Science.gov

Sample records for field portable microchip

  1. Customized oligonucleotide microchips that convert multiple genetic information to simple patterns, are portable and reusable

    DOEpatents

    Mirzabekov, Andrei; Guschin, Dmitry Y.; Chik, Valentine; Drobyshev, Aleksei; Fotin, Alexander; Yershov, Gennadiy; Lysov, Yuri

    2002-01-01

    This invention relates to using customized oligonucleotide microchips as biosensors for the detection and identification of nucleic acids specific for different genes, organisms and/or individuals in the environment, in food and in biological samples. The microchips are designed to convert multiple bits of genetic information into simpler patterns of signals that are interpreted as a unit. Because of an improved method of hybridizing oligonucleotides from samples to microchips, microchips are reusable and transportable. For field study, portable laser or bar code scanners are suitable.

  2. Development of a Real-Time Microchip PCR System for Portable Plant Disease Diagnosis

    PubMed Central

    Kim, Hyun Soo; Cifci, Osman S.; Vaughn-Diaz, Vanessa L.; Ma, Bo; Kim, Sungman; Abdel-Raziq, Haron; Ong, Kevin; Jo, Young-Ki; Gross, Dennis C.; Shim, Won-Bo; Han, Arum

    2013-01-01

    Rapid and accurate detection of plant pathogens in the field is crucial to prevent the proliferation of infected crops. Polymerase chain reaction (PCR) process is the most reliable and accepted method for plant pathogen diagnosis, however current conventional PCR machines are not portable and require additional post-processing steps to detect the amplified DNA (amplicon) of pathogens. Real-time PCR can directly quantify the amplicon during the DNA amplification without the need for post processing, thus more suitable for field operations, however still takes time and require large instruments that are costly and not portable. Microchip PCR systems have emerged in the past decade to miniaturize conventional PCR systems and to reduce operation time and cost. Real-time microchip PCR systems have also emerged, but unfortunately all reported portable real-time microchip PCR systems require various auxiliary instruments. Here we present a stand-alone real-time microchip PCR system composed of a PCR reaction chamber microchip with integrated thin-film heater, a compact fluorescence detector to detect amplified DNA, a microcontroller to control the entire thermocycling operation with data acquisition capability, and a battery. The entire system is 25×16×8 cm3 in size and 843 g in weight. The disposable microchip requires only 8-µl sample volume and a single PCR run consumes 110 mAh of power. A DNA extraction protocol, notably without the use of liquid nitrogen, chemicals, and other large lab equipment, was developed for field operations. The developed real-time microchip PCR system and the DNA extraction protocol were used to successfully detect six different fungal and bacterial plant pathogens with 100% success rate to a detection limit of 5 ng/8 µl sample. PMID:24349341

  3. Development of a real-time microchip PCR system for portable plant disease diagnosis.

    PubMed

    Koo, Chiwan; Malapi-Wight, Martha; Kim, Hyun Soo; Cifci, Osman S; Vaughn-Diaz, Vanessa L; Ma, Bo; Kim, Sungman; Abdel-Raziq, Haron; Ong, Kevin; Jo, Young-Ki; Gross, Dennis C; Shim, Won-Bo; Han, Arum

    2013-01-01

    Rapid and accurate detection of plant pathogens in the field is crucial to prevent the proliferation of infected crops. Polymerase chain reaction (PCR) process is the most reliable and accepted method for plant pathogen diagnosis, however current conventional PCR machines are not portable and require additional post-processing steps to detect the amplified DNA (amplicon) of pathogens. Real-time PCR can directly quantify the amplicon during the DNA amplification without the need for post processing, thus more suitable for field operations, however still takes time and require large instruments that are costly and not portable. Microchip PCR systems have emerged in the past decade to miniaturize conventional PCR systems and to reduce operation time and cost. Real-time microchip PCR systems have also emerged, but unfortunately all reported portable real-time microchip PCR systems require various auxiliary instruments. Here we present a stand-alone real-time microchip PCR system composed of a PCR reaction chamber microchip with integrated thin-film heater, a compact fluorescence detector to detect amplified DNA, a microcontroller to control the entire thermocycling operation with data acquisition capability, and a battery. The entire system is 25 × 16 × 8 cm(3) in size and 843 g in weight. The disposable microchip requires only 8-µl sample volume and a single PCR run consumes 110 mAh of power. A DNA extraction protocol, notably without the use of liquid nitrogen, chemicals, and other large lab equipment, was developed for field operations. The developed real-time microchip PCR system and the DNA extraction protocol were used to successfully detect six different fungal and bacterial plant pathogens with 100% success rate to a detection limit of 5 ng/8 µl sample. PMID:24349341

  4. Engineering the bioelectrochemical interface using functional nanomaterials and microchip technique toward sensitive and portable electrochemical biosensors.

    PubMed

    Jia, Xiaofang; Dong, Shaojun; Wang, Erkang

    2016-02-15

    Electrochemical biosensors have played active roles at the forefront of bioanalysis because they have the potential to achieve sensitive, specific and low-cost detection of biomolecules and many others. Engineering the electrochemical sensing interface with functional nanomaterials leads to novel electrochemical biosensors with improved performances in terms of sensitivity, selectivity, stability and simplicity. Functional nanomaterials possess good conductivity, catalytic activity, biocompatibility and high surface area. Coupled with bio-recognition elements, these features can amplify signal transduction and biorecognition events, resulting in highly sensitive biosensing. Additionally, microfluidic electrochemical biosensors have attracted considerable attention on account of their miniature, portable and low-cost systems as well as high fabrication throughput and ease of scaleup. For example, electrochemical enzymetic biosensors and aptamer biosensors (aptasensors) based on the integrated microchip can be used for portable point-of-care diagnostics and environmental monitoring. This review is a summary of our recent progress in the field of electrochemical biosensors, including aptasensors, cytosensors, enzymatic biosensors and self-powered biosensors based on biofuel cells. We presented the advantages that functional nanomaterials and microfluidic chip technology bring to the electrochemical biosensors, together with future prospects and possible challenges. PMID:26001888

  5. Identification of chemical warfare agents using a portable microchip-based detection device

    NASA Astrophysics Data System (ADS)

    Petkovic-Duran, K.; Swallow, A.; Sexton, B. A.; Glenn, F.; Zhu, Y.

    2011-12-01

    Analysis of chemical warfare agents (CWAs) and their degradation products is an important verification component in support of the Chemical Weapons Convention and urgently demanding rapid and reliable analytical methods. A portable microchip electrophoresis (ME) device with contactless conductivity (CCD) detection was developed for the in situ identification of CWA and their degradation products. A 10mM MES/His, 0.4mM CTAB - based separation electrolyte accomplished the analysis of Sarin (GB), Tabun( GA) and Soman (GD) in less than 1 min, which is the fastest screening of nerve agents achieved with portable ME and CCD based detection methods to date. Reproducibility of detection was successfully demonstrated on simultaneous detection of GB (200ppm) and GA (278ppm). Reasonable agreement for the four consecutive runs was achieved with the mean peak time for Sarin of 29.15s, and the standard error of 0.58s or 2%. GD and GA were simultaneously detected with their degradation products methylphosphonic acid (MPA), pinacolyl methylphosphonic acid (PMPA) and O-Ethyl Phosphorocyanidate (GAHP and GAHP1) respectively. The detection limit for Sarin was around 35ppb. To the best of our knowledge this is the best result achieved in microchip electrophoresis and contactless conductivity based detection to date.

  6. Design and operation of a portable scanner for high performance microchip capillary array electrophoresis.

    PubMed

    Scherer, James R; Liu, Peng; Mathies, Richard A

    2010-11-01

    We have developed a compact, laser-induced fluorescence detection scanner, the multichannel capillary array electrophoresis portable scanner (McCAEPs) as a platform for electrophoretic detection and control of high-throughput, integrated microfluidic devices for genetic and other analyses. The instrument contains a confocal optical system with a rotary objective for detecting four different fluorescence signals, a pneumatic system consisting of two pressure/vacuum pumps and 28 individual addressable solenoid valves for control of on-chip microvalves and micropumps, four Polymerase Chain Reaction (PCR) temperature control systems, and four high voltage power supplies for electrophoresis. The detection limit of the instrument is ~20 pM for on-chip capillary electrophoresis of fluorescein dyes. To demonstrate the system performance for forensic short tandem repeat (STR) analysis, two experiments were conducted: (i) electrophoretic separation and detection of STR samples on a 96-lane microfabricated capillary array electrophoresis microchip. Fully resolved PowerPlex(®) 16 STR profiles amplified from 1 ng of 9947A female standard DNA were successfully obtained; (ii) nine-plex STR amplification, sample injection, separation, and fluorescence detection of 100-copy 9948 male standard DNA in a single integrated PCR- capillary electrophoresis microchip. These results demonstrate that the McCAEPs can be used as a versatile control and detection instrument that operates integrated microfluidic devices for high-performance forensic human identification. PMID:21133459

  7. Design and operation of a portable scanner for high performance microchip capillary array electrophoresis

    NASA Astrophysics Data System (ADS)

    Scherer, James R.; Liu, Peng; Mathies, Richard A.

    2010-11-01

    We have developed a compact, laser-induced fluorescence detection scanner, the multichannel capillary array electrophoresis portable scanner (McCAEPs) as a platform for electrophoretic detection and control of high-throughput, integrated microfluidic devices for genetic and other analyses. The instrument contains a confocal optical system with a rotary objective for detecting four different fluorescence signals, a pneumatic system consisting of two pressure/vacuum pumps and 28 individual addressable solenoid valves for control of on-chip microvalves and micropumps, four Polymerase Chain Reaction (PCR) temperature control systems, and four high voltage power supplies for electrophoresis. The detection limit of the instrument is ˜20 pM for on-chip capillary electrophoresis of fluorescein dyes. To demonstrate the system performance for forensic short tandem repeat (STR) analysis, two experiments were conducted: (i) electrophoretic separation and detection of STR samples on a 96-lane microfabricated capillary array electrophoresis microchip. Fully resolved PowerPlex® 16 STR profiles amplified from 1 ng of 9947A female standard DNA were successfully obtained; (ii) nine-plex STR amplification, sample injection, separation, and fluorescence detection of 100-copy 9948 male standard DNA in a single integrated PCR- capillary electrophoresis microchip. These results demonstrate that the McCAEPs can be used as a versatile control and detection instrument that operates integrated microfluidic devices for high-performance forensic human identification.

  8. Microchip Capillary Electrophoresis with Electrochemical Detection for Monitoring Environmental Pollutants

    SciTech Connect

    Chen, Gang; Lin, Yuehe; Wang, Joseph

    2006-01-15

    This invited paper reviews recent advances and the key strategies in microchip capillary electrophoresis (CE) with electrochemical detection (ECD) for separating and detecting a variety of environmental pollutants. The subjects covered include the fabrication of microfluidic chips, sample pretreatments, ECD, typical applications of microchip CE with ECD in environmental analysis, and future prospects. It is expected that microchip CE-ECD will become a powerful tool in the environmental field and will lead to the creation of truly portable devices.

  9. Microchip Electrophoresis at Elevated Temperatures and High Separation Field Strengths

    PubMed Central

    Mitra, Indranil; Marczak, Steven P.; Jacobson, Stephen C.

    2014-01-01

    We report free-solution microchip electrophoresis performed at elevated temperatures and high separation field strengths. We used microfluidic devices with 11-cm long separation channels to conduct separations at temperatures between 22 (ambient) and 45 °C and field strengths from 100 to 1000 V/cm. To evaluate separation performance, N-glycans were used as a model system and labeled with 8-aminopyrene-1,3,6-trisulfonic acid to impart charge for electrophoresis and render them fluorescent. Typically, increased diffusivity at higher temperatures leads to increased axial dispersion and poor separation performance; however, we demonstrate that sufficiently high separation field strengths can be used to offset the impact of increased diffusivity in order to maintain separation efficiency. Efficiencies for these free-solution separations are the same at temperatures of 25, 35, and 45 °C with separation field strengths ≥500 V/cm. PMID:24114979

  10. Monitoring environmental pollutants by microchip capillary electrophoresis with electrochemical detection

    SciTech Connect

    Chen, Gang; Lin, Yuehe; Wang, Joseph

    2006-01-15

    This is a review article. During the past decade, significant progress in the development of miniaturized microfluidic systems has Occurred due to the numerous advantages of microchip analysis. This review focuses on recent advances and the key strategies in microchip capillary electrophoresis (CE) with electrochemical detection (ECD) for separating and detecting a variety of environmental pollutants. The subjects covered include the fabrication of microfluidic chips, ECD, typical applications of microchip CE with ECD in environmental analysis, and future prospects. It is expected that microchip CE-ECD will become a powerful tool in the environmental field and will lead to the creation of truly portable devices.

  11. Functionality of veterinary identification microchips following low- (0.5 tesla) and high-field (3 tesla) magnetic resonance imaging.

    PubMed

    Piesnack, Susann; Frame, Mairi E; Oechtering, Gerhard; Ludewig, Eberhard

    2013-01-01

    The ability to read patient identification microchips relies on the use of radiofrequency pulses. Since radiofrequency pulses also form an integral part of the magnetic resonance imaging (MRI) process, the possibility of loss of microchip function during MRI scanning is of concern. Previous clinical trials have shown microchip function to be unaffected by MR imaging using a field strength of 1 Tesla and 1.5. As veterinary MRI scanners range widely in field strength, this study was devised to determine whether exposure to lower or higher field strengths than 1 Tesla would affect the function of different types of microchip. In a phantom study, a total of 300 International Standards Organisation (ISO)-approved microchips (100 each of three different types: ISO FDX-B 1.4 × 9 mm, ISO FDX-B 2.12 × 12 mm, ISO HDX 3.8 × 23 mm) were tested in a low field (0.5) and a high field scanner (3.0 Tesla). A total of 50 microchips of each type were tested in each scanner. The phantom was composed of a fluid-filled freezer pack onto which a plastic pillow and a cardboard strip with affixed microchips were positioned. Following an MRI scan protocol simulating a head study, all of the microchips were accurately readable. Neither 0.5 nor 3 Tesla imaging affected microchip function in this study. PMID:23763334

  12. Using microchip electrophoresis for real-time aerosol composition measurements: Field study results from San Gorgonio Wilderness, California

    NASA Astrophysics Data System (ADS)

    Evanoski-Cole, A. R.; Hecobian, A.; Lewis, G. S.; Hering, S. V.; Henry, C. S.; Collett, J. L.

    2012-12-01

    The detrimental impacts of atmospheric aerosol on human and ecosystem health, visibility and climate change have been studied extensively. However, the role of aerosol composition in these issues still needs further investigation due to the variability of aerosol particles over both time and space. The need for better temporal and spatial resolution of aerosol composition measurements is addressed in the development of a real-time instrument using microchip capillary electrophoresis. Termed Aerosol microChip Electrophoresis (ACE), this lab-on-a-chip instrument is inexpensive to manufacture, portable and provides sensitive real-time and semi-continuous aerosol composition measurements. A water condensation growth tube is used to enlarge water soluble aerosol particles with an aerodynamic diameter less than 2.5 μm. The aqueous sample is continuously collected by impaction into a sample reservoir on a custom designed microchip. A rapid separation of select aerosol components is achieved using microchip capillary electrophoresis coupled with conductivity detection. Here we present data from a recent field campaign in the San Gorgonio Wilderness in south western California. This unique high elevation wilderness site located to the east of the heavily populated cities of San Bernardino and Los Angeles provides a contrast of both clean background and aged urban aerosol as dictated by the meteorological conditions at the site. Ambient aerosol particles were continuously collected at a flow rate of 0.7 L/min into a liquid sample with a volume of 16.7 μL and then analyzed for sulfate, nitrate, chloride and oxalate every 48 seconds. When comparing the ambient concentrations with the meteorological conditions, the most notable trend was high nitrate and sulfate concentrations in ambient aerosol during upslope wind events, with values reaching as high as 34 and 5 μg/m3, respectively. Comparison aerosol composition measurements from filter samples and a particle

  13. Electric field directed nucleic acid hybridization on microchips.

    PubMed Central

    Edman, C F; Raymond, D E; Wu, D J; Tu, E; Sosnowski, R G; Butler, W F; Nerenberg, M; Heller, M J

    1997-01-01

    Selection and adjustment of proper physical parameters enables rapid DNA transport, site selective concentration, and accelerated hybridization reactions to be carried out on active microelectronic arrays. These physical parameters include DC current, voltage, solution conductivity and buffer species. Generally, at any given current and voltage level, the transport or mobility of DNA is inversely proportional to electrolyte or buffer conductivity. However, only a subset of buffer species produce both rapid transport, site specific concentration and accelerated hybridization. These buffers include zwitterionic and low conductivity species such as: d- and l-histidine; 1- and 3-methylhistidines; carnosine; imidazole; pyridine; and collidine. In contrast, buffers such as glycine, beta-alanine and gamma-amino-butyric acid (GABA) produce rapid transport and site selective concentration but do not facilitate hybridization. Our results suggest that the ability of these buffers (histidine, etc.) to facilitate hybridization appears linked to their ability to provide electric field concentration of DNA; to buffer acidic conditions present at the anode; and in this process acquire a net positive charge which then shields or diminishes repulsion between the DNA strands, thus promoting hybridization. PMID:9396795

  14. Field-portable lensfree tomographic microscope†

    PubMed Central

    Isikman, Serhan O.; Bishara, Waheb; Sikora, Uzair; Yaglidere, Oguzhan; Yeah, John; Ozcan, Aydogan

    2011-01-01

    We present a field-portable lensfree tomographic microscope, which can achieve sectional imaging of a large volume (~20 mm3) on a chip with an axial resolution of <7 μm. In this compact tomographic imaging platform (weighing only ~110 grams), 24 light-emitting diodes (LEDs) that are each butt-coupled to a fibre-optic waveguide are controlled through a cost-effective micro-processor to sequentially illuminate the sample from different angles to record lensfree holograms of the sample that is placed on the top of a digital sensor array. In order to generate pixel super-resolved (SR) lensfree holograms and hence digitally improve the achievable lateral resolution, multiple sub-pixel shifted holograms are recorded at each illumination angle by electromagnetically actuating the fibre-optic waveguides using compact coils and magnets. These SR projection holograms obtained over an angular range of ~50° are rapidly reconstructed to yield projection images of the sample, which can then be back-projected to compute tomograms of the objects on the sensor-chip. The performance of this compact and light-weight lensfree tomographic microscope is validated by imaging micro-beads of different dimensions as well as a Hymenolepis nana egg, which is an infectious parasitic flatworm. Achieving a decent three-dimensional spatial resolution, this field-portable on-chip optical tomographic microscope might provide a useful toolset for telemedicine and high-throughput imaging applications in resource-poor settings. PMID:21573311

  15. Development of field portable sampling and analysis systems

    SciTech Connect

    Beals, D.

    2000-06-08

    A rapid field portable sample and analysis system has been demonstrated at the Savannah River Site and the Hanford Site. The portable system can be used when rapid decisions are needed in the field during scoping or remediation activities, or when it is impractical to bring large volumes of water to the lab for analysis.

  16. Digital radiography for the field: a portable prototype.

    PubMed

    Cho, Kenneth H; Freckleton, Michael W

    2002-01-01

    The US military has been investigating methods for improving radiographic support for field medical operations. The purpose of this project was to develop and test a portable digital radiography (DR) system to determine its feasibility for field operations. A prototype portable digital radiography device was designed and assembled using a commercially available DR sensor. The sensor and necessary hardware were mounted into a ruggedized aluminum case. The device underwent testing in the hospital and field environments. The prototype rapidly provided digital radiographs in a variety of settings. Shortcomings of the device affecting usability and reliable operation were identified. The successful construction and operation of a portable digital radiography prototype shows that such a device is feasible for field applications. The prototype requires further modification and testing to improve its usability and reliability, and to explore other potential applications, both military and civilian. PMID:12105726

  17. Portable instrumentation for environmental field studies

    NASA Astrophysics Data System (ADS)

    1980-09-01

    Low-power, portable instruments have been developed for measuring gas exchange on individual plant leaves, the aggregate carbon uptake and release of vast jungle and forest areas, and methane concentrations in and around the dense fog resulting from a liquefied-natural-gas (LNG) spill. The group includes a battery powered carbon dioxide sensor and three specialized instruments that incorporate it in various ways: a minicuvette gas-exchange monitor, a rapid-response carbon-dioxide-flux sensor with a high-speed, cooled IR detector, a response time of 10 ms and a sensitivity of about 0.03 ppm CO2, and a methane monitor with the optical path shortened to 5 cm and with a quadrupled IR output.

  18. FIELD COMPARISON OF PORTABLE GAS CHROMATOGRAPHS WITH METHOD TO-14

    EPA Science Inventory

    A field-deployable prototype fast gas chromatograph (FGC) and two commercially-available portable gas chromatographs (PGC) were evaluated by measuring organic vapors in ambient air at a field monitoring site in metropolitan San Juan, Puerto Rico. he data were compared with simult...

  19. Portable field kit for determining uranium in water

    USGS Publications Warehouse

    McHugh, John B.

    1979-01-01

    The pressing need for on-site field analyses of the uranium content of surface and ground waters has promoted the development of a simple, light-weight, relatively cheap, portable kit to make such determinations in the field. Forty to sixty water samples per day can be analyzed for uranium to less than 0.2 parts per billion. The kit was tested in the field with excellent results.

  20. Portable power tool machines weld joints in field

    NASA Technical Reports Server (NTRS)

    Spier, R. A.

    1966-01-01

    Portable routing machine for cutting precise weld joints required by nonstandard pipe sections used in the field for transfer of cryogenic fluids. This tool is adaptable for various sizes of pipes and has a selection of router bits for different joint configurations.

  1. Real-World Physics: A Portable MBL for Field Measurements.

    ERIC Educational Resources Information Center

    Albergotti, Clifton

    1994-01-01

    Uses a moderately priced digital multimeter that has output and software compatible with personal computers to make a portable, computer-based data-acquisition system. The system can measure voltage, current, frequency, capacitance, transistor hFE, and temperature. Describes field measures of velocity, acceleration, and temperature as function of…

  2. Portable Radiometer Identifies Minerals in the Field

    NASA Technical Reports Server (NTRS)

    Goetz, A. F. H.; Machida, R. A.

    1982-01-01

    Hand-held optical instrument aids in identifying minerals in field. Can be used in exploration for minerals on foot or by aircraft. The radiometer is especially suitable for identifying clay and carbonate minerals. Radiometer measures reflectances of mineral at two wavelengths, computes ratio of reflectances, and displays ratio to user.

  3. Microchips in Medicine: Current and Future Applications

    PubMed Central

    Eltorai, Adam E. M.; Fox, Henry; McGurrin, Emily; Guang, Stephanie

    2016-01-01

    With the objective of improving efficacy and morbidity, device manufacturers incorporate chemicals or drugs into medical implants. Using multiple reservoirs of discrete drug doses, microchips represent a new technology capable of on-demand release of various drugs over long periods of time. Herein, we review drug delivery systems, how microchips work, recent investigations, and future applications in various fields of medicine. PMID:27376079

  4. Field Testing of a Portable Radiation Detector and Mapping System

    SciTech Connect

    Hofstetter, K.J.; Hayes, D.W.; Eakle, R.F.

    1998-03-01

    Researchers at the Savannah River Site (SRS) have developed a man- portable radiation detector and mapping system (RADMAPS) which integrates the accumulation of radiation information with precise ground locations. RADMAPS provides field personnel with the ability to detect, locate, and characterize nuclear material at a site or facility by analyzing the gamma or neutron spectra and correlating them with position. the man-portable field unit records gamma or neutron count rate information and its location, along with date and time, using an embedded Global Positioning System (GPS). RADMAPS is an advancement in data fusion, integrating several off-the-shelf technologies with new computer software resulting in a system that is simple to deploy and provides information useful to field personnel in an easily understandable form. Decisions on subsequent actions can be made in the field to efficiently use available field resources. The technologies employed in this system include: recording GPS, radiation detection (typically scintillation detectors), pulse height analysis, analog-to-digital converters, removable solid-state (Flash or SRAM) memory cards, Geographic Information System (GIS) software and personal computers with CD-ROM supporting digital base maps. RADMAPS includes several field deployable data acquisition systems designed to simultaneously record radiation and geographic positions. This paper summarizes the capabilities of RADMAPS and some of the results of field tests performed with the system.

  5. Field-portable pixel super-resolution colour microscope.

    PubMed

    Greenbaum, Alon; Akbari, Najva; Feizi, Alborz; Luo, Wei; Ozcan, Aydogan

    2013-01-01

    Based on partially-coherent digital in-line holography, we report a field-portable microscope that can render lensfree colour images over a wide field-of-view of e.g., >20 mm(2). This computational holographic microscope weighs less than 145 grams with dimensions smaller than 17×6×5 cm, making it especially suitable for field settings and point-of-care use. In this lensfree imaging design, we merged a colorization algorithm with a source shifting based multi-height pixel super-resolution technique to mitigate 'rainbow' like colour artefacts that are typical in holographic imaging. This image processing scheme is based on transforming the colour components of an RGB image into YUV colour space, which separates colour information from brightness component of an image. The resolution of our super-resolution colour microscope was characterized using a USAF test chart to confirm sub-micron spatial resolution, even for reconstructions that employ multi-height phase recovery to handle dense and connected objects. To further demonstrate the performance of this colour microscope Papanicolaou (Pap) smears were also successfully imaged. This field-portable and wide-field computational colour microscope could be useful for tele-medicine applications in resource poor settings. PMID:24086742

  6. Field-Portable Pixel Super-Resolution Colour Microscope

    PubMed Central

    Greenbaum, Alon; Akbari, Najva; Feizi, Alborz; Luo, Wei; Ozcan, Aydogan

    2013-01-01

    Based on partially-coherent digital in-line holography, we report a field-portable microscope that can render lensfree colour images over a wide field-of-view of e.g., >20 mm2. This computational holographic microscope weighs less than 145 grams with dimensions smaller than 17×6×5 cm, making it especially suitable for field settings and point-of-care use. In this lensfree imaging design, we merged a colorization algorithm with a source shifting based multi-height pixel super-resolution technique to mitigate ‘rainbow’ like colour artefacts that are typical in holographic imaging. This image processing scheme is based on transforming the colour components of an RGB image into YUV colour space, which separates colour information from brightness component of an image. The resolution of our super-resolution colour microscope was characterized using a USAF test chart to confirm sub-micron spatial resolution, even for reconstructions that employ multi-height phase recovery to handle dense and connected objects. To further demonstrate the performance of this colour microscope Papanicolaou (Pap) smears were also successfully imaged. This field-portable and wide-field computational colour microscope could be useful for tele-medicine applications in resource poor settings. PMID:24086742

  7. Portable Imagery Quality Assessment Test Field for Uav Sensors

    NASA Astrophysics Data System (ADS)

    Dąbrowski, R.; Jenerowicz, A.

    2015-08-01

    Nowadays the imagery data acquired from UAV sensors are the main source of all data used in various remote sensing applications, photogrammetry projects and in imagery intelligence (IMINT) as well as in other tasks as decision support. Therefore quality assessment of such imagery is an important task. The research team from Military University of Technology, Faculty of Civil Engineering and Geodesy, Geodesy Institute, Department of Remote Sensing and Photogrammetry has designed and prepared special test field- The Portable Imagery Quality Assessment Test Field (PIQuAT) that provides quality assessment in field conditions of images obtained with sensors mounted on UAVs. The PIQuAT consists of 6 individual segments, when combined allow for determine radiometric, spectral and spatial resolution of images acquired from UAVs. All segments of the PIQuAT can be used together in various configurations or independently. All elements of The Portable Imagery Quality Assessment Test Field were tested in laboratory conditions in terms of their radiometry and spectral reflectance characteristics.

  8. A Field Portable Hyperspectral Goniometer for Coastal Characterization

    NASA Technical Reports Server (NTRS)

    Bachmann, Charles M.; Gray, Deric; Abelev, Andrei; Philpot, William; Fusina, Robert A.; Musser, Joseph A.; Vermillion, Michael; Doctor, Katarina; White, Maurice; Georgiev, Georgi

    2012-01-01

    During an airborne multi-sensor remote sensing experiment at the Virginia Coast Reserve (VCR) Long Term Ecological Research (LTER) site in June 2011 (VCR '11), first measurements were taken with the new NRL Goniometer for Outdoor Portable Hyperspectral Earth Reflectance (GOPHER). GOPHER measures the angular distribution of hyperspectral reflectance. GOPHER was constructed for NRL by Spectra Vista Corporation (SVC) and the University of Lethbridge through a capital equipment purchase in 2010. The GOPHER spectrometer is an SVC HR -1024, which measures hyperspectral reflectance over the range from 350 -2500 nm, the visible, near infrared, and short-wave infrared. During measurements, the spectrometer travels along a zenith quarter -arc track that can rotate in azimuth, allowing for measurement of the bi-directional reflectance distribution function (BRDF) over the whole hemisphere. The zenith arc has a radius of approximately 2m, and the spectrometer scan pattern can be programmed on the fly during calibration and validation efforts. The spectrometer and zenith arc assembly can be raised and lowered along a mast to allow for measurement of uneven terrain or vegetation canopies of moderate height. Hydraulics on the chassis allow for leveling of the instrument in the field. At just over 400 lbs, GOPHER is a field portable instrument and can be transformed into a compact trailer assembly for movement over long distances in the field.

  9. Development of a portable field monitor for PCBs. Final report

    SciTech Connect

    Bostick, W.D.; Denton, M.S.; Dinsmore, S.R.

    1983-01-01

    With the advent of recent regulations and those yet pending concerning allowable concentrations of polychlorinated biphenyls (PCBs), personnel in all aspects of the electric power industry, analytical support personnel, and those in the regulatory functions themselves have realized that the PCB problem, as well as these associated regulations, has far surpassed available monitoring capability. In short, detailed, stringent regulations are being set for contamination levels where no accepted ASTM procedure or instrumentation exists. The largest PCB problems occur in the form of PCB-contaminated oil in field transformers and storage containers, and pure askarel in transformers and capacitors. The most immediate need for a portable field instrument would be for use under PCB spill conditions. Portable monitors based on the principles of photoionization detection (PID) and infrared spectroscopy (IR) have been adapted and evaluated for this purpose. The latter includes both flow cell and horizontal multiple internal reflectance (HMIR) sampling configurations. Extensive work has also been performed on solvent-solvent and solvent-soil extractions, as well as PCB adsorption on packings, for use under spill conditions.

  10. Portable piezoelectric crystal detector for field monitoring of environmental pollutants

    SciTech Connect

    Ho, M.H.; Guilbault, G.G.; Rietz, B.

    1983-09-01

    A portable field monitor was constructed by using a coated piezoelectric crystal for direct monitoring of toluene in a Danish printing plant. Toluene vapor was adsorbed onto the Pluronic F-68 coating on a quartz crystal and a decrease in frequency was observed. Various substances which could interfere with toluene determination were tested. No interference from CO, NH/sub 3/, SO/sub 2/, HCl at 100 ppm are expected. Water vapor interfered and was selectively removed using a Nafion permeation tube. The readings from the piezoelectric detector were compared to two accepted procedures for monitoring toluene, the photoionization detector and the Drager tube. Results indicate that the piezoelectric detector gave data consistent with both other methods and with better relative standard deviations than the other two. 8 references, 2 figures, 1 table.

  11. A Portable, Field-Deployable Analyzer for Isotopic Water Measurements

    NASA Astrophysics Data System (ADS)

    Berman, E. S.; Gupta, M.; Huang, Y. W.; Lacelle, D.; McKay, C. P.; Fortson, S.

    2015-12-01

    Water stable isotopes have for many years been used to study the hydrological cycle, catchment hydrology, and polar climate among other applications. Typically, discrete water samples are collected and transported to a laboratory for isotope analysis. Due to the expense and labor associated with such sampling, isotope studies have generally been limited in scope and time-resolution. Field sampling of water isotopes has been shown in recent years to provide dense data sets with the increased time resolution illuminating substantially greater short term variability than is generally observed during discrete sampling. A truly portable instrument also opens the possibility to utilize the instrument as a tool for identifying which water samples would be particularly interesting for further laboratory investigation. To make possible such field measurements of liquid water isotopes, Los Gatos Research has developed a miniaturized, field-deployable liquid water isotope analyzer. The prototype miniature liquid water isotope analyzer (mini-LWIA) uses LGR's patented Off-Axis ICOS (Integrated Cavity Output Spectroscopy) technology in a rugged, Pelican case housing for easy transport and field operations. The analyzer simultaneously measures both δ2H and δ18O from liquid water, with both manual and automatic water introduction options. The laboratory precision for δ2H is 0.6 ‰, and for δ18O is 0.3 ‰. The mini-LWIA was deployed in the high Arctic during the summer of 2015 at Inuvik in the Canadian Northwest Territories. Samples were collected from Sachs Harbor, on the southwest coast of Banks Island, including buried basal ice from the Lurentide Ice Sheet, some ice wedges, and other types of ground ice. Methodology and water analysis results from this extreme field deployment will be presented.

  12. Analysis of explosives via microchip electrophoresis and conventional capillary electrophoresis: a review.

    PubMed

    Pumera, Martin

    2006-01-01

    The upsurge in terrorist activity has generated tremendous demand for innovative tools capable of detecting major industrial, military, and home-made (improvised) explosives. Fast, sensitive, and reliable detection of explosives in the field is a very important issue in nowadays. CE, especially in its miniaturized format (lab-on-a-chip), offers great possibilities to create portable, field deployable, rapidly responding, and potentially disposable devices, allowing security forces to make the important decisions regarding the safety of civilians. This article overviews the microchip and conventional capillary electrophoretic techniques for analysis of a wide variety of explosive compounds and mixtures. PMID:16307431

  13. Detection of hazardous chemicals using field-portable Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Wright, Cherylyn W.; Harvey, Scott D.; Wright, Bob W.

    2003-07-01

    A major challenge confronting emergency response, border control, and other security-related functions is the accurate, rapid, and safe identification of potentially hazardous chemicals outside a laboratory environment. Raman spectroscopy is a rapid, non-intrusive technique that can be used to confidently identify many classes of hazardous and potentially explosive compounds based on molecular vibration information. Advances in instrumentation now allow reliable field - portable measurements to be made. Before the Raman technique can be effectively applied and be accepted within the scientific community, realistic studies must be performed to develop methods, define limitations, and rigorously evaluate its effectiveness. Examples of a variety of chemicals (including neat and diluted chemical warfare [CW] agents, a CW agent precursor, a biological warfare (BW)-related compound, an illicit drug, and explosives) identified using Raman spectroscopy in various types of containers and on surfaces are given, as well as results from a blind field test of 29 unknown samples which included CW agent precursors and/or degradation products, solvents associated with CW agent production, pesticides, explosives, and BW toxins (mostly mycotoxins). Additionally, results of experimental studies to evaluate the analysis of flammable organic solvents, propellants, military explosives, mixtures containing military explosives, shock-sensitive explosives, and gun powders are described with safety guidelines. Spectral masks for screening unknown samples for explosives and nerve agents are given.

  14. Particle-free microchip processing

    DOEpatents

    Geller, A.S.; Rader, D.J.

    1996-06-04

    Method and apparatus for reducing particulate contamination in microchip processing are disclosed. The method and apparatus comprise means to reduce particle velocity toward the wafer before the particles can be deposited on the wafer surface. A reactor using electric fields to reduce particle velocity and prevent particulate contamination is disclosed. A reactor using a porous showerhead to reduce particle velocities and prevent particulate contamination is disclosed. 5 figs.

  15. Particle-free microchip processing

    DOEpatents

    Geller, Anthony S.; Rader, Daniel J.

    1996-01-01

    Method and apparatus for reducing particulate contamination in microchip processing are disclosed. The method and apparatus comprise means to reduce particle velocity toward the wafer before the particles can be deposited on the wafer surface. A reactor using electric fields to reduce particle velocity and prevent particulate contamination is disclosed. A reactor using a porous showerhead to reduce particle velocities and prevent particulate contamination is disclosed.

  16. Development of a field-portable air monitor for Lewisite

    SciTech Connect

    Aldstadt, J.H.; Martin, A.F.; Olson, D.C. |

    1996-03-01

    The focus of this research is the development of a prototype field-portable ambient-air monitor for measuring trace levels of volatile organoarsenicals. Lewisite (dichloro[2-chlorovinyl]arsine) is a chemical warfare agent developed during World War I and stockpiled on a large scale by the former Soviet Union. A continuous air monitor for Lewisite at the eight-hour time-weighted-average concentration (3 {mu}g/m{sup 3}) is necessary to protect the safety and health of arms control treaty inspectors. Flow injection is used to integrate an air sampling device based on liquid-phase extraction with a flow-through detector based on potentiometric stripping analysis. We describe a method for the sampling and preconcentration of organoarsenicals from ambient air by using a gas permeation membrane sampler. The sampler is designed to selectively preconcentrate analyte that permeates a silicone rubber membrane into a caustic carrier stream. Instrument design is described for the sampling and detection methodologies.

  17. Portable narcotics detector and the results obtained in field tests

    NASA Astrophysics Data System (ADS)

    Tumer, Tumay O.; Su, Chih-Wu; Kaplan, Christopher R.; Rigdon, Stephen W.

    1997-02-01

    A compact integrated narcotics detection instrument (CINDI) has been developed at NOVA R&D, Inc. with funding provided by the U.S. Coast Guard. CINDI is designed as a portable sensitive neutron backscatter detector which has excellent penetration for thick and high Z compartment barriers. It also has a highly sensitive detection system for backscattered neutrons and, therefore, uses a very weak californium-252 neutron source. Neutrons backscatter profusely from materials that have a large hydrogen content, such as narcotics. The rate of backscattered neutrons detected is analyzed by a microprocessor and displayed on the control panel. The operator guides the detector along a suspected area and displays in real time the backscattered neutron rate. CINDI is capable of detecting narcotics effectively behind panels made of steel, wood, fiberglass, or even lead-lined materials. This makes it useful for inspecting marine vessels, ship bulkheads, automobiles, structure walls or small sealed containers. The strong response of CINDI to hydrogen-rich materials such as narcotics makes it an effective tool for detecting concealed drugs. Its response has been field tested by NOVA, the U.S. Coast Guard and Brewt Power Systems. The results of the tests show excellent response and specificity to narcotic drugs. Several large shipments of concealed drugs have been discovered during these trials and the results are presented and discussed.

  18. Integration of amperometric sensors for microchip capillary electrophoresis application

    NASA Astrophysics Data System (ADS)

    Dicorato, F.; Moore, E.; Glennon, J.

    2011-08-01

    Capillary electrophoresis is a technique for the separation and analysis of chemical compounds. Techniques adopted from the microchip technology knowledge have led to recent developments of electrophoresis system with integration on microchip. Microchip Capillary Electrophoresis (μCE) systems offer a series of advantages as easy integration for Lab-on-a-chip applications, high performance, portability, speed, minimal solvent and sample requirements. A new technological challenge aims at the development of an economic modular microchip capillary electrophoresis systems using separable and independent units concerning the sensor. In this project we worked on the development of an interchangeable amperometric sensor in order to provide a solution to such electrode passivation and facilitating the use of tailored sensors for specific analyte detection besides. Fluidic chips have been machined from cyclic olefin polymer pallets (Zeonor®) using a micro-injection molding machine.

  19. Portable Remote Imaging Spectrometer (PRISM): Laboratory and Field Calibration

    NASA Technical Reports Server (NTRS)

    Mouroulis, Pantazis; Van Gorp, Byron; Green, Robert O.; Eastwood, Michael; Boardman, Joseph; Richardson, Brandon S.; Rodriguez, Jose I.; Urquiza, Eugenio; Franklin, Brian D.; Gao, Bo-Cai

    2012-01-01

    We report the characteristics of the Portable Remote Imaging Spectrometer, an airborne sensor specifically designed for the challenges of coastal ocean research. PRISM has high signal to noise ratio and uniformity, as well as low polarization sensitivity. Acquisition of high quality data has been demonstrated with the first engineering flight.

  20. AN IMPROVED PORTABLE SURGICAL TABLE FOR THE FIELD AND LABORATORY

    EPA Science Inventory

    I substantially modified a portable surgical table design by Courtois (1981) to increase its durability and utility. The new design incorporated durable plastic components, a nonskid neoprene surgery surface, and surgical tool bins. The system was used to implant fish and amphibi...

  1. Application of Microchip Electrophoresis for Clinical Tests

    NASA Astrophysics Data System (ADS)

    Yatsushiro, Shouki; Kataoka, Masatoshi

    Microchip electrophoresis has recently attracted much attention in the field of nuclear acid analysis due to its high efficiency, ease of operation, low consumption of samples and reagents, and relatively low costs. In addition, the analysis has expanded to an analytical field like not only the analysis of DNA but also the analysis of RNA, the protein, the sugar chain, and the cellular function, etc. In this report, we showed that high-performance monitoring systems for human blood glucose levels and α-amylase activity in human plasma using microchip electrophoresis.

  2. Portable multichannel fiber optic biosensor for field detection

    NASA Astrophysics Data System (ADS)

    Golden, Joel P.; Saaski, Elric W.; Shriver-Lake, Lisa C.; Anderson, George P.; Ligler, Frances S.

    1997-04-01

    A compact, portable fiber optic biosensor is developed that enables monitoring of up to four fiber optic probes simultaneously. The sensor employs a novel optical fiber bundle jumper for exciting and collecting fluorescence emission from the evanescent wave fiber optic probes. A single fiber in the center of the bundle couples laser excitation into the sensor probe, while the surrounding fibers collect the returning fluorescent emission light. This design requires no beamsplitter, enabling the detection optics and control circuitry to be reduced to a 4 X 6 in. circuit card. Four of these cards are integrated into a single portable system. Results from detection assays for hazardous biological agents and an environmental pollutant are shown.

  3. Field-usable portable analyzer for chlorinated organic compounds

    SciTech Connect

    Buttner, W.J.

    1994-12-31

    Using an advanced chemical sensor, a hand portable analytical instrument for selectively detecting vapors of chlorinated solvents was produced. Phase I involved the development and testing of the analyzer and samplers for vapors over a broad concentration range from different sample matrices. The instrument, the RCL MONITOR, was tested in actual hazardous waste site operations. Phase II (initiated June 1994) involves production of full scale units and deployment in actual DOE operations (Hanford, INEL, Savannah River).

  4. Tackling field-portable Raman spectroscopy of real world samples

    NASA Astrophysics Data System (ADS)

    Shand, Neil C.

    2008-10-01

    A major challenge confronting first responders, customs authorities and other security-related organisations is the accurate, rapid, and safe identification of potentially hazardous chemicals outside a laboratory environment. Currently, a range of hand portable Raman equipment is commercially available that is low cost and increasingly more sophisticated. These systems are generally based on the 785nm Stokes shifted Raman technique with many using dispersive grating spectrometers. This technique offers a broad range of capabilities including the ability to analyse illicit drugs, explosives, chemical weapons and pre-cursors but still has some fundamental constraints. 'Real world' samples, such as those found at a crime scene, will often not be presented in the most accessible manner. Simple issues such as glass fluorescence can make an otherwise tractable sample impossible to analyse in-situ. A new generation of portable Raman equipment is currently being developed to address these issues. Consideration is given to the use of longer wavelength for fluorescence reduction. Alternative optical designs are being tested to compensate for the signal reduction incurred by moving to longer wavelengths. Furthermore, the use of anti-Stokes spectroscopy is being considered as well as investigating the robustness and portability of traditional Fourier Transform interferometer designs along with future advances in detector technology and ultra small spectrometers.

  5. ANOLE Portable Radiation Detection System Field Test and Evaluation Campaign

    SciTech Connect

    Chris A. Hodge

    2007-07-12

    Handheld, backpack, and mobile sensors are elements of the Global Nuclear Detection System for the interdiction and control of illicit radiological and nuclear materials. They are used by the U.S. Department of Homeland Security (DHS) and other government agencies and organizations in various roles for border protection, law enforcement, and nonproliferation monitoring. In order to systematically document the operational performance of the common commercial off-the-shelf portable radiation detection systems, the DHS Domestic Nuclear Detection Office conducted a test and evaluation campaign conducted at the Nevada Test Site from January 18 to February 27, 2006. Named “Anole,” it was the first test of its kind in terms of technical design and test complexities. The Anole test results offer users information for selecting appropriate mission-specific portable radiation detection systems. The campaign also offered manufacturers the opportunity to submit their equipment for independent operationally relevant testing to subsequently improve their detector performance. This paper will present the design, execution, and methodologies of the DHS Anole portable radiation detection system test campaign.

  6. Implementation of a Portable HPGe for Field Contamination Assay.

    PubMed

    Hayes, Robert Bruce

    2016-06-01

    Using MCNP to construct a detector model based initially on x-ray images of a portable high purity germanium (HPGe) detector followed by normalizing covering material values to also agree with check source responses, a validation of the model was attained. By calibrating the detector parameters using large count spectra, rigorous reproducibility is attained for high activity measurements but does not prevent deviations from normality in error distributions at the very low count events where spectral peaks are not always identifiable. The resulting model was created to allow operational assay of contamination over large areal distributions that could not otherwise be measured, such as the exhaust shaft at the Waste Isolation Pilot Plant (WIPP). Results indicate that contamination levels of activity in the exhaust shaft can be assayed to within a factor of 2. Detection limits are evaluated to be well below the contamination levels, which would constitute a legal environmental release if unfiltered ventilation of the underground facility were used. PMID:27115224

  7. Biotoxin sensing in food and environment via microchip.

    PubMed

    Zhang, Zhaowei; Yu, Li; Xu, Lin; Hu, Xiaofeng; Li, Peiwu; Zhang, Qi; Ding, Xiaoxia; Feng, Xiaojun

    2014-06-01

    Biotoxin contamination in food and environmental samples has threatened health or life of human and animals. Thus, a rapid lab-independent sensing method for biotoxin determination is urgently required. Microchip sensing system allows a promising rapid and low-cost detection strategy. Herein, the recent development of various microchips, including microfluidic chip and microarray, has been discussed to sense various biotoxins in food and environmental samples (i.e. phytotoxin, animal toxin, marine toxin, and mycotoxin). Microchip can be served as both analyte transportation and sensing platform, via either labeling or labeling-free sensing strategy. Because of its fast sensing time, low sample consumption, ready portability, and high compatibility, it has been extensively employed in biotoxin determination in both academic and industrial circle. With the advances of fabrication strategies and sensing modes, the microchip performance has been dramatically improved, including sensitivity, efficiency, reliability, stability, cost saving, portability. The potential applications can be found wide spread in biotoxin sensing in the near future, while their practical application in real sample need to be addressed. PMID:24723235

  8. TESTING, PERFORMANCE VALIDATION AND QUALITY ASSURANCE/QUALITY CONTROL OF FIELD-PORTABLE INSTRUMENTATION

    EPA Science Inventory

    New technologies for field-portable monitoring instruments often have a long lead time in development and authorization. Some obstacles to the acceptance of these pilot technologies include concern about liabilities, reluctance to take risks on new technologies, and uncertainty a...

  9. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT - FIELD PORTABLE X-RAY FLUORESCENCE ANALYZER - HNU SYSTEMS, SEFA-P

    EPA Science Inventory

    In April 1995, the Environmental Protection Agency (EPA) conducted a demonstration of field portable X-ray fluorescence (FPXRF) Analyzers. The primary objectives of this demonstration were (1) to determine how well FPXRF analyzers perform in comparison to a standard reference m...

  10. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT - FIELD PORTABLE X-RAY FLUORESCENCE ANALYZER - SCITEC, MAP SPECTRUM ANALYZER

    EPA Science Inventory

    In April 1995, the U.S. Environmental Protection Agency (EPA) sponsored a demonstration of field portable X-ray fluorescence (FPXRF) analyzers. The primary objectives of this demonstration were (1) to determine how well FPXRF analyzers perform in comparison to standard reference...

  11. A Field-Portable X-Ray Fluorescence Instrument: Design and Applications

    SciTech Connect

    Civici, Nikolla

    2007-04-23

    The field portable XRF (FPXRF) spectrometer is composed of a measuring head that holds the detector (Si-PIN) and the excitation sources (Cd-109 and Am-241) and the spectrum acquisition system. The application of this system for the analysis of cultural heritage artifacts will be presented and discussed.

  12. CHARACTERIZATION OF CHROMIUM-CONTAMINATED SOILS USING FIELD-PORTABLE X-RAY FLUORESCENCE

    EPA Science Inventory

    A detailed characterization of the underlying and adjacent soils near a chrome plating shop utilized field-portable X- ray fluorescence (XRF) as a screening tool. XRF permitted real-time acquisition of estimates for total metal content of soils. A trailer-mounted soil coring unit...

  13. Design, construction and calibration of a portable boundary layer wind tunnel for field use

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wind tunnels have been used for several decades to study wind erosion processes. Portable wind tunnels offer the advantage of testing natural surfaces in the field, but they must be carefully designed to insure that a logarithmic boundary layer is formed and that wind erosion processes may develop ...

  14. General purpose, field-portable cell-based biosensor platform.

    PubMed

    Gilchrist, K H; Barker, V N; Fletcher, L E; DeBusschere, B D; Ghanouni, P; Giovangrandi, L; Kovacs, G T

    2001-09-01

    There are several groups of researchers developing cell-based biosensors for chemical and biological warfare agents based on electrophysiologic monitoring of cells. In order to transition such sensors from the laboratory to the field, a general-purpose hardware and software platform is required. This paper describes the design, implementation, and field-testing of such a system, consisting of cell-transport and data acquisition instruments. The cell-transport module is a self-contained, battery-powered instrument that allows various types of cell-based modules to be maintained at a preset temperature and ambient CO(2) level while in transit or in the field. The data acquisition module provides 32 channels of action potential amplification, filtering, and real-time data streaming to a laptop computer. At present, detailed analysis of the data acquired is carried out off-line, but sufficient computing power is available in the data acquisition module to enable the most useful algorithms to eventually be run real-time in the field. Both modules have sufficient internal power to permit realistic field-testing, such as the example presented in this paper. PMID:11544049

  15. Preliminary field measurement of cotton fiber micronaire by portable NIR

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The decline of the U.S. textile industry has led to the dramatic increase in the export of U.S. cotton. Improved quality measurement systems are needed to successfully compete in the global marketplace. One key need is the development of new breeder/producer quality tools for field and at-line mea...

  16. Field portable low temperature porous layer open tubular cryoadsorption headspace sampling and analysis part II: Applications.

    PubMed

    Harries, Megan; Bukovsky-Reyes, Santiago; Bruno, Thomas J

    2016-01-15

    This paper details the sampling methods used with the field portable porous layer open tubular cryoadsorption (PLOT-cryo) approach, described in Part I of this two-part series, applied to several analytes of interest. We conducted tests with coumarin and 2,4,6-trinitrotoluene (two solutes that were used in initial development of PLOT-cryo technology), naphthalene, aviation turbine kerosene, and diesel fuel, on a variety of matrices and test beds. We demonstrated that these analytes can be easily detected and reliably identified using the portable unit for analyte collection. By leveraging efficiency-boosting temperature control and the high flow rate multiple capillary wafer, very short collection times (as low as 3s) yielded accurate detection. For diesel fuel spiked on glass beads, we determined a method detection limit below 1 ppm. We observed greater variability among separate samples analyzed with the portable unit than previously documented in work using the laboratory-based PLOT-cryo technology. We identify three likely sources that may help explain the additional variation: the use of a compressed air source to generate suction, matrix geometry, and variability in the local vapor concentration around the sampling probe as solute depletion occurs both locally around the probe and in the test bed as a whole. This field-portable adaptation of the PLOT-cryo approach has numerous and diverse potential applications. PMID:26726934

  17. Fast high-throughput screening of angiotensin-converting enzyme insertion/deletion polymorphism by variable programmed electric field strength-based microchip electrophoresis.

    PubMed

    Sun, Yucheng; Kim, Su-Kang; Zhang, Peng; Woo, Nain; Kang, Seong Ho

    2016-08-15

    An insertion (I)/deletion (D) polymorphism in angiotensin-converting enzyme (ACE) has been associated with susceptibility to various diseases in numerous studies. Traditionally, slab gel electrophoresis (SGE) after polymerase chain reaction (PCR) has been used to genotype this ACE I/D polymorphism. In this study, single- and multi-channel microchip electrophoresis (ME) methods based on variable programmed electric field strength (PEFS) (i.e., low constant, high constant, (+)/(-) staircase, and random electric field strengths) were developed for fast high-throughput screening of this specific polymorphism. The optimum PEFS conditions were set as 470V/cm for 0-9s, 129V/cm for 9-13s, 470V/cm for 13-13.9s, 294V/cm for 13.9-16s, and 470V/cm for 16-20s for single-channel ME, and 615V/cm for 0-22.5s, 231V/cm for 22.5-28.5s, and 615V/cm for 28.5-40s for multi-channel ME, respectively. In the multi-channel PEFS-ME, target ACE I/D polymorphism DNA fragments (D=190bp and I=490bp) were identified within 25s without loss of resolving power, which was ∼300 times faster than conventional SGE. In addition, PCR products of the ACE gene from human blood samples were detected after only 10 cycles by multi-channel PEFS-ME, but not by SGE. This parallel detection multichannel-based PEFS-ME method offers a powerful tool for fast high-throughput ACE I/D polymorphism screening with high sensitivity. PMID:27322633

  18. A portable modular optical sensor capable of measuring complex multi-axis strain fields

    NASA Astrophysics Data System (ADS)

    Zhao, Weixin; Beck, B. Terry; Peterman, Robert J.; Wu, Chih-Hang J.

    2012-10-01

    This paper presents a portable optical sensor capable of measuring complex multi-axis strain fields without the need for special surface preparation or stringent sensor-to-surface alignment. The sensor consists of three to four electronic speckle photography (ESP) modules. The design of each modular element is based on a previously developed 5-axis (five degree of freedom) surface displacement measurement technique, and is able to measure two dimensional in-plane surface movement, unaffected by other degrees of freedom (displacement and rotation) movement. Identical modular strain elements are arranged in a Rosette grid layout so that accurate and robust multi-axis surface strain measurement can be achieved. Experiments were conducted to demonstrate the multi-axis strain field measurement capability of this optical sensor by using a test bed that provided a known directional planar strain field, and excellent results were obtained. In particular, experiments have shown that the principle strain can be accurately extracted independent of the orientation of the device. This portable optical sensor will allow precise non-contact measurement of practical complex strain fields such as those encountered in bridge abutments, and portions of beams near critical infrastructure support locations; in other words, wherever plane strains depart from uni-axial behavior. Its unique hand-held portable capability offers distinct advantages over laboratory strain measurement setups, allowing accurate robust non-contact measurements to be achieved even in a harsh field application environment.

  19. Field-usable portable analyzer for chlorinated organic compounds

    SciTech Connect

    Buttner, W.J.; Penrose, W.R.; Stetter, J.R.

    1995-10-01

    Transducer Research, Inc. (TRI) has been working with the DOE Morgantown Energy Technology Center to develop a new chemical monitor based on a unique sensor which responds selectively to vapors of chlorinated solvents. We are also developing field applications for the monitor in actual DOE cleanup operations. During the initial phase, prototype instruments were built and field tested. Because of the high degree of selectivity that is obtained, no response was observed with common hydrocarbon organic compounds such as BTX (benzene, toluene, xylene) or POLs (petroleum, oil, lubricants), and in fact, no non-halogen-containing chemical has been identified which induces a measurable response. By the end of the Phase I effort, a finished instrument system was developed and test marketed. This instrument, called the RCL MONITOR, was designed to analyze individual samples or monitor an area with automated repetitive analyses. Vapor levels between 0 and 500 ppm can be determined in 90 s with a lower detection limit of 0.2 ppm using the handportable instrument. In addition to the development of the RCL MONITOR, advanced sampler systems are being developed to: (1) extend the dynamic range of the instrument through autodilution of the vapor and (2) allow chemical analyses to be performed on aqueous samples. When interfaced to the samplers, the RCL MONITOR is capable of measuring chlorinated solvent contamination in the vapor phase up to 5000 ppm and in water and other condensed media from 10 to over 10,000 ppb(wt)--without hydrocarbon and other organic interferences.

  20. Analysis of Anions in Ambient Aerosols by Microchip Capillary Electrophoresis

    SciTech Connect

    Liu, Yan; MacDonald, David A.; Yu, Xiao-Ying; Hering, Susanne V.; Collett, Jeffrey L.; Henry, Charles S.

    2006-10-01

    We describe a microchip capillary electrophoresis method for the analysis of nitrate and sulfate in ambient aerosols. Investigating the chemical composition of ambient aerosol particles is essential for understanding their sources and effects. Significant progress has been made towards developing mass spectrometry-based instrumentation for rapid qualitative analysis of aerosols. Alternative methods for rapid quantification of selected high abundance compounds are needed to augment the capacity for widespread routine analysis. Such methods could provide much higher temporal and spatial resolution than can be achieved currently. Inorganic anions comprise a large percentage of particulate mass with nitrate and sulfate among the most abundant species. While ion chromatography has proven very useful for analyzing extracts of time-integrated ambient aerosol samples collected on filters and for semi-continuous, on-line particle composition measurements, there is a growing need for development of new compact, inexpensive approaches to routine on-line aerosol ion analysis for deployment in spatially dense, atmospheric measurement networks. Microchip capillary electrophoresis provides the necessary speed and portability to address this need. In this report, on-column contact conductivity detection is used with hydrodynamic injection to create a simple microchip instrument for analysis of nitrate and sulfate. On-column contact conductivity detection was achieved using a Pd decoupler placed upstream from the working electrodes. Microchips containing two Au or Pd working electrodes showed a good linear range (5-500 µM) and low limits-of-detection for sulfate and nitrate with Au providing the lowest detection limits (1 µM) for both ions. The completed microchip system was used to analyze ambient aerosol filter samples. Nitrate and sulfate concentrations measured by the microchip matched the concentrations measured by ion chromatography.

  1. Field tests of acoustic telemetry for a portable coastal observatory

    USGS Publications Warehouse

    Martini, M.; Butman, B.; Ware, J.; Frye, D.

    2006-01-01

    Long-term field tests of a low-cost acoustic telemetry system were carried out at two sites in Massachusetts Bay. At each site, an acoustic Doppler current profiler mounted on a bottom tripod was fitted with an acoustic modem to transmit data to a surface buoy; electronics mounted on the buoy relayed these data to shore via radio modem. The mooring at one site (24 m water depth) was custom-designed for the telemetry application, with a custom designed small buoy, a flexible electro-mechanical buoy to mooring joint using a molded chain connection to the buoy, quick-release electro-mechanical couplings, and dual hydrophones suspended 7 m above the bottom. The surface buoy at the second site (33 m water depth) was a U.S. Coast Guard (USCG) channel buoy fitted with telemetry electronics and clamps to hold the hydrophones. The telemetry was tested in several configurations for a period of about four years. The custom-designed buoy and mooring provided nearly error-free data transmission through the acoustic link under a variety of oceanographic conditions for 261 days at the 24 m site. The electro mechanical joint, cables and couplings required minimal servicing and were very reliable, lasting 862 days deployed before needing repairs. The acoustic communication results from the USCG buoy were poor, apparently due to the hard cobble bottom, noise from the all-steel buoy, and failure of the hydrophone assembly. Access to the USCG buoy at sea required ideal weather. ??2006 IEEE.

  2. Possibility of Microchip Electrophoresis for Biological Application

    NASA Astrophysics Data System (ADS)

    Kataoka, Masatoshi; Kido, Jun-Ichi; Shinohara, Yasuo

    Microchip electrophoresis has recently attracted much attention in the field of nuclear acid analysis due to its high efficiency, ease of operation, low consumption of samples and reagents, and relatively low costs. Nucleic acid fragments are separated by capillary electrophoresis in a chip with microfabricated channels, with automated detection as well as on-line data evaluation. Microfabricated devices are forecast to be fundamental to the postgenome era, especially in the field of genetics and medicine. However, although there are many reports of the use of these instruments to evaluate standard DNA, DNA ladders, PCR products, and commercially available plasmid digests, little information is available their use with biological material. In this report, we showed the accuracy of sizing and quantification of endonuclease-digested plasmid DNA. We also showed the feasibility of on-microchip endonuclease treatment of plasmid DNA and sequential analysis as an additional application for DNA analysis. Furthermore, to evaluate the possibility of microchip electrophoresis for biological application, the results of the examination of blood sugar in human plasma and mitochondrial membrane potential were shown.

  3. Improvement of portable computed tomography system for on-field applications

    NASA Astrophysics Data System (ADS)

    Sukrod, K.; Khoonkamjorn, P.; Tippayakul, C.

    2015-05-01

    In 2010, Thailand Institute of Nuclear Technology (TINT) received a portable Computed Tomography (CT) system from the IAEA as part of the Regional Cooperative Agreement (RCA) program. This portable CT system has been used as the prototype for development of portable CT system intended for industrial applications since then. This paper discusses the improvements in the attempt to utilize the CT system for on-field applications. The system is foreseen to visualize the amount of agarwood in the live tree trunk. The experiments adopting Am-241 as the radiation source were conducted. The Am-241 source was selected since it emits low energy gamma which should better distinguish small density differences of wood types. Test specimens made of timbers with different densities were prepared and used in the experiments. The cross sectional views of the test specimens were obtained from the CT system using different scanning parameters. It is found from the experiments that the results are promising as the picture can clearly differentiate wood types according to their densities. Also, the optimum scanning parameters were determined from the experiments. The results from this work encourage the research team to advance into the next phase which is to experiment with the real tree on the field.

  4. Stroke at high altitude diagnosed in the field using portable ultrasound.

    PubMed

    Wilson, Mark H; Levett, Denny Z; Dhillon, Sundeep; Mitchell, Kay; Morgan, Jon; Grocott, Michael P W; Imray, Chris

    2011-03-01

    A tool that can differentiate ischemic stroke from other neurological conditions (eg, hemorrhagic stroke, high-altitude cerebral edema) in the field could enable more rapid thrombolysis when appropriate. The resources (eg, an MRI or CT scanner) to investigate stroke at high altitude may be limited, and hence a portable tool would be of benefit. Such a tool may also be of benefit in emergency departments when CT scanning is not available. We report a case of a 49-year-old man who, while climbing at 5900 m, suffered a left middle cerebral infarct. The clinical diagnosis was supported using 2D Power Doppler. The patient received aspirin and continuous transcranial Doppler was used for its potential therapeutic effects for 12 hours. The patient was then evacuated to a hospital in Kathmandu over the next 48 hours. This case report suggests that portable ultrasound could be used in the prehospital arena to enable early diagnosis of thrombotic stroke. PMID:21377120

  5. Portable biochip scanner device

    DOEpatents

    Perov, Alexander; Sharonov, Alexei; Mirzabekov, Andrei D.

    2002-01-01

    A portable biochip scanner device used to detect and acquire fluorescence signal data from biological microchips (biochips) is provided. The portable biochip scanner device employs a laser for emitting an excitation beam. An optical fiber delivers the laser beam to a portable biochip scanner. A lens collimates the laser beam, the collimated laser beam is deflected by a dichroic mirror and focused by an objective lens onto a biochip. The fluorescence light from the biochip is collected and collimated by the objective lens. The fluorescence light is delivered to a photomultiplier tube (PMT) via an emission filter and a focusing lens. The focusing lens focuses the fluorescence light into a pinhole. A signal output of the PMT is processed and displayed.

  6. Microchip-based forensic short tandem repeat genotyping.

    PubMed

    Kim, Yong Tae; Heo, Hyun Young; Oh, Shin Hye; Lee, Seung Hwan; Kim, Do Hyun; Seo, Tae Seok

    2015-08-01

    Micro total analysis system (μTAS) or lab-on-a-chip (LOC) technology has advanced over decades, and the high performance for chemical and biological analysis has been well demonstrated with advantages of low sample consumption, rapid analysis time, high-throughput screening, and portability. In particular, μTAS or LOC based genetic applications have been extensively explored, and the short tandem repeat (STR) typing on a chip has garnered attention in the forensic community due to its special use for human identification in the field of mass disaster and missing person investigation, paternity testing, and perpetrator identification. The STR typing process consists of sample collection, DNA extraction, DNA quantitation, STR loci amplification, capillary electrophoretic separation, and STR profiling. Recent progress of microtechnology shows its ability to substitute the conventional analytical tools, and furthermore demonstrates total integration of the whole STR processes on a single wafer for on-site STR typing. In this review article, we highlighted some representative results for fluorescence labeling techniques, microchip-based DNA purification, on-chip polymerase chain reaction (PCR), a capillary electrophoretic microdevice, and a fully integrated microdevice for STR typing. PMID:25963560

  7. Portable, battery-operated, low-cost, bright field and fluorescence microscope.

    PubMed

    Miller, Andrew R; Davis, Gregory L; Oden, Z Maria; Razavi, Mohamad Reza; Fateh, Abolfazl; Ghazanfari, Morteza; Abdolrahimi, Farid; Poorazar, Shahin; Sakhaie, Fatemeh; Olsen, Randall J; Bahrmand, Ahmad Reza; Pierce, Mark C; Graviss, Edward A; Richards-Kortum, Rebecca

    2010-01-01

    This study describes the design and evaluation of a portable bright-field and fluorescence microscope that can be manufactured for $240 USD. The microscope uses a battery-operated LED-based flashlight as the light source and achieves a resolution of 0.8 microm at 1000x magnification in fluorescence mode. We tested the diagnostic capability of this new instrument to identify infections caused by the human pathogen, Mycobacterium tuberculosis. Sixty-four direct, decontaminated, and serially diluted smears were prepared from sputa obtained from 19 patients suspected to have M. tuberculosis infection. Slides were stained with auramine orange and evaluated as being positive or negative for M. tuberculosis with both the new portable fluorescence microscope and a laboratory grade fluorescence microscope. Concordant results were obtained in 98.4% of cases. This highly portable, low cost, fluorescence microscope may be a useful diagnostic tool to expand the availability of M. tuberculosis testing at the point-of-care in low resource settings. PMID:20694194

  8. Red microchip VECSEL array

    NASA Astrophysics Data System (ADS)

    Hastie, Jennifer E.; Morton, Lynne G.; Calvez, Stephane; Dawson, Martin D.; Leinonen, Tomi; Pessa, Markus; Gibson, Graham; Padgett, Miles J.

    2005-09-01

    We report an InGaP/AlInGaP/GaAs microchip vertical-external-cavity surface emitting laser operating directly at red wavelengths and demonstrate its potential for array-format operation. Optical pumping with up to 3.3W at 532nm produced a maximum output power of 330mW at 675nm, in a single circularly-symmetric beam with M2<2. Simultaneous pumping with three separate input beams, generated using a diffractive optical element, achieved lasing from three discrete areas of the same chip. Output power of ~95mW per beam was obtained from this 3x1 array, each beam having a Gaussian intensity profile with M2<1.2. In a further development, a spatial light modulator allowed computer control over the orientation and separation of the pump beams, and hence dynamic control over the configuration of the VECSEL array.

  9. Red microchip VECSEL array.

    PubMed

    Hastie, Jennifer; Morton, Lynne; Calvez, Stephane; Dawson, Martin; Leinonen, Tomi; Pessa, Markus; Gibson, Graham; Padgett, Miles

    2005-09-01

    We report an InGaP/AlInGaP/GaAs microchip vertical-external-cavity surface emitting laser operating directly at red wavelengths and demonstrate its potential for array-format operation. Optical pumping with up to 3.3W at 532nm produced a maximum output power of 330mW at 675nm, in a single circularly-symmetric beam with M2<2. Simultaneous pumping with three separate input beams, generated using a diffractive optical element, achieved lasing from three discrete areas of the same chip. Output power of ~95mW per beam was obtained from this 3x1 array, each beam having a Gaussian intensity profile with M2<1.2. In a further development, a spatial light modulator allowed computer control over the orientation and separation of the pump beams, and hence dynamic control over the configuration of the VECSEL array. PMID:19498743

  10. Portable, battery-operated, fluorescence field microscope for the developing world

    NASA Astrophysics Data System (ADS)

    Miller, Andrew R.; Davis, Gregory; Pierce, Mark; Oden, Z. Maria; Richards-Kortum, Rebecca

    2010-02-01

    In many areas of the world, current methods for diagnosis of infectious diseases such as malaria and tuberculosis involve microscopic evaluation of a patient specimen. Advances in fluorescence microscopy can improve diagnostic sensitivity and reduce time and expertise necessary to interpret diagnostic results. However, modern research-grade microscopes are neither available nor appropriate for use in many settings in the developing world. To address this need, we designed, fabricated, and tested a portable, battery-powered, bright field and fluorescence inverted field microscope, optimized for infrastructural constraints of the developing world. We characterized an initial prototype constructed with rapidprototyping techniques, which utilized low-cost, over-the-counter components such as a battery-powered LED flashlight as the light source. The microscope exhibited suitable spatial resolution (0.8 μm) in fluorescence mode to resolve M. tuberculosis bacilli. In bright field mode, malaria parasites were resolvable at 1000x magnification. The initial prototype cost 480 USD and we estimate that the microscope can be manufactured for 230 USD. While future studies are planned to evaluate ease-of-use and reliability, our current system serves as a proof of concept that combined fluorescence and bright field microscopy is possible in a low-cost and portable system.

  11. Variability of microchip capillary electrophoresis with conductivity detection.

    PubMed

    Tantra, Ratna; Robinson, Kenneth; Sikora, Aneta

    2014-02-01

    Microfluidic CE with conductivity detection platforms could have an impact on the future development of smaller, faster and portable devices. However, for the purpose of reliable identification and quantification, there is a need to understand the degree of irreproducibility associated with the analytical technique. In this study, a protocol was developed to remove baseline drift problems sometimes observed in such devices. The protocol, which consisted of pre-conditioning steps prior to analysis, was used to further assess measurement variability from 24 individual microchips fabricated from six separate batches of glass substrate. Results show acceptable RSD percentage for retention time measurements but large variability in their corresponding peak areas (with some microchips having variability of ∼50%). Sources of variability were not related to substrate batch but possibly to a number of factors such as applied voltage fluctuations or variations in microchannel quality, for example surface roughness that will subsequently affect microchannel dimensions. PMID:23857166

  12. Development of a miniaturized, light-weight magnetic sector for a field-portable mass spectrograph

    NASA Technical Reports Server (NTRS)

    Sinha, M. P.; Tomassian, A. D.

    1991-01-01

    A miniaturized, lightweight magnetic sector for a focal plane mass spectrograph (Mattauch-Herzog design) has been designed and fabricated by using a new high-energy-product magnet material (Nd-B-Fe alloy) and a high permeability magnet yoke material (V-Co-Fe alloy). The magnetic sector weighs less than 10 kg, has a focal plane of 5.1 cm in length, and covers a nominal mass range of 40-240 amu. Such a magnetic sector, in conjunction with an array detector and a short microbore capillary column, is well suited for the development of a field-portable gas chromatograph-mass spectrometer instrument of high performance.

  13. Feasibility of field portable near infrared (NIR) spectroscopy to determine cyanide concentrations in soil

    NASA Astrophysics Data System (ADS)

    Sut, Magdalena; Fischer, Thomas; Repmann, Frank; Raab, Thomas

    2013-04-01

    In Germany, at more than 1000 sites, soil is polluted with an anthropogenic contaminant in form of iron-cyanide complexes. These contaminations are caused by former Manufactured Gas Plants (MGPs), where electricity for lighting was produced in the process of coal gasification. The production of manufactured gas was restrained in 1950, which caused cessation of MGPs. Our study describes the application of Polychromix Handheld Field Portable Near-Infrared (NIR) Analyzer to predict the cyanide concentrations in soil. In recent times, when the soil remediation is of major importance, there is a need to develop rapid and non-destructive methods for contaminant determination in the field. In situ analysis enables determination of 'hot spots', is cheap and time saving in comparison to laboratory methods. This paper presents a novel usage of NIR spectroscopy, where a calibration model was developed, using multivariate calibration algorithms, in order to determine NIR spectral response to the cyanide concentration in soil samples. As a control, the contaminant concentration was determined using conventional Flow Injection Analysis (FIA). The experiments revealed that portable near-infrared spectrometers could be a reliable device for identification of contamination 'hot spots', where cyanide concentration are higher than 2400 mg kg-1 in the field and >1750 mg kg-1 after sample preparation in the laboratory, but cannot replace traditional laboratory analyses due to high limits of detection.

  14. Apparatus and method for performing electrodynamic focusing on a microchip

    DOEpatents

    Ramsey, John Michael; Jacobson, Stephen C.

    1999-01-01

    A microchip device includes a focusing channel, in which an electric field strength established in the focusing channel is controlled relative to an electric field strength established in a material transport channel segment to spatially focus the material traversing the material transport channel segment.

  15. Longevity of radiofrequency identification device microchips in citrus trees

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Long-term identification of individual plants in the field is an important part of many types of botanical and horticultural research. In a previous report, we described methods for using implanted radiofrequency (RFID) microchips to tag citrus trees for field research. This report provides an upd...

  16. Apparatus and method for performing electrodynamic focusing on a microchip

    DOEpatents

    Ramsey, J.M.; Jacobson, S.C.

    1999-01-12

    A microchip device includes a focusing channel, in which an electric field strength established in the focusing channel is controlled relative to an electric field strength established in a material transport channel segment to spatially focus the material traversing the material transport channel segment. 22 figs.

  17. A portable fluorescence spectroscopy imaging system for automated root phenotyping in soil cores in the field.

    PubMed

    Wasson, Anton; Bischof, Leanne; Zwart, Alec; Watt, Michelle

    2016-02-01

    Root architecture traits are a target for pre-breeders. Incorporation of root architecture traits into new cultivars requires phenotyping. It is attractive to rapidly and directly phenotype root architecture in the field, avoiding laboratory studies that may not translate to the field. A combination of soil coring with a hydraulic push press and manual core-break counting can directly phenotype root architecture traits of depth and distribution in the field through to grain development, but large teams of people are required and labour costs are high with this method. We developed a portable fluorescence imaging system (BlueBox) to automate root counting in soil cores with image analysis software directly in the field. The lighting system was optimized to produce high-contrast images of roots emerging from soil cores. The correlation of the measurements with the root length density of the soil cores exceeded the correlation achieved by human operator measurements (R (2)=0.68 versus 0.57, respectively). A BlueBox-equipped team processed 4.3 cores/hour/person, compared with 3.7 cores/hour/person for the manual method. The portable, automated in-field root architecture phenotyping system was 16% more labour efficient, 19% more accurate, and 12% cheaper than manual conventional coring, and presents an opportunity to directly phenotype root architecture in the field as part of pre-breeding programs. The platform has wide possibilities to capture more information about root health and other root traits in the field. PMID:26826219

  18. A portable fluorescence spectroscopy imaging system for automated root phenotyping in soil cores in the field

    PubMed Central

    Wasson, Anton; Bischof, Leanne; Zwart, Alec; Watt, Michelle

    2016-01-01

    Root architecture traits are a target for pre-breeders. Incorporation of root architecture traits into new cultivars requires phenotyping. It is attractive to rapidly and directly phenotype root architecture in the field, avoiding laboratory studies that may not translate to the field. A combination of soil coring with a hydraulic push press and manual core-break counting can directly phenotype root architecture traits of depth and distribution in the field through to grain development, but large teams of people are required and labour costs are high with this method. We developed a portable fluorescence imaging system (BlueBox) to automate root counting in soil cores with image analysis software directly in the field. The lighting system was optimized to produce high-contrast images of roots emerging from soil cores. The correlation of the measurements with the root length density of the soil cores exceeded the correlation achieved by human operator measurements (R 2=0.68 versus 0.57, respectively). A BlueBox-equipped team processed 4.3 cores/hour/person, compared with 3.7 cores/hour/person for the manual method. The portable, automated in-field root architecture phenotyping system was 16% more labour efficient, 19% more accurate, and 12% cheaper than manual conventional coring, and presents an opportunity to directly phenotype root architecture in the field as part of pre-breeding programs. The platform has wide possibilities to capture more information about root health and other root traits in the field. PMID:26826219

  19. Nanoparticle-Based Paper Sensors for Field-Portable Analysis of Antioxidants

    NASA Astrophysics Data System (ADS)

    Sharpe, Erica Marie

    Abstract & Overview: The goal of this thesis was to develop portable nanoparticle-based paper sensors for field analysis, with focus on antioxidant detection. The method introduces a novel concept in the sensing arena that relies on the use of redox active inorganic nanoparticles, primarily cerium oxide, as colorimetric probes to replace commonly used soluble dyes. The sensors have an integrated detection mechanism with all the reagents needed for analysis confined to the sensing platform. Research work in this thesis focuses on the study of the redox and surface chemistry of these particles, their reactivity with target analytes and integration into paper-based platforms. A unique feature of these particles is their ability to replace or stabilize enzymes and extend their operational lifetime providing additional opportunities for improved detection schemes for enzyme-based systems. We demonstrate the above principles for the construction of sensors for detection of analytes such as hydrogen peroxide, glucose, and polyphenolic antioxidants. The advantage of the newly designed system include, in addition to portability and stability, the low production costs, the rapid analysis time, and the ability to provide quantitative information without use of advanced instrumentation. The results of this work opened up new opportunities for designing portable easy-to- use sensors for field analysis. The developed assays are particularly appealing for remote sensing applications where specialized equipment is not available, and also for high throughput analysis of a large number of samples. Our investigation to demonstrate applicability of the system focused primarily on the detection of antioxidants. Therefore, the thesis highlights predominantly this application.

  20. A portable high-field pulsed magnet system for x-ray scattering studies.

    SciTech Connect

    Islam, Z.; Ruff, J.P.C.; Nojiri, H.; Matsuda, Y. H.; Ross, K. A.; Gaulin, B. D.; Qu, Z.; Lang, J. C.

    2009-01-01

    We present a portable pulsed-magnet system for x-ray studies of materials in high magnetic fields (up to 30 T). The apparatus consists of a split-pair of minicoils cooled on a closed-cycle cryostat, which is used for x-ray diffraction studies with applied field normal to the scattering plane. A second independent closed-cycle cryostat is used for cooling the sample to near liquid helium temperatures. Pulsed magnetic fields (- 1 ms in total duration) are generated by discharging a configurable capacitor bank into the magnet coils. Time-resolved scattering data are collected using a combination of a fast single-photon counting detector, a multichannel scaler, and a high-resolution digital storage oscilloscope. The capabilities of this instrument are used to study a geometrically frustrated system revealing strong magnetostrictive effects in the spin-liquid state.

  1. Rapid Measurements of Snow Stratigraphy Using A Portable Penetration Field Instrument

    NASA Astrophysics Data System (ADS)

    Foster, Robert; Louge, Michel; Clifford, Kelly; Decker, Rand

    We describe a new field-portable tool for avalanche forecasting and hydrology that can rapidly generate stratigraphic profiles of density, permittivity and temperature through the snow pack. This penetration instrument consists of a wedged capacitance tip mounted at the end of a pole and a mechanical depth gauge. By appropriate place- ment of its reference, guard and sensor conductive surfaces, the instrument sheds hor- izontal electric field lines resolving horizontal snow layers of 2.5mm thickness. The probe was tested under realistically cold conditions at the mountain resort of Alta near Salt Lake City, Utah. There, it recorded the stratigraphy of the real and imaginary parts of the dielectric constant at 3.9kHz and the temperature through a typical winter snow pack. The portable electronics was carried in a small backpack and the depth was recorded using a rotary digital encoder in frictional contact with the pole. The profiles were automatically acquired on a hand-held Personal Digital Assistant. Using independent calibrations, measurements of the real part provided an accurate profile of density later confirmed by the conventional excavation of a detailed snow cover profile. The ratio of the imaginary and real permittivities also revealed the signature of individual snow layers that could be identified in the excavation.

  2. The Development and Field Testing of the Portable Acousto-optic Spectrometer for Astrobiology

    NASA Astrophysics Data System (ADS)

    Chanover, Nancy J.; Uckert, Kyle; Voelz, David; Boston, Penelope

    2014-11-01

    The development of in situ instrumentation for the detection of biomarkers on planetary surfaces is critical for the search for evidence of present or past life in our solar system. In our earlier instrument development efforts we addressed this need through the development of a near-infrared point spectrometer intended for quick-look examinations of samples that could be subsequently analyzed with a laser desorption time-of-flight mass spectrometer. The point spectrometer utilized an acousto-optic tunable filter (AOTF) crystal as the wavelength selecting element. In parallel with the aforementioned development efforts we identified the need for a portable version of the AOTF spectrometer that we could test and demonstrate in a range of field locations on Earth chosen to serve as terrestrial analogs for extreme environments elsewhere in the solar system. Here we describe the development and field testing of the Portable Acousto-optic Spectrometer for Astrobiology (PASA). We demonstrated this instrument in two very different cave environments, a predominantly gypsum and calcite cave in New Mexico and an actively forming cave rich in hydrated sulfates in Tabasco, Mexico. Both of these microbially active environments contain evidence of biologic alteration of minerals, which can be detected using IR spectroscopy. We will describe the instrument operations and present some data acquired with PASA to demonstrate its efficacy as a tool for biomarker detection on planetary surfaces. This work was supported by NASA's EPSCoR program through grant number NNX12AK77A.

  3. Using Field-Metered Data to Quantify Annual Energy Use of Portable Air Conditioners

    SciTech Connect

    Burke, Thomas; Willem, Henry; Ni, Chun Chun; Stratton, Hannah; Chen, Yuting; Ganeshalingam, Mohan; Iyer, Maithili; Price, Sarah; Dunham, Camilla

    2014-12-01

    As many regions of the United States experience rising temperatures, consumers have come to rely increasingly on cooling appliances (including portable air conditioners) to provide a comfortable indoor temperature. Home occupants sometimes use a portable air conditioner (PAC) to maintain a desired indoor temperature in a single room or enclosed space. Although PACs in residential use are few compared to centrally installed and room air conditioning (AC) units, the past few years have witnessed an increase of PACs use throughout the United States. There is, however, little information and few research projects focused on the energy consumption and performance of PACs, particularly studies that collect information from field applications of PACs. The operation and energy consumption of PACs may differ among geographic locations and households, because of variations in cooling load, frequency, duration of use, and other user-selected settings. In addition, the performance of building envelope (thermal mass and air leakage) as well as inter-zonal mixing within the building would substantially influence the ability to control and maintain desirable indoor thermal conditions. Lawrence Berkeley National Laboratory (LBNL) conducted an initial field-metering study aimed at increasing the knowledge and data related to PAC operation and energy consumption in the United States.

  4. Field portable low temperature porous layer open tubular cryoadsorption headspace sampling and analysis part I: Instrumentation.

    PubMed

    Bruno, Thomas J

    2016-01-15

    Building on the successful application in the laboratory of PLOT-cryoadsorption as a means of collecting vapor (or headspace) samples for chromatographic analysis, in this paper a field portable apparatus is introduced. This device fits inside of a briefcase (aluminum tool carrier), and can be easily transported by vehicle or by air. The portable apparatus functions entirely on compressed air, making it suitable for use in locations lacking electrical power, and for use in flammable and explosive environments. The apparatus consists of four aspects: a field capable PLOT-capillary platform, the supporting equipment platform, the service interface between the PLOT-capillary and the supporting equipment, and the necessary peripherals. Vapor sampling can be done with either a hand piece (containing the PLOT capillary) or with a custom fabricated standoff module. Both the hand piece and the standoff module can be heated and cooled to facilitate vapor collection and subsequent vapor sample removal. The service interface between the support platform and the sampling units makes use of a unique counter current approach that minimizes loss of cooling and heating due to heat transfer with the surroundings (recuperative thermostatting). Several types of PLOT-capillary elements and sampling probes are described in this report. Applications to a variety of samples relevant to forensic and environmental analysis are discussed in a companion paper. PMID:26687166

  5. Moving your laboratories to the field – Advantages and limitations of the use of field portable instruments in environmental sample analysis

    SciTech Connect

    Gałuszka, Agnieszka; Migaszewski, Zdzisław M.; Namieśnik, Jacek

    2015-07-15

    The recent rapid progress in technology of field portable instruments has increased their applications in environmental sample analysis. These instruments offer a possibility of cost-effective, non-destructive, real-time, direct, on-site measurements of a wide range of both inorganic and organic analytes in gaseous, liquid and solid samples. Some of them do not require the use of reagents and do not produce any analytical waste. All these features contribute to the greenness of field portable techniques. Several stationary analytical instruments have their portable versions. The most popular ones include: gas chromatographs with different detectors (mass spectrometer (MS), flame ionization detector, photoionization detector), ultraviolet–visible and near-infrared spectrophotometers, X-ray fluorescence spectrometers, ion mobility spectrometers, electronic noses and electronic tongues. The use of portable instruments in environmental sample analysis gives a possibility of on-site screening and a subsequent selection of samples for routine laboratory analyses. They are also very useful in situations that require an emergency response and for process monitoring applications. However, quantification of results is still problematic in many cases. The other disadvantages include: higher detection limits and lower sensitivity than these obtained in laboratory conditions, a strong influence of environmental factors on the instrument performance and a high possibility of sample contamination in the field. This paper reviews recent applications of field portable instruments in environmental sample analysis and discusses their analytical capabilities. - Highlights: • Field portable instruments are widely used in environmental sample analysis. • Field portable instruments are indispensable for analysis in emergency response. • Miniaturization of field portable instruments reduces resource consumption. • In situ analysis is in agreement with green analytical chemistry

  6. Microchip problems plague DOD

    NASA Astrophysics Data System (ADS)

    Smith, R. J.

    1984-10-01

    The major issues in the controversy over the discovery of millions of defective microchips sold to the DOD by the Texas Instruments (TI) corporation are outlined. Defects in the microcircuits are blamed on inadequate testing procedures performed by TI during manufacture, and on inadequate testing procedures used by a subcontractor especially contracted to test the chips. Because the problem persisted over a period of years, defects might be possible in as many as 100 million chips used in a broad range of military applications including the Trident submarine, the B-52, B-1B, F-15, F-111, F-4, A-6, and A-7 aircraft, the Harpoon and HARM missile systems, and the Space Shuttles Discovery and Challenger. It is pointed out that although TI has accepted responsibility for the defective chips, little will be done by the DOD to compel the company to replace them, or to upgrade testing procedures. It is concluded that the serious nature of the problem could renew interest in recommendations for the standardization of military microcircuits.

  7. Portable Upconversion Nanoparticles-Based Paper Device for Field Testing of Drug Abuse.

    PubMed

    He, Mengyuan; Li, Zhen; Ge, Yiying; Liu, Zhihong

    2016-02-01

    We report the first portable upconversion nanoparticles (UCNPs)-based paper device for road-side field testing of cocaine. Upon the recognition of cocaine by two pieces of rationally designed aptamer fragments, the luminescence of UCNPs immobilized on the paper is quenched by Au nanoparticles (AuNPs), which indicates the cocaine concentration. This device can give quantitative results in a short time with high sensitivity using only a smartphone as the apparatus. Moreover, this device is applicable in human saliva samples, and it also can be used to monitor the cocaine content change in blood samples. The results of this work demonstrate the prospect of developing UCNPs-based paper devices for field testing of drug abuse. PMID:26786499

  8. 100-OL-1 Operable Unit Field Portable X-Ray Fluorescence (XRF) Analyzer Pilot Study Plans

    SciTech Connect

    Bunn, Amoret L.; Fritz, Brad G.; Wellman, Dawn M.

    2014-07-15

    A pilot study is being conducted to support the approval of the Remedial Investigation/Feasibility Study (RI/FS) Work Plan to evaluate the 100-OL-1 Operable Unit (OU) pre-Hanford orchard lands. Based on comments received by the U.S. Environmental Protection Agency (EPA) and Washington State Department of Ecology, the pilot study will evaluate the use of field portable X-ray fluorescence (XRF) spectrometry measurements for evaluating lead and arsenic concentrations on the soil surface as an indicator of past use of lead arsenate pesticide residue in the OU. The work will be performed in the field during the summer of 2014, and assist in the planning for the characterization activities in the RI/FS.

  9. Field-portable reflection and transmission microscopy based on lensless holography.

    PubMed

    Lee, Myungjun; Yaglidere, Oguzhan; Ozcan, Aydogan

    2011-09-01

    We demonstrate a lensfree dual-mode holographic microscope that can image specimens in both transmission and reflection geometries using in-line transmission and off-axis reflection holography, respectively. This field-portable dual-mode holographic microscope has a weight of ~200 g with dimensions of 15 x 5.5 x 5cm, where a laser source is powered by two batteries. Based on digital in-line holography, our transmission microscope achieves a sub-pixel lateral resolution of ≤2 µm over a wide field-of-view (FOV) of ~24 mm(2) due to its unit fringe magnification geometry. Despite its simplicity and ease of operation, in-line transmission geometry is not suitable to image dense or connected objects such as tissue slides since the reference beam gets distorted causing severe aberrations in reconstruction of such objects. To mitigate this challenge, on the same cost-effective and field-portable assembly we built a lensless reflection mode microscope based on digital off-axis holography where a beam-splitter is used to interfere a tilted reference wave with the reflected light from the object surface, creating an off-axis hologram of the specimens on a CMOS sensor-chip. As a result of the reduced space-bandwidth product of the off-axis geometry compared to its in-line counterpart, the imaging FOV of our reflection mode is reduced to ~9 mm(2), while still achieving a similar sub-pixel resolution of ≤2 µm. We tested the performance of this compact dual-mode microscopy unit by imaging a US-air force resolution test target, various micro-particles as well as a histopathology slide corresponding to skin tissue. Due to its compact, cost-effective, and lightweight design, this dual-mode lensless holographic microscope might especially be useful for field-use or for conducting microscopic analysis in resource-poor settings. PMID:21991559

  10. Field-portable reflection and transmission microscopy based on lensless holography

    PubMed Central

    Lee, Myungjun; Yaglidere, Oguzhan; Ozcan, Aydogan

    2011-01-01

    We demonstrate a lensfree dual-mode holographic microscope that can image specimens in both transmission and reflection geometries using in-line transmission and off-axis reflection holography, respectively. This field-portable dual-mode holographic microscope has a weight of ~200 g with dimensions of 15 x 5.5 x 5cm, where a laser source is powered by two batteries. Based on digital in-line holography, our transmission microscope achieves a sub-pixel lateral resolution of ≤2 µm over a wide field-of-view (FOV) of ~24 mm2 due to its unit fringe magnification geometry. Despite its simplicity and ease of operation, in-line transmission geometry is not suitable to image dense or connected objects such as tissue slides since the reference beam gets distorted causing severe aberrations in reconstruction of such objects. To mitigate this challenge, on the same cost-effective and field-portable assembly we built a lensless reflection mode microscope based on digital off-axis holography where a beam-splitter is used to interfere a tilted reference wave with the reflected light from the object surface, creating an off-axis hologram of the specimens on a CMOS sensor-chip. As a result of the reduced space-bandwidth product of the off-axis geometry compared to its in-line counterpart, the imaging FOV of our reflection mode is reduced to ~9 mm2, while still achieving a similar sub-pixel resolution of ≤2 µm. We tested the performance of this compact dual-mode microscopy unit by imaging a US-air force resolution test target, various micro-particles as well as a histopathology slide corresponding to skin tissue. Due to its compact, cost-effective, and lightweight design, this dual-mode lensless holographic microscope might especially be useful for field-use or for conducting microscopic analysis in resource-poor settings. PMID:21991559

  11. Species-Level Identification of Orthopoxviruses with an Oligonucleotide Microchip

    PubMed Central

    Lapa, Sergey; Mikheev, Maxim; Shchelkunov, Sergei; Mikhailovich, Vladimir; Sobolev, Alexander; Blinov, Vladimir; Babkin, Igor; Guskov, Alexander; Sokunova, Elena; Zasedatelev, Alexander; Sandakhchiev, Lev; Mirzabekov, Andrei

    2002-01-01

    A method for species-specific detection of orthopoxviruses pathogenic for humans and animals is described. The method is based on hybridization of a fluorescently labeled amplified DNA specimen with the oligonucleotide DNA probes immobilized on a microchip (MAGIChip). The probes identify species-specific sites within the crmB gene encoding the viral analogue of tumor necrosis factor receptor, one of the most important determinants of pathogenicity in this genus of viruses. The diagnostic procedure takes 6 h and does not require any sophisticated equipment (a portable fluorescence reader can be used). PMID:11880388

  12. Microchip separations in reduced-gravity and hypergravity environments.

    PubMed

    Culbertson, Christopher T; Tugnawat, Yogesh; Meyer, Amanda R; Roman, Gregory T; Ramsey, J Michael; Gonda, Steve R

    2005-12-15

    Microfabricated fluidics technology, e.g., lab-on-a-chip devices, offers many attractive features for performing chemistry and biochemistry on space-based platforms. We have constructed a portable, battery-operated microfluidic platform that was tested under reduced gravity and hypergravity conditions that would be experienced in space flight and launch. This device consisted of a microchip, microchip holder, two 0-8-kV high-voltage power supplies, a high-voltage switch, a solid-state diode-pumped green laser, an optical train, a channel photomultiplier, and an inertial mass measurement unit all under the control of a laptop computer and powered by 10 D-cell alkaline batteries. The unit was tested on NASA's reduced gravity research aircraft at gravity levels that are relevant to NASA's intended use of bioreporter-based microchips for environmental monitoring of space and planetary environments on manned and unmanned spacecraft. Over the course of two flights, 834 fast electrophoretic separations of four amino acids were performed under a variety of gravitational environments including zero-g, Martian-g, lunar-g, and approximately 1.8-g. All separations were performed in less than 12 s and automatically analyzed. After correction with an internal migration standard, the migration time reproducibilities were all <1% relative standard deviation. PMID:16351140

  13. Portable thin layer chromatography for field detection of explosives and propellants

    NASA Astrophysics Data System (ADS)

    Satcher, Joe H.; Maienschein, Jon L.; Pagoria, Philip F.; Racoveanu, Ana; Carman, M. Leslie; Whipple, Richard E.; Reynolds, John G.

    2012-06-01

    A field deployable detection kit for explosives and propellants using thin layer chromatography (TLC) has been developed at Lawrence Livermore National Laboratory (LLNL). The chemistry of the kit has been modified to allow for field detection of propellants (through propellant stabilizers), military explosives, peroxide explosives, nitrates and inorganic oxidizer precursors. For many of these target analytes, the detection limit is in the μg to pg range. A new miniaturized, bench prototype, field portable TLC (Micro TLC) kit has also been developed for the detection and identification of common military explosives. It has been demonstrated in a laboratory environment and is ready for field-testing. The kit is comprised of a low cost set of commercially available components specifically assembled for rapid identification needed in the field and identifies the common military explosives: HMX, RDX, Tetryl, Explosive D or picric acid, and TNT all on one plate. Additional modifications of the Micro TLC system have been made with fluorescent organosilicon co-polymer coatings to detect a large suite of explosives.

  14. A semi-automated, field-portable microscopy platform for clinical diagnostic applications

    NASA Astrophysics Data System (ADS)

    Jagannadh, Veerendra Kalyan; Srinivasan, Rajesh; Gorthi, Sai Siva

    2015-08-01

    Clinical microscopy is a versatile diagnostic platform used for diagnosis of a multitude of diseases. In the recent past, many microfluidics based point-of-care diagnostic devices have been developed, which serve as alternatives to microscopy. However, these point-of-care devices are not as multi-functional and versatile as clinical microscopy. With the use of custom designed optics and microfluidics, we have developed a versatile microscopy-based cellular diagnostic platform, which can be used at the point of care. The microscopy platform presented here is capable of detecting infections of very low parasitemia level (in a very small quantity of sample), without the use of any additional computational hardware. Such a cost-effective and portable diagnostic device, would greatly impact the quality of health care available to people living in rural locations of the world. Apart from clinical diagnostics, it's applicability to field research in environmental microbiology has also been outlined.

  15. Metal oxide based multisensor array and portable database for field analysis of antioxidants

    PubMed Central

    Sharpe, Erica; Bradley, Ryan; Frasco, Thalia; Jayathilaka, Dilhani; Marsh, Amanda; Andreescu, Silvana

    2014-01-01

    We report a novel chemical sensing array based on metal oxide nanoparticles as a portable and inexpensive paper-based colorimetric method for polyphenol detection and field characterization of antioxidant containing samples. Multiple metal oxide nanoparticles with various polyphenol binding properties were used as active sensing materials to develop the sensor array and establish a database of polyphenol standards that include epigallocatechin gallate, gallic acid, resveratrol, and Trolox among others. Unique charge-transfer complexes are formed between each polyphenol and each metal oxide on the surface of individual sensors in the array, creating distinct optically detectable signals which have been quantified and logged into a reference database for polyphenol identification. The field-portable Pantone/X-Rite© CapSure® color reader was used to create this database and to facilitate rapid colorimetric analysis. The use of multiple metal-oxide sensors allows for cross-validation of results and increases accuracy of analysis. The database has enabled successful identification and quantification of antioxidant constituents within real botanical extractions including green tea. Formation of charge-transfer complexes is also correlated with antioxidant activity exhibiting electron transfer capabilities of each polyphenol. The antioxidant activity of each sample was calculated and validated against the oxygen radical absorbance capacity (ORAC) assay showing good comparability. The results indicate that this method can be successfully used for a more comprehensive analysis of antioxidant containing samples as compared to conventional methods. This technology can greatly simplify investigations into plant phenolics and make possible the on-site determination of antioxidant composition and activity in remote locations. PMID:24610993

  16. Effects of radiation from a radiofrequency identification (RFID) microchip on human cancer cells.

    PubMed

    Lai, Henry C; Chan, Ho Wing; Singh, Narendra P

    2016-03-01

    Purpose Radiofrequency identification (RFID) microchips are used to remotely identify objects, e.g. an animal in which a chip is implanted. A passive RFID microchip absorbs energy from an external source and emits a radiofrequency identification signal which is then decoded by a detector. In the present study, we investigated the effect of the radiofrequency energy emitted by a RFID microchip on human cancer cells. Materials and methods Molt-4 leukemia, BT474 breast cancer, and HepG2 hepatic cancer cells were exposed in vitro to RFID microchip-emitted radiofrequency field for 1 h. Cells were counted before and after exposure. Effects of pretreatment with the spin-trap compound N-tert-butyl-alpha-phenylnitrone or the iron-chelator deferoxamine were also investigated. Results We found that the energy effectively killed/retarded the growth of the three different types of cancer cells, and the effect was blocked by the spin-trap compound or the iron-chelator, whereas an inactive microchip and energy from the external source had no significant effect on the cells. Conclusions Data of the present study suggest that radiofrequency field from the microchip affects cancer cells via the Fenton Reaction. Implantation of RFID microchips in tumors may provide a new method for cancer treatment. PMID:26872622

  17. Analytical Chemistry and the Microchip.

    ERIC Educational Resources Information Center

    Lowry, Robert K.

    1986-01-01

    Analytical techniques used at various points in making microchips are described. They include: Fourier transform infrared spectrometry (silicon purity); optical emission spectroscopy (quantitative thin-film composition); X-ray photoelectron spectroscopy (chemical changes in thin films); wet chemistry, instrumental analysis (process chemicals);…

  18. Least Squares Magnetic-Field Optimization for Portable Nuclear Magnetic Resonance Magnet Design

    SciTech Connect

    Paulsen, Jeffrey L; Franck, John; Demas, Vasiliki; Bouchard, Louis-S.

    2008-03-27

    Single-sided and mobile nuclear magnetic resonance (NMR) sensors have the advantages of portability, low cost, and low power consumption compared to conventional high-field NMR and magnetic resonance imaging (MRI) systems. We present fast, flexible, and easy-to-implement target field algorithms for mobile NMR and MRI magnet design. The optimization finds a global optimum ina cost function that minimizes the error in the target magnetic field in the sense of least squares. When the technique is tested on a ring array of permanent-magnet elements, the solution matches the classical dipole Halbach solution. For a single-sided handheld NMR sensor, the algorithm yields a 640 G field homogeneous to 16 100 ppm across a 1.9 cc volume located 1.5 cm above the top of the magnets and homogeneous to 32 200 ppm over a 7.6 cc volume. This regime is adequate for MRI applications. We demonstrate that the homogeneous region can be continuously moved away from the sensor by rotating magnet rod elements, opening the way for NMR sensors with adjustable"sensitive volumes."

  19. Hand-held analyser based on microchip electrophoresis with contactless conductivity detection for measurement of chemical warfare agent degradation products

    NASA Astrophysics Data System (ADS)

    Duran, Karolina-Petkovic; Zhu, Yonggang; Chen, Chuanpin; Swallow, Anthony; Stewart, Robert; Hoobin, Pam; Leech, Patrick; Ovenden, Simon

    2008-12-01

    This paper reports on the development of a hand-held device for on-site detection of organophosphonate nerve agent degradation products. This field-deployable analyzer relies on efficient microchip electrophoresis separation of alkyl methylphosphonic acids and their sensitive contactless conductivity detection. Miniaturized, low-powered design is coupled with promising analytical performance for separating the breakdown products of chemical warfare agents such as Soman, Sarin and VX . The detector has a detection limit of about 10 μg/mL and has a good linear response in the range 10-300 μg/mL concentration range. Applicability to environmental samples is demonstrated .The new hand-held analyzer offers great promise for converting conventional ion chromatography or capillary electrophoresis sophisticated systems into a portable forensic laboratory for faster, simpler and more reliable on-site screening.

  20. Mapping of a complex lava flow field using regular surveys with a portable thermal camera

    NASA Astrophysics Data System (ADS)

    Calvari, S.; Lodato, L.; Garfi, G.; Spampinato, L.; Andronico, D.

    2003-04-01

    The use of a portable thermal camera has been applied to routine monitoring of the 2002 Etna flank eruption. The eruption started on 27 October with the opening of a field of fissures on the north and south flanks of the volcano. Abundant ash emission from the whole length of the 10 km long fissure covered the lava flow field, making it impossible to approach the active lava even with helicopters. Additionally, the northern lava flows were spreading into a forest, causing fire and impeding routine measures in field and lava flow mapping from the ground. This situation continued for several days. The only way to obtain an approximate mapping of the flow field was to use a thermal camera from helicopter, obtaining inclined images of the lava flow field. This allowed: (1) an estimation of the speed of the spreading lava and (2) of the position of the lava flow fronts, (3) evaluation of effusion rate, (4) daily covered area, and (5) organisation of evacuation plans for people living close to the area affected by flows. All these information were essential for civil protection purposes. Emission of lava flows from the north fissure stopped on 5 November 2002. During the following phase of the eruption, when lava flows spread for over two months only on the southern flank of the volcano, little ash emission from the craters allowed us a better view of the lava flow field. However, since the active flows were spreading on a limited surface, flanking and overlapping each other several times, distinction between active and inactive lava flows was made possible only by using a thermal camera. This device allowed us to distinguish active lava flows, inflating flow fronts, lava tubes and ephemeral vents, giving us a comprehensive view of the evolution of the lava flow field. It also helped us discover new vent opening from the base of the cinder cone, in a way to advice the Civil Protection authorities about the future path of new lava flows.

  1. Design of an ultra-portable field transfer radiometer supporting automated vicarious calibration

    NASA Astrophysics Data System (ADS)

    Anderson, Nikolaus; Thome, Kurtis; Czapla-Myers, Jeffrey; Biggar, Stuart

    2015-09-01

    The University of Arizona Remote Sensing Group (RSG) began outfitting the radiometric calibration test site (RadCaTS) at Railroad Valley Nevada in 2004 for automated vicarious calibration of Earth-observing sensors. RadCaTS was upgraded to use RSG custom 8-band ground viewing radiometers (GVRs) beginning in 2011 and currently four GVRs are deployed providing an average reflectance for the test site. This measurement of ground reflectance is the most critical component of vicarious calibration using the reflectance-based method. In order to ensure the quality of these measurements, RSG has been exploring more efficient and accurate methods of on-site calibration evaluation. This work describes the design of, and initial results from, a small portable transfer radiometer for the purpose of GVR calibration validation on site. Prior to deployment, RSG uses high accuracy laboratory calibration methods in order to provide radiance calibrations with low uncertainties for each GVR. After deployment, a solar radiation based calibration has typically been used. The method is highly dependent on a clear, stable atmosphere, requires at least two people to perform, is time consuming in post processing, and is dependent on several large pieces of equipment. In order to provide more regular and more accurate calibration monitoring, the small portable transfer radiometer is designed for quick, one-person operation and on-site field calibration comparison results. The radiometer is also suited for laboratory calibration use and thus could be used as a transfer radiometer calibration standard for ground viewing radiometers of a RadCalNet site.

  2. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT - FIELD PORTABLE X-RAY FLUORESCENCE ANALYZER - METOREX, INC. X-MET 920-P AND 940

    EPA Science Inventory

    In April 1995, the U.S. Environmental Protection Agency (EPA) sponsored a demonstration of field portable X-ray fluorescence (FPXRF) analyzers. The primary objectives of this demonstration were (1) to determine how well FPXRF analyzers perform in comparison to standard reference...

  3. FSR: a field portable spectral reflectometer to measure ground from NIR to LWIR

    NASA Astrophysics Data System (ADS)

    Moreau, Louis; Bourque, Hugo; Ouellet, Réal; Prel, Florent; Roy, Claude; Vallieres, Christian; Thériault, Guillaume

    2011-11-01

    ABB Bomem has recently designed a field-deployable reflectometer. The Full Spectrum Reflectometer (FSR) measures the diffuse reflectance of surfaces in the 0.7 μm to 13.5 μm spectral range. The spectral resolution is adjustable from 32 to 4 cm-1. The instrument is portable, battery-operated and designed for field usage in a single, lightweight and ruggedized package. In its simplest mode, the instrument is automated and can be operated by non-specialist personnel with minimal training. The FSR has a laboratory mode to measure targets brought to the instrument in a sampling cup and a field mode with automated measurement sequence. To facilitate the measurement of various ground surfaces, the instrument is packaged in a three-point mount for easy target access and stability. One of the mount is the sampling port. The instrument has its own built-in NIR and LWIR infrared sources to illuminate the ground area to be measured. The instrument includes two built-in references for calibration: a Spectralon diffuser and an Infragold diffuser. The first units were commissioned to build a spectral database of surfaces in various conditions (humidity, temperature, texture, mixing, etc.) and in the presence of interfering chemicals (oils, solvents, etc.) but the instrument can also serve other purposes such as the identification of unknown materials.

  4. UV and circular dichroism thermal lens microscope for integrated chemical systems and HPLC on microchip

    NASA Astrophysics Data System (ADS)

    Mawatari, Kazuma; Kitamori, Takehiko

    2005-09-01

    Thermal lens microscope (TLM) is our original sensitive detector for non-fluorescent molecules in microspace. The principle is based on absorption of light followed by photothermal process. TLM has been successfully applied tosensitive detection on microchip, and TLM enabled various applications combined with microchip technologies. We are now developing HPLC microchips as one of the important separation techniques for analysis and synthesis. For HPLC microchip systems, direct and sensitive UV detection on microchip becomes key technology. Therefore, we extended applicability of TLM from visible to UV light absorbing samples by pulse UV laser excitation (UV-TLM). Quasi- continuous wave (QCW) method was applied for lock-in amplifier detection. By applying UV-TLM for biomolecules separation and detection, about two orders of higher sensitivity was achieved compared with UV spectrophotometer. For synthesis on microchip, recognition and detection of chiral samples become important in pharmaceutical field. Therefore, function of TLM was extended for selective detection of chiral samples by utilizing polarization modulation of excitation beam and resultant circular dichroism of sample (CD-TLM). The chirality of samples was detected selectively on microchip with two orders higher sensitivity than CD spectrophotometer. Finally, we explained the instrumentation using fiber optics and micro lens technology for achieving a miniaturized practical device.

  5. Contactless conductivity detector for microchip capillary electrophoresis

    NASA Technical Reports Server (NTRS)

    Pumera, Martin; Wang, Joseph; Opekar, Frantisek; Jelinek, Ivan; Feldman, Jason; Lowe, Holger; Hardt, Steffen; Svehla, D. (Principal Investigator)

    2002-01-01

    A microfabricated electrophoresis chip with an integrated contactless conductivity detection system is described. The new contactless conductivity microchip detector is based on placing two planar sensing aluminum film electrodes on the outer side of a poly(methyl methacrylate) (PMMA) microchip (without contacting the solution) and measuring the impedance of the solution in the separation channel. The contactless route obviates problems (e.g., fouling, unwanted reactions) associated with the electrode-solution contact, offers isolation of the detection system from high separation fields, does not compromise the separation efficiency, and greatly simplifies the detector fabrication. Relevant experimental variables, such as the frequency and amplitude of the applied ac voltage or the separation voltage, were examined and optimized. The detector performance was illustrated by the separation of potassium, sodium, barium, and lithium cations and the chloride, sulfate, fluoride, acetate, and phosphate anions. The response was linear (over the 20 microM-7 mM range) and reproducible (RSD = 3.4-4.9%; n = 10), with detection limits of 2.8 and 6.4 microM (for potassium and chloride, respectively). The advantages associated with the contactless conductivity detection, along with the low cost of the integrated PMMA chip/detection system, should enhance the power and scope of microfluidic analytical devices.

  6. Moving your laboratories to the field--Advantages and limitations of the use of field portable instruments in environmental sample analysis.

    PubMed

    Gałuszka, Agnieszka; Migaszewski, Zdzisław M; Namieśnik, Jacek

    2015-07-01

    The recent rapid progress in technology of field portable instruments has increased their applications in environmental sample analysis. These instruments offer a possibility of cost-effective, non-destructive, real-time, direct, on-site measurements of a wide range of both inorganic and organic analytes in gaseous, liquid and solid samples. Some of them do not require the use of reagents and do not produce any analytical waste. All these features contribute to the greenness of field portable techniques. Several stationary analytical instruments have their portable versions. The most popular ones include: gas chromatographs with different detectors (mass spectrometer (MS), flame ionization detector, photoionization detector), ultraviolet-visible and near-infrared spectrophotometers, X-ray fluorescence spectrometers, ion mobility spectrometers, electronic noses and electronic tongues. The use of portable instruments in environmental sample analysis gives a possibility of on-site screening and a subsequent selection of samples for routine laboratory analyses. They are also very useful in situations that require an emergency response and for process monitoring applications. However, quantification of results is still problematic in many cases. The other disadvantages include: higher detection limits and lower sensitivity than these obtained in laboratory conditions, a strong influence of environmental factors on the instrument performance and a high possibility of sample contamination in the field. This paper reviews recent applications of field portable instruments in environmental sample analysis and discusses their analytical capabilities. PMID:26051907

  7. DNA analysis and diagnostics on oligonucleotide microchips.

    PubMed Central

    Yershov, G; Barsky, V; Belgovskiy, A; Kirillov, E; Kreindlin, E; Ivanov, I; Parinov, S; Guschin, D; Drobishev, A; Dubiley, S; Mirzabekov, A

    1996-01-01

    We present a further development in the technology of sequencing by hybridization to oligonucleotide microchips (SHOM) and its application to diagnostics for genetic diseases. A robot has been constructed to manufacture sequencing "microchips." The microchip is an array of oligonucleotides immobilized into gel elements fixed on a glass plate. Hybridization of the microchip with fluorescently labeled DNA was monitored in real time simultaneously for all microchip elements with a two-wavelength fluorescent microscope equipped with a charge-coupled device camera. SHOM has been used to detect beta-thalassemia mutations in patients by hybridizing PCR-amplified DNA with the microchips. A contiguous stacking hybridization technique has been applied for the detection of mutations; it can simplify medical diagnostics and enhance its reliability. The use of multicolor monitoring of contiguous stacking hybridization is suggested for large-scale diagnostics and gene polymorphism studies. Other applications of the SHOM technology are discussed. Images Fig. 2 Fig. 3 Fig. 4 PMID:8643503

  8. Portable Infrared Reflectometer Designed and Manufactured for Evaluating Emittance in the Laboratory or in the Field

    NASA Technical Reports Server (NTRS)

    Jaworske, Donald A.

    2000-01-01

    The optical properties of materials play a key role in spacecraft thermal control. In space, radiant heat transfer is the only mode of heat transfer that can reject heat from a spacecraft. One of the key properties for defining radiant heat transfer is emittance, a measure of how efficiently a surface can reject heat in comparison to a perfect black body emitter. Heat rejection occurs in the infrared region of the spectrum, nominally in the range of 2 to 25 mm. To calculate emittance, one obtains the reflectance over this spectral range, calculates spectral absorptance by difference, and then uses Kirchhoff s Law and the Stefan-Boltzmann equation to calculate emittance. A new portable infrared reflectometer, the SOC 400t, was designed and manufactured to evaluate the emittance of surfaces and coatings in the laboratory or in the field. It was developed by Surface Optics Corporation under a contract with the NASA Glenn Research Center at Lewis Field to replace the Center s aging Gier-Dunkle DB-100 infrared reflectometer. The specifications for the new instrument include a wavelength range of 2 to 25 mm; reflectance repeatability of +/-1 percent; self-calibrating, near-normal spectral reflectance measurements; a full scan measurement time of 3.5 min, a sample size of 1.27 cm (0.5 in.); a spectral resolution selectable from 4, 8, 16, or 32/cm; and optical property characterization utilizing an automatic integration to calculate total emittance in a selectable temperature range.

  9. Portable low-coherence interferometry for quantitatively imaging fast dynamics with extended field of view

    NASA Astrophysics Data System (ADS)

    Shaked, Natan T.; Girshovitz, Pinhas; Frenklach, Irena

    2014-06-01

    We present our recent advances in the development of compact, highly portable and inexpensive wide-field interferometric modules. By a smart design of the interferometric system, including the usage of low-coherence illumination sources and common-path off-axis geometry of the interferometers, spatial and temporal noise levels of the resulting quantitative thickness profile can be sub-nanometric, while processing the phase profile in real time. In addition, due to novel experimentally-implemented multiplexing methods, we can capture low-coherence off-axis interferograms with significantly extended field of view and in faster acquisition rates. Using these techniques, we quantitatively imaged rapid dynamics of live biological cells including sperm cells and unicellular microorganisms. Then, we demonstrated dynamic profiling during lithography processes of microscopic elements, with thicknesses that may vary from several nanometers to hundreds of microns. Finally, we present new algorithms for fast reconstruction (including digital phase unwrapping) of off-axis interferograms, which allow real-time processing in more than video rate on regular single-core computers.

  10. Supporting the joint warfighter by development, training, and fielding of man-portable UGVs

    NASA Astrophysics Data System (ADS)

    Ebert, Kenneth A.; Stratton, Benjamin V.

    2005-05-01

    The Robotic Systems Pool (RSP), sponsored by the Joint Robotics Program (JRP), is an inventory of small robotic systems, payloads, and components intended to expedite the development and integration of technology into effective, supportable, fielded robotic assets. The RSP loans systems to multiple users including the military, first-responders, research organizations, and academia. These users provide feedback in their specific domain, accelerating research and development improvements of robotic systems, which in turn allow the joint warfighter to benefit from such changes more quickly than from traditional acquisition cycles. Over the past year, RSP assets have been used extensively for pre-deployment operator and field training of joint Explosive Ordnance Disposal (EOD) teams, and for the training of Navy Reservist repair technicians. These Reservists are part of the Robotic Systems Combat Support Platoon (RSCSP), attached to Space and Naval Warfare Systems Center, San Diego. The RSCSP maintains and repairs RSP assets and provides deployable technical support for users of robotic systems. Currently, a small team from the RSCSP is deployed at Camp Victory repairing and maintaining man-portable unmanned ground vehicles (UGVs) used by joint EOD teams in Operation Iraqi Freedom. The focus of this paper is to elaborate on the RSP and RSCSP and their role as invaluable resources for spiral development in the robotics community by gaining first-hand technical feedback from the warfighter and other users.

  11. Miniaturized Explosive Preconcentrator for Use in a Man-Portable Field Detection System

    SciTech Connect

    Hannum, David W.; Linker, Kevin L.; Parmeter, John E.; Rhykerd, Charles L.; Varley, Nathan R.

    1999-08-02

    We discuss the design and testing of a miniaturized explosives preconcentrator that can be used to enhance the capabilities of man-portable field detection systems, such as those based on ion mobility spectrometry (IMS). The preconcentrator is a smaller version of a similar device that was developed recently at Sandia National Laboratories for use in a trace detection portal that screens personnel for explosives. Like its predecessor, this preconcentrator is basically a filtering device that allows a small amount of explosive residue in a large incoming airflow to be concentrated into a much smaller air volume via adsorption and resorption, prior to delivery into a chemical detector. We discuss laboratory testing of this preconcentrator interfaced to a commercially available IMS-based detection system, with emphasis on the explosives 2,4,6-trinitrotoluene (TNT) and cyclotrimethylenetrinitramine (RDX). The issues investigated include optimization of the preconcentrator volume and inlet airflow, the use of different types of adsorbing surfaces within the preconcentrator, Wd preconcentrator efficiency and concentration factor. We discuss potential field applications of the preconcentrator, as well as avenues for further investigations and improvements.

  12. Design Considerations for a Portable Raman Probe Spectrometer for Field Forensics

    SciTech Connect

    Kelly, James F.; Blake, Thomas A.; Bernacki, Bruce E.; Johnson, Timothy J.

    2012-01-01

    Raman spectroscopy has been shown to be a viable method for explosives detection. Currently most forensic Raman systems are either large, powerful instruments for laboratory experiments or handheld instruments forin situpoint detection. We have chosen to examine the performance of certain benchtop Raman probe systems with the goal of developing an inexpensive, portable system that could be used to operate in a field forensics laboratory to examine explosives-related residues or samples. To this end, a rugged, low distortion line imaging dispersive Raman spectrograph was configured to work at 830 nm laser excitation and was used to determine whether the composition of thin films of plastic explosives or small (e.g., ≤10 μm) particles of RDX or other explosives or oxidizers can be detected, identified, and quantified in the field. With 300 mW excitation energy, concentrations of RDX and PETN can be detected and reconstructed in the case of thin Semtex smears, but further work is needed to push detection limits of areal dosages to the ~1 μg/cm2level. We describe the performance of several probe/spectrograph combinations and show preliminary data for particle detection, calibration and detection linearity for mixed compounds, and so forth.

  13. Analysis of munitions constituents in groundwater using a field-portable GC-MS.

    PubMed

    Bednar, A J; Russell, A L; Hayes, C A; Jones, W T; Tackett, P; Splichal, D E; Georgian, T; Parker, L V; Kirgan, R A; MacMillan, D K

    2012-05-01

    The use of munitions constituents (MCs) at military installations can produce soil and groundwater contamination that requires periodic monitoring even after training or manufacturing activities have ceased. Traditional groundwater monitoring methods require large volumes of aqueous samples (e.g., 2-4 L) to be shipped under chain of custody, to fixed laboratories for analysis. The samples must also be packed on ice and shielded from light to minimize degradation that may occur during transport and storage. The laboratory's turn-around time for sample analysis and reporting can be as long as 45 d. This process hinders the reporting of data to customers in a timely manner; yields data that are not necessarily representative of current site conditions owing to the lag time between sample collection and reporting; and incurs significant shipping costs for samples. The current work compares a field portable Gas Chromatograph-Mass Spectrometer (GC-MS) for analysis of MCs on-site with traditional laboratory-based analysis using High Performance Liquid Chromatography with UV absorption detection. The field method provides near real-time (within ~1 h of sampling) concentrations of MCs in groundwater samples. Mass spectrometry provides reliable confirmation of MCs and a means to identify unknown compounds that are potential false positives for methods with UV and other non-selective detectors. PMID:22349064

  14. Detection of waterborne parasites using field-portable and cost-effective lensfree microscopy†

    PubMed Central

    Mudanyali, Onur; Oztoprak, Cetin; Tseng, Derek; Erlinger, Anthony; Ozcan, Aydogan

    2010-01-01

    Protection of human health and well-being through water quality management is an important goal for both the developed and the developing parts of the world. In the meantime, insufficient disinfection techniques still fail to eliminate pathogenic contaminants in freshwater as well as recreational water resources. Therefore, there is a significant need for screening of water quality to prevent waterborne outbreaks and incidents of water-related diseases. Toward this end, here we investigate the use of a field-portable and cost-effective lensfree holographic microscope to image and detect pathogenic protozoan parasites such as Giardia Lamblia and Cryptosporidium Parvum at low concentration levels. This compact lensless microscope (O. Mudanyali et al., Lab Chip, 2010, 10, 1417–1428), weighing ~46 grams, achieves a numerical aperture of ~0.1–0.2 over an imaging field of view that is more than an order of magnitude larger than a typical 10X objective lens, and therefore may provide an important high-throughput analysis tool for combating waterborne diseases especially in resource limited settings. PMID:20694255

  15. Biological cell controllable patch-clamp microchip

    NASA Astrophysics Data System (ADS)

    Penmetsa, Siva; Nagrajan, Krithika; Gong, Zhongcheng; Mills, David; Que, Long

    2010-12-01

    A patch-clamp (PC) microchip with cell sorting and positioning functions is reported, which can avoid drawbacks of random cell selection or positioning for a PC microchip. The cell sorting and positioning are enabled by air bubble (AB) actuators. AB actuators are pneumatic actuators, in which air pressure is generated by microheaters within sealed microchambers. The sorting, positioning, and capturing of 3T3 cells by this type of microchip have been demonstrated. Using human breast cancer cells MDA-MB-231 as the model, experiments have been demonstrated by this microchip as a label-free technical platform for real-time monitoring of the cell viability.

  16. Quantitative assessment of historical coastal landfill contamination using in-situ field portable XRF (FPXRF)

    NASA Astrophysics Data System (ADS)

    O'Shea, Francis; Spencer, Kate; Brasington, James

    2014-05-01

    Historically, waste was deposited on low value, easily accessible coastal land (e.g. marsh land). Within England and Wales alone, there are over 5000 historical landfills situated within coastal areas at risk of flooding at a 1 in 100 year return period (Environment Agency, 2012). Historical sites were constructed prior to relevant legislation, and have no basal or side wall engineering, and the waste constituents are mostly unknown. In theory, contaminant concentrations should be reduced through natural attenuation as the leachate plume migrates through surrounding fine-grained inter-tidal sediments before reaching receptor waters. However, erosion resulting from rising sea level and increased storm intensity may re-distribute these sediments and release associated contaminants into the estuarine and coastal environment. The diffuse discharge from these sites has not been quantified and this presents a problem for those landfill managers who are required to complete EIAs. An earlier detailed field campaign at Newlands landfill site, on the Thames Estuary, UK identified a sub-surface (~2m depth) contaminant plume extending c. 20 m from the landfill boundary into surrounding fine-grained saltmarsh sediments. These saltmarsh sediments are risk of being eroded releasing their contaminant load to the Thames Estuary. The aims of this work were to; 1) assess whether this plume is representative of other historical landfills with similar characteristics and 2) to develop a rapid screening methodology using field portable XRF that could be used to identify potential risk of other coastal landfill sites. GIS was used to select landfill sites of similar age, hydrological regime and sedimentary setting in the UK, for comparison. Collection of sediment samples and analysis by ICP OES is expensive and time-consuming, therefore cores were extracted and analysed with a Niton Goldd XRF in-situ. Contaminant data were available immediately and the sampling strategy could be adapted

  17. Field portable mobile phone based fluorescence microscopy for detection of Giardia lamblia cysts in water samples

    NASA Astrophysics Data System (ADS)

    Ceylan Koydemir, Hatice; Gorocs, Zoltan; McLeod, Euan; Tseng, Derek; Ozcan, Aydogan

    2015-03-01

    Giardia lamblia is a waterborne parasite that causes an intestinal infection, known as giardiasis, and it is found not only in countries with inadequate sanitation and unsafe water but also streams and lakes of developed countries. Simple, sensitive, and rapid detection of this pathogen is important for monitoring of drinking water. Here we present a cost-effective and field portable mobile-phone based fluorescence microscopy platform designed for automated detection of Giardia lamblia cysts in large volume water samples (i.e., 10 ml) to be used in low-resource field settings. This fluorescence microscope is integrated with a disposable water-sampling cassette, which is based on a flow-through porous polycarbonate membrane and provides a wide surface area for fluorescence imaging and enumeration of the captured Giardia cysts on the membrane. Water sample of interest, containing fluorescently labeled Giardia cysts, is introduced into the absorbent pads that are in contact with the membrane in the cassette by capillary action, which eliminates the need for electrically driven flow for sample processing. Our fluorescence microscope weighs ~170 grams in total and has all the components of a regular microscope, capable of detecting individual fluorescently labeled cysts under light-emitting-diode (LED) based excitation. Including all the sample preparation, labeling and imaging steps, the entire measurement takes less than one hour for a sample volume of 10 ml. This mobile phone based compact and cost-effective fluorescent imaging platform together with its machine learning based cyst counting interface is easy to use and can even work in resource limited and field settings for spatio-temporal monitoring of water quality.

  18. Field analyses of (238)U and (226)Ra in two uranium mill tailings piles from Niger using portable HPGe detector.

    PubMed

    Déjeant, Adrien; Bourva, Ludovic; Sia, Radia; Galoisy, Laurence; Calas, Georges; Phrommavanh, Vannapha; Descostes, Michael

    2014-11-01

    The radioactivities of (238)U and (226)Ra in mill tailings from the U mines of COMINAK and SOMAÏR in Niger were measured and quantified using a portable High-Purity Germanium (HPGe) detector. The (238)U and (226)Ra activities were measured under field conditions on drilling cores with 600s measurements and without any sample preparation. Field results were compared with those obtained by Inductive Coupled Plasma Atomic Emission Spectroscopy (ICP-AES) and emanometry techniques. This comparison indicates that gamma-ray absorption by such geological samples does not cause significant deviations. This work shows the feasibility of using portable HPGe detector in the field as a preliminary method to observe variations of radionuclides concentration with the aim of identifying samples of interest. The HPGe is particularly useful for samples with strong secular disequilibrium such as mill tailings. PMID:25036918

  19. Field-Portable Immunoassay Instruments and Reagents to Measure Chelators and Mobile Forms of Uranium

    SciTech Connect

    Blake, Diane A.

    2006-01-23

    Progress Report Date: 01/23/06 (report delayed due to Hurricane Katrina) Report of results to date: The goals of this 3-year project are to: (1) update and successfully deploy our present immunosensors at DOE sites; (2) devise immunosensor-based assays for Pb(II), Hg(II), chelators, and/or Cr(III) in surface and groundwater; and (3) develop new technologies in antibody engineering that will enhance this immunosensor program. Note: Work on this project was temporarily disrupted when Hurricane Katrina shut down the University on August 29, 2005. While most of the reagents stored in our refrigerators and freezers were destroyed, all of our hybridoma cell lines were saved because they had been stored in liquid nitrogen. We set up new tissue culture reactors with the hybridomas that synthesize the anti-uranium antibodies, and are purifying new monoclonal antibodies from these culture supernatants. Both the in-line and the field-portable sensor were rescued from our labs in New Orleans in early October, and we continued experiments with these sensors in the temporary laboratory we set up in Hammond, LA at Southeastern Louisiana University.

  20. Nanofocus of tenth of joules and a portable plasma focus of few joules for field applications

    SciTech Connect

    Soto, Leopoldo; Pavez, Cristian; Moreno, Jose; Tarifeno, Ariel; Pedreros, Jose; Altamirano, Luis

    2009-01-21

    A repetitive pinch plasma focus that works with stored energy less than 1 J per shot has be developed at the Chilean Nuclear Energy Commission. The main features of this device, repetitive Nanofocus, are 5 nF of capacity, 5 nH of inductance, 5-10 kV charging voltage, 60-250 mJ stored energy, 5-10 kA current peak, per shot. The device has been operated at 20 Hz in hydrogen and deuterium. X-ray radiographs of materials of different thickness were obtained. Neutrons were detected using a system based upon {sup 3}He proportional counter in chare integrated mode. However, the reproducibility of this miniaturized device is low and several technological subjects have to be previously solved in order to produce neutrons for periods greater than minutes. Further studies in the Nanofocus are being carried out. In addition, a device with a stored energy of a few joules is being explored. A preliminary compact, low weight (3 kg), portable PF device (25 cmx5 cmx5 cm) for field applications has been designed. This device was designed to operate with few kilovolts (10 kV or less) with a stored energy of 2 J and a repetition rate of 10 Hz without cooling. A neutron flux of the order of 10{sup 4}-10{sup 5} n/s is expected.

  1. Field assessment of noncontact stream gauging using portable surface velocity radars (SVR)

    NASA Astrophysics Data System (ADS)

    Welber, Matilde; Le Coz, Jérôme; Laronne, Jonathan B.; Zolezzi, Guido; Zamler, Daniel; Dramais, Guillaume; Hauet, Alexandre; Salvaro, Martino

    2016-02-01

    The applicability of a portable, commercially available surface velocity radar (SVR) for noncontact stream gauging was evaluated through a series of field-scale experiments carried out in a variety of sites and deployment conditions. Comparisons with various concurrent techniques showed acceptable agreement with velocity profiles, with larger uncertainties close to the banks. In addition to discharge error sources shared with intrusive velocity-area techniques, SVR discharge estimates are affected by flood-induced changes in the bed profile and by the selection of a depth-averaged to surface velocity ratio, or velocity coefficient (α). Cross-sectional averaged velocity coefficients showed smaller fluctuations and closer agreement with theoretical values than those computed on individual verticals, especially in channels with high relative roughness. Our findings confirm that α = 0.85 is a valid default value, with a preferred site-specific calibration to avoid underestimation of discharge in very smooth channels (relative roughness ˜ 0.001) and overestimation in very rough channels (relative roughness > 0.05). Theoretically derived and site-calibrated values of α also give accurate SVR-based discharge estimates (within 10%) for low and intermediate roughness flows (relative roughness 0.001 to 0.05). Moreover, discharge uncertainty does not exceed 10% even for a limited number of SVR positions along the cross section (particularly advantageous to gauge unsteady flood flows and very large floods), thereby extending the range of validity of rating curves.

  2. Portable oral cancer detection using a miniature confocal imaging probe with a large field of view

    NASA Astrophysics Data System (ADS)

    Wang, Youmin; Raj, Milan; McGuff, H. Stan; Bhave, Gauri; Yang, Bin; Shen, Ting; Zhang, Xiaojing

    2012-06-01

    We demonstrate a MEMS micromirror enabled handheld confocal imaging probe for portable oral cancer detection, where a comparatively large field of view (FOV) was generated through the programmable Lissajous scanning pattern of the MEMS micromirror. Miniaturized handheld MEMS confocal imaging probe was developed, and further compared with the desktop confocal prototype under clinical setting. For the handheld confocal imaging system, optical design simulations using CODE VR® shows the lateral and axial resolution to be 0.98 µm and 4.2 µm, where experimental values were determined to be 3 µm and 5.8 µm, respectively, with a FOV of 280 µm×300 µm. Fast Lissajous imaging speed up to 2 fps was realized with improved Labview and Java based real-time imaging software. Properties such as 3D imaging through autofocusing and mosaic imaging for extended lateral view (6 mm × 8 mm) were examined for carcinoma real-time pathology. Neoplastic lesion tissues of giant cell fibroma and peripheral ossifying fibroma, the fibroma inside the paraffin box and ex vivo gross tissues were imaged by the bench-top and handheld imaging modalities, and further compared with commercial microscope imaging results. The MEMS scanner-based handheld confocal imaging probe shows great promise as a potential clinical tool for oral cancer diagnosis and treatment.

  3. Operational field evaluation of the PAC-MAG man-portable magnetometer array

    NASA Astrophysics Data System (ADS)

    Keranen, Joe; Topolosky, Zeke; Schultz, Gregory; Miller, Jonathan

    2013-06-01

    Detection and discrimination of unexploded ordnance (UXO) in areas of prior conflict is of high importance to the international community and the United States government. For humanitarian applications, sensors and processing methods need to be robust, reliable, and easy to train and implement using indigenous UXO removal personnel. This paper describes system characterization, system testing, and a continental United States (CONUS) Operational Field Evaluations (OFE) of the PAC-MAG man-portable UXO detection system. System testing occurred at a government test facility in June, 2010 and December, 2011 and the OFE occurred at the same location in June, 2012. NVESD and White River Technologies personnel were present for all testing and evaluation. The PAC-MAG system is a manportable magnetometer array for the detection and characterization of ferrous UXO. System hardware includes four Cesium vapor magnetometers for detection, a Real-time Kinematic Global Position System (RTK-GPS) for sensor positioning, an electronics module for merging array data and WiFi communications and a tablet computer for transmitting and logging data. An odometer, or "hipchain" encoder, provides position information in GPS-denied areas. System software elements include data logging software and post-processing software for detection and characterization of ferrous anomalies. The output of the post-processing software is a dig list containing locations of potential UXO(s), formatted for import into the system GPS equipment for reacquisition of anomalies. Results from system characterization and the OFE will be described.

  4. Advances in field-portable ion trap GC/MS instrumentation

    NASA Astrophysics Data System (ADS)

    Diken, Eric G.; Arno, Josep; Skvorc, Ed; Manning, David; Andersson, Greger; Judge, Kevin; Fredeen, Ken; Sadowski, Charles; Oliphant, Joseph L.; Lammert, Stephen A.; Jones, Jeffrey L.; Waite, Randall W.; Grant, Chad; Lee, Edgar D.

    2012-06-01

    The rapid and accurate detection and identification of chemical warfare agents and toxic industrial chemicals can be critical to the protection of military and civilian personnel. The use of gas chromatography (GC) - mass spectrometry (MS) can provide both the sensitivity and selectivity required to identify unknown chemicals in complex (i.e. real-world) environments. While most widely used as a laboratory-based technique, recent advances in GC, MS, and sampling technologies have led to the development of a hand-portable GC/MS system that is more practical for field-based analyses. The unique toroidal ion trap mass spectrometer (TMS) used in this instrument has multiple benefits related to size, weight, start-up time, ruggedness, and power consumption. Sample separation is achieved in record time (~ 3 minutes) and with high resolution using a state-of-the-art high-performance low-thermal-mass GC column. In addition to providing a system overview highlighting its most important features, the presentation will focus on the chromatographic and mass spectral performance of the system. Results from exhaustive performance testing of the new instrument will be introduced to validate its unique robustness and ability to identify targeted and unknown chemicals.

  5. Man-portable command, communication, and control systems for the next generation of unmanned field systems

    NASA Astrophysics Data System (ADS)

    Jacobus, Charles J.; Mitchell, Brian T.; Jacobus, Heidi N.; Watts, Russell C.; Taylor, Mark J.; Salazar, Alfonso

    1993-05-01

    New generations of military unmanned systems on the ground, at sea, and in the air will be driven by man-portable command units. In past efforts we implemented several prototypes of such units which provided display and capture of up to four video input channels, provided 4 color LCD screens and a larger status display LCD screen, provided drive input through two joysticks, and, through software, supported a flexible 'virtual' driver's interface. We have also performed additional trade analysis of prototype systems incorporating force feedback and extensive image-oriented processing facilities applied to man-controlled robotic control systems. This prior work has resulted in a database of practical design guidelines and a new generation of hardened compact robotic command center which is being designed and built to provide more advanced video capture, display, and interfacing features, supercomputer level computational performance, and ergonomic features for hard field use. In this paper we will summarize some past work and will project current performance to features likely to be common across most unmanned systems command, control, and communications subsystems of the near future.

  6. APPLICATION OF PORTABLE MICROPROCESSOR-BASED SYSTEM FOR ELECTROPHYSIOLOGICAL FIELD TESTING OF NEUROTOXICITY

    EPA Science Inventory

    A portable microprocessor-based system designated PEARL II has been developed for neurotoxicity testing in human populations. PEARL II provides a flexible and powerful data acquisition capability to record sensory evoked potentials (auditory, visual and somotosensory), event-rela...

  7. Radially polarized cylindrical vector beams from a monolithic microchip laser

    NASA Astrophysics Data System (ADS)

    Naidoo, Darryl; Fromager, Michael; Ait-Ameur, Kamel; Forbes, Andrew

    2015-11-01

    Monolithic microchip lasers consist of a thin slice of laser crystal where the cavity mirrors are deposited directly onto the end faces. While this property makes such lasers very compact and robust, it prohibits the use of intracavity laser beam shaping techniques to produce complex light fields. We overcome this limitation and demonstrate the selection of complex light fields in the form of vector-vortex beams directly from a monolithic microchip laser. We employ pump reshaping and a thermal gradient across the crystal surface to control both the intensity and polarization profile of the output mode. In particular, we show laser oscillation on a superposition of Laguerre-Gaussian modes of zero radial and nonzero azimuthal index in both the scalar and vector regimes. Such complex light fields created directly from the source could find applications in fiber injection, materials processing and in simulating quantum processes.

  8. Production of Microchips from Polystyrene Plates

    ERIC Educational Resources Information Center

    Pace, Sarah Lindsey

    2009-01-01

    Currently manufactured microchips are expensive to make, require specialized equipment, and leave a large environmental footprint. To counter this, an alternative procedure that is cheaper and leaves a smaller environmental footprint should be made. The goal of this research project is to develop a process that creates microchips from polystyrene…

  9. Analysis of the elemental composition of marine litter by field-portable-XRF.

    PubMed

    Turner, Andrew; Solman, Kevin R

    2016-10-01

    Marine litter represents a pervasive environmental problem that poses direct threats to wildlife and habitats. Indirectly, litter can also act as a vehicle for the exposure and bioaccumulation of chemicals that are associated with manufactured or processed solids. In this study, we describe the use of a Niton field-portable-x-ray fluorescence (FP-XRF) spectrometer to determine the content of 17 elements in beached plastics, foams, ropes and painted items. The instrument was used in a 'plastics' mode configured for complex, low density materials, and employed a thickness correction algorithm to account for varying sample depth. Accuracy was evaluated by analysing two reference polyethylene discs and was better than 15% for all elements that had been artificially impregnated into the polymer. Regarding the litter samples, limits of detection for a 120s counting time varied between the different material categories and among the elements but were generally lowest for plastics and painted items with median concentrations of less than 10μgg(-1) for As, Bi, Br, Cr, Hg, Ni, Pb, Se and Zn. Concentrations returned by the XRF were highly sensitive to the thickness correction applied for certain elements (Ba, Cl, Cr, Cu, Fe, Sb, Ti, Zn) in all matrices tested, indicating that accurate measurement and application of the correct thickness is critical for acquiring reliable results. An independent measure of the elemental content of selected samples by ICP spectrometry following acid digestion returned concentrations that were significantly correlated with those returned by the XRF, and with an overall slope of [XRF]/[ICP]=0.85. Within the FP-XRF operating conditions, Cl, Cr, Fe, Ti and Zn were detected in more than 50% and Hg and Se in less than 1% of the 376 litter samples analysed. Significant from an environmental perspective were concentrations of the hazardous elements, Cd, Br and Pb, that exceeded several thousand μgg(-1) in many cases. PMID:27474307

  10. Modern, PC based, high resolution portable EDXRF analyzer offers laboratory performance for field, in-situ analysis of environmental contaminants

    NASA Astrophysics Data System (ADS)

    Piorek, Stanislaw

    1994-12-01

    The introduction of a new, high resolution, portable probe that has improved the sensitivity of the conventional field portable X-ray fluorescence (FPXRF) by up to an order of magnitude had been reported earlier [S. Piorek and J.R. Pasmore, Proc. 2nd Int. Symp. on Field Screening Methods for Hazardous Wastes and Toxic Chemicals, Las Vegas, 1991, p. 737]. A high resolution Si(Li) detector probe operates connected to a multichannel X-ray analyzer (2048 channels) which is housed in a portable, battery powered industrial computer. An improved energy resolution of the detector allows the implementation of more sophisticated data treatment methods to convert the measured intensities into mass concentrations of the analytes. A backscatter with a fundamental parameters approach (BFP) is one of the best methods, specifically for metallic contaminants in soil. A program has been written based on the BFP method for use with the new probe. The new software/probe combination enables one to quickly assess levels of contaminants on the site without the need of analyzed samples for instrument calibration. The performance of the EDXRF system in application to analysis of metals in contaminated soil is discussed in this paper. Also discussed is the extension of this method in the analysis of other types of environmental samples such as air particulates collected on filter paper.

  11. Programmable shunt valves: in vitro assessment of safety of the magnetic field generated by a portable game machine.

    PubMed

    Nakashima, Koji; Nakajo, Takato; Kawamo, Michiari; Kato, Akihito; Ishigaki, Seiichiro; Murakami, Hidetomo; Imaizumi, Yohichi; Izumiyama, Hitoshi

    2011-01-01

    Cerebrospinal fluid (CSF) shunts are frequently used to treat hydrocephalus. The use of a programmable shunt valve allows physicians to easily change the opening pressure. Since patients with adjustable CSF shunt valves may use portable game machines, the permanent magnets in these machines may alter the shunt valve programmed settings or permanently damage the device. This study investigated the risk of unintentional valve adjustment associated with the use of game machines in patients with programmable CSF shunt valves. Four adjustable valves from 4 different manufacturers, Sophysa Polaris model SPV (Polaris valve), Miethke proGAV (proGAV), Codman Hakim programmable valve (CHPV), and Strata II small valve (Strata valve), were evaluated. Magnetic field interactions were determined using the portable game machine, Nintendo DS Lite (DS). The maximum distance between the valve and the DS that affected the valve pressure setting was measured by x-ray cinematography. The Polaris valve and proGAV were immune to unintentional reprogramming by the DS. However, the settings of the CHPV and Strata valves were randomly altered by the DS. Patients with an implanted shunt valve should be made aware of the risks posed by the magnetic fields associated with portable game machines and commonly used home electronics. PMID:21946726

  12. Field portable XRF as a tool for the assessment of contaminated peat soils

    NASA Astrophysics Data System (ADS)

    Shuttleworth, Emma; Evans, Martin; Rothwell, James; Hutchinson, Simon

    2013-04-01

    Upland blanket bogs in the UK have suffered severe erosion over the last millennium but there is evidence to show that this has increased in intensity in the last 250 years, coinciding with increased pressures on the land during the British Industrial Revolution. Upland peat soils in close proximity to urban and industrial areas can be contaminated with - and act as sinks for - high concentrations of atmospherically deposited lead. Atmospheric pollution has been shown to have had significant effects on blanket bog vegetation, the damage and removal of which makes the peat mass highly susceptible to erosion. Erosion of these soils has the potential to release lead into the fluvial system. Detailed quantification of lead concentrations across the surface of actively eroding peatlands is vital in order to understand lead storage and release in such environments. Previous attempts to quantify peatland lead pollution have been undertaken using the inventory approach. However, there can be significant within-site spatial heterogeneity in lead concentrations, highlighting the need for multiple samples to properly quantify lead storage. Lead concentrations in peat are traditionally derived through acid extraction followed by ICP-OES or AAS analyses, but these can be time consuming, expensive and destructive. By contrast, field portable x-ray fluorescence (FPXRF) analysers are relatively inexpensive, allow a large number of samples to be processed in a comparatively short time, giving a high level of detail with little disturbance to the surrounding area. FPXRF continues to gain acceptance in the study of metal contaminated soil but has not been used to conduct field surveys of contaminated peat soils due to their high moisture content. This study compares lead concentration data obtained in situ using a handheld Niton XL3t 900 XRF analyser with data derived from ex situ lab based analyses. In situ measurements were acquired across degraded and intact peatland sites in the

  13. Measurement capability of field portable organic vapor monitoring instruments under different experimental conditions.

    PubMed

    Coffey, Christopher C; Pearce, Terri A; Lawrence, Robert B; Hudnall, Judith B; Slaven, James E; Martin, Stephen B

    2009-01-01

    The performance of field portable direct-reading organic vapor monitors (DROVMs) was evaluated under a variety of experimental conditions. Four of the DROVMs had photoionization detectors (ppbRAE, IAQRAE, MultiRAE, and Century Toxic Vapor Analyzer), one had a flame ionization detector (Century Toxic Vapor Analyzer), and one was a single-beam infrared spectrophotometer (SapphIRe). Four of each DROVM (two Century Toxic Vapor Analyzers and SapphIRes) were tested. The DROVMs were evaluated at three temperatures (4 degrees C, 21 degrees C, and 38 degrees C), three relative humidities (30%, 60%, and 90%), and two hexane concentrations (5 ppm and 100 ppm). These conditions were selected to provide a range within the operational parameters of all the instruments. At least four replicate trials were performed across the 18 experimental conditions (3 temperatures x 3 relative humidities x 2 concentrations). To evaluate performance, the 4-hr time-weighted average readings from the DROVMs in a given trial were compared with the average of two charcoal tube concentrations using pairwise comparison. The pairwise comparison criterion was +/-25% measurement agreement between each individual DROVM and the DROVMs as a group and the average charcoal tube concentration. The ppbRAE group performed the best with 40% of all readings meeting the comparison criterion followed by the SapphIRe group at 39%. Among individual DROVMs, the best performer was a SapphIRe, with 57% of its readings meeting the criterion. The data was further analyzed by temperature, humidity, and concentration. The results indicated the performance of some DROVMs may be affected by temperature, humidity, and/or concentration. The ppbRAE group performed best at 21 degrees C with the percentage of readings meeting the criterion increasing to 63%. At the 5 ppm concentration, 44% of the ppbRAE group readings met the criterion, while at 100 ppm, only 35% did. The results indicate that monitors can be used as survey tools

  14. Capillary and microchip electrophoresis: challenging the common conceptions.

    PubMed

    Breadmore, Michael C

    2012-01-20

    Capillary electrophoresis (CE) has long been regarded as a powerful analytical separation technique that is an alternative to more traditional methods such as gel electrophoresis (GE) and liquid chromatography (LC). It is often touted as having a number of advantages over both of these, such as speed, flexibility, portability, sample and reagent requirements and cost, but also a number of disadvantages such as reproducibility and sensitivity. Microchip electrophoresis (ME), the next evolutionary step, miniaturised CE further providing improvements in speed and sample requirements as well as the possibility to perform more complex and highly integrated analyses. CE and ME are seen as a viable alternative to GE, but are often considered to be inferior to LC. This review will consider the strengths and weaknesses of both CE and ME and will challenge the common conceptions held about these. PMID:22000781

  15. Ultrasonic extraction and field-portable anodic stripping voltammetry for the determination of lead in workplace air samples.

    PubMed

    Ashley, K; Mapp, K J; Millson, M

    1998-10-01

    An on-site, field-portable analytical method for the determination of lead in workplace air samples, based on the use of ultrasonic extraction and anodic stripping voltammetry (ASV), was evaluated. Workplace air samples were obtained using a standard method involving particulate collection onto mixed cellulose ester membrane filters. Samples were collected at work sites where airborne particulates were generated from the abrasive blasting of lead-containing paint on highway bridges. Ultrasonic extraction (UE) of air filter samples in diluted nitric acid, followed by portable ASV, was used for the determination of lead. Also, performance evaluation samples consisting of reference materials of known lead concentration were subjected to the UE-ASV procedure for lead determination. Confirmatory analyses of the air filters and performance evaluation samples subjected to the UE-ASV lead measurement method were conducted by hotplate digestion in concentrated nitric acid and 30% hydrogen peroxide, followed by inductively coupled plasma-atomic emission spectrometric (ICP-AES) determination of lead. Recoveries of lead from performance evaluation materials (when using the UE-ASV method) were found to be quantitative. The performance of the UE-ASV method for lead in air filters was found to be acceptable, as evaluated by comparison with results from hotplate strong acid digestion followed by ICP-AES analysis. Based on the results of this study, the ultrasonic extraction/portable ASV procedure demonstrates potential for the on-site determination of lead in personal breathing zone and area air samples. PMID:9794065

  16. Recent advances in the analysis of therapeutic proteins by capillary and microchip electrophoresis

    PubMed Central

    Creamer, Jessica S.; Oborny, Nathan J.; Lunte, Susan M.

    2014-01-01

    The development of therapeutic proteins and peptides is an expensive and time-intensive process. Biologics, which have become a multi-billion dollar industry, are chemically complex products that require constant observation during each stage of development and production. Post-translational modifications along with chemical and physical degradation from oxidation, deamidation, and aggregation, lead to high levels of heterogeneity that affect drug quality and efficacy. The various separation modes of capillary electrophoresis (CE) are commonly utilized to perform quality control and assess protein heterogeneity. This review attempts to highlight the most recent developments and applications of CE separation techniques for the characterization of protein and peptide therapeutics by focusing on papers accepted for publication in the in the two-year period between January 2012 and December 2013. The separation principles and technological advances of CE, capillary gel electrophoresis, capillary isoelectric focusing, capillary electrochromatography and CE-mass spectrometry are discussed, along with exciting new applications of these techniques to relevant pharmaceutical issues. Also included is a small selection of papers on microchip electrophoresis to show the direction this field is moving with regards to the development of inexpensive and portable analysis systems for on-site, high-throughput analysis. PMID:25126117

  17. Field comparison of portable and stationary instruments for outdoor urban air exposure assessments

    NASA Astrophysics Data System (ADS)

    Viana, M.; Rivas, I.; Reche, C.; Fonseca, A. S.; Pérez, N.; Querol, X.; Alastuey, A.; Álvarez-Pedrerol, M.; Sunyer, J.

    2015-12-01

    The performance of three portable monitors (micro-aethalometer AE51, DiscMini, Dusttrak DRX) was assessed for outdoor air exposure assessment in a representative Southern European urban environment. The parameters evaluated were black carbon, particle number concentration, alveolar lung-deposited surface area, mean particle diameter, PM10, PM2.5 and PM1. The performance was tested by comparison with widely used stationary instruments (MAAP, CPC, SMPS, NSAM, GRIMM aerosol spectrometer). Results evidenced a good agreement between most portable and stationary instruments, with R2 values mostly >0.80. Relative differences between portable and stationary instruments were mostly <20%, and <10% between different units of the same instrument. The only exception was found for the Dusttrak DRX measurements, for which occasional concentration jumps in the time series were detected. Our results validate the performance of the black carbon, particle number concentration, particle surface area and mean particle diameter monitors as indicative instruments (tier 2) for outdoor air exposure assessment studies.

  18. Portable raman explosives detection

    SciTech Connect

    Moore, David Steven; Scharff, Robert J

    2008-01-01

    Recent advances in portable Raman instruments have dramatically increased their application to emergency response and forensics, as well as homeland defense. This paper reviews the relevant attributes and disadvantages of portable Raman spectroscopy, both essentially and instrumentally, to the task of explosives detection in the field.

  19. Defense program pushes microchip frontiers

    NASA Astrophysics Data System (ADS)

    Julian, K.

    1985-05-01

    The very-high-speed integrated circuit (VHSIC) program of the Department of Defense will have a significant effect on the expansion of integrated circuit technology. This program, which is to cost several hundred million dollars, is accelerating the trend toward higher-speed, denser circuitry for microchips through innovative design and fabrication techniques. Teams in six different American companies are to design and fabricate a military useful 'brassboard' system which would employ chips developed in the first phase of the VHSIC program. Military objectives envisaged include automatic monitoring of displays in tactical aircraft by means of an artificial intelligence system, a brassboard used in airborne electronic warfare system, and antisubmarine warfare applications. After a fivefold improvement in performance achieved in the first phase, the second phase is concerned with a further 20-fold increase. The entire VHSIC program is, therefore, to produce a 100-fold gain over the state of the art found when the program started.

  20. Sensitization of a stray-field NMR to vibrations: A potential for MR elastometry with a portable NMR sensor

    NASA Astrophysics Data System (ADS)

    Mastikhin, Igor; Barnhill, Marie

    2014-11-01

    An NMR signal from a sample in a constant stray field of a portable NMR sensor is sensitized to vibrations. The CPMG sequence is synchronized to vibrations so that the constant gradient becomes an "effective" square-wave gradient, leading to the vibration-induced phase accumulation. The integrating nature of the spot measurement, combined with the phase distribution due to a non-uniform gradient and/or a wave field, leads to a destructive interference, the drop in the signal intensity and changes in the echo train shape. Vibrations with amplitudes as small as 140 nm were reliably detected with the permanent gradient of 12.4 T/m. The signal intensity depends on the phase offset between the vibrations and the pulse sequence. This approach opens the way for performing elastometry and micro-rheology measurements with portable NMR devices beyond the walls of a laboratory. Even without synchronization, if a vibration frequency is comparable to 1/2TE of the CPMG sequence, the signal can be severely affected, making it important for potential industrial applications of stray-field NMR.

  1. A portable high-field pulsed-magnet system for single-crystal x-ray scattering studies

    SciTech Connect

    Islam, Zahirul; Lang, Jonathan C.; Ruff, Jacob P. C.; Ross, Kathryn A.; Gaulin, Bruce D.; Nojiri, Hiroyuki; Matsuda, Yasuhiro H.; Qu Zhe

    2009-11-15

    We present a portable pulsed-magnet system for x-ray studies of materials in high magnetic fields (up to 30 T). The apparatus consists of a split-pair of minicoils cooled on a closed-cycle cryostat, which is used for x-ray diffraction studies with applied field normal to the scattering plane. A second independent closed-cycle cryostat is used for cooling the sample to near liquid helium temperatures. Pulsed magnetic fields ({approx}1 ms in total duration) are generated by discharging a configurable capacitor bank into the magnet coils. Time-resolved scattering data are collected using a combination of a fast single-photon counting detector, a multichannel scaler, and a high-resolution digital storage oscilloscope. The capabilities of this instrument are used to study a geometrically frustrated system revealing strong magnetostrictive effects in the spin-liquid state.

  2. A portable high-field pulsed-magnet system for single-crystal x-ray scattering studies

    NASA Astrophysics Data System (ADS)

    Islam, Zahirul; Ruff, Jacob P. C.; Nojiri, Hiroyuki; Matsuda, Yasuhiro H.; Ross, Kathryn A.; Gaulin, Bruce D.; Qu, Zhe; Lang, Jonathan C.

    2009-11-01

    We present a portable pulsed-magnet system for x-ray studies of materials in high magnetic fields (up to 30 T). The apparatus consists of a split-pair of minicoils cooled on a closed-cycle cryostat, which is used for x-ray diffraction studies with applied field normal to the scattering plane. A second independent closed-cycle cryostat is used for cooling the sample to near liquid helium temperatures. Pulsed magnetic fields (˜1 ms in total duration) are generated by discharging a configurable capacitor bank into the magnet coils. Time-resolved scattering data are collected using a combination of a fast single-photon counting detector, a multichannel scaler, and a high-resolution digital storage oscilloscope. The capabilities of this instrument are used to study a geometrically frustrated system revealing strong magnetostrictive effects in the spin-liquid state.

  3. A portable high-field pulsed-magnet system for single-crystal x-ray scattering studies.

    PubMed

    Islam, Zahirul; Ruff, Jacob P C; Nojiri, Hiroyuki; Matsuda, Yasuhiro H; Ross, Kathryn A; Gaulin, Bruce D; Qu, Zhe; Lang, Jonathan C

    2009-11-01

    We present a portable pulsed-magnet system for x-ray studies of materials in high magnetic fields (up to 30 T). The apparatus consists of a split-pair of minicoils cooled on a closed-cycle cryostat, which is used for x-ray diffraction studies with applied field normal to the scattering plane. A second independent closed-cycle cryostat is used for cooling the sample to near liquid helium temperatures. Pulsed magnetic fields (approximately 1 ms in total duration) are generated by discharging a configurable capacitor bank into the magnet coils. Time-resolved scattering data are collected using a combination of a fast single-photon counting detector, a multichannel scaler, and a high-resolution digital storage oscilloscope. The capabilities of this instrument are used to study a geometrically frustrated system revealing strong magnetostrictive effects in the spin-liquid state. PMID:19947737

  4. Field evaluation of a prototype man-portable GC/MS

    SciTech Connect

    Arnold, N.S.; Hall, D.L.; Du, W.H.; Sheya, S.A.; Mihamou, H.; Dworzanski, J.; McClennen, W.H.; Meuzelaar, H.L.C.

    1995-12-31

    In recent years, a man-portable gas chromatography/mass spectrometry (GC/MS) system has been developed based on a Hewlett Packard 5971 MSD and a unique automated vapor sampling (AVS) transfer-line (TL) GC system for direct sampling of ambient chemical vapors. The vacuum system and power supplies were replaced to facilitate operation on 24 Vdc batteries for up to 4 hours after startup on a transportable docking station. The gas chromatography was performed on a short (2 m) capillary column under isothermal conditions in a small oven to minimize power usage. Repetitive samples were taken at 10 to 60 s intervals using an automated vapor sampling inlet. In initial testing, the prototype system has been used for monitoring of gasoline vapors. Ambient levels of 6.0 ppm benzene, 4.1 ppm toluene, 0.22 ppm ethylbenzene, 1.1 ppm m- and p-xylene and 0.25 ppm o-xylene were measured near a busy gas station. The gradient mapping or source tracking capabilities of the backpack mounted system have also been demonstrated in tests with a simulated gasoline leak. This paper will describe recent work to further evaluate the capabilities and limitations of the prototype system. Results will be described in terms of the practical utility of portable GC/MS for identification and quantitation of unknown vapors.

  5. Large-scale simulation of flow and transport in reconstructed HPLC-microchip packings.

    PubMed

    Khirevich, Siarhei; Höltzel, Alexandra; Ehlert, Steffen; Seidel-Morgenstern, Andreas; Tallarek, Ulrich

    2009-06-15

    Flow and transport in a particle-packed microchip separation channel were investigated with quantitative numerical analysis methods, comprising the generation of confined, polydisperse sphere packings by a modified Jodrey-Tory algorithm, 3D velocity field calculations by the lattice-Boltzmann method, and modeling of convective-diffusive mass transport with a random-walk particle-tracking approach. For the simulations, the exact conduit cross section, the particle-size distribution of the packing material, and the respective average interparticle porosity (packing density) of the HPLC-microchip packings was reconstructed. Large-scale simulation of flow and transport at Peclet numbers of up to Pe = 140 in the reconstructed microchip packings (containing more than 3 x 10(5) spheres) was facilitated by the efficient use of supercomputer power. Porosity distributions and fluid flow velocity profiles for the reconstructed microchip packings are presented and analyzed. Aberrations from regular geometrical conduit shape are shown to influence packing structure and, thus, porosity and velocity distributions. Simulated axial dispersion coefficients are discussed with respect to their dependence on flow velocity and bed porosity. It is shown by comparison to experimental separation efficiencies that the simulated data genuinely reflect the general dispersion behavior of the real-life HPLC-microchip packings. Differences between experiment and simulation are explained by differing morphologies of real and simulated packings (intraparticle porosity, packing structure in the corner regions). PMID:19459621

  6. Final Report on Portable Laser Coating Removal Systems Field Demonstrations and Testing

    NASA Technical Reports Server (NTRS)

    Rothgeb, Matthew J.; McLaughlin, Russell L.

    2008-01-01

    Processes currently used throughout the National Aeronautics and Space Administration (NASA) to remove corrosion and coatings from structures, ground service equipment and small components results in waste streams consisting of toxic chemicals, spent media blast materials, and waste water. When chemicals are used in these processes they are typically high in volatile organic compounds (VOC) and are considered hazardous air pollutants (HAP). When blast media is used, the volume of hazardous waste generated is increased significantly. Many of the coatings historically used within NASA contain toxic metals such as hexavalent chromium, and lead. These materials are highly regulated and restrictions on worker exposure continue to increase. Most recently the EPA reduced the permissible exposure limit (PEL) for hexavalent chromium. The new standard lowers OSHA's PEL for hexavalent chromium from 52 to 5 micrograms of Cr(V1) per cubic meter of air as an 8-hour time-weighted average. Hexavalent chromium is found in the pretreatment and primer coatings used within the Shuttle Program. In response to the need to continue to protect assets within the agency and the growing concern over these new regulations, NASA is researching different ways to continue the required maintenance of both facility and flight equipment in a safe, efficient and environmentally preferable manner. The use of laser energy to remove prepare surfaces for a variety of processes, such as corrosion and coating removal, weld preparation and non destructive evaluation is a relatively new technology that has shown itself to be environmentally preferable and in many cases less labor intensive than currently used removal methods. The development of a Portable Laser Coating Removal System (PLCRS) started as the goal of a Joint Group on Pollution Prevention (JG-PP) project, led by the Air Force, where several types of lasers in several configurations were thoroughly evaluated. Following this project, NASA decided

  7. Portable fuel cell systems for America's army: technology transition to the field

    NASA Astrophysics Data System (ADS)

    Patil, Ashok S.; Dubois, Terry G.; Sifer, Nicholas; Bostic, Elizabeth; Gardner, Kristopher; Quah, Michael; Bolton, Christopher

    The US Army Communications, Electronics Research Development and Engineering Center (CERDEC) envisions three thrust areas for portable fuel cell systems for military applications. These areas include soldier power (<500 W), sensor power (0-100 W), and auxiliary power units or APUs (0.5-10 kW). Soldier and sensor fuel cell systems may be man-portable/backpackable while APUs could be employed as squad battery chargers or as 'Silent Watch' APUs where low signature (acoustic, thermal, etc.) operation is a requirement. The Army's research and development efforts are focusing on methods of either storing or generating hydrogen on the battlefield. Hydrogen storage technology is considered critical to small military and/or commercial fuel cell systems, and is being pursued in a host of commercial and government programs. CERDEC, in a joint effort with the Army Research Office (ARO) and the Defense Advanced Research Projects Agency (DARPA), is developing several promising hydrogen generating technologies. The goal of this program is a safe, reliable hydrogen source that can provide rates up to 100 W with an energy density of greater than 1000 Wh/kg. For larger fuel cell units (>500 W), it is imperative that the fuel cell power units be able to operate on fuels within the military logistics chain [DOD 4140.25-M, DOD Directive 4140.25 (1993)]. CERDEC is currently conducting research on catalysts and microchannel fuel reformers that offer great promise for the reforming of diesel and JP-8 fuels into hydrogen. In addition to research work on PEM fuel cells and enabling technologies, the Army is also conducting research on direct methanol and solid oxide fuel cells, and combined heat and power applications utilizing new high temperature fuel cells.

  8. A review of microdialysis coupled to microchip electrophoresis for monitoring biological events

    PubMed Central

    Saylor, Rachel A.; Lunte, Susan M.

    2015-01-01

    Microdialysis is a powerful sampling technique that enables monitoring of dynamic processes in vitro and in vivo. The combination of microdialysis with chromatographic or electrophoretic methods yields along with selective detection methods yields a “separation-based sensor” capable of monitoring multiple analytes in near real time. Analysis of microdialysis samples requires techniques that are fast (<1 min), have low volume requirements (nL–pL), and, ideally, can be employed on-line. Microchip electrophoresis fulfills these requirements and also permits the possibility of integrating sample preparation and manipulation with detection strategies directly on-chip. Microdialysis coupled to microchip electrophoresis has been employed for monitoring biological events in vivo and in vitro. This review discusses technical considerations for coupling microdialysis sampling and microchip electrophoresis, including various interface designs, and current applications in the field. PMID:25637011

  9. High-sensitivity capillary and microchip electrophoresis using electrokinetic supercharging.

    PubMed

    Dawod, Mohamed; Chung, Doo Soo

    2011-10-01

    Electrokinetic supercharging (EKS) is considered as one of the most powerful online preconcentration techniques in electrophoresis. It combines the efficient preconcentration power of field-amplified sample injection and the exceptional selective nature of transient isotachophoresis. It has a wide range of applications to different types of analytes ranging from small ions to large proteins and DNA fragments. This comprehensive review--up to date--provides listing for all the works, developments, and advances in EKS. The review will pay particular attention to innovations, new methodologies for manipulation, challenges for improving the detection sensitivity, and various applications of EKS in capillaries and microchips. PMID:21793208

  10. Small field of view, high-resolution, portable γ-camera for axillary sentinel node detection

    NASA Astrophysics Data System (ADS)

    Soluri, A.; Massari, R.; Trotta, C.; Tofani, A.; Di Santo, G.; Di Pietro, B.; Di Paolo, M. L.; Roncacci, A.; Amanti, C.; Scopinaro, F.

    2006-12-01

    Sentinel node (SN) biopsy is an established method for breast cancer staging. Many authors suggested lymphoscintigraphy (LS) in order to indicate the sentinel node; others adopted the vital dye method together with radiocolloids, but only with γ-probe detection during operation without preliminary Anger camera LS. The second method is more simple and fast when compared with LS plus radioguided surgery. The Imaging Probe (IP) is a portable, hand held, high-resolution mini γ-camera studied by our group since 1998. Initial studies on sentinel node biopsy were carried out by us with IP on small series of patients to validate and to demonstrate the effectiveness and usefulness of IP against conventional probes. The aim of the present study is to show that surgeon removes the mammary sentinel node quicker and safer when using IP and conventional γ-probe together than conventional probe only. The results of our study not only show that our device makes quicker and safer SN biopsy, but also that the number of detected nodes is larger with our method than with conventional diagnostic and surgical techniques.

  11. Improving chip-to-chip precision in disposable microchip capillary electrophoresis devices with internal standards.

    PubMed

    Bidulock, Allison C E; van den Berg, Albert; Eijkel, Jan C T

    2015-03-01

    To realize portable systems for routine measurements in point-of-care settings, MCE methods are required to be robust across many single-use chips. While it is well-known internal standards (ISTDs) improve run-to-run precision, a systematic investigation is necessary to determine the significance of chip-to-chip imprecision in MCE and how ISTDs account for it. This paper addresses this question by exploring the reproducibility of Na quantification across six basic, in-house fabricated microchips. A dataset of 900 electrophoerograms was collected from analyzing five concentrations of NaCl with two ISTDs (CsCl and LiCl). While both improved the peak area reproducibility, the Na/Cs ratio was superior to the Na/Li ratio (improving the RSD by a factor of 2-4, depending on the Na concentration). We attribute this to the significant variation in microchannel surface properties, which was accounted for by cesium but not lithium. Microchip dimension and detector variations were only a few percent, and could be improved through commercial fabrication over in-house made microchips. These results demonstrate that ISTDs not only correct for intrachip imprecision, but are also a viable means to correct for chip-to-chip imprecision inherent in disposable, point-of-care MCE devices. However, as expected, the internal standard must be carefully chosen. PMID:25522336

  12. Courseware Portability.

    ERIC Educational Resources Information Center

    Fletcher, J. D.

    Portability enables interactive courseware (ICW) and associated application programs to operate on computer-based systems other than the ones on which they are developed. Courseware portability will increase sharing of ICW across a range of instructional settings within military services and across internationally allied military services. The…

  13. Field evaluation of portable and central site PM samplers emphasizing additive and differential mass concentration estimates

    NASA Astrophysics Data System (ADS)

    Chen, Fu-Lin; Vanderpool, Robert; Williams, Ronald; Dimmick, Fred; Grover, Brett D.; Long, Russell; Murdoch, Robert

    2011-08-01

    The US Environmental Protection Agency (EPA) published a National Ambient Air Quality Standard (NAAQS) and the accompanying Federal Reference Method (FRM) for PM 10 in 1987. The EPA revised the particle standards and FRM in 1997 to include PM 2.5. In 2005, EPA proposed revisions to this NAAQS to include PM 10-2.5 but only finalized revisions with a PM 2.5 FRM and the development of a national monitoring network in 2006. Presently, no EPA designated reference or equivalent method sampler has the ability to directly measure the mass concentrations of PM 10, PM 10-2.5, and PM 2.5 simultaneously. An additive approach has been used for samplers like the dichotomous monitors to calculate PM 10 mass concentrations from independent measures of PM 10-2.5 and PM 2.5 (i.e. PM 10 = PM 10-2.5 + PM 2.5). A differential approach has been used to calculate PM 10-2.5 from identical collocated PM 10 and PM 2.5 samplers (i.e. PM 10-2.5 = PM 10-PM 2.5). Since these two approaches have been used widely for PM measurements, it is informative to evaluate their precision and comparability. EPA performed collocated tests of five different particle samplers in the Research Triangle Park area of North Carolina to evaluate the comparability and to characterize the additive and differential approaches used to determine particle mass concentrations. The intra-sampler precision of MiniVol, Omni, and dichotomous samplers was less than 8.4%. The precision of PM 10 measurements using the additive approach with dichotomous samplers was less than 3.5%. The poorest precision of the various PM 10-2.5 differential approaches was less than 15.1%. No zero or negative PM 10-2.5 concentrations were calculated using the differential approach. A coefficient of determination of 0.81 or higher was obtained for all paired comparison of PM 10-2.5. The reported test results show that concentrations calculated from both the additive and differential approaches generally agree among the portable samplers, the more

  14. Final Report on NASA Portable Laser Coating Removal Systems Field Demonstrations and Testing

    NASA Technical Reports Server (NTRS)

    Rothgeb, Matthew J; McLaughlin, Russell L.

    2008-01-01

    Portable Laser Coating Removal System (PLCRS) started as the goal of a Joint Group on Pollution Prevention (JG-PP) project, led by the Air Force, where several types of lasers in several configurations were thoroughly evaluated. Following this project, NASA decided to evaluate the best performers on processes and coatings specific to the agency. Laser systems used during this project were all of a similar design, between 40 and 500 Watts, most of which had integrated vacuum systems in order to collect materials removed from substrate surfaces during operation.

  15. Preliminary Results from the Portable Imagery Quality Assessment Test Field (PIQuAT) of Uav Imagery for Imagery Reconnaissance Purposes

    NASA Astrophysics Data System (ADS)

    Dabrowski, R.; Orych, A.; Jenerowicz, A.; Walczykowski, P.

    2015-08-01

    The article presents a set of initial results of a quality assessment study of 2 different types of sensors mounted on an unmanned aerial vehicle, carried out over an especially designed and constructed test field. The PIQuAT (Portable Imagery Quality Assessment Test Field) field had been designed especially for the purposes of determining the quality parameters of UAV sensors, especially in terms of the spatial, spectral and radiometric resolutions and chosen geometric aspects. The sensor used include a multispectral framing camera and a high-resolution RGB sensor. The flights were conducted from a number of altitudes ranging from 10 m to 200 m above the test field. Acquiring data at a number of different altitudes allowed the authors to evaluate the obtained results and check for possible linearity of the calculated quality assessment parameters. The radiometric properties of the sensors were evaluated from images of the grayscale target section of the PIQuAT field. The spectral resolution of the imagery was determined based on a number of test samples with known spectral reflectance curves. These reference spectral reflectance curves were then compared with spectral reflectance coefficients at the wavelengths registered by the miniMCA camera. Before conducting all of these experiments in field conditions, the interior orientation parameters were calculated for the MiniMCA and RGB sensor in laboratory conditions. These parameters include: the actual pixel size on the detector, distortion parameters, calibrated focal length (CFL) and the coordinates of the principal point of autocollimation (miniMCA - for each of the six channels separately.

  16. On-Campus Projects: Inventing a Microchip.

    ERIC Educational Resources Information Center

    Basta, Nicholas

    1985-01-01

    In response to growth of microelectronics and changes in microchip design/manufacturing technology, universities are supporting class projects for students. Approximately 50 schools now conduct such programs which have resulted from earlier National Science Foundation sponsorship. Major advantages for the students include designing experience,…

  17. FIELD SCREENING OF POLYCYCLIC HYDROCARBON CONTAMINATION IN SOIL USING A PORTABLE SYNCHRONOUS SCANNING SPECTROFLUOROMETER

    EPA Science Inventory

    Polycyclic aromatic hydrocarbon (PAH) contamination is a considerable problem at various hazardous waste sites. sources of PAH contamination include: incomplete combustion processes, wood preservatives, and the fuel industry. he development of rapid, cost-effective field screenin...

  18. Fast screening of rice knockout mutants by multi-channel microchip electrophoresis.

    PubMed

    Nan, He; Lee, Sang-Won; Kang, Seong Ho

    2012-08-15

    A multi-channel microchip electrophoresis (MC-ME) system with a laser-induced fluorescence detector was developed for the fast simultaneous detection of rice knockout mutants in genetically modified (GM) rice. In addition, three parallel separation channels were fabricated on a glass microchip to investigate the possibility of high-throughput screening of amplified-polymerase chain reaction products representing wild-type rice and mutants. The MC-ME system was developed to simultaneously record data on all channels using specifically designed electrodes for an even distribution of electric fields, an expanded laser beam for excitation, a 10× objective lens to capture emissions, and a charge coupled device camera for detection. Under a programmed electric field strength and a sieving gel matrix of 0.7% poly(ethylene oxide) (M(r)=8,000,000), T-DNA-inserted rice mutants, two standard wild-type rice lines, and six rice knockout mutants were analyzed within 4 min using three parallel channels on the microchip. Compared to conventional microchip electrophoresis, the MC-ME method is a valid and practical way to effectively analyze multiple samples in parallel for the identification of GM rice without any loss of resolving power or reproducibility. The MC-ME method was more than 15 times faster than traditional slab gel electrophoresis and proved to be a powerful tool for high-throughput screening of GM rice with high sensitivity, efficiency, and reproducibility. PMID:22841075

  19. A laboratory and field evaluation of a portable immunoassay test for triazine herbicides in environmental water samples

    USGS Publications Warehouse

    Schulze, P.A.; Capel, P.D.; Squillace, P.J.; Helsel, D.R.

    1993-01-01

    The usefulness and sensitivity, of a portable immunoassay test for the semiquantitative field screening of water samples was evaluated by means of laboratory and field studies. Laboratory results indicated that the tests were useful for the determination of atrazine concentrations of 0.1 to 1.5 μg/L. At a concentration of 1 μg/L, the relative standard deviation in the difference between the regression line and the actual result was about 40 percent. The immunoassay was less sensitive and produced similar errors for other triazine herbicides. After standardization, the test results were relatively insensitive to ionic content and variations in pH (range, 4 to 10), mildly sensitive to temperature changes, and quite sensitive to the timing of the final incubation step, variances in timing can be a significant source of error. Almost all of the immunoassays predicted a higher atrazine concentration in water samples when compared to results of gas chromatography. If these tests are used as a semiquantitative screening tool, this tendency for overprediction does not diminish the tests' usefulness. Generally, the tests seem to be a valuable method for screening water samples for triazine herbicides.

  20. Rapid and nondestructive measurement of labile Mn, Cu, Zn, Pb and As in DGT by using field portable-XRF.

    PubMed

    Chen, Zheng; Williams, Paul N; Zhang, Hao

    2013-09-01

    The technique of diffusive gradients in thin films (DGT) is often employed to quantify labile metals in situ; however, it is a challenge to perform the measurements in-field. This study evaluated the capability of field-portable X-ray fluorescence (FP-XRF) to swiftly generate elemental speciation information with DGT. Biologically available metal ions in environmental samples passively preconcentrate in the thin films of DGT devices, providing an ideal and uniform matrix for XRF nondestructive detection. Strong correlation coefficients (r > 0.992 for Mn, Cu, Zn, Pb and As) were obtained for all elements during calibration. The limits of quantitation (LOQ) for the investigated elements of FP-XRF on DGT devices are 2.74 for Mn, 4.89 for Cu, 2.89 for Zn, 2.55 for Pb, and 0.48 for As (unit: μg cm(-2)). When Pb and As co-existed in the solution trials, As did not interfere with Pb detection when using Chelex-DGT. However, there was a significant enhancement of the Pb reading attributed to As when ferrihydrite binding gels were tested, consistent with Fe-oxyhydroxide surfaces absorbing large quantities of As. This study demonstrates the value of the FP-XRF technique to rapidly and nondestructively detect the metals accumulated in DGT devices, providing a new and simple diagnostic tool for on-site environmental monitoring of labile metals/metalloids. PMID:23912422

  1. Detection of hexavalent uranium with inline and field-portable immunosensors

    SciTech Connect

    Melton, Scott J.; Yu, Haini; Ali, Mehnaaz F.; Williams, Kenneth H; Wilkins, Michael J.; Long, Philip E.; Blake, Diane A.

    2008-10-02

    An antibody that recognizes a chelated form of hexavalent uranium was used in the development of two different immunosensors for uranium detection. Specifically, these sensors were utilized for the analysis of groundwater samples collected during a 2007 field study of in situ bioremediation in a aquifer located at Rifle, CO. The antibody-based sensors provided data comparable to that obtained using Kinetic Phosphorescence Analysis (KPA). Thus, these novel instruments and associated reagents should provide field researchers and resource managers with valuable new tools for on-site data acquisition.

  2. A simple, accurate, field-portable mixing ratio generator and Rayleigh distillation device

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Routine field calibration of water vapor analyzers has always been a challenging problem for those making long-term flux measurements at remote sites. Automated sampling of standard gases from compressed tanks, the method of choice for CO2 calibration, cannot be used for H2O. Calibrations are typica...

  3. Field-testing a portable wind tunnel for fine dust emissions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A protable wind tunnel has been developed to allow erodibility and dust emissions testing of soil surfaces with the premise that dust concentration and properties are highly correlated with surface soil properties, as modified by crop management system. In this study we report on the field-testing ...

  4. Field portable detection of VOCs using a SAW/GC system

    SciTech Connect

    Staples, E.J.

    1995-10-01

    This paper describes research on a fast gas chromatography (GC) vapor analysis system which uses a new type of Surface Acoustic Wave detector technology to characterize organic contamination in soil and groundwater. The project was sponsored by the Department of Energy, Morgantown Energy Technology Center. The instrument was field tested at the Savannah River Plant.

  5. DETECTION AND IDENTIFICATION OF TOXIC AIR POLLUTANTS USING FIELD PORTABLE AND AIRBORNE REMOTE IMAGING SYSTEMS

    EPA Science Inventory

    Remote sensing technologies are a class of instrument and sensor systems that include laser imageries, imaging spectrometers, and visible to thermal infrared cameras. These systems have been successfully used for gas phase chemical compound identification in a variety of field e...

  6. Portable Planetarium.

    ERIC Educational Resources Information Center

    Stockdale, Dennis L.

    1997-01-01

    Describes a method that students can use to build portable planetariums. After building the models, students are familiar with the names of constellations and major stars and are able to share their projects with other students. (DDR)

  7. Integration of cell phone imaging with microchip ELISA to detect ovarian cancer HE4 biomarker in urine at the point-of-care.

    PubMed

    Wang, Shuqi; Zhao, Xiaohu; Khimji, Imran; Akbas, Ragip; Qiu, Weiliang; Edwards, Dale; Cramer, Daniel W; Ye, Bin; Demirci, Utkan

    2011-10-21

    Ovarian cancer is asymptomatic in the early stages and most patients present with advanced levels of disease. The lack of cost-effective methods that can achieve frequent, simple and non-invasive testing hinders early detection and causes high mortality in ovarian cancer patients. Here, we report a simple and inexpensive microchip ELISA-based detection module that employs a portable detection system, i.e., a cell phone/charge-coupled device (CCD) to quantify an ovarian cancer biomarker, HE4, in urine. Integration of a mobile application with a cell phone enabled immediate processing of microchip ELISA results, which eliminated the need for a bulky, expensive spectrophotometer. The HE4 level detected by a cell phone or a lensless CCD system was significantly elevated in urine samples from cancer patients (n = 19) than healthy controls (n = 20) (p < 0.001). Receiver operating characteristic (ROC) analyses showed that the microchip ELISA coupled with a cell phone running an automated analysis mobile application had a sensitivity of 89.5% at a specificity of 90%. Under the same specificity, the microchip ELISA coupled with a CCD had a sensitivity of 84.2%. In conclusion, integration of microchip ELISA with cell phone/CCD-based colorimetric measurement technology can be used to detect HE4 biomarker at the point-of-care (POC), paving the way to create bedside technologies for diagnostics and treatment monitoring. PMID:21881677

  8. Advances in Automation and Throughput of the Mars Organic Analyzer Microchip Capillary Electrophoresis System

    NASA Astrophysics Data System (ADS)

    Haldeman, B. J.; Skelley, A. M.; Scherer, J. R.; Jayarajah, C.; Mathies, R. A.

    2005-12-01

    We have previously demonstrated the design, construction and testing of a portable microchip capillary electrophoresis (CE) instrument called the Mars Organic Analyzer (MOA) for analysis of amino acids and amine containing organic molecules (1). This instrument is designed to accept organic compounds isolated from samples by sublimation or by subcritical water extraction, to label the amine groups with fluorescamine, and to perform high resolution electrophoretic analysis. The CE instrument has shown remarkable robustness during successful field tests last year in the Panoche Valley, CA (1) and more recently in the Atacama Desert, Chile (2). For successful operation on Mars, however, it is necessary to operate autonomously and to analyze large numbers of samples, blanks, and standards. Toward this end we present here two advances in the MOA system that test key aspects of an eventual flight prototype. First, we have developed an automated microfluidic system and method for the autonomous loading, running and cleaning of the CE chip on the single channel MOA instrument. The integration of microfabricated PDMS valves and pumps with all-glass separation channels in a multilayer design enabled creation of structures for complex fluidic routing. Twenty sequential analyses of an amino acid standard were performed with an automated cleaning procedure between runs. In addition, dilutions were performed on-chip, and blanks were run to demonstrate the elimination of carry-over from run to run. These results demonstrate an important advance of the technology readiness level of the MOA. Second, we have designed, constructed and successfully tested a lab version of the multichannel instrument we initially proposed for the MSL opportunity. The portable Multi-Channel Mars Organic Analyzer (McMOA, 25 by 30 by 15 cm), was designed to sequentially interrogate eight radially oriented CE separation channels on a single wafer. Since each channel can be used to analyze 20 or more

  9. Technical design issues for a field-portable supercritical fluid extractor

    SciTech Connect

    Wright, B.W.; Zemanian, T.S.; Robins, W.H.; Wright, C.W.

    1995-01-01

    Supercritical fluid extraction is gaining acceptance as an alternative sample preparation method for trace organic analysis. The development of SFE instrumentation optimized for field use requires taking several technical design issues including size and weight requirements, user-friendly operation, and technical performance capabilities into consideration. Parameters associated with a prototype SFE instrument under development for potential use in conducting on-site inspections of the Chemical Weapons Convention and its preliminary technical and operational performance are described.

  10. Explosives detection in soil using a field-portable continuous flow immunosensor.

    PubMed

    Gauger, P R; Holt, D B; Patterson, C H; Charles, P T; Shriver-Lake, L; Kusterbeck, A W

    2001-05-01

    A field method for quantitative analysis of explosives in contaminated soil samples is described. The method is based on a displacement immunoassay performed in a commercial instrument, the FAST 2000, engineered by Research International Inc. The method can be used on-site to measure 2,4,6-trinitrotoluene (TNT) and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) within 5min. For this study, replicate analyses were performed on soil extracts prepared from each field sample as well as appropriate controls, blanks, and laboratory standards. Statistical analyses were done to assess accuracy, bias, and predictability of the method. The results demonstrated that the immunosensor could be used effectively to screen environmental samples for the presence or absence of explosives. In most samples, the method also provided quantitative values that were in good agreement with standard laboratory analyses using HPLC. A limited number of sample matrices interfered with the immunoassay and produced results that varied significantly from the laboratory data. In each case, the compounds causing the problem have been identified and efforts are being made to minimize these matrix interferences in future field evaluations. PMID:11267745

  11. Elastomeric Microchip Electrospray Emitter for Stable Cone-Jet Mode Operation in the Nanoflow Regime.

    SciTech Connect

    Kelly, Ryan T.; Tang, Keqi; Irimia, Daniel; Toner, Mehmet; Smith, Richard D.

    2008-05-15

    Despite widespread interest in applying lab-on-a-chip technologies to mass spectrometry (MS)-based analyses, the coupling of microfluidics to electrospray ionization (ESI)-MS remains challenging. We report a robust, integrated poly(dimethylsiloxane) microchip interface for ESI-MS using simple and widely accessible microfabrication procedures. The interface uses an auxiliary channel to provide electrical contact in the Taylor cone of the electrospray without sample loss or dilution. The electric field at the channel terminus is enhanced by two vertical cuts that cause the interface to taper to a line rather than to a point, and the formation of small Taylor cones at the channel exit ensures sub-nL post-column dead volumes. While comparable ESI-MS sensitivities were achieved using both microchip and conventional fused silica capillary emitters, stable cone-jet mode electrospray could be established over a far broader range of flow rates (from 50–1000 nL/min) and applied potentials using the microchip emitters. This special feature of the microchip emitter should minimize the fine tuning required for electrospray optimization and make the stable electrospray more resistant to external perturbations.

  12. Implementation of microchip electrophoresis instrumentation for future spaceflight missions.

    PubMed

    Willis, Peter A; Creamer, Jessica S; Mora, Maria F

    2015-09-01

    We present a comprehensive discussion of the role that microchip electrophoresis (ME) instrumentation could play in future NASA missions of exploration, as well as the current barriers that must be overcome to make this type of chemical investigation possible. We describe how ME would be able to fill fundamental gaps in our knowledge of the potential for past, present, or future life beyond Earth. Despite the great promise of ME for ultrasensitive portable chemical analysis, to date, it has never been used on a robotic mission of exploration to another world. We provide a current snapshot of the technology readiness level (TRL) of ME instrumentation, where the TRL is the NASA systems engineering metric used to evaluate the maturity of technology, and its fitness for implementation on missions. We explain how the NASA flight implementation process would apply specifically to ME instrumentation, and outline the scientific and technology development issues that must be addressed for ME analyses to be performed successfully on another world. We also outline research demonstrations that could be accomplished by independent researchers to help advance the TRL of ME instrumentation for future exploration missions. The overall approach described here for system development could be readily applied to a wide range of other instrumentation development efforts having broad societal and commercial impact. PMID:26253225

  13. Portable light-emitting diode-based photometer with one-shot optochemical sensors for measurement in the field

    NASA Astrophysics Data System (ADS)

    Palma, A. J.; Ortigosa, J. M.; Lapresta-Fernández, A.; Fernández-Ramos, M. D.; Carvajal, M. A.; Capitán-Vallvey, L. F.

    2008-10-01

    This report describes the electronics of a portable, low-cost, light-emitting diode (LED)-based photometer dedicated to one-shot optochemical sensors. Optical detection is made through a monolithic photodiode with an on-chip single-supply transimpedance amplifier that reduces some drawbacks such as leakage currents, interferences, and parasitic capacitances. The main instrument characteristics are its high light source stability and thermal correction. The former is obtained by means of the optical feedback from the LED polarization circuit, implementing a pseudo-two light beam scheme from a unique light source with a built-in beam splitter. The feedback loop has also been used to adjust the LED power in several ranges. Moreover, the low-thermal coefficient achieved (-90 ppm/°C) is compensated by thermal monitoring and calibration function compensation in the digital processing. The hand-held instrument directly gives the absorbance ratio used as the analytical parameter and the analyte concentration after programming the calibration function in the microcontroller. The application of this photometer for the determination of potassium and nitrate, using one-shot sensors with ionophore-based chemistries is also demonstrated, with a simple analytical methodology that shortens the analysis time, eliminating some calibrating solutions (HCl, NaOH, and buffer). Therefore, this compact instrument is suitable for real-time analyte determination and operation in the field.

  14. Metals in boat paint fragments from slipways, repair facilities and abandoned vessels: an evaluation using field portable XRF.

    PubMed

    Turner, Andrew; Comber, Sean; Rees, Aldous B; Gkiokas, Dimitrios; Solman, Kevin

    2015-01-01

    Paint flaking off abandoned vessels or generated during boat repair is hazardous to human health and wildlife. In this study, a means of screening paint fragments using a field portable-X-ray fluorescence (FP-XRF) spectrometer is described. The technique is capable of delivering rapid, surficial measurements of Ba, Cu, Pb and Zn down to concentrations less than 150 μg g(-1), and Sn and Cr to concentrations of a few hundred μg g(-1). Application of the technique to fragments collected from slipways, yards, hardstandings, abandoned boats and ships undergoing maintenance throughout the EU reveal highly variable concentrations of metals among samples from the same environment or from the same region of a given boat; in many cases, variability is also evident in different areas or on different surfaces of the same fragment. Of particular concern are elevated concentrations of substances that have been restricted or banned (e.g. Sn, an indicator of organotin, and up to concentrations of 40,000 μg g(-1), and Pb up to concentrations of 200,000 μg g(-1)). Although FP-XRF can rapidly screen samples whose composition and origin are unknown and can assist in instantaneous decision making, a full risk assessment will rely on additional analyses of the precise species (including organo-forms) of the metals present. PMID:25281117

  15. Intraoperative Scintigraphy Using a Large Field-of-View Portable Gamma Camera for Primary Hyperparathyroidism: Initial Experience

    PubMed Central

    Hall, Nathan C.; Plews, Robert L.; Agrawal, Amit; Povoski, Stephen P.; Wright, Chadwick L.; Zhang, Jun; Martin, Edward W.; Phay, John

    2015-01-01

    Background. We investigated a novel technique, intraoperative 99 mTc-Sestamibi (MIBI) imaging (neck and excised specimen (ES)), using a large field-of-view portable gamma camera (LFOVGC), for expediting confirmation of MIBI-avid parathyroid adenoma removal. Methods. Twenty patients with MIBI-avid parathyroid adenomas were preoperatively administered MIBI and intraoperatively imaged prior to incision (neck) and immediately following resection (neck and/or ES). Preoperative and intraoperative serum parathyroid hormone monitoring (IOPTH) and pathology (path) were also performed. Results. MIBI neck activity was absent and specimen activity was present in 13/20 with imaging after initial ES removal. In the remaining 7/20 cases, residual neck activity and/or absent ES activity prompted excision of additional tissue, ultimately leading to complete hyperfunctioning tissue excision. Postexcision LFOVGC ES imaging confirmed parathyroid adenoma resection 100% when postresection imaging qualitatively had activity (ES) and/or no activity (neck). The mean ± SEM time saving using intraoperative LFOVGC data to confirm resection versus first IOPTH or path result would have been 22.0 ± 2 minutes (specimen imaging) and 26.0 ± 3 minutes (neck imaging). Conclusion. Utilization of a novel real-time intraoperative LFOVGC imaging approach can provide confirmation of MIBI-avid parathyroid adenoma removal appreciably faster than IOPTH and/or path and may provide a valuable adjunct to parathyroid surgery. PMID:25629056

  16. Field-Portable Immunoassay Instruments and Reagents to Measure Chelators and Mobile Forms of Uranium

    SciTech Connect

    Blake, Diane A.

    2003-06-01

    The goals for the 3-year project period are (1) to test and validate the present uranium sensor and develop protocols for its use at the NABIR Field Research Center; (2) to develop new reagents that will provide superior performance for the present hand-held immunosensor; and (3) to develop new antibodies that will permit this sensor to also measure other environmental contaminants (chromium, mercury, and/or DTPA). Sensor design modifications are underway via international collaborations. New reagents that will provide superior performance for the present hand-held immunosensor are being prepared and tested. New methods have been developed, to produce recombinant forms of metal-specific monoclonal antibodies for use with the sensor. Site-directed mutagenesis experiments are underway to determine the mechanisms of binding. Immunization experiments with sheep and rabbits to develop new recombinant forms of antibodies to metal-chelate complexes (chromium, mercury, and/or DTPA) have been initiated.

  17. A new method of marking dentures using microchips.

    PubMed

    Rajan, M; Julian, R

    2002-06-01

    Over the years various methods of denture marking have been reported in the literature. They include surface marking and inclusion techniques using metallic or non-metallic materials, microchips and microlabels. The microchips are preferred because of their small size and aesthetic acceptability. They are not however widely used due to the high cost of manufacture and data incorporation. This article details the procedures involved in inscribing a microchip using the photochemical etching process used in the electronics industry. The resulting microchip was cosmetically appealing, cost effective and was able to satisfy all the forensic requirements for a suitable denture marker. PMID:12085521

  18. Remote Sensing of Aircraft Contrails Using a Field Portable Digital Array Scanned Interferometer

    NASA Technical Reports Server (NTRS)

    Smith, William Hayden

    1997-01-01

    With a Digital Array Scanned Interferometer (DASI), we have obtained proof-of-concept observations with which we demonstrate DASI capabilities for the determination of contrail properties. These include the measurement of the cloud and soot microphysical parameters, as well, the abundances of specific pollutant species such as SO(sub x) or NO(sub x). From high quality hyperspectral data and using radiative transfer methods and atmospheric chemistry analysis in the data reduction and interpretation, powerful inferences concerning cloud formation, evolution and dissipation can be made. Under this sub-topic, we will integrate DASI with computer controlled scanning of the field-of-view to direct the sensor towards contrails and exhaust plumes for tracking the emitting vehicles. The optimum DASI wavelength sensitivity range for sensing contrails is 0.35 - 2.5 micron. DASI deploys on the ground or from aircraft to observe contrails in the vicinity. This enables rapid, accurate measurement of the temporal, spatial, and chemical evolution of contrails (or other plumes or exhaust sources) with a low cost, efficient sensor.

  19. ARCHAEO-SCAN: Portable 3D shape measurement system for archaeological field work

    NASA Astrophysics Data System (ADS)

    Knopf, George K.; Nelson, Andrew J.

    2004-10-01

    Accurate measurement and thorough documentation of excavated artifacts are the essential tasks of archaeological fieldwork. The on-site recording and long-term preservation of fragile evidence can be improved using 3D spatial data acquisition and computer-aided modeling technologies. Once the artifact is digitized and geometry created in a virtual environment, the scientist can manipulate the pieces in a virtual reality environment to develop a "realistic" reconstruction of the object without physically handling or gluing the fragments. The ARCHAEO-SCAN system is a flexible, affordable 3D coordinate data acquisition and geometric modeling system for acquiring surface and shape information of small to medium sized artifacts and bone fragments. The shape measurement system is being developed to enable the field archaeologist to manually sweep the non-contact sensor head across the relic or artifact surface. A series of unique data acquisition, processing, registration and surface reconstruction algorithms are then used to integrate 3D coordinate information from multiple views into a single reference frame. A novel technique for automatically creating a hexahedral mesh of the recovered fragments is presented. The 3D model acquisition system is designed to operate from a standard laptop with minimal additional hardware and proprietary software support. The captured shape data can be pre-processed and displayed on site, stored digitally on a CD, or transmitted via the Internet to the researcher's home institution.

  20. Field-usable portable analyzer for chlorinated organic compounds. Topical report, September 1992--May 1994

    SciTech Connect

    Buttner, W.J.; Williams, R.D.

    1995-05-01

    Through a U.S. DOE-funded program, an advanced chlorinated organic (RCL) vapor monitor has been built and tested in actual hazardous waste site operations. The monitor exploits the analytical capabilities of a solid-state sensor which was recently developed and has remarkable selectivity for chlorinated organic vapors at sub-parts-per-million sensitivity. The basic design goal of a user-friendly, reliable, instrument with a broad dynamic range for the selective detection of chlorinated solvent vapors was demonstrated. To date, no non-halogen-containing compound has been identified that induces a measurable response on the sensor, including commonly encountered contaminants such as BTXs (benzene, toluene, and xylenes) or POLs (petroleum, oils, lubricants). In addition to the development of the RCL MONITOR, advanced sampler systems were developed to further extend the analytical capability of this instrument, allowing chemical analyses to be performed for both vapor phase and condensed contamination. The sampling methods include fixed dilution, preconcentration, and closed-loop air stripping for condensed media. With uniform success, these different series of field tests were conducted at DOE facilities on several types of samples. Independent cost-benefit analysis has concluded that significant cost savings can be achieved using the RCL MONITOR in DOE applications. This effort provides a sound fundamental technology base for the development of advanced analytical methods that are needed by the US DOE. In addition, advanced methods for detecting chlorinated hydrocarbons that are made possible by this technology will save time, reduce costs, and improve human health and safety in restoration operations. To fully achieve all possible cost savings, continued effort is necessary to develop validated methods for the use of the RCL MONITOR. The development of methods through case studies is the theme of the Phase II effort, which is currently underway.

  1. Design of a portable wide field of view GPU-accelerated multiphoton imaging system for real-time imaging of breast surgical specimens

    NASA Astrophysics Data System (ADS)

    Giacomelli, Michael G.; Yoshitake, Tadayuki; Husvogt, Lennart; Cahill, Lucas; Ahsen, Osman; Vardeh, Hilde; Sheykin, Yury; Faulkner-Jones, Beverly E.; Hornegger, Joachim; Brooker, Jeff; Cable, Alex; Connolly, James L.; Fujimoto, James G.

    2016-03-01

    We present a portable multiphoton system designed for evaluating centimeter-scale surgical margins on surgical breast specimens in a clinical setting. The system is designed to produce large field of view images at a high frame rate, while using GPU processing to render low latency, video-rate virtual H&E images for real-time assessment. The imaging system and virtual H&E rendering algorithm are demonstrated by imaging unfixed human breast tissue in a clinical setting.

  2. Field detection of avian influenza virus in wild birds: evaluation of a portable rRT-PCR system and freeze-dried reagents.

    PubMed

    Takekawa, John Y; Iverson, Samuel A; Schultz, Annie K; Hill, Nichola J; Cardona, Carol J; Boyce, Walter M; Dudley, Joseph P

    2010-06-01

    Wild birds have been implicated in the spread of highly pathogenic avian influenza (HPAIV) of the H5N1 subtype, prompting surveillance along migratory flyways. Sampling of wild birds is often conducted in remote regions, but results are often delayed because of limited local analytical capabilities, difficulties with sample transportation and permitting, or problems keeping samples cold in the field. In response to these challenges, the performance of a portable real-time, reverse transcriptase-polymerase chain reaction (rRT-PCR) unit (RAPID((R)), Idaho Technologies, Salt Lake City, UT) that employed lyophilized reagents (Influenza A Target 1 Taqman; ASAY-ASY-0109, Idaho Technologies) was compared to virus isolation combined with real-time RT-PCR conducted in a laboratory. This study included both field- and experimental-based sampling. Field samples were collected from migratory shorebirds captured in northern California, while experimental samples were prepared by spiking fecal material with an H6N2 AIV isolate. Results indicated that the portable rRT-PCR unit had equivalent specificity to virus isolation with no false positives, but sensitivity was compromised at low viral titers. Use of portable rRT-PCR with lyophilized reagents may expedite surveillance results, paving the way to a better understanding of wild bird involvement in HPAIV H5N1 transmission. PMID:20206650

  3. Field detection of avian influenza virus in wild birds: evaluation of a portable rRT-PCR system and freeze-dried reagents

    USGS Publications Warehouse

    Takekawa, John Y.; Iverson, Samuel A.; Schultz, Annie K.; Hill, Nichola J.; Cardona, Carol J.; Boyce, Walter M.; Dudley, Joseph P.

    2010-01-01

    Wild birds have been implicated in the spread of highly pathogenic avian influenza (HPAIV) of the H5N1 subtype, prompting surveillance along migratory flyways. Sampling of wild birds is often conducted in remote regions, but results are often delayed because of limited local analytical capabilities, difficulties with sample transportation and permitting, or problems keeping samples cold in the field. In response to these challenges, the performance of a portable real-time, reverse transcriptase-polymerase chain reaction (rRT-PCR) unit (RAPID(Registered), Idaho Technologies, Salt Lake City, UT) that employed lyophilized reagents (Influenza A Target 1 Taqman; ASAY-ASY-0109, Idaho Technologies) was compared to virus isolation combined with real-time RT-PCR conducted in a laboratory. This study included both field and experimental-based sampling. Field samples were collected from migratory shorebirds captured in northern California, while experimental samples were prepared by spiking fecal material with an H6N2 AIV isolate. Results indicated that the portable rRT-PCR unit had equivalent specificity to virus isolation with no false positives, but sensitivity was compromised at low viral titers. Use of portable rRT-PCR with lyophilized reagents may expedite surveillance results, paving the way to a better understanding of wild bird involvement in HPAIV H5N1 transmission.

  4. Field Analysis of Polychlorinated Biphenyls (PCBs) in Soil Using Solid-Phase Microextraction (SPME) and a Portable Gas Chromatography-Mass Spectrometry System.

    PubMed

    Zhang, Mengliang; Kruse, Natalie A; Bowman, Jennifer R; Jackson, Glen P

    2016-05-01

    An expedited field analysis method was developed for the determination of polychlorinated biphenyls (PCBs) in soil matrices using a portable gas chromatography-mass spectrometry (GC-MS) instrument. Soil samples of approximately 0.5 g were measured with a portable scale and PCBs were extracted by headspace solid-phase microextraction (SPME) with a 100 µm polydimethylsiloxane (PDMS) fiber. Two milliliters of 0.2 M potassium permanganate and 0.5 mL of 6 M sulfuric acid solution were added to the soil matrices to facilitate the extraction of PCBs. The extraction was performed for 30 min at 100 ℃ in a portable heating block that was powered by a portable generator. The portable GC-MS instrument took less than 6 min per analysis and ran off an internal battery and helium cylinder. Six commercial PCB mixtures, Aroclor 1016, 1221, 1232, 1242, 1248, 1254, and 1260, could be classified based on the GC chromatograms and mass spectra. The detection limit of this method for Aroclor 1260 in soil matrices is approximately 10 ppm, which is sufficient for guiding remediation efforts in contaminated sites. This method was applicable to the on-site analysis of PCBs with a total analysis time of 37 min per sample. However, the total analysis time could be improved to less than 7 min per sample by conducting the rate-limiting extraction step for different samples in parallel. PMID:27170778

  5. Can field portable X-ray fluorescence (pXRF) produce high quality data for application in environmental contamination research?

    PubMed

    Rouillon, Marek; Taylor, Mark P

    2016-07-01

    This research evaluates the analytical capabilities of a field portable X-ray fluorescence spectrometer (pXRF) for the measurement of contaminated soil samples using a matrix-matched calibration. The calibrated pXRF generated exceptional data quality from the measurement of ten soil reference materials. Elemental recoveries improved for all 11 elements post-calibration with reduced measurement variation and detection limits in most cases. Measurement repeatability of reference values ranged between 0.2 and 10% relative standard deviation, while the majority (82%) of reference recoveries were between 90 and 110%. Definitive data quality, the highest of the US EPA's three level quality ranking, was achieved for 15 of 19 elemental datasets. Measurement comparability against inductively coupled plasma atomic emission spectrometry (ICP-AES) values was excellent for most elements (e.g, r(2) 0.999 for Mn and Pb, r(2) > 0.995 for Cu, Zn and Cd). Parallel measurement of reference materials revealed ICP-AES and ICP-MS measured Ti and Cr poorly when compared to pXRF. Individual recoveries of soil reference materials by both ICP-AES and pXRF showed that pXRF was equivalent to or better than ICP-AES values for all but two elements (Ni, As). This study demonstrates pXRF as a suitable alternative to ICP-AES analysis in the measurement of Ti, Cr, Mn, Fe, Cu, Zn, Sr, Cd, and Pb in metal-contaminated soils. Where funds are limited, pXRF provides a low-cost, high quality solution to increasing sample density for a more complete geochemical investigation. PMID:27100216

  6. Adjustable microchip ring trap for cold atoms and molecules

    SciTech Connect

    Baker, Paul M.; Stickney, James A.; Squires, Matthew B.; Scoville, James A.; Carlson, Evan J.; Buchwald, Walter R.; Miller, Steven M.

    2009-12-15

    We describe the design and function of a circular magnetic waveguide produced from wires on a microchip for atom interferometry using de Broglie waves. The guide is a two-dimensional magnetic minimum for trapping weak-field seeking states of atoms or molecules with a magnetic dipole moment. The design consists of seven circular wires sharing a common radius. We describe the design, the time-dependent currents of the wires and show that it is possible to form a circular waveguide with adjustable height and gradient while minimizing perturbation resulting from leads or wire crossings. This maximal area geometry is suited for rotation sensing with atom interferometry via the Sagnac effect using either cold atoms, molecules and Bose-condensed systems.

  7. FieldSpec: A field portable mass spectrometer prototype for high frequency measurements of δ (2) H and δ (18) O ratios in water

    NASA Astrophysics Data System (ADS)

    López Días, Veneranda; Quang Hoang, Hung; Martínez-Carreras, Núria; Barnich, François; Wirtz, Tom; Pfister, Laurent; McDonnell, Jeffrey

    2016-04-01

    Hydrological studies relying on stable water isotopes to better understand water sources, flowpaths and transit times are currently limited by the coarse temporal resolution of sampling and analysis protocols. At present, two kinds of lab-based instruments are used : (i) the standard isotope ratio mass spectrometers (IRMS) [1] and (ii) the laser-based instruments [2, 3]. In both cases, samples need to be collected in the field and then transferred to the laboratory for the water isotopic ratio measurements (even further complex sample preparation is required for the IRMS). Hence, past and ongoing research targets the development of field deployable instruments for measuring stable water isotopes at high temporal frequencies. While recent studies have demonstrated that laser-based instruments may be taken to the field [4, 5], their size and power consumption still restrict their use to sites equipped with mains power or generators. Here, we present progress on the development of a field portable mass spectrometer (FieldSpec) for direct high frequency measurements of δ2H and δ18O ratios in water. The FieldSpec instrument is based upon the use of a double focusing magnetic sector mass spectrometer in combination with an electron impact ion source and a membrane dual inlet system. The instrument directly collects liquid water samples in the field, which are then converted into water vapour before being injected into the mass spectrometer for the stable isotope analysis. δ2H and δ18O are derived from the measured mass spectra. All the components are arranged in a vacuum case having a suit case type dimension with portable electronics and battery. Proof-of-concept experiments have been carried out to characterize the instrument. The results show that the FieldSpec instrument has good linearity (R2 = 0.99). The reproducibility of the instrument ranges between 1 and 4 ‰ for δ2H and between 0.1 and 0.4 ‰ for δ18O isotopic ratio measurements. A measurement

  8. IATROGENIC MICROCHIP ARTERIAL EMBOLISM IN A CHILEAN FLAMINGO (PHOENICOPTERUS CHILENSIS).

    PubMed

    Olds, June E; Ewing, Jacob; Arruda, Paulo; Kuyper, Jennifer; Riedesel, Elizabeth; Miles, Kristina M

    2016-06-01

    Aberrant microchip migration has been reported in domestic animal species, but in most cases, this migration is atraumatic to the patient. Reports of microchip-associated trauma and sarcoma development also have been reported in a variety of mammal species. This report describes accidental arterial microchip insertion causing obstruction of the iliac artery in a Chilean flamingo (Phoenicopterus chilensis). Diagnostic imaging included digital radiography and pre- and post-contrast computed tomography to determine the location of the microchip. Surgical removal of the microchip was attempted; however, the flamingo died intraoperatively. Postmortem evaluation found trauma to the epicardium, without penetration of the ventricle. The descending aorta was found traumatized and identified as the most likely insertion point leading to the embolism. PMID:27468052

  9. Experiences with Hermann's tortoise (Testudo hermanni) microchipping in Slovenia - Short communication.

    PubMed

    Dovč, Alenka; Stvarnik, Mateja; Mavri, Urška; Gregurić-Gračner, Gordana; Tomažić, Iztok

    2016-03-01

    This study describes experiences obtained with microchipping of Hermann's tortoises in Slovenia. Over a period of three years, a total of 5,128 Hermann's tortoises from parental breeding stock were microchipped. Microchips were implanted subcutaneously in the left inguinal region. During the application of microchips, males were bleeding in 2.6% and females in 1.4% of the cases. Bleeding frequency was related to sex, animal size and environmental temperature at the time of microchipping. The presence of microchips was followed up over a period of several years. At the control check conducted a few years later, all previously microchipped tortoises were included. Out of the entire parental breeding stock, 235 (4.6%) had lost their microchips, thus 63 males (5.7%) and 172 females (4.3%) were unmarked. The possible reasons for microchip loss are migration or inactivity of the implanted microchips. PMID:26919141

  10. Portable Analyzer Based on Microfluidics/Nanoengineered Electrochemical Sensors for in Situ Characterization of Mixed Wastes

    SciTech Connect

    Wang, Joseph

    2006-06-01

    Portable Analyzer Based on Microfluidic/Nanoengineered Electrochemical Sensors for in Situ Characterization of Mixed Wastes PI: Dr. Joseph Wang (In Collaboration with the PNNL PI Dr. Y. Lin). Objective of Research: This research effort aims at developing a portable analytical system for fast, sensitive, and inexpensive, on-site monitoring of toxic transition metals and radionuclides in contaminated DOE Sites. The portable devices will be based on Microscale Total Analytical systems ( -TAS) or 'Lab-on-a-chip' in combination with electrochemical (stripping-voltammetric) sensors. The resulting microfluidics/electrochemical sensor system would allow testing for toxic metals to be performed more rapidly, inexpensively, and reliably in a field setting. Progress Summary/Accomplishments: This report summarizes the ASU activity over the second year of the project. In accordance to our original objectives our studies have focused on various fundamental and practical aspects of sensing and microchip devices for monitoring metal contaminants. As described in this section, we have made a substantial progress, and introduced effective routes for improving the on-site detection of toxic metals and for interfacing microchips with the real world. This activity has already resulted in 7 research papers (published or in press in major international journals). The electrochemical sensors being developed rely on the highly sensitive adsorptive stripping voltammetry (AdSV) technique to detect metal ions of interest to the DOE, particularly uranium and chromium. Traditionally, AdSV measurements of U and Cr require the use of mercury electrodes which are not suitable attractive for field deployment. Our initial goal was thus to replace these toxic mercury electrodes with 'environmentally-friendly' sensor materials. In particular, we demonstrated recently that bismuth-film electrodes offer high-quality measurements of heavy metals that compare favorably with that of mercury electrodes

  11. Polyelectrolyte coatings for microchip capillary electrophoresis.

    PubMed

    Liu, Yan; Henry, Charles S

    2006-01-01

    In chip-based electrophoretic analysis of biomolecules, chemical modification of the microchannel is widely employed to reduce or eliminate the analyte-wall interactions and alter electroosmotic flow (EOF) in the microchannel. A stable polyelectrolyte multilayer coating is one common way to regulate or eliminate EOF and prevent analyte adsorption for the rapid, efficient separation of biomolecules within microchannels. A wide variety of polyelectrolytes have been used as coatings. This chapter deals with how to coat microchips with polyelectrolytes and the expected results using polybrene and dextran sulfate as models. The technique presented here is generally applicable to any polyelectrolyte. PMID:16790867

  12. Field Test Report: NETL Portable Raman Gas Composition Monitor - Initial Industrial tests at NETL and General Electric (GE)

    SciTech Connect

    Michael, Buric; Jessica, Mullen; Steven, Woodruff; Ben, Chorpening

    2012-02-24

    NETL has developed new technology which enables the use of Raman spectroscopy in the real-time measurement of gas mixtures. This technology uses a hollow reflective metal-lined capillary waveguide as a gas sampling cell which contains the sample gas, and efficiently collects optical Raman scattering from the gas sample, for measurement with a miniature spectrometer. The result is an optical Raman “fingerprint” for each gas which is tens or hundreds of times larger than that which can be collected with conventional free-space optics. In this manner, the new technology exhibits a combination of measurement speed and accuracy which is unprecedented for spontaneous Raman measurements of gases. This makes the system especially well-suited to gas turbine engine control based on a-priori measurement of incoming fuel composition. The system has been developed to produce a measurement of all of the common components of natural gas, including the lesser nitrogen, oxygen, carbon-dioxide, and carbon monoxide diluents to better than 1% concentration accuracy each second. The objective of this task under CRADA 10-N100 was to evaluate the capability of a laser Raman capillary gas sensor for combustion fuels. A portable version of the Raman gas sensor, constructed at NETL, was used for field-trials conducted in a cooperative research effort at a GE facility. Testing under the CRADA was performed in 5 parts. Parts 1-4 were successful in testing of the Raman Gas Composition Monitor with bottled calibration gases, and in continuous monitoring of several gas streams at low pressure, in comparison with an online mass spectrometer. In part 5, the Raman Gas Composition Monitor was moved outdoors for testing with high pressure gas supplies. Some difficulties were encountered during industrial testing including the condensation of heavy hydrocarbons inside the sample cell (in part 5), communication with the GE data collection system, as well as some drift in the optical noise

  13. Evaluation and refinement of a field-portable drinking water toxicity sensor utilizing electric cell-substrate impedance sensing and a fluidic biochip.

    PubMed

    Widder, Mark W; Brennan, Linda M; Hanft, Elizabeth A; Schrock, Mary E; James, Ryan R; van der Schalie, William H

    2015-07-01

    The US Army's need for a reliable and field-portable drinking water toxicity sensor was the catalyst for the development and evaluation of an electric cell-substrate impedance sensing (ECIS) device. Water testing technologies currently available to soldiers in the field are analyte-specific and have limited capabilities to detect broad-based water toxicity. The ECIS sensor described here uses rainbow trout gill epithelial cells seeded on fluidic biochips to measure changes in impedance for the detection of possible chemical contamination of drinking water supplies. Chemicals selected for testing were chosen as representatives of a broad spectrum of toxic industrial compounds. Results of a US Environmental Protection Agency (USEPA)-sponsored evaluation of the field portable device were similar to previously published US Army testing results of a laboratory-based version of the same technology. Twelve of the 18 chemicals tested following USEPA Technology Testing and Evaluation Program procedures were detected by the ECIS sensor within 1 h at USEPA-derived human lethal concentrations. To simplify field-testing methods further, elimination of a procedural step that acclimated cells to serum-free media streamlined the test process with only a slight loss of chemical sensitivity. For field use, the ECIS sensor will be used in conjunction with an enzyme-based sensor that is responsive to carbamate and organophosphorus pesticides. PMID:25231170

  14. Low-power microwave-mediated heating for microchip-based PCR.

    PubMed

    Marchiarullo, Daniel J; Sklavounos, Angelique H; Oh, Kyudam; Poe, Brian L; Barker, N Scott; Landers, James P

    2013-09-01

    Microwave energy has been used to rapidly heat food and drinks for decades, in addition to assisting other chemical reactions. However, only recently has microwave energy been applied in microfluidic systems to heat solution in reaction chambers, in particular, the polymerase chain reaction (PCR). One of the difficulties in developing microwave-mediated heating on a microchip is the construction of the appropriate architecture for delivery of the energy to specific micro-areas on the microchip. This work employs commercially-available microwave components commonly used in the wireless communications industry to generate a microwave signal, and a microstrip transmission line to deliver the energy to a 1 μL reaction chamber fabricated in plastic microdevices. A model was developed to create transmission lines that would optimally transmit energy to the reaction chamber at a given frequency, minimizing energy usage while focusing microwave delivery to the target chamber. Two different temperature control methods were demonstrated, varying microwave power or frequency. This system was used to amplify a fragment of the lambda-phage genome, thereby demonstrating its potential for integration into a portable PCR system. PMID:23843031

  15. Readability and histological biocompatibility of microchip transponders in horses.

    PubMed

    Wulf, M; Wohlsein, P; Aurich, J E; Nees, M; Baumgärtner, W; Aurich, C

    2013-10-01

    Identification of horses by microchip transponder is mandatory within the European Union with only a few exceptions. In this study, the readability of such microchips in 428 horses with three different scanners (A, B and C) and the histological changes at the implantation site in 16 animals were assessed. Identification of microchips differed between scanners (P<0.001), and with 'side of neck' (P<0.001). Scanners A, B and C identified 93.5%, 89.7% and 100% of microchips, respectively, on the 'chip-bearing' side of the neck. From the contralateral side, scanners A, B and C identified 21.5%, 26.9% and 89.5% of transponders, respectively. Microchip readability was affected by age (P<0.001), but not by breed of horse. At necropsy, transponders were found in the subcutaneous fat (n=3), inter- or peri-muscular connective tissue (n=8), or musculature (n=5), where they were surrounded by a fibrous capsule ranging in thickness from 12.7 to 289.5 μm in 15 animals. In two animals, immature granulation tissue with attendant granulomatous inflammation, and a granulomatous myositis, surrounding the microchip were identified, respectively. Severe (n=1), moderate (n=1), and mild (n=3) lymphohistiocytic inflammation was noted within the fibrous capsule. Microchip transponders were found to be a highly reliable and biocompatible method of horse identification. PMID:23769456

  16. Microchip device for liquid phase analysis

    SciTech Connect

    Ramsey, j.m.

    2000-05-01

    The lab-on-a-chip concept has enabled miniature instruments to be developed that allow the rapid execution and automation of fluidic operations such as valving, separation, dilution, mixing, and flow splitting upon the proper application of a motive (driving) force. The integration of these simple operations to perform complete, multiple-step chemical assays is rapidly becoming a reality. Such compact, monolithic devices potentially enjoy advantages in speed, cost, automation, reagent consumption, and waste generation compared to existing laboratory-scale instruments. Initial reports of these microfluidic devices focused on combining various electrokinetically driven separation methods including microchip electrophoresis, gel electrophoresis, micellar electrokinetic chromatography (MEKC) and open channel electrochromatography (OCEC) with fluidic valving to introduce sample plugs into the separation channel. Other operations have quickly been integrated with the separations and fluidic valving on these microchips. For example, integrated devices with mixers/diluters for precolumn and postcolumn analyte derivatization, deoxyribonucleic acid (DNA) restriction digests, enzyme assays, and polymerase chain reaction (PCR) amplification have been added to the basic design. Integrated mixers that can perform solvent programming for both MEKC and OCEC have also been demonstrated. These examples are simple, yet powerful, demonstrations of the potential for lab-on-a-chip devices. In this report, three key areas for improved performance of these devices are described: on-chip calibration techniques, enhanced separative performance, and enhanced detection capabilities.

  17. Chemical modification of polymeric microchip devices.

    PubMed

    Muck, Alexander; Svatos, Ales

    2007-12-15

    Analytical polymeric microchips in both fluidic and array formats offer short analysis times, coupling of many sample processing and chemical reaction steps on one platform with minimal sample and reagent consumption, as well as low cost, minimal fabrication times and disposability. However, the invariable bulk properties of most commercial polymers have driven researchers to develop new modification strategies. This article critically reviews the scope and development of chemical modifications of such polymeric chips since 2003. Surface modifications were based on chemical derivatization or activation of surface layers with reagent solutions, reactive gases and irradiation. Bulk modification of polymer chips used newly incorporation of monomers with selective chemical functionalities throughout the bulk polymer material and integrated the chip modification and fabrication into a single step. Such modifications hold a great promise for establishing a true 'lab-on-chip' as can be seen from many novel applications for modulating electroosmosis, suppressing protein adsorption in microchip capillary electrophoretic separations, extraction of analytes and for zone-specific binding of enzymes and other biomolecules. PMID:18371647

  18. A graphene-modified cellulose paper microchip for HIV detection

    NASA Astrophysics Data System (ADS)

    Safavieh, Mohammadali; Khetani, Sultan; Kaul, Vivasvat; Kuritzkes, Daniel R.; Shafiee, Hadi

    2015-05-01

    Rapid and inexpensive virus detection and quantification at the point-of-care is of paramount importance for HIV management in resource-limited settings. Here, we report on an easy-to-fabricate, cellulose paper-based microchip with printed graphene-modified electrodes for rapid detection of HIV-1 through electrical sensing. We evaluated the effect of electrode material and geometry on the performance of the microchip to detect serially diluted, electrically conductive samples. We evaluated the optimized microchip with HIVspiked samples.

  19. Stand-Sit Microchip for High-Throughput, Multiplexed Analysis of Single Cancer Cells.

    PubMed

    Ramirez, Lisa; Herschkowitz, Jason I; Wang, Jun

    2016-01-01

    Cellular heterogeneity in function and response to therapeutics has been a major challenge in cancer treatment. The complex nature of tumor systems calls for the development of advanced multiplexed single-cell tools that can address the heterogeneity issue. However, to date such tools are only available in a laboratory setting and don't have the portability to meet the needs in point-of-care cancer diagnostics. Towards that application, we have developed a portable single-cell system that is comprised of a microchip and an adjustable clamp, so on-chip operation only needs pipetting and adjusting of clamping force. Up to 10 proteins can be quantitated from each cell with hundreds of single-cell assays performed in parallel from one chip operation. We validated the technology and analyzed the oncogenic signatures of cancer stem cells by quantitating both aldehyde dehydrogenase (ALDH) activities and 5 signaling proteins in single MDA-MB-231 breast cancer cells. The technology has also been used to investigate the PI3K pathway activities of brain cancer cells expressing mutant epidermal growth factor receptor (EGFR) after drug intervention targeting EGFR signaling. Our portable single-cell system will potentially have broad application in the preclinical and clinical settings for cancer diagnosis in the future. PMID:27581736

  20. Stand-Sit Microchip for High-Throughput, Multiplexed Analysis of Single Cancer Cells

    PubMed Central

    Ramirez, Lisa; Herschkowitz, Jason I.; Wang, Jun

    2016-01-01

    Cellular heterogeneity in function and response to therapeutics has been a major challenge in cancer treatment. The complex nature of tumor systems calls for the development of advanced multiplexed single-cell tools that can address the heterogeneity issue. However, to date such tools are only available in a laboratory setting and don’t have the portability to meet the needs in point-of-care cancer diagnostics. Towards that application, we have developed a portable single-cell system that is comprised of a microchip and an adjustable clamp, so on-chip operation only needs pipetting and adjusting of clamping force. Up to 10 proteins can be quantitated from each cell with hundreds of single-cell assays performed in parallel from one chip operation. We validated the technology and analyzed the oncogenic signatures of cancer stem cells by quantitating both aldehyde dehydrogenase (ALDH) activities and 5 signaling proteins in single MDA-MB-231 breast cancer cells. The technology has also been used to investigate the PI3K pathway activities of brain cancer cells expressing mutant epidermal growth factor receptor (EGFR) after drug intervention targeting EGFR signaling. Our portable single-cell system will potentially have broad application in the preclinical and clinical settings for cancer diagnosis in the future. PMID:27581736

  1. Screening for volatile organic compounds in soil and groundwater by use of a portable gas chromatograph during field investigations at an Air Force installation in Ohio

    USGS Publications Warehouse

    Parnell, James M.

    1995-01-01

    The use of the portable gas chromatograph for screening of soil and water samples in the field was part of the drilling program for the installation of monitoring wells for a basewide ground-water monitoring program at Wright-Patterson Air Force Base, Ohio. Selected soil and ground-water samples were screened in the field for volatile organic compounds to determine if contamination was present, to define the vertical and lateral extent of contamination, and to aid in the placement of the well screens for optimal interception of contaminants. This report describes the screening methods, sample-collection, quality-assurance/quality-control methods, and data-interpretation procedures necessary for screening of soil and ground-water samples in the field during the water resources investigations.

  2. Feline lost: making microchipping compulsory for domestic cats.

    PubMed

    Roberts, M

    2016-08-13

    The independent nature of cats means that they are more likely to become lost or injured than dogs. Maggie Roberts believes that microchipping of cats should be compulsory in the UK as is the case with dogs. PMID:27516564

  3. Apparatus for Precise Indium-Bump Bonding of Microchips

    NASA Technical Reports Server (NTRS)

    Wild, Larry; Mulder, Jerry; Alvarado, Nicholas

    2005-01-01

    An improved apparatus has been designed and built for use in precise positioning and pressing of a microchip onto a substrate (which could, optionally, be another microchip) for the purpose of indium-bump bonding. The apparatus (see figure) includes the following: A stereomicroscope, A stage for precise positioning of the microchip in rotation angle (theta) about the nominally vertical pressing axis and in translation along two nominally horizontal coordinate axes (x and y), and An actuator system that causes a bonding tip to press the microchip against the substrate with a precisely controlled force. In operation, the microscope and the stage are used to position the microchip under the bonding tip and to align the indium bumps on the chip and the substrate, then the actuator system is used to apply a prescribed bonding force for a prescribed time. The improved apparatus supplants a partly similar prior apparatus that operated with less precision and repeatability, producing inconsistent and unreliable bonds. Results of the use of the prior apparatus included broken microchips, uneven bonds, and bonds characterized, variously, by overcompression or undercompression. In that apparatus, the bonding force was generated and controlled by use of a micrometer head positioned over the center of a spring-loaded scale, and the force was applied to the microchip via the scale, which was equipped for digital readout of the force. The inconsistency of results was attributed to the following causes: It was not possible to control the bonding force with sufficient precision or repeatability. Particularly troublesome was the inability to control the force at levels less than the weight of 150 g. Excessive compliance in the spring-loaded scale, combined with deviations from parallelarity of the substrate and bonding-tip surfaces, gave rise to nonuniformity in the pressure applied to the microchip, thereby generating excessive stresses and deformations in the microchip. In the

  4. A novel portable device to measure the temperature of both the inner and the outer tubes of a parabolic receiver in the field

    NASA Astrophysics Data System (ADS)

    Hermoso, J. L. Navarro; Espinosa-Rueda, Guillermo; Martinez, Noelia; Heras, Carlos; Osta, Marta

    2016-05-01

    The performance of parabolic trough (PT) receiver tubes (RT) has a direct impact on Solar Thermal Energy (STE) plant production. As a result, one major need of operation and maintenance (O&M) in STE plants is to monitor the state of the receiver tube as a key element in the solar field. However the lack of specific devices so far has limited the proper evaluation of operating receiver tubés thermal performance. As a consequence non-accurate approximations have been accepted until now using infrared thermal images of the glass outer tube. In order to fulfill this need, Abengoa has developed a unique portable device for evaluating the thermal performance and vacuum state of parabolic trough receiver tubes placed in the field. The novel device described in this paper, simultaneously provides the temperature of both the inner steel tube and the outer glass tube enabling a check on manufacturers specifications. The on-field evaluation of any receiver tube at any operating temperature has become possible thanks to this new measuring device. The features and usability of this new measurement system as a workable portable device in operating solar fields provide a very useful tool for all companies in the sector contributing to technology progress. The originality of the device, patent pending P201431969, is not limited to the CSP sector, also having scientific significance in the general measuring instruments field. This paper presents the work carried out to develop and validate the device, also detailing its functioning properties and including the excellent results obtained in the laboratory to determine its accuracy and standard deviation. This information was validated with data collected by O&M teams using this instrument in a commercial CSP plant. The relevance of the device has been evidenced by evaluating a wide sample of RT and the results are discussed in this paper. Finally, all the on field collected data is used to demonstrate the high impact that using

  5. Field application of the Numobag as a portable disposable isolation unit and for treating chemical, radiological or biologically induced wounds.

    SciTech Connect

    Miller, Keith A.; Felton, Robert; Vaughan, Courtenay Thomas

    2005-04-01

    Numotech Inc. has developed the Numobag{trademark}, a disposable, lightweight, wound healing device which produces Topical Hyperbaric Oxygen Therapy (THOT). The Numobag{trademark} is cost effective and has been clinically validated to heal large skin lesions rapidly and has proven to arrest wound advancement from several insidious forms of biological attack including dermal anthrax, small pox, necrotizing fasciitis etc. The Numobag{trademark} can treat mass casualties wounded by chemical/radiological burns or damaging biological exposures. The Numobag{trademark} can be a frontline tool as an isolation unit, reducing cross-contamination and infection of medical personnel. The heightened oxygen content kills organisms on the skin and in the wound, avoids expensive hospital trash disposal procedures, and helps the flesh heal. The Numobag{trademark} requires high purity oxygen. Numotech Inc. is teaming with Sandia National Laboratories and Spektr Conversion in Russia to develop a cost effective, portable, low power oxygen generator.

  6. Microchip-based immunomagnetic detection of circulating tumor cells.

    PubMed

    Hoshino, Kazunori; Huang, Yu-Yen; Lane, Nancy; Huebschman, Michael; Uhr, Jonathan W; Frenkel, Eugene P; Zhang, Xiaojing

    2011-10-21

    Screening for circulating tumor cells (CTCs) in blood has been an object of interest for evidence of progressive disease, status of disease activity, recognition of clonal evolution of molecular changes and for possible early diagnosis of cancer. We describe a new method of microchip-based immunomagnetic CTC detection, in which the benefits of both immunomagnetic assay and the microfluidic device are combined. As the blood sample flows through the microchannel closely above arrayed magnets, cancer cells labeled with magnetic nanoparticles are separated from blood flow and deposited at the bottom wall of the glass coverslip, which allows direct observation of captured cells with a fluorescence microscope. A polydimethylsiloxane (PDMS)-based microchannel fixed on a glass coverslip was used to screen blood samples. The thin, flat dimensions of the microchannel, combined with the sharp magnetic field gradient in the vicinity of arrayed magnets with alternate polarities, lead to an effective capture of labeled cells. Compared to the commercially available CellSearch™ system, fewer (25%) magnetic particles are required to achieve a comparable capture rate, while the screening speed (at an optimal blood flow rate of 10 mL h(-1)) is more than five times faster than those reported previously with a microchannel-based assay. For the screening experiment, blood drawn from healthy subjects into CellSave™ tubes was spiked with cultured cancer cell lines of COLO205 and SKBR3. The blood was then kept at room temperature for 48 hours before the screening, emulating the actual clinical cases of blood screening. Customized Fe(3)O(4) magnetic nanoparticles (Veridex Ferrofluid™) conjugated to anti-epithelial cell adhesion molecule (EpCAM) antibodies were introduced into the blood samples to label cancer cells, and the blood was then run through the microchip device to capture the labelled cells. After capture, the cells were stained with fluorescent labelled anti

  7. Portable shift register

    SciTech Connect

    Halbig, J.K.; Bourret, S.C.; Hansen, W.J.; Hicks, D.V.; Klosterbuer, S.F.; Krick, M.S.

    1994-01-01

    An electronics package for a small, battery-operated, self-contained, neutron coincidence counter based on a portable shift-register (PSR) has been developed. The counter was developed for applications not adequately addressed by commercial packages, including in-plant measurements to demonstrate compliance with regulations (domestic and international), in-plant process control, and in-field measurements (environmental monitoring or safeguards). Our package's features, which address these applications, include the following: Small size for portability and ease of installation;battery or mains operation; a built-in battery to power the unit and a typical detector such as a small sample counter, for over 6 h if power lines are bad or noisy, if there is a temporary absence of power, or if portability is desired; complete support, including bias, for standard neutron detectors; a powerful communications package to easily facilitate robust external control over a serial port; and a C-library to simplify creating external control programs in computers or other controllers. Whereas the PSR specifically addresses the applications mentioned above, it also performs all the measurements made by previous electronics packages for neutron coincidence counters developed at Los Alamos and commercialized. The PSR electronics package, exclusive of carrying handle, is 8 by 10 by 20 cm; it contains the circuit boards, battery, and bias supply and weighs less than 2 kg. This instrument package is the second in an emerging family of portable measurement instruments being developed; the first was the Miniature and Modular Multichannel Analyzer (M[sup 3]CA). The PSR makes extensive use of hardware and software developed for the M[sup 3]CA; like the M[sup 3]CA, it is intended primarily for use with an external controller interfaced over a serial channel.

  8. Problems Associated with the Microchip Data of Stray Dogs and Cats Entering RSPCA Queensland Shelters

    PubMed Central

    Lancaster, Emily; Rand, Jacquie; Collecott, Sheila; Paterson, Mandy

    2015-01-01

    Simple Summary Microchip identification has become an important tool to reunite stray dogs and cats with their owners, and is now compulsory in most states of Australia. Improvement of the microchipping system in Australia is limited by a lack of published Australian data documenting the problems experienced by shelter staff when using microchip data to contact the owner of a stray animal. In this study we determine the character and frequency of inaccurate microchip data to identify weaknesses in the current microchipping system. This information could be used to develop strategies that increase the accuracy of microchip data that will increase the reclaiming of stray animals. Abstract A lack of published information documenting problems with the microchip data for the reclaiming of stray animals entering Australian shelters limits improvement of the current microchipping system. A retrospective study analysing admission data for stray, adult dogs (n = 7258) and cats (n = 6950) entering the Royal Society for the Prevention of Cruelty to Animals (RSPCA) Queensland between January 2012 and December 2013 was undertaken to determine the character and frequency of microchip data problems and their impact on outcome for the animal. Only 28% of dogs and 9% of cats were microchipped, and a substantial proportion (37%) had problems with their data, including being registered to a previous owner or organisation (47%), all phone numbers incorrect/disconnected (29%), and the microchip not registered (14%). A higher proportion of owners could be contacted when the microchip had no problems, compared to those with problems (dogs, 93% vs. 70%; cats, 75% vs. 41%). The proportion of animals reclaimed declined significantly between microchipped animals with no data problems, microchipped animals with data problems and non-microchipped animals—87%, 69%, and 37%, respectively, for dogs and 61%, 33%, and 5%, respectively, for cats. Strategies are needed to increase the accuracy of

  9. Evaluation of a Field-Portable DNA Microarray Platform and Nucleic Acid Amplification Strategies for the Detection of Arboviruses, Arthropods, and Bloodmeals

    PubMed Central

    Grubaugh, Nathan D.; Petz, Lawrence N.; Melanson, Vanessa R.; McMenamy, Scott S.; Turell, Michael J.; Long, Lewis S.; Pisarcik, Sarah E.; Kengluecha, Ampornpan; Jaichapor, Boonsong; O'Guinn, Monica L.; Lee, John S.

    2013-01-01

    Highly multiplexed assays, such as microarrays, can benefit arbovirus surveillance by allowing researchers to screen for hundreds of targets at once. We evaluated amplification strategies and the practicality of a portable DNA microarray platform to analyze virus-infected mosquitoes. The prototype microarray design used here targeted the non-structural protein 5, ribosomal RNA, and cytochrome b genes for the detection of flaviviruses, mosquitoes, and bloodmeals, respectively. We identified 13 of 14 flaviviruses from virus inoculated mosquitoes and cultured cells. Additionally, we differentiated between four mosquito genera and eight whole blood samples. The microarray platform was field evaluated in Thailand and successfully identified flaviviruses (Culex flavivirus, dengue-3, and Japanese encephalitis viruses), differentiated between mosquito genera (Aedes, Armigeres, Culex, and Mansonia), and detected mammalian bloodmeals (human and dog). We showed that the microarray platform and amplification strategies described here can be used to discern specific information on a wide variety of viruses and their vectors. PMID:23249687

  10. Rapid determination of ETS markers with a prototype field-portable GC employing a microsensor array detector.

    PubMed

    Zhong, Qiongyan; Veeneman, Rebecca A; Steinecker, William H; Jia, Chunrong; Batterman, Stuart A; Zellers, Edward T

    2007-05-01

    The adaptation of a portable gas chromatograph (GC) prototype with several unique design features to the determination of vapor-phase markers of environmental tobacco smoke (ETS) is described. This instrument employs a dual-stage adsorbent preconcentrator, two series-coupled separation columns that can be independently temperature programmed, and a detector consisting of an array of nanoparticle-coated chemiresistors, whose response patterns are used together with retention times for vapor recognition. An adsorbent pre-trap was developed to remove semi-volatile organics from the sample stream. Conditions were established to quantitatively capture two ETS markers, 2,5-dimethylfuran (2,5-DMF) and 4-ethenylpyridine (4-EP, as a surrogate for 3-EP), and to separate them from the 34 most prominent co-contaminants present in ETS using ambient air as the carrier gas. A complete analysis can be performed every 15 min. Projected detection limits are 0.58 and 0.08 ppb for 2,5-DMF and 4-EP, respectively, assuming a 1 L sample volume, which are sufficiently low to determine these markers in typical smoking-permitted environments. PMID:17492089

  11. Characteristics of the SAR distributions in a head exposed to electromagnetic fields radiated by a hand-held portable radio

    SciTech Connect

    Watanabe, Soichi; Taki, Masao; Nojima, Toshio; Fujiwara, Osamu

    1996-10-01

    This paper presents characteristics of the specific absorption rate (SAR) distributions calculated by the finite-difference time-domain (FDTD) method using a heterogeneous and realistic head model and a realistic hand-held portable radio model. The difference between the SAR distributions produced by a 1/4-wavelength monopole antenna and those produced by a 1/2-wavelength dipole antenna is investigated. The dependence of the maximum local SAR on the distance d{sub a} between the auricle of the head and the antenna of the radio is evaluated. It is shown that the maximum local SAR decreases as the antenna length extends from 1/4 to 1/2 of the wavelength. The maximum local SAR`s in a head model with auricles are larger than those in one without auricles. The dependence of the SAR on the electrical inhomogeneity of the tissues in the head model is not significant with regard to the surface distribution and the maximum local SAR when the radio is near the head. It is also shown that the maximum local SAR is not strongly dependent on the position of the hand when the hand does not shade the antenna. Furthermore, the SAR`s experimentally measured in a homogeneous head phantom are compared with the calculated SAR`s.

  12. Electroactive intercalators for DNA analysis on microchip electrophoresis.

    PubMed

    Castaño-Alvarez, Mario; Fernández-Abedul, M Teresa; Costa-García, Agustín

    2007-12-01

    Miniaturized analytical systems, especially microchip CE (MCE), are becoming a promising tool for analytical purposes including DNA analysis. These microdevices require a sensitive and miniaturizable detection system such as electrochemical detection (ED). Several electroactive DNA intercalators, including the organic dye methylene blue (MB), anthraquinone derivatives, and the metal complexes Fe(phen)3 2+ and Ru(phen)3 2+, have been tested for using in combination with thermoplastic olefin polymer of amorphous structure (Topas) CE-microchips and ED. Two end-channel approaches for integration of gold wire electrodes in CE-ED microchip were used. A 250 microm diameter gold wire was manually aligned at the outlet of the separation channel. A new approach based on a guide channel for integration of 100 and 50 microm diameter gold wire has been also developed in order to reduce the background current and the baseline noise level. Modification of gold wire electrodes has been also tested to improve the detector performance. Application of MCE-ED for ssDNA detection has been studied and demonstrated for the first time using the electroactive dye MB. Electrostatic interaction between cationic MB and anionic ssDNA was used for monitoring the DNA on microchips. Thus, reproducible calibration curves for ssDNA were obtained. This study advances the feasibility of direct DNA analysis using CE-microchip with ED. PMID:18004710

  13. Oligonucleotide microchip for subtyping of influenza A virus

    PubMed Central

    Fesenko, Eugeny E.; Kireyev, Dmitry E.; Gryadunov, Dmitry A.; Mikhailovich, Vladimir M.; Grebennikova, Tatyana V.; L’vov, Dmitry K.; Zasedatelev, Alexander S.

    2007-01-01

    Background  Influenza A viruses are classified into subtypes depending on the antigenic properties of their two outer glycoproteins, hemagglutinin (HA) and neuraminidase (NA). Sixteen subtypes of HA and nine of NA are known. Lately, the circulation of some subtypes (H7N7, H5N1) has been closely watched because of the epidemiological threat they present. Objectives  This study assesses the potential of using gel‐based microchip technology for fast and sensitive molecular subtyping of the influenza A virus. Methods  The method employs a microchip of 3D gel‐based elements containing immobilized probes. Segments of the HA and NA genes are amplified using multiplex RT‐PCR and then hybridized with the microchip. Results  The developed microchip was validated using a panel of 21 known reference strains of influenza virus. Selected strains represented different HA and NA subtypes derived from avian, swine and human hosts. The whole procedure takes 10 hours and enables one to identify 15 subtypes of HA and two subtypes of NA. Forty‐one clinical samples isolated during the poultry fall in Novosibirsk (Russia, 2005) were successfully identified using the proposed technique. The sensitivity and specificity of the method were 76% and 100%, respectively, compared with the ‘gold standard’ techniques (virus isolation with following characterization by immunoassay). Conclusions  We conclude that the method of subtyping using gel‐based microchips is a promising approach for fast detection and identification of influenza A, which may greatly improve its monitoring. PMID:19453417

  14. A microchip platform for structural oncology applications

    PubMed Central

    Winton, Carly E; Gilmore, Brian L; Demmert, Andrew C; Karageorge, Vasilea; Sheng, Zhi; Kelly, Deborah F

    2016-01-01

    Recent advances in the development of functional materials offer new tools to dissect human health and disease mechanisms. The use of tunable surfaces is especially appealing as substrates can be tailored to fit applications involving specific cell types or tissues. Here we use tunable materials to facilitate the three-dimensional (3D) analysis of BRCA1 gene regulatory complexes derived from human cancer cells. We employed a recently developed microchip platform to isolate BRCA1 protein assemblies natively formed in breast cancer cells with and without BRCA1 mutations. The captured assemblies proved amenable to cryo-electron microscopy (EM) imaging and downstream computational analysis. Resulting 3D structures reveal the manner in which wild-type BRCA1 engages the RNA polymerase II (RNAP II) core complex that contained K63-linked ubiquitin moieties—a putative signal for DNA repair. Importantly, we also determined that molecular assemblies harboring the BRCA15382insC mutation exhibited altered protein interactions and ubiquitination patterns compared to wild-type complexes. Overall, our analyses proved optimal for developing new structural oncology applications involving patient-derived cancer cells, while expanding our knowledge of BRCA1’s role in gene regulatory events. PMID:27583302

  15. Rapid bonding of Pyrex glass microchips.

    PubMed

    Akiyama, Yoshitake; Morishima, Keisuke; Kogi, Atsuna; Kikutani, Yoshikuni; Tokeshi, Manabu; Kitamori, Takehiko

    2007-03-01

    A newly developed vacuum hot press system has been specially designed for the thermal bonding of glass substrates in the fabrication process of Pyrex glass microchemical chips. This system includes a vacuum chamber equipped with a high-pressure piston cylinder and carbon plate heaters. A temperature of up to 900 degrees C and a force of as much as 9800 N could be applied to the substrates in a vacuum atmosphere. The Pyrex substrates bonded with this system under different temperatures, pressures, and heating times were evaluated by tensile strength tests, by measurements of thickness, and by observations of the cross-sectional shapes of the microchannels. The optimal bonding conditions of the Pyrex glass substrates were 570 degrees C for 10 min under 4.7 N/mm(2) of applied pressure. Whereas more than 16 h is required for thermal bonding with a conventional furnace, the new system could complete the whole bonding processes within just 79 min, including heating and cooling periods. Such improvements should considerably enhance the production rate of Pyrex glass microchemical chips. Whereas flat and dust-free surfaces are required for conventional thermal bonding, especially without long and repeated heating periods, our hot press system could press a fine dust into glass substrates so that even the areas around the dust were bonded. Using this capability, we were able to successfully integrate Pt/Ti thin film electrodes into a Pyrex glass microchip. PMID:17370301

  16. Developments and field tests of low-frequency portable acoustic transducers for a mobile exploration and time lapse experiment of a sea-bottom reservoir

    NASA Astrophysics Data System (ADS)

    Tsuruga, K.; Kasahara, J.; Hasada, Y.; Kondo, H.

    2013-12-01

    Depth, scale and resolutions of geophysical explorations for mineral resources are controlled by transmitted seismic energy and wavelength (frequency range). Most explorations in marine have been conducted by survey ship system with arrayed acoustic sources whose dominant frequency range is about 10 to 500 Hz. On the other hand, for shallow parts of sea bottom structure survey, some sub-bottom profilers with frequency range around 3.5kHz are used. To monitor a time lapse of a sea bottom reservoir such as an oil, gas, or methane hydrate reservoir as well as to exploit a mobile survey near a sea bottom by AUVs, it is necessary to use a broadband portable acoustic transducer with a dominant frequency range of 500 Hz to 5 kHz. We have been developing several types of portable acoustic transducers and a transmitting and recording system which is accurately controlled by a GPS clock (Tsuruga et al., 2012). In this pater, we report the new broadband acoustic portable transducers which have larger power than the original cylindrical acoustic transducers in a low frequency range (<5 kHz), partly funded by JOGMEC, and show the preliminary results of field tests at the shallow sea bottom around 32 m deep by means of the transducers and hydrophone receivers array. Each transducer repeatedly transmitted Chirp signals with a unit period of 500 msec in two frequency ranges of 0.5k-4.5kHz and 4k-16kHz . We stacked 500-ms data by 28 times to obtain a transfer function of each source-receiver pair in the time and frequency domains. The preliminary results suggest as the follows: (i) it is successful to broaden the frequency bandwidth (i.e., 2k-10kHz) by extending a geometrical resonance length of a cylindrical acoustic transducers, and (ii) the observation at the sea bottom with accurately controlled timing systems of transmitter and data-logger is very useful to identify the stable and/or unstable seismic phases, that is, waves propagating in a underground and/or in a sea water as

  17. Acupuncture Sample Injection for Microchip Capillary Electrophoresis and Electrokinetic Chromatography.

    PubMed

    Ha, Ji Won; Hahn, Jong Hoon

    2016-05-01

    A simple nanoliter-scale injection technique was developed for polydimethylsiloxane (PDMS) microfluidic devices to form the well-defined sample plugs in microfluidic channels. Sample injection was achieved by performing acupuncture on a channel with a needle and applying external pressure to a syringe. This technique allowed us to achieve reproducible injection of a 3-nL segment into a microchannel for PDMS microchip-based capillary electrophoresis (CE). Capillary zone electrophoresis (CZE) and capillary electrochromatography (CEC) with bead packing were successfully performed by applying a single potential in the most simplified straight channel. The advantages of this acupuncture injection over the electrokinetic injection in microchip CE include capability of minimizing sample loss and voltage control hardware, capability of serial injections of different sample solutions into a same microchannel, capability of injecting sample plugs into any position of a microchannel, independence on sample solutions during the loading step, and ease in making microchips due to the straight channel, etc. PMID:27056036

  18. Exploring the Integration of Field Portable Instrumentation into Real-Time Surface Science Operations with the RIS4E SSERVI Team

    NASA Astrophysics Data System (ADS)

    Young, K. E.; Bleacher, J. E.; Rogers, D.; Garry, W. B.; McAdam, A.; Scheidt, S. P.; Carter, L. M.; Glotch, T. D.

    2015-12-01

    The Remote, In Situ, and Synchrotron Studies for Science (RIS4E) team represents one node of the Solar System Exploration Research Virtual Institute (SSERVI) program. While the RIS4E team consists of four themes, each dedicated to a different aspect of airless body exploration, this submission details the RIS4E work underway to maximize an astronaut's effectiveness while conducting surface science. The next generation of surface science operations will look quite different than the EVAs (extravehicular activities) conducted during Apollo. Astronauts will possess data of much higher resolution than the Apollo reconnaissance data, and the EVAs will thus be designed to answer targeted science questions. Additionally, technological advancements over the last several decades have made it possible to conduct in situ analyses of a caliber much greater than was achievable during Apollo. For example, lab techniques such as x-ray fluorescence, x-ray diffraction, and multi-spectral imaging are now available in field portable formats, meaning that astronauts can gain real-time geochemical awareness during sample collection. The integration of these instruments into EVA operations, however, has not been widely tested. While these instruments will provide the astronaut with a high-resolution look at regional geochemistry and structure, their implementation could prove costly to the already constrained astronaut EVA timeline. The RIS4E team, through fieldwork at the December 1974 lava flow at Kilauea Volcano, HI, investigates the incorporation of portable technologies into planetary surface exploration and explores the relationship between science value added from these instruments and the cost associated with integrating them into an EVA timeline. We also consider what an appropriate instrumentation suite would be for the exploration of a volcanic terrain using this ideal terrestrial analog (see Rogers et al., Young et al., Bleacher et al., and Yant et al., this meeting).

  19. U.S.-MEXICO BORDER PROGRAM ARIZONA BORDER STUDY--STANDARD OPERATING PROCEDURE FOR OPERATION, CALIBRATION, AND ROUTINE USE OF THE SPECTRACE 9000 FIELD PORTABLE X-RAY FLUORESCENCE ANALYZER (UA-L-10.1)

    EPA Science Inventory

    The purpose of this SOP is to describe the procedures for operating and calibrating the Spectrace 9000 field portable X-ray fluorescence analyzer. This procedure applies to the determination of metal concentrations in samples during the Arizona NHEXAS project and the Border stud...

  20. NHEXAS PHASE I ARIZONA STUDY--STANDARD OPERATING PROCEDURE FOR OPERATION, CALIBRATION AND ROUTINE USE OF THE SPECTRACE 9000 FIELD PORTABLE X-RAY FLUORESCENCE ANALYZER (UA-L-10.1)

    EPA Science Inventory

    The purpose of this SOP is to describe the procedures for operating and calibrating the Spectrace 9000 field portable X-ray fluorescence analyzer. This procedure applies to the determination of metal concentrations in samples during the Arizona NHEXAS project and the "Border" st...

  1. Development of a Portable Field Imaging Spectrometer: Application for the Identification of Sun-Dried and Sulfur-Fumigated Chinese Herbals.

    PubMed

    Zhang, Hongming; Wu, Taixia; Zhang, Lifu; Zhang, Peng

    2016-05-01

    We fabricated a visible-near-infrared (Vis-NIR) portable field imaging spectrometer with a prism-grating-prism element and a scanning mirror. The developed Vis-NIR imaging spectrometer, consisting of an INFINITY 3-1 detector and a V10E spectrometer from Specim Corporation, is designed to measure the spectral range between 0.4 and 1 µm with spectral resolution of 2-4 nm. In recent years, sulfur fumigation has been abused during the processing of certain freshly harvested Chinese herbs. Fourier transform infrared spectroscopy, fiber optic NIR spectrometry, and liquid chromatography-mass spectrometry are typically used to analyze the chemical profiles of sulfur-fumigated and sun-dried Chinese herbs. Field imaging spectrometry is rarely used to identify sulfur-fumigated herbs. In this study, field imaging spectrometry, principal component analysis, and the partial least squares-discriminant analysis multivariate data analysis method are used to distinguish sun-dried and sulfur-fumigated Chinese medicinal herbs with a sensitivity of 96.4% and a specificity of 98.3% for RPA identification. These results suggest that hyperspectral imaging is a potential technique to control medicine quality for medical applications. PMID:27006019

  2. MicroChip Imager Module for Recognition of Microorganisms

    Energy Science and Technology Software Center (ESTSC)

    2001-01-01

    The MicroChip Reader for Cereus Group takes the table of intensities of hybridization signals produced by the MicroChip Imager software and evokes a series of steps designed to recognize the pattern of intensities specific to a particular Cereus subgroup. Seven subgroups of the Cereus group can be identified by particular features of their RNA sequence. The Reader also provides statistics documenting how well its conclusion is confirmed by the hybridization signals. At the user’s request,more » the Reader can list every recognition step utilized so that the user can verify the recognition process manually if desired.« less

  3. MicroChip Imager Module for Recognition of Microorganisms

    SciTech Connect

    Alferov, Oleg

    2001-01-01

    The MicroChip Reader for Cereus Group takes the table of intensities of hybridization signals produced by the MicroChip Imager software and evokes a series of steps designed to recognize the pattern of intensities specific to a particular Cereus subgroup. Seven subgroups of the Cereus group can be identified by particular features of their RNA sequence. The Reader also provides statistics documenting how well its conclusion is confirmed by the hybridization signals. At the user’s request, the Reader can list every recognition step utilized so that the user can verify the recognition process manually if desired.

  4. Capillary and microchip electrophoretic analysis of polycyclic aromatic hydrocarbons.

    PubMed

    Ferey, Ludivine; Delaunay, Nathalie

    2015-04-01

    Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous contaminants which can reach the environment and food in different ways. Because of their high toxicity, two international regulatory institutions, the US Environmental Protection Agency and the European Food Safety Authority, have classified PAHs as priority pollutants, generating an important demand for the detection and identification of PAHs. Thus, sensitive, fast, and cheap methods for the analysis of PAHs in environmental and food samples are urgently needed. Within this context, electrophoresis, in capillary or microchip format, displays attractive features. This review presents and critically discusses the published literature on the different approaches to capillary and microchip electrophoresis analysis of PAHs. PMID:25542576

  5. Adding functionality to microchips by wafer post-processing

    NASA Astrophysics Data System (ADS)

    Schmitz, Jurriaan

    2007-06-01

    The traditional microchip processes, stores and communicates electrical information. Here we review an emerging class of microchips that have additional functionality through extra integrated components in the chip. In the final manufacturing stage, layers are added on top of the chip, with a specific property such as sensitivity to ionizing radiation. This paper reviews the technology underlying these monolithic microsystems, including the incorporation of new materials, the unconventional application of photoresist layers, and low-temperature technology for suspended membranes. The manufacturing of exemplary microsystems, such as the active pixel sensor and liquid-crystal-on-silicon, is detailed. A new class of fully integrated radiation imaging systems is now technologically within reach.

  6. Multiplexed Western Blotting Using Microchip Electrophoresis.

    PubMed

    Jin, Shi; Furtaw, Michael D; Chen, Huaxian; Lamb, Don T; Ferguson, Stephen A; Arvin, Natalie E; Dawod, Mohamed; Kennedy, Robert T

    2016-07-01

    Western blotting is a commonly used protein assay that combines the selectivity of electrophoretic separation and immunoassay. The technique is limited by long time, manual operation with mediocre reproducibility, and large sample consumption, typically 10-20 μg per assay. Western blots are also usually used to measure only one protein per assay with an additional housekeeping protein for normalization. Measurement of multiple proteins is possible; however, it requires stripping membranes of antibody and then reprobing with a second antibody. Miniaturized alternatives to Western blot based on microfluidic or capillary electrophoresis have been developed that enable higher-throughput, automation, and greater mass sensitivity. In one approach, proteins are separated by electrophoresis on a microchip that is dragged along a polyvinylidene fluoride membrane so that as proteins exit the chip they are captured on the membrane for immunoassay. In this work, we improve this method to allow multiplexed protein detection. Multiple injections made from the same sample can be deposited in separate tracks so that each is probed with a different antibody. To further enhance multiplexing capability, the electrophoresis channel dimensions were optimized for resolution while keeping separation and blotting times to less than 8 min. Using a 15 μm deep × 50 μm wide × 8.6 cm long channel, it is possible to achieve baseline resolution of proteins that differ by 5% in molecular weight, e.g., ERK1 (44 kDa) from ERK2 (42 kDa). This resolution allows similar proteins detected by cross-reactive antibodies in a single track. We demonstrate detection of 11 proteins from 9 injections from a single Jurkat cell lysate sample consisting of 400 ng of total protein using this procedure. Thus, multiplexed Western blots are possible without cumbersome stripping and reprobing steps. PMID:27270033

  7. A Continuous-Flow Polymerase Chain Reaction Microchip With Regional Velocity Control

    PubMed Central

    Li, Shifeng; Fozdar, David Y.; Ali, Mehnaaz F.; Li, Hao; Shao, Dongbing; Vykoukal, Daynene M.; Vykoukal, Jody; Floriano, Pierre N.; Olsen, Michael; McDevitt, John T.; Gascoyne, Peter R.C.; Chen, Shaochen

    2009-01-01

    This paper presents a continuous-flow polymerase chain reaction (PCR) microchip with a serpentine microchannel of varying width for “regional velocity control.” Varying the channel width by incorporating expanding and contracting conduits made it possible to control DNA sample velocities for the optimization of the exposure times of the sample to each temperature phase while minimizing the transitional periods during temperature transitions. A finite element analysis (FEA) and semi-analytical heat transfer model was used to determine the distances between the three heating assemblies that are responsible for creating the denaturation (96 °C), hybridization (60 °C), and extension (72 °C) temperature zones within the microchip. Predictions from the thermal FEA and semi-analytical model were compared with temperature measurements obtained from an infrared (IR) camera. Flow-field FEAs were also performed to predict the velocity distributions in the regions of the expanding and contracting conduits to study the effects of the microchannel geometry on flow recirculation and bubble nucleation. The flow fields were empirically studied using micro particle image velocimetry (μ-PIV) to validate the flow-field FEA’s and to determine experimental velocities in each of the regions of different width. Successful amplification of a 90 base pair (bp) bacillus anthracis DNA fragment was achieved. PMID:19829760

  8. Portable Technology Comes of Age

    ERIC Educational Resources Information Center

    Wangemann, Paul; Lewis, Nina; Squires, David A.

    2003-01-01

    The PDA was originally conceived of as a portable handheld electronic device that provided a user with a tool to organize his or her life through easy access to a personal calendar, daily planner, and address book. Over the years, these devices have expanded to include many new functions, which have helped more applications in diverse fields. This…

  9. A novel capillary electrophoresis microchip with amperometric detection using a Prussian blue-modified indium tin oxide electrode

    NASA Astrophysics Data System (ADS)

    Kim, Ju-Ho; Kang, C. J.; Kim, Yong-Sang

    2005-03-01

    A novel approach to construct a disposable capillary electrophoresis microchip is proposed. The electrocatalytic oxidation of dopamine at a Prussian blue (PB)-modified indium tin oxide (ITO) electrode was described and the amperometric detection of dopamine was then investigated. The PB film on ITO electrode was electrodeposited using FeCl3 and K3Fe(CN)6 mixed solution. Our results indicated that PB film was uniform, smooth, and defect-free. The CE-chip has been tested successfully by detecting dopamine and catechol within a very short time of around 80 sec using an electric field of 60 V/cm. The results also showed that dopamine and catechol mixtures were separated efficiently and rapidly. The microsystems gave a very good reproducibility for peak height and separation time. This microchip is cost effective and adequate for a disposable sensor.

  10. Lab-on-a-robot: integrated microchip CE, power supply, electrochemical detector, wireless unit, and mobile platform.

    PubMed

    Berg, Christopher; Valdez, David C; Bergeron, Phillip; Mora, Maria F; Garcia, Carlos D; Ayon, Arturo

    2008-12-01

    In this paper, the fabrication of a wireless mobile unit containing an electrochemical detection module and a 3-channel high-voltage power supply (HVPS) designed for microchip CE is described. The presented device consists of wireless global positioning system controlled robotics, an electrochemical detector utilizing signal conditioning analog circuitry and a digital feedback range controller, a HVPS, an air pump, and a CE microchip. A graphical user interface (LabVIEW) was also designed to communicate wirelessly with the device, from a distant personal computer communication port. The entire device is integrated and controlled by digital hardware implemented on a field programmable gate array development board. This lab-on-a-robot is able to navigate to a global position location, acquire an air sample, perform the analysis (injection, separation, and detection), and send the data (electropherogram) to a remote station without exposing the analyst to the testing environment. PMID:19130571

  11. Assessment of Preparation of Samples Under the Field Conditions and a Portable Real-Time RT-PCR Assay for the Rapid On-Site Detection of Newcastle Disease Virus.

    PubMed

    Liu, L; Benyeda, Z; Zohari, S; Yacoub, A; Isaksson, M; Leijon, M; LeBlanc, N; Benyeda, J; Belák, S

    2016-04-01

    Newcastle disease virus (NDV), also known as virulent forms of avian paramyxovirus serotype 1 (AMPV-1), is the causative agent of Newcastle disease affecting many species of birds and causing heavy losses to the poultry industry worldwide. Early, rapid and sensitive detection of the viruses or the viral nucleic acids is very important for disease diagnosis and control. This study aimed to evaluate sample preparation under field conditions and the application of a real-time RT-PCR method in the portable T-COR4 platform for the rapid, on-site detection of NDV on a farm. In the laboratory setting, the portable real-time RT-PCR assay had a similar performance compared with that obtained with a larger, stationary Rotor Gene real-time thermocycler. In the field conditions, viral nucleic acids were manually extracted just outside of animal units with minimal equipment and real-time RT-PCR detection was performed with the portable thermocycler T-COR4 placed in a nearby room. The portable assay at the farm detected viral RNA in 15 samples and reached an agreement of 83% (39/47) when the same RNA preparations were tested in the Rotor Gene thermocycler under the laboratory setting. The results demonstrated the feasibility of performing field detection but also the need to improve and further simplify sample preparation procedures. PMID:25209697

  12. Portable MRI

    SciTech Connect

    Espy, Michelle A.

    2012-06-29

    This project proposes to: (1) provide the power of MRI to situations where it presently isn't available; (2) perform the engineering required to move from lab to a functional prototype; and (3) leverage significant existing infrastructure and capability in ultra-low field MRI. The reasons for doing this: (1) MRI is the most powerful tool for imaging soft-tissue (e.g. brain); (2) Billions don't have access due to cost or safety issues; (3) metal will heat/move in high magnetic fields; (4) Millions of cases of traumatic brain injury in US alone; (5) even more of non-traumatic brain injury; (6) (e.g. stroke, infection, chemical exposure); (7) Need for early diagnostic; (8) 'Signature' wound of recent conflicts; (9) 22% of injuries; (10) Implications for post-traumatic stress disorder; and (11) chronic traumatic encephalopathy.

  13. Quantification of trace arsenic in soils by field-portable X-ray fluorescence spectrometry: considerations for sample preparation and measurement conditions.

    PubMed

    Parsons, Chris; Margui Grabulosa, Eva; Pili, Eric; Floor, Geerke H; Roman-Ross, Gabriela; Charlet, Laurent

    2013-11-15

    Recent technological improvements have led to the widespread adoption of field portable energy dispersive X-ray fluorescence (FP-XRF) by governmental agencies, environmental consultancies and research institutions. FP-XRF units often include analysis modes specifically designed for the quantification of trace elements in soils. Using these modes, X-ray tube based FP-XRF units can offer almost "point and shoot" ease of use and results comparable to those of laboratory based instruments. Nevertheless, FP-XRF analysis is sensitive to spectral interferences as well as physical and chemical matrix effects which can result in decreased precision and accuracy. In this study, an X-ray tube-based FP-XRF analyser was used to determine trace (low ppm) concentrations of As in a floodplain soil. The effect of different sample preparation and analysis conditions on precision and accuracy were systematically evaluated. We propose strategies to minimise sources of error and maximise data precision and accuracy, achieving in situ limits of detection and precision of 6.8 ppm and 14.4%RSD, respectively for arsenic. We demonstrate that soil moisture, even in relatively dry soils, dramatically affects analytical performance with a signal loss of 37% recorded for arsenic at 20 wt% soil moisture relative to dry soil. We also highlight the importance of the use of certified reference materials and independent measurement methods to ensure accurate correction of field values. PMID:22819961

  14. A portable x-ray source with a nanostructured Pt-coated silicon field emission cathode for absorption imaging of low-Z materials

    NASA Astrophysics Data System (ADS)

    Basu, Anirban; Swanwick, Michael E.; Fomani, Arash A.; Velásquez-García, Luis Fernando

    2015-06-01

    We report the design, fabrication, and characterization of a portable x-ray generator for imaging of low-atomic number materials such as biological soft tissue. The system uses a self-aligned, gated, Pt-coated silicon field emitter cathode with two arrays of 62 500 nano-sharp tips arranged in a square grid with 10 μm emitter pitch, and a natural convection-cooled reflection anode composed of a Cu bar coated with a thin Mo film. Characterization of the field emitter array demonstrated continuous emission of 1 mA electron current (16 mA cm  -  2) with  >95% current transmission at a 150 V gate-emitter bias voltage for over 20 h with no degradation. The emission of the x-ray source was characterized across a range of anode bias voltages to maximize the fraction of photons from the characteristic K-shell peaks of the Mo film to produce a quasi-monochromatic photon beam, which enables capturing high-contrast images of low-atomic number materials. The x-ray source operating at the optimum anode bias voltage, i.e. 35 kV, was used to image ex vivo and nonorganic samples in x-ray fluoroscopic mode while varying the tube current; the images resolve feature sizes as small as ~160 µm.

  15. A micro surface tension alveolus (MISTA) in a glass microchip.

    PubMed

    Peng, Xing Yue Larry; Wu, Lan-Qin; Zhang, Na; Hu, Li-Dan; Li, You; Li, Wen-Juan; Li, Dong-Hui; Huang, Ping; Zhou, Yong-Liang

    2009-11-21

    We have designed a non-membrane micro surface tension alveolus (MISTA) in a glass microchip for direct gas exchange and micro gradient control. Hemoglobin (Hb) in the liquid phase indicates the rapid gas gradient changes of O2 and CO2 shifted by the difference in pressure between the liquid and the gas. PMID:19865732

  16. Microchip-based Devices for Molecular Diagnosis of Genetic Diseases.

    PubMed

    Cheng; Fortina; Surrey; Kricka; Wilding

    1996-09-01

    Microchips, constructed with a variety of microfabrication technologies (photolithography, micropatterning, microjet printing, light-directed chemical synthesis, laser stereochemical etching, and microcontact printing) are being applied to molecular biology. The new microchip-based analytical devices promise to solve the analytical problems faced by many molecular biologists (eg, contamination, low throughput, and high cost). They may revolutionize molecular biology and its application in clinical medicine, forensic science, and environmental monitoring. A typical biochemical analysis involves three main steps: (1) sample preparation, (2) biochemical reaction, and (3) detection (either separation or hybridization may be involved) accompanied by data acquisition and interpretation. The construction of a miniturized analyzer will therefore necessarily entail the miniaturization and integration of all three of these processes. The literature related to the miniaturization of these three processes indicates that the greatest emphasis so far is on the investigation and development of methods for the detection of nucleic acid, followed by the optimization of a biochemical reaction, such as the polymerase chain reaction. The first step involving sample preparation has received little attention. In this review the state of the art of, microchip-based, miniaturized analytical processes (eg, sample preparation, biochemical reaction, and detection of products) are outlined and the applications of microchip-based devices in the molecular diagnosis of genetic diseases are discussed. PMID:10462559

  17. Integrated Micro-Chip Amino Acid Chirality Detector for MOD

    NASA Technical Reports Server (NTRS)

    Glavin, D. P.; Bada, J. L.; Botta, O.; Kminek, G.; Grunthaner, F.; Mathies, R.

    2001-01-01

    Integration of a micro-chip capillary electrophoresis analyzer with a sublimation-based extraction technique, as used in the Mars Organic Detector (MOD), for the in-situ detection of amino acids and their enantiomers on solar system bodies. Additional information is contained in the original extended abstract.

  18. Implantable microchip: the futuristic controlled drug delivery system.

    PubMed

    Sutradhar, Kumar Bishwajit; Sumi, Chandra Datta

    2016-01-01

    There is no doubt that controlled and pulsatile drug delivery system is an important challenge in medicine over the conventional drug delivery system in case of therapeutic efficacy. However, the conventional drug delivery systems often offer a limited by their inability to drug delivery which consists of systemic toxicity, narrow therapeutic window, complex dosing schedule for long term treatment etc. Therefore, there has been a search for the drug delivery system that exhibit broad enhancing activity for more drugs with less complication. More recently, some elegant study has noted that, a new type of micro-electrochemical system or MEMS-based drug delivery systems called microchip has been improved to overcome the problems related to conventional drug delivery. Moreover, micro-fabrication technology has enabled to develop the implantable controlled released microchip devices with improved drug administration and patient compliance. In this article, we have presented an overview of the investigations on the feasibility and application of microchip as an advanced drug delivery system. Commercial manufacturing materials and methods, related other research works and current advancement of the microchips for controlled drug delivery have also been summarized. PMID:24758139

  19. Multichannel microchip electrophoresis device fabricated in polycarbonate with an integrated contact conductivity sensor array.

    PubMed

    Shadpour, Hamed; Hupert, Mateusz L; Patterson, Donald; Liu, Changgeng; Galloway, Michelle; Stryjewski, Wieslaw; Goettert, Jost; Soper, Steven A

    2007-02-01

    A 16-channel microfluidic chip with an integrated contact conductivity sensor array is presented. The microfluidic network consisted of 16 separation channels that were hot-embossed into polycarbonate (PC) using a high-precision micromilled metal master. All channels were 40 microm deep and 60 microm wide with an effective separation length of 40 mm. A gold (Au) sensor array was lithographically patterned onto a PC cover plate and assembled to the fluidic chip via thermal bonding in such a way that a pair of Au microelectrodes (60 microm wide with a 5 microm spacing) was incorporated into each of the 16 channels and served as independent contact conductivity detectors. The spacing between the corresponding fluidic reservoirs for each separation channel was set to 9 mm, which allowed for loading samples and buffers to all 40 reservoirs situated on the microchip in only five pipetting steps using an 8-channel pipettor. A printed circuit board (PCB) with platinum (Pt) wires was used to distribute the electrophoresis high-voltage to all reservoirs situated on the fluidic chip. Another PCB was used for collecting the conductivity signals from the patterned Au microelectrodes. The device performance was evaluated using microchip capillary zone electrophoresis (mu-CZE) of amino acid, peptide, and protein mixtures as well as oligonucleotides that were separated via microchip capillary electrochromatography (mu-CEC). The separations were performed with an electric field (E) of 90 V/cm and were completed in less than 4 min in all cases. The conductivity detection was carried out using a bipolar pulse voltage waveform with a pulse amplitude of +/-0.6 V and a frequency of 6.0 kHz. The conductivity sensor array concentration limit of detection (SNR = 3) was determined to be 7.1 microM for alanine. The separation efficiency was found to be 6.4 x 10(4), 2.0 x 10(3), 4.8 x 10(3), and 3.4 x 10(2) plates for the mu-CEC of the oligonucleotides and mu-CZE of the amino acids, peptides

  20. Portable data acquisition system

    SciTech Connect

    Bowers, J; Rogers, H

    1999-05-03

    Lawrence Livermore National Laboratory (LLNL) has developed a Portable Data Acquisition (DAQ) System that is basically a laboratory-scale of Program Logic Control (PLC). This DAQ system can obtain signals from numerous sensors (e.g., pH, level, pressure, flow meters), open and close valves, and turn on and off pumps. The data can then be saved on a spreadsheet or displayed as a graph/indicator in real-time on a computer screen. The whole DAQ system was designed to be portable so that it could sit on a bench top during laboratory-scale treatability studies, or moved out into the field during larger studies. This DAQ system is also fairly simple to use. All that is required is some working knowledge of LabVIEW 4.1, and how to properly wire the process equipment. The DAQ system has been used during treatability studies on cesium precipitation, controlled hydrolysis of water- reactive wastes, and other waste treatment studies that enable LLNL to comply with the Federal Facility Compliance Act (FFCAct). Improved data acquisition allows the study to be better monitored, and therefore better controlled, and can be used to determine the results of the treatment study more effectively. This also contributes to the design of larger treatment processes.

  1. Portable waveguide display system with a large field of view by integrating freeform elements and volume holograms

    PubMed Central

    Han, Jian; Liu, Juan; Yao, Xincheng; Wang, Yongtian

    2015-01-01

    A compact waveguide display system integrating freeform elements and volume holograms is presented here for the first time. The use of freeform elements can broaden the field of view, which limits the applications of a holographic waveguide. An optimized system can achieve a diagonal field of view of 45° when the thickness of the waveguide planar is 3mm. Freeform-elements in-coupler and the volume holograms out-coupler were designed in detail in our study, and the influence of grating configurations on diffraction efficiency was analyzed thoroughly. The off-axis aberrations were well compensated by the in-coupler and the diffraction efficiency of the optimized waveguide display system could reach 87.57%. With integrated design, stability and reliability of this monochromatic display system were achieved and the alignment of the system was easily controlled by the record of the volume holograms, which makes mass production possible. PMID:25836207

  2. A portable automated system for trace gas sampling in the field and stable isotope analysis in the laboratory.

    PubMed

    Theis, Daniel E; Saurer, Matthias; Blum, Herbert; Frossard, Emmanuel; Siegwolf, Rolf T W

    2004-01-01

    A computer-controllable mobile system is presented which enables the automatic collection of 33 air samples in the field and the subsequent analysis for delta13C and delta18O stable isotope ratios of a carbon-containing trace gas in the laboratory, e.g. CO2, CO or CH4. The system includes a manifold gas source input for profile sampling and an infrared gas analyzer for in situ CO2 concentration measurements. Measurements of delta13C and delta18O of all 33 samples can run unattended and take less than six hours for CO2. Laboratory tests with three gases (compressed air with different pCO2 and stable isotope compositions) showed a measurement precision of 0.03 per thousand for delta13C and 0.02 per thousand for delta18O of CO2 (standard error (SE), n = 11). A field test of our system, in which 66 air samples were collected within a 24-hour period above grassland, showed a correlation of 0.99 (r2) between the inverse of pCO2 and delta13C of CO2. Storage of samples until analysis is possible for about 1 week; this can be an important factor for sampling in remote areas. A wider range of applications in the field is open with our system, since sampling and analysis of CO and CH4 for stable isotope composition is also possible. Samples of compressed air had a measurement precision (SE, n = 33) of 0.03 per thousand for delta13C and of 0.04 per thousand for delta18O on CO and of 0.07 per thousand for delta13C on CH4. Our system should therefore further facilitate research of trace gases in the context of the carbon cycle in the field, and opens many other possible applications with carbon- and possibly non-carbon-containing trace gases. PMID:15317047

  3. Feasibility Study on a Portable Field Pest Classification System Design Based on DSP and 3G Wireless Communication Technology

    PubMed Central

    Han, Ruizhen; He, Yong; Liu, Fei

    2012-01-01

    This paper presents a feasibility study on a real-time in field pest classification system design based on Blackfin DSP and 3G wireless communication technology. This prototype system is composed of remote on-line classification platform (ROCP), which uses a digital signal processor (DSP) as a core CPU, and a host control platform (HCP). The ROCP is in charge of acquiring the pest image, extracting image features and detecting the class of pest using an Artificial Neural Network (ANN) classifier. It sends the image data, which is encoded using JPEG 2000 in DSP, to the HCP through the 3G network at the same time for further identification. The image transmission and communication are accomplished using 3G technology. Our system transmits the data via a commercial base station. The system can work properly based on the effective coverage of base stations, no matter the distance from the ROCP to the HCP. In the HCP, the image data is decoded and the pest image displayed in real-time for further identification. Authentication and performance tests of the prototype system were conducted. The authentication test showed that the image data were transmitted correctly. Based on the performance test results on six classes of pests, the average accuracy is 82%. Considering the different live pests’ pose and different field lighting conditions, the result is satisfactory. The proposed technique is well suited for implementation in field pest classification on-line for precision agriculture. PMID:22736996

  4. Feasibility study on a portable field pest classification system design based on DSP and 3G wireless communication technology.

    PubMed

    Han, Ruizhen; He, Yong; Liu, Fei

    2012-01-01

    This paper presents a feasibility study on a real-time in field pest classification system design based on Blackfin DSP and 3G wireless communication technology. This prototype system is composed of remote on-line classification platform (ROCP), which uses a digital signal processor (DSP) as a core CPU, and a host control platform (HCP). The ROCP is in charge of acquiring the pest image, extracting image features and detecting the class of pest using an Artificial Neural Network (ANN) classifier. It sends the image data, which is encoded using JPEG 2000 in DSP, to the HCP through the 3G network at the same time for further identification. The image transmission and communication are accomplished using 3G technology. Our system transmits the data via a commercial base station. The system can work properly based on the effective coverage of base stations, no matter the distance from the ROCP to the HCP. In the HCP, the image data is decoded and the pest image displayed in real-time for further identification. Authentication and performance tests of the prototype system were conducted. The authentication test showed that the image data were transmitted correctly. Based on the performance test results on six classes of pests, the average accuracy is 82%. Considering the different live pests' pose and different field lighting conditions, the result is satisfactory. The proposed technique is well suited for implementation in field pest classification on-line for precision agriculture. PMID:22736996

  5. A field-portable membrane introduction mass spectrometer for real-time quantitation and spatial mapping of atmospheric and aqueous contaminants.

    PubMed

    Bell, Ryan J; Davey, Nicholas G; Martinsen, Morten; Collin-Hansen, Christian; Krogh, Erik T; Gill, Christopher G

    2015-02-01

    Environmental concentrations of volatile and semivolatile organic compounds (VOC/SVOCs) can vary dramatically in time and space under the influence of environmental conditions. In an industrial setting, multiple point and diffuse sources can contribute to fugitive emissions. Assessments and monitoring programs using periodic grab sampling provide limited information, often with delay times of days or weeks. We report the development and use of a novel, portable membrane introduction mass spectrometry (MIMS) system capable of resolving and quantifying VOC and SVOCs with high spatial and temporal resolution, in the field, in real-time. An electron impact ionization cylindrical ion trap mass spectrometer modified with a capillary hollow fiber polydimethylsiloxane membrane interface was used for continuous air and water sampling. Tandem mass spectrometry and selected ion monitoring scans performed in series allowed for the quantitation of target analytes, and full scan mode was used to survey for unexpected analytes. Predeployment and in-field external calibrations were combined with a continuously infused internal standard to enable real-time quantitation and monitor instrument performance. The system was operated in a moving vehicle with internet-linked data processing and storage. Software development to integrate MIMS and relevant meta-data for visualization and geospatial presentation in Google Earth is presented. Continuous quantitation enables the capture of transient events that may be missed or under-represented by traditional grab sampling strategies. Real-time geospatial maps of chemical concentration enable adaptive sampling and in-field decision support. Sample datasets presented in this work were collected in Northern Alberta in 2010-2012. PMID:25477082

  6. A Field-Portable Membrane Introduction Mass Spectrometer for Real-time Quantitation and Spatial Mapping of Atmospheric and Aqueous Contaminants

    NASA Astrophysics Data System (ADS)

    Bell, Ryan J.; Davey, Nicholas G.; Martinsen, Morten; Collin-Hansen, Christian; Krogh, Erik T.; Gill, Christopher G.

    2015-02-01

    Environmental concentrations of volatile and semivolatile organic compounds (VOC/SVOCs) can vary dramatically in time and space under the influence of environmental conditions. In an industrial setting, multiple point and diffuse sources can contribute to fugitive emissions. Assessments and monitoring programs using periodic grab sampling provide limited information, often with delay times of days or weeks. We report the development and use of a novel, portable membrane introduction mass spectrometry (MIMS) system capable of resolving and quantifying VOC and SVOCs with high spatial and temporal resolution, in the field, in real-time. An electron impact ionization cylindrical ion trap mass spectrometer modified with a capillary hollow fiber polydimethylsiloxane membrane interface was used for continuous air and water sampling. Tandem mass spectrometry and selected ion monitoring scans performed in series allowed for the quantitation of target analytes, and full scan mode was used to survey for unexpected analytes. Predeployment and in-field external calibrations were combined with a continuously infused internal standard to enable real-time quantitation and monitor instrument performance. The system was operated in a moving vehicle with internet-linked data processing and storage. Software development to integrate MIMS and relevant meta-data for visualization and geospatial presentation in Google Earth is presented. Continuous quantitation enables the capture of transient events that may be missed or under-represented by traditional grab sampling strategies. Real-time geospatial maps of chemical concentration enable adaptive sampling and in-field decision support. Sample datasets presented in this work were collected in Northern Alberta in 2010-2012.

  7. Application of portable X-ray fluorescence (pXRF) for heavy metal analysis of soils in crop fields near abandoned mine sites.

    PubMed

    Jang, Min

    2010-06-01

    To get representative soil samples, a sampling method was verified for crop fields in the vicinity of abandoned mine sites. Application of appropriate sampling or analytical methods is very important as it affects the costs, time, and accuracy of the refined investigation of soil contamination. Two-time sampling for each crop field was conducted to verify the reproducibility of a zigzag method for soil sampling. The soil analysis using a portable X-ray fluorescence (pXRF) device was conducted to measure concentrations of metal species in soils, and its results were compared to the extracted concentrations by the Korean Standard Test (KST) for soils. As a result, the determination coefficient (R (2)) of linear regression analysis for data obtained by ex situ precise measurement or in situ field screening using pXRF was closely related with the ratio of the extracted concentration by KST to interference-free detection limits (IFDL) of pXRF (designated as KST/IFDL). As the specific metal species had a higher ratio of KST/IFDL, its R (2) was even higher in the field screening tests. However, the slopes of linear regression analysis for most metal species extracted by aqua-regia were close to 1.0 so that extracted concentrations by aqua-regia were similar to the analytical values obtained by pXRF, whereas extraction using a weak acid (0.1 M HCl) had different slopes for soils contaminated with different ranges of concentrations of metal species. Especially Zn showed not only high ratios of KST/IFDL because of aqua regia extraction, but also high determination coefficients. Because of its simple, rapid, and accurate capacities for metal analysis, the pXRF analysis showed high applicability in ex situ precise measurements or in situ field screening of metal analysis. In terms of applicability for regulation, especially in situ pXRF field screening with the zigzag method could be effectively applied to achieve an economical survey by determining hot spots or non

  8. Recent advances in enhancing the sensitivity of electrophoresis and electrochromatography in capillaries and microchips (2012-2014).

    PubMed

    Breadmore, Michael C; Tubaon, Ria Marni; Shallan, Aliaa I; Phung, Sui Ching; Abdul Keyon, Aemi S; Gstoettenmayr, Daniel; Prapatpong, Pornpan; Alhusban, Ala A; Ranjbar, Leila; See, Hong Heng; Dawod, Mohamed; Quirino, Joselito P

    2015-01-01

    One of the most cited limitations of capillary (and microchip) electrophoresis is the poor sensitivity. This review continues to update this series of biannual reviews, first published in Electrophoresis in 2007, on developments in the field of on-line/in-line concentration methods, covering the period July 2012-July 2014. It includes developments in the field of stacking, covering all methods from field-amplified sample stacking and large-volume sample stacking, through to ITP, dynamic pH junction, and sweeping. Attention is also given to on-line or in-line extraction methods that have been used for electrophoresis. PMID:25330057

  9. Occupational safety and health implications of the millennium bug: embedded microchips.

    PubMed

    Anderson, V P

    1999-06-01

    Personnel working in the field of environmental safety and health need to be aware that their exposure monitoring equipment as well as various laboratory and work site test and safety systems are candidates for a Y2K problem. The focus here is on the Y2K problem associated with embedded microchips contained in measurement and analytical equipment with internal date functions. With the turn of the century, the year 99 (i.e., 1999) will turn to 00 (i.e., 2000). The expectation is that the date change over will result in some form of malfunction or failure. The media has provided us with basic information on Y2K, particularly as it impacts computer hardware and software users. We know less, however, about how the Y2K issue may affect date-sensitive embedded microchips in safety and health equipment. To manage this problem, we propose a familiar public health strategy involving risk assessment (surveillance and prioritizing) and risk management (intervention/contingency planning). Success in dealing with Y2K-embedded chips will be increased by engaging managers, operators, employee-management safety teams, safety professionals and their organizations, trade associations, local, state and federal regulatory agencies, and the public, where appropriate. A list of Internet sites is provided with information on managing problems arising from date-dependent embedded chips and the Y2K problem. PMID:10429729

  10. Portable multiplicity counter

    DOEpatents

    Newell, Matthew R.; Jones, David Carl

    2009-09-01

    A portable multiplicity counter has signal input circuitry, processing circuitry and a user/computer interface disposed in a housing. The processing circuitry, which can comprise a microcontroller integrated circuit operably coupled to shift register circuitry implemented in a field programmable gate array, is configured to be operable via the user/computer interface to count input signal pluses receivable at said signal input circuitry and record time correlations thereof in a total counting mode, coincidence counting mode and/or a multiplicity counting mode. The user/computer interface can be for example an LCD display/keypad and/or a USB interface. The counter can include a battery pack for powering the counter and low/high voltage power supplies for biasing external detectors so that the counter can be configured as a hand-held device for counting neutron events.

  11. Neutron Damage in Mechanically-Cooled High-Purity Germanium Detectors for Field-Portable Prompt Gamma Neutron Activation Analysis (PGNAA) Systems

    SciTech Connect

    E.H. Seabury; C.J. Wharton; A.J. Caffrey; J.B. McCabe; C. DeW. Van Siclen

    2013-10-01

    Prompt Gamma Neutron Activation (PGNAA) systems require the use of a gamma-ray spectrometer to record the gamma-ray spectrum of an object under test and allow the determination of the object’s composition. Field-portable systems, such as Idaho National Laboratory’s PINS system, have used standard liquid-nitrogen-cooled high-purity germanium (HPGe) detectors to perform this function. These detectors have performed very well in the past, but the requirement of liquid-nitrogen cooling limits their use to areas where liquid nitrogen is readily available or produced on-site. Also, having a relatively large volume of liquid nitrogen close to the detector can impact some assessments, possibly leading to a false detection of explosives or other nitrogen-containing chemical. Use of a mechanically-cooled HPGe detector is therefore very attractive for PGNAA applications where nitrogen detection is critical or where liquid-nitrogen logistics are problematic. Mechanically-cooled HPGe detectors constructed from p-type germanium, such as Ortec’s trans-SPEC, have been commercially available for several years. In order to assess whether these detectors would be suitable for use in a fielded PGNAA system, Idaho National Laboratory (INL) has been performing a number of tests of the resistance of mechanically-cooled HPGe detectors to neutron damage. These detectors have been standard commercially-available p-type HPGe detectors as well as prototype n-type HPGe detectors. These tests compare the performance of these different detector types as a function of crystal temperature and incident neutron fluence on the crystal.

  12. Field portable detection of VOCs using a SAW/GC system. Final report, June 21, 1994--September 21, 1996

    SciTech Connect

    Chang, F.; Staples, E.J.

    1998-06-01

    This report describes research on a fast GC vapor analysis system which uses a new type of Surface Acoustic Wave detector technology to characterize organic contamination in soil and groundwater. The project was sponsored by the Department of Energy, Morgantown Energy Technology Center, whose mission, in addition to other goals, is the development of tools and methods for characterization, remediation, and monitoring of underground environmental conditions. The research tasks were to demonstrate detectability and specificity of a Surface Acoustic Wave Gas Chromatograph (SAW/GC) to a representative number of VOC materials followed by field demonstrations of the new technology at a DOE site. All tasks of the project were successfully carried out and a fast vapor analysis system based upon a new type of Surface Acoustic Wave detector technology was developed. The prototype analyzer has the ability to characterize organic contamination in soil and groundwater at the part per billion level in less than 10 seconds. The detector is unique because it utilized an uncoated quartz crystal, contrary to current developments of using coated crystals.

  13. Portable Instrumented Communication Library

    Energy Science and Technology Software Center (ESTSC)

    1993-06-10

    PICL is a subroutine library that can be used to develop parallel programs that are portable across several distributed-memory multiprocessors. PICL provides a portable syntax for key communication primitives and related system calls. It also provides portable routines to perform certain widely-used, high-level communication operations, such as global broadcast and global summation. PICL provides execution tracing that can be used to monitor performance or to aid in debugging.

  14. Microchip-based detection of magnetically labeled cancer biomarkers☆

    PubMed Central

    Muluneh, Melaku; Issadore, David

    2015-01-01

    Micro-magnetic sensing and actuation have emerged as powerful tools for the diagnosis and monitoring of cancer. These technologies can be miniaturized and integrated onto compact, microfluidic platforms, enabling molecular diagnostics to be performed in practical clinical settings. Molecular targets tagged with magnetic nanoparticles can be detected with high sensitivity directly in unprocessed clinical samples (e.g. blood, sputum) due to the inherently negligible magnetic susceptibility of biological material. As a result, magnetic microchip-based diagnostics have been applied with great success to the isolation and detection of rare cells and the measurement of sparse soluble proteins. In this paper, we review recent advances in microchip-based detection of magnetically labeled biomarkers and their translation to clinical applications in cancer. PMID:24099664

  15. 1.6 μm microchip laser

    NASA Astrophysics Data System (ADS)

    Šulc, J.; Jelínková, H.; Ryba-Romanowski, W.; Lukasiewicz, T.

    2009-03-01

    Properties of new pulsed-diode-pumped Er:YVO4 and Er:YVO4+CaO microchip lasers working in an ``eye-safe'' spectral region were investigated. As a pumping source, a fiber coupled (core diameter-200 μm) laser diode emitting radiation at wavelength 976 nm was used. The laser diode was operating in pulsed regime with 3 ms pulse width, and 20 Hz repetition rate. The result obtained was 175 mW and 152 mW output peak power for the Er:YVO4 and Er:YVO4+CaO lasers, respectively. The maximal efficiency with respect to the absorbed power was ~ 5%. The laser emission for Er:YVO4 microchip was observed in detail in the range 1593 nm to 1604 nm with respect to pumping. However, for Er:YVO4+CaO crystal only 1604 nm was generated.

  16. Design and Fabrication of a PDMS Microchip Based Immunoassay

    SciTech Connect

    Shao, Guocheng; Wang, Wanjun; Wang, Jun; Lin, Yuehe

    2010-07-01

    In this paper, we describe the design and fabrication process of a polydimethylsiloxane (PDMS) microchip for on-chip multiplex immunoassay application. The microchip consists of a PDMS microfluidic channel layer and a micro pneumatic valve control layer. By selectively pressurizing the pneumatic microvalves, immuno reagents were controlled to flow and react in certain fluidic channel sites. Cross contamination was prevented by tightly closed valves. Our design was proposed to utilize PDMS micro channel surface as the solid phase immunoassay substrate and simultaneously detect four targets antigens on chip. Experiment result shows that 20psi valve pressure is sufficient to tightly close a 200µm wide micro channel with flow rate up to 20µl/min.

  17. Analysis of Twenty-Two Performance Properties of Diesel, Gasoline, and Jet Fuels Using a Field-Portable Near-Infrared (NIR) Analyzer.

    PubMed

    Brouillette, Carl; Smith, Wayne; Shende, Chetan; Gladding, Zack; Farquharson, Stuart; Morris, Robert E; Cramer, Jeffrey A; Schmitigal, Joel

    2016-05-01

    The change in custody of fuel shipments at depots, pipelines, and ports could benefit from an analyzer that could rapidly verify that properties are within specifications. To meet this need, the design requirements for a fuel analyzer based on near-infrared (NIR) spectroscopy, such as spectral region and resolution, were examined. It was found that the 1000 to 1600 nm region, containing the second CH overtone and combination vibrational modes of hydrocarbons, provided the best near-infrared to fuel property correlations when path length was taken into account, whereas 4 cm(-1) resolution provided only a modest improvement compared to 16 cm(-1) resolution when four or more latent variables were used. Based on these results, a field-portable near-infrared fuel analyzer was built that employed an incandescent light source, sample compartment optics to hold 2 mL glass sample vials with ∼1 cm path length, a transmission grating, and a 256 channel InGaAs detector that measured the above stated wavelength range with 5-6 nm (∼32 cm(-1)) resolution. The analyzer produced high signal-to-noise ratio (SNR) spectra of samples in 5 s. Twenty-two property correlation models were developed for diesel, gasoline, and jet fuels with root mean squared error of correlation - cross-validated values that compared favorably to corresponding ASTM reproducibility values. The standard deviations of predicted properties for repeat measurements at 4, 24, and 38℃ were often better than ASTM documented repeatability values. The analyzer and diesel property models were tested by measuring seven diesel samples at a local ASTM certification laboratory. The standard deviations between the analyzer determined values and the ASTM measured values for these samples were generally better than the model root mean squared error of correlation-cross-validated values for each property. PMID:27006025

  18. Metal contamination at recreational boatyards linked to the use of antifouling paints-investigation of soil and sediment with a field portable XRF.

    PubMed

    Lagerström, Maria; Norling, Matz; Eklund, Britta

    2016-05-01

    The application of a field portable X-ray fluorescence spectrometer (FPXRF) to measure Cu, Zn, and Pb in soil and sediments at recreational boatyards by Lake Mälaren in Sweden was investigated. Confirmatory chemical analysis on freeze-dried samples shows that, ex situ, the FPXRF produces definitive level data for Cu and Zn and quantitative screening data for Pb, according to USEPA criteria for data quality. Good agreement was also found between the ex situ measurements and the in situ screening. At each of the two studied boatyards, >40 in situ soil measurements were carried out. Statistical differences in soil concentration based on land use were consequently found: the areas used for boat storage and maintenance were significantly higher in Cu and Zn than the areas used for car parking and transportation. The metal pollution in the boat storage areas is therefore shown to be directly linked to hull maintenance activities during which metal-containing antifouling paint particles are shed, end up on the ground, and consequently pollute the soil. In the boat storage areas, the Cu and Zn concentrations often exceeded the national guideline values for soil. In this study, they were also shown to increase with increasing age of the boatyard operation. Pb soil concentrations were only elevated at a few measurement points, reflecting the phasing out of Pb compounds from antifouling products over the past 2 decades. In the surface sediments, concentrations of Cu and Zn were 2-3 times higher compared to deeper levels. No decrease in metal concentration with time was found in the sediments, indicating that boat owners are not complying with the ban of biocide-containing paints in freshwater introduced over 20 years ago. PMID:26873824

  19. A new portable infrared laser spectrometer for field measurements of N2O and CH4 emissions at the air / land interface

    NASA Astrophysics Data System (ADS)

    Guimbaud, Christophe; Catoire, Valéry; Gogo, Sébastien; Robert, Claude; Laggoun-Defarge, Fatima; Nicoullaud, Bernard; Richard, Guy

    2010-05-01

    A new type of portable infra red spectrometer (SPIRIT : SPectromètre Infra-Rouge In situ Troposphérique) using a quantum cascade laser and a patented new long multipass optical cell has been set up for the simultaneous flux measurements of two Greenhouse Gases (GHG): nitrous oxide (N2O) and methane (CH4), at the air land interface. The basics of the instrument, the data derivation for trace gas concentration determination in the atmosphere, and the chamber method to derive emission fluxes of these GHG from lands are described. The analytical performances of SPIRIT are tested in two types of lands in Region Centre (France): (i) an anthropogenized sphagnum peatland (Laguette; Neuvy sur Barangeon) characterized by vascular plants invasion (ii) a sandy soil in the site of INRA-Orléans. The ability of SPIRIT to assess with precision spatial and temporal dependence emissions of these GHG in the field is demonstrated. In addition emission modes (diffusive episodes and bubbling events) can be observed and quantified due to the high frequency (1 Hz) of the concentration measured. SPIRIT adaptation for detailed process-oriented studies of GHG flux emissions is also demonstrated by the investigation of emission dependence as a function of biotic and abiotic parameters (including diurnal cycle sensibility and emission modes); processes of C exchanges between different compartments of the biota can be studied. Such investigations are required for a better understanding of the lands to atmosphere exchange mechanisms of GHG and for the prediction of feedbacks on GHG emissions in response to anthropogenic or climate change perturbations of terrestrial ecosystems. Implications of SPIRIT in other air lands studies are also presented.

  20. Solid-state detector and optical system for microchip analyzers

    DOEpatents

    Mathies, Richard A.; Kamei, Toshihiro; Scherer, James R.; Street, Robert A.

    2005-03-15

    A miniaturized optical excitation and detector system is described for detecting fluorescently labeled analytes in electrophoretic microchips and microarrays. The system uses miniature integrated components, light collection, optical fluorescence filtering, and an amorphous a-Si:H detector for detection. The collection of light is accomplished with proximity gathering and/or a micro-lens system. Optical filtering is accomplished by integrated optical filters. Detection is accomplished utilizing a-Si:H detectors.

  1. A minimally invasive microchip for transdermal injection/sampling applications.

    PubMed

    Strambini, Lucanos M; Longo, Angela; Diligenti, Alessandro; Barillaro, Giuseppe

    2012-09-21

    The design, fabrication, and characterization of a minimally invasive silicon microchip for transdermal injection/sampling applications are reported and discussed. The microchip exploits an array of silicon-dioxide hollow microneedles with density of one million needles cm(-2) and lateral size of a few micrometers, protruding from the front-side chip surface for one hundred micrometers, to inject/draw fluids into/from the skin. The microneedles are in connection with independent reservoirs grooved on the back-side of the chip. Insertion experiments of the microchip in skin-like polymers (agarose hydrogels with concentrations of 2% and 4% wt) demonstrate that the microneedles successfully withstand penetration without breaking, despite their high density and small size, according to theoretical predictions. Operation of the microchip with different liquids of biomedical interest (deionized water, NaCl solution, and d-glucose solution) at different differential pressures, in the range 10-100 kPa, highlights that the flow-rate through the microneedles is linearly dependent on the pressure-drop, despite the small section area (about 13 μm(2)) of the microneedle bore, and can be finely controlled from a few ml min(-1) up to tens of ml min(-1). Evaporation (at room temperature) and acceleration (up to 80 g) losses through the microneedles are also investigated to quantify the ability of the chip in storing liquids (drug to be delivered or collected fluid) in the reservoir, and result to be of the order of 70 nl min(-1) and 1300 nl min(-1), respectively, at atmospheric pressure and room temperature. PMID:22773092

  2. Axial thermal gradients in microchip gas chromatography.

    PubMed

    Wang, Anzi; Hynynen, Sampo; Hawkins, Aaron R; Tolley, Samuel E; Tolley, H Dennis; Lee, Milton L

    2014-12-29

    Fabrication technologies for microelectromechanical systems (MEMS) allow miniaturization of conventional benchtop gas chromatography (GC) to portable, palm-sized microfabricated GC (μGC) devices, which are suitable for on-site chemical analysis and remote sensing. The separation performance of μGC systems, however, has not been on par with conventional GC. Column efficiency, peak symmetry and resolution are often compromised by column defects and non-ideal injections. The relatively low performance of μGC devices has impeded their further commercialization and broader application. In this work, the separation performance of μGC columns was improved by incorporating thermal gradient gas chromatography (TGGC). The analysis time was ∼20% shorter for TGGC separations compared to conventional temperature-programmed GC (TPGC) when a wide sample band was introduced into the column. Up to 50% reduction in peak tailing was observed for polar analytes, which improved their resolution. The signal-to-noise ratios (S/N) of late-eluting peaks were increased by 3-4 fold. The unique focusing effect of TGGC overcomes many of the previous shortcomings inherent in μGC analyses. PMID:25476685

  3. Nucleic Acid Isolation and Enrichment on a Microchip

    PubMed Central

    Kim, Jinho; Hilton, John P.; Yang, Kyung A.; Pei, Renjun; Stojanovic, Milan; Lin, Qiao

    2014-01-01

    This paper presents a microchip that isolates and enriches target-binding single-stranded DNA (ssDNA) from a randomized DNA mixture using a combination of solid-phase extraction and electrophoresis. Strands of ssDNA in a randomized mixture are captured via specific binding onto target-functionalized microbeads in a microchamber. The strands are further separated from impurities and enriched on-chip via electrophoresis. The microchip consists of two microchambers that are connected by a channel filled with agarose gel. In the isolation chamber, beads functionalized with human immunoglobulin E (IgE) are retained by a weir structure. An integrated heater elevates the temperature in the chamber to elute desired ssDNA from the beads, and electrophoretic transport of the DNA through the gel to the second chamber is accomplished by applying an electric potential difference between the two chambers. Experimental results show that ssDNA expressing binding affinity to IgE was captured and enriched from a sample of ssDNA with random sequences, demonstrating the potential of the microchip to enhance the sensitivity of ssDNA detection methods in dilute and complex biological samples. PMID:24729660

  4. Microchip system for monitoring microbial physiological behaviour under drug influences.

    PubMed

    Arora, S; Lim, C S; Foo, J Y; Sakharkar, M K; Dixit, P; Liu, A Q; Miao, J M

    2009-08-01

    Single-step real-time high-throughput monitoring of drug influences on bacterial cell behaviour has become important with growing interests in personalized therapy and medication. Conventional microchip assemblies to perform similar work do exist. However, most of these devices have complex set-ups incorporating micromixers, separators, pumps, or valves. These microcomponents can sometimes damage the entities being monitored because of the creation of unfavourable biological environments. This paper presents a microchip-based system that enables single-step mixing of two solutions in various ratios, without the need for additional microcomponents such as mixers and pumps, in order to screen effectively their combinatory effects on cell outcomes. In this work, in-vitro experiments were carried out using ampicillin at various concentrations to investigate their effects on Escherichia coli (E. coli). Results showed that the microchip provided effective screening, which yielded useful results such as effective dosages, ineffective dosages, and other possible outcomes; for instance, in this case, the occurrence of adaptive mutation of the bacteria at certain drug concentrations. Comparative microbiological laboratory tests were carried out as standard for confirmation of the results. PMID:19743643

  5. PORTABLE ACOUSTIC MONITORING PACKAGE (PAMP)

    SciTech Connect

    John L. Loth; Gary J. Morris; George M. Palmer; Richard Guiler; Patrick Browning

    2004-07-20

    The Portable Acoustic Monitoring Package (PAMP) has been designed to record and monitor the acoustic signal in natural gas transmission lines. In particular the three acoustic signals associated with a line leak. The system is portable ({approx}30 lbs) and is designed for line pressures up to 1000 psi. It has become apparent that cataloging of the various background acoustic signals in natural gas transmission line is very important if a system to identify leak signals is to be developed. The low-pressure (0-200 psig) laboratory test phase has been completed and a number of field trials have been conducted. Before the cataloging phase could begin, a few problems identified in field trials identified had to be corrected such as: (1) Decreased microphone sensitivity at line pressures above 250 psig. (2) The inability to deal with large data sets collected when cataloging the variety of signals in a transmission line. (3) The lack of an available online acoustic calibration system. These problems have been solved and the WVU PAMP is now fully functional over the entire pressure range found in the Natural Gas transmission lines in this region. Field portability and reliability have been greatly improved. Data collection and storage have also improved to the point were the full acoustic spectrum of acoustic signals can be accurately cataloged, recorded and described.

  6. Portable chemiluminescence detector for nickel carbonyl

    SciTech Connect

    Hikade, D.A.; Stedman, D.H.; Walega, J.G.

    1984-08-01

    This article describes a portable chemiluminescent detector for Ni(CO)/sub 4/ containing two innovative components, a self-contained carbon monoxide source which provides a greater degree of portability and a thermal differentiator to improve selectivity. The instrument is capable of measuring parts-per-billion levels of Ni(CO)/sub 4/, Fe(CO)/sub 5/, and NO. The instrument was used to measure carbonyl concentrations in the field and in cigarette smoke.

  7. Portable modular detection system

    DOEpatents

    Brennan, James S.; Singh, Anup; Throckmorton, Daniel J.; Stamps, James F.

    2009-10-13

    Disclosed herein are portable and modular detection devices and systems for detecting electromagnetic radiation, such as fluorescence, from an analyte which comprises at least one optical element removably attached to at least one alignment rail. Also disclosed are modular detection devices and systems having an integrated lock-in amplifier and spatial filter and assay methods using the portable and modular detection devices.

  8. Portable peak flow meters.

    PubMed

    McNaughton, J P

    1997-02-01

    There are several portable peak flow meters available. These instruments vary in construction and performance. Guidelines are recommended for minimum performance and testing of portable peak flow meters, with the aim of establishing a procedure for standardizing all peak flow meters. Future studies to clarify the usefulness of mechanical test apparatus and clinical trials of peak flow meters are also recommended. PMID:9098706

  9. Portable seat lift

    NASA Technical Reports Server (NTRS)

    Weddendorf, Bruce (Inventor)

    1994-01-01

    A portable seat lift that can help individuals either (1) lower themselves to a sitting position or (2) raise themselves to a standing position is presented. The portable seat lift consists of a seat mounted on a base with two levers, which are powered by a drive unit.

  10. Portable Medical Laboratory Applications Software

    PubMed Central

    Silbert, Jerome A.

    1983-01-01

    Portability implies that a program can be run on a variety of computers with minimal software revision. The advantages of portability are outlined and design considerations for portable laboratory software are discussed. Specific approaches for achieving this goal are presented.

  11. Microchip separations-based sensors for cellular analysis

    NASA Astrophysics Data System (ADS)

    Manica, Drew Prentice

    The objective of this thesis has been to introduce and develop novel methods for microchip separations for bioanalytical applications. A novel detection scheme is introduced, involving simultaneous dual amperometric and fluorescence detection on a microchip. Dual detection is shown to increase selectivity and throughput, resolve co-migrating species that may be selectively detected, and provide a convenient means to normalize for the irreproducibility of migration times often encountered in CE applications. Such normalization is expected to facilitate the use of microchip CE to monitor biological samples, which are inclined to exacerbate the irreproducibility of migration times. The use of electrochemical detection presents a unique and fundamental challenge. An effective method for reproducibly regenerating a clean surface is demonstrated. The method is optimized and utilized to achieve high sensitivity even for highly adsorptive compounds, such as those released from mast cells. The development of an in-situ electrode-cleaning protocol is an essential step toward reliably monitoring cellular release on a microchip CEEC device. Two novel techniques are presented which are capable of producing disposable microanalytical systems on glass. Electrodes and channels produced with these methods exhibit performance characteristics that are comparable to examples in current literature. These techniques demonstrate the feasibility of manufacturing a disposable glass lab-on-a-chip, which may be used for cellular analysis or as a point-of-use sensor. Increased interest in analyzing biological samples has led to the development of a wide range of derivatizing agents for biological compounds such as amino acids and peptides. A common tag that is both fluorescent and electroactive is naphthalene-2,3-dicarboxaldehyde (NDA). While there has been much discussion regarding the stability of a similar compound, o-phthalaldehyde, there has been no discussion regarding the stability of

  12. Hydrogel plug for independent sample and buffer handling in continuous microchip capillary electrophoresis

    NASA Astrophysics Data System (ADS)

    Puchberger-Enengl, Dietmar; Bipoun, Mireille; Smolka, Martin; Krutzler, Christian; Keplinger, Franz; Vellekoop, Michael J.

    2013-05-01

    In microchip capillary electrophoresis most frequently electrokinetic sample injection is utilized, which does not allow pressure driven sample handling and is sensitive for pressure drops due to different reservoir levels. For efficient field tests a multitude of samples have to be processed with the least amount of external equipment. We present the use of a hydrogel plug to separate the sample from clean buffer to enable independent sample change and buffer refreshment. In-situ polymerization of the gel does away with complex membrane fabrication techniques. The sample is electrokinetically injected through the gel and subsequently separated by a voltage between the second gel inlet and the buffer outlet. By blocking of disturbing flows by the gel barrier a well-defined ion plug is obtained. After each experiment, the sample and the separation channel can be flushed independently, allowing for a continuous operation mode in order to process multiple samples.

  13. Portable sensor for hazardous waste

    SciTech Connect

    Piper, L.G.; Fraser, M.E.; Davis, S.J.

    1995-10-01

    We are beginning the second phase of a three and a half year program designed to develop a portable monitor for sensitive hazardous waste detection. The ultimate goal of the program is to develop our concept to the prototype instrument level. Our monitor will be a compact, portable instrument that will allow real-time, in situ, monitoring of hazardous wastes. This instrument will be able to provide the means for rapid field screening of hazardous waste sites to map the areas of greatest contamination. Remediation efforts can then focus on these areas. Further, our instrument can show whether cleanup technologies are successful at reducing hazardous materials concentrations below regulated levels, and will provide feedback to allow changes in remediation operations, if necessary, to enhance their efficacy.

  14. Microchip Module for Blood Sample Preparation and Nucleic Acid Amplification Reactions

    PubMed Central

    Yuen, Po Ki; Kricka, Larry J.; Fortina, Paolo; Panaro, Nicholas J.; Sakazume, Taku; Wilding, Peter

    2001-01-01

    A computer numerical control-machined plexiglas-based microchip module was designed and constructed for the integration of blood sample preparation and nucleic acid amplification reactions. The microchip module is comprised of a custom-made heater-cooler for thermal cycling, a series of 254 μm × 254 μm microchannels for transporting human whole blood and reagents in and out of an 8–9 μL dual-purpose (cell isolation and PCR) glass-silicon microchip. White blood cells were first isolated from a small volume of human whole blood (<3 μL) in an integrated cell isolation–PCR microchip containing a series of 3.5-μm feature-sized “weir-type” filters, formed by an etched silicon dam spanning the flow chamber. A genomic target, a region in the human coagulation Factor V gene (226-bp), was subsequently directly amplified by microchip-based PCR on DNA released from white blood cells isolated on the filter section of the microchip mounted onto the microchip module. The microchip module provides a convenient means to simplify nucleic acid analyses by integrating two key steps in genetic testing procedures, cell isolation and PCR and promises to be adaptable for additional types of integrated assays. PMID:11230164

  15. Rapid diagnosis of avian influenza virus in wild birds: Use of a portable rRT-PCR and freeze-dried reagents in the field

    USGS Publications Warehouse

    Takekawa, J.Y.; Hill, N.J.; Schultz, A.K.; Iverson, S.A.; Cardona, C.J.; Boyce, W.M.; Dudley, J.P.

    2011-01-01

    Wild birds have been implicated in the spread of highly pathogenic avian influenza (HPAI) of the H5N1 subtype, prompting surveillance along migratory flyways. Sampling of wild birds for avian influenza virus (AIV) is often conducted in remote regions, but results are often delayed because of the need to transport samples to a laboratory equipped for molecular testing. Real-time reverse transcriptase polymerase chain reaction (rRT-PCR) is a molecular technique that offers one of the most accurate and sensitive methods for diagnosis of AIV. The previously strict lab protocols needed for rRT-PCR are now being adapted for the field. Development of freeze-dried (lyophilized) reagents that do not require cold chain, with sensitivity at the level of wet reagents has brought on-site remote testing to a practical goal. Here we present a method for the rapid diagnosis of AIV in wild birds using an rRT-PCR unit (Ruggedized Advanced Pathogen Identification Device or RAPID, Idaho Technologies, Salt Lake City, UT) that employs lyophilized reagents (Influenza A Target 1 Taqman; ASAY-ASY-0109, Idaho Technologies). The reagents contain all of the necessary components for testing at appropriate concentrations in a single tube: primers, probes, enzymes, buffers and internal positive controls, eliminating errors associated with improper storage or handling of wet reagents. The portable unit performs a screen for Influenza A by targeting the matrix gene and yields results in 2-3 hours. Genetic subtyping is also possible with H5 and H7 primer sets that target the hemagglutinin gene. The system is suitable for use on cloacal and oropharyngeal samples collected from wild birds, as demonstrated here on the migratory shorebird species, the western sandpiper (Calidrus mauri) captured in Northern California. Animal handling followed protocols approved by the Animal Care and Use Committee of the U.S. Geological Survey Western Ecological Research Center and permits of the U.S. Geological Survey

  16. Human portable preconcentrator system

    DOEpatents

    Linker, Kevin L.; Bouchier, Francis A.; Hannum, David W.; Rhykerd, Jr., Charles L.

    2003-01-01

    A preconcentrator system and apparatus suited to human portable use wherein sample potentially containing a target chemical substance is drawn into a chamber and through a pervious screen. The screen is adapted to capture target chemicals and then, upon heating, to release those chemicals into the chamber. Chemicals captured and then released in this fashion are then carried to a portable chemical detection device such as a portable ion mobility spectrometer. In the preferred embodiment, the means for drawing sample into the chamber comprises a reversible fan which, when operated in reverse direction, creates a backpressure that facilitates evolution of captured target chemicals into the chamber when the screen is heated.

  17. Comparison of Digital Rectal and Microchip Transponder Thermometry in Ferrets (Mustela putorius furo).

    PubMed

    Maxwell, Branden M; Brunell, Marla K; Olsen, Cara H; Bentzel, David E

    2016-01-01

    Body temperature is a common physiologic parameter measured in both clinical and research settings, with rectal thermometry being implied as the 'gold standard.' However, rectal thermometry usually requires physical or chemical restraint, potentially causing falsely elevated readings due to animal stress. A less stressful method may eliminate this confounding variable. The current study compared 2 types of digital rectal thermometers-a calibrated digital thermometer and a common digital thermometer-with an implantable subcutaneous transponder microchip. Microchips were implanted subcutaneously between the shoulder blades of 16 ferrets (8 male, 8 female), and temperatures were measured twice from the microchip reader and once from each of the rectal thermometers. Results demonstrated the microchip temperature readings had very good to good correlation and agreement to those from both of the rectal thermometers. This study indicates that implantable temperature-sensing microchips are a reliable alternative to rectal thermometry for monitoring body temperature in ferrets. PMID:27177569

  18. Inexpensive portable drug detector

    NASA Technical Reports Server (NTRS)

    Dimeff, J.; Heimbuch, A. H.; Parker, J. A.

    1977-01-01

    Inexpensive, easy-to-use, self-scanning, self-calibrating, portable unit automatically graphs fluorescence spectrum of drug sample. Device also measures rate of movement through chromatographic column for forensic and medical testing.

  19. Portable beveling tool

    NASA Technical Reports Server (NTRS)

    Snowden, R. H.

    1972-01-01

    Portable tool was designed to semiautomatically bevel end surfaces of tubular or cylindrical components. Tool may be used for fabrication of elbow assembly which requires mating flange and elbow by fusion butt welding.

  20. Portable Dental System

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Portable dental system provides dental care in isolated communities. System includes a patient's chair and a dentist's stool, an X-ray machine and a power unit, all of which fold into compact packages. A large yellow "pumpkin" is a collapsible compressed air tank. Portable system has been used successfully in South America in out of the way communities with this back-packable system, and in American nursing homes. This product is no longer manufactured.

  1. Portable treatment systems study

    SciTech Connect

    Sherick, M.J.; Schwinkendorf, W.E.; Bechtold, T.E.; Cole, L.T.

    1997-03-01

    In developing their Site Treatment Plans (STPs), many of the Department of Energy installations identified some form of portable treatment, to facilitate compliant disposition of select mixed low-level wastestreams. The Environmental Management Office of Science and Technology requested that a systems study be performed to better define the potential role of portable treatment with respect to mixed low-level waste, highlight obstacles to implementation, and identify opportunities for future research and development emphasis. The study was performed by first establishing a representative set of mixed waste, then formulating portable treatment system concepts to meet the required processing needs for these wastes. The portable systems that were conceptualized were evaluated and compared to a fixed centralized treatment alternative. The system evaluations include a life-cycle cost analysis and an assessment of regulatory, institutional, and technical issues associated with the potential use of portable systems. The results of this study show that when all costs are included, there are no significant cost differences between portable systems and fixed systems. However, it is also emphasized that many uncertainties exist that could impact the cost of implementing portable treatment systems. Portable treatment could be made more attractive through private sector implementation, although there is little economic incentive for a commercial vendor to develop small, specialized treatment capabilities with limited applicability. Alternatively, there may also be valid reasons why fixed units cannot be used for some problematic wastestreams. In any event, there are some site-specific problems that still need to be addressed, and there may be some opportunity for research and development to make a positive impact in these areas.

  2. SU-8/Pyrex microchip electrophoresis with integrated electrochemical detection for class-selective electrochemical index determination of phenolic compounds in complex samples.

    PubMed

    Castañeda, Raquel; Vilela, Diana; González, María Cristina; Mendoza, Sandra; Escarpa, Alberto

    2013-07-01

    A SU-8/Pyrex single-channel microchip integrating three 100 μm Pt electrodes (MCE-ED) for class-selective electrochemical index determination (CSEID) of phenolic acids and flavonoids in complex extracts of Tagetes lucida (Tl), Mentha piperita (Mp), Cymbopogon citratus (Cc), Calendula officinalis (Co), and Cynara scolymus (Cs) is proposed. Under strategic conditions controlled by a MES buffer (pH 5.0; 25 mM) and accordingly to the antioxidant acid-base properties, the simultaneous measurement of total acids and flavonoids indexes was achieved in less than 100 s with excellent analytical performance. The reliability of MCE-ED approach was demonstrated toward the high agreement between the total phenolic content obtained using microchip approach with those obtained by the well-established HPLC-DAD; revealing both identical order regarding the total phenolic content in the target samples. In addition, further comparison of MCE-ED with the traditional Folin-Ciocalteu antioxidant capacity assay, showed that MCE-ED approach could become a class-selective antioxidant capacity assay revealing that the sample antioxidant capacity was decreasing as Tl > Mp > Cs > Cc > Co according to their endogenous polyphenol content. These results suggested that the microchip approach is not only a reliable method for fast assessment of class-selective antioxidants constituting a very good alternative to the long analysis times and the using of toxic solvents required in HPLC but a novel truly antioxidant capacity assay. This excellent analytical performance is connected with the key-features of the "ready-to-use" system employed in this work such as portability, full integration of electrochemical detection, easy-operation, and potential MCE-ED disposability. PMID:23595251

  3. View northeast of a microchip based computer control system installed ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View northeast of a microchip based computer control system installed in the early 1980's to replace Lamokin Tower, at center of photograph; panels 1 and 2 at right of photograph are part of main supervisory board; panel 1 controlled Allen Lane sub-station #7; responsiblity for this portion of the system was transferred to southeast Pennsylvania transit authority (septa) in 1985; panel 2 at extreme right controls catenary switches in a coach storage yard adjacent to the station - Thirtieth Street Station, Power Director Center, Thirtieth & Market Streets in Amtrak Railroad Station, Philadelphia, Philadelphia County, PA

  4. Physiological and behavioural responses of young horses to hot iron branding and microchip implantation.

    PubMed

    Erber, R; Wulf, M; Becker-Birck, M; Kaps, S; Aurich, J E; Möstl, E; Aurich, C

    2012-02-01

    Branding is the traditional and well-established method used to mark horses, but recently microchip transponders for implantation have become available. In this study, behaviour, physiological stress variables and skin temperature in foals were determined in response to hot-iron branding (n=7) and microchip implantation (n=7). Salivary cortisol concentrations increased in response to branding (1.8 ± 0.2 ng/mL) and microchip implantation (1.4 ± 0.1ng/mL), but cortisol release over time did not differ. In response to both manipulations there was a transient increase in heart rate (P<0.001) and heart rate variability (P<0.01). Branding and microchip implantation induced a comparable aversive behaviour (branding, score 3.86 ± 0.85; microchip, score 4.00 ± 0.82). Both techniques thus caused similar physiological and behavioural changes indicative of stress. Acutely, implantation of a microchip was as stressful as branding in foals. Branding caused a necrotising skin burn lasting at least 7 days. Moreover branding, but not microchip implantation (P<0.001), was accompanied by a generalized increase in skin temperature which was comparable to low degree post-burn hypermetabolism in humans. PMID:21917490

  5. Self-transport and self-alignment of microchips using microscopic rain.

    PubMed

    Chang, Bo; Shah, Ali; Zhou, Quan; Ras, Robin H A; Hjort, Klas

    2015-01-01

    Alignment of microchips with receptors is an important process step in the construction of integrated micro- and nanosystems for emerging technologies, and facilitating alignment by spontaneous self-assembly processes is highly desired. Previously, capillary self-alignment of microchips driven by surface tension effects on patterned surfaces has been reported, where it was essential for microchips to have sufficient overlap with receptor sites. Here we demonstrate for the first time capillary self-transport and self-alignment of microchips, where microchips are initially placed outside the corresponding receptor sites and can be self-transported by capillary force to the receptor sites followed by self-alignment. The surface consists of hydrophilic silicon receptor sites surrounded by superhydrophobic black silicon. Rain-induced microscopic droplets are used to form the meniscus for the self-transport and self-alignment. The boundary conditions for the self-transport have been explored by modeling and confirmed experimentally. The maximum permitted gap between a microchip and a receptor site is determined by the volume of the liquid and by the wetting contrast between receptor site and substrate. Microscopic rain applied on hydrophilic-superhydrophobic patterned surfaces greatly improves the capability, reliability and error-tolerance of the process, avoiding the need for accurate initial placement of microchips, and thereby greatly simplifying the alignment process. PMID:26450019

  6. Self-transport and self-alignment of microchips using microscopic rain

    PubMed Central

    Chang, Bo; Shah, Ali; Zhou, Quan; Ras, Robin H. A.; Hjort, Klas

    2015-01-01

    Alignment of microchips with receptors is an important process step in the construction of integrated micro- and nanosystems for emerging technologies, and facilitating alignment by spontaneous self-assembly processes is highly desired. Previously, capillary self-alignment of microchips driven by surface tension effects on patterned surfaces has been reported, where it was essential for microchips to have sufficient overlap with receptor sites. Here we demonstrate for the first time capillary self-transport and self-alignment of microchips, where microchips are initially placed outside the corresponding receptor sites and can be self-transported by capillary force to the receptor sites followed by self-alignment. The surface consists of hydrophilic silicon receptor sites surrounded by superhydrophobic black silicon. Rain-induced microscopic droplets are used to form the meniscus for the self-transport and self-alignment. The boundary conditions for the self-transport have been explored by modeling and confirmed experimentally. The maximum permitted gap between a microchip and a receptor site is determined by the volume of the liquid and by the wetting contrast between receptor site and substrate. Microscopic rain applied on hydrophilic-superhydrophobic patterned surfaces greatly improves the capability, reliability and error-tolerance of the process, avoiding the need for accurate initial placement of microchips, and thereby greatly simplifying the alignment process. PMID:26450019

  7. Self-transport and self-alignment of microchips using microscopic rain

    NASA Astrophysics Data System (ADS)

    Chang, Bo; Shah, Ali; Zhou, Quan; Ras, Robin H. A.; Hjort, Klas

    2015-10-01

    Alignment of microchips with receptors is an important process step in the construction of integrated micro- and nanosystems for emerging technologies, and facilitating alignment by spontaneous self-assembly processes is highly desired. Previously, capillary self-alignment of microchips driven by surface tension effects on patterned surfaces has been reported, where it was essential for microchips to have sufficient overlap with receptor sites. Here we demonstrate for the first time capillary self-transport and self-alignment of microchips, where microchips are initially placed outside the corresponding receptor sites and can be self-transported by capillary force to the receptor sites followed by self-alignment. The surface consists of hydrophilic silicon receptor sites surrounded by superhydrophobic black silicon. Rain-induced microscopic droplets are used to form the meniscus for the self-transport and self-alignment. The boundary conditions for the self-transport have been explored by modeling and confirmed experimentally. The maximum permitted gap between a microchip and a receptor site is determined by the volume of the liquid and by the wetting contrast between receptor site and substrate. Microscopic rain applied on hydrophilic-superhydrophobic patterned surfaces greatly improves the capability, reliability and error-tolerance of the process, avoiding the need for accurate initial placement of microchips, and thereby greatly simplifying the alignment process.

  8. Portable smartphone optical fibre spectrometer

    NASA Astrophysics Data System (ADS)

    Hossain, Md. Arafat; Canning, John; Cook, Kevin; Jamalipour, Abbas

    2015-09-01

    A low cost, optical fibre based spectrometer has been developed on a smartphone platform for field-portable spectral analysis. Light of visible wavelength is collected using a multimode optical fibre and diffracted by a low cost nanoimprinted diffraction grating. A measurement range over 300 nm span (λ = 400 to 700 nm) is obtained using the smartphone CMOS chip. The spectral resolution is Δλ ~ 0.42 nm/screen pixel. A customized Android application processed the spectra on the same platform and shares with other devices. The results compare well with commercially available spectrometer.

  9. Energy Conversion from Salinity Gradient Using Microchip with Nafion Membrane

    NASA Astrophysics Data System (ADS)

    Chang, Che-Rong; Yeh, Ching-Hua; Yeh, Hung-Chun; Yang, Ruey-Jen

    2016-06-01

    When a concentrated salt solution and a diluted salt solution are separated by an ion-selective membrane, cations and anions would diffuse at different rates depending on the ion selectivity of the membrane. The difference of positive and negative charges at both ends of the membrane would produce a potential, called the diffusion potential. Thus, electrical energy can be converted from the diffusion potential through reverse electrodialysis. This study demonstrated the fabrication of an energy conversion microchip using the standard micro-electromechanical technique, and utilizing Nafion junction as connecting membrane, which was fabricated by a surface patterned process. Through different salinity gradient of potassium chloride solutions, we experimentally investigated the diffusion potential and power generation from the microchip, and the highest value measured was 135 mV and 339 pW, respectively. Furthermore, when the electrolyte was in pH value of 3.8, 5.6, 10.3, the system exhibited best performance at pH value of 10.3; whereas, pH value of 3.8 yielded the worst.

  10. Hybridization thermodynamics of DNA oligonucleotides during microchip capillary electrophoresis.

    PubMed

    Wynne, Thomas M; McCallum, Christopher; Del Bonis-O'Donnell, Jackson Travis; Crisalli, Pete; Pennathur, Sumita

    2015-03-01

    Capillary electrophoresis (CE) is a powerful analytical tool for performing separations and characterizing properties of charged species. For reacting species during a CE separation, local concentrations change leading to nonequilibrium conditions. Interpreting experimental data with such nonequilibrium reactive species is nontrivial due to the large number of variables involved in the system. In this work we develop a COMSOL multiphysics-based numerical model to simulate the electrokinetic mass transport of short interacting ssDNAs in microchip capillary electrophoresis. We probe the importance of the dissociation constant, K(D), and the concentration of DNA on the resulting observed mobility of the dsDNA peak, μ(w), by using a full sweep of parametric simulations. We find that the observed mobility is strongly dependent on the DNA concentration and K(D), as well as ssDNA concentration, and develop a relation with which to understand this dependence. Furthermore, we present experimental microchip capillary electrophoresis measurements of interacting 10 base ssDNA and its complement with changes in buffer ionic strength, DNA concentration, and DNA sequence to vary the system equilibria. We then compare our results to thermodynamically calculated K(D) values. PMID:25634338

  11. Analytical detection of biological thiols in a microchip capillary channel.

    PubMed

    Chand, Rohit; Jha, Sandeep Kumar; Islam, Kamrul; Han, Dawoon; Shin, Ik-Soo; Kim, Yong-Sang

    2013-02-15

    Sulfur-containing amino acids, such as cysteine and homocysteine play crucial roles in biological systems for the diagnosis of medical states. In this regard, this paper deals with separation, aliquot and detection of amino thiols on a microchip capillary electrophoresis with electrochemical detection in an inverted double Y-shaped microchannel. Unlike the conventional capillary electrophoresis, the modified microchannel design helps in storing the separated thiols in different reservoirs for further analysis, if required; and also eliminates the need of electrodes regeneration. The device was fabricated using conventional photolithographic technique which consisted of gold microelectrodes on a soda lime glass wafer and microchannels in PDMS mold. Multiple detections were performed using in-house fabricated dual potentiostat. Based on amperometric detection, cysteine and homocysteine were analyzed in 105 s and 120 s, respectively after diverting in branched channels. Repeated experiments proved the good reproducibility of the device. The device produced a linear response for both cysteine and homocysteine in electrochemical analysis. To prove the practicality of device, we also analyzed cysteine and homocysteine in real blood samples without any pre-treatment. Upon calculation, the device showed a very low limit of detection of 0.05 μM. The modified microchip design shall find a broad range of analytical applications involving assays of thiols and other biological compounds. PMID:22940195

  12. Capillary electrophoresis microchip detecting system based on embedded optical fiber

    NASA Astrophysics Data System (ADS)

    Yan, Weiping; Li, Yuanyuan; Ma, Lingzhi

    2007-12-01

    Microchip capillary electrophoresis(CE) has been recognized as a powerful tool for biochemical analyses due to its smaller size, faster separation and lower sample requirement. According to the principle of laser-induced fluorescence, the detecting system of CE microchip embedded optical fiber is discussed in this paper as well as its small volume and simple detection optical circuit. The system was composed with semiconductor laser (532nm), high voltage control system, photon counter, PC and CE chip embedded optical fibers. With the constructed detection system, different samples and different concentrations were detected, including Rhodamine B, Rhodamine 6G, and mingling solution of Rhodamine B and Rhodamine 6G. The lowest detected concentration is 1×10 -6mol/L for Rhodamine B, and 1×10 -5mol/L for Rhodamine 6G, respectively. The separation of the mingling solution of Rhodamine B and Rhodamine 6G was completed, whose concentration were both about 1×10 -4mol/L. The results show that the constructed detection system possesses some advantages, such as compact structure, higher sensitivity and repetition, which are beneficial to the development of microminiaturization and integration of micro CE chip.

  13. Intelligent microchip networks: an agent-on-chip synthesis framework for the design of smart and robust sensor networks

    NASA Astrophysics Data System (ADS)

    Bosse, Stefan

    2013-05-01

    Sensorial materials consisting of high-density, miniaturized, and embedded sensor networks require new robust and reliable data processing and communication approaches. Structural health monitoring is one major field of application for sensorial materials. Each sensor node provides some kind of sensor, electronics, data processing, and communication with a strong focus on microchip-level implementation to meet the goals of miniaturization and low-power energy environments, a prerequisite for autonomous behaviour and operation. Reliability requires robustness of the entire system in the presence of node, link, data processing, and communication failures. Interaction between nodes is required to manage and distribute information. One common interaction model is the mobile agent. An agent approach provides stronger autonomy than a traditional object or remote-procedure-call based approach. Agents can decide for themselves, which actions are performed, and they are capable of flexible behaviour, reacting on the environment and other agents, providing some degree of robustness. Traditionally multi-agent systems are abstract programming models which are implemented in software and executed on program controlled computer architectures. This approach does not well scale to micro-chip level and requires full equipped computers and communication structures, and the hardware architecture does not consider and reflect the requirements for agent processing and interaction. We propose and demonstrate a novel design paradigm for reliable distributed data processing systems and a synthesis methodology and framework for multi-agent systems implementable entirely on microchip-level with resource and power constrained digital logic supporting Agent-On-Chip architectures (AoC). The agent behaviour and mobility is fully integrated on the micro-chip using pipelined communicating processes implemented with finite-state machines and register-transfer logic. The agent behaviour

  14. Numerical simulation and optimization of passively q-switched erbium microchip lasers

    NASA Astrophysics Data System (ADS)

    Belghachem, Nabil; Mlynczak, Jarslow

    2015-08-01

    In this article we present a procedure of optimization of passively q-switched erbium microchip lasers. The procedure is based on the rate equation model, validated by comparing the numerical results to the experimental results of pulse generation in different types of erbium/ytterbium glass microchips q-switched by Co2+ : MgAl2O4 saturable absorber. Some Degnan’s optimization limitations in case of microchip lasers were also shown and the reabsorbtion cross section of erbium glass was also estimated.

  15. [A novel and facile microchip based on nitrocellulose membrane toward efficient capture of circulating tumor cells].

    PubMed

    Zhang, Peng; Sun, Changlong; Zhang, Ren; Gao, Mingxia; Zhang, Xiangmin

    2013-06-01

    A novel and facile circulating tumor cell (CTC) microchip has been developed for the isolation and detection of cancer cells. The CTC microchip was prepared based on the nitrocellulose membrane substrate, which shows high affinity to proteins and hence can adsorb antibodies naturally. We employed non-small-cells of lung cancer NCI-H1650 as target cells and testified the high capture efficacy of the CTC microchip. Furthermore, we spiked 500 cancer cells to 1 mL healthy donor's whole blood in order to simulate the detection of CTC in patient and detected 182 cancer cells ultimately, indicating the huge application potential in the future. PMID:24063189

  16. Portable Applications in Mobile Education. Technical Evaluation Report 57

    ERIC Educational Resources Information Center

    Baggaley, Jon

    2006-01-01

    Portable software applications can be carried on a convenient storage medium such as a USB drive, and offer numerous benefits to mobile teachers and learner. The article illustrates the growing field of "portable apps" in reviews of seven contrasting products. These represent the major categories of document editing, email maintenance, Internet…

  17. Human portable preconcentrator system

    DOEpatents

    Linker, Kevin L.; Brusseau, Charles A.; Hannum, David W.; Puissant, James G.; Varley, Nathan R.

    2003-08-12

    A preconcentrator system and apparatus suited to human portable use wherein sample potentially containing a target chemical substance is drawn into a chamber and through a pervious screen. The screen is adapted to capture target chemicals and then, upon heating, to release those chemicals into the chamber. Chemicals captured and then released in this fashion are then carried to a portable chemical detection device such as a portable ion mobility spectrometer. In the preferred embodiment, the means for drawing sample into the chamber comprises a reversible fan which, when operated in reverse direction, creates a backpressure that facilitates evolution of captured target chemicals into the chamber when the screen is heated. The screen can be positioned directly in front of the detector prior to heating to improve detection capability.

  18. Deflectometry using portable devices

    NASA Astrophysics Data System (ADS)

    Butel, Guillaume P.; Smith, Greg A.; Burge, James H.

    2015-02-01

    Deflectometry is a powerful metrology technique that uses off-the-shelf equipment to achieve nanometer-level accuracy surface measurements. However, there is no portable device to quickly measure eyeglasses, lenses, or mirrors. We present an entirely portable new deflectometry technique that runs on any Android™ smartphone with a front-facing camera. Our technique overcomes some specific issues of portable devices like screen nonlinearity and automatic gain control. We demonstrate our application by measuring an amateur telescope mirror and simulating a measurement of the faulty Hubble Space Telescope primary mirror. Our technique can, in less than 1 min, measure surface errors with accuracy up to 50 nm RMS, simply using a smartphone.

  19. On-field monitoring of fruit ripening evolution and quality parameters in olive mutants using a portable NIR-AOTF device.

    PubMed

    Cirilli, Marco; Bellincontro, Andrea; Urbani, Stefania; Servili, Maurizio; Esposto, Sonia; Mencarelli, Fabio; Muleo, Rosario

    2016-05-15

    This study optimizes the application of portable Near Infrared-Acousto Optically Tunable Filter (NIR) device to meet the increasing demand for cost-effective, non-invasive and easy-to-use methods for measuring physical and chemical properties during olive fruit development. Fruits from different phenotypically cultivars were sampled for firmness, total and specific phenols detection by HPLC, total anthocyanins, chlorophyll and carotenoids detection by spectrophotometry. On the same fruits, a portable NIR device in diffuse reflectance mode was employed for spectral detections. Predictive models for firmness, chlorophyll, anthocyanins, carotenoids and rutin were developed by Partial Least Square analysis. Oleuropein, verbascoside, 3,4-DHPEA-EDA, and total phenols were used to develop a validation model. Internal cross-validation was applied for calibration and predictive models. The standard errors for calibration, cross-validation, prediction, and RPD ratios (SD/SECV) were calculated as references for the model effectiveness. The determination of the optimal harvesting time facilitates the production of high quality extra virgin olive oil and table olives. PMID:26775949

  20. Bacterial characterization using protein profiling in a microchip separations platform.

    PubMed

    Pizarro, Shelly A; Lane, Pamela; Lane, Todd W; Cruz, Evelyn; Haroldsen, Brent; VanderNoot, Victoria A

    2007-12-01

    A rapid microanalytical protein-based approach to bacterial characterization is presented. Chip gel electrophoresis (CGE) coupled with LIF detection was used to analyze lysates from different bacterial cell lines to obtain signature profiles of the soluble protein composition. The study includes Escherichia coli, Bacillus subtilis, and Bacillus anthracis (Delta Sterne strain) vegetative cells as well as endospores formed from the latter two species as model organisms to demonstrate the method. A unified protein preparation protocol was developed for both cell types to streamline the benchtop process and aid future automation. Cells and spores were lysed and proteins solubilized using a combination of thermal and chemical lysis methods. Reducing agents, necessary to solubilize spore proteins, were eliminated using a small-scale rapid size-exclusion chromatography step to eliminate interference with down-stream protein labeling. This approach was found to be compatible with nonspore cells (i.e., vegetative cells) as well, not adversely impacting the protein signatures. Data are presented demonstrating distinct CGE protein signatures for our model organisms, suggesting the potential for discrimination of organisms on the basis of empirical protein patterns. The goal of this work is to develop a fast and field-portable method for characterizing bacteria via their proteomes. PMID:18008300

  1. A micro-chip initiator with controlled combustion reactivity realized by integrating Al/CuO nanothermite composites on a microhotplate platform

    NASA Astrophysics Data System (ADS)

    Ahn, Ji Young; Kim, Sang Beom; Kim, Ji Hoon; Jang, Nam Su; Kim, Dae Hyun; Lee, Hyung Woo; Kim, Jong Man; Kim, Soo Hyung

    2016-01-01

    The interfacial contact area between the fuel and oxidizer components plays an important role in determining the combustion reactivity of nanothermite composites. In addition, the development of compact and reliable ignition methods can extend the applicability of nanothermite composites to various thermal engineering fields. In this study we report the development of a micro-chip initiator with controlled combustion reactivity using concepts usually applied to microelectromechanical systems (MEMS) and simple nanofabrication processes. The nanothermite composites fabricated in this study consisted of aluminum nanoparticles (Al NPs) as the fuel and copper oxide nanoparticles (CuO NPs) as the oxidizer accumulated on a silicon oxide substrate with a serpentine-shaped gold (Au) electrode. The micro-chip initiator rapidly ignited and exploded when minimal current was supplied. The effects of stacking structures of Al and CuO-based multilayers on the combustion properties were systematically investigated in terms of the pressurization rate, peak explosion time, and heat flow. Pressurization rates of 0.004-0.025 MPa μs-1 and heat flows of 2.0-3.8 kJ g-1 with a commonly fast response time of less than 20 ms could be achieved by simply changing the interfacial structures of the Al and CuO multilayers. The controllability of combustion reactivity of micro-chip initiator can be made for general nanothermite composites composed of Al and various metal oxides (e.g. Fe2O3, CuO, KMnO4, etc). The micro-chip initiator fabricated in this study was reliable, compact, and proved to be a versatile platform, exhibiting controlled combustion reactivity and fast response time, which could be used for various civilian and military thermal engineering applications, such as in initiators and propulsion, welding, and ordinance systems.

  2. Portable Data Logger for Photovoltaic Panels

    NASA Technical Reports Server (NTRS)

    Cole, S. W.

    1983-01-01

    Instrument measures rapidly changing knee of V-I curve with extra care. Portable data logger runs on own batteries. Includes microcomputer, which controls voltage-, current-measurement increment, and solid state memory, which stores data until transferred to EPROM module. Data logger is light, compact and easily caried to remote field locations.

  3. Fixed Facts about Portable Classrooms.

    ERIC Educational Resources Information Center

    Sturgeon, Julie

    1998-01-01

    Discusses the easing of overcrowded schools through the use of portable classrooms and provides an example from Elk Grove Unified School District (California) which has opened entire elementary schools using only portables. Fifteen tips for installing relocatables are highlighted. (GR)

  4. Portable nanoparticle based sensors for antioxidant analysis.

    PubMed

    Sharpe, Erica; Andreescu, Silvana

    2015-01-01

    Interest in portable sensing devices has increased throughout the past decade. Portable sensors are convenient for use in remote locations and in places with limited resources for advanced instrumentation. Often such devices utilize advanced technology that allows the final user to simply deposit the sample onto the sensing platform without preparation of multiple reagents. Herein, we describe preparation and characterization of a colorimetric paper-based metal oxide sensing array designed for the field detection of polyphenolic antioxidants. This sensor is a good candidate for use in analysis of the antioxidant character of food, drink, botanical medicines, physiological fluids, and more. PMID:25323510

  5. Portable dynamic fundus instrument

    NASA Technical Reports Server (NTRS)

    Taylor, Gerald R. (Inventor); Meehan, Richard T. (Inventor); Hunter, Norwood R. (Inventor); Caputo, Michael P. (Inventor); Gibson, C. Robert (Inventor)

    1992-01-01

    A portable diagnostic image analysis instrument is disclosed for retinal funduscopy in which an eye fundus image is optically processed by a lens system to a charge coupled device (CCD) which produces recordable and viewable output data and is simultaneously viewable on an electronic view finder. The fundus image is processed to develop a representation of the vessel or vessels from the output data.

  6. Portable Suction Lysimeter

    DOEpatents

    Hubbell, Joel M.; Sisson, James B.

    2004-07-13

    A portable lysimeter including a collection vessel having an inflatable bladder and a semi-permeable member assembly at least partially movable in response to inflation of the bladder, a sample conduit in fluid communication with the semi-permeable member and a reservoir in fluid communication with the sample conduit.

  7. Portable Chamfering Tool

    NASA Technical Reports Server (NTRS)

    Berson, Leo A.

    1987-01-01

    Portable machine tool precisely cuts chamfer on valve seat. With tool, delicate machining operation done without removing part to machine shop. Taken to part and used wherever pressurized air and electric power available. Plug and bushing nest in bore chamfered. They guide steady cutter rod as it cuts 15 degrees chamfer on top edge of bore.

  8. Portable oven air circulator

    DOEpatents

    Jorgensen, Jorgen A.; Nygren, Donald W.

    1983-01-01

    A portable air circulating apparatus for use in cooking ovens which is used to create air currents in the oven which transfer heat to cooking foodstuffs to promote more rapid and more uniform cooking or baking, the apparatus including a motor, fan blade and housing of metallic materials selected from a class of heat resistant materials.

  9. Mobility, Portability, and Placelessness

    ERIC Educational Resources Information Center

    Kupfer, Joseph

    2007-01-01

    Electronic technology has created a revolution in portability of information, documentation, and communication. We are now able to connect with people, information, organizations, and merchandise from anywhere at practically any time. As electronically fabricated environments replace actual physical surroundings, however, we become displaced.…

  10. Portable Weld Tester.

    ERIC Educational Resources Information Center

    Eckert, Douglas

    This training manual, which was developed for employees of an automotive plant, is designed to teach trainees to operate a portable weld tester (Miyachi MM-315). In chapter 1, the weld tester's components are illustrated and described, and the procedure for charging its batteries is explained. Chapter 2 illustrates the weld tester's parts,…

  11. PORTABLE SOURCE OF RADIOACTIVITY

    DOEpatents

    Goertz, R.C.; Ferguson, K.R.; Rylander, E.W.; Safranski, L.M.

    1959-06-16

    A portable source for radiogiaphy or radiotherapy is described. It consists of a Tl/sup 170/ or Co/sup 60/ source mounted in a rotatable tungsten alloy plug. The plug rotates within a brass body to positions of safety or exposure. Provision is made for reloading and carrying the device safely. (T.R.H.)

  12. Portable Aerosol Contaminant Extractor

    DOEpatents

    Carlson, Duane C.; DeGange, John J.; Cable-Dunlap, Paula

    2005-11-15

    A compact, portable, aerosol contaminant extractor having ionization and collection sections through which ambient air may be drawn at a nominal rate so that aerosol particles ionized in the ionization section may be collected on charged plate in the collection section, the charged plate being readily removed for analyses of the particles collected thereon.

  13. Portable Lifting Seat

    NASA Technical Reports Server (NTRS)

    Weddendorf, Bruce

    1993-01-01

    Portable lifting machine assists user in rising from seated position to standing position, or in sitting down. Small and light enough to be carried like briefcase. Used on variety of chairs and benches. Upholstered aluminum box houses mechanism of lifting seat. Springs on outer shaft-and-arm subassembly counterbalance part of user's weight to assist motor.

  14. Portable sensor for hazardous waste

    SciTech Connect

    Piper, L.G.; Hunter, A.J.R.; Fraser, M.E.; Davis, S.J.

    1996-12-31

    We are part-way through the second phase of a 4-year program designed to develop a portable monitor for sensitive hazardous waste detection. The ultimate goal of the program is to develop our concept to the prototype instrument level. Our monitor will be a compact, portable instrument that will allow real-time, in situ, monitoring of hazardous wastes. This instrument will be able to provide the means for rapid field screening of hazardous waste sites to map the areas of greatest contamination. Remediation efforts can then focus on these areas. Our analysis approach is to excite atomic and molecular fluorescence by the technique of active nitrogen energy transfer (ANET). The active nitrogen is made in a dielectric-barrier (D-B) discharge in nitrogen at atmospheric pressure. Only a few emission lines or bands are excited for each hazardous species, so spectral resolution requirements are greatly simplified over those of other spectroscopic techniques. The D-B discharge is compact, 1 to 2 cm in diameter and 1 to 10 cm long. Furthermore, the discharge power requirements are quite modest, so that the unit can be powered by batteries. Thus an instrument based on ANET can readily be made portable. Our results indicate that ANET is a very sensitive technique for monitoring heavy metals and chlorinated hydrocarbons. We have demonstrated an overall detection sensitivity for most species that is at or below ppb levels. ANET alone, however, appears to be most successful in treating hazardous species that have been atomized. We are therefore developing a hybrid technique which combines a miniature, solid-state laser for sample collection and vaporization with ANET for subsequent detection. This approach requires no special sample preparation, can operate continuously, and lends itself well to compact packaging.

  15. Development of Portable Beta Spectrometer for Sr-90 Activity Measurements in Field Conditions and Its Application in Rehabilitation Activities at RRC Kurchatov Institute

    SciTech Connect

    Potapov, V.N.; Volkovich, A.G.; Ivanov, O.P.; Stepanov, V.E.; Smirnov, S.V.; Volkov, V.G.

    2006-07-01

    A new method to measure the Sr-90 ground specific activity in situ was developed. It is based on the count-rates determination in selected energy ranges of two registered apparatus spectra: total {beta} + {gamma} spectrum and {gamma} spectrum. A numerical simulation of the detector performance defined these energy ranges used for calculation of activity. For implementation of the proposed method a portable instrument was developed and manufactured. Parameters of the instrument are the following: the range of measurement for a specific activity mode - (60 - 3.0x10{sup 6}) Bq/kg; the range for total activity countable mode (0.5 - 2.0x10{sup 4}) Bq; minimum measurable specific activity Sr-90 for samples containing natural radionuclides - 60 Bq/kg, minimum measurable activity for samples not containing NRN - 0.5 Bq. (authors)

  16. Hand-portable liquid chromatographic instrumentation.

    PubMed

    Sharma, Sonika; Tolley, Luke T; Tolley, H Dennis; Plistil, Alex; Stearns, Stanley D; Lee, Milton L

    2015-11-20

    Over the last four decades, liquid chromatography (LC) has experienced an evolution to smaller columns and particles, new stationary phases and low flow rate instrumentation. However, the development of person-portable LC has not followed, mainly due to difficulties encountered in miniaturizing pumps and detectors, and in reducing solvent consumption. The recent introduction of small, non-splitting pumping systems and UV-absorption detectors for use with capillary columns has finally provided miniaturized instrumentation suitable for high-performance hand-portable LC. Fully integrated microfabricated LC still remains a significant challenge. Ion chromatography (IC) has been successfully miniaturized and applied for field analysis; however, applications are mostly limited to inorganic and small organic ions. This review covers advancements that make possible more rapid expansion of portable forms of LC and IC. PMID:26592464

  17. Accurate multiplex gene synthesis from programmable DNA microchips

    NASA Astrophysics Data System (ADS)

    Tian, Jingdong; Gong, Hui; Sheng, Nijing; Zhou, Xiaochuan; Gulari, Erdogan; Gao, Xiaolian; Church, George

    2004-12-01

    Testing the many hypotheses from genomics and systems biology experiments demands accurate and cost-effective gene and genome synthesis. Here we describe a microchip-based technology for multiplex gene synthesis. Pools of thousands of `construction' oligonucleotides and tagged complementary `selection' oligonucleotides are synthesized on photo-programmable microfluidic chips, released, amplified and selected by hybridization to reduce synthesis errors ninefold. A one-step polymerase assembly multiplexing reaction assembles these into multiple genes. This technology enabled us to synthesize all 21 genes that encode the proteins of the Escherichia coli 30S ribosomal subunit, and to optimize their translation efficiency in vitro through alteration of codon bias. This is a significant step towards the synthesis of ribosomes in vitro and should have utility for synthetic biology in general.

  18. Vacuum membrane distillation by microchip with temperature gradient.

    PubMed

    Zhang, Yaopeng; Kato, Shinji; Anazawa, Takanori

    2010-04-01

    A multilayered microchip (25 x 95 mm) used for vacuum distillation is designed, fabricated and tested by rectification of a water-methanol mixture. The polymer chip employs a cooling channel to generate a temperature gradient along a distillation channel below, which is separated into a channel (72 microm deep) for liquid phase and a channel (72 microm deep) for vapor phase by an incorporated microporous poly(tetrafluoroethylene) (PTFE) membrane. The temperature gradient is controlled by adjusting hotplate temperature and flow rate of cooling water to make the temperatures in the stripping section higher than the increasing boiling points of the water-enriched liquids and the temperatures in the rectifying section lower than the decreasing dew points of the methanol-enriched vapors. The effects of temperature gradient, feed composition, feed flow rate and membrane pore size on the micro distillation are also investigated. A theoretical plate number up to 1.8 is achieved at the optimum conditions. PMID:20300677

  19. Microchip for the Measurement of Seebeck Coefficients of Single Nanowires

    NASA Astrophysics Data System (ADS)

    Völklein, F.; Schmitt, M.; Cornelius, T. W.; Picht, O.; Müller, S.; Neumann, R.

    2009-07-01

    Bismuth nanowires were electrochemically grown in ion track-etched polycarbonate membranes. Micromachining and microlithography were employed to realize a newly developed microchip for Seebeck coefficient measurements on individual nanowires. By anisotropic etching of a (100) Si wafer, an 800-nm-thick SiO2/Si3N4 membrane was prepared in the chip center. The low thermal conductivity of the membrane is crucial to obtain the required temperature difference Δ T along the nanowire. The wire is electrically contacted to thin metal pads which are patterned by a new method of microscopic exposure of photoresist and a lift-off process. A Δ T between the two pairs of contact pads, located on the membrane, is established by a thin-film heater. Applying the known Seebeck coefficient of a reference film, the temperature difference at this gap is determined. Using Δ T and the measured Seebeck voltage U of the nanowire, its Seebeck coefficient can be calculated.

  20. Microchip capillary electrophoresis based electroanalysis of triazine herbicides.

    PubMed

    Islam, Kamrul; Chand, Rohit; Han, Dawoon; Kim, Yong-Sang

    2015-01-01

    The number of pesticides used in agriculture is increasing steadily, leading to contamination of soil and drinking water. Herein, we present a microfluidic platform to detect the extent of contamination in soil samples. A microchip capillary electrophoresis system with in-channel electrodes was fabricated for label-free electroanalytical detection of triazine herbicides. The sample mixture contained three representative triazines: simazine, atrazine and ametryn. The electropherogram for each individual injection of simazine, atrazine and ametryn showed peaks at 58, 66 and 72 s whereas a mixture of them showed distinct peaks at 59, 67 and 71 s respectively. The technique as such may prove to be a useful qualitative and quantitative tool for the similar environmental pollutants. PMID:25231112

  1. Affinity Monolith-Integrated Microchips for Protein Purification and Concentration.

    PubMed

    Gao, Changlu; Sun, Xiuhua; Wang, Huaixin; Qiao, Wei; Hu, Bo

    2016-01-01

    Affinity chromatography is a valuable method to purify and concentrate minute amount of proteins. Monoliths with epoxy groups for affinity immobilization were prepared by direct in-situ photopolymerization of glycidyl methacrylate and ethylene glycol dimethacrylate in porogenic solvents consisting of 1-dodecanol and cyclohexanol. By integrating affinity monoliths onto a microfluidic system, targeted biomolecules can be captured and retained on affinity column, while other biomolecules having no specific interactions toward the immobilized ligands flow through the microchannel. Therefore, proteins which remain on the affinity column are purified and concentrated, and then eluted by appropriate solutions and finally, separated by microchip capillary electrophoresis. This integrated microfluidic device has been applied to the purification and separation of specific proteins (FITC-labeled human serum albumin and IgG) in a mixture. PMID:27473483

  2. Investigation of temperature effect on cell mechanics by optofluidic microchips

    PubMed Central

    Yang, Tie; Nava, Giovanni; Minzioni, Paolo; Veglione, Manuela; Bragheri, Francesca; Lelii, Francesca Demetra; Vazquez, Rebeca Martinez; Osellame, Roberto; Cristiani, Ilaria

    2015-01-01

    Here we present the results of a study concerning the effect of temperature on cell mechanical properties. Two different optofluidic microchips with external temperature control are used to investigate the temperature-induced changes of highly metastatic human melanoma cells (A375MC2) in the range of ~0 – 35 °C. By means of an integrated optical stretcher, we observe that cells’ optical deformability is strongly enhanced by increasing cell and buffer-fluid temperature. This finding is supported by the results obtained from a second device, which probes the cells’ ability to be squeezed through a constriction. Measured data demonstrate a marked dependence of cell mechanical properties on temperature, thus highlighting the importance of including a proper temperature-control system in the experimental apparatus. PMID:26309762

  3. Rapid inorganic ion analysis using quantitative microchip capillary electrophoresis.

    PubMed

    Vrouwe, Elwin X; Luttge, Regina; Olthuis, Wouter; van den Berg, Albert

    2006-01-13

    Rapid quantitative microchip capillary electrophoresis (CE) for online monitoring of drinking water enabling inorganic ion separation in less than 15 s is presented. Comparing cationic and anionic standards at different concentrations the analysis of cationic species resulted in non-linear calibration curves. We interpret this effect as a variation in the volume of the injected sample plug caused by changes of the electroosmotic flow (EOF) due to the strong interaction of bivalent cations with the glass surface. This explanation is supported by the observation of severe peak tailing. Conducting microchip CE analysis in a glass microchannel, optimized conditions are received for the cationic species K+, Na+, Ca2+, Mg2+ using a background electrolyte consisting of 30 mmol/L histidine and 2-(N-morpholino)ethanesulfonic acid, containing 0.5 mmol/L potassium chloride to reduce surface interaction and 4 mmol/L tartaric acid as a complexing agent resulting in a pH-value of 5.8. Applying reversed EOF co-migration for the anionic species Cl-, SO42- and HCO3- optimized separation occurs in a background electrolyte consisting of 10 mmol/L 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) and 10 mmol/L HEPES sodium salt, containing 0.05 mmol/L CTAB (cetyltrimethylammonium bromide) resulting in a pH-value of 7.5. The detection limits are 20 micromol/L for the monovalent cationic and anionic species and 10 micromol/L for the divalent species. These values make the method very suitable for many applications including the analysis of abundant ions in tap water as demonstrated in this paper. PMID:16310794

  4. Parallel analysis with optically gated sample introduction on a multichannel microchip.

    PubMed

    Xu, Hongwei; Roddy, Thomas P; Lapos, Julie A; Ewing, Andrew G

    2002-11-01

    As an alternative to the T-type injection on microchips, optically gated sample introduction previously has been demonstrated to provide fast, serial, and reproducible injections on a single-channel microchip. Here, the ability to perform high throughput, multichannel analysis with optically gated sample introduction is described using a voice coil actuator. The microchip is fixed on a stage, which moves back and forth via the voice coil actuator, scanning two laser beams across the channels on the microchip. For parallel analysis on a multichannel microchip, both the gating beam and the probe beam are scanned at 10 Hz to perform multiple injections and parallel detection. Simultaneous, fast separations of 4-choloro-7-nitrobenzofurazan (NBD)-labeled amino acids are demonstrated in multiple channels on a microchip. Serial separations of different samples in multiple channels are also reported. Optically gated sample introduction on multiple, parallel channels shows the potential for high-speed, high-throughput separations that are easily automated by using a single electronic shutter. PMID:12433082

  5. A portable neutron coincidence counter

    SciTech Connect

    Peurrung, A.J.; Bowyer, S.M.; Craig, R.A.; Dudder, G.B.; Knopf, M.A.; Panisko, M.E.; Reeder, P.L.; Stromswold, D.C.; Sunberg, D.S.

    1996-11-01

    Pacific Northwest National Laboratory has designed and constructed a prototype portable neutron coincidence counter intended for use in a variety of applications, such as the verification and inspection of weapons components, safety measurements for novel and challenging situations, portable portal deployment to prevent the transportation of fissile materials, uranium enrichment measurements in hard-to-reach locations, waste assays for objects that cannot be measured by existing measurement systems, and decontamination and decommissioning. The counting system weighs less than 40 kg and is composed of parts each weighing no more than 5 kg. In addition, the counter`s design is sufficiently flexible to allow rapid, reliable assembly around containers of nearly arbitrary size and shape. The counter is able to discern the presence of 1 kg of weapons-grade plutonium within an ALR-8 (30-gal drum) in roughly 100 seconds and 10 g in roughly 1000 seconds. The counter`s electronics are also designed for maximum adaptability, allowing operation under a wide variety of circumstances, including exposure to gamma-ray fields of 1 R/h. This report provides a detailed review of the design and construction process. Finally, preliminary experimental measurements that confirm the performance capabilities of this counter are discussed. 6 refs., 18 figs., 3 tabs.

  6. Monitoring Cellular Events in Living Mast Cells Stimulated with an Extremely Small Amount of Fluid on a Microchip

    NASA Astrophysics Data System (ADS)

    Munaka, Tatsuya; Abe, Hirohisa; Kanai, Masaki; Sakamoto, Takashi; Nakanishi, Hiroaki; Yamaoka, Tetsuji; Shoji, Shuichi; Murakami, Akira

    2006-07-01

    We successfully developed a measurement system for real-time analysis of cellular function using a newly designed microchip. This microchip was equipped with a micro cell incubation chamber (240 nl) and was stimulated by a very small amount of stimuli (as small as 24 nl). Using the microchip system, cultivation of mast cells was successfully carried out. Monitoring of the cellular events after stimulation with an extremely small amount of fluid on a microchip was performed. This system could be applicable for various types of cellular analysis including real-time monitoring of cellular response by stimulation.

  7. Improving sensitivity for microchip electrophoresis interfaced with inductively coupled plasma mass spectrometry using parallel multichannel separation.

    PubMed

    Cheng, Heyong; Liu, Jinhua; Xu, Zigang; Wang, Yuanchao; Ye, Meiying

    2016-08-26

    We reported sensitivity enhancement using multichannel parallel separation for microchip electrophoresis hyphenated with inductively coupled plasma mass spectrometry (MCE-ICP-MS) in this study. By using 2-20 array lanes for parallel separation, the sensitivity of the MCE-ICP-MS system was proportionally improved by 2-20 folds. No significantly adverse effect of parallel separation on column efficiency and resolution was observed. Rapid separation of Hg(2+) and methylmercuric (MeHg) ion within 36s under an electric field of 800Vcm(-1) was achieved in the 2-cm twenty-channels with a background electrolyte of 5mmolL(-1) borate buffer (pH 9.2). Detection limits of Hg(2+) and MeHg by the proposed system were decreased to 6.8-7.1ngL(-1). Good agreement between determined values and certified values of a certified reference fish was obtained with recoveries ranged between 94-98%. All results prove its advantages including high sensitivity, high efficiency and low operation cost, which are beneficial to routine analysis of metal speciation in environmental, biological and food fields. PMID:27488720

  8. Portable outgas detection apparatus

    SciTech Connect

    Haney, Steven Julian; Malinowski, Michael E.

    2004-05-11

    A portable device for detecting surface outgas contaminants of an article includes: (i) a portable housing that has a chamber which is in communication with a port that is adapted to be sealably attached to a surface of the article; (ii) a mass spectrometer that is coupled to the chamber for analyzing gaseous materials in the chamber; and (iii) means for generating a vacuum within the chamber thereby drawing outgas contaminants from the surface of the article into the chamber for analysis by the mass spectrometer. By performing a mass spectrometric analysis of the surface of interest and comparing the data with mass spectrometric data ascertained with the device from a clean surface, the type and amount of outgas contaminants, if any, can be determined.

  9. Portable Laser Laboratory

    SciTech Connect

    Weir, J.T.

    1994-07-01

    A Portable Laser Laboratory (PLL) is being designed and built for the CALIOPE Program tests which will begin in October of 1994. The PLL is designed to give maximum flexibility for evolving laser experiments and can be readily moved by loading it onto a standard truck trailer. The internal configuration for the October experiments will support a two line DIAL system running in the mid-IR. Brief descriptions of the laser and detection systems are included.

  10. Portable Planetariums Teach Science

    NASA Technical Reports Server (NTRS)

    2015-01-01

    With the Internet proving to be the wave of the future, in the 1990s Johnson Space Center awarded grants to Rice University in Houston for developing the world's first Internet-accessible museum kiosk. Further grants were awarded to the school for creating educational software for use in homes and schools, leading to the creation of Museums Teaching Planet Earth Inc. The company has gone on to develop and sell portable planetariums and accompanying educational shows.

  11. Portable cutting apparatus

    DOEpatents

    Gilmore, R.F.

    1984-07-17

    A remotely operable, portable cutting apparatus detachably secured to the workpiece by laterally spaced clamp assemblies engagable with the workpiece on opposite sides of the intended line of cut. A reciprocal cutter head is mounted between the clamp assemblies and is provided with a traveling abrasive cutting wire adapted to sever the workpiece normal to the longitudinal axis thereof. Dust and debris are withdrawn from the cutting area by a vacuum force through a nozzle mounted on the cutting head.

  12. Portable cutting apparatus

    DOEpatents

    Gilmore, Richard F.

    1986-04-01

    A remotely operable, portable cutting apparatus detachably secured to the workpiece by laterally spaced clamp assemblies engageable with the workpiece on opposite sides of the intended line of cut. A reciprocal cutter head is mounted between the clamp assemblies and is provided with a traveling abrasive cutting wire adapted to sever the workpiece normal to the longitudinal axis thereof. Dust and debris are withdrawn from the cutting area by a vacuum force through a nozzle mounted on the cutting head.

  13. Portable cutting apparatus

    DOEpatents

    Gilmore, Richard F.

    1986-01-01

    A remotely operable, portable cutting apparatus detachably secured to the workpiece by laterally spaced clamp assemblies engageable with the workpiece on opposite sides of the intended line of cut. A reciprocal cutter head is mounted between the clamp assemblies and is provided with a traveling abrasive cutting wire adapted to sever the workpiece normal to the longitudinal axis thereof. Dust and debris are withdrawn from the cutting area by a vacuum force through a nozzle mounted on the cutting head.

  14. Portable Spray Booth

    NASA Technical Reports Server (NTRS)

    Hansen, Timothy D.; Bardwell, Micheal J.

    1996-01-01

    Portable spray booth provides for controlled application of coating materials with high solvent contents. Includes contoured shroud and carbon filter bed limiting concentration of fumes in vicinity. Designed to substitute spraying for brush application of solvent-based adhesive prior to installing rubber waterproof seals over joints between segments of solid-fuel rocket motor. With minor adjustments and modifications, used to apply other solvent-based adhesives, paints, and like.

  15. Field measurements of biogenic volatile organic compounds in the atmosphere by dynamic solid-phase microextraction and portable gas chromatography-mass spectrometry

    NASA Astrophysics Data System (ADS)

    Barreira, Luís Miguel Feijó; Parshintsev, Jevgeni; Kärkkäinen, Niina; Hartonen, Kari; Jussila, Matti; Kajos, Maija; Kulmala, Markku; Riekkola, Marja-Liisa

    2015-08-01

    Biogenic volatile organic compounds (BVOCs) participate in many physicochemical processes in the atmosphere. Studies indicate that some of these volatile compounds can be photo-oxidized to non-volatile species that contribute to atmospheric formation and growth of secondary organic aerosols (SOA). In this study, the applicability of dynamic solid-phase microextraction (SPME) for the sampling of atmospheric BVOCs and their oxidation products was tested. These compounds were then analysed via portable gas chromatography-mass spectrometry (GC-MS). The measurements were performed in mid-summer 2013 at the Station for Measuring Ecosystem-Atmosphere Relations, SMEAR II in Hyytiälä, Finland. Numerous classes of compounds were efficiently sampled on PDMS/DVB coated SPME, thermally desorbed and analysed by GC-MS, including monoterpenes, their oxidation products, and amines. Results were analysed against meteorological conditions observed during the sampling campaign and the total amount of monoterpenes obtained by proton-transfer-reaction mass spectrometry (PTR-MS). The comparison of the referred data with obtained results demonstrated the capability of the dynamic SPME method for fast in-situ sampling and analysis of organic gaseous compounds in the atmosphere with minimal analytical steps.

  16. Military display market segment: wearable and portable

    NASA Astrophysics Data System (ADS)

    Desjardins, Daniel D.; Hopper, Darrel G.

    2003-09-01

    The military display market (MDM) is analyzed in terms of one of its segments, wearable and portable displays. Wearable and portable displays are those embedded in gear worn or carried by warfighters. Categories include hand-mobile (direct-view and monocular/binocular), palm-held, head/helmet-mounted, body-strapped, knee-attached, lap-born, neck-lanyard, and pocket/backpack-stowed. Some 62 fielded and developmental display sizes are identified in this wearable/portable MDM segment. Parameters requiring special consideration, such as weight, luminance ranges, light emission, viewing angles, and chromaticity coordinates, are summarized and compared. Ruggedized commercial versus commercial off-the-shelf designs are contrasted; and a number of custom displays are also found in this MDM category. Display sizes having aggregate quantities of 5,000 units or greater or having 2 or more program applications are identified. Wearable and portable displays are also analyzed by technology (LCD, LED, CRT, OLED and plasma). The technical specifications and program history of several high-profile military programs are discussed to provide a systems context for some representative displays and their function. As of August 2002 our defense-wide military display market study has documented 438,882 total display units distributed across 1,163 display sizes and 438 weapon systems. Wearable and portable displays account for 202,593 displays (46% of total DoD) yet comprise just 62 sizes (5% of total DoD) in 120 weapons systems (27% of total DoD). Some 66% of these wearable and portable applications involve low information content displays comprising just a few characters in one color; however, there is an accelerating trend towards higher information content units capable of showing changeable graphics, color and video.

  17. Capillary liquid chromatography-microchip atmospheric pressure chemical ionization-mass spectrometry.

    PubMed

    Ostman, Pekka; Jäntti, Sirkku; Grigoras, Kestas; Saarela, Ville; Ketola, Raimo A; Franssila, Sami; Kotiaho, Tapio; Kostiainen, Risto

    2006-07-01

    A miniaturized nebulizer chip for capillary liquid chromatography-atmospheric pressure chemical ionization-mass spectrometry (capillary LC-microchip APCI-MS) is presented. The APCI chip consists of two wafers, a silicon wafer and a Pyrex glass wafer. The silicon wafer has a DRIE etched through-wafer nebulizer gas inlet, an edge capillary insertion channel, a stopper, a vaporizer channel and a nozzle. The platinum heater electrode and pads for electrical connection were patterned on to the Pyrex glass wafer. The two wafers were joined by anodic bonding, creating a microchip version of an APCI-source. The sample inlet capillary from an LC column is directly connected to the vaporizer channel of the APCI chip. The etched nozzle in the microchip forms a narrow sample plume, which is ionized by an external corona needle, and the formed ions are analyzed by a mass spectrometer. The nebulizer chip enables for the first time the use of low flow rate separation techniques with APCI-MS. The performance of capillary LC-microchip APCI-MS was tested with selected neurosteroids. The capillary LC-microchip APCI-MS provides quantitative repeatability and good linearity. The limits of detection (LOD) with a signal-to-noise ratio (S/N) of 3 in MS/MS mode for the selected neurosteroids were 20-1000 fmol (10-500 nmol l(-1)). LODs (S/N = 3) with commercial macro APCI with the same compounds using the same MS were about 10 times higher. Fast heat transfer allows the use of the optimized temperature for each compound during an LC run. The microchip APCI-source provides a convenient and easy method to combine capillary LC to any API-MS equipped with an APCI source. The advantages and potentials of the microchip APCI also make it a very attractive interface in microfluidic APCI-MS. PMID:16804601

  18. Portable vapor diffusion coefficient meter

    DOEpatents

    Ho, Clifford K.

    2007-06-12

    An apparatus for measuring the effective vapor diffusion coefficient of a test vapor diffusing through a sample of porous media contained within a test chamber. A chemical sensor measures the time-varying concentration of vapor that has diffused a known distance through the porous media. A data processor contained within the apparatus compares the measured sensor data with analytical predictions of the response curve based on the transient diffusion equation using Fick's Law, iterating on the choice of an effective vapor diffusion coefficient until the difference between the predicted and measured curves is minimized. Optionally, a purge fluid can forced through the porous media, permitting the apparatus to also measure a gas-phase permeability. The apparatus can be made lightweight, self-powered, and portable for use in the field.

  19. Compact portable electric power sources

    SciTech Connect

    Fry, D.N.; Holcomb, D.E.; Munro, J.K.; Oakes, L.C.; Matson, M.J.

    1997-02-01

    This report provides an overview of recent advances in portable electric power source (PEPS) technology and an assessment of emerging PEPS technologies that may meet US Special Operations Command`s (SOCOM) needs in the next 1--2- and 3--5-year time frames. The assessment was performed through a literature search and interviews with experts in various laboratories and companies. Nineteen PEPS technologies were reviewed and characterized as (1) PEPSs that meet SOCOM requirements; (2) PEPSs that could fulfill requirements for special field conditions and locations; (3) potentially high-payoff sources that require additional R and D; and (4) sources unlikely to meet present SOCOM requirements. 6 figs., 10 tabs.

  20. PORTABLE ACOUSTIC MONITORING PACKAGE (PAMP)

    SciTech Connect

    John l. Loth; Gary J. Morris; George M. Palmer; Richard Guiler; Deepak Mehra

    2003-07-01

    The 1st generation acoustic monitoring package was designed to detect and analyze weak acoustic signals inside natural gas transmission lines. Besides a microphone it housed a three-inch diameter aerodynamic acoustic signal amplifier to maximize sensitivity to leak induced {Delta}p type signals. The theory and test results of this aerodynamic signal amplifier was described in the master's degree thesis of our Research Assistant Deepak Mehra who is about to graduate. To house such a large three-inch diameter sensor required the use of a steel 300-psi rated 4 inch weld neck flange, which itself weighed already 29 pounds. The completed 1st generation Acoustic Monitoring Package weighed almost 100 pounds. This was too cumbersome to mount in the field, on an access port at a pipeline shut-off valve. Therefore a 2nd generation and truly Portable Acoustic Monitor was built. It incorporated a fully self-contained {Delta}p type signal sensor, rated for line pressures up to 1000 psi with a base weight of only 6 pounds. This is the Rosemont Inc. Model 3051CD-Range 0, software driven sensor, which is believed to have industries best total performance. Its most sensitive unit was purchased with a {Delta}p range from 0 to 3 inch water. This resulted in the herein described 2nd generation: Portable Acoustic Monitoring Package (PAMP) for pipelines up to 1000 psi. Its 32-pound total weight includes an 18-volt battery. Together with a 3 pound laptop with its 4-channel data acquisition card, completes the equipment needed for field acoustic monitoring of natural gas transmission pipelines.

  1. Electroporation on microchips: the harmful effects of pH changes and scaling down

    PubMed Central

    Li, Yang; Wu, Mengxi; Zhao, Deyao; Wei, Zewen; Zhong, Wenfeng; Wang, Xiaoxia; Liang, Zicai; Li, Zhihong

    2015-01-01

    Electroporation has been widely used in delivering foreign biomolecules into cells, but there is still much room for improvement, such as cell viability and integrity. In this manuscript, we investigate the distribution and the toxicity of pH changes during electroporation, which significantly decreases cell viability. A localized pH gradient forms between anode and cathode leading to a localized distribution of cell death near the electrodes, especially cathodes. The toxicity of hydroxyl ions is severe and acute due to their effect in the decomposition of phospholipid bilayer membrane. On the other hand, the electric field used for electroporation aggravates the toxicity of hydroxyl because the electropermeabilization of cell membrane makes bilayer structure more loosen and vulnerable. We also investigate the side effects during scaling down the size of electrodes in electroporation microchips. Higher percentage of cells is damaged when the size of electrodes is smaller. At last, we propose an effective strategy to constrain the change of pH by modifying the composition of electroporation buffer. The modified buffer decreases the changes of pH, thus enables high cell viability even when the electric pulse duration exceeds several milliseconds. This ability has potential advantage in some applications that require long-time electric pulse stimulation. PMID:26658168

  2. Underivatized cyclic olefin copolymer as substrate material and stationary phase for capillary and microchip electrochromatography.

    PubMed

    Gustafsson, Omar; Mogensen, Klaus B; Kutter, Jörg P

    2008-08-01

    We report, for the first time, the use of underivatized cyclic olefin copolymer (COC, more specifically: Topas) as the substrate material and the stationary phase for capillary and microchip electrochromatography (CEC), and demonstrate chromatographic separations without the need of coating procedures. Electroosmotic mobility measurements in a 25 microm id Topas capillary showed a significant cathodic EOF that is pH-dependent. The magnitude of the electroosmotic mobility is comparable to that found in glass substrates and other polymeric materials. Open-tubular CEC was employed to baseline-separate three neutral compounds in an underivatized Topas capillary with plate heights ranging from 5.3 to 12.7 microm. The analytes were detected using UV absorbance at 254 nm, thus taking advantage of the optical transparency of Topas at short wavelengths. The fabrication of a Topas-based electrochromatography microchip by nanoimprint lithography is also presented. The microchip has an array of pillars in the separation column to increase the surface area. The smallest features that were successfully imprinted were around 2 microm wide and 5 microm high. No plasma treatment was used during the bonding, thus keeping the surface properties of the native material. An RP microchip electrochromatography separation of three fluorescently labeled amines is demonstrated on the underivatized microchip with plate heights ranging from 3.4 to 22 microm. PMID:18618461

  3. Fabrication of SU-8 based microchip electrophoresis with integrated electrochemical detection for neurotransmitters.

    PubMed

    Castaño-Alvarez, Mario; Fernández-Abedul, M Teresa; Costa-García, Agustín; Agirregabiria, María; Fernández, Luis J; Ruano-López, Jesús Miguel; Barredo-Presa, Borja

    2009-11-15

    A new SU-8 based microchip capillary electrophoresis (MCE) device has been developed for the first time with integrated electrochemical detection. Embedded electrophoretic microchannels have been fabricated with a multilayer technology based on bonding and releasing steps of stacked SU-8 films. This technology has allowed the monolithic integration in the device of the electrochemical detection system based on platinum electrodes. The fabrication of the chips presented in this work is totally compatible with reel-to-reel techniques, which guarantee a low cost and high reliability production. The influence of relevant experimental variables, such as the separation voltage and detection potential, has been studied on the SU-8 microchip with an attractive analytical performance. Thus, the effective electrical isolation of the end-channel amperometric detector has been also demonstrated. The good performance of the SU-8 device has been proven for separation and detection of the neurotransmitters, dopamine (DA) and epinephrine (EP). High efficiency (30,000-80,000 N/m), excellent precision, good detection limit (450 nM) and resolution (0.90-1.30) has been achieved on the SU-8 microchip. These SU-8 devices have shown a better performance than commercial Topas (thermoplastic olefin polymer of amorphous structure) microchips. The low cost and versatile SU-8 microchip with integrated platinum film electrochemical detector holds great promise for high-volume production of disposable microfluidic analytical devices. PMID:19782188

  4. Generating high peak capacity 2-D maps of complex proteomes using PMMA microchip electrophoresis.

    PubMed

    Osiri, John K; Shadpour, Hamed; Park, Sunjung; Snowden, Brandy C; Chen, Zhi-Yuan; Soper, Steven A

    2008-12-01

    A high peak capacity 2-D protein separation system combining SDS micro-CGE (SDS micro-CGE) with microchip MEKC (micro-MEKC) using a PMMA microfluidic is reported. The utility of the 2-D microchip was demonstrated by generating a 2-D map from a complex biological sample containing a large number of constituent proteins using fetal calf serum (FCS) as the model system. The proteins were labeled with a thiol-reactive AlexaFluor 633 fluorophore (excitation/emission: 633/652 nm) to allow for ultra-sensitive on-chip detection using LIF following the 2-D separation. The high-resolution separation of the proteins was accomplished based on their size in the SDS micro-CGE dimension and their interaction with micelles in the micro-MEKC dimension. A comprehensive 2-D SDS micro-CGE x micro-MEKC separation of the FCS proteins was completed in less than <30 min using this 2-D microchip format, which consisted of 60 mm and 50 mm effective separation lengths for the first and second separation dimensions, respectively. Results obtained from the microchip separation were compared with protein maps acquired using conventional 2-D IEF and SDS-PAGE of a similar FCS sample. The microchip 2-D separation was found to be approximately 60x faster and yielded an average peak capacity of 2600 (+/- 149), nearly three times larger than that obtained using conventional IEF/SDS-PAGE. PMID:19130578

  5. Homogeneous agglutination assay based on micro-chip sheathless flow cytometry.

    PubMed

    Ma, Zengshuai; Zhang, Pan; Cheng, Yinuo; Xie, Shuai; Zhang, Shuai; Ye, Xiongying

    2015-11-01

    Homogeneous assays possess important advantages that no washing or physical separation is required, contributing to robust protocols and easy implementation which ensures potential point-of-care applications. Optimizing the detection strategy to reduce the number of reagents used and simplify the detection device is desirable. A method of homogeneous bead-agglutination assay based on micro-chip sheathless flow cytometry has been developed. The detection processes include mixing the capture-probe conjugated beads with an analyte containing sample, followed by flowing the reaction mixtures through the micro-chip sheathless flow cytometric device. The analyte concentrations were detected by counting the proportion of monomers in the reaction mixtures. Streptavidin-coated magnetic beads and biotinylated bovine serum albumin (bBSA) were used as a model system to verify the method, and detection limits of 0.15 pM and 1.5 pM for bBSA were achieved, using commercial Calibur and the developed micro-chip sheathless flow cytometric device, respectively. The setup of the micro-chip sheathless flow cytometric device is significantly simple; meanwhile, the system maintains relatively high sensitivity, which mainly benefits from the application of forward scattering to distinguish aggregates from monomers. The micro-chip sheathless flow cytometric device for bead agglutination detection provides us with a promising method for versatile immunoassays on microfluidic platforms. PMID:26649133

  6. Gas chromatography-microchip atmospheric pressure chemical ionization-mass spectrometry.

    PubMed

    Ostman, Pekka; Luosujärvi, Laura; Haapala, Markus; Grigoras, Kestas; Ketola, Raimo A; Kotiaho, Tapio; Franssila, Sami; Kostiainen, Risto

    2006-05-01

    An atmospheric pressure chemical ionization (APCI) microchip is presented for combining a gas chromatograph (GC) to a mass spectrometer (MS). The chip includes capillary insertion channel, stopper, vaporizer channel, nozzle and nebulizer gas inlet fabricated on the silicon wafer, and a platinum heater sputtered on a glass wafer. These two wafers are joined by anodic bonding creating a two-dimensional version of an APCI microchip. The sample from GC is directed via heated transfer line capillary to the vaporizer channel of the APCI chip. The etched nozzle forms narrow sample plume, which is ionized by an external corona discharge needle, and the ions are analyzed by a mass spectrometer. The GC-microchip APCI-MS combination provides an efficient method for qualitative and quantitative analysis. The spectra produced by microchip APCI show intensive protonated molecule and some fragmentation products as in classical chemical ionization for structure elucidation. In quantitative analysis the GC-microchip APCI-MS showed good linearity (r(2) = 0.9989) and repeatability (relative standard deviation 4.4%). The limits of detection with signal-to-noise ratio of three were between 0.5 and 2 micromol/L with MS mode using selected ion monitoring and 0.05 micromol/L with MS/MS using multiple reaction monitoring. PMID:16642989

  7. A Sol-Gel-Modified Poly(methyl methacrylate) Electrophoresis Microchip with a Hydrophilic Channel Wall

    SciTech Connect

    Chen, Gang; Xu, Xuejiao; Lin, Yuehe; Wang, Joseph

    2007-07-27

    A sol-gel method was employed to fabricate a poly(methyl methacrylate) (PMMA) electrophoresis microchip that contains a hydrophilic channel wall. To fabricate such a device, tetraethoxysilane (TEOS) was injected into the PMMA channel and was allowed to diffuse into the surface layer for 24 h. After removing the excess TEOS, the channel was filled with an acidic solution for 3 h. Subsequently, the channel was flushed with water and was pretreated in an oven to obtain a sol-gel-modified PMMA microchip. The water contact angle for the sol-gel-modified PMMA was 27.4° compared with 66.3° for the pure PMMA. In addition, the electro-osmotic flow increased from 2.13×10-4 cm2 V-1 s-1 for the native-PMMA channel to 4.86×10-4 cm2 V-1 s-1 for the modified one. The analytical performance of the sol-gel-modified PMMA microchip was demonstrated for the electrophoretic separation of several purines, coupled with amperometric detection. The separation efficiency of uric acid increased to 74 882.3 m-1 compared with 14 730.5 m-1 for native-PMMA microchips. The result of this simple modification is a significant improvement in the performance of PMMA for microchip electrophoresis and microfluidic applications.

  8. Portable emittance measurement device

    SciTech Connect

    Liakin, D.; Seleznev, D.; Orlov, A.; Kuibeda, R.; Kropachev, G.; Kulevoy, T.; Yakushin, P.

    2010-02-15

    In Institute for Theoretical and Experimental Physics (ITEP) the portable emittance measurements device is developed. It provides emittance measurements both with ''pepper-pot'' and ''two slits'' methods. Depending on the method of measurements, either slits or pepper-pot mask with scintillator are mounted on the two activators and are installed in two standard Balzer's cross chamber with CF-100 flanges. To match the angle resolution for measured beam, the length of the stainless steel pipe between two crosses changes is adjusted. The description of the device and results of emittance measurements at the ITEP ion source test bench are presented.

  9. Portable data collection device

    DOEpatents

    French, Patrick D.

    1996-01-01

    The present invention provides a portable data collection device that has a variety of sensors that are interchangeable with a variety of input ports in the device. The various sensors include a data identification feature that provides information to the device regarding the type of physical data produced by each sensor and therefore the type of sensor itself. The data identification feature enables the device to locate the input port where the sensor is connected and self adjust when a sensor is removed or replaced. The device is able to collect physical data, whether or not a function of a time.

  10. Portable pathogen detection system

    DOEpatents

    Colston, Billy W.; Everett, Matthew; Milanovich, Fred P.; Brown, Steve B.; Vendateswaran, Kodumudi; Simon, Jonathan N.

    2005-06-14

    A portable pathogen detection system that accomplishes on-site multiplex detection of targets in biological samples. The system includes: microbead specific reagents, incubation/mixing chambers, a disposable microbead capture substrate, and an optical measurement and decoding arrangement. The basis of this system is a highly flexible Liquid Array that utilizes optically encoded microbeads as the templates for biological assays. Target biological samples are optically labeled and captured on the microbeads, which are in turn captured on an ordered array or disordered array disposable capture substrate and then optically read.

  11. Portable wastewater flow meter

    DOEpatents

    Hunter, Robert M.

    1999-02-02

    A portable wastewater flow meter particularly adapted for temporary use at a single location in measuring the rate of liquid flow in a circular entrance conduit of a sewer manhole both under free flow and submerged, open channel conditions and under fill pipe, surcharged conditions, comprising an apparatus having a cylindrical external surface and an inner surface that constricts the flow through the apparatus in such a manner that a relationship exists between (1) the difference between the static pressure head of liquid flowing through the entrance of the apparatus and the static pressure head of liquid flowing through the constriction, and (2) the rate of liquid flow through the apparatus.

  12. Portable wastewater flow meter

    DOEpatents

    Hunter, Robert M.

    1990-01-01

    A portable wastewater flow meter particularly adapted for temporary use at a single location in measuring the rate of liquid flow in a circular entrance conduit of a sewer manhole both under free flow and submerged, open channel conditions and under full pipe, surcharged conditions, comprising an apparatus having a cylindrical external surface and an inner surface that constricts the flow through the apparatus in such a manner that a relationship exists between (1) the difference between the static pressure head of liquid flowing through the entrance of the apparatus and the static pressure head of liquid flowing through the constriction, and (2) the rate of liquid flow through the apparatus.

  13. Portable Extensible Viewer

    NASA Technical Reports Server (NTRS)

    Horowitz, Jay G.

    1997-01-01

    The use of Nonuniform Rational B-Splines (NURBS) to represent geometry and data offers a standard way to facilitate the multidisciplinary analysis and design of aeropropulsion products. Using standard geometry defined by NURBS throughout design, analysis, part definition, manufacture, and test processes saves money and time. The Portable Extensible Viewer (PEV) offers engineers of different disciplines a means to view and manipulate NURBS geometry and associated data. Under the guidance of a team of Lewis, Boeing Company, and Navy personnel, PEV was developed by NASA Lewis Research Center's Computer Services Division for Lewis' Interdisciplinary Technology Office. The aeropropulsion industry provided input to the design requirements.

  14. Portable data collection device

    DOEpatents

    French, P.D.

    1996-06-11

    The present invention provides a portable data collection device that has a variety of sensors that are interchangeable with a variety of input ports in the device. The various sensors include a data identification feature that provides information to the device regarding the type of physical data produced by each sensor and therefore the type of sensor itself. The data identification feature enables the device to locate the input port where the sensor is connected and self adjust when a sensor is removed or replaced. The device is able to collect physical data, whether or not a function of a time. 7 figs.

  15. Portable hydrogenerating apparatus

    SciTech Connect

    Borgren, P.M.

    1982-04-13

    Apparatus for generating hydroelectric power comprising a portable collector tube assembly which can be transported to the site of a water source having a waterfall sufficient in magnitude to provide a pressure head for driving a turbine generator. The tube assembly comprises telescopically arranged inner and outer tubes, and means for rotating the tube assembly and extending the inner tube so as to place the upper, extended end thereof in a position within and below the top of the waterfall so as to take advantage of the resulting hydrodynamic and hydrostatic forces.

  16. Monolithic thermally bonded Er3+, Yb3+:glass/Co2+:MgAl2O4 microchip lasers

    NASA Astrophysics Data System (ADS)

    Mlynczak, Jaroslaw; Belghachem, Nabil

    2015-12-01

    The highest ever reported 10 kW peak power in monolithic thermally bonded Er3+, Yb3+:glass/Co2+:MgAl2O4 microchip laser was achieved. To show the superiority of monolithic microchip lasers over those with external mirrors the laser generation characteristics of the same samples in both cases were compared.

  17. Integrated liquid chromatography-heated nebulizer microchip for mass spectrometry.

    PubMed

    Haapala, Markus; Saarela, Ville; Pól, Jaroslav; Kolari, Kai; Kotiaho, Tapio; Franssila, Sami; Kostiainen, Risto

    2010-03-10

    A new integrated microchip for liquid chromatography-mass spectrometry (LC-MS) is presented. The chip is made from bonded silicon and glass wafers with structures for a packed LC column channel, a micropillar frit, a channel for optional optical detection, and a heated vaporizer section etched in silicon and platinum heater elements on the glass cover. LC eluent is vaporized and mixed with nebulizer gas in the vaporizer section and the vapor is sprayed out from the chip. Nonpolar and polar analytes can be efficiently ionized in the gas phase by atmospheric pressure photoionization (APPI) as demonstrated with polycyclic aromatic hydrocarbons (PAHs) and selective androgen receptor modulators (SARMs). This is not achievable with present LC-MS chips, since they are based on electrospray ionization, which is not able to ionize nonpolar compounds efficiently. The preliminary quantitative performance of the new chip was evaluated in terms of limit of detection (down to 5 ng mL(-1)), linearity (r>0.999), and repeatability of signal response (RSD=2.6-4.0%) and retention time (RSD=0.3-0.5%) using APPI for ionization and PAHs as standard compounds. Determination of fluorescent compounds is demonstrated by using laser-induced fluorescence (LIF) for detection in the optical detection channel before the vaporizer section. PMID:20171315

  18. Measuring protein interactions by microchip self-interaction chromatography.

    PubMed

    García, Carlos D; Hadley, DeGail J; Wilson, W William; Henry, Charles S

    2003-01-01

    The self-interaction of proteins is of paramount importance in aggregation and crystallization phenomena. Solution conditions leading to a change in the state of aggregation of a protein, whether amorphous or crystalline, have mainly been discovered by the use of trial and error screening of large numbers of solutions. Self-interaction chromatography has the potential to provide a quantitative method for determination of protein self-interactions amenable to high-throughput screening. This paper describes the construction and characterization of a microchip separation system for low-pressure self-interaction chromatography using lysozyme as a model protein. The retention time was analyzed as a function of mobile-phase composition, amount of protein injected, flow rate, and stationary-phase modification. The capacity factors (k') as a function of crystallizing agent concentration are compared with previously published values for the osmotic second virial coefficient (B(22)) obtained by static light scattering, showing the ability of the chip to accurately determine protein-protein interactions. A 500-fold reduction in protein consumption and the possibility of using conventional instrumentation and automation are some of the advantages over currently used methodologies for evaluating protein-protein interactions. PMID:12790668

  19. Microchip-Based Organophosphorus Detection Using Bienzyme Bioelectrocatalysis

    NASA Astrophysics Data System (ADS)

    Han, Yong Duk; Jeong, Chi Yong; Lee, Jun Hee; Lee, Dae-Sik; Yoon, Hyun C.

    2012-06-01

    We have developed a microsystem for the detection of organophosphorus (OP) compounds using acetylcholine esterase (AchE) and choline oxidase (ChOx) bienzyme bioelectrocatalysis. Because AchE is irreversibly inhibited by OP pesticides, the change in AchE activity with OP treatment can be traced to determine OP concentration. Polymer-associated ChOx immobilization on the working electrode surface and magnetic microparticle (MP)-assisted AchE deposition methods were employed to create an AchE-ChOx bienzyme-modified biosensing system. ChOx was immobilized on the micropatterned electrodes using poly(L-lysine), glutaraldehyde, and amine-rich interfacial surface. AchE was immobilized on the MP surface via Schiff's base formation, and the enzyme-modified MPs were deposited on the working electrode using a magnet under the microfluidic channel. The bioelectrocatalytic reaction between AchE-ChOx bienzyme cascade and the ferrocenyl electron shuttle was successfully used to detect OP with the developed microchip. This provides a self-contained and relatively easy method for OP detection. It requires minimal time and a small sample size, and has potential analytic applications in pesticides and chemical warfare agents.

  20. A Contactless Capacitance Detection System for Microchip Capillary Electrophoresis

    NASA Astrophysics Data System (ADS)

    Wu, Peter

    2008-05-01

    The design, construction and operation of a simple, inexpensive and compact high voltage power supply for use in conjunction with a simple cross, capillary electrophoresis microchip is presented. The detection system utilizes a single high voltage power supply (15 kV), a voltage divider network for obtaining the required voltages for enabling a gated injection valve, and two high voltage relays for switching between the open and closed gate sequences of the injection. The system is used to determine sodium monofluoroacetate (MFA) concentration in diluted fruit juices and tap water. A separation buffer consisting of 20 mM citric acid and histidine at pH 3.5 enabled the detection of the anion in diluted apple juice, cranberry juice, and orange juice without lengthy sample pretreatments. Limit of detection in diluted juices and tap water were determined to be 125, 167, 138, and 173 mg/L for tap water, apple juice, cranberry juice, and orange juice, respectively, based upon an S/N of 3:1. The total analysis time for detecting the MFA anion in fruit juices was less than 5 min, which represents a considerable reduction in analysis time compared to other analytical methods currently used in food analysis.

  1. Comparison of Noncontact Infrared Thermometry and 3 Commercial Subcutaneous Temperature Transponding Microchips with Rectal Thermometry in Rhesus Macaques (Macaca mulatta)

    PubMed Central

    Brunell, Marla K

    2012-01-01

    This study compared a noncontact infrared laser thermometer and 3 different brands of subcutaneous temperature transponding microchips with rectal thermometry in 50 rhesus macaques (Macaca mulatta). The data were analyzed by using intraclass correlation coefficients and limits of agreement. In addition, the technical capabilities and practicality of the thermometers in the clinical setting were reviewed. None of the alternative techniques investigated was equivalent to rectal thermometry in rhesus macaques. Temperatures obtained by using microchips had higher correlation and agreed more closely with rectal temperatures than did those obtained by the noncontact infrared method. However, transponding microchips did not yield consistent results. Due to difficulty in positioning nonsedated macaques in their homecage, subcutaneous microchips were not practical in the clinical setting. Furthermore, pair-housed macaques may be able to break or remove microchips from their cagemates. PMID:23043815

  2. [Theoretical and Experimental Dosimetry in Evaluation of Biological Effects of Electromagnetic Field for Portable Radio Transmitters. Report 2. Homogeneous Human Head Phantom].

    PubMed

    Perov, S Yu; Bogacheva, E V

    2015-01-01

    Results of theoretical (numerical) and experimental electromagnetic field dosimetry for homogeneous human head phantoms are considered. The simulation and measurement results are shown. This paper presents the results of Specific Absorption Rate (SAR) evaluation in the "special anthropomorphic model" of human head, when a source of electromagnetic radio frequency field is placed in front of the face. The minimal difference is shown between measurements and simulation results in Head Simulating Liquid, which makes it possible to conduct further brain tissue simulations. The investigations show that the type of electromagnetic field source and phantom form play an important part for SAR distribution. PMID:26601543

  3. Power to the portables.

    PubMed

    Specthrie, L; Berg, W; Fishman, S; Walker, L; Gapay, L

    1992-08-01

    Portable computing devices generally are classified into four categories: laptop, palmtop, notebook, and pen-based computers. If a portable unit weighs over eight pounds, call it a laptop. If a stylus is used to input data, call it pen-based or a pen computer. Palmtops frequently are electronic organizers or resources: Sharp's Wizard line stores appointments and addresses; Franklin's Med-Spell contains Stedman's medical dictionary. Notebooks often incorporate a QWERT keyboard, and sometimes include a pointing device. NEC's notebooks in 1988 were the first sub-laptop computers. According to a 1992 report from Market Intelligence Research Corp., Mountain View, Calif., 4.6 million sub-laptops were sold in 1991 for $2.6 billion. By 1998 the market may reach $25 billion. The report predicts that one sub-category of pen computers, which are designed to be held in one hand while information is input with a pen-like stylus, will prove most useful to the health-care industry. Pen tablets, as opposed to pen clipboards, use faster, more expensive processors, store more data, and "are expected to allow [caregivers] to carry full patient charting with them ... and allow information to be recorded directly to patient files." Sub-laptops are on-line in many healthcare facilities: Greenwich hospital, Stanford University Medical Clinic, Humana Hospital Audubon, Rancho Los Amigos Medical Center, and others. PMID:10121047

  4. Nonlinear multi-photon laser wave-mixing optical detection in microarrays and microchips for ultrasensitive detection and separation of biomarkers for cancer and neurodegenerative diseases

    NASA Astrophysics Data System (ADS)

    Iwabuchi, Manna; Hetu, Marcel; Maxwell, Eric; Pradel, Jean S.; Ramos, Sashary; Tong, William G.

    2015-09-01

    Multi-photon degenerate four-wave mixing is demonstrated as an ultrasensitive absorption-based optical method for detection, separation and identification of biomarker proteins in the development of early diagnostic methods for HIV- 1, cancer and neurodegenerative diseases using compact, portable microarrays and capillary- or microchip-based chemical separation systems that offer high chemical specificity levels. The wave-mixing signal has a quadratic dependence on concentration, and hence, it allows more reliable monitoring of smaller changes in analyte properties. Our wave-mixing detection sensitivity is comparable or better than those of current methods including enzyme-linked immunoassay for clinical diagnostic and screening. Detection sensitivity is excellent since the wave-mixing signal is a coherent laser-like beam that can be collected with virtually 100% collection efficiency with high S/N. Our analysis time is short (1-15 minutes) for molecular weight-based protein separation as compared to that of a conventional separation technique, e.g., sodium dodecyl sulfate-polyacrylamide gel electrophoresis. When ultrasensitive wavemixing detection is paired with high-resolution capillary- or microchip-based separation systems, biomarkers can be separated and identified at the zepto- and yocto-mole levels for a wide range of analytes. Specific analytes can be captured in a microchannel through the use of antibody-antigen interactions that provide better chemical specificity as compared to size-based separation alone. The technique can also be combined with immune-precipitation and a multichannel capillary array for high-throughput analysis of more complex protein samples. Wave mixing allows the use of chromophores and absorption-modifying tags, in addition to conventional fluorophores, for online detection of immunecomplexes related to cancer.

  5. Impact of conduit geometry on the performance of typical particulate microchip packings.

    PubMed

    Jung, Stephanie; Höltzel, Alexandra; Ehlert, Steffen; Mora, Jose-Angel; Kraiczek, Karsten; Dittmann, Monika; Rozing, Gerard P; Tallarek, Ulrich

    2009-12-15

    This work investigates the impact of conduit geometry on the chromatographic performance of typical particulate microchip packings. For this purpose, high-performance liquid chromatography (HPLC)/UV-microchips with separation channels of quadratic, trapezoidal, or Gaussian cross section were fabricated by direct laser ablation and lamination of multiple polyimide layers and then slurry-packed with either 3 or 5 microm spherical porous C8-silica particles under optimized packing conditions. Experimentally determined plate height curves for the empty microchannels are compared with dispersion coefficients from theoretical calculations. Packing densities and plate height curves for the various microchip packings are presented and conclusively explained. The 3 microm packings display a high packing density irrespective of their conduit geometries, and their performance reflects the dispersion behavior of the empty channels. Dispersion in 5 microm packings correlates with the achieved packing densities, which are limited by the number and accessibility of corners in a given conduit shape. PMID:19916548

  6. Microchip-based enzyme-linked immunosorbent assay (microELISA) system with thermal lens detection.

    PubMed

    Sato, Kiichi; Yamanaka, Maho; Hagino, Tomokazu; Tokeshi, Manabu; Kimura, Hiroko; Kitamori, Takehiko

    2004-12-01

    A microchip-based enzyme-linked immunosorbent assay (microELISA) system was developed and interferon-gamma was successfully determined. The system was composed of a microchip with a Y-shaped microchannel and a dam structure, polystyrene microbeads, and a thermal lens microscope (TLM). All reactions required for the immunoassay were done in the microchannel by successive introduction of a sample and regents. The enzyme reaction product, in a liquid phase, was detected downstream in the channel using the TLM as substrate solution was injected. The antigen-antibody reaction time was shortened by the microchip integration. The limit of the determination was improved by adopting the enzyme label. Moreover, detection procedures were greatly simplified and required time for the detection was significantly cut. The system has good potential to be developed as a small and automated high throughput analyzer. PMID:15570367

  7. The Evaluation of Two Commercially Available, Portable Raman Systems

    PubMed Central

    Mosier-Boss, Pamela A.; Putnam, Michael D.

    2013-01-01

    Raman spectroscopy and surface enhanced Raman spectroscopy (SERS) have many attributes that make them attractive for field detection of environmental contaminants, industrial process control, as well as materials detection/identification in agriculture, pharmaceuticals, law enforcement/first responders, geology, and archeology. However, portable, robust, inexpensive Raman systems are required for these applications. In this communication, the performances of two commercially available, portable Raman systems are evaluated. PMID:24115834

  8. PEMS (PORTABLE EMISSONS MEASUREMENT SYSTEM)

    EPA Science Inventory

    PEMS is a generic term that encompasses all portable emissions measurement systems. Two EPA-developed examples are ROVER (Real-time On-Vehicle Emissions Reporter) for on-highway applications, and SPOT (Simple Portable On-vehicle Tester) for non-road applications. Now, however, ...

  9. Microchips fabricated by femtosecond laser micromachining in glass for observation of aquatic microorganisms

    NASA Astrophysics Data System (ADS)

    Hanada, Y.; Sugioka, K.; Kawano, H.; Ishikawa, I.; Miyawaki, A.; Midorikawa, K.

    2008-02-01

    We demonstrate the fabrication of three-dimensional (3D) hollow microstructures embedded in photostructurable glass by a nonlinear multiphoton absorption process using a femtosecond (fs) laser. Fs laser direct writing followed by annealing and successive wet etching in dilute hydrofluoric (HF) acid solution resulted in the rapid manufacturing of microchips with 3-D hollow microstructures for the dynamic observation of living microorganisms in fresh water. The embedded microchannel structure enables us to analyze the continuous motion of Euglena gracilis and Dinoflagellate. Such microchips, referred to as nano-aquariums realize the efficient and highly functional observation of microorganisms.

  10. Functional thermal lens microscopes for ultrasensitive analysis of non-fluorescent molecules and microchip chemistry

    NASA Astrophysics Data System (ADS)

    Mawatari, Kazuma; Kitamori, Takehiko

    2006-09-01

    Thermal lens microscope (TLM) is a kind of absorption spectrophotometry based on photothermal phenomena of non-fluorescent molecules. TLM has high sensitivity (single molecule concentration in fL detection volume) and wide applicability (non-fluorescent molecules). TLM was successfully applied to detection on microchip in clinical diagnosis, environmental analysis, single cell analysis and so on. The basic function of TLM is concentration determination in microspace. In addition, we have realized various functions on TLM for sensitive chiral analysis, individual nanoparticle counting and in situ flow sensing. In this presentation, we explain these functional TLMs for microchip chemistry.

  11. A review of the development of portable laser induced breakdown spectroscopy and its applications

    NASA Astrophysics Data System (ADS)

    Rakovský, J.; Čermák, P.; Musset, O.; Veis, P.

    2014-11-01

    In this review, we present person-transportable laser induced breakdown spectroscopy (LIBS) devices that have previously been developed and reported in the literature as well as their applications. They are compared with X-ray fluorescent (XRF) devices, which represent their strongest competition. Although LIBS devices have advantages over XRF devices, such as sensitivity to the light elements, high spatial resolution and the possibility to distinguish between different layers of the sample, there are also disadvantages and both are discussed here. Furthermore, the essential portable LIBS instrumentation (laser, spectrograph and detector) is presented, and published results related to new laser sources (diode-pumped solid-state, microchip and fiber lasers) used in LIBS are overviewed. Compared to conventional compact flashlamp pumped solid-state lasers, the new laser sources provide higher repetition rates, higher efficiency (less power consumption) and higher beam quality, resulting in higher fluences, even for lower energies, and could potentially increase the figure of merit of portable LIBS instruments. Compact spectrometers used in portable LIBS devices and their parts (spectrograph, detector) are also discussed.

  12. Portable Medical System

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Portable Medical Status and Treatment System (PMSTS) is designed for use in remote areas where considerable time may elapse before a patient can be transported to a hospital. First units were delivered to the Department of Transportation last year and tested in two types of medical emergency environments: one in a rural Pennsylvania community and another aboard a U.S. Coast Guard rescue helicopter operating along Florida's Gulf Coast. The system has the capability to transmit vital signs to a distantly located physician, who can perform diagnosis and relay treatment instructions to the attendant at the scene. The battery powered PMSTS includes a vital signs monitor and a defibrillator. Narco has also developed a companion system, called Porta-Fib III designed for use in a hospital environment with modifications accordingly. Both systems are offshoots of an earlier NASA project known as the Physician's Black Bag developed by Telecare, Inc., a company now acquired by NARCO.

  13. Portable appliance security apparatus

    NASA Technical Reports Server (NTRS)

    Kerley, J. J. (Inventor)

    1981-01-01

    An apparatus for securing a small computer, or other portable appliance, against theft is described. It is comprised of a case having an open back through which the computer is installed or removed. Guide members in the form of slots are formed in a rear portion of opposite walls of the case for receiving a back plate to cover the opening and thereby secure the computer within the case. An opening formed in the top wall of the case exposes the keyboard and display of the computer. The back plate is locked in the closed position by a key-operated plug type lock. The lock is attached to one end of a hold down cable, the opposite end thereof being secured to a desk top or other stationary object. Thus, the lock simultaneously secures the back plate to the case and retains the case to the stationary object.

  14. Portable active interrogation system.

    SciTech Connect

    Moss, C. E.; Brener, M. W.; Hollas, C. L.; Myers, W. L.

    2004-01-01

    The system consists of a pulsed DT neutron generator (5 x 10{sup 7} n/s) and a portable but high intrinsic efficiency, custom-designed, polyethylene-moderated {sup 3}He neutron detector. A multichannel scaler card in a ruggedized laptop computer acquires the data. A user-friendly LabVIEW program analyzes and displays the data. The program displays a warning message when highly enriched uranium or any other fissionable materials is detected at a specified number of sigmas above background in the delayed region between pulses. This report describes the system and gives examples of the response of the system to highly enriched uranium and some other fissionable materials, at several distances and with various shielding materials.

  15. Portable Cooler/Warmers

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Early in the space program, NASA recognized the need to replace bulky coils, compressers, and motors for refrigeration purposes by looking at existing thermoelectric technology. This effort resulted in the development of miniaturized thermoelectric components and packaging to accommodate tight confines of spacecraft. Koolatron's portable electronic refrigerators incorporate this NASA technology. Each of the cooler/warmers employs one or two miniaturized thermoelectric modules. Although each module is only the size of a book of matches, it delivers the cooling power of a 10-pound block of ice. In some models, the cooler can be converted to a warmer. There are no moving parts. The Koolatrons can be plugged into auto cigarette lighters, recreational vehicles, boats or motel outlets.

  16. Portable intensity interferometry

    NASA Astrophysics Data System (ADS)

    Horch, Elliott P.; Camarata, Matthew A.

    2012-07-01

    A limitation of the current generation of long baseline optical interferometers is the need to make the light interfere prior to detection. This is unlike the radio regime where signals can be recorded fast enough to use electronics to accomplish the same result. This paper describes a modern optical intensity interferometer based on electronics with picosecond timing resolution. The instrument will allow for portable optical interferometry with much larger baselines than currently possible by using existing large telescopes. With modern electronics, the limiting magnitude of the technique at a 4-m aperture size becomes competitive with some amplitude-based interferometers. The instrumentation will permit a wireless mode of operation with GPS clocking technology, extending the work to extremely large baselines. We discuss the basic observing strategy, a planned observational program at the Lowell Observatory 1.8-m and 1.0-m telescopes, and the science that can realistically be done with this instrumentation.

  17. Portable Radiation Detectors

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Through a Small Business Innovation Research (SBIR) contract from Kennedy Space Center, General Pneumatics Corporation's Western Research Center satisfied a NASA need for a non-clogging Joule-Thomson cryostat to provide very low temperature cooling for various sensors. This NASA-supported cryostat development played a key part in the development of more portable high-purity geranium gamma-ray detectors. Such are necessary to discern between the radionuclides in medical, fuel, weapon, and waste materials. The outcome of the SBIR project is a cryostat that can cool gamma-ray detectors, without vibration, using compressed gas that can be stored compactly and indefinitely in a standby mode. General Pneumatics also produces custom J-T cryostats for other government, commercial and medical applications.

  18. Chemiluminescence resonance energy transfer-based detection for microchip electrophoresis.

    PubMed

    Zhao, Shulin; Huang, Yong; Shi, Ming; Liu, Rongjun; Liu, Yi-Ming

    2010-03-01

    Since the channels in micro- and nanofluidic devices are extremely small, a sensitive detection is required following microchip electrophoresis (MCE). This work describes a highly sensitive and yet universal detection scheme based on chemiluminescence resonance energy transfer (CRET) for MCE. It was found that an efficient CRET occurred between a luminol donor and a CdTe quantum dot (QD) acceptor in the luminol-NaBrO-QD system and that it was sensitively suppressed by the presence of certain organic compounds of biological interest including biogenic amines and thiols, amino acids, organic acids, and steroids. These findings allowed developing sensitive MCE-CL assays for the tested compounds. The proposed MCE-CL methods showed desired analytical figures of merit such as a wide concentration range of linear response. Detection limits obtained were approximately 10(-9) M for biogenic amines including dopamine and epinephrine and approximately 10(-8) M for biogenic thiols (e.g., glutathione and acetylcysteine), organic acids (i.e., ascorbic acid and uric acid), estrogens, and native amino acids. These were 10-1000 times more sensitive than those of previously reported MCE-based methods with chemiluminescence, electrochemical, or laser-induced fluorescence detection for quantifying corresponding compounds. To evaluate the applicability of the present MCE-CL method for analyzing real biological samples, it was used to determine amino acids in individual human red blood cells. Nine amino acids, including Lys, Ser, Ala, Glu, Trp, etc., were detected. The contents ranged from 3 to 31 amol/cell. The assay proved to be simple, quick, reproducible, and very sensitive. PMID:20121202

  19. Side-entry laser-beam zigzag irradiation of multiple channels in a microchip for simultaneous and highly sensitive detection of fluorescent analytes.

    PubMed

    Anazawa, Takashi; Yokoi, Takahide; Uchiho, Yuichi

    2015-09-01

    A simple and highly sensitive technique for laser-induced fluorescence detection on multiple channels in a plastic microchip was developed, and its effectiveness was demonstrated by laser-beam ray-trace simulations and experiments. In the microchip, with refractive index nC, A channels and B channels are arrayed alternately and respectively filled with materials with refractive indexes nA for electrophoresis analysis and nB for laser-beam control. It was shown that a laser beam entering from the side of the channel array traveled straight and irradiated all A channels simultaneously and effectively because the refractive actions by the A and B channels were counterbalanced according to the condition nA < nC < nB. This technique is thus called "side-entry laser-beam zigzag irradiation". As a demonstration of the technique, when nC = 1.53, nA = 1.41, nB = 1.66, and the cross sections of both eight A channels and seven B channels were the same isosceles trapezoids with 97° base angle, laser-beam irradiation efficiency on the eight A channels by the simulations was 89% on average and coefficient of variation was 4.4%. These results are far superior to those achieved by other conventional methods such as laser-beam expansion and scanning. Furthermore, fluorescence intensity on the eight A channels determined by the experiments agreed well with that determined by the simulations. Therefore, highly sensitive and uniform fluorescence detection on eight A channels was achieved. It is also possible to fabricate the microchips at low cost by plastic-injection molding and to make a simple and compact detection system, thereby promoting actual use of the proposed side-entry laser-beam zigzag irradiation in various fields. PMID:26296140

  20. Hand portable thin-layer chromatography system

    DOEpatents

    Haas, Jeffrey S.; Kelly, Fredrick R.; Bushman, John F.; Wiefel, Michael H.; Jensen, Wayne A.

    2000-01-01

    A hand portable, field-deployable thin-layer chromatography (TLC) unit and a hand portable, battery-operated unit for development, illumination, and data acquisition of the TLC plates contain many miniaturized features that permit a large number of samples to be processed efficiently. The TLC unit includes a solvent tank, a holder for TLC plates, and a variety of tool chambers for storing TLC plates, solvent, and pipettes. After processing in the TLC unit, a TLC plate is positioned in a collapsible illumination box, where the box and a CCD camera are optically aligned for optimal pixel resolution of the CCD images of the TLC plate. The TLC system includes an improved development chamber for chemical development of TLC plates that prevents solvent overflow.

  1. A compact and low-cost miniaturized analysis system composed of microchip electrophoresis and chemiluminescence detection manipulated by a simple subatmospheric pressure fluid-driven device.

    PubMed

    Wang, Xiuzhong; Yin, Xuefeng; Cheng, Heyong; Shen, Hong

    2010-07-01

    A portable and low-cost miniaturized analysis system was proposed, in which microchip electrophoresis (MCE) and chemiluminescence (CL) were used as the separation and detection units, respectively. A porous monolithic plug was created in the separation channel of the microchip as a select valve, which prevented the pressure-driven CL reagents flowing back into the separation channel but allowed electrophoretic migration along the separation channel. The sensitivity was greatly enhanced by improving the mixing efficiency using a spiral detection channel with an increased length facing the photomultiplier tube (PMT). Peak width could be significantly reduced by increasing the flow rate of CL reagents. Putting grounding electrode before the detection channel significantly improved the reproducibility. A simple and compact subatmospheric pressure fluid-driven device was developed for manipulating the whole analytical process, including variable-volume sample loading, electrophoretic separation and CL reagents transportation. All miniaturized components for constructing a portable MCE-CL system are commercially available. This approach considerably simplified the operation and equipments for constructing an efficient MCE-CL system. Nine metal cations, such as Cr(III), Co(II), Cu(II), Ni(II), Au(III), Mn(II), Zn(II), Pt(II), Pb(II) were successfully separated within 200 s. Migration time precisions ranging from 0.39% for Cr(III) to 2.1% for Cu(II) were obtained for ten consecutive determinations with peak height precisions from 1.67% for Co(II) to 5.73% for Pb(II). Detection limits ranging from 7.5 x 10(-11) mol L(-1) for Co(II) to 8.3 x 10(-9) mol L(-1) for Pb(II) were achieved, which were about three orders lower than the present MCE-CL system. It has been applied for the determination of metals in tea. The results with the recoveries from 97.0% to 102.3% proved that the proposed MCE-CL system offers a number of benefits including miniaturization, high sensitivity and

  2. A Trusted Portable Computing Device

    NASA Astrophysics Data System (ADS)

    Ming-wei, Fang; Jun-jun, Wu; Peng-fei, Yu; Xin-fang, Zhang

    A trusted portable computing device and its security mechanism were presented to solve the security issues, such as the attack of virus and Trojan horse, the lost and stolen of storage device, in mobile office. It used smart card to build a trusted portable security base, virtualization to create a secure virtual execution environment, two-factor authentication mechanism to identify legitimate users, and dynamic encryption to protect data privacy. The security environment described in this paper is characteristic of portability, security and reliability. It can meet the security requirement of mobile office.

  3. A microchip-based model wound with multiple types of cells.

    PubMed

    Xie, Yunyan; Zhang, Wei; Wang, Liming; Sun, Kang; Sun, Yi; Jiang, Xingyu

    2011-09-01

    Collective migration is critical to many physiological processes, but few methods allow for studying this behavior with precisely controlled cell-cell interaction. Here we report the development of a microchip based on co-culture of different types of cells and selective injury, and explore the dynamics of epithelial collective migration triggered by a real cell group. PMID:21776534

  4. Enhanced Detection of Proteins in Microchip Separations by On-Chip Preconcentration

    SciTech Connect

    Foote, R.S.

    2001-05-24

    Microfluidic chips incorporating a semiporous glass filter were used to electrokinetically concentrate proteins on-chip prior to injection and electrophoretic analysis. Signal enhancements of >100-fold could be achieved for the microchip analysis of both native and SDS-denatured proteins using this technique.

  5. Poly(ethylene glycol)-functionalized polymeric microchips for capillary electrophoresis.

    PubMed

    Sun, Xuefei; Li, Dan; Lee, Milton L

    2009-08-01

    Recently, we reported the synthesis, fabrication, and preliminary evaluation of poly(ethylene glycol) (PEG)-functionalized polymeric microchips that are inherently resistant to protein adsorption without surface modification in capillary electrophoresis (CE). In this study, we investigated the impact of cross-linker purity and addition of methyl methacrylate (MMA) as a comonomer on CE performance. Impure poly(ethylene glycol) diacrylate (PEGDA) induced electroosmotic flow (EOF) and increased the separation time, while the addition of MMA decreased the separation efficiency to approximately 25% of that obtained using microchips fabricated without MMA. Resultant improved microchips were evaluated for the separation of fluorescent dyes, amino acids, peptides, and proteins. A CE efficiency of 4.2 x 10(4) plates for aspartic acid in a 3.5 cm long microchannel was obtained. Chiral separation of 10 different D,L-amino acid pairs was obtained with addition of a chiral selector (i.e., beta-cyclodextrin) in the running buffer. Selectivity (alpha) and resolution (R(s)) for D,L-leucine were 1.16 and 1.64, respectively. Good reproducibility was an added advantage of these PEG-functionalized microchips. PMID:19572700

  6. On-chip pumping for pressure mobilization of the focused zones following microchip isoelectric focusing.

    PubMed

    Guillo, Christelle; Karlinsey, James M; Landers, James P

    2007-01-01

    Isoelectric focusing (IEF), traditionally accomplished in slab or tube gels, has also been performed extensively in capillary and, more recently, in microchip formats. IEF separations performed in microchips typically use electroosmotic flow (EOF) or chemical treatment to mobilize the focused zones past the detection point. This report describes the development and optimization of a microchip IEF method in a hybrid PDMS-glass device capable of controlling the mobilization of the focused zones past the detector using on-chip diaphragm pumping. The microchip design consisted of a glass fluid layer (separation channels), a PDMS layer and a glass valve layer (pressure connections and valve seats). Pressure mobilization was achieved on-chip using a diaphragm pump consisting of a series of reversible elastomeric valves, where a central diaphragm valve determined the volume of solution displaced while the gate valves on either side imparted directionality. The pumping rate could be adjusted to control the mobilization flow rate by varying the actuation times and pressure applied to the PDMS to actuate the valves. In order to compare the separation obtained using the chip with that obtained in a capillary, a serpentine channel design was used to match the separation length of the capillary, thereby evaluating the effect of diaphragm pumping itself on the overall separation quality. The optimized mIEF method was applied to the separation of labeled amino acids. PMID:17180213

  7. Microchip transponder thermometry for monitoring core body temperature of antelope during capture.

    PubMed

    Rey, Benjamin; Fuller, Andrea; Hetem, Robyn S; Lease, Hilary M; Mitchell, Duncan; Meyer, Leith C R

    2016-01-01

    Hyperthermia is described as the major cause of morbidity and mortality associated with capture, immobilization and restraint of wild animals. Therefore, accurately determining the core body temperature of wild animals during capture is crucial for monitoring hyperthermia and the efficacy of cooling procedures. We investigated if microchip thermometry can accurately reflect core body temperature changes during capture and cooling interventions in the springbok (Antidorcas marsupialis), a medium-sized antelope. Subcutaneous temperature measured with a temperature-sensitive microchip was a weak predictor of core body temperature measured by temperature-sensitive data loggers in the abdominal cavity (R(2)=0.32, bias >2 °C). Temperature-sensitive microchips in the gluteus muscle, however, provided an accurate estimate of core body temperature (R(2)=0.76, bias=0.012 °C). Microchips inserted into muscle therefore provide a convenient and accurate method to measure body temperature continuously in captured antelope, allowing detection of hyperthermia and the efficacy of cooling procedures. PMID:26724197

  8. A Microchip for Quantitative Analysis of CNS Axon Growth under Localized Biomolecular Treatments

    PubMed Central

    Park, Jaewon; Kim, Sunja; Park, Su Inn; Choe, Yoonsuck; Li, Jianrong; Han, Arum

    2013-01-01

    Growth capability of neurons is an essential factor in axon regeneration. To better understand how microenvironments influence axon growth, methods that allow spatial control of cellular microenvironments and easy quantification of axon growth are critically needed. Here, we present a microchip capable of physically guiding the growth directions of axons while providing physical and fluidic isolation from neuronal somata/dendrites that enables localized biomolecular treatments and linear axon growth. The microchip allows axons to grow in straight lines inside the axon compartments even after the isolation; therefore, significantly facilitating the axon length quantification process. We further developed an image processing algorithm that automatically quantifies axon growth. The effect of localized extracellular matrix components and brain-derived neurotropic factor treatments on axon growth was investigated. Results show that biomolecules may have substantially different effects on axon growth depending on where they act. For example, while chondroitin sulfate proteoglycan causes axon retraction when added to the axons, it promotes axon growth when applied to the somata. The newly developed microchip overcomes limitations of conventional axon growth research methods that lack localized control of biomolecular environments and are often performed at a significantly lower cell density for only a short period of time due to difficulty in monitoring of axonal growth. This microchip may serve as a powerful tool for investigating factors that promote axon growth and regeneration. PMID:24161788

  9. Rapid amplification of genetically modified organisms using a circular ferrofluid-driven PCR microchip.

    PubMed

    Sun, Yi; Kwok, Yien-Chian; Foo-Peng Lee, Peter; Nguyen, Nam-Trung

    2009-07-01

    The use of genetically modified organisms (GMOs) as food and in food products is becoming more and more widespread. Polymerase chain reaction (PCR) technology is extensively used for the detection of GMOs in food products in order to verify compliance with labeling requirements. In this paper, we present a novel close-loop ferrofluid-driven PCR microchip for rapid amplification of GMOs. The microchip was fabricated in polymethyl methacrylate by CO2 laser ablation and was integrated with three temperature zones. PCR solution was contained in a circular closed microchannel and was driven by magnetic force generated by an external magnet through a small oil-based ferrofluid plug. Successful amplification of genetically modified soya and maize were achieved in less than 13 min. This PCR microchip combines advantages of cycling flexibility and quick temperature transitions associated with two existing microchip PCR techniques, and it provides a cost saving and less time-consuming way to conduct preliminary screening of GMOs. PMID:19399482

  10. A low timing jitter picosecond microchip laser pumped by pulsed LD

    NASA Astrophysics Data System (ADS)

    Wang, Sha; Wang, Yan-biao; Feng, Guoying; Zhou, Shou-huan

    2016-07-01

    SESAM passively Q-switched microchip laser is a very promising instrument to replace mode locked lasers to obtain picosecond pulses. The biggest drawback of a passively Q-switched microchip laser is its un-avoided large timing jitter, especially when the pump intensity is low, i.e. at low laser repetition rate range. In order to obtain a low timing jitter passively Q-switched picosecond microchip laser in the whole laser repetition rate range, a 1000 kHz pulsed narrow bandwidth Fiber Bragg Grating (FBG) stablized laser diode was used as the pump source. By tuning the pump intensity, we could control the output laser frequency. In this way, we achieved a very low timing jitter passively Q-switched picosecond laser at 2.13 mW, 111.1 kHz. The relative timing jitter was only 0.0315%, which was around 100 times smaller compared with a cw LD pumped microchip working at hundred kilohertz repetition rate frequency range.

  11. Two-dimensional nitrosylated protein fingerprinting by using poly (methyl methacrylate) microchips.

    PubMed

    Wang, Siyang; Njoroge, Samuel K; Battle, Katrina; Zhang, Cheng; Hollins, Bryant C; Soper, Steven A; Feng, June

    2012-09-21

    S-nitrosylation (also referred to as nitrosation), a reversible post translational modification (PTM) of cysteine, plays an important role in cellular functions and cell signalling pathways. Nitrosylated proteins are considered as biomarkers of aging and Alzheimer's disease (AD). Microfluidics has been widely used for development of novel tools for separation of protein mixtures. Here we demonstrate two-dimensional micro-electrophoresis (2D μ-CE) separations of nitrosylated proteins from the human colon epithelial adenocarcinoma cells (HT-29) and AD transgenic mice brain tissues. Sodium dodecyl sulphate micro-capillary gel electrophoresis (SDS μ-CGE) and microemulsion electrokinetic chromatography (MEEKC) were used for the first and second dimensional separations, respectively. The effective separation lengths for both dimensions were 10 mm, and electrokinetic injection was used with field strength at 200 V cm(-1). After 80 s separation in the first CGE dimension, fractions were successfully transferred to a second MEEKC dimension for a short 10 s separation. We first demonstrate this 2D μ-CE separation by resolving five standard proteins with molecular weight (MW) ranging from 20 to 64 kDa. We also present a high peak capacity 3D landscape image of nitrosylated proteins from HT-29 cells before and following menadione (MQ) treatment to induce oxidative stress. Additionally, to illustrate the potential of the 2D μ-CE separation method for rapid profiling of oxidative stress-induced biomarkers implicated in AD disease, the nitrosylated protein fingerprints from 11-month-old AD transgenic mice brain and their age matched controls were also generated. To our knowledge, this is the first report on 2D profiling of nitrosylated proteins in biological samples on a microchip. The characteristics of this biomarker profiling will potentially serve as the screening for early detection of AD. PMID:22766561

  12. Calibration of a field-portable gamma detector to obtain in situ measurements of the 137Cs inventories of cultivated soils and floodplain sediments.

    PubMed

    He, Q; Walling, D E

    2000-04-01

    Over the past 10 years, a number of studies have exploited the potential for using measurements of fallout 137Cs inventories to document rates and patterns of soil erosion on cultivated land and to estimate rates of overbank sedimentation on river floodplains. Traditional procedures for applying the 137Cs technique involve the collection of soil or sediment cores from a study site and their subsequent transfer to the laboratory for preparation and analysis by gamma spectrometry. Such procedures are time consuming and there may be a considerable delay before the results are available. It is therefore difficult to obtain preliminary results, which could be used to guide the development of an ongoing sampling programme. The use of in situ gamma spectrometry measurements to quantify 137Cs inventories in soils and sediments offers a number of potential advantages over traditional procedures. However, in order to derive a reliable estimate of the 137Cs inventory for a measurement point, it is necessary to take account of the attenuation of 137Cs gamma rays by the soil matrix and information on the depth distribution of 137Cs in the soil or sediment is therefore required. In the present study, empirical relationships between in situ measurements of 137Cs activity and total 137Cs inventories have been established for soils from a cultivated field and for floodplain sediments, based on information on the vertical distribution of 137Cs in the soils and sediments provided by the forward scattering ratio derived from the field measured spectra. These relationships have been used to estimate 137Cs inventories from in situ measurements of 137Cs activity at other locations. PMID:10800723

  13. Freely Oriented, Portable Superconducting Magnet

    NASA Astrophysics Data System (ADS)

    Schmierer, E. N.; Charles, B.; Efferson, R.; Hill, D.; Jankowski, T.; Laughon, G.; Prenger, C.

    2008-03-01

    A high-field low-temperature superconducting solenoidal magnet was developed that is portable and can be operated in any orientation relative to gravity. The design consists of several features that make this feasible; 1) bulk liquid cryogen storage occurs in a separate Dewar rather than as part of the magnet assembly, which allows single-person transport due to each component of the system having low relative weight, 2) vapor generated pressurization that circulates cryogenic fluid to and from the magnet with flexible transfer lines allowing operation in any orientation, and 3) composite, low-conducting structural members are used to suspend the magnet and shield layers within the vacuum vessel that provide a robust low heat loss design. Cooling is provided to the magnet through fluid channels that are in thermal contact with the magnet. The overall design of this magnet system, some of the analyses performed that address unique behavior of this system (pressure rise during a magnet quench and transient cooldown), and test results are presented.

  14. Portable rotating discharge plasma device

    NASA Astrophysics Data System (ADS)

    Dwyer, B. L.; Brooks, N. H.; Lee, R. L.

    2011-10-01

    We constructed two devices for the purpose of educational demonstration: a rotating tube containing media of two densities to demonstrate axial confinement and a similar device that uses pressure variation to convert a long plasma glow discharge into a long straight arc. In the first device, the buoyant force is countered by the centripetal force, which confines less dense materials to the center of the column. Similarly, a plasma arc heats the gas through which it passes, creating a hot gaseous bubble that is less dense than the surrounding medium. Rotating its containment envelope stabilizes this gas bubble in an analogous manner to an air bubble in a rotating tube of water. In addition to stabilization, the rotating discharge also exhibits a decrease in buoyancy-driven convection currents. This limits the power loss to the walls, which decreases the field strength requirement for maintaining the arc. These devices demonstrate principles of electrodynamics, plasma physics, and fluid mechanics. They are portable and safe for classroom use. Work supported by US DOE under DE-FC02-04ER54698 and the National Undergraduate Fellowship in Fusion Science and Engineering.

  15. A Portable Infrasonic Detection System

    NASA Technical Reports Server (NTRS)

    Shams, Qamar A.; Burkett, Cecil G.; Zuckerwar, Allan J.; Lawrenson, Christopher C.; Masterman, Michael

    2008-01-01

    During last couple of years, NASA Langley has designed and developed a portable infrasonic detection system which can be used to make useful infrasound measurements at a location where it was not possible previously. The system comprises an electret condenser microphone, having a 3-inch membrane diameter, and a small, compact windscreen. Electret-based technology offers the lowest possible background noise, because Johnson noise generated in the supporting electronics (preamplifier) is minimized. The microphone features a high membrane compliance with a large backchamber volume, a prepolarized backplane and a high impedance preamplifier located inside the backchamber. The windscreen, based on the high transmission coefficient of infrasound through matter, is made of a material having a low acoustic impedance and sufficiently thick wall to insure structural stability. Close-cell polyurethane foam has been found to serve the purpose well. In the proposed test, test parameters will be sensitivity, background noise, signal fidelity (harmonic distortion), and temporal stability. The design and results of the compact system, based upon laboratory and field experiments, will be presented.

  16. Toward point-of-care testing for JAK2 V617F mutation on a microchip.

    PubMed

    Wang, Hua; Liu, Weiwei; Zhang, Xinju; Xu, Xiao; Kang, Zhihua; Li, Shibao; Wu, Zhiyuan; Yang, Zhiliu; Yao, Bo; Guan, Ming

    2015-09-01

    Molecular genetics now plays a crucial role in diagnosis, the identification of prognostic markers, and monitoring of hematological malignancies. Demonstration of acquired changes such as the JAK2 V617F mutation within myeloproliferative neoplasms (MPN) has quickly moved from a research setting to the diagnostic laboratory. Microfluidics-based assays can reduce the assay time and sample/reagent consumption and enhance the reaction efficiency; however, no current assay has integrated isothermal amplification for point-of-care MPN JAK2 V617F mutation testing with a microchip. In this report, an integrated microchip that performs the whole human blood genomic DNA extraction, loop-mediated isothermal nucleic acid amplification (LAMP) and visual detection for point-of-care genetic mutation testing is demonstrated. This method was validated on DNA from cell lines as well as on whole blood from patients with MPN. The results were compared with those obtained by unlabeled probe melting curve analysis. This chip enjoys a high accuracy, operability, and cost/time efficiency within 1h. All these benefits provide the chip with a potency toward a point-of-care genetic analysis. All samples identified as positive by unlabeled probe melting curve analysis (n=27) proved positive when tested by microchip assay. None of the 30 negative controls gave false positive results. In addition, a patient with polycythemia vera diagnosed as being JAK2 V617F-negative by unlabeled probe melting curve analysis was found to be positive by the microchip. This microchip would possibly be very attractive in developing a point-of-care platform for quick preliminary diagnosis of MPN or other severe illness in resource-limited settings. PMID:26235214

  17. EVALUATION OF PORTABLE GAS CHROMATOGRAPHS

    EPA Science Inventory

    Limits of detection, linearity of responses, and stability of response factors and retention times for five commercially-available portable gas chromatographs (PGC) were determined during laboratory evaluation. he PGCs were also operated at the French Limited Superfund site near ...

  18. Portable classroom leads to partnership.

    PubMed

    Le Ber, Jeanne Marie; Lombardo, Nancy T; Weber, Alice; Bramble, John

    2004-01-01

    Library faculty participation on the School of Medicine Curriculum Steering Committee led to a unique opportunity to partner technology and teaching utilizing the library's portable wireless classroom. The pathology lab course master expressed a desire to revise the curriculum using patient cases and direct access to the Web and library resources. Since the pathology lab lacked computers, the library's portable wireless classroom provided a solution. Originally developed to provide maximum portability and flexibility, the wireless classroom consists of ten laptop computers configured with wireless cards and an access point. While the portable wireless classroom led to a partnership with the School of Medicine, there were additional benefits and positive consequences for the library. PMID:15148018

  19. Portable Source Identification Device

    SciTech Connect

    Andersen, Eric S.; Samuel, Todd J.; Gervais, Kevin L.

    2005-08-01

    U.S. Customs and Border Protection (CBP) is the primary enforcement agency protecting the nation’s ports of entry. CBP is enhancing its capability to interdict the illicit import of nuclear and radiological materials and devices that may be used by terrorists. Pacific Northwest National Laboratory (PNNL) is providing scientific and technical support to CBP in their goal to enable rapid deployment of nuclear and radiation detection systems at U. S. ports of entry to monitor 100% of the incoming international traffic and cargo while not adversely impacting the operations or throughput of the ports. As the deployment of radiation detection systems proceeds, there is a need to adapt the baseline radiation portal monitor (RPM) system technology to operations at these diverse ports of entry. When screening produces an alarm in the primary inspection RPM, the alarming vehicle is removed from the flow of commerce and the alarm is typically confirmed in a secondary inspection RPM. The portable source identification device (PSID) is a radiation sensor panel (RSP), based on thallium-doped sodium iodide (NaI(Tl)) scintillation detector and gamma spectroscopic analysis hardware and software, mounted on a scissor lift on a small truck. The lift supports a box containing a commercial off-the-shelf (COTS) sodium iodide detector that provides real-time isotopic identification, including neutron detectors to interdict Weapons of Mass Destruction (WMD) and radiation dispersion devices (RDD). The scissor lift will lower the detectors to within a foot off the ground and raise them to approximately 24 feet in the air, allowing a wide vertical scanning range.

  20. Portable source identification device

    NASA Astrophysics Data System (ADS)

    Andersen, Eric S.; Samuel, Todd J.; Gervais, Kevin L.

    2005-05-01

    U.S. Customs and Border Protection (CBP) is the primary enforcement agency protecting the nation"s ports of entry. CBP is enhancing its capability to interdict the illicit import of nuclear and radiological materials and devices that may be used by terrorists. Pacific Northwest National Laboratory (PNNL) is providing scientific and technical support to CBP in their goal to enable rapid deployment of nuclear and radiation detection systems at U. S. ports of entry to monitor 100% of the incoming international traffic and cargo while not adversely impacting the operations or throughput of the ports. As the deployment of radiation detection systems proceeds, there is a need to adapt the baseline radiation portal monitor (RPM) system technology to operations at these diverse ports of entry. When screening produces an alarm in the primary inspection RPM, the alarming vehicle is removed from the flow of commerce and the alarm is typically confirmed in a secondary inspection RPM. The portable source identification device (PSID) is a radiation sensor panel (RSP), based on thallium-doped sodium iodide (NaI(Tl)) scintillation detector and gamma spectroscopic analysis hardware and software, mounted on a scissor lift on a small truck. The lift supports a box containing a commercial off-the-shelf (COTS) sodium iodide detector that provides real-time isotopic identification, including neutron detectors to interdict Weapons of Mass Destruction (WMD) and radiation dispersion devices (RDD). The scissor lift will lower the detectors to within a foot off the ground and raise them to approximately 24 feet (7.3 m) in the air, allowing a wide vertical scanning range.

  1. Portable Multiplex Pathogen Detector

    SciTech Connect

    Visuri, S; McBride, M T; Matthews, D; Rao, R

    2002-07-15

    Tumor marker concentrations in serum provide useful information regarding clinical stage and prognosis of cancer and can thus be used for presymptomatic diagnostic purposes. Currently, detection and identification of soluble analytes in biological fluids is conducted by methods including bioassays, ELISA, PCR, DNA chip or strip tests. While these technologies are generally sensitive and specific, they are time consuming, labor intensive and cannot be multiplexed. Our goal is to develop a simple, point-of-care, portable, liquid array-based immunoassay device capable of simultaneous detection of a variety of cancer markers. Here we describe the development of assays for the detection of Serum Prostate Specific Antigen, and Ovalbumin from a single sample. The multiplexed immunoassays utilize polystyrene microbeads. The beads are imbedded with precise ratios of red and orange fluorescent dyes yielding an array of 100 beads, each with a unique spectral address (Figure 1). Each bead can be coated with capture antibodies specific for a given antigen. After antigen capture, secondary antibodies sandwich the bound antigen and are indirectly labeled by the fluorescent reporter phycoerythrin (PE). Each optically encoded and fluorescently-labeled microbead is then individually interrogated. A red laser excites the dye molecules imbedded inside the bead and classifies the bead to its unique bead set, and a green laser quantifies the assay at the bead surface. This technology has been proven to be comparable to the ELISA in terms of sensitivity and specificity. We also describe the laser-based instrumentation used to acquire fluorescent bead images Following the assay, droplets of bead suspension containing a mixture of bead classes were deposited onto filters held in place by a disposable plexiglass device and the resultant arrays viewed under the fluorescent imaging setup. Using the appropriate filter sets to extract the necessary red, orange and green fluorescence from the

  2. A Novel Protocol to Analyze Short- and Long-Chain Fatty Acids Using Nonaqueous Microchip Capillary Electrophoresis

    NASA Technical Reports Server (NTRS)

    Cable, M. L.; Stockton, A. M.; Mora, Maria F; Willis, P. A.

    2013-01-01

    We propose a new protocol to identify and quantify both short- and long-chain saturated fatty acids in samples of astrobiological interest using non-aqueous microchip capillary electrophoresis (micronNACE) with laser induced fluorescence (LIF).

  3. Improved portable lighting for visual aircraft inspection

    SciTech Connect

    Shagam, R.N.; Lerner, J.; Shie, R.

    1995-04-01

    The most common tool used by aircraft inspectors is the personal flashlight. While it is compact and very portable, it is generally typified by poor beam quality which can interfere with the ability for an inspector to detect small defects and anomalies, such as cracks and corrosion sites, which may be indicators of major structural problems. A Light Shaping Diffuser{trademark} (LSD) installed in a stock flashlight as a replacement to the lens can improve the uniformity of an average flashlight and improve the quality of the inspection. Field trials at aircraft maintenance facilities have demonstrated general acceptance of the LSD by aircraft inspection and maintenance personnel.

  4. A portable free space optical system

    NASA Astrophysics Data System (ADS)

    Ai, Yong; Lu, Xingguang; Yang, Jinglin; Chen, Jing; Hao, Zhonggang

    2005-08-01

    A portable protocol independent free space optical communication terminal was developed, which enables customer to quickly deploy optical bandwidth services for applications such as fiber extension, wild field point to point communication and wireless backhaul while avoiding costly and time-consuming fiber installation. By using specially designed optical components and optical-mechanical structure, the system is very compact and effective, can establish optical link within a few minutes, with total weight 4kg, size 160 x 360 x 155 mm, effective transmitting/receiving aperture 40mm, data rate 100Mbps, maximum communication distance 1500m. The system and experiments are presented in the paper.

  5. Improved portable lighting for visual aircraft inspection

    NASA Astrophysics Data System (ADS)

    Shagam, Richard N.; Lerner, Jeremy M.; Shie, Rick

    1995-07-01

    The most common tool used by aircraft inspectors is the personal flashlight. While it is compact and very portable, it is generally typified by poor beam quality which can interfere with the ability for an inspector to detect small defects and anomalies, such as cracks and corrosion sites, which may be indicators of major structural problems. A Light Shaping Diffuser TM (LSD) installed in a stock flashlight as a replacement to the lens can improve the uniformity of an average flashlight and improve the quality of the inspection. Field trials at aircraft maintenance facilities have demonstrated general acceptance of the LSD by aircraft inspection and maintenance personnel.

  6. Portable Habitat for Antarctic Scientific Research (PHASR)

    NASA Technical Reports Server (NTRS)

    Griswold, Samantha S.

    1992-01-01

    The Portable Habitat for Antarctic Scientific Research, PHASR, is designed as a versatile, general purpose habitat system that addresses the problem of functional space and environmental soundness in a partially fabric-covered shelter. PHASR is used for remote field site applications that can be quickly deployed. PHASR will also provide four scientists with a comfortable and efficient use of interior space. PHASR is a NASA/USRA Advanced Design Program project conducted at the University of Houston College of Architecture, Sasadawa International Center for Space Architecture (SICSA). This report is prepared for NASA/USRA.

  7. Small portable speed calculator

    NASA Technical Reports Server (NTRS)

    Burch, J. L.; Billions, J. C.

    1973-01-01

    Calculator is adapted stopwatch calibrated for fast accurate measurement of speeds. Single assembled unit is rugged, self-contained, and relatively inexpensive to manufacture. Potential market includes automobile-speed enforcement, railroads, and field-test facilities.

  8. Analysis of acrylamide in food products by microchip electrophoresis with on-line multiple-preconcentration techniques.

    PubMed

    Wu, Minglei; Chen, Wujuan; Wang, Guan; He, Pingang; Wang, Qingjiang

    2016-10-15

    In this paper, a microchip electrophoresis method based on on-line multiple-preconcentration techniques combining field-amplified sample stacking and reversed-field stacking was developed for highly efficient analysis of acrylamide in food products. The related mechanism as well as important parameters governing separation and preconcentration have been investigated in order to obtain maximum resolution and sensitivity. The best separation was achieved using a 100mM borate solution at pH 9.3 as running buffer, and a sensitivity enhancement factor of 432 was obtained using this concentration method under optimal conditions. The detection limit of acrylamide was 1ng/mL, which was comparable to those previously obtained using CE methods with on-line preconcentration techniques and was 41-700 times lower than those previously reported CE methods without concentration process. The proposed method also gave satisfactory and reliable results in the analysis of acrylamide in potato chips and French fries. PMID:27173547

  9. Applications of microfluidics and microchip electrophoresis for potential clinical biomarker analysis.

    PubMed

    Pagaduan, Jayson V; Sahore, Vishal; Woolley, Adam T

    2015-09-01

    This article reviews advances over the last five years in microfluidics and microchip-electrophoresis techniques for detection of clinical biomarkers. The variety of advantages of miniaturization compared with conventional benchtop methods for detecting biomarkers has resulted in increased interest in developing cheap, fast, and sensitive techniques. We discuss the development of applications of microfluidics and microchip electrophoresis for analysis of different clinical samples for pathogen identification, personalized medicine, and biomarker detection. We emphasize the advantages of microfluidic techniques over conventional methods, which make them attractive future diagnostic tools. We also discuss the versatility and adaptability of this technology for analysis of a variety of biomarkers, including lipids, small molecules, carbohydrates, nucleic acids, proteins, and cells. Finally, we conclude with a discussion of aspects that need to be improved to move this technology towards routine clinical and point-of-care applications. PMID:25855148

  10. Passively Q-switched microchip lasers based on Yb:YAG/Cr4+:YAG composite crystal

    NASA Astrophysics Data System (ADS)

    Ren, Yingying; Dong, Jun

    2014-02-01

    Efficient passively Q-switched microchip laser based on Yb:YAG/Cr4+:YAG composite crystal has been demonstrated under high brightness single-emitter laser-diode pumping. Maximum average output power of 1.5 W was obtained when the absorbed pump power was 3.65 W, the corresponding optical-to-optical efficiency was over 41%. The slope efficiency was 52.3%. The effect of the cavity length on the performance of Yb:YAG/Cr4+:YAG composite crystal passively Q-switched microchip lasers was investigated. Laser pulses at 1030 nm with pulse width of 466 ps and peak power of 91 kW were achieved with cavity length of 1.7 mm, while laser pulses with pulse width of 665 ps and peak power of 79 kW were obtained with cavity length of 3.7 mm.

  11. Determination of chloride, chlorate and perchlorate by PDMS microchip electrophoresis with indirect amperometric detection.

    PubMed

    Li, Xin-Ai; Zhou, Dong-Mei; Xu, Jing-Juan; Chen, Hong-Yuan

    2008-03-15

    In this work, chloride, chlorate and perchlorate are fast separated on PDMS microchip and detected via in-channel indirect amperometric detection mode. With PDMS/PDMS microchip treated by oxygen plasma, anions chloride (Cl-), chlorate (ClO3-), and perchlorate (ClO4-) are separated within 35s. Some parameters including buffer salt concentration, buffer pH, separation voltage and detection potential are investigated in detail. The separation conditions using 15 mM (pH 6.12) of 2-(N-morpholino)ethanesulfonic acid (MES)+L-histidine (L-His) as running buffer, -2000 V as separation voltage and 0.7 V as detection potential are optimized. Under this condition, the detection limits of Cl-, ClO3-, and ClO4- are 1.9, 3.6, and 2.8 microM, respectively. PMID:18371861

  12. Passively Q-switched Nd:YAG ceramic microchip laser with azimuthally polarized output

    NASA Astrophysics Data System (ADS)

    Li, J.-L.; Lin, D.; Zhong, L.-X.; Ueda, K.; Shirakawa, A.; Musha, M.; Chen, W.-B.

    2009-10-01

    A passively-Q-switched neodymium-doped yttrium aluminum garnet (Nd:YAG) ceramic microchip laser was demonstrated to emit azimuthally polarized beam bus using a chromium-doped YAG (Cr4+:YAG) crystal as saturable absorber and a multilayer concentric subwavelength grating as polarization-selective output coupler. The laser's output power reached 512 mW with an initial slope efficiency of nearly 60%, and the pulse had 1.15-kW peak power with 40-ns duration and 11-kHz repetition rate at 3.9-W absorbed pump power. The laser beam's polarization degree was 97.6%. The thermal lensing effect in Nd:YAG microchip remained as a problem to be solved.

  13. An Easy-to-Use Polystyrene Microchip-based Cell Culture System.

    PubMed

    Tazawa, Hidekatsu; Sunaoshi, Shohei; Tokeshi, Manabu; Kitamori, Takehiko; Ohtani-Kaneko, Ritsuko

    2016-01-01

    In this study, we developed an integrated, low-cost microfluidic cell culture system that is easy to use. This system consists of a disposable polystyrene microchip, a polytetrafluoroethylene valve, an air bubble trap, and an indium tin oxide temperature controller. Valve pressure resistance was validated with a manometer to be 3 MPa. The trap protected against bubble contamination. The temperature controller enabled the culture of Macaca mulatta RF/6A 135 vascular endothelial cells, which are difficult to culture in glass microchips, without a CO2 incubator. We determined the optimal coating conditions for these cells and were able to achieve stable, confluent culture within 1 week. This practical system is suitable for low-cost screening and has potential applications as circulatory cell culture systems and research platforms in cell biology. PMID:26960617

  14. Sub-nanosecond Yb:KLu(WO4)2 microchip laser.

    PubMed

    Loiko, P; Serres, J M; Mateos, X; Yumashev, K; Yasukevich, A; Petrov, V; Griebner, U; Aguiló, M; Díaz, F

    2016-06-01

    A diode-pumped Yb:KLu(WO4)2 microchip laser passively Q-switched by a Cr4+:YAG saturable absorber generated a maximum average output power of 590 mW at 1031 nm with a slope efficiency of 55%. The pulse characteristics were 690 ps/47.6 μJ at a pulse repetition frequency of 12.4 kHz. The output beam had an excellent circular profile with M2<1.05. Yb:KLu(WO4)2 is very promising for ultrathin sub-ns microchip lasers. PMID:27244429

  15. APPLICATIONS OF MICROFLUIDICS AND MICROCHIP ELECTROPHORESIS FOR POTENTIAL CLINICAL BIOMARKER ANALYSIS

    PubMed Central

    Pagaduan, Jayson V.; Sahore, Vishal; Woolley, Adam T.

    2015-01-01

    This article reviews advances over the last 5 years in microfluidics and microchip electrophoresis techniques for detection of clinical biomarkers. The various advantages of miniaturization compared with conventional benchtop methods for detecting biomarkers have resulted in increased interest in developing cheap, fast, and sensitive platforms. We discuss the development of applications of microfluidics and microchip electrophoresis for analysis of various clinical samples for pathogen identification, personalized medicine, and biomarker detection. We highlight the advantages of microfluidics platforms over conventional methods that make them an attractive future diagnostic tool. We also discuss the versatility and adaptability of this technology for analysis of various biomarkers, including lipids, small molecules, carbohydrates, nucleic acids, proteins and cells. Finally, we conclude with a discussion of areas that need to be improved upon to move this technology towards routine clinical and point-of-care applications. PMID:25855148

  16. Immobilization of DNA in polyacrylamide gel for the manufacture of DNA and DNA-oligonucleotide microchips.

    SciTech Connect

    Proudnikov, D.; Timofeev, E.; Mirzabekov, A.; Center for Mechanistic Biology and Biotechnology; Engelhardt Inst. of Molecular Biology

    1998-05-15

    Activated DNA was immobilized in aldehyde-containing polyacrylamide gel for use in manufacturing the MAGIChip (microarrays of gel-immobilized compounds on a chip). First, abasic sites were generated in DNA by partial acidic depurination. Amino groups were then introduced into the abasic sites by reaction with ethylenediamine and reduction of the aldimine bonds formed. It was found that DNA could be fragmented at the site of amino group incorporation or preserved mostly unfragmented. In similar reactions, both amino-DNA and amino-oligonucleotides were attached through their amines to polyacrylamide gel derivatized with aldehyde groups. Single- and double-stranded DNA of 40 to 972 nucleotides or base pairs were immobilized on the gel pads to manufacture a DNA microchip. The microchip was hybridized with fluorescently labeled DNA-specific oligonucleotide probes. This procedure for immobilization of amino compounds was used to manufacture MAGIChips containing both DNA and oligonucleotides.

  17. Portable Heat Pump Testing Device

    NASA Astrophysics Data System (ADS)

    Kłosowiak, R.; Bartoszewicz, J.; Urbaniak, R.

    2015-08-01

    The aim of this paper is to present the design and working principle of a portable testing device for heat pumps in the energy recirculation system. The presented test stand can be used for any refrigerating/reverse flow cycle device to calculate the device energy balance. The equipment is made of two portable containers of the capacity of 250 liters to simulate the air heat source and ground heat source with a system of temperature stabilization, compressor heat pump of the coefficient of performance (COP) of = 4.3, a failsafe system and a control and measurement system.

  18. Freely oriented portable superconducting magnet

    DOEpatents

    Schmierer, Eric N.; Prenger, F. Coyne; Hill, Dallas D.

    2010-01-12

    A freely oriented portable superconducting magnet is disclosed. Coolant is supplied to the superconducting magnet from a repository separate from the magnet, enabling portability of the magnet. A plurality of support assemblies structurally anchor and thermally isolate the magnet within a thermal shield. A plurality of support assemblies structurally anchor and thermally isolate the thermal shield within a vacuum vessel. The support assemblies restrain movement of the magnet resulting from energizing and cooldown, as well as from changes in orientation, enabling the magnet to be freely orientable.

  19. Ultraviolet sealing and poly(dimethylacrylamide) modification for poly(dimethylsiloxane)/glass microchips.

    PubMed

    Chen, Lin; Ren, Jicun; Bi, Rui; Chen, Di

    2004-03-01

    Simple sealing methods for poly(dimethylsiloxane) (PDMS)/glass-based capillary electrophoresis (CE) microchips by UV irradiation are described. Further, we examined the possibility to modify the inner surface of separation channels, using polymethylacrylamide (PDMA) as a dynamic coating reagent. The surface properties of native PDMS, UV-irradiated PDMS, and PDMA-coated PDMS were systematically studied by atomic force microscopy (AFM), infrared absorption by attenuated total reflection infrared (ATR-IR) spectroscopy, and contact angle measurement. We found that PDMA forms a stable coating on PDMS and glass surfaces, eliminating the nonhomogeneous electroosmotic flow (EOF) in channels on PDMS/glass microchips, and improving the hydrophilicity of PDMS surfaces. Mixtures of flavin mononucleotide (FMN), flavin adenine dinucleotide (FAD), and fluorescein were separated in 35 s using PDMA-coated PDMS/glass microchips. A high efficiency of theoretical plates with at least 1365 (105 000 N/m) and a good reproducibility with relative standard deviations (RSD) below 4% in five successive separations were achieved. PMID:15004855

  20. [Microchip-based reversed-phase liquid chromatography-tandem mass spectrometry platform for protein analysis].

    PubMed

    Liang, Yu; Wu, Ci; Dai, Zhongpeng; Liang, Zuocheng; Liang, Zhen; Zhang, Lihua; Zhang, Yukui

    2011-06-01

    Due to the high throughput and high sensitivity, the hyphenation of microchip-based high performance liquid chromatography with tandem mass spectrometry has been paid much attention. In our recent work, with poly (lauryl methacrylate-co-trimethylolpropane trimethacrylate) monolithic materials prepared in microchannels as trap and separation columns, conventional micro-liquid chromatography pumps and valves for fluidic control, and a small-bore open-tube capillary attached to the outlet channel as chip-mass spectrometer (MS) interface, the microchip-based reversed-phase liquid chromatography-tandem mass spectrometry (RPLC-MS/MS) platform was established, and applied for the identification of proteins. By such platform, 100 ng digest of bovine serum albumin (BSA) was successfully analyzed with the sequence coverages as 39.37%, 37.89% and 34.10% (with the relative standard deviation (RSD) of 7.3%) in three runs, separately. To evaluate the chip-to-chip reproducibility, BSA was identified by such platform with the microchips from different batches containing trap column, separation column and chip-MS interface. The obtained sequence coverage and the number of peptides identified were comparable. All these results showed high sensitivity and good reproducibility of such platform, demonstrating the great potential for rapid protein analysis. PMID:22032155

  1. Microchip electrophoresis with electrochemical detection for the determination of analytes in the dopamine metabolic pathway

    PubMed Central

    Saylor, Rachel A.; Reid, Erin A.; Lunte, Susan M.

    2016-01-01

    A method for the separation and detection of analytes in the dopamine metabolic pathway was developed using microchip electrophoresis with electrochemical detection. The microchip consisted of a 5 cm PDMS separation channel in a simple-t configuration. Analytes in the dopamine metabolic pathway were separated using a background electrolyte composed of 15 mM phosphate at pH 7.4, 15 mM SDS, and 2.5 mM boric acid. Two different microchip substrates using different electrode materials were compared for the analysis: a PDMS/PDMS device with a carbon fiber electrode and a PDMS/glass hybrid device with a pyrolyzed photoresist film carbon electrode. While the PDMS/PDMS device generated high separation efficiencies and good resolution, more reproducible migration times were obtained with the PDMS/glass hybrid device, making it a better choice for biological applications. Lastly, the optimized method was used to monitor L-DOPA metabolism in a rat brain slice. PMID:25958983

  2. Microchip electrophoresis with electrochemical detection for the determination of analytes in the dopamine metabolic pathway.

    PubMed

    Saylor, Rachel A; Reid, Erin A; Lunte, Susan M

    2015-08-01

    A method for the separation and detection of analytes in the dopamine metabolic pathway was developed using microchip electrophoresis with electrochemical detection. The microchip consisted of a 5 cm PDMS separation channel in a simple-t configuration. Analytes in the dopamine metabolic pathway were separated using a background electrolyte composed of 15 mM phosphate at pH 7.4, 15 mM SDS, and 2.5 mM boric acid. Two different microchip substrates using different electrode materials were compared for the analysis: a PDMS/PDMS device with a carbon fiber electrode and a PDMS/glass hybrid device with a pyrolyzed photoresist film carbon electrode. While the PDMS/PDMS device generated high separation efficiencies and good resolution, more reproducible migration times were obtained with the PDMS/glass hybrid device, making it a better choice for biological applications. Lastly, the optimized method was used to monitor l-DOPA metabolism in a rat brain slice. PMID:25958983

  3. Microchip electrophoresis with background electrolyte containing polyacrylic acid and high content organic solvent in cyclic olefin copolymer microchips for easily adsorbed dyes.

    PubMed

    Wei, Xuan; Sun, Ping; Yang, Shenghong; Zhao, Lei; Wu, Jing; Li, Fengyun; Pu, Qiaosheng

    2016-07-29

    Plastic microchips can significantly reduce the fabrication cost but the adsorption of some analytes limits their application. In this work, background electrolyte containing ionic polymer and high content of organic solvent was adopted to eliminate the analyte adsorption and achieve highly efficient separation in microchip electrophoresis. Two dyes, rhodamine 6G (Rh6G) and rhodamine B (RhB) were used as the model analytes. By using methanol as the organic solvent and polyacrylic acid (PAA) as a multifunctional additive, successful separation of the two dyes within 75μm id. microchannels was realized. The role of PAA is multiple, including viscosity regulator, selectivity modifier and active additive for counteracting analyte adsorption on the microchannel surface. The number of theoretical plate of 7.0×10(5)/m was attained within an effective separation distance of 2cm using background electrolyte consisting 80% methanol, 0.36% PAA and 30mmol/L phosphate at pH 5.0. Under optimized conditions, relative standard deviations of Rh6G and RhB detection (n=5) were no more than 1.5% for migration time and 2.0% for peak area, respectively. The limit of detection (S/N=3) was 0.1nmol/L for Rh6G. The proposed technique was applied in the determination of both Rh6G and RhB in chilli powder and lipstick samples with satisfactory recoveries of 81.3-103.7%. PMID:27371017

  4. Installing Portable Classrooms With Good Air Quality.

    ERIC Educational Resources Information Center

    Godfrey, Ray

    2000-01-01

    Discusses the advantages of modular classrooms and improvements made in indoor air quality, including the pros and cons of portables, challenges districts face when planning and installing portables, and cost considerations. Concluding comments highlight system costs and maintenance required. (GR)

  5. 49 CFR 172.326 - Portable tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... the portable tank are not visible. (d) NON-ODORIZED marking on portable tanks containing LPG. After...-ODORIZED or NOT ODORIZED on two opposing sides near the marked proper shipping name required by...

  6. Taking It with You: Portable PCs.

    ERIC Educational Resources Information Center

    Crawford, Walt

    1993-01-01

    Discussion of DOS computing focuses on portable personal computers. Reviews based on "PC Magazine" for each year since 1985 for portables, laptops, notebooks, and subnotebooks that include prices are provided; and vendor reliability is considered. (LRW)

  7. Identification of chemical warfare agents from vapor samples using a field-portable capillary gas chromatography/membrane-interfaced electron ionization quadrupole mass spectrometry instrument with Tri-Bed concentrator.

    PubMed

    Nagashima, Hisayuki; Kondo, Tomohide; Nagoya, Tomoki; Ikeda, Toru; Kurimata, Naoko; Unoke, Shohei; Seto, Yasuo

    2015-08-01

    A field-portable gas chromatograph-mass spectrometer (Hapsite ER system) was evaluated for the detection of chemical warfare agents (CWAs) in the vapor phase. The system consisted of Tri-Bed concentrator gas sampler (trapping time: 3s(-1)min), a nonpolar low thermal-mass capillary gas chromatography column capable of raising temperatures up to 200°C, a hydrophobic membrane-interfaced electron ionization quadrupole mass spectrometer evacuated by a non-evaporative getter pump for data acquisition, and a personal computer for data analysis. Sample vapors containing as little as 22μg sarin (GB), 100μg soman (GD), 210μg tabun (GA), 55μg cyclohexylsarin (GF), 4.8μg sulfur mustard, 390μg nitrogen mustard 1, 140μg of nitrogen mustard 2, 130μg nitrogen mustard 3, 120μg of 2-chloroacetophenone and 990μg of chloropicrin per cubic meter could be confirmed after Tri-Bed micro-concentration (for 1min) and automated AMDIS search within 12min. Using manual deconvolution by background subtraction of neighboring regions on the extracted ion chromatograms, the above-mentioned CWAs could be confirmed at lower concentration levels. The memory effects were also examined and we found that blister agents showed significantly more carry-over than nerve agents. Gasoline vapor was found to interfere with the detection of GB and GD, raising the concentration limits for confirmation in the presence of gasoline by both AMDIS search and manual deconvolution; however, GA and GF were not subject to interference by gasoline. Lewisite 1, and o-chlorobenzylidene malononitrile could also be confirmed by gas chromatography, but it was hard to quantify them. Vapors of phosgene, chlorine, and cyanogen chloride could be confirmed by direct mass spectrometric detection at concentration levels higher than 2, 140, and 10mg/m(3) respectively, by bypassing the micro-concentration trap and gas chromatographic separation. PMID:26118803

  8. Portable infrared pupillometry: a review.

    PubMed

    Larson, Merlin D; Behrends, Matthias

    2015-06-01

    Portable infrared pupillometers provide an objective measure of pupil size and pupillary reflexes, which for most clinicians was previously only a visual impression. But despite the fact that pupillometry can uncover aspects of how the human pupil reacts to drugs and noxious stimulation, the use of pupillometry has not gained widespread use among anesthesiologists and critical care physicians. The present review is an introduction to the physiology of pupillary reflexes and the currently established clinical applications of infrared pupillometry, which will hopefully encourage physicians to use this diagnostic tool in their clinical practice. Portable infrared pupillometry was introduced in 1989. The technology involves flooding the eye with infrared light and then measuring the reflected image on an infrared sensor. Pupil size, along with variables of the pupillary light reflex and pupillary reflex dilation, is calculated by the instrument and displayed on a screen immediately after each time-stamped measurement. Use of these instruments has uncovered aspects of how the human pupil reacts to drugs and noxious stimulation. The primary clinical applications for portable pupillometry have been in the assessment of brainstem function. Portable pupillometry is useful in the management of pain because it allows for assessments of the effect of opioids and in the titration of combined regional-general anesthetics. PMID:25988634

  9. Portable Pallet-Weighing Apparatus

    NASA Technical Reports Server (NTRS)

    Day, R. M.

    1983-01-01

    Portable apparatus intended for standard four-trunnion pallets readily adaptable to any large payload or other loads where shifting of cargo is to be avoided. Device lifts trunnion of pallet short distance above its resting place. Weight at trunnion applied to load cell. Similar units placed at all four trunnions.

  10. Portable Positron Measurement System (PPMS)

    SciTech Connect

    2011-01-01

    Portable Positron Measurement System (PPMS) is an automated, non-destructive inspection system based on positron annihilation, which characterizes a material's in situatomic-level properties during the manufacturing processes of formation, solidification, and heat treatment. Simultaneous manufacturing and quality monitoring now are possible. Learn more about the lab's project on our facebook site http://www.facebook.com/idahonationallaboratory.

  11. Portable sandblaster cleans small areas

    NASA Technical Reports Server (NTRS)

    Severin, H. J.

    1966-01-01

    Portable sandblasting unit rapidly and effectively cleans localized areas on a metal surface. The unit incorporates a bellows enclosure, masking plate, sand container, and used sand accummulator connected to a vacuum system. The bellows is equipped with an inspection window and light for observation of the sanding operation.

  12. Portable File Format (PFF) specifications.

    SciTech Connect

    Dolan, Daniel H.,

    2015-02-01

    Created at Sandia National Laboratories, the Portable File Format (PFF) allows binary data transfer across computer platforms. Although this capability is supported by many other formats, PFF files are still in use at Sandia, particularly in pulsed power research. This report provides detailed PFF specifications for accessing data without relying on legacy code.

  13. Portable vacuum object handling device

    DOEpatents

    Anderson, Gordon H.

    1983-08-09

    The disclosure relates to a portable device adapted to handle objects which are not to be touched by hand. A piston and bore wall form a vacuum chamber communicating with an adaptor sealably engageable with an object to be lifted. The piston is manually moved and set to establish vacuum. A valve is manually actuatable to apply the vacuum to lift the object.

  14. Portable Positron Measurement System (PPMS)

    ScienceCinema

    None

    2013-05-28

    Portable Positron Measurement System (PPMS) is an automated, non-destructive inspection system based on positron annihilation, which characterizes a material's in situatomic-level properties during the manufacturing processes of formation, solidification, and heat treatment. Simultaneous manufacturing and quality monitoring now are possible. Learn more about the lab's project on our facebook site http://www.facebook.com/idahonationallaboratory.

  15. Apollo Portable Life Support System

    NASA Technical Reports Server (NTRS)

    1968-01-01

    With its exterior removed, the Apollo portable life support system (PLSS) can be studied. The PLSS is worn as a backpack over the extravehicular mobility unit (EMU), a multi-layered spacesuit used for outside the spacecraft activity. This is a close-up of the working parts of the PLSS.

  16. Apollo Portable Life Support System

    NASA Technical Reports Server (NTRS)

    1968-01-01

    With its exterior removed, the Apollo portable life support system (PLSS) can be studied. The PLSS is worn as a backpack over the extravehicular mobility unit (EMU), a multi-layered spacesuit used for outside the spacecraft activity. This is a wider view of the exposed interior working parts of the PLSS and its removed cover.

  17. Portable thermo-powered high-throughput visual electrochemiluminescence sensor.

    PubMed

    Hao, Nan; Xiong, Meng; Zhang, Jia-dong; Xu, Jing-Juan; Chen, Hong-Yuan

    2013-12-17

    This paper describes a portable thermo-powered high-throughput visual electrochemiluminescence (ECL) sensor for the first time. This sensor is composed of a tiny power supply device based on thermal-electrical conversion and a facile prepared array electrode. The ECL detection could be conducted with thermo-power, which is easily accessible. For example, hot water, a bonfire, or a lighted candle enables the detection to be conducted. And the assay can be directly monitored by the naked eye semiquantitatively or smart phones quantitatively. Combined with transparent electrode and array microreactors, a portable high-throughput sensor was achieved. The portable device, avoiding the use of an electrochemical workstation to generate potential and a photomultiplier tube to receive the signal, is not only a valuable addition for traditional methods but also a suitable device for field operation or point-of-care testing. PMID:24215560

  18. 49 CFR 176.137 - Portable magazine.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... type 3 magazine under 27 CFR part 555 subpart K may be used for the stowage of Class 1 (explosive... 49 Transportation 2 2012-10-01 2012-10-01 false Portable magazine. 176.137 Section 176.137... Requirements for Class 1 (Explosive) Materials Stowage § 176.137 Portable magazine. (a) Each portable...

  19. 48 CFR 1837.170 - Pension portability.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 6 2010-10-01 2010-10-01 true Pension portability. 1837... ADMINISTRATION SPECIAL CATEGORIES OF CONTRACTING SERVICE CONTRACTING Service Contracts-General 1837.170 Pension portability. (a) It is NASA's policy not to require pension portability in service contracts. However,...

  20. 48 CFR 1837.170 - Pension portability.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 6 2011-10-01 2011-10-01 false Pension portability. 1837... ADMINISTRATION SPECIAL CATEGORIES OF CONTRACTING SERVICE CONTRACTING Service Contracts-General 1837.170 Pension portability. (a) It is NASA's policy not to require pension portability in service contracts. However,...

  1. 46 CFR 120.430 - Portable lights.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Portable lights. 120.430 Section 120.430 Shipping COAST... Systems § 120.430 Portable lights. Each vessel must be equipped with at least two operable portable battery lights. One of these lights must be located at the operating station and the other at the...

  2. 46 CFR 183.430 - Portable lights

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Portable lights 183.430 Section 183.430 Shipping COAST...) ELECTRICAL INSTALLATION Lighting Systems § 183.430 Portable lights Each vessel must be equipped with at least two operable portable battery lights. One of these lights must be located at the operating station...

  3. 46 CFR 183.430 - Portable lights

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Portable lights 183.430 Section 183.430 Shipping COAST...) ELECTRICAL INSTALLATION Lighting Systems § 183.430 Portable lights Each vessel must be equipped with at least two operable portable battery lights. One of these lights must be located at the operating station...

  4. 46 CFR 120.430 - Portable lights.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Portable lights. 120.430 Section 120.430 Shipping COAST... Systems § 120.430 Portable lights. Each vessel must be equipped with at least two operable portable battery lights. One of these lights must be located at the operating station and the other at the...

  5. 46 CFR 183.430 - Portable lights

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Portable lights 183.430 Section 183.430 Shipping COAST...) ELECTRICAL INSTALLATION Lighting Systems § 183.430 Portable lights Each vessel must be equipped with at least two operable portable battery lights. One of these lights must be located at the operating station...

  6. 46 CFR 120.430 - Portable lights.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Portable lights. 120.430 Section 120.430 Shipping COAST... Systems § 120.430 Portable lights. Each vessel must be equipped with at least two operable portable battery lights. One of these lights must be located at the operating station and the other at the...

  7. 46 CFR 120.430 - Portable lights.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Portable lights. 120.430 Section 120.430 Shipping COAST... Systems § 120.430 Portable lights. Each vessel must be equipped with at least two operable portable battery lights. One of these lights must be located at the operating station and the other at the...

  8. 46 CFR 183.430 - Portable lights

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Portable lights 183.430 Section 183.430 Shipping COAST...) ELECTRICAL INSTALLATION Lighting Systems § 183.430 Portable lights Each vessel must be equipped with at least two operable portable battery lights. One of these lights must be located at the operating station...

  9. 46 CFR 120.430 - Portable lights.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Portable lights. 120.430 Section 120.430 Shipping COAST... Systems § 120.430 Portable lights. Each vessel must be equipped with at least two operable portable battery lights. One of these lights must be located at the operating station and the other at the...

  10. 46 CFR 183.430 - Portable lights

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Portable lights 183.430 Section 183.430 Shipping COAST...) ELECTRICAL INSTALLATION Lighting Systems § 183.430 Portable lights Each vessel must be equipped with at least two operable portable battery lights. One of these lights must be located at the operating station...

  11. In-channel indirect amperometric detection of heavy metal ions for electrophoresis on a poly(dimethylsiloxane) microchip.

    PubMed

    Li, Xin-Ai; Zhou, Dong-Mei; Xu, Jing-Juan; Chen, Hong-Yuan

    2007-02-28

    In-channel indirect amperometric detection mode for microchip capillary electrophoresis with positive separation electric field is successfully applied to some heavy metal ions. The influences of separation voltage, detection potential, the concentration and pH value of running buffer on the response of the detector have been investigated. An optimized condition of 1200V separation voltage, -0.1V detection potential, 20mM (pH 4.46) running buffer of 2-(N-morpholino)ethanesulfonic acid (MES)+l-histidine (l-His) was selected. The results clearly showed that Pb(2+), Cd(2+), and Cu(2+) were efficiently separated within 80s in a 3.7cm long native separation PDMS/PDMS channel and successfully detected at a single carbon fibre electrode. The theoretical plate numbers of Pb(2+), Cd(2+), and Cu(2+) were 1.2x10(5), 2.5x10(5), and 1.9x10(5)m(-1), respectively. The detection limits for Pb(2+), Cd(2+), and Cu(2+) were 1.3, 3.3 and 7.4muM (S/N=3). PMID:19071423

  12. Los Alamos portable beta-ray spectrometer

    NASA Astrophysics Data System (ADS)

    Erkkila, B. H.; Brake, R. J.; Waechter, D. A.

    The integration of a beta ray detector to multichannel analyzer and computer has resulted in a portable spectrometer for studying beta rays in the field. The detector is a 5 cm diameter by 2 cm thick plastic scintillator. Other detectors can easily be integrated into the package. The integral instrument package is 15 cm wide by 15 cm high by 25 cm long and weighs less than 10 pounds. Internal rechargeable batteries for 8 hours of field operation are included. The instrument contains a detector, an amplifier, a multichannel analyzer, and a liquid crystal display (LCD). A microprocessor controls all the functions of the instrument and is programmed to display all necessary information and 128 channel spectra on the LCD.

  13. Portable sensor technology for rotational ground motions

    NASA Astrophysics Data System (ADS)

    Bernauer, Felix; Wassermann, Joachim; Guattari, Frédéric; Igel, Heiner

    2016-04-01

    In this contribution we present performance characteristics of a single component interferometric fiber-optic gyroscope (IFOG). The prototype sensor is provided by iXBlue, France. It is tested in the framework of the European Research Council Project, ROMY (Rotational motions - a new observable for seismology), on its applicability as a portable and field-deployable sensor for rotational ground motions. To fully explore the benefits of this new seismic observable especially in the fields of vulcanology, ocean generated noise and geophysical exploration, such a sensor has to fulfill certain requirements regarding portability, power consumption, time stamping stability and dynamic range. With GPS-synchronized time stamping and miniseed output format, data acquisition is customized for the use in seismology. Testing time stamping accuracy yields a time shift of less than 0.0001 s and a correlation coefficient of 0.99 in comparison to a commonly used data acquisition system, Reftek 120. Sensor self-noise is below 5.0 ṡ 10‑8 rads‑1Hz‑1/2 for a frequency band from 0.001 Hz to 5.0 Hz. Analysis of Allan deviation shows an angle random walk of 3.5 ṡ 10‑8 rads‑1Hz‑1/2. Additionally, the operating range diagram is shown and ambient noise analysis is performed. The sensitivity of sensor self-noise to variations in surrounding temperature and magnetic field is tested in laboratory experiments. With a power consumption of less than 10 W, the whole system (single component sensor + data acquisition) is appropriate for field use with autonomous power supply.

  14. Printed Flexible Plastic Microchip for Viral Load Measurement through Quantitative Detection of Viruses in Plasma and Saliva

    PubMed Central

    Shafiee, Hadi; Kanakasabapathy, Manoj Kumar; Juillard, Franceline; Keser, Mert; Sadasivam, Magesh; Yuksekkaya, Mehmet; Hanhauser, Emily; Henrich, Timothy J.; Kuritzkes, Daniel R.; Kaye, Kenneth M.; Demirci, Utkan

    2015-01-01

    We report a biosensing platform for viral load measurement through electrical sensing of viruses on a flexible plastic microchip with printed electrodes. Point-of-care (POC) viral load measurement is of paramount importance with significant impact on a broad range of applications, including infectious disease diagnostics and treatment monitoring specifically in resource-constrained settings. Here, we present a broadly applicable and inexpensive biosensing technology for accurate quantification of bioagents, including viruses in biological samples, such as plasma and artificial saliva, at clinically relevant concentrations. Our microchip fabrication is simple and mass-producible as we print microelectrodes on flexible plastic substrates using conductive inks. We evaluated the microchip technology by detecting and quantifying multiple Human Immunodeficiency Virus (HIV) subtypes (A, B, C, D, E, G, and panel), Epstein-Barr Virus (EBV), and Kaposi’s Sarcoma-associated Herpes Virus (KSHV) in a fingerprick volume (50 µL) of PBS, plasma, and artificial saliva samples for a broad range of virus concentrations between 102 copies/mL and 107 copies/mL. We have also evaluated the microchip platform with discarded, de-identified HIV-infected patient samples by comparing our microchip viral load measurement results with reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR) as the gold standard method using Bland-Altman Analysis. PMID:26046668

  15. Printed Flexible Plastic Microchip for Viral Load Measurement through Quantitative Detection of Viruses in Plasma and Saliva.

    PubMed

    Shafiee, Hadi; Kanakasabapathy, Manoj Kumar; Juillard, Franceline; Keser, Mert; Sadasivam, Magesh; Yuksekkaya, Mehmet; Hanhauser, Emily; Henrich, Timothy J; Kuritzkes, Daniel R; Kaye, Kenneth M; Demirci, Utkan

    2015-01-01

    We report a biosensing platform for viral load measurement through electrical sensing of viruses on a flexible plastic microchip with printed electrodes. Point-of-care (POC) viral load measurement is of paramount importance with significant impact on a broad range of applications, including infectious disease diagnostics and treatment monitoring specifically in resource-constrained settings. Here, we present a broadly applicable and inexpensive biosensing technology for accurate quantification of bioagents, including viruses in biological samples, such as plasma and artificial saliva, at clinically relevant concentrations. Our microchip fabrication is simple and mass-producible as we print microelectrodes on flexible plastic substrates using conductive inks. We evaluated the microchip technology by detecting and quantifying multiple Human Immunodeficiency Virus (HIV) subtypes (A, B, C, D, E, G, and panel), Epstein-Barr Virus (EBV), and Kaposi's Sarcoma-associated Herpes Virus (KSHV) in a fingerprick volume (50 µL) of PBS, plasma, and artificial saliva samples for a broad range of virus concentrations between 10(2) copies/mL and 10(7) copies/mL. We have also evaluated the microchip platform with discarded, de-identified HIV-infected patient samples by comparing our microchip viral load measurement results with reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR) as the gold standard method using Bland-Altman Analysis. PMID:26046668

  16. Poly(dimethylsiloxane) microchip-based immunoassay with multiple reaction zones: Toward on-chip multiplex detection platform

    SciTech Connect

    Shao, Guocheng; Wang, Jun; Li, Zhaohui; Saraf, Laxmikant V.; Wang, Wanjun; Lin, Yuehe

    2011-09-20

    In this work, a poly(dimethylsiloxane) (PDMS) microchip-based immuno-sensing platform with integrated pneumatic micro valves is described. The microchip was fabricated with multiple layer soft lithography technology. By controlling the activation status of corresponding valves, reagent flows in the microchannel network can be well manipulated so that immuno-reactions only take place at designated reaction zones (DRZs). Four DRZs are included in the prototype microchip. Since these DRZs are all isolated from each other by micro valves, cross contamination is prevented. Using the inner surface of the all-PDMS microchannel as immunoassay substrate, on-chip sandwich format solid phase immunoassay was performed to demonstrate the feasibility of this immuno-sensing platform. Mouse IgG and fluorescein isothiocyanate (FITC) were used as the model analyte and the signal reporter respectively. Only 10 ul sample is needed for the assay and low detection limit of 5 ng/ml (≈33 pM) was achieved though low-cost polyclonal antibodies were used in our experiment for feasibility study only. The encouraging results from mouse IgG immunoassay proved the feasibility of our microchip design. With slight modification of the assay protocol, the same chip design can be used for multi-target detection and can provide a simple, cost-effective and integrated microchip solution for multiplex immunoassay applications.

  17. Portable top drive cuts horizontal drilling costs

    SciTech Connect

    Jackson, B.; Yager, D.

    1993-11-01

    Economic analysis of a seven-well, long-reach horizontal drilling program into an unconsolidated, heavy-oil-bearing reservoir in Winter field near the Alberta/Saskatchewan border in Canada reveals that -- in the right application -- renting a portable top drive drilling system can reduce total drilling costs. Use of the portable top drive combined with other cost-saving measures enabled Saskoil, one of Canada`s larger independents, to drill more cheaply, on a cost-per-meter basis, in 1993 than in 1992. This was despite significant rental rates for drilling rigs and directional drilling services caused by increased demand in Western Canada. Total cost savings of 10% on wells that would otherwise cost in the (C) $500,000 range are believed realistic. Based on this year`s performance, Saskoil recommends top drive for the company`s future horizontal wells in this area. This article describes the operator`s horizontal well program, advantages of top drive in that program and how it was installed and applied. Estimated time savings for six wells, plus other ways top drive can cut costs and improve operations are discussed.

  18. Intelligent hand-portable proliferation sensing system

    SciTech Connect

    Dieckman, S.L.; Bostrom, G.A.; Waterfield, L.G.; Jendrzejczyk, J.A.; Ahuja, S.; Raptis, A.C.

    1997-08-01

    Argonne National Laboratory, with support from DOE`s Office of Nonproliferation and National Security, is currently developing an intelligent hand-portable sensor system. This system is designed specifically to support the intelligence community with the task of in-field sensing of nuclear proliferation and related activities. Based upon pulsed laser photo-ionization time-of-flight mass spectrometry technology, this novel sensing system is capable of quickly providing a molecular or atomic analysis of specimens. The system is capable of analyzing virtually any gas phase molecule, or molecule that can be induced into the gas phase by (for example) sample heating. This system has the unique advantages of providing unprecedented portability, excellent sensitivity, tremendous fieldability, and a high performance/cost ratio. The system will be capable of operating in a highly automated manner for on-site inspections, and easily modified for other applications such as perimeter monitoring aboard a plane or drone. The paper describes the sensing system.

  19. Application of portable Raman instruments for fast and non-destructive detection of minerals on outcrops.

    PubMed

    Jehlicka, J; Vítek, P; Edwards, H G M; Heagraves, M; Capoun, T

    2009-08-01

    Raman spectral signatures have been obtained in situ for a series of minerals using portable Raman instruments. Cerussite, anglesite, wulfenite, titanite, calcite, tremolite, andradite and quartz were detected using portable Raman spectrometer First Defender XL (Ahura). Baryte, almandine and realgar Raman spectra obtained by this instrument in the field were compared to the data measured by the other mobile Raman instrument Inspector Raman (DeltaNu). Bench Raman dispersive microspectrometer (InVia Reflex, Renishaw) was used for comparative purposes. All spectra were obtained using a 785nm diode excitation. Although displaying lower spectral resolution comparing with the laboratory confocal instrument both portable instruments permit unambiguous detection of minerals in the field. These possibilities designate portable Raman machines as excellent tools for field geological applications. Miniaturised Raman instrument combined with LIBS will be included in the payload of the EXO Mars mission and would open interesting research possibilities in other in situ field planetary studies. PMID:18993111

  20. Onsite Portable Alarm System - Its Merit and Application

    NASA Astrophysics Data System (ADS)

    Saita, J.; Sato, T.; Nakamura, Y.

    2007-12-01

    wave alarms was actually issued by three times during the rescue work. Although this is one example for the actual application of portable onsite alarm, it is possible to apply the other field as the construction field. In this presentation, Portable Onsite Alarm is discussed from views of its necessity and application.

  1. High-speed separation of proteins by microchip electrophoresis using a polyethylene glycol-coated plastic chip with a sodium dodecyl sulfate-linear polyacrylamide solution.

    PubMed

    Nagata, Hideya; Tabuchi, Mari; Hirano, Ken; Baba, Yoshinobu

    2005-07-01

    In this paper, we describe a method for size-based electrophoretic separation of sodium dodecyl sulfate (SDS)-protein complexes on a polymethyl methacrylate (PMMA) microchip, using a separation buffer solution containing SDS and linear polyacrylamide as a sieving matrix. We developed optimum conditions under which protein separations can be performed, using polyethylene glycol (PEG)-coated polymer microchips and electrokinetic sample injection. We studied the performance of protein separations on the PEG-coated PMMA microchip. The electrophoretic separation of proteins (21.5-116.0 kDa) was completed with separation lengths of 3 mm, achieved within 8 s on the PEG-coated microchip. This high-speed method may be applied to protein separations over a large range of molecular weight, making the PEG-coated microchip approach applicable to high-speed proteome analysis systems. PMID:15937980

  2. Microprocessor controlled portable TLD system.

    PubMed

    Apathy, I; Deme, S; Feher, I

    1996-01-01

    An up-to-date microprocessor controlled thermoluminescence dosemeter (TLD) system for environmental and space dose measurements has been developed. The earlier version of the portable TLD system, Pille, was successfully used on Soviet orbital stations as well as on the US Space Shuttle, and for environmental monitoring. The new portable TLD system, Pille'95, consists of a reader and TL bulb dosemeters, and each dosemeter is provided with an EEPROM chip for automatic identification. The glow curve data are digitised and analysed by the program of the reader. The measured data and the identification number appear on the LED display of the reader. Up to several thousand measured data together with the glow curves can be stored on a removable flash memory card. The whole system is supplied either from built-in rechargeable batteries or from the mains of the space station. PMID:11540052

  3. Portable code development in C

    SciTech Connect

    Brown, S.A.

    1990-11-06

    With a new generation of high performance computers appearing around us on a time scale of months, a new challenge for developers of simulation codes is to write and maintain production codes that are both highly portable and maximally efficient. My contention is that C is the language that is both best suited to that goal and is widely available today. GLF is a new code written mainly in C which is intended to have all of the XRASER physics and run on any platform of interest. It demonstrates the power of the C paradigm for code developers and flexibility and ease of use for the users. Three fundamental problems are discussed: the C/UNIX development environment; the supporting tools and libraries which handle data and graphics portability issues; and the advantages of C in numerical simulation code development.

  4. Microprocessor controlled portable TLD system

    NASA Technical Reports Server (NTRS)

    Apathy, I.; Deme, S.; Feher, I.

    1996-01-01

    An up-to-date microprocessor controlled thermoluminescence dosemeter (TLD) system for environmental and space dose measurements has been developed. The earlier version of the portable TLD system, Pille, was successfully used on Soviet orbital stations as well as on the US Space Shuttle, and for environmental monitoring. The new portable TLD system, Pille'95, consists of a reader and TL bulb dosemeters, and each dosemeter is provided with an EEPROM chip for automatic identification. The glow curve data are digitised and analysed by the program of the reader. The measured data and the identification number appear on the LED display of the reader. Up to several thousand measured data together with the glow curves can be stored on a removable flash memory card. The whole system is supplied either from built-in rechargeable batteries or from the mains of the space station.

  5. Portable liquid collection electrostatic precipitator

    DOEpatents

    Carlson, Duane C.; DeGange, John J.; Halverson, Justin E.

    2005-10-18

    A portable liquid collection electrostatic collection precipitator for analyzing air is provided which is a relatively small, self-contained device. The device has a tubular collection electrode, a reservoir for a liquid, and a pump. The pump pumps the liquid into the collection electrode such that the liquid flows down the exterior of the collection electrode and is recirculated to the reservoir. An air intake is provided such that air to be analyzed flows through an ionization section to ionize analytes in the air, and then flows near the collection electrode where ionized analytes are collected. A portable power source is connected to the air intake and the collection electrode. Ionizable constituents in the air are ionized, attracted to the collection electrode, and precipitated in the liquid. The precipitator may also have an analyzer for the liquid and may have a transceiver allowing remote operation and data collection.

  6. Portable telepathology: methods and tools.

    PubMed

    Alfaro, Luis; Roca, Ma José

    2008-01-01

    Telepathology is becoming easier to implement in most pathology departments. In fact e-mail image transmit can be done from almost any pathologist as a simplistic telepathology system. We tried to develop a way to improve capabilities of communication among pathologists with the idea that the system should be affordable for everybody. We took the premise that any pathology department would have microscopes and computers with Internet connection, and selected a few elements to convert them into a telepathology station. Needs were reduced to a camera to collect images, a universal microscope adapter for the camera, a device to connect the camera to the computer, and a software for the remote image transmit. We found out a microscope adapter (MaxView Plus) that allowed us connect almost any domestic digital camera to any microscope. The video out signal from the camera was sent to the computer through an Aver Media USB connector. At last, we selected a group of portable applications that were assembled into a USB memory device. Portable applications are computer programs that can be carried generally on USB flash drives, but also in any other portable device, and used on any (Windows) computer without installation. Besides, when unplugging the device, none of personal data is left behind. We selected open-source applications, and based the pathology image transmission to VLC Media Player due to its functionality as streaming server, portability and ease of use and configuration. Audio transmission was usually done through normal phone lines. We also employed alternative videoconferencing software, SightSpeed for bi-directional image transmission from microscopes, and conventional cameras allowing visual communication and also image transmit from gross pathology specimens. All these elements allowed us to install and use a telepathology system in a few minutes, fully prepared for real time image broadcast. PMID:18673507

  7. Compact portable diffraction moire interferometer

    DOEpatents

    Deason, V.A.; Ward, M.B.

    1988-05-23

    A compact and portable moire interferometer used to determine surface deformations of an object. The improved interferometer is comprised of a laser beam, optical and fiber optics devices coupling the beam to one or more evanescent wave splitters, and collimating lenses directing the split beam at one or more specimen gratings. Observations means including film and video cameras may be used to view and record the resultant fringe patterns. 7 figs.

  8. Compact portable diffraction moire interferometer

    DOEpatents

    Deason, Vance A.; Ward, Michael B.

    1989-01-01

    A compact and portable moire interferometer used to determine surface deformations of an object. The improved interferometer is comprised of a laser beam, optical and fiber optics devices coupling the beam to one or more evanescent wave splitters, and collimating lenses directing the split beam at one or more specimen gratings. Observation means including film and video cameras may be used to view and record the resultant fringe patterns.

  9. Portable Immune-Assessment System

    NASA Technical Reports Server (NTRS)

    Pierson, Duane L.; Stowe, Raymond P.; Mishra, Saroj K.

    1995-01-01

    Portable immune-assessment system developed for use in rapidly identifying infections or contaminated environment. System combines few specific fluorescent reagents for identifying immune-cell dysfunction, toxic substances, buildup of microbial antigens or microbial growth, and potential identification of pathogenic microorganisms using fluorescent microplate reader linked to laptop computer. By using few specific dyes for cell metabolism, DNA/RNA conjugation, specific enzyme activity, or cell constituents, one makes immediate, onsite determination of person's health or of contamination of environment.

  10. Portable vacuum object handling device

    DOEpatents

    Anderson, G.H.

    1983-08-09

    The disclosure relates to a portable device adapted to handle objects which are not to be touched by hand. A piston and bore wall form a vacuum chamber communicating with an adaptor sealably engageable with an object to be lifted. The piston is manually moved and set to establish vacuum. A valve is manually actuatable to apply the vacuum to lift the object. 1 fig.

  11. Portable Presentation And Instruction Unit

    NASA Technical Reports Server (NTRS)

    Christman, L.; Hoang, N.

    1994-01-01

    Proposed electronic display unit reminiscent of kiosk serves as portable, interactive, multimedia information terminal. Used as traveling science exhibit, aid for teaching science in schools, or training and skill-refresher device for space flight crews. Provides interactive video and audio displays, including three-dimensional-appearing video simulations. Speeds learning and improves retention by applying principles of scientific visualization. Also helps previously trained but recently unpracticed personnel relearn special skills and procedures quickly.

  12. A biocompatible microchip and methodology for efficiently trapping and positioning living cells into array based on negative dielectrophoresis

    NASA Astrophysics Data System (ADS)

    Guo, Xiaoliang; Zhu, Rong

    2015-06-01

    We present a microchip and trapping methodology based on negative dielectrophoresis (nDEP), whereby living cells were manipulated and positioned into an array with high trapping efficiency while maintaining good viability. The main factors that ensured good viability of cells were investigated including temperature of medium, extra transmembrane potential on cells, and electrolysis effect in DEP-based trapping. Optimum DEP conditions for the microchip were determined by considering both biocompatibility and trapping efficiency. Experiments demonstrated that under a voltage of 3.6-4 Vpp and at a frequency of 100 kHz, HeLa cells could be trapped and positioned into an array in less than 10 s while maintaining good viability. The normal adherence morphology and fluorescence of the cells, dyed with propidium iodide and Calcein-AM, were observed and verified the biocompatibility of the microchip and trapping methodology.

  13. A general microchip surface modification approach using a spin-coated polymer resist film doped with hydroxypropyl cellulose.

    PubMed

    Sun, Xiuhua; Yang, Weichun; Geng, Yanli; Woolley, Adam T

    2009-04-01

    We have developed a simple and effective method for surface modification of polymer microchips by entrapping hydroxypropyl cellulose (HPC) in a spin-coated thin film on the surface. Poly(methyl methacrylate-8.5-methacrylic acid), a widely available commercial resist formulation, was utilized as a matrix for dissolving HPC and providing adherence to native polymer surfaces. Various amounts of HPC (0.1-2.0%) dissolved in the copolymer and spun on polymer surfaces were evaluated. The modified surfaces were characterized by contact angle measurement, X-ray photoelectron spectroscopy and atomic force microscopy. The developed method was applied on both poly(methyl methacrylate) and cyclic olefin copolymer microchips. A fluorescently labeled myoglobin digest, binary protein mixture, and human serum sample were all separated in these surface-modified polymer microdevices. Our work exhibits an easy and reliable way to achieve favorable biomolecular separation performance in polymer microchips. PMID:19294306

  14. Feasibility of capillary liquid chromatography/microchip atmospheric pressure photoionization mass spectrometry in analyzing anabolic steroids in urine samples.

    PubMed

    Ahonen, Linda L; Haapala, Markus; Saarela, Ville; Franssila, Sami; Kotiaho, Tapio; Kostiainen, Risto

    2010-04-15

    We examined the feasibility of capillary liquid chromatography/microchip atmospheric pressure photoionization tandem mass spectrometry (capLC/microAPPI-MS/MS) for the analysis of anabolic steroids in human urine. The urine samples were pretreated by enzymatic hydrolysis (with beta-glucuronidase from Helix pomatia), and the compounds were liquid-liquid extracted with diethyl ether. After separation the compounds were vaporized by microchip APPI, photoionized by a 10 eV krypton discharge lamp, and detected by selected reaction monitoring. The capLC/microAPPI-MS/MS method showed good sensitivity with detection limits at the level of 1.0 ng mL(-1), good linearity with correlation coefficients between 0.9954 and 0.9990, and good repeatability with relative standard deviations below 10%. These results demonstrate that microchip APPI combined with capLC/MS/MS provides a new potential method for analyzing non-polar and neutral compounds in biological samples. PMID:20209666

  15. Software Complexity Threatens Performance Portability

    SciTech Connect

    Gamblin, T.

    2015-09-11

    Modern HPC software packages are rarely self-contained. They depend on a large number of external libraries, and many spend large fractions of their runtime in external subroutines. Performance portability depends not only on the effort of application teams, but also on the availability of well-tuned libraries. At most sites, the burden of maintaining libraries is shared by code teams and facilities. Facilities typically provide well-tuned default versions, but code teams frequently build with bleeding-edge compilers to achieve high performance. For this reason, HPC has no “standard” software stack, unlike other domains where performance is not critical. Incompatibilities among compilers and software versions force application teams and facility staff to re-build custom versions of libraries for each new toolchain. Because the number of potential configurations is combinatorial, and because HPC software is notoriously difficult to port to new machines [3, 7, 8], the tuning effort required to support and maintain performance-portable libraries outstrips the available manpower at most sites. Software complexity is a growing obstacle to performance portability for HPC.

  16. Extrinsic Fabry-Perot interferometry for noncontact temperature control of nanoliter-volume enzymatic reactions in glass microchips.

    PubMed

    Easley, Christopher J; Legendre, Lindsay A; Roper, Michael G; Wavering, Thomas A; Ferrance, Jerome P; Landers, James P

    2005-02-15

    Optical fiber extrinsic Fabry-Perot interferometry (EFPI) was investigated as a noncontact temperature sensor and utilized for regulating the temperature of small-volume solutions in microchips. Interference pattern analysis determined the optical path lengths (OPL) associated with reflections from various surfaces on or in the microchip, in particular, from gold sputtered on the bottom of a microchannel. Since OPL is directly proportional to refractive index, which is dependent on solution temperature, the EFPI sensor was capable of noncontact monitoring of solution temperature simply from alterations in the measured path length. Calibration of the sensor against a thermocouple was performed while heating the microchip in a noncontact manner with an IR lamp. The combination of EFPI temperature sensor, IR-mediated heating, and air cooling allowed a fully noncontact system for small-volume temperature control in microchip structures, and its utility was illustrated by optimal digestion of DNA by a temperature-dependent restriction endonuclease in 320 nL. The functionality and simplicity of the microchip EFPI temperature sensor was enhanced by replacing the prebonding sputtered gold with a tunable, chemically plated semireflective silver coating created in situ after chip fabrication. This provided an 8-fold improvement in the lowest detectable temperature change (deltaT = 0.1 degrees C), facilitated primarily by enhanced reflection from both the bottom and top surfaces of the microchannel. This approach for controlling micro- and nanoscale reactions--with heating, cooling, and temperature control being carried out in a completely noncontact fashion--provides an accurate and sensitive method for executing chemical and biochemical reactions in microchips. PMID:15858983

  17. Development of a portable ambient temperature radiometric assaying instrument

    SciTech Connect

    Lavietes, A.D.; McQuaid, J.H.; Ruhter, W.D.

    1994-10-01

    There is a strong need for portable radiometric instrumentation that can accurately confirm the presence of nuclear materials and allow isotopic analysis of radionuclides in the field. To fulfill this need we are developing a hand-held, non-cryogenic, low-power gamma- and x-ray measurement and analysis instrument that can both search and then accurately verify the presence of nuclear materials. We report on the use of cadmium zinc telluride detectors, signal processing electronics, and the new field-portable instrument based on the MicroNOMAD Multichannel Analyzer from EG&G ORTBC. We also describe the isotopic analysis that allows uranium enrichment measurements to be made accurately in the field.

  18. Photoinduced absorption measurement on a microchip equipped with organic dye-doped polymer waveguide

    NASA Astrophysics Data System (ADS)

    Kawaguchi, T.; Nagai, K.; Yamashita, K.

    2013-05-01

    We have fabricated a waveguide-type optical sensing microchip and succeeded in on-chip photoinduced absorption (PIA) spectroscopy. The PIA microchip was fabricated with a conventional photolithographic technique and consisted of plastic optical waveguides and microfluidic channels. Furthermore, a serially-cascaded polymer waveguide doped with organic dyes was integrated on this microchip, which was fabricated using a self-written waveguide process. This dye-doped waveguide was pumped by a UV light emitting diode (UV-LED) and used as a probe light source with a broad emission spectrum. At the same time, a solution of test material in the microfluidic channel was synchronously pumped by a UV-LED or UV laser diode. Since the transmission spectrum of the photo-excited test material could be measured, the PIA spectra were obtained easily. In this study, we have demonstrated the on-chip PIA measurements for two classes of test materials, rare-earth complex and chlorophyll molecules. In the measurement for the aqueous solution of Neodymium (III) acetate hydrate, PIA signals attributed to the 4f-4f transition was observed. Furthermore, by varying the modulation frequency of the pulsed optical pumping, lifetime analysis of the excited 4f states was achieved. In the measurements for the ethanol solutions of chlorophyll a and chlorophyll b, PIA signals were observed at the wavelength near the Q-band absorption peaks. These spectra were very similar to the well-known feature for the photosystem II protein complex observed in a conventional PIA system. From these results, it is expected that the onchip PIA measurement technique is applicable to the transient analyses for the material systems with photoexcited charge transfer.

  19. Use of epoxy-embedded electrodes to integrate electrochemical detection with microchip-based analysis systems

    PubMed Central

    Selimovic, Asmira; Johnson, Alicia S.; Kiss, István Z.; Martin, R. Scott

    2011-01-01

    A new method of fabricating electrodes for microchip devices that involves the use of Teflon molds and a commercially available epoxy to embed electrodes of various size and composition is described. The resulting epoxy base can be polished to generate a fresh electrode and sealed against PDMS-based fluidic structures. Microchip-based flow injection analysis was used to characterize the epoxy-embedded electrodes. It was shown that gold electrodes can be amalgamated with liquid mercury and the resulting mercury/gold electrode used to selectively detect glutathione from lysed red blood cells. The ability to encapsulate multiple electrode materials of differing composition enabled the integration of microchip electrophoresis with electrochemical detection. Finally, a unique feature of this approach is that the electrode connection is made from the bottom of the epoxy base. This enables the creation of three-dimensional gold pillar electrodes (65 µm in diameter and 27 µm in height) that can be integrated within a fluidic network. As compared to the use of a flat electrode of a similar diameter, the use of the pillar electrode led to improvements in both the sensitivity (72.1 pA/µM for the pillar vs. 4.2 pA/µM for the flat electrode) and limit of detection (20 nM for the pillar vs. 600 nM for the flat electrode), with catechol being the test analyte. These epoxy-embedded electrodes hold promise for the creation of inexpensive microfluidic devices that can be used to electrochemically detect biologically important analytes in a manner where the electrodes can be polished and a fresh electrode surface generated as desired. PMID:21413031

  20. Microchip laser based on Yb:YAG/V:YAG monolith crystal

    NASA Astrophysics Data System (ADS)

    Nejezchleb, Karel; Šulc, Jan; Jelínková, Helena; Škoda, Václav

    2016-03-01

    V:YAG crystal was investigated as a passive Q-switch of longitudinally diode-pumped microchip laser, emitting radiation at wavelength 1030.5 nm. This laser was based on diffusion bonded monolith crystal (diameter 3 mm) which combines in one piece an active laser part (Yb:YAG crystal, 10 at.% Yb/Y, 3 mm long) and saturable absorber (V:YAG crystal, 2 mm long, initial transmission 86 % @ 1031 nm). The microchip resonator consisted of dielectric mirrors directly deposited on the monolith surfaces (pump mirror HT @ 968 nm and HR @ 1031 nm on Yb:YAG part, output coupler with reflection 55 % @ 1031 nm on the V:YAG part). For longitudinal CW pumping of Yb:YAG part, a fibre coupled (core diameter 100 μm, NA = 0.22, emission @ 968 nm) laser diode was used. The laser threshold was 3.8W. The laser slope efficiency for output mean in respect to incident pumping was 16 %. The linearly polarized generated transversal intensity beam profile was close to the fundamental Gaussian mode. The generated pulse length, stable and mostly independent on pumping power, was equal to 1.3 ns (FWHM). The single pulse energy was increasing with the pumping power and for the maximum pumping 9.7W it was 78 μJ which corresponds to the pulse peak-power 56 kW. The maximum Yb:YAG/V:YAG microchip laser mean output power of 1W was reached without observable thermal roll-over. The corresponding Q-switched pulses repetition rate was 13.1 kHz.

  1. Portable gas chromatograph-mass spectrometer

    DOEpatents

    Andresen, Brian D.; Eckels, Joel D.; Kimmons, James F.; Myers, David W.

    1996-01-01

    A gas chromatograph-mass spectrometer (GC-MS) for use as a field portable organic chemical analysis instrument. The GC-MS is designed to be contained in a standard size suitcase, weighs less than 70 pounds, and requires less than 600 watts of electrical power at peak power (all systems on). The GC-MS includes: a conduction heated, forced air cooled small bore capillary gas chromatograph, a small injector assembly, a self-contained ion/sorption pump vacuum system, a hydrogen supply, a dual computer system used to control the hardware and acquire spectrum data, and operational software used to control the pumping system and the gas chromatograph. This instrument incorporates a modified commercial quadrupole mass spectrometer to achieve the instrument sensitivity and mass resolution characteristic of laboratory bench top units.

  2. Portable gas chromatograph-mass spectrometer

    DOEpatents

    Andresen, B.D.; Eckels, J.D.; Kimmons, J.F.; Myers, D.W.

    1996-06-11

    A gas chromatograph-mass spectrometer (GC-MS) is described for use as a field portable organic chemical analysis instrument. The GC-MS is designed to be contained in a standard size suitcase, weighs less than 70 pounds, and requires less than 600 watts of electrical power at peak power (all systems on). The GC-MS includes: a conduction heated, forced air cooled small bore capillary gas chromatograph, a small injector assembly, a self-contained ion/sorption pump vacuum system, a hydrogen supply, a dual computer system used to control the hardware and acquire spectrum data, and operational software used to control the pumping system and the gas chromatograph. This instrument incorporates a modified commercial quadrupole mass spectrometer to achieve the instrument sensitivity and mass resolution characteristic of laboratory bench top units. 4 figs.

  3. Portable gas chromatograph-mass spectrometer

    SciTech Connect

    Andresen, B.D.; Eckels, J.D.; Kimmins, J.F.; Myers, D.W.

    1994-12-31

    A gas chromatograph-mass spectrometer (GC-MS) for use as a field portable organic chemical analysis instrument. The GC-MS is designed to be contained in a standard size suitcase, weighs less than 70 pounds, and requires less than 600 watts of electrical power at peak power (all systems on). The GC-MS includes: a conduction heated, forced air cooled small bore capillary gas chromatograph, a small injector assembly, a self-contained ion/sorption pump vacuum system, a hydrogen supply, a dual computer system used to control the hardware and acquire spectrum data, and operational software used to control the pumping system and the gas chromatograph. This instrument incorporates a modified commercial quadrupole mass spectrometer to achieve the instrument sensitivity and mass resolution characteristic of laboratory bench top units.

  4. Separation of motile sperm for in vitro fertilization from frozen-thawed bull semen using progesterone induction on a microchip.

    PubMed

    Li, Jingchun; Ning, Bolin; Cao, Xinyan; Luo, Yinghua; Guo, Li; Wei, Guosheng; Liu, Shengjun; Zhang, Ying; Zhang, Aizhong; Wu, Rui; Li, Yanbing

    2016-09-01

    This study presents a novel method for the separation of motile sperm from non-progressive motile and immotile sperm and in vitro Fertilization (IVF). This separation of bull sperm was accomplished by inducing chemotaxis along a progesterone release agent in a 7.5-mm microchannel microchip composed of a biocompatible polydimethysiloxane layer and a glass gradient. The selected sperm was applied directly for IVF. In the first experiment, we tested the effect of different lengths of microchannnel (5mm, 7.5mm and 10mm) on quality parameter of separated sperm. The results showed that separated sperm using 7.5-mm microchannel chip were improved in sperm motility, swimming velocity, and beat frequency compared with other groups. In the second experiment, a medium containing sperm from swim-up method and outlet reservoir of our 7.5-mm microchannel chip was collected and mitochondrial activity of the sperm was determined by fluorescence microscopy. The sperm from the microchip had higher mitochondria activity (47.6%±6.0%) than the sperm from the swim-up method (23.6%±4.7%) (P<0.05). There were significant differences in rate of acrosome intactness between the swim-up method and the microchip (36.0%±4.1% vs. 66.8±2.1%, respectively, P<0.05). In the third experiment, we compared sperm penetration in the microchip-IVF system with a standard IVF method (droplet-IVF). The microchip-IVF group had the highest percentages of oocytes penetrated (82.2%±1.6% vs. 63.5%±2.4%) and monospermic oocytes (67.8%±3.4% vs. 42.4%±1.5%). In addition, early developmental competence of oocytes to the blastocyst stage was higher when the oocytes were inseminated in the microchip-IVF system compared with those inseminated in a standard droplet-IVF system. These results demonstrate that our microchip based on a sperm chemotaxis system is useful for motile sperm separation from frozen-thawed bull semen for IVF. Therefore, the optimized microchip system provides a good opportunity to sort

  5. Integration of ground aerogel particles as chromatographic stationary phase into microchip.

    PubMed

    Gaspar, Attila; Nagy, Andrea; Lazar, Istvan

    2011-02-18

    C16 modified and ground monolithic silica aerogel particles in submicrometer size, as a new type of stationary phase was prepared and integrated in polydimethylsiloxane (PDMS) microchip. The aerogel particles were packed into the microfluidic channel using a simple procedure, which does not require any special frit or fabrication step to retain the particles. The subnanoliter volume of samples can be transported through the porous, short length of packing with low pressure (< 3 bar). Food dyes as test components could be separated using low pressure within 6s. A 50-fold preconcentration could be achieved by retaining 100 nL volume of sample on the packing and elution with methanol. PMID:21227431

  6. Assessment of adulteration of soybean proteins in dairy products by 2D microchip-CE device.

    PubMed

    Wu, Ruige; Wang, Zhiping; Fung, Ying Sing; Seah, Daphne Yen Peng; Yeung, William Shu-Biu

    2014-06-01

    To determine the adulteration of soybean proteins in dairy product, a microchip-CE device was developed to isolate selected fraction of soybean and milk proteins in pI range from 5.5 ∼ 7.0 by 1D IEF, followed by ITP/CZE in the embedded capillary for preconcentration, separation and UV detection at 280 nm. Compared to IEF-CZE without ITP preconcentration, the enhancement factor (EF) in detection of soybean proteins was 20 times. Adulteration of 0.1% soybean protein in total dairy proteins can be detected in less than 10 min. PMID:25025095

  7. Ultra-fast simultaneous detection of obesity-related coenzymes in mice using microchip electrophoresis with a LIF detector.

    PubMed

    Lee, Hee Gu; Kumar, K S; Soh, Ju-Ryoun; Cha, Youn-Soo; Kang, Seong Ho

    2008-06-30

    Hepatic acyl-coenzyme A synthetase (ACS), carnitine palmitoyltransferase-I (CPT-I) and acetyl coenzyme A carboxylase (ACC) are coenzymes associated with the genetic type of obesity in animal models. This paper reports the use of microchip electrophoresis (ME) with a laser-induced fluorescence (LIF) detector based on a reverse transcriptase-polymerase chain reaction (RT-PCR) to detect the amplified DNA fragments of these coenzymes (ACS, CPT-I and ACC) in the mRNA extracted from mice. DNA fragments ranging from 50 to 2652 bp were well resolved using this procedure with a running buffer (1x TBE), 0.5% polyvinylpyrrolidone (M(r) 1,000,000) as the coating gel and 0.7% polyethyleneoxide (M(r) 8,000,000) as the sieving gel at pH 8.30. The separation of the three RT-PCR products was achieved by ME in a single-run within 17 s using programmed field strength gradients (PFSG) (470 V cm(-1) for 9 s, 205.8 V cm(-1) for 2 s, 411.6 V cm(-1) for 4 s, 117.6 V cm(-1) for 2 s and 470.4V cm(-1) for 8 s). The ME-PFSG method was found to be 4 times faster than the method using a constant field and 138 times faster than slab gel electrophoresis. Moreover, the amplified RT-PCR products of the obesity-related coenzymes in C57BL/6J mice were analyzed using only sub-micro liter samples. PMID:18539180

  8. Portable radiation detector and mapping system

    SciTech Connect

    Hofstetter, K.J.; Hayes, D.W.; Eakle, R.F.

    1995-12-31

    A portable radiation detector and mapping system (RADMAPS) has been developed to detect, locate, and plot nuclear radiation intensities on commercially available digital maps and other images. The field unit records gamma-ray spectra or neutron signals together with positions from a global positioning system (GPS) on flash memory cards. The recorded information is then transferred to a laptop computer for spectral data analyses and then georegistered graphically on maps, photographs, etc. RADMAPS integrates several existing technologies to produce a preprogrammable field unit uniquely suited for each survey, as required. The system records spectra from a NaI(Tl) gamma-ray detector or an enriched {sup 6}Li doped glass neutron scintillator. Standard Geographic Information System (GIS) software installed in a lap-top, complete with CD-ROM supporting digitally imaged maps, permits the characterization of nuclear material in the field when the presence of such material is not otherwise documented. This paper gives the results of a typical site survey of the Savannah River site (SRS) using RADMAPS. The ability to provide rapid field data should be of use in treaty verification, safeguards, decontamination, and nuclear weapons dismantlement.

  9. Portable x-ray fluorescence spectrometer. Innovative technology summary report

    SciTech Connect

    1998-12-01

    This report describes the application of portable X-ray fluorescence (XRF) spectrometry to characterize materials related to deactivation and decommissioning (D and D) of contaminated facilities. Two portable XRF instruments manufactured by TN Spectrace were used in a technology evaluation as part of the Large-Scale Demonstration Project (LSDP) held at the Chicago Pile-5 Research Reactor (CP-5) located at Argonne National Laboratory (ANL). The LSDP is sponsored by the US Department of Energy (DOE), Office of Science and Technology, Deactivation and Decommissioning Focus Are (DDFA). The objective of the LSDP is to demonstrate innovative technologies or technology applications potentially beneficial to the D and D of contaminated facilities. The portable XRF technology offers several potential benefits for rapid characterization of facility components and contaminants, including significant cost reduction, fast turnaround time,a nd virtually no secondary waste. Field work for the demonstration of the portable XRF technology was performed from August 28--September 3, 1996 and October 30--December 13, 1996.

  10. 75 FR 5013 - Local Number Portability Porting Interval and Validation Requirements; Telephone Number Portability

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-01

    ... From the Federal Register Online via the Government Publishing Office FEDERAL COMMUNICATIONS COMMISSION 47 CFR Part 52 Local Number Portability Porting Interval and Validation Requirements; Telephone Number Portability AGENCY: Federal Communications Commission. ACTION: Proposed rule. SUMMARY:...

  11. 33 CFR 145.01 - Portable and semi-portable fire extinguishers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-portable fire extinguishers. On all manned platforms and on all unmanned platforms where crews are...-portable fire extinguishers shall be installed and maintained. On all unmanned platforms where crews...

  12. 33 CFR 145.01 - Portable and semi-portable fire extinguishers.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-portable fire extinguishers. On all manned platforms and on all unmanned platforms where crews are...-portable fire extinguishers shall be installed and maintained. On all unmanned platforms where crews...

  13. 33 CFR 145.01 - Portable and semi-portable fire extinguishers.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-portable fire extinguishers. On all manned platforms and on all unmanned platforms where crews are...-portable fire extinguishers shall be installed and maintained. On all unmanned platforms where crews...

  14. 33 CFR 145.01 - Portable and semi-portable fire extinguishers.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-portable fire extinguishers. On all manned platforms and on all unmanned platforms where crews are...-portable fire extinguishers shall be installed and maintained. On all unmanned platforms where crews...

  15. 33 CFR 145.01 - Portable and semi-portable fire extinguishers.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-portable fire extinguishers. On all manned platforms and on all unmanned platforms where crews are...-portable fire extinguishers shall be installed and maintained. On all unmanned platforms where crews...

  16. Portable atomic frequency standard based on coherent population trapping

    NASA Astrophysics Data System (ADS)

    Shi, Fan; Yang, Renfu; Nian, Feng; Zhang, Zhenwei; Cui, Yongshun; Zhao, Huan; Wang, Nuanrang; Feng, Keming

    2015-05-01

    In this work, a portable atomic frequency standard based on coherent population trapping is designed and demonstrated. To achieve a portable prototype, in the system, a single transverse mode 795nm VCSEL modulated by a 3.4GHz RF source is used as a pump laser which generates coherent light fields. The pump beams pass through a vapor cell containing atom gas and buffer gas. This vapor cell is surrounded by a magnetic shield and placed inside a solenoid which applies a longitudinal magnetic field to lift the Zeeman energy levels' degeneracy and to separate the resonance signal, which has no first-order magnetic field dependence, from the field-dependent resonances. The electrical control system comprises two control loops. The first one locks the laser wavelength to the minimum of the absorption spectrum; the second one locks the modulation frequency and output standard frequency. Furthermore, we designed the micro physical package and realized the locking of a coherent population trapping atomic frequency standard portable prototype successfully. The short-term frequency stability of the whole system is measured to be 6×10-11 for averaging times of 1s, and reaches 5×10-12 at an averaging time of 1000s.

  17. Portable punch and die jig

    DOEpatents

    Lewandowski, Edward F.; Anderson, Petrus A.

    1978-01-01

    A portable punch and die jig includes a U-shaped jig of predetermined width having a slot of predetermined width in the base thereof extending completely across the width of the jig adapted to fit over the walls of rectangular tubes and a punch and die assembly disposed in a hole extending through the base of the jig communicating with the slot in the base of the jig for punching a hole in the walls of the rectangular tubes at precisely determined locations.

  18. Improved Portable Ultrasonic Leak Detectors

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert C.; Moerk, John S.; Haskell, William D.; Cox, Robert B.; Polk, Jimmy D.; Strobel, James P.; Luaces, Frank

    1995-01-01

    Improved portable ultrasonic leak detector features three interchangeable ultrasonic-transducer modules, each suited for operation in unique noncontact or contact mode. One module equipped with ultrasound-collecting horn for use in scanning to detect leaks from distance; horn provides directional sensitivity pattern with sensitivity multiplied by factor of about 6 in forward direction. Another module similar, does not include horn; this module used for scanning close to suspected leak, where proximity of leak more than offsets loss of sensitivity occasioned by lack of horn. Third module designed to be pressed against leaking vessel; includes rugged stainless-steel shell. Improved detectors perform significantly better, smaller, more rugged, and greater sensitivity.

  19. Portable receiver for radar detection

    DOEpatents

    Lopes, Christopher D.; Kotter, Dale K.

    2008-10-14

    Various embodiments are described relating to a portable antenna-equipped device for multi-band radar detection. The detection device includes a plurality of antennas on a flexible substrate, a detection-and-control circuit, an indicator and a power source. The antenna may include one or more planar lithographic antennas that may be fabricated on a thin-film substrate. Each antenna may be tuned to a different selection frequency or band. The antennas may include a bolometer for radar detection. Each antenna may include a frequency selective surface for tuning to the selection frequency.

  20. Portable X-Ray Device

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Portable x-ray instrument developed by NASA now being produced commercially as an industrial tool may soon find further utility as a medical system. The instrument is Lixiscope - Low Intensity X-Ray Imaging Scope -- a self-contained, battery-powered fluoroscope that produces an instant image through use of a small amount of radioactive isotope. Originally developed by Goddard Space Flight Center, Lixiscope is now being produced by Lixi, Inc. which has an exclusive NASA license for one version of the device.