacustrine sediments below this basalt body before intercepting the basin floor. Basin floor rocks

  11. Arsenic concentrations in dust emissions from wind erosion and off-road vehicles in the Nellis Dunes Recreational Area, Nevada, USA

    NASA Astrophysics Data System (ADS)

    Soukup, Deborah; Buck, Brenda; Goossens, Dirk; Ulery, April; McLaurin, Brett T.; Baron, Dirk; Teng, Yuanxin

    2012-08-01

    Field and laboratory experiments were performed in the Nellis Dunes Recreational Area near Las Vegas, NV, USA to evaluate arsenic concentrations associated with dust emissions from wind erosion and off-road vehicles. Soil samples were collected from 17 types of desert surfaces and five unpaved parking lot locations for analyses. The surface units are based on surficial characteristics that affect dust emissions. Arsenic concentrations were also measured in dust emitted from each surface unit using a Portable In Situ Wind Erosion Laboratory (PI-SWERL). Emissions were measured from ORV trails and undisturbed terrain. Concentrations of As in the soil and parking lot samples ranged from 3.49 to 83.02 μg g-1 and from 16.13 to 312 μg g-1 in the PI-SWERL samples. The lower concentrations in the soil samples are expected because of the larger particle sizes (<2 mm) as compared to the PI-SWERL samples (<10 and 10-60 μm). Soluble As in the PI-SWERL samples was as high as 14.7 μg g-1. In the Nellis Dunes area the emission rates for As for wind-induced emissions (wind erosion) are highest for the surfaces with significant amounts of sand. Surfaces rich in silt and clay, on the other hand, produce nearly no arsenic during wind erosion but can emit substantial arsenic concentrations when driven on by off-road vehicles. The elevated arsenic emissions from the Nellis Dunes area are of great concern because the site is located in the immediate vicinity of the city of Las Vegas, and utilized by over 300,000 visitors annually.

  12. Examining the role and relative timing of magma mixing and fractionation in the formation of the Kuna Crest lobe of the Tuolumne batholith, Sierra Nevada, USA

    NASA Astrophysics Data System (ADS)

    Krause, J.; Memeti, V.; Paterson, S. R.

    2010-12-01

    Recent field, U-Pb zircon geochronology and geochemistry data on the 95-85 Ma Tuolumne batholith (TB), Sierra Nevada, CA, have shown ample evidence for extensive mixing between different magmas and internal magma chamber recycling of older marginal units into younger central units within the main batholith. These data also have been examined in four magmatic lobes extending out from the main batholith. The lobes are interpreted to represent shorter lived, simpler magma bodies since their composition is attributed to fractionation and some remixing of magma derived from a single isotopically similar source. In order to test this hypothesis on the mineral scale, X-ray element distribution maps and quantitative analyses for minor and trace elements have been performed on samples from different structural positions in the southern Kuna Crest lobe of the TB. Ophitic, ≤ 5 mm large K-feldspars, of the Kuna Crest lobe show a single cycle of Ba zoning patterns with elevated contents in the center (Ba = 0.8-1.2 wt.%) decreasing towards the rim (Ba = 0.4-0.5 wt.%). Other hypidiomorphic to xenomorphic K-feldspars ≤ 1.5 mm within the same sample have reversed zoning with low Ba contents in the core (Ba = 0.1-0.2 wt.%) increasing towards the rim (Ba = 0.4-0.6 wt.%). The larger, ophitic K-feldspars show decreasing La/Y and Y concentrations from the core (La/Y = 5.0-8.5, Y = 0.15-0.27 ppm) towards the rim (La/Y = 2.8-4.7, Y = 0.09-0.15 ppm). In contrast the smaller K-feldspars within the same thin section have high La/Y at low Y in the core (La/Y = 8-14, Y = 0.04-0.07 ppm), which evolve towards low La/Y at higher Y at the rims (La/Y = 1.5-4.4, Y= 0.09-0.13 ppm) similar to the composition of the rims of the ophitic grains. The occurrence of texturally different K-feldspars with different minor and trace element zoning patterns in the core and similar compositions at the rims is best explained by mixing of different magmas. This contrasts with not only the concentric normal

  13. Growth of plutons by incremental emplacement of sheets in crystal-rich host: Evidence from Miocene intrusions of the Colorado River region, Nevada, USA

    USGS Publications Warehouse

    Miller, C.F.; Furbish, D.J.; Walker, B.A.; Claiborne, L.L.; Koteas, G.C.; Bleick, H.A.; Miller, J.S.

    2011-01-01

    Growing evidence supports the notion that plutons are constructed incrementally, commonly over long periods of time, yet field evidence for the multiple injections that seem to be required is commonly sparse or absent. Timescales of up to several million years, among other arguments, indicate that the dominant volume does not remain largely molten, yet if growing plutons are constructed from rapidly solidifying increments it is unlikely that intrusive contacts would escape notice. A model wherein magma increments are emplaced into melt-bearing but crystal-rich host, rather than either solid or crystal-poor material, provides a plausible explanation for this apparent conundrum. A partially solidified intrusion undoubtedly comprises zones with contrasting melt fraction and therefore strength. Depending on whether these zones behave elastically or ductilely in response to dike emplacement, intruding magma may spread to form sheets by either of two mechanisms. If the melt-bearing host is elastic on the relevant timescale, magma spreads rather than continuing to propagate upward, where it encounters a zone of higher rigidity (higher crystal fraction). Similarly, if the dike at first ascends through rigid, melt-poor material and then encounters a zone that is weak enough (poor enough in crystals) to respond ductilely, the ascending material will also spread because the dike tip ceases to propagate as in rigid material. We propose that ascending magma is thus in essence trapped, by either mechanism, within relatively crystal-poor zones. Contacts will commonly be obscure from the start because the contrast between intruding material (crystal-poorer magma) and host (crystal-richer material) is subtle, and they may be obscured even further by subsequent destabilization of the crystal-melt framework. Field evidence and zircon zoning stratigraphy in plutons of the Colorado River region of southern Nevada support the hypothesis that emplacement of magma replenishments into a

  14. Field and Laboratory Dissipation of the Herbicide Fomesafen in the Southern Atlantic Coastal Plain (USA).

    PubMed

    Potter, Thomas L; Bosch, David D; Strickland, Timothy C

    2016-06-29

    To control weeds with evolved resistance to glyphosate, Southeastern (USA) cotton farmers have increased fomesafen (5-(2-chloro-α,α,α-trifluoro-p-tolyloxy)-N-mesyl-2-nitrobenzamide) use. To refine fomesafen risk assessments, data are needed that describe its dissipation following application to farm fields. In our study, relatively low runoff rates and transport by lateral subsurface flow, <1.0 and 0.15% of applied respectively, were observed. The low runoff rate was linked to postapplication irrigation incorporation and implementation of a common conservation tillage practice. Moderate soil persistence (t1/2 = 100 days) was indicated in laboratory incubations with surface soil, however, analysis of soil cores from treated plots showed that ≈3% of fomesafen applied persisted in subsoil >3 years after application. Findings suggest low potential for fomesafen movement from treated fields, however, the fate of fomesafen that accumulated in subsoil and the identity of degradates are uncertain. Soil and water samples were screened for degradates, but, none were detected. PMID:27268304

  15. Field Performance of Asphalt Pavements with New Technologies in Northern Nevada

    NASA Astrophysics Data System (ADS)

    Faeth, Benjamin Michael

    The Regional Transportation Commission (RTC) of the Washoe Valley Area has been tasked to determine if three advanced asphalt pavement technologies and one modified aggregate gradation are suitable for implementation within Reno, Stead, and Sparks Nevada. This was accomplished through research and test roads and Intersections to determine if Recycled Asphalt Pavement (RAP), Warm Mix Asphalt (WMA), Polymer-Modified Asphalt Binder, and the Type 2-R aggregate gradation were succeeding in their design plans. Over the course of several years the streets being used by RTC to test the technologies are succeeding within their design lifespans, and the Intersections being used to test the Type 2-R aggregate gradation are showing significant resistance to rutting. Due to the roads and Intersections not being more than 10 years old, these conclusions are subject to change over time.

  16. Estimates of deep percolation beneath native vegetation, irrigated fields, and the Amargosa-River Channel, Amargosa Desert, Nye County, Nevada

    USGS Publications Warehouse

    Stonestrom, David A.; Prudic, David E.; Laczniak, Randell J.; Akstin, Katherine C.; Boyd, Robert A.; Henkelman, Katherine K.

    2003-01-01

    The presence and approximate rates of deep percolation beneath areas of native vegetation, irrigated fields, and the Amargosa-River channel in the Amargosa Desert of southern Nevada were evaluated using the chloride mass-balance method and inferred downward velocities of chloride and nitrate peaks. Estimates of deep-percolation rates in the Amargosa Desert are needed for the analysis of regional ground-water flow and transport. An understanding of regional flow patterns is important because ground water originating on the Nevada Test Site may pass through the area before discharging from springs at lower elevations in the Amargosa Desert and in Death Valley. Nine boreholes 10 to 16 meters deep were cored nearly continuously using a hollow-stem auger designed for gravelly sediments. Two boreholes were drilled in each of three irrigated fields in the Amargosa-Farms area, two in the Amargosa-River channel, and one in an undisturbed area of native vegetation. Data from previously cored boreholes beneath undisturbed, native vegetation were compared with the new data to further assess deep percolation under current climatic conditions and provide information on spatial variability. The profiles beneath native vegetation were characterized by large amounts of accumulated chloride just below the root zone with almost no further accumulation at greater depths. This pattern is typical of profiles beneath interfluvial areas in arid alluvial basins of the southwestern United States, where salts have been accumulating since the end of the Pleistocene. The profiles beneath irrigated fields and the Amargosa-River channel contained more than twice the volume of water compared to profiles beneath native vegetation, consistent with active deep percolation beneath these sites. Chloride profiles beneath two older fields (cultivated since the 1960?s) as well as the upstream Amargosa-River site were indicative of long-term, quasi-steady deep percolation. Chloride profiles beneath the

  17. Shallow subsurface temperature surveys in the basin and range province-II. Ground temperatures in the upsal hogback geothermal area, West-Central Nevada, U.S.A.

    USGS Publications Warehouse

    Olmsted, F.H.; Ingebritsen, S.E.

    1986-01-01

    Numerous temperature surveys at a depth of 1 m were made in 1973-1985 in the Upsal Hogback and Soda Lakes geothermal areas in west-central Nevada. Whereas the surveys effectively delineated temperature at depth and heat flow within the relatively intense Soda Lakes thermal anomaly, they were not effective at the diffuse Upsal Hogback anomaly, where several perturbing factors that affect shallow subsurface temperatures are exceedingly variable. Albedo is the most important factor in the Upsal Hogback area, even at a depth of 30 m. All possible perturbing factors should be considered when designing a shallow temperature-based prospecting scheme. ?? 1986.

  18. Reservoir fluid and gas chemistry during CO2 injection at the Cranfield field, Mississippi, USA

    NASA Astrophysics Data System (ADS)

    Lu, J.; Kharaka, Y. K.; Cole, D. R.; Horita, J.; Hovorka, S.

    2009-12-01

    At Cranfield field, Mississippi, USA, a monitored CO2-EOR project provides a unique opportunity to understand geochemical interactions of injected CO2 within the reservoir. Cranfield field, discovered in 1943, is a simple anticlinal four-way closure and had a large gas cap surrounded by an oil ring (Mississippi Oil and Gas Board, 1966). The field was abandoned in 1966. The reservoir returned to original reservoir pressure (hydrostatic pressure) by a strong aquifer drive by 2008. The reservoir is in the lower Tuscaloosa Formation at depths of more than 3000 m. It is composed of stacked and incised channel fills and is highly heterogeneous vertically and horizontally. A variable thickness (5 to 15 m) of terrestrial mudstone directly overlies the basal sandstone providing the primary seal, isolating the injection interval from a series of fluvial sand bodies occurring in the overlying 30 m of section. Above these fluvial channels, the marine mudstone of the Middle Tuscaloosa forms a continuous secondary confining system of approximately 75 m. The sandstones of the injection interval are rich in iron, containing abundant diagenetic chamosite (ferroan chlorite), hematite and pyrite. Geochemical modeling suggests that the iron-bearing minerals will be dissolved in the face of high CO2 and provide iron for siderite precipitation. CO2 injection by Denbury Resources Inc. begun in mid-July 2008 on the north side of the field with rates at ~500,000 tones per year. Water and gas samples were taken from seven production wells after eight months of CO2 injection. Gas analyses from three wells show high CO2 concentrations (up to 90 %) and heavy carbon isotopic signatures similar to injected CO2, whereas the other wells show original gas composition and isotope. The mixing ratio between original and injected CO2 is calculated based on its concentration and carbon isotope. However, there is little variation in fluid samples between the wells which have seen various levels of CO2

  19. Geologic and geophysical evidence for the influence of deep crustal structures on Paleozoic tectonics and the alignment of world-class gold deposits, north-central Nevada, USA

    USGS Publications Warehouse

    Crafford, A.E.J.; Grauch, V.J.S.

    2002-01-01

    Geologic data concur with geophysical and isotopic data that suggest the presence of deep crustal fault zones along the Battle Mountain-Eureka (BME) trend and elsewhere in Nevada. The fault zones may have originated during Proterozoic rifting of the continent and were likely substantially reactivated and modified during Paleozoic tectonism. Five distinct Paleozoic structural and stratigraphic domains are defined that demonstrate the complexity of Paleozoic tectonic events and also lead to hypotheses about ways in which the margin could have been modified. The current locations of these domains adjacent to the geophysically and isotopically defined indicators of the buried continent edge corroborate their interactions with the continental margin. During the Tertiary, preexisting crustal fault zones were intersected and reopened during episodes of extension and served as the conduits for deep-sourced, gold-rich fluids, which were disseminated into Paleozoic slope facies sedimentary rocks, forming sediment-hosted Carlin-type and other deposits. Multiple factors including the locations of these deep-seated structures, the original configuration of the lower Paleozoic continental margin of Nevada, and its subsequent reactivation during the Paleozoic all were fundamental controls on the location of younger mineral deposits. A clearer understanding of the original configuration of the margin and of the effects of subsequent Paleozoic and Mesozoic tectonic events on the margin would provide insight into the locations of these and other prospective mineral belts. ?? 2002 Elsevier Science B.V. All rights reserved.

  20. Twelve Months of Air Quality Monitoring at Ash Meadows National Wildlife Refuge, Southwestern Rural Nevada, U.S.A (EMSI April 2007)

    SciTech Connect

    Engelbrecht, Johann P; Shafer, David S; Campbell, Dave; Campbell, Scott; McCurdy, Greg; Kohl, Steven D; Nikolich, George; Sheetz, Larry

    2011-08-01

    The one year of air quality monitoring data collected at the Ash Meadows National Wildlife Refuge (NWR) was the final part of the air quality "Scoping Studies" for the Environmental Monitoring Systems Initiative (EMSI) in southern and central Nevada. The objective of monitoring at Ash Meadows was to examine aerosol and meteorological data, seasonal trends in aerosol and meteorological parameters as well as to examine evidence for long distance transport of some constituents. The 9,307 hectare refuge supports more than 50 springs and 24 endemic species, including the only population of the federally listed endangered Devil’s Hole pupfish (Cyprinodon diabolis) (U.S. Fish and Wildlife Service, 1990). Ash Meadows NWR is located in a Class II air quality area, and the aerosol measurements collected with this study are compared to those of Interagency Monitoring of Protected Visual Environments (IMPROVE) sites. Measurements taken at Ash Meadows NWR over a period of 12 months provide new baseline air quality and meteorological information for rural southwestern Nevada, specifically Nye County and the Amargosa Valley.

  1. Snowmelt sensitivity to warmer temperatures: a field-validated model analysis, southern Sierra Nevada, California

    NASA Astrophysics Data System (ADS)

    Musselman, K. N.; Molotch, N. P.; Margulis, S. A.

    2014-12-01

    We present model simulations of climate change impacts on snowmelt processes over a 1600 km2 area in the southern Sierra Nevada, including western Sequoia National Park. The domain spans a 3600 m elevation gradient and ecosystems ranging from semi-arid grasslands to giant sequoia groves to alpine tundra. Three reference years were evaluated: a moderately dry snow season (23% below average SWE), an average snow season (7% above average SWE), and a moderately wet snow season (54% above average SWE). The Alpine3D model was run for the reference years and results were evaluated against data from a multi-scale measurement campaign that included repeated manual snow courses and basin-scale snow surveys, dozens of automated snow depth sensors, and automated SWE stations. Compared to automated measurements, the model represented the date of snow disappearance within two days. Compared to manual measurements, model SWE RMSE values for the average and wet snow seasons were highly correlated (R2=0.89 and R2=0.73) with the distance of SWE measurements from the nearest precipitation gauge used to force the model; no significant correlation was found with elevation. The results suggest that Alpine3D is highly accurate during the melt season and that precipitation uncertainty may critically limit snow model accuracy. The air temperature measured at 19 regional stations for the three reference years was modified by +1°C to +6°C to simulate the impact of warmer temperatures on snowmelt dynamics over the 3600 m elevation gradient. For all years, progressively warmer temperatures caused the seasonal SWE centroid to shift earlier and higher in elevation. At forested middle elevations, 70 - 80% of the present-day snowpack volume is lost in a +2°C scenario; 30 - 40% of that change is a result of precipitation phase shift and the remainder is due to enhanced melt. At all elevations, spring and fall snowpack was most sensitive to warmer temperatures; mid-winter sensitivity was least

  2. Recurring features of mid-Miocene transitional geomagnetic field behavior: Observations from NE Nevada and SE Oregon

    NASA Astrophysics Data System (ADS)

    Bogue, S. W.; Glen, J. M. G.

    2014-12-01

    Paleomagnetic results from a 150m thick stack of 15.2 my old lava flows in the Sheep Creek Range (north central Nevada; 40.7N, 243.2E) show that distinctive aspects of the reversing geomagnetic field can recur after 1.5 million years. The Sheep Creek lavas preserve a partial record of what is likely the C5Br-C5Bn geomagnetic reversal. That event occurred 1.5 million years and five polarity switches after reversal (C5Cr-C5Cn) recorded in great detail at Steens Mountain in SE Oregon. During both transitions, the VGP made repeat visits to low latitude positions in South America and near Africa although in different order. This behavior implies a control that varies over a timescale much longer that associated with flow in the outer core (~60 yrs), presumably lateral variations in lower mantle temperature or topography on the core-mantle boundary. Furthermore, the field in both reversals moved from clearly transitional to normal-polarity-like (i.e., down and north) directions before "rebounding" to intermediate directions. It has been suggested recently (Valet et al., Nature 2012) that this kind of behavior (i.e., directional change in the form of precursor- main polarity switch-rebound) may be a systematic aspect of transitional field behavior, a suggestion reinforced by these new observations. The distinctive, two component magnetization of a particular lava flow in the Sheep Creek section has been interpreted by Bogue and Glen (GRL, 2010) as evidence of directional change (~1 deg/week) orders of magnitude faster than normal secular variation. If the field was strong at the end of the directional change, then a large change in the local geomagnetic field vector is implied by the directional data for any initial field strength. Preliminary paleointensity experiments aimed at resolving this aspect of the record are in progress.

  3. Diagenesis and reservoir quality of Devonian reservoir rocks of Nevada, Blackburn, and Grant Canyon fields

    SciTech Connect

    Bereskin, S.R.; Little, T.M.; Lord, G.D.

    1989-03-01

    Devonian carbonate rocks of the Basin and Range province are largely responsible for the current enthusiastic search for petroleum in Nevada. Severely dolomitized Givetian and Frasnian rocks, given various formational names, contain numerous marine intertidal to sublittoral facies that are cyclically interbedded. Exploration complications can arise from physical and chemical diagenesis; however, recent advancements in petrology and petrophysics allow evaluation and behavior predictability of fractured reservoirs from the Blackburn 16 and Grant Canyon 4 wells. Complex diagenesis and deformation are common to the hydrocarbon-producing intervals and included numerous cementation, dissolution, and fracturing events. Abundant fractures are dominantly nonpenetrative, partially open types, and such closely spaced fractures resulted from two episodes represented by conjugate sets in each case. Dissolution porosity associated with leached Amphipora is also present. Silica, barite, and kaolinite are the most volumetrically important authigenic fracture-filling minerals. Fluorescence microscopy has revealed shallow burial diagenetic events that are masked by the more severe overprint of solution(.) brecciation of tectonically inspired diagenesis.

  4. Development of a Geothermal Well Database for Estimating In-Field EGS Potential in the State of Nevada

    SciTech Connect

    Hillary Hanson; Greg Mines

    2001-09-01

    A database containing information on full-sized geothermal wells at hydrothermal power plants was developed. The goal of the database development was to identify the name, location, and status of all full-sized geothermal wells drilled to date. Early design and population of the database focused on wells at hydrothermal power plants in Nevada. The database was created by aggregating and cleaning data from publicly available datasets. The database was designed to track data sources for each well data point, so that information in the database can be traced back to its original source. The initial database was then examined for missing or possibly erroneous data. These data points were further investigated and corrected using original source documents, such as well logs, permitting documents, etc. when possible, and the data source of the information updated as well. The resulting database design allows for the database to be continually updated and improved as new information becomes available, and for original data sources to be identified and consulted when conflicting or erroneous information about a well is uncovered, or if further information about the data point from the original data source is desired. The geothermal well database is still being developed, and future plans call for adding wells from geothermal installations in remaining US states. Although still in development, analysis of the database has yielded some promising results. A preliminary version of the database was used to create maps of the well fields for select power plant sites in Nevada. It was demonstrated that the status of existing wells and their location relative to productive wells can be used to help determine candidate wells for in-field EGS applications: existing wells that can be stimulated to increase their permeability and/or connect them to the existing reservoir so that they can be re-purposed as production or injection wells. These maps and the information in the geothermal

  5. Holocene environmental changes inferred from biological and sedimentological proxies in a high elevation Great Basin lake in the northern Ruby Mountains, Nevada, USA

    USGS Publications Warehouse

    Wahl, David B.; Starratt, Scott W.; Anderson, Lysanna; Kusler, Jennifer E.; Fuller, Christopher C.; Addison, Jason A.; Wan, Elmira

    2015-01-01

    Multi-proxy analyses were conducted on a sediment core from Favre Lake, a high elevation cirque lake in the northern Ruby Mountains, Nevada, and provide a ca. 7600 year record of local and regional environmental change. Data indicate that lake levels were lower from 7600-5750 cal yr BP, when local climate was warmer and/or drier than today. Effective moisture increased after 5750 cal yr BP and remained relatively wet, and possibly cooler, until ca. 3750 cal yr BP. Results indicate generally dry conditions but also enhanced climatic variability from 3750-1750 cal yr BP, after which effective moisture increased. The timing of major changes in the Favre Lake proxy data are roughly coeval and in phase with those recorded in several paleoclimate studies across the Great Basin, suggesting regional climatic controls on local conditions and similar responses at high and low altitudes.

  6. Ecology, distribution, and predictive occurrence modeling of Palmers chipmunk (Tamias palmeri): a high-elevation small mammal endemic to the Spring Mountains in southern Nevada, USA

    USGS Publications Warehouse

    Lowrey, Chris E.; Longshore, Kathleen; Riddle, Brett R.; Mantooth, Stacy

    2016-01-01

    Although montane sky islands surrounded by desert scrub and shrub steppe comprise a large part of the biological diversity of the Basin and Range Province of southwestern North America, comprehensive ecological and population demographic studies for high-elevation small mammals within these areas are rare. Here, we examine the ecology and population parameters of the Palmer’s chipmunk (Tamias palmeri) in the Spring Mountains of southern Nevada, and present a predictive GIS-based distribution and probability of occurrence model at both home range and geographic spatial scales. Logistic regression analyses and Akaike Information Criterion model selection found variables of forest type, slope, and distance to water sources as predictive of chipmunk occurrence at the geographic scale. At the home range scale, increasing population density, decreasing overstory canopy cover, and decreasing understory canopy cover contributed to increased survival rates.

  7. A protocol for coordinating post-tsunami field reconnaissance efforts in the USA

    USGS Publications Warehouse

    Wilson, Rick I.; Wood, Nathan J.; Kong, Laura; Shulters, Michael V.; Richards, Kevin D.; Dunbar, Paula; Tamura, Gen; Young, Edward J.

    2015-01-01

    In the aftermath of a catastrophic tsunami, much is to be learned about tsunami generation and propagation, landscape and ecological changes, and the response and recovery of those affected by the disaster. Knowledge of the impacted area directly helps response and relief personnel in their efforts to reach and care for survivors and for re-establishing community services. First-hand accounts of tsunami-related impacts and consequences also help researchers, practitioners, and policy makers in other parts of the world that lack recent events to better understand and manage their own societal risks posed by tsunami threats. Conducting post-tsunami surveys and disseminating useful results to decision makers in an effective, efficient, and timely manner is difficult given the logistical issues and competing demands in a post-disaster environment. To facilitate better coordination of field-data collection and dissemination of results, a protocol for coordinating post-tsunami science surveys was developed by a multi-disciplinary group of representatives from state and federal agencies in the USA. This protocol is being incorporated into local, state, and federal post-tsunami response planning through the efforts of the Pacific Risk Management ‘Ohana, the U.S. National Tsunami Hazard Mitigation Program, and the U.S. National Plan for Disaster Impact Assessments. Although the protocol was designed to support a coordinated US post-tsunami response, we believe it could help inform post-disaster science surveys conducted elsewhere and further the discussion on how hazard researchers can most effectively operate in disaster environments.

  8. LiDAR-based volume assessment of the origin of the Wadena drumlin field, Minnesota, USA

    NASA Astrophysics Data System (ADS)

    Sookhan, Shane; Eyles, Nick; Putkinen, Niko

    2016-06-01

    The Wadena drumlin field (WDF; ~ 7500 km2) in west-central Minnesota, USA, is bordered along its outer extremity by the till-cored Alexandria moraine marking the furthest extent of the southwesterly-flowing Wadena ice lobe at c. 15,000 kyr BP. Newly available high-resolution Light Detection and Ranging (LiDAR) data reveal new information regarding the number, morphology and extent of streamlined bedforms in the WDF. In addition, a newly-developed quantitative methodology based on relief curvature analysis of LiDAR elevation-based raster data is used to evaluate sediment volumes represented by the WDF and its bounding end moraine. These data are used to evaluate models for the origin of drumlins. High-resolution LiDAR-based mapping doubles the streamlined footprint of the Wadena Lobe to ~ 16,500 km2 increases the number of bedforms from ~ 2000 to ~ 6000, and most significantly, reclassifies large numbers of bedforms mapped previously as 'drumlins' as 'mega-scale glacial lineations' (MSGLs), indicating that the Wadena ice lobe experienced fast ice flow. The total volume of sediment in the Alexandria moraine is ~ 71-110 km3, that in the drumlins and MSGLs is ~ 2.83 km3, and the volume of swales between these bedforms is ~ 74.51 km3. The moraine volume is equivalent to a till layer 6.8 m thick across the entire bed of the Wadena lobe, suggesting drumlinization and moraine formation were accompanied by widespread lowering of the bed. This supports the hypothesis that drumlins and MSGLs are residual erosional features carved from a pre-existing till; swales represent 'missing sediment' that was eroded subglacially and advected downglacier to build the Alexandria Moraine during fast ice flow. Alternatively, the relatively small volume of sediment represented by subglacial bedforms indicates they could have formed rapidly by depositional processes.

  9. Field and geochemical investigations of the Peach Springs Tuff, southeastern California, western Arizona, and southern Nevada

    SciTech Connect

    Buesch, D.C.

    1992-01-01

    Three separate studies are presented that involve the 18.5 Ma Peach Springs Tuff (PST), a wide-spread ignimbrite exposed in southeastern California, western Arizona, and southern Nevada. In Chapter I, electron microprobe analyses of feldspar phenocrysts in the PST and three other ignimbrites show that the feldspar geochemistry can distinguish the tephra units. Chapter 2 presents a detailed physical volcanology study of the formation of multiple lithic breccia horizons in the PST at a location at least 140 km from the proposed vent area. A model is proposed whereby (1) locally derived lithic fragments are incorporated into the boundary layer of the ash-rich pyroclastic flow, (2) the boundary layer decouples from the ash-rich pyroclastic flow, (3) lithic-laden density driven pyroclastic flows sweep down local topography, and (4) intermingle with the ash-rich pyroclastic flow in the valley bottoms. The lithic breccias are very similar in grain size, texture, and structure to breccias located in near vent regions and care must be taken when interpreting ancient breccia deposits. The influence on sedimentation in post-PST depositional environments is evaluated in Chapter 3. Criteria are used to infer that deposition was (1) shortly after deposition, or (2) an indeterminate amount of time after deposition of the PST. Lithofacies in pre- and post-PST sedimentary rocks show there is a thinning and fining upward trend in nearly all environments, except in narrow valleys adjacent to areas of high relief. The inferred shifts in depositional environments resulted from the lowering of the local base level in response to filling basins with ignimbrite. Formation of partially to densely welded tuff, and development of a vapor-phase lithified cap of nonwelded tuff (1) reduces incision by streams, (2) promotes lateral cutting of the streams and subsequent stripping of the nonwelded nonlithified tuff, and (3) significantly reduces the amount of tephra that can be eroded.

  10. Field studies of the potential for wind transport of plutonium- contaminated soils at sites in Areas 6 and 11, Nevada Test Site

    SciTech Connect

    Lancaster, N.; Bamford, R.; Metzger, S.

    1995-07-01

    This report describes and documents a series of field experiments carried out in Areas 6 and 11 of the Nevada Test Site in June and July 1994 to determine parameters of boundary layer winds, surface characteristics, and vegetation cover that can be used to predict dust emissions from the affected sites. Aerodynamic roughness of natural sites is determined largely by the lateral cover of the larger and more permanent roughness elements (shrubs). These provide a complete protection of the surface from wind erosion. Studies using a field-portable wind tunnel demonstrated that natural surfaces in the investigated areas of the Nevada Test Site are stable except at very high wind speeds (probably higher than normally occur, except perhaps in dust devils). However, disturbance of silty-clay surfaces by excavation devices and vehicles reduces the entrainment threshold by approximately 50% and makes these areas potentially very susceptible to wind erosion and transport of sediments.

  11. Laboratory and Field Studies Related to Radionuclide Migration at the Nevada Test Site

    SciTech Connect

    B. A. Martinez; D. L. Finnegan; Joseph L. Thompson; K. S. Kung

    1999-03-01

    In this report, we describe the work done in FY 1998 at Los Alamos National Laboratory as part of the Hydrologic Resources Management Program (HRMA) funded by the Nevada Operations Office of the US Department of Energy (DOE/NV). The major part of our research effort was to measure radionuclides present in water or soil samples collected from near nuclear tests. We report our measurements for materials collected in both saturated and unsaturated horizons adjacent to nuclear test cavities or collapse chimneys and from within several cavities. Soil samples collected from above the cavities formed by the Halfbeak, Jerboa, and Bobac tests contained no radioactivity, although a test similar to Bobac in the same area had been contaminated with {sup 137}Cs. Water samples from near the Shoal test contained no measurable radionuclides, whereas those from near Faultless and Aleman had concentrations similar to previous measurements. Water from the Tybo-Benham site was similar to earlier collections at that site; this year, we added {sup 241}Am to the list of radionuclides measured at this location. Two Bennett pumps in tandem were used to extract water from the piezometer tube in the cavity of the Dalhart event. This extraction is a significant achievement in that it opens the possibility of purging similar tubes at other locations on the NTS. The Cheshire post shot hole was reconfigured and pumped from two horizons for the first time since mid-1980. We are especially interested in examining water from the level of the working point to determine the hydrologic source term in a cavity filled with groundwater for over 20 years. We devoted much time this year to examining the colloid content of NTS groundwater. After developing protocols for collecting, handling, and storing groundwater samples without altering their colloid content, we analyzed water from the Tybo-Benham and from the Cheshire sites. Whereas the colloid concentration did not vary much with depth at Tybo

  12. Comparative Plutonium-239 Dose Assessment for Three Desert Sites: Maralinga, Australia; Palomares, Spain; and the Nevada Test Site, USA - Before and After Remedial Action

    SciTech Connect

    Church, B W; Shinn, J; Williams, G A; Martin, L J; O'Brien, R S; Adams, S R

    2000-07-14

    for their similarities to make comparisons. The sites are all desert in nature i.e., have low rainfall (all receive about 20 cm per year), have minimal vegetative ground cover, and have high summer temperatures. These sites are Palomares, Spain; the Nevada Test Site (NTS); and the Maralinga site in Australia. One significant difference, however, is that the Palomares site has been used continuously for residential and agriculture purposes since the plutonium remediation was completed. Maralinga is being remediated with the objective of returning the land to its former owners, but it will have some use restrictions for the remaining contaminated areas. Any decision to return the land being remediated by the United States Department of Energy (USDOE) at its Nevada sites, for public use, is in the distant future.

  13. Mineralogy and clinoptilolite K/Ar results from Yucca Mountain, Nevada, USA: A potential high-level radioactive waste repository site

    SciTech Connect

    WoldeGabriel, G.; Broxton, D.E.; Bish, D.L.; Chipera, S.J.

    1993-11-01

    The Yucca Mountain Site Characterization Project is investigating Yucca Mountain, Nevada, as a potential site for a high-level nuclear waste repository. An important aspect of this evaluation is to understand the geologic history of the site including the diagenetic processes that are largely responsible for the present-day chemical and physical properties of the altered tuffs. This study evaluates the use of K/Ar geochronology in determining the alteration history of the zeolitized portions of Miocene tuffs at Yucca Mountain. Clinoptilolite is not generally regarded as suitable for dating because of its open structure and large ion-exchange capacity. However, it is the most abundant zeolite at Yucca Mountain and was selected for this study to assess the feasibility of dating the zeolitization process and/or subsequent processes that may have affected the zeolites. In this study we examine the ability of this mineral to retain all or part of its K and radiogenic Ar during diagenesis and evaluate the usefulness of the clinoptilolite K/Ar dates for determining the history of alteration.

  14. New 230Th/U and 14C ages from Lake Lahontan carbonates, Nevada, USA, and a discussion of the origin of initial thorium

    NASA Astrophysics Data System (ADS)

    Lin, J. C.; Broecker, W. S.; Anderson, R. F.; Hemming, S.; Rubenstone, J. L.; Bonani, G.

    1996-08-01

    Five sets of coeval lacustrine carbonate samples from Pleistocene Lake Lahontan in western Nevada were dated by both the AMS 14C and 230Th/U isochron methods. All five groups of samples were analyzed for U-Th isotopes by alpha spectrometry and one of the groups was additionally measured by thermal and secondary ionization mass spectrometry (TIMS and SIMS) for comparison. The 14C ages were corrected to calendar years using the calibration curve recommended by Bard et al. (1992) . Without local reservoir correction on the 14C ages, mean 230Th/U isochron ages of some sets are apparently older than their calendar-corrected 14C ages by up to 2300 years. Modern carbon contamination of these carbonate samples through recrystallization or deposition of secondary calcite is likely to be responsible for part of the age discrepancies. We explored additional biases associated with the isochron ages, maybe produced by the presence of initial Th coprecipitated from the lake water. It can be shown that if dissolved (hydrogenous) Th is directly incorporated into the pure carbonates, then the three-component mixing among (1) detrital Th, (2) hydrogenous Th adsorbed on detritus, and (3) hydrogenous Th incorporated by the carbonate can introduce a positive age bias. We have developed an approach to estimate the magnitude of this bias of the Lake Lahontan carbonates. The preliminary estimates suggest a positive age bias of 1000 to 2000 years for two sets of the samples.

  15. Field and laboratory dissipation of the herbicide fomesafen in the southern Atlantic Coastal Plain (USA)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To control weeds with evolved resistance to glyphosate, cotton farmers in the Southeastern USA have rapidly increased fomesafen (5-(2-chloro-a, a, a-trifluoro-p-tolyloxy)-N-mesyl-2-nitrobenzamide) use. Its properties suggest potential for soil persistence, runoff, and leaching that may contribute to...

  16. Field and laboratory fomesafen dissipation in the southern Atlantic Coastal Plain (USA)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Glyphosate resistant Palmer amaranth (Amaranthus palmeri) was discovered in central Georgia (USA) in 2006. Subsequent spread of this highly problematic weed throughout the region prompted growers and registrants to seek labels for herbicides that can provide cost-effective control. To this end, the...

  17. Reservoir Changes Derived from Seismic Observations at The Geysers Geothermal Field, CA, USA

    NASA Astrophysics Data System (ADS)

    Gritto, R.; Jarpre, S.

    2012-04-01

    Induced seismicity associated with the exploitation of geothermal fields is used as a tool to characterize and delineate changes associated with injection and production of fluids from the reservoir. At the same time public concern of felt seismicity has led to objections against the operation of geothermal reservoirs in close proximity to population centers. Production at the EGS sites in Basel (Switzerland) was stopped after renewed seismicity caused concern and objection from the public in the city. Operations in other geothermal reservoirs had to be scaled back or interrupted due to an unexpected increase in seismicity (Soultz-sous-forêt, France, Berlín, El Salvador). As a consequence of these concerns and in order to optimize the use of induced seismicity for reservoir engineering purposes, it becomes imperative to understand the relationship between seismic events and stress changes in the reservoir. We will address seismicity trends at The Geysers Geothermal Reservoir, CA USA, to understand the role of historical seismicity associated with past injection of water and/or production of steam. Our analysis makes use of a comprehensive database of earthquakes and associated phase arrivals from 2004 to 2011. A high-precision sub-set of the earthquake data was selected to analyze temporal changes in seismic velocities and Vp/Vs-ratio throughout the whole reservoir. We find relatively low Vp/Vs values in 2004 suggestive of a vapor dominated reservoir. With passing time, however, the observed temporal increase in Vp/Vs, coupled with a decrease in P- and S-wave velocities suggests the presence of fluid-filled fractured rock. Considering the start of a continuous water injection project in 2004, it can be concluded that the fluid saturation of the reservoir has successfully recovered. Preliminary results of 3-D velocity inversions of seismic data appear to corroborate earlier findings that the lowest Vp/Vs estimates are observed in the center of the reservoir

  18. Petroleum geology of Kate Spring field, Railroad Valley, Nye County, Nevada

    SciTech Connect

    French, D.E.

    1991-06-01

    Kate Spring field was opened by Marathon Oil Company at the 1 Kate Spring well in December 1985. Because of poor market conditions and production problems, the well was not produced and the field was not confirmed until the Evans 1 Taylor well was completed in October 1987. As of August 1990, five wells have produced over 575,000 bbl of oil and have the capacity to flow at rates of several hundred to several thousand barrels per day. The oil is 10-12{degrees} API and is saturated with gas. The oil is used for road asphalt which limits its marketability. Production is from landslide blocks of Paleozoic and lower Tertiary strata that were emplaced in Miocene-Pliocene time, during the structural development of the Railroad Valley basin. The slide blocks are overlain by valley fill and probably correspond to similar blocks encountered within the valley fill at Eagle Springs field, adjacent to the north. The pay is at a depth of 4,500 ft. Kate Spring is a part of the fault-block bench that contains Eagle Springs field and is situated on the east flank of the Railroad Valley graben. There is east-west closure on the structure of the field, but the north end of the field has not been defined. The accumulation is sealed by the unconformity at the slide block-valley fill contact. The nature of the reservoir implies that the production is controlled by fractures and precludes useful extrapolation of any measurable matrix porosity. Based on volumetric calculations, the field will probably produce 2-3 million bbl of oil.

  19. A long term meander evolution simulation: A model evaluation using the field data from Quinn River, Nevada

    NASA Astrophysics Data System (ADS)

    Matsubara, Y.; Howard, A. D.; Burr, D. M.; Moore, J. M.; Williams, R. M.

    2011-12-01

    Despite the ubiquity of meandering streams, there have been few field-based studies of the temporal evolution of meander planforms, including modeling of channel migration and spatial patterns of floodplain. The Quinn River, located in the east branch of the Black Rock Desert, Nevada is a sinuous channel that flows through lacustrine sediments on the floor of paleolake Lahontan where vegetation cover is sparse. It is still active and aerial photographs taken over the past 50 years show that significant modifications including meander cutoffs have occurred in the past 40 years. This provides good basis for testing the ability of flow and bank erosion models (e.g., Johannesson and Parker [1989]) to predict meander evolution pattern. Meander model developed by Howard [1992, 1996], which has its base on the Johannesson and Parker [1989] linearized model of flow through bends, was used to simulate forward evolution of the Quinn River starting from the 1972 centerline. The Quinn River lacks bars and has a nearly canal-like cross-section with a flat bed, thus it is an ideal channel to test predictions of bend evolution. The model was calibrated by using various data such as meander wavelength, channel cross-sectional shape, measurements of flow resistance based upon the field work, and timing of meander cutoffs to find the model results that best match the 2010 centerline. We also formulated and calibrated the flood plain sediment deposition model using high resolution topography data from LiDAR. Our results show that the model well predicts the meander evolution pattern over historical time period. Also the short term simulations show a good correlation between the predicted inner and outer bend flow velocity ratio and the ratio of inner and outer channel bank slope ratio.

  20. New Insights into Strain Accumulation and Release in the Central and Northern Walker Lane, Pacific-North American Plate Boundary, California and Nevada, USA

    NASA Astrophysics Data System (ADS)

    Bormann, Jayne M.

    The Walker Lane is a 100 km-wide distributed zone of complex transtensional faulting that flanks the eastern margin of the Sierra Nevada. Up to 25% of the total Pacific-North American relative right-lateral plate boundary deformation is accommodated east of the Sierra Nevada, primarily in the Walker Lane. The results of three studies in the Central and Northern Walker Lane offer new insights into how constantly accumulating plate boundary shear strain is released on faults in the Walker Lane and regional earthquake hazards. This research is based on the collection and analysis of new of geologic and geodetic datasets. Two studies are located in the Central Walker Lane, where plate boundary deformation is accommodated on northwest trending right-lateral faults, east-northeast trending left-lateral faults, and north trending normal faults. In this region, a prominent set of left-stepping, en-echelon, normal fault-bounded basins between Walker Lake and Lake Tahoe fill a gap in Walker Lane strike slip faults. Determining how these basins accommodate shear strain is a primary goal of this research. Paleoseismic and neotectonic observations from the Wassuk Range fault zone in the Walker Lake basin record evidence for at least 3 Holocene surface rupturing earthquakes and Holocene/late Pleistocene vertical slip rates between 0.4-0.7 mm/yr on the normal fault, but record no evidence of right-lateral slip along the rangefront fault. A complementary study presents new GPS velocity data that measures present-day deformation across the Central Walker Lane and infers fault slip and block rotation rates using an elastic block model. The model results show a clear partitioning between distinct zones of strain accommodation characterized by (1) right-lateral translation of blocks on northwest trending faults, (2) left-lateral slip and clockwise block rotations between east and northeast trending faults, and (3) right-lateral oblique normal slip with minor clockwise block rotations

  1. Mortality in Subalpine Forests of the Sierra Nevada, California, USA: Differential Response of Pines (Pinus albicaulis and P. flexilis) to Climate Variability

    NASA Astrophysics Data System (ADS)

    Millar, C. I.; Westfall, R. D.; Delany, D. L.

    2010-12-01

    Widespread forest mortality in high-elevation forests has been increasing across western North American mountains in recent years, with climate, insects, and disease the primary causes. Subalpine forests in the eastern Sierra Nevada, by contrast, have experienced far less mortality than other ranges, and mortality events have been patchy and episodic. This situation, and lack of significant effect of non-native white-pine blister rust, enable investigation of fine-scale response of two subalpine Sierran species, whitebark pine (Pinus albicaulis, PiAl) and limber pine (P. flexilis, PiFl), to climate variability. We report similarities and differences between the two major mortality events in these pines in the last 150 years: 1988-1992 for PiFl and 2006-ongoing for PiAl. In both species, the events occurred within monotypic, closed-canopy, relatively young stands (< 200 yrs PiAl, < 300 yrs in PiFl); were localized to central-eastern Sierra Nevada; and occurred at 2740-2840 m along the eastern edge of the escarpment on north/northeast aspects with slopes > 40%. Mortality patches averaged 40-80 ha in both species, with mean stand mortality of trees > 10 cm diameter 91% in PiAl and 60% in PiFl. The ultimate cause of tree death was mountain pine beetle (Dendroctonus ponderosae) in both species, with increasing 20th/21st C minimum temperatures combined with drought the pre-conditioning factors. Overall growth in the past 150 years suggests that PiFl is more drought hardy than PiAl but responds sensitively to the combined effects of drought and increasing warmth. After the 1988-1992 drought, surviving PiFl recovered growth. PiAl trees grew very poorly during that drought, and continued poor growth in the years until 2006 when the mortality event occurred in PiAl. A significant species effect is the apparent difference in levels of within-stand genetic diversity for climate factors. Differential growth between 19th C (cool, wet) and 20th/21st C (warming, drying) of Pi

  2. Microbial ooids and cortoids from the Lower Triassic (Spathian) Virgin Limestone, Nevada, USA: Evidence for an Early Triassic microbial bloom in shallow depositional environments

    NASA Astrophysics Data System (ADS)

    Woods, Adam D.

    2013-06-01

    Lower Triassic sedimentary rocks contain a variety of unusual facies and fabrics, with microbialites being a distinctive component of many carbonates deposited following the Permian-Triassic mass extinction. Coated grains are common in shallow water facies from the upper Lower Triassic (Spathian) Virgin Limestone (Moenkopi Formation) in southern Nevada, and were investigated in order to determine their origin. Petrographic analysis reveals that the majority of the coated grains found within the Virgin Limestone are micritic ooids with a concentric fabric, or with a homogenous fabric composed of dense, often cloudy micrite. In addition, asymmetric ooids, aggregate grains, and distorted ooids are also locally common in some oolitic units; low-Mg calcite ooids and bimineralic ooids composed of low-Mg calcite and dense, cloudy micrite are less commonly found, but are also documented from the Virgin Limestone. Cortoids (i.e., grains that are coated with constructive micrite envelopes) are a minor component of oolitic grainstones and packstones (typically 10-15% of the grains), although they may also comprise entire beds. The cortoids are coated with micrite similar to that which comprises the ooid cortices, and may be finely laminated or dense and cloudy in nature. The micrite ooids and constructive micrite envelopes are interpreted as microbial in origin based on the finely laminated or cloudy, dense nature of the micrite, as well as coatings that are uneven, or often of greater thickness on one side of elongate nuclei, such as bivalve shells or phylliod algae blades. The origin of the low-Mg calcite ooids and layers is less certain, but may also be microbial. The results of this study suggest that a microbial bloom occurred in shallow water environments, which was the result of 3 factors: (1) the unusual chemistry of Early Triassic oceans; (2) runoff of nutrient-rich waters, which enhanced microbialite growth; and, (3) wave agitation and warm waters that led to CO2

  3. Successful Project Based Learning (PBL) Across Disciplines Geared Towards Middle School: An Example from a Wetlands PBL Unit in Reno, Nevada, USA

    NASA Astrophysics Data System (ADS)

    Howard, K. L.; Suchy-Mabrouk, A.; Noble, P. J.; Mensing, S. A.; Ewing-Taylor, J.

    2014-12-01

    A growing need for broad dissemination of current scientific research and improved scientific literacy requires new models of professional development that allow for direct collaboration between educators and university researchers. One example is a project funded by the National Science Foundation (NSF) as part of a study titled, "Reconstructing 2500 years of environmental change at the periphery of Rome: Integrating paleoecology and socioeconomic history to understand human response to climate." This project involves a team of middle school teachers working with researchers at the University of Nevada, Reno (UNR) to gain first-hand knowledge in multidisciplinary research connecting science and society, and applies a similar approach in the classroom. In 2013, the team's science teacher traveled to Italy as a member of the science research group. A series of workshops introduced the remaining teachers to the research project. Teachers collaborated to develop a Project Based Learning (PBL) unit that incorporated Next Generation Science Standards and encompassed English, Social Studies, Math, and Science curricula using a pedagogical approach different from the single subject-based PBL's usually taught in their school district. The PBL unit draws on the NSF study and focuses on exploring the balance between economic and environmental issues surrounding local wetlands. In May 2014, 160 middle school students worked in groups to create and test a question about physio-chemical parameters in a nearby wetland and used these data to discuss local economic development. Initially, students claimed polarized views of environmental issues or economic development interests; however, during a multimedia session showcasing results, students communicated more informed perspectives that clearly incorporated knowledge gained from their own research. Some students were able to make recommendations for good practices involving planned economic development near the wetland

  4. Improved spatial resolution for U-series dating of opal at Yucca Mountain, Nevada, USA, using ion-microprobe and microdigestion methods

    USGS Publications Warehouse

    Paces, J.B.; Neymark, L.A.; Wooden, J.L.; Persing, H.M.

    2004-01-01

    Two novel methods of in situ isotope analysis, ion microprobe and microdigestion, were used for 230Th/U and 234U/238U dating of finely laminated opal hemispheres formed in unsaturated felsic tuff at Yucca Mountain, Nevada, proposed site for a high-level radioactive waste repository. Both methods allow analysis of layers as many as several orders of magnitude thinner than standard methods using total hemisphere digestion that were reported previously. Average growth rates calculated from data at this improved spatial resolution verified that opal grew at extremely slow rates over the last million years. Growth rates of 0.58 and 0.69 mm/m.y. were obtained for the outer 305 and 740 ??m of two opal hemispheres analyzed by ion microprobe, and 0.68 mm/m.y. for the outer 22 ??m of one of these same hemispheres analyzed by sequential microdigestion. These Pleistocene growth rates are 2 to 10 times slower than those calculated for older secondary calcite and silica mineral coatings deposited over the last 5 to 10 m.y. dated by the U-Pb method and may reflect differences between Miocene and Pleistocene seepage flux. The microdigestion data also imply that opal growth rates may have varied over the last 40 k.y. These data are the first indication that growth rates and associated seepage in the proposed repository horizon may correlate with changes in late Pleistocene climate, involving faster growth during wetter, cooler climates (glacial maximum), slower growth during transition climates, and no growth during the most arid climate (modern). Data collected at this refined spatial scale may lead to a better understanding of the hydrologic variability expected within the thick unsaturated zone at Yucca Mountain over the time scale of interest for radioactive waste isolation. ?? 2004 Elsevier Ltd.

  5. Zircon trace element, and O and Hf isotopic records of magma sources and pluton assembly in the Sierra Crest intrusions (Sierra Nevada batholith, USA)

    NASA Astrophysics Data System (ADS)

    Miller, J. S.; Lackey, J. S.; Davies, G. R.; Sendek, C.

    2014-12-01

    The Sierra Crest Intrusions of the Sierra Nevada Batholith are the last major magmatic pulse associated with the Cretaceous flare-up. They are characterized by long assembly times (several 106 years), and are normally zoned from marginal, horblende-biotite granodiorites to more felsic, K-feldspar megacrystic, biotite granodiorites. Combined trace element and O and Hf isotopes on zircon are presented from the major Sierra Crest Intrusions. Zircon saturation temperatures (TZrc,sat) are similar and low (ca. 700°C) for most of the individual units, but Ti-in-zircon temperatures (TZrn,Ti) and trace element ratios contrast strongly between outer marginal units and inner megacrystic units (low TZrn,Ti ≈ TZrc,sat, high Yb/Gd, low Th/U, high and similar Hf, and high Eu/Eu*). Zircon O and Hf isotopes vary markedly across the suite (ΔɛHf = 15; Δδ18O = 2.5‰). Individual intrusive suites (gabbro to high-silica granite) record variable O-Hf variations; no correlation (John Muir), subtle binary or ternary arrays (e.g., Whitney, Sonora), or bimodal distribution of values (Tuolumne). In some cases single hand samples (small-volume mafic or felsic units), may record the entire variability within a suite. Inner megacrystic units generally have lower ɛHf than outer marginal units. Whole rock geochemical data for the intrusive suites also show an increase in the "garnet signature" with time (higher Sr/Y and Dy/Yb). The isotopic data are consistent with variable mantle sources and progressively cooler, more water-rich magmatism with a simultaneous shift to greater crustal involvement, and deepening of the magma sources. Magmatic underplating and intraplating of mafic arc magmas produced increasing crustal assimilation but under PT conditions that allowed production of more felsic, zircon-saturated, magmas. The isotopic variability requires that plutons are amalgams of many magmas mixed at varying scales before final solidification.

  6. New {sup 230}Th/U and {sup 14}C ages from Lake Lahontan carbonates, Nevada, USA, and a discussion of the origin of initial thorium

    SciTech Connect

    Lin, J.C.; Broecker, W.S.; Anderson, R.F.

    1996-08-01

    Five sets of coeval lacustrine carbonate samples from Pleistocene Lake Lahontan in western Nevada were dated by both the AMS {sup 14}C and {sup 230}Th/U isochron methods. All five groups of samples were analyzed for U-Th isotopes by alpha spectrometry and one of the groups was additionally measured by thermal and secondary ionization mass spectrometry (TIMS and SIMS) for comparison. The {sup 14}C ages were corrected to calendar years using the calibration curve recommended by Bard et al. (1992). Without local reservoir correction on the {sup 14}C ages mean {sup 230}Th/U isochron ages of some sets are apparently older than their calendar-corrected {sup 14}C ages by up to 2300 years. Modern carbon contamination of these carbonate samples through recrystallization or deposition of secondary calcite is likely to be responsible for part of the age discrepancies. We explored additional biases associated with the isochron ages, maybe produced by the presence of initial Th coprecipitated from the lake water. It can be shown that if dissolved (hydrogenous) Th is directly incorporated into the pure carbonates, then the three-component mixing among (1) detrital Th, (2) hydrogenous Th adsorbed on detritus, and (3) hydrogenous Th incorporated by the carbonate can introduce a positive age bias. We have developed an approach to estimate the magnitude of this bias of the Lake Lahontan carbonates. The preliminary estimates suggest a positive age bias of 1000 to 2000 years for two sets of the samples. 49 refs., 10 figs., 9 tabs.

  7. Mid-Tertiary magmatism of the Toquima caldera complex and vicinity, Nevada: development of explosive high-K, calc-alkaline magmas in the central Great Basin, USA

    NASA Astrophysics Data System (ADS)

    Boden, David R.

    1994-04-01

    The Toquima caldera complex (TCC) lies near the middle of a west-northwest-trending belt of Oligocene to early Miocene volcanic rocks that stretches from southwestern Utah to west-central Nevada. Three overlapping to eccentrically nested calderas, called Moores Creek, Mt. Jefferson, and Trail Canyon, comprise the TCC. The calderas formed due to eruption of the tuffs of Moores Creek, Mt. Jefferson, and Trail Canyon at 27.2 Ma, 26.4 Ma, and 23.6 Ma, respectively. In total, 900+ km3 of magma was erupted from the complex. The high-silica rhyolite tuff of Moores Creek is the least strongly zoned in silica (78.0 76.8 wt% SiO2), and the tuff of Mt. Jefferson is the most strongly zoned (77.5 65.3 wt% SiO2); the tuff of Trail Canyon is moderately zoned (75.9 70.4 wt% SiO2). All eruptive products contain plagioclase, sanidine, quartz, biotite, Fe-Ti oxides, and accessory zircon, allanite, and apatite. Amphibole and clinopyroxene join the assemblage where compositions of bulk tuff are ≲ 74 wt% SiO2 and ≲ 70 wt% SiO2 respectively. Proportions and compositions of phenocrysts vary systematically with composition of the host tuff. Compositional zoning trends of sanidine and biotite suggest the presence of a high Ba-bearing magmatic component at depth or its introduction into the Mt. Jefferson and Trail Canyon magma chambers at a late stage of magmatic evolution. Rocks of the complex constitute a high-K, calc-alkaline series. Empirical data from other systems and results of published phase-equilibria and thermo-chemical studies suggest that magma erupted from the TCC was oxidized (˜ 1.5 to 2.0 log units above NNO), thermally zoned (˜ 700 730° C for high-silica rhyolite to ˜800 840° C for dacite) and water-rich (5.0 5.5. wt% H2O for highsilica rhyolite to ˜ 4.0 wt% H2O for dacite). Geologic relations and amphibole compositional data are consistent with total pressures of 1.5 to 2 kbars. Onset of mid-Tertiary magmatism in vicinity of the TCC began with intrusion of a small

  8. Geological techniques utilized in trap Spring Field discovery, Railroad Valley, Nye County, Nevada

    SciTech Connect

    Dolly, E.D.

    1980-01-01

    The trap at Eagle Springs Field is a combination stratigraphic truncation-subcrop-fault trap. Production occurs from matrix and fracture porosity in reservoirs in the Sheep Pass Formation (Cretaceous and Eocene) and the Garrett Ranch volcanic group (Oligocene). Probably the most unique feature about the field is that the production occurs from the highest position on the lowermost fault block at the basin margin. On the adjacent higher fault blocks the reservoir beds were removed by erosion during the basin and range orogenic event. The position of the truncated edge of the lower Tertiary reservoir units is controlled by the fault pattern at the margin of the valley-basin Graben. Detailed geomorphic studies indicated that this fault pattern may be identified at the surface. Regional geomorphic mapping of fault patterns was conducted to localize areas with possible subcrop truncation patterns similar to Eagle Springs Field. 20 references.

  9. Alkaline Basalts of The Quaternary Buffalo Valley Volcanic Field, NW Fish Creek Mountains, North-central Nevada, Great Basin

    NASA Astrophysics Data System (ADS)

    Cousens, B.; Henry, C. D.

    2008-12-01

    The Buffalo Valley volcanic field, 5 km southwest of Battle Mountain, consists of approximately 11 cinder cones and associated flows. Youthful volcanoes are rare in the region, and thus this field offers the opportunity to investigate mantle sources currently beneath the central Great Basin. Most of the eruptive centers are distributed along the northwestern margin of the Fish Creek Mountains, a mid-Tertiary caldera complex, along a 13-km-long northeasterly trend that is perpendicular to the regional stress field (or GPS velocity field), suggesting fault control or eruption from a now-buried fissure. The cones are geomorphologically youthful, with well-defined, commonly breached craters. At least one cone, situated slightly east of the main trend, consists of only a thin mantle of scoria and bombs overlying grey Paleozoic limestone. Previous K-Ar and Ar-Ar dating indicate that the cones are between 1.29 and 0.95 Ma in age. Two other nearby Quaternary volcanic centers lie northeast of the Fish Creek Mountains (K-Ar date of 3.3 Ma) and in the center of the Fish Creek caldera (age unknown). Rare Tertiary basalts and more common Tertiary andesites lie around the margin of the caldera. Lavas from the Buffalo Valley cones have vesicular flow tops and more massive interiors. All Quaternary centers are similar petrographically, including 1-2% olivine phenocrysts and megacrysts up to 1 cm in size, and characteristic plagioclase megacrysts that are rarely up to 4 cm long, commonly in a glassy matrix. Two cone samples are alkalic basalt and tephrite with Mg numbers of 0.55, high TiO2 (2.4%), K2O (2.0%), light REE, Nb (60 ppm), but low Cr and Ni (80 ppm), Pb (2 ppm), Ba (450 ppm) and 87Sr/86Sr (0.70375) compared to Late Pliocene/Quaternary volcanic rocks from the western Great Basin near Reno/Carson City/Fallon. The Buffalo Valley cones are similar chemically to lavas from the Pliocene-Quaternary Lunar Craters volcanic field in central Nevada, and are melts of mantle that is

  10. Grant Canyon and Bacon Flat oil fields, Railroad Valley, Nye County, Nevada

    SciTech Connect

    Bortz, L.C. ); Forster, N.H. ); Veal, H.K.; Duey, H.D.

    1988-10-01

    The Grant Canyon field is located on the east side of Railroad Valley, 8 mi south of the Eagle Springs oil field. The discovery well, Grant Canyon Unit 1, was completed by Northwest Exploration Co. on September 11, 1983, flowing 1816 BOPD from the Devonian Guilmette Dolomite. Two additional wells have been completed in the field. Cumulative oil production through April 1988 is 8,211,149 barrels of oil. During March and April 1988, wells 3 and 4 flowed an average of 6081 BOPD. For these months, well 3 average 4144 BOPD with 1935 BOPD coming from well 4. Production area appears to be 240 acres. The trap is a high fault block in the boundary fault zone that separates Railroad Valley from the Grant Range to the east. The Devonian Guilmette reservoir is an intensely fractured, vuggy dolomite with some intercrystalline porosity. The top seal is the Tertiary Valley Fill which unconformably overlies Guilmette Dolomite. The oil column is about 400 ft thick and the field apparently has an active water drive, inasmuch as the 1 Unit had to be shut-in because of water production. The oil is black, 26 degree API gty, a pour of 10 F and 0.5% sulfur. Estimated ultimate recoverable oil reserves are 13 MMBO. The adjacent Bacon Flat field is a one-well field that was completed by Northwest Exploration Co. on July 5, 1981, for 200 BOPD and 1050 BWPD from the Devonian Guilmette Limestone (5316-5332 ft). Cumulative production through April 1988 is 303,860 barrels of oil. During March 1988 the well averaged 108 BOPD plus an unreported amount of water. Estimated ultimate recoverable oil reserves are 400 MBO.