Science.gov

Sample records for field spectroscopic study

  1. A NEAR-INFRARED SPECTROSCOPIC STUDY OF YOUNG FIELD ULTRACOOL DWARFS

    SciTech Connect

    Allers, K. N.; Liu, Michael C.

    2013-08-01

    We present a near-infrared (0.9-2.4 {mu}m) spectroscopic study of 73 field ultracool dwarfs having spectroscopic and/or kinematic evidence of youth ( Almost-Equal-To 10-300 Myr). Our sample is composed of 48 low-resolution (R Almost-Equal-To 100) spectra and 41 moderate-resolution spectra (R {approx}> 750-2000). First, we establish a method for spectral typing M5-L7 dwarfs at near-IR wavelengths that is independent of gravity. We find that both visual and index-based classification in the near-IR provides consistent spectral types with optical spectral types, though with a small systematic offset in the case of visual classification at J and K band. Second, we examine features in the spectra of {approx}10 Myr ultracool dwarfs to define a set of gravity-sensitive indices based on FeH, VO, K I, Na I, and H-band continuum shape. We then create an index-based method for classifying the gravities of M6-L5 dwarfs that provides consistent results with gravity classifications from optical spectroscopy. Our index-based classification can distinguish between young and dusty objects. Guided by the resulting classifications, we propose a set of low-gravity spectral standards for the near-IR. Finally, we estimate the ages corresponding to our gravity classifications.

  2. Atom-probe and field emission electron spectroscope studies of Ge on Ir

    NASA Astrophysics Data System (ADS)

    Ashino, Makoto; Tomitori, Masahiko; Nishikawa, Osamu

    1993-04-01

    The combination of an atom-probe (AP) and a field emission electron spectroscope (FEES) was employed to investigate the electronic structure of Ge layers on an Ir substrate. Germanium forms a thin film with a fairly uniform thickness, possibly owing to a small activation energy for diffusion on Ir or the lattice matching between Ge and Ir. The FEES spectrum obtained from Ge layers thicker than 8-9 ML exhibits a semiconductive energy gap and a peak at 0.7 eV below the Fermi level as for Si on Mo. However, the minimum layer thickness to exhibit the semiconductive spectrum profile is significantly thicker than that for Si on Mo. The observed difference could be attributed to the layer structure of the deposited Ge and to the narrower energy gap of Ge than that of Si.

  3. Spectroscopic study of partially-ordered semiconductor heterojunction under high pressure and high magnetic field

    SciTech Connect

    Yu, P.Y.; Martinez, G.; Zeman, J.; Uchida, K.

    2000-12-31

    Photoluminescence upconversion (PLU) is a phenomenon in which a sample emits photons with energy higher than that of the excitation photon. This effect has been observed in many materials including rare earth ions doped in insulating hosts and semiconductor heterostructures without using high power lasers as the excitation source. Recently, this effect has been observed also in partially CuPt-ordered GaInP{sub 2} epilayers grown on GaAs substrates. As a spectroscopic technique photoluminescence upconversion is particularly well suited for studying band alignment at heterojunction interface. The value of band-offset has been determined with meV precision using magneto-photoluminescence. Using the fact that the pressure coefficient of electrons in GaAs is higher than those in GaInP{sub 2} they have been able to manipulate the band-offset at the GaInP/GaAs interface. By converting the band-offset from Type I to Type II they were able to demonstrate that the efficiency of the upconversion process is greatly enhanced by a Type II band-offset.

  4. The spectroscopic constants and anharmonic force field of AgSH: An ab initio study.

    PubMed

    Zhao, Yanliang; Wang, Meishan; Yang, Chuanlu; Ma, Xiaoguang; Zhu, Ziliang

    2016-07-01

    The equilibrium structure, spectroscopy constants, and anharmonic force field of silver hydrosulfide (AgSH) have been calculated at B3P86, B3PW91 and MP2 methods employing two basis sets, TZP and QZP, respectively. The calculated geometries, ground state rotational constants, harmonic vibrational wave numbers, and quartic and sextic centrifugal distortion constants are compared with the available experimental and theoretical data. The equilibrium rotational constants, fundamental frequencies, anharmonic constants, and vibration-rotation interaction constants, Coriolis coupling constants, cubic and quartic force constants are predicted. The calculated results show that the MP2/TZP results are in good agreement with experiment observation and are also an advisable choice to study the anharmonic force field of AgSH. PMID:27085293

  5. The spectroscopic constants and anharmonic force field of AgSH: An ab initio study

    NASA Astrophysics Data System (ADS)

    Zhao, Yanliang; Wang, Meishan; Yang, Chuanlu; Ma, Xiaoguang; Zhu, Ziliang

    2016-07-01

    The equilibrium structure, spectroscopy constants, and anharmonic force field of silver hydrosulfide (AgSH) have been calculated at B3P86, B3PW91 and MP2 methods employing two basis sets, TZP and QZP, respectively. The calculated geometries, ground state rotational constants, harmonic vibrational wave numbers, and quartic and sextic centrifugal distortion constants are compared with the available experimental and theoretical data. The equilibrium rotational constants, fundamental frequencies, anharmonic constants, and vibration-rotation interaction constants, Coriolis coupling constants, cubic and quartic force constants are predicted. The calculated results show that the MP2/TZP results are in good agreement with experiment observation and are also an advisable choice to study the anharmonic force field of AgSH.

  6. Crystal-Field and Covalency Effects in Uranates: An X-ray Spectroscopic Study.

    PubMed

    Butorin, Sergei M; Kvashnina, Kristina O; Smith, Anna L; Popa, Karin; Martin, Philippe M

    2016-07-01

    The electronic structure of U(V) - and U(VI) -containing uranates NaUO3 and Pb3 UO6 was studied by using an advanced technique, namely X-ray absorption spectroscopy (XAS) in high-energy-resolution fluorescence-detection (HERFD) mode. Due to a significant reduction in core-hole lifetime broadening, the crystal-field splittings of the 5f shell were probed directly in HERFD-XAS spectra collected at the U 3d edge, which is not possible by using conventional XAS. In addition, the charge-transfer satellites that result from U 5f-O 2p hybridization were clearly resolved. The crystal-field parameters, 5f occupancy, and degree of covalency of the chemical bonding in these uranates were estimated by using the Anderson impurity model by calculating the U 3d HERFD-XAS, conventional XAS, core-to-core (U 4f-3d transitions) resonant inelastic X-ray scattering (RIXS), and U 4f X-ray photoelectron spectra. The crystal field was found to be strong in these systems and the 5f occupancy was determined to be 1.32 and 0.84 electrons in the ground state for NaUO3 and Pb3 UO6 , respectively, which indicates a significant covalent character for these compounds. PMID:27257782

  7. Surface enhanced Raman spectroscopic studies of the metal-semiconductor interface in organic field effect transistors

    NASA Astrophysics Data System (ADS)

    Adil, Danish; Guha, Suchi

    2012-02-01

    The performance of organic field-effect transistors (FETs) largely depends on the nature of interfaces of dissimilar materials. Metal-semiconductor interfaces, in particular, play a critical role in the charge injection process. Here, Raman spectroscopy is used to investigate the nature of the Au-semiconductor interface in pentacene based FETs. A large enhancement in the Raman intensity (SERS) is observed from the pentacene film under the Au layer. The enhancement is evidence of a nano-scale roughness in the morphology of the interface, which is further confirmed by electron microscopy images. The morphology of the interface is investigated by SERS as a function of the pentacene layer thickness and the Au layer thickness. The Raman spectra are found to be extremely sensitive in detecting small changes in the morphology of the interface in the sub-nanometer range. Changes in the Raman spectra are further tracked after biasing and ageing the devices. Evolution of these Raman spectra is correlated with degradation in device performance. Finally, FETs based on other donor-acceptor semiconductors are probed by Raman scattering and contrasted with those of the pentacene-based devices.

  8. Spectroscopic study of sprites

    NASA Astrophysics Data System (ADS)

    Kanmae, Takeshi

    Optical emissions from sprites--large electric discharges in the mesosphere caused by intense lightning strokes--have been studied for decades. Studies have identified that sprite emissions are primarily composed of molecular band emissions of nitrogen and notably identified the near ultraviolet and blue emission from the N2+ First Negative system, which provided direct evidence of ionization in sprites. This implies that further evidence of the ionization may be provided by the visible and near infrared emission from the N2+ Meinel system, which is more accessible from ground-based platforms, though anticipated strong quenching in the mesosphere and below have made the presence of the emission somewhat controversial. To investigate the presence of the Meinel emission along the vertical extent of sprites, we made ground-based spectral observations in 2005. The observed spectra were mainly composed of the N2 First Positive system, and no or little indication of the Meinel bands were found. This study suggests that the quenching is indeed severe at sprite altitude, and it is difficult to study the ionization process in sprites via the Meinel emission. In addition, the data allowed us to investigate details of the First Positive emission from sprites. The observed First Positive spectra showed that the vibrational distribution of the upper state varies along the vertical extent of sprites, which is in agreement with previous reports, and furthermore this study indicates that the variation is associated with altitude, implying that collisional energy transfer processes play roles in exciting the First Positive emission, particularly at lower altitudes. Recent high-speed imaging observations have revealed the very dynamic nature of sprites: they develop within a few to 10 ms in forms of streamers and columnar glows. The underlying electron energies in these features have been inferred from their emissions in previous measurements, but they lacked either sufficient

  9. Study of InGaAs-based modulation doped field effect transistor structures using variable-angle spectroscopic ellipsometry

    NASA Technical Reports Server (NTRS)

    Alterovitz, S. A.; Sieg, R. M.; Yao, H. D.; Snyder, P. G.; Woollam, J. A.; Pamulapati, J.; Bhattacharya, P. K.; Sekula-Moise, P. A.

    1991-01-01

    Variable-angle spectroscopic ellipsometry was used to estimate the thicknesses of all layers within the optical penetration depth of InGaAs-based modulation doped field effect transistor structures. Strained and unstrained InGaAs channels were made by molecular beam epitaxy (MBE) on InP substrates and by metal-organic chemical vapor deposition on GaAs substrates. In most cases, ellipsometrically determined thicknesses were within 10% of the growth-calibration results. The MBE-made InGaAs strained layers showed large strain effects, indicating a probable shift in the critical points of their dielectric function toward the InP lattice-matched concentration.

  10. Study of InGaAs-based modulation doped field effect transistor structures using variable-angle spectroscopic ellipsometry

    NASA Technical Reports Server (NTRS)

    Alterovitz, Samuel A.; Sieg, R. M.; Yao, H. D.; Snyder, P. G.; Woollam, J. A.; Pamulapati, J.; Bhattacharya, P. K.; Sekula-Moise, P. A.

    1992-01-01

    Variable-angle spectroscopic ellipsometry was used to estimate the thicknesses of all layers within the optical penetration depth of InGaAs-based modulation doped field effect transistor structures. Strained and unstrained InGaAs channels were made by molecular beam epitaxy (MBE) on InP substrates and by metal organic chemical vapor deposition on GaAs substrates. In most cases, ellipsometrically determined thicknesses were within 10 percent of the growth-calibration results. The MBE-made InGaAs strained layers showed large strain effects, indicating a probable shift in the critical point of their dielectric function toward the InP lattice-matched concentration.

  11. Neutron spectroscopic study of crystalline electric field excitations in stoichiometric and lightly stuffed Yb2Ti2O7

    DOE PAGESBeta

    Gaudet, J.; Maharaj, D. D.; Sala, G.; Kermarrec, E.; Ross, K. A.; Dabkowska, H. A.; Kolesnikov, A. I.; Granroth, G. E.; Gaulin, B. D.

    2015-10-27

    Time-of-flight neutron spectroscopy has been used to determine the crystalline electric field Hamiltonian, eigenvalues and eigenvectors appropriate to the J=7/2 Yb3+ ion in the candidate quantum spin ice pyrochlore magnet Yb2Ti2O7. The precise ground state of this exotic, geometrically frustrated magnet is known to be sensitive to weak disorder associated with the growth of single crystals from the melt. Such materials display weak “stuffing,” wherein a small proportion, approximately 2%, of the nonmagnetic Ti4+ sites are occupied by excess Yb3+. We have carried out neutron spectroscopic measurements on a stoichiometric powder sample of Yb2Ti2O7, as well as a crushed singlemore » crystal with weak stuffing and an approximate composition of Yb2+xTi2–xO7+y with x = 0.046. All samples display three crystalline electric field transitions out of the ground state, and the ground state doublet itself is identified as primarily composed of mJ = ±1/2, as expected. However, stuffing at low temperatures in Yb2+xTi2–xO7+y induces a similar finite crystalline electric field lifetime as is induced in stoichiometric Yb2Ti2O7 by elevated temperature. In conclusion, an extended strain field exists about each local “stuffed” site, which produces a distribution of random crystalline electric field environments in the lightly stuffed Yb2+xTi2–xO7+y, in addition to producing a small fraction of Yb ions in defective environments with grossly different crystalline electric field eigenvalues and eigenvectors.« less

  12. The magnetic field of the hot spectroscopic binary HD 5550

    NASA Astrophysics Data System (ADS)

    Neiner, C.; Alecian, E.

    2015-12-01

    HD 5550 is a spectroscopic binary composed of two A stars observed with Narval at TBL in the frame of the BinaMIcS (Binarity and Magnetic Interactions in various classes of Stars) Large Program. One component of the system is found to be an Ap star with a surprisingly weak dipolar field of ˜65 G. The companion is an Am star for which no magnetic field is detected, with a detection threshold on the dipolar field of ˜40 G. The system is tidally locked, the primary component is synchronised with the orbit, but the system is probably not completely circularised yet. This work is only the second detailed study of magnetic fields in a hot short-period spectroscopic binary. More systems are currently being observed with both Narval at TBL and ESPaDOnS at CFHT within the BinaMIcS project, with the goal of understanding how magnetism can impact binary evolution and vice versa.

  13. Spectroscopic study of the HgMn star HD 49606: the quest for binarity, abundance stratifications and magnetic field

    NASA Astrophysics Data System (ADS)

    Catanzaro, G.; Giarrusso, M.; Leone, F.; Munari, M.; Scalia, C.; Sparacello, E.; Scuderi, S.

    2016-08-01

    In this paper, we present a multi-instrument analysis of the mercury-manganese star HD 49606. New spectroscopic observations have been obtained by us with Catania Astrophysical Observatory Spectropolarimeter (CAOS@OAC) and High Accuracy Radial Velocity Planet Searcher-North@Telescopio Nazionale Galileo (HARPS-N@TNG). Combining these observations with archive data coming from other instruments, we performed a comprehensive analysis of this star. We highlight the motion around the centre of mass of a binary system of SB1 type, and we calculate the fundamental parameters characterizing its orbit. We also speculate on the nature of the unseen component. From the fit of H β and H γ, we determined the effective temperature and gravity, while from a number of metal lines, we derive the rotational and microturbulent velocities. Regarding chemical composition, we found underabundances of helium, oxygen, magnesium, sulfur and nickel, solar composition for carbon and overabundances for all the other elements. In particular, mercury abundance is derived taking into account an isotopic mixture different from the terrestrial one. As to magnesium, silicon and phosphorus, we found a non-constant abundance with the optical depth, a result currently considered an evidence of stratification. Spectropolarimetric observations have been performed in the attempt to highlight the presence of a magnetic field, but no detection has been found.

  14. Spectroscopic study of the HgMn star HD 49606: the quest for binarity, abundance stratifications and magnetic field

    NASA Astrophysics Data System (ADS)

    Catanzaro, G.; Giarrusso, M.; Leone, F.; Munari, M.; Scalia, C.; Sparacello, E.; Scuderi, S.

    2016-04-01

    In this paper we present a multi-instrument analysis of the mercury-manganese star HD 49606. New spectroscopic observations have been obtained by us with Catania Astrophysical Observatory Spectropolarimeter (CAOS@OAC) and HARPS-N@TNG. Combining these observations with archive data coming from other instruments, we performed a comprehensive analysis of this star. We highlight the motion around the center of mass of a binary system of SB1 type, and we calculate the fundamental parameters characterizing its orbit. We also speculate on the nature of the unseen component. From the fit of Hβ and Hγ we determined the effective temperature and gravity, while from a number of metal lines we derive the rotational and microturbulent velocities. Regarding chemical composition, we found underabundances of helium, oxygen, magnesium, sulfur and nickel, solar composition for carbon and overabundances for all the other elements. In particular, mercury abundance is derived taking into account an isotopic mixture different from the terrestrial one. As to magnesium, silicon and phosphorus, we found a non constant abundance with the optical depth, a result currently considered an evidence of stratification. Spectropolarimetric observations have been performed in the attempt to highlight the presence of a magnetic field, but no detection has been found.

  15. Nuclear spectroscopic studies

    SciTech Connect

    Bingham, C.R.; Guidry, M.W.; Riedinger, L.L.; Sorensen, S.P.

    1993-02-08

    The Nuclear Physics group at the University of Tennessee, Knoxville is involved in several aspects of heavy-ion physics including both nuclear structure and reaction mechanisms. While our main emphasis is on experimental problems involving heavy-ion accelerators, we have maintained a strong collaboration with several theorists in order to best pursue the physics of our measurements. During the last year we have led several experiments at the Holifield Heavy Ion Research Facility and participated in others at Argonne National Laboratory. Also, we continue to be very active in the collaboration to study ultra-relativistic heavy ion physics utilizing the SPS accelerator at CERN in Geneva, Switzerland and in a RHIC detector R D project. Our experimental work is in four broad areas: (1) the structure of nuclei at high angular momentum, (2) heavy-ion induced transfer reactions, (3) the structure of nuclei far from stability, and (4) ultra-relativistic heavy-ion physics. The results of studies in these particular areas will be described in this document in sections IIA, IIB, IIC, and IID, respectively. Areas (1), (3), and (4) concentrate on the structure of nuclear matter in extreme conditions of rotational motion, imbalance of neutrons and protons, or very high temperature and density. Area (2) pursues the transfer of nucleons to states with high angular momentum, both to learn about their structure and to understand the transfer of particles, energy, and angular momentum in collisions between heavy ions. An important component of our program is the strong emphasis on the theoretical aspects of nuclear structure and reactions.

  16. Neutron spectroscopic study of crystalline electric field excitations in stoichiometric and lightly stuffed Yb2Ti2O7

    NASA Astrophysics Data System (ADS)

    Gaudet, J.; Maharaj, D. D.; Sala, G.; Kermarrec, E.; Ross, K. A.; Dabkowska, H. A.; Kolesnikov, A. I.; Granroth, G. E.; Gaulin, B. D.

    2015-10-01

    Time-of-flight neutron spectroscopy has been used to determine the crystalline electric field (CEF) Hamiltonian, eigenvalues and eigenvectors appropriate to the J =7 /2 Yb3 + ion in the candidate quantum spin ice pyrochlore magnet Yb2Ti2O7 . The precise ground state (GS) of this exotic, geometrically frustrated magnet is known to be sensitive to weak disorder associated with the growth of single crystals from the melt. Such materials display weak "stuffing," wherein a small proportion, ≈2 % , of the nonmagnetic Ti4 + sites are occupied by excess Yb3 +. We have carried out neutron spectroscopic measurements on a stoichiometric powder sample of Yb2Ti2O7 , as well as a crushed single crystal with weak stuffing and an approximate composition of Yb2 +xTi2 -xO7 +y with x =0.046 . All samples display three CEF transitions out of the GS, and the GS doublet itself is identified as primarily composed of mJ=±1 /2 , as expected. However, stuffing at low temperatures in Yb2 +xTi2 -xO7 +y induces a similar finite CEF lifetime as is induced in stoichiometric Yb2Ti2O7 by elevated temperature. We conclude that an extended strain field exists about each local "stuffed" site, which produces a distribution of random CEF environments in the lightly stuffed Yb2 +xTi2 -xO7 +y , in addition to producing a small fraction of Yb ions in defective environments with grossly different CEF eigenvalues and eigenvectors.

  17. Spectroscopic (UV/VIS, Raman) and Electrophoresis Study of Cytosine-Guanine Oligonucleotide DNA Influenced by Magnetic Field.

    PubMed

    Banihashemian, Seyedeh Maryam; Periasamy, Vengadesh; Boon Tong, Goh; Abdul Rahman, Saadah

    2016-01-01

    Studying the effect of a magnetic field on oligonucleotide DNA can provide a novel DNA manipulation technique for potential application in bioengineering and medicine. In this work, the optical and electrochemical response of a 100 bases oligonucleotides DNA, cytosine-guanine (CG100), is investigated via exposure to different magnetic fields (250, 500, 750, and 1000 mT). As a result of the optical response of CG100 to the magnetic field, the ultra-violet-visible spectrum indicated a slight variation in the band gap of CG100 of about 0.3 eV. Raman spectroscopy showed a significant deviation in hydrogen and phosphate bonds' vibration after exposure to the magnetic field. Oligonucleotide DNA mobility was investigated in the external electric field using the gel electrophoresis technique, which revealed a small decrease in the migration of CG100 after exposure to the magnetic field. PMID:26999445

  18. Spectroscopic (UV/VIS, Raman) and Electrophoresis Study of Cytosine-Guanine Oligonucleotide DNA Influenced by Magnetic Field

    PubMed Central

    Banihashemian, Seyedeh Maryam; Periasamy, Vengadesh; Boon Tong, Goh; Abdul Rahman, Saadah

    2016-01-01

    Studying the effect of a magnetic field on oligonucleotide DNA can provide a novel DNA manipulation technique for potential application in bioengineering and medicine. In this work, the optical and electrochemical response of a 100 bases oligonucleotides DNA, cytosine-guanine (CG100), is investigated via exposure to different magnetic fields (250, 500, 750, and 1000 mT). As a result of the optical response of CG100 to the magnetic field, the ultra-violet-visible spectrum indicated a slight variation in the band gap of CG100 of about 0.3 eV. Raman spectroscopy showed a significant deviation in hydrogen and phosphate bonds’ vibration after exposure to the magnetic field. Oligonucleotide DNA mobility was investigated in the external electric field using the gel electrophoresis technique, which revealed a small decrease in the migration of CG100 after exposure to the magnetic field. PMID:26999445

  19. Neutron spectroscopic study of Crystal-field excitation in Yb2 (Ti2 - x Ybx) O7 -x/2

    NASA Astrophysics Data System (ADS)

    Gaudet, Jonathan; Maharaj, Dalini; Kermarrec, Edwin; Granroth, Garrett; Ross, Kate; Dabowska, Hanna; Gaulin, Bruce

    2015-03-01

    Among the rare-earth titanate pyrochlores, Yb2 Ti2O7 has attracted much attention as a potential realization of a quantum spin ice. While strong quantum effects are absent in classical spin ice compounds, they are thought to be significant in Yb2 Ti2O7 because of its effective spin S=1/2 and its XY spin anisotropy, quantities both determined by the Crystal-Electric Field (CEF) levels. However, a thorough neutron spectroscopy study of the CEF levels is still lacking. Here, we report time-of-flight inelastic neutron scattering measurements on Yb2 Ti2O7 . Our results lead to the unambiguous determination of the CEF levels, the ground-state wavefunction and therefore the nature of the spin anisotropy of the J=7/2 Yb3+ . A significant sample dependence in the low temperature heat capacity has been reported and attributed to an excess of Yb3+ (''stuffing'') in the structure. Our measurements, carried out on two well-characterized samples with different levels of stuffing, allow us to discuss the impact of such disorder on the CEF levels.

  20. Investigating magnetic activity in very stable stellar magnetic fields. Long-term photometric and spectroscopic study of the fully convective M4 dwarf V374 Pegasi

    NASA Astrophysics Data System (ADS)

    Vida, K.; Kriskovics, L.; Oláh, K.; Leitzinger, M.; Odert, P.; Kővári, Zs.; Korhonen, H.; Greimel, R.; Robb, R.; Csák, B.; Kovács, J.

    2016-05-01

    The ultrafast-rotating (Prot ≈ 0.44 d) fully convective single M4 dwarf V374 Peg is a well-known laboratory for studying intense stellar activity in a stable magnetic topology. As an observable proxy for the stellar magnetic field, we study the stability of the light curve, hence the spot configuration. We also measure the occurrence rate of flares and coronal mass ejections (CMEs). We have analysed spectroscopic observations, BV(RI)C photometry covering 5 yrs, and additional RC photometry that expands the temporal base over 16 yr. The light curve suggests an almost rigid-body rotation and a spot configuration that is stable over about 16 yrs, confirming the previous indications of a very stable magnetic field. We observed small changes on a nightly timescale and frequent flaring, including a possible sympathetic flare. The strongest flares seem to be more concentrated around the phase where the light curve indicates a smaller active region. Spectral data suggest a complex CME with falling-back and re-ejected material with a maximal projected velocity of ~675 km s-1. We observed a CME rate that is much lower than expected from extrapolations of the solar flare-CME relation to active stars. Tables of the photometry are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/590/A11

  1. A VLT VIMOS integral-field spectroscopic study of perturbed blue compact galaxies: UM 420 and UM 462

    NASA Astrophysics Data System (ADS)

    James, B. L.; Tsamis, Y. G.; Barlow, M. J.

    2010-01-01

    We report on optical integral-field spectroscopy of two unrelated blue compact galaxies mapped with the 13× 13 arcsec2 Visible Multi-Object Spectrograph integral field unit at a resolution of 0.33× 0.33 arcsec2. Continuum and background subtracted emission line maps in the light of [OIII] λ5007, Hα and [NII] λ6584 are presented. Both galaxies display signs of ongoing perturbation and/or interaction. UM 420 is resolved for the first time to be a merging system composed of two starbursting components with an `arm-like' structure associated with the largest component. UM 462 which is a disrupted system of irregular morphology is resolved into at least four starbursting regions. Maps of the Hα radial velocity and full width at half-maximum are discussed. No underlying broad-line region was detected from either galaxy as the emission lines are well fitted with single Gaussian profiles only. Electron temperatures and densities as well as the abundances of helium, oxygen, nitrogen and sulphur were computed from spectra integrated over the whole galaxies and for each area of recent star formation. Maps of the O/H ratio are presented: these galaxies show oxygen abundances that are ~20 per cent solar. No evidence of substantial abundance variations across the galaxies that would point to significant nitrogen or oxygen self-enrichment is found (<~0.2 dex limit). Contrary to previous observations, this analysis does not support the classification of these blue compact dwarf galaxies as Wolf-Rayet galaxies as the characteristic broad-emission-line features have not been detected in our spectra. Baldwin-Phillips-Terlevich emission-line-ratio diagrams which were constructed on a pixel-by-pixel basis indicate that the optical spectra of these systems are predominantly excited by stellar photoionization. Based on observations collected at the European Southern Observatory (ESO), Chile, under programmes 078.B-0353(B, E). E-mail: bj@star.ucl.ac.uk

  2. Multisite spectroscopic seismic study of the β Cep star V2052 Ophiuchi: inhibition of mixing by its magnetic field

    NASA Astrophysics Data System (ADS)

    Briquet, M.; Neiner, C.; Aerts, C.; Morel, T.; Mathis, S.; Reese, D. R.; Lehmann, H.; Costero, R.; Echevarria, J.; Handler, G.; Kambe, E.; Hirata, R.; Masuda, S.; Wright, D.; Yang, S.; Pintado, O.; Mkrtichian, D.; Lee, B. C.; Han, I.; Bruch, A.; De Cat, P.; Uytterhoeven, K.; Lefever, K.; Vanautgaerden, J.; de Batz, B.; Frémat, Y.; Henrichs, H.; Geers, V. C.; Martayan, C.; Hubert, A. M.; Thizy, O.; Tijani, A.

    2012-11-01

    We used extensive ground-based multisite and archival spectroscopy to derive observational constraints for a seismic modelling of the magnetic β Cep star V2052 Ophiuchi. The line-profile variability is dominated by a radial mode (f1 = 7.148 46 d-1) and by rotational modulation (Prot = 3.638 833 d). Two non-radial low-amplitude modes (f2 = 7.756 03 d-1 and f3 = 6.823 08 d-1) are also detected. The four periodicities that we found are the same as the ones discovered from a companion multisite photometric campaign and known in the literature. Using the photometric constraints on the degrees ℓ of the pulsation modes, we show that both f2 and f3 are prograde modes with (ℓ, m) = (4, 2) or (4, 3). These results allowed us to deduce ranges for the mass (M ∈ [8.2, 9.6] M⊙) and central hydrogen abundance (Xc ∈ [0.25, 0.32]) of V2052 Oph, to identify the radial orders n1 = 1, n2 = -3 and n3 = -2, and to derive an equatorial rotation velocity veq ∈ [71, 75] km s-1. The model parameters are in full agreement with the effective temperature and surface gravity deduced from spectroscopy. Only models with no or mild core overshooting (αov ∈ [0, 0.15] local pressure scale heights) can account for the observed properties. Such a low overshooting is opposite to our previous modelling results for the non-magnetic β Cep star θ Oph having very similar parameters, except for a slower surface rotation rate. We discuss whether this result can be explained by the presence of a magnetic field in V2052 Oph that inhibits mixing in its interior.

  3. Micro-Spectroscopic Imaging and Characterization of Individually Identified Ice Nucleating Particles from a Case Field Study

    SciTech Connect

    Knopf, Daniel A.; Alpert, Peter A.; Wang, Bingbing; O'Brien, Rachel E.; Kelly, Stephen T.; Laskin, Alexander; Gilles, Mary K.; Moffet, Ryan C.

    2014-09-03

    The effect of anthropogenic and biogenic organic particles on atmospheric glaciation processes is poorly understood. We use an optical microscopy (OM) setup to identify the location of ice nuclei (IN) active in immersion freezing and deposition ice nucleation for temperatures of 200-273 K within a large population of particles sampled from an ambient environment. Applying multi-modal micro-spectroscopy methods we characterize the physicochemical properties of individual IN in particle populations collected in central California. Chemical composition and mixing state analysis of particle populations are performed to identify characteristic particle-type classes. All particle-types contained organic material. Particles in these samples take up water at subsaturated conditions, induce immersion freezing at subsaturated and saturated conditions above 226 K, and act as deposition IN below 226 K. The identified IN belong to the most common particle-type classes observed in the field samples: organic coated sea salt, Na-rich, and secondary and refractory carbonaceous particles. Based on these observations, we suggest that the IN are not always particles with unique chemical composition and exceptional ice nucleation propensity; rather, they are common particles in the ambient particle population. Thus, particle composition and morphology alone are insufficient to assess their potential to act as IN. The results suggest that particle-type abundance is also a crucial factor in determining the ice nucleation efficiency of specific IN types. These findings emphasize that ubiquitous organic particles can induce ice nucleation under atmospherically relevant conditions and that they may play an important role in atmospheric glaciation processes.

  4. The MASSIVE survey. I. A volume-limited integral-field spectroscopic study of the most massive early-type galaxies within 108 Mpc

    SciTech Connect

    Ma, Chung-Pei; Greene, Jenny E.; Murphy, Jeremy D.; McConnell, Nicholas; Janish, Ryan; Blakeslee, John P.; Thomas, Jens

    2014-11-10

    Massive early-type galaxies represent the modern day remnants of the earliest major star formation episodes in the history of the universe. These galaxies are central to our understanding of the evolution of cosmic structure, stellar populations, and supermassive black holes, but the details of their complex formation histories remain uncertain. To address this situation, we have initiated the MASSIVE Survey, a volume-limited, multi-wavelength, integral-field spectroscopic (IFS) and photometric survey of the structure and dynamics of the ∼100 most massive early-type galaxies within a distance of 108 Mpc. This survey probes a stellar mass range M* ≳ 10{sup 11.5} M {sub ☉} and diverse galaxy environments that have not been systematically studied to date. Our wide-field IFS data cover about two effective radii of individual galaxies, and for a subset of them, we are acquiring additional IFS observations on sub-arcsecond scales with adaptive optics. We are also acquiring deep K-band imaging to trace the extended halos of the galaxies and measure accurate total magnitudes. Dynamical orbit modeling of the combined data will allow us to simultaneously determine the stellar, black hole, and dark matter halo masses. The primary goals of the project are to constrain the black hole scaling relations at high masses, investigate systematically the stellar initial mass function and dark matter distribution in massive galaxies, and probe the late-time assembly of ellipticals through stellar population and kinematical gradients. In this paper, we describe the MASSIVE sample selection, discuss the distinct demographics and structural and environmental properties of the selected galaxies, and provide an overview of our basic observational program, science goals and early survey results.

  5. Spectroscopic Studies of Abell Clusters

    NASA Astrophysics Data System (ADS)

    Way, Michael Joseph

    The objectives of this work are to use spectroscopic techniques to accurately categorize galaxies as either HII region star forming galaxies or as Active Galactic Nuclei powered via a black hole, and to use radial velocities and projected positions of galaxies in clusters to obtain the total cluster mass and its distribution. The masses and distributions compare well to X-ray mass measurements. The commonly used Dressler, A., Thompson, I. & Shectman, S. 1985, ApJ, 288, 481 technique for discriminating between Active Galactic Nuclei and HII region galaxies uses the measurement of the equivalent width of the emission lines (OII) 3727 A, H/beta, and (OIII) 5007 A. High quality spectra from 42 galaxies were taken and it is shown that their method is not capable of distinguishing between Active Galactic Nuclei and HII region galaxies. The emission line flux from H/beta, (OIII) 5007 A, (OI) 6300 A, Hα, (NII) 6583 A, and (SII) 6716+6731 A in combination with the method of Veilleux, S. & Osterbrock, D. E. 1987, ApJS, 63, 295 must be used to accurately distinguish between Active Galactic Nuclei and HII region galaxies. Galaxy radial velocities from spectroscopic data and their projected 2-D positions in clusters are used to obtain robust estimates of the total mass and mass distribution in two clusters. The total mass is calculated using the Virial theorem after removing substructure. The mass distribution is estimated via several robust statistical tests for 1-D, 2-D and 3-D structure. It is shown that the derived mass estimates agree well with those found independently from hot X-ray gas emission in clusters.

  6. Spectroscopic studies of copper enzymes

    SciTech Connect

    Dooley, D.M.; Moog, R.; Zumft, W.; Koenig, S.H.; Scott, R.A.; Cote, C.E.; McGuirl, M.

    1986-05-01

    Several spectroscopic methods, including absorption, circular dichroism (CD), magnetic CD (MCD), X-ray absorption, resonance Raman, EPR, NMR, and quasi-elastic light-scattering spectroscopy, have been used to probe the structures of copper-containing amine oxidases, nitrite reductase, and nitrous oxide reductase. The basic goals are to determine the copper site structure, electronic properties, and to generate structure-reactivity correlations. Collectively, the results on the amine oxidases permit a detailed model for the Cu(II) sites in these enzymes to be constructed that, in turn, rationalizes the ligand-binding chemistry. Resonance Raman spectra of the phenylhydrazine and 2,4-dinitrophenyl-hydrazine derivatives of bovine plasma amine oxidase and models for its organic cofactor, e.g. pyridoxal, methoxatin, are most consistent with methoxatin being the intrinsic cofactor. The structure of the Cu(I) forms of the amine oxidases have been investigated by X-ray absorption spectroscopy (XAS); the copper coordination geometry is significantly different in the oxidized and reduced forms. Some anomalous properties of the amine oxidases in solution are explicable in terms of their reversible aggregation, which the authors have characterized via light scattering. Nitrite and nitrous oxide reductases display several novel spectral properties. The data suggest that new types of copper sites are present.

  7. Quadrupole resonance spectroscopic study of narcotic materials

    NASA Astrophysics Data System (ADS)

    Rayner, Timothy J.; West, Rebecca; Garroway, Allen N.; Lyndquist, R.; Yesinowski, James P.

    1997-02-01

    Bulk narcotic detection systems based upon Quadrupole Resonance Analysis (QRA) technology have a major advantage over imaging technologies, in that QRA is chemical-specific and consequently has a lower rate of false alarms. QRA is a magnetic resonance technology which occurs as a result of the inherent molecular properties of the atomic nuclei in crystalline and amorphous solids. The QRA response is characterized by 1) the precessional frequency of the nucleus, and 2) the nature of the electric field gradient experienced by the nucleus,due to its molecular environment. Another important detection parameter is linewidth, resonant quality. All of these parameters depend on sample purity and manufacturing process. Quantum Magnetics recently carried out a study on the QRA signatures of various narcotic materials with the support of the US Army, US Customs, and the Office of National Drug Control Policy. The aim of the study was to fully characterize the variation in QRA spectroscopic parameters of different samples of cocaine base and cocaine hydrochloride. The results from this study ar discussed here.

  8. Spectroscopic study in Z-pinch discharge

    SciTech Connect

    Garamoon, A.A.; Saudy, A.H.; Shark, W.

    1995-12-31

    The temporal variation of the emitted line intensity has been investigated, and thus an important information about the dynamic ionization stages in the Z-pinch discharge has been studied. Also the electron temperature Te, has been deduced by using a spectroscopic technique.

  9. Studying Young Stars with Large Spectroscopic Surveys

    NASA Astrophysics Data System (ADS)

    Martell, Sarah L.

    2016-01-01

    Galactic archaeology is the study of the history of star formation and chemical evolution in the Milky Way, based on present-day stellar populations. Studies of young stars are a key anchor point for Galactic archaeology, since quantities like the initial mass function and the star formation rate can be studied directly in young clusters and star forming regions. Conversely, massive spectroscopic Galactic archaeology surveys can be used as a data source for young star studies.

  10. Wide Integral Field Infrared Spectroscopic Survey of Nearby Galaxies

    NASA Astrophysics Data System (ADS)

    Sivanandam, Suresh; Moon, Dae-Sik; Zaritsky, Dennis F.; Chou, Richard; Meyer, Elliot; Ma, Ke; Jarvis, Miranda; Eisner, Joshua A.

    2015-01-01

    We are constructing a novel infrared integral field spectrograph with a large field of view (~50'x20') that will be available on the Kitt Peak 90' Bok telescope this spring. This wide integral field infrared spectrograph (WIFIS) operates over two wavelength ranges, zJ-band (0.9-1.35 microns) and H-band (1.5-1.8 microns), and has moderate spectral resolving power, 3,000 in zJ-band and 2,200 in H-band, respectively. WIFIS' field-of-view is comparable to current optical integral field spectrographs that are carrying out large galaxy surveys, e.g. SAMI, CALIFA, and MaNGA. We are designing a large nearby galaxy survey to complement the data already been taken by these optical integral field spectroscopic surveys. The near-infrared window provides a sensitive probe of the initial mass functions of stellar populations, the OB stellar fractions in massive star forming regions, and the kinematics of and obscured star formation within merging systems. This will be the first large scale infrared integral field spectroscopic survey of nearby galaxies.

  11. NGC 6067: A spectroscopic study

    NASA Astrophysics Data System (ADS)

    Alonso-Santiago, J.; Negueruela, I.; Marco, A.; Dorda, R.

    2015-05-01

    NGC 6067 is a young open cluster in the Norma Cloud. Its age is around 100 Ma. It hosts a large population of evolved stars: 14 luminous red stars (most of which K Ib supergiants and late-G/early-K giants), 6--8 B giants, two A/F supergiants and two Cepheids (F/G supergiants). All this would imply that NGC 6067 represent one of the best laboratories in the Galaxy to study the evolution of intermediate-mass stars. Thackeray et al. (1962, MNRAS 124, 445T) performed the first complete study of this cluster but it has been poorly studied since then. We obtained high resolution echelle spectra (R=48000) using FEROS (Fiber Extended Range Optical Spectrograph) mounted on the ESO 2.2 m telescope at La Silla Observatory (Chile) in May 2011. Here we present preliminary results based on this spectroscopy and the UBV photometry listed in Terndrup & Pinsonneault (2007, ApJ 671, 1640).

  12. Comprehensive Spectroscopic Determination of the Crystal Field Splitting in an Erbium Single-Ion Magnet.

    PubMed

    Rechkemmer, Yvonne; Fischer, Julia E; Marx, Raphael; Dörfel, María; Neugebauer, Petr; Horvath, Sebastian; Gysler, Maren; Brock-Nannestad, Theis; Frey, Wolfgang; Reid, Michael F; van Slageren, Joris

    2015-10-14

    The electronic structure of a novel lanthanide-based single-ion magnet, {C(NH2)3}5[Er(CO3)4]·11H2O, was comprehensively studied by means of a large number of different spectroscopic techniques, including far-infrared, optical, and magnetic resonance spectroscopies. A thorough analysis, based on crystal field theory, allowed an unambiguous determination of all relevant free ion and crystal field parameters. We show that inclusion of methods sensitive to the nature of the lowest-energy states is essential to arrive at a correct description of the states that are most relevant for the static and dynamic magnetic properties. The spectroscopic investigations also allowed for a full understanding of the magnetic relaxation processes occurring in this system. Thus, the importance of spectroscopic studies for the improvement of single-molecule magnets is underlined. PMID:26394012

  13. Spectroscopic study of Mentha oils

    NASA Astrophysics Data System (ADS)

    Rai, A. K.; Singh, A. K.

    The visible fluorescence and excitation spectra of Mentha oils (Japanese mint oil, peppermint oil and spearmint oil) have been recorded. Different physical constants which are characteristic of the fluorescent molecules have been calculated for all three oils. Results reveal that the same group of organic compounds dominate in the oils of peppermint and spearmint, whereas some different compound is present in Japanese mint oil. It is also found that the fluorescence intensity of these oils is comparable to that of Rhodamine 6G dye in methanol solution. Our studies suggest that Mentha oils may be a useful lasing material in the 450-600 nm wavelength range.

  14. Nuclear spectroscopic studies. Progress report

    SciTech Connect

    Bingham, C.R.; Guidry, M.W.; Riedinger, L.L.; Sorensen, S.P.

    1994-02-18

    The Nuclear Physics group at UTK is involved in heavy-ion physics including both nuclear structure and reaction mechanisms. During the last year experimental work has been in 3 broad areas: structure of nuclei at high angular momentum, structure of nuclei far from stability, and ultra-relativistic heavy-ion physics. Results in these areas are described in this document under: properties of high-spin states, study of low-energy levels of nuclei far from stability, and high-energy heavy-ion physics (PHENIX, etc.). Another important component of the work is theoretical interpretation of experimental results (Joint Institute for Heavy Ion Research).

  15. Nuclear spectroscopic studies. Progress report

    SciTech Connect

    Bingham, C.R.; Guidry, M.W.; Riedinger, L.L.; Sorensen, S.P.

    1993-02-08

    The Nuclear Physics group at the University of Tennessee, Knoxville is involved in several aspects of heavy-ion physics including both nuclear structure and reaction mechanisms. While our main emphasis is on experimental problems involving heavy-ion accelerators, we have maintained a strong collaboration with several theorists in order to best pursue the physics of our measurements. During the last year we have led several experiments at the Holifield Heavy Ion Research Facility and participated in others at Argonne National Laboratory. Also, we continue to be very active in the collaboration to study ultra-relativistic heavy ion physics utilizing the SPS accelerator at CERN in Geneva, Switzerland and in a RHIC detector R&D project. Our experimental work is in four broad areas: (1) the structure of nuclei at high angular momentum, (2) heavy-ion induced transfer reactions, (3) the structure of nuclei far from stability, and (4) ultra-relativistic heavy-ion physics. The results of studies in these particular areas will be described in this document in sections IIA, IIB, IIC, and IID, respectively. Areas (1), (3), and (4) concentrate on the structure of nuclear matter in extreme conditions of rotational motion, imbalance of neutrons and protons, or very high temperature and density. Area (2) pursues the transfer of nucleons to states with high angular momentum, both to learn about their structure and to understand the transfer of particles, energy, and angular momentum in collisions between heavy ions. An important component of our program is the strong emphasis on the theoretical aspects of nuclear structure and reactions.

  16. Infrared spectroscopic near-field mapping of single nanotransistors.

    PubMed

    Huber, A J; Wittborn, J; Hillenbrand, R

    2010-06-11

    We demonstrate the application of scattering-type scanning near-field optical microscopy (s-SNOM) for infrared (IR) spectroscopic material recognition in state-of-the-art semiconductor devices. In particular, we employ s-SNOM for imaging of industrial CMOS transistors with a resolution better than 20 nm, which allows for the first time IR spectroscopic recognition of amorphous SiO(2) and Si(3)N(4) components in a single transistor device. The experimentally recorded near-field spectral signature of amorphous SiO(2) shows excellent agreement with model calculations based on literature dielectric values, verifying that the characteristic near-field contrasts of SiO(2) stem from a phonon-polariton resonant near-field interaction between the probing tip and the SiO(2) nanostructures. Local material recognition by s-SNOM in combination with its capabilities of contact-free and non-invasive conductivity- and strain-mapping makes IR near-field microscopy a versatile metrology technique for nanoscale material characterization and semiconductor device analysis with application potential in research and development, failure analysis and reverse engineering. PMID:20463381

  17. Spectroscopic studies of the transplutonium elements

    SciTech Connect

    Carnall, W.T.; Conway, J.G.

    1983-01-01

    The challenging opportunity to develop insights into both atomic structure and the effects of bonding in compounds makes the study of actinide spectroscopy a particularly fruitful and exciting area of scientific endeavor. It is also the interpretation of f-element spectra that has stimulated the development of the most sophisticated theoretical modeling attempted for any elements in the periodic table. The unique nature of the spectra and the wealth of fine detail revealed make possible sensitive tests of both physical models and the results of Hartree-Fock type ab initio calculations. This paper focuses on the unique character of heavy actinide spectroscopy. It discusses how it differs from that of the lighter member of the series and what are the special properties that are manifested. Following the introduction, the paper covers the following: (1) the role of systematic studies and the relationships of heavy-actinide spectroscopy to ongoing spectroscopic investigations of the lighter members of the series; (2) atomic (free-ion) spectra which covers the present status of spectroscopic studies with transplutonium elements, and future needs and directions in atomic spectroscopy; (3) the spectra of actinide compounds which covers the present status and future directions of spectroscopic studies with compounds of the transplutonium elements; and other spectroscopies. 1 figure, 2 tables.

  18. Spectroscopic Studies of Classical Cepheids.

    NASA Astrophysics Data System (ADS)

    Gauthier, Robert Paul

    The extent and nature of the distortions of the emergent flux spectrum of cepheids due to the effects of the pulsation as a function of period and amplitude are not clearly understood. A multiphase classification study of a sample of 26 cepheids from the southern hemisphere at the relatively high dispersion of 67(ANGSTROM)/mm has been undertaken and complemented with the recent high quality photometric data for Pel (1976) in order to observe the results of increasing period and amplitude of pulsation on the line spectrum. The original framework of such investigations set up by Struve (1944) and Code (1947) has been enlarged upon principally through the use of modern MK standard supergiant sequences. It has been found that, while the spectrum of weak metal lines (in cepheids with periods less than forty days) can always be found to match that of a non-variable supergiant, anomalies in the strengths of the strong metal lines and Balmer H(delta) and H(gamma) lines increase both in number and intensity with increasing period and amplitude. The consequences of this on the line blanketing of the atmosphere are seen to be significant when comparing the color-spectrum relations of different period bins, indicating the inappropriateness of extending intrinsic color relations established with short period variables to the longer period ones. It has also been found that the effects of the amplitude of the pulsation are more directly felt by the atmosphere near the extrema of the physical displacement as evidenced by the sudden widening of the period-spectrum relation at the mid-descending and mid-rising branch phases. Following the suggestions by Sorvari (1974) that the luminosity sensitive OI 7773(ANGSTROM) triplet is responding to the dynamical effects of the pulsation on the atmosphere, a moderate dispersion (27(ANGSTROM)/mm) study of a small sample of cepheids (4) and supergiant standards has been undertaken. It has been found that the strength of this feature throughout

  19. Spectroscopic study of carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Curran, Seamus; Weldon, Declan N.; Blau, Werner J.; Zandbergen, Henny W.; Kastner, J.; Kuzmany, Hans

    1994-11-01

    We present a comprehensive experimental study of the vibrational spectra of nanotubes. There are two main lines observed in the Raman spectrum, one positioned at 1350 cm-1, the D line, and the other at 1580 cm-1, the G line. Both these lines are very similar to those seen with disordered graphite. The disorder induced D line is very weak compared to the G line which is indicative of high crystalline materials. The position and intensity of the D line strongly depends on the energy of the exciting laser. This dispersion effect was also observed for graphitic particles and may be explained by a photoselective resonance process of nanotubes with different sizes. There are two optically active modes in the Infrared spectrum for highly orientated polycrystalline graphite which are the E1u and A2u modes. The E1u mode is positioned at 1587 cm-1 while the A2u mode is positioned at 868 cm-1. The Infrared spectrum of the nanotubes shows both modes although the E1u mode is downshifted to 1575 cm-1.

  20. Spectroscopic studies of the classical Cepheid ζ Gem: Analysis of the velocity field in the atmosphere and manifestation of the presence of a circumstellar envelope

    NASA Astrophysics Data System (ADS)

    Usenko, I. A.

    2016-06-01

    Based on five high-resolution spectra in the range 5625-7525 ˚A taken in 1995 and covering the ascending branch of the light curve from minimum to maximum, we have performed spectroscopic studies of the classical Cepheid ζ Gem. The atmospheric parameters and chemical composition of the Cepheid have been refined. The abundances of the key elements of the evolution of yellow supergiants are typical for an object that has passed the first dredge-up: a C underabundance, N, Na, and Al overabundances, and nearly solar O and Mg abundances. We have estimated [Fe/H] = +0.01 dex; the abundances of the remaining elements are also nearly solar. The metal absorption lines in all spectra show a clear asymmetry and the formation of secondary blue (B1 and B2) and red (R1 and R2) components, just as for the Cepheid X Sgr. The Hα absorption line is also split into blue (B) and red (R) components with different depths changing with pulsation phase. To analyze the velocity field in the atmosphere of ζ Gem, we have estimated the radial velocities from specially selected (with clear signatures of the B1, B2, R1, and R2 components) absorption lines (neutral atoms and ions) of metals (38 lines) and the B and R components of the Hα line. Analysis of these estimates has shown that their scatter is from -22 to 36 km s-1 for all pulsation phases but does not exceed 35-40 km s-1 for each individual phase, while it does not exceed 22 km s-1 for the Hα line components. The radial velocity estimates for the metal lines and their B1 and B2 components have been found to depend on the depths, suggesting the presence of a velocity gradient in the atmosphere. No significant difference in velocities between the atoms and ions of the metal lines is observed, i.e., there is no significant inhomogeneity in the upper atmospheric layers of the Cepheid. Since the averaged radial velocity estimates for the cores of the metal lines and their B1 and B2 components change with pulsation phase and coincide

  1. Vibrational spectroscopic study of fluticasone propionate

    NASA Astrophysics Data System (ADS)

    Ali, H. R. H.; Edwards, H. G. M.; Kendrick, J.; Scowen, I. J.

    2009-03-01

    Fluticasone propionate is a synthetic glucocorticoid with potent anti-inflammatory activity that has been used effectively in the treatment of chronic asthma. The present work reports a vibrational spectroscopic study of fluticasone propionate and gives proposed molecular assignments on the basis of ab initio calculations using BLYP density functional theory with a 6-31G* basis set and vibrational frequencies predicted within the quasi-harmonic approximation. Several spectral features and band intensities are explained. This study generated a library of information that can be employed to aid the process monitoring of fluticasone propionate.

  2. A Spectroscopic-Based Laboratory Experiment for Protein Conformational Studies

    ERIC Educational Resources Information Center

    Ramos, Carlos Henrique I.

    2004-01-01

    This article describes a practical experiment for teaching basic spectroscopic techniques to introduce the topic of protein conformational change to students in the field of molecular biology, biochemistry, or structural biology. The spectroscopic methods employed in the experiment are absorbance, for protein concentration measurements, and…

  3. Spectroscopic orbits for 16 more binaries in the Hyades field

    NASA Technical Reports Server (NTRS)

    Griffin, R. F.; Griffin, R. E. M.; Gunn, J. E.; Zimmerman, B. A.

    1985-01-01

    A photoelectric survey of the radial velocities of Hyades candidates has provided data for 16 spectroscopic binary orbits, in addition to the 11 known binaries in the Hyades field. The majority of photoelectric observations in the survey were carried out at the Cambridge and Palomar Observatories using different data reduction techniques for determining radial velocities. It is found that two of the objects, vB 164 and J336, are definitely not members of the Hyades cluster; two other objects, HD 16909 and J301, appear to be located far from the center of the cluster, but still deserve classification as Hyades members. The gamma-velocity of HD 16909 differed slightly from the value expected for a member of the Hyades cluster. An additional twelve systems were definitely identified as members of the Hyades. The radial velocity values for all the candidate stars are given in a series of tables.

  4. Spectroscopic study of solar twins and analogues

    NASA Astrophysics Data System (ADS)

    Datson, Juliet; Flynn, Chris; Portinari, Laura

    2015-02-01

    Context. Many large stellar surveys have been and are still being carried out, providing huge amounts of data, for which stellar physical parameters will be derived. Solar twins and analogues provide a means to test the calibration of these stellar catalogues because the Sun is the best-studied star and provides precise fundamental parameters. Solar twins should be centred on the solar values. Aims: This spectroscopic study of solar analogues selected from the Geneva-Copenhagen Survey (GCS) at a resolution of 48 000 provides effective temperatures and metallicities for these stars. We test whether our spectroscopic parameters, as well as the previous photometric calibrations, are properly centred on the Sun. In addition, we search for more solar twins in our sample. Methods: The methods used in this work are based on literature methods for solar twin searches and on methods we developed in previous work to distinguish the metallicity-temperature degeneracies in the differential comparison of spectra of solar analogues versus a reference solar reflection spectrum. Results: We derive spectroscopic parameters for 148 solar analogues (about 70 are new entries to the literature) and verify with a-posteriori differential tests that our values are well-centred on the solar values. We use our dataset to assess the two alternative calibrations of the GCS parameters; our methods favour the latest revision. We show that the choice of spectral line list or the choice of asteroid or time of observation does not affect the results. We also identify seven solar twins in our sample, three of which are published here for the first time. Conclusions: Our methods provide an independent means to differentially test the calibration of stellar catalogues around the values of a well-known benchmark star, which makes our work interesting for calibration tests of upcoming Galactic surveys. Based on observations made with ESO Telescopes at the La Silla Observatory under programme ID 077.D

  5. NMR, MRI, and spectroscopic MRI in inhomogeneous fields

    DOEpatents

    Demas, Vasiliki; Pines, Alexander; Martin, Rachel W; Franck, John; Reimer, Jeffrey A

    2013-12-24

    A method for locally creating effectively homogeneous or "clean" magnetic field gradients (of high uniformity) for imaging (with NMR, MRI, or spectroscopic MRI) both in in-situ and ex-situ systems with high degrees of inhomogeneous field strength. THe method of imaging comprises: a) providing a functional approximation of an inhomogeneous static magnetic field strength B.sub.0({right arrow over (r)}) at a spatial position {right arrow over (r)}; b) providing a temporal functional approximation of {right arrow over (G)}.sub.shim(t) with i basis functions and j variables for each basis function, resulting in v.sub.ij variables; c) providing a measured value .OMEGA., which is an temporally accumulated dephasing due to the inhomogeneities of B.sub.0({right arrow over(r)}); and d) minimizing a difference in the local dephasing angle .phi.({right arrow over (r)},t)=.gamma..intg..sub.0.sup.t{square root over (|{right arrow over (B)}.sub.1({right arrow over (r)},t')|.sup.2+({right arrow over (r)}{right arrow over (G)}.sub.shimG.sub.shim(t')+.parallel.{right arrow over (B)}.sub.0({right arrow over (r)}).parallel..DELTA..omega.({right arrow over (r)},t'/.gamma/).sup.2)}dt'-.OMEGA. by varying the v.sub.ij variables to form a set of minimized v.sub.ij variables. The method requires calibration of the static fields prior to minimization, but may thereafter be implemented without such calibration, may be used in open or closed systems, and potentially portable systems.

  6. Fundamental spectroscopic studies of carbenes and hydrocarbon radicals

    SciTech Connect

    Gottlieb, C.A.; Thaddeus, P.

    1993-12-01

    Highly reactive carbenes and carbon-chain radicals are studied at millimeter wavelengths by observing their rotational spectra. The purpose is to provide definitive spectroscopic identification, accurate spectroscopic constants in the lowest vibrational states, and reliable structures of the key intermediates in reactions leading to aromatic hydrocarbons and soot particles in combustion.

  7. Neutron spectroscopic study of crystal field excitations in Tb2Ti2O7 and Tb2Sn2O7

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Fritsch, K.; Hao, Z.; Bagheri, B. V.; Gingras, M. J. P.; Granroth, G. E.; Jiramongkolchai, P.; Cava, R. J.; Gaulin, B. D.

    2014-04-01

    We present time-of-flight inelastic neutron scattering measurements at low temperature on powder samples of the magnetic pyrochlore oxides Tb2Ti2O7 and Tb2Sn2O7. These two materials possess related, but different ground states, with Tb2Sn2O7 displaying "soft" spin ice order below TN˜0.87 K, while Tb2Ti2O7 enters a hybrid, glassy spin ice state below Tg˜0.2 K. Our neutron measurements, performed at T =1.5 and 30 K, probe the crystal field states associated with the J = 6 states of Tb3+ within the appropriate Fd3¯m pyrochlore environment. These crystal field states determine the size and anisotropy of the Tb3+ magnetic moment in each material's ground state, information that is an essential starting point for any description of the low-temperature phase behavior and spin dynamics in Tb2Ti2O7 and Tb2Sn2O7. While these two materials have much in common, the cubic stanate lattice is expanded compared to the cubic titanate lattice. As our measurements show, this translates into a factor of ˜2 increase in the crystal field bandwidth of the 2J+1=13 states in Tb2Ti2O7 compared with Tb2Sn2O7. Our results are consistent with previous measurements on crystal field states in Tb2Sn2O7, wherein the ground-state doublet corresponds primarily to mJ=|±5> and the first excited state doublet to mJ=|±4>. In contrast, our results on Tb2Ti2O7 differ markedly from earlier studies, showing that the ground-state doublet corresponds to a significant mixture of mJ=|±5>, |∓4>, and |±2>, while the first excited state doublet corresponds to a mixture of mJ=|±4>, |∓5>, and |±1>. We discuss these results in the context of proposed mechanisms for the failure of Tb2Ti2O7 to develop conventional long-range order down to 50 mK.

  8. Subtask 1.11 -- Spectroscopic field screening of hazardous waste and toxic spills. Final report

    SciTech Connect

    Grisanti, A.A.

    1997-10-01

    Techniques for the field characterization of soil contamination due to spillage of hazardous waste or toxic chemicals are time-consuming and expensive. Thus more economical, less time-intensive methods are needed to facilitate rapid field screening of contaminated sites. The overall objective of this project is to study the feasibility of using an evanescent field absorbance sensor Fourier transform infrared spectroscopic sensor coupled with cone penetrometry as a field screening method. The specific objectives of this project are as follows: design an accessory for use with FT-IR that interfaces the spectrometer to a cone penetrometer; characterize the response of the FT-IR accessory to selected hydrocarbons in a laboratory-simulated field environment; and determine the ability of the FT-IR-CPT instrument to measure hydrocarbon contamination in soil by direct comparison with a reference method (e.g., Soxhlet extraction followed by gas chromatography) to quantify hydrocarbons from the same soil.

  9. In operando study of the high voltage spinel cathode material LiNi(0.5)Mn(1.5)O4 using two dimensional full-field spectroscopic imaging of Ni and Mn.

    PubMed

    Bauer, Sondes; de Biasi, Lea; Glatthaar, Sven; Toukam, Leonel; Gesswein, Holger; Baumbach, Tilo

    2015-07-01

    LiNi0.5Mn1.5O4 spinel cathode was studied during the first discharge cycle using combined full field Transmission X-ray Microscopy (TXM) and X-ray Absorption Near Edge Structure Spectroscopy (XANES) techniques to follow the chemical phase transformation as well as the microstructural evolution of cathode materials upon operation within an electrochemical cell. The spatial distribution and electrochemical process of the spinel material with spherical granules of 30 μm and 3 μm crystallite size was investigated. The spectroscopic imaging of the cathode within field of view of 40 × 32 μm(2) and spatial resolution of 40 nm has revealed an increase of the LiNi0.5Mn1.5O4 granule size during lithiation providing an insight into the effect of the particle size and morphology on the electrochemical process. The chemical elemental distribution and the content of the different oxidation states of the two absorbing elements (Ni and Mn) have been determined in operando from the XANES imaging. A gradual increase in the content of the oxidation state Mn(3+) from 8% up to 64% has been recorded during the discharge from 5 V to 2.7 V. The study of the local oxidation reduction behavior of Mn(3+) reveals a reversibility aspect in the local electrochemical reaction of Mn(4+) toward Mn(3+) in areas located in the center of the aggregate as well as in areas closed to the electrolyte. During the discharge process, a mixture of Mn(3+) and Mn(4+) has been detected while only single electron valence states have been found in the case of Ni. Probing the chemical changes during the discharge using two-dimensional XANES reveals spatial differences in the electrochemical activities of the two absorbing elements Ni and Mn. PMID:26051380

  10. Fourier transform infrared spectroscopic study of truffles

    NASA Astrophysics Data System (ADS)

    Zhao, Dezhang; Liu, Gang; Song, Dingshan; Liu, Jian-hong; Zhou, Yilan; Ou, Jiaming; Sun, Shizhong

    2006-01-01

    Truffles are rare wild growing edible mushrooms belonging to Ascomycetes. In this paper, Fourier transform infrared (FTIR) spectroscopy was used to obtain vibrational spectra of truffles. The results show that the mushrooms exhibit characteristic spectra. The two strongest absorption bands appear at about 1077cm -1 and 1040 cm -1, which were described as C-O stretching in carbohydrate. The vibrational spectra indicate that the main compositions of the truffles are polysaccharide and protein. According to the characteristics bands and absorption ratios of spectra, different species of truffles can be discriminated. It is also found the great changes between moldy and healthy truffles, which the major differences are observed in the bands of protein. In addition, FTIR spectral differences are observed between the same species of truffles from different producing areas. It is showed that the FTIR spectroscopic method is valuable tool for rapid and nondestructive analysis of truffles prior to any extraction method used.

  11. Spectroscopic study of the peculiar galaxy IC 883

    NASA Astrophysics Data System (ADS)

    Yakovleva, V. A.; Merkulova, O. A.; Karataeva, G. M.; Shalyapina, L. V.; Yablokova, N. V.; Burenkov, A. N.

    2016-04-01

    We analyze new optical spectroscopic observations obtained at the 6-m telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences with the SCORPIO focal reducer (in the modes of a Fabry-Perot interferometer (FPI) and long-slit spectroscopy) and the Multi-Pupil Fiber Spectrograph for the galaxy IC 883. We have confirmed that the main body of the galaxy rotates around its minor axis. The positions of the dynamical axes of the stellar and gaseous components have been found to differ by ~10°. The velocities in the SE tail do not correspond to the circular rotation around the galaxy's minor axis. This structure is probably a fragment of an unwound curved spiral arm. Regions with high velocity dispersions and peculiarities in the velocity fields have been found along the minor axis. Our study of the age and metallicity of the galaxy's stellar population has shown that the mean values of these parameters in the stellar disk, except for the central region ( r ≤ 5"), are ≈1 Gyr and ≈-0.4 dex, respectively. Both young (2-5 × 108 yr) and old (5-10 × 109 yr) stellar populations are present in the circumnuclear region. Our analysis of the spectroscopic data for the bright feature 8" south of the nucleus coincident in position with a compact X-ray source has shown that this is apparently a dwarf galaxy or a remnant of a companion galaxy. Our FPI observations in the Hα emission line and direct images have revealed a region of ionized gas that together with the already known structures along the minor axis forms a clumpy tidal structure of ionized gas pulled from the companion galaxy. The results of our study confirm the previously proposed hypothesis that the observed peculiar structures were formed by the merger of two galaxies. However, it can be said that IC 883 does not belong to the class of polar-ring galaxies.

  12. Spectroscopic studies of lead halo borate glasses

    NASA Astrophysics Data System (ADS)

    Sekhar, K. Chandra; Hameed, Abdul; Chary, M. Narasimha; Shareefuddin, Md.

    2015-06-01

    Glasses in the system xPbF2-(30-x) PbO-69B2O3-1CuO (x=5, 10, 15, 20, & 25 mole %) were prepared by melt quenching method and they are characterized by XRD to confirm the glassy nature. Electron Paramagnetic Resonance (EPR) studies at room temperature in the X-band frequencies and FTIR studies on prepared glass systems were reported. The non-linear variation of spin-Hamiltonian parameters with PbF2 content indicated the change in the ligand field strength around Cu2+ ions in the host glass. The ground state of Cu2+ ions in the glass is designated as dx2-y2 orbital (2B1g) while the observed symmetry around it is tetragonally distorted octahedral. The molecular orbital coefficients α2, β2 and β12 are evaluated for Cu2+ doped samples. From the FTIR studies it was observed that the glass made up of BO3 and BO4 units.

  13. Integrated Spectroscopic Studies of Anhydrous Sulfate Minerals

    NASA Technical Reports Server (NTRS)

    Lane, M. D.; Bishop, J. L.; Dyar, M. D.; Cloutis, E.; Forray, F. L.; Hiroi, T.

    2005-01-01

    Sulfates have been identified in Martian soils and bedrock and are emerging as an important indicator for aqueous activity on Mars. Sulfate minerals can form in a variety of low-temperature (evaporitic; chemical-weathering) and high-temperature (volcanic/fumarolic; hydrothermal) environments and their formational environments can range from alkaline to acidic. Although sulfates generally form in the presence of water, not all sulfates are hydrous or contain water in their structures. Many of these anhydrous sulfates (Dana group 28; Strunz class 67A) are minerals that form as accompanying phases to the main minerals in ore deposits or as replacement deposits in sedimentary rocks. However, some form from thermal decomposition of OH or H2O-bearing sulfates, such as from the reaction [1]: jarosite = yavapaiite + Fe2O3 + H2O. Where known, the stability fields of these minerals all suggest that they would be stable under martian surface conditions [2]. Thus, anhydrous sulfate minerals may contribute to martian surface mineralogy, so they must be well-represented in spectral libraries used for interpretation of the Martian surface. We present here the preliminary results of an integrated study of emittance, reflectance, and Mossbauer spectroscopy of a suite of wel-lcharacterized anhydrous sulfates.

  14. Spectroscopic study of low-lying {sup 16}N levels

    SciTech Connect

    Bardayan, D. W.; Nesaraja, C. D.; Pain, S. D.; Smith, M. S.; O'Malley, P. D.; Cizewski, J. A.; Hatarik, R.; Peters, W. A.; Blackmon, J. C.; Chae, K. Y.; Jones, K. L.; Moazen, B. H.; Paulauskas, S.; Pittman, S. T.; Schmitt, K. T.; Chipps, K. A.; Kozub, R. L.; Shriner, J. F. Jr.; Matei, C.

    2008-11-15

    The magnitude of the {sup 15}N(n,{gamma}){sup 16}N reaction rate in asymptotic giant branch stars depends directly on the neutron spectroscopic factors of low-lying {sup 16}N levels. A new study of the {sup 15}N(d,p){sup 16}N reaction is reported populating the ground and first three excited states in {sup 16}N. The measured spectroscopic factors are near unity as expected from shell model calculations, resolving a long-standing discrepancy with earlier measurements that had never been confirmed or understood. Updated {sup 15}N(n,{gamma}){sup 16}N reaction rates are presented.

  15. SPECTROSCOPIC CONFIRMATION OF FAINT LYMAN BREAK GALAXIES NEAR REDSHIFT FIVE IN THE HUBBLE ULTRA DEEP FIELD

    SciTech Connect

    Rhoads, James E.; Malhotra, Sangeeta; Cohen, Seth; Grogin, Norman; Hathi, Nimish; Ryan, Russell; Straughn, Amber; Windhorst, Rogier A. Pirzkal, Norbert; Xu Chun; Koekemoer, Anton; Panagia, Nino; Dickinson, Mark; Ferreras, Ignacio; Gronwall, Caryl; Kuemmel, Martin; Walsh, Jeremy; Meurer, Gerhardt; Pasquali, Anna; Yan, H.-J.

    2009-05-20

    We present the faintest spectroscopically confirmed sample of z {approx} 5 Lyman break galaxies (LBGs) to date. The sample is based on slitless grism spectra of the Hubble Ultra Deep Field region from the Grism ACS Program for Extragalactic Science (GRAPES) and Probing Evolution and Reionization Spectroscopically (PEARS) projects, using the G800L grism on the Hubble Space Telescope Advanced Camera for Surveys. We report here confirmations of 39 galaxies, preselected as candidate LBGs using photometric selection criteria. We compare a 'traditional' V-dropout selection, based on the work of Giavalisco et al., to a more liberal one (with V - i > 0.9), and find that the traditional criteria are about 64% complete and 81% reliable. We also study the Ly{alpha} emission properties of our sample. We find that Ly{alpha} emission is detected in {approx}1/4 of the sample, and that the liberal V-dropout color selection includes {approx}55% of previously published line-selected Ly{alpha} sources. Finally, we examine our stacked two-dimensional spectra. We demonstrate that strong, spatially extended ({approx}1'') Ly{alpha} emission is not a generic property of these LBGs, but that a modest extension of the Ly{alpha} photosphere (compared to the starlight) may be present in those galaxies with prominent Ly{alpha} emission.

  16. Radiofrequency field inhomogeneity compensation in high spatial resolution magnetic resonance spectroscopic imaging

    NASA Astrophysics Data System (ADS)

    Passeri, Alessandro; Mazzuca, Stefano; Del Bene, Veronica

    2014-06-01

    Clinical magnetic resonance spectroscopy imaging (MRSI) is a non-invasive functional technique, whose mathematical framework falls into the category of linear inverse problems. However, its use in medical diagnostics is hampered by two main problems, both linked to the Fourier-based technique usually implemented for spectra reconstruction: poor spatial resolution and severe blurring in the spatial localization of the reconstructed spectra. Moreover, the intrinsic ill-posedness of the MRSI problem might be worsened by (i) spatially dependent distortions of the static magnetic field (B0) distribution, as well as by (ii) inhomogeneity in the power deposition distribution of the radiofrequency magnetic field (B1). Among several alternative methods, slim (Spectral Localization by IMaging) and bslim (B0 compensated slim) are reconstruction algorithms in which a priori information concerning the spectroscopic target is introduced into the reconstruction kernel. Nonetheless, the influence of the B1 field, particularly when its operating wavelength is close to the size of the human organs being studied, continues to be disregarded. starslim (STAtic and Radiofrequency-compensated slim), an evolution of the slim and bslim methods, is therefore proposed, in which the transformation kernel also includes the B1 field inhomogeneity map, thus allowing almost complete 3D modelling of the MRSI problem. Moreover, an original method for the experimental determination of the B1 field inhomogeneity map specific to the target under evaluation is also included. The compensation capabilities of the proposed method have been tested and illustrated using synthetic raw data reproducing the human brain.

  17. Design and realization of the IP control core in field controllers for LAMOST spectroscopes

    NASA Astrophysics Data System (ADS)

    Wang, Jianing; Han, Zhongyi; Zeng, Yizhong; Dai, Songxin; Hu, Zhongwen; Zhu, Yongtian; Wang, Lei; Hou, Yonghui

    2010-07-01

    The China-made telescope, LAMOST, consists of 16 spectroscopes to detect stellar spectra via 4000 optical fibers. In each spectroscope, many movable parts work in phase. Those parts are real-time controlled and managed by field controllers based on FPGA. This paper mainly introduces how to use DSP Builder module library in MATLAB / Simulink to construct the IP control core on FPGA chip. This method can also be used to design the control core of PID arithmetic, to carry out arithmetic simulation and generate VHDL language file, as well as to integrate it into SOPC developing environment so as to repeatedly use. In this way, the design period of the control system may be shortened and design process simplified. Finally due to the reversibility and programmability of the IP control core ,a system on a chip for field controllers of spectroscope is realized, which meets astronomical control requirements, providing an effective scheme for embedded system in astronomical instrument applications.

  18. Halo Nucleus Be11: A Spectroscopic Study via Neutron Transfer

    NASA Astrophysics Data System (ADS)

    Schmitt, K. T.; Jones, K. L.; Bey, A.; Ahn, S. H.; Bardayan, D. W.; Blackmon, J. C.; Brown, S. M.; Chae, K. Y.; Chipps, K. A.; Cizewski, J. A.; Hahn, K. I.; Kolata, J. J.; Kozub, R. L.; Liang, J. F.; Matei, C.; Matoš, M.; Matyas, D.; Moazen, B.; Nesaraja, C.; Nunes, F. M.; O'Malley, P. D.; Pain, S. D.; Peters, W. A.; Pittman, S. T.; Roberts, A.; Shapira, D.; Shriner, J. F., Jr.; Smith, M. S.; Spassova, I.; Stracener, D. W.; Villano, A. N.; Wilson, G. L.

    2012-05-01

    The best examples of halo nuclei, exotic systems with a diffuse nuclear cloud surrounding a tightly bound core, are found in the light, neutron-rich region, where the halo neutrons experience only weak binding and a weak, or no, potential barrier. Modern direct-reaction measurement techniques provide powerful probes of the structure of exotic nuclei. Despite more than four decades of these studies on the benchmark one-neutron halo nucleus Be11, the spectroscopic factors for the two bound states remain poorly constrained. In the present work, the Be10(d,​p) reaction has been used in inverse kinematics at four beam energies to study the structure of Be11. The spectroscopic factors extracted using the adiabatic model were found to be consistent across the four measurements and were largely insensitive to the optical potential used. The extracted spectroscopic factor for a neutron in an nℓj=2s1/2 state coupled to the ground state of Be10 is 0.71(5). For the first excited state at 0.32 MeV, a spectroscopic factor of 0.62(4) is found for the halo neutron in a 1p1/2 state.

  19. Inhibition of urinary calculi -- a spectroscopic study

    NASA Astrophysics Data System (ADS)

    Manciu, Felicia; Govani, Jayesh; Durrer, William; Reza, Layra; Pinales, Luis

    2008-10-01

    Although a considerable number of investigations have already been undertaken and many causes such as life habits, metabolic disorders, and genetic factors have been noted as sources that accelerate calculi depositions and aggregations, there are still plenty of unanswered questions regarding efficient inhibition and treatment mechanisms. Thus, in an attempt to acquire more insights, we propose here a detailed scientific study of kidney stone formation and growth inhibition based on a traditional medicine approach with Rotula Aquatica Lour (RAL) herbal extracts. A simplified single diffusion gel growth technique was used for synthesizing the samples for the present study. The unexpected Zn presence in the sample with RAL inhibitor, as revealed by XPS measurements, explains the inhibition process and the dramatic reflectance of the incident light observed in the infrared transmission studies. Raman data demonstrate potential binding of the inhibitor with the oxygen of the kidney stone. Photoluminescence results corroborate to provide additional evidence of Zn-related inhibition.

  20. Spectroscopic study of bituminous oxidative stress.

    PubMed

    Masmoudi, H; Rebufa, C; Raffi, J; Permanyer, A; Kister, J

    2004-05-01

    Bitumen, as each organic substance, is a product which alters over time. Indeed, roads deteriorate under the effect of several phenomena. A number of studies have been undertaken to increase the quality of road's coating, mostly by adding polymer to bitumen. This work was based on the study, by electron paramagnetic resonance (EPR), FTIR and Synchronous UV fluorescence, of different base and modified bitumens after different treatments used to simulate the ageing (gamma irradiation, thermal treatment). Our purpose was to compare and correlate the results obtained by different techniques to improve the knowledge of bitumen's reactivity and evolution submitted to ageing phenomena. PMID:15134733

  1. Narrow-line X-Ray-selected Galaxies in the Chandra-COSMOS Field. I. Optical Spectroscopic Catalog

    NASA Astrophysics Data System (ADS)

    Pons, E.; Elvis, M.; Civano, F.; Watson, M. G.

    2016-04-01

    The COSMOS survey is a large and deep survey with multiwavelength observations of sources from X-rays to the UV, allowing an extensive study of their properties. The central 0.9 deg2 of the COSMOS field have been observed by Chandra with a sensitivity up to 1.9 × 10‑16 erg cm‑2 s‑1 in the full (0.5–10 keV) band. Photometric and spectroscopic identification of the Chandra-COSMOS (C-COSMOS) sources is available from several catalogs and campaigns. Despite the fact that the C-COSMOS galaxies have a reliable spectroscopic redshift in addition to a spectroscopic classification, the emission-line properties of this sample have not yet been measured. We present here the creation of an emission-line catalog of 453 narrow-line sources from the C-COSMOS spectroscopic sample. We have performed spectral fitting for the more common lines in galaxies ([O ii] λ3727, [Ne iii] λ3869, Hβ, [O iii] λλ4959, 5007, Hα, and [N ii] λλ6548, 6584). These data provide an optical classification for 151 (i.e., 33%) of the C-COSMOS narrow-line galaxies based on emission-line diagnostic diagrams.

  2. Spectroscopic analysis of bones for forensic studies

    NASA Astrophysics Data System (ADS)

    Tofanelli, Mirko; Pardini, Lorenzo; Borrini, Matteo; Bartoli, Fulvio; Bacci, Alessandra; D'Ulivo, Alessandro; Pitzalis, Emanuela; Mascherpa, Marco Carlo; Legnaioli, Stefano; Lorenzetti, Giulia; Pagnotta, Stefano; de Holanda Cavalcanti, Gildo; Lezzerini, Marco; Palleschi, Vincenzo

    2014-09-01

    The elemental analysis of human bones can give information about the dietary habits of the deceased, especially in the last years of their lives, which can be useful for forensic studies. The most important requirement that must be satisfied for this kind of analysis is that the concentrations of analyzed elements are the same as ante mortem. In this work, a set of bones was analyzed using Laser-Induced Breakdown Spectroscopy (LIBS) and validated using Inductively Coupled Plasma-Optical Emission Spectroscopy (ICP-OES), in order to compare those two techniques and to investigate the effect of possible alterations in the elemental concentrations' proportion resulting from the treatment usually applied for preparing the bones for traditional forensic analysis. The possibility that elemental concentrations' changes would occur after accidental or intentional burning of the bones was also studied.

  3. Progress report on nuclear spectroscopic studies

    SciTech Connect

    Bingham, C.R.; Guidry, M.W.; Riedinger, L.L.; Sorensen, S.P.

    1994-02-18

    The Nuclear Physics group at the University of Tennessee, Knoxville (UTK) is involved in several aspects of heavy-ion physics including both nuclear structure and reaction mechanisms. While the main emphasis is on experimental problems, the authors have maintained a strong collaboration with several theorists in order to best pursue the physics of their measurements. During the last year they have had several experiments at the ATLAS at Argonne National Laboratory, the GAMMASPHERE at the LBL 88 Cyclotron, and with the NORDBALL at the Niels Bohr Institute Tandem. Also, they continue to be very active in the WA93/98 collaboration studying ultra-relativistic heavy ion physics utilizing the SPS accelerator at CERN in Geneva, Switzerland and in the PHENIX Collaboration at the RHIC accelerator under construction at Brookhaven National Laboratory. During the last year their experimental work has been in three broad areas: (1) the structure of nuclei at high angular momentum, (2) the structure of nuclei far from stability, and (3) ultra-relativistic heavy-ion physics. The results of studies in these particular areas are described in this document. These studies concentrate on the structure of nuclear matter in extreme conditions of rotational motion, imbalance of neutrons and protons, or very high temperature and density. Another area of research is heavy-ion-induced transfer reactions, which utilize the transfer of nucleons to states with high angular momentum to learn about their structure and to understand the transfer of particles, energy, and angular momentum in collisions between heavy ions.

  4. Spectroscopic and quantum chemical studies of isocytosine

    SciTech Connect

    Tulub, A.A.; Semenov, S.G.; Stetsenko, A.I.; Yudovich, E.E.

    1988-07-01

    The methods of electronic and vibrational (IR) spectroscopy were used to study the spectral properties of isocytosine in H/sub 2/O, D/sub 2/O, chloroform, and hexane in a wide concentration interval. Quantum chemical calculations of tautomeric forms and dimers of isocytosine were carried out. The bands of the calculated and experimental spectra were assigned. The results of the quantum calculations were compared with the experimental data. The spectral bands were classified according to the type of tautomer or dimer to which they belong.

  5. Progress report on nuclear spectroscopic studies

    SciTech Connect

    Bingham, C.R.; Riedinger, L.L.; Sorensen, S.P.

    1996-01-16

    The experimental program in nuclear physics at the University of Tennessee, Knoxville, is led by Professors Carrol Bingham, Lee Riedinger, and Soren Sorenseni who respectively lead the studies of the exotic decay modes of nuclei far from stability, the program of high-spin research, and our effort in relativistic heavy-ion physics. Over the years, this broad program of research has been successful partially because of the shared University resources applied to this group effort. The proximity of the Oak Ridge National Laboratory has allowed us to build extremely strong programs of joint research, and in addition to play an important leadership role in the Joint Institute for Heavy Ion Research (JIHIR). Our experimental program is also very closely linked with those at other national laboratories: Argonne (collaborations involving the Fragment Mass Analyzer (FMA) and {gamma}-ray arrays), Brookhaven (the RHIC and Phenix projects), and Berkeley (GAMMASPHERE). We have worked closely with a variety of university groups in the last three years, especially those in the UNISOR and now UNIRIB collaborations. And, in all aspects of our program, we have maintained close collaborations with theorists, both to inspire the most exciting experiments to perform and to extract the pertinent physics from the results. The specific areas discussed in this report are: properties of high-spin states; study of low-energy levels of nuclei far from stability; and high energy heavy-ion physics.

  6. Nonlinear spectroscopic studies of interfacial molecular ordering

    SciTech Connect

    Superfine, R.

    1991-07-01

    The second order nonlinear optical processes of second harmonic generation and sum frequency generation are powerful new probes of surfaces. They possess unusual surface sensitivity due to the symmetry properties of the nonlinear susceptibility. In particular, infrared-visible sum frequency generation (SFG) can obtain the vibrational spectrum of sub-monolayer coverages of molecules. In this thesis, we explore the unique information that can be obtained from SFG. We take advantage of the sensitivity of SFG to the conformation of alkane chains to study the interaction between adsorbed liquid crystal molecules and surfactant treated surfaces. The sign of the SFG susceptibility depends on the sign of the molecular polarizability and the orientation, up or down, of the molecule. We experimentally determine the sign of the susceptibility and use it to determine the absolute orientation to obtain the sign of the molecular polarizability and show that this quantity contains important information about the dynamics of molecular charge distributions. Finally, we study the vibrational spectra and the molecular orientation at the pure liquid/vapor interface of methanol and water and present the most detailed evidence yet obtained for the structure of the pure water surface. 32 refs., 4 figs., 2 tabs.

  7. Spectroscopic studies of solutes in aqueous solution.

    PubMed

    Chai, Bing-hua; Zheng, Jian-ming; Zhao, Qing; Pollack, Gerald H

    2008-03-20

    Absorption and fluorescence characteristics of aqueous solutions of salts, sugars, and amino acids were studied using UV-vis spectroscopy and spectrofluorometry. Motivation stemmed from unanticipated absorption spectral and fluorescence features of the "exclusion zone" seen adjacent to various hydrophilic surfaces. Those features implied a structure distinct from that of bulk water (Adv. Colloid Interface Sci. 2006, 127, 19). Absorption peaks at approximately 270 nm similar to those observed in the exclusion zone were seen in solutions of the following substances: salts, Nafion 117 solution/film, l-lysine, d-alanine, d-glucose and sucrose. To determine the fate of the absorbed energy, we studied the fluorescence properties of these solutions. The salts showed fluorescence emission around 480-490 nm under different excitation wavelengths. The fluorescence intensity of LiCl was higher than NaCl, which was in turn higher than KCl-the same ordering as the absorption intensities. Fluorescence of Nafion 117 solution/film, l-lysine, d-alanine, d-glucose and sucrose were observed as well, with multiple excitation wavelengths. Hence, at least some of the absorbed energy is released as fluorescence. The results show features closely similar to those observed in the exclusion zone, implying that the aqueous region around the solutes resembles the aqueous zone adjacent to hydrophilic surfaces. Both may be more extensively ordered than previously thought. PMID:18298105

  8. Terahertz spectroscopic study of benzodiazepine sedative hypnotics

    NASA Astrophysics Data System (ADS)

    Deng, Fusheng; Shen, Jingling; Wang, Xianfeng

    2011-08-01

    Terahertz time domain spectroscopy (THz-TDS) is used to the pure active ingredient of three benzodiazepine sedative hypnotics with similar molecular structure. The absorption spectra of them are studied in the range of 0.2~2.6THz. Based on the experiment, the theoretical simulation results of diazepam, nitrazepam and clonazepam are got by the Gaussian03 package of DFT/B3LYP/6-31G* method in single-molecule models. The experimental results show that even if the molecular structure and medicine property of them are similar, the accurate identification of them can still be done with their characteristic absorption spectra. Theoretical simulation results are well consistent with the experimental results. It demonstrates that absorption peaks of them in THz range mainly come from intra-molecular forces and are less affected by the intermolecular interaction and crystal effects.ô

  9. Spectroscopic studies of silver boro tellurite glasses

    SciTech Connect

    Kumar, E. Ramesh Kumari, K. Rajani Rao, B. Appa Bhikshamaiah, G.

    2014-04-24

    The FTIR absorption and Raman scattering studies were used to obtain the structural information of AgI−Ag{sub 2}O−[(1−x)B{sub 2}O{sub 3}−xTeO{sub 2}] (x=0 to 1 mol% in steps of 0.2) glasses. The glassy nature of the compounds has been confirmed by X-ray diffraction. FTIR and Raman spectra were recorded for all samples at room temperature. FTIR spectra which provides the information about the change in bond structure of the glasses. Raman spectra provide the effect of TeO{sub 2} on SBT glass system is that as increasing the concentration of TeO{sub 2} the band intensity at 707 cm{sup −1} increase.

  10. Spectroscopic and quantum chemical studies on bromopyrazone

    NASA Astrophysics Data System (ADS)

    Gökce, Halil; Bahçeli, Semiha

    2014-12-01

    In this study, the FT-IR, micro-Raman and UV-vis. spectra of bromopyrazone molecule, C10H8BrN3O, (with synonym,1-phenyl-4-amino-5-bromopyridazon-(6) or 5-amino-4-bromo-2-phenyl-3(2H)-pyridazinone) were recorded experimentally. The molecular structure, vibrational wavenumbers, electronic transition absorption wavelengths in ethanol solvent, HOMOs and LUMOs analyses, molecular electrostatic potential (MEP), natural bond orbitals (NBO), nonlinear optical (NLO) properties and atomic charges of bromopyrazone molecule have been calculated by using DFT/B3LYP method with 6-311++G(d,p) basis set in ground state. The obtained results show that the calculated vibrational frequencies and UV-vis. values are in a good agreement with experimental data.

  11. Spectroscopic study of acetylene and hydrogen cyanide

    NASA Astrophysics Data System (ADS)

    Rozario, Hoimonti Immaculata

    High-resolution molecular spectroscopy has been used to study acetylene line parameters and emission spectra of hydrogen cyanide. All acetylene spectra were recorded in our laboratory at the University of Lethbridge using a 3-channel tuneable diode laser spectrometer. N2-broadened line widths and N2-pressure induced line shifts have been measured for transitions in the v1+v3 band of acetylene at seven temperatures in the range 213-333K to obtain the temperature dependences of broadening and shift coefficients. The Voigt and hard-collision line profile models were used to retrieve the line parameters. The line-broadening and line-shift coefficients as well as their temperature-dependent parameters have been also evaluated theoretically, in the frame work of a semi-classical approach based on an exponential representation of the scattering operator, an intermolecular potential composed of electrostatic quadrupole--quadrupole and pairwise atom--atom interactions as well as on exact trajectories driven by an effective isotropic potential. The experimental results for both N2-broadening and shifting show good agreement with the theoretical results. We have studied the line intensities of the 1vl 20←0v120 band system from the HCN emission spectrum. The infrared emission spectrum of H12C 14N was measured at the Justus-Liebig University, Giessen, Germany. The emission spectrum was analyzed with the spectrum analysis software Symath running using Mathematica as a platform. This approach allowed us to retrieve information on band intensity parameters.

  12. Ultrafast spectroscopic studies of metal nanoparticles

    NASA Astrophysics Data System (ADS)

    Hu, Min

    An important aim of nanoparticle research is to understand how the properties of materials depend on their size and shape. In this thesis, time-resolved spectroscopy has been used to measure the physical properties of nanometer sized objects, such as the characteristic time scale for heat dissipation and their elastic moduli. In our experiments, metal nanoparticles are excited with a sub-picosecond laser pulse, which causes a rapid increase in the lattice temperature. In the first project, the rate of heat dissipation from Au nanoparticles to their surroundings was examined for different size gold nanospheres in aqueous solution. Laser induced lattice heating can also impulsively excite the phonon modes of the particle that correlate with the expansion co-ordinates. For spherical Au particles the symmetric breathing mode is excited. Experimental results for ˜50 nm diameter Au particles were compared to a model calculation where the expansion coordinate is treated as a damped harmonic oscillator. This gives information about the excitation mechanism. In the second project, the extensional and breathing modes of cylindrical gold nanorods were studied by time-resolved spectroscopy. These experiments yield values for the elastic constants for the rods. Both the extensional mode and the breathing mode results show that gold nanorods produced by wet chemical techniques have a smaller elastic moduli than bulk gold. HR-TEM and SAED studies show that the rods have a 5-fold twinned structure with growth along the [110] crystal direction. However, neither the growth direction nor the twinning provide a simple explanation for the reduced elastic moduli measured in the experiments. In a final project, polydisperse silver nanoparticle samples were investigated. A signal due to coherently excited vibrational motion was observed. The analysis shows that the observed signal arises from the triangular-shaped particles, rather than the rods or spheres that are present in the sample

  13. Raman spectroscopic studies of disordered ferroelectric oxides

    NASA Astrophysics Data System (ADS)

    Savvinov, Alexey A.

    Relaxational properties of compositionally disordered AB03 perovskite oxides were studied. These oxides are the prototypical soft ferroelectric (FE) mode systems, and their interesting dipolar relaxational properties are determined by their long, strongly temperature-dependent correlation lengths for the dipolar interactions. The simple cases involve dilute chemical substitutions in the incipient ferroelectrics KTaO3 and SrTiO3, which exhibit relatively weak, low-temperature Debye-type relaxations. More complicated dipolar interactions are seen in B-site disordered Nb-doped KTaO3, which exhibits glass-like relaxor and relaxor-to-ferroelectric crossover behaviors at low temperatures. Finally, there is a class of more complex perovskites represented by PMN, PZN-PT and the PLT that exhibit strong, high-temperature relaxor and/or ferroelectric properties. The renewed interest in the KTa1-xNbxO (KTN) mixed perovskite materials, especially in high quality thin films, is connected with their remarkable dielectric properties in the dilute compositions. Off-center Nb ions in the highly polarizable KTaO3 lattice provide a drastic increase in the dielectric peak, up to 20 times in comparison with the pure KTaO3 and KNbO3. The effects of the substrate and the symmetry-breaking defects on their vibration spectra were studied by micro-Raman spectroscopy. An anomalous residual intensity of the forbidden first-order scattering modes in the cubic paraelectric phase of the KTN films was connected with the formation of polar microregions even far above the bulk Tc. On the whole, the KTN film behavior shows the existence of specific defects enhancing the perovskite unit cell in the film so that the activity of off-center Nb ions increases in producing larger electric dipoles and extending the precursor phase above Tc. In diluted compositions with low Nb concentrations KTN materials exhibit formation of polar nano regions and relaxor like behavior. This behavior is analogous with

  14. Spectroscopic study of biologically active glasses

    NASA Astrophysics Data System (ADS)

    Szumera, M.; Wacławska, I.; Mozgawa, W.; Sitarz, M.

    2005-06-01

    It is known that the chemical activity phenomenon is characteristic for some inorganic glasses and they are able to participate in biological processes of living organisms (plants, animals and human bodies). An example here is the selective removal of silicate-phosphate glass components under the influence of biological solutions, which has been applied in designing glasses acting as ecological fertilizers of controlled release rate of the nutrients for plants. The structure of model silicate-phosphate glasses containing the different amounts of the glass network formers, i.e. Ca 2+ and Mg 2+, as a binding components were studied. These elements besides other are indispensable of the normal growth of plants. In order to establish the function and position occupied by the particular components in the glass structure, the glasses were examined by FTIR spectroscopy (with spectra decomposition) and XRD methods. It has been found that the increasing amount of MgO in the structure of silicate-phosphate glasses causes the formation of domains the structure of which changes systematically from a structure of the cristobalite type to a structure corresponding to forsterite type. Whilst the increasing content of CaO in the structure of silicate-phosphate glasses causes the formation of domains the structure of which changes from a structure typical for cristobalite through one similar to the structure of calcium orthophosphate, to a structure corresponding to calcium silicates. The changing character of domains structure is the reason of different chemical activity of glasses.

  15. Fluorescence spectroscopic studies of DNA dynamics

    SciTech Connect

    Scalettar, B.A.

    1987-04-01

    Random solvent induced motions of DNA are manifest as nanosecond torsional oscillations of the helix backbone, nanosecond through millisecond bending deformations and overall rotational and translational diffusion of the polymer. Fluorescence spectroscopy is used to study this spectrum of DNA motions while ethidium monoazide was covalently bounded. The steady state fluorescence depolarization data indicate that the covalent monoazide/DNA complex exhibits internal motions characterized by an average angular amplitude of 26 degrees confirming reports of fast torsional oscillations in noncovalent ethidium bromide/DNA systems. Data obtained by use of a new polarized photobleaching recovery technique (FPR) reflect both the rotational dynamics of the polymer and the reversible photochemistry of the dye. To isolate the reorientational motion of the DNA, the FPR experiments were ran in two modes that differ only in the polarization of the bleaching light. A quotient function constructed from the data obtained in these two modes monitors only the rotational component of the FPR recovery. In specific applications those bending deformations of long DNA molecules that have characteristic relaxation times on the order of 100 microseconds have been resolved. A fluorescence correlation technique that relates fluctuations in particle number to center-of-mass motion was used to measure translational diffusion on coefficients of the plasmid PBR322 and a short oligomeric DNA. A theory that describes angular correlation in systems exhibiting cyclic, biologically directed reorientation and random Brownian rotation is developed.

  16. Spectroscopic Studies of Molecular Systems relevant in Astrobiology

    NASA Astrophysics Data System (ADS)

    Fornaro, Teresa

    2016-01-01

    In the Astrobiology context, the study of the physico-chemical interactions involving "building blocks of life" in plausible prebiotic and space-like conditions is fundamental to shed light on the processes that led to emergence of life on Earth as well as to molecular chemical evolution in space. In this PhD Thesis, such issues have been addressed both experimentally and computationally by employing vibrational spectroscopy, which has shown to be an effective tool to investigate the variety of intermolecular interactions that play a key role in self-assembling mechanisms of nucleic acid components and their binding to mineral surfaces. In particular, in order to dissect the contributions of the different interactions to the overall spectroscopic signals and shed light on the intricate experimental data, feasible computational protocols have been developed for the characterization of the spectroscopic properties of such complex systems. This study has been carried out through a multi-step strategy, starting the investigation from the spectroscopic properties of the isolated nucleobases, then studying the perturbation induced by the interaction with another molecule (molecular dimers), towards condensed phases like the molecular solid, up to the case of nucleic acid components adsorbed on minerals. A proper modeling of these weakly bound molecular systems has required, firstly, a validation of dispersion-corrected Density Functional Theory methods for simulating anharmonic vibrational properties. The isolated nucleobases and some of their dimers have been used as benchmark set for identifying a general, reliable and effective computational procedure based on fully anharmonic quantum mechanical computations of the vibrational wavenumbers and infrared intensities within the generalized second order vibrational perturbation theory (GVPT2) approach, combined with the cost-effective dispersion-corrected density functional B3LYP-D3, in conjunction with basis sets of

  17. DAO Spectroscopic Study of Nova Cygni 1992

    NASA Astrophysics Data System (ADS)

    Garnavich, Peter M.

    1992-12-01

    The spectral development of Nova Cygni 1992 is being monitored at the Dominion Astrophysical Observatory. The brightest nova in over 15 years provides a rare opportunity to study, in detail, nova evolution from maximum to the late nebular stages. Our spectra during the early phases of the outburst had a resolution of 0.6 Angstroms while in the nebular phase the resolution ranged from 2 Angstroms to 4 Angstroms . The nova was observed at DAO on more than 40 nights in 1992. Our first spectrum was obtained near maximum light on February 22, 1992. It showed weak Hβ and Fe II emission lines with P-Cygni absorption components at -910 and -1670 km/s (IAUC 5457). During the early decline, the P-Cygni absorption complex spread blueward, eventually reaching -2900 km/s by the ides of March. Observations by IUE showed absorption troughs of UV lines extending to -2800 km/s even before maximum (IAUC 5456). This suggests that the apparent increase in the velocity of the diffuse-enhanced absorption is due to opacity effects, not a physical acceleration of the gas or the changing geometry of the expanding shells. The transition to the nebular phase occurred in late April, 1992. The emission lines were broad (FWHM of 2200 km/s) and contained as many as 10 velocity components. The temperature and density evolution of the major velocity components are estimated from diagnostic line ratios during the nebular stage. The similarity between Nova Cygni 1992 and V1500 Cyg suggested that the coronal line, [Fe X] 6374 Angstroms , might be present in the early nebular phase. The unusual shape and strength of the [O I] line at 6363 Angstroms added to this suspicion. In spectra taken 90 days after outburst, the [O I] 6300 Angstroms line was used to deconvolve the emission, but the contamination was found to be due to the Si II doublet 6347/71 Angstroms . Infrared observations indicated the onset of a coronal phase 200 days after maximum (IAUC 5612), and our data from this period are analyzed

  18. Spectroscopic studies of protein folding: Linear and nonlinear methods

    PubMed Central

    Serrano, Arnaldo L; Waegele, Matthias M; Gai, Feng

    2012-01-01

    Although protein folding is a simple outcome of the underlying thermodynamics, arriving at a quantitative and predictive understanding of how proteins fold nevertheless poses huge challenges. Therefore, both advanced experimental and computational methods are continuously being developed and refined to probe and reveal the atomistic details of protein folding dynamics and mechanisms. Herein, we provide a concise review of recent developments in spectroscopic studies of protein folding, with a focus on new triggering and probing methods. In particular, we describe several laser-based techniques for triggering protein folding/unfolding on the picosecond and/or nanosecond timescales and various linear and nonlinear spectroscopic techniques for interrogating protein conformations, conformational transitions, and dynamics. PMID:22109973

  19. Toward the characterization of biological toxins using field-based FT-IR spectroscopic instrumentation

    NASA Astrophysics Data System (ADS)

    Schiering, David W.; Walton, Robert B.; Brown, Christopher W.; Norman, Mark L.; Brewer, Joseph; Scott, James

    2004-12-01

    IR spectroscopy is a broadly applicable technique for the identification of covalent materials. Recent advances in instrumentation have made Fourier Transform infrared (FT-IR) spectroscopy available for field characterization of suspect materials. Presently, this instrumentation is broadly deployed and used for the identification of potential chemical hazards. This discussion concerns work towards expanding the analytical utility of field-based FT-IR spectrometry in the characterization of biological threats. Two classes of materials were studied: biologically produced chemical toxins which were non-peptide in nature and peptide toxin. The IR spectroscopic identification of aflatoxin-B1, trichothecene T2 mycotoxin, and strychnine was evaluated using the approach of spectral searching against large libraries of materials. For pure components, the IR method discriminated the above toxins at better than the 99% confidence level. The ability to identify non-peptide toxins in mixtures was also evaluated using a "spectral stripping" search approach. For the mixtures evaluated, this method was able to identify the mixture components from ca. 32K spectral library entries. Castor bean extract containing ricin was used as a representative peptide toxin. Due to similarity in protein spectra, a SIMCA pattern recognition methodology was evaluated for classifying peptide toxins. In addition to castor bean extract the method was validated using bovine serum albumin and myoglobin as simulants. The SIMCA approach was successful in correctly classifying these samples at the 95% confidence level.

  20. THE APOKASC CATALOG: AN ASTEROSEISMIC AND SPECTROSCOPIC JOINT SURVEY OF TARGETS IN THE KEPLER FIELDS

    SciTech Connect

    Pinsonneault, Marc H.; Epstein, Courtney; Johnson, Jennifer A.; Elsworth, Yvonne; Chaplin, William J.; Hekker, Saskia; Silva Aguirre, Victor; Stello, Dennis; Mészáros, Sz.; García, Rafael A.; Beck, Paul; Mathur, Savita; García Pérez, Ana; Girardi, Léo; Basu, Sarbani; Shetrone, Matthew; Allende Prieto, Carlos; Beers, Timothy C.; and others

    2015-01-01

    We present the first APOKASC catalog of spectroscopic and asteroseismic properties of 1916 red giants observed in the Kepler fields. The spectroscopic parameters provided from the Apache Point Observatory Galactic Evolution Experiment project are complemented with asteroseismic surface gravities, masses, radii, and mean densities determined by members of the Kepler Asteroseismology Science Consortium. We assess both random and systematic sources of error and include a discussion of sample selection for giants in the Kepler fields. Total uncertainties in the main catalog properties are of the order of 80 K in T {sub eff}, 0.06 dex in [M/H], 0.014 dex in log g, and 12% and 5% in mass and radius, respectively; these reflect a combination of systematic and random errors. Asteroseismic surface gravities are substantially more precise and accurate than spectroscopic ones, and we find good agreement between their mean values and the calibrated spectroscopic surface gravities. There are, however, systematic underlying trends with T {sub eff} and log g. Our effective temperature scale is between 0 and 200 K cooler than that expected from the infrared flux method, depending on the adopted extinction map, which provides evidence for a lower value on average than that inferred for the Kepler Input Catalog (KIC). We find a reasonable correspondence between the photometric KIC and spectroscopic APOKASC metallicity scales, with increased dispersion in KIC metallicities as the absolute metal abundance decreases, and offsets in T {sub eff} and log g consistent with those derived in the literature. We present mean fitting relations between APOKASC and KIC observables and discuss future prospects, strengths, and limitations of the catalog data.

  1. The APOKASC Catalog: An Asteroseismic and Spectroscopic Joint Survey of Targets in the Kepler Fields

    NASA Astrophysics Data System (ADS)

    Pinsonneault, Marc H.; Elsworth, Yvonne; Epstein, Courtney; Hekker, Saskia; Mészáros, Sz.; Chaplin, William J.; Johnson, Jennifer A.; García, Rafael A.; Holtzman, Jon; Mathur, Savita; García Pérez, Ana; Silva Aguirre, Victor; Girardi, Léo; Basu, Sarbani; Shetrone, Matthew; Stello, Dennis; Allende Prieto, Carlos; An, Deokkeun; Beck, Paul; Beers, Timothy C.; Bizyaev, Dmitry; Bloemen, Steven; Bovy, Jo; Cunha, Katia; De Ridder, Joris; Frinchaboy, Peter M.; García-Hernández, D. A.; Gilliland, Ronald; Harding, Paul; Hearty, Fred R.; Huber, Daniel; Ivans, Inese; Kallinger, Thomas; Majewski, Steven R.; Metcalfe, Travis S.; Miglio, Andrea; Mosser, Benoit; Muna, Demitri; Nidever, David L.; Schneider, Donald P.; Serenelli, Aldo; Smith, Verne V.; Tayar, Jamie; Zamora, Olga; Zasowski, Gail

    2014-12-01

    We present the first APOKASC catalog of spectroscopic and asteroseismic properties of 1916 red giants observed in the Kepler fields. The spectroscopic parameters provided from the Apache Point Observatory Galactic Evolution Experiment project are complemented with asteroseismic surface gravities, masses, radii, and mean densities determined by members of the Kepler Asteroseismology Science Consortium. We assess both random and systematic sources of error and include a discussion of sample selection for giants in the Kepler fields. Total uncertainties in the main catalog properties are of the order of 80 K in T eff, 0.06 dex in [M/H], 0.014 dex in log g, and 12% and 5% in mass and radius, respectively; these reflect a combination of systematic and random errors. Asteroseismic surface gravities are substantially more precise and accurate than spectroscopic ones, and we find good agreement between their mean values and the calibrated spectroscopic surface gravities. There are, however, systematic underlying trends with T eff and log g. Our effective temperature scale is between 0 and 200 K cooler than that expected from the infrared flux method, depending on the adopted extinction map, which provides evidence for a lower value on average than that inferred for the Kepler Input Catalog (KIC). We find a reasonable correspondence between the photometric KIC and spectroscopic APOKASC metallicity scales, with increased dispersion in KIC metallicities as the absolute metal abundance decreases, and offsets in T eff and log g consistent with those derived in the literature. We present mean fitting relations between APOKASC and KIC observables and discuss future prospects, strengths, and limitations of the catalog data.

  2. The magnetic field of the double-lined spectroscopic binary system HD 5550

    NASA Astrophysics Data System (ADS)

    Alecian, E.; Tkachenko, A.; Neiner, C.; Folsom, C. P.; Leroy, B.

    2016-05-01

    Context. The origin of fossil fields in intermediate- and high-mass stars is poorly understood, as is the interplay between binarity and magnetism during stellar evolution. Thus we have begun a study of the magnetic properties of a sample of intermediate-mass and massive short-period binary systems as a function of binarity properties. Aims: This paper specifically aims to characterise the magnetic field of HD 5550, a double-lined spectroscopic binary system of intermediate mass. Methods: We gathered 25 high-resolution spectropolarimetric observations of HD 5550 using the instrument Narval. We first fitted the intensity spectra using Zeeman/ATLAS9 LTE synthetic spectra to estimate the effective temperatures, microturbulent velocities, and the abundances of some elements of both components, as well as the light ratio of the system. We then applied the multi-line least-square deconvolution (LSD) technique to the intensity and circularly polarised spectra, which provided us with mean LSD I and V line profiles. We fitted the Stokes I line profiles to determine the radial and projected rotational velocities of both stars. We then analysed the shape and evolution of the V profiles using the oblique rotator model to characterise the magnetic fields of both stars. Results: We confirm the Ap nature of the primary, which has previously been reported, and find that the secondary displays spectral characteristics typical of an Am star. While a magnetic field is clearly detected in the lines of the primary, no magnetic field is detected in the secondary in any of our observations. If a dipolar field were present at the surface of the Am star, its polar strength must be below 40 G. The faint variability observed in the Stokes V profiles of the Ap star allowed us to propose a rotation period of 6.84-0.39+0.61 d, which is close to the orbital period (~6.82 d), suggesting that the star is synchronised with its orbit. By fitting the variability of the V profiles, we propose that the

  3. Spectroscopic and dynamical studies of highly energized small polyatomic molecules

    SciTech Connect

    Field, R.W.; Silbey, R.J.

    1993-12-01

    The authors have initiated a program to perform spectroscopic and dynamic studies of small molecules. Large amplitude motions in excited acetylene were discussed along with plans to record the dispersed fluorescence (DF) and the stimulated emission pumping (SEP) spectra. SEP spectra were reported for the formyl radical. A Fourier transform spectrometer was discussed with respect to its ability to probe the structure of radicals. This instrument is capable of performing studies using various techniques such as magnetic rotation spectroscopy and sub-Doppler sideband-OODR Zeman (SOODRZ) spectroscopy.

  4. Spectroscopic Studies of Molecular Systems relevant in Astrobiology

    NASA Astrophysics Data System (ADS)

    Fornaro, Teresa

    2016-01-01

    In the Astrobiology context, the study of the physico-chemical interactions involving "building blocks of life" in plausible prebiotic and space-like conditions is fundamental to shed light on the processes that led to emergence of life on Earth as well as to molecular chemical evolution in space. In this PhD Thesis, such issues have been addressed both experimentally and computationally by employing vibrational spectroscopy, which has shown to be an effective tool to investigate the variety of intermolecular interactions that play a key role in self-assembling mechanisms of nucleic acid components and their binding to mineral surfaces. In particular, in order to dissect the contributions of the different interactions to the overall spectroscopic signals and shed light on the intricate experimental data, feasible computational protocols have been developed for the characterization of the spectroscopic properties of such complex systems. This study has been carried out through a multi-step strategy, starting the investigation from the spectroscopic properties of the isolated nucleobases, then studying the perturbation induced by the interaction with another molecule (molecular dimers), towards condensed phases like the molecular solid, up to the case of nucleic acid components adsorbed on minerals. A proper modeling of these weakly bound molecular systems has required, firstly, a validation of dispersion-corrected Density Functional Theory methods for simulating anharmonic vibrational properties. The isolated nucleobases and some of their dimers have been used as benchmark set for identifying a general, reliable and effective computational procedure based on fully anharmonic quantum mechanical computations of the vibrational wavenumbers and infrared intensities within the generalized second order vibrational perturbation theory (GVPT2) approach, combined with the cost-effective dispersion-corrected density functional B3LYP-D3, in conjunction with basis sets of

  5. The Origin, Composition and History of Comets from Spectroscopic Studies

    NASA Astrophysics Data System (ADS)

    Allamandola, L. J.

    1997-12-01

    A wealth of information essential to understanding the composition and physical structure of cometary ice and hence gain deep insight into the comet's origin and history, can be gleaned by carrying out a full range of spectroscopic studies on the returned sample. These studies ought to be among the first performed as they are generally non-destructive and will provide a broad data bank which will be crucial in planning subsequent analysis. Examples of the spectroscopic techniques along with relative sensitivities and transitions probed, are discussed. Different kind of "spectroscopy" is summarized, with emphasis placed on the kind of information each provides. Infrared spectroscopy should be the premier method of analysis as the mid-IR absorption spectrum of a substance contains more global information about the identity and structure of that material than any other property. In fact, the greatest strides in our understanding of the composition of interstellar ices (thought by many to be the primordial material from which comets have formed) have been taken during the past ten years or so because this was when high quality infrared spectra of the interstellar medium (ISM) first became available. The interpretation of the infrared spectra of mixtures, such as expected in comets, is often (not always) ambiguous. Consequently, a full range of other non-destructive, complementary spectroscopic measurements are required to fully characterize the material, to probe for substances for which the IR is not well suited and to lay the groundwork for future analysis. Given the likelihood that the icy component (including some of the organic and mineral phases) of the returned sample will be exceedingly complex, these techniques must be intensely developed over the next decade and then made ready to apply flawlessly to what will certainly be one of the most precious, and most challenging, samples ever analyzed.

  6. The Origin, Composition and History of Comets from Spectroscopic Studies

    NASA Technical Reports Server (NTRS)

    Allamandola, L. J.

    1997-01-01

    A wealth of information essential to understanding the composition and physical structure of cometary ice and hence gain deep insight into the comet's origin and history, can be gleaned by carrying out a full range of spectroscopic studies on the returned sample. These studies ought to be among the first performed as they are generally non-destructive and will provide a broad data bank which will be crucial in planning subsequent analysis. Examples of the spectroscopic techniques along with relative sensitivities and transitions probed, are discussed. Different kind of "spectroscopy" is summarized, with emphasis placed on the kind of information each provides. Infrared spectroscopy should be the premier method of analysis as the mid-IR absorption spectrum of a substance contains more global information about the identity and structure of that material than any other property. In fact, the greatest strides in our understanding of the composition of interstellar ices (thought by many to be the primordial material from which comets have formed) have been taken during the past ten years or so because this was when high quality infrared spectra of the interstellar medium (ISM) first became available. The interpretation of the infrared spectra of mixtures, such as expected in comets, is often (not always) ambiguous. Consequently, a full range of other non-destructive, complementary spectroscopic measurements are required to fully characterize the material, to probe for substances for which the IR is not well suited and to lay the groundwork for future analysis. Given the likelihood that the icy component (including some of the organic and mineral phases) of the returned sample will be exceedingly complex, these techniques must be intensely developed over the next decade and then made ready to apply flawlessly to what will certainly be one of the most precious, and most challenging, samples ever analyzed.

  7. Palm-size wide-field Fourier spectroscopic imager with uncooled infrared microbolometer arrays for smartphone

    NASA Astrophysics Data System (ADS)

    Kawashima, Natsumi; Suzuki, Yo; Qi, Wei; Hosono, Satsuki; Saito, Tsubasa; Ogawa, Satoshi; Sato, Shun; Fujiwara, Masaru; Nishiyama, Akira; Wada, Kenji; Tanaka, Naotaka; Ishimaru, Ichiro

    2015-03-01

    We proposed the imaging-type 2-dimensional Fourier spectroscopy that is a near-common-path interferometer with strong robustness against mechanical vibrations. We introduced the miniature uncooled infrared microbolometer arrays for smartphone (e.g. product name: FILR ONE price: around 400USD). And we constructed the phase-shifter with the piezo impact drive mechanism (maker: Technohands.co.Ltd., stroke: 4.5mm, resolution: 0.01μm, size: 20mm, price: around 800USD). Thus, we realized the palm-size mid-infrared spectroscopic imager [size: L56mm×W69mm×H43mm weight: 500g]. And by using wide-angle lens as objective lens, the proposed method can obtain the wide-field 2- dimensional middle-infrared (wavelength: 7.5-13.5[μm]) spectroscopic imaging of radiation lights emitted from human bodies itself

  8. Indentation device for in situ Raman spectroscopic and optical studies

    NASA Astrophysics Data System (ADS)

    Gerbig, Y. B.; Michaels, C. A.; Forster, A. M.; Hettenhouser, J. W.; Byrd, W. E.; Morris, D. J.; Cook, R. F.

    2012-12-01

    Instrumented indentation is a widely used technique to study the mechanical behavior of materials at small length scales. Mechanical tests of bulk materials, microscopic, and spectroscopic studies may be conducted to complement indentation and enable the determination of the kinetics and physics involved in the mechanical deformation of materials at the crystallographic and molecular level, e.g., strain build-up in crystal lattices, phase transformations, and changes in crystallinity or orientation. However, many of these phenomena occurring during indentation can only be observed in their entirety and analyzed in depth under in situ conditions. This paper describes the design, calibration, and operation of an indentation device that is coupled with a Raman microscope to conduct in situ spectroscopic and optical analysis of mechanically deformed regions of Raman-active, transparent bulk material, thin films or fibers under contact loading. The capabilities of the presented device are demonstrated by in situ studies of the indentation-induced phase transformations of Si thin films and modifications of molecular conformations in high density polyethylene films.

  9. Transport and spectroscopic studies of liquid and polymer electrolytes

    NASA Astrophysics Data System (ADS)

    Bopege, Dharshani Nimali

    Liquid and polymer electrolytes are interesting and important materials to study as they are used in Li rechargeable batteries and other electrochemical devices. It is essential to investigate the fundamental properties of electrolytes such as ionic conductivity, diffusion, and ionic association to enhance battery performance in different battery markets. This dissertation mainly focuses on the temperature-dependent charge and mass transport processes and ionic association of different electrolyte systems. Impedance spectroscopy and pulsed field gradient nuclear magnetic resonance spectroscopy were used to measure the ionic conductivity and diffusion coefficients of ketone and acetate based liquid electrolytes. In this study, charge and mass transport in non-aqueous liquid electrolytes have been viewed from an entirely different perspective by introducing the compensated Arrhenius formalism. Here, the conductivity and diffusion coefficient are written as an Arrhenius-like expression with a temperature-dependent static dielectric constant dependence in the exponential prefactor. The compensated Arrhenius formalism reported in this dissertation very accurately describes temperature-dependent conductivity data for acetate and ketone-based electrolytes as well as temperature-dependent diffusion data of pure solvents. We found that calculated average activation energies of ketone-based electrolytes are close to each other for both conductivity and diffusion data (in the range 24-26 kJ/mol). Also, this study shows that average activation energies of acetate-based electrolytes are higher than those for the ketone systems (in the range 33-37 kJ/mol). Further, we observed higher dielectric constants and ionic conductivities for both dilute and concentrated ketone solutions with temperature. Vibrational spectroscopy (Infrared and Raman) was used to probe intermolecular interactions in both polymer and liquid electrolytes, particularly those which contain lithium

  10. Novel dipodal Schiff base compounds: Synthesis, characterization and spectroscopic studies

    NASA Astrophysics Data System (ADS)

    Obali, Aslihan Yilmaz; Ucan, Halil Ismet

    2015-02-01

    Two novel dipodal Schiff base compounds 1,2-benzyloxy-bis-[2-(benzylideneamino)phenol, L1 and 1,2-benzyloxy-bis[3-(benzylideneamino)pyridine], L2 were synthesized. Their sensing actions were confirmed by UV-Vis absorbance and emission spectroscopic studies in presence of Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Sn(II), Cd(II) and Pb(II) in methanol medium (1 × 10-4 M). It was found that the dipodal compounds can selectively bind to Cu(II) and Pb(II) metal ions with a significant change in its emission and absorption spectra, while the addition of other metal ions (Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Sn(II), Cd(II) and Pb(II)) produces insignificant or minor changes. The host-guest complexes formed were determined by Job's plot method. As a chemosensor, L1 and L2 dipodal Schiff base compounds shows a specific selectivity towards Cu(II) and Pb(II) ions in according to all spectroscopic data.

  11. The first spectroscopic study of southern binary:HD 53570

    NASA Astrophysics Data System (ADS)

    Sürgit, D.

    2016-03-01

    In this study, I present the first analysis of spectroscopic observations of southern detached eclipsing binary star HD 53570. The spectroscopic observations of HD 53570 was made at the Sutherland Station of the South African Astronomical Observatory (SAAO) in 2013 and 2014. Radial velocities (RVs) of the components of HD 53570 were determined by cross-correlation technique (CCT). The Hβ (4861.36 Å) lines of the components of HD 53570 were chosen as the most suitable lines for reliable RV measurements. The resulting orbital elements of HD 53570 is calculated as, a1 sin i = 0.0258±0.0005 AU, a2 sin i = 0.0228±0.0005 AU, M1 sin3i = 1.035±0.046 M⊙ and M2 sin3i = 1.167±0.050 M⊙. The radial velocity models of HD 53570 give the close binaries mass ratio as 1.13±0.07.

  12. Combined spectroscopic and quantum chemical studies of ezetimibe

    NASA Astrophysics Data System (ADS)

    Prajapati, Preeti; Pandey, Jaya; Shimpi, Manishkumar R.; Srivastava, Anubha; Tandon, Poonam; Velaga, Sitaram P.; Sinha, Kirti

    2016-12-01

    Ezetimibe (EZT) is a hypocholesterolemic agent used for the treatment of elevated blood cholesterol levels as it lowers the blood cholesterol by blocking the absorption of cholesterol in intestine. Study aims to combine experimental and computational methods to provide insights into the structural and vibrational spectroscopic properties of EZT which is important for explaining drug substance physical and biological properties. Computational study on molecular properties of ezetimibe is presented using density functional theory (DFT) with B3LYP functional and 6-311++G(d,p) basis set. A detailed vibrational assignment has been done for the observed IR and Raman spectra of EZT. In addition to the conformational study, hydrogen bonding and molecular docking studies have been also performed. For conformational studies, the double well potential energy curves have been plotted for the rotation around the six flexible bonds of the molecule. UV absorption spectrum was examined in methanol solvent and compared with calculated one in solvent environment (IEF-PCM) using TD-DFT/6-31G basis set. HOMO-LUMO energy gap of both the conformers have also been calculated in order to predict its chemical reactivity and stability. The stability of the molecule was also examined by means of natural bond analysis (NBO) analysis. To account for the chemical reactivity and site selectivity of the molecules, molecular electrostatic potential (MEPS) map has been plotted. The combination of experimental and calculated results provide an insight into the structural and vibrational spectroscopic properties of EZT. In order to give an insight for the biological activity of EZT, molecular docking of EZT with protein NPC1L1 has been done.

  13. Simultaneous microscopic measurements of thermal and spectroscopic fields of a phase change material

    NASA Astrophysics Data System (ADS)

    Romano, M.; Ryu, M.; Morikawa, J.; Batsale, J. C.; Pradere, C.

    2016-05-01

    In this paper, simultaneous microscopic measurements of thermal and spectroscopic fields of a paraffin wax n-alkane phase change material are reported. Measurements collected using an original set-up are presented and discussed with emphasis on the ability to perform simultaneous characterization of the system when the proposed imaging process is used. Finally, this work reveals that the infrared wavelength contains two sets of important information. Furthermore, this versatile and flexible technique is well adapted to characterize many systems in which the mass and heat transfers effects are coupled.

  14. [Spectroscopic studies on transition metal ions in colored diamonds].

    PubMed

    Meng, Yu-Fei; Peng, Ming-Sheng

    2004-07-01

    Transition metals like nickel, cobalt and iron have been often used as solvent catalysts in high pressure high temperature (HPHT) synthesis of diamond, and nickel and cobalt ions have been found in diamond lattice. Available studies indicated that nickel and cobalt ions could enter the lattice as interstitial or substitutional impurities and form complexes with nitrogen. Polarized microscopy, SEM-EDS, EPR, PL and FTIR have been used in this study to investigate six fancy color natural and synthetic diamonds in order to determine the spectroscopic characteristics and the existing forms of transition metal ions in colored diamond lattice. Cobalt-related optical centers were first found in natural chameleon diamonds, and some new nickel and cobalt-related optical and EPR centers have also been detected in these diamond samples. PMID:15766067

  15. Site-Specific Spectroscopic Reporters of the Local Electric Field, Hydration, Structure, and Dynamics of Biomolecules

    PubMed Central

    Waegele, Matthias M.; Culik, Robert M.; Gai, Feng

    2011-01-01

    Elucidating the underlying molecular mechanisms of protein folding and function is a very exciting and active research area, but poses significant challenges. This is due in part to the fact that existing experimental techniques are incapable of capturing snapshots along the ‘reaction coordinate’ in question with both sufficient spatial and temporal resolutions. In this regard, recent years have seen increased interests and efforts in development and employment of site-specific probes to enhance the structural sensitivity of spectroscopic techniques in conformational and dynamical studies of biological molecules. In particular, the spectroscopic and chemical properties of nitriles, thiocyanates, and azides render these groups attractive for the interrogation of complex biochemical constructs and processes. Here, we review their signatures in vibrational, fluorescence and NMR spectra and their utility in the context of elucidating chemical structure and dynamics of protein and DNA molecules. PMID:22003429

  16. Protonated nitrous oxide, NNOH+: fundamental vibrational frequencies and spectroscopic constants from quartic force fields.

    PubMed

    Huang, Xinchuan; Fortenberry, Ryan C; Lee, Timothy J

    2013-08-28

    The interstellar presence of protonated nitrous oxide has been suspected for some time. Using established high-accuracy quantum chemical techniques, spectroscopic constants and fundamental vibrational frequencies are provided for the lower energy O-protonated isomer of this cation and its deuterated isotopologue. The vibrationally-averaged B0 and C0 rotational constants are within 6 MHz of their experimental values and the D(J) quartic distortion constants agree with experiment to within 3%. The known gas phase O-H stretch of NNOH(+) is 3330.91 cm(-1), and the vibrational configuration interaction computed result is 3330.9 cm(-1). Other spectroscopic constants are also provided, as are the rest of the fundamental vibrational frequencies for NNOH(+) and its deuterated isotopologue. This high-accuracy data should serve to better inform future observational or experimental studies of the rovibrational bands of protonated nitrous oxide in the interstellar medium and the laboratory. PMID:24007003

  17. Protonated Nitrous Oxide, NNOH(+): Fundamental Vibrational Frequencies and Spectroscopic Constants from Quartic Force Fields

    NASA Technical Reports Server (NTRS)

    Huang, Xinchuan; Fortenberry, Ryan C.; Lee, Timothy J.

    2013-01-01

    The interstellar presence of protonated nitrous oxide has been suspected for some time. Using established high-accuracy quantum chemical techniques, spectroscopic constants and fundamental vibrational frequencies are provided for the lower energy O-protonated isomer of this cation and its deuterated isotopologue. The vibrationally-averaged B0 and C0 rotational constants are within 6 MHz of their experimental values and the D(subJ) quartic distortion constants agree with experiment to within 3%. The known gas phase O-H stretch of NNOH(+) is 3330.91 cm(exp-1), and the vibrational configuration interaction computed result is 3330.9 cm(exp-1). Other spectroscopic constants are also provided, as are the rest of the fundamental vibrational frequencies for NNOH(+) and its deuterated isotopologue. This high-accuracy data should serve to better inform future observational or experimental studies of the rovibrational bands of protonated nitrous oxide in the ISM and the laboratory.

  18. Spectroscopic Capabilities of XMM for Stellar Coronal Studies

    NASA Astrophysics Data System (ADS)

    Pallavicini, R.

    The turn of the millennium will be a marvelous time for X-ray astronomy with the launch of powerful missions such as AXAF, XMM, and ASTRO-E. Stellar coronae, with their spectra rich in emission lines, will be primary targets to exploit the spectroscopic capabilities of these missions. In particular, the CCD cameras and reflection gratings on XMM will allow us to address a number of key questions in stellar coronal physics. The capabilities of XMM for the study of stellar coronae are illustrated by means of simulations of EPIC and RGS spectra for a variety of typical stellar coronal sources. The mission time-line and the policy for accessing the data are also briefly illustrated.

  19. Molecular spectroscopic study for suggested mechanism of chrome tanned leather

    NASA Astrophysics Data System (ADS)

    Nashy, Elshahat H. A.; Osman, Osama; Mahmoud, Abdel Aziz; Ibrahim, Medhat

    2012-03-01

    Collagen represents the structural protein of the extracellular matrix, which gives strength of hides and/or skin under tanning process. Chrome tan is the most important tanning agent all over the world. The methods for production of leather evolved over several centuries as art and engineering with little understanding of the underlying science. The present work is devoted to suggest the most probable mechanistic action of chrome tan on hide proteins. First the affect of Cr upon hide protein is indicated by the studied mechanical properties. Then the spectroscopic characterization of the hide protein as well as chrome tanned leather was carried out with Horizontal Attenuated Total Reflection (HATR) FT-IR. The obtained results indicate how the chromium can attached with the active sites of collagen. Molecular modeling confirms that chromium can react with amino as well as carboxylate groups. Four schemes were obtained to describe the possible interactions of chrome tan with hide proteins.

  20. Molecular spectroscopic study for suggested mechanism of chrome tanned leather.

    PubMed

    Nashy, Elshahat H A; Osman, Osama; Mahmoud, Abdel Aziz; Ibrahim, Medhat

    2012-03-01

    Collagen represents the structural protein of the extracellular matrix, which gives strength of hides and/or skin under tanning process. Chrome tan is the most important tanning agent all over the world. The methods for production of leather evolved over several centuries as art and engineering with little understanding of the underlying science. The present work is devoted to suggest the most probable mechanistic action of chrome tan on hide proteins. First the affect of Cr upon hide protein is indicated by the studied mechanical properties. Then the spectroscopic characterization of the hide protein as well as chrome tanned leather was carried out with Horizontal Attenuated Total Reflection (HATR) FT-IR. The obtained results indicate how the chromium can attached with the active sites of collagen. Molecular modeling confirms that chromium can react with amino as well as carboxylate groups. Four schemes were obtained to describe the possible interactions of chrome tan with hide proteins. PMID:22225606

  1. Spectroscopic study of photo and thermal destruction of riboflavin

    NASA Astrophysics Data System (ADS)

    Astanov, Salikh; Sharipov, Mirzo Z.; Fayzullaev, Askar R.; Kurtaliev, Eldar N.; Nizomov, Negmat

    2014-08-01

    Influence of temperature and light irradiation on the spectroscopic properties of aqueous solutions of riboflavin was studied using linear dichroism method, absorption and fluorescence spectroscopy. It was established that in a wide temperature range 290-423 K there is a decline of absorbance and fluorescence ability, which is explained by thermodestruction of riboflavin. It is shown that the proportion of molecules, which have undergone degradation, are in the range of 4-28%, and depends on the concentration and quantity of temperature effects. Introduction of hydrochloric and sulfuric acids, as well as different metal ions leads to an increase in the photostability of riboflavin solutions by 2-2.5 times. The observed phenomena are explained by the formation protonation form of riboflavin and a complex between the metal ions and oxygen atoms of the carbonyl group of riboflavin, respectively.

  2. Raman spectroscopic study of "The Malatesta": a Renaissance painting?

    PubMed

    Edwards, Howell G M; Vandenabeele, Peter; Benoy, Timothy J

    2015-02-25

    Raman spectroscopic analysis of the pigments on an Italian painting described as a "Full Length Portrait of a Gentleman", known also as the "Malatesta", and attributed to the Renaissance period has established that these are consistent with the historical research provenance undertaken earlier. Evidence is found for the early 19th Century addition of chrome yellow to highlighted yellow ochre areas in comparison with a similar painting executed in 1801 by Sir Thomas Lawrence of John Kemble in the role of Hamlet, Prince of Denmark. The Raman data are novel in that no analytical studies have previously been made on this painting and reinforces the procedure whereby scientific analyses are accompanied by parallel historical research. PMID:25194320

  3. Spectroscopic and quantum chemical studies on 4-acryloyl morpholine

    NASA Astrophysics Data System (ADS)

    Arjunan, V.; Rani, T.; Santhanalakshmi, K.; Mohan, S.

    2011-09-01

    Fourier transform infrared (FTIR) and FT-Raman spectra have been recorded and an extensive spectroscopic investigations have been carried out on 4-acryloyl morpholine (4AM). Theoretical quantum chemical studies have also been performed. From the ab initio and DFT analysis using HF, B3LYP and B3PW91 methods with 6-31G(d,p) and 6-311G++(d,p) basis sets the energies, structural, thermodynamical and vibrational characteristics of the compound were determined. The energy difference between the chair equatorial and chair axial conformers of 4AM have been calculated by density functional theory (DFT) method. The optimized geometrical parameters, theoretical wavenumbers and thermodynamic properties of the molecule are compared with the experimental values. The effect of acryloyl group on the characteristic frequencies of the morpholine ring has been analysed. The mixing of the fundamental modes with the help of potential energy distribution (PED) through normal co-ordinate analysis has been discussed.

  4. Infrared spectroscopic study of sputtered tungsten oxide films

    SciTech Connect

    Paul, J.L.; Lassegues, J.C. )

    1993-10-01

    Recent infrared and Raman spectroscopic studies of various tungsten oxide films concluded either the formation of W=O terminal bonds or the transformation of such bonds into W-OH groups upon proton insertion. The infrared transmission and reflection spectra of bleached and colored sputtered films were reinvestigated in order to resolve the previous contradictory interpretations and for better insight into the mechanism of electrochromism at the molecular level. The new results confirm the first interpretation and allow us to show that H[sup +] or Li[sup +] insertion creates shorter ([approximately]1.7[angstrom]) and longer ([approximately]2 [angstrom]) W-O bonds around the W[sup 5+] centers. These results are in agreement with the concepts of small polaron and of intervalence charge transfer mechanism. They illustrate the local lattice distortion around a W[sup 5+] site. Aging of the initial films has also been followed and characterized by H/D in situ isotopic exchange.

  5. Spectroscopic study of Gd nanostructures quantum confined in Fe corrals

    SciTech Connect

    Cao, R. X.; Sun, L.; Miao, B. F.; Li, Q. L.; Zheng, C.; Wu, D.; You, B.; Zhang, W.; Han, P.; Bader, S. D.; Zhang, W. Y.; Ding, H. F.

    2015-07-10

    Low dimensional nanostructures have attracted attention due to their rich physical properties and potential applications. The essential factor for their functionality is their electronic properties, which can be modified by quantum confinement. Here the electronic states of Gd atom trapped in open Fe corrals on Ag(111) were studied via scanning tunneling spectroscopy. A single spectroscopic peak above the Fermi level is observed after Gd adatoms are trapped inside Fe corrals, while two peaks appear in empty corrals. The single peak position is close to the higher energy peak of the empty corrals. These findings, attributed to quantum confinement of the corrals and Gd structures trapped inside, are supported by tight-binding calculations. As a result, this demonstrates and provides insights into atom trapping in open corrals of various diameters, giving an alternative approach to modify the properties of nano-objects.

  6. Spectroscopic study of Gd nanostructures quantum confined in Fe corrals

    DOE PAGESBeta

    Cao, R. X.; Sun, L.; Miao, B. F.; Li, Q. L.; Zheng, C.; Wu, D.; You, B.; Zhang, W.; Han, P.; Bader, S. D.; et al

    2015-07-10

    Low dimensional nanostructures have attracted attention due to their rich physical properties and potential applications. The essential factor for their functionality is their electronic properties, which can be modified by quantum confinement. Here the electronic states of Gd atom trapped in open Fe corrals on Ag(111) were studied via scanning tunneling spectroscopy. A single spectroscopic peak above the Fermi level is observed after Gd adatoms are trapped inside Fe corrals, while two peaks appear in empty corrals. The single peak position is close to the higher energy peak of the empty corrals. These findings, attributed to quantum confinement of themore » corrals and Gd structures trapped inside, are supported by tight-binding calculations. As a result, this demonstrates and provides insights into atom trapping in open corrals of various diameters, giving an alternative approach to modify the properties of nano-objects.« less

  7. A detailed spectroscopic study of an Italian fresco

    SciTech Connect

    Barilaro, Donatella; Crupi, Vincenza; Majolino, Domenico; Barone, Germana; Ponterio, Rosina

    2005-02-15

    In the present work we characterized samples of plasters and pictorial layers taken from a fresco in the Acireale Cathedral. The fresco represents the Coronation of Saint Venera, patron saint of this Ionian town. By performing a detailed spectroscopic analysis of the plaster preparation layer by Fourier-transform infrared (FTIR) spectroscopy and x-ray diffraction (XRD), and of the painting layer by FTIR and confocal Raman microspectroscopy, scanning electron microscopy+energy dispersive x-ray spectroscopy, and XRD, we were able to identify the pigments and the binders present. In particular, Raman investigation was crucial to the characterization of the pigments thanks to the high resolution of the confocal apparatus used. It is worth stressing that the simultaneous use of complementary techniques was able to provide more complete information for the conservation of the artifact we studied.

  8. Ultrasonic and spectroscopic studies on photoactivation of euglena

    NASA Astrophysics Data System (ADS)

    Saito, Mitsunori; Morita, Shin

    2006-12-01

    We studied the effect of the irradiation wavelength on the activity of photosynthetic euglena. The ultrasonic manipulation technique was used for both the activity evaluation and the movement restriction in the spectral measurements. Euglenas that had been preserved in darkness became inactive, and accordingly most of them were trapped by the ultrasonic standing wave (0.8mW/mm2). However, when they were exposed to light of 500 or 700nm wavelength (0.13W/m2), they became active enough to escape from the trapping. By contrast, irradiation at 550, 600, or 650nm wavelength had no effect on their activity. Spectroscopic measurements, which used to be difficult for locomotive microorganisms, were conducted successfully by trapping euglena at a node of the ultrasonic standing wave. The absorption bands were observed at around 500 or 700nm, which corresponded to the irradiation wavelengths that activated euglena.

  9. Pick and Choose the Spectroscopic Method to Calibrate the Local Electric Field inside Proteins.

    PubMed

    Haldar, Tapas; Kashid, Somnath M; Deb, Pranab; Kesh, Sandeep; Bagchi, Sayan

    2016-07-01

    Electrostatic interactions in proteins play a crucial role in determining the structure-function relation in biomolecules. In recent years, fluorescent probes have been extensively employed to interrogate the polarity in biological cavities through dielectric constants or semiempirical polarity scales. A choice of multiple spectroscopic methods, not limited by fluorophores, along with a molecular level description of electrostatics involving solute-solvent interactions, would allow more flexibility to pick and choose the experimental technique to determine the local electrostatics within protein interiors. In this work we report that ultraviolet/visible-absorption, infrared-absorption, or (13)C NMR can be used to calibrate the local electric field in both hydrogen bonded and non-hydrogen bonded protein environments. The local electric field at the binding site of a serum protein has been determined using the absorption wavelength as well as the carbonyl stretching frequency of its natural steroid substrate, testosterone. Excellent agreement is observed in the results obtained from two independent spectroscopic techniques. PMID:27295386

  10. Laser-spectroscopic electric field measurements in a ns-pulsed microplasma in nitrogen

    NASA Astrophysics Data System (ADS)

    Boehm, Patrick; Luggenhoelscher, Dirk; Czarnetzki, Uwe; 1123 Research Group Collaboration

    2013-09-01

    In this work for the first time ns-pulsed discharges in nitrogen at near atmospheric pressures are investigated by laser-spectroscopic electric field measurements, ultra-fast optical emission spectroscopy, current and voltage measurements. The discharge is operated with kV-pulses of about 150 ns duration between two parallel plate electrodes with a 1.2 mm gap. The laser technique for electric field measurement is based on a four-wave mixing process similar to Coherent anti-Stokes Raman Scattering (CARS). Here the static electric field acts effectively as the third wave with a zero frequency. The frequency of the generated anti-Stokes wave is in the IR regime and the amplitude is proportional to the electric field strength. By measuring the intensity of the IR- and anti-Stokes-signal it is now possible to determine the static electric field. Due to the short pulse-length of the lasers a temporal resolution in the ns range and a typical sensitivity of 50 - 100 V/mm in pure nitrogen is achieved (p > 50 mbar). Field-measurements are accompanied by emission measurements using a streak-camera with sub-ns resolutions. Further, current and voltage measurements combined with the electric field measurements allow determination of the plasma density. Funding by DFG through FOR 1123.

  11. Spectroscopic and Crystal Field Consequences of Fluoride Binding by [Yb⋅DTMA]3+ in Aqueous Solution

    PubMed Central

    Blackburn, Octavia A.; Chilton, Nicholas F.; Keller, Katharina; Tait, Claudia E.; Myers, William K.; McInnes, Eric J. L.; Kenwright, Alan M.; Beer, Paul D.; Timmel, Christiane R.

    2015-01-01

    Abstract Yb⋅DTMA forms a ternary complex with fluoride in aqueous solution by displacement of a bound solvent molecule from the lanthanide ion. [Yb⋅DTMA⋅F]2+ and [Yb⋅DTMA⋅OH2]3+ are in slow exchange on the relevant NMR timescale (<2000 s−1), and profound differences are observed in their respective NMR and EPR spectra of these species. The observed differences can be explained by drastic modification of the ligand field states due to the fluoride binding. This changes the magnetic anisotropy of the YbIII ground state from easy‐axis to easy‐plane type, and this change is easily detected in the observed magnetic anisotropy despite thermal population of more than just the ground state. The spectroscopic consequences of such drastic changes to the ligand field represent important new opportunities in developing fluoride‐responsive complexes and contrast agents. PMID:27478267

  12. Spectroscopic and Crystal Field Consequences of Fluoride Binding by [Yb⋅DTMA]3+ in Aqueous Solution

    PubMed Central

    Blackburn, Octavia A; Chilton, Nicholas F; Keller, Katharina; Tait, Claudia E; Myers, William K; McInnes, Eric J L; Kenwright, Alan M; Beer, Paul D; Timmel, Christiane R; Faulkner, Stephen

    2015-01-01

    Yb⋅DTMA forms a ternary complex with fluoride in aqueous solution by displacement of a bound solvent molecule from the lanthanide ion. [Yb⋅DTMA⋅F]2+ and [Yb⋅DTMA⋅OH2]3+ are in slow exchange on the relevant NMR timescale (<2000 s−1), and profound differences are observed in their respective NMR and EPR spectra of these species. The observed differences can be explained by drastic modification of the ligand field states due to the fluoride binding. This changes the magnetic anisotropy of the YbIII ground state from easy-axis to easy-plane type, and this change is easily detected in the observed magnetic anisotropy despite thermal population of more than just the ground state. The spectroscopic consequences of such drastic changes to the ligand field represent important new opportunities in developing fluoride-responsive complexes and contrast agents. PMID:26223970

  13. EPR Spectroscopic Studies of [FeFe]-Hydrogenase Maturation

    PubMed Central

    Suess, Daniel L. M.

    2015-01-01

    Proton reduction and H2 oxidation are key elementary reactions for solar fuel production. Hydrogenases interconvert H+ and H2 with remarkable efficiency and have therefore received much attention in this context. For [FeFe]-hydrogenases, catalysis occurs at a unique cofactor called the H-cluster. In this article, we discuss ways in which EPR spectroscopy has elucidated aspects of the bioassembly of the H-cluster, with a focus on four case studies: EPR spectroscopic identification of a radical en route to the CO and CN− ligands of the H-cluster, tracing 57Fe from the maturase HydG into the H-cluster, characterization of the auxiliary Fe–S cluster in HydG, and isotopic labeling of the CN− ligands of HydA for electronic structure studies of its Hox state. Advances in cell-free maturation protocols have enabled several of these mechanistic studies, and understanding H-cluster maturation may in turn provide insights leading to improvements in hydrogenase production for biotechnological applications. PMID:26508821

  14. Spectroscopic study of sorption of nitrogen heterocyclic compounds on phyllosilicates

    SciTech Connect

    Chattopadhyay, S.; Traina, S.J.

    1999-03-02

    The present study focused on understanding the sorption characteristics of acridine (AcN) and acridine-9-carboxylic acid (AcNCOOH), two typical nitrogen heterocyclic compounds (NHCs), on well-characterized phyllosilicates (hectorite, saponite, and muscovite). Results presented in this article show that the degree of sorption of NHCs on phyllosilicates was dependent on the nature of the participating sorbates and sorbents. Sorption of the selected NHCs was pH-dependent, with maximum sorption occurring at low pH conditions, especially at pH < pK{sub a} of the NHC. Though sorption of the cationic forms of the NHCs on clays was preferred, neutral, zwitterionic, and anionic species of NHCs also sorbed on the clay surfaces. Spectroscopic studies have shown that sorbed NHC molecules formed clusters on clay surfaces, which acted as templates for molecular aggregation. Finally, the authors have also found that the clay surfaces promoted protonation of neutral AcN molecules at low sorbate concentrations.

  15. Particle in a Disk: A Spectroscopic and Computational Laboratory Exercise Studying the Polycyclic Aromatic Hydrocarbon Corannulene

    ERIC Educational Resources Information Center

    Frey, E. Ramsey; Sygula, Andrzej; Hammer, Nathan I.

    2014-01-01

    This laboratory exercise introduces undergraduate chemistry majors to the spectroscopic and theoretical study of the polycyclic aromatic hydrocarbon (PAH), corannulene. Students explore the spectroscopic properties of corannulene using UV-vis and Raman vibrational spectroscopies. They compare their experimental results to simulated vibrational…

  16. Infrared Imaging, Spectroscopic, and Photometric Studies of Comets

    NASA Technical Reports Server (NTRS)

    Gehrz, Robert D.

    1997-01-01

    We have continued our program of infrared (IR) photometric, imaging, spectroscopic, and polarimetric temporal observations of comets to study the properties of comet dust and comet nuclei. During the first two years we digitized our IR data base on P/Halley and other recent comets to facilitate further analysis and comparison with other data bases, and found compelling evidence for the emission of a burst of small grains from P/Halley's nucleus at perihelion. We reported imaging and photometric observations of Comets Austin 1990 V and Swift-Tuttle 1992. The Swift-Tuttle 1992t observations included IR photometry, several 7-14 micron long-slit spectra of the coma and a time-sequence of more than 150 10 micron broadband images of the coma. An analysis of near-IR images of the inner coma of P/Halley obtained on three consecutive nights in 1986 March showed sunwardjets. We completed our analysis of IR imaging spectrosco-photometric data on comets. We also obtained observations of Comets Hyakutake 1996 B2 and Hale/Bopp 1995 01. We obtained infrared imaging, photometric, spectroscopic and polarimetric temporal observations of bright comets using a network of five telescopes, with emphasis on simultaneous observations of comets at many wavelengths with different instruments. Our program offers several unique advantages: 1) rapid observational response to new comets with dedicated infrared telescopes; 2) observations within a few degrees of the sun when comets are near perihelion and 3) access to advanced infrared array imagers and spectrometers. In particular, reduction, analysis, publication and archiving of our Jupiter/sl-9 and Comet Hyakutake infrared data received special emphasis. Instrumentation development included installation of the latest version of the innovative FORTH telescope control and a data acquisition system that enables us to control three telescopes remotely by telephone from anywhere in the world for comet observations in broad daylight. We have

  17. Trihydrogen cation with neon and argon: structural, energetic, and spectroscopic data from quartic force fields.

    PubMed

    Theis, Riley A; Fortenberry, Ryan C

    2015-05-21

    The argonium cation, ArH(+), has been previously detected in nature for the first time. This cation is believed to form through the gas-phase reaction of Ar(+) and H2. In this work, quantum chemical techniques show that the reaction of Ar and H3(+) may be a viable alternative or contributor to the creation of ArH(+) corroborating previous analysis. In order to further evaluate this claim, highly accurate quartic force field computations are used to produce spectroscopic data and anharmonic vibrational frequencies for ArH3(+) in its 18 isotopologues. NeH3(+) is also analyzed but has a low Ne-H3(+) dissociation barrier. Therefore, it less likely to be observed. Consequently, NeH(+) is also unlikely to be formed from NeH3(+) as it was also not from NeH2(+). PMID:25923978

  18. Feasibility Demonstration of Wide-Field Fourier-Spectroscopic-Imaging in Infrared Region

    NASA Astrophysics Data System (ADS)

    Qi, Wei; Takuma, Takashi; Tsutsumi, Ryosuke; Inui, Asuka; Kagiyama, Hiroyasu; Kojima, Daisuke; Nishiyama, Akira; Ishimaru, Ichirou

    We are aiming at the realization of living-environment sensor and non-invasive blood-sugar sensor by the proposed imaging type 2-D Fourier spectroscopy. This method is based on the phase-shift interference between the object beams. As a result, even if the object beams are spatially incoherent, we can observe the phase-shift interference phenomena. In the near infrared region, we can obtain the high-contrast blood vessel image of mouse's ear in the deeper part by InGaAs camera. Furthermore, in the mid-infrared region, we have successfully measured the radiation spectroscopic-imaging with wild field of view by the infrared module, such as the house plants.

  19. A spectroscopic survey of X-ray-selected AGNs in the northern XMM-XXL field

    NASA Astrophysics Data System (ADS)

    Menzel, M.-L.; Merloni, A.; Georgakakis, A.; Salvato, M.; Aubourg, E.; Brandt, W. N.; Brusa, M.; Buchner, J.; Dwelly, T.; Nandra, K.; Pâris, I.; Petitjean, P.; Schwope, A.

    2016-03-01

    This paper presents a survey of X-ray-selected active galactic nuclei (AGNs) with optical spectroscopic follow-up in a ˜ 18 deg2 area of the equatorial XMM-XXL north field. A sample of 8445 point-like X-ray sources detected by XMM-Newton above a limiting flux of F_{0.5-10 keV} > 10^{-15} erg cm^{-2} s^{-1} was matched to optical (Sloan Digital Sky Survey, SDSS) and infrared (IR; WISE) counterparts. We followed up 3042 sources brighter than r = 22.5 mag with the SDSS Baryon Oscillation Spectroscopic Survey (BOSS) spectrograph. The spectra yielded a reliable redshift measurement for 2578 AGNs in the redshift range z = 0.02-5.0, with 0.5-2 keV luminosities ranging from 1039-1046 erg s- 1. This is currently the largest published spectroscopic sample of X-ray-selected AGNs in a contiguous area. The BOSS spectra of AGN candidates show a distribution of optical line widths which is clearly bimodal, allowing an efficient separation between broad- and narrow-emission line AGNs. The former dominate our sample (70 per cent) due to the relatively bright X-ray flux limit and the optical BOSS magnitude limit. We classify the narrow-emission line objects (22 per cent of the full sample) using standard optical emission line diagnostics: the majority have line ratios indicating the dominant source of ionization is the AGN. A small number (8 per cent of the full sample) exhibit the typical narrow line ratios of star-forming galaxies, or only have absorption lines in their spectra. We term the latter two classes `elusive' AGN, which would not be easy to identify correctly without their X-ray emission. We also compare X-ray (XMM-Newton), optical colour (SDSS) and and IR (WISE) AGN selections in this field. X-ray observations reveal, by far, the largest number of AGN. The overlap between the selections, which is a strong function of the imaging depth in a given band, is also remarkably small. We show using spectral stacking that a large fraction of the X-ray AGNs would not be

  20. Spectroscopic study of HNO3 dissociation on ice.

    PubMed

    Marchand, Patrick; Marcotte, Guillaume; Ayotte, Patrick

    2012-12-13

    A detailed spectroscopic study of HNO(3):H(2)O binary amorphous mixtures, and of the adsorption of HNO(3) onto ice, is reported. Using a classical optics model, the extent of intermixing and of ionic dissociation of adsorbed HNO(3), which forms a strong acid with liquid water, is determined as a function of HNO(3) coverage and temperature. Even at temperatures as low as 45 K, where intermixing is limited to at most a few molecular layers at the interface, ionic dissociation of adsorbed HNO(3) is observed to be extensive. While some amount of molecularly adsorbed HNO(3) is observed at the surface of ice at 45 K, its ionic dissociation occurs irreversibly upon heating the ice substrate to 120 K. The molecularly adsorbed state of HNO(3) is not restored upon cooling, suggesting HNO(3) is a metastable entity at the surface of ice. Therefore, despite ionic dissociation of HNO(3) being thermodynamically favored, it appears to be kinetically inhibited at the surface of amorphous solid water at temperatures below 120 K. PMID:23130955

  1. In vitro spectroscopic study of piperine-encapsulated nanosize liposomes.

    PubMed

    Pentak, Danuta

    2016-03-01

    Black pepper is a source of effective antioxidants. It contains several powerful antioxidants and is thus one of the most important spices for preventing and curtailing oxidative stress. There is considerable interest in the development of a drug-delivery systems that would result in the selective delivery of antioxidants to tissues in sufficient concentrations to ameliorate oxidant-induced tissue injuries. Liposomes are biocompatible, biodegradable and nontoxic artificial phospholipid vesicles that offer the possibility of carrying hydrophilic, hydrophobic and amphiphilic molecules. This article focuses on the use of liposomes for the delivery of antioxidants in the prevention or treatment of pathological conditions related to oxidative stress. Liposome formulations of piperine were analyzed with various spectroscopic methods. The formulation with the highest entrapment efficiency (90.5%) was formulated with an L-α-phosphatidylcholine dipalmitoyl (DPPC):piperine, 30:1 molar ratio, and total lipid count of 19.47 mg/ml in the final liposomal preparation. The liposome formulation was found to be stable after storage at 4 °C, protected from light, for a minimum of 3 weeks. The incremental process of piperine penetration through the phospholipid membrane was analyzed using the FT-IR, UV-Vis and NMR methods. Temperature stability studies carried out at 37 °C showed the highest percentage of piperine release in the first 3 h of incubation. PMID:26493066

  2. Vibrational spectroscopic study of vinyl substituted polycyclic aromatic hydrocarbons.

    PubMed

    Maurya, Anju; Rastogi, Shantanu

    2015-12-01

    The mid infrared emission features observed in various astrophysical sources are attributed to polycyclic aromatic hydrocarbon (PAH) molecules. The models of emission spectra from a collection of PAHs show uncertainty in matching the 6.2 μm feature. This indicates the need to consider a larger variety of PAHs and PAH derivatives. Chemical pathways towards formation of PAHs in the astrophysical environments involve vinyl substituted PAHs as intermediate products. Vibrational spectroscopic study of vinyl-PAHs is reported in the present work. The vinyl group is substituted at similar positions in eight different PAHs. The obtained optimized structures show that vinyl substitution at 2 position in acenes gives planar geometry, while all other vinyl-PAHs are non-planar. Infrared spectra is simulated for neutrals as well as for cations. The results are compared with the spectra of corresponding plain PAHs and analyzed for possible match with astrophysical observations. New features, due to vinyl group in the composite spectra, identified at 6.64, 6.92, 7.27, 8.77 and 10.35 μm fall close to some sub features of the observed emission spectra. The paper provides data that may be used in the emission models particularly along proto planetary nebulae type cool objects. PMID:26117194

  3. Spectroscopic studies of anthracyclines: Structural characterization and in vitro tracking.

    PubMed

    Szafraniec, Ewelina; Majzner, Katarzyna; Farhane, Zeineb; Byrne, Hugh J; Lukawska, Malgorzata; Oszczapowicz, Irena; Chlopicki, Stefan; Baranska, Malgorzata

    2016-12-01

    A broad spectroscopic characterization, using ultraviolet-visible (UV-vis) and Fourier transform infrared absorption as well as Raman scattering, of two commonly used anthracyclines antibiotics (DOX) daunorubicin (DNR), their epimers (EDOX, EDNR) and ten selected analogs is presented. The paper serves as a comprehensive spectral library of UV-vis, IR and Raman spectra of anthracyclines in the solid state and in solution. The particular advantage of Raman spectroscopy for the measurement and analysis of individual antibiotics is demonstrated. Raman spectroscopy can be used to monitor the in vitro uptake and distribution of the drug in cells, using both 488nm and 785nm as source wavelengths, with submicrometer spatial resolution, although the cellular accumulation of the drug is different in each case. The high information content of Raman spectra allows studies of the drug-cell interactions, and so the method seems very suitable for monitoring drug uptake and mechanisms of interaction with cellular compartments at the subcellular level. PMID:27372511

  4. Fluorination of graphene: a spectroscopic and microscopic study.

    PubMed

    Wang, Bei; Wang, Junjie; Zhu, Jun

    2014-02-25

    Since the advent of graphene, there has been intense interest in exploring the possibility of incorporating fluorinated graphene (FG), an ultrathin insulator, into graphene electronics as barriers, gate dielectrics, and optoelectronic elements. Here we report on the synthesis of FG from single-layer graphene sheets grown by chemical vapor deposition (CVD) using CF4 plasma. We examine its properties systematically via microscopic and spectroscopic probes. Our studies show that, by controlling the conditions of the plasma, FG of varying fluorine coverage can be produced; however, the resulting material contains a mixture of CFx (x = 1-3) bonds. Existing grain boundaries and lattice defects of CVD graphene play an important role in controlling its rate of fluorination and the damage of the sheet. Combining topography and current mapping, we demonstrate that the spatial distribution of fluorine on CVD graphene is highly inhomogeneous, where multilayer islands and structural features such as folds, wrinkles, and ripples are less fluorinated and consequently form a conductive network through which charge transport occurs. It is the properties of this network that manifest in the electrical transport of FG sheets. Our experiments reveal the many challenges of deriving electronics-quality FG from current CVD graphene while at the same time point to the possible solutions and potential of FG in graphene electronics and optoelectronics. PMID:24471932

  5. Nonplanar property study of antifungal agent tolnaftate-spectroscopic approach

    NASA Astrophysics Data System (ADS)

    Arul Dhas, D.; Hubert Joe, I.; Roy, S. D. D.; Balachandran, S.

    2011-09-01

    Vibrational analysis of the thionocarbamate fungicide tolnaftate which is antidermatophytic, antitrichophytic and antimycotic agent, primarily inhibits the ergosterol biosynthesis in the fungus, was carried out using NIR FT-Raman and FTIR spectroscopic techniques. The equilibrium geometry, various bonding features, harmonic vibrational wavenumbers and torsional potential energy surface (PES) scan studies have been computed using density functional theory method. The detailed interpretation of the vibrational spectra has been carried out with the aid of VEDA.4 program. Vibrational spectra, natural bonding orbital (NBO) analysis and optimized molecular structure show the clear evidence for electronic interaction of thionocarbamate group with aromatic ring. Predicted electronic absorption spectrum from TD-DFT calculation has been compared with the UV-vis spectrum. The Mulliken population analysis on atomic charges and the HOMO-LUMO energy were also calculated. Vibrational analysis reveals that the simultaneous IR and Raman activation of the C-C stretching mode in the phenyl and naphthalene ring provide evidence for the charge transfer interaction between the donor and acceptor groups and is responsible for its bioactivity as a fungicide.

  6. Raman spectroscopic studies of the cure of dicyclopentadiene (DCPD)

    NASA Astrophysics Data System (ADS)

    Barnes, S. E.; Brown, E. C.; Corrigan, N.; Coates, P. D.; Harkin-Jones, E.; Edwards, H. G. M.

    2005-10-01

    The cure of polydicyclopentadiene conducted by ring-opening metathesis polymerisation in the presence of a Grubbs catalyst was studied using non-invasive Raman spectroscopy. The spectra of the monomer precursor and polymerised product were fully characterised and all stages of polymerisation monitored. Because of the monomer's high reactivity, the cure process is adaptable to reaction injection moulding and reactive rotational moulding. The viscosity of the dicyclopentadiene undergoes a rapid change at the beginning of the polymerisation process and it is critical that the induction time of the viscosity increase is determined and controlled for successful manufacturing. The results from this work show non-invasive Raman spectroscopic monitoring to be an effective method for monitoring the degree of cure, paving the way for possible implementation of the technique as a method of real-time analysis for control and optimisation during reactive processing. Agreement is shown between Raman measurements and ultrasonic time of flight data acquired during the initial induction period of the curing process.

  7. New homotrinuclear lanthanide complexes: synthesis, characterization and spectroscopic study.

    PubMed

    Silva, Wagner E; Belian, Mônica Freire; Freire, Ricardo O; de Sá, Gilberto F; Alves, Severino

    2010-09-23

    This work presents the synthesis and spectroscopic study of new homotrinuclear (TRI) systems for photonics applications. The luminescence spectroscopy shows characteristics transitions of Eu(III) and Tb(III) ions. For the Gd(III) complexes, the triplets states were determined by phosphorescence measurement. The complexes’ coordination geometries were calculated using the Sparkle/AM1 model. For the europium systems, the Sparkle/AM1 geometries were used to calculate all details involved in the energy transfer process, and the theoretical quantum yields were determined. From an energy diagram, that estimates triplet levels, it was possible to understand some experimental phenomenon, such as weak luminescence for precursor complex (without heterocyclics ligands), and ligands emission in terbium complexes. Some of these observations can also be explained by the Jablonski diagrams that describe, based on theoretical calculations, all luminescent process. The synthesized complexes showed high values of quantum yield in ethanolic environment: 50% for EuTRIDipy, 26% EuTRITerpy, and 56% for EuTRIPhen complexes. PMID:20738128

  8. A spectroscopic study of the globular Cluster NGC 4147

    NASA Astrophysics Data System (ADS)

    Villanova, S.; Monaco, L.; Moni Bidin, C.; Assmann, P.

    2016-08-01

    We present the abundance analysis for a sample of 18 red giant branch stars in the metal-poor globular cluster NGC 4147 based on medium- and high-resolution spectra. This is the first extensive spectroscopic study of this cluster. We derive abundances of C, N, O, Na, Mg, Al, Si, Ca, Ti, Cr, Fe, Ni, Y, Ba, and Eu. We find a metallicity of [Fe/H] = -1.84 ± 0.02 and an α-enhancement of +0.38 ± 0.05 (errors on the mean), typical of halo globular clusters in this metallicity regime. A significant spread is observed in the abundances of light elements C, N, O, Na, and Al. In particular, we found an Na-O anticorrelation and Na-Al correlation. The cluster contains only ˜15 per cent of stars that belong to the first generation (Na-poor and O-rich). This implies that it suffered a severe mass-loss during its lifetime. Its [Ca/Fe] and [Ti/Fe] mean values agree better with the Galactic halo trend than with the trend of extragalactic environments at the cluster metallicity. This possibly suggests that NGC 4147 is a genuine Galactic object at odd with what claimed by some author that proposed the cluster to be member of the Sagittarius dwarf galaxy. An antirelation between the light s-process element Y and Na may also be present.

  9. Photoacoustic FTIR spectroscopic study of undisturbed human cortical bone

    NASA Astrophysics Data System (ADS)

    Gu, Chunju; Katti, Dinesh R.; Katti, Kalpana S.

    2013-02-01

    Chemical pretreatment has been the prevailing sample preparation procedure for infrared (IR) spectroscopic studies on bone. However, experiments have indicated that chemical pretreatment can potentially affect the interactions between the components. Typically the IR techniques have involved transmission experiments. Here we report experimental studies using photoacoustic Fourier transform infrared spectroscopy (PA-FTIR). As a nondestructive technique, PA-FTIR can detect absorbance spectrum from a sample at controllable sampling depth and with little or no sample preparation. Additionally, the coupling inert gas, helium, which is utilized in the PA-FTIR system, can inhibit bacteria growth of bone by displacing oxygen. Therefore, we used this technique to study the undisturbed human cortical bone. It is found that photoacoustic mode (linear-scan, LS-PA-FTIR) can obtain basically similar spectra of bone as compared to the traditional transmission mode, but it seems more sensitive to amide III and ν2 carbonate bands. The ν3 phosphate band is indicative of detailed mineral structure and symmetry of native bone. The PA-FTIR depth profiling experiments on human cortical bone also indicate the influence of water on OH band and the cutting effects on amide I and mineral bands. Our results indicate that phosphate ion geometry appears less symmetric in its undisturbed state as detected by the PA-FTIR as compared to higher symmetry observed using transmission techniques on disturbed samples. Moreover, the PA-FTIR spectra indicate a band at 1747 cm-1 possibly resulting from Cdbnd O stretching of lipids, cholesterol esters, and triglycerides from the arteries. Comparison of the spectra in transverse and longitudinal cross-sections demonstrates that, the surface area of the longitudinal section bone appears to have more organic matrix exposed and with higher mineral stoichiometry.

  10. Raman spectroscopic studies of amorphous carbon and buckminsterfullerene

    SciTech Connect

    Sinha, K.

    1992-01-01

    Raman spectroscopic techniques have been applied to investigate a variety of carbon systems. Using resonance Raman spectroscopy as a probe for optical transitions in a system, a careful quantitative estimate of the Raman cross-section of graphite in the pre-resonance regime has been made. Raman and resonance Raman spectroscopy have been used to correlate the structural and electronic properties of amorphous carbon materials. The low optical gaps and e-2e spectroscopy measurements on evaporated carbon films suggests a structure close to graphite. Raman measurements, however, reveal a great amount of disorder in the material. This apparent contradiction has been resolved through the use of a phenomenological model for the electronic density of states for amorphous carbon systems. Raman spectroscopy has also been used to study the vibrational and the electronic properties of the recently discovered third allotrope of carbon, C[sub 60]. The vibrational modes of this molecule have been studied in great detail. The observed vibrational spectra confirms earlier work in this material. Furthermore, the mode frequencies have been found to be in reasonably good agreement with theoretical predictions. Resonance Raman studies of solid C[sub 60] and C[sub 60] dissolved in solvents has revealed, in the solid phase, the existence of optical transitions well below the symmetry allowed transitions for the isolated molecules. Loss of inversion symmetry in the solid state has been proposed to account for the resonance observed in the Raman excitation profile. Original Raman measurements on C[sub 60] revealed a strong peak at 1469 cm[sup [minus]1]. The peak was found to obey the correct selection rule for symmetric A[sub g] mode and was assigned to the [open quotes]pentagonal pinch[close quotes] mode of the molecule.

  11. Mössbauer spectroscopic studies of Fe-20 wt.% Cr ball milled alloy

    NASA Astrophysics Data System (ADS)

    Pandey, Brajesh; Rao, M. Ananda; Verma, H. C.; Bhargava, S.

    2006-04-01

    Interesting differences were noticed in the alloying process during ball milling of Fe-10 wt.% Cr and Fe-20 wt.% Cr alloys by 57Fe Mössbauer spectroscopic studies. In both cases, there is almost no diffusion of Fe in Cr or vice versa up to 20 h of milling time. As the powders are milled for another 20 h substantive changes occur in the Mössbauer spectra showing atomic level mixing. But the two compositions behave differently with respect to alloying. Fe-20 wt.% Cr sample does not differ much in the hyperfine field distribution as it is milled from 40 to 100 h. On the other hand, the hyperfine field distribution keeps on changing with milling time for Fe-10 wt.% Cr sample even up to 100 h of milling. The average crystallite size is found to be 7.5 nm for Fe-10 wt.% Cr and 6.5 nm in Fe-20 wt.% Cr after milling.

  12. Mössbauer spectroscopic studies of Fe-20 wt.% Cr ball milled alloy

    NASA Astrophysics Data System (ADS)

    Pandey, Brajesh; Ananda Rao, M.; Verma, H. C.; Bhargava, S.

    Interesting differences were noticed in the alloying process during ball milling of Fe-10 wt.% Cr and Fe-20 wt.% Cr alloys by 57Fe Mössbauer spectroscopic studies. In both cases, there is almost no diffusion of Fein Cr or vice versa up to 20 h of milling time. As the powders are milled for another 20 h substantive changes occur in the Mössbauer spectra showing atomic level mixing. But the two. compositions behave differently with respect to alloying. Fe-20 wt.% Cr sample does not differ much in the hyperfine field distribution as it is milled from 40 to 100 h. On the other hand, the hyperfine field distribution keeps on changing with milling time for Fe-10 wt.% Cr sample even up to 100 h of milling. The average crystallite size is found to be 7.5 nm for Fe-10 wt.% Cr and 6.5 nm in Fe-20 wt.% Cr after milling.

  13. The spectroscopic study of building composites containing natural sorbents

    NASA Astrophysics Data System (ADS)

    Król, M.; Mozgawa, W.

    2011-08-01

    This work presents the results of FT-IR spectroscopic studies of heavy metal cations (Ag +, Pb 2+, Zn 2+, Cd 2+ and Cr 3+) immobilization from aqueous solutions on natural sorbents. The sorption has been conducted on sodium forms of zeolite (clinoptilolite) and clay minerals (mixtures containing mainly montmorillonite and kaolinite) which have been separated from natural Polish deposit. In the next part of the work both sorbents were used to obtain new building composites. It was proven those heavy metal cations' sorption causes changes in IR spectra of the zeolite and clay minerals. These alterations are dependent on the way the cations were sorbed. In the case of zeolite, variations of the bands corresponding to the characteristic ring vibrations have been observed. These rings occur in pseudomolecular complexes 4-4-1 (built of alumino- and silicooxygen tetrahedra) which constitute the secondary building units (SBU) and form spatial framework of the zeolite. The most significant changes have been determined in the region of pseudolattice vibrations (650-700 cm -1). In the instance of clay minerals, changes in the spectra occur at two ranges: 1200-800 cm -1 - the range of the bands assigned to asymmetric Si-O(Si,Al) and bending Al-OH vibrations and 3800-3000 cm -1 - the range of the bands originating from OH - groups stretching vibrations. Next results indicate possibilities of applying the used natural sorbents for the obtainment of new building materials having favourable composition and valuable properties. The zeolite was used for obtaining autoclaved materials with an addition of CaO, and the clay minerals for ceramic sintered materials with an addition of quartz and clinoptilolite were produced. FT-IR studies were also conducted on the obtained materials.

  14. Effect of temperature on the methotrexate BSA interaction: Spectroscopic study

    NASA Astrophysics Data System (ADS)

    Sułkowska, A.; Maciążek, M.; Równicka, J.; Bojko, B.; Pentak, D.; Sułkowski, W. W.

    2007-05-01

    Rheumatoid arthritis (RA) is an autoimmune and chronic inflammatory illness which affects about one percent of the world's population. Methotrexate (4-amino-10-methylfolic acid) (MTX) also known as amethopterin is commonly used to treat rheumatoid arthritis (RA). It is transported in the circulary system as a complex with serum albumin. The aim of this study was to investigate the interactions of MTX with transporting protein with the use of spectroscopic methods. The binding of MTX to bovine serum albumin (BSA) was studied by monitoring the changes in the emission fluorescence spectra of protein in the presence of MTX at excitation wavelength of 280 nm and 295 nm. The quenching of protein fluorescence at temperature range from 298 K to 316 K was observed. Energy transfer between methotrexate and fluorophores contained in the serum albumin structure was found at the molar ratio MTX:BSA 7.5:1. The relative fluorescence intensity of BSA decreases with increase of temperature. Similar results were observed for BSA excited with 280 nm and 295 nm at the same temperature range. The presence of MTX seems to prevent these changes. Temperature dependence of the binding constant has been presented. The binding and quenching constants for equilibrium complex were calculated using Scatchard and Stern-Volmer method, respectively. The results show that MTX forms π-π complex with aromatic amino acid residues of BSA. The binding site for MTX on BSA was found to be situated in the hydrophobic IIA or IB subdomain where the Trps were located. The spontaneity of MTX-BSA complex formation in the temperature range 298-316 K was ascertained.

  15. The trans-HOCO radical: Quartic force fields, vibrational frequencies, and spectroscopic constants

    NASA Astrophysics Data System (ADS)

    Fortenberry, Ryan C.; Huang, Xinchuan; Francisco, Joseph S.; Crawford, T. Daniel; Lee, Timothy J.

    2011-10-01

    In the search for a full mechanism creating CO2 from OH + CO, it has been suggested that creation of the hydroxyformyl or HOCO radical may be a necessary step. This reaction and its transient intermediate may also be responsible for the regeneration of CO2 in such high quantities in the atmosphere of Mars. Past spectroscopic observations of this radical have been limited and a full gas phase set of the fundamental vibrational frequencies of the HOCO radical has not been reported. Using established, highly accurate quantum chemical coupled cluster techniques and quartic force fields, we are able to compute all six fundamental vibrational frequencies and other spectroscopic constants for trans-HOCO in the gas phase. These methods have yielded rotational constants that are within 0.01 cm-1 for A0 and 10-4 cm-1 for B0 and C0 compared with experiment as well as fundamental vibrational frequencies within 4 cm-1 of the known gas phase experimental ν1 and ν2 modes. Such results lead us to conclude that our prediction of the other four fundamental modes of trans-HOCO are also quite reliable for comparison to future experimental observation, though the discrepancy for the torsional mode may be larger since it is fairly anharmonic. With the upcoming European Space Agency/NASA ExoMars Trace Gas Orbiter, these data may help to establish whether HOCO is present in the Martian sky and what role it may play in the retention of a CO2-rich atmosphere. Furthermore, these data may also help to clear up questions built around the fundamental chemical process of how exactly the OH + CO reaction progresses.

  16. Spectroscopic measurement of the MHD dynamo in the MST reversed field pinch

    SciTech Connect

    Chapman, J.T.

    1998-09-01

    The author has directly observed the coupling of ion velocity fluctuations and magnetic field fluctuations to produce an MHD dynamo electric field in the interior of the MST reversed field pinch. Chord averaged ion velocity fluctuations were measured with a fast spectroscopic diagnostic which collects line radiation from intrinsic carbon impurities simultaneously along two lines of sight. The chords employed for the measurements resolved long wavelength velocity fluctuations of several km/s at 8--20 kHz as tiny, fast Doppler shifts in the emitted line profile. During discrete dynamo events the velocity fluctuations, like the magnetic fluctuations, increase dramatically. The toroidal and poloidal chords with impact parameters of 0.3 a and 0.6 a respectively, resolved fluctuation wavenumbers with resonance surfaces near or along the lines of sight indicating a radial velocity fluctuation width for each mode which spans only a fraction of the plasma radius. The phase between the measured toroidal velocity fluctuations and the magnetic fluctuations matches the predictions of resistive MHD while the poloidal velocity fluctuations exhibit a phase consistent with the superposition of MHD effects and the advection of a mean flow gradient past the poloidal line of sight. Radial velocity fluctuations resolved by a chord through the center of the plasma were small compared to the poloidal and toroidal fluctuations and exhibited low coherence with the magnetic fluctuations. The ensembled nonlinear product of the ion velocity fluctuations and fluctuations in the magnetic field indicates a substantial dynamo electric field which peaks during the periods of spontaneous flux generation.

  17. LEAD SORPTION ON RUTHENIUM OXIDE: A MACROSCOPIC AND SPECTROSCOPIC STUDY

    EPA Science Inventory

    The sorption and desorption of Pb on RuO2 xH2O were examined kinetically and thermodynamically via spectroscopic and macroscopic investigations. X-ray absorption spectroscopy (XAS) was employed to determine the sorption mechanism with regard to identity of nearest atomic neighbo...

  18. Neutron spectroscopic study of crystal field excitations in Tb2Ti2O7 and Tb2Sn2O7

    SciTech Connect

    Zhang, J.; Fritsch, Katharina; Hao, Z.; Bagheri, B. V.; Gingras, M. P.J.; Granroth, Garrett E; Jiramongkolchai, P.; Cava, R. J.; Schiffer, P; Gaulin, Bruce D.

    2014-04-01

    We present time-of-flight inelastic neutron scattering measurements at low temperature on powder samples of the magnetic pyrochlore oxides Tb2Ti2O7 and Tb2Sn2O7. These two materials possess related, but different ground states, with Tb2Sn2O7 displaying "soft" spin ice order below TN approx 0.87 K, while Tb2Ti2O7 enters a hybrid, glassy-spin ice state below Tg approx 0.2 K. Our neutron measurements, performed at T = 1.5 K and 30 K, probe the crystal field states associated with the J = 6 states of Tb3+ within the appropriate Fd3-barm pyrochlore environment. These crystal field states determine the size and anisotropy of the Tb3+ magnetic moment in each material's ground state, information that is an essential starting point for any description of the low temperature phase behavior and spin dynamics in Tb2Ti2O7 and Tb2Sn2O7. While these two materials have much in common, the cubic stanate lattice is expanded compared to the cubic titanate lattice. As our measurements show, this translates into a factor of approx 2 increase in the crystal field bandwidth of the 2J +1 = 13 states in Tb2Ti2O7 compared with Tb2Sn2O7. Our results are consistent with previous measurements on crystal field states in Tb2Sn2O7, wherein the ground state doublet corresponds primarily to mJ = {vert_bar}+-5> and the first excited state doublet to mJ = {vert_bar}+-4>. In contrast, our results on Tb2Ti2O7 differ markedly from earlier studies, showing that the ground state doublet corresponds to a significant mixture of mJ = {vert_bar}+-5>, mJ = {vert_bar}+-4> and mJ = {vert_bar}+-2>, while the first excited state doublet

  19. IR and UV spectroscopic studies at low temperature: C2N2

    NASA Astrophysics Data System (ADS)

    Benilan, Y.; Arzoumanian, E.; Es-Sebbar, Et.; Ferradaz, T.; Fray, N.; Jolly, A.; Gazeau, M.-C.; Schwell, M.

    2008-09-01

    Titan's atmosphere is mainly made of nitrogen and methane and is furthermore very rich in organic molecules. Hydrocarbons are formed by the photodissociation of CH4 and nitriles are created by dissociation of N2 followed by reactions with hydrocarbons. In order to understand the physicochemical mechanisms responsible for the evolution of Titan's atmosphere, photochemical models are built. The latter needs constraints for the determination of vertical profiles of organic compounds, from the higher thermosphere down to the lower stratosphere. They also need wavelength dependant photodissociation rates as input parameters. Vertical profiles can be retrieved from Cassini observations along the entire atmosphere, in particular by limb sounding using Cassini's UVIS and CIRS spectrometers. However, in order to interpret data obtained by these instruments, precise spectroscopic parameters and their dependence on temperature are needed. We will review the current knowledge in this field of planetary spectroscopy and point out the lack of spectroscopic parameters of already detected species. These parameters are especially needed for radiative transfer calculations at low temperatures. We will focus our talk on the Cyanogen molecule (C2N2) which has been observed in Titan's atmosphere in the FIR domain, around 230 cm-1. We will present the latest spectroscopic studies we have performed on this molecule which cover the entire spectrum from the mid- infrared to the vacuum ultraviolet spectral region. Integrated band intensities have been determined for all bands in the infrared. In the ultraviolet domain, we have determined absolute cross sections from 350 down to 80 nm covering six orders of magnitude for the absorption coefficient. We will also show how temperature can influence VUV absorption coefficients. The corresponding implications of temperature dependant absorption data on the interpretation of UVIS observations will be discussed.

  20. Spectroscopic studies of uranium species for environmental decontamination applications

    NASA Astrophysics Data System (ADS)

    Eng, Charlotte

    After the Cold War, Department of Energy began to concentrate its efforts on cleanup of former nuclear material processing facilities, especially uranium-contaminated groundwater and soil. This research aims to study uranium association to both organic and inorganic compounds found in the contaminated environment in the hopes that the information gathered can be applied to the development and optimization of cost-effective remediation techniques. Spectroscopic and electrochemical methods will be employed to examine the behavior of uranium in given conditions to further our understanding of its impact on the environment. Uranium found in groundwater and soil bind with various ligands, especially organic ligands present in the environment due to natural sources (e.g. metabolic by-products or degradation of plants and animals) or man-made sources (e.g. chelating agents used in operating or cleanup of uranium processing facilities). We selected reasonable analogs of naturally occurring matter and studied their structure, chemical and electrochemical behavior and found that the structure of uranyl complexes depends heavily on the nature of the ligand and environmental factors such as pH. Association of uranium-organic complexes with anaerobic bacteria, Clostridium sp. was studied to establish if the bacteria can effectively bioreduce uranium while going through normal bacterial activity. It was found that the nature of the organic ligand affected the bioavailability and toxicity of the uranium on the bacteria. In addition, we have found that the type of iron corrosion products and uranyl species present on the surface of corroded steel depended on various environmental factors, which subsequently affected the removal rate of uranium by a citric acid/hydrogen peroxide/deionized water cleaning process. The method was found to remove uranium from only the topmost corrosion layers and residual uranium could be found (a) deeper in the corrosion layers where it is occluded by

  1. Spectroscopic Studies of the Several Isomers of UO3

    SciTech Connect

    Sweet, Lucas E.; Reilly, Dallas D.; Abrecht, David G.; Buck, Edgar C.; Meier, David E.; Su, Yin-Fong; Brauer, Carolyn S.; Schwantes, Jon M.; Tonkyn, Russell G.; Szecsody, James E.; Blake, Thomas A.; Johnson, Timothy J.

    2013-09-26

    Uranium trioxide is known to adopt seven different structural forms. While these structural forms have been well characterized using x-ray or neutron diffraction techniques, little work has been done to characterize their spectroscopic properties, particularly of the pure phases. Since the structural isomers of UO3 all have similar thermodynamic stabilities and most tend to hydrolyze under open atmospheric conditions, mixtures of UO3 phases and the hydrolysis products are common. Much effort went into isolating pure phases of UO3. Utilizing x-ray diffraction as a sample identification check, UV/Vis/NIR spectroscopic signatures of α-UO3, β-UO3, γ-UO3 and UO2(OH)2 products were obtained. The spectra of the pure phases can now be used to characterize typical samples of UO3, which are often mixtures of isomers.

  2. Electron Spin Resonance Spectroscopic Studies of Radical Cation Reactions.

    NASA Astrophysics Data System (ADS)

    Dai, Sheng

    1990-01-01

    A spin Hamiltonian suitable for theoretical analyses of ESR spectra in this work is derived by using the general effective Hamiltonian theory in the usual Schrodinger representation. The Permutation Indices method is extended to obtain the dynamic exchange equations used in ESR lineshape simulation. The correlation between beta-hydrogen coupling constants and their geometric orientations is derived through the use of a perturbation method. The three electron bond model is extended to rationalize unimolecular rearrangements of radical cations. The ring-closed radical cations of 9,10-octalin oxide and syn-sesquinorbornene oxide have been characterized by ESR spectroscopy in the CFCl_3 matrix at low temperature. The ESR spectra of the former radical cation exhibit a novel alternating linewidth effect arising from an internal relation between the coupling constants for the four equivalent pairs of hydrogens. The self-electron-transfer rate constants between the methyl viologen dication and cation have been determined by dynamic ESR lineshape simulations at room temperature in allyl alcohol, water, methanol and propargyl alcohol solvents. The radical cation formed by the radiolytic oxidation of allylamine in Freon matrices at 77 K is shown to be the 3-iminiopropyl distonic species(3-iminium-1-propyl radical) resulting from a symmetry-allowed 1,2-hydrogen shift in the parent radical cation. The nucleophilic endocyclization of the but-3-en-1-ol radical cation to the protonated tetrahydrofuran -3-yl radical was observed in the radiolytic oxidation of but-3-en-1-ol in Freon matrices. ESR studies of the radiolytic oxidation of 1,5-hexadiyne have resulted in the first spectroscopic characterization of the radical cation Cope rearrangement, the 1,5-hexadiyne radical cation isomerizing to the 1,2,4,5 -hexatetraene radical cation. ESR studies show that the symmetric(C_{rm 2v}) bicyclo (3.3.0) -octa-2,6-diene-4,8-diyl(a bridged 1,4 -bishomobenzene species) radical cation is

  3. Photometric and spectroscopic study of cD galaxies

    NASA Astrophysics Data System (ADS)

    Kemp, S. N.; Pérez-Hernández, Ernesto; Ramírez-Siordia, Víctor Hugo

    2016-02-01

    We have carried out photometry and spectroscopy on a sample of 10 cD galaxies. The photometry shows, in general, fairly flat and red profile colours, implying an envelope with the same stellar population as the central galaxy. This may indicate a possible primordial origin for both structures, consistent with ideas of downsizing. Preliminary spectroscopic results are generally in agreement with the photometry, with for example younger populations at large radii for A2199, but A2589 has only younger populations.

  4. Spectroscopic ellipsometry study of novel nanostructured transparent conducting oxide structures

    NASA Astrophysics Data System (ADS)

    Khosroabadi, Akram A.; Norwood, R. A.

    2013-02-01

    Spectroscopic ellipsometry has been used to find the optical constants, including refractive index, extinction coefficient, thickness and volume fraction of nanostructured transparent conducting oxides including indium tin oxide (ITO) and indium zinc oxide (IZO). We observed sharp features in the ellipsometry data, with the spectral peaks and positions depending on the nanostructure dimensions and material. A superposition of Lorentzian oscillators and the effective medium approximation has been applied to determine the volume ratio of voids and nanopillars, thereby providing the effective optical constants.

  5. NMR spectroscopic study of organic phosphate esters coprecipitated with calcite

    NASA Astrophysics Data System (ADS)

    Phillips, Brian L.; Zhang, Zelong; Kubista, Laura; Frisia, Silvia; Borsato, Andrea

    2016-06-01

    Organic phosphorus incorporated in calcite during laboratory precipitation experiments and in natural cave deposits was investigated by solid-state NMR spectroscopy. For calcite precipitated in the presence of organic phosphoesters of varying size and functionality, solid-state 31P{1H} CP/MAS NMR shows that the phosphoesters were incorporated intact into the solid. Systematic changes in the 31P NMR chemical shift of the phosphate group were observed between the solid phosphoester and that incorporated in the solid precipitate, yielding 31P NMR chemical shifts of the coprecipitates in the range of +1.8 to -2.2 ppm. These chemical shifts are distinct from that of similarly prepared calcite coprecipitated with inorganic phosphate, 3.5 ppm. Only minor changes were noted in the phosphoester 31P chemical shift anisotropy (CSA) which suggests no significant change in the local structure of the phosphate group, which is dominated by C-O-P bonding. Close spatial proximity of the organic phosphate group to calcite structural components was revealed by 31P/13C rotational echo double resonance (REDOR) experiments for coprecipitates prepared with 13C-labeled carbonate. All coprecipitates showed significant 31P dephasing effects upon 13C-irradiation, signaling atomic-scale proximity to carbonate carbon. The dephasing rate for smaller organophosphate molecules is similar to that observed for inorganic phosphate, whereas much slower dephasing was observed for larger molecules having long and/or bulky side-chains. This result suggests that small organic molecules can be tightly enclosed within the calcite structure, whereas significant structural disruption required to accommodate the larger organic molecules leads to longer phosphate-carbonate distances. Comparison of 31P NMR spectroscopic data from the synthetic coprecipitates with those from calcite moonmilk speleothems indicates that phosphorus occurs mainly as inorganic orthophosphate in the natural deposits, although small

  6. A Raman Spectroscopic Study of Kernite to 25 GPa

    NASA Astrophysics Data System (ADS)

    Silva, M. E.; O'Bannon, E. F., III; Williams, Q. C.

    2015-12-01

    A Raman spectroscopic study of kernite to 25 GPaMarcus Silva, Earl O'Bannon III, and Quentin Williams Department of Earth & Planetary Sciences, University of California Santa Cruz The Raman spectrum of kernite (Na2B4O6(OH)2·3(H2O)) has been characterized up to ~25 GPa in order to explore pressure-induced changes in a structurally novel mineral that contains mixed coordination borate groups (three- and four-fold), and both hydroxyl units and water. During compression, all of the ~30 modes monitored shift positively and monotonically until ~2.2 GPa where a few low frequency modes disappear and tetrahedral borate modes merge. The low frequency modes that disappear at ~2.2 GPa are likely associated with Na vibrations, and their disappearance suggests that dramatic changes occur in the Na sites at ~2.2 GPa. The merging of the boron bending and stretching modes at ~2.2 GPa suggests that the local symmetry of the BO4 tetrahedra changes at this pressure, and likely becomes more symmetric. The remaining modes shift positively up to ~7.4 GPa where a second notable change occurs. All but 5 modes (with initial frequencies of 150, 166, 289, 307, and 525 cm-1) disappear at ~7.4 GPa. This indicates that a second phase transition has occurred which affects both the BO3H and BO4­ groups: based on the loss of modes, this transition may be associated with disordering of the crystal. These 5 modes persist and shift monotonically up to ~25 GPa. On decompression, the 5 modes shift smoothly down to ~2.0 GPa where a few new modes appear in the spectrum. When fully decompressed to room pressure, the Raman spectrum of the recovered sample is significantly different from the ambient spectrum of the initial sample. Thus, our results are suggest a phase transition occurring at 2.2 GPa with changes in the Na and tetrahedral boron sites, followed by an additional transition at 7.4 GPa that may involve disordering of the crystal. In the latter transition, at least the BO3H groups appear to be

  7. Spectroscopic studies of gas-phase molecular clusters

    NASA Astrophysics Data System (ADS)

    Wong, Chi-Kin

    Spectroscopic investigations of hydrogen-bonding and van der Waals' interactions in molecular clusters were studied by the techniques of infrared predissociation and resonance-enhanced multiphoton ionization spectroscopies (REMPI). Ab initio calculations were applied in conjunction for data interpretation. The infrared predissociation spectroscopy of CN-·(H 2O)n (n = 2--6) clusters was reported in the region of 2950--3850 cm-1. The hydrogen bondings for the C-site and N-site binding, and among the water molecules were identified for n = 2 to 4. A spectral transition was observed for n = 5 and 6, implying that the anion was surface-bound onto the water aggregates in larger clusters. The infrared predissociation spectroscopy of Br-·(NH 3) and I-·(NH3) n (n = 1--3) clusters was reported in the region of 3050--3450 cm-1. For the Br -·(NH3) complex, a dominating ionic NH stretch appeared at 3175 cm-1, and the weaker free NH stretch appeared at 3348 cm-1. The observed spectrum was consistent to the structure in which there was one nearly linear hydrogen bond between Br- and the NH3 moiety. For the I- ·(NH3) complex, five distinct IR absorption bands were observed in the spectrum. The spectrum was not consistent with basic frequency patterns of three geometries considered in the ab initio calculations---complex with one, two and three hydrogen bondings between I- and the NH3 moiety. Substantial inhomogenous broadening were displayed in the spectra for I- ·(NH3)n (n = 2--3), suggesting the presence of multiple isomers. The REMPI spectroscopy of the bound 4p 2pi 1/2 and 2pi3/2 states, and the dissociative 3d 2Sigma+1/2 state in the Al·Ar complex was reported. The dissociative spectrum at Al+ channel suggested the coupling of the 4p 2pi 1/2,3/2 states to the repulsive 3d 2Sigma+1/2 state. The spin-electronic coupling was further manifested in the dissociative Al+ spectrum of the 3d 2Sigma+1/2 state. Using the potential energy curves obtained from ab initio

  8. Spectroscopic analyses of Fe and water in clays: A Martian surface weathering study

    NASA Technical Reports Server (NTRS)

    Bishop, J. L.; Pieters, Carle M.; Edwards, J. O.; Coyne, L. M.; Chang, S.

    1991-01-01

    Martian surface morphology suggests the presence of liquid H2O on Mars in the past. Reflectance spectra of the Martian surface include features which correspond to the crystal field transitions of iron, as well as features supporting the presence of ice and minerals containing structural OH and surface water. Researchers initiated further spectroscopic studies of surface iron and water and structural OH in clays in order to determine what remotely obtained spectra can indicate about the presence of clays on Mars based on a clearer understanding of the factors influencing the spectral features. Current technology allows researchers to better correlate the low frequency fundamental stretching and bending vibrations of O-H bonds with the diagnostic near infrared overtone and combination bands used in mineral characterization and identification.

  9. IR spectroscopic study of the chemical composition of epiphytic lichens

    NASA Astrophysics Data System (ADS)

    Meysurova, A. F.; Khizhnyak, S. D.; Pakhomov, P. M.

    2011-11-01

    Changes in the chemical composition of lichens exposed to pollutants are investigated by means of FTIR spectroscopy. According to model experiments, alkyl nitrates, ammonium salts, amines, and sulfones develop in the lichen thallus through the action of ammonia and nitric and sulfuric acids. Spectroscopic data of modeling experiments enabled nitrogen- and sulfur-containing substances to be identified as the main air pollutants in the vicinity of a pig-breeding complex and information to be obtained on the content of the pollutants and their impact on the lichens.

  10. Picosecond flash spectroscopic studies on ultraviolet stabilizers and stabilized polymers

    NASA Technical Reports Server (NTRS)

    Scott, G. W.

    1982-01-01

    Spectroscopic and excited state decay kinetics are reported for monomeric and polymeric forms of ultraviolet stabilizers in the 2-(2'-hydroxyphenyl)-benzotriazole and 2-hydroxybenzophenone classes. For some of these molecules in various solvents at room temperature, (1) ground state absorption spectra, (2) emission spectra, (3) picosecond time-resolved transient absorption spectra, (4) ground state absorption recovery kinetics, (5) emission kinetics, and (6) transient absorption kinetics are reported. In the solid state at low temperatures, emission spectra and their temperature dependent kinetics up to approximately 200K as well as, in one case, the 12K excitation spectra of the observed dual emission are also reported.

  11. Resonance Raman spectroscopic studies of enzymesubstrate intermediates at 5 K

    NASA Astrophysics Data System (ADS)

    Kim, Munsok; Carey, Paul R.

    1991-01-01

    A simple and versatile system for resonance Raman (RR) spectroscopic analysis of enzymesubstrate complexes at liquid helium temperatures is described. The system allows us to record high-quality RR spectra for dithioacyl papain intermediates (MeO-Phe-Gly- and MeO-Gly-Gly-Phe-Gly-C (dbnd S)S-papain) in ice matrices at 5 K. Based on established structure-spectra correlations, it is concluded that the active-site conformation of the intermediates about the φ', ψ' glycinic linkages and cysteine-25 side chain is B-G+-PH both in ice matrices at 5 K and in solution at room temperature.

  12. Spectroscopic study of the extremely fast rotating star 44 Geminorum

    NASA Astrophysics Data System (ADS)

    Iliev, L.; Vennes, S.; Kawka, A.; Kubat, J.; Nemeth, P.; Borisov, G.; KRaus, M.

    Stars with extremely fast rotation represent interesting challenge to modern understanding of the stellar evolution. The reasons why such a spin-up process should occur during the evolution to otherwise normal star are still not well understood. Already in the beginning of the XX century Otto Struve proposed that fast rotation of the group of stars spectroscopically classified as Be could be the main reason for the formation of observed disks of circumstellar material around them. This circumstellar material is responsible for the emission lines observed in the spectrum of Be-stars as well as for the whole complex of spectral and photometrical patterns called in general Be-phenomenon.

  13. Vibrational Frequencies and Spectroscopic Constants for 1(sup 3)A' HNC and 1(sup 3)A' HOC+ from High-Accuracy Quartic Force Fields

    NASA Technical Reports Server (NTRS)

    Fortenberry, Ryan C.; Crawford, T. Daniel; Lee, Timothy J.

    2014-01-01

    The spectroscopic constants and vibrational frequencies for the 1(sup 3)A' states of HNC, DNC, HOC+, and DOC+ are computed and discussed in this work. The reliable CcCR quartic force field based on high-level coupled cluster ab initio quantum chemical computations is exclusively utilized to provide the anharmonic potential. Then, second order vibrational perturbation theory and vibrational configuration interaction methods are employed to treat the nuclear Schroedinger equation. Second-order perturbation theory is also employed to provide spectroscopic data for all molecules examined. The relationship between these molecules and the corresponding 1(sup 3)A' HCN and HCO+ isomers is further developed here. These data are applicable to laboratory studies involving formation of HNC and HOC+ as well as astronomical observations of chemically active astrophysical environments.

  14. 3D-HST: A WIDE-FIELD GRISM SPECTROSCOPIC SURVEY WITH THE HUBBLE SPACE TELESCOPE

    SciTech Connect

    Brammer, Gabriel B.; Van Dokkum, Pieter G.; Skelton, Rosalind E.; Nelson, Erica; Bezanson, Rachel; Leja, Joel; Lundgren, Britt; Franx, Marijn; Fumagalli, Mattia; Patel, Shannon; Labbe, Ivo; Rix, Hans-Walter; Schmidt, Kasper B.; Da Cunha, Elisabete; Kriek, Mariska; Erb, Dawn K.; Fan, Xiaohui; Foerster Schreiber, Natascha; Illingworth, Garth D.; Magee, Dan; and others

    2012-06-01

    We present 3D-HST, a near-infrared spectroscopic Treasury program with the Hubble Space Telescope for studying the physical processes that shape galaxies in the distant universe. 3D-HST provides rest-frame optical spectra for a sample of {approx}7000 galaxies at 1 < z < 3.5, the epoch when {approx}60% of all star formation took place, the number density of quasars peaked, the first galaxies stopped forming stars, and the structural regularity that we see in galaxies today must have emerged. 3D-HST will cover three quarters (625 arcmin{sup 2}) of the CANDELS Treasury survey area with two orbits of primary WFC3/G141 grism coverage and two to four orbits with the ACS/G800L grism in parallel. In the IR, these exposure times yield a continuum signal-to-noise ratio of {approx}5 per resolution element at H{sub 140} {approx} 23.1 and a 5{sigma} emission-line sensitivity of {approx}5 Multiplication-Sign 10{sup -17} erg s{sup -1} cm{sup -2} for typical objects, improving by a factor of {approx}2 for compact sources in images with low sky background levels. The WFC3/G141 spectra provide continuous wavelength coverage from 1.1 to 1.6 {mu}m at a spatial resolution of {approx}0.''13, which, combined with their depth, makes them a unique resource for studying galaxy evolution. We present an overview of the preliminary reduction and analysis of the grism observations, including emission-line and redshift measurements from combined fits to the extracted grism spectra and photometry from ancillary multi-wavelength catalogs. The present analysis yields redshift estimates with a precision of {sigma}(z) = 0.0034(1 + z), or {sigma}(v) Almost-Equal-To 1000 km s{sup -1}. We illustrate how the generalized nature of the survey yields near-infrared spectra of remarkable quality for many different types of objects, including a quasar at z = 4.7, quiescent galaxies at z {approx} 2, and the most distant T-type brown dwarf star known. The combination of the CANDELS and 3D-HST surveys will

  15. Microbial field pilot study

    SciTech Connect

    Knapp, R.M.; McInerney, M.J.; Menzie, D.E.; Coates, J.D.; Chisholm, J.L.

    1993-05-01

    A multi-well microbially enhanced oil recovery field pilot has been performed in the Southeast Vassar Vertz Sand Unit in Payne County, Oklahoma. The primary emphasis of the experiment was preferential plugging of high permeability zones for the purpose of improving waterflood sweep efficiency. Studies were performed to determine reservoir chemistry, ecology, and indigenous bacteria populations. Growth experiments were used to select a nutrient system compatible with the reservoir that encouraged growth of a group of indigenous nitrate-using bacteria and inhibit growth of sulfate-reducing bacteria. A specific field pilot area behind an active line drive waterflood was selected. Surface facilities were designed and installed. Injection protocols of bulk nutrient materials were prepared to facilitate uniform distribution of nutrients within the pilot area. By the end of December, 1991, 82.5 tons (75.0 tonnes) of nutrients had been injected in the field. A tracer test identified significant heterogeneity in the SEVVSU and made it necessary to monitor additional production wells in the field. The tracer tests and changes in production behavior indicate the additional production wells monitored during the field trial were also affected. Eighty two and one half barrels (13.1 m[sup 3]) of tertiary oil have been recovered. Microbial activity has increased CO[sub 2] content as indicated by increased alkalinity. A temporary rise in sulfide concentration was experienced. These indicate an active microbial community was generated in the field by the nutrient injection. Pilot area interwell pressure interference test results showed that significant permeability reduction occurred. The interwell permeabilities in the pilot area between the injector and the three pilot production wells were made more uniform which indicates a successful preferential plugging enhanced oil recovery project.

  16. Infrared micro-spectroscopic studies of epithelial cells

    PubMed Central

    Romeo, Melissa; Mohlenhoff, Brian; Jennings, Michael; Diem, Max

    2009-01-01

    We report results from a study of human and canine mucosal cells, investigated by infrared micro-spectroscopy, and analyzed by methods of multivariate statistics. We demonstrate that the infrared spectra of individual cells are sensitive to the stage of maturation, and that a distinction between healthy and diseased cells will be possible. Since this report is written for an audience not familiar with infrared micro-spectroscopy, a short introduction into this field is presented along with a summary of principal component analysis. PMID:16797481

  17. Applications of synchrotron-based spectroscopic techniques in studying nucleic acids and nucleic acid-functionalized nanomaterials

    PubMed Central

    Wu, Peiwen; Yu, Yang; McGhee, Claire E.; Tan, Li Huey

    2014-01-01

    In this review, we summarize recent progresses in the application of synchrotron-based spectroscopic techniques for nucleic acid research that takes advantage of high-flux and high-brilliance electromagnetic radiation from synchrotron sources. The first section of the review focuses on the characterization of the structure and folding processes of nucleic acids using different types of synchrotron-based spectroscopies, such as X-ray absorption spectroscopy, X-ray emission spectroscopy, X-ray photoelectron spectroscopy, synchrotron radiation circular dichroism, X-ray footprinting and small-angle X-ray scattering. In the second section, the characterization of nucleic acid-based nanostructures, nucleic acid-functionalized nanomaterials and nucleic acid-lipid interactions using these spectroscopic techniques is summarized. Insights gained from these studies are described and future directions of this field are also discussed. PMID:25205057

  18. Spectroscopic study of carbonaceous dust particles grown in benzene plasma

    SciTech Connect

    Lee, Szetsen; Chen, H.-F.; Chin, C.-J.

    2007-06-01

    Carbonaceous dust particles have been synthesized from benzene using an rf glow discharge. Scanning electron microscope inspection revealed that the plasma-synthesized dust particles can be classified into two types. Shell-structured dust particles showed a wide size distribution from 3 to40 {mu}m. The other type, with different degrees of aggregation, appeared to be dense and spherical with a very distinctive yellow color and size distribution from 100 nm to 2 {mu}m. Analyses using micro-Raman and Fourier transform infrared microscopy indicated that the main components of the dust particles are polyphenyls and hydrogenated amorphous carbon (HAC). The luminescence background in Raman spectra and the infrared C-H stretching vibrational features observed around 3.4 {mu}m for the dust particles are attributed to HAC. The formation mechanisms and spectroscopic characterization of carbonaceous dust particles are discussed.

  19. Spectroscopic intravascular photoacoustic imaging of neovasculature: phantom studies

    NASA Astrophysics Data System (ADS)

    Su, Jimmy L.; Wang, Bo; Emelianov, Stanislav Y.

    2009-02-01

    An acceleration of angiogenesis in the adventitial vasa-vasorum is usually associated with vulnerable, thin-cap fibroatheroma in atherosclerotic plaques. Angiogenesis creates microvasculature too small to be detected and differentiated using conventional imaging techniques. However, by using spectroscopic photoacoustic imaging, we take advantage of the wavelength-dependent optical absorption properties of blood. We used a vessel-mimicking phantom with micro blood vessels. The phantom was imaged with intravascular photoacoustic imaging across a range of wavelengths. The image intensities were cross-correlated with the known absorption spectra of blood. The resulting cross-correlation image was able to reveal the location of the artificial blood vessels differentiated from non-blood vessel components.

  20. Spectroscopic studies of superconductors. Part A: Infrared and Raman spectra

    SciTech Connect

    Bozovic, I.; Marel, D. van der

    1996-12-31

    During the ten years that followed the discovery of superconductivity above 30 K in lanthanum barium cuprate by Bednorz and Mueller, the condensed matter physics community has been engaged in an unprecedented worldwide effort in materials processing, characterization of physical properties, and theoretical modeling of superconductors. The present conference has brought together a group of researchers who are actively involved in the experimental determination of the physical properties of high-{Tc} superconductors, the quest for the microscopic mechanism (or mechanisms) of superconductivity, the search for new physical phenomena in these materials, or the search for new classes of superconducting materials. The distinguishing feature and the unifying theme of this conference was the use of spectroscopic techniques as the primary tools in pursuing these goals. Separate abstracts were prepared for 32 papers in this conference.

  1. A spectroscopic study of uranium(VI) interaction with magnetite

    NASA Astrophysics Data System (ADS)

    Aamrani, S. El; Giménez, J.; Rovira, M.; Seco, F.; Grivé, M.; Bruno, J.; Duro, L.; de Pablo, J.

    2007-08-01

    The uranium sorbed onto commercial magnetite has been characterized by using two different spectroscopic techniques such as X-ray photoelectron spectroscopy (XPS), and extended X-ray absorption fine structure (EXAFS). Magnetite samples have been put in contact with uranium(VI) solutions in conditions in which a high uranium uptake is expected. After several days, the magnetite surface has been analysed by XPS and EXAFS. The XPS results obtained are not conclusive regarding the uranium oxidation state in the magnetite surface. On the other hand, the results obtained with the EXAFS technique show that the uranium-magnetite sample spectrum has characteristics from both the UO 2 and schoepite spectra, e.g. a relatively high coordination number of equatorial oxygens and two axial oxygens, respectively. These results would indicate that the uranium sorbed onto magnetite would be a mixture of uranium(IV) and uranium(VI).

  2. In-situ spectroscopic studies of electrochromic tungsten oxide films

    NASA Astrophysics Data System (ADS)

    Ozer, Nilgun; Demirbas, Muharrem; Ozyurt, Secuk

    2001-11-01

    Tungsten oxide thin films were prepared using an ethanolic solution of tungsten hexachloride (WCl6) by sol-gel spin coating. The films were spin coated on indium tin oxide (ITO) coated glass substrate at temperatures in the range of 100 to 450 degree(s)C. The films were characterized by x-ray diffractometry (XRD), scanning electron microscopy (SEM) UV- visible spectroscopy and cyclic voltammetry (CV). XRD showed that they had a polycrystalline WO3 structure for heat treatment temperatures at above 350 degree(s)C. The SEM examinations showed that the surface texture was very uniform and homogeneous. In situ electrochemical reduction of WO3/ITO (2M HCl) produced a blue color in less than a second. Coloration efficiency (CE) was found to be 21 cm2/mC. In situ spectroscopic investigations showed that these films could be used as a working electrode in electrochromic devices.

  3. Microbial Field Pilot Study

    SciTech Connect

    Knapp, R.M.; McInerney, M.J.; Menzie, D.E.; Chisholm, J.L.

    1990-11-01

    This report covers progress made during the first year of the Microbial Field Pilot Study project. Information on reservoir ecology and characterization, facility and treatment design, core experiments, bacterial mobility, and mathematical modeling are addressed. To facilitate an understanding of the ecology of the target reservoir analyses of the fluids which support bacteriological growth and the microbiology of the reservoir were performed. A preliminary design of facilities for the operation of the field pilot test was prepared. In addition, procedures for facilities installation and for injection treatments are described. The Southeast Vassar Vertz Sand Unit (SEVVSU), the site of the proposed field pilot study, is described physically, historically, and geologically. The fields current status is presented and the ongoing reservoir simulation is discussed. Core flood experiments conducted during the last year were used to help define possible mechanisms involved in microbial enhanced oil recovery. Two possible mechanisms, relative permeability effects and changes in the capillary number, are discussed and related to four Berea core experiments' results. The experiments were conducted at reservoir temperature using SEVVSU oil, brine, and bacteria. The movement and activity of bacteria in porous media were investigated by monitoring the growth of bacteria in sandpack cores under no flow conditions. The rate of bacteria advancement through the cores was determined. A mathematical model of the MEOR process has been developed. The model is a three phase, seven species, one dimensional model. Finite difference methods are used for solution. Advection terms in balance equations are represented with a third- order upwind differencing scheme to reduce numerical dispersion and oscillations. The model is applied to a batch fermentation example. 52 refs., 26 figs., 21 tabs.

  4. Microbial field pilot study

    SciTech Connect

    Knapp, R.M.; McInerney, M.J.; Menzie, D.E.; Chisholm, J.L.

    1992-03-01

    The objective of this project is to perform a microbial enhanced oil recovery field pilot in the Southeast Vassar Vertz Sand Unit (SEVVSU) in Payne County, Oklahoma. Indigenous, anaerobic, nitrate reducing bacteria will be stimulated to selectively plug flow paths which have been referentially swept by a prior waterflood. This will force future flood water to invade bypassed regions of the reservoir and increase sweep efficiency. This report covers progress made during the second year, January 1, 1990 to December 31, 1990, of the Microbial Field Pilot Study project. Information on reservoir ecology, surface facilities design, operation of the unit, core experiments, modeling of microbial processes, and reservoir characterization and simulation are presented in the report. To better understand the ecology of the target reservoir, additional analyses of the fluids which support bacteriological growth and the microbiology of the reservoir were performed. The results of the produced and injected water analysis show increasing sulfide concentrations with respect to time. In March of 1990 Mesa Limited Partnership sold their interest in the SEVVSU to Sullivan and Company. In April, Sullivan and Company assumed operation of the field. The facilities for the field operation of the pilot were refined and implementation was begun. Core flood experiments conducted during the last year were used to help define possible mechanisms involved in microbial enhanced oil recovery. The experiments were performed at SEVVSU temperature using fluids and inoculum from the unit. The model described in last year's report was further validated using results from a core flood experiment. The model was able to simulate the results of one of the core flood experiments with good quality.

  5. Microbial field pilot study

    SciTech Connect

    Knapp, R.M.; McInerney, M.J.; Menzie, D.E.; Chisholm, J.L.

    1992-03-01

    The objective of this project is to perform a microbial enhanced oil recovery field pilot in the Southeast Vassar Vertz Sand Unit (SEVVSU) in Payne County, Oklahoma. Indigenous, anaerobic, nitrate reducing bacteria will be stimulated to selectively plug flow paths which have been referentially swept by a prior waterflood. This will force future flood water to invade bypassed regions of the reservoir and increase sweep efficiency. This report covers progress made during the second year, January 1, 1990 to December 31, 1990, of the Microbial Field Pilot Study project. Information on reservoir ecology, surface facilities design, operation of the unit, core experiments, modeling of microbial processes, and reservoir characterization and simulation are presented in the report. To better understand the ecology of the target reservoir, additional analyses of the fluids which support bacteriological growth and the microbiology of the reservoir were performed. The results of the produced and injected water analysis show increasing sulfide concentrations with respect to time. In March of 1990 Mesa Limited Partnership sold their interest in the SEVVSU to Sullivan and Company. In April, Sullivan and Company assumed operation of the field. The facilities for the field operation of the pilot were refined and implementation was begun. Core flood experiments conducted during the last year were used to help define possible mechanisms involved in microbial enhanced oil recovery. The experiments were performed at SEVVSU temperature using fluids and inoculum from the unit. The model described in last year`s report was further validated using results from a core flood experiment. The model was able to simulate the results of one of the core flood experiments with good quality.

  6. Spectroscopic ellipsometry studies of HF treated Si (100) surfaces

    NASA Technical Reports Server (NTRS)

    Yao, Huade; Woollam, John A.; Alterovitz, Samuel A.

    1993-01-01

    Both ex situ and in situ spectroscopic ellipsometry (SE) measurements were employed to investigate the effects of HF cleaning on Si surfaces. The hydrogen-terminated (H-terminated) Si surface was modeled as an equivalent dielectric layer, and monitored in real time by SE measurements. The SE analyses indicate that after a 20-s 9:1 HF dip without rinse, the Si(100) surface was passivated by the hydrogen termination and remained chemically stable. Roughness of the HF-etched bare Si(100) surface was observed, in an ultrahigh vacuum (UHV) chamber, and analyzed by the in situ SE. Evidence for desorption of the H-terminated Si surface-layer, after being heated to approximately 550 C in the UHV chamber, is presented and discussed. This is the first use of an ex situ and in situ real-time, nondestructive technique capable of showing state of passivation, the rate of reoxidation, and the surface roughness of the H-terminated Si surfaces.

  7. Spectroscopic ellipsometry studies of HF treated Si (100) surfaces

    NASA Technical Reports Server (NTRS)

    Yao, Huade; Woollam, John A.; Alterovitz, Samuel A.

    1993-01-01

    Both ex situ and in situ spectroscopic ellipsometry (SE) measurements were employed to investigate the effect of HF cleaning on Si surfaces. The hydrogen-terminated (H-terminated) Si surface was modeled as an equivalent dielectric layer, and monitored in real time by SE measurements. The SE analyses indicate that, after a 20-sec 9:1 HF dip without rinse, the Si (100) surface was passivated by the hydrogen termination and remained chemically stable. Roughness of the HF-etched bare Si (100) surface was observed, in an ultrahigh vacuum chamber (UHV), and analyzed by the in situ SE. Evidence for desorption of the H-terminated Si surface layer, after being heated to about 550 C in the UHV chamber, is presented and discussed. This is the first use of an ex situ and in situ real-time, nondestructive technique capable of showing state of passivation, the rate of reoxidation, and the surface roughness of the H-terminated Si surfaces.

  8. Studies of Two Massive Eclipsing Double-lined Spectroscopic Binaries

    NASA Astrophysics Data System (ADS)

    Williams, Stephen J.; Gies, D. R.; Hillwig, T. C.; McSwain, M. V.; Huang, W.

    2013-06-01

    As part of an ongoing investigation into the spectroscopic variability of massive stars, we present preliminary results for two double-lined eclipsing binary systems, HD 130146 (VZ Cen) and LS 3052 (V 1176 Cen). In our analysis we used archival Hipparcos photometry for HD 103146 and All Sky Automated Survey V-band photometry for LS 3052. All spectra were obtained from the Cerro Tololo Inter-American Observatory 1.5-m telescope. The systems were analyzed using the Eclipsing Light Curve code (ELC; Orosz & Hauschildt 2000). A combined analysis of these data yields masses, radii, effective temperatures, gravities, and estimates for the ages and distances of each system. HD 103146 is a 4.9 day binary with a slightly evolved primary (T_{eff} 28000 K and log g 3.75) while the secondary nearly fills its Roche lobe. LS 3052 has an eccentric orbit with a period of 31 days and contains both an evolved primary and secondary. Preliminary solutions indicate the primary's mass to be 33 Mo with a 21 Mo secondary.

  9. Dielectric and impedance spectroscopic studies of neodymium gallate

    NASA Astrophysics Data System (ADS)

    Sakhya, Anup Pradhan; Dutta, Alo; Sinha, T. P.

    2016-05-01

    The AC electrical properties of a polycrystalline neodymium gallate, NdGaO3 (NGO), synthesized by the sol-gel method have been investigated by employing impedance spectroscopy in the frequency range from 42 Hz to 5 MHz and in the temperature range from 323 K to 593 K. The X-ray diffraction analysis shows that the compound crystallizes in the orthorhombic phase with Pbnm space group at room temperature. Two relaxation processes with different relaxation times are observed from the impedance as well as modulus spectroscopic measurements, which have been attributed to the grain and the grain boundary effects at different temperatures in NGO. The complex impedance data are analyzed by an electrical equivalent circuit consisting of a resistance and a constant phase element in parallel. It has been observed that the value of the capacitance and the resistance associated with the grain boundary is higher than those associated with the grain. The temperature dependent electrical conductivity shows the negative temperature coefficient of resistance. The frequency dependent conductivity spectra are found to follow the power law.

  10. Spectroscopic ellipsometry studies of HF treated Si (100) surfaces

    NASA Astrophysics Data System (ADS)

    Yao, Huade; Woollam, John A.; Alterovitz, Samuel A.

    1993-08-01

    Both ex situ and in situ spectroscopic ellipsometry (SE) measurements were employed to investigate the effects of HF cleaning on Si surfaces. The hydrogen-terminated (H-terminated) Si surface was modeled as an equivalent dielectric layer, and monitored in real time by SE measurements. The SE analyses indicate that after a 20-s 9:1 HF dip without rinse, the Si(100) surface was passivated by the hydrogen termination and remained chemically stable. Roughness of the HF-etched bare Si(100) surface was observed, in an ultrahigh vacuum (UHV) chamber, and analyzed by the in situ SE. Evidence for desorption of the H-terminated Si surface-layer, after being heated to approximately 550 C in the UHV chamber, is presented and discussed. This is the first use of an ex situ and in situ real-time, nondestructive technique capable of showing state of passivation, the rate of reoxidation, and the surface roughness of the H-terminated Si surfaces.

  11. Spectroscopic ellipsometry studies of HF treated Si (100) surfaces

    NASA Astrophysics Data System (ADS)

    Yao, Huade; Woollam, John A.; Alterovitz, Samuel A.

    1993-06-01

    Both ex situ and in situ spectroscopic ellipsometry (SE) measurements were employed to investigate the effect of HF cleaning on Si surfaces. The hydrogen-terminated (H-terminated) Si surface was modeled as an equivalent dielectric layer, and monitored in real time by SE measurements. The SE analyses indicate that, after a 20-sec 9:1 HF dip without rinse, the Si (100) surface was passivated by the hydrogen termination and remained chemically stable. Roughness of the HF-etched bare Si (100) surface was observed, in an ultrahigh vacuum chamber (UHV), and analyzed by the in situ SE. Evidence for desorption of the H-terminated Si surface layer, after being heated to about 550 C in the UHV chamber, is presented and discussed. This is the first use of an ex situ and in situ real-time, nondestructive technique capable of showing state of passivation, the rate of reoxidation, and the surface roughness of the H-terminated Si surfaces.

  12. Impedance and modulus spectroscopic study of nano hydroxyapatite

    NASA Astrophysics Data System (ADS)

    Jogiya, B. V.; Jethava, H. O.; Tank, K. P.; Raviya, V. R.; Joshi, M. J.

    2016-05-01

    Hydroxyapatite (Ca10 (PO4)6 (OH)2, HAP) is the main inorganic component of the hard tissues in bones and also important material for orthopedic and dental implant applications. Nano HAP is of great interest due to its various bio-medical applications. In the present work the nano HAP was synthesized by using surfactant mediated approach. Structure and morphology of the synthesized nano HAP was examined by the Powder XRD and TEM. Impedance study was carried out on pelletized sample in a frequency range of 100Hz to 20MHz at room temperature. The variation of dielectric constant, dielectric loss, and a.c. conductivity with frequency of applied field was studied. The Nyquist plot as well as modulus plot was drawn. The Nyquist plot showed two semicircle arcs, which indicated the presence of grain and grain boundary effect in the sample. The typical behavior of the Nyquist plot was represented by equivalent circuit having two parallel RC combinations in series.

  13. Raman spectroscopic study of the Chromobacterium violaceum pigment violacein using multiwavelength excitation and DFT calculations.

    PubMed

    Jehlička, Jan; Edwards, Howell G M; Němec, Ivan; Oren, Aharon

    2015-12-01

    Violacein is a bisindole pigment occurring as a biosynthetic product of Chromobacterium violaceum and Janthinobacterium lividum. It has some structural similarities to the cyanobacterial UV-protective pigment scytonemin, which has been the subject of comprehensive spectroscopic and structural studies. A detailed experimental Raman spectroscopic study with visible and near-infrared excitation of violacein produced by C. violaceum has been undertaken and supported using theoretical DFT calculations. Raman spectra with 514 and 785 nm excitation of cultivated cells as well as extracts and Gaussian (B3LYP/6-311++G(d,p)) calculations with proposed molecular vibrational assignments are reported here. PMID:26151435

  14. Photometric and spectroscopic study of low mass embedded star clusters in reflection nebulae

    NASA Astrophysics Data System (ADS)

    Soares, J. B.; Bica, E.; Ahumada, A. V.; Clariá, J. J.

    2005-02-01

    An analysis of the candidate embedded stellar systems in the reflection nebulae vdBH-RN 26, vdBH-RN} 38, vdBH-RN} 53a, GGD 20, ESO 95-RN 18 and NGC 6595 is presented. Optical spectroscopic data from CASLEO (Argentina) in conjunction with near infrared photometry from the 2MASS Point Source Catalogue were employed. The analysis is based on source surface density, colour-colour and colour-magnitude diagrams together with theoretical pre-main sequence isochrones. We take into account the field population affecting the analysis by carrying out a statistical subtraction. The fundamental parameters for the stellar systems were derived. The resulting ages are in the range 1-4 Myr and the objects are dominated by pre-main sequence stars. The observed masses locked in the clusters are less than 25 M⊙. The studied systems have no stars of spectral types earlier than B, indicating that star clusters do not necessarily evolve through an HII region phase. The relatively small locked mass combined with the fact that they are not numerous in catalogues suggests that these low mass clusters are not important donors of stars to the field populations. Based on observations made at Complejo Astronómico El Leoncito, which is operated under agreement between the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina and the National Universities of La Plata, Córdoba and San Juan, Argentina.

  15. Synthesis, spectroscopic characterization and electrochemical studies of Girard's T chromone complexes

    NASA Astrophysics Data System (ADS)

    Al-Saeedi, Sameerah I.; Alaghaz, Abdel-Nasser M. A.; Ammar, Reda A.

    2016-05-01

    Complexes of cobalt(II), nickel(II), copper(II) and zinc(II) of general composition [M(L)2] have been. The elemental analyses, molar conductance, spectral, magnetic moment and thermal measurements studies of the compounds led to the conclusion that the ligand acts as a tridentate manner (OON). The molar conductance of the metal complexes in fresh solution of DMSO lies in the range of 8.10-10.18 Ω-1 cm2 mol-1 indicating their non-electrolytic behavior. On the basis of analytical and spectroscopic techniques, octahedral geometry of the complexes was proposed. The ligand field parameters were calculated for Co(II), Ni(II) and Cu(II) complexes and their values were found in the range reported for a octahedral structure. The data show that the complexes have composition of ML2 type. The activation of thermodynamic parameters are calculated using different equations. The octahedral geometry of the complexes is confirmed using DFT method from DMOL3 calculations and ligand field parameters. The cyclic voltammograms of the Cu(II)/Co(II)/Ni(II) complexes investigated in DMSO solution exhibit metal centered electroactivity in the potential range -1.5 to +1.5 V. The electrochemical data obtained for Cu(II) complexes explains the change of structural arrangement of the ligand around Cu(II) ions.

  16. Spectroscopic studies of the small-amplitude Cepheid SU Cas

    NASA Astrophysics Data System (ADS)

    Usenko, I. A.; Klochkova, V. G.; Tavolzhanskaya, N. S.

    2013-09-01

    A new set of 16 high-resolution spectra for the small-amplitude Cepheid SU Cas obtained in 2007-2009 has allowed us to determine its atmospheric parameters ( T eff = 6345 ± 30 K, log g = 2.40, V t = 3.25 km s-1) and to measure its radial velocities. The latter were added to the general list of radial velocities (375 estimates) obtained in the last 90 years. Using a frequency analysis, we have refined the pulsation and orbital periods of the Cepheid. Apart from the well-known fundamental pulsation period [Figure not available: see fulltext.], we have detected a possible secondary period of [Figure not available: see fulltext.]. Their ratio of 0.96 suggests the existence of nonradial pulsations in the Cepheid's atmosphere. Based on photoelectric photometry in the last 60 years, we have shown that the effective temperature undergoes cyclic secular changes of ±200 K with an unknown period. The mean effective temperature T eff = 6395 ± 52 K estimated from photometric data agrees well with our estimate from spectroscopic data. The variations of the mean color index, effective temperature, and γ-velocity (in 90 years of observations) point to a possible orbital motion of the well-known hot companion with the most probable periods of [Figure not available: see fulltext.], [Figure not available: see fulltext.], and [Figure not available: see fulltext.]. The elemental abundances in the atmosphere of SU Cas confirm the conclusion that this Cepheid is a typical yellow supergiant after the first dredge-up. Our T eff estimate gives a radius of 32 R ⊙ and a distance of 455 pc for it, which is inconsistent with its membership in the open cluster Alessi 95. The question about the pulsation mode of SU Cas still remains open.

  17. Models of red giants in the CoRoT asteroseismology fields combining asteroseismic and spectroscopic constraints - The open cluster NGC 6633 and field stars-

    NASA Astrophysics Data System (ADS)

    Lagarde, Nadège; Miglio, Andrea; Eggenberger, Patrick; Morel, Thierry; Montalbàn, Josefina; Mosser, Benoit

    2015-08-01

    The availability of asteroseismic constraints for a large sample of red giant stars from the CoRoT and Kepler missions paves the way for various statistical studies of the seismic properties of stellar populations.We use the first detailed spectroscopic study of CoRoT red-giant stars (Morel et al 2014) to compare theoretical stellar evolution models to observations of the open cluster NGC 6633 and field stars.In order to explore the effects of rotation-induced mixing and thermohaline instability, we compare surface abundances of carbon isotopic ratio and lithium with stellar evolution predictions. These chemicals are sensitive to extra-mixing on the red-giant branch.We estimate mass, radius, and distance for each star using the seismic constraints. We note that the Hipparcos and seismic distances are different. However, the uncertainties are such that this may not be significant. Although the seismic distances for the cluster members are self consistent they are somewhat larger than the Hipparcos distance. This is an issue that should be considered elsewhere. Models including thermohaline instability and rotation-induced mixing, together with the seismically determined masses can explain the chemical properties of red-giants targets. Tighter constraints on the physics of the models would be possible if there were detailed knowledge of the core rotation rate and the asymptotic period spacing.

  18. Spectroscopic studies on sidewall carboxylic acid functionalization of multi-walled carbon nanotubes with valine.

    PubMed

    Deborah, M; Jawahar, A; Mathavan, T; Dhas, M Kumara; Benial, A Milton Franklin

    2015-03-15

    The valine functionalized multi-walled carbon nanotubes (MWCNTS) were prepared and characterized by using XRD, UV-Vis, FT-IR, EPR, SEM, and EDX, spectroscopic techniques. The enhanced XRD peak (002) intensity was observed for valine functionalized MWCNTs compared with oxidized MWCNTs, which is likely due to sample purification by acid washing. UV-Vis study shows the formation of valine functionalized MWCNTs. FT-IR study confirms the presence of functional groups of oxidized MWCNTs and valine functionalized MWCNTs. The ESR line shape analysis indicates that the observed EPR line shape is a Gaussian line shape. The g-values indicate that the systems are isotropic in nature. The morphology study was carried out for oxidized MWCNTs and valine functionalized MWCNTs by using SEM. The EDX spectra revealed that the high purity of oxidized MWCNTs and valine functionalized MWCNTs. The functionalization has been chosen because, functionalization of CNTs with amino acids makes them soluble and biocompatible. Thus, they have potential applications in the field of biosensors and targeted drug delivery. PMID:25554963

  19. Spectroscopic studies on sidewall carboxylic acid functionalization of multi-walled carbon nanotubes with valine

    NASA Astrophysics Data System (ADS)

    Deborah, M.; Jawahar, A.; Mathavan, T.; Dhas, M. Kumara; Benial, A. Milton Franklin

    2015-03-01

    The valine functionalized multi-walled carbon nanotubes (MWCNTS) were prepared and characterized by using XRD, UV-Vis, FT-IR, EPR, SEM, and EDX, spectroscopic techniques. The enhanced XRD peak (0 0 2) intensity was observed for valine functionalized MWCNTs compared with oxidized MWCNTs, which is likely due to sample purification by acid washing. UV-Vis study shows the formation of valine functionalized MWCNTs. FT-IR study confirms the presence of functional groups of oxidized MWCNTs and valine functionalized MWCNTs. The ESR line shape analysis indicates that the observed EPR line shape is a Gaussian line shape. The g-values indicate that the systems are isotropic in nature. The morphology study was carried out for oxidized MWCNTs and valine functionalized MWCNTs by using SEM. The EDX spectra revealed that the high purity of oxidized MWCNTs and valine functionalized MWCNTs. The functionalization has been chosen because, functionalization of CNTs with amino acids makes them soluble and biocompatible. Thus, they have potential applications in the field of biosensors and targeted drug delivery.

  20. Uniform and non-uniform modes of nanosecond-pulsed dielectric barrier discharge in atmospheric air: fast imaging and spectroscopic measurements of electric field

    PubMed Central

    Liu, Chong; Dobrynin, Danil; Fridman, Alexander

    2014-01-01

    In this study, we report experimental results on fast ICCD imaging of development of nanosecond-pulsed dielectric barrier discharge (DBD) in atmospheric air and spectroscopic measurements of electric field in the discharge. Uniformity of the discharge images obtained with nanosecond exposure times were analyzed using chi-square test. The results indicate that DBD uniformity strongly depends on applied (global) electric field in the discharge gap, and is a threshold phenomenon. We show that in the case of strong overvoltage on the discharge gap (provided by fast rise times), there is transition from filamentary to uniform DBD mode which correlates to the corresponding decrease of maximum local electric field in the discharge. PMID:25071294

  1. Task 1.11, Spectroscopic field screening of hazardous waste and toxic spills. Semi-annual report, July 1--December 31, 1995

    SciTech Connect

    1995-12-31

    The overall objective of this project is to study the feasibility of using and evanescent field absorbance sensor Fourier transform infrared (EFAS FT-IR) spectroscopic sensor coupled with cone penetrometry (CPT) as a field screening method. The specific objectives of this project are as follows: design an accessory for use with FT-IR that interfaces the spectrometer to a cone penetrometer; characterize the response of the FT-IR accessory to selected hydrocarbons in a laboratory-simulated field environment; and determine the ability of the FT-IR-CPT instrument to measure hydrocarbon contamination in soil by direct comparison with a reference method (e.g., Soxhlet extraction followed by gas chromatography) to quantify hydrocarbon from the same soil. Work performed during the second two quarters was focused on three areas: characterization of a candidate polymeric film for use in solid-phase microextraction (SPME) of analytes onto the sensor; evaluation of EFAS design; and development of a conceptual design for a spectroscopic sensor.

  2. Two spectroscopically confirmed galaxy structures at z = 0.61 and 0.74 in the CFHTLS Deep 3 field

    NASA Astrophysics Data System (ADS)

    Adami, C.; Cypriano, E. S.; Durret, F.; Le Brun, V.; Lima Neto, G. B.; Martinet, N.; Perez, F.; Rouze, B.; Sodré, L.

    2015-03-01

    Context. Galaxy evolution is known to depend on environment since it differs in clusters and in the field, but studies are sometimes limited to the relatively nearby Universe (z < 0.5). It is still necessary to increase our knowledge of cluster galaxy properties above z = 0.5. Aims: In a previous paper we have detected several cluster candidates at z> 0.5 as part of a systematic search for clusters in the Canada France Hawaii Telescope Legacy Survey by applying the Adami & MAzure Cluster FInder (AMACFI), based on photometric redshifts. We focus here on two of them, located in the Deep 3 (hereafter D3) field: D3-6 and D3-43. Methods: We have obtained spectroscopy with Gemini/GMOS instrument and measured redshifts for 23 and 14 galaxies in the two structures. These redshifts were combined with those available in the literature. A dynamical and a weak lensing analysis were also performed, together with the study of X-ray Chandra archive data. Results: Cluster D3-6 is found to be a single structure of eight spectroscopically confirmed members at an average redshift z = 0.607, with a velocity dispersion of 423 km s-1. It appears to be a relatively low-mass cluster. D3-43-S3 has 46 spectroscopically confirmed members at an average redshift z = 0.739. The cluster can be decomposed into two main substructures, having a velocity dispersion of about 600 and 350 km s-1. An explanation of the fact that D3-43-S3 is detected through weak lensing (only marginally, at the ~3σ level) but not in X-rays could be that the two substructures are just beginning to merge more or less along the line of sight. We also show that D3-6 and D3-43-S3 have similar global galaxy luminosity functions, stellar mass functions, and star formation rate (SFR) distributions. The only differences are that D3-6 exhibits a lack of faint early-type galaxies, a deficit of extremely high stellar mass galaxies compared to D3-43-S3, and an excess of very high SFR galaxies. Conclusions: This study shows the

  3. Electromagnetic Field Penetration Studies

    NASA Technical Reports Server (NTRS)

    Deshpande, M.D.

    2000-01-01

    A numerical method is presented to determine electromagnetic shielding effectiveness of rectangular enclosure with apertures on its wall used for input and output connections, control panels, visual-access windows, ventilation panels, etc. Expressing EM fields in terms of cavity Green's function inside the enclosure and the free space Green's function outside the enclosure, integral equations with aperture tangential electric fields as unknown variables are obtained by enforcing the continuity of tangential electric and magnetic fields across the apertures. Using the Method of Moments, the integral equations are solved for unknown aperture fields. From these aperture fields, the EM field inside a rectangular enclosure due to external electromagnetic sources are determined. Numerical results on electric field shielding of a rectangular cavity with a thin rectangular slot obtained using the present method are compared with the results obtained using simple transmission line technique for code validation. The present technique is applied to determine field penetration inside a Boeing-757 by approximating its passenger cabin as a rectangular cavity filled with a homogeneous medium and its passenger windows by rectangular apertures. Preliminary results for, two windows, one on each side of fuselage were considered. Numerical results for Boeing-757 at frequencies 26 MHz, 171-175 MHz, and 428-432 MHz are presented.

  4. Measurement of moisture content in photovoltaic panel encapsulants using spectroscopic optical coherence tomography: a feasibility study

    NASA Astrophysics Data System (ADS)

    Rashtchi, Shabnam; Ruiz, Pablo D.; Wildman, Ricky; Ashcroft, Ian

    2012-10-01

    EVA, a copolymer of ethylene and vinyl acetate, is a common encapsulant material used in silicon-based PV modules. It contributes to the structural integrity of the modules, provides electrical insulation and also acts as an environmental barrier. However, water can diffuse through EVA into the modules, leading to swelling and chemical degradation, which can impact interfacial bonds, leading to delamination and allowing more ingress to occur that can eventually end up in accelerated corrosion and device failure. Fourier Transform infrared spectroscopy (FTIR) and gravimetric techniques have been used to quantify water concentration and the diffusion coefficient in free standing EVA films. However, these techniques cannot be applied to measure water content in PV modules deployed in the field, as the encapsulant is usually between a glass front sheet and a back sheet made of glass or multilayered films. In this paper we study the feasibility of combining FTIR and spectroscopic optical coherence tomography (SOCT) to measure water concentration of the EVA layer inside the modules. SOCT provides depth resolved spectral information and thus has the potential of measuring water absorption at different layers in the PV module. These depth-resolved measurements are necessary to inform predictive models developed to study the structural integrity, stability and durability of PV modules. The fundamental principle of the technique is explained, the optimum spectral ranges are identified and the feasibility of a SOCT system is discussed based on light source and detector characteristics. Other strategies are also considered.

  5. Near infrared photometric and optical spectroscopic study of 22 low mass star clusters embedded in nebulae

    NASA Astrophysics Data System (ADS)

    Soares, J. B.; Bica, E.; Ahumada, A. V.; Clariá, J. J.

    2008-02-01

    Aims:Among the star clusters in the Galaxy, those embedded in nebulae represent the youngest group, which has only recently been explored. The analysis of a sample of 22 candidate embedded stellar systems in reflection nebulae and/or HII environments is presented. Methods: We employed optical spectroscopic observations of stars in the directions of the clusters carried out at CASLEO (Argentina) together with near infrared photometry from the 2MASS catalogue. Our analysis is based on source surface density, colour-colour diagrams and on theoretical pre-main sequence isochrones. We take into account the field star contamination by carrying out a statistical subtraction. Results: The studied objects have the characteristics of low mass systems. We derive their fundamental parameters. Most of the cluster ages are younger than 2 Myr. The studied embedded stellar systems in reflection nebulae and/or HII region complexes do not have stars of spectral types earlier than B. The total stellar masses locked in the clusters are in the range 20-220 M⊙. They are found to be gravitationally unstable and are expected to dissolve in a timescale of a few Myr. Based on observations made at Complejo Astronómico El Leoncito, which is operated under agreement between the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina and the National Universities of La Plata, Córdoba and San Juan, Argentina.

  6. Pump probe based Raman spectroscopic studies of PTFE under laser driven shock compression

    NASA Astrophysics Data System (ADS)

    Rastogi, Vinay; Rao, Usha; Chaurasia, S.; Mishra, A. K.; Poswal, H. K.; Deo, M. N.; Sharma, S. M.

    2016-05-01

    High pressure spontaneous Raman spectroscopic studies of poly tetra fluro ethylene (PTFE) have been carried out under laser driven shock compression in confinement geometry target. The Raman modes under shock compression as a function of pressure were measured and compared with the corresponding Raman modes in static pressure experiments. Our results indicate that PTFE undergoes transition to phase III across this pressure.

  7. Calibration method for spectroscopic systems

    DOEpatents

    Sandison, David R.

    1998-01-01

    Calibration spots of optically-characterized material placed in the field of view of a spectroscopic system allow calibration of the spectroscopic system. Response from the calibration spots is measured and used to calibrate for varying spectroscopic system operating parameters. The accurate calibration achieved allows quantitative spectroscopic analysis of responses taken at different times, different excitation conditions, and of different targets.

  8. Calibration method for spectroscopic systems

    DOEpatents

    Sandison, D.R.

    1998-11-17

    Calibration spots of optically-characterized material placed in the field of view of a spectroscopic system allow calibration of the spectroscopic system. Response from the calibration spots is measured and used to calibrate for varying spectroscopic system operating parameters. The accurate calibration achieved allows quantitative spectroscopic analysis of responses taken at different times, different excitation conditions, and of different targets. 3 figs.

  9. Models of red giants in the CoRoT asteroseismology fields combining asteroseismic and spectroscopic constraints

    NASA Astrophysics Data System (ADS)

    Lagarde, N.; Miglio, A.; Eggenberger, P.; Morel, T.; Montalbán, J.; Mosser, B.; Rodrigues, T. S.; Girardi, L.; Rainer, M.; Poretti, E.; Barban, C.; Hekker, S.; Kallinger, T.; Valentini, M.; Carrier, F.; Hareter, M.; Mantegazza, L.; Elsworth, Y.; Michel, E.; Baglin, A.

    2015-08-01

    Context. The availability of asteroseismic constraints for a large sample of red giant stars from the CoRoT and Kepler missions paves the way for various statistical studies of the seismic properties of stellar populations. Aims: We use a detailed spectroscopic study of 19 CoRoT red giant stars to compare theoretical stellar evolution models to observations of the open cluster NGC 6633 and field stars. Methods: In order to explore the effects of rotation-induced mixing and thermohaline instability, we compare surface abundances of carbon isotopic ratio and lithium with stellar evolution predictions. These chemicals are sensitive to extra-mixing on the red giant branch. Results: We estimate mass, radius, and distance for each star using the seismic constraints. We note that the Hipparcos and seismic distances are different. However, the uncertainties are such that this may not be significant. Although the seismic distances for the cluster members are self consistent they are somewhat larger than the Hipparcos distance. This is an issue that should be considered elsewhere. Models including thermohaline instability and rotation-induced mixing, together with the seismically determined masses can explain the chemical properties of red giant targets. However, with this sample of stars we cannot perform stringent tests of the current stellar models. Tighter constraints on the physics of the models would require the measurement of the core and surface rotation rates, and of the period spacing of gravity-dominated mixed modes. A larger number of stars with longer times series, as provided by Kepler or expected with Plato, would help ensemble asteroseismology.

  10. Ultrawide band multifrequency high-field EMR technique: A methodology for increasing spectroscopic information.

    PubMed

    Hassan, A K; Pardi, L A; Krzystek, J; Sienkiewicz, A; Goy, P; Rohrer, M; Brunel, L C

    2000-02-01

    We report methodology that combines an ultrawide band multifrequency microwave system with technology of high magnetic fields for solving challenging problems in electron magnetic resonance (EMR) spectroscopy. This strategy has been made possible due to a novel EMR facility operating in an exceptionally wide range of microwave frequencies of 24 GHz to 3 THz, at magnetic fields up to 17 T, and in the temperature range of 1.6 to 330 K. The basic configuration of the multifrequency system works in a transmission mode and employs oversized cylindrical waveguides for routing the microwave power. A wide-band, low-noise, liquid helium cooled (4.2 K) InSb bolometer is used for signal detection. This approach results in an extremely wide-band performance, thus making it possible to employ a variety of solid-state millimeter and submillimeter microwave sources in combination with a far infrared laser microwave source for performing multifrequency EMR experiments. A complexity of resonant structures and related technical problems such as microphonics at high magnetic fields is virtually eliminated. The system is simple, yet sensitive, and has been revealed to be extremely advantageous while solving such problems as observation of AFMR transitions in spin-ordered systems, g-factor resolution enhancement in complex organic radicals, and resonance signal detection in EMR-silent spin systems having integer spin and large zero field splitting. A technical description of the multifrequency high-field EMR facility is presented and results of its performance tests are given. The potential utility of using the multifrequency high-field methodology in EMR studies is illustrated with selected examples of its recent applications. PMID:10648147

  11. Hyperfine spectroscopic study of Laves phase HfFe 2

    NASA Astrophysics Data System (ADS)

    Belošević-Čavor, J.; Novaković, N.; Cekić, B.; Ivanović, N.; Manasijević, M.

    2004-05-01

    Hyperfine fields in HfFe 2 were measured at 181Ta probe using the time-differential perturbed angular correlation method (TDPAC) in the temperature range 78-1200 K. Analysis of the spectra revealed two interactions with hyperfine fields of 13.82(7) T and 8.0(2) T, at 293 K. First is ascribed to the interaction at the 8a position in the cubic C15 structure. The second can be assigned to a minor amount of hexagonal C14 phase, or to an irregular position of the probe in the C15 lattice. Results of calculations using LAPW-WIEN97 are in a good agreement with experiment.

  12. Spectroscopic studies of the molecular parentage of radical species in cometary comae

    NASA Astrophysics Data System (ADS)

    Lewis, Benjamin; Pierce, Donna; Cochran, Anita

    2015-11-01

    We have observed several comets using an integral-field unit spectrograph (the George and Cynthia Mitchell Spectrograph) on the 2.7m Harlan J. Smith telescope at McDonald Observatory. Full-coma spectroscopic images were obtained for various radical species (C2, C3, CH, CN, NH2). By constructing azimuthal average profiles from the full-coma spectroscopic images we can test Haser model parameters with our observations. The Haser model was used to determine production rates and possible parent lifetimes that would be consistent with the model. By iterating through a large range of possible parents lifetimes, we can see what range of values in which the Haser model is consistent with observations. Also, this type of analysis gives us perspective on how sensitive the model's fit quality is to changes in parent lifetimes. Here, we present the work completed to date, and we compare our results to other comet taxonomic surveys.

  13. Development of Polarized Solid Targets for Spectroscopic Studies with Radioactive Ion Beams.

    NASA Astrophysics Data System (ADS)

    Urrego-Blanco, J. P.; Galindo-Uribarri, A.; van den Brandt, B.

    2005-04-01

    Exciting new findings with radioactive ion beams (RIBs) in nuclear spectroscopy have resulted in a growing interest in this field. In order to fully exploit the potential of RIBs it is necessary to develop appropriate experimental tools. We are investigating the possibility of introducing polarization observables in spectroscopic studies with RIBs, at energies around the Coulomb barrier, through polystyrene targets of polarized protons and deuterons in the thickness range between 20 and 100μm. The operation of such target systems requires a cooling scheme where the target is situated in the isolation vacuum of a cryostat in open connection to the vacuum of the beamline. This can be achieved by using two parallel polarized foils mounted on a copper tube, serving also as the NMR coil (for sampling the polarization), to form together a closed volume. Cooling of the foils is then achieved by a liquid helium bath (^4He or ^3He) via the copper tube, and subsequently via a superfluid ^4He film that can be added through the hollow NMR coil. The first tests of this proposed geometry are discussed and a status of the project is delivered.

  14. Application of spectroscopic techniques for the analysis of kidney stones: a pilot study

    NASA Astrophysics Data System (ADS)

    Shameem, K. M., Muhammed; Chawla, Arun; Bankapur, Aseefhali; Unnikrishnan, V. K.; Santhosh, C.

    2016-03-01

    Identification and characterization of kidney stone remains one of the important analytical tasks in the medical field. Kidney stone is a common health complication throughout the world, which may cause severe pain, obstruction and infection of urinary tract, and can lead to complete renal damage. It commonly occurs in both sexes regardless of age. Kidney stones have different composition, although each stones have a major single characteristic component. A complete understanding of a sample properties and their function can only be feasible by utilizing elemental and molecular information simultaneously. Two laser based analytical techniques; Laser Induced Breakdown spectroscopy (LIBS) and Raman spectroscopy have been used to study different types of kidney stones from different patients. LIBS and Raman spectroscopy are highly complementary spectroscopic techniques, which provide elemental and molecular information of a sample. Q-switched Nd:YAG laser at 355 nm laser having energy 17mJ per pulse at 10 Hz repetition rate was used for getting LIBS spectra. Raman measurements were carried out using a home assembled micro-Raman spectrometer. Using the recorded Raman spectra of kidney stones, we were able to differentiate different kinds of kidney stones. LIBS spectra of the same stones are showing the evidence of C, Ca, H, and O and also suggest the presence of certain pigments.

  15. A theoretical benchmark study of the spectroscopic constants of the very heavy rare gas dimers.

    PubMed

    Shee, Avijit; Knecht, Stefan; Saue, Trond

    2015-04-28

    Spectroscopic constants for the homonuclear dimers of the very heavy rare gases radon (Rn) and eka-radon (Uuo) are reported. A computational protocol using the eXact 2-Component molecular-mean field Hamiltonian has been established based on extensive calculations of the xenon dimer. We find that reliable results require CCSD(T) calculations at the extrapolated basis set limit. In this limit counterpoise corrected results are closer to experimentally derived values than uncorrected ones. Furthermore, in an attempt to reduce the computational cost while retaining very high accuracy, we studied the performance of range-separated density functional theory. Although we observe a somewhat more favorable basis set convergence and reduced importance of connected triples by range-separated methods compared to pure wave function theory, in practice we have to employ the same computational protocol for obtaining converged results. At the Dirac-Coulomb level we find an almost fourfold increase of binding energy when going from the radon to the eka-radon dimer, but the inclusion of spin-other orbit interaction reduces the dissociation energy of the heaviest dimer by about 40%. PMID:25825068

  16. Atomically resolved spectroscopic study of Sr2IrO4: Experiment and theory

    PubMed Central

    Li, Qing; Cao, Guixin; Okamoto, Satoshi; Yi, Jieyu; Lin, Wenzhi; Sales, Brian C.; Yan, Jiaqiang; Arita, Ryotaro; Kuneš, Jan; Kozhevnikov, Anton V.; Eguiluz, Adolfo G.; Imada, Masatoshi; Gai, Zheng; Pan, Minghu; Mandrus, David G.

    2013-01-01

    Particularly in Sr2IrO4, the interplay between spin-orbit coupling, bandwidth and on-site Coulomb repulsion stabilizes a Jeff = 1/2 spin-orbital entangled insulating state at low temperatures. Whether this insulating phase is Mott- or Slater-type, has been under intense debate. We address this issue via spatially resolved imaging and spectroscopic studies of the Sr2IrO4 surface using scanning tunneling microscopy/spectroscopy (STM/S). STS results clearly illustrate the opening of an insulating gap (150 ~ 250 meV) below the Néel temperature (TN), in qualitative agreement with our density-functional theory (DFT) calculations. More importantly, the temperature dependence of the gap is qualitatively consistent with our DFT + dynamical mean field theory (DMFT) results, both showing a continuous transition from a gapped insulating ground state to a non-gap phase as temperatures approach TN. These results indicate a significant Slater character of gap formation, thus suggesting that Sr2IrO4 is a uniquely correlated system, where Slater and Mott-Hubbard-type behaviors coexist. PMID:24166292

  17. WIYN open cluster study. LX. Spectroscopic binary orbits in NGC 6819

    SciTech Connect

    Milliman, Katelyn E.; Mathieu, Robert D.; Gosnell, Natalie M.; Geller, Aaron M.; Meibom, Søren; Platais, Imants

    2014-08-01

    We present the current state of the WOCS radial-velocity (RV) survey for the rich open cluster NGC 6819 (2.5 Gyr) including 93 spectroscopic binary orbits with periods ranging from 1.5 to 8000 days. These results are the product of our ongoing RV survey of NGC 6819 using the Hydra Multi-Object Spectrograph on the WIYN 3.5 m telescope. We also include a detailed analysis of multiple prior sets of optical photometry for NGC 6819. Within a 1° field of view, our stellar sample includes the giant branch, the red clump, and blue straggler candidates, and extends to almost 2 mag below the main sequence (MS) turnoff. For each star observed in our survey we present all RV measurements, the average RV, and velocity variability information. Additionally, we discuss notable binaries from our sample, including eclipsing binaries (WOCS 23009, WOCS 24009, and WOCS 40007), stars noted in Kepler asteroseismology studies (WOCS 4008, WOCS 7009, and WOCS 8007), and potential descendants of past blue stragglers (WOCS 1006 and WOCS 6002). We find the incompleteness-corrected binary fraction for all MS binaries with periods less than 10{sup 4} days to be 22% ± 3% and a tidal circularization period of 6.2{sub −1.1}{sup +1.1} days for NGC 6819.

  18. Hunting the parent of the Orphan stream. II. The first high-resolution spectroscopic study

    SciTech Connect

    Casey, Andrew R.; Keller, Stefan C.; Da Costa, Gary; Maunder, Elizabeth; Frebel, Anna

    2014-03-20

    We present the first high-resolution spectroscopic study on the Orphan stream for five stream candidates, observed with the Magellan Inamori Kyocera Echelle spectrograph on the Magellan Clay telescope. The targets were selected from the low-resolution catalog of Casey et al.: three high-probability members, one medium, and one low-probability stream candidate were observed. Our analysis indicates that the low- and medium-probability targets are metal-rich field stars. The remaining three high-probability targets range over ∼1 dex in metallicity, and are chemically distinct compared to the other two targets and all standard stars: low [α/Fe] abundance ratios are observed, and lower limits are ascertained for [Ba/Y], which sit well above the Milky Way trend. These chemical signatures demonstrate that the undiscovered parent system is unequivocally a dwarf spheroidal galaxy, consistent with dynamical constraints inferred from the stream width and arc. As such, we firmly exclude the proposed association between NGC 2419 and the Orphan stream. A wide range in metallicities adds to the similarities between the Orphan stream and Segue 1, although the low [α/Fe] abundance ratios in the Orphan stream are in tension with the high [α/Fe] values observed in Segue 1. Open questions remain before Segue 1 could possibly be claimed as the 'parent' of the Orphan stream. The parent system could well remain undiscovered in the southern sky.

  19. Complementary spectroscopic studies of materials of security interest

    NASA Astrophysics Data System (ADS)

    Burnett, Andrew; Fan, Wenhui; Upadhya, Prashanth; Cunningham, John; Edwards, Howell; Munshi, Tasnim; Hargreaves, Michael; Linfield, Edmund; Davies, Giles

    2006-09-01

    We demonstrate that, through coherent measurement of the transmitted terahertz frequency electric fields, broadband (0.3 - 8 THz) time-domain spectroscopy can be used to measure far-infrared vibrational modes of a range of drugs-of-abuse and high explosives that are of interest to the forensic and security services. Our results indicate that absorption features in these materials are highly sensitive to the structural and spatial arrangement of the molecules. Terahertz frequency spectra are also compared with high-resolution low-frequency Raman spectra to assist in understanding the low-frequency inter- and intra-molecular vibrational modes of the molecules.

  20. Spectroscopic identification of a redshift 1.55 supernova host galaxy from the Subaru Deep Field Supernova Survey

    NASA Astrophysics Data System (ADS)

    Frederiksen, Teddy F.; Graur, Or; Hjorth, Jens; Maoz, Dan; Poznanski, Dovi

    2014-03-01

    Context. The Subaru Deep Field (SDF) Supernova Survey discovered ten Type Ia supernovae (SNe Ia) in the redshift range 1.5 < z < 2.0, determined solely from photometric redshifts of the host galaxies. However, photometric redshifts might be biased, and the SN sample could be contaminated by active galactic nuclei (AGNs). Aims: We aim to obtain the first robust redshift measurement and classification of a z > 1.5 SDF SN Ia host galaxy candidate. Methods: We use the X-shooter (U-to-K-band) spectrograph on the Very Large Telescope to allow the detection of different emission lines in a wide spectral range. Results: We measure a spectroscopic redshift of 1.54563 ± 0.00027 of hSDF0705.25, consistent with its photometric redshift of 1.552 ± 0.018. From the strong emission-line spectrum we rule out AGN activity, thereby confirming the optical transient as a SN. The host galaxy follows the fundamental metallicity relation showing that the properties of this high-redshift SN Ia host galaxy is similar to other field galaxies. Conclusions: Spectroscopic confirmation of additional SDF SN hosts would be required to confirm the cosmic SN rate evolution measured in the SDF. Based on observations made with ESO telescopes at the La Silla Paranal Observatory under program ID 089.A-0739.

  1. Vibrational spectroscopic studies to acquire a quality control method of Eucalyptus essential oils.

    PubMed

    Baranska, M; Schulz, H; Reitzenstein, S; Uhlemann, U; Strehle, M A; Krüger, H; Quilitzsch, R; Foley, W; Popp, J

    2005-08-01

    This article presents a novel and original approach to analyze in situ the main components of Eucalyptus oil by means of Raman spectroscopy. The obtained two-dimensional Raman maps demonstrate a unique possibility to study the essential oil distribution in the intact plant tissue. Additionally, Fourier Transform (FT)-Raman and attenuated total reflection (ATR)-IR spectra of essential oils isolated from several Eucalyptus species by hydrodistillation are presented. Density Functional Theory (DFT) calculations were performed in order to interpret the spectra of the essential oils of the Eucalyptus species. It is shown that the main components of the essential oils can be recognized by both vibrational spectroscopic techniques using the spectral information of the pure terpenoids. Spectroscopic analysis is based on the key bands of the individual volatile substances and therefore allows one to discriminate different essential oil profiles of several Eucalyptus species. It has been found that the presented spectroscopic data correlate very well with those obtained by gas chromatography (GC) analysis. All these investigations are helpful tools to generate a fast and easy method to control the quality of the essential oils with vibrational spectroscopic techniques in combination with DFT calculations. PMID:15856523

  2. Spectroscopic study of combustion diagnostics on hydroxyl radicals

    NASA Technical Reports Server (NTRS)

    Hung, R. J.

    1990-01-01

    Experimental observations of propane-air flames were performed. Measurements of hydroxyl (OH) radical concentration were made using resonance line absorption techniques. A microwave-pumped low pressure discharge in argon and water vapor is employed to produce strong OH radical band radiation in the 308 nm region. This radiation is transmitted through the plume and absorption data are taken at various radical positions using an optical multichannel analyzer. This absorption data is used to compute OH number density using a model for the absorption band characteristics as a function of temperature based on an atlas of line strengths. A numerical computation of flow fields, temperature profile and OH number density is carried out by using a technique of computational fluid dynamics (CFD). The results of CFD computation are good compared with experimental observation with a good agreement.

  3. How specific Raman spectroscopic models are: a comparative study between different cancers

    NASA Astrophysics Data System (ADS)

    Singh, S. P.; Kumar, K. Kalyan; Chowdary, M. V. P.; Maheedhar, K.; Krishna, C. Murali

    2010-02-01

    Optical spectroscopic methods are being contemplated as adjunct/ alternative to existing 'Gold standard' of cancer diagnosis, histopathological examination. Several groups are actively pursuing diagnostic applications of Ramanspectroscopy in cancers. We have developed Raman spectroscopic models for diagnosis of breast, oral, stomach, colon and larynx cancers. So far, specificity and applicability of spectral- models has been limited to particular tissue origin. In this study we have evaluated explicitly of spectroscopic-models by analyzing spectra from already developed spectralmodels representing normal and malignant tissues of breast (46), cervix (52), colon (25), larynx (53), and oral (47). Spectral data was analyzed by Principal Component Analysis (PCA) using scores of factor, Mahalanobis distance and Spectral residuals as discriminating parameters. Multiparametric limit test approach was also explored. The preliminary unsupervised PCA of pooled data indicates that normal tissue types were always exclusive from their malignant counterparts. But when we consider tissue of different origin, large overlap among clusters was found. Supervised analysis by Mahalanobis distance and spectral residuals gave similar results. The 'limit test' approach where classification is based on match / mis-match of the given spectrum against all the available spectra has revealed that spectral models are very exclusive and specific. For example breast normal spectral model show matches only with breast normal spectra and mismatch to rest of the spectra. Same pattern was seen for most of spectral models. Therefore, results of the study indicate the exclusiveness and efficacy of Raman spectroscopic-models. Prospectively, these findings might open new application of Raman spectroscopic models in identifying a tumor as primary or metastatic.

  4. Spectroscopic imaging with improved gradient modulated constant adiabaticity pulses on high-field clinical scanners

    NASA Astrophysics Data System (ADS)

    Andronesi, Ovidiu C.; Ramadan, Saadallah; Ratai, Eva-Maria; Jennings, Dominique; Mountford, Carolyn E.; Sorensen, A. Gregory

    2010-04-01

    The purpose of this work was to design and implement constant adiabaticity gradient modulated pulses that have improved slice profiles and reduced artifacts for spectroscopic imaging on 3 T clinical scanners equipped with standard hardware. The newly proposed pulses were designed using the gradient offset independent adiabaticity (GOIA, Tannus and Garwood [13]) method using WURST modulation for RF and gradient waveforms. The GOIA-WURST pulses were compared with GOIA-HS n (GOIA based on nth-order hyperbolic secant) and FOCI (frequency offset corrected inversion) pulses of the same bandwidth and duration. Numerical simulations and experimental measurements in phantoms and healthy volunteers are presented. GOIA-WURST pulses provide improved slice profile that have less slice smearing for off-resonance frequencies compared to GOIA-HS n pulses. The peak RF amplitude of GOIA-WURST is much lower (40% less) than FOCI but slightly higher (14.9% more) to GOIA-HS n. The quality of spectra as shown by the analysis of lineshapes, eddy currents artifacts, subcutaneous lipid contamination and SNR is improved for GOIA-WURST. GOIA-WURST pulse tested in this work shows that reliable spectroscopic imaging could be obtained in routine clinical setup and might facilitate the use of clinical spectroscopy.

  5. A M2FS Spectroscopic Study of Low-mass Young Stars in Orion OB1

    NASA Astrophysics Data System (ADS)

    Kaleida, Catherine C.; Briceno, Cesar; Calvet, Nuria; Mateo, Mario L.; Hernandez, Jesus

    2015-01-01

    Surveys of pre-main sequence stars in the ~4-10 Myr range provide a window into the decline of the accretion phase of stars and the formation of planets. Nearby star clusters and stellar associations allow for the study of these young stellar populations all the way down to the lowest mass members. One of the best examples of nearby 4-10 Myr old stellar populations is the Orion OB1 association. The CIDA Variability Survey of Orion OB1 (CVSO - Briceño et al. 2001) has used the variability properties of low-mass pre-main-sequence (PMS) stars to identify hundreds of K and M-type stellar members of the Orion OB1 association, a number of them displaying IR-excess emission and thought to be representative of more evolved disk-bearing young stars. Characterizing these young, low-mass objects using spectroscopy is integral to understanding the accretion phase in young stars. We present preliminary results of a spectroscopic survey of candidate and confirmed Orion OB1 low-mass members taken during November 2014 and February 2014 using the Michigan/Magellan Fiber Spectrograph (M2FS), a PI instrument on the Magellan Clay Telescope (PI: M. Matteo). Target fields located in the off-cloud regions of Orion were identified in the CVSO, and observed using the low and high-resolution modes of M2FS. Both low and high-resolution spectra are needed in order to confirm membership and derive masses, ages, kinematics and accretion properties. Initial analysis of these spectra reveal many new K and M-type members of the Orion OB1 association in these low extinction, off-cloud areas. These are the more evolved siblings of the youngest stars still embedded in the molecular clouds, like those in the Orion Nebula Cluster. With membership and spectroscopic indicators of accretion we are building the most comprehensive stellar census of this association, enabling us to derive a robust estimate of the fraction of young stars still accreting at a various ages, a key constraint for the end of

  6. Spectroscopic and dynamical studies of highly energized small polyatomic molecules

    SciTech Connect

    Field, R.W.; Silbey, R.J.

    1990-01-01

    The formyl radical and the acetylene molecule were chosen for these studies. The visible and fluorescence spectra of the formyl radical were recorded, and the spectral results are used as a basis to explain the electronic structure. Optical-optical double resonance studies of acetylene were recorded, and the spectral results are interpreted. The results of Zeeman and Stark anticrossing and quantum beat studies of acetylene are reported, and they provide an unusually detailed view of both Intersystem Crossing and Internal Conversion in small polyatomic molecules. 22 references are cited as resulting from Department of Energy sponsorship of this project.

  7. Spectroscopic study of the humification process during sewage sludge treatment

    NASA Astrophysics Data System (ADS)

    Pajączkowska, J.; Sułkowska, A.; Sułkowski, W. W.; Jędrzejczyk, M.

    2003-06-01

    The aim of this work was to study the free radical transition of organic materials during the sewage treatment process. Investigations of sludge from biologic-mechanical sewage treatment plant in Sosnowiec Zagórze were carried out. The course of the humification processes during sewage treatment was studied by electron paramagnetic resonance (EPR) technique. The concentration of free radicals at each process stage and the value g were determined. Sludge samples and extracted fractions of humic acids were examined. Humic acids were extracted from sludge by means of conventional methods elaborated by Stevenson. For study of humic acids structures, besides EPR, the UV-Vis and IR spectroscopy were used.

  8. Laser-induced breakdown spectroscopic study of ammonium nitrate plasma

    SciTech Connect

    Hanif, M.; Salik, M.; Baig, M. A.

    2013-12-15

    We present the optical emission studies of the ammonium nitrate plasma produced by the fundamental (1064 nm) and second (532 nm) harmonics of a Q-switched Nd: YAG laser. The target material was placed in front of the laser beam in an open atmospheric air. The spectrum reveals numerous transitions of neutral nitrogen. We have studied the spatial behavior of the plasma temperature (T{sub e}) and electron number density (N{sub e}) determined using the Boltzmann plot method and Stark broadened line profiles, respectively. Besides, we have studied the variation of the plasma parameters as a function of the laser irradiance.

  9. SPECTROSCOPIC STUDIES OF MATERIALS FOR ELECTROCHEMICAL ENERGY STORAGE

    SciTech Connect

    Greenbaum, Steven G.

    2014-03-01

    Several battery materials research projects were undertaken, suing NMR spectroscopy as a primary analytical tool. These include transport proerties of liquid and solid electrolytes and structural studies of Li ion electrodes.

  10. SPECTROSCOPIC STUDY OF SORPTION OF NITROGEN HETEROCYCLIC COMPOUNDS ON PHYLLOSILICATES

    EPA Science Inventory

    The present study focused on understanding the sorption characteristics of acridine (AcN)and acridine-9-carboxylic acid (AcNCOOH), two typical nitrogen heterocyclic compounds (NHCs), on well-characterized phyllosilicates (hectorite, saponite, and muscovite). Results presented in...

  11. Sum frequency generation vibrational spectroscopic studies on buried heterogeneous biointerfaces.

    PubMed

    Zhang, Chi; Jasensky, Joshua; Leng, Chuan; Del Grosso, Chelsey; Smith, Gary D; Wilker, Jonathan J; Chen, Zhan

    2014-05-01

    A sum frequency generation (SFG) vibrational micro-spectroscopy system was developed to examine buried heterogeneous biointerfaces. A compact optical microscope was constructed with total-internal reflection (TIR) SFG geometry to monitor the tightly focused SFG laser spots on interfaces, providing the capability of selectively probing different regions on heterogeneous biointerfaces. The TIR configuration ensures and enhances the SFG signal generated only from the sample/substrate interfacial area. As an example for possible applications in biointerfaces studies, the system was used to probe and compare buried interfacial structures of different biological samples attached to underwater surfaces. We studied the interface of a single mouse oocyte on a silica prism to demonstrate the feasibility of tracing and studying a single live cell and substrate interface using SFG. We also examined the interface between a marine mussel adhesive plaque and a CaF2 substrate, showing the removal of interface-bonded water molecules. This work also paves the way for future integration of other microscopic techniques such as TIR-fluorescence microscopy or nonlinear optical imaging with SFG spectroscopy for multimodal surface or interface studies. PMID:24784085

  12. Photoemission Spectroscopic Study of Cesium Telluride Thin Film Photocathode

    SciTech Connect

    Sugiyama, Harue; Ogawa, Koji; Azuma, Junpei; Takahashi, Kazutoshi; Kamada, Masao

    2009-08-04

    The photoemission spectroscopy using synchrotron radiation has been carried out to study the high quantum efficiency and long working lifetime of cesium telluride (Cs{sub x}Te{sub y}) thin film photocathode. The electron affinity derived from the observed energy-distribution curves provides an important hint for long persistency of the photocathode.

  13. LEAD SORPTION ON RUTHENIUM OXIDE: A MACROSCOPIC AND SPECTROSCOPIC STUDY

    EPA Science Inventory

    Metal oxide phases play an important role in governing the sorption and desorption mechanisms of metals in water, soils, and sediments. Many researchers have examined the efficiency of Pb sorption on Mn, Fe, Al, Ti, and Si oxide surfaces. Most studies concluded that adsorption ...

  14. Structural, Magnetic and Spectroscopic Studies of Thin Manganite Films

    NASA Astrophysics Data System (ADS)

    Tyson, T. A.

    2003-03-01

    Starting from early experiments [1], evidence has been found for a close coupling of strain and the magnetotransport properties of manganite films. The characteristic feature found is that the metal to insulator transition temperature (TMI) is suppressed in very thin films [2]. In addition, studies show that the magnetic transition temperature (Tc) and TMI decouple in ultrathin films [3]. Systematic magnetization studies reveal that strain induces strong magnetic anisotropy [4]. Theoretical work also points to the sensitivity of Tc to biaxial strain [5]. Most studies have focused on single bulk properties. In order to understand the correlations between strain and the transport and magnetic properties we have examined the structure of films on multiple length scales. The local structure of films have been studies by x-ray absorption spectroscopy. The long -range structure has been studied by high-resolution x-ray diffraction and the microstructure has been studied by AFM measurements. These measurements are correlated with bulk magnetization and transport studies. Insight is gained on the evolution of lattice strain and Jahn-Teller distortions with thickness. Direct evidence is found for the arrest of charge ordering with strain and the existence of strain induced insulating regions of films. The magnetic ordering and transport properties as a function of strain as compared with bandstructure calculations. This work is supported by NSF Career Grant DMR-9733862 and DMR-0209243. Collaborators: Q. Qian, M. Deleon (NJIT), C. Dubourdiu (CNRS), J. Bai (ORNL), W. Prellier, A. Biswas, R. L. Greene (U. Maryland) [1] S. Jin et al., Appl. Phys. Lett. 67, 557 (1995). [2] (a) J. Z. Sun et al. Appl. Phys. Lett. 74, 3017 (1999). (b) F. S. Razi et al., Appl. Phys. Lett 76, 155 (2000) [3] J. Aarts et al., Appl. Phys. Lett. 72, 2975 (1998). (b) R. A. Rao et al., J. Appl. Phys. 85, 4794 (1999). [4] (a) X. W. Wu et al., Phys. Rev. B 61, 501 (2000). (b) J. O'Donnell et al., Appl. Phys

  15. Magnetic resonance and optical spectroscopic studies of carotenoids

    SciTech Connect

    Kispert, L.D.

    1991-05-01

    It is our goal to study the role of a host lattice in the formation of radicals and excited singlet and triplet states that are relevant to photosynthesis. Particular emphasis is being placed on determining what is special about carotenoids that natural photosynthetic systems require them as antennae as well as for protection. We are thus manipulating the host matrix so as to understand the carotenoid function (protection, quenching, energy transfer and antenna) and the structure of carotenoid cations. To characterize their properties, we have carried out EPR, ENDOR, optical, molecular orbital and electrochemical studies of carotenoids and carotenoid cations produced chemically, electrochemically, radiolytically (x-ray irradiated freon matrices) and photolytically (solution photolysis by excimer radiation) as a function of the host matrix. 36 refs.

  16. Spectroscopic studies of laser ablation plumes of artwork materials

    NASA Astrophysics Data System (ADS)

    Oujja, M.; Rebollar, E.; Castillejo, M.

    2003-04-01

    Studies on the plasma plume created during KrF laser (248 nm) ablation of dosimeter tempera samples in vacuum have been carried out to investigate the basic interactions of the laser with paint materials. Time resolved optical emission spectroscopy (OES) was used to measure the translational velocity of electronically excited transients in the plasma plume. Laser-induced fluorescence (LIF) studies using a probe dye laser, allowed to determine the velocities of non-emitting species. The propagation velocities of C 2 in the a 3π u and d 3π g electronic states and of excited atomic species are indicative of a high translational temperature. Differences between the velocities of organic and inorganic species and between emissions from the tempera systems and from the pigments as pellets allow to discuss the participation of photochemical mechanisms in the laser irradiation of the paint systems.

  17. Spectroscopic Studies of Atomic and Molecular Processes in the Edge Region of Magnetically Confined Fusion Plasmas

    SciTech Connect

    Hey, J. D.; Brezinsek, S.; Mertens, Ph.; Unterberg, B.

    2006-12-01

    Edge plasma studies are of vital importance for understanding plasma-wall interactions in magnetically confined fusion devices. These interactions determine the transport of neutrals into the plasma, and the properties of the plasma discharge. This presentation deals with optical spectroscopic studies of the plasma boundary, and their role in elucidating the prevailing physical conditions. Recorded spectra are of four types: emission spectra of ions and atoms, produced by electron impact excitation and by charge-exchange recombination, atomic spectra arising from electron impact-induced molecular dissociation and ionisation, visible spectra of molecular hydrogen and its isotopic combinations, and laser-induced fluorescence (LIF) spectra. The atomic spectra are strongly influenced by the confining magnetic field (Zeeman and Paschen-Back effects), which produces characteristic features useful for species identification, temperature determination by Doppler broadening, and studies of chemical and physical sputtering. Detailed analysis of the Zeeman components in both optical and LIF spectra shows that atomic hydrogen is produced in various velocity classes, some related to the relevant molecular Franck-Condon energies. The latter reflect the dominant electron collision processes responsible for production of atoms from molecules. This assignment has been verified by gas-puffing experiments through special test limiters. The higher-energy flanks of hydrogen line profiles probably also show the influence of charge-exchange reactions with molecular ions accelerated in the plasma sheath ('scrape-off layer') separating limiter surfaces from the edge plasma, in analogy to acceleration in the cathode-fall region of gas discharges. While electron collisions play a vital role in generating the spectra, ion collisions with excited atomic radiators act through re-distribution of population among the atomic fine-structure sublevels, and momentum transfer to the atomic nuclei via

  18. Thiosaccharine disulfide: Synthesis, crystal structure, spectroscopic characterization and theoretical study

    NASA Astrophysics Data System (ADS)

    Ferullo, Ricardo M.; Granados, Alejandro; Lanterna, Anabel; Güida, Jorge A.; Piro, Oscar E.; Castellano, Eduardo E.; Dennehy, Mariana

    2013-01-01

    The title compound, (thiosaccharine disulfide), bis[1,1'dioxide-2,3-dihidro-1,2-benzoisothiazol]disulfide, (tsac)2 has been synthesized and fully characterized by UV-Visible, IR, Raman, 1H and 13C NMR spectroscopy elemental analysis and structural X-ray crystallography. A DFT theoretical study has been performed and good agreement between experimental and theoretical values of structural parameters and vibration frequencies have been achieved.

  19. Spectroscopic and computational study of a new isomer of salinomycin

    NASA Astrophysics Data System (ADS)

    Pankiewicz, Radosław

    2013-09-01

    A new derivative of polyether ionophore salinomycin was obtained as a result of a rearrangement catalysed by sulphuric acid in two-phase medium of water/methylene chloride solution. The new isomer was fully characterized by multinuclear 2D NMR, NOESY and MALDI-TOF. The properties of the new compound were additionally study by semiempirical (PM5) and DFT (B3LYP) methods. A potential mechanism of the rearrangement was also proposed.

  20. Spectroscopic studies of model polar stratospheric cloud films

    NASA Technical Reports Server (NTRS)

    Tolbert, Margaret A.; Koehler, Birgit G.; Middlebrook, Ann M.

    1993-01-01

    Fourier transform infrared (FTIR) spectroscopy has been used to study nitric-acid/ice films representative of type I polar stratospheric clouds (PSCs). These studies reveal that in addition to amorphous nitric acid/ice mixtures, there are three stable stoichiometric hydrates of nitric acid: nitric-acid monohydrate (NAM), dihydrate (NAD), and trihydrate (NAT). We also observe two distinct crystalline forms of the trihydrate, which we denote alpha- and beta-NAT. These two forms appear to differ in their concentration of crystalline defects, but not in their chemical composition. In addition to probing the composition of type I PSCs, we have also used FTIR spectroscopy to study the interaction of HCl with model PSC films. In this work we find that for HCl pressures in the range 10 exp -5 to 10 exp -7 Torr, HCl is taken up by ice at 155 K to form a thin layer of HCl.6H2O. At 193 K, the uptake of HCl by ice was consistent with less than or equal to monolayer coverage. Uptake of HCl by alpha and beta-NAT at 175 K was also consistent with less than or equal to monolayer coverage.

  1. Raman microprobe spectroscopic studies of solid DNA-CTMA films

    NASA Astrophysics Data System (ADS)

    Yaney, Perry P.; Ahmad, Faizan; Grote, James G.

    2008-08-01

    Extensive studies have been carried out on developing the new biopolymer, deoxyribonucleic acid (DNA) derived from salmon, that has been complexed with a surfactant to make it water insoluble for application to bioelectronic and biophotonic devices. One of the key issues associated with the properties and behavior of solid films of this material is the extreme size of the >8 MDa molecular weight of the virgin, as-received material. Reduction of this molecular weight by factors of up to 40 is achieved by high power sonication. To support the various measurements that have been made to confirm that the sonicated material is still double strand DNA and to look for other effects of sonication, Raman studies were carried out to compare the spectra over a wide range of molecular weights and to develop baseline data that can be used in intercolation studies where various dopants are added to change the electrical, mechanical or optical properties. Raman microprobe spectra from solid, dry thin films of DNA with molecular weights ranging from 200 kDa to >8 MDa complexed with cetyltrimethyl-ammonium chloride (CTMA) are reported and compared to the as-received spectrum and to published DNA spectra in aqueous solutions. In addition, microscopy and measurements on macro-molecular structures of DNA-CTMA are reported.

  2. SPECTROSCOPIC STUDIES OF STRUCTURE, DYNAMICS AND REACTIVITY IN IONIC LIQUIDS.

    SciTech Connect

    WISHART,J.F.

    2007-11-30

    Ionic liquids (ILs) are a rapidly expanding family of condensed-phase media with important applications in energy production, nuclear fuel and waste processing, improving the efficiency and safety of industrial chemical processes, and pollution prevention. ILs are generally nonvolatile, noncombustible, highly conductive, recyclable and capable of dissolving a wide variety of materials. They are finding new uses in chemical synthesis, catalysis, separations chemistry, electrochemistry and other areas. Ionic liquids have dramatically different properties compared to conventional molecular solvents, and they provide a new and unusual environment to test our theoretical understanding of charge transfer and other reactions. We are interested in how IL properties influence physical and dynamical processes that determine the stability and lifetimes of reactive intermediates and thereby affect the courses of chemical reactions and product distributions. Successful use of ionic liquids in radiation-filled environments, where their safety advantages could be significant, requires an understanding of ionic liquid radiation chemistry. For example, characterizing the primary steps of IL radiolysis will reveal radiolytic degradation pathways and suggest ways to prevent them or mitigate their effects on the properties of the material. An understanding of ionic liquid radiation chemistry will also facilitate pulse radiolysis studies of general chemical reactivity in ILs, which will aid in the development of applications listed above. Very early in our radiolysis studies it became evident that slow solvation dynamics of the excess electron in ILs (which vary over a wide viscosity range) increases the importance of pre-solvated electron reactivity and consequently alters product distributions. Parallel studies of IL solvation phenomena using coumarin-153 dynamic Stokes shifts and polarization anisotropy decay rates are done to compare with electron solvation studies and to evaluate

  3. Highly accurate quartic force fields, vibrational frequencies, and spectroscopic constants for cyclic and linear C3H3(+).

    PubMed

    Huang, Xinchuan; Taylor, Peter R; Lee, Timothy J

    2011-05-19

    High levels of theory have been used to compute quartic force fields (QFFs) for the cyclic and linear forms of the C(3)H(3)(+) molecular cation, referred to as c-C(3)H(3)(+) and l-C(3)H(3)(+). Specifically, the singles and doubles coupled-cluster method that includes a perturbational estimate of connected triple excitations, CCSD(T), has been used in conjunction with extrapolation to the one-particle basis set limit, and corrections for scalar relativity and core correlation have been included. The QFFs have been used to compute highly accurate fundamental vibrational frequencies and other spectroscopic constants by use of both vibrational second-order perturbation theory and variational methods to solve the nuclear Schrödinger equation. Agreement between our best computed fundamental vibrational frequencies and recent infrared photodissociation experiments is reasonable for most bands, but there are a few exceptions. Possible sources for the discrepancies are discussed. We determine the energy difference between the cyclic and linear forms of C(3)H(3)(+), obtaining 27.9 kcal/mol at 0 K, which should be the most reliable available. It is expected that the fundamental vibrational frequencies and spectroscopic constants presented here for c-C(3)H(3)(+) and l-C(3)H(3)(+) are the most reliable available for the free gas-phase species, and it is hoped that these will be useful in the assignment of future high-resolution laboratory experiments or astronomical observations. PMID:21510653

  4. Highly Accurate Quartic Force Fields, Vibrational Frequencies, and Spectroscopic Constants for Cyclic and Linear C3H3(+)

    NASA Technical Reports Server (NTRS)

    Huang, Xinchuan; Taylor, Peter R.; Lee, Timothy J.

    2011-01-01

    High levels of theory have been used to compute quartic force fields (QFFs) for the cyclic and linear forms of the C H + molecular cation, referred to as c-C H + and I-C H +. Specifically the 33 3333 singles and doubles coupled-cluster method that includes a perturbational estimate of connected triple excitations, CCSD(T), has been used in conjunction with extrapolation to the one-particle basis set limit and corrections for scalar relativity and core correlation have been included. The QFFs have been used to compute highly accurate fundamental vibrational frequencies and other spectroscopic constants using both vibrational 2nd-order perturbation theory and variational methods to solve the nuclear Schroedinger equation. Agreement between our best computed fundamental vibrational frequencies and recent infrared photodissociation experiments is reasonable for most bands, but there are a few exceptions. Possible sources for the discrepancies are discussed. We determine the energy difference between the cyclic and linear forms of C H +, 33 obtaining 27.9 kcal/mol at 0 K, which should be the most reliable available. It is expected that the fundamental vibrational frequencies and spectroscopic constants presented here for c-C H + 33 and I-C H + are the most reliable available for the free gas-phase species and it is hoped that 33 these will be useful in the assignment of future high-resolution laboratory experiments or astronomical observations.

  5. Electrochemical and spectroscopic studies of fuel cell reactions

    NASA Astrophysics Data System (ADS)

    Shao, Minhua

    Fuel cells, especially proton exchange membrane fuel cells (PEMFCs) are expected soon to become a major source of clean energy. However, the sluggish kinetics of the fuel cell reactions, i.e., the fuel oxidation and oxygen reduction, hinders the wide-spread application of PEMFCs. These problems prompted our studies to focus on elucidating the nature of the reaction intermediates during the oxidation of fuels and the reduction of oxygen on electrocatalysts, and understanding the mechanisms of these reactions. The results from these studies will provide basic information for designing new electrocatalysts. In this dissertation, the oxidation reactions of ethanol and dimethyl ether (DME) on Pt were investigated by the surface enhanced infrared absorption spectroscopy with an attenuated total reflection configuration (ATR-SEIRAS). Various reaction intermediates were detected and their electrochemical behaviors were studied. We also benefited from advantages of the ATR-SEIRAS technique and observed superoxide anion (O2-) and hydrogen peroxide anion (H2-) as the intermediates in the oxygen reduction reaction (ORR) on Pt and Au electrodes for the first time. The other main goal of this study is design of new electrocatalysts for ORR with low cost and high activity. Two novel electrocatalysts were developed. One is Pt monolayer electrocatalysts consisting of a Pt monolayer formed by a red-ox replacement of the Cu monolayer by Pt atoms on non-noble metal-noble metal core-shell nanoparticles. In such catalyst, the total noble mass activity of the catalyst was 2--6 times larger that of commercial Pt catalyst. Another way of lowering the cost of catalysts and enhancing the ORR activity involves alloying less expensive noble metals with other non-noble elements. In this dissertation, the nano-structured Pd based alloy electrocatalysts have been explored. The results showed that their ORR activities surpass that of commercial Pt. The density functional theory (DFT) calculations

  6. Photoelectron spectroscopic study of the ethyl cyanoacrylate anion

    NASA Astrophysics Data System (ADS)

    Zhang, Xinxing; Tang, Xin; Bowen, Kit

    2013-09-01

    Anion photoelectron spectroscopy and density functional theory have been utilized to study the parent, ethyl cyanoacrylate molecular anion, ECA-. The measured electron affinity (0.9 ± 0.2 eV), vertical detachment energy (1.3 ± 0.1 eV), and anion-to-triplet neutral, photodetachment transition energies (4.0 ± 0.1 eV and 4.5 ± 0.1 eV) all compare well with their calculated values. The relatively high electron affinity of the ECA monomer is responsible for the fact that its “anionic” polymerization mechanism proceeds even with weak nucleophiles, such as water.

  7. Chemical and spectroscopic studies of Cercidium praecox gum exudate.

    PubMed

    León de Pinto, G; Martínez, M; Rivas, C

    1994-07-01

    The structure of the polysaccharide from Cercidium praecox (R&P) Harms gum exudate has been studied by Smith degradation, by sugar and methylation analyses, and by 13C NMR spectroscopy. The results showed a (1-->4)-xylan core. Some xylose residues are substituted at O-2 by alpha-D-glucuronic acid and 4-O-methyl-alpha-D-glucuronic acid residues. beta-D-Glucuronic acid is present, probably as terminal residues. The arabinose is present as alpha-L-furanose and beta-L-pyranose. PMID:8062287

  8. Spectroscopic, thermal and structural studies on manganous malate crystals

    SciTech Connect

    Thomas, J. Lincy, A. Mahalakshmi, V.; Saban, K. V.

    2013-01-15

    Prismatic crystals of manganous malate have been prepared by controlled ionic diffusion in hydrosilica gel. The structure was elucidated using single crystal X-ray diffraction. The crystals are orthorhombic with space group Pbca. Vibrations of the functional groups were identified by the FTIR spectrum. Thermogravimetric and differential thermal analyses (TG-DTA) were carried out to explore the thermal decomposition pattern of the material. Structural information derived from FTIR and TG-DTA studies is in conformity with the single crystal XRD data.

  9. Raman and infrared spectroscopic study of turquoise minerals

    NASA Astrophysics Data System (ADS)

    Čejka, Jiří; Sejkora, Jiří; Macek, Ivo; Malíková, Radana; Wang, Lina; Scholz, Ricardo; Xi, Yunfei; Frost, Ray L.

    2015-10-01

    Raman and infrared spectra of three well-defined turquoise samples, CuAl6(PO4)4(OH)8·4H2O, from Lavender Pit, Bisbee, Cochise county, Arizona; Kouroudaiko mine, Faleme river, Senegal and Lynch Station, Virginia were studied, interpreted and compared. Observed Raman and infrared bands were assigned to the stretching and bending vibrations of phosphate tetrahedra, water molecules and hydroxyl ions. Approximate O-H⋯O hydrogen bond lengths were inferred from the Raman and infrared spectra. No Raman and infrared bands attributable to the stretching and bending vibrations of (PO3OH)2- units were observed.

  10. Raman and infrared spectroscopic study of turquoise minerals.

    PubMed

    Čejka, Jiří; Sejkora, Jiří; Macek, Ivo; Malíková, Radana; Wang, Lina; Scholz, Ricardo; Xi, Yunfei; Frost, Ray L

    2015-10-01

    Raman and infrared spectra of three well-defined turquoise samples, CuAl6(PO4)4(OH)8·4H2O, from Lavender Pit, Bisbee, Cochise county, Arizona; Kouroudaiko mine, Faleme river, Senegal and Lynch Station, Virginia were studied, interpreted and compared. Observed Raman and infrared bands were assigned to the stretching and bending vibrations of phosphate tetrahedra, water molecules and hydroxyl ions. Approximate O-H⋯O hydrogen bond lengths were inferred from the Raman and infrared spectra. No Raman and infrared bands attributable to the stretching and bending vibrations of (PO3OH)(2-) units were observed. PMID:25956330

  11. 4MOST - The new wide-field, high-multiplex spectroscopic survey facility for ESO's VISTA telescope

    NASA Astrophysics Data System (ADS)

    de Jong, Roelof S.; Consortium, 4MOST

    2015-08-01

    4MOST is a wide-field, high-multiplex spectroscopic survey facility under development for the VISTA telescope of the European Southern Observatory (ESO), the only facility of its kind planned for the southern sky. Its main science drivers are in the fields of galactic archeology, high-energy physics, galaxy evolution and cosmology. 4MOST will in particular provide the spectroscopic complements to the large area surveys coming from space missions like Gaia, eROSITA, Euclid, and PLATO and from ground-based facilities like VISTA, VST, DECam, LSST and SKA. Surveys are planned to determine the chemo-dynamical structure and evolution of the Milky Way and to characterize Dark Energy as function of time through multiple methods (e.g., BAO, RSD, lensing) and tracers (galaxies, AGN, Ly-α Forest, galaxy clusters, SNe 1a).The 4MOST baseline concept features a 2.7 degree diameter field-of-view with about 2400 fibres in the focal surface that are configured by a fibre positioner based on the tilting spine principle. The fibres feed two types of spectrographs; ˜1600 fibres go to two spectrographs with resolution R>5000 (˜390-930 nm) and ˜800 fibres to a spectrograph with R>18,000 (˜392-437 nm, 515-572 nm and 605-675 nm). Both types of spectrographs are fixed-configuration, three-channel spectrographs.4MOST will have an unique operations concept in which 5 year public surveys from both the consortium and the ESO community will be combined and observed in parallel during each exposure, resulting in more than 25 million spectra of targets spread over a large fraction of the southern sky. The 4MOST Facility Simulator (4FS) was developed to demonstrate the feasibility of this observing concept. 4MOST has been accepted for implementation by ESO and has moved into its construction phase. Operations are expected to start by the early 2021.

  12. Rotational Spectroscopic Studies and Observational Searches for HO3

    NASA Astrophysics Data System (ADS)

    Widicus Weaver, Susanna

    Interstellar chemistry is largely driven by reactions of unstable molecules that serve as reaction intermediates in terrestrial chemistry. One such class of compounds are weakly-bound clusters. These clusters could form in interstellar environments through radiative association reactions, but their identification and characterization in interstellar environments is limited by a lack of rotational spectral information. One such species is HO3, which could be formed in the interstellar medium from O2 and OH. HO3 has been studied extensively in the infrared, and there are a few microwave spectral studies that have also been reported. However, no millimeter or submillimeter spectral information is available to guide astronomical observations. In this talk, we will present the laboratory characterization of trans -HO3 and trans -DO3 from 70 to 450 GHz using our newly developed fast sweeping technique. The molecular constants have been significantly refined, and additional higher order centrifugal distortion constants have been determined. We will also present an initial observational search for HO3 in 32 star forming regions. Although no HO3 lines have been detected thus far, strict upper limits can be placed on the HO3 column density in these sources based on this analysis. Additional Authors: Luyao Zou, Brian M. Hays.

  13. Raman spectroscopic study of Lactarius spores (Russulales, Fungi).

    PubMed

    De Gussem, Kris; Vandenabeele, Peter; Verbeken, Annemieke; Moens, Luc

    2005-10-01

    Fungi are important organisms in ecosystems, in industrial and pharmaceutical production and are valuable food sources as well. Classical identification is often time-consuming and specialistic. In this study, Raman spectroscopy is applied to the analysis of fungal spores of Lactarius, an economically and ecologically important genus of Basidiomycota. Raman spectra of spores of Lactarius controversus Pers.: Fr., Lactarius lacunarum (Romagn.) ex Hora, Lactarius quieticolor Romagn. and Lactarius quietus (Fr.: Fr.) Fr. are reported for the first time. The spectra of these species show large similarity. These spectra are studied and compared with the Raman spectra of reference substances known to occur in macrofungi, including saccharides, lipids and some minor compounds that may serve as specific biomarkers (adenine, ergosterol and glycine). Most Raman bands could be attributed to specific components. In agreement with the biological role of fungal spores, high amounts of lipids were observed, the main fatty acid being oleate. In addition to different types of lipids and phospholipids, the polysaccharides chitin and amylopectin could be detected as well. The presence of trehalose is not equivocally shown, due to overlapping bands. Raman band positions are reported for the observed bands of the different species and reference products. PMID:16165029

  14. Vibrational spectroscopic studies of adsorbates on bimetallic surfaces. Doctoral thesis

    SciTech Connect

    Kuhn, W.K.

    1992-12-01

    In this work, well-defined bimetallic surfaces have been studied using carbon monoxide adsorption in conjunction with infrared reflection absorption spectroscopy (IRAS). These studies have indicated that for CO adsorbed on Cu overlayers, the bond between the CO and the Cu adatoms is comprised of both pi-back-donation and polarization interaction components. The sum of the contributions from these effects determines the observed bond strength with the observed CO stretching frequency being determined by the relative contributions of the components. In addition, it was determined that IR spectra of adsorbed CO show a remarkable sensitivity to surface structure. Three-dimensional Cu clusters, well-ordered two dimensional Cu islands and isolated Cu atoms are distinctively characterized by their CO IR peaks. In addition, both disorder-order and order-order transitions are observed for the metal overlayers on the single crystal metal substrates. It was also observed that localized segregation and ordering of mixed Co and S overlayers on a Mo(110) substrate occurs upon annealing.

  15. Thermo-active polymer nanocomposites: a spectroscopic study

    NASA Astrophysics Data System (ADS)

    Winter, A. Douglas; Larios, Eduardo; Jaye, Cherno; Fischer, Daniel A.; Omastová, Mária; Campo, Eva M.

    2014-09-01

    Photo- and thermo-mechanical actuation behaviour in specific polymer-carbon nanotube composites has been observed in recent years and studied at the macroscale. These systems may prove to be suitable components for a wide range of applications, from MOEMs and nanotechnology to neuroscience and tissue engineering. Absence of a unified model for actuation behaviour at a molecular level is hindering development of such smart materials. We observed thermomechanical actuation of ethylene-vinyl acetate | carbon nanotube composites through in situ near-edge X-ray absorption fine structure spectroscopy to correlate spectral trends with macroscopic observations. This paper presents spectra of composites and constituents at room temperature to identify resonances in a building block model, followed by spectra acquired during thermo-actuation. Effects of strain-induced filler alignment are also addressed. Spectral resonances associated with C=C and C=O groups underwent synchronised intensity variations during excitation, and were used to propose a conformational model of actuation based on carbon nanotube torsion. Future actuation studies on other active polymer nanocomposites will verify the universality of the proposed model.

  16. Ligand exchange in quaternary alloyed nanocrystals--a spectroscopic study.

    PubMed

    Gabka, Grzegorz; Bujak, Piotr; Giedyk, Kamila; Kotwica, Kamil; Ostrowski, Andrzej; Malinowska, Karolina; Lisowski, Wojciech; Sobczak, Janusz W; Pron, Adam

    2014-11-14

    Exchange of initial, predominantly stearate ligands for pyridine in the first step and butylamine (BA) or 11-mercaptoundecanoic acid (MUA) in the second one was studied for alloyed quaternary Cu-In-Zn-S nanocrystals. The NMR results enabled us to demonstrate, for the first time, direct binding of the pyridine labile ligand to the nanocrystal surface as evidenced by paramagnetic shifts of the three signals attributed to its protons to 7.58, 7.95 and 8.75 ppm. XPS investigations indicated, in turn, a significant change in the composition of the nanocrystal surface upon the exchange of initial ligands for pyridine, which being enriched in indium in the 'as prepared' form became enriched in zinc after pyridine binding. This finding indicated that the first step of ligand exchange had to involve the removal of the surface layer enriched in indium with simultaneous exposure of a new, zinc-enriched layer. In the second ligand exchange step (replacement of pyridine with BA or MUA) the changes in the nanocrystal surface compositions were much less significant. The presence of zinc in the nanocrystal surface layer turned out necessary for effective binding of pyridine as shown by a comparative study of ligand exchange in Cu-In-Zn-S, Ag-In-Zn-S and CuInS2, carried out by complementary XPS and NMR investigations. PMID:25252174

  17. Photoacoustic FTIR spectroscopic study of undisturbed nacre from red abalone

    NASA Astrophysics Data System (ADS)

    Verma, Devendra; Katti, Kalpana; Katti, Dinesh

    2006-07-01

    In this work, photoacoustic Fourier transform infrared (PA-FTIR) spectroscopy has been utilized to study interfacial interactions of undisturbed nacre and nacre powder from red abalone shell. The spectra of both undisturbed nacre and nacre powder showed characteristic bands of aragonite and proteins. Although nacre powder and undisturbed nacre are chemically identical, PA-FTIR spectrum of undisturbed nacre is found to be significantly different from that of nacre powder. A broad and strong band is observed at around 1485 cm -1 in nacre powder. The intensity of this band is notably reduced in undisturbed nacre. This result is explained on the basis of interfacial interactions between aragonite platelets and acidic proteins. It is also observed that band at around 1788 cm -1 originates from three overlapping bands 1797, 1787 and 1778 cm -1. The band at around 1787 cm -1 is assigned to C dbnd O stretching of carboxylate groups of acidic proteins. The other two bands at 1797 and 1778 cm -1, originate from aragonite and have been assigned to combination bands, ν 3 + ν 4a and ν 3 + ν 4b, respectively. For the study of stratification in undisturbed nacre, PA-FTIR spectra have been collected in step scan mode. The variation in spectra with depth can be attributed to changes in conformation of proteins as well as interfacial interactions.

  18. Raman spectroscopic study of Lactarius spores (Russulales, Fungi)

    NASA Astrophysics Data System (ADS)

    De Gussem, Kris; Vandenabeele, Peter; Verbeken, Annemieke; Moens, Luc

    2005-10-01

    Fungi are important organisms in ecosystems, in industrial and pharmaceutical production and are valuable food sources as well. Classical identification is often time-consuming and specialistic. In this study, Raman spectroscopy is applied to the analysis of fungal spores of Lactarius, an economically and ecologically important genus of Basidiomycota. Raman spectra of spores of Lactarius controversus Pers.: Fr., Lactarius lacunarum (Romagn.) ex Hora, Lactarius quieticolor Romagn. and Lactarius quietus (Fr.: Fr.) Fr. are reported for the first time. The spectra of these species show large similarity. These spectra are studied and compared with the Raman spectra of reference substances known to occur in macrofungi, including saccharides, lipids and some minor compounds that may serve as specific biomarkers (adenine, ergosterol and glycine). Most Raman bands could be attributed to specific components. In agreement with the biological role of fungal spores, high amounts of lipids were observed, the main fatty acid being oleate. In addition to different types of lipids and phospholipids, the polysaccharides chitin and amylopectin could be detected as well. The presence of trehalose is not equivocally shown, due to overlapping bands. Raman band positions are reported for the observed bands of the different species and reference products.

  19. Mechanism of Arsenic Adsorption Using Wheat Biomass -- a spectroscopic study

    NASA Astrophysics Data System (ADS)

    Calvo, Oscar; Manciu, Felicia; Maldonado, Josefina; Gardea-Torresdey, Jorge

    2006-10-01

    Arsenic is a trace element that is toxic to animals, humans included. Since the current Environmental Protection Agency guidelines regarding water quality standards indicate that arsenic concentrations in excess of 50 ppb are hazardous to welfare of humans, the search for new water remediation methods or improvements of previous methods have been a focus in environmental technology. Investigations of arsenic uptake have used wide range of sorbents including iron oxides and oxyhydroxides, for which it have been proved that arsenic shows high affinity. In this study, we used far-infrared spectroscopy to examine the arsenic reduction using biomaterials. pH dependence analysis by FTIR demonstrates the sorption of iron oxides and oxyhydroxides by the wheat biomass. The splitting of 350 cm-1 amorphous iron oxide vibrations is a direct proof of the arsenic uptake. In addition, there is evidence of sorption of arsenic at sulfhydryl group of cysteine existent in wheat.

  20. Spectroscopic study of low-temperature hydrogen absorption in palladium

    SciTech Connect

    Ienaga, K. Takata, H.; Onishi, Y.; Inagaki, Y.; Kawae, T.; Tsujii, H.; Kimura, T.

    2015-01-12

    We report real-time detection of hydrogen (H) absorption in metallic palladium (Pd) nano-contacts immersed in liquid H{sub 2} using inelastic electron spectroscopy (IES). After introduction of liquid H{sub 2}, the spectra exhibit the time evolution from the pure Pd to the Pd hydride, indicating that H atoms are absorbed in Pd nano-contacts even at the temperature where the thermal process is not expected. The IES time and bias voltage dependences show that H absorption develops by applying bias voltage 30 ∼ 50 mV, which can be explained by quantum tunneling. The results represent that IES is a powerful method to study the kinetics of high density H on solid surface.

  1. Theoretical spectroscopic studies on chemical and electronic structures of arginylglycine.

    PubMed

    Li, Hongbao; Li, Leilei; Jiang, Jun; Lin, Zijing; Luo, Yi

    2015-10-14

    The energy differences between canonical and zwitterionic isomers of arginylglycine (ArgGly) at the CCSD/aug-cc-pVDZ level are too small (less than 1 kcal mol(-1)) to determine the dominant form in the gas phase from the energetic point of view. First-principles simulations have been performed for near-edge X-ray absorption fine-structure (NEXAFS) spectra and X-ray photoelectron spectra (XPS) at C, N and O K-edges, as well as for infrared (IR) spectra of neutral ArgGly. Noticeable spectral differences were found which enable the unambiguous identification of different neutral groups. We thus demonstrate X-ray spectroscopy as a powerful technique to study the conformation dependent chemical and electronic properties of neutral ArgGly. PMID:26266331

  2. Preparations and spectroscopic studies of organotin complexes of diclofenac*1

    NASA Astrophysics Data System (ADS)

    Kourkoumelis, Nikolaos; Demertzis, Mavroudis A.; Kovala-Demertzi, Dimitra; Koutsodimou, Aglaia; Moukarika, Alice

    2004-08-01

    The reactions of the potent and widely used anti-inflammatory drug diclofenac, HL, with diorganotin(IV) oxides were studied. The dimeric tetraorganodistannoxane complexes [Me 2LSnOSnLMe 2] 2, [Bu 2LSnOSnLBu 2] 2, [Ph 2LSnOSnLPh 2] 2 and the dibutyltin complex [Bu 2SnL 2], have been prepared and structurally characterized in the solid state by means of vibrational and 119Sn Mössbauer spectroscopy. Determination of lattice dynamics by temperature-dependent 119Sn Mössbauer spectroscopy. From the variable-temperature Mössbauer effect, the Debye temperature was determined. The complexes have been characterized in solution by NMR ( 1H and 13C) spectroscopy. Vibrational, Mössbauer, and NMR data are discussed in terms of the proposed structures.

  3. High resolution spectroscopic study of Be10Lambda;

    NASA Astrophysics Data System (ADS)

    Gogami, T.; Chen, C.; Kawama, D.; Achenbach, P.; Ahmidouch, A.; Albayrak, I.; Androic, D.; Asaturyan, A.; Asaturyan, R.; Ates, O.; Baturin, P.; Badui, R.; Boeglin, W.; Bono, J.; Brash, E.; Carter, P.; Chiba, A.; Christy, E.; Danagoulian, S.; de Leo, R.; Doi, D.; Elaasar, M.; Ent, R.; Fujii, Y.; Fujita, M.; Furic, M.; Gabrielyan, M.; Gan, L.; Garibaldi, F.; Gaskell, D.; Gasparian, A.; Han, Y.; Hashimoto, O.; Horn, T.; Hu, B.; Hungerford, Ed. V.; Jones, M.; Kanda, H.; Kaneta, M.; Kato, S.; Kawai, M.; Khanal, H.; Kohl, M.; Liyanage, A.; Luo, W.; Maeda, K.; Margaryan, A.; Markowitz, P.; Maruta, T.; Matsumura, A.; Maxwell, V.; Mkrtchyan, A.; Mkrtchyan, H.; Nagao, S.; Nakamura, S. N.; Narayan, A.; Neville, C.; Niculescu, G.; Niculescu, M. I.; Nunez, A.; Nuruzzaman, Okayasu, Y.; Petkovic, T.; Pochodzalla, J.; Qiu, X.; Reinhold, J.; Rodriguez, V. M.; Samanta, C.; Sawatzky, B.; Seva, T.; Shichijo, A.; Tadevosyan, V.; Tang, L.; Taniya, N.; Tsukada, K.; Veilleux, M.; Vulcan, W.; Wesselmann, F. R.; Wood, S. A.; Yamamoto, T.; Ya, L.; Ye, Z.; Yokota, K.; Yuan, L.; Zhamkochyan, S.; Zhu, L.; Hksjlab E05-115 Collaboration

    2016-03-01

    Spectroscopy of a Be10Lambda; hypernucleus was carried out at JLab Hall C using the (e ,e'K+) reaction. A new magnetic spectrometer system (SPL+HES+HKS), specifically designed for high resolution hypernuclear spectroscopy, was used to obtain an energy spectrum with a resolution of ˜0.78 MeV (FWHM). The well-calibrated spectrometer system of the present experiment using p (e ,e'K+)Λ ,Σ0 reactions allowed us to determine the energy levels; and the binding energy of the ground-state peak (mixture of 1- and 2- states) was found to be BΛ=8.55 ±0.07 (stat . ) ±0.11 (sys . ) MeV. The result indicates that the ground-state energy is shallower than that of an emulsion study by about 0.5 MeV which provides valuable experimental information on the charge symmetry breaking effect in the Λ N interaction.

  4. Raman and infrared spectroscopic study of kamphaugite-(Y)

    NASA Astrophysics Data System (ADS)

    Frost, Ray L.; López, Andrés; Scholz, Ricardo

    2015-05-01

    We have studied the carbonate mineral kamphaugite-(Y)(CaY(CO3)2(OH)·H2O), a mineral which contains yttrium and specific rare earth elements. Chemical analysis shows the presence of Ca, Y and C. Back scattering SEM appears to indicate a single pure phase. The vibrational spectroscopy of kamphaugite-(Y) was obtained using a combination of Raman and infrared spectroscopy. Two distinct Raman bands observed at 1078 and 1088 cm-1 provide evidence for the non-equivalence of the carbonate anion in the kamphaugite-(Y) structure. Such a concept is supported by the number of bands assigned to the carbonate antisymmetric stretching mode. Multiple bands in the ν4 region offers further support for the non-equivalence of carbonate anions in the structure. Vibrational spectroscopy enables aspects of the structure of the mineral kamphaugite-(Y) to be assessed.

  5. Micro-Ft Spectroscopic Studies of Breast Tissues

    NASA Astrophysics Data System (ADS)

    Anastassopoulou, J.; Arapantoni, P.; Boukaki, E.; Konstadoudakis, S.; Theophanides, T.; Valavanis, C.; Conti, C.; Ferraris, P.; Giorgini, G.; Sabbatini, S.; Tosi, G.

    Micro-FT-IR spectroscopy was used to study breast cancer tissues and, in particular osteosarcoma tissue. By analysing the spectra, we have found characteristic bands in the infrared regions, where the main components of these signature bands are located. In the region between 1680-1660 cm-1 are found the characteristic bands of Amide I and II of proteins. The bands, which correspond to the vibrations of the phosphate groups, are found in the region near 1140-900 cm-1. These characteristic bands have been monitored as a function of the degree of cancer progression. The results have been obtained with chemometric methods, such as cluster analysis, principal component analysis and custom analysis in order to distinguish the neoplastic zones from the normal zones.

  6. In-beam spectroscopic studies of the 44S nucleus

    NASA Astrophysics Data System (ADS)

    Cáceres, L.; Sohler, D.; Grévy, S.; Sorlin, O.; Dombrádi, Zs.; Bastin, B.; Achouri, N. L.; Angélique, J. C.; Azaiez, F.; Baiborodin, D.; Borcea, R.; Bourgeois, C.; Buta, A.; Bürger, A.; Chapman, R.; Dalouzy, J. C.; Dlouhy, Z.; Drouard, A.; Elekes, Z.; Franchoo, S.; Gaudefroy, L.; Iacob, S.; Laurent, B.; Lazar, M.; Liang, X.; Liénard, E.; Mrazek, J.; Nalpas, L.; Negoita, F.; Nowacki, F.; Orr, N. A.; Penionzhkevich, Y.; Podolyák, Zs.; Pougheon, F.; Poves, A.; Roussel-Chomaz, P.; Saint-Laurent, M. G.; Stanoiu, M.; Stefan, I.

    2012-02-01

    The structure of the 44S nucleus has been studied at GANIL through the one proton knock-out reaction from a 45Cl secondary beam at 42 A·MeV. The γ rays following the de-excitation of 44S were detected in flight using the 70 BaF2 detectors of the Château de Cristal array. An exhaustive γγ-coincidence analysis allowed an unambiguous construction of the level scheme up to an excitation energy of 3301 keV. The existence of the spherical 22+ state is confirmed and three new γ-ray transitions connecting the prolate deformed 21+ level were observed. Comparison of the experimental results to shell model calculations further supports a prolate and spherical shape coexistence with a large mixing of states built on the ground state band in 44S.

  7. Raman spectroscopic study of plasma-treated salmon DNA

    SciTech Connect

    Lee, Geon Joon; Kim, Yong Hee; Choi, Eun Ha; Kwon, Young-Wan

    2013-01-14

    In this research, we studied the effect of plasma treatment on the optical/structural properties of the deoxyribonucleic acid (DNA) extracted from salmon sperm. DNA-cetyltrimethylammonium (CTMA) films were obtained by complexation of DNA with CTMA. Circular dichroism (CD) and Raman spectra indicated that DNA retained its double helical structure in the solid film. The Raman spectra exhibited several vibration modes corresponding to the nuclear bases and the deoxyribose-phosphate backbones of the DNA, as well as the alkylchains of CTMA. Dielectric-barrier-discharge (DBD) plasma treatment induced structural modification and damage to the DNA, as observed by changes in the ultraviolet-visible absorption, CD, and Raman spectra. The optical emission spectra of the DBD plasma confirmed that DNA modification was induced by plasma ions such as reactive oxygen species and reactive nitrogen species.

  8. Enhanced Raman spectroscopic study of rotational isomers on metal surfaces

    NASA Technical Reports Server (NTRS)

    Loo, B. H.; Lee, Y. G.; Frazier, D. O.

    1986-01-01

    Surfaced-enhanced Raman spectroscopy has been used to study rotational isomers of succinonitrile and N-methyl-thioacetamide on Cu and Ag surfaces. Both the gauche and trans conformers of succinonitrile are found to chemisorb on the metal surface. The doubly degenerate nu(C-triple bond-N) in the free molecules is removed when succinonitrile adsorbs on copper, which indicates that the two (C-triple bond-N) groups are no longer chemically equivalent. Both conformers are found to coordinate to the copper surface through the pi system of one of the two (C-triple bond-N) groups. In the case of N-methyl-thioacetamide, the population of the cis isomer is greatly increased on Cu and Ag surfaces. This is probably due to surface-induced cis-trans isomerization, in which the predominant trans isomer is converted to the cis isomer.

  9. Raman spectroscopic study of ancient South African domestic clay pottery.

    PubMed

    Legodi, M A; de Waal, D

    2007-01-01

    The technique of Raman spectroscopy was used to examine the composition of ancient African domestic clay pottery of South African origin. One sample from each of four archaeological sites including Rooiwal, Lydenburg, Makahane and Graskop was studied. Normal dispersive Raman spectroscopy was found to be the most effective analytical technique in this study. XRF, XRD and FT-IR spectroscopy were used as complementary techniques. All representative samples contained common features, which were characterised by kaolin (Al2Si2O5(OH)5), illite (KAl4(Si7AlO20)(OH)4), feldspar (K- and NaAlSi3O8), quartz (alpha-SiO2), hematite (alpha-Fe2O3), montmorillonite (Mg3(Si,Al)4(OH)2 x 4.5 5H(2)O[Mg]0.35), and calcium silicate (CaSiO3). Gypsum (CaSO4 x 2H2O) and calcium carbonates (most likely calcite, CaCO3) were detected by Raman spectroscopy in Lydenburg, Makahane and Graskop shards. Amorphous carbon (with accompanying phosphates) was observed in the Raman spectra of Lydenburg, Rooiwal and Makahane shards, while rutile (TiO(2)) appeared only in Makahane shard. The Raman spectra of Lydenburg and Rooiwal shards further showed the presence of anhydrite (CaSO4). The results showed that South African potters used a mixture of clays as raw materials. The firing temperature for most samples did not exceed 800 degrees C, which suggests the use of open fire. The reddish brown and grayish black colours were likely due to hematite and amorphous carbon, respectively. PMID:16839805

  10. Raman spectroscopic studies of carbon in extra-terrestrial materials

    NASA Technical Reports Server (NTRS)

    Macklin, John; Brownlee, Donald; Chang, Sherwood; Bunch, Ted

    1990-01-01

    The measurements obtained here indicate ways in which micro-Raman spectroscopy can be used to elucidate structural characteristics and distribution of carbon in meteorites and interplanetary dust particles (IDPs). Existing information about structurally significant aspects of Raman measurements of graphite is combined with structurally relevant findings from the present micro-Raman studies of carbons prepared by carbonization of polyvinylidine chloride (PVDC) at various temperatures and natural material, as well as several acid residues from the Allende and Murchison meteorites in order to establish new spectra-structure relationships. Structural features of many of the materials in this study have been measured by x ray analysis and electron microscopy: thus, their structural differences can be directly correlated with differences in the Raman spectra. The spectral parameters consequently affirmed as indicators of structure are used as a measure of structure in materials that have unknown carbon structure, especially IDPs. The unique applicability of micro-Raman spectroscopy is realized not only in the ability to conveniently measure spectra of micron-size IDPs, but also micro-sized parts of an inhomogeneous material. Microcrystalline graphite is known to give Raman spectra that differ dependent on crystallite size (see e.g., Lespade, et. al., 1984, or Nemanich and Solin, 1979). The spectral changes that accompany decreasing particle size include increase in the ratio (R) of the intensity of the band near 1350 cm(-1) (D band) to that of the band near 1600 cm(-1) (G band) increase in the half width of the D band (wD) increase in the frequency maximum of the G band and increase in the half-width (wG) of the 2nd order band near 2700 cm(-1) (G) band.