Science.gov

Sample records for field strains reported

  1. Piezoelectric field in strained GaAs.

    SciTech Connect

    Chow, Weng Wah; Wieczorek, Sebastian Maciej

    2005-11-01

    This report describes an investigation of the piezoelectric field in strained bulk GaAs. The bound charge distribution is calculated and suitable electrode configurations are proposed for (1) uniaxial and (2) biaxial strain. The screening of the piezoelectric field is studied for different impurity concentrations and sample lengths. Electric current due to the piezoelectric field is calculated for the cases of (1) fixed strain and (2) strain varying in time at a constant rate.

  2. Dark field electron holography for strain measurement.

    PubMed

    Béché, A; Rouvière, J L; Barnes, J P; Cooper, D

    2011-02-01

    Dark field electron holography is a new TEM-based technique for measuring strain with nanometer scale resolution. Here we present the procedure to align a transmission electron microscope and obtain dark field holograms as well as the theoretical background necessary to reconstruct strain maps from holograms. A series of experimental parameters such as biprism voltage, sample thickness, exposure time, tilt angle and choice of diffracted beam are then investigated on a silicon-germanium layer epitaxially embedded in a silicon matrix in order to obtain optimal dark field holograms over a large field of view with good spatial resolution and strain sensitivity. PMID:21333860

  3. Characterization of BoHV-5 field strains circulation and report of transient specific subtype of bovine herpesvirus 5 in Argentina

    PubMed Central

    2011-01-01

    Background Bovine herpesvirus 5 (BoHV-5) is a member of the subfamily Alphaherpesvirinae responsible for meningo-encephalitis in young cattle. The first case of bovine meningo-encephalitis associated with a herpesvirus infection was reported in Australia. The current geographical distribution of BoHV-5 infection is mainly restricted to South America, especially Brazil and Argentina. Outbreaks of BoHV-5 are regularly observed in Argentina suggesting the circulation of the virus in the bovine population. Results Seventeen field strains of BoHV-5 isolated from 1984 to now were confirmed by differential PCR and subjected to restriction endonuclease analysis (REA). Viral DNA was cleaved with BstEII which allows the differentiation among subtypes a, b and non a, non b. According to the REA with BstEII, only one field strain showed a pattern similar to the Argentinean A663 strain (prototype of BoHV-5b). All other isolates showed a clear pattern similar to the Australian N569 strain (prototype of BoHV-5a) consistent with the subtypes observed in Brazil, the other South-American country where BoHV-5 is known to be prevalent. The genomic region of subtype b responsible for the distinct pattern was determined and amplified by PCR; specifically a point mutation was identified in glycoprotein B gene, on the BstEII restriction site, which generates the profile specific of BoHV-5b. Conclusions This is the first report of circulation of BoHV-5a in Argentina as the prevailing subtype. Therefore the circulation of BoHV-5b was restricted to a few years in Argentina, speculating that this subtype was not able to be maintained in the bovine population. The mutation in the gB gene is associated with the difference in the restriction patterns between subtypes "a" and "b". PMID:21299866

  4. Strain field of a buried oxide aperture

    NASA Astrophysics Data System (ADS)

    Kießling, F.; Niermann, T.; Lehmann, M.; Schulze, J.-H.; Strittmatter, A.; Schliwa, A.; Pohl, U. W.

    2015-02-01

    The strain field of an AlOx current aperture, fabricated by selective oxidation of an AlAs/GaAs layer buried in a circular GaAs mesa, is studied. Components of the strain tensor for a thin cross-section lamella cut out of such a structure are evaluated from dark-field electron holography, proving the validity of simulations based on linear elasticity. Simulation of the entire structure is utilized to prepare mesa surfaces with tailored strain fields for controlling the nucleation site of InGaAs quantum dots. The experimental proof of strain simulations allows estimating the magnitude of piezoelectricity, yielding for the studied mesa structures a piezoelectric potential up to 50 mV.

  5. Revisiting the gauge fields of strained graphene

    NASA Astrophysics Data System (ADS)

    Iorio, Alfredo; Pais, Pablo

    2015-12-01

    We show that when graphene is only subject to strain, the spin connection gauge field that arises plays no measurable role, but when intrinsic curvature is present and strain is small, spin connection dictates most of the physics. We do so by showing that the Weyl field associated with strain is a pure gauge field and no constraint on the (2 +1 )-dimensional spacetime appears. On the other hand, for constant intrinsic curvature that also gives a pure gauge Weyl field, we find a classical manifestation of a quantum Weyl anomaly, descending from a constrained spacetime. We are in the position to do this because we find the equations that the conformal factor in (2 +1 ) dimensions has to satisfy, which is a nontrivial generalization to (2 +1 ) dimensions of the classic Liouville equation of the differential geometry of surfaces. Finally, we comment on the peculiarities of the only gauge field that can describe strain, the well-known pseudogauge field A1˜u11-u22 and A2˜u12 , and conclude by offering some scenarios in fundamental physics that this peculiar field could help to realize.

  6. 3-dimensional strain fields from tomographic measurements

    NASA Astrophysics Data System (ADS)

    Haldrup, K.; Nielsen, S. F.; Mishnaevsky, L., Jr.; Beckmann, F.; Wert, J. A.

    2006-08-01

    Understanding the distributions of strain within solid bodies undergoing plastic deformations has been of interest for many years in a wide range of disciplines, ranging from basic materials science to biology. However, the desire to investigate these strain fields has been frustrated by the inaccessibility of the interior of most samples to detailed investigation without destroying the sample in the process. To some extent, this has been remedied by the development of advanced surface measurement techniques as well as computer models based on Finite Element methods. Over the last decade, this situation has changed by the introduction of a range of tomographic methods based both on advances in computer technology and in instrumentation, advances which have opened up the interior of optically opaque samples for detailed investigations. We present a general method for assessing the strain in the interior of marker-containing specimens undergoing various types of deformation. The results are compared with Finite Element modelling.

  7. Genome Sequence of a Mycoplasma meleagridis Field Strain.

    PubMed

    Rocha, Ticiana S; Bertolotti, Luigi; Catania, Salvatore; Pourquier, Philippe; Rosati, Sergio

    2016-01-01

    Mycoplasma meleagridis is a major cause of disease and economic loss in turkeys. Here, we report the genome sequence of an M. meleagridis field strain, which enlarges the knowledge about this bacterium and helps the identification of possible coding sequences for drug resistance genes and specific antigens. PMID:26941131

  8. Genome Sequence of a Mycoplasma meleagridis Field Strain

    PubMed Central

    Bertolotti, Luigi; Catania, Salvatore; Pourquier, Philippe; Rosati, Sergio

    2016-01-01

    Mycoplasma meleagridis is a major cause of disease and economic loss in turkeys. Here, we report the genome sequence of an M. meleagridis field strain, which enlarges the knowledge about this bacterium and helps the identification of possible coding sequences for drug resistance genes and specific antigens. PMID:26941131

  9. Strain sensors for high field pulse magnets

    SciTech Connect

    Martinez, Christian; Zheng, Yan; Easton, Daniel; Farinholt, Kevin M; Park, Gyuhae

    2009-01-01

    In this paper we present an investigation into several strain sensing technologies that are being considered to monitor mechanical deformation within the steel reinforcement shells used in high field pulsed magnets. Such systems generally operate at cryogenic temperatures to mitigate heating issues that are inherent in the coils of nondestructive, high field pulsed magnets. The objective of this preliminary study is to characterize the performance of various strain sensing technologies at liquid nitrogen temperatures (-196 C). Four sensor types are considered in this investigation: fiber Bragg gratings (FBG), resistive foil strain gauges (RFSG), piezoelectric polymers (PVDF), and piezoceramics (PZT). Three operational conditions are considered for each sensor: bond integrity, sensitivity as a function of temperature, and thermal cycling effects. Several experiments were conducted as part of this study, investigating adhesion with various substrate materials (stainless steel, aluminum, and carbon fiber), sensitivity to static (FBG and RFSG) and dynamic (RFSG, PVDF and PZT) load conditions, and sensor diagnostics using PZT sensors. This work has been conducted in collaboration with the National High Magnetic Field Laboratory (NHMFL), and the results of this study will be used to identify the set of sensing technologies that would be best suited for integration within high field pulsed magnets at the NHMFL facility.

  10. Motion Driven by Strain Gradient Fields

    PubMed Central

    Wang, Chao; Chen, Shaohua

    2015-01-01

    A new driving mechanism for direction-controlled motion of nano-scale objects is proposed, based on a model of stretching a graphene strip linked to a rigid base with linear springs of identical stiffness. We find that the potential energy difference induced by the strain gradient field in the graphene strip substrate can generate sufficient force to overcome the static and kinetic friction forces between the nano-flake and the strip substrate, resulting in the nanoscale flake motion in the direction of gradient reduction. The dynamics of the nano-flake can be manipulated by tuning the stiffness of linear springs, stretching velocity and the flake size. This fundamental law of directional motion induced by strain gradient could be very useful for promising designs of nanoscale manipulation, transportation and smart surfaces. PMID:26323603

  11. Motion Driven by Strain Gradient Fields

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Chen, Shaohua

    2015-09-01

    A new driving mechanism for direction-controlled motion of nano-scale objects is proposed, based on a model of stretching a graphene strip linked to a rigid base with linear springs of identical stiffness. We find that the potential energy difference induced by the strain gradient field in the graphene strip substrate can generate sufficient force to overcome the static and kinetic friction forces between the nano-flake and the strip substrate, resulting in the nanoscale flake motion in the direction of gradient reduction. The dynamics of the nano-flake can be manipulated by tuning the stiffness of linear springs, stretching velocity and the flake size. This fundamental law of directional motion induced by strain gradient could be very useful for promising designs of nanoscale manipulation, transportation and smart surfaces.

  12. Gravity- and strain-induced electric fields outside metal surfaces

    NASA Astrophysics Data System (ADS)

    Rossi, F.; Opat, G. I.

    1992-05-01

    The gravity-induced electric field outside a metal object supported against gravity is predominantly due to its differential compression which arises in supporting its own weight. This Dessler-Michel-Rorschach-Trammell (DMRT) field, as it has come to be known, is expected to be proportional to the strain derivative of the work function of the surface. We report the results of an experiment designed to produce this effect with mechanically applied strain rather than with gravity. In essence, we have measured the strain-induced contact-potential variation between a metal surface of known strain gradient and an unstrained capacitive probe. We describe useful solutions to the problems faced in such an experiment, which were not adequately addressed by earlier workers. A knowledge of the DMRT field is of considerable importance to experiments designed to compare the gravitational acceleration of charged particles and antiparticles inside a metallic shield. Past experiments with electrons yielded results contrary to the then-expected DMRT field. We review and partially extend the theoretical background by drawing on later results based on the jellium model of metal surfaces. Our results for Cu and Au surfaces are consistent with jellium-based calculations which imply a DMRT field that is about an order of magnitude smaller and of opposite sign to the early estimates.

  13. Field Performance of a Genetically Engineered Strain of Pink Bollworm

    PubMed Central

    Simmons, Gregory S.; McKemey, Andrew R.; Morrison, Neil I.; O'Connell, Sinead; Tabashnik, Bruce E.; Claus, John; Fu, Guoliang; Tang, Guolei; Sledge, Mickey; Walker, Adam S.; Phillips, Caroline E.; Miller, Ernie D.; Rose, Robert I.; Staten, Robert T.; Donnelly, Christl A.; Alphey, Luke

    2011-01-01

    Pest insects harm crops, livestock and human health, either directly or by acting as vectors of disease. The Sterile Insect Technique (SIT) – mass-release of sterile insects to mate with, and thereby control, their wild counterparts – has been used successfully for decades to control several pest species, including pink bollworm, a lepidopteran pest of cotton. Although it has been suggested that genetic engineering of pest insects provides potential improvements, there is uncertainty regarding its impact on their field performance. Discrimination between released and wild moths caught in monitoring traps is essential for estimating wild population levels. To address concerns about the reliability of current marking methods, we developed a genetically engineered strain of pink bollworm with a heritable fluorescent marker, to improve discrimination of sterile from wild moths. Here, we report the results of field trials showing that this engineered strain performed well under field conditions. Our data show that attributes critical to SIT in the field – ability to find a mate and to initiate copulation, as well as dispersal and persistence in the release area – were comparable between the genetically engineered strain and a standard strain. To our knowledge, these represent the first open-field experiments with a genetically engineered insect. The results described here provide encouragement for the genetic control of insect pests. PMID:21931649

  14. Area balance and strain in an extensional fault system: Strategies for improved oil recovery in fractured chalk, Gilbertown Field, southwestern Alabama. Final report, March 1996--September 1998

    SciTech Connect

    Pashin, J.C.; Raymond, D.E.; Rindsberg, A.K.; Alabi, G.G.; Carroll, R.E.; Groshong, R.H.; Jin, G.

    1998-12-01

    This project was designed to analyze the structure of Mesozoic and Tertiary strata in Gilbertown Field and adjacent areas to suggest ways in which oil recovery can be improved. The Eutaw Formation comprises 7 major flow units and is dominated by low-resistivity, low-contrast play that is difficult to characterize quantitatively. Selma chalk produces strictly from fault-related fractures that were mineralized as warm fluid migrated from deep sources. Resistivity, dipmeter, and fracture identification logs corroborate that deformation is concentrated in the hanging-wall drag zones. New area balancing techniques were developed to characterize growth strata and confirm that strain is concentrated in hanging-wall drag zones. Curvature analysis indicates that the faults contain numerous fault bends that influence fracture distribution. Eutaw oil is produced strictly from footwall uplifts, whereas Selma oil is produced from fault-related fractures. Clay smear and mineralization may be significant trapping mechanisms in the Eutaw Formation. The critical seal for Selma reservoirs, by contrast, is where Tertiary clay in the hanging wall is juxtaposed with poorly fractured Selma chalk in the footwall. Gilbertown Field can be revitalized by infill drilling and recompletion of existing wells. Directional drilling may be a viable technique for recovering untapped oil from Selma chalk. Revitalization is now underway, and the first new production wells since 1985 are being drilled in the western part of the field.

  15. Area balance and strain in an extensional fault system: Strategies for improved oil recovery in fractured chalk, Gilbertown Field, southwestern Alabama. Annual report, March 1996--March 1997

    SciTech Connect

    Pashin, J.C.; Raymond, D.E.; Rindsberg, A.K.; Alabi, G.G.; Groshong, R.H.

    1997-08-01

    Gilbertown Field is the oldest oil field in Alabama and produces oil from chalk of the Upper Cretaceous Selma Group and from sandstone of the Eutaw Formation along the southern margin of the Gilbertown fault system. Most of the field has been in primary recovery since establishment, but production has declined to marginally economic levels. This investigation applies advanced geologic concepts designed to aid implementation of improved recovery programs. The Gilbertown fault system is detached at the base of Jurassic salt. The fault system began forming as a half graben and evolved in to a full graben by the Late Cretaceous. Conventional trapping mechanisms are effective in Eutaw sandstone, whereas oil in Selma chalk is trapped in faults and fault-related fractures. Burial modeling establishes that the subsidence history of the Gilbertown area is typical of extensional basins and includes a major component of sediment loading and compaction. Surface mapping and fracture analysis indicate that faults offset strata as young as Miocene and that joints may be related to regional uplift postdating fault movement. Preliminary balanced structural models of the Gilbertown fault system indicate that synsedimentary growth factors need to be incorporated into the basic equations of area balance to model strain and predict fractures in Selma and Eutaw reservoirs.

  16. Volume strain within The Geysers geothermal field

    NASA Astrophysics Data System (ADS)

    Mossop, Antony; Segall, Paul

    1999-12-01

    During the 1970s and 1980s, The Geysers geothermal region was rapidly developed as a site of geothermal power production. The likelihood that this could cause significant strain within the reservoir, with corresponding surface displacements, led to a series of deformation monitoring surveys. In 1973, 1975, 1977, and 1980, The Geysers region was surveyed using first-order, class I, spirit leveling. In 1994, 1995, and 1996, many of the leveling control monuments were resurveyed using high-precision Global Positioning System receivers. The two survey methods are reconciled using the GEOID96 geoid model. The displacements are inverted to determine volume strain within the reservoir. For the period 1980-1994, peak volume strains in excess of 5×10-4 are imaged. There is an excellent correlation between the observed changes in reservoir steam pressures and the imaged volume strain. If reservoir pressure changes are inducing volume strain, then the reservoir quasi-static bulk modulus K must be <4.6×109 Pa. However, seismic velocities indicate a much suffer reservoir with K = 3.4 × 1010 Pa. This apparent discrepancy is shown to be consistent with predicted frequency dependence in K for fractured and water-saturated rock. Inversion of surface deformation data therefore appears to be a powerful method for imaging pressure change within the body of the reservoir. Correlation between induced seismicity at The Geysers and volume strain is observed. However, earthquake distribution does not appear to have a simple relationship with volume strain rate.

  17. Volume strain within the Geysers geothermal field

    SciTech Connect

    Mossop, Antony; Segall, Paul

    1999-12-10

    During the 1970s and 1980s. The Geysers geothermal region was rapidly developed as a site of geothermal power production. The likelihood that this could cause significant strain within the reservoir, with corresponding surface displacements, led to a series of deformation monitoring surveys. In 1973, 1975, 1977, and 1980, The Geysers region was surveyed using first-order, class I, spirit leveling. In 1994, 1995, and 1996, many of the leveling control monuments were resurveyed using high-precision Global Positioning System receivers. The two survey methods are reconciled using the GEOID96 geoid model. The displacements are inverted to determine volume strain within the reservoir. For the period 1980-1994, peak volume strains in excess of 5x10{sup -4} are imaged. There is an excellent correlation between the observed changes in reservoir steam pressures and the imaged volume strain. If reservoir pressure changes are inducing volume strain, then the reservoir quasi-static bulk modulus K must be <4.6x10{sup 9} Pa. However, seismic velocities indicate a much stiffer reservoir with K=3.4x10{sup 10} Pa. This apparent discrepancy is shown to be consistent with predicted frequency dependence in K for fractured and water-saturated rock. Inversion of surface deformation data therefore appears to be a powerful method for imaging pressure change within the body of the reservoir. Correlation between induced seismicity at The Geysers and volume strain is observed. However, earthquake distribution does not appear to have a simple relationship with volume strain rate. (c) 1999 American Geophysical Union.

  18. Imaging 3D strain field monitoring during hydraulic fracturing processes

    NASA Astrophysics Data System (ADS)

    Chen, Rongzhang; Zaghloul, Mohamed A. S.; Yan, Aidong; Li, Shuo; Lu, Guanyi; Ames, Brandon C.; Zolfaghari, Navid; Bunger, Andrew P.; Li, Ming-Jun; Chen, Kevin P.

    2016-05-01

    In this paper, we present a distributed fiber optic sensing scheme to study 3D strain fields inside concrete cubes during hydraulic fracturing process. Optical fibers embedded in concrete were used to monitor 3D strain field build-up with external hydraulic pressures. High spatial resolution strain fields were interrogated by the in-fiber Rayleigh backscattering with 1-cm spatial resolution using optical frequency domain reflectometry. The fiber optics sensor scheme presented in this paper provides scientists and engineers a unique laboratory tool to understand the hydraulic fracturing processes in various rock formations and its impacts to environments.

  19. Mapping and load response of overload strain fields: Synchrotron X-ray measurements

    SciTech Connect

    Shukla, V; Jisrawi, N M; Sadangi, R K; Pao, P S; Horvath, K; Sadananda, K; Ignatov, A; Skaritka, J; Tsakalakos, T

    2009-02-05

    High energy synchrotron X-ray diffraction measurements have been performed to provide quantitative microscopic guidance for modeling of fatigue crack growth. Specifically we report local strain mapping, along with in situ loading strain response, results on 4140 steel fatigue specimens exhibiting the crack growth retardation 'overload effect'. Detailed, 2D, {epsilon}{gamma}{gamma}-strain field mapping shows that a single overload (OL) cycle creates a compressive strain field extending millimeters above and below the crack plane. The OL strain field structures are shown to persist after the crack tip has grown well beyond the OL position. The specimen exhibiting the maximal crack growth rate retardation following overload exhibits a tensile residual strain region at the crack tip. Strain field results, on in situ tensile loaded specimens, show a striking critical threshold load, F{sub c}, phenomenon in their strain response. At loads below F{sub c} the strain response is dominated by a rapid suppression of the compressive OL feature with modest response at the crack tip. At loads above F{sub c} the strain response at the OL position terminates and the response at the crack tip becomes large. This threshold load response behavior is shown to exhibit lower F{sub c} values, and dramatically enhanced rates of strain change with load as the crack tip propagates farther beyond the OL position. The OL strain feature behind the crack tip also is shown to be suppressed by removing the opposing crack faces via an electron discharge cut passing through the crack tip. Finally unique 2D strain field mapping (imaging) results, through the depth of the specimen, of the fatigue crack front and the OL feature in the wake are also presented.

  20. FIBER BRAGG GRATING SENSORS FOR LOCALIZED STRAIN MEASUREMENTS AT LOW TEMPERATURE AND IN HIGH MAGNETIC FIELD

    SciTech Connect

    Ramalingam, Rajinikumar

    2010-04-09

    Study of magnetostrictive effects in the bulk superconductors is very essential and can give more knowledge about the effects like namely, flux pinning induced strain, pincushion distortions in the magnets and so on. Currently used electro mechanical sensors are magnetic field dependent and can only give the global stress/strain information but not the local stress/strains. But the information like radius position dependent strain and characterisation of shape distortion in non cylindrical magnets are interesting. Wavelength encoded multiplexed fiber Bragg Grating sensors inscribed in one fiber gives the possibility to measure magentostrictive effects spatially resolved in low temperature and high magnetic field. This paper specifies the design and technology requirements to adapt FBG sensors for such an application. Also reports the experiments demonstrate the properties of glass FBG at low temperature (4.2 K) and the results of strain measurement at 4.2 K/8 T. The sensor exhibits a linear wavelength change for the strain change.

  1. Dynamic scattering theory for dark-field electron holography of 3D strain fields.

    PubMed

    Lubk, Axel; Javon, Elsa; Cherkashin, Nikolay; Reboh, Shay; Gatel, Christophe; Hÿtch, Martin

    2014-01-01

    Dark-field electron holography maps strain in crystal lattices into reconstructed phases over large fields of view. Here we investigate the details of the lattice strain-reconstructed phase relationship by applying dynamic scattering theory both analytically and numerically. We develop efficient analytic linear projection rules for 3D strain fields, facilitating a straight-forward calculation of reconstructed phases from 3D strained materials. They are used in the following to quantify the influence of various experimental parameters like strain magnitude, specimen thickness, excitation error and surface relaxation. PMID:24012934

  2. Experimental examination of strain field within GP zone in an Al-Zn-Mg-Cu alloy

    NASA Astrophysics Data System (ADS)

    Bai, P. C.; Liu, F.; Hou, X. H.; Zhao, C. W.; Xing, Y. M.

    2012-11-01

    The strain field of GP zone plays a very important role in strengthening of the precipitation-hardened aluminum alloys by prohibiting movement of dislocations; however, quantitative analysis about the strain field of the GP zone in the aluminum alloys has been seldom reported elsewhere. In this paper, the microstructure of GP zone in an Al-Zn-Mg-Cu alloy was explored by using high-resolution transmission electron microscopy (HRTEM), and the displacement field of lattice planes within the GP zone was experimentally measured by geometric phase analysis (GPA) technique; then, the quantitative results about strains of the distorted lattice planes within the GP zone were also obtained. It is found that the GP zone core is convergence region of the strains, and the maximum value of the compressive strains within the GP zone is about 7.6%.

  3. MLVA typing of Mycoplasma hyopneumoniae bacterins and field strains.

    PubMed

    Tamiozzo, P; Zamora, R; Lucchesi, P M A; Estanguet, A; Parada, J; Carranza, A; Camacho, P; Ambrogi, A

    2015-01-01

    Because of the lack of information about both the genetic characteristics of Mycoplasma hyopneumoniae commercial vaccines and their relationship with field strains, the authors attempted to identify genetic subtypes of some M hyopneumoniae bacterins, and to compare them with M. hyopneumoniae field strains. Six commercial M hyopneumoniae bacterins and 28 bronchoalveolar lavages from pigs at slaughter from three herds were analysed by Multiple-Locus Variable number tandem repeat Analysis (MLVA) on p146R1, p146R3, H4, H5 and p95 loci. The results obtained showed the presence of more than one M hyopneumoniae genotype in some pigs and also in one of the bacterins analysed. It is also worth noting that MLVA typing allowed the distinction among circulating field strains and also when comparing them with vaccine strains, which, knowing the relatedness among them, could be useful in the research of the efficacy of the vaccines. PMID:26495127

  4. MLVA typing of Mycoplasma hyopneumoniae bacterins and field strains

    PubMed Central

    Tamiozzo, P.; Zamora, R.; Lucchesi, P. M. A.; Estanguet, A.; Parada, J.; Carranza, A.; Camacho, P.; Ambrogi, A.

    2015-01-01

    Because of the lack of information about both the genetic characteristics of Mycoplasma hyopneumoniae commercial vaccines and their relationship with field strains, the authors attempted to identify genetic subtypes of some M hyopneumoniae bacterins, and to compare them with M. hyopneumoniae field strains. Six commercial M hyopneumoniae bacterins and 28 bronchoalveolar lavages from pigs at slaughter from three herds were analysed by Multiple-Locus Variable number tandem repeat Analysis (MLVA) on p146R1, p146R3, H4, H5 and p95 loci. The results obtained showed the presence of more than one M hyopneumoniae genotype in some pigs and also in one of the bacterins analysed. It is also worth noting that MLVA typing allowed the distinction among circulating field strains and also when comparing them with vaccine strains, which, knowing the relatedness among them, could be useful in the research of the efficacy of the vaccines. PMID:26495127

  5. Validation of a novel fiber optic strain gauge in a cryogenic and high magnetic field environment

    NASA Astrophysics Data System (ADS)

    Baxter, Scott; Lakrimi, M.'hamed; Thomas, Adrian M.; Gao, Yunxin; Blakes, Hugh; Gibbens, Paul; Looi, Mengche

    2010-10-01

    We report on the first operation of an easy to use low cost novel fiber optic strain gauge (FOSG) in cryogenic and magnetic field environments. The FOSGs were mounted on a superconducting coil and resin impregnated. The gauges detected resin shrinkage upon curing. On cooldown, the FOSG monitored the thermal contraction strains of the coil and the electromagnetic strain during energization. The coil was deliberately quenched, in excess of 175 times, and again the FOSG detected the quenches and measured the thermal expansion-induced strains and subsequent re-cooling of the coil after a quench. Agreement with FEA predictions was very good.

  6. Mechanical strains and electric fields applied to topologically imprinted elastomers

    NASA Astrophysics Data System (ADS)

    Burridge, D. J.; Mao, Y.; Warner, M.

    2006-08-01

    We analyze and predict the behavior of a chirally imprinted elastomer under a mechanical strain and an electric field, applied along the helical axis. As the strain and/or field increases, the system is deformed from a conical or transverse imprinted state towards an ultimately nematic one. At a critical strain and/or field there is a first-order transition to a low imprinting efficiency state. This transition is accompanied by a discontinuous global rotation of the director toward the axis of the imprinted helix, measured by the cone angle, θ . We show that the threshold electric field required for switching this transition can be conveniently low, provided an appropriate prestrain is imposed. We suggest that these properties may give rise to a “chiral pump.”

  7. A geometric nonlinear degenerated shell element using a mixed formulation with independently assumed strain fields. Final Report; Ph.D. Thesis, 1989

    NASA Technical Reports Server (NTRS)

    Graf, Wiley E.

    1991-01-01

    A mixed formulation is chosen to overcome deficiencies of the standard displacement-based shell model. Element development is traced from the incremental variational principle on through to the final set of equilibrium equations. Particular attention is paid to developing specific guidelines for selecting the optimal set of strain parameters. A discussion of constraint index concepts and their predictive capability related to locking is included. Performance characteristics of the elements are assessed in a wide variety of linear and nonlinear plate/shell problems. Despite limiting the study to geometric nonlinear analysis, a substantial amount of additional insight concerning the finite element modeling of thin plate/shell structures is provided. For example, in nonlinear analysis, given the same mesh and load step size, mixed elements converge in fewer iterations than equivalent displacement-based models. It is also demonstrated that, in mixed formulations, lower order elements are preferred. Additionally, meshes used to obtain accurate linear solutions do not necessarily converge to the correct nonlinear solution. Finally, a new form of locking was identified associated with employing elements designed for biaxial bending in uniaxial bending applications.

  8. Draft Genome Sequence of Pseudomonas sp. Strain 2-92, a Biological Control Strain Isolated from a Field Plot Under Long-Term Mineral Fertilization

    PubMed Central

    Adam, Zaky; Chen, Qing; Lewis, Christopher T.; Lévesque, C. André; Xu, Renlin

    2014-01-01

    Pseudomonas sp. strain 2-92, isolated from a Canadian field plot under long-term mineral fertilization, strongly inhibits the growth of Fusarium graminearum, Rhizoctonia solani, and Gaeumannomyces graminis. Here, we report the draft genome sequence of Pseudomonas sp. strain 2-92. PMID:24407636

  9. Reliability and field testing of distributed strain and temperature sensors

    NASA Astrophysics Data System (ADS)

    Inaudi, Daniele; Glisic, Branko

    2006-03-01

    Distributed fiber optic sensing presents unique features that have no match in conventional sensing techniques. The ability to measure temperatures and strain at thousands of points along a single fiber is particularly interesting for the monitoring of large structures such as pipelines, flow lines, oil wells, dams and dikes. Sensing systems based on Brillouin and Raman scattering have been used for example to detect pipeline leakages, verify pipeline operational parameters, prevent failure of pipelines installed in landslide areas, optimize oil production from wells and detect hot-spots in high-power cables. The measurement instruments have been vastly improved in terms of spatial, temperature and strain resolution, distance range, measurement time, data processing and system cost. Analyzers for Brillouin and Raman scattering are now commercially available and offer reliable operation in field conditions. New application opportunities have however demonstrated that the design and production of sensing cables is a critical element for the success of any distributed sensing instrumentation project. Although standard telecommunication cables can be effectively used for sensing ordinary temperatures, monitoring high and low temperatures or distributed strain present unique challenges that require specific cable designs. This contribution presents three cable designs for high-temperature sensing, strain sensing and combined strain and temperature monitoring as well as the respective testing procedures during production and in the field.

  10. Strain Engineering for Transition Metal Dichalcogenides Based Field Effect Transistors.

    PubMed

    Shen, Tingting; Penumatcha, Ashish V; Appenzeller, Joerg

    2016-04-26

    Using electrical characteristics from three-terminal field-effect transistors (FETs), we demonstrate substantial strain induced band gap tunability in transition metal dichalcogenides (TMDs) in line with theoretical predictions and optical experiments. Devices were fabricated on flexible substrates, and a cantilever sample holder was used to apply uniaxial tensile strain to the various multilayer TMD FETs. Analyzing in particular transfer characteristics, we argue that the modified device characteristics under strain are clear evidence of a band gap reduction of 100 meV in WSe2 under 1.35% uniaxial tensile strain at room temperature. Furthermore, the obtained device characteristics imply that the band gap does not shrink uniformly under strain relative to a reference potential defined by the source/drain contacts. Instead, the band gap change is only related to a change of the conduction band edge of WSe2, resulting in a decrease in the Schottky barrier (SB) for electrons without any change for hole injection into the valence band. Simulations of SB device characteristics are employed to explain this point and to quantify our findings. Last, our experimental results are compared with DFT calculations under strain showing excellent agreement between theoretical predictions and the experimental data presented here. PMID:27043387

  11. Localized strain field measurement on laminography data with mechanical regularization

    NASA Astrophysics Data System (ADS)

    Taillandier-Thomas, Thibault; Roux, Stéphane; Morgeneyer, Thilo F.; Hild, François

    2014-04-01

    For an in-depth understanding of the failure of structural materials the study of deformation mechanisms in the material bulk is fundamental. In situ synchrotron computed laminography provides 3D images of sheet samples and digital volume correlation yields the displacement and strain fields between each step of experimental loading by using the natural contrast of the material. Difficulties arise from the lack of data, which is intrinsic to laminography and leads to several artifacts, and the little absorption contrast in the 3D image texture of the studied aluminum alloy. To lower the uncertainty level and to have a better mechanical admissibility of the measured displacement field, a regularized digital volume correlation procedure is introduced and applied to measure localized displacement and strain fields.

  12. Enhanced response from field-annealed magnetoelastic strain sensor

    NASA Astrophysics Data System (ADS)

    Dalponte, Alessandro; Bastos, Eduardo S.; Missell, Frank P.

    2016-08-01

    Magnetoelastic materials permit the development of remote-query strain sensors for use in situations of difficult access. In this work, we examined materials for a remote-query strain sensor based on the ΔE effect. An applied stress modifies the magnetic field produced by a transducer glued to the sample and thereby changes the resonant frequency of a vibrating amorphous ribbon. We considered several amorphous alloys for both the vibrating ribbon and the transducer. To eliminate the casting stress and improve the anisotropy, ribbons were annealed in a transverse magnetic field. This resulted in a dramatic improvement in the sensor performance when sensors were biased above the anisotropy field. For example, a Metglas 2826MB3 ribbon with resonant frequency of 62 kHz showed frequency shifts of up to 5 kHz for a deformation of 0.03%. These results are in good agreement with models for the ΔE effect.

  13. Demonstration Using Field Collections that Argentina Fall Armyworm Populations Exhibit Strain-specific Host Plant Preferences.

    PubMed

    Murúa, M Gabriela; Nagoshi, Rodney N; Dos Santos, Daniel A; Hay-Roe, Mirian M; Meagher, Robert L; Vilardi, J C

    2015-10-01

    Spodoptera frugiperda, the fall armyworm, is a major economic pest throughout the Western Hemisphere of corn (maize), cotton, sorghum, and a variety of agricultural grasses and vegetable crops. Studies in the United States, the Caribbean, and Brazil demonstrated the existence of two subpopulations (previously designated "host strains") that differ in their choice of plant host. Specifically, the corn strain is preferentially found in corn and sorghum, while the rice strain is dominant in rice, turf grass, and alfalfa. However, inconsistent results were reported in surveys of fall armyworm in Argentina, with some indicating that the host plant preferences of the two strains might be compromised or even nonexistent. If correct, this would complicate efforts to control this pest by considerably expanding the range of habitats that would have to be considered as potential sources for fall armyworm infestations in specific crops. A reexamination of Argentine fall armyworm, this time with field collections rather than the laboratory colonies used in previous studies, confirmed the existence of the two strains and their host preferences. Specifically, the corn strain was consistently the majority population infesting corn and was usually so in sorghum, while the rice strain was predominant in pasture/turf grasses and alfalfa. The one outlier was a collection from rice, which had a corn strain majority. Overall, the data were generally consistent with strain behaviors observed in other areas of the Western Hemisphere. PMID:26453719

  14. Characterization of Erwinia amylovora strains from Bulgaria by pulsed-field gel electrophoresis.

    PubMed

    Atanasova, Iliana; Urshev, Zoltan; Hristova, Petya; Bogatzevska, Nevena; Moncheva, Penka

    2012-01-01

    The aim of this study was to characterize genetically Bulgarian Erwinia amylovora strains using pulsed-field gel electrophoresis (PFGE) analysis. Fifty E. amylovora strains isolated from different hosts, locations, as well as in different years were analysed by PFGE after XbaI, SpeI, and XhoI digestion of the genomic DNA. The strains were distributed into four groups according to their XbaI-generated profile. About 82% of the strains displayed a PFGE profile identical to that of type Pt2. Three strains belonged to the Central Europe Pt1 type. Two new PFGE profiles, not reported so far, were established--one for a strain isolated from Malus domestica and another for all Fragaria spp. strains. The same grouping of the strains was obtained after analysis of the SpeI digestion patterns. On the basis of PFGE profiles, after XbaI and SpeI digestion, a genetic differentiation between the strains associated with subfamily Maloideae and subfamily Rosoideae was revealed. The presence of more than one PFGE profile in the population of E. amylovora in Bulgaria suggests a multiple source of inoculum. PMID:22624335

  15. Area balance and strain in an extensional fault system: Strategies for improved oil recovery in fractured chalk, Gilbertown Field, southwestern Alabama -- Year 2. Annual report, March 1997--March 1998

    SciTech Connect

    Pashin, J.C.; Raymond, D.E.; Rindsberg, A.K.; Alabi, G.G.; Carroll, R.E.

    1998-09-01

    Gilbertown Field is the oldest oil field in Alabama and has produced oil from fractured chalk of the Cretaceous Selma Group and glauconitic sandstone of the Eutaw Formation. Nearly all of Gilbertown Field is still in primary recovery, although waterflooding has been attempted locally. The objective of this project is to analyze the geologic structure and burial history of Mesozoic and Tertiary strata in Gilbertown Field and adjacent areas in order to suggest ways in which oil recovery can be improved. Indeed, the decline of oil production to marginally economic levels in recent years has made this type of analysis timely and practical. Key technical advancements being sought include understanding the relationship of requisite strain to production in Gilbertown reservoirs, incorporation of synsedimentary growth factors into models of area balance, quantification of the relationship between requisite strain and bed curvature, determination of the timing of hydrocarbon generation, and identification of the avenues and mechanisms of fluid transport.

  16. Genetic diversity of the Korean field strains of porcine reproductive and respiratory syndrome virus.

    PubMed

    Lee, Jung-Ah; Lee, Nak-Hyung; Lee, Joong-Bok; Park, Seung-Yong; Song, Chang-Seon; Choi, In-Soo; Lee, Sang-Won

    2016-06-01

    Porcine reproductive and respiratory syndrome (PRRS) is one of the most economically significant diseases in the swine industry. The PRRS virus (PRRSV) has genetically diverse populations, like other RNA viruses, and various field strains continue to be reported worldwide. The molecular epidemiological study of PRRSV can provide important data for use in controlling the disease. In this study, 50 oral fluid samples from conventional farms in Korea were taken to analyze nucleotide sequences of the open reading frame 5 of PRRSV. The viruses present in more than 80% of oral fluid samples genetically originated from the type 2 PRRSV, which is North American (NA) lineage. In addition 8.9% of samples contained both of the type 1 PRRSV, which is European (EU) lineage and the type 2 PRRSV. About 60% of farms involved in this study had more than two strains of PRRSV. In phylogenetic analysis, the Korean field strains of PRRSV detected from the oral fluid samples were divided into several subgroups: four subgroups of Korean field strains clustered with the type 1 PRRSV, and other five subgroups of Korean field strains clustered with the type 2. These results suggest that the type 2 PRRSV is more prevalent than the type 1 in Korea and heterologous strains of PRRSV can simultaneously infect a single pig farm. PMID:26546289

  17. Field practice internship final report

    SciTech Connect

    Foster, T.

    1994-05-01

    This field practice internship final report gives an overview of the field practice, which was completed at the Oak Ridge Y-12 Plant, Martin Marietta Energy Systems, Inc., Environmental Management Department, Oak Ridge, Tennessee. The field practice focused on the completion of the Superfund Amendments and Reauthorization Act (SARA) Title III, Emergency Planning and Community Right-to-Know Act Section 312, Tier II Report. The field practice internship was conducted on a full-time basis between December 13, 1993 through February 18, 1994. Sheila Poligone, Emergency Planning and Community Right-to-Know Act (EPCRA) Coordinator served as the field practice preceptor.

  18. Strain fields and line energies of dislocations in uranium dioxide

    NASA Astrophysics Data System (ADS)

    Parfitt, David C.; Bishop, Clare L.; Wenman, Mark R.; Grimes, Robin W.

    2010-05-01

    Computer simulations are used to investigate the stability of typical dislocations in uranium dioxide. We explain in detail the methods used to produce the dislocation configurations and calculate the line energy and Peierls barrier for pure edge and screw dislocations with the shortest Burgers vector {1\\over 2} \\langle 110 \\rangle . The easiest slip system is found to be the {100}lang110rang system for stoichiometric UO2, in agreement with experimental observations. We also examine the different strain fields associated with these line defects and the close agreement between the strain field predicted by atomic scale models and the application of elastic theory. Molecular dynamics simulations are used to investigate the processes of slip that may occur for the three different edge dislocation geometries and nudged elastic band calculations are used to establish a value for the Peierls barrier, showing the possible utility of the method in investigating both thermodynamic average behaviour and dynamic processes such as creep and plastic deformation.

  19. Survival and Competitiveness of Bradyrhizobium japonicum Strains 20 Years after Introduction into Field Locations in Poland

    PubMed Central

    Narożna, Dorota; Pudełko, Krzysztof; Króliczak, Joanna; Golińska, Barbara; Sugawara, Masayuki; Mądrzak, Cezary J.

    2015-01-01

    It was previously demonstrated that there are no indigenous strains of Bradyrhizobium japonicum forming nitrogen-fixing root nodule symbioses with soybean plants in arable field soils in Poland. However, bacteria currently classified within this species are present (together with Bradyrhizobium canariense) as indigenous populations of strains specific for nodulation of legumes in the Genisteae tribe. These rhizobia, infecting legumes such as lupins, are well established in Polish soils. The studies described here were based on soybean nodulation field experiments, established at the Poznań University of Life Sciences Experiment Station in Gorzyń, Poland, and initiated in the spring of 1994. Long-term research was then conducted in order to study the relation between B. japonicum USDA 110 and USDA 123, introduced together into the same location, where no soybean rhizobia were earlier detected, and nodulation and competitive success were followed over time. Here we report the extra-long-term saprophytic survival of B. japonicum strains nodulating soybeans that were introduced as inoculants 20 years earlier and where soybeans were not grown for the next 17 years. The strains remained viable and symbiotically competent, and molecular and immunochemical methods showed that the strains were undistinguishable from the original inoculum strains USDA 110 and USDA 123. We also show that the strains had balanced numbers and their mobility in soil was low. To our knowledge, this is the first report showing the extra-long-term persistence of soybean-nodulating strains introduced into Polish soils and the first analyzing the long-term competitive relations of USDA 110 and USDA 123 after the two strains, neither of which was native, were introduced into the environment almost 2 decades ago. PMID:26048934

  20. Finite-element study of strain field in strained-Si MOSFET.

    PubMed

    Liu, H H; Duan, X F; Xu, Q X

    2009-02-01

    The strain field in the channel of a p-type metal-oxide-semiconductor field effect transistor fabricated by integrating Ge pre-amorphization implantation for source/drain regions is evaluated using a finite-element method combining with large angle convergent-beam electron diffraction (LACBED). The finite-element calculation shows that there is a very large compressive strain in the top layer of the channel region caused by a low dose of Ge ion implantation in the source and drain extension regions. Moreover, a transition region is formed in the bottom of the channel region and the top of the Si substrate. These calculation results are in good agreement with the LACBED experiments. PMID:18996702

  1. Phylogenetic and geographic analysis of fowl adenovirus field strains isolated from poultry in Poland.

    PubMed

    Niczyporuk, Jowita Samanta

    2016-01-01

    Fowl adenoviruses (FAdVs) are widely distributed in chickens in Poland and throughout the world. FAdV infections have been reported in the United States, Australia, Europe, and the Mediterranean basin. Detection of FAdVs strains is very important from the epidemiological point of view and for monitoring disease outbreaks and developing strategies for vaccine development. Several molecular epidemiology and phylogenetic studies have been performed, but the results obtained are still limited, because FAdV strains, even of the same serotype, have very diverse characteristics. Some strains are pathogenic and some are nonpathogenic. This report describes the successful isolation of 96 FAdV field strains from chickens in Poland. A PCR assay specific for the L1 loop region of the hexon gene was conducted, and the products were subjected to sequence analysis. The sequences were analysed using BLAST and Geneious 6.0 software and compared to adenovirus field and reference strain sequences from different parts of the world that are accessible in the NCBI GenBank database. The sequences of the adenovirus strains indicated that they belonged to five species, Fowl aviadenovirus A-E, represented by eight serotypes FAdV-1, FAdV-4, FAdV-5, FAdV-7, FAdV-8a, FAdV-8b, and FAdV-2/11 (FAdV-D). The relationships between FAdVs isolated in Poland and isolates from other regions of the world were determined. PMID:26446890

  2. Vibratory strain field measurement by transverse digital holography.

    PubMed

    Stetson, Karl A

    2015-09-20

    A method is presented for measuring vibratory strain fields using phase-stepped, image-plane digital holography. An object surface is observed along its normal vector while illuminated at equal and opposite angles by two mutually coherent laser beams. One beam is phase stepped by quarter-wavelength increments between TV frames, and the resulting images are processed to yield holographic images. Object vibrations result in zero-order Bessel function fringes in the display. The second beam is modulated at the same frequency of the object vibration and is used to shift the fringes in a manner analogous to phase step interferometry. The resulting images are processed to yield a wrapped phase map, which is unwrapped and corrected for the error associated with using zero-order Bessel functions in place of cosine functions. The unwrapped images are processed to obtain the average slopes for image segments, and these slopes are multiplied by a scale factor to convert them to strain. The analysis program used here divides the field of view into five horizontal by four vertical segments, which provide a map of the vibratory strain field. PMID:26406526

  3. Finite strain crack tip fields in soft incompressible elastic solids.

    PubMed

    Krishnan, Venkat R; Hui, Chung Yuen; Long, Rong

    2008-12-16

    A finite element model (FEM) is used to study the behavior of the large deformation field near the tip of a crack in a soft incompressible plane stress fracture specimen loaded in mode I. Results are obtained for the case of a neo-Hookean solid (ideal rubber) and a hyperelastic solid with exponentially hardening behavior. In contrast to the predictions of linear elastic fracture mechanics (LEFM), the near tip stress fields are dominated by the opening stress which shows a 1/R singularity for the neo-Hookean material and a -1/(R ln R) singularity for the exponential hardening solid. We found very similar qualitative behavior in the near tip stress fields despite the very large difference in strain hardening behavior of the two material models. Our result shows that the near tip opening stress is controlled by the far field energy release rate for large applied loads. PMID:19053624

  4. Four-wave dark-field electron holography for imaging strain fields

    NASA Astrophysics Data System (ADS)

    Denneulin, T.; Hÿtch, M.

    2016-06-01

    Strain characterization by transmission electron microscopy is an active area of research especially for microelectronics applications. Two-wave dark-field electron holography (DFEH) was previously introduced as a reliable strain mapping technique. Here, DFEH with four electron waves was investigated in order to image equi-displacement lines as amplitude modulations of the holographic fringes. Two perpendicular electrostatic biprisms are used to interfere three reference waves diffracted by a substrate and one object wave diffracted by an epitaxially strained region. This technique provides a different way to represent the displacement field. It might be helpful to obtain information about the strain state during in situ experiments. A dummy p-MOSFET device with embedded SiGe source and drain is used for experimental demonstration.

  5. Men in nursing: their fields of employment, preferred fields of practice, and role strain.

    PubMed Central

    Egeland, J W; Brown, J S

    1989-01-01

    A survey of 367 randomly selected male registered nurses (RNs) revealed that (1) they considered certain fields of nursing (e.g., administration, emergency, or intensive care) to be more congruent with the male sex role than other fields (e.g., general medical, outpatient, or obstetrical nursing); (2) they generally preferred work in more congruent fields, except for administration; (3) over time, they were increasingly employed in more congruent fields; and (4) they did not experience significantly less role strain in the more congruent fields of nursing than in the less congruent fields. PMID:2584041

  6. Complete Genome Sequences of Five Bluetongue Virus (BTV) Vaccine Strains from a Commercial Live Attenuated Vaccine, a BTV-4 Field Strain from South Africa, and a Reassortant Strain Isolated from Experimentally Vaccinated Cattle

    PubMed Central

    Coetzee, Peter; le Grange, Misha; Venter, Estelle H.

    2016-01-01

    This is a report of the complete genome sequences of plaque-selected isolates of each of the five virus strains included in a South African commercial trivalent bluetongue virus (BTV) attenuated live virus vaccine, a BTV-4 field strain isolated from Rustenburg, South Africa, in 2011, and a bluetongue reassortant (bluetongue virus 4 strain 4/O. aries-tc/ZAF/11/OBP-115) isolated from experimentally vaccinated cattle. Full-genome sequencing and phylogenetic analyses show that the bluetongue virus 9 strain 9/B. taurus-tc/ZAF/15/Onderstepoort_B02b is a reassortant virus containing segments from both BTV-9 and BTV-8. PMID:27340051

  7. Strained silicon modulation field-effect transistor as a new sensor of terahertz radiation

    NASA Astrophysics Data System (ADS)

    Moubarak Meziani, Yahya; Garcia, Enrique; Velazquez, Enrique; Diez, Enrique; El Moutaouakil, Amine; Otsuji, Taiichi; Fobelets, K.

    2011-10-01

    In this paper, we report on room temperature detection of terahertz radiation from strained-Si modulation-doped field-effect transistors. A non-resonant signal was observed with a maximum around the threshold voltage. The signal was interpreted due to the plasma wave nonlinearities in the channel. The intensity of the signal increases for the higher applied drain-to-source current. We also observed a dependence of the signal on the polarization of the incoming radiations.

  8. 3D strain measurement in electronic devices using through-focal annular dark-field imaging.

    PubMed

    Kim, Suhyun; Jung, Younheum; Lee, Sungho; Jung Kim, Joong; Byun, Gwangseon; Lee, Sunyoung; Lee, Haebum

    2014-11-01

    Spherical aberration correction in high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) allows us to form an electron probe with reduced depth of field. Using through-focal HAADF imaging, we experimentally demonstrated 3D strain measurement in a strained-channel transistor. The strain field distribution in the channel region was obtained by scanning an electron beam over a plan-view specimen. Furthermore, the decrease in the strain fields toward the silicon substrate was revealed at different focal planes with a 5-nm focal step. These results demonstrate that it is possible to reconstruct the 3D strain field in electronic devices. PMID:24859824

  9. Strain effect on coercive field of epitaxial barium titanate thin films

    NASA Astrophysics Data System (ADS)

    Choudhury, S.; Li, Y. L.; Chen, L. Q.; Jia, Q. X.

    2008-04-01

    Strain is generally known to increase the coercive field of a ferroelectric thin film as compared to a stress-free single crystal or a strain-relaxed film. We studied the coercive fields and remanent polarizations of (001)-oriented epitaxial barium titanate thin films using the phase-field approach. It is demonstrated, while the remanent polarization decreases as in-plane strain changes from being compressive to tensile, the variation of coercive field with strain is complicated. We noted more than two times drop in coercive field with a reduction of compressive strain of only ˜0.05%, which we attribute to the existence of multiple ferroelectric phases.

  10. Report of Field Test Evaluation.

    ERIC Educational Resources Information Center

    Michigan State Univ., East Lansing. Regional Instructional Materials Center for Handicapped Children and Youth.

    Reported by the Great Lakes Region Special Education Instructional Materials Center are field test evaluation of 18 auditory instructional materials for use with handicapped children who learn best through the auditory modality. Among materials evaluated are a taped program on use of the abacus and a cassette audiotape on bird habits and sounds.…

  11. Fracture mechanism of amorphous polymers at strain fields.

    PubMed

    Huang, Lan; Yang, Xiaoping; Jia, Xiaolong; Cao, Dapeng

    2014-12-01

    Owing to the wide application of polymeric materials, understanding the fracture mechanism of amorphous polymers at strain fields is a fundamentally important challenge. In this work, we use molecular dynamics simulations to investigate the uniaxial deformation of amorphous polyethylene and further monitor the polyethylene fracture process induced by stretching. Results indicate that the polyethylene systems with chain lengths of 600-800 united atoms exhibit the fracture behavior at a temperature T < 200 K and the strain of 1.0. Further study shows that in the stretching process, the disentanglement and orientation of chains lead to the formation of small cavities in the middle region of the system, and the small cavities subsequently form a large hole, causing the fracture of the whole system. Definitely, the fracture is determined by the two factors of mobility and entanglement of chains. The polyethylene systems with a high chain mobility or a high chain entanglement do not fracture. Finally, a schematic diagram is put forward to illustrate the fracture behavior. PMID:25322468

  12. Near tip stress and strain fields for short elastic cracks

    NASA Technical Reports Server (NTRS)

    Soediono, A. H.; Kardomateas, G. A.; Carlson, R. L.

    1994-01-01

    Recent experimental fatigue crack growth studies have concluded an apparent anomalous behavior of short cracks. To investigate the reasons for this unexpected behavior, the present paper focuses on identifying the crack length circumstances under which the requirements for a single parameter (K(sub I) or delta K(sub I) if cyclic loading is considered) characterization are violated. Furthermore, an additional quantity, the T stress, as introduced by Rice, and the related biaxiality ratio, B, are calculated for several crack lengths and two configurations, the single-edge-cracked and the centrally-cracked specimen. It is postulated that a two-parameter characterization by K and T (or B) is needed for the adequate description of the stress and strain field around a short crack. To further verify the validity of this postulate, the influence of the third term of the Williams series on the stress, strain and displacement fields around the crack tip and in particular on the B parameter is also examined. It is found that the biaxiality ratio would be more negative if the third term effects are included in both geometries. The study is conducted using the finite element method with linearly elastic material and isoparametric elements and axial (mode I) loading. Moreover, it is clearly shown that it is not proper to postulate the crack size limits for 'short crack' behavior as a normalized ratio with the specimen width, a/w; it should instead be stated as an absolute, or normalized with respect to a small characteristic dimension such as the grain size. Finally, implications regarding the prediction of cyclic (fatigue) growth of short cracks are discussed.

  13. Hydrogen Concentration and Strain Fields Near Fatigue Cracks in Pipeline Steel Measured Via Neutron Imaging

    NASA Astrophysics Data System (ADS)

    Connolly, Matthew; Slifka, Andrew; Drexler, Elizabeth; Hydrogen Pipeline Safety Team

    Hydrogen (H2) is desirable for energy storage as it is cleaner burning and can store a larger amount of energy than an equal mass of gasoline. One problem in the development of a hydrogen economy is to find or develop materials that ensure the safe, reliable, and cost-effective flow of energy from the source to the user. It is expected steels will be needed to serve this function. However, the existing network of natural gas pipeline, for example, is constructed of ferrous materials which are susceptible to embrittlement and subsequent increased fatigue crack growth rates after exposure to hydrogen. In order to improve current modeling efforts, experimental determination of hydrogen concentration, hydrogen diffusion rates, and strain fields are required to inform and validate the model. Here we report neutron imaging measurements of the hydrogen concentration near a fatigue crack and the corresponding strain field, measured via neutron transmission Bragg edge spectroscopy. Nist Materials Measurement Laboratory, Applied Chemicals and Materials Division.

  14. Progress Report on Alloy 617 Isochronous Stress-Strain Curves

    SciTech Connect

    Jill K. Wright; Richard N. Wright; Nancy J. Lybeck

    2014-03-01

    Isochronous stress-strain curves for Alloy 617 up to a temperature of 1000°C will be required to qualify the material for elevated temperature design in Section III, Division 1, Subsection NH of the ASME Boiler and Pressure Vessel Code. Several potential methods for developing these curves are reviewed in this report. It is shown that in general power-law creep is the rate controlling deformation mechanism for a wide range of alloy heats, test temperatures and stresses. Measurement of the strain rate sensitivity of Alloy 617 indicates that the material is highly strain rate sensitive in the tensile deformation range above about 750°C. This suggests that the concept of a hot tensile curve as a bounding case on the isochronous stress-strain diagrams is problematic. The impact of strain rate on the hot tensile curves is examined and it is concluded that incorporating such a curve is only meaningful if a single tensile strain rate (typically the ASTM standard rate of 0.5%/min) is arbitrarily defined. Current experimentally determined creep data are compared to isochronous stress-strain curves proposed previously by the German programs in the 1980s and by the 1990 draft ASME Code Case. Variability in how well the experimental data are represented by the proposed design curves that suggests further analysis is necessary prior to completing a new draft Code Case.

  15. Strain in Hydrogen-Implanted Si Investigated Using Dark-Field Electron Holography

    NASA Astrophysics Data System (ADS)

    Cherkashin, Nikolay; Reboh, Shay; Lubk, Axel; Hÿtch, Martin J.; Claverie, Alain

    2013-09-01

    The microstructure of ion-implanted crystals is profoundly dictated by mechanical strain developing in interplay with structural defects. Understanding the origin of strain during the early stages of development is challenging and requires accurate measurements and modeling. Here, we investigate the mechanical strain in H-implanted Si. X-ray diffraction analysis is performed to measure the mesoscopic out-of-plane strain and dark-field electron holography to map strain in two-dimensions (2D) with nanometer spatial resolution. Supported by finite element method modeling, we propose that the mean strain field is explained by overlapping and averaging discrete strain fields generated by sub-nanoscopic defects that are intimately related to the H depth concentration.

  16. Strain mapping in nanocrystalline grains simulated by phase field crystal model

    NASA Astrophysics Data System (ADS)

    Guo, Yaolin; Wang, Jincheng; Wang, Zhijun; Li, Junjie; Tang, Sai; Liu, Feng; Zhou, Yaohe

    2015-03-01

    In recent years, the phase field crystal (PFC) model has been confirmed as a good candidate to describe grain boundary (GB) structures and their nearby atomic arrangement. To further understand the mechanical behaviours of nanocrystalline materials, strain fields near GBs need to be quantitatively characterized. Using the strain mapping technique of geometric phase approach (GPA), we have conducted strain mapping across the GBs in nanocrystalline grains simulated by the PFC model. The results demonstrate that the application of GPA in strain mapping of low and high angles GBs as well as polycrystalline grains simulated by the PFC model is very successful. The results also show that the strain field around the dislocation in a very low angle GB is quantitatively consistent with the anisotropic elastic theory of dislocations. Moreover, the difference between low angle GBs and high angle GBs is revealed by the strain analysis in terms of the strain contour shape and the structural GB width.

  17. Local magnetic fields, uplift, gravity, and dilational strain changes in Southern California ( USA).

    USGS Publications Warehouse

    Johnston, M.J.S.

    1986-01-01

    Measurements of regional magnetic field near the San Andreas fault at Cajon, Palmdale and Tejon are strongly correlated with changes in gravity, areal strain, and uplift in these regions during the period 1977-1984. Because the inferred relationships between these parameters are in approximate agreement with those obtained from simple deformation models, the preferred explanation appeals to short-term strain episodes independently detected in each data set. Transfer functions from magnetic to strain, gravity, and uplift perturbations, obtained by least-square linear fits to the data, are -0.98 nT/ppm, -0.03 nT/mu Gal, and 9.1 nT/m respectively. Tectonomagnetic model calculations underestimate the observed changes and those reported previously for dam loading and volcano-magnetic observations. A less likely alternative explanation of the observed data appeals to a common source of meteorologically generated crustal or instrumental noise in the strain, gravity, magnetic, and uplift data.-from Author

  18. The isolation of a field strain of Haemonchus contortus in Queensland showing multiple anthelmintic resistance.

    PubMed

    Green, P E; Forsyth, B A; Rowan, K J; Payne, G

    1981-02-01

    Following the apparent failure of levamisole to control infections of Haemonchus contortus in sheep at Lawes in south eastern Queensland, a strain of this parasite was isolated at the Animal Research Institute, Yeerongpilly. This strain was used to infect sheep at Yeerongpilly and the Merrindale Research Station, Victoria where four experiments to classify the resistance pattern of the parasite were carried out. Resistance to thiabendazole was first suspected in 1969, and these experiments confirmed that resistance to this drug was still present. They also showed that a strong degree of resistance had been developed to both levamisole and morantel tartrate. Other benzimidazole anthelmintics and also the organophosphorus compound naphthalophos were only moderately effective against the original isolate but rafoxanide, nitroxynil and phenothiazine were almost 100% effective. Other highly effective chemicals were disophenol and closantel. After passaging the strain for four generations with both levamisole and albendazole, resistance to both naphthalophos and the newer benzimidazole anthelmintics increased dramatically. This is the first report of a field strain of H. contortus exhibiting resistance to benzimidazole, non-benzimidazole and organophosphorus anthelmintics. PMID:7259650

  19. Bovine herpesvirus-1: comparison and differentiation of vaccine and field strains based on genomic sequence variation.

    PubMed

    Fulton, R W; d'Offay, J M; Eberle, R

    2013-03-01

    Bovine herpesvirus-1 (BoHV-1) causes significant disease in cattle including respiratory, fetal diseases, and reproductive tract infections. Control programs usually include vaccination with a modified live viral (MLV) vaccine. On occasion BoHV-1 strains are isolated from diseased animals or fetuses postvaccination. Currently there are no markers for differentiating MLV strains from field strains of BoHV-1. In this study several BoHV-1 strains were sequenced using whole-genome sequencing technologies and the data analyzed to identify single nucleotide polymorphisms (SNPs). Strains sequenced included the reference BoHV-1 Cooper strain (GenBank Accession JX898220), eight commercial MLV vaccine strains, and 14 field strains from cases presented for diagnosis. Based on SNP analyses, the viruses could be classified into groups having similar SNP patterns. The eight MLV strains could be differentiated from one another although some were closely related to each other. A number of field strains isolated from animals with a history of prior vaccination had SNP patterns similar to specific MLV viruses, while other field isolates were very distinct from all vaccine strains. The results indicate that some BoHV-1 isolates from clinically ill cattle/fetuses can be associated with a prior MLV vaccination history, but more information is needed on the rate of BoHV-1 genome sequence change before irrefutable associations can be drawn. PMID:23333211

  20. Surface mapping of field-induced piezoelectric strain at elevated temperature employing full-field interferometry.

    PubMed

    Stevenson, Tim; Quast, Tatjana; Bartl, Guido; Schmitz-Kempen, Thorsten; Weaver, Paul M

    2015-01-01

    Piezoelectric actuators and sensors are widely used for flow control valves, including diesel injectors, ultrasound generation, optical positioning, printing, pumps, and locks. Degradation and failure of material and electrical properties at high temperature typically limits these applications to operating temperatures below 200°C, based on the ubiquitous Pb(Zr,Ti)O3 ceramic. There are, however, many applications in sectors such as automotive, aerospace, energy and process control, and oil and gas, where the ability to operate at higher temperatures would open up new markets for piezoelectric actuation. Presented here is a review of recent progress and initial results toward a European effort to develop measurement techniques to characterize high-temperature materials. Full-field, multi-wavelength absolute length interferometry has, for the first time, been used to map the electric-field-induced piezoelectric strain across the surface of a PZT ceramic. The recorded variation as a function of temperature has been evaluated against a newly developed commercial single-beam system. Conventional interferometry allows measurement of the converse piezoelectric effect with high precision and resolution, but is often limited to a single point, average measurement and to limited sample environments because of optical aberrations in varying atmospheres. Here, the full-field technique allows the entire surface to be analyzed for strain and, in a bespoke sample chamber, for elevated temperatures. PMID:25585393

  1. Report of near field group

    SciTech Connect

    Palmer, R.B.; Baggett, N.; Claus, J.; Fernow, R.; Stumer, I.; Figueroa, H.; Kroll, N.; Funk, W.; Lee-Whiting, G.; Pickup, M.

    1985-04-01

    Substantial progress since the Los Alamos Workshop two years ago is reported. A radio-frequency model of a grating accelerator has been tested at Cornell, and extensive calculations compared with observations. Alternative structures consisting of either hemispherical bumps on a plane, or conducting spheres in space, have also been rf modeled. The use of liquid droplets to form such structures has been proposed and a conceptual design studied. Calculations and experiments have examined the effects of surface plasmas, and shown that in this case the reflectivity is low. However, calculations and observations suggest that gradients in excess of 1 GeV/meter should be obtainable without forming such plasma. An examination of wake fields shows that, with Landau damping, these are independent of wavelength. The use of near field structures to act as high gradient focusing elements has been studied and shows promise, independent of the acceleration mechanism. A proposal has been made to establish a facility that would enable ''proof of principle experiments'' to be performed on these and other laser driven accelerator mechanisms. 11 refs., 10 figs.

  2. Comparison of Haemophilus parasuis reference strains and field isolates by using random amplified polymorphic DNA and protein profiles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Haemophilus parasuis is the causative agent of Glässer’s disease and is a pathogen of swine in high-health status herds. Reports on serotyping of field strains from outbreaks describe that approximately 30% of them are nontypable and therefore cannot be traced. Molecular typing methods have been use...

  3. Derivation of Relations and Analysis of Tube Bending Processes Using Discontinuous Fields of Plastic Strains

    NASA Astrophysics Data System (ADS)

    Śloderbach, Z.

    2015-05-01

    The generalized strain scheme in bending metal tubes at bending machines with the use of a mandrel presented in Śloderbach (1999; 2002; 20131,2; 2014) satisfies initial and boundary kinematic conditions of bending, conditions of continuity and inseparability of strains. This paper introduces three formal simplifications gradually imposed into forms of principal components of the generalized strain model giving suitable simplifications of the 1st, 2nd and 3rd types. Such mathematical simplifications cause that the obtained strain fields do not satisfy the condition of consistency of displacements and strain continuity. The simplified methods determine safer values of the wall thickness than those from the generalized continuous strain scheme. The condition of plastic incompressibility was used for the derivation of an expression for distribution of wall thickness of the bent elbow in the layers subjected to tension and compression for three examples of discontinuous kinematic strain fields.

  4. A portable modular optical sensor capable of measuring complex multi-axis strain fields

    NASA Astrophysics Data System (ADS)

    Zhao, Weixin; Beck, B. Terry; Peterman, Robert J.; Wu, Chih-Hang J.

    2012-10-01

    This paper presents a portable optical sensor capable of measuring complex multi-axis strain fields without the need for special surface preparation or stringent sensor-to-surface alignment. The sensor consists of three to four electronic speckle photography (ESP) modules. The design of each modular element is based on a previously developed 5-axis (five degree of freedom) surface displacement measurement technique, and is able to measure two dimensional in-plane surface movement, unaffected by other degrees of freedom (displacement and rotation) movement. Identical modular strain elements are arranged in a Rosette grid layout so that accurate and robust multi-axis surface strain measurement can be achieved. Experiments were conducted to demonstrate the multi-axis strain field measurement capability of this optical sensor by using a test bed that provided a known directional planar strain field, and excellent results were obtained. In particular, experiments have shown that the principle strain can be accurately extracted independent of the orientation of the device. This portable optical sensor will allow precise non-contact measurement of practical complex strain fields such as those encountered in bridge abutments, and portions of beams near critical infrastructure support locations; in other words, wherever plane strains depart from uni-axial behavior. Its unique hand-held portable capability offers distinct advantages over laboratory strain measurement setups, allowing accurate robust non-contact measurements to be achieved even in a harsh field application environment.

  5. The Anti-Phytophthora Effect of Selected Potato-Associated Pseudomonas Strains: From the Laboratory to the Field.

    PubMed

    Guyer, Anouk; De Vrieze, Mout; Bönisch, Denise; Gloor, Ramona; Musa, Tomke; Bodenhausen, Natacha; Bailly, Aurélien; Weisskopf, Laure

    2015-01-01

    Late blight, caused by the oomycete Phytophthora infestans, is the most devastating disease of potato. In organic farming, late blight is controlled by repeated applications of copper-based products, which negatively impact the environment. To find alternative solutions for late blight management, we have previously isolated a large collection of bacteria from the phyllosphere and the rhizosphere of potatoes. Here we report the antagonistic potential of these strains when co-cultivated with P. infestans as well as with other potato pathogens. We then focused on three Pseudomonas strains and compared their protective impact against late blight to that of well-known biocontrol strains in planta using a high-throughput leaf disk assay with automated picture analysis. When sprayed on the leaves of potatoes in the greenhouse, the strains were able to survive for at least 15 days. Under field conditions, populations decreased faster but all tested strains could still be retrieved after 8 days. The most active strain in vitro, P. chlororaphis R47, was also the best protectant on leaf disks from plants grown in the greenhouse experiment, but its protection potential could not be verified in the field due to unfavorable infection conditions. However, its protective effect against P. infestans in planta, its survival in the phyllosphere as well as its ability to colonize the potato rhizosphere in very high population densities, suggest a potential for field application, e.g., in the form of tuber treatment or leaf spray. PMID:26640460

  6. The Anti-Phytophthora Effect of Selected Potato-Associated Pseudomonas Strains: From the Laboratory to the Field

    PubMed Central

    Guyer, Anouk; De Vrieze, Mout; Bönisch, Denise; Gloor, Ramona; Musa, Tomke; Bodenhausen, Natacha; Bailly, Aurélien; Weisskopf, Laure

    2015-01-01

    Late blight, caused by the oomycete Phytophthora infestans, is the most devastating disease of potato. In organic farming, late blight is controlled by repeated applications of copper-based products, which negatively impact the environment. To find alternative solutions for late blight management, we have previously isolated a large collection of bacteria from the phyllosphere and the rhizosphere of potatoes. Here we report the antagonistic potential of these strains when co-cultivated with P. infestans as well as with other potato pathogens. We then focused on three Pseudomonas strains and compared their protective impact against late blight to that of well-known biocontrol strains in planta using a high-throughput leaf disk assay with automated picture analysis. When sprayed on the leaves of potatoes in the greenhouse, the strains were able to survive for at least 15 days. Under field conditions, populations decreased faster but all tested strains could still be retrieved after 8 days. The most active strain in vitro, P. chlororaphis R47, was also the best protectant on leaf disks from plants grown in the greenhouse experiment, but its protection potential could not be verified in the field due to unfavorable infection conditions. However, its protective effect against P. infestans in planta, its survival in the phyllosphere as well as its ability to colonize the potato rhizosphere in very high population densities, suggest a potential for field application, e.g., in the form of tuber treatment or leaf spray. PMID:26640460

  7. Giant Electric-Field-Induced Strain in PVDF-Based Battery Separator Membranes Probed by Electrochemical Strain Microscopy.

    PubMed

    Romanyuk, Konstantin; Costa, Carlos M; Luchkin, Sergey Yu; Kholkin, Andrei L; Lanceros-Méndez, Senentxu

    2016-05-31

    Efficiency of lithium-ion batteries largely relies on the performance of battery separator membrane as it controls the mobility and concentration of Li-ions between the anode and cathode electrodes. Recent advances in electrochemical strain microscopy (ESM) prompted the study of Li diffusion and transport at the nanoscale via electromechanical strain developed under an application of inhomogeneous electric field applied via the sharp ESM tip. In this work, we observed unexpectedly high electromechanical strain developed in polymer membranes based on porous poly(vinylidene fluoride) (PVDF) and poly(vinylidene fluoride-co-chlorotrifluoroethylene) (PVDF-CTFE) and, using it, could study a dynamics of electroosmotic flow of electrolyte inside the pores. We show that, independently of the separator membrane, electric field-induced deformation observed by ESM on wetted membrane surfaces can reach up to 10 nm under a moderate bias of 1 V (i.e., more than an order of magnitude higher than that in best piezoceramics). Such a high strain is explained by the electroosmotic flow in a porous media composed of PVDF. It is shown that the strain-based ESM method can be used to extract valuable information such as average pore size, porosity, elasticity of membrane in electrolyte solvent, and membrane-electrolyte affinity expressed in terms of zeta potential. Besides, such systems can, in principle, serve as actuators even in the absence of apparent piezoelectricity in amorphous PVDF. PMID:27142946

  8. Insulated-gate field-effect transistor strain sensor

    NASA Technical Reports Server (NTRS)

    Gross, C.

    1972-01-01

    Strain sensors that can be switched on and off were fabricated from p-channel IGFET on thin filament n-type silicon crystals with silicon dioxide layer sputtered over transistor for passivation. Applications include integration with microelectronic circuits for multiplexing.

  9. Isolation and pathogenic analysis of virulent Marek's disease virus field strain in China.

    PubMed

    Cui, Ning; Su, Shuai; Sun, Peng; Zhang, Yankun; Han, Ni; Cui, Zhizhong

    2016-07-01

    Marek's disease (MD) has become increasingly common in China, resulting in considerable economic loss. The etiological agent is unclear. In this study, we isolated a field MD virus (MDV) strain, designated SX1301, from CVI988/Rispens-vaccinated chickens with tumors. Co-infection of avian leukosis virus, reticuloendotheliosis virus, and chicken infectious anemia virus was excluded by polymerase chain reaction, enzyme-linked immunosorbant assay, DNA blotting hybridization, and indirect immunofluorescence assay. As with most strains isolated in China, SX1301 had the same amino acid mutation of meq protein at positions 77(E), 80(Y), and 115(A) Animal experimental results showed development of lethal MD in 57% and MD tumor in 23% of the specific pathogen-free chickens inoculated with SX1301, with tumors mainly distributed in spleen, liver, and kidney. CVI988/Rispens protected 83% of chickens upon challenge with SX1301, with a mortality rate and tumor incidence of 10% and 7%, respectively. These results implicated SX1301 as a virulent MDV strain, with commercial MDV vaccine CVI988/Rispens unable to confer adequate protection against SX1301. There have been no reports of very virulent (vv) plus MDV in China, but frequently occurring virulent MDV may account for the repeated outbreaks of MD. Vaccines with greater efficacy are needed to protect against MDV. PMID:26976907

  10. Molecular characterization of the Israeli B. bigemina vaccine strain and field isolates.

    PubMed

    Molad, T; Erster, O; Fleiderovitz, L; Roth, A; Leibovitz, B; Wolkomirsky, R; Mazuz, M L; Behar, A; Markovics, A

    2015-09-15

    The present study demonstrated the genetic character of the Israeli Babesia bigemina vaccine strain and field isolates, based on rap-1a and rap-1c gene sequences. The RAP-1a of blood-derived Israeli B. bigemina field isolates shared 100% amino acid sequence identity. However, comparison of RAP-1c from various Israeli B. bigemina field isolates revealed that the total sequence identity among the field isolates ranged from 98.2 to 100%. High identity was observed when RAP-1a sequences from the Israeli vaccine strain and field isolates were compared with RAP-1a from Egypt, Syria, Mexico and South Africa, while, the Israeli RAP-1c sequences showed the highest identity to the Mexican isolate JG-29 and to the PR isolate from Puerto-Rico. Based on sequence variations between the rap-1a of the vaccine strain and that of the field isolate, and between the rap-1c of the vaccine strain and that of the field isolates, nPCR-RFLP procedures were developed that enable, for the first time differentiation between the Israeli B. bigemina vaccine strain and field-infection isolates. These assays could serve as fast and sensitive methods for detection and differentiation between Israeli B. bigemina vaccine strains and field isolates, as well as for epidemiological investigations. PMID:26154404

  11. Misfit strain-misfit strain diagram of epitaxial BaTiO3 thin films: Thermodynamic calculations and phase-field simulations

    NASA Astrophysics Data System (ADS)

    Sheng, G.; Zhang, J. X.; Li, Y. L.; Choudhury, S.; Jia, Q. X.; Liu, Z. K.; Chen, L. Q.

    2008-12-01

    The effect of anisotropic strains on the phase transitions and domains structures of BaTiO3 thin films was studied using both thermodynamic calculations and phase-field simulations. The misfit strain-misfit strain domain stability diagrams were predicted. The similarity and significant differences between the diagrams from thermodynamic calculations assuming single domains and from phase-field simulations were analyzed. Typical domain structures as a result of anisotropic misfit strains are presented.

  12. Deformation-induced spatiotemporal fluctuation, evolution and localization of strain fields in a bulk metallic glass

    SciTech Connect

    Wu, Yuan; Bei, Hongbin; Wang, Yanli; Lu, Zhaoping; George, Easo P.; Gao, Yanfei

    2015-05-16

    Deformation behavior and local strain evolutions upon loading and unloading of a bulk metallic glass (BMG) were systematically investigated by in situ digital image correlation (DIC). Distinct fluctuations and irreversible local strains were observed before the onset of macroscopic yielding. Statistical analysis shows that these fluctuations might be related to intrinsic structural heterogeneities, and that the evolution history and characteristics of local strain fields play an important role in the subsequent initiation of shear bands. Effects of sample size, pre-strain, and loading conditions were systematically analyzed in terms of the probability distributions of the resulting local strain fields. It is found that a higher degree of local shear strain heterogeneity corresponds to a more ductile stressestrain curve. Implications of these findings are discussed for the design of new materials.

  13. Deformation-induced spatiotemporal fluctuation, evolution and localization of strain fields in a bulk metallic glass

    DOE PAGESBeta

    Wu, Yuan; Bei, Hongbin; Wang, Yanli; Lu, Zhaoping; George, Easo P.; Gao, Yanfei

    2015-05-16

    Deformation behavior and local strain evolutions upon loading and unloading of a bulk metallic glass (BMG) were systematically investigated by in situ digital image correlation (DIC). Distinct fluctuations and irreversible local strains were observed before the onset of macroscopic yielding. Statistical analysis shows that these fluctuations might be related to intrinsic structural heterogeneities, and that the evolution history and characteristics of local strain fields play an important role in the subsequent initiation of shear bands. Effects of sample size, pre-strain, and loading conditions were systematically analyzed in terms of the probability distributions of the resulting local strain fields. It ismore » found that a higher degree of local shear strain heterogeneity corresponds to a more ductile stressestrain curve. Implications of these findings are discussed for the design of new materials.« less

  14. Large strain under a low electric field in lead-free bismuth-based piezoelectrics

    NASA Astrophysics Data System (ADS)

    Ullah, Aman; Won Ahn, Chang; Ullah, Amir; Won Kim, Ill

    2013-07-01

    In this letter, the composition and electric field dependent strain behavior of (1 - x)Bi0.5(Na0.78K0.22)0.5TiO3-xBi(Mg0.5Ti0.5)O3 (BNKT-BMT) were investigated to develop lead-free piezoelectric materials with a large strain response at a low driving field for actuator applications. A large strain of 0.35% (Smax/Emax = 636 pm/V) at an applied field of 55 kV/cm was obtained with a composition of 4 mol. % BMT. In particular, the electric field required to deliver large strains was reduced to a level that revealed not only a large Smax/Emax of 542 pm/V at a driving field as low as 35 kV/cm, but also remarkably suppressed the large hysteresis.

  15. Construction of a bioluminescent reporter strain to detect polychlorinated biphenyls

    SciTech Connect

    Layton, A.C.; Muccini, M.; Ghosh, M.M.; Sayler, G.S.

    1998-12-01

    A bioluminescent reporter strain, Ralstonia eutropha ENV307 (pUTK60), was constructed for the detection of polychlorinated biphenyls by inserting the biphenyl promoter upstream of the bioluminescence genes. In the presence of a nonionic surfactant, which enhances the solubility of chlorinated biphenyls, bioluminescence was induced three- to fourfold over background by biphenyl, monochlorinated biphenyls, and Aroclor 1242. The minimum detection limits for these compounds ranged from 0.15 mg/liter for 4-chlorobiphenyl to 1.5 mg/liter for Aroclor 1242.

  16. Field methods to measure surface displacement and strain with the Video Image Correlation method

    NASA Technical Reports Server (NTRS)

    Maddux, Gary A.; Horton, Charles M.; Mcneill, Stephen R.; Lansing, Matthew D.

    1994-01-01

    The objective of this project was to develop methods and application procedures to measure displacement and strain fields during the structural testing of aerospace components using paint speckle in conjunction with the Video Image Correlation (VIC) system.

  17. Second-harmonic microscopy of strain fields around through-silicon-vias

    NASA Astrophysics Data System (ADS)

    Cho, Yujin; Shafiei, Farbod; Mendoza, B. S.; Lei, Ming; Jiang, Tengfei; Ho, P. S.; Downer, M. C.

    2016-04-01

    Through-Silicon-Vias (TSVs)—10 μm-diameter conducting rods that connect vertically stacked silicon layers—provide three dimensional circuit integration, but introduce strain in the surrounding silicon when thermally cycled. Here, we noninvasively probe strain fields around Cu TSVs in Si(001) using optical second-harmonic generation (SHG) microscopy. Results are compared with micro-Raman spectra of the strained regions. We find that SHG probes strain fields more quickly than Raman spectroscopy, while maintaining comparable sensitivity and spatial resolution, and avoiding the need for spectral analysis. Moreover, SHG is selectively sensitive to axial shear components uiz (i = x, y) of the strain tensor that are often neglected in Raman analysis. Thus, SHG complements Raman spectroscopy.

  18. Field sampling and travel report

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dr. Sigua was involved with two field visits of watersheds with different livestock production systems (poultry, swine, and beef/dairy cattle); one in the sub-basins of Pinhal River Watershed (October 23, 2008) and at the micro-basins of the Rio Pine Forest (October 29, 2008) where studies of assess...

  19. Comparison of the pathogenicity of the USDA challenge virus strain to a field strain of infectious laryngotracheitis virus.

    PubMed

    Koski, Danielle M; Predgen, Ann S; Trampel, Darrell W; Conrad, Sandra K; Narwold, Debra R; Hermann, Joseph R

    2015-07-01

    Infectious laryngotracheitis virus (ILTV) causes respiratory disease in chickens. This alphaherpesvirus infects laryngeal tracheal epithelial cells and causes outbreaks culminating in decreases in egg production, respiratory distress in chickens and mortality. There are several different vaccines to combat symptoms of the virus, including chicken embryo origin, tissue culture origin and recombinant vaccines. All vaccines licensed for use in the U.S. are tested for efficacy and potency according to U.S. federal regulation using a vaccine challenge assay involving the use of an ILT challenge virus. This challenge virus is provided to biologics companies by the Center for Veterinary Biologics (CVB), United States Department of Agriculture (USDA). The current USDA challenge virus originated from a vaccine strain and has been subjected to multiple passages in eggs, and may not represent what is currently circulating in the field. The objective of this study was to evaluate and compare the pathogenicity of USDA's challenge virus strain to the pathogenicity of a recent ILT field isolate. Using the challenge virus and various dilutions of the field isolate, clinical signs, mortality and pathology were evaluated in chickens. Results indicate that the field isolate at a 1:20 dilution is comparable in pathogenicity to the USDA challenge virus at a 1:4 dilution, and that the ILTV field isolate is a viable candidate that could be used as a challenge virus when evaluating vaccine efficacy. PMID:26050912

  20. Misfit strain-misfit strain diagram of epitaxial BaTiO(3) thin films: thermodynamic calculations and phase-field simulations

    SciTech Connect

    Jia, Quanxi; Sheng, G; Zhang, J X; Li, Y L; Choudhury, S; Liu, Z K; Chen, L Q

    2009-01-01

    The effect of anisotropic strains on the phase transitions and domains structures of BaTi03 thin films was studied using both thermodynamic calculations and phase-field simulations. The misfit strain -misfit strain domain stability diagrams, i.e. the graphical representations of stable ferroelectric phases and domain structures as a function of strains, were predicted. The similarity and significant differences between the diagrams from thermodynamic calculations assuming single domains and from phase-field simulations were analyzed. Typical domain structures as a result of anisotropic misfit strains are presented.

  1. Measuring strain and rotation fields at the dislocation core in graphene

    NASA Astrophysics Data System (ADS)

    Bonilla, L. L.; Carpio, A.; Gong, C.; Warner, J. H.

    2015-10-01

    Strain fields, dislocations, and defects may be used to control electronic properties of graphene. By using advanced imaging techniques with high-resolution transmission electron microscopes, we have measured the strain and rotation fields about dislocations in monolayer graphene with single-atom sensitivity. These fields differ qualitatively from those given by conventional linear elasticity. However, atom positions calculated from two-dimensional (2D) discrete elasticity and three-dimensional discrete periodized Föppl-von Kármán equations (dpFvKEs) yield fields close to experiments when determined by geometric phase analysis. 2D theories produce symmetric fields whereas those from experiments exhibit asymmetries. Numerical solutions of dpFvKEs provide strain and rotation fields of dislocation dipoles and pairs that also exhibit asymmetries and, compared with experiments, may yield information on out-of-plane displacements of atoms. While discrete theories need to be solved numerically, analytical formulas for strains and rotation about dislocations can be obtained from 2D Mindlin's hyperstress theory. These formulas are very useful for fitting experimental data and provide a template to ascertain the importance of nonlinear and nonplanar effects. Measuring the parameters of this theory, we find two characteristic lengths between three and four times the lattice spacings that control dilatation and rotation about a dislocation. At larger distances from the dislocation core, the elastic fields decay to those of conventional elasticity. Our results may be relevant for strain engineering in graphene and other 2D materials of current interest.

  2. Effect of extended strain fields on point defect phonon scattering in thermoelectric materials.

    PubMed

    Ortiz, Brenden R; Peng, Haowei; Lopez, Armando; Parilla, Philip A; Lany, Stephan; Toberer, Eric S

    2015-07-15

    The design of thermoelectric materials often involves the integration of point defects (alloying) as a route to reduce the lattice thermal conductivity. Classically, the point defect scattering strength follows from simple considerations such as mass contrast and the presence of induced strain fields (e.g. radius contrast, coordination changes). While the mass contrast can be easily calculated, the associated strain fields induced by defect chemistry are not readily predicted and are poorly understood. In this work, we use classical and first principles calculations to provide insight into the strain field component of phonon scattering from isoelectronic point defects. Our results also integrate experimental measurements on bulk samples of SnSe and associated alloys with S, Te, Ge, Sr and Ba. These efforts highlight that the strength and extent of the resulting strain field depends strongly on defect chemistry. Strain fields can have a profound impact on the local structure. For example, in alloys containing Ba, the strain fields have significant spatial extent (1 nm in diameter) and produce large shifts in the atomic equilibrium positions (up to 0.5 Å). Such chemical complexity suggests that computational assessment of point defects for thermal conductivity depression should be hindered. However, in this work, we present and verify several computational descriptors that correlate well with the experimentally measured strain fields. Furthermore, these descriptors are conceptually transparent and computationally inexpensive, allowing computation to provide a pivotal role in the screening of effective alloys. The further development of point defect engineering could complement or replace nanostructuring when optimizing the thermal conductivity, offering the benefits of thermodynamic stability, and providing more clearly defined defect chemistry. PMID:26145414

  3. Computer Simulation of Stress-Strain State of Oil Gathering Pipeline Designed for Ugut Field

    NASA Astrophysics Data System (ADS)

    Burkov, P. V.; Burkova, S. P.; Samigullin, V. D.

    2016-04-01

    The paper presents the stress and strain state modeling of infield pipeline in Ugut oil field. The finite element models of the stress field distribution in the pipeline wall are presented in this paper. The attention is paid to the pipeline reliability under stress conditions induced by the internal pressure and external compressive or tensile loads.

  4. Phase-field crystal modeling of shape transition of strained islands in heteroepitaxy

    NASA Astrophysics Data System (ADS)

    Chen, Cheng; Chen, Zheng; Zhang, Jing; Du, XiuJuan

    2012-11-01

    The phase-field crystal (PFC) model is employed to study the shape transition of strained islands in heteroepitaxy on vicinal substrates. The influences of both substrate vicinal angles β and the lattice mismatch ζ are discussed. The increase of substrate vicinal angles is found to be capable of significantly changing the surface nanostructures of epitaxial films. The surface morphology of films undergoes a series of transitions that include Stranski-Krastonov (SK) islands, the couple growth of islands and the step flow as well as the formation of step bunching. In addition, the larger ζ indicates an increased strained island density after coarsening, and results in the incoherent growth of strained islands with the creation of misfit dislocations. Coarsening, coalescence and faceting of strained islands are also observed. Some facets in the shape transition of strained islands are found to be stable and can be determined by β and crystal symmetry of the film.

  5. Epidemiologic study of Taylorella equigenitalis strains by field inversion gel electrophoresis of genomic restriction endonuclease fragments.

    PubMed

    Bleumink-Pluym, N; ter Laak, E A; van der Zeijst, B A

    1990-09-01

    Contagious equine metritis (CEM), a sexually transmitted bacterial disease, was first described in thoroughbred horses. It also occurs in nonthoroughbred horses, in which it produces isolated, apparently unrelated outbreaks. Thirty-two strains of Taylorella equigenitalis, the causative agent of CEM, from all over the world were characterized by field inversion gel electrophoresis of fragments of genomic DNA obtained by digestion with low-cleavage-frequency restriction enzymes. This resulted in a division into five clearly distinct groups. Strains from thoroughbred horses from all continents belonged to one group. Strains from nonthoroughbred horses from various countries were different from strains from thoroughbred horses; four groups could be determined. Two groups contained both streptomycin-resistant and streptomycin-susceptible strains. The data indicate that CEM in nonthoroughbreds did not originate from the thoroughbred population; also, the reverse was not demonstrated. Thus, extensive international transportation directives regarding the testing of nonthoroughbred horses for CEM may need reconsideration. PMID:2172296

  6. Micromotion-induced strain fields influence early stages of repair at bone-implant interfaces

    PubMed Central

    Wazen, Rima M.; Currey, Jennifer A.; Guo, Hongqiang; Brunski, John B.; Helms, Jill A.; Nanci, Antonio

    2013-01-01

    Implant loading can create micromotion at the bone-implant interface. The interfacial strain associated with implant micromotion could contribute to regulating the tissue healing response. Excessive micromotion can lead to fibrous encapsulation and implant loosening. Our objective was to characterize the influence of interfacial strain on bone regeneration around implants in mouse tibiae. A micromotion system was used to create strain under conditions of (1) no initial contact between implant and bone, and (2) a direct bone-implant contact. Pin- and screw-shaped implants were subjected to displacements of 150 μm or 300 μm, 60 cycles/day, for 7 days. Pin-shaped implants placed in 5 animals were subjected to 3 sessions of 150 μm displacement per day, with 60 cycles per session. Control implants in both types of interfaces were stabilized throughout the healing period. Experimental strain analyses, microtomography, image-based displacement mapping, and finite element simulations were used to characterize interfacial strain fields. Calcified tissue sections were prepared and stained with Goldner to evaluate tissue reaction in higher and lower strain regions. In stable implants, bone formation occurred consistently around the implants. In implants subjected to micromotion, bone regeneration was disrupted in areas of high strain concentrations (e.g. > 30%), whereas lower strain values were permissive of bone formation. Increasing implant displacement or number of cycles per day also changed the strain distribution and disturbed bone healing. These results indicate that not only implant micromotion but also the associated interfacial strain field contributes to regulating the interfacial mechanobiology at healing bone-implant interfaces. PMID:23337705

  7. Microscopic reflection difference spectroscopy for strain field of GaN induced by Berkovich nanoindentation

    NASA Astrophysics Data System (ADS)

    Gao, H. S.; Liu, Y.; Zhang, H. Y.; Wu, S. J.; Jiang, C. Y.; Yu, J. L.; Zhu, L. P.; Li, Y.; Huang, W.; Chen, Y. H.

    2014-02-01

    We have measured strain field of Berkovich nanoindentation by Raman mapping technique and microscopic reflection difference spectroscopy (μ-RDS). The validity of the μ-RDS method is verified by the accordance between the theoretical simulated result and the rotated measurement result. Comparing the two different methods, it is concluded that μ-RDS is sensitive and effective to measure anisotropic strain zone in the plane.

  8. Phase-field simulation of strain-induced domain switching in magnetic thin films

    NASA Astrophysics Data System (ADS)

    Hu, Jia-Mian; Sheng, G.; Zhang, J. X.; Nan, C. W.; Chen, L. Q.

    2011-03-01

    The strain-induced magnetic domain switching in epitaxial CoFe2O4 (CFO) thin films was studied using phase-field method. In particular, we investigated the domain switching from an initial in-plane direction to out-of-plane under the action of in-plane elastic strains. An abrupt switching feature is observed for a single-domain film while the switching of a multidomain CFO thin film is gradual. Typical magnetic domain structures as a result of the biaxial isotropic in-plane strains are presented.

  9. Fitting function representation for strain fields and its application to the optimizing process

    NASA Astrophysics Data System (ADS)

    Chen, Kun; Liu, Ke-jia; Wei, Li-qun; Yang, Yi-tao

    2014-06-01

    A fitted function method to describe the strain fields during forging was discussed to optimize the homogeneous distribution of strain in the axial forging zones during successive stretching. The results are verified by experiment and numerical simulation, and the deviations between experiment and simulation are less than 24%. Therefore, the fitted function method can be applied to optimize the stretching process for large forgings. The optimal value of feed determined by the analytic method ensures that the degree of inhomogeneity in strain in the axial ingot zone is less than 6%. This work provides a mathematic model to optimize technological parameters in stretch forging of large ingots.

  10. Flexible MoS2 Field-Effect Transistors for Gate-Tunable Piezoresistive Strain Sensors.

    PubMed

    Tsai, Meng-Yen; Tarasov, Alexey; Hesabi, Zohreh R; Taghinejad, Hossein; Campbell, Philip M; Joiner, Corey A; Adibi, Ali; Vogel, Eric M

    2015-06-17

    Atomically thin molybdenum disulfide (MoS2) is a promising two-dimensional semiconductor for high-performance flexible electronics, sensors, transducers, and energy conversion. Here, piezoresistive strain sensing with flexible MoS2 field-effect transistors (FETs) made from highly uniform large-area films is demonstrated. The origin of the piezoresistivity in MoS2 is the strain-induced band gap change, which is confirmed by optical reflection spectroscopy. In addition, the sensitivity to strain can be tuned by more than 1 order of magnitude by adjusting the Fermi level via gate biasing. PMID:26010011

  11. Dynamical effects in strain measurements by dark-field electron holography.

    PubMed

    Javon, E; Lubk, A; Cours, R; Reboh, S; Cherkashin, N; Houdellier, F; Gatel, C; Hÿtch, M J

    2014-12-01

    Here, we study the effect of dynamic scattering on the projected geometric phase and strain maps reconstructed using dark-field electron holography (DFEH) for non-uniformly strained crystals. The investigated structure consists of a {SiGe/Si} superlattice grown on a (001)-Si substrate. The three-dimensional strain field within the thin TEM lamella is modelled by the finite element method. The observed projected strain is simulated in two ways by multiplying the strain at each depth in the crystal by a weighting function determined from a recently developed analytical two-beam dynamical theory, and by simply taking the average value. We demonstrate that the experimental results need to be understood in terms of the dynamical theory and good agreement is found between the experimental and simulated results. Discrepancies do remain for certain cases and are likely to be from an imprecision in the actual two-beam diffraction conditions, notably the deviation parameter, and points to limitations in the 2-beam approximation. Finally, a route towards a 3D reconstruction of strain fields is proposed. PMID:25062040

  12. Differentiation of field isolates and vaccine strains of infectious laryngotracheitis virus by DNA sequencing.

    PubMed

    Chacón, Jorge Luis; Ferreira, Antonio J Piantino

    2009-11-12

    Two different regions of the infected cell protein 4 (ICP4) gene of infectious laryngotracheitis virus (ILTV) were amplified and sequenced for characterization of field isolates and tissue culture-origin (TCO) and chicken embryo-origin (CEO) vaccine strains. Phylogenetic analysis of the two regions showed differences in nucleotide and amino acid sequences between field isolates and attenuated vaccines. The PCR-RFLP results were identical to those obtained by DNA sequencing and validated their use to differentiate ILTV strains. The approach using the sequencing of the two fragments of the ICP4 gene showed to be an efficient and practical procedure to differentiate between field isolates and vaccine strains of ILTV. PMID:19747995

  13. Controlling the exciton energy of a nanowire quantum dot by strain fields

    NASA Astrophysics Data System (ADS)

    Chen, Yan; Zadeh, Iman Esmaeil; Jöns, Klaus D.; Fognini, Andreas; Reimer, Michael E.; Zhang, Jiaxiang; Dalacu, Dan; Poole, Philip J.; Ding, Fei; Zwiller, Val; Schmidt, Oliver G.

    2016-05-01

    We present an experimental route to engineer the exciton energies of single quantum dots in nanowires. By integrating the nanowires onto a piezoelectric crystal, we controllably apply strain fields to the nanowire quantum dots. Consequently, the exciton energy of a single quantum dot in the nanowire is shifted by several meVs without degrading its optical intensity and single-photon purity. Second-order autocorrelation measurements are performed at different strain fields on the same nanowire quantum dot. The suppressed multi-photon events at zero time delay clearly verify that the quantum nature of single-photon emission is well preserved under external strain fields. The work presented here could facilitate on-chip optical quantum information processing with the nanowire based single photon emitters.

  14. Two-dimensional GeS with tunable electronic properties via external electric field and strain

    NASA Astrophysics Data System (ADS)

    Zhang, Shengli; Wang, Ning; Liu, Shangguo; Huang, Shiping; Zhou, Wenhan; Cai, Bo; Xie, Meiqiu; Yang, Qun; Chen, Xianping; Zeng, Haibo

    2016-07-01

    Experimentally, GeS nanosheets have been successfully synthesized using vapor deposition processes and the one-pot strategy. Quite recently, GeS monolayer, the isoelectronic counterpart of phosphorene, has attracted much attention due to promising properties. By means of comprehensive first-principles calculations, we studied the stability and electronic properties of GeS monolayer. Especially, electric field and in-plane strain were used to tailor its electronic band gap. Upon applying electric field, the band gap of GeS monolayer greatly reduces and a semiconductor–metal transition happens under the application of a certain external electric field. Our calculations reveal that the band gaps of GeS monolayer are rather sensitive to the external electric field. On the other hand, for GeS under external strain, quite interestingly, we found that the band gap presents an approximately linear increase not only under compression strain but also under tensile strain from ‑10% to 10%. For biaxial compressive and tensile strains, the band gap follows the same trend as that of the uniaxial in the zigzag x direction. The present results provide a simple and effective route to tune the electronic properties of GeS monolayer over a wide range and also facilitate the design of GeS-based two-dimensional devices.

  15. Two-dimensional GeS with tunable electronic properties via external electric field and strain.

    PubMed

    Zhang, Shengli; Wang, Ning; Liu, Shangguo; Huang, Shiping; Zhou, Wenhan; Cai, Bo; Xie, Meiqiu; Yang, Qun; Chen, Xianping; Zeng, Haibo

    2016-07-01

    Experimentally, GeS nanosheets have been successfully synthesized using vapor deposition processes and the one-pot strategy. Quite recently, GeS monolayer, the isoelectronic counterpart of phosphorene, has attracted much attention due to promising properties. By means of comprehensive first-principles calculations, we studied the stability and electronic properties of GeS monolayer. Especially, electric field and in-plane strain were used to tailor its electronic band gap. Upon applying electric field, the band gap of GeS monolayer greatly reduces and a semiconductor-metal transition happens under the application of a certain external electric field. Our calculations reveal that the band gaps of GeS monolayer are rather sensitive to the external electric field. On the other hand, for GeS under external strain, quite interestingly, we found that the band gap presents an approximately linear increase not only under compression strain but also under tensile strain from -10% to 10%. For biaxial compressive and tensile strains, the band gap follows the same trend as that of the uniaxial in the zigzag x direction. The present results provide a simple and effective route to tune the electronic properties of GeS monolayer over a wide range and also facilitate the design of GeS-based two-dimensional devices. PMID:27232104

  16. Full-field strain measurement and fracture analysis of rat femora in compression test.

    PubMed

    Amin Yavari, Saber; van der Stok, Johan; Weinans, Harrie; Zadpoor, Amir Abbas

    2013-04-26

    There is a growing interest in studying the fracture behavior of bones, primarily due to the increasing societal burden of osteoporotic fractures. In addition, bone is one of the most important biological materials whose fracture behavior is not yet well understood. This is partly due to the fact that bone is a complex hierarchical material, and exhibits heterogeneous, anisotropic, and viscoelastic mechanical behavior. Understanding the fracture behavior of such a complex material requires application of a full-field strain measurement technique. Digital image correlation (DIC) is a relatively new full-field strain measurement technique that can be used for measurement of 3D surface strains during mechanical testing of different types of bones. In this study, we use the DIC technique to measure the surface strains during compression testing of two groups of rat femora. The first group of femora was harvested from young animals (12 weeks), while the second group was harvested from more mature animals (26 weeks). The surface strains are measured both in the linear range and close to the fracture. Using the measured data, we assess two strain-based fracture prediction criteria, namely equivalent strain fracture criterion and fracture limit diagram, to determine whether they can consistently predict the onset of fracture. The maximum load is measured to be 296±22 N (mean±SD) for young animals and 670±123 N for mature animals. It is shown that fracture in the vast majority of cases occurs in the area of maximum tensile strain. The equivalent strain fracture criterion predicts that the fracture occurs when the equivalent strain reaches 1.04±0.02% (average±SD) for young animals and 1.39±0.24% for mature animals. The fracture limit diagram predicts that the fracture occurs once the sum of major and minor principal surface strains reaches 0.63±0.23% for young animals and -0.63±0.30% for mature animals. Based on these numbers and consistency of the criteria with the

  17. Dynamic Recrystallization in Ice : In-Situ Observation of the Strain Field during Grain Nucleation.

    NASA Astrophysics Data System (ADS)

    Chauve, T.; Montagnat, M.; Tommasi, A.; Vacher, P.

    2014-12-01

    Dynamic recrystallization (DRX) occurs in minerals, metals, ice and impact on large scale mechanisms as seismic anisotropy, mechanical properties inside the Earth mantle, material forming and anisotropic flow in polar ice sheet, for instance. In this frame, ice can be considered as a model material due to a strong viscoplastic anisotropy and deformation heterogeneities, which are precursors of the recrystallization. During creep deformation at high temperature, DRX occurs from 1% strain and involves grain nucleation and grain boundary migration. As DRX induces an evolution of microstructure and texture, it strongly affects the mechanical behavior, and it is expected to modify the strain field at the grain and/or the sample scale. Creep test (σ=0.5-0.8 MPa) were performed at high temperature (T/Tf 0,98) on granular polycrystalline ice (grains size 1mm) and columnar polycrystalline ice (microstructure 2D 1/2 in plane grain size 10mm) up to 18 % strain. Columnar ice provides interesting feature as it contains only one grain through the thickness and the columns are parallel. Post-deformation texture analysis with an Automatic Ice Texture Analyzer (AITA) and with EBSD (Geoscience Montpellier) were used to investigate DRX impact on texture and microstructure, at different scales. With increasing strain texture evolves to a strong concentrated girdle with a preferential orientation of c-axis close to 35° from the compression axis. During the experiment, local strain field is measured on the surface of the sample by Digital Image Correlation (DIC) with a spatial resolution between 0.2 and 0.5 mm, and a strain resolution between 0.2% to 1%. Grain size being large, we obtain a relatively good intra-granular resolution of the strain field. Thanks to the 2D configuration of the columnar ice samples, we can superimpose the strain field measured by DIC. We will present an overview of the impact of DRX on the texture and microstructure, from the 3D configuration down to a

  18. Laboratory and field performance of FOS sensors in static and dynamic strain monitoring in concrete bridge decks

    NASA Astrophysics Data System (ADS)

    Benmokrane, B.; Debaiky, A.; El-Ragaby, A.; Roy, R.; El-Gamal, S.; El-Salakawy, E.

    2006-03-01

    There is a growing need for designing and constructing innovative concrete bridges using FRP reinforcing bars as internal reinforcement to avoid the corrosion problems and high costs of maintenance and repair. For efficient use and to increase the lifetime of these bridges, it is important to develop efficient monitoring systems for such innovative structures. Fabry-Perot and Bragg fibre optic sensors (FOS) that can measure the strains and temperature are promising candidates for life-long health monitoring of these structures. This article reports laboratory and field performance of Fabry-Perot and Bragg FOS sensors as well as electrical strain gauges in static and dynamic strain monitoring in concrete bridge decks. The laboratory tests include tensile testing of glass FRP bars and testing of full-scale concrete bridge deck slabs reinforced with glass and carbon FRP bars under static and cyclic concentrated loads. The field tests include static and dynamic testing of two bridges reinforced with steel and glass FRP bars. The obtained strain results showed satisfactory agreement between the different gauges.

  19. Co-seismic dilatational strain in the far field of great earthquakes

    NASA Astrophysics Data System (ADS)

    Zhang, Yan; Fu, Li-Yun; Wang, Chi-yuen; Yan, Rui; Zhao, Lian-feng

    2016-04-01

    The mechanism of the coseismic dilatational strain has been a topic of active debate. Recent studies show that the co-seismic change of dilatational strain in the far field of large earthquakes is often far greater than that predicted from static strain theory, but the underlying mechanism is not understood. Here we study this mechanism by comparing the tidal responses of crustal strain and water level documented in the Fuxin well, northeastern China, before and after three great earthquakes (the 2008 Mw 7.9 Wenchuan earthquake, the 2011 Mw 9.1 Tohoku earthquake and the 2012 Mw 8.6 Sumatra earthquake). We show that, before each earthquake, the phase of water-level fluctuation lagged behind that of the dilatational strain, due to the delay of groundwater flow to the well with respect to the tidal strain. Following each earthquake, however, the phase of water-level fluctuations increased and became the same as that of the dilatational strain. In addition, we show that the predicted change in water level from the co-seismic dilatational strain has the same sign, amplitude and time history as those of the observed coseismic change in water level. The similarity between the simulated and observed coseismic water-level change, together with the similarity in phase between the tidal response of water level and that of dilatational strain after the earthquake, suggest that the dominant mechanism for the coseismic dilatational strain in the Fuxin well is the co-seismic change in pore pressure in the vicinity of the well.

  20. Strain localization in carbonate rocks experimentally deformed in the ductile field

    NASA Astrophysics Data System (ADS)

    Rybacki, E.; Morales, L. F. G.; Dresen, G.

    2012-04-01

    The deformation of rocks in the Earth's crust is often localized, varying from brittle fault gauges in shallow environments to mylonites in ductile shear zones at greater depth. A number of theoretical, experimental, and field studies focused on the evolution and extend of brittle fault zones, but little is known so far about initiation of ductile shear zones. Strain localization in rocks deforming at high temperature and pressure may be induced by several physical, chemical, or structurally-related mechanisms. We performed simple and pure shear deformation experiments on carbonate rocks containing structural inhomogenities in the ductile deformation regime. The results may help to gain insight into the evolution of high temperature shear zones. As starting material we used cylindrical samples of coarse-grained Carrara marble containing one or two 1 mm thin artificially prepared sheets of fine-grained Solnhofen limestone, which act as soft inclusions under the applied experimental conditions. Length and diameter of the investigated solid and hollow cylinders were 10-20 mm and 10-15 mm, respectively. Samples were deformed in a Paterson-type gas deformation apparatus at 900° C temperature and confining pressures of 300 and 400 MPa. Three samples were deformed in axial compression at a bulk strain rate of 8x10-5 s-1to axial strains between 0.02 and 0.21 and 15 samples were twisted in torsion at a bulk shear strain rate of 2x10-4 s-1 to shear strains between 0.01 and 3.74. At low strain, specimens deformed axially and in torsion show minor strain hardening that is replaced by strain weakening at shear strains in excess of about 0.2. Peak shear stress at the imposed condition is about 20 MPa. Strain localized strongly within the weak inclusions as indicated by inhomogeneous bending of initially straight strain markers on sample jackets. Maximum strain concentration within inclusions with respect to the adjacent matrix was between 4 and 40, depending on total strain and

  1. Full-field characterization of wishboning strain in the colobine mandibular symphysis.

    PubMed

    Bucinell, Ronald B; Daegling, David J; McGraw, W Scott; Rapoff, Andrew J

    2010-04-01

    The masticatory loading regime of lateral transverse bending (wishboning) is hypothesized to be instrumental in the evolution of symphyseal form among primates. The biomechanics of wishboning have largely been inferred by assuming that the mandible behaves as a curved beam under this load; however, the characterization of stress and strain in the anthropoid symphysis has been interpretively challenging. This is due, in part, to both limitations of sampling strain in an in vivo context and the incongruence of beam theory assumptions on the one hand, and the anatomical complexity of mandibular morphology on the other. Utilizing three-dimensional (3D) Digital Image Correlation (DIC), we employ an in vitro approach to characterize the strain field in a sample of colobine mandibles under simulated wishboning loads in order to assess the utility of idealized curved beam models for characterizing strain gradients in symphyseal bone. Conventional theory of curved beams suggest that colobine mandibles should exhibit reduced disparity of labial and lingual stresses relative to papionin primates given differences in overall mandibular architecture. This prediction is borne out by our analysis: whereas macaques experience lingual:labial strain disparities of 3.5:1, the colobine mandibles exhibit ratios on the order of 2-3:1. However, despite the fact that wishboning loads represent a case of asymmetric bending, details of the wishboning strain field do not conform to expected stress distribution under this model. PMID:20235311

  2. Strain on field effect transistors with single–walled–carbon nanotube network on flexible substrate

    SciTech Connect

    Kim, T. G.; Kim, U. J.; Lee, E. H.; Hwang, J. S.; Hwang, S. W. E-mail: sangsig@korea.ac.kr; Kim, S. E-mail: sangsig@korea.ac.kr

    2013-12-07

    We have systematically analyzed the effect of strain on the electrical properties of flexible field effect transistors with a single-walled carbon nanotube (SWCNT) network on a polyethersulfone substrate. The strain was applied and estimated at the microscopic scale (<1 μm) by using scanning electron microscope (SEM) equipped with indigenously designed special bending jig. Interestingly, the strain estimated at the microscopic scale was found to be significantly different from the strain calculated at the macroscopic scale (centimeter-scale), by a factor of up to 4. Further in-depth analysis using SEM indicated that the significant difference in strain, obtained from two different measurement scales (microscale and macroscale), could be attributed to the formation of cracks and tears in the SWCNT network, or at the junction of SWCNT network and electrode during the strain process. Due to this irreversible morphological change, the electrical properties, such as on current level and field effect mobility, lowered by 14.3% and 4.6%, respectively.

  3. Computational study on electrical properties of transition metal dichalcogenide field-effect transistors with strained channel

    SciTech Connect

    Harada, Naoki; Sato, Shintaro; Yokoyama, Naoki

    2014-01-21

    The performance limits of monolayer transition metal dichalcogenide (TMDC) field-effect transistors (FETs) with isotropic biaxial strain were examined with the “top-of-the-barrier” ballistic MOSFET model. Using a first-principle theory, we calculated the band structures and density of states of strained monolayer MoS{sub 2} and WS{sub 2}, and used the results in model calculations. Introducing strain moves the positions of the conduction band minimum and valence band maximum in k-space with resultant variation in the effective mass and population of carriers. Introducing 2% tensile strain into n-type MoS{sub 2} FETs decreases the electron effective mass and, at the same time, increases energy separation between the lower and the higher valleys in the conduction band, resulting in 26% improvement of the ON current up to 1260 A/m. Whereas compressive strain results in complicated effects, −2% strain also improves the ON current by 15%. These results suggest that introducing artificial strain is promising to improve TMDC FET performance.

  4. Different resistance patterns of reference and field strains of Brucella abortus

    PubMed Central

    Miranda, Karina L.; Dorneles, Elaine M. S.; Poester, Fernando P.; Martins, Paulo S.; Pauletti, Rebeca B.; Lage, Andrey P.

    2015-01-01

    The aim of this study was to evaluate the growth of the B. abortus reference strains and field isolates on media containing different inhibitor agents. Reference strains were seeded on tryptose agar containing: i-erythritol (1.0 mg/mL), fuchsin (20 μg/mL and 80 μg/mL), thionin (2.5 μg/mL and 10 μg/mL), rifampicin (200 μg/mL) and safranin O (200 μg/mL). Field isolates were tested only on media containing i-erythritol, rifampicin and thionin. Furthermore, each suspension was also inoculated on tryptose agar incubated in air, to test its ability to grow without CO 2 . Sensitivity to fuchsin was similar among reference strains evaluated. Growth of S19, 544 and 2308 but not RB51 were inhibited on media containing rifampicin. Medium with safranin O showed no inhibition for RB51, 544 and 2308, but it partially inhibited the S19 growth as well as medium containing i-erythritol. Treatment/control growth ratio for 2308 on tryptose agar containing thionin (2.5 μg/mL) was approximatelly 1.0, whereas S19 and RB51 showed 0.85 and 0.89 ratios, respectively. Growth of 544, S19 and RB51 but not 2308 was completely inhibited on medium with thionin (10 μg/mL). All field strains grew on medium containing i-erythritol, but were completelly inhibited by rifampicin. With exception of A1 ( B. abortus biovar 3) all field isolates grew on medium with thionin, although some strains showed a treatment/control growth ratio of 0.75–0.80 (10 μg/mL). These results showed that tryptose agar with thionin, i-erythritol or rifampicin could be useful for differentiating vaccine, challenge and field strains of B. abortus. PMID:26221116

  5. Different resistance patterns of reference and field strains of Brucella abortus.

    PubMed

    Miranda, Karina L; Dorneles, Elaine M S; Poester, Fernando P; Martins Filho, Paulo S; Pauletti, Rebeca B; Lage, Andrey P

    2015-03-01

    The aim of this study was to evaluate the growth of the B. abortus reference strains and field isolates on media containing different inhibitor agents. Reference strains were seeded on tryptose agar containing: i-erythritol (1.0 mg/mL), fuchsin (20 μg/mL and 80 μg/mL), thionin (2.5 μg/mL and 10 μg/mL), rifampicin (200 μg/mL) and safranin O (200 μg/mL). Field isolates were tested only on media containing i-erythritol, rifampicin and thionin. Furthermore, each suspension was also inoculated on tryptose agar incubated in air, to test its ability to grow without CO 2 . Sensitivity to fuchsin was similar among reference strains evaluated. Growth of S19, 544 and 2308 but not RB51 were inhibited on media containing rifampicin. Medium with safranin O showed no inhibition for RB51, 544 and 2308, but it partially inhibited the S19 growth as well as medium containing i-erythritol. Treatment/control growth ratio for 2308 on tryptose agar containing thionin (2.5 μg/mL) was approximatelly 1.0, whereas S19 and RB51 showed 0.85 and 0.89 ratios, respectively. Growth of 544, S19 and RB51 but not 2308 was completely inhibited on medium with thionin (10 μg/mL). All field strains grew on medium containing i-erythritol, but were completelly inhibited by rifampicin. With exception of A1 ( B. abortus biovar 3) all field isolates grew on medium with thionin, although some strains showed a treatment/control growth ratio of 0.75-0.80 (10 μg/mL). These results showed that tryptose agar with thionin, i-erythritol or rifampicin could be useful for differentiating vaccine, challenge and field strains of B. abortus. PMID:26221116

  6. High resolution monitoring of strain fields in concrete during hydraulic fracturing processes.

    PubMed

    Chen, Rongzhang; Zaghloul, Mohamed A S; Yan, Aidong; Li, Shuo; Lu, Guanyi; Ames, Brandon C; Zolfaghari, Navid; Bunger, Andrew P; Li, Ming-Jun; Chen, Kevin P

    2016-02-22

    We present a distributed fiber optic sensing scheme to image 3D strain fields inside concrete blocks during laboratory-scale hydraulic fracturing. Strain fields were measured by optical fibers embedded during casting of the concrete blocks. The axial strain profile along the optical fiber was interrogated by the in-fiber Rayleigh backscattering with 1-cm spatial resolution using optical frequency domain reflectometry (OFDR). The 3D strain fields inside the cubes under various driving pressures and pumping schedules were measured and used to characterize the location, shape, and growth rate of the hydraulic fractures. The fiber optic sensor detection method presented in this paper provides scientists and engineers an unique laboratory tool to understand the hydraulic fracturing processes via internal, 3D strain measurements with the potential to ascertain mechanisms related to crack growth and its associated damage of the surrounding material as well as poromechanically-coupled mechanisms driven by fluid diffusion from the crack into the permeable matrix of concrete specimens. PMID:26907042

  7. Full-field strain measurements on turbomachinery components using 3D SLDV technology

    NASA Astrophysics Data System (ADS)

    Maguire, Martyn; Sever, Ibrahim

    2016-06-01

    This paper focuses on measurements of 3D Operating Deflection Shapes (ODSs), and subsequently, construction of full-field surface strain maps of a number of turbomachinery components. For this purpose a 3D Scanning Laser Doppler Vibrometer (SLDV) is used. The ODS measurements are performed for a large number of modes and results obtained are compared with the 1-D shapes that are most commonly measured. It is demonstrated that the 3D measurements are a significant improvement over the 1-D case in terms of independent amount of extra information they provide. This is confirmed through comparisons with FE results. Special tests are carried out to recover the full-field strain on scanned faces of the components used. Visual comparison of these measurements with FE counterparts reveal that strain maps can be successfully measured, not only for low frequency modes but also for highly complex high frequency ones. These maps are measured with different levels of input force to assess the linearity of strain results to varying response amplitudes. Lessons learnt and observations made are summarised in concluding remarks and the scope of future work to take this study into the production environment is discussed. This study constitutes a unique comprehensive investigation into full-field strain measurements using real application hardware and a large frequency range.

  8. Strain field evolution during creep on ice. Impact of dynamic recrystallization mechanisms.

    NASA Astrophysics Data System (ADS)

    Chauve, Thomas; Montagnat, Maurine; Barou, Fabrice; Hidas, Karoly; Tommasi, Andréa; Vacher, Pierre

    2015-04-01

    Discontinuous Dynamic Recrystallization (DDRX) occurs in minerals, metals, ice and impacts on texture and microstructure evolution during deformation. It therefore impacts on large scale mechanisms as seismic anisotropy, mechanical properties inside the Earth mantle, material forming and anisotropic flow in polar ice sheet, for instance. In this frame, ice can be considered as a model material due to a strong viscoplastic anisotropy inducing strong deformation heterogeneities, that are precursors of recrystallization. During creep deformation at high temperature in the laboratory, DDRX occurs from 1% strain and involves grain nucleation and grain boundary migration. As DDRX induces an evolution of microstructure and texture, it strongly affects the mechanical behavior (1,2), and it is expected to modify the strain field at the grain and/or the sample scale. Compressive creep test (σ=0.5-0.8 MPa) were performed at high temperature (T/Tf 0,98) on granular polycrystalline ice (grains size 1mm) and columnar polycrystalline ice (microstructure 2D 1/2 in plane grain size 10mm) up to 18 % strain. Columnar ice provides interesting feature as it contains only one grain through the thickness and the columns are parallel. Post-deformation texture analyses with an Automatic Ice Texture Analyzer (AITA) and with EBSD (CrystalProbe MEB of Geoscience Montpellier) were used to investigate DDRX mechanisms at high resolution, and deduce their impact on texture and microstructure, at different scales. During the experiment, local strain field is measured on the surface of the sample by Digital Image Correlation (DIC) (3) with a spatial resolution between 0.2 and 0.5 mm, and a strain resolution between 0.2% to 1%. Grain size being large, we obtain a relatively good intra-granular resolution of the strain field. Thanks to the 2D configuration of the columnar ice samples, we can superimpose the initial microstructure to the strain field measured by DIC. We will present an overview of

  9. Note: Dynamic strain field mapping with synchrotron X-ray digital image correlation

    SciTech Connect

    Lu, L.; Fan, D.; Luo, S. N.; Bie, B. X.; Ran, X. X.; Qi, M. L.; Parab, N.; Sun, J. Z.; Liao, H. J.; Hudspeth, M. C.; Claus, B.; Fezzaa, K.; Sun, T.; Chen, W.; Gong, X. L.

    2014-07-15

    We present a dynamic strain field mapping method based on synchrotron X-ray digital image correlation (XDIC). Synchrotron X-ray sources are advantageous for imaging with exceptional spatial and temporal resolutions, and X-ray speckles can be produced either from surface roughness or internal inhomogeneities. Combining speckled X-ray imaging with DIC allows one to map strain fields with high resolutions. Based on experiments on void growth in Al and deformation of a granular material during Kolsky bar/gas gun loading at the Advanced Photon Source beamline 32ID, we demonstrate the feasibility of dynamic XDIC. XDIC is particularly useful for dynamic, in-volume, measurements on opaque materials under high strain-rate, large, deformation.

  10. Giant electric-field-induced strain in lead-free piezoelectric materials.

    PubMed

    Chen, Lan; Yang, Yurong; Meng, X K

    2016-01-01

    First-principles calculations are performed to investigate the structures, electrical, and magnetic properties of compressive BiFeO3 films under electric-field and pressure perpendicular to the films. A reversible electric-field-induced strain up 10% is achieved in the compressive BiFeO3 films. The giant strain originates from rhombohedral-tetragonal (R-T) phase transition under electric-filed, and is recoverable from tetragonal-rhombohedral (T-R) phase transition by compressive stress. Additionally, the weak ferromagnetism in BiFeO3 films is largely changed in R-T phase transition under electric-filed and T-R phase transition under pressure - reminiscent of magnetoelectric effect and magnetoelastic effect. These results suggest exciting device opportunities arising from the giant filed-induced strain, large magnetoelectric effect and magnetoelastic effect. PMID:27139526

  11. Giant electric-field-induced strain in lead-free piezoelectric materials

    NASA Astrophysics Data System (ADS)

    Chen, Lan; Yang, Yurong; Meng, X. K.

    2016-05-01

    First-principles calculations are performed to investigate the structures, electrical, and magnetic properties of compressive BiFeO3 films under electric-field and pressure perpendicular to the films. A reversible electric-field-induced strain up 10% is achieved in the compressive BiFeO3 films. The giant strain originates from rhombohedral-tetragonal (R-T) phase transition under electric-filed, and is recoverable from tetragonal-rhombohedral (T-R) phase transition by compressive stress. Additionally, the weak ferromagnetism in BiFeO3 films is largely changed in R-T phase transition under electric-filed and T-R phase transition under pressure – reminiscent of magnetoelectric effect and magnetoelastic effect. These results suggest exciting device opportunities arising from the giant filed-induced strain, large magnetoelectric effect and magnetoelastic effect.

  12. Giant electric-field-induced strain in lead-free piezoelectric materials

    PubMed Central

    Chen, Lan; Yang, Yurong; Meng, X. K.

    2016-01-01

    First-principles calculations are performed to investigate the structures, electrical, and magnetic properties of compressive BiFeO3 films under electric-field and pressure perpendicular to the films. A reversible electric-field-induced strain up 10% is achieved in the compressive BiFeO3 films. The giant strain originates from rhombohedral-tetragonal (R-T) phase transition under electric-filed, and is recoverable from tetragonal-rhombohedral (T-R) phase transition by compressive stress. Additionally, the weak ferromagnetism in BiFeO3 films is largely changed in R-T phase transition under electric-filed and T-R phase transition under pressure – reminiscent of magnetoelectric effect and magnetoelastic effect. These results suggest exciting device opportunities arising from the giant filed-induced strain, large magnetoelectric effect and magnetoelastic effect. PMID:27139526

  13. Mechanical characteristics of strained vibrating strings and a vibration-induced electric field

    NASA Astrophysics Data System (ADS)

    Bivin, Yu. K.

    2012-11-01

    The mechanical characteristics of vibrating strings strained between rigid supports and a vibration-induced electric field are studied. Experiments are conducted with nylon, rubber, and metallic strings. Vibrations are excited by a pinch at different sites along the string. The motion of the string is filmed, and the attendant electric field is detected. Experimental data are analyzed under the assumption that the field is induced by unlike charges generated by the moving string. It is found that the field allows one to determine the time characteristics of the motion of the string and discriminate the types of its deformations. Young moduli observed under the static extension of thin nylon strings are compared with those calculated from the natural frequencies of vibration measured for differently strained strings. The mathematical pattern of the motion of the string is compared with the real situation.

  14. Determination of Strain Field on the Superior Surface of Excised Larynx Vocal Folds Using DIC

    PubMed Central

    Bakhshaee, Hani; Young, Jonathan; Yang, Justin C. W.; Mongeau, Luc; Miri, Amir K.

    2013-01-01

    Summary Objective/Hypothesis The objective of the present study was to quantify the mechanical strain and stress in excised porcine larynges during self-oscillation using digital image correlation (DIC) method. The use of DIC in the excised larynx setup may yield accurate measurements of the vocal fold displacement field. Study Design Ex vivo animal larynx. Methods Measurements were performed using excised porcine larynges on a humidified flow bench, equipped with two high-speed cameras and a commercially available DIC software. Surface deformations were calculated from digital images recorded at 3000 frames per second during continuous self-oscillation for four excised porcine larynges. Larynx preparation consisted of removing the supraglottal wall and the false folds. DIC yielded the deformation field on the superior visible surface of the vocal folds. Measurement data for adducted and freely suspended vocal folds were also used to estimate the distribution of the initial prephonatory strain field. An isotropic constitutive law, the polymer eight-chain model, was used to estimate the surface distributions of planar stresses from the strain data. Results The Lagrangian normal strain values were between ~16% and ~29% along the anterior-posterior direction. The motion of material points on the vocal fold surface described an elliptical trajectory during oscillation. A phase difference was observed between the anterior-posterior and the medial-lateral component of the displacement. The strain data and eight-chain model yielded a maximum stress of ~4 kPa along the medial-lateral direction on the superior surface. Conclusion DIC allowed the strain field over the superior surface of an excised porcine larynx to be quantified during self-oscillation. The approach allowed the determination of the trajectory of specific points on the vocal fold surface. The results for the excised larynx were found to be significantly different than previous results obtained using

  15. Strain-Induced Pseudo--Magnetic Fields in Graphene: MegaGauss in Nanobubbles

    NASA Astrophysics Data System (ADS)

    Levy, Niv

    2011-03-01

    Recent theoretical proposals suggest that strain can be used to modify graphene electronic states through the creation of a pseudo--magnetic field. This effect is unique to graphene because of its massless Dirac fermion-like band structure and particular lattice symmetry (C3v). Scanning tunneling microscopy shows that graphene grown on a platinum (111) surface forms nanobubbles, which are highly strained due to thermal expansion mismatch between the film and the substrate. We find that scanning tunneling spectroscopy measurements of these nanobubbles exhibit Landau levels that form in the presence of strain-induced pseudo--magnetic fields greater than 300 Tesla. This demonstration of enormous pseudo--magnetic fields opens the door to both the study of charge carriers in previously inaccessible high magnetic field regimes and deliberate mechanical control over electronic structure in graphene or so-called ``strain engineering''. In collaboration with S. A. Burke ,2 , K. L. Meaker 2 , M. Panlasigui 2 , A. Zettl 2,3 , F. Guinea 4 , A. H. Castro Neto 5 and M. F. Crommie 2,3 . 1. Present address: Department of Physics and Astronomy and Department of Chemistry, University of British Columbia, Vancouver, BC V6T 121, Canada. 2. Department of Physics, University of California, Berkeley, CA 94720, USA. 3. Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA. 4. Instituto de Ciencia de Materiales de Madrid (CSIC), Madrid 28049, Spain. 5. Department of Physics, Boston University, Boston, MA 02215, USA.

  16. Growth Kinetics and Transmission Potential of Existing and Emerging Field Strains of Infectious Laryngotracheitis Virus

    PubMed Central

    Coppo, Mauricio J. C.; Vaz, Paola K.; Legione, Alistair R.; Quinteros, José A.; Noormohammadi, Amir H.; Markham, Phillip F.; Browning, Glenn F.; Devlin, Joanne M.

    2015-01-01

    Attenuated live infectious laryngotracheitis virus (ILTV) vaccines are widely used in the poultry industry to control outbreaks of disease. Natural recombination between commercial ILTV vaccines has resulted in virulent recombinant viruses that cause severe disease, and that have now emerged as the dominant field strains in important poultry producing regions in Australia. Genotype analysis using PCR—restriction fragment length polymorphism has shown one recombinant virus (class 9) has largely replaced the previously dominant class 2 field strain. To examine potential reasons for this displacement we compared the growth kinetics and transmission potential of class 2 and class 9 viruses. The class 9 ILTV grew to higher titres in cell culture and embryonated eggs, but no differences were observed in entry kinetics or egress into the allantoic fluid from the chorioallantoic membrane. In vivo studies showed that birds inoculated with class 9 ILTV had more severe tracheal pathology and greater weight loss than those inoculated with the class 2 virus. Consistent with the predominance of class 9 field strains, birds inoculated with 102 or 103 plaque forming units of class 9 ILTV consistently transmitted virus to in-contact birds, whereas this could only be seen in birds inoculated with 104 PFU of the class 2 virus. Taken together, the improved growth kinetics and transmission potential of the class 9 virus is consistent with improved fitness of the recombinant virus over the previously dominant field strain. PMID:25785629

  17. Growth kinetics and transmission potential of existing and emerging field strains of infectious laryngotracheitis virus.

    PubMed

    Lee, Sang-Won; Hartley, Carol A; Coppo, Mauricio J C; Vaz, Paola K; Legione, Alistair R; Quinteros, José A; Noormohammadi, Amir H; Markham, Phillip F; Browning, Glenn F; Devlin, Joanne M

    2015-01-01

    Attenuated live infectious laryngotracheitis virus (ILTV) vaccines are widely used in the poultry industry to control outbreaks of disease. Natural recombination between commercial ILTV vaccines has resulted in virulent recombinant viruses that cause severe disease, and that have now emerged as the dominant field strains in important poultry producing regions in Australia. Genotype analysis using PCR-restriction fragment length polymorphism has shown one recombinant virus (class 9) has largely replaced the previously dominant class 2 field strain. To examine potential reasons for this displacement we compared the growth kinetics and transmission potential of class 2 and class 9 viruses. The class 9 ILTV grew to higher titres in cell culture and embryonated eggs, but no differences were observed in entry kinetics or egress into the allantoic fluid from the chorioallantoic membrane. In vivo studies showed that birds inoculated with class 9 ILTV had more severe tracheal pathology and greater weight loss than those inoculated with the class 2 virus. Consistent with the predominance of class 9 field strains, birds inoculated with 10(2) or 10(3) plaque forming units of class 9 ILTV consistently transmitted virus to in-contact birds, whereas this could only be seen in birds inoculated with 10(4) PFU of the class 2 virus. Taken together, the improved growth kinetics and transmission potential of the class 9 virus is consistent with improved fitness of the recombinant virus over the previously dominant field strain. PMID:25785629

  18. Surface strain-field determination of tympanic membrane using 3D-digital holographic interferometry

    NASA Astrophysics Data System (ADS)

    Hernandez-Montes, María del S.; Mendoza Santoyo, Fernando; Muñoz, Silvino; Perez, Carlos; de la Torre, Manuel; Flores, Mauricio; Alvarez, Luis

    2015-08-01

    In order to increase the understanding of soft tissues mechanical properties, 3D Digital Holographic Interferometry (3D-DHI) was used to quantify the strain-field on a cat tympanic membrane (TM) surface. The experiments were carried out applying a constant sound-stimuli pressure of 90 dB SPL (0.632 Pa) on the TM at 1.2 kHz. The technique allows the accurate acquisition of the micro-displacement data along the x, y and z directions, which is a must for a full characterization of the tissue mechanical behavior under load, and for the calculation of the strain-field in situ. The displacements repeatability in z direction shows a standard deviation of 0.062 μm at 95% confidence level. In order to realize the full 3D characterization correctly the contour of the TM surface was measured employing the optically non-contact two-illumination positions contouring method. The x, y and z displacements combined with the TM contour data allow the evaluation its strain-field by spatially differentiating the u(m,n), v(m,n), and w(m,n) deformation components. The accurate and correct determination of the TM strain-field leads to describing its elasticity, which is an important parameter needed to improve ear biomechanics studies, audition processes and TM mobility in both experimental measurements and theoretical analysis of ear functionality and its modeling.

  19. Comparison between Digital Image Correlation and Thermoelasticity for Strain Field Analysis

    NASA Astrophysics Data System (ADS)

    Becchetti, M.; Flori, R.; Marsili, M.; Moretti, M.

    2010-05-01

    The non contact measurement technique known as "Digital Image Correlation" (DIC) is a well known experimental method to analyze strain field on the surface of specimen and mechanical components, and since about 1980, for the development of high performance data processing and image acquisition systems, with a large number of applications in experimental mechanics. In this work, using the most recent data acquisition and processing techniques, performance and optimal selection of data acquisition and processing parameter are analyzed. To better understand the performance of this technique a comparison with thermoelastic images has been performed. The thermoelastic effect is usually used to investigate the stress field on surface of specimen or mechanical components (TSA: thermoelastic Stress Analysis) and can be demonstrated that this technique (TSA) can be useful to investigate the strain field too. This allow a direct comparison of results collected with DIC and thermoelastic strain analysis. Comparisons are performed measuring the first invariant of strain field on the surface of an AISI 304 thin test specimen with an hole on its center.

  20. Simulation-based design of a strained graphene field effect transistor incorporating the pseudo magnetic field effect

    SciTech Connect

    Souma, Satofumi Ueyama, Masayuki; Ogawa, Matsuto

    2014-05-26

    We present a numerical study on the performance of strained graphene-based field-effect transistors. A local strain less than 10% is applied over a central channel region of the graphene to induce the shift of the Dirac point in the channel region along the transverse momentum direction. The left and the right unstrained graphene regions are doped to be either n-type or p-type. By using the atomistic tight-binding model and a Green's function method, we predict that the gate voltage applied to the central strained graphene region can switch the drain current on and off with an on/off ratio of more than six orders of magnitude at room temperature. This is in spite of the absence of a bandgap in the strained channel region. Steeper subthreshold slopes below 60 mV/decade are also predicted at room temperature because of a mechanism similar to the band-to-band tunneling field-effect transistors.

  1. Strain and electric field co-modulation of electronic properties of bilayer boronitrene.

    PubMed

    Wang, Rui-Ning; Yang, Ming; Dong, Guo-Yi; Wang, Shu-Fang; Fu, Guang-Sheng; Wang, Jiang-Long

    2016-02-10

    The electronic properties of bilayer strained boronitrenes are investigated under an external electric field using density functional methods. Our result is just the same as the previous conclusion: ie, that the electric field will reduce their band gaps. Except for the decrease of their band gaps, the degeneracy of π valence bands at K points will be lifted and the degenerate gap will increase with the electric field increasing. Moreover, the widths of π valence bands are nearly robust and increase a little. In addition, a simple tight-binding model, where different electrostatic potentials are applied to boronitrene layers, can be sufficient to describe the variations of their band gaps. It is found that the interlayer hopping interaction increases while the intralayer hopping parameter changes little with increasing the electric field. Furthermore, a band gap phase diagram is determined within the in-plane strain [-0.2, 0.2] and the interlayer bias [0, 10] V nm(-1). The strain could make the bottom of conduction bands shift from K to M, then to Γ in the Brillouin zone, while the top of valence bands shifts from K to Γ. Thus, a direct-gap semiconductor at K points is changed into an indirect-gap semiconductor, and then a semiconductor with the direct band gap at Γ points. When bilayer boronitrene is a semiconductor with a direct gap at K points, the electric field and strain are inverse proportional relationships. Particularly, when the compressive strain exceeds  -0.194, there is an insulator-metal transition and the system becomes metallic with sizable pocket Fermi surfaces. PMID:26760530

  2. Crack-tip strain field mapping and the toughness of metallic glasses.

    PubMed

    Hufnagel, Todd C; Vempati, Uday K; Almer, Jonathan D

    2013-01-01

    We have used high-energy x-ray scattering to map the strain fields around crack tips in fracture specimens of a bulk metallic glass under load at room temperature and below. From the measured strain fields we can calculate the components of the stress tensor as a function of position and determine the size and shape of the plastic process zone around the crack tip. Specimens tested at room temperature develop substantial plastic zones and achieve high stress intensities ((K(If) = 76 MPa m(1/2)) prior to fracture. Specimens tested at cryogenic temperatures fail at reduced but still substantial stress intensities (K(If) = 39 MPa m(1/2)) and show only limited evidence of crack-tip plasticity. We propose that the difference in behavior is associated with changes in the flow stress and elastic constants, which influence the number density of shear bands in the plastic zone and thus the strain required to initiate fracture on an individual band. A secondary effect is a change in the triaxial state of stress around the crack tip due to the temperature dependence of Poisson's ratio. It is likely that this ability to map elastic strains on the microscale will be useful in other contexts, although interpreting shifts in the position of the scattering peaks in amorphous materials in terms of elastic strains must be done with caution. PMID:24386172

  3. Crack-Tip Strain Field Mapping and the Toughness of Metallic Glasses

    PubMed Central

    Hufnagel, Todd C.; Vempati, Uday K.; Almer, Jonathan D.

    2013-01-01

    We have used high-energy x-ray scattering to map the strain fields around crack tips in fracture specimens of a bulk metallic glass under load at room temperature and below. From the measured strain fields we can calculate the components of the stress tensor as a function of position and determine the size and shape of the plastic process zone around the crack tip. Specimens tested at room temperature develop substantial plastic zones and achieve high stress intensities () prior to fracture. Specimens tested at cryogenic temperatures fail at reduced but still substantial stress intensities () and show only limited evidence of crack-tip plasticity. We propose that the difference in behavior is associated with changes in the flow stress and elastic constants, which influence the number density of shear bands in the plastic zone and thus the strain required to initiate fracture on an individual band. A secondary effect is a change in the triaxial state of stress around the crack tip due to the temperature dependence of Poisson's ratio. It is likely that this ability to map elastic strains on the microscale will be useful in other contexts, although interpreting shifts in the position of the scattering peaks in amorphous materials in terms of elastic strains must be done with caution. PMID:24386172

  4. Analyzing aging under oscillatory strain field through the soft glassy rheology model.

    PubMed

    Kaushal, Manish; Joshi, Yogesh M

    2016-06-28

    In this work, we solve the Soft Glassy Rheology (SGR) model under application of oscillatory deformation field with varying magnitudes of strain as well as frequency for different noise temperatures. In the glassy domain, the SGR model undergoes time evolution of elastic modulus. Increase in strain magnitude beyond the linear regime is observed to enhance the rate of aging as manifested by a faster evolution of elastic modulus with increase in strain amplitude due to overaging. However at higher strain magnitudes, the rejuvenation effect starts dominating over the aging, thereby reducing the rate at which elastic modulus evolves. We also plot the aging phase diagram describing an occurrence of the linear, the overaging, and the rejuvenation regimes as a function of strain and frequency for different noise temperatures. The aging phase diagram suggests that while the linear regime remains unaffected by the changes in frequency and noise temperature, the width of the overaging regime increases with increase in frequency and noise temperature. We also study the time evolution of the shapes of relaxation time spectra as a function of strain amplitude, which renders further insight into the overaging and the rejuvenation behavior. While the phenomenon of overaging is observed to be an inherent character of the SGR model, experimentally not all the materials demonstrate overaging. Such a discrepancy suggests that the energy well depths before and after a yielding event may not be completely uncorrelated as assumed in the SGR formalism. PMID:27369524

  5. Strain field measurements around notches using SIFT features and meshless methods.

    PubMed

    Gonzáles, Giancarlo; Meggiolaro, Marco

    2015-05-10

    This work proposes a hybrid experimental-numerical technique with the aim to improve strain measurements at stress concentration regions. The novel technique is performed employing the computer vision scale invariant feature transform (SIFT) algorithm and meshless methods, here termed SIFT-meshless. The SIFT is applied to perform feature points matching in two images of the specimen surface at different stages of mechanical deformation. The output data are provided as a set of displacement measurements by tracking matched feature points. This information is then used to model displacement and strain field on the surface by means of a meshless formulation based on the moving least squares approximation. By applying the proposed SIFT-meshless method, the strain distribution around a semicircular notch in a plate under bending load was investigated. The experimental results were compared with those obtained by a digital image correlation technique based on a subset approach and to simulations from finite element analysis software. The experimental results demonstrated that the present method is capable of performing reliable strain measurements at distances close to the notch where the peak strain value is expected, even in the presence of high strain gradients. PMID:25967511

  6. Direct observation of nanometer-scale strain field around CoSi{sub 2}/Si interface using scanning moiré fringe imaging

    SciTech Connect

    Kim, Suhyun; Jung, Younheum; Jung Kim, Joong; Byun, Gwangseon; Lee, Sunyoung; Lee, Heabum

    2014-04-21

    We report the use of scanning moiré fringe (SMF) imaging through high-angle annular dark-field scanning transmission electron microscopy (STEM) to measure the strain field around a CoSi{sub 2} contact embedded in the source and drain (S/D) region of a transistor. The atomic arrangement of the CoSi{sub 2}/Si (111) interface was determined from the high-resolution (HR)-STEM images, and the strain field formed around the S/D region was revealed by nanometer-scale SMFs appearing in the STEM image. In addition, we showed that the strain field in the S/D region measured by SMF imaging agreed with results obtained via peak-pairs analysis of HR-STEM images.

  7. Misleading Performance Reporting in the Supercomputing Field

    NASA Technical Reports Server (NTRS)

    Bailey, David H.; Kutler, Paul (Technical Monitor)

    1992-01-01

    In a previous humorous note, I outlined twelve ways in which performance figures for scientific supercomputers can be distorted. In this paper, the problem of potentially misleading performance reporting is discussed in detail. Included are some examples that have appeared in recent published scientific papers. This paper also includes some proposed guidelines for reporting performance, the adoption of which would raise the level of professionalism and reduce the level of confusion in the field of supercomputing.

  8. Strain mapping of tensiley strained silicon transistors with embedded Si1-yCy source and drain by dark-field holography

    NASA Astrophysics Data System (ADS)

    Hüe, Florian; Hÿtch, Martin; Houdellier, Florent; Bender, Hugo; Claverie, Alain

    2009-08-01

    Dark-field holography, a new transmission electron microscopy technique for mapping strain distributions at the nanoscale, is used to characterize strained-silicon n-type transistors with a channel width of 65 nm. The strain in the channel region, which enhances electron mobilities, is engineered by recessed Si0.99C0.01 source and drain stressors. The strain distribution is measured across an array of five transistors over a total area of 1.6 μm wide. The longitudinal tensile strain reaches a maximum of 0.58%±0.02% under the gate oxide. Theoretical strain maps obtained by finite element method agree well with the experimental results.

  9. New bridge-circuit-type detector to measure precise resistance change of strain gauge at low temperature and magnetic field

    NASA Astrophysics Data System (ADS)

    Ohashi, Masashi; Kishii, Nobuya; Tateno, Shota

    2016-04-01

    We report a new highly accurate and versatile bridge-circuit-type detector that has a simple structure and demonstrates a low degree of error for measurements of thermal expansion and magnetostriction by the strain gauge method. As an example, a commercial physical property measurement system (PPMS) is combined with a compact bridge-circuit box. Thermal expansion and magnetostriction are calculated from the resistance of the bridge and bridge voltage, measured by the operation of a standard PPMS resistivity option. The performance of the new detector is demonstrated by measuring the temperature and magnetic field dependences of the strain to obtain the thermal expansion coefficient and magnetostriction of the single crystals of rare-earth compounds RAl2 (R = Dy, Tb).

  10. Genetic characterization of Italian field strains of Schmallenberg virus based on N and NSs genes.

    PubMed

    Izzo, Francesca; Cosseddu, Gian Mario; Polci, Andrea; Iapaolo, Federica; Pinoni, Chiara; Capobianco Dondona, Andrea; Valleriani, Fabrizia; Monaco, Federica

    2016-08-01

    Following its first identification in Germany in 2011, the Schmallenberg virus (SBV) has rapidly spread to many other European countries. Despite the wide dissemination, the molecular characterization of the circulating strains is limited to German, Belgian, Dutch, and Swiss viruses. To fill this gap, partial genetic characterization of 15 Italian field strains was performed, based on S segment genes. Samples were collected in 2012 in two different regions where outbreaks occurred during distinct epidemic seasons. The comparative sequence analysis demonstrated a high molecular stability of the circulating viruses; nevertheless, we identified several variants of the N and NSs proteins not described in other SBV isolates circulating in Europe. PMID:27059241

  11. Mesoscopic strain fields in woven composites: Experiments vs. finite element modeling

    NASA Astrophysics Data System (ADS)

    Nicoletto, Gianni; Anzelotti, Giancarlo; Riva, Enrica

    2009-03-01

    Detailed determination of strain in woven composite materials is fundamental for understanding their mechanics and for validating sophisticated computational models. The digital image correlation technique is briefly presented and applied to the full-field strain determination in a twill-weave carbon-fiber-reinforced-plastic (CFRP) composite under in-plane loading. The experimental results are used to assess companion results obtained with an ad hoc finite element-based model. The DIC vs. FEM comparison is carried out at the mesoscopic scale.

  12. Tuning the energy gap of bilayer α-graphyne by applying strain and electric field

    NASA Astrophysics Data System (ADS)

    Yang, Hang; Wu, Wen-Zhi; Jin, Yu; Wan-Lin, Guo

    2016-02-01

    Our density functional theory calculations show that the energy gap of bilayer α-graphyne can be modulated by a vertically applied electric field and interlayer strain. Like bilayer graphene, the bilayer α-graphyne has electronic properties that are hardly changed under purely mechanical strain, while an external electric field can open the gap up to 120 meV. It is of special interest that compressive strain can further enlarge the field induced gap up to 160 meV, while tensile strain reduces the gap. We attribute the gap variation to the novel interlayer charge redistribution between bilayer α-graphynes. These findings shed light on the modulation of Dirac cone structures and potential applications of graphyne in mechanical-electric devices. Project supported by the National Key Basic Research Program of China (Grant Nos. 2013CB932604 and 2012CB933403), the National Natural Science Foundation of China (Grant Nos. 51472117 and 51535005), the Research Fund of State Key Laboratory of Mechanics and Control of Mechanical Structures, China (Grant No. 0414K01), the Nanjing University of Aeronautics and Astronautics (NUAA) Fundamental Research Funds, China (Grant No. NP2015203), and the Priority Academic Program Development of Jiangsu Higher Education Institutions.

  13. Dark-field electron holography for the mapping of strain in nanostructures: correcting artefacts and aberrations

    NASA Astrophysics Data System (ADS)

    Hÿtch, M. J.; Houdellier, F.; Hüe, F.; Snoeck, E.

    2010-07-01

    We present details of the new electron holographic dark-field technique (HoloDark) for mapping strain in nanostructures. A diffracted beam emanating from an unstrained region of crystal is interfered (with the aid of an electrostatic biprism) with a diffracted beam from the strained region of interest. Geometric phase analysis (GPA) of the holographic fringes determines the relative deformation of the two crystalline lattices. Strain can be measured to high precision, with nanometre spatial resolution and for micron fields of view. Experiments are carried out on the SACTEM-Toulouse, a Tecnai F20 (FEI) equipped with imaging aberration corrector (CEOS), field-emission gun and rotatable biprism (FEI). We operate the microscope in free-lens control with the main objective lens switched off and using the corrector transfer lenses as a Lorentz lens. We will present measurements of strain in test nanostructures and show how artefacts from thickness variations can be removed. Finally, we show our first results using a recently developed aberration-corrected Lorentz mode (CEOS).

  14. Phenotypic and molecular characterization of native Azospirillum strains from rice fields to improve crop productivity.

    PubMed

    Sahoo, Ranjan K; Ansari, Mohammad W; Pradhan, Madhusmita; Dangar, Tushar K; Mohanty, Santanu; Tuteja, Narendra

    2014-07-01

    Beneficial microorganisms have been considered as an important tool for crop improvement. Native isolates of Azospirillum spp. were obtained from the rhizospheres of different rice fields. Phenotypic, biochemical and molecular characterizations of these isolates led to the identification of six efficient strain of Azospirillum. PCR amplification of the nif genes (nifH, nifD and nifK) and protein profile of Azospirillum strains revealed inter-generic and inter-specific diversity among the strains. In vitro nitrogen fixation performance and the plant growth promotion activities, viz. siderophore, HCN, salicylic acid, IAA, GA, zeatin, ABA, NH3, phosphorus metabolism, ACC deaminase and iron tolerance were found to vary among the Azospirillum strains. The effect of Azospirillum formulations on growth of rice var. Khandagiri under field condition was evaluated, which revealed that the native formulation of Azospirillum of CRRI field (As6) was most effective to elevate endogenous nutrient content, and improved growth and better yield are the result. The 16S rRNA sequence revealed novelty of native Azospirillum lipoferum (As6) (JQ796078) in the NCBI database. PMID:24414168

  15. Isotropic realizability of a strain field for the two‑dimensional incompressible elasticity system

    NASA Astrophysics Data System (ADS)

    Briane, M.

    2016-06-01

    In the paper we study the problem of the isotropic realizability in {{{R}}}2 of a regular strain field e(U)=\\tfrac{1}{2}({DU}+{{DU}}T) for the incompressible elasticity system, namely the existence of a positive shear modulus μ \\gt 0 solving the elasticity system in {{{R}}}2 with the prescribed field e(U). We show that if e(U) does not vanish at some point, then the isotropic realizability holds in the neighborhood of that point. The global realizability in {{{R}}}2 or in the torus is much more delicate, since it involves the global existence of a regular solution to a semilinear wave equation, the coefficients of which depend on the derivatives of U. Using this semilinear wave equation we prove a small perturbation result: if DU is periodic and close enough to its average value for the C 4‑norm, then the associated strain field is isotropically realizable in a given disk centered at the origin. On the other hand, a counterexample shows that the global realizability in {{{R}}}2 may hold without the realizability in the torus, and it is discussed in connection with the associated semilinear wave equation. The case where the strain field vanishes is illustrated by an example. The singular case of a rank-one laminate field is also investigated.

  16. Characterization of Genomic Island 3 and Genetic Variability of Chilean Field Strains of Brucella abortus▿

    PubMed Central

    Céspedes, Sandra; Salgado, Paulina; Valenzuela, Patricio; Vidal, Roberto; Oñate, Angel A.

    2011-01-01

    One of the capabilities developed by bacteria is the ability to gain large fragments of DNA from other bacteria or to lose portions of their own genomes. Among these exchangeable fragments are the genomic islands (GIs). Nine GIs have been identified in Brucella, and genomic island 3 (GI-3) is shared by two pathogenic species, B. melitensis and B. abortus. GI-3 encodes mostly unknown proteins. One of the aims of this study was to perform pulsed-field gel electrophoresis (PFGE) on field isolates of B. abortus from Chile to determine whether these isolates are clonally related. Furthermore, we focused on the characterization of GI-3, studying its organization and the genetic conservation of the GI-3 sequence using techniques such as tiling-path PCR (TP-PCR) and restriction fragment length polymorphism-PCR (RFLP-PCR). Our results, after PFGE was performed on 69 field isolates of B. abortus from Chile, showed that the strains were genetically homogeneous. To increase the power of genetic discrimination among these strains, we used multiple locus variable-number tandem-repeat (VNTR) analysis with 16 loci (MLVA-16). The results obtained by MLVA-16 showed that the strains of B. abortus were genetically heterogeneous and that most of them clustered according to their geographic origin. Of the genetic loci studied, panel 2B was the one describing the highest diversity in the analysis, as well as locus Bruce19 in panel 2A. In relation to the study of GI-3, our experimental analysis by TP-PCR identified and confirmed that GI-3 is present in all wild strains of B. abortus, demonstrating the high stability of gene cluster GI-3 in Chilean field strains. PMID:21543580

  17. Draft Genome Sequence of the Field Isolate Brucella melitensis Strain Bm IND1 from India

    PubMed Central

    Rao, Sashi Bhushan; Gupta, Vivek K.; Kumar, Mukesh; Hegde, Nagendra R.; Splitter, Gary A.; Reddanna, Pallu

    2014-01-01

    Brucella spp. are facultative intracellular bacterial pathogens causing the zoonotic disease brucellosis. Here, we report the draft genome sequence of the Brucella melitensis strain from India designated Bm IND1, isolated from stomach contents of an aborted goat fetus. PMID:24874680

  18. Largely defocused probe scanning transmission electron microscopy for imaging local modulation of strain field in a hetero interface

    SciTech Connect

    Kim, Suhyun Jung, Younheum; Kim, Joong Jung; Lee, Sunyoung; Lee, Haebum; Oshima, Yoshifumi

    2014-10-13

    We present an innovative method for characterizing the strain field in three dimensions in a hetero interface. Largely defocused probe scanning transmission electron microscopy (LDP-STEM) was employed for imaging the inhomogeneous strain field in a germanium (Ge) layer deposited on a silicon (Si) substrate. In the LDP-STEM image, Ge-atomic columns that are relaxed or strained to the Si substrate in the Si/Ge hetero interface were observed to be distinguishable, allowing for the qualitative characterization of the coherency of the crystal growth. Our results revealed that the strain field is locally modulated along the in-plane direction in the Si/Ge hetero interface.

  19. Temperature and Field Induced Strain Measurements in Single Crystal Gd5Si2Ge2

    NASA Astrophysics Data System (ADS)

    McCall, S. K.; Nersessian, N.; Carman, G. P.; Pecharsky, V. K.; Schlagel, D. L.; Radousky, H. B.

    2016-06-01

    The first-order magneto-structural transformation that occurs in Gd5Si2Ge2 near room temperature makes it a strong candidate for many energy harvesting applications. Understanding the single crystal properties is crucial for allowing simulations of device performance. In this study, magnetically and thermally induced transformation strains were measured in a single crystal of Gd5Si2.05Ge1.95 as it transforms from a high-temperature monoclinic paramagnet to a lower-temperature orthorhombic ferromagnet. Thermally induced transformation strains of -8500 ppm, +960 ppm and +1800 ppm, and magnetically induced transformation strains of -8500 ppm, +900 ppm and +2300 ppm were measured along the a, b and c axes, respectively. Using experimental data coupled with general thermodynamic considerations, a universal phase diagram was constructed showing the transition from the monoclinic to the orthorhombic phase as a function of temperature and magnetic field.

  20. Electric field controlled strain induced reversible switching of magnetization in Galfenol nanomagnets delineated on PMN-PT substrate

    NASA Astrophysics Data System (ADS)

    Ahmad, Hasnain; Atulasimha, Jayasimha; Bandyopadhyay, Supriyo

    We report a non-volatile converse magneto-electric effect in elliptical Galfenol (FeGa) nanomagnets of ~300 nm lateral dimensions and ~10nm thickness delineated on a PMN-PT substrate. This effect can be harnessed for energy-efficient non-volatile memory. The nanomagnets are fabricated with e-beam lithography and sputtering. Their major axes are aligned parallel to the direction in which the substrate is poled and they are magnetized in this direction with a magnetic field. An electric field in the opposite direction generates compressive strain in the piezoelectric substrate which is partially transferred to the nanomagnets and rotates their magnetization away from the major axes to metastable orientations. There they remain after the field is removed, resulting in non-volatility. Reversing the electric field generates tensile strain which returns the magnetization to the original state. The two states can encode two binary bits which can be written using the correct voltage polarity, resulting in non-toggle behavior. Scaled memory fashioned on this effect can exhibit write energy dissipation of only ~2 aJ. Work is supported by NSF under ECCS-1124714 and CCF-1216614. Sputtering was carried out at NIST Gaithersburg.

  1. Draft Genome Sequence of Methylosinus sp. Strain 3S-1, an Isolate from Rice Root in a Low-Nitrogen Paddy Field

    PubMed Central

    Bao, Zhihua; Shinoda, Ryo

    2016-01-01

    N2-fixing methanotrophs play an important role in the methane-nitrogen cycle in rice paddies. We report here the draft genome sequence of Methylosinus sp. strain 3S-1 isolated from rice root in a paddy field without N fertilizer input. PMID:27587832

  2. Draft Genome Sequence of Methylosinus sp. Strain 3S-1, an Isolate from Rice Root in a Low-Nitrogen Paddy Field.

    PubMed

    Bao, Zhihua; Shinoda, Ryo; Minamisawa, Kiwamu

    2016-01-01

    N2-fixing methanotrophs play an important role in the methane-nitrogen cycle in rice paddies. We report here the draft genome sequence of Methylosinus sp. strain 3S-1 isolated from rice root in a paddy field without N fertilizer input. PMID:27587832

  3. Extracting full-field dynamic strain response of a rotating wind turbine using photogrammetry

    NASA Astrophysics Data System (ADS)

    Baqersad, Javad; Poozesh, Peyman; Niezrecki, Christopher; Avitabile, Peter

    2015-04-01

    Health monitoring of wind turbines is typically performed using conventional sensors (e.g. strain-gages and accelerometers) that are usually mounted to the nacelle or gearbox. Although many wind turbines stop operating due to blade failures, there are typically few to no sensor mounted on the blades. Placing sensors on the rotating parts of the structure is a challenge due to the wiring and data transmission constraints. Within the current work, an approach to monitor full-field dynamic response of rotating structures (e.g. wind turbine blades or helicopter rotors) is developed and experimentally verified. A wind turbine rotor was used as the test structure and was mounted to a block and horizontally placed on the ground. A pair of bearings connected to the rotor shaft allowed the turbine to freely spin along the shaft. Several optical targets were mounted to the blades and a pair of high-speed cameras was used to monitor the dynamics of the spinning turbine. Displacements of the targets during rotation were measured using three-dimensional point tracking. The point tracking technique measured both rigid body displacement and flexible deformation of the blades at target locations. While the structure is rotating, only flap displacements of optical targets (displacements out of the rotation plane) were used in strain prediction process. The measured displacements were expanded and applied to the finite element model of the turbine to extract full-field dynamic strain on the structure. The proposed approach enabled the prediction of dynamic response on the outer surface as well as within the inner points of the structure where no other sensor could be easily mounted. In order to validate the proposed approach, the predicted strain was compared to strain measured at four locations on the spinning blades using a wireless strain-gage system.

  4. Studies of resistance to anticoccidials in Eimeria field isolates and pure Eimeria strains.

    PubMed

    Stephen, B; Rommel, M; Daugschies, A; Haberkorn, A

    1997-04-01

    Ten Eimeria field isolates from North Germany were studied in battery tests for sensitivity to selected anticoccidials. A high percentage of the Eimeria field isolates (9 out of 10) showed resistance to anticoccidials, mostly multiple resistance. Partial or complete resistance to maduramicin was found in 7 field isolates, to monensin in 6, to salinomycin in 5, to nicarbazin in 8, to halofuginone in 7, to robenidine and toltrazuril in 1, and to diclazuril in 2 field isolates. Multiple resistance had developed in 7 of the 10 isolates. Cross-resistance between maduramicin, monensin, and salinomycin occurred in 5 Eimeria isolates. One isolate showed cross-resistance between diclazuril and toltrazuril. From the resistant isolates 15 pure E. acerculina and 5 pure E. brunetti strains were obtained by single oocyst infections. Seven of the E. acerculina and 4 of the E. brunetti strains showed resistance or partial resistance that was also present in the original isolate. Ten of 11 resistant strains were multiply resistant. PMID:9187026

  5. Long-term field release of bioluminescent Sinorhizobium meliloti strains to assess the influence of a recA mutation on the strains' survival.

    PubMed

    Selbitschka, W; Keller, M; Miethling-Graff, R; Dresing, U; Schwieger, F; Krahn, I; Homann, I; Dammann-Kalinowski, T; Pühler, A; Tebbe, C C

    2006-10-01

    A field release experiment was carried out to study the fate of the isogenic, firefly luciferase (luc) gene-tagged Sinorhizobium meliloti strains L1 (RecA-) and L33 (RecA+) in the environment. Both strains were released at concentrations of approximately 10(6) cfu g(-1) soil in replicate and randomized field plots, which had been sown with alfalfa (Medicago sativa). The survival of both strains during the following 7 years could be subdivided into three phases: a sharp decline for more than two orders of magnitude within the first 4 months (phase I), followed by fluctuations around an average number of 10(4) cfu g(-1) soil for nearly 4 years (phase II), and a further decline to approximately 60 cfu g(-1) (phase III). At most sampling dates, no significant differences in the survival of both strains were detected, indicating that the recA gene function was dispensable under these environmental conditions. During the field inoculation, both strains were dispersed accidentally by wind in small numbers to noninoculated field plots. Strain L33 established at a concentration of more than 10(3) cfu g(-1) soil with subsequent seasonal fluctuations. Although strain L1 must have been disseminated to a similar extent, it could never be recovered from noninoculated field plots, indicating that the recA mutation interfered with the strain's capability to establish there. At the beginning of the field experiment, an indigenous alfalfa-nodulating population was below the limit of detection. In the following years, however, an indigenous population arose, which finally outcompeted both strains for saprophytic growth and alfalfa nodulation. RecA- strain L1 was outcompeted for alfalfa nodulation slightly faster than its RecA+ counterpart L33. The diversity of the indigenous population was characterized by employing the Enterobacterial Repetitive Intergenic Consensus polymerase chain reaction fingerprint method. Typing of 2731 root nodule isolates revealed a total of 38 fingerprint

  6. Establishment of a nanoparticle-assisted RT-PCR assay to distinguish field strains and attenuated strains of porcine epidemic diarrhea virus.

    PubMed

    Zhu, Yu; Wang, Gui-Hua; Cui, Yu-Dong; Cui, Shang-Jin

    2016-09-01

    Porcine epidemic diarrhea virus (PEDV) can cause serious disease and even death in neonatal piglets, resulting in serious damage to the swine industry worldwide. Open reading frame 3 (ORF3) is the only accessory gene in the PEDV genome. Previous studies have indicated that PEDV vaccine strains have a partial deletion in ORF3. In this study, a nanoparticle-assisted polymerase chain reaction (nanoparticle-assisted RT-PCR) assay targeting the ORF3 of PEDV was developed to distinguish PEDV field strains from attenuated strains by using a specific pair of primers. The PCR products of field strains and attenuated strains were 264 bp and 215 bp in length, respectively. The sensitivity and specificity of this assay were also assessed. The nanoparticle-assisted RT-PCR assay was 10-100 times more sensitive than the conventional RT-PCR assay, with no cross-reactions when amplifying porcine pseudorabies virus (PRV), porcine circovirus type 2 (PCV2), classical swine fever virus (CSFV), porcine parvovirus (PPV), porcine reproductive and respiratory syndrome virus (PRRSV), porcine rotavirus (RV), and porcine transmissible gastroenteritis virus (TGEV). The nanoparticle-assisted RT-PCR assay we describe here can be used to distinguish field strains from vaccine strains of PEDV, and it shows promise for reducing economic loss due to PEDV infection. PMID:27287433

  7. In situ SEM observation of microscale strain fields around a crack tip in polycrystalline molybdenum

    NASA Astrophysics Data System (ADS)

    Li, J. J.; Li, W. C.; Jin, Y. J.; Wang, L. F.; Zhao, C. W.; Xing, Y. M.; Lang, F. C.; Yan, L.; Yang, S. T.

    2016-06-01

    In situ scanning electron microscopy was employed to investigate the crack initiation and propagation in polycrystalline molybdenum under uniaxial tensile load at room temperature. The microscale grid pattern was fabricated using the sputtering deposition technology on the specimen surface covered with a fine square mesh copper grid. The microscale strain fields around the crack tip were measured by geometric phase analysis technique and compared with the theoretical solutions based on the linear elastic fracture mechanics theory. The results showed that as the displacement increases, the crack propagated mainly perpendicular to the tensile direction during the fracture process of molybdenum. The normal strain ɛ xx and shear strain ɛ xy are relatively small, and the normal strain ɛ yy holds a dominant position in the deformation fields and plays a key role in the whole fracture process of molybdenum. With the increase in displacement, the ɛ yy increases rapidly and the two lobes grow significantly but maintain the same shape and orientation. The experimental ɛ yy is in agreement with the theoretical solution. Along the x-axis in front of the crack tip, there is minor discrepancy between the experimental ɛ yy and theoretical ɛ yy within 25 μm from the crack tip, but the agreement between them is very good far from the crack tip (>25 μm).

  8. The threshold electric field of 180° domain switching in the misfit strain-external electric field phase diagram

    NASA Astrophysics Data System (ADS)

    Zhu, Z.; Zheng, X. J.; Jiang, D. D.; Yang, Z. C.

    2011-08-01

    The single domain treatment on the selected single grain was performed by the negative DC bias in order to obtain the single-domain state, and the opposite color contrasts within the selected grain in piezoelectric phase images of Pb(Zr0.52Ti0.48)O3 ferroelectric thin film were observed by piezoelectric force microscopy. Based on nonlinear thermodynamic theory, the a1c- and r- phases with the negative P3 component are introduced to describe the electric-generated domain switching, and the external misfit strain-electric field phase diagram and the electric field-polarization components curve are simulated at the simplification of uniform stress/electric distribution for the single-domain state of a single grain. In phase diagram, the electric field at the misfit strain -0.002 evaluated by x ray diffraction is 139 kV/cm for the phase transition from a1c- phase to c+ phase, and it is corresponding to the threshold electric field for 180° domain switching observed by the piezoelectric phase images.

  9. The application of strain field intensity method in the steel bridge fatigue life evaluation

    NASA Astrophysics Data System (ADS)

    Zhao, Xuefeng; Wang, Yanhong; Cui, Yanjun; Cao, Kaisheng

    2012-04-01

    Asce's survey shows that 80%--90% bridge damage were associated with fatigue and fracture problems. With the operation of vehicle weight and traffic volume increases constantly, the fatigue of welded steel bridge is becoming more and more serious in recent years. A large number of studies show that most prone to fatigue damage of steel bridge is part of the welding position. Thus, it's important to find a more precise method to assess the fatigue life of steel bridge. Three kinds of fatigue analysis method is commonly used in engineering practice, such as nominal stress method, the local stress strain method and field intensity method. The first two methods frequently used for fatigue life assessment of steel bridge, but field intensity method uses less ,and it widely used in fatigue life assessment of aerospace and mechanical. Nominal stress method and the local stress strain method in engineering has been widely applied, but not considering stress gradient and multiaxial stress effects, the accuracy of calculation stability is relatively poor, so it's difficult to fully explain the fatigue damage mechanism. Therefore, it used strain field intensity method to evaluate the fatigue life of steel bridge. The fatigue life research of the steel bridge based on the strain field method and the fatigue life of the I-section plate girder was analyzed. Using Ansys on the elastoplastic finite element analysis determined the dangerous part of the structure and got the stress-strain history of the dangerous point. At the same time, in order to divide the unit more elaborate introduced the sub-structure technology. Finally, it applies K.N. Smith damage equation to calculate the fatigue life of the dangerous point. In order to better simulating the actual welding defects, it dug a small hole in the welding parts. It dug different holds from different view in the welding parts and plused the same load to calculate its fatigue life. Comparing the results found that the welding

  10. Multi phase field model for solid state transformation with elastic strain

    NASA Astrophysics Data System (ADS)

    Steinbach, I.; Apel, M.

    2006-05-01

    A multi phase field model is presented for the investigation of the effect of transformation strain on the transformation kinetics, morphology and thermodynamic stability in multi phase materials. The model conserves homogeneity of stress in the diffuse interface between elastically inhomogeneous phases, in which respect it differs from previous models. The model is formulated consistently with the multi phase field model for diffusional and surface driven phase transitions [I. Steinbach, F. Pezzolla, B. Nestler, M. Seeßelberg, R. Prieler, G.J. Schmitz, J.L.L. Rezende, A phase field concept for multiphase systems, Physica D 94 (1996) 135-147; J. Tiaden, B. Nestler, H.J. Diepers, I. Steinbach, The multiphase-field model with an integrated concept for modeling solute diffusion, Physica D 115 (1998) 73-86; I. Steinbach, F. Pezzolla, A generalized field method for multiphase transformations using interface fields, Physica D 134 (1999) 385] and gives a consistent description of interfacial tension, multi phase thermodynamics and elastic stress balance in multiple junctions between an arbitrary number of grains and phases. Some aspects of the model are demonstrated with respect to numerical accuracy and the relation between transformation strain, external stress and thermodynamic equilibrium.

  11. A phase-field model for ductile fracture at finite strains and its experimental verification

    NASA Astrophysics Data System (ADS)

    Ambati, Marreddy; Kruse, Roland; De Lorenzis, Laura

    2016-01-01

    In this paper, a phase-field model for ductile fracture previously proposed in the kinematically linear regime is extended to the three-dimensional finite strain setting, and its predictions are qualitatively and quantitatively compared with several experimental results, both from ad-hoc tests carried out by the authors and from the available literature. The proposed model is based on the physical assumption that fracture occurs when a scalar measure of the accumulated plastic strain reaches a critical value, and such assumption is introduced through the dependency of the phase-field degradation function on this scalar measure. The proposed model is able to capture the experimentally observed sequence of elasto-plastic deformation, necking and fracture phenomena in flat specimens; the occurrence of cup-and-cone fracture patterns in axisymmetric specimens; the role played by notches and by their size on the measured displacement at fracture; and the sequence of distinct cracking events observed in more complex specimens.

  12. Strain Determination On Curved Surfaces Using Far-Field Objective Laser Speckles

    NASA Astrophysics Data System (ADS)

    Chiang, F. P.; Kin, C. C.

    1982-06-01

    Most of the laser speckle methods utilize subjective speckles in that speckles are recorded through a lens whose aperture determines the admitted spatial frequencies. Objective speckles are those intrinsically formed by the scattering wavelets. In this paper we propose the use of far-field objective speckles generated from a ground glass to measure surface displacement and strain. The object's surface is coated with a photosensitive material and placed inside the speckle field. Double exposure is made on the photosenstive coating before and after the application of load. Young's fringes are generated by probing the surface coating with a narrow laser beam. Surface strain can then be calculated from these fringes. The method can be applied to doubly-curved surfaces and opaque materials.

  13. Mobility enhancement of strained GaSb p-channel metal-oxide-semiconductor field-effect transistors with biaxial compressive strain

    NASA Astrophysics Data System (ADS)

    Yan-Wen, Chen; Zhen, Tan; Lian-Feng, Zhao; Jing, Wang; Yi-Zhou, Liu; Chen, Si; Fang, Yuan; Wen-Hui, Duan; Jun, Xu

    2016-03-01

    Various biaxial compressive strained GaSb p-channel metal-oxide-semiconductor field-effect transistors (MOSFETs) are experimentally and theoretically investigated. The biaxial compressive strained GaSb MOSFETs show a high peak mobility of 638 cm2/V·s, which is 3.86 times of the extracted mobility of the fabricated GaSb MOSFETs without strain. Meanwhile, first principles calculations show that the hole effective mass of GaSb depends on the biaxial compressive strain. The biaxial compressive strain brings a remarkable enhancement of the hole mobility caused by a significant reduction in the hole effective mass due to the modulation of the valence bands. Project supported by the National Basic Research Program of China (Grant No. 2011CBA00602) and the National Science and Technology Major Project of the Ministry of Science and Technology of China (Grant No. 2011ZX02708-002).

  14. Automated field detection of rock fracturing, microclimate, and diurnal rock temperature and strain fields

    NASA Astrophysics Data System (ADS)

    Warren, K.; Eppes, M.-C.; Swami, S.; Garbini, J.; Putkonen, J.

    2013-07-01

    The rates and processes that lead to non-tectonic rock fracture on the Earth's surface are widely debated but poorly understood. Few, if any, studies have made the direct observations of rock fracturing under natural conditions that are necessary to directly address this problem. An instrumentation design that enables concurrent high spatial and temporal monitoring resolution of (1) diurnal environmental conditions of a natural boulder and its surroundings in addition to (2) the fracturing of that boulder under natural full-sun exposure is described herein. The surface of a fluvially transported granite boulder was instrumented with (1) six acoustic emission (AE) sensors that record micro-crack associated, elastic wave-generated activity within the three-dimensional space of the boulder, (2) eight rectangular rosette foil strain gages to measure surface strain, (3) eight thermocouples to measure surface temperature, and (4) one surface moisture sensor. Additionally, a soil moisture probe and a full weather station that measures ambient temperature, relative humidity, wind speed, wind direction, barometric pressure, insolation, and precipitation were installed adjacent to the test boulder. AE activity was continuously monitored by one logger while all other variables were acquired by a separate logger every 60 s. The protocols associated with the instrumentation, data acquisition, and analyses are discussed in detail. During the first four months, the deployed boulder experienced almost 12 000 AE events, the majority of which occur in the afternoon when temperatures are decreasing. This paper presents preliminary data that illustrates data validity and typical patterns and behaviors observed. This system offers the potential to (1) obtain an unprecedented record of the natural conditions under which rocks fracture and (2) decipher the mechanical processes that lead to rock fracture at a variety of temporal scales under a range of natural conditions.

  15. Automated field detection of rock fracturing, microclimate, and diurnal rock temperature and strain fields

    NASA Astrophysics Data System (ADS)

    Warren, K.; Eppes, M.-C.; Swami, S.; Garbini, J.; Putkonen, J.

    2013-11-01

    The rates and processes that lead to non-tectonic rock fracture on Earth's surface are widely debated but poorly understood. Few, if any, studies have made the direct observations of rock fracturing under natural conditions that are necessary to directly address this problem. An instrumentation design that enables concurrent high spatial and temporal monitoring resolution of (1) diurnal environmental conditions of a natural boulder and its surroundings in addition to (2) the fracturing of that boulder under natural full-sun exposure is described herein. The surface of a fluvially transported granite boulder was instrumented with (1) six acoustic emission (AE) sensors that record micro-crack associated, elastic wave-generated activity within the three-dimensional space of the boulder, (2) eight rectangular rosette foil strain gages to measure surface strain, (3) eight thermocouples to measure surface temperature, and (4) one surface moisture sensor. Additionally, a soil moisture probe and a full weather station that measures ambient temperature, relative humidity, wind speed, wind direction, barometric pressure, insolation, and precipitation were installed adjacent to the test boulder. AE activity was continuously monitored by one logger while all other variables were acquired by a separate logger every 60 s. The protocols associated with the instrumentation, data acquisition, and analysis are discussed in detail. During the first four months, the deployed boulder experienced almost 12 000 AE events, the majority of which occur in the afternoon when temperatures are decreasing. This paper presents preliminary data that illustrates data validity and typical patterns and behaviors observed. This system offers the potential to (1) obtain an unprecedented record of the natural conditions under which rocks fracture and (2) decipher the mechanical processes that lead to rock fracture at a variety of temporal scales under a range of natural conditions.

  16. In-fiber Fabry-Perot interferometer for strain and magnetic field sensing.

    PubMed

    Costa, Greice K B; Gouvêa, Paula M P; Soares, Larissa M B; Pereira, João M B; Favero, Fernando; Braga, Arthur M B; Palffy-Muhoray, Peter; Bruno, Antonio C; Carvalho, Isabel C S

    2016-06-27

    In this paper we discuss the results obtained with an in-fiber Fabry-Perot interferometer (FPI) used in strain and magnetic field (or force) sensing. The intrinsic FPI was constructed by splicing a small section of a capillary optical fiber between two pieces of standard telecommunication fiber. The sensor was built by attaching the FPI to a magnetostrictive alloy in one configuration and also by attaching the FPI to a small magnet in another. Our sensors were found to be over 4 times more sensitive to magnetic fields and around 10 times less sensitive to temperature when compared to sensors constructed with Fiber Bragg Grating (FBG). PMID:27410621

  17. Full field strain measurements of collagenous tissue by tracking fiber alignment through vector correlation.

    PubMed

    Quinn, Kyle P; Winkelstein, Beth A

    2010-09-17

    Full field strain measurements of biological tissue during loading are often limited to the quantification of fiduciary marker displacements on the tissue surface. These marker measurements can lack the necessary spatial resolution to characterize non-uniform deformation and may not represent the deformation of the load-bearing collagen microstructure. To overcome these potential limitations, a method was developed to track the deformation of the collagen fiber microstructure in ligament tissue. Using quantitative polarized light imaging, fiber alignment maps incorporating both direction and alignment strength at each pixel were generated during facet capsular ligament loading. A grid of virtual markers was superimposed over the tissue in the alignment maps, and the maximization of a vector correlation calculation between fiber alignment maps was used to track marker displacement. Tracking error was quantified through comparisons to the displacements of excised ligament tissue (n=3); separate studies applied uniaxial tension to isolated facet capsular ligament tissue (n=4) to evaluate tracking capabilities during large tissue deformations. The average difference between virtual marker and tissue displacements was 0.07+/-0.06pixels. This error in marker location produced principal strain measurements of 1.2+/-1.6% when markers were spaced 4pixels apart. During tensile tissue loading, substantial inhomogeneity was detected in the strain field using vector correlation tracking, and the location of maximum strain differed from that produced by standard tracking techniques using coarser meshes. These findings provide a method to directly measure fiber network strains using quantitative fiber alignment data, enabling a better understanding of structure-function relationships in tissues at different length scales. PMID:20494363

  18. Strain-assisted current-induced magnetization reversal in magnetic tunnel junctions: A micromagnetic study with phase-field microelasticity

    SciTech Connect

    Huang, H. B.; Hu, J. M.; Yang, T. N.; Chen, L. Q.; Ma, X. Q.

    2014-09-22

    Effect of substrate misfit strain on current-induced in-plane magnetization reversal in CoFeB-MgO based magnetic tunnel junctions is investigated by combining micromagnetic simulations with phase-field microelasticity theory. It is found that the critical current density for in-plane magnetization reversal decreases dramatically with an increasing substrate strain, since the effective elastic field can drag the magnetization to one of the four in-plane diagonal directions. A potential strain-assisted multilevel bit spin transfer magnetization switching device using substrate misfit strain is also proposed.

  19. AC Electrostatic Field Study : Final Report.

    SciTech Connect

    Lebby, Gary L.

    1990-08-28

    The phenomenon of fast transients propagating to the outer sheath of a gas insulated substation (GIS) during switching and disconnect operations as well as the distortion of the electric field gradient around an electric transmission line in the presence of field measuring equipment are examples of electrostatic and electromagnetic field problems that are very much on the minds of both power engineers and maintenance personnel alike. Maintenance personnel working on high voltage equipment want to know the areas that have the highest electric field strength gradients and they want to reduce the risk of being shocked when touching a conventionally 60 Hz grounded GIS enclosure due to fast transients initiated by faults and switching operations. In studying these phenomena during the performance period of this grant, tower configurations for the electric field strength gradient measurements were tested with the ESURF3D program acquired from BPA and gas insulated substation test pole (GISTP) models were tested using the Alternative Transients Program (ATP) version Electromagnets Transients Program (EMTP). The results of these two modeling paradigms are presented in this report not as the last word on these subjects, but as a couple of the many ways one can approach two classical electromagnetic waves problems. 19 refs., 13 figs., 3 tabs.

  20. Study of canine parvovirus evolution: comparative analysis of full-length VP2 gene sequences from Argentina and international field strains.

    PubMed

    Gallo Calderón, Marina; Wilda, Maximiliano; Boado, Lorena; Keller, Leticia; Malirat, Viviana; Iglesias, Marcela; Mattion, Nora; La Torre, Jose

    2012-02-01

    The continuous emergence of new strains of canine parvovirus (CPV), poorly protected by current vaccination, is a concern among breeders, veterinarians, and dog owners around the world. Therefore, the understanding of the genetic variation in emerging CPV strains is crucial for the design of disease control strategies, including vaccines. In this paper, we obtained the sequences of the full-length gene encoding for the main capsid protein (VP2) of 11 canine parvovirus type 2 (CPV-2) Argentine representative field strains, selected from a total of 75 positive samples studied in our laboratory in the last 9 years. A comparative sequence analysis was performed on 9 CPV-2c, one CPV-2a, and one CPV-2b Argentine strains with respect to international strains reported in the GenBank database. In agreement with previous reports, a high degree of identity was found among CPV-2c Argentine strains (99.6-100% and 99.7-100% at nucleotide and amino acid levels, respectively). However, the appearance of a new substitution in the 440 position (T440A) in four CPV-2c Argentine strains obtained after the year 2009 gives support to the variability observed for this position located within the VP2, three-fold spike. This is the first report on the genetic characterization of the full-length VP2 gene of emerging CPV strains in South America and shows that all the Argentine CPV-2c isolates cluster together with European and North American CPV-2c strains. PMID:21858463

  1. Genome Sequence of Hydrocarbon-Degrading Cronobacter sp. Strain DJ34 Isolated from Crude Oil-Containing Sludge from the Duliajan Oil Fields, Assam, India.

    PubMed

    Pal, Siddhartha; Das Banerjee, Tirtha; Roy, Ajoy; Sar, Pinaki; Kazy, Sufia K

    2015-01-01

    We report here the 4,856,096-bp draft genome sequence of hydrocarbon-degrading Cronobacter sp. strain DJ34 isolated from crude oil-containing sludge from the Duliajan oil fields, India. DJ34 contains genes that mediate hydrocarbon degradation, metal resistance, and biosurfactant production. This is the first report of the genome sequence of Cronobacter sp. inhabiting an oil-contaminated environment. PMID:26564043

  2. Genome Sequence of Hydrocarbon-Degrading Cronobacter sp. Strain DJ34 Isolated from Crude Oil-Containing Sludge from the Duliajan Oil Fields, Assam, India

    PubMed Central

    Pal, Siddhartha; Das Banerjee, Tirtha; Roy, Ajoy; Sar, Pinaki

    2015-01-01

    We report here the 4,856,096-bp draft genome sequence of hydrocarbon-degrading Cronobacter sp. strain DJ34 isolated from crude oil-containing sludge from the Duliajan oil fields, India. DJ34 contains genes that mediate hydrocarbon degradation, metal resistance, and biosurfactant production. This is the first report of the genome sequence of Cronobacter sp. inhabiting an oil-contaminated environment. PMID:26564043

  3. Quantitative full-field strain measurements by SAOED (SrAl2O4:Eu2+,Dy3+) mechanoluminescent materials

    NASA Astrophysics Data System (ADS)

    Imani Azad, Ali; Rahimi, Mohammad Reza; Yun, Gun Jin

    2016-09-01

    In this paper, a new calibration method for mechano-luminescence (ML) thin film sensors was proposed to enable quantitative full-field strain measurements in pixel-level resolution for the first time along with two standard reference test methods. The proposed method has a distinct advantage of its facet-free full-field strain sensing capability with pixel-level resolution. For the ML sensor, standard reference test methods were proposed for developing calibrated relationships between ML light intensity and effective strains: (1) uniaxial tensile reference test and (2) non-uniform strain reference test. From the reference tests, two different calibration models were developed in a recurrence equation form and validated measuring general strain distributions on different experimental specimens. Verified finite element (FE) simulation results were compared with ML effective strains to confirm its accuracy. The comparisons of the ML effective strains with FE simulation results showed that the calibration models can acceptably measure full-field strains. Limitations, sources of errors, suggestions for improving accuracy and practical considerations were also discussed. A conclusion of this research is that the proposed method enables ML sensing films to measure quantitative full-field strain distributions.

  4. Differential phase-contrast dark-field electron holography for strain mapping.

    PubMed

    Denneulin, Thibaud; Houdellier, Florent; Hÿtch, Martin

    2016-01-01

    Strain mapping is an active area of research in transmission electron microscopy. Here we introduce a dark-field electron holographic technique that shares several aspects in common with both off-axis and in-line holography. Two incident and convergent plane waves are produced in front of the specimen thanks to an electrostatic biprism in the condenser system of a transmission electron microscope. The interference of electron beams diffracted by the illuminated crystal is then recorded in a defocused plane. The differential phase recovered from the hologram is directly proportional to the strain in the sample. The strain can be quantified if the separation of the images due to the defocus is precisely determined. The present technique has the advantage that the derivative of the phase is measured directly which allows us to avoid numerical differentiation. The distribution of the noise in the reconstructed strain maps is isotropic and more homogeneous. This technique was used to investigate different samples: a Si/SiGe superlattice, transistors with SiGe source/drain and epitaxial PZT thin films. PMID:26476802

  5. Mechanical deformation model of the western United States instantaneous strain-rate field

    USGS Publications Warehouse

    Pollitz, F.F.; Vergnolle, M.

    2006-01-01

    We present a relationship between the long-term fault slip rates and instantaneous velocities as measured by Global Positioning System (GPS) or other geodetic measurements over a short time span. The main elements are the secularly increasing forces imposed by the bounding Pacific and Juan de Fuca (JdF) plates on the North American plate, viscoelastic relaxation following selected large earthquakes occurring on faults that are locked during their respective interseismic periods, and steady slip along creeping portions of faults in the context of a thin-plate system. In detail, the physical model allows separate treatments of faults with known geometry and slip history, faults with incomplete characterization (i.e. fault geometry but not necessarily slip history is available), creeping faults, and dislocation sources distributed between the faults. We model the western United States strain-rate field, derived from 746 GPS velocity vectors, in order to test the importance of the relaxation from historic events and characterize the tectonic forces imposed by the bounding Pacific and JdF plates. Relaxation following major earthquakes (M ??? 8.0) strongly shapes the present strain-rate field over most of the plate boundary zone. Equally important are lateral shear transmitted across the Pacific-North America plate boundary along ???1000 km of the continental shelf, downdip forces distributed along the Cascadia subduction interface, and distributed slip in the lower lithosphere. Post-earthquake relaxation and tectonic forcing, combined with distributed deep slip, constructively interfere near the western margin of the plate boundary zone, producing locally large strain accumulation along the San Andreas fault (SAF) system. However, they destructively interfere further into the plate interior, resulting in smaller and more variable strain accumulation patterns in the eastern part of the plate boundary zone. Much of the right-lateral strain accumulation along the SAF

  6. The dynamic Virtual Fields Method on rubbers at medium and high strain rates

    NASA Astrophysics Data System (ADS)

    Yoon, Sung-Ho; Siviour, Clive R.

    2015-09-01

    Elastomeric materials are widely used for energy absorption applications, often experiencing high strain rate deformations. The mechanical characterization of rubbers at high strain rates presents several experimental difficulties, especially associated with achieving adequate signal to noise ratio and static stress equilibrium, when using a conventional technique such as the split Hopkinson pressure bar. In the present study, these problems are avoided by using the dynamic Virtual Fields Method (VFM) in which acceleration fields, clearly generated by the non-equilibrium state, are utilized as a force measurement with in the frame work of the principle of virtual work equation. In this paper, two dynamic VFM based techniques are used to characterise an EPDM rubber. These are denoted as the linear and nonlinear VFM and are developed for (respectively) medium (drop-weight) and high (gas-gun) strain-rate experiments. The use of the two VFMs combined with high-speed imaging analysed by digital imaging correlation allows the identification of the parameters of a given rubber mechanical model; in this case the Ogden model is used.

  7. Trip Report-Produced-Water Field Testing

    SciTech Connect

    Sullivan, Enid J.

    2012-05-25

    Los Alamos National Laboratory (LANL) conducted field testing of a produced-water pretreatment apparatus with assistance from faculty at the Texas A&M University (TAMU) protein separation sciences laboratory located on the TAMU main campus. The following report details all of the logistics surrounding the testing. The purpose of the test was to use a new, commercially-available filter media housing containing modified zeolite (surfactant-modified zeolite or SMZ) porous medium for use in pretreatment of oil and gas produced water (PW) and frac-flowback waters. The SMZ was tested previously in October, 2010 in a lab-constructed configuration ('old multicolumn system'), and performed well for removal of benzene, toluene, ethylbenzene, and xylenes (BTEX) from PW. However, a less-expensive, modular configuration is needed for field use. A modular system will allow the field operator to add or subtract SMZ filters as needed to accommodate site specific conditions, and to swap out used filters easily in a multi-unit system. This test demonstrated the use of a commercial filter housing with a simple flow modification and packed with SMZ for removing BTEX from a PW source in College Station, Texas. The system will be tested in June 2012 at a field site in Pennsylvania for treating frac-flowback waters. The goals of this test are: (1) to determine sorption efficiency of BTEX in the new configuration; and (2) to observe the range of flow rates, backpressures, and total volume treated at a given flow rate.

  8. The unique effect of in-plane anisotropic strain in the magnetization control by electric field

    NASA Astrophysics Data System (ADS)

    Zhao, Y. Y.; Wang, J.; Hu, F. X.; Liu, Y.; Kuang, H.; Wu, R. R.; Sun, J. R.; Shen, B. G.

    2016-05-01

    The electric field control of magnetization in both (100)- and (011)-Pr0.7Sr0.3MnO3/Pb(Mg1/3Nb2/3)0.7Ti0.3O3(PSMO/PMN-PT) heterostructures were investigated. It was found that the in-plane isotropic strain induced by electric field only slightly reduces the magnetization at low temperature in (100)-PSMO/PMN-PT film. On the other hand, for (011)-PSMO/PMN-PT film, the in-plane anisotropic strain results in in-plane anisotropic, nonvolatile change of magnetization at low-temperature. The magnetization, remanence and coercivity along in-plane [100] direction are suppressed by the electric field while the ones along [01-1] direction are enhanced, which is ascribed to the extra effective magnetic anisotropy induced by the electric field via anisotropic piezostrains. More interestingly, such anisotropic modulation behaviors are nonvolatile, demonstrating a memory effect.

  9. First report in Thailand of a stx-negative Escherichia Coli 0157 strain from a patient with diarrhea.

    PubMed

    Themphachana, Monchanok; Nakaguchi, Yoshitsugu; Nishibuchi, Mitsuaki; Seto, Kazuko; Rattanachuay, Pattamarat; Singkhamanan, Kamonnut; Sukhumungoon, Pharanai

    2014-07-01

    E. coli serotype 0157 is well known to cause serious illnesses in humans. However, there has been no case report to date of this serotype in Thailand. In this study, we report for the first time E. coli 0157 (designated as PSU120) isolated from a stool sample among 228 diarrheal swab samples at Hat Yai Hospital, Songkhla Province, Thailand. This PSU120 was identified as being stx-negative and lacked eae but carried escV, a marker for the locus of enterocyte effacement. Of the five reported integration sites frequently occupied by stx phages, the sbcB and yehV loci were occupied, suggesting that PSU120 is active in horizontal genetic transfer. Antimicrobial susceptibility assay revealed that E. coli 0157 strain PSU120 was resistant to cephalothin, erythromycin, methicillin and vancomycin. Using pulsed- field gel-electrophoresis to compare the genetic relatedness of E. coli 0157 strain PSU120 to two other E. coli 0157 strains, namely, the well-established EHEC strain EDL933 and PSU2, a surrogate of E. coli 0157:H7 whose genotype stx1-, stx2+, eae+ is frequently obtained from the environment in this area during the last decade, revealed 88.6% in similarity. We suggest that PSU120 was originally stx+ but lostthe gene after establishing infection. PMID:25507607

  10. First report in Thailand of a stx-negative Escherichia Coli 0157 strain from a patient with diarrhea.

    PubMed

    Themphachana, Monchanok; Nakaguchi, Yoshitsugu; Nishibuchi, Mitsuaki; Seto, Kazuko; Rattanachuay, Pattamarat; Singkhamanan, Kamonnut; Sukhumungoon, Pharanai

    2014-07-01

    E. coli serotype 0157 is well known to cause serious illnesses in humans. However, there has been no case report to date of this serotype in Thailand. In this study, we report for the first time E. coli 0157 (designated as PSU120) isolated from a stool sample among 228 diarrheal swab samples at Hat Yai Hospital, Songkhla Province, Thailand. This PSU120 was identified as being stx-negative and lacked eae but carried escV, a marker for the locus of enterocyte effacement. Of the five reported integration sites frequently occupied by stx phages, the sbcB and yehV loci were occupied, suggesting that PSU120 is active in horizontal genetic transfer. Antimicrobial susceptibility assay revealed that E. coli 0157 strain PSU120 was resistant to cephalothin, erythromycin, methicillin and vancomycin. Using pulsed- field gel-electrophoresis to compare the genetic relatedness of E. coli 0157 strain PSU120 to two other E. coli 0157 strains, namely, the well-established EHEC strain EDL933 and PSU2, a surrogate of E. coli 0157:H7 whose genotype stx1-, stx2+, eae+ is frequently obtained from the environment in this area during the last decade, revealed 88.6% in similarity. We suggest that PSU120 was originally stx+ but lostthe gene after establishing infection. PMID:25427357

  11. Investigation of Specific Substitutions in Virulence Genes Characterizing Phenotypic Groups of Low-Virulence Field Strains of Listeria monocytogenes

    PubMed Central

    Roche, S. M.; Gracieux, P.; Milohanic, E.; Albert, I.; Virlogeux-Payant, I.; Témoin, S.; Grépinet, O.; Kerouanton, A.; Jacquet, C.; Cossart, P.; Velge, P.

    2005-01-01

    Several models have shown that virulence varies from one strain of Listeria monocytogenes to another, but little is known about the cause of low virulence. Twenty-six field L. monocytogenes strains were shown to be of low virulence in a plaque-forming assay and in a subcutaneous inoculation test in mice. Using the results of cell infection assays and phospholipase activities, the low-virulence strains were assigned to one of four groups by cluster analysis and then virulence-related genes were sequenced. Group I included 11 strains that did not enter cells and had no phospholipase activity. These strains exhibited a mutated PrfA; eight strains had a single amino acid substitution, PrfAK220T, and the other three had a truncated PrfA, PrfAΔ174-237. These genetic modifications could explain the low virulence of group I strains, since mutated PrfA proteins were inactive. Group II and III strains entered cells but did not form plaques. Group II strains had low phosphatidylcholine phospholipase C activity, whereas group III strains had low phosphatidylinositol phospholipase C activity. Several substitutions were observed for five out of six group III strains in the plcA gene and for one out of three group II strains in the plcB gene. Group IV strains poorly colonized spleens of mice and were practically indistinguishable from fully virulent strains on the basis of the above-mentioned in vitro criteria. These results demonstrate a relationship between the phenotypic classification and the genotypic modifications for at least group I and III strains and suggest a common evolution of these strains within a group. PMID:16204519

  12. 4D STUDY OF STRAIN GRADIENTS EVOLUTION IN TWINNED NiMnGa SINGLE CRYSTALS UNDER MAGNETIC FIELD

    SciTech Connect

    Barabash, Rozaliya; Xu, Ruqing; Barabash, Oleg M; Sozinov, Alexei

    2014-01-01

    Time-resolved 3D X-ray microscopy with a submicron beam size was used to follow the evolution of strains in off-stoichiometric NiMnGa twinned crystals near type I (hard) twin boundary under magnetic field. Laminate A/B microstructure was revealed near the twin boundaries in A variant. Large strain gradients are observed in the C variant in the immediate vicinity of the type I twin boundary: the lattice is under large tensile strains ~0.4% along the c- axes within first micron. Distinct a and b lattice parameter evolution with temperature and magnetic field is demonstrated. In an applied magnetic field the strain field was observed at larger distances from the twin boundary and becomes more complex. Stochastic twin boundary motion was observed after the magnetic field reaches a certain critical value.

  13. Full-Field Strain Measurement On Titanium Welds And Local Elasto-Plastic Identification With The Virtual Fields Method

    SciTech Connect

    Tattoli, F.; Casavola, C.; Pierron, F.; Rotinat, R.; Pappalettere, C.

    2011-01-17

    One of the main problems in welding is the microstructural transformation within the area affected by the thermal history. The resulting heterogeneous microstructure within the weld nugget and the heat affected zones is often associated with changes in local material properties. The present work deals with the identification of material parameters governing the elasto--plastic behaviour of the fused and heat affected zones as well as the base material for titanium hybrid welded joints (Ti6Al4V alloy). The material parameters are identified from heterogeneous strain fields with the Virtual Fields Method. This method is based on a relevant use of the principle of virtual work and it has been shown to be useful and much less time consuming than classical finite element model updating approaches applied to similar problems. The paper will present results and discuss the problem of selection of the weld zones for the identification.

  14. Whole field displacement and strain rosettes by grating objective speckle method

    NASA Astrophysics Data System (ADS)

    Tu, Meirong; Gielisse, Peter J.; Xu, Wei

    1991-12-01

    The grating objective speckle method was applied for whole field displacement measurements to a high transition temperature superconductor (YBa2Cu3Ox) disk under diametral-compression. Four fringe patterns were obtained from one single specklegram, indicating the displacement components along four different directions, with 45 degree intervals. The spatial frequencies, which represent the sensitivities of the fringe intervals, were 2400 lines/mm for Ux and Uy, and 1697 lines/mm for U45 and U135, respectively. The normal strain components, (epsilon) x, (epsilon) y, (epsilon) 135, can be directly transformed. The shear strain, (gamma) xy, can therefore be calculated by the rosette equations without the need for first cross-derivatives from two displacement contour maps, which is highly sensitive to accidental rigid-body rotations. The technique provides an extremely simple set-up for the recording system. There is no laser, no camera, no laborious optical alignment, and no requirement for vibration isolation.

  15. RAPID COMMUNICATION: Effect of strain, magnetic field and field angle on the critical current density of Y Ba2Cu3O7-δ coated conductors

    NASA Astrophysics Data System (ADS)

    van der Laan, D. C.; Ekin, J. W.; Douglas, J. F.; Clickner, C. C.; Stauffer, T. C.; Goodrich, L. F.

    2010-07-01

    A large, magnetic-field-dependent, reversible reduction in critical current density with axial strain in Y Ba2Cu3O7-δ coated conductors at 75.9 K has been measured. This effect may have important implications for the performance of Y Ba2Cu3O7-δ coated conductors in applications where the conductor experiences large stresses in the presence of a magnetic field. Previous studies have been performed only under tensile strain and could provide only a limited understanding of the in-field strain effect. We now have constructed a device for measuring the critical current density as a function of axial compressive and tensile strain and applied magnetic field as well as magnetic field angle, in order to determine the magnitude of this effect and to create a better understanding of its origin. The reversible reduction in critical current density with strain becomes larger with increasing magnetic field at all field angles. At 76 K the critical current density is reduced by about 30% at - 0.5% strain when a magnetic field of 5 T is applied parallel to the c-axis of the conductor or 8 T is applied in the ab-plane, compared to a reduction of only 13% in self-field. Differences in the strain response of the critical current density at various magnetic field angles indicate that the pinning mechanisms in Y Ba2Cu3O7-δ coated conductors are uniquely affected by strain. Contribution of NIST, not subject to US copyright.

  16. The 3-D strain patterns in Turkey using geodetic velocity fields from the RTK-CORS (TR) network

    NASA Astrophysics Data System (ADS)

    Kutoglu, Hakan Senol; Toker, Mustafa; Mekik, Cetin

    2016-03-01

    This study presents our use of GPS data to obtain and quantify the full continuous strain tensor using a 3-D velocity field in Turkey. In this study, GPS velocities improve the estimation of short-term strain tensor fields for determining the seismic hazard of Turkey. The tensorial analysis presents different aspects of deformation, such as the normal and shear strains, including their directions, the compressional and extensional strains. This analysis is appropriate for the characterizing the state of the current seismic deformation. GPS velocity data from continuous measurements (2009-2012) to estimate deformations were processed using the GAMIT/GLOBK software. Using high-rate GPS data from permanent 146 GNSS stations (RTK-CORS-TR network), the strain distribution was determined and interpolated using a biharmonic spline technique. We show the strain field patterns within axial and plane form at several critical locations, and discuss these results within the context of the seismic and tectonic deformation of Turkey. We conclude that the knowledge of the crustal strain patterns provides important information on the location of the main faults and strain accumulation for the hazard assessment. The results show an agreement between the seismic and tectonic strains confirming that there are active crustal deformations in Turkey.

  17. Present-day CGPS-derived Crustal Strain Rate Field of the Saint Lawrence River Valley

    NASA Astrophysics Data System (ADS)

    Goudarzi, M. A.; Cocard, M.; Santerre, R.

    2015-12-01

    The Saint Lawrence River valley (SLRV) is one of the most seismically active areas in eastern Canada. Along the SLRV and the Ottawa valley, earthquakes are concentrated on three distinct zones of western Quebec along the Ottawa River, Charlevoix, and Lower Saint Lawrence. The entire area is also subject to the glacial isostatic adjustment (GIA). We studied the earth's surface deformation of the area using the velocity field of 51 continuous GPS (CGPS) stations and the least-squares collocation method. While the intraplate horizontal velocities showed a coherent horizontal motion towards southeast with the typical magnitude of ~1.3 mm/yr for stations along the SLRV, the interpolated vertical velocities demonstrated a coherent uplift with the average rate of 3.1 mm/yr. We estimated strain rate tensors including the effect of vertical velocity. A NNW-SSE shortening with a typical rate of ~3.6-8.1 nstrain/yr was observed over Lower Saint Lawrence. In Charlevoix, an extension with a typical rate of ~3.0-7.1 nstrain/yr was oriented in ENE-WSW parallel to the SLRV. In western Quebec, the deformation has a shear straining mechanism with a typical shortening rate of ~1.0-5.1 nstrain/yr and extension rate of ~1.6-4.1 nstrain/yr. The extension over the northern model is consistent with the prediction of the GIA models. The range of the estimated strain rates of the area (~1.0-8.1 nstrain/yr) is between typical values of rigid blocks (< 0.1 nstrain/yr) and active tectonic regions (> 100 μstrain/yr). A strong correlation was observed between epicenters of earthquakes and areas with the highest rate of shear strain. We found a good agreement between the orientations of the principal axes of strain rate tensors and the maximum horizontal compressional stress σH from World Stress Map 2008 for both strike-slip and thrust faulting regimes especially those derived from focal mechanisms. This shows our CGPS intraplate velocities are representative of the current crustal deformation

  18. Development and Field Release of a Genetic Sexing Strain of the Melon Fly, Bactrocera Cucurbitae in Hawaii

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The first practical genetic sexing strain for the melon fly, Bactrocera cucurbitae, developed in Hawaii was mass-reared and released as sterile males into wild fly populations. Significant improvements in the field quality of sterile males were made with the pupal color strain in which males can be ...

  19. Strain gage sting balance 204-6. Calibration report

    NASA Astrophysics Data System (ADS)

    Blaettler, Heinz

    1986-12-01

    The strain gage sting balance 204-6 was developed for aerodynamic measurements on rocket models in the transonic and supersonic wind tunnel. Data are: X = +/- 50 (N); Y = +/- 150 (N); Z = +/- 400 (N); Mx = +/- 1.5 (Nm); My = +/- 20 (Nm); and Mz = +/- 10 (Nm). Compared to the existing balances of same size the ratio Y/Z is changed from 1:8 to 1:3.75. This change of specifications was introduced with regard to measurements to be taken with a sting providing automatic roll positioning around the X-axis. The resistance module was separately constructed and prestressed by a factor of 0.5, and connected to the model and sting part of the balance by electron-beam welding.

  20. Strain rate tensor in Iran from a new GPS velocity field

    NASA Astrophysics Data System (ADS)

    Masson, Frédéric; Lehujeur, Maximilien; Ziegler, Yann; Doubre, Cécile

    2014-04-01

    The aim of this paper is to determine the strain rate tensor (SRT) for the Iranian region. In this study, (1) we apply a method of computation of the SRT never used for the Iranian area and (2) we use a new GPS velocity field obtained from several previously published velocity fields. First, the method is described and tested on a synthetic case, which mimics the real Iranian case. The synthetic tests confirm that the method allows us to both retrieve high gradients of the strain rate field and reduce the effect of an erroneous velocity vector. Second, the method is applied to a real data set covering the Arabia-Eurasia collision zone in Iran. We particularly focus on the Zagros-Makran transition zone, the Central Iran region and the northernmost part of the Arabia-Eurasia collision zone (NW Iran-Caucasus-East Turkey). Whereas the main characteristics of the obtained SRT are consistent with known tectonic features, important new results are found in the Central Iran, with the strike-slip style along the Anar and Deshir faults, and the Zagros-Makran transition zone, with a north-south variation of the SRT along the Zendan-Minab-Palami fault system. We link these results to recent active tectonic studies.

  1. Strain-induced anisotropic low-field magnetoresistance of La-Sr-Mn-O thin films

    NASA Astrophysics Data System (ADS)

    Choi, Kyung-Ku; Taniyama, Tomoyasu; Yamazaki, Yohtaro

    2001-12-01

    Sputtered La0.71Sr0.29Mn1.01O3-δ (LSMO) thin films on (001) SrTiO3, polycrystalline yttria-stabilized zirconia (YSZ) and (112¯0) sapphire substrates demonstrate the distinctive low-field magnetoresistance (MR) correlated with the microstructure and the strain of the films. The epitaxial LSMO film on (001) SrTiO3 shows the in-plane magnetic anisotropy with [110] easy axis and the attendant anisotropic MR. The polycrystalline films on YSZ and sapphire substrates with grain sizes from 20 to 60 nm exhibit different anisotropic feature of transport: the isotropic MR of the film on YSZ and the large anisotropy on sapphire substrates. Moreover, in the (112¯0) film plane of sapphire substrate, the [1¯100]SAP magnetic easy axis appears due to a large tensile stress, and the longitudinal MR becomes pronounced along the [0001]SAP hard axis. This implies that the anisotropy of the low-field MR is attributed to the stress induced by the thermal expansion mismatch between film and substrate. These results emphasize that the low-field MR in the polycrystalline manganite can be advanced by the strain induced magnetic anisotropy.

  2. In vitro activity of tylvalosin against Spanish field strains of Mycoplasma hyopneumoniae.

    PubMed

    Tavío, M M; Poveda, C; Assunção, P; Ramírez, A S; Poveda, J B

    2014-11-29

    Mycoplasma hyopneumoniae is involved in the porcine enzootic pneumonia and respiratory disease complex; therefore, the search for new treatment options that contribute to the control of this organism is relevant. The minimal inhibitory concentrations (MICs) and minimal bactericidal concentrations of tylvalosin and 19 other antimicrobial agents against 20 Spanish field isolates of M. hyopneumoniae were determined using the broth microdilution method, with the type strain (J) as a control strain. Tylvalosin had MIC50 and MIC90 values of 0.016 and 0.06 µg/ml, respectively, and was the second-most effective of the assayed antibiotics, after valnemulin. Tiamulin, tylosin and lincomycin were also among the antibiotics with the lowest MIC50 and MIC90 values against the 20 field isolates (0.06-0.25 µg/ml). However, resistance to tylosin and spiramycin, which like tylvalosin, are 16-membered macrolides, was observed. The MIC50 and MIC90 values for ciprofloxacin and enrofloxacin ranged from 0.125 to 1 µg/ml; the corresponding values ranged from 2 to 4 µg/ml for oxytetracyline, which was the most active tetracycline. Furthermore, tylvalosin and valnemulin exhibited the highest bactericidal activities. In conclusion, the macrolide tylvalosin and the pleuromutilin valnemulin exhibited the highest in vitro antimicrobial activities against M. hyopneumoniae field isolates in comparison with the other tested antibiotics. PMID:25185108

  3. Phylogenomics of Xanthomonas field strains infecting pepper and tomato reveals diversity in effector repertoires and identifies determinants of host specificity

    PubMed Central

    Schwartz, Allison R.; Potnis, Neha; Timilsina, Sujan; Wilson, Mark; Patané, José; Martins, Joaquim; Minsavage, Gerald V.; Dahlbeck, Douglas; Akhunova, Alina; Almeida, Nalvo; Vallad, Gary E.; Barak, Jeri D.; White, Frank F.; Miller, Sally A.; Ritchie, David; Goss, Erica; Bart, Rebecca S.; Setubal, João C.; Jones, Jeffrey B.; Staskawicz, Brian J.

    2015-01-01

    Bacterial spot disease of pepper and tomato is caused by four distinct Xanthomonas species and is a severely limiting factor on fruit yield in these crops. The genetic diversity and the type III effector repertoires of a large sampling of field strains for this disease have yet to be explored on a genomic scale, limiting our understanding of pathogen evolution in an agricultural setting. Genomes of 67 Xanthomonas euvesicatoria (Xe), Xanthomonas perforans (Xp), and Xanthomonas gardneri (Xg) strains isolated from diseased pepper and tomato fields in the southeastern and midwestern United States were sequenced in order to determine the genetic diversity in field strains. Type III effector repertoires were computationally predicted for each strain, and multiple methods of constructing phylogenies were employed to understand better the genetic relationship of strains in the collection. A division in the Xp population was detected based on core genome phylogeny, supporting a model whereby the host-range expansion of Xp field strains on pepper is due, in part, to a loss of the effector AvrBsT. Xp-host compatibility was further studied with the observation that a double deletion of AvrBsT and XopQ allows a host range expansion for Nicotiana benthamiana. Extensive sampling of field strains and an improved understanding of effector content will aid in efforts to design disease resistance strategies targeted against highly conserved core effectors. PMID:26089818

  4. Phylogenomics of Xanthomonas field strains infecting pepper and tomato reveals diversity in effector repertoires and identifies determinants of host specificity.

    PubMed

    Schwartz, Allison R; Potnis, Neha; Timilsina, Sujan; Wilson, Mark; Patané, José; Martins, Joaquim; Minsavage, Gerald V; Dahlbeck, Douglas; Akhunova, Alina; Almeida, Nalvo; Vallad, Gary E; Barak, Jeri D; White, Frank F; Miller, Sally A; Ritchie, David; Goss, Erica; Bart, Rebecca S; Setubal, João C; Jones, Jeffrey B; Staskawicz, Brian J

    2015-01-01

    Bacterial spot disease of pepper and tomato is caused by four distinct Xanthomonas species and is a severely limiting factor on fruit yield in these crops. The genetic diversity and the type III effector repertoires of a large sampling of field strains for this disease have yet to be explored on a genomic scale, limiting our understanding of pathogen evolution in an agricultural setting. Genomes of 67 Xanthomonas euvesicatoria (Xe), Xanthomonas perforans (Xp), and Xanthomonas gardneri (Xg) strains isolated from diseased pepper and tomato fields in the southeastern and midwestern United States were sequenced in order to determine the genetic diversity in field strains. Type III effector repertoires were computationally predicted for each strain, and multiple methods of constructing phylogenies were employed to understand better the genetic relationship of strains in the collection. A division in the Xp population was detected based on core genome phylogeny, supporting a model whereby the host-range expansion of Xp field strains on pepper is due, in part, to a loss of the effector AvrBsT. Xp-host compatibility was further studied with the observation that a double deletion of AvrBsT and XopQ allows a host range expansion for Nicotiana benthamiana. Extensive sampling of field strains and an improved understanding of effector content will aid in efforts to design disease resistance strategies targeted against highly conserved core effectors. PMID:26089818

  5. Tuning Magnetism and Electronic Phase Transitions by Strain and Electric Field in Zigzag MoS2 Nanoribbons.

    PubMed

    Kou, Liangzhi; Tang, Chun; Zhang, Yi; Heine, Thomas; Chen, Changfeng; Frauenheim, Thomas

    2012-10-18

    Effective modulation of physical properties via external control may open various potential nanoelectronic applications of single-layer MoS2 nanoribbons (MoS2NRs). We show by first-principles calculations that the magnetic and electronic properties of zigzag MoS2NRs exhibit sensitive response to applied strain and electric field. Tensile strain in the zigzag direction produces reversible modulation of magnetic moments and electronic phase transitions among metallic, half-metallic, and semiconducting states, which stem from the energy-level shifts induced by an internal electric polarization and the competing covalent/ionic interactions. A simultaneously applied electric field further enhances or suppresses the strain-induced modulations depending on the direction of the electric field relative to the internal polarization. These findings suggest a robust and efficient approach to modulating the properties of MoS2NRs by a combination of strain engineering and electric field tuning. PMID:26292229

  6. Inter-dot strain field effect on the optoelectronic properties of realistic InP lateral quantum-dot molecules

    SciTech Connect

    Barettin, Daniele Auf der Maur, Matthias; De Angelis, Roberta; Prosposito, Paolo; Casalboni, Mauro; Pecchia, Alessandro

    2015-03-07

    We report on numerical simulations of InP surface lateral quantum-dot molecules on In{sub 0.48}Ga{sub 0.52 }P buffer, using a model strictly derived by experimental results by extrapolation of the molecules shape from atomic force microscopy images. Our study has been inspired by the comparison of a photoluminescence spectrum of a high-density InP surface quantum dot sample with a numerical ensemble average given by a weighted sum of simulated single quantum-dot spectra. A lack of experimental optical response from the smaller dots of the sample is found to be due to strong inter-dot strain fields, which influence the optoelectronic properties of lateral quantum-dot molecules. Continuum electromechanical, k{sup →}·p{sup →} bandstructure, and optical calculations are presented for two different molecules, the first composed of two dots of nearly identical dimensions (homonuclear), the second of two dots with rather different sizes (heteronuclear). We show that in the homonuclear molecule the hydrostatic strain raises a potential barrier for the electrons in the connection zone between the dots, while conversely the holes do not experience any barrier, which considerably increases the coupling. Results for the heteronuclear molecule show instead that its dots do not appear as two separate and distinguishable structures, but as a single large dot, and no optical emission is observed in the range of higher energies where the smaller dot is supposed to emit. We believe that in samples of such a high density the smaller dots result as practically incorporated into bigger molecular structures, an effect strongly enforced by the inter-dot strain fields, and consequently it is not possible to experimentally obtain a separate optical emission from the smaller dots.

  7. Inter-dot strain field effect on the optoelectronic properties of realistic InP lateral quantum-dot molecules

    NASA Astrophysics Data System (ADS)

    Barettin, Daniele; Auf der Maur, Matthias; De Angelis, Roberta; Prosposito, Paolo; Casalboni, Mauro; Pecchia, Alessandro

    2015-03-01

    We report on numerical simulations of InP surface lateral quantum-dot molecules on In0.48Ga0.52P buffer, using a model strictly derived by experimental results by extrapolation of the molecules shape from atomic force microscopy images. Our study has been inspired by the comparison of a photoluminescence spectrum of a high-density InP surface quantum dot sample with a numerical ensemble average given by a weighted sum of simulated single quantum-dot spectra. A lack of experimental optical response from the smaller dots of the sample is found to be due to strong inter-dot strain fields, which influence the optoelectronic properties of lateral quantum-dot molecules. Continuum electromechanical, k →.p → bandstructure, and optical calculations are presented for two different molecules, the first composed of two dots of nearly identical dimensions (homonuclear), the second of two dots with rather different sizes (heteronuclear). We show that in the homonuclear molecule the hydrostatic strain raises a potential barrier for the electrons in the connection zone between the dots, while conversely the holes do not experience any barrier, which considerably increases the coupling. Results for the heteronuclear molecule show instead that its dots do not appear as two separate and distinguishable structures, but as a single large dot, and no optical emission is observed in the range of higher energies where the smaller dot is supposed to emit. We believe that in samples of such a high density the smaller dots result as practically incorporated into bigger molecular structures, an effect strongly enforced by the inter-dot strain fields, and consequently it is not possible to experimentally obtain a separate optical emission from the smaller dots.

  8. Mechanically tunable strain fields in suspended graphene by micro electromechanical systems

    NASA Astrophysics Data System (ADS)

    Khodkov, Tymofiy; Goldsche, Matthias; Sonntag, Jens; Reichardt, Sven; Verbiest, Gerard; Trellenkamp, Stephan; Stampfer, Christoph

    The discovery of graphene triggered an enormous interest on the class of two-dimensional (2D) materials. 2D materials manifested high sensitivity of their thermal, optical or electric response to applied tensile stress. Therefore, a rigorous and systematic investigation of their mechanical properties is extremely important. On the example of graphene - a top candidate for future flexible electronic devices and sensors - we demonstrate fully controlled and restorable realization of various strain fields in 2D membranes by coupling them to Si-based electrostatic micro-actuators (comb-drives). The comb-drive actuators are capable to provide significant forces and they are made of highly-doped silicon, i.e. they can be operated down to cryogenic temperatures allowing the investigation of quantum effects in electromechanical systems. Using confocal Raman spectroscopy we characterize strain distribution in suspended mono- and bilayer graphene sheets under induced tension (up to 0.5%). A detailed analysis clearly show that graphene samples reproducibly experience strain in different directions only while applying voltages to the micro-actuator. This approach empowers accurate tuning of applied tension in any isolated 2D materials independent on other crucial parameters.

  9. Intragranular strain field in columnar ice during elasto-viscoplatic transient creep regime

    NASA Astrophysics Data System (ADS)

    Grennerat, F.; Montagnat, M.; Castelnau, O.; Duval, P.; Vacher, P.

    2010-12-01

    Transient effects in the creep of polycrystalline ice could play a crucial role for several ice flows (e.g. interaction between Antarctic ice shelves and ocean tides) and also ave a major impact concerning deformation mechanisms of ice. During creep deformation of polycrystalline ice, strong stress and strain-rate intragranular heterogeneities are expected. These heterogeneities come from the very large viscoplastic anisotropy of ice crystals (with essentially a single easy plane for the dislocations to glide) which is responsible for the strong mechanical interaction between adjacent grains. In order to go one step further in the quantitative understanding of this process, and to characterize the development of strain heterogeneities at a microscopic (intragranular) scale, we have performed deformation tests on 2-D polycrystalline ice exhibiting columnar grains with controlled grain size. Specimens were submitted to creep test and transient effects, in which both elastic and viscoplastic responses come in play, are investigated. A Digital Image Correlation (DIC) technique, with spatial resolution far smaller than the mean grain size, has been set to get continuous record of the intragranular displacement field during the test. Experimental parameters have been optimized to improve the precision of the DIC results. In parallel, specimen microstructures were analyzed with an automatic ice texture analyzer, before and after deformation, and post-mortem measurements of local misorientations at the intragranular scale were performed. For the first time in ice, this work presents a direct link between grain orientation, strain localization, and lattice distortion at the intragranular scale.

  10. Correlation-based methods in calibrating an FBG sensor with strain field non-uniformity

    NASA Astrophysics Data System (ADS)

    Cieszczyk, S.

    2015-12-01

    Fibre Bragg gratings have many sensing applications, mainly for measuring strain and temperature. The physical quantity that influences grating uniformly along its length causes a related shift of the Bragg wavelength. Many peak detection algorithms have been proposed, among which the most popular are the detection of maximum intensity, the centroid detection, the least square method, the cross-correlation, auto-correlation and fast phase correlation. Nonuniform gratings elongation is a cause of spectrum deformation. The introduction of non-uniformity can be intentional or appear as an unintended effect of placing sensing elements in the tested structure. Heterogeneous impacts on grating may result in additional errors and the difficulty in tracking the Bragg wavelength based on a distorted spectrum. This paper presents the application of correlation methods of peak wavelength shifts estimation for non-uniform Bragg grating elongation. The autocorrelation, cross-correlation and fast phase correlation algorithms are considered and experimental spectra measured for axisymmetric strain field along the Bragg grating are analyzed. The strain profile consists of constant and variable components. The results of this study indicate the properties of correlation algorithms applied to moderately non-uniform elongation of an FBG sensor.

  11. Temperature and field induced strain measurements in single crystal Gd5Si2Ge2

    DOE PAGESBeta

    McCall, S. K.; Nersessian, N.; Carman, G. P.; Pecharsky, V. K.; Schlagel, D. L.; Radousky, H. B.

    2016-03-29

    The first-order magneto-structural transformation that occurs in Gd5Si2Ge2 near room temperature makes it a strong candidate for many energy harvesting applications. Understanding the single crystal properties is crucial for allowing simulations of device performance. In this study, magnetically and thermally induced transformation strains were measured in a single crystal of Gd5Si2.05Ge1.95 as it transforms from a high-temperature monoclinic paramagnet to a lower-temperature orthorhombic ferromagnet. Thermally induced transformation strains of –8500 ppm, +960 ppm and +1800 ppm, and magnetically induced transformation strains of –8500 ppm, +900 ppm and +2300 ppm were measured along the a, b and c axes, respectively. Furthermore,more » using experimental data coupled with general thermodynamic considerations, a universal phase diagram was constructed showing the transition from the monoclinic to the orthorhombic phase as a function of temperature and magnetic field.« less

  12. Optical-fibre backscatter polarimetry for the distributed measurement of full strain fields

    NASA Astrophysics Data System (ADS)

    Rogers, A. J.; Shatalin, S. V.; Kannellopoulos, S. E.

    2005-11-01

    Fully-distributed optical-fibre sensing (FDOFS) systems are developing rapidly and are offering significant advantages for measurement functions in a variety of structural applications, especially in the oil industry, the power supply industry, the aerospace industries and civil engineering construction. Polarization techniques are well established in FDOFS, and in the analysis of polarization-mode dispersion (PMD) for optical-fibre telecommunications. However, a major problem has been that of determining, from one end of the fibre, the distribution of the full polarization properties of a monomode optical fibre, along its length, with some specific spatial resolution. This paper will present a new technique for providing this full information, and thus for measuring the distribution of any parameter, external to the fibre, which can modify its polarization behaviour. As a result, for example, it becomes possible to measure simultaneously the distribution of a strain field comprising the longitudinal and the two transverse components of direct strain, plus the transverse shear strain. The technique comprises an extension of polarization-optical time domain reflectometry (POTDR) [16], and necessitates on-line processing. Details of the physical principles, the algorithms and the polarimetry will be presented, together with some early results illustrating the measurement accuracies which can be achieved.

  13. Colonization of a marker and field strain of Salmonella Enteritidis and a marker strain of Salmonella Typhimurium in vancomycin pretreated and non-pretreated laying hens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was conducted to evaluate the effects of a vancomycin pre-treatment on the ability of marker (nalidixic acid-resistant) S. Enteritidis (SE-M), field S. Enteritidis (SE-F), and marker S. Typhimurium (ST-M) strains to colonize within the intestinal and reproductive tracts and translocate to...

  14. Vadose Zone Transport Field Study: Summary Report

    SciTech Connect

    Ward, Andy L.; Conrad, Mark E.; Daily, William D.; Fink, James B.; Freedman, Vicky L.; Gee, Glendon W.; Hoversten, Gary M.; Keller, Jason M.; Majer, Ernest L.; Murray, Christopher J.; White, Mark D.; Yabusaki, Steven B.; Zhang, Z. F.

    2006-07-31

    From FY 2000 through FY 2003, a series of vadose zone transport field experiments were conducted as part of the U.S. Department of Energy’s Groundwater/Vadose Zone Integration Project Science and Technology Project, now known as the Remediation and Closure Science Project, and managed by the Pacific Northwest National Laboratory (PNNL). The series of experiments included two major field campaigns, one at a 299-E24-11 injection test site near PUREX and a second at a clastic dike site off Army Loop Road. The goals of these experiments were to improve our understanding of vadose zone transport processes; to develop data sets to validate and calibrate vadose zone flow and transport models; and to identify advanced monitoring techniques useful for evaluating flow-and-transport mechanisms and delineating contaminant plumes in the vadose zone at the Hanford Site. This report summarizes the key findings from the field studies and demonstrates how data collected from these studies are being used to improve conceptual models and develop numerical models of flow and transport in Hanford’s vadose zone. Results of these tests have led to a better understanding of the vadose zone. Fine-scale geologic heterogeneities, including grain fabric and lamination, were observed to have a strong effect on the large-scale behavior of contaminant plumes, primarily through increased lateral spreading resulting from anisotropy. Conceptual models have been updated to include lateral spreading and numerical models of unsaturated flow and transport have revised accordingly. A new robust model based on the concept of a connectivity tensor was developed to describe saturation-dependent anisotropy in strongly heterogeneous soils and has been incorporated into PNNL’s Subsurface Transport Over Multiple Phases (STOMP) simulator. Application to field-scale transport problems have led to a better understanding plume behavior at a number of sites where lateral spreading may have dominated waste

  15. Characterization of field strains of infectious laryngotracheitis virus in China by restriction fragment length polymorphism and sequence analysis.

    PubMed

    Yan, Zhuanqiang; Li, Shengpeng; Xie, Qingmei; Chen, Feng; Bi, Yingzuo

    2016-01-01

    Nineteen strains of infectious laryngotracheitis virus (ILTV; Gallid herpesvirus 1) were isolated from dead or diseased birds in chicken flocks from different areas of China between 2010 and 2014 and used to investigate ILTV epidemiology. These strains were characterized using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) patterns and sequence analysis of the thymidine kinase (TK) gene. PCR-RFLP analysis showed that the TK gene generated 2 patterns when digested with restriction endonuclease enzymes. Pattern A corresponded to 2 virulent field strains, while pattern B was characteristic of 2 virulent field strains, 15 low pathogenicity field strains, and all vaccine strains. Sequence analysis of the TK gene indicated that the messenger RNA polyadenylation signals could be identified in some isolates where amino acid 252 was threonine, and in those with methionine at that position. The present study has demonstrated that most of the outbreaks of ILT in China were caused either by low virulence strains or by vaccine-related strains, and also emphasizes the importance of reinforcing ILTV surveillance in both vaccinated and nonvaccinated flocks. PMID:26699520

  16. Strain mapping for the semiconductor industry by dark-field electron holography and nanobeam electron diffraction with nm resolution

    NASA Astrophysics Data System (ADS)

    Cooper, David; Béché, Armand; Hartmann, Jean Michel; Carron, Veronique; Rouvière, Jean-Luc

    2010-09-01

    There is a requirement of the semiconductor industry to measure strain in semiconductor devices with nm-scale resolution. Here we show that dark-field electron holography and nanobeam electron diffraction (NBED) are both complementary techniques that can be used to determine the strain in these devices. We show two-dimensional strain maps acquired by dark holography and line profiles that have been acquired by NBED of recessed SiGe sources and drains with a variety of different gate lengths and Ge concentrations. We have also used dark-field electron holography to measure the evolution in strain during the silicidation process, showing that this can reduce the applied uniaxial compressive strain in the conduction channel by up to a factor of 3.

  17. Working Group Report: Lattice Field Theory

    SciTech Connect

    Blum, T.; et al.,

    2013-10-22

    This is the report of the Computing Frontier working group on Lattice Field Theory prepared for the proceedings of the 2013 Community Summer Study ("Snowmass"). We present the future computing needs and plans of the U.S. lattice gauge theory community and argue that continued support of the U.S. (and worldwide) lattice-QCD effort is essential to fully capitalize on the enormous investment in the high-energy physics experimental program. We first summarize the dramatic progress of numerical lattice-QCD simulations in the past decade, with some emphasis on calculations carried out under the auspices of the U.S. Lattice-QCD Collaboration, and describe a broad program of lattice-QCD calculations that will be relevant for future experiments at the intensity and energy frontiers. We then present details of the computational hardware and software resources needed to undertake these calculations.

  18. Electric-field control of magnetism via strain transfer across ferromagnetic/ferroelectric interfaces.

    PubMed

    Taniyama, Tomoyasu

    2015-12-23

    By taking advantage of the coupling between magnetism and ferroelectricity, ferromagnetic (FM)/ferroelectric (FE) multiferroic interfaces play a pivotal role in manipulating magnetism by electric fields. Integrating the multiferroic heterostructures into spintronic devices significantly reduces energy dissipation from Joule heating because only an electric field is required to switch the magnetic element. New concepts of storage and processing of information thus can be envisioned when the electric-field control of magnetism is a viable alternative to the traditional current based means of controlling magnetism. This article reviews some salient aspects of the electric-field effects on magnetism, providing a short overview of the mechanisms of magneto-electric (ME) coupling at the FM/FE interfaces. A particular emphasis is placed on the ME effect via interfacial magneto-elastic coupling arising from strain transfer from the FE to FM layer. Recent results that demonstrate the electric-field control of magnetic anisotropy, magnetic order, magnetic domain wall motion, and etc are described. Obstacles that need to be overcome are also discussed for making this a reality for future device applications. PMID:26613163

  19. Electric-field control of magnetism via strain transfer across ferromagnetic/ferroelectric interfaces

    NASA Astrophysics Data System (ADS)

    Taniyama, Tomoyasu

    2015-12-01

    By taking advantage of the coupling between magnetism and ferroelectricity, ferromagnetic (FM)/ferroelectric (FE) multiferroic interfaces play a pivotal role in manipulating magnetism by electric fields. Integrating the multiferroic heterostructures into spintronic devices significantly reduces energy dissipation from Joule heating because only an electric field is required to switch the magnetic element. New concepts of storage and processing of information thus can be envisioned when the electric-field control of magnetism is a viable alternative to the traditional current based means of controlling magnetism. This article reviews some salient aspects of the electric-field effects on magnetism, providing a short overview of the mechanisms of magneto-electric (ME) coupling at the FM/FE interfaces. A particular emphasis is placed on the ME effect via interfacial magneto-elastic coupling arising from strain transfer from the FE to FM layer. Recent results that demonstrate the electric-field control of magnetic anisotropy, magnetic order, magnetic domain wall motion, and etc are described. Obstacles that need to be overcome are also discussed for making this a reality for future device applications.

  20. Strain field of the monovacancy in silicene: First-principles study

    NASA Astrophysics Data System (ADS)

    Li, Rui; Liu, Zhongli; Ma, Wenqiang; Tan, Yonggang

    2016-05-01

    The in-plane strain fields of single-vacancy silicene with different monovacancy (MV) concentrations, as well as the corresponding electronic band structures, are investigated by using the first-principle calculations. Firstly the self-healing MV is found to be the most stable ground structure in silicene, which is different from the other 2D hexagonal honeycomb materials, e.g. graphene, h-BN. In the isolated MV center, the bonds along the pentagons are compressed, creating a compress field, and those close to the distorted hexagons are stretched, creating a stretch field. As the MV concentration increasing, the interacted compress field tends to corrugate the defected silicene, while the interacted stretch field impacts little on the low-buckled structure. Especially, the corrugation presents in those supercells with small MV concentration, just as the (4, 5), (4, 6), (4, 7), (4, 8) supercells. The corrugations approach zero at both low and high MV concentrations, and the (4, 6) supercell with a MV concentration of about 0.021, has a peak value of 3.23Å. The electronic calculations show that the linear dispersion at Γ point in pristine silicene is broken by the lower lattice symmetry of the self-healing MV reconstruction, which translates it into metal as well.

  1. Genomic relatedness among Actinobacillus pleuropneumoniae field strains of sterotypes 1 and 5 isolated from healthy and diseased pigs.

    PubMed Central

    Chatellier, S; Harel, J; Dugourd, D; Chevallier, B; Kobisch, M; Gottschalk, M

    1999-01-01

    Forty-four Actinobacillus pleuropneumoniae isolates recovered from both healthy and diseased pigs were characterized by random amplified polymorphic DNA analysis (RAPD), pulsed field gel electrophoresis (PFGE) and apx toxin gene typing. Nine RAPD types and 14 PFGE patterns were identified. No common RAPD or PFGE patterns were found between strains of serotype 1 and those of serotype 5. The RAPD analysis indicated that the 15 serotype 1 strains isolated from diseased pigs were assigned to 4 RAPD types, with 66% of strains characterized by the same RAPD type. By contrast, the 5 strains of serotype 1 isolated from healthy carriers were dispersed in 4 RAPD types. These data suggest that the diversity of strains isolated from healthy pigs could be higher than that of strains recovered from diseased pigs. In addition, all serotype 5 strains exhibited a unique RAPD type. Unlike RAPD, PFGE analysis allowed discrimination among isolates of serotype 1 and among those of serotype 5. All but 3 isolates showed the same apx genotype as their respective serotype reference strain. These data indicate that RAPD analysis is a valuable rapid tool for routine subtyping of strains of serotype 1. For strains of serotype 5, a combination of several typing methods, such as PFGE and apx gene typing, is needed to provide useful information on the molecular epidemiology of swine pleuropneumonia. Images Figure 1. Figure 3. PMID:10480458

  2. Near Field Environment Process Model Report

    SciTech Connect

    R.A. Wagner

    2000-11-14

    Waste emplacement and activities associated with construction of a repository system potentially will change environmental conditions within the repository system. These environmental changes principally result from heat generated by the decay of the radioactive waste, which elevates temperatures within the repository system. Elevated temperatures affect distribution of water, increase kinetic rates of geochemical processes, and cause stresses to change in magnitude and orientation from the stresses resulting from the overlying rock and from underground construction activities. The recognition of this evolving environment has been reflected in activities, studies and discussions generally associated with what has been termed the Near-Field Environment (NFE). The NFE interacts directly with waste packages and engineered barriers as well as potentially changing the fluid composition and flow conditions within the mountain. As such, the NFE defines the environment for assessing the performance of a potential Monitored Geologic Repository at Yucca Mountain, Nevada. The NFe evolves over time, and therefore is not amenable to direct characterization or measurement in the ambient system. Analysis or assessment of the NFE must rely upon projections based on tests and models that encompass the long-term processes of the evolution of this environment. This NFE Process Model Report (PMR) describes the analyses and modeling based on current understanding of the evolution of the near-field within the rock mass extending outward from the drift wall.

  3. Field Operations Program Activities Status Report

    SciTech Connect

    J. E. Francfort; D. V. O'Hara; L. A. Slezak

    1999-05-01

    The Field Operations Program is an electric vehicle testing and evaluation program sponsored by US Department of Energy and managed by the Idaho National Engineering and Environmental Laboratory. The Program's goals are to evaluate electric vehicles in real-world applications and environments, support electric vehicle technology advancement, develop infrastructure elements necessary to support significant electric vehicle use, support increased use of electric vehicles in federal fleets, and increase overall awareness and acceptance of electric vehicles. This report covers Program activities from fiscal year 1997 through mid-fiscal year 1999. The Field Operations Program succeeded the Site Operator Program, which ended in September 1996. Electric vehicle testing conducted by the Program includes baseline performance testing (EV America testing), accelerated reliability (life-cycle) testing, and fleet testing. The baseline performance parameters include accelerations, braking, range, energy efficiency, and charging time. The Program collects accelerated reliability and fleet operations data on electric vehicles operated by the Program's Qualified Vehicle Testing (QVT) partners. The Program's QVT partners have over 3 million miles of electric vehicle operating experience.

  4. Characterization of landslide ground surface kinematics from terrestrial laser scanning and strain field computation

    NASA Astrophysics Data System (ADS)

    Teza, Giordano; Pesci, Arianna; Genevois, Rinaldo; Galgaro, Antonio

    2008-05-01

    Assessment and mitigation of the risk induced by landslide activation need an appropriate phenomenon investigation, to obtain useful information about the failure processes. The first step is the complete kinematics characterization of the landslide ground surface, by evaluating the involved displacement and deformation patterns. A dense displacement field can be obtained from comparison of a series of multi-temporal observations performed by means of terrestrial laser scanning. Subsequently, the strain field can be computed from displacement vectors. In this paper, a modified least square technique is employed to compute the strain on the nodes of a regular grid (2D approach) or on the points of a digital terrain model (3D approach). Such a computation takes into account the displacements, their spatial distribution, as well as the measurement and modelling errors. A scale factor is introduced in order to emphasize the contributions of the experimental points on the basis of their distance from each computation point, and to recognize possible scale-depending behaviours. This method has been implemented in Matlab and applied on two landslides located in the northeastern Italian Alps (Lamosano and Perarolo di Cadore). The experiments show that different kinematics can be recognized, and the presence and influence of eventual discontinuities can be revealed.

  5. Simultaneous analysis of multiple enzymes increases accuracy of pulsed-field gel electrophoresis in assigning genetic relationships among homogeneous Salmonella strains.

    PubMed

    Zheng, Jie; Keys, Christine E; Zhao, Shaohua; Ahmed, Rafiq; Meng, Jianghong; Brown, Eric W

    2011-01-01

    Due to a highly homogeneous genetic composition, the subtyping of Salmonella enterica serovar Enteritidis strains to an epidemiologically relevant level remains intangible for pulsed-field gel electrophoresis (PFGE). We reported previously on a highly discriminatory PFGE-based subtyping scheme for S. enterica serovar Enteritidis that relies on a single combined cluster analysis of multiple restriction enzymes. However, the ability of a subtyping method to correctly infer genetic relatedness among outbreak strains is also essential for effective molecular epidemiological traceback. In this study, genetic and phylogenetic analyses were performed to assess whether concatenated enzyme methods can cluster closely related salmonellae into epidemiologically relevant hierarchies. PFGE profiles were generated by use of six restriction enzymes (XbaI, BlnI, SpeI, SfiI, PacI, and NotI) for 74 strains each of S. enterica serovar Enteritidis and S. enterica serovar Typhimurium. Correlation analysis of Dice similarity coefficients for all pairwise strain comparisons underscored the importance of combining multiple enzymes for the accurate assignment of genetic relatedness among Salmonella strains. The mean correlation increased from 81% and 41% for single-enzyme PFGE up to 99% and 96% for five-enzyme combined PFGE for S. enterica serovar Enteritidis and S. enterica serovar Typhimurium strains, respectively. Data regressions approached 100% correlation among Dice similarities for S. enterica serovar Enteritidis and S. enterica serovar Typhimurium strains when a minimum of six enzymes were concatenated. Phylogenetic congruence measures singled out XbaI, BlnI, SfiI, and PacI as most concordant for S. enterica serovar Enteritidis, while XbaI, BlnI, and SpeI were most concordant among S. enterica serovar Typhimurium strains. Together, these data indicate that PFGE coupled with sufficient enzyme numbers and combinations is capable of discerning accurate genetic relationships among

  6. Direct synchrotron x-ray measurements of local strain fields in elastically and plastically bent metallic glasses

    SciTech Connect

    Wu, Yuan; Stoica, Alexandru Dan; Ren, Yang; Ma, Dong; Gao, Yanfei F.; Bei, Hongbin

    2015-09-03

    In situ high-energy synchrotron X-ray diffraction was conducted on elastically and plastically bent bulk metallic glass (BMG) thin plates, from which distinct local elastic strain fields were mapped spatially. These directly measured residual strain fields can be nicely interpreted by our stress analysis, and also validate a previously proposed indirect residual-stress-measurement method by relating nanoindentation hardness to residual stresses. Local shear strain variations on the cross sections of these thin plates were found in the plastically bent BMG, which however cannot be determined from the indirect indentation method. As a result, this study has important implications in designing and manipulating internal strain fields in BMGs for the purpose of ductility enhancement.

  7. Direct synchrotron x-ray measurements of local strain fields in elastically and plastically bent metallic glasses

    DOE PAGESBeta

    Wu, Yuan; Stoica, Alexandru Dan; Ren, Yang; Ma, Dong; Gao, Yanfei F.; Bei, Hongbin

    2015-09-03

    In situ high-energy synchrotron X-ray diffraction was conducted on elastically and plastically bent bulk metallic glass (BMG) thin plates, from which distinct local elastic strain fields were mapped spatially. These directly measured residual strain fields can be nicely interpreted by our stress analysis, and also validate a previously proposed indirect residual-stress-measurement method by relating nanoindentation hardness to residual stresses. Local shear strain variations on the cross sections of these thin plates were found in the plastically bent BMG, which however cannot be determined from the indirect indentation method. As a result, this study has important implications in designing and manipulatingmore » internal strain fields in BMGs for the purpose of ductility enhancement.« less

  8. Near-field/altered-zone models report

    SciTech Connect

    Hardin, E. L., LLNL

    1998-03-01

    lithophysal units. These units are made up of moderately to densely welded, devitrified, fractured tuff. The rock's chemical composition is comparable to that of typical granite, but has textural features and mineralogical characteristics of large-scale, silicic volcanism. Because the repository horizon will be approximately 300 m below the ground surface and 200 m above the water table, the repository will be partially saturated. The welded tuff matrix in the host units is highly impermeable, but water and gas flow readily through fractures. The degree of fracturing in these units is highly variable, and the hydrologic significance of fracturing is an important aspect of site investigation. This report describes the characterization and modeling of a region around the potential repository--the altered zone--a region in which the temperature will be increased significantly by waste-generated heat. Numerical simulation has shown that, depending on the boundary conditions, rock properties, and repository design features incorporated in the models, the altered zone (AZ) may extend from the water table to the ground surface. This report also describes models of the near field, the region comprising the repository emplacement drifts and the surrounding rock, which are critical to the performance of engineered components. Investigations of near-field and altered-zone (NF/AZ) processes support the design of underground repository facilities and engineered barriers and also provide constraint data for probabilistic calculations of waste-isolation performance (i.e., performance assessment). The approach to investigation, which is an iterative process involving hypothesis testing and experimentation, has relied on conceptualizing engineered barriers and on performance analysis. This report is a collection, emphasizing conceptual and numerical models, of the recent results contributed from studies of NF/AZ processes and of quantitative measures of NF/AZ performance. The selection and

  9. Finite strain and relative rheology from field exposures of mantle peridotite, Twin Sisters, Washington

    NASA Astrophysics Data System (ADS)

    Tikoff, B.; Larson, C. E.; Newman, J.; Little, T.

    2004-12-01

    We present estimates of finite strain and relative rheology of naturally deformed mantle materials based on field observations in the Twin Sisters Range of Washington state. The Twin Sisters ultramafic body is a 16 by 5.5 km body located 30 km east of Bellingham, Washington. The outcrops show virtually no serpentinization away from the metamorphic sole. We conducted detailed structural mapping in a 100 by 150 meter field area located east of the crest of the Twin Sisters range and approximately midway between the north and south ends. The foliation strikes ~155 and the lineation pitches 40 S. Folded orthopyroxenite dikes within the host dunite allow us to characterize the finite strain. Dikes trending NE-SE were folded, while dikes trending NW-SE were elongated or boudinaged. Using the method of Talbot (1970), the principal stretch directions in the horizontal plane were calculated using the deformed dikes. We calculated a maximum stretch of 1.596 oriented at 151 (similar to the trace of the foliation) and a minimum stretch of 0.286 in direction 061. Assuming that the lineation and foliation represent the orientation of S1 and the S1S2 plane, respectively, a finite strain ellipsoid was determined. The best fitting answer defines an oblate ellipsoid with S1=3.15, S2=1.11, and S3=0.286. Thus, on this outcrop, the Twin Sisters dunite has an oblate-shaped finite strain ellipsoid whose long axis plunges 40 to the SE. The same area provides constraints on relative rheology. Folded orthopyroxenite dikes show a linear relationship between fold wavelength and dike thickness, indicating that they initiated as buckle folds. Using dynamic instability analysis, the orthopyroxene within the dikes is calculated to have ~31 times the effective viscosity of olivine of the dunite matrix, assuming a power law exponenent of n=3 (dislocation creep) for both the dikes and the matrix. Although not investigated in detail, similar orientations of fabrics are observed throughout the Twin

  10. Finite Element Analysis of Cross Rolling on AISI 304 Stainless Steel: Prediction of Stress and Strain Fields

    NASA Astrophysics Data System (ADS)

    Rout, Matruprasad; Pal, Surjya Kanta; Singh, Shiv Brat

    2016-05-01

    Studies on the effect of strain path during rolling has been carried out for a long time, but the same has not been done using Finite Element Analysis (FEA). Change in strain path affects the state variables in the rolled plate like stress, strain, temperature etc. In the current work, Finite Element Analysis for cross rolling of AISI 304 austenitic stainless steel has been carried out by rotating the plate by 90° in between the passes. To analyze stress and strain fields in the material for cross rolling, a full 3D model of work-roll and plate has been developed using rigid-viscoplastic finite element method. The stress and strain fields, considering von-Mises yield criteria, are calculated by using updated Lagrangian method. In addition to these, the model also calculates the normal pressure and strain rate distribution in the plate during cross rolling. The nature of the variations of stress and strain fields in the plate, predicted by the model, is in good agreement with the previously published works for unidirectional rolling.

  11. Microhardness and Strain Field Characterization of Self-Reacting Friction Stir and Plug Welds of Dissimilar Aluminum Alloys

    NASA Technical Reports Server (NTRS)

    Horton, Karla Renee

    2011-01-01

    Friction stir welding (FSW) is a solid state welding process with potential advantages for aerospace and automotive industries dealing with light alloys. Self-reacting friction stir welding (SR-FSW) is one variation of the FSW process being developed at the National Aeronautics and Space Administration (NASA) for use in the fabrication of propellant tanks. Friction plug welding is used to seal the exit hole that remains in a circumferential SR-FSW. This work reports on material properties and strain patterns developed in a SR-FSW with a friction plug weld. Specifically, this study examines the behavior of a SR-FSW formed between an AA 2014-T6 plate on the advancing side and an AA 2219-T87 plate on the retreating side and a SR-FSW (AA 2014-T6 to AA 2219-T87) with a 2219-T87 plug weld. This study presents the results of a characterization of the micro-hardness, joint strength, and strain field characterization of SR-FSW and FPW joints tested at room temperature and cryogenic temperatures.

  12. Substrate-mediated strain effect on the role of thermal heating and electric field on metal-insulator transition in vanadium dioxide nanobeams.

    PubMed

    Kim, Min-Woo; Jung, Wan-Gil; Hyun-Cho; Bae, Tae-Sung; Chang, Sung-Jin; Jang, Ja-Soon; Hong, Woong-Ki; Kim, Bong-Joong

    2015-01-01

    Single-crystalline vanadium dioxide (VO2) nanostructures have recently attracted great attention because of their single domain metal-insulator transition (MIT) nature that differs from a bulk sample. The VO2 nanostructures can also provide new opportunities to explore, understand, and ultimately engineer MIT properties for applications of novel functional devices. Importantly, the MIT properties of the VO2 nanostructures are significantly affected by stoichiometry, doping, size effect, defects, and in particular, strain. Here, we report the effect of substrate-mediated strain on the correlative role of thermal heating and electric field on the MIT in the VO2 nanobeams by altering the strength of the substrate attachment. Our study may provide helpful information on controlling the properties of VO2 nanobeam for the device applications by changing temperature and voltage with a properly engineered strain. PMID:26040637

  13. Substrate-mediated strain effect on the role of thermal heating and electric field on metal-insulator transition in vanadium dioxide nanobeams

    NASA Astrophysics Data System (ADS)

    Kim, Min-Woo; Jung, Wan-Gil; Hyun-Cho; Bae, Tae-Sung; Chang, Sung-Jin; Jang, Ja-Soon; Hong, Woong-Ki; Kim, Bong-Joong

    2015-06-01

    Single-crystalline vanadium dioxide (VO2) nanostructures have recently attracted great attention because of their single domain metal-insulator transition (MIT) nature that differs from a bulk sample. The VO2 nanostructures can also provide new opportunities to explore, understand, and ultimately engineer MIT properties for applications of novel functional devices. Importantly, the MIT properties of the VO2 nanostructures are significantly affected by stoichiometry, doping, size effect, defects, and in particular, strain. Here, we report the effect of substrate-mediated strain on the correlative role of thermal heating and electric field on the MIT in the VO2 nanobeams by altering the strength of the substrate attachment. Our study may provide helpful information on controlling the properties of VO2 nanobeam for the device applications by changing temperature and voltage with a properly engineered strain.

  14. Substrate-mediated strain effect on the role of thermal heating and electric field on metal-insulator transition in vanadium dioxide nanobeams

    PubMed Central

    Kim, Min-Woo; Jung, Wan-Gil; Hyun-Cho; Bae, Tae-Sung; Chang, Sung-Jin; Jang, Ja-Soon; Hong, Woong-Ki; Kim, Bong-Joong

    2015-01-01

    Single-crystalline vanadium dioxide (VO2) nanostructures have recently attracted great attention because of their single domain metal-insulator transition (MIT) nature that differs from a bulk sample. The VO2 nanostructures can also provide new opportunities to explore, understand, and ultimately engineer MIT properties for applications of novel functional devices. Importantly, the MIT properties of the VO2 nanostructures are significantly affected by stoichiometry, doping, size effect, defects, and in particular, strain. Here, we report the effect of substrate-mediated strain on the correlative role of thermal heating and electric field on the MIT in the VO2 nanobeams by altering the strength of the substrate attachment. Our study may provide helpful information on controlling the properties of VO2 nanobeam for the device applications by changing temperature and voltage with a properly engineered strain. PMID:26040637

  15. Bovine herpesvirus-1: evaluation of genetic diversity of subtypes derived from field strains of varied clinical syndromes and their relationship to vaccine strains.

    PubMed

    Fulton, R W; d'Offay, J M; Eberle, R; Moeller, R B; Campen, H Van; O'Toole, D; Chase, C; Miller, M M; Sprowls, R; Nydam, D V

    2015-01-15

    Bovine herpesvirus-1 (BoHV-1) causes significant disease in cattle. Control programs in North America incorporate vaccination with modified live viral (MLV) or killed (KV) vaccine. BoHV-1 strains are isolated from diseased animals or fetuses after vaccination. There are markers for differentiating MLV from field strains using whole-genome sequencing and analysis identifying single nucleotide polymorphisms (SNPs). Using multiple primer sets and sequencing of products permits association of BoHV-1 isolates with vaccines. To determine association between vaccine virus and strains isolated from clinical cases following vaccination, we analyzed 12 BoHV-1 isolates from animals with various clinical syndromes; 9 corresponded to BoHV-1.1 respiratory group. The remaining three corresponded to BoHV-1.2b, typically found in genital tracts of cattle. Four BoHV-1 isolates were identical to a vaccine strain; three were from post-vaccination abortion episodes with typical herpetic lesions whose dams had received MLV vaccine during pregnancy, and one from a heifer given a related MLV vaccine; Sequences of two respiratory isolates perfectly matched mutations characterizing RLB106 strain, a temperature sensitive mutant used in intranasal and parenteral vaccines. The last three respiratory strains clearly appeared related to a group of MLV vaccines. Previously the MLV vaccines were grouped into four groups based on SNPs patterns. In contrast with above-mentioned isolates that closely matched SNP patterns of their respective MLV vaccine virus, these 3 strains both lacked some and possessed a number of additional mutations compared to a group of MLV vaccine viral genome. Finding BoHV-1.2b in respiratory cases indicates focus should be given BoHV-1.2b as an emerging virus or a virus not recognized nor fully characterized in BRD. PMID:25454086

  16. Severe Congenital Toxoplasmosis: A Case Report and Strain Characterization

    PubMed Central

    Sarkari, Bahador; Abdolahi Khabisi, Samaneh

    2015-01-01

    We report a fatal congenital toxoplasmosis case in an Iranian woman in the south of Iran. A pregnant mother had been admitted at the 15th week of her pregnancy on account of a febrile illness, symptoms of common cold, and enlargement of submandibular lymph nodes. Serological testing of the mother's serum revealed positive IgG and IgM anti-Toxoplasma antibodies. Amniotic fluid was taken and evaluated by polymerase chain reaction (PCR) assay with a direct amplification of the Toxoplasma URPT gene which was found to be positive. Sequencing and analysis of PCR product revealed that the isolate has the most similarity with type I of Toxoplasma gondii. Fetal scan showed anomaly in fetus including mild hydrocephaly. Termination of the pregnancy was suggested by the physician and pregnancy was terminated 178 days after conception. PMID:25685568

  17. Thermodynamically consistent phase field approach to dislocation evolution at small and large strains

    NASA Astrophysics Data System (ADS)

    Levitas, Valery I.; Javanbakht, Mahdi

    2015-09-01

    A thermodynamically consistent, large strain phase field approach to dislocation nucleation and evolution at the nanoscale is developed. Each dislocation is defined by an order parameter, which determines the magnitude of the Burgers vector for the given slip planes and directions. The kinematics is based on the multiplicative decomposition of the deformation gradient into elastic and plastic contributions. The relationship between the rates of the plastic deformation gradient and the order parameters is consistent with phenomenological crystal plasticity. Thermodynamic and stability conditions for homogeneous states are formulated and satisfied by the proper choice of the Helmholtz free energy and the order parameter dependence on the Burgers vector. They allow us to reproduce desired lattice instability conditions and a stress-order parameter curve, as well as to obtain a stress-independent equilibrium Burgers vector and to avoid artificial dissipation during elastic deformation. The Ginzburg-Landau equations are obtained as the linear kinetic relations between the rate of change of the order parameters and the conjugate thermodynamic driving forces. A crystalline energy coefficient for dislocations is defined as a periodic step-wise function of the coordinate along the normal to the slip plane, which provides an energy barrier normal to the slip plane and determines the desired, mesh-independent height of the dislocation bands for any slip system orientation. Gradient energy contains an additional term, which excludes the localization of a dislocation within a height smaller than the prescribed height, but it does not produce artificial interface energy. An additional energy term is introduced that penalizes the interaction of different dislocations at the same point. Non-periodic boundary conditions for dislocations are introduced which include the change of the surface energy due to the exit of dislocations from the crystal. Obtained kinematics, thermodynamics

  18. Risk assessment, cross-resistance potential, and biochemical mechanism of resistance to emamectin benzoate in a field strain of house fly (Musca domestica Linnaeus).

    PubMed

    Khan, Hafiz Azhar Ali; Akram, Waseem; Khan, Tiyyabah; Haider, Muhammad Saleem; Iqbal, Naeem; Zubair, Muhammad

    2016-05-01

    Reduced sensitivity to insecticides in insect pests often results in control failures and increases in the dose and frequency of applications, ultimately polluting the environment. Reduced sensitivity to emamectin benzoate, a broad-spectrum agrochemical belonging to the avermectin group of pesticides, was reported in house flies (Musca domestica L.) collected from Punjab, Pakistan, in 2013. The aim of the present study was to investigate the risk for resistance development, biochemical mechanism, and cross-resistance potential to other insecticides in an emamectin benzoate selected (EB-SEL) strain of house flies. A field-collected strain showing reduced sensitivity to emamectin was re-selected in the laboratory for five consecutive generations and compared with a laboratory susceptible (Lab-Susceptible) reference strain, using bioassays. The field strain showed rapid development of resistance to emamectin (resistance ratio (RR) increased from 35.15 to 149.26-fold) as a result of selection experiments; however, resistance declined when the selection pressure uplifted. The EB-SEL strain showed reduction in resistance to abamectin, indoxacarb, and thiamethoxam. The results of synergism experiments using piperonyl butoxide (PBO) and S,S,S-tributylphosphorotrithioate (DEF) enzyme inhibitors and biochemical analyses revealed that the metabolic resistance mechanism was not responsible in developing emamectin resistance in the EB-SEL strain. In conclusion, the risk for the rapid development of emamectin resistance under continuous selection pressure suggests using a multifaceted integrated pest management approach for house flies. Moreover, the instable nature of emamectin resistance in the EB-SEL strain and lack of cross-resistance to other insecticides provide windows for the rotational use of insecticides with different modes of action. This will ultimately reduce emamectin selection pressure and help improving management programs for house flies without polluting the

  19. Effect of strain on ferroelectric field effect in strongly correlated oxide Sm0.5Nd0.5NiO3

    NASA Astrophysics Data System (ADS)

    Zhang, Le; Chen, Xuegang; Gardner, H. Jeffrey; Koten, Mark A.; Shield, Jeffrey E.; Hong, Xia

    We report the effect of epitaxial strain on the magnitude and retention of the ferroelectric field effect in a prototype FerroFET based on a charge transfer-type Mott insulator, Sm0.5Nd0.5NiO3 (SNNO). It has been shown that epitaxial strain can change the transition temperature TMI in SNNO by more than 100 K, and modify the metal-insulator transition (MIT) characteristic between first-order and second-order. We have fabricated epitaxial PbZr0.3Ti0.7O3 (PZT)/3.8-4.3 nm SNNO heterostructures on (001) LaAlO3 (LAO) and SrTiO3 (STO) substrates. The magnitude of the field effect modulation can differ by more than one order of magnitude in these two systems, which has been attributed to strain modified MIT characteristic in SNNO. In both systems, we also observe a pronounced relaxation of off state resistance Roff, showing a thermally activated behavior with corresponding activation energy of 22 meV (28 meV) for devices on LAO (STO). The time dynamics and thermal response of the retention behavior suggest that strain-induced oxygen vacancies play a critical role in the ferroelectric field effect instability. L. Zhang et al ., Appl. Phys. Lett. 107 , 152906 (2015).

  20. Emergence of antigenic variants of Foot-and-Mouth Disease Virus serotype O in Ecuador and preliminary evaluation of a field strain as a vaccine candidate.

    PubMed

    Maradei, Eduardo; Malirat, Viviana; Beascoechea, Claudia Perez; Espinoza, Ana María; Novo, Sabrina Galdo; Smitsaart, Eliana; Salgado, Gustavo; Mattion, Nora; Toledo, Jorge Rodriguez; Bergmann, Ingrid E

    2014-05-01

    Foot-and-Mouth Disease Virus serotype O has been circulating regularly throughout most provinces of Ecuador, one of the two South American countries that still remain endemic, although satisfactory vaccination coverage was reported. This study concentrates in the characterization of isolates collected during 2008-2011, focusing particularly on the antigenic and immunogenic relationships of the field viruses with the O1/Campos vaccine strain in use in the region and with an experimental vaccine formulated with a representative strain of the 2010 epidemic. The results established that antigenically divergent variants poorly protected by the vaccine in use emerged and co-circulated in a limited period of time. A monovalent vaccine formulated with the representative 2010 strain elicited high antibody titers and protected against challenge with homologous virus. In addition, cross-reactive antibodies to predominant viruses in the region were established. In overall this study indicates the ability of the virus to diversify under field conditions in which a vaccine strain with poor match is applied, and the potential of the selected 2010 field virus as a vaccine candidate for incorporation into strategic antigen banks and/or for addition to current formulations for systematic vaccination, in order to prevent the emergence of even more divergent isolates in the future. PMID:24625343

  1. Strain fields around high-energy ion tracks in {alpha}-quartz

    SciTech Connect

    Follstaedt, D. M.; Norman, A. K.; Doyle, B. L.; McDaniel, F. D.

    2006-09-15

    Transmission electron microscopy has been used to image the tracks of high-energy {sup 197}Au{sup +26} (374 MeV) and {sup 127}I{sup +18} (241 MeV) ions incident in a nonchanneling direction through a prethinned specimen of hexagonal {alpha}-quartz (SiO{sub 2}). These ions have high electronic stopping powers in quartz, 24 and 19 keV/nm, respectively, which are sufficient to produce a disordered latent track. When the tracks are imaged with diffraction contrast using several different reciprocal lattice vectors, they exhibit a radial strain extending outward from their disordered centerline approximately 16 nm into the crystalline surroundings. The images are consistent with a radial strain field with cylindrical symmetry around the amorphous track, like that found in models developed to account for the lateral expansion of amorphous SiO{sub 2} films produced by irradiation with high-energy ions. These findings provide an experimental basis for increased confidence in such modeling.

  2. Performance optimization of a diagnostic system based upon a simulated strain field for fatigue damage characterization

    NASA Astrophysics Data System (ADS)

    Sbarufatti, C.; Manes, A.; Giglio, M.

    2013-11-01

    The work presented hereafter is about the development of a diagnostic system for crack damage detection, localization and quantification on a typical metallic aeronautical structure (skin stiffened through riveted stringers). Crack detection and characterization are based upon strain field sensitivity to damage. The structural diagnosis is carried out by a dedicated smart algorithm (Artificial Neural Network) which is trained on a database of Finite Element simulations relative to damaged and undamaged conditions, providing the system with an accurate predictor at low overall cost. The algorithm, trained on numerical damage experience, is used in a simulated environment to provide reliable preliminary information concerning the algorithm performances for damage diagnosis, thus further reducing the experimental costs and efforts associated with the development and optimization of such systems. The same algorithm has been tested on real experimental strain patterns acquired during real fatigue crack propagation, thus verifying the capability of the numerically trained algorithm for anomaly detection, damage assessment and localization on a real complex structure. The load variability, the discrepancy between the Finite Element Model and the real structure, and the uncertainty in the algorithm training process have been addressed in order to enhance the robustness of the system inference process. Some further algorithm training strategies are discussed, aimed at minimizing the risk for false alarms while maintaining a high probability of damage detection.

  3. Field study of age-differentiated strain for assembly line workers in the automotive industry.

    PubMed

    Börner, Kerstin; Scherf, Christian; Leitner-Mai, Bianca; Spanner-Ulmer, Birgit

    2012-01-01

    A field study in an automotive supply industry company was conducted to explore age-differentiated strain of assembly line workers. Subjective and objective data from 23 female workers aged between 27 and 57 years were collected at the workplace belt buckle assembly during morning shifts. Subjects with medication or chronic diseases affecting heart rate and breath rate were excluded. For subjective data generation different questionnaires were used. Before the Work Ability Index and the Munich Chronotype Questionnaire were completed by the subjects. Short questionnaires (strain-ratings, NASA-TLX) directly at begin and end of the work were used for obtaining shift-related data. During the whole shift (6 a.m. - 2.45 p.m.) bodily functions were logged with a wireless chest strap. In addition, the motion of the hand-arm-system was recorded for 30 times, 3 minutes each after a fixed time-schedule. First results show that younger subjects need significant less time for assembly (mean = 14.940 s) compared to older subjects (mean = 17.040 s; t(472.026) = -9.278 , p < 0.01). PMID:22317519

  4. Phenotypic and genotypic (pulsed-field gel electrophoresis) characteristics of enterotoxin-A-producing Staphylococcus aureus strains.

    PubMed

    Gouloumès, C; Bes, M; Renaud, F; Lina, B; Reverdy, M E; Brun, Y; Fleurette, J

    1996-05-01

    The phenotypic (antibiotype, serotype, phagetype) and genotypic (SmaI restriction patterns using pulsed-field gel electrophoresis) characters of 162 Staphylococcus aureus epidemiologically unrelated strains were studied. Eighty-two of the isolates produced enterotoxin-A (SEA+), while 80 produced none (SEA-). None of the phenotypic characters observed were characteristic of SEA+ strains. On the other hand, the electrophoretic profiles revealed a non-random distribution of the SEA+ strains (p < 0.01 in groups PI and PIII, and p < 0.03 in group PII). It can therefore reasonably be assumed that the enterotoxin-A-producing strains did not constitute a single clone, but rather, seemed to belong to strains derived from at least three clones with distinct genetic organization. PMID:8763613

  5. Phase-field model of strain-induced grain-boundary premelting

    NASA Astrophysics Data System (ADS)

    Wang, Nan; Spatschek, Robert; Karma, Alain

    2008-03-01

    Grain-boundary premelting depends in a complex way on the relative magnitude of the solid-liquid interfacial free-energy and grain boundary energy as well as temperature and strain. We study this dependence in a bicrystal geometry using a phenomenological three-order parameter phase-field model. This model describes the short scale attractive or repulsive interaction between crystal-melt interfaces and macroscopic linear elasticity including the important effect of the density contrast between solid and liquid. The model exhibits a rich behavior characterized by single or multiple premelting transitions between dry or wet grain boundaries with different liquid layer thicknesses as a function of applied tensile stress. The results have important implications for the phenomenon of liquid metal embrittlement associated with the stress-driven penetration of nanometric liquid films along grain boundaries.

  6. Phase field modelling of strain induced crystal growth in an elastic matrix

    NASA Astrophysics Data System (ADS)

    Laghmach, Rabia; Candau, Nicolas; Chazeau, Laurent; Munch, Etienne; Biben, Thierry

    2015-06-01

    When a crystal phase grows in an amorphous matrix, such as a crystallisable elastomer, containing cross-links and/or entanglements, these "topological constraints" need to be pushed away from the crystal phase to allow further crystallization. The accumulation of these topological constraints in the vicinity of the crystal interface may store elastic energy and affect the phase transition. To evaluate the consequences of such mechanism, we introduce a phase field model based on the Flory theory of entropic elasticity. We show that the growth process is indeed sensibly affected, in particular, an exponential increase of the surface energy with the displacement of the interface is induced. This explains the formation of stable nano-crystallites as it is observed in the Strain Induced Crystallization (SIC) of natural rubber. Although simple, the model developed here is able to account for many interesting features of SIC, for instance, the crystallite shapes and their sizes which depend on the applied deformation.

  7. Phase field modelling of strain induced crystal growth in an elastic matrix.

    PubMed

    Laghmach, Rabia; Candau, Nicolas; Chazeau, Laurent; Munch, Etienne; Biben, Thierry

    2015-06-28

    When a crystal phase grows in an amorphous matrix, such as a crystallisable elastomer, containing cross-links and/or entanglements, these "topological constraints" need to be pushed away from the crystal phase to allow further crystallization. The accumulation of these topological constraints in the vicinity of the crystal interface may store elastic energy and affect the phase transition. To evaluate the consequences of such mechanism, we introduce a phase field model based on the Flory theory of entropic elasticity. We show that the growth process is indeed sensibly affected, in particular, an exponential increase of the surface energy with the displacement of the interface is induced. This explains the formation of stable nano-crystallites as it is observed in the Strain Induced Crystallization (SIC) of natural rubber. Although simple, the model developed here is able to account for many interesting features of SIC, for instance, the crystallite shapes and their sizes which depend on the applied deformation. PMID:26133455

  8. Effects of lateral asymmetry on electronic structure of strained semiconductor nanorings in a magnetic field

    NASA Astrophysics Data System (ADS)

    Milošević, M. M.; Tadić, M.; Peeters, F. M.

    2008-11-01

    The influence of lateral asymmetry on the electronic structure and optical transitions in elliptical strained InAs nanorings is analyzed in the presence of a perpendicular magnetic field. Two-dimensional rings are assumed to have elliptical inner and outer boundaries oriented in mutually orthogonal directions. The influence of the eccentricity of the ring on the energy levels is analyzed. For large eccentricity of the ring, we do not find any Aharonov-Bohm effect, in contrast to circular rings. Rather, the single-particle states of the electrons and the holes are localized as in two laterally coupled quantum dots formed in the lobes of the nanoring. Our work indicates that the control of shape is important for the existence of the Aharonov-Bohm effect in semiconductor nanorings.

  9. Effects of lateral asymmetry on electronic structure of strained semiconductor nanorings in a magnetic field.

    PubMed

    Milošević, M M; Tadić, M; Peeters, F M

    2008-11-12

    The influence of lateral asymmetry on the electronic structure and optical transitions in elliptical strained InAs nanorings is analyzed in the presence of a perpendicular magnetic field. Two-dimensional rings are assumed to have elliptical inner and outer boundaries oriented in mutually orthogonal directions. The influence of the eccentricity of the ring on the energy levels is analyzed. For large eccentricity of the ring, we do not find any Aharonov-Bohm effect, in contrast to circular rings. Rather, the single-particle states of the electrons and the holes are localized as in two laterally coupled quantum dots formed in the lobes of the nanoring. Our work indicates that the control of shape is important for the existence of the Aharonov-Bohm effect in semiconductor nanorings. PMID:21832775

  10. Thermal conductivity of bulk GaN—Effects of oxygen, magnesium doping, and strain field compensation

    SciTech Connect

    Simon, Roland B.; Anaya, Julian; Kuball, Martin

    2014-11-17

    The effect of oxygen doping (n-type) and oxygen (O)-magnesium (Mg) co-doping (semi-insulating) on the thermal conductivity of ammonothermal bulk GaN was studied via 3-omega measurements and a modified Callaway model. Oxygen doping was shown to significantly reduce thermal conductivity, whereas O-Mg co-doped GaN exhibited a thermal conductivity close to that of undoped GaN. The latter was attributed to a decreased phonon scattering rate due the compensation of impurity-generated strain fields as a result of dopant-complex formation. The results have great implications for GaN electronic and optoelectronic device applications on bulk GaN substrates.

  11. Balancing ballistic protection against physiological strain: evidence from laboratory and field trials.

    PubMed

    Taylor, Nigel A S; Burdon, Catriona A; van den Heuvel, Anne M J; Fogarty, Alison L; Notley, Sean R; Hunt, Andrew P; Billing, Daniel C; Drain, Jace R; Silk, Aaron J; Patterson, Mark J; Peoples, Gregory E

    2016-02-01

    This project was based on the premise that decisions concerning the ballistic protection provided to defence personnel should derive from an evaluation of the balance between protection level and its impact on physiological function, mobility, and operational capability. Civilians and soldiers participated in laboratory- and field-based studies in which ensembles providing five levels of ballistic protection were evaluated, each with progressive increases in protection, mass (3.4-11.0 kg), and surface-area coverage (0.25-0.52 m(2)). Physiological trials were conducted on volunteers (N = 8) in a laboratory, under hot-dry conditions simulating an urban patrol: walking at 4 km·h(-1) (90 min) and 6 km·h(-1) (30 min or to fatigue). Field-based trials were used to evaluate tactical battlefield movements (mobility) of soldiers (N = 31) under tropical conditions, and across functional tests of power, speed, agility, endurance, and balance. Finally, trials were conducted at a jungle training centre, with soldiers (N = 32) patrolling under tropical conditions (averaging 5 h). In the laboratory, work tolerance was reduced as protection increased, with deep-body temperature climbing relentlessly. However, the protective ensembles could be grouped into two equally stressful categories, each providing a different level of ballistic protection. This outcome was supported during the mobility trials, with the greatest performance decrement evident during fire and movement simulations, as the ensemble mass was increased (-2.12%·kg(-1)). The jungle patrol trials similarly supported this outcome. Therefore, although ballistic protection does increase physiological strain, this research has provided a basis on which to determine how that strain can be balanced against the mission-specific level of required personal protection. PMID:26771198

  12. Strain characterization of fin-shaped field effect transistors with SiGe stressors using nanobeam electron diffraction

    SciTech Connect

    Kim, Sun-Wook; Byeon, Dae-Seop; Jang, Hyunchul; Koo, Sang-Mo; Ko, Dae-Hong; Lee, Hoo-Jeong

    2014-08-25

    This study undertook strain analysis on fin-shaped field effect transistor structures with epitaxial Si{sub 1−x}Ge{sub x} stressors, using nano-beam electron diffraction and finite elements method. Combining the two methods disclosed dynamic strain distribution in the source/drain and channel region of the fin structure, and the effects of dimensional factors such as the stressor thickness and fin width, offering valuable information for device design.

  13. Band Gap Modulation of Bilayer MoS2 Under Strain Engineering and Electric Field: A Density Functional Theory

    NASA Astrophysics Data System (ADS)

    Nguyen, Chuong V.; Hieu, Nguyen N.; Ilyasov, Victor V.

    2016-08-01

    In this work, we investigate band-gap tuning in bilayer MoS2 by an external electric field and by applied biaxial strain. Our calculations show that the band gaps of bilayer MoS2 can be tuned by the perpendicular electric field or biaxial strain. The band gaps of bilayer MoS2 decrease with increasing applied electric field or biaxial strain. When the electric field was introduced, electronic levels are split due to the separation of the valence sub-band and the conduction sub-band states. Our calculations also show that the change in the band gap of bilayer MoS2 is due to the separation of electronic levels by electric field via the Stark effect. At the electric field E_{Field} = 5.5 V/nm or biaxial strain ɛ = 15%, bilayer MoS2 becomes metallic. The semiconductor-metal phase transition in bilayer MoS2 plays an important role in its application for nanodevices.

  14. Band Gap Modulation of Bilayer MoS2 Under Strain Engineering and Electric Field: A Density Functional Theory

    NASA Astrophysics Data System (ADS)

    Nguyen, Chuong V.; Hieu, Nguyen N.; Ilyasov, Victor V.

    2016-05-01

    In this work, we investigate band-gap tuning in bilayer MoS2 by an external electric field and by applied biaxial strain. Our calculations show that the band gaps of bilayer MoS2 can be tuned by the perpendicular electric field or biaxial strain. The band gaps of bilayer MoS2 decrease with increasing applied electric field or biaxial strain. When the electric field was introduced, electronic levels are split due to the separation of the valence sub-band and the conduction sub-band states. Our calculations also show that the change in the band gap of bilayer MoS2 is due to the separation of electronic levels by electric field via the Stark effect. At the electric field E_{Field} = 5.5 V/nm or biaxial strain \\varepsilon = 15%, bilayer MoS2 becomes metallic. The semiconductor-metal phase transition in bilayer MoS2 plays an important role in its application for nanodevices.

  15. Afar-wide Crustal Strain Field from Multiple InSAR Tracks

    NASA Astrophysics Data System (ADS)

    Pagli, C.; Wright, T. J.; Wang, H.; Calais, E.; Bennati Rassion, L. S.; Ebinger, C. J.; Lewi, E.

    2010-12-01

    Onset of a rifting episode in the Dabbahu volcanic segment, Afar (Ethiopia), in 2005 renewed interest in crustal deformation studies in the area. As a consequence, an extensive geodetic data set, including InSAR and GPS measurements have been acquired over Afar and hold great potential towards improving our understanding of the extensional processes that operate during the final stages of continental rupture. The current geodetic observational and modelling strategy has focused on detailed, localised studies of dyke intrusions and eruptions mainly in the Dabbahu segment. However, an eruption in the Erta ‘Ale volcanic segment in 2008, and cluster of earthquakes observed in the Tat Ale segment, are testament to activity elsewhere in Afar. Here we make use of the vast geodetic dataset available to obtain strain information over the whole Afar depression. A systematic analysis of all the volcanic segments, including Dabbahu, Manda-Hararo, Alayta, Tat ‘Ale Erta Ale and the Djibouti deformation zone, is undertaken. We use InSAR data from multiple tracks together with available GPS measurements to obtain a velocity field model for Afar. We use over 300 radar images acquired by the Envisat satellite in both descending and ascending orbits, from 12 distinct tracks in image and wide swath modes, spanning the time period from October 2005 to present time. We obtain the line-of-sight deformation rates from each InSAR track using a network approach and then combine the InSAR velocities with the GPS observations, as suggested by Wright and Wang (2010) following the method of England and Molnar (1997). A mesh is constructed over the Afar area and then we solve for the horizontal and vertical velocities on each node. The resultant full 3D Afar-wide velocity field shows where current strains are being accumulated within the various volcanic segments of Afar, the width of the plate boundary deformation zone and possible connections between distinct volcanic segments on a

  16. Strain fields and damage around notches in ceramic-matrix composites

    SciTech Connect

    Mackin, T.J.; Perry, K.E.; Epstein, J.S.; Cady, C.; Evans, A.G.

    1996-01-01

    Strain development in several notched ceramic-matrix composites (CMCs) has been monitored over a broad range of load. This was achieved by using phase-shifting moire interferometry, which provides a map of the surface strains. A sequence of fringe patterns was used to chart the evolution of strain redistribution as a function of load. The ensuing strains were related to the micromechanical damage mechanisms. Stress concentrations were estimated from the strain by using stress/strain curves. Implications for the notch sensitivity of CMCs are discussed.

  17. Draft Genome Sequence of Strain ATCC 33958, Reported To Be Elizabethkingia miricola

    PubMed Central

    Matyi, Stephanie A.; Hoyt, Peter R.; Ayoubi-Canaan, Patricia; Hasan, Nabeeh A.

    2015-01-01

    We report the draft genome of Elizabethkingia strain ATCC 33958, which has been classified as Elizabethkingia miricola. Similar to other Elizabethkingia species, the ATCC 33958 draft genome contains numerous β-lactamase genes. ATCC 33958 also harbors a urease gene cluster which supports classification as E. miricola. PMID:26205869

  18. Posttranslationally caused bioluminescence burst of the Escherichia coli luciferase reporter strain.

    PubMed

    Ideguchi, Yamato; Oshikoshi, Yuta; Ryo, Masashi; Motoki, Shogo; Kuwano, Takashi; Tezuka, Takafumi; Aoki, Setsuyuki

    2016-01-01

    We continuously monitored bioluminescence from a wild-type reporter strain of Escherichia coli (lacp::luc+/WT), which carries the promoter of the lac operon (lacp) fused with the firefly luciferase gene (luc+). This strain showed a bioluminescence burst when shifted into the stationary growth phase. Bioluminescence profiles of other wild-type reporter strains (rpsPp::luc+ and argAp::luc+) and gene-deletion reporter strains (lacp::luc+/crp- and lacp::luc+/lacI-) indicate that transcriptional regulation is not responsible for generation of the burst. Consistently, changes in the luciferase protein levels did not recapitulate the profile of the burst. On the other hand, dissolved oxygen levels increased over the period across the burst, suggesting that the burst is, at least partially, caused by an increase in intracellular oxygen levels. We discuss limits of the firefly luciferase when used as a reporter for gene expression and its potential utility for monitoring metabolic changes in cells. PMID:26506945

  19. Observation of Rashba zero-field spin splitting in a strained germanium 2D hole gas

    SciTech Connect

    Morrison, C. Rhead, S. D.; Foronda, J.; Leadley, D. R.; Myronov, M.; Wiśniewski, P.

    2014-11-03

    We report the observation, through Shubnikov-de Haas oscillations in the magnetoresistance, of spin splitting caused by the Rashba spin-orbit interaction in a strained Ge quantum well epitaxially grown on a standard Si(001) substrate. The Shubnikov-de Haas oscillations display a beating pattern due to the spin split Landau levels. The spin-orbit parameter and Rashba spin-splitting energy are found to be 1.0 × 10{sup −28 } eVm{sup 3} and 1.4 meV, respectively. This energy is comparable to 2D electron gases in III-V semiconductors, but substantially larger than in Si, and illustrates the suitability of Ge for modulated hole spin transport devices.

  20. Electric-field and strain-tunable electronic properties of MoS2/h-BN/graphene vertical heterostructures.

    PubMed

    Zan, Wenyan; Geng, Wei; Liu, Huanxiang; Yao, Xiaojun

    2016-01-28

    Vertical heterostructures of MoS2/h-BN/graphene have been successfully fabricated in recent experiments. Using first-principles analysis, we show that the structural and electronic properties of such vertical heterostructures are sensitive to applied vertical electric fields and strain. The applied electric field not only enhances the interlayer coupling but also linearly controls the charge transfer between graphene and MoS2 layers, leading to a tunable doping in graphene and controllable Schottky barrier height. Applied biaxial strain could weaken the interlayer coupling and results in a slight shift of graphene's Dirac point with respect to the Fermi level. It is of practical importance that the tunable electronic properties by strain and electric fields are immune to the presence of sulfur vacancies, the most common defect in MoS2. PMID:26742838

  1. The elastostatic plane strain mode I crack tip stress and displacement fields in a generalized linear neo-Hookean elastomer

    NASA Astrophysics Data System (ADS)

    Begley, Matthew R.; Creton, Costantino; McMeeking, Robert M.

    2015-11-01

    A general asymptotic plane strain crack tip stress field is constructed for linear versions of neo-Hookean materials, which spans a wide variety of special cases including incompressible Mooney elastomers, the compressible Blatz-Ko elastomer, several cases of the Ogden constitutive law and a new result for a compressible linear neo-Hookean material. The nominal stress field has dominant terms that have a square root singularity with respect to the distance of material points from the crack tip in the undeformed reference configuration. At second order, there is a uniform tension parallel to the crack. The associated displacement field in plane strain at leading order has dependence proportional to the square root of the same coordinate. The relationship between the amplitude of the crack tip singularity (a stress intensity factor) and the plane strain energy release rate is outlined for the general linear material, with simplified relationships presented for notable special cases.

  2. Analysis of Genomic Diversity among Helicobacter pylori Strains Isolated from Iranian Children by Pulsed Field Gel Electrophoresis

    PubMed Central

    Falsafi, Tahereh; Sotoudeh, Nazli; Feizabadi, Mohammad-Mehdi; Mahjoub, Fatemeh

    2014-01-01

    Objective: Presence of genomic diversity among Helicobacter pylori (H. pylori) strains have been suggested by numerous investigators. Little is known about diversity of H. pylori strains isolated from Iranian children and their association with virulence of the strains. Our purpose was to assess the degree of genomic diversity among H. pylori strains isolated from Iranian-children, on the basis of vacA genotype, cagA status of the strains, sex, age as well as the pathological status of the patients. Methods: Genomic DNA from 44 unrelated H. pylori strains isolated during 1997–2009, was examined by pulse-field gel electrophoresis (PFGE). Pathological status of the patients was performed according to the modified Sydney-system and genotype/status of vacA/cagA genes was determined by PCR. PFGE was performed using XbaI restriction-endonuclease and the field inversion-gel electrophoresis system. Findings: No significant relationship was observed between the patterns of PFGE and the cagA/vacA status/genotype. Also no relationship was observed between age, sex, and pathological status of the children and the PFGE patterns of their isolates. Similar conclusion was obtained by Total Lab software. However, more relationship was observed between the strains isolated in the close period (1997–2009, 2001–2003, 2005–2007, and 2007–2009) and more difference was observed among those obtained in the distant periods (1997 and 2009). Conclusion: H. pylori strains isolated from children in Iran are extremely diverse and this diversity is not related to their virulence characteristics. Occurrence of this extreme diversity may be related to adaptation of H. pylori strains to variable living conditions during transmission between various host individuals. PMID:26019775

  3. Transplacental transmission of field and rescued strains of BTV-2 and BTV-8 in experimentally infected sheep

    PubMed Central

    2013-01-01

    Transplacental transmission of bluetongue virus has been shown previously for the North European strain of serotype 8 (BTV-8) and for tissue culture or chicken egg-adapted vaccine strains but not for field strains of other serotypes. In this study, pregnant ewes (6 per group) were inoculated with either field or rescued strains of BTV-2 and BTV-8 in order to determine the ability of these viruses to cross the placental barrier. The field BTV-2 and BTV-8 strains was passaged once in Culicoides KC cells and once in mammalian cells. All virus inoculated sheep became infected and seroconverted against the different BTV strains used in this study. BTV RNA was detectable in the blood of all but two ewes for over 28 days but infectious virus could only be detected in the blood for a much shorter period. Interestingly, transplacental transmission of BTV-2 (both field and rescued strains) was demonstrated at high efficiency (6 out of 13 lambs born to BTV-2 infected ewes) while only 1 lamb of 12 born to BTV-8 infected ewes showed evidence of in utero infection. In addition, evidence for horizontal transmission of BTV-2 between ewes was observed. As expected, the parental BTV-2 and BTV-8 viruses and the viruses rescued by reverse genetics showed very similar properties to each other. This study showed, for the first time, that transplacental transmission of BTV-2, which had been minimally passaged in cell culture, can occur; hence such transmission might be more frequent than previously thought. PMID:24007601

  4. Channel Strain in Advanced Complementary Metal-Oxide-Semiconductor Field Effect Transistors Measured Using Nano-Beam Electron Diffraction

    NASA Astrophysics Data System (ADS)

    Toda, Akio; Nakamura, Hidetatsu; Fukai, Toshinori; Ikarashi, Nobuyuki

    2008-04-01

    Using high-precision nano-beam electron diffraction (NBD), we clarified the influences of stress liner and the stress of shallow trench isolation on channel strain in advanced metal-oxide-semiconductor field effect transistors (MOSFETs). For systematic strain measurements, we improved the precision of NBD by observing large reciprocal lattice vectors under appropriate diffraction conditions. The absolute value of the channel strain increases by stress liner as gate length decreases, although the drive current increase due to stress liner saturates at a shorter channel length. The normal strain in the gate length direction is inversely proportional to the distance from the gate electrode to the shallow trench isolation (STI). Furthermore, the relationship between measured channel strain induced by STI and drive current change was shown. The drive current of n- and p-MOSFET changes about 5% with 2×10-3 channel strain variation. This result suggests that reducing the shallow trench isolation stress is effective for controlling the drive current change, depending on the active region layout. We conclude that the experimental measurement of channel strain is necessary for device and circuit design.

  5. Electric-field-induced AFE-FE transitions and associated strain/preferred orientation in antiferroelectric PLZST

    PubMed Central

    Lu, Teng; Studer, Andrew J.; Noren, Lasse; Hu, Wanbiao; Yu, Dehong; McBride, Bethany; Feng, Yujun; Withers, Ray L.; Chen, Hua; Xu, Zhuo; Liu, Yun

    2016-01-01

    Electric-field-induced, antiferroelectric-ferroelectric (AFE-FE) phase transitions are common for AFE materials. To date, the strain and preferred orientation evolution as well as the role of the intermediate FE state during the successive AFE-FE-AFE phase transitions has not been clear. To this end, we have herein studied a typical AFE Pb0.97La0.02(Zr0.56Sn0.33Ti0.11)O3 (PLZST) material using in-situ neutron diffraction. It is striking that the AFE-FE phase transition is not fully reversible: in the electric-field-induced FE state, the induced strain exhibits an elliptical distribution, which in turn leads to significant preferred orientation in the final AFE state after withdrawal of the applied electric-field. The ω-dependent neutron diffraction patterns show clear evidence of the induced strain distribution and associated preferred orientation arising from the AFE-FE phase transition. The current work also provides an explanation for several temperature and electric-field dependent dielectric anomalies as well as unrecovered strain change which appear in AFE materials after exposure to sufficiently high electric fields. PMID:27025685

  6. Electric-field-induced AFE-FE transitions and associated strain/preferred orientation in antiferroelectric PLZST.

    PubMed

    Lu, Teng; Studer, Andrew J; Noren, Lasse; Hu, Wanbiao; Yu, Dehong; McBride, Bethany; Feng, Yujun; Withers, Ray L; Chen, Hua; Xu, Zhuo; Liu, Yun

    2016-01-01

    Electric-field-induced, antiferroelectric-ferroelectric (AFE-FE) phase transitions are common for AFE materials. To date, the strain and preferred orientation evolution as well as the role of the intermediate FE state during the successive AFE-FE-AFE phase transitions has not been clear. To this end, we have herein studied a typical AFE Pb0.97La0.02(Zr0.56Sn0.33Ti0.11)O3 (PLZST) material using in-situ neutron diffraction. It is striking that the AFE-FE phase transition is not fully reversible: in the electric-field-induced FE state, the induced strain exhibits an elliptical distribution, which in turn leads to significant preferred orientation in the final AFE state after withdrawal of the applied electric-field. The ω-dependent neutron diffraction patterns show clear evidence of the induced strain distribution and associated preferred orientation arising from the AFE-FE phase transition. The current work also provides an explanation for several temperature and electric-field dependent dielectric anomalies as well as unrecovered strain change which appear in AFE materials after exposure to sufficiently high electric fields. PMID:27025685

  7. Natural Strain

    NASA Technical Reports Server (NTRS)

    Freed, Alan D.

    1995-01-01

    The purpose of this paper is to present a consistent and thorough development of the strain and strain-rate measures affiliated with Hencky. Natural measures for strain and strain-rate, as I refer to them, are first expressed in terms of of the fundamental body-metric tensors of Lodge. These strain and strain-rate measures are mixed tensor fields. They are mapped from the body to space in both the Eulerian and Lagrangian configurations, and then transformed from general to Cartesian fields. There they are compared with the various strain and strain-rate measures found in the literature. A simple Cartesian description for Hencky strain-rate in the Lagrangian state is obtained.

  8. Highly localized strain fields due to planar defects in epitaxial SrBi2Nb2O9 thin films

    NASA Astrophysics Data System (ADS)

    Boulle, A.; Guinebretière, R.; Dauger, A.

    2005-04-01

    Thin films of (00l) oriented SrBi2Nb2O9 epitaxially grown on SrTiO3 by sol-gel spin coating have been studied by means of high-resolution x-ray diffraction reciprocal space mapping. It is shown that these materials contain highly localized heterogeneous strain fields due to imperfect stacking faults (i.e., faults that do not propagate throughout the crystallites building up the film). In the film plane, the strain fields are confined to 11 nm wide regions and characterized by a vertical displacement of 0.18c (where c is the cell parameter) showing that the stacking faults are mainly composed of one additional (or missing) perovskite layer. Prolonged thermal annealing at 700 °C strongly reduces the density of stacking faults and yields a more uniform strain distribution within the film volume without inducing significant grain growth.

  9. Typing of cytopathic and noncytopathic bovine viral diarrhea virus reference and Canadian field strains using a neutralizing monoclonal antibody.

    PubMed Central

    Magar, R; Minocha, H C; Montpetit, C; Carman, P S; Lecomte, J

    1988-01-01

    Cytopathic and noncytopathic reference strains as well as Canadian field isolates of bovine viral diarrhea virus were analyzed by neutralization and immunofluorescence tests using a bovine viral diarrhea virus-specific neutralizing monoclonal antibody. Results on reference strains indicated three major antigenic groups: I) NADL-like, II) New York 1-like and III) Oregon C24V-like. Field isolates could be segregated into groups I and II and none could be typed into the group III. It appears that most bovine viral diarrhea virus strains share a common antigen which carries a major neutralization epitope. These characteristics would make this monoclonal antibody a useful reagent for taxonomic and epizootiological studies. Images Fig. 1. PMID:2450629

  10. A comparison of susceptibility to Myxobolus cerebralis among strains of rainbow trout and steelhead in field and laboratory trials

    USGS Publications Warehouse

    Densmore, Christine L.; Blazer, V.S.; Cartwright, Deborah D.; Schill, W.B.; Schachte, J.H.; Petrie, C.J.; Batur, M.V.; Waldrop, T.B.; Mack, A.; Pooler, P.S.

    2001-01-01

    Three strains of rainbow trout and steelhead Oncorhynchus mykiss were evaluated for the presence of whirling disease in field and laboratory trials. In the field exposures, fingerling Salmon River steelhead and Cayuga Lake and Randolph strains of rainbow trout were placed in wire cages in an earthen, stream-fed pond in New York State that was known to harbor Myxobolus cerebralis. Control fish were held at another hatchery that was free of whirling disease. In the controlled trials at the National Fish Health Research Laboratory, fingerling steelhead and Cayuga Lake and Mount Lassen rainbow trout were exposed to triactinomyxons at low (200 triactinomyxons/fish) or high (2,000 triactinomyxons/fish) levels for 2 h. Controls of each group were sham-exposed. Following an incubation period of 154 d for laboratory trials and 180 d for field trials, cranial tissue samples were taken for spore enumeration (field and laboratory trials) and histological analyses (laboratory only). Clinical signs of disease, including whirling behavior, blacktail, and skeletal deformities, were recorded for each fish in the laboratory trial at the terminal sampling. No clinical evidence of disease was noted among fish in the field trials. Clinical signs were noted among all strains in the laboratory trials at both exposure levels, and these signs were consistently greatest for the Mount Lassen strain. Whirling and skeletal deformities were more evident in the steelhead than in the Cayuga Lake rainbow trout; blacktail was more common in the Cayuga Lake fish. In both field and laboratory trials, spore counts were significantly higher for Cayuga Lake rainbow trout than in steelhead. In laboratory trials, moderate to marked cranial tissue lesions predominated in all three strains.