Science.gov

Sample records for field strains reported

  1. Piezoelectric field in strained GaAs.

    SciTech Connect

    Chow, Weng Wah; Wieczorek, Sebastian Maciej

    2005-11-01

    This report describes an investigation of the piezoelectric field in strained bulk GaAs. The bound charge distribution is calculated and suitable electrode configurations are proposed for (1) uniaxial and (2) biaxial strain. The screening of the piezoelectric field is studied for different impurity concentrations and sample lengths. Electric current due to the piezoelectric field is calculated for the cases of (1) fixed strain and (2) strain varying in time at a constant rate.

  2. Characterization of BoHV-5 field strains circulation and report of transient specific subtype of bovine herpesvirus 5 in Argentina

    PubMed Central

    2011-01-01

    Background Bovine herpesvirus 5 (BoHV-5) is a member of the subfamily Alphaherpesvirinae responsible for meningo-encephalitis in young cattle. The first case of bovine meningo-encephalitis associated with a herpesvirus infection was reported in Australia. The current geographical distribution of BoHV-5 infection is mainly restricted to South America, especially Brazil and Argentina. Outbreaks of BoHV-5 are regularly observed in Argentina suggesting the circulation of the virus in the bovine population. Results Seventeen field strains of BoHV-5 isolated from 1984 to now were confirmed by differential PCR and subjected to restriction endonuclease analysis (REA). Viral DNA was cleaved with BstEII which allows the differentiation among subtypes a, b and non a, non b. According to the REA with BstEII, only one field strain showed a pattern similar to the Argentinean A663 strain (prototype of BoHV-5b). All other isolates showed a clear pattern similar to the Australian N569 strain (prototype of BoHV-5a) consistent with the subtypes observed in Brazil, the other South-American country where BoHV-5 is known to be prevalent. The genomic region of subtype b responsible for the distinct pattern was determined and amplified by PCR; specifically a point mutation was identified in glycoprotein B gene, on the BstEII restriction site, which generates the profile specific of BoHV-5b. Conclusions This is the first report of circulation of BoHV-5a in Argentina as the prevailing subtype. Therefore the circulation of BoHV-5b was restricted to a few years in Argentina, speculating that this subtype was not able to be maintained in the bovine population. The mutation in the gB gene is associated with the difference in the restriction patterns between subtypes "a" and "b". PMID:21299866

  3. Dark field electron holography for strain measurement.

    PubMed

    Béché, A; Rouvière, J L; Barnes, J P; Cooper, D

    2011-02-01

    Dark field electron holography is a new TEM-based technique for measuring strain with nanometer scale resolution. Here we present the procedure to align a transmission electron microscope and obtain dark field holograms as well as the theoretical background necessary to reconstruct strain maps from holograms. A series of experimental parameters such as biprism voltage, sample thickness, exposure time, tilt angle and choice of diffracted beam are then investigated on a silicon-germanium layer epitaxially embedded in a silicon matrix in order to obtain optimal dark field holograms over a large field of view with good spatial resolution and strain sensitivity. PMID:21333860

  4. Strain field of a buried oxide aperture

    NASA Astrophysics Data System (ADS)

    Kießling, F.; Niermann, T.; Lehmann, M.; Schulze, J.-H.; Strittmatter, A.; Schliwa, A.; Pohl, U. W.

    2015-02-01

    The strain field of an AlOx current aperture, fabricated by selective oxidation of an AlAs/GaAs layer buried in a circular GaAs mesa, is studied. Components of the strain tensor for a thin cross-section lamella cut out of such a structure are evaluated from dark-field electron holography, proving the validity of simulations based on linear elasticity. Simulation of the entire structure is utilized to prepare mesa surfaces with tailored strain fields for controlling the nucleation site of InGaAs quantum dots. The experimental proof of strain simulations allows estimating the magnitude of piezoelectricity, yielding for the studied mesa structures a piezoelectric potential up to 50 mV.

  5. Revisiting the gauge fields of strained graphene

    NASA Astrophysics Data System (ADS)

    Iorio, Alfredo; Pais, Pablo

    2015-12-01

    We show that when graphene is only subject to strain, the spin connection gauge field that arises plays no measurable role, but when intrinsic curvature is present and strain is small, spin connection dictates most of the physics. We do so by showing that the Weyl field associated with strain is a pure gauge field and no constraint on the (2 +1 )-dimensional spacetime appears. On the other hand, for constant intrinsic curvature that also gives a pure gauge Weyl field, we find a classical manifestation of a quantum Weyl anomaly, descending from a constrained spacetime. We are in the position to do this because we find the equations that the conformal factor in (2 +1 ) dimensions has to satisfy, which is a nontrivial generalization to (2 +1 ) dimensions of the classic Liouville equation of the differential geometry of surfaces. Finally, we comment on the peculiarities of the only gauge field that can describe strain, the well-known pseudogauge field A1˜u11-u22 and A2˜u12 , and conclude by offering some scenarios in fundamental physics that this peculiar field could help to realize.

  6. 3-dimensional strain fields from tomographic measurements

    NASA Astrophysics Data System (ADS)

    Haldrup, K.; Nielsen, S. F.; Mishnaevsky, L., Jr.; Beckmann, F.; Wert, J. A.

    2006-08-01

    Understanding the distributions of strain within solid bodies undergoing plastic deformations has been of interest for many years in a wide range of disciplines, ranging from basic materials science to biology. However, the desire to investigate these strain fields has been frustrated by the inaccessibility of the interior of most samples to detailed investigation without destroying the sample in the process. To some extent, this has been remedied by the development of advanced surface measurement techniques as well as computer models based on Finite Element methods. Over the last decade, this situation has changed by the introduction of a range of tomographic methods based both on advances in computer technology and in instrumentation, advances which have opened up the interior of optically opaque samples for detailed investigations. We present a general method for assessing the strain in the interior of marker-containing specimens undergoing various types of deformation. The results are compared with Finite Element modelling.

  7. Genome Sequence of a Mycoplasma meleagridis Field Strain.

    PubMed

    Rocha, Ticiana S; Bertolotti, Luigi; Catania, Salvatore; Pourquier, Philippe; Rosati, Sergio

    2016-01-01

    Mycoplasma meleagridis is a major cause of disease and economic loss in turkeys. Here, we report the genome sequence of an M. meleagridis field strain, which enlarges the knowledge about this bacterium and helps the identification of possible coding sequences for drug resistance genes and specific antigens. PMID:26941131

  8. Genome Sequence of a Mycoplasma meleagridis Field Strain

    PubMed Central

    Bertolotti, Luigi; Catania, Salvatore; Pourquier, Philippe; Rosati, Sergio

    2016-01-01

    Mycoplasma meleagridis is a major cause of disease and economic loss in turkeys. Here, we report the genome sequence of an M. meleagridis field strain, which enlarges the knowledge about this bacterium and helps the identification of possible coding sequences for drug resistance genes and specific antigens. PMID:26941131

  9. Strain sensors for high field pulse magnets

    SciTech Connect

    Martinez, Christian; Zheng, Yan; Easton, Daniel; Farinholt, Kevin M; Park, Gyuhae

    2009-01-01

    In this paper we present an investigation into several strain sensing technologies that are being considered to monitor mechanical deformation within the steel reinforcement shells used in high field pulsed magnets. Such systems generally operate at cryogenic temperatures to mitigate heating issues that are inherent in the coils of nondestructive, high field pulsed magnets. The objective of this preliminary study is to characterize the performance of various strain sensing technologies at liquid nitrogen temperatures (-196 C). Four sensor types are considered in this investigation: fiber Bragg gratings (FBG), resistive foil strain gauges (RFSG), piezoelectric polymers (PVDF), and piezoceramics (PZT). Three operational conditions are considered for each sensor: bond integrity, sensitivity as a function of temperature, and thermal cycling effects. Several experiments were conducted as part of this study, investigating adhesion with various substrate materials (stainless steel, aluminum, and carbon fiber), sensitivity to static (FBG and RFSG) and dynamic (RFSG, PVDF and PZT) load conditions, and sensor diagnostics using PZT sensors. This work has been conducted in collaboration with the National High Magnetic Field Laboratory (NHMFL), and the results of this study will be used to identify the set of sensing technologies that would be best suited for integration within high field pulsed magnets at the NHMFL facility.

  10. Motion Driven by Strain Gradient Fields

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Chen, Shaohua

    2015-09-01

    A new driving mechanism for direction-controlled motion of nano-scale objects is proposed, based on a model of stretching a graphene strip linked to a rigid base with linear springs of identical stiffness. We find that the potential energy difference induced by the strain gradient field in the graphene strip substrate can generate sufficient force to overcome the static and kinetic friction forces between the nano-flake and the strip substrate, resulting in the nanoscale flake motion in the direction of gradient reduction. The dynamics of the nano-flake can be manipulated by tuning the stiffness of linear springs, stretching velocity and the flake size. This fundamental law of directional motion induced by strain gradient could be very useful for promising designs of nanoscale manipulation, transportation and smart surfaces.

  11. Motion Driven by Strain Gradient Fields

    PubMed Central

    Wang, Chao; Chen, Shaohua

    2015-01-01

    A new driving mechanism for direction-controlled motion of nano-scale objects is proposed, based on a model of stretching a graphene strip linked to a rigid base with linear springs of identical stiffness. We find that the potential energy difference induced by the strain gradient field in the graphene strip substrate can generate sufficient force to overcome the static and kinetic friction forces between the nano-flake and the strip substrate, resulting in the nanoscale flake motion in the direction of gradient reduction. The dynamics of the nano-flake can be manipulated by tuning the stiffness of linear springs, stretching velocity and the flake size. This fundamental law of directional motion induced by strain gradient could be very useful for promising designs of nanoscale manipulation, transportation and smart surfaces. PMID:26323603

  12. Gravity- and strain-induced electric fields outside metal surfaces

    NASA Astrophysics Data System (ADS)

    Rossi, F.; Opat, G. I.

    1992-05-01

    The gravity-induced electric field outside a metal object supported against gravity is predominantly due to its differential compression which arises in supporting its own weight. This Dessler-Michel-Rorschach-Trammell (DMRT) field, as it has come to be known, is expected to be proportional to the strain derivative of the work function of the surface. We report the results of an experiment designed to produce this effect with mechanically applied strain rather than with gravity. In essence, we have measured the strain-induced contact-potential variation between a metal surface of known strain gradient and an unstrained capacitive probe. We describe useful solutions to the problems faced in such an experiment, which were not adequately addressed by earlier workers. A knowledge of the DMRT field is of considerable importance to experiments designed to compare the gravitational acceleration of charged particles and antiparticles inside a metallic shield. Past experiments with electrons yielded results contrary to the then-expected DMRT field. We review and partially extend the theoretical background by drawing on later results based on the jellium model of metal surfaces. Our results for Cu and Au surfaces are consistent with jellium-based calculations which imply a DMRT field that is about an order of magnitude smaller and of opposite sign to the early estimates.

  13. Field Performance of a Genetically Engineered Strain of Pink Bollworm

    PubMed Central

    Simmons, Gregory S.; McKemey, Andrew R.; Morrison, Neil I.; O'Connell, Sinead; Tabashnik, Bruce E.; Claus, John; Fu, Guoliang; Tang, Guolei; Sledge, Mickey; Walker, Adam S.; Phillips, Caroline E.; Miller, Ernie D.; Rose, Robert I.; Staten, Robert T.; Donnelly, Christl A.; Alphey, Luke

    2011-01-01

    Pest insects harm crops, livestock and human health, either directly or by acting as vectors of disease. The Sterile Insect Technique (SIT) – mass-release of sterile insects to mate with, and thereby control, their wild counterparts – has been used successfully for decades to control several pest species, including pink bollworm, a lepidopteran pest of cotton. Although it has been suggested that genetic engineering of pest insects provides potential improvements, there is uncertainty regarding its impact on their field performance. Discrimination between released and wild moths caught in monitoring traps is essential for estimating wild population levels. To address concerns about the reliability of current marking methods, we developed a genetically engineered strain of pink bollworm with a heritable fluorescent marker, to improve discrimination of sterile from wild moths. Here, we report the results of field trials showing that this engineered strain performed well under field conditions. Our data show that attributes critical to SIT in the field – ability to find a mate and to initiate copulation, as well as dispersal and persistence in the release area – were comparable between the genetically engineered strain and a standard strain. To our knowledge, these represent the first open-field experiments with a genetically engineered insect. The results described here provide encouragement for the genetic control of insect pests. PMID:21931649

  14. Area balance and strain in an extensional fault system: Strategies for improved oil recovery in fractured chalk, Gilbertown Field, southwestern Alabama. Final report, March 1996--September 1998

    SciTech Connect

    Pashin, J.C.; Raymond, D.E.; Rindsberg, A.K.; Alabi, G.G.; Carroll, R.E.; Groshong, R.H.; Jin, G.

    1998-12-01

    This project was designed to analyze the structure of Mesozoic and Tertiary strata in Gilbertown Field and adjacent areas to suggest ways in which oil recovery can be improved. The Eutaw Formation comprises 7 major flow units and is dominated by low-resistivity, low-contrast play that is difficult to characterize quantitatively. Selma chalk produces strictly from fault-related fractures that were mineralized as warm fluid migrated from deep sources. Resistivity, dipmeter, and fracture identification logs corroborate that deformation is concentrated in the hanging-wall drag zones. New area balancing techniques were developed to characterize growth strata and confirm that strain is concentrated in hanging-wall drag zones. Curvature analysis indicates that the faults contain numerous fault bends that influence fracture distribution. Eutaw oil is produced strictly from footwall uplifts, whereas Selma oil is produced from fault-related fractures. Clay smear and mineralization may be significant trapping mechanisms in the Eutaw Formation. The critical seal for Selma reservoirs, by contrast, is where Tertiary clay in the hanging wall is juxtaposed with poorly fractured Selma chalk in the footwall. Gilbertown Field can be revitalized by infill drilling and recompletion of existing wells. Directional drilling may be a viable technique for recovering untapped oil from Selma chalk. Revitalization is now underway, and the first new production wells since 1985 are being drilled in the western part of the field.

  15. Area balance and strain in an extensional fault system: Strategies for improved oil recovery in fractured chalk, Gilbertown Field, southwestern Alabama. Annual report, March 1996--March 1997

    SciTech Connect

    Pashin, J.C.; Raymond, D.E.; Rindsberg, A.K.; Alabi, G.G.; Groshong, R.H.

    1997-08-01

    Gilbertown Field is the oldest oil field in Alabama and produces oil from chalk of the Upper Cretaceous Selma Group and from sandstone of the Eutaw Formation along the southern margin of the Gilbertown fault system. Most of the field has been in primary recovery since establishment, but production has declined to marginally economic levels. This investigation applies advanced geologic concepts designed to aid implementation of improved recovery programs. The Gilbertown fault system is detached at the base of Jurassic salt. The fault system began forming as a half graben and evolved in to a full graben by the Late Cretaceous. Conventional trapping mechanisms are effective in Eutaw sandstone, whereas oil in Selma chalk is trapped in faults and fault-related fractures. Burial modeling establishes that the subsidence history of the Gilbertown area is typical of extensional basins and includes a major component of sediment loading and compaction. Surface mapping and fracture analysis indicate that faults offset strata as young as Miocene and that joints may be related to regional uplift postdating fault movement. Preliminary balanced structural models of the Gilbertown fault system indicate that synsedimentary growth factors need to be incorporated into the basic equations of area balance to model strain and predict fractures in Selma and Eutaw reservoirs.

  16. Volume strain within The Geysers geothermal field

    NASA Astrophysics Data System (ADS)

    Mossop, Antony; Segall, Paul

    1999-12-01

    During the 1970s and 1980s, The Geysers geothermal region was rapidly developed as a site of geothermal power production. The likelihood that this could cause significant strain within the reservoir, with corresponding surface displacements, led to a series of deformation monitoring surveys. In 1973, 1975, 1977, and 1980, The Geysers region was surveyed using first-order, class I, spirit leveling. In 1994, 1995, and 1996, many of the leveling control monuments were resurveyed using high-precision Global Positioning System receivers. The two survey methods are reconciled using the GEOID96 geoid model. The displacements are inverted to determine volume strain within the reservoir. For the period 1980-1994, peak volume strains in excess of 5×10-4 are imaged. There is an excellent correlation between the observed changes in reservoir steam pressures and the imaged volume strain. If reservoir pressure changes are inducing volume strain, then the reservoir quasi-static bulk modulus K must be <4.6×109 Pa. However, seismic velocities indicate a much suffer reservoir with K = 3.4 × 1010 Pa. This apparent discrepancy is shown to be consistent with predicted frequency dependence in K for fractured and water-saturated rock. Inversion of surface deformation data therefore appears to be a powerful method for imaging pressure change within the body of the reservoir. Correlation between induced seismicity at The Geysers and volume strain is observed. However, earthquake distribution does not appear to have a simple relationship with volume strain rate.

  17. Volume strain within the Geysers geothermal field

    SciTech Connect

    Mossop, Antony; Segall, Paul

    1999-12-10

    During the 1970s and 1980s. The Geysers geothermal region was rapidly developed as a site of geothermal power production. The likelihood that this could cause significant strain within the reservoir, with corresponding surface displacements, led to a series of deformation monitoring surveys. In 1973, 1975, 1977, and 1980, The Geysers region was surveyed using first-order, class I, spirit leveling. In 1994, 1995, and 1996, many of the leveling control monuments were resurveyed using high-precision Global Positioning System receivers. The two survey methods are reconciled using the GEOID96 geoid model. The displacements are inverted to determine volume strain within the reservoir. For the period 1980-1994, peak volume strains in excess of 5x10{sup -4} are imaged. There is an excellent correlation between the observed changes in reservoir steam pressures and the imaged volume strain. If reservoir pressure changes are inducing volume strain, then the reservoir quasi-static bulk modulus K must be <4.6x10{sup 9} Pa. However, seismic velocities indicate a much stiffer reservoir with K=3.4x10{sup 10} Pa. This apparent discrepancy is shown to be consistent with predicted frequency dependence in K for fractured and water-saturated rock. Inversion of surface deformation data therefore appears to be a powerful method for imaging pressure change within the body of the reservoir. Correlation between induced seismicity at The Geysers and volume strain is observed. However, earthquake distribution does not appear to have a simple relationship with volume strain rate. (c) 1999 American Geophysical Union.

  18. Imaging 3D strain field monitoring during hydraulic fracturing processes

    NASA Astrophysics Data System (ADS)

    Chen, Rongzhang; Zaghloul, Mohamed A. S.; Yan, Aidong; Li, Shuo; Lu, Guanyi; Ames, Brandon C.; Zolfaghari, Navid; Bunger, Andrew P.; Li, Ming-Jun; Chen, Kevin P.

    2016-05-01

    In this paper, we present a distributed fiber optic sensing scheme to study 3D strain fields inside concrete cubes during hydraulic fracturing process. Optical fibers embedded in concrete were used to monitor 3D strain field build-up with external hydraulic pressures. High spatial resolution strain fields were interrogated by the in-fiber Rayleigh backscattering with 1-cm spatial resolution using optical frequency domain reflectometry. The fiber optics sensor scheme presented in this paper provides scientists and engineers a unique laboratory tool to understand the hydraulic fracturing processes in various rock formations and its impacts to environments.

  19. Mapping and load response of overload strain fields: Synchrotron X-ray measurements

    SciTech Connect

    Shukla, V; Jisrawi, N M; Sadangi, R K; Pao, P S; Horvath, K; Sadananda, K; Ignatov, A; Skaritka, J; Tsakalakos, T

    2009-02-05

    High energy synchrotron X-ray diffraction measurements have been performed to provide quantitative microscopic guidance for modeling of fatigue crack growth. Specifically we report local strain mapping, along with in situ loading strain response, results on 4140 steel fatigue specimens exhibiting the crack growth retardation 'overload effect'. Detailed, 2D, {epsilon}{gamma}{gamma}-strain field mapping shows that a single overload (OL) cycle creates a compressive strain field extending millimeters above and below the crack plane. The OL strain field structures are shown to persist after the crack tip has grown well beyond the OL position. The specimen exhibiting the maximal crack growth rate retardation following overload exhibits a tensile residual strain region at the crack tip. Strain field results, on in situ tensile loaded specimens, show a striking critical threshold load, F{sub c}, phenomenon in their strain response. At loads below F{sub c} the strain response is dominated by a rapid suppression of the compressive OL feature with modest response at the crack tip. At loads above F{sub c} the strain response at the OL position terminates and the response at the crack tip becomes large. This threshold load response behavior is shown to exhibit lower F{sub c} values, and dramatically enhanced rates of strain change with load as the crack tip propagates farther beyond the OL position. The OL strain feature behind the crack tip also is shown to be suppressed by removing the opposing crack faces via an electron discharge cut passing through the crack tip. Finally unique 2D strain field mapping (imaging) results, through the depth of the specimen, of the fatigue crack front and the OL feature in the wake are also presented.

  20. FIBER BRAGG GRATING SENSORS FOR LOCALIZED STRAIN MEASUREMENTS AT LOW TEMPERATURE AND IN HIGH MAGNETIC FIELD

    SciTech Connect

    Ramalingam, Rajinikumar

    2010-04-09

    Study of magnetostrictive effects in the bulk superconductors is very essential and can give more knowledge about the effects like namely, flux pinning induced strain, pincushion distortions in the magnets and so on. Currently used electro mechanical sensors are magnetic field dependent and can only give the global stress/strain information but not the local stress/strains. But the information like radius position dependent strain and characterisation of shape distortion in non cylindrical magnets are interesting. Wavelength encoded multiplexed fiber Bragg Grating sensors inscribed in one fiber gives the possibility to measure magentostrictive effects spatially resolved in low temperature and high magnetic field. This paper specifies the design and technology requirements to adapt FBG sensors for such an application. Also reports the experiments demonstrate the properties of glass FBG at low temperature (4.2 K) and the results of strain measurement at 4.2 K/8 T. The sensor exhibits a linear wavelength change for the strain change.

  1. Dynamic scattering theory for dark-field electron holography of 3D strain fields.

    PubMed

    Lubk, Axel; Javon, Elsa; Cherkashin, Nikolay; Reboh, Shay; Gatel, Christophe; Hÿtch, Martin

    2014-01-01

    Dark-field electron holography maps strain in crystal lattices into reconstructed phases over large fields of view. Here we investigate the details of the lattice strain-reconstructed phase relationship by applying dynamic scattering theory both analytically and numerically. We develop efficient analytic linear projection rules for 3D strain fields, facilitating a straight-forward calculation of reconstructed phases from 3D strained materials. They are used in the following to quantify the influence of various experimental parameters like strain magnitude, specimen thickness, excitation error and surface relaxation. PMID:24012934

  2. Experimental examination of strain field within GP zone in an Al-Zn-Mg-Cu alloy

    NASA Astrophysics Data System (ADS)

    Bai, P. C.; Liu, F.; Hou, X. H.; Zhao, C. W.; Xing, Y. M.

    2012-11-01

    The strain field of GP zone plays a very important role in strengthening of the precipitation-hardened aluminum alloys by prohibiting movement of dislocations; however, quantitative analysis about the strain field of the GP zone in the aluminum alloys has been seldom reported elsewhere. In this paper, the microstructure of GP zone in an Al-Zn-Mg-Cu alloy was explored by using high-resolution transmission electron microscopy (HRTEM), and the displacement field of lattice planes within the GP zone was experimentally measured by geometric phase analysis (GPA) technique; then, the quantitative results about strains of the distorted lattice planes within the GP zone were also obtained. It is found that the GP zone core is convergence region of the strains, and the maximum value of the compressive strains within the GP zone is about 7.6%.

  3. MLVA typing of Mycoplasma hyopneumoniae bacterins and field strains.

    PubMed

    Tamiozzo, P; Zamora, R; Lucchesi, P M A; Estanguet, A; Parada, J; Carranza, A; Camacho, P; Ambrogi, A

    2015-01-01

    Because of the lack of information about both the genetic characteristics of Mycoplasma hyopneumoniae commercial vaccines and their relationship with field strains, the authors attempted to identify genetic subtypes of some M hyopneumoniae bacterins, and to compare them with M. hyopneumoniae field strains. Six commercial M hyopneumoniae bacterins and 28 bronchoalveolar lavages from pigs at slaughter from three herds were analysed by Multiple-Locus Variable number tandem repeat Analysis (MLVA) on p146R1, p146R3, H4, H5 and p95 loci. The results obtained showed the presence of more than one M hyopneumoniae genotype in some pigs and also in one of the bacterins analysed. It is also worth noting that MLVA typing allowed the distinction among circulating field strains and also when comparing them with vaccine strains, which, knowing the relatedness among them, could be useful in the research of the efficacy of the vaccines. PMID:26495127

  4. MLVA typing of Mycoplasma hyopneumoniae bacterins and field strains

    PubMed Central

    Tamiozzo, P.; Zamora, R.; Lucchesi, P. M. A.; Estanguet, A.; Parada, J.; Carranza, A.; Camacho, P.; Ambrogi, A.

    2015-01-01

    Because of the lack of information about both the genetic characteristics of Mycoplasma hyopneumoniae commercial vaccines and their relationship with field strains, the authors attempted to identify genetic subtypes of some M hyopneumoniae bacterins, and to compare them with M. hyopneumoniae field strains. Six commercial M hyopneumoniae bacterins and 28 bronchoalveolar lavages from pigs at slaughter from three herds were analysed by Multiple-Locus Variable number tandem repeat Analysis (MLVA) on p146R1, p146R3, H4, H5 and p95 loci. The results obtained showed the presence of more than one M hyopneumoniae genotype in some pigs and also in one of the bacterins analysed. It is also worth noting that MLVA typing allowed the distinction among circulating field strains and also when comparing them with vaccine strains, which, knowing the relatedness among them, could be useful in the research of the efficacy of the vaccines. PMID:26495127

  5. Validation of a novel fiber optic strain gauge in a cryogenic and high magnetic field environment

    NASA Astrophysics Data System (ADS)

    Baxter, Scott; Lakrimi, M.'hamed; Thomas, Adrian M.; Gao, Yunxin; Blakes, Hugh; Gibbens, Paul; Looi, Mengche

    2010-10-01

    We report on the first operation of an easy to use low cost novel fiber optic strain gauge (FOSG) in cryogenic and magnetic field environments. The FOSGs were mounted on a superconducting coil and resin impregnated. The gauges detected resin shrinkage upon curing. On cooldown, the FOSG monitored the thermal contraction strains of the coil and the electromagnetic strain during energization. The coil was deliberately quenched, in excess of 175 times, and again the FOSG detected the quenches and measured the thermal expansion-induced strains and subsequent re-cooling of the coil after a quench. Agreement with FEA predictions was very good.

  6. Mechanical strains and electric fields applied to topologically imprinted elastomers

    NASA Astrophysics Data System (ADS)

    Burridge, D. J.; Mao, Y.; Warner, M.

    2006-08-01

    We analyze and predict the behavior of a chirally imprinted elastomer under a mechanical strain and an electric field, applied along the helical axis. As the strain and/or field increases, the system is deformed from a conical or transverse imprinted state towards an ultimately nematic one. At a critical strain and/or field there is a first-order transition to a low imprinting efficiency state. This transition is accompanied by a discontinuous global rotation of the director toward the axis of the imprinted helix, measured by the cone angle, θ . We show that the threshold electric field required for switching this transition can be conveniently low, provided an appropriate prestrain is imposed. We suggest that these properties may give rise to a “chiral pump.”

  7. A geometric nonlinear degenerated shell element using a mixed formulation with independently assumed strain fields. Final Report; Ph.D. Thesis, 1989

    NASA Technical Reports Server (NTRS)

    Graf, Wiley E.

    1991-01-01

    A mixed formulation is chosen to overcome deficiencies of the standard displacement-based shell model. Element development is traced from the incremental variational principle on through to the final set of equilibrium equations. Particular attention is paid to developing specific guidelines for selecting the optimal set of strain parameters. A discussion of constraint index concepts and their predictive capability related to locking is included. Performance characteristics of the elements are assessed in a wide variety of linear and nonlinear plate/shell problems. Despite limiting the study to geometric nonlinear analysis, a substantial amount of additional insight concerning the finite element modeling of thin plate/shell structures is provided. For example, in nonlinear analysis, given the same mesh and load step size, mixed elements converge in fewer iterations than equivalent displacement-based models. It is also demonstrated that, in mixed formulations, lower order elements are preferred. Additionally, meshes used to obtain accurate linear solutions do not necessarily converge to the correct nonlinear solution. Finally, a new form of locking was identified associated with employing elements designed for biaxial bending in uniaxial bending applications.

  8. Draft Genome Sequence of Pseudomonas sp. Strain 2-92, a Biological Control Strain Isolated from a Field Plot Under Long-Term Mineral Fertilization

    PubMed Central

    Adam, Zaky; Chen, Qing; Lewis, Christopher T.; Lévesque, C. André; Xu, Renlin

    2014-01-01

    Pseudomonas sp. strain 2-92, isolated from a Canadian field plot under long-term mineral fertilization, strongly inhibits the growth of Fusarium graminearum, Rhizoctonia solani, and Gaeumannomyces graminis. Here, we report the draft genome sequence of Pseudomonas sp. strain 2-92. PMID:24407636

  9. Reliability and field testing of distributed strain and temperature sensors

    NASA Astrophysics Data System (ADS)

    Inaudi, Daniele; Glisic, Branko

    2006-03-01

    Distributed fiber optic sensing presents unique features that have no match in conventional sensing techniques. The ability to measure temperatures and strain at thousands of points along a single fiber is particularly interesting for the monitoring of large structures such as pipelines, flow lines, oil wells, dams and dikes. Sensing systems based on Brillouin and Raman scattering have been used for example to detect pipeline leakages, verify pipeline operational parameters, prevent failure of pipelines installed in landslide areas, optimize oil production from wells and detect hot-spots in high-power cables. The measurement instruments have been vastly improved in terms of spatial, temperature and strain resolution, distance range, measurement time, data processing and system cost. Analyzers for Brillouin and Raman scattering are now commercially available and offer reliable operation in field conditions. New application opportunities have however demonstrated that the design and production of sensing cables is a critical element for the success of any distributed sensing instrumentation project. Although standard telecommunication cables can be effectively used for sensing ordinary temperatures, monitoring high and low temperatures or distributed strain present unique challenges that require specific cable designs. This contribution presents three cable designs for high-temperature sensing, strain sensing and combined strain and temperature monitoring as well as the respective testing procedures during production and in the field.

  10. Strain Engineering for Transition Metal Dichalcogenides Based Field Effect Transistors.

    PubMed

    Shen, Tingting; Penumatcha, Ashish V; Appenzeller, Joerg

    2016-04-26

    Using electrical characteristics from three-terminal field-effect transistors (FETs), we demonstrate substantial strain induced band gap tunability in transition metal dichalcogenides (TMDs) in line with theoretical predictions and optical experiments. Devices were fabricated on flexible substrates, and a cantilever sample holder was used to apply uniaxial tensile strain to the various multilayer TMD FETs. Analyzing in particular transfer characteristics, we argue that the modified device characteristics under strain are clear evidence of a band gap reduction of 100 meV in WSe2 under 1.35% uniaxial tensile strain at room temperature. Furthermore, the obtained device characteristics imply that the band gap does not shrink uniformly under strain relative to a reference potential defined by the source/drain contacts. Instead, the band gap change is only related to a change of the conduction band edge of WSe2, resulting in a decrease in the Schottky barrier (SB) for electrons without any change for hole injection into the valence band. Simulations of SB device characteristics are employed to explain this point and to quantify our findings. Last, our experimental results are compared with DFT calculations under strain showing excellent agreement between theoretical predictions and the experimental data presented here. PMID:27043387

  11. Area balance and strain in an extensional fault system: Strategies for improved oil recovery in fractured chalk, Gilbertown Field, southwestern Alabama -- Year 2. Annual report, March 1997--March 1998

    SciTech Connect

    Pashin, J.C.; Raymond, D.E.; Rindsberg, A.K.; Alabi, G.G.; Carroll, R.E.

    1998-09-01

    Gilbertown Field is the oldest oil field in Alabama and has produced oil from fractured chalk of the Cretaceous Selma Group and glauconitic sandstone of the Eutaw Formation. Nearly all of Gilbertown Field is still in primary recovery, although waterflooding has been attempted locally. The objective of this project is to analyze the geologic structure and burial history of Mesozoic and Tertiary strata in Gilbertown Field and adjacent areas in order to suggest ways in which oil recovery can be improved. Indeed, the decline of oil production to marginally economic levels in recent years has made this type of analysis timely and practical. Key technical advancements being sought include understanding the relationship of requisite strain to production in Gilbertown reservoirs, incorporation of synsedimentary growth factors into models of area balance, quantification of the relationship between requisite strain and bed curvature, determination of the timing of hydrocarbon generation, and identification of the avenues and mechanisms of fluid transport.

  12. Enhanced response from field-annealed magnetoelastic strain sensor

    NASA Astrophysics Data System (ADS)

    Dalponte, Alessandro; Bastos, Eduardo S.; Missell, Frank P.

    2016-08-01

    Magnetoelastic materials permit the development of remote-query strain sensors for use in situations of difficult access. In this work, we examined materials for a remote-query strain sensor based on the ΔE effect. An applied stress modifies the magnetic field produced by a transducer glued to the sample and thereby changes the resonant frequency of a vibrating amorphous ribbon. We considered several amorphous alloys for both the vibrating ribbon and the transducer. To eliminate the casting stress and improve the anisotropy, ribbons were annealed in a transverse magnetic field. This resulted in a dramatic improvement in the sensor performance when sensors were biased above the anisotropy field. For example, a Metglas 2826MB3 ribbon with resonant frequency of 62 kHz showed frequency shifts of up to 5 kHz for a deformation of 0.03%. These results are in good agreement with models for the ΔE effect.

  13. Localized strain field measurement on laminography data with mechanical regularization

    NASA Astrophysics Data System (ADS)

    Taillandier-Thomas, Thibault; Roux, Stéphane; Morgeneyer, Thilo F.; Hild, François

    2014-04-01

    For an in-depth understanding of the failure of structural materials the study of deformation mechanisms in the material bulk is fundamental. In situ synchrotron computed laminography provides 3D images of sheet samples and digital volume correlation yields the displacement and strain fields between each step of experimental loading by using the natural contrast of the material. Difficulties arise from the lack of data, which is intrinsic to laminography and leads to several artifacts, and the little absorption contrast in the 3D image texture of the studied aluminum alloy. To lower the uncertainty level and to have a better mechanical admissibility of the measured displacement field, a regularized digital volume correlation procedure is introduced and applied to measure localized displacement and strain fields.

  14. Demonstration Using Field Collections that Argentina Fall Armyworm Populations Exhibit Strain-specific Host Plant Preferences.

    PubMed

    Murúa, M Gabriela; Nagoshi, Rodney N; Dos Santos, Daniel A; Hay-Roe, Mirian M; Meagher, Robert L; Vilardi, J C

    2015-10-01

    Spodoptera frugiperda, the fall armyworm, is a major economic pest throughout the Western Hemisphere of corn (maize), cotton, sorghum, and a variety of agricultural grasses and vegetable crops. Studies in the United States, the Caribbean, and Brazil demonstrated the existence of two subpopulations (previously designated "host strains") that differ in their choice of plant host. Specifically, the corn strain is preferentially found in corn and sorghum, while the rice strain is dominant in rice, turf grass, and alfalfa. However, inconsistent results were reported in surveys of fall armyworm in Argentina, with some indicating that the host plant preferences of the two strains might be compromised or even nonexistent. If correct, this would complicate efforts to control this pest by considerably expanding the range of habitats that would have to be considered as potential sources for fall armyworm infestations in specific crops. A reexamination of Argentine fall armyworm, this time with field collections rather than the laboratory colonies used in previous studies, confirmed the existence of the two strains and their host preferences. Specifically, the corn strain was consistently the majority population infesting corn and was usually so in sorghum, while the rice strain was predominant in pasture/turf grasses and alfalfa. The one outlier was a collection from rice, which had a corn strain majority. Overall, the data were generally consistent with strain behaviors observed in other areas of the Western Hemisphere. PMID:26453719

  15. Characterization of Erwinia amylovora strains from Bulgaria by pulsed-field gel electrophoresis.

    PubMed

    Atanasova, Iliana; Urshev, Zoltan; Hristova, Petya; Bogatzevska, Nevena; Moncheva, Penka

    2012-01-01

    The aim of this study was to characterize genetically Bulgarian Erwinia amylovora strains using pulsed-field gel electrophoresis (PFGE) analysis. Fifty E. amylovora strains isolated from different hosts, locations, as well as in different years were analysed by PFGE after XbaI, SpeI, and XhoI digestion of the genomic DNA. The strains were distributed into four groups according to their XbaI-generated profile. About 82% of the strains displayed a PFGE profile identical to that of type Pt2. Three strains belonged to the Central Europe Pt1 type. Two new PFGE profiles, not reported so far, were established--one for a strain isolated from Malus domestica and another for all Fragaria spp. strains. The same grouping of the strains was obtained after analysis of the SpeI digestion patterns. On the basis of PFGE profiles, after XbaI and SpeI digestion, a genetic differentiation between the strains associated with subfamily Maloideae and subfamily Rosoideae was revealed. The presence of more than one PFGE profile in the population of E. amylovora in Bulgaria suggests a multiple source of inoculum. PMID:22624335

  16. Genetic diversity of the Korean field strains of porcine reproductive and respiratory syndrome virus.

    PubMed

    Lee, Jung-Ah; Lee, Nak-Hyung; Lee, Joong-Bok; Park, Seung-Yong; Song, Chang-Seon; Choi, In-Soo; Lee, Sang-Won

    2016-06-01

    Porcine reproductive and respiratory syndrome (PRRS) is one of the most economically significant diseases in the swine industry. The PRRS virus (PRRSV) has genetically diverse populations, like other RNA viruses, and various field strains continue to be reported worldwide. The molecular epidemiological study of PRRSV can provide important data for use in controlling the disease. In this study, 50 oral fluid samples from conventional farms in Korea were taken to analyze nucleotide sequences of the open reading frame 5 of PRRSV. The viruses present in more than 80% of oral fluid samples genetically originated from the type 2 PRRSV, which is North American (NA) lineage. In addition 8.9% of samples contained both of the type 1 PRRSV, which is European (EU) lineage and the type 2 PRRSV. About 60% of farms involved in this study had more than two strains of PRRSV. In phylogenetic analysis, the Korean field strains of PRRSV detected from the oral fluid samples were divided into several subgroups: four subgroups of Korean field strains clustered with the type 1 PRRSV, and other five subgroups of Korean field strains clustered with the type 2. These results suggest that the type 2 PRRSV is more prevalent than the type 1 in Korea and heterologous strains of PRRSV can simultaneously infect a single pig farm. PMID:26546289

  17. Field practice internship final report

    SciTech Connect

    Foster, T.

    1994-05-01

    This field practice internship final report gives an overview of the field practice, which was completed at the Oak Ridge Y-12 Plant, Martin Marietta Energy Systems, Inc., Environmental Management Department, Oak Ridge, Tennessee. The field practice focused on the completion of the Superfund Amendments and Reauthorization Act (SARA) Title III, Emergency Planning and Community Right-to-Know Act Section 312, Tier II Report. The field practice internship was conducted on a full-time basis between December 13, 1993 through February 18, 1994. Sheila Poligone, Emergency Planning and Community Right-to-Know Act (EPCRA) Coordinator served as the field practice preceptor.

  18. Strain fields and line energies of dislocations in uranium dioxide

    NASA Astrophysics Data System (ADS)

    Parfitt, David C.; Bishop, Clare L.; Wenman, Mark R.; Grimes, Robin W.

    2010-05-01

    Computer simulations are used to investigate the stability of typical dislocations in uranium dioxide. We explain in detail the methods used to produce the dislocation configurations and calculate the line energy and Peierls barrier for pure edge and screw dislocations with the shortest Burgers vector {1\\over 2} \\langle 110 \\rangle . The easiest slip system is found to be the {100}lang110rang system for stoichiometric UO2, in agreement with experimental observations. We also examine the different strain fields associated with these line defects and the close agreement between the strain field predicted by atomic scale models and the application of elastic theory. Molecular dynamics simulations are used to investigate the processes of slip that may occur for the three different edge dislocation geometries and nudged elastic band calculations are used to establish a value for the Peierls barrier, showing the possible utility of the method in investigating both thermodynamic average behaviour and dynamic processes such as creep and plastic deformation.

  19. Survival and Competitiveness of Bradyrhizobium japonicum Strains 20 Years after Introduction into Field Locations in Poland

    PubMed Central

    Narożna, Dorota; Pudełko, Krzysztof; Króliczak, Joanna; Golińska, Barbara; Sugawara, Masayuki; Mądrzak, Cezary J.

    2015-01-01

    It was previously demonstrated that there are no indigenous strains of Bradyrhizobium japonicum forming nitrogen-fixing root nodule symbioses with soybean plants in arable field soils in Poland. However, bacteria currently classified within this species are present (together with Bradyrhizobium canariense) as indigenous populations of strains specific for nodulation of legumes in the Genisteae tribe. These rhizobia, infecting legumes such as lupins, are well established in Polish soils. The studies described here were based on soybean nodulation field experiments, established at the Poznań University of Life Sciences Experiment Station in Gorzyń, Poland, and initiated in the spring of 1994. Long-term research was then conducted in order to study the relation between B. japonicum USDA 110 and USDA 123, introduced together into the same location, where no soybean rhizobia were earlier detected, and nodulation and competitive success were followed over time. Here we report the extra-long-term saprophytic survival of B. japonicum strains nodulating soybeans that were introduced as inoculants 20 years earlier and where soybeans were not grown for the next 17 years. The strains remained viable and symbiotically competent, and molecular and immunochemical methods showed that the strains were undistinguishable from the original inoculum strains USDA 110 and USDA 123. We also show that the strains had balanced numbers and their mobility in soil was low. To our knowledge, this is the first report showing the extra-long-term persistence of soybean-nodulating strains introduced into Polish soils and the first analyzing the long-term competitive relations of USDA 110 and USDA 123 after the two strains, neither of which was native, were introduced into the environment almost 2 decades ago. PMID:26048934

  20. Finite-element study of strain field in strained-Si MOSFET.

    PubMed

    Liu, H H; Duan, X F; Xu, Q X

    2009-02-01

    The strain field in the channel of a p-type metal-oxide-semiconductor field effect transistor fabricated by integrating Ge pre-amorphization implantation for source/drain regions is evaluated using a finite-element method combining with large angle convergent-beam electron diffraction (LACBED). The finite-element calculation shows that there is a very large compressive strain in the top layer of the channel region caused by a low dose of Ge ion implantation in the source and drain extension regions. Moreover, a transition region is formed in the bottom of the channel region and the top of the Si substrate. These calculation results are in good agreement with the LACBED experiments. PMID:18996702

  1. Phylogenetic and geographic analysis of fowl adenovirus field strains isolated from poultry in Poland.

    PubMed

    Niczyporuk, Jowita Samanta

    2016-01-01

    Fowl adenoviruses (FAdVs) are widely distributed in chickens in Poland and throughout the world. FAdV infections have been reported in the United States, Australia, Europe, and the Mediterranean basin. Detection of FAdVs strains is very important from the epidemiological point of view and for monitoring disease outbreaks and developing strategies for vaccine development. Several molecular epidemiology and phylogenetic studies have been performed, but the results obtained are still limited, because FAdV strains, even of the same serotype, have very diverse characteristics. Some strains are pathogenic and some are nonpathogenic. This report describes the successful isolation of 96 FAdV field strains from chickens in Poland. A PCR assay specific for the L1 loop region of the hexon gene was conducted, and the products were subjected to sequence analysis. The sequences were analysed using BLAST and Geneious 6.0 software and compared to adenovirus field and reference strain sequences from different parts of the world that are accessible in the NCBI GenBank database. The sequences of the adenovirus strains indicated that they belonged to five species, Fowl aviadenovirus A-E, represented by eight serotypes FAdV-1, FAdV-4, FAdV-5, FAdV-7, FAdV-8a, FAdV-8b, and FAdV-2/11 (FAdV-D). The relationships between FAdVs isolated in Poland and isolates from other regions of the world were determined. PMID:26446890

  2. Vibratory strain field measurement by transverse digital holography.

    PubMed

    Stetson, Karl A

    2015-09-20

    A method is presented for measuring vibratory strain fields using phase-stepped, image-plane digital holography. An object surface is observed along its normal vector while illuminated at equal and opposite angles by two mutually coherent laser beams. One beam is phase stepped by quarter-wavelength increments between TV frames, and the resulting images are processed to yield holographic images. Object vibrations result in zero-order Bessel function fringes in the display. The second beam is modulated at the same frequency of the object vibration and is used to shift the fringes in a manner analogous to phase step interferometry. The resulting images are processed to yield a wrapped phase map, which is unwrapped and corrected for the error associated with using zero-order Bessel functions in place of cosine functions. The unwrapped images are processed to obtain the average slopes for image segments, and these slopes are multiplied by a scale factor to convert them to strain. The analysis program used here divides the field of view into five horizontal by four vertical segments, which provide a map of the vibratory strain field. PMID:26406526

  3. Finite strain crack tip fields in soft incompressible elastic solids.

    PubMed

    Krishnan, Venkat R; Hui, Chung Yuen; Long, Rong

    2008-12-16

    A finite element model (FEM) is used to study the behavior of the large deformation field near the tip of a crack in a soft incompressible plane stress fracture specimen loaded in mode I. Results are obtained for the case of a neo-Hookean solid (ideal rubber) and a hyperelastic solid with exponentially hardening behavior. In contrast to the predictions of linear elastic fracture mechanics (LEFM), the near tip stress fields are dominated by the opening stress which shows a 1/R singularity for the neo-Hookean material and a -1/(R ln R) singularity for the exponential hardening solid. We found very similar qualitative behavior in the near tip stress fields despite the very large difference in strain hardening behavior of the two material models. Our result shows that the near tip opening stress is controlled by the far field energy release rate for large applied loads. PMID:19053624

  4. Four-wave dark-field electron holography for imaging strain fields

    NASA Astrophysics Data System (ADS)

    Denneulin, T.; Hÿtch, M.

    2016-06-01

    Strain characterization by transmission electron microscopy is an active area of research especially for microelectronics applications. Two-wave dark-field electron holography (DFEH) was previously introduced as a reliable strain mapping technique. Here, DFEH with four electron waves was investigated in order to image equi-displacement lines as amplitude modulations of the holographic fringes. Two perpendicular electrostatic biprisms are used to interfere three reference waves diffracted by a substrate and one object wave diffracted by an epitaxially strained region. This technique provides a different way to represent the displacement field. It might be helpful to obtain information about the strain state during in situ experiments. A dummy p-MOSFET device with embedded SiGe source and drain is used for experimental demonstration.

  5. Men in nursing: their fields of employment, preferred fields of practice, and role strain.

    PubMed Central

    Egeland, J W; Brown, J S

    1989-01-01

    A survey of 367 randomly selected male registered nurses (RNs) revealed that (1) they considered certain fields of nursing (e.g., administration, emergency, or intensive care) to be more congruent with the male sex role than other fields (e.g., general medical, outpatient, or obstetrical nursing); (2) they generally preferred work in more congruent fields, except for administration; (3) over time, they were increasingly employed in more congruent fields; and (4) they did not experience significantly less role strain in the more congruent fields of nursing than in the less congruent fields. PMID:2584041

  6. Complete Genome Sequences of Five Bluetongue Virus (BTV) Vaccine Strains from a Commercial Live Attenuated Vaccine, a BTV-4 Field Strain from South Africa, and a Reassortant Strain Isolated from Experimentally Vaccinated Cattle

    PubMed Central

    Coetzee, Peter; le Grange, Misha; Venter, Estelle H.

    2016-01-01

    This is a report of the complete genome sequences of plaque-selected isolates of each of the five virus strains included in a South African commercial trivalent bluetongue virus (BTV) attenuated live virus vaccine, a BTV-4 field strain isolated from Rustenburg, South Africa, in 2011, and a bluetongue reassortant (bluetongue virus 4 strain 4/O. aries-tc/ZAF/11/OBP-115) isolated from experimentally vaccinated cattle. Full-genome sequencing and phylogenetic analyses show that the bluetongue virus 9 strain 9/B. taurus-tc/ZAF/15/Onderstepoort_B02b is a reassortant virus containing segments from both BTV-9 and BTV-8. PMID:27340051

  7. Report of Field Test Evaluation.

    ERIC Educational Resources Information Center

    Michigan State Univ., East Lansing. Regional Instructional Materials Center for Handicapped Children and Youth.

    Reported by the Great Lakes Region Special Education Instructional Materials Center are field test evaluation of 18 auditory instructional materials for use with handicapped children who learn best through the auditory modality. Among materials evaluated are a taped program on use of the abacus and a cassette audiotape on bird habits and sounds.…

  8. Strained silicon modulation field-effect transistor as a new sensor of terahertz radiation

    NASA Astrophysics Data System (ADS)

    Moubarak Meziani, Yahya; Garcia, Enrique; Velazquez, Enrique; Diez, Enrique; El Moutaouakil, Amine; Otsuji, Taiichi; Fobelets, K.

    2011-10-01

    In this paper, we report on room temperature detection of terahertz radiation from strained-Si modulation-doped field-effect transistors. A non-resonant signal was observed with a maximum around the threshold voltage. The signal was interpreted due to the plasma wave nonlinearities in the channel. The intensity of the signal increases for the higher applied drain-to-source current. We also observed a dependence of the signal on the polarization of the incoming radiations.

  9. Strain effect on coercive field of epitaxial barium titanate thin films

    NASA Astrophysics Data System (ADS)

    Choudhury, S.; Li, Y. L.; Chen, L. Q.; Jia, Q. X.

    2008-04-01

    Strain is generally known to increase the coercive field of a ferroelectric thin film as compared to a stress-free single crystal or a strain-relaxed film. We studied the coercive fields and remanent polarizations of (001)-oriented epitaxial barium titanate thin films using the phase-field approach. It is demonstrated, while the remanent polarization decreases as in-plane strain changes from being compressive to tensile, the variation of coercive field with strain is complicated. We noted more than two times drop in coercive field with a reduction of compressive strain of only ˜0.05%, which we attribute to the existence of multiple ferroelectric phases.

  10. 3D strain measurement in electronic devices using through-focal annular dark-field imaging.

    PubMed

    Kim, Suhyun; Jung, Younheum; Lee, Sungho; Jung Kim, Joong; Byun, Gwangseon; Lee, Sunyoung; Lee, Haebum

    2014-11-01

    Spherical aberration correction in high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) allows us to form an electron probe with reduced depth of field. Using through-focal HAADF imaging, we experimentally demonstrated 3D strain measurement in a strained-channel transistor. The strain field distribution in the channel region was obtained by scanning an electron beam over a plan-view specimen. Furthermore, the decrease in the strain fields toward the silicon substrate was revealed at different focal planes with a 5-nm focal step. These results demonstrate that it is possible to reconstruct the 3D strain field in electronic devices. PMID:24859824

  11. Fracture mechanism of amorphous polymers at strain fields.

    PubMed

    Huang, Lan; Yang, Xiaoping; Jia, Xiaolong; Cao, Dapeng

    2014-12-01

    Owing to the wide application of polymeric materials, understanding the fracture mechanism of amorphous polymers at strain fields is a fundamentally important challenge. In this work, we use molecular dynamics simulations to investigate the uniaxial deformation of amorphous polyethylene and further monitor the polyethylene fracture process induced by stretching. Results indicate that the polyethylene systems with chain lengths of 600-800 united atoms exhibit the fracture behavior at a temperature T < 200 K and the strain of 1.0. Further study shows that in the stretching process, the disentanglement and orientation of chains lead to the formation of small cavities in the middle region of the system, and the small cavities subsequently form a large hole, causing the fracture of the whole system. Definitely, the fracture is determined by the two factors of mobility and entanglement of chains. The polyethylene systems with a high chain mobility or a high chain entanglement do not fracture. Finally, a schematic diagram is put forward to illustrate the fracture behavior. PMID:25322468

  12. Near tip stress and strain fields for short elastic cracks

    NASA Technical Reports Server (NTRS)

    Soediono, A. H.; Kardomateas, G. A.; Carlson, R. L.

    1994-01-01

    Recent experimental fatigue crack growth studies have concluded an apparent anomalous behavior of short cracks. To investigate the reasons for this unexpected behavior, the present paper focuses on identifying the crack length circumstances under which the requirements for a single parameter (K(sub I) or delta K(sub I) if cyclic loading is considered) characterization are violated. Furthermore, an additional quantity, the T stress, as introduced by Rice, and the related biaxiality ratio, B, are calculated for several crack lengths and two configurations, the single-edge-cracked and the centrally-cracked specimen. It is postulated that a two-parameter characterization by K and T (or B) is needed for the adequate description of the stress and strain field around a short crack. To further verify the validity of this postulate, the influence of the third term of the Williams series on the stress, strain and displacement fields around the crack tip and in particular on the B parameter is also examined. It is found that the biaxiality ratio would be more negative if the third term effects are included in both geometries. The study is conducted using the finite element method with linearly elastic material and isoparametric elements and axial (mode I) loading. Moreover, it is clearly shown that it is not proper to postulate the crack size limits for 'short crack' behavior as a normalized ratio with the specimen width, a/w; it should instead be stated as an absolute, or normalized with respect to a small characteristic dimension such as the grain size. Finally, implications regarding the prediction of cyclic (fatigue) growth of short cracks are discussed.

  13. Hydrogen Concentration and Strain Fields Near Fatigue Cracks in Pipeline Steel Measured Via Neutron Imaging

    NASA Astrophysics Data System (ADS)

    Connolly, Matthew; Slifka, Andrew; Drexler, Elizabeth; Hydrogen Pipeline Safety Team

    Hydrogen (H2) is desirable for energy storage as it is cleaner burning and can store a larger amount of energy than an equal mass of gasoline. One problem in the development of a hydrogen economy is to find or develop materials that ensure the safe, reliable, and cost-effective flow of energy from the source to the user. It is expected steels will be needed to serve this function. However, the existing network of natural gas pipeline, for example, is constructed of ferrous materials which are susceptible to embrittlement and subsequent increased fatigue crack growth rates after exposure to hydrogen. In order to improve current modeling efforts, experimental determination of hydrogen concentration, hydrogen diffusion rates, and strain fields are required to inform and validate the model. Here we report neutron imaging measurements of the hydrogen concentration near a fatigue crack and the corresponding strain field, measured via neutron transmission Bragg edge spectroscopy. Nist Materials Measurement Laboratory, Applied Chemicals and Materials Division.

  14. Progress Report on Alloy 617 Isochronous Stress-Strain Curves

    SciTech Connect

    Jill K. Wright; Richard N. Wright; Nancy J. Lybeck

    2014-03-01

    Isochronous stress-strain curves for Alloy 617 up to a temperature of 1000°C will be required to qualify the material for elevated temperature design in Section III, Division 1, Subsection NH of the ASME Boiler and Pressure Vessel Code. Several potential methods for developing these curves are reviewed in this report. It is shown that in general power-law creep is the rate controlling deformation mechanism for a wide range of alloy heats, test temperatures and stresses. Measurement of the strain rate sensitivity of Alloy 617 indicates that the material is highly strain rate sensitive in the tensile deformation range above about 750°C. This suggests that the concept of a hot tensile curve as a bounding case on the isochronous stress-strain diagrams is problematic. The impact of strain rate on the hot tensile curves is examined and it is concluded that incorporating such a curve is only meaningful if a single tensile strain rate (typically the ASTM standard rate of 0.5%/min) is arbitrarily defined. Current experimentally determined creep data are compared to isochronous stress-strain curves proposed previously by the German programs in the 1980s and by the 1990 draft ASME Code Case. Variability in how well the experimental data are represented by the proposed design curves that suggests further analysis is necessary prior to completing a new draft Code Case.

  15. Strain mapping in nanocrystalline grains simulated by phase field crystal model

    NASA Astrophysics Data System (ADS)

    Guo, Yaolin; Wang, Jincheng; Wang, Zhijun; Li, Junjie; Tang, Sai; Liu, Feng; Zhou, Yaohe

    2015-03-01

    In recent years, the phase field crystal (PFC) model has been confirmed as a good candidate to describe grain boundary (GB) structures and their nearby atomic arrangement. To further understand the mechanical behaviours of nanocrystalline materials, strain fields near GBs need to be quantitatively characterized. Using the strain mapping technique of geometric phase approach (GPA), we have conducted strain mapping across the GBs in nanocrystalline grains simulated by the PFC model. The results demonstrate that the application of GPA in strain mapping of low and high angles GBs as well as polycrystalline grains simulated by the PFC model is very successful. The results also show that the strain field around the dislocation in a very low angle GB is quantitatively consistent with the anisotropic elastic theory of dislocations. Moreover, the difference between low angle GBs and high angle GBs is revealed by the strain analysis in terms of the strain contour shape and the structural GB width.

  16. Strain in Hydrogen-Implanted Si Investigated Using Dark-Field Electron Holography

    NASA Astrophysics Data System (ADS)

    Cherkashin, Nikolay; Reboh, Shay; Lubk, Axel; Hÿtch, Martin J.; Claverie, Alain

    2013-09-01

    The microstructure of ion-implanted crystals is profoundly dictated by mechanical strain developing in interplay with structural defects. Understanding the origin of strain during the early stages of development is challenging and requires accurate measurements and modeling. Here, we investigate the mechanical strain in H-implanted Si. X-ray diffraction analysis is performed to measure the mesoscopic out-of-plane strain and dark-field electron holography to map strain in two-dimensions (2D) with nanometer spatial resolution. Supported by finite element method modeling, we propose that the mean strain field is explained by overlapping and averaging discrete strain fields generated by sub-nanoscopic defects that are intimately related to the H depth concentration.

  17. Local magnetic fields, uplift, gravity, and dilational strain changes in Southern California ( USA).

    USGS Publications Warehouse

    Johnston, M.J.S.

    1986-01-01

    Measurements of regional magnetic field near the San Andreas fault at Cajon, Palmdale and Tejon are strongly correlated with changes in gravity, areal strain, and uplift in these regions during the period 1977-1984. Because the inferred relationships between these parameters are in approximate agreement with those obtained from simple deformation models, the preferred explanation appeals to short-term strain episodes independently detected in each data set. Transfer functions from magnetic to strain, gravity, and uplift perturbations, obtained by least-square linear fits to the data, are -0.98 nT/ppm, -0.03 nT/mu Gal, and 9.1 nT/m respectively. Tectonomagnetic model calculations underestimate the observed changes and those reported previously for dam loading and volcano-magnetic observations. A less likely alternative explanation of the observed data appeals to a common source of meteorologically generated crustal or instrumental noise in the strain, gravity, magnetic, and uplift data.-from Author

  18. The isolation of a field strain of Haemonchus contortus in Queensland showing multiple anthelmintic resistance.

    PubMed

    Green, P E; Forsyth, B A; Rowan, K J; Payne, G

    1981-02-01

    Following the apparent failure of levamisole to control infections of Haemonchus contortus in sheep at Lawes in south eastern Queensland, a strain of this parasite was isolated at the Animal Research Institute, Yeerongpilly. This strain was used to infect sheep at Yeerongpilly and the Merrindale Research Station, Victoria where four experiments to classify the resistance pattern of the parasite were carried out. Resistance to thiabendazole was first suspected in 1969, and these experiments confirmed that resistance to this drug was still present. They also showed that a strong degree of resistance had been developed to both levamisole and morantel tartrate. Other benzimidazole anthelmintics and also the organophosphorus compound naphthalophos were only moderately effective against the original isolate but rafoxanide, nitroxynil and phenothiazine were almost 100% effective. Other highly effective chemicals were disophenol and closantel. After passaging the strain for four generations with both levamisole and albendazole, resistance to both naphthalophos and the newer benzimidazole anthelmintics increased dramatically. This is the first report of a field strain of H. contortus exhibiting resistance to benzimidazole, non-benzimidazole and organophosphorus anthelmintics. PMID:7259650

  19. Report of near field group

    SciTech Connect

    Palmer, R.B.; Baggett, N.; Claus, J.; Fernow, R.; Stumer, I.; Figueroa, H.; Kroll, N.; Funk, W.; Lee-Whiting, G.; Pickup, M.

    1985-04-01

    Substantial progress since the Los Alamos Workshop two years ago is reported. A radio-frequency model of a grating accelerator has been tested at Cornell, and extensive calculations compared with observations. Alternative structures consisting of either hemispherical bumps on a plane, or conducting spheres in space, have also been rf modeled. The use of liquid droplets to form such structures has been proposed and a conceptual design studied. Calculations and experiments have examined the effects of surface plasmas, and shown that in this case the reflectivity is low. However, calculations and observations suggest that gradients in excess of 1 GeV/meter should be obtainable without forming such plasma. An examination of wake fields shows that, with Landau damping, these are independent of wavelength. The use of near field structures to act as high gradient focusing elements has been studied and shows promise, independent of the acceleration mechanism. A proposal has been made to establish a facility that would enable ''proof of principle experiments'' to be performed on these and other laser driven accelerator mechanisms. 11 refs., 10 figs.

  20. Bovine herpesvirus-1: comparison and differentiation of vaccine and field strains based on genomic sequence variation.

    PubMed

    Fulton, R W; d'Offay, J M; Eberle, R

    2013-03-01

    Bovine herpesvirus-1 (BoHV-1) causes significant disease in cattle including respiratory, fetal diseases, and reproductive tract infections. Control programs usually include vaccination with a modified live viral (MLV) vaccine. On occasion BoHV-1 strains are isolated from diseased animals or fetuses postvaccination. Currently there are no markers for differentiating MLV strains from field strains of BoHV-1. In this study several BoHV-1 strains were sequenced using whole-genome sequencing technologies and the data analyzed to identify single nucleotide polymorphisms (SNPs). Strains sequenced included the reference BoHV-1 Cooper strain (GenBank Accession JX898220), eight commercial MLV vaccine strains, and 14 field strains from cases presented for diagnosis. Based on SNP analyses, the viruses could be classified into groups having similar SNP patterns. The eight MLV strains could be differentiated from one another although some were closely related to each other. A number of field strains isolated from animals with a history of prior vaccination had SNP patterns similar to specific MLV viruses, while other field isolates were very distinct from all vaccine strains. The results indicate that some BoHV-1 isolates from clinically ill cattle/fetuses can be associated with a prior MLV vaccination history, but more information is needed on the rate of BoHV-1 genome sequence change before irrefutable associations can be drawn. PMID:23333211

  1. Surface mapping of field-induced piezoelectric strain at elevated temperature employing full-field interferometry.

    PubMed

    Stevenson, Tim; Quast, Tatjana; Bartl, Guido; Schmitz-Kempen, Thorsten; Weaver, Paul M

    2015-01-01

    Piezoelectric actuators and sensors are widely used for flow control valves, including diesel injectors, ultrasound generation, optical positioning, printing, pumps, and locks. Degradation and failure of material and electrical properties at high temperature typically limits these applications to operating temperatures below 200°C, based on the ubiquitous Pb(Zr,Ti)O3 ceramic. There are, however, many applications in sectors such as automotive, aerospace, energy and process control, and oil and gas, where the ability to operate at higher temperatures would open up new markets for piezoelectric actuation. Presented here is a review of recent progress and initial results toward a European effort to develop measurement techniques to characterize high-temperature materials. Full-field, multi-wavelength absolute length interferometry has, for the first time, been used to map the electric-field-induced piezoelectric strain across the surface of a PZT ceramic. The recorded variation as a function of temperature has been evaluated against a newly developed commercial single-beam system. Conventional interferometry allows measurement of the converse piezoelectric effect with high precision and resolution, but is often limited to a single point, average measurement and to limited sample environments because of optical aberrations in varying atmospheres. Here, the full-field technique allows the entire surface to be analyzed for strain and, in a bespoke sample chamber, for elevated temperatures. PMID:25585393

  2. Comparison of Haemophilus parasuis reference strains and field isolates by using random amplified polymorphic DNA and protein profiles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Haemophilus parasuis is the causative agent of Glässer’s disease and is a pathogen of swine in high-health status herds. Reports on serotyping of field strains from outbreaks describe that approximately 30% of them are nontypable and therefore cannot be traced. Molecular typing methods have been use...

  3. Derivation of Relations and Analysis of Tube Bending Processes Using Discontinuous Fields of Plastic Strains

    NASA Astrophysics Data System (ADS)

    Śloderbach, Z.

    2015-05-01

    The generalized strain scheme in bending metal tubes at bending machines with the use of a mandrel presented in Śloderbach (1999; 2002; 20131,2; 2014) satisfies initial and boundary kinematic conditions of bending, conditions of continuity and inseparability of strains. This paper introduces three formal simplifications gradually imposed into forms of principal components of the generalized strain model giving suitable simplifications of the 1st, 2nd and 3rd types. Such mathematical simplifications cause that the obtained strain fields do not satisfy the condition of consistency of displacements and strain continuity. The simplified methods determine safer values of the wall thickness than those from the generalized continuous strain scheme. The condition of plastic incompressibility was used for the derivation of an expression for distribution of wall thickness of the bent elbow in the layers subjected to tension and compression for three examples of discontinuous kinematic strain fields.

  4. A portable modular optical sensor capable of measuring complex multi-axis strain fields

    NASA Astrophysics Data System (ADS)

    Zhao, Weixin; Beck, B. Terry; Peterman, Robert J.; Wu, Chih-Hang J.

    2012-10-01

    This paper presents a portable optical sensor capable of measuring complex multi-axis strain fields without the need for special surface preparation or stringent sensor-to-surface alignment. The sensor consists of three to four electronic speckle photography (ESP) modules. The design of each modular element is based on a previously developed 5-axis (five degree of freedom) surface displacement measurement technique, and is able to measure two dimensional in-plane surface movement, unaffected by other degrees of freedom (displacement and rotation) movement. Identical modular strain elements are arranged in a Rosette grid layout so that accurate and robust multi-axis surface strain measurement can be achieved. Experiments were conducted to demonstrate the multi-axis strain field measurement capability of this optical sensor by using a test bed that provided a known directional planar strain field, and excellent results were obtained. In particular, experiments have shown that the principle strain can be accurately extracted independent of the orientation of the device. This portable optical sensor will allow precise non-contact measurement of practical complex strain fields such as those encountered in bridge abutments, and portions of beams near critical infrastructure support locations; in other words, wherever plane strains depart from uni-axial behavior. Its unique hand-held portable capability offers distinct advantages over laboratory strain measurement setups, allowing accurate robust non-contact measurements to be achieved even in a harsh field application environment.

  5. The Anti-Phytophthora Effect of Selected Potato-Associated Pseudomonas Strains: From the Laboratory to the Field

    PubMed Central

    Guyer, Anouk; De Vrieze, Mout; Bönisch, Denise; Gloor, Ramona; Musa, Tomke; Bodenhausen, Natacha; Bailly, Aurélien; Weisskopf, Laure

    2015-01-01

    Late blight, caused by the oomycete Phytophthora infestans, is the most devastating disease of potato. In organic farming, late blight is controlled by repeated applications of copper-based products, which negatively impact the environment. To find alternative solutions for late blight management, we have previously isolated a large collection of bacteria from the phyllosphere and the rhizosphere of potatoes. Here we report the antagonistic potential of these strains when co-cultivated with P. infestans as well as with other potato pathogens. We then focused on three Pseudomonas strains and compared their protective impact against late blight to that of well-known biocontrol strains in planta using a high-throughput leaf disk assay with automated picture analysis. When sprayed on the leaves of potatoes in the greenhouse, the strains were able to survive for at least 15 days. Under field conditions, populations decreased faster but all tested strains could still be retrieved after 8 days. The most active strain in vitro, P. chlororaphis R47, was also the best protectant on leaf disks from plants grown in the greenhouse experiment, but its protection potential could not be verified in the field due to unfavorable infection conditions. However, its protective effect against P. infestans in planta, its survival in the phyllosphere as well as its ability to colonize the potato rhizosphere in very high population densities, suggest a potential for field application, e.g., in the form of tuber treatment or leaf spray. PMID:26640460

  6. The Anti-Phytophthora Effect of Selected Potato-Associated Pseudomonas Strains: From the Laboratory to the Field.

    PubMed

    Guyer, Anouk; De Vrieze, Mout; Bönisch, Denise; Gloor, Ramona; Musa, Tomke; Bodenhausen, Natacha; Bailly, Aurélien; Weisskopf, Laure

    2015-01-01

    Late blight, caused by the oomycete Phytophthora infestans, is the most devastating disease of potato. In organic farming, late blight is controlled by repeated applications of copper-based products, which negatively impact the environment. To find alternative solutions for late blight management, we have previously isolated a large collection of bacteria from the phyllosphere and the rhizosphere of potatoes. Here we report the antagonistic potential of these strains when co-cultivated with P. infestans as well as with other potato pathogens. We then focused on three Pseudomonas strains and compared their protective impact against late blight to that of well-known biocontrol strains in planta using a high-throughput leaf disk assay with automated picture analysis. When sprayed on the leaves of potatoes in the greenhouse, the strains were able to survive for at least 15 days. Under field conditions, populations decreased faster but all tested strains could still be retrieved after 8 days. The most active strain in vitro, P. chlororaphis R47, was also the best protectant on leaf disks from plants grown in the greenhouse experiment, but its protection potential could not be verified in the field due to unfavorable infection conditions. However, its protective effect against P. infestans in planta, its survival in the phyllosphere as well as its ability to colonize the potato rhizosphere in very high population densities, suggest a potential for field application, e.g., in the form of tuber treatment or leaf spray. PMID:26640460

  7. Giant Electric-Field-Induced Strain in PVDF-Based Battery Separator Membranes Probed by Electrochemical Strain Microscopy.

    PubMed

    Romanyuk, Konstantin; Costa, Carlos M; Luchkin, Sergey Yu; Kholkin, Andrei L; Lanceros-Méndez, Senentxu

    2016-05-31

    Efficiency of lithium-ion batteries largely relies on the performance of battery separator membrane as it controls the mobility and concentration of Li-ions between the anode and cathode electrodes. Recent advances in electrochemical strain microscopy (ESM) prompted the study of Li diffusion and transport at the nanoscale via electromechanical strain developed under an application of inhomogeneous electric field applied via the sharp ESM tip. In this work, we observed unexpectedly high electromechanical strain developed in polymer membranes based on porous poly(vinylidene fluoride) (PVDF) and poly(vinylidene fluoride-co-chlorotrifluoroethylene) (PVDF-CTFE) and, using it, could study a dynamics of electroosmotic flow of electrolyte inside the pores. We show that, independently of the separator membrane, electric field-induced deformation observed by ESM on wetted membrane surfaces can reach up to 10 nm under a moderate bias of 1 V (i.e., more than an order of magnitude higher than that in best piezoceramics). Such a high strain is explained by the electroosmotic flow in a porous media composed of PVDF. It is shown that the strain-based ESM method can be used to extract valuable information such as average pore size, porosity, elasticity of membrane in electrolyte solvent, and membrane-electrolyte affinity expressed in terms of zeta potential. Besides, such systems can, in principle, serve as actuators even in the absence of apparent piezoelectricity in amorphous PVDF. PMID:27142946

  8. Insulated-gate field-effect transistor strain sensor

    NASA Technical Reports Server (NTRS)

    Gross, C.

    1972-01-01

    Strain sensors that can be switched on and off were fabricated from p-channel IGFET on thin filament n-type silicon crystals with silicon dioxide layer sputtered over transistor for passivation. Applications include integration with microelectronic circuits for multiplexing.

  9. Isolation and pathogenic analysis of virulent Marek's disease virus field strain in China.

    PubMed

    Cui, Ning; Su, Shuai; Sun, Peng; Zhang, Yankun; Han, Ni; Cui, Zhizhong

    2016-07-01

    Marek's disease (MD) has become increasingly common in China, resulting in considerable economic loss. The etiological agent is unclear. In this study, we isolated a field MD virus (MDV) strain, designated SX1301, from CVI988/Rispens-vaccinated chickens with tumors. Co-infection of avian leukosis virus, reticuloendotheliosis virus, and chicken infectious anemia virus was excluded by polymerase chain reaction, enzyme-linked immunosorbant assay, DNA blotting hybridization, and indirect immunofluorescence assay. As with most strains isolated in China, SX1301 had the same amino acid mutation of meq protein at positions 77(E), 80(Y), and 115(A) Animal experimental results showed development of lethal MD in 57% and MD tumor in 23% of the specific pathogen-free chickens inoculated with SX1301, with tumors mainly distributed in spleen, liver, and kidney. CVI988/Rispens protected 83% of chickens upon challenge with SX1301, with a mortality rate and tumor incidence of 10% and 7%, respectively. These results implicated SX1301 as a virulent MDV strain, with commercial MDV vaccine CVI988/Rispens unable to confer adequate protection against SX1301. There have been no reports of very virulent (vv) plus MDV in China, but frequently occurring virulent MDV may account for the repeated outbreaks of MD. Vaccines with greater efficacy are needed to protect against MDV. PMID:26976907

  10. Molecular characterization of the Israeli B. bigemina vaccine strain and field isolates.

    PubMed

    Molad, T; Erster, O; Fleiderovitz, L; Roth, A; Leibovitz, B; Wolkomirsky, R; Mazuz, M L; Behar, A; Markovics, A

    2015-09-15

    The present study demonstrated the genetic character of the Israeli Babesia bigemina vaccine strain and field isolates, based on rap-1a and rap-1c gene sequences. The RAP-1a of blood-derived Israeli B. bigemina field isolates shared 100% amino acid sequence identity. However, comparison of RAP-1c from various Israeli B. bigemina field isolates revealed that the total sequence identity among the field isolates ranged from 98.2 to 100%. High identity was observed when RAP-1a sequences from the Israeli vaccine strain and field isolates were compared with RAP-1a from Egypt, Syria, Mexico and South Africa, while, the Israeli RAP-1c sequences showed the highest identity to the Mexican isolate JG-29 and to the PR isolate from Puerto-Rico. Based on sequence variations between the rap-1a of the vaccine strain and that of the field isolate, and between the rap-1c of the vaccine strain and that of the field isolates, nPCR-RFLP procedures were developed that enable, for the first time differentiation between the Israeli B. bigemina vaccine strain and field-infection isolates. These assays could serve as fast and sensitive methods for detection and differentiation between Israeli B. bigemina vaccine strains and field isolates, as well as for epidemiological investigations. PMID:26154404

  11. Misfit strain-misfit strain diagram of epitaxial BaTiO3 thin films: Thermodynamic calculations and phase-field simulations

    NASA Astrophysics Data System (ADS)

    Sheng, G.; Zhang, J. X.; Li, Y. L.; Choudhury, S.; Jia, Q. X.; Liu, Z. K.; Chen, L. Q.

    2008-12-01

    The effect of anisotropic strains on the phase transitions and domains structures of BaTiO3 thin films was studied using both thermodynamic calculations and phase-field simulations. The misfit strain-misfit strain domain stability diagrams were predicted. The similarity and significant differences between the diagrams from thermodynamic calculations assuming single domains and from phase-field simulations were analyzed. Typical domain structures as a result of anisotropic misfit strains are presented.

  12. Deformation-induced spatiotemporal fluctuation, evolution and localization of strain fields in a bulk metallic glass

    SciTech Connect

    Wu, Yuan; Bei, Hongbin; Wang, Yanli; Lu, Zhaoping; George, Easo P.; Gao, Yanfei

    2015-05-16

    Deformation behavior and local strain evolutions upon loading and unloading of a bulk metallic glass (BMG) were systematically investigated by in situ digital image correlation (DIC). Distinct fluctuations and irreversible local strains were observed before the onset of macroscopic yielding. Statistical analysis shows that these fluctuations might be related to intrinsic structural heterogeneities, and that the evolution history and characteristics of local strain fields play an important role in the subsequent initiation of shear bands. Effects of sample size, pre-strain, and loading conditions were systematically analyzed in terms of the probability distributions of the resulting local strain fields. It is found that a higher degree of local shear strain heterogeneity corresponds to a more ductile stressestrain curve. Implications of these findings are discussed for the design of new materials.

  13. Deformation-induced spatiotemporal fluctuation, evolution and localization of strain fields in a bulk metallic glass

    DOE PAGESBeta

    Wu, Yuan; Bei, Hongbin; Wang, Yanli; Lu, Zhaoping; George, Easo P.; Gao, Yanfei

    2015-05-16

    Deformation behavior and local strain evolutions upon loading and unloading of a bulk metallic glass (BMG) were systematically investigated by in situ digital image correlation (DIC). Distinct fluctuations and irreversible local strains were observed before the onset of macroscopic yielding. Statistical analysis shows that these fluctuations might be related to intrinsic structural heterogeneities, and that the evolution history and characteristics of local strain fields play an important role in the subsequent initiation of shear bands. Effects of sample size, pre-strain, and loading conditions were systematically analyzed in terms of the probability distributions of the resulting local strain fields. It ismore » found that a higher degree of local shear strain heterogeneity corresponds to a more ductile stressestrain curve. Implications of these findings are discussed for the design of new materials.« less

  14. Large strain under a low electric field in lead-free bismuth-based piezoelectrics

    NASA Astrophysics Data System (ADS)

    Ullah, Aman; Won Ahn, Chang; Ullah, Amir; Won Kim, Ill

    2013-07-01

    In this letter, the composition and electric field dependent strain behavior of (1 - x)Bi0.5(Na0.78K0.22)0.5TiO3-xBi(Mg0.5Ti0.5)O3 (BNKT-BMT) were investigated to develop lead-free piezoelectric materials with a large strain response at a low driving field for actuator applications. A large strain of 0.35% (Smax/Emax = 636 pm/V) at an applied field of 55 kV/cm was obtained with a composition of 4 mol. % BMT. In particular, the electric field required to deliver large strains was reduced to a level that revealed not only a large Smax/Emax of 542 pm/V at a driving field as low as 35 kV/cm, but also remarkably suppressed the large hysteresis.

  15. Construction of a bioluminescent reporter strain to detect polychlorinated biphenyls

    SciTech Connect

    Layton, A.C.; Muccini, M.; Ghosh, M.M.; Sayler, G.S.

    1998-12-01

    A bioluminescent reporter strain, Ralstonia eutropha ENV307 (pUTK60), was constructed for the detection of polychlorinated biphenyls by inserting the biphenyl promoter upstream of the bioluminescence genes. In the presence of a nonionic surfactant, which enhances the solubility of chlorinated biphenyls, bioluminescence was induced three- to fourfold over background by biphenyl, monochlorinated biphenyls, and Aroclor 1242. The minimum detection limits for these compounds ranged from 0.15 mg/liter for 4-chlorobiphenyl to 1.5 mg/liter for Aroclor 1242.

  16. Field methods to measure surface displacement and strain with the Video Image Correlation method

    NASA Technical Reports Server (NTRS)

    Maddux, Gary A.; Horton, Charles M.; Mcneill, Stephen R.; Lansing, Matthew D.

    1994-01-01

    The objective of this project was to develop methods and application procedures to measure displacement and strain fields during the structural testing of aerospace components using paint speckle in conjunction with the Video Image Correlation (VIC) system.

  17. Field sampling and travel report

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dr. Sigua was involved with two field visits of watersheds with different livestock production systems (poultry, swine, and beef/dairy cattle); one in the sub-basins of Pinhal River Watershed (October 23, 2008) and at the micro-basins of the Rio Pine Forest (October 29, 2008) where studies of assess...

  18. Second-harmonic microscopy of strain fields around through-silicon-vias

    NASA Astrophysics Data System (ADS)

    Cho, Yujin; Shafiei, Farbod; Mendoza, B. S.; Lei, Ming; Jiang, Tengfei; Ho, P. S.; Downer, M. C.

    2016-04-01

    Through-Silicon-Vias (TSVs)—10 μm-diameter conducting rods that connect vertically stacked silicon layers—provide three dimensional circuit integration, but introduce strain in the surrounding silicon when thermally cycled. Here, we noninvasively probe strain fields around Cu TSVs in Si(001) using optical second-harmonic generation (SHG) microscopy. Results are compared with micro-Raman spectra of the strained regions. We find that SHG probes strain fields more quickly than Raman spectroscopy, while maintaining comparable sensitivity and spatial resolution, and avoiding the need for spectral analysis. Moreover, SHG is selectively sensitive to axial shear components uiz (i = x, y) of the strain tensor that are often neglected in Raman analysis. Thus, SHG complements Raman spectroscopy.

  19. Comparison of the pathogenicity of the USDA challenge virus strain to a field strain of infectious laryngotracheitis virus.

    PubMed

    Koski, Danielle M; Predgen, Ann S; Trampel, Darrell W; Conrad, Sandra K; Narwold, Debra R; Hermann, Joseph R

    2015-07-01

    Infectious laryngotracheitis virus (ILTV) causes respiratory disease in chickens. This alphaherpesvirus infects laryngeal tracheal epithelial cells and causes outbreaks culminating in decreases in egg production, respiratory distress in chickens and mortality. There are several different vaccines to combat symptoms of the virus, including chicken embryo origin, tissue culture origin and recombinant vaccines. All vaccines licensed for use in the U.S. are tested for efficacy and potency according to U.S. federal regulation using a vaccine challenge assay involving the use of an ILT challenge virus. This challenge virus is provided to biologics companies by the Center for Veterinary Biologics (CVB), United States Department of Agriculture (USDA). The current USDA challenge virus originated from a vaccine strain and has been subjected to multiple passages in eggs, and may not represent what is currently circulating in the field. The objective of this study was to evaluate and compare the pathogenicity of USDA's challenge virus strain to the pathogenicity of a recent ILT field isolate. Using the challenge virus and various dilutions of the field isolate, clinical signs, mortality and pathology were evaluated in chickens. Results indicate that the field isolate at a 1:20 dilution is comparable in pathogenicity to the USDA challenge virus at a 1:4 dilution, and that the ILTV field isolate is a viable candidate that could be used as a challenge virus when evaluating vaccine efficacy. PMID:26050912

  20. Misfit strain-misfit strain diagram of epitaxial BaTiO(3) thin films: thermodynamic calculations and phase-field simulations

    SciTech Connect

    Jia, Quanxi; Sheng, G; Zhang, J X; Li, Y L; Choudhury, S; Liu, Z K; Chen, L Q

    2009-01-01

    The effect of anisotropic strains on the phase transitions and domains structures of BaTi03 thin films was studied using both thermodynamic calculations and phase-field simulations. The misfit strain -misfit strain domain stability diagrams, i.e. the graphical representations of stable ferroelectric phases and domain structures as a function of strains, were predicted. The similarity and significant differences between the diagrams from thermodynamic calculations assuming single domains and from phase-field simulations were analyzed. Typical domain structures as a result of anisotropic misfit strains are presented.

  1. Measuring strain and rotation fields at the dislocation core in graphene

    NASA Astrophysics Data System (ADS)

    Bonilla, L. L.; Carpio, A.; Gong, C.; Warner, J. H.

    2015-10-01

    Strain fields, dislocations, and defects may be used to control electronic properties of graphene. By using advanced imaging techniques with high-resolution transmission electron microscopes, we have measured the strain and rotation fields about dislocations in monolayer graphene with single-atom sensitivity. These fields differ qualitatively from those given by conventional linear elasticity. However, atom positions calculated from two-dimensional (2D) discrete elasticity and three-dimensional discrete periodized Föppl-von Kármán equations (dpFvKEs) yield fields close to experiments when determined by geometric phase analysis. 2D theories produce symmetric fields whereas those from experiments exhibit asymmetries. Numerical solutions of dpFvKEs provide strain and rotation fields of dislocation dipoles and pairs that also exhibit asymmetries and, compared with experiments, may yield information on out-of-plane displacements of atoms. While discrete theories need to be solved numerically, analytical formulas for strains and rotation about dislocations can be obtained from 2D Mindlin's hyperstress theory. These formulas are very useful for fitting experimental data and provide a template to ascertain the importance of nonlinear and nonplanar effects. Measuring the parameters of this theory, we find two characteristic lengths between three and four times the lattice spacings that control dilatation and rotation about a dislocation. At larger distances from the dislocation core, the elastic fields decay to those of conventional elasticity. Our results may be relevant for strain engineering in graphene and other 2D materials of current interest.

  2. Effect of extended strain fields on point defect phonon scattering in thermoelectric materials.

    PubMed

    Ortiz, Brenden R; Peng, Haowei; Lopez, Armando; Parilla, Philip A; Lany, Stephan; Toberer, Eric S

    2015-07-15

    The design of thermoelectric materials often involves the integration of point defects (alloying) as a route to reduce the lattice thermal conductivity. Classically, the point defect scattering strength follows from simple considerations such as mass contrast and the presence of induced strain fields (e.g. radius contrast, coordination changes). While the mass contrast can be easily calculated, the associated strain fields induced by defect chemistry are not readily predicted and are poorly understood. In this work, we use classical and first principles calculations to provide insight into the strain field component of phonon scattering from isoelectronic point defects. Our results also integrate experimental measurements on bulk samples of SnSe and associated alloys with S, Te, Ge, Sr and Ba. These efforts highlight that the strength and extent of the resulting strain field depends strongly on defect chemistry. Strain fields can have a profound impact on the local structure. For example, in alloys containing Ba, the strain fields have significant spatial extent (1 nm in diameter) and produce large shifts in the atomic equilibrium positions (up to 0.5 Å). Such chemical complexity suggests that computational assessment of point defects for thermal conductivity depression should be hindered. However, in this work, we present and verify several computational descriptors that correlate well with the experimentally measured strain fields. Furthermore, these descriptors are conceptually transparent and computationally inexpensive, allowing computation to provide a pivotal role in the screening of effective alloys. The further development of point defect engineering could complement or replace nanostructuring when optimizing the thermal conductivity, offering the benefits of thermodynamic stability, and providing more clearly defined defect chemistry. PMID:26145414

  3. Computer Simulation of Stress-Strain State of Oil Gathering Pipeline Designed for Ugut Field

    NASA Astrophysics Data System (ADS)

    Burkov, P. V.; Burkova, S. P.; Samigullin, V. D.

    2016-04-01

    The paper presents the stress and strain state modeling of infield pipeline in Ugut oil field. The finite element models of the stress field distribution in the pipeline wall are presented in this paper. The attention is paid to the pipeline reliability under stress conditions induced by the internal pressure and external compressive or tensile loads.

  4. Phase-field crystal modeling of shape transition of strained islands in heteroepitaxy

    NASA Astrophysics Data System (ADS)

    Chen, Cheng; Chen, Zheng; Zhang, Jing; Du, XiuJuan

    2012-11-01

    The phase-field crystal (PFC) model is employed to study the shape transition of strained islands in heteroepitaxy on vicinal substrates. The influences of both substrate vicinal angles β and the lattice mismatch ζ are discussed. The increase of substrate vicinal angles is found to be capable of significantly changing the surface nanostructures of epitaxial films. The surface morphology of films undergoes a series of transitions that include Stranski-Krastonov (SK) islands, the couple growth of islands and the step flow as well as the formation of step bunching. In addition, the larger ζ indicates an increased strained island density after coarsening, and results in the incoherent growth of strained islands with the creation of misfit dislocations. Coarsening, coalescence and faceting of strained islands are also observed. Some facets in the shape transition of strained islands are found to be stable and can be determined by β and crystal symmetry of the film.

  5. Epidemiologic study of Taylorella equigenitalis strains by field inversion gel electrophoresis of genomic restriction endonuclease fragments.

    PubMed

    Bleumink-Pluym, N; ter Laak, E A; van der Zeijst, B A

    1990-09-01

    Contagious equine metritis (CEM), a sexually transmitted bacterial disease, was first described in thoroughbred horses. It also occurs in nonthoroughbred horses, in which it produces isolated, apparently unrelated outbreaks. Thirty-two strains of Taylorella equigenitalis, the causative agent of CEM, from all over the world were characterized by field inversion gel electrophoresis of fragments of genomic DNA obtained by digestion with low-cleavage-frequency restriction enzymes. This resulted in a division into five clearly distinct groups. Strains from thoroughbred horses from all continents belonged to one group. Strains from nonthoroughbred horses from various countries were different from strains from thoroughbred horses; four groups could be determined. Two groups contained both streptomycin-resistant and streptomycin-susceptible strains. The data indicate that CEM in nonthoroughbreds did not originate from the thoroughbred population; also, the reverse was not demonstrated. Thus, extensive international transportation directives regarding the testing of nonthoroughbred horses for CEM may need reconsideration. PMID:2172296

  6. Micromotion-induced strain fields influence early stages of repair at bone-implant interfaces

    PubMed Central

    Wazen, Rima M.; Currey, Jennifer A.; Guo, Hongqiang; Brunski, John B.; Helms, Jill A.; Nanci, Antonio

    2013-01-01

    Implant loading can create micromotion at the bone-implant interface. The interfacial strain associated with implant micromotion could contribute to regulating the tissue healing response. Excessive micromotion can lead to fibrous encapsulation and implant loosening. Our objective was to characterize the influence of interfacial strain on bone regeneration around implants in mouse tibiae. A micromotion system was used to create strain under conditions of (1) no initial contact between implant and bone, and (2) a direct bone-implant contact. Pin- and screw-shaped implants were subjected to displacements of 150 μm or 300 μm, 60 cycles/day, for 7 days. Pin-shaped implants placed in 5 animals were subjected to 3 sessions of 150 μm displacement per day, with 60 cycles per session. Control implants in both types of interfaces were stabilized throughout the healing period. Experimental strain analyses, microtomography, image-based displacement mapping, and finite element simulations were used to characterize interfacial strain fields. Calcified tissue sections were prepared and stained with Goldner to evaluate tissue reaction in higher and lower strain regions. In stable implants, bone formation occurred consistently around the implants. In implants subjected to micromotion, bone regeneration was disrupted in areas of high strain concentrations (e.g. > 30%), whereas lower strain values were permissive of bone formation. Increasing implant displacement or number of cycles per day also changed the strain distribution and disturbed bone healing. These results indicate that not only implant micromotion but also the associated interfacial strain field contributes to regulating the interfacial mechanobiology at healing bone-implant interfaces. PMID:23337705

  7. Microscopic reflection difference spectroscopy for strain field of GaN induced by Berkovich nanoindentation

    NASA Astrophysics Data System (ADS)

    Gao, H. S.; Liu, Y.; Zhang, H. Y.; Wu, S. J.; Jiang, C. Y.; Yu, J. L.; Zhu, L. P.; Li, Y.; Huang, W.; Chen, Y. H.

    2014-02-01

    We have measured strain field of Berkovich nanoindentation by Raman mapping technique and microscopic reflection difference spectroscopy (μ-RDS). The validity of the μ-RDS method is verified by the accordance between the theoretical simulated result and the rotated measurement result. Comparing the two different methods, it is concluded that μ-RDS is sensitive and effective to measure anisotropic strain zone in the plane.

  8. Phase-field simulation of strain-induced domain switching in magnetic thin films

    NASA Astrophysics Data System (ADS)

    Hu, Jia-Mian; Sheng, G.; Zhang, J. X.; Nan, C. W.; Chen, L. Q.

    2011-03-01

    The strain-induced magnetic domain switching in epitaxial CoFe2O4 (CFO) thin films was studied using phase-field method. In particular, we investigated the domain switching from an initial in-plane direction to out-of-plane under the action of in-plane elastic strains. An abrupt switching feature is observed for a single-domain film while the switching of a multidomain CFO thin film is gradual. Typical magnetic domain structures as a result of the biaxial isotropic in-plane strains are presented.

  9. Fitting function representation for strain fields and its application to the optimizing process

    NASA Astrophysics Data System (ADS)

    Chen, Kun; Liu, Ke-jia; Wei, Li-qun; Yang, Yi-tao

    2014-06-01

    A fitted function method to describe the strain fields during forging was discussed to optimize the homogeneous distribution of strain in the axial forging zones during successive stretching. The results are verified by experiment and numerical simulation, and the deviations between experiment and simulation are less than 24%. Therefore, the fitted function method can be applied to optimize the stretching process for large forgings. The optimal value of feed determined by the analytic method ensures that the degree of inhomogeneity in strain in the axial ingot zone is less than 6%. This work provides a mathematic model to optimize technological parameters in stretch forging of large ingots.

  10. Flexible MoS2 Field-Effect Transistors for Gate-Tunable Piezoresistive Strain Sensors.

    PubMed

    Tsai, Meng-Yen; Tarasov, Alexey; Hesabi, Zohreh R; Taghinejad, Hossein; Campbell, Philip M; Joiner, Corey A; Adibi, Ali; Vogel, Eric M

    2015-06-17

    Atomically thin molybdenum disulfide (MoS2) is a promising two-dimensional semiconductor for high-performance flexible electronics, sensors, transducers, and energy conversion. Here, piezoresistive strain sensing with flexible MoS2 field-effect transistors (FETs) made from highly uniform large-area films is demonstrated. The origin of the piezoresistivity in MoS2 is the strain-induced band gap change, which is confirmed by optical reflection spectroscopy. In addition, the sensitivity to strain can be tuned by more than 1 order of magnitude by adjusting the Fermi level via gate biasing. PMID:26010011

  11. Dynamical effects in strain measurements by dark-field electron holography.

    PubMed

    Javon, E; Lubk, A; Cours, R; Reboh, S; Cherkashin, N; Houdellier, F; Gatel, C; Hÿtch, M J

    2014-12-01

    Here, we study the effect of dynamic scattering on the projected geometric phase and strain maps reconstructed using dark-field electron holography (DFEH) for non-uniformly strained crystals. The investigated structure consists of a {SiGe/Si} superlattice grown on a (001)-Si substrate. The three-dimensional strain field within the thin TEM lamella is modelled by the finite element method. The observed projected strain is simulated in two ways by multiplying the strain at each depth in the crystal by a weighting function determined from a recently developed analytical two-beam dynamical theory, and by simply taking the average value. We demonstrate that the experimental results need to be understood in terms of the dynamical theory and good agreement is found between the experimental and simulated results. Discrepancies do remain for certain cases and are likely to be from an imprecision in the actual two-beam diffraction conditions, notably the deviation parameter, and points to limitations in the 2-beam approximation. Finally, a route towards a 3D reconstruction of strain fields is proposed. PMID:25062040

  12. Controlling the exciton energy of a nanowire quantum dot by strain fields

    NASA Astrophysics Data System (ADS)

    Chen, Yan; Zadeh, Iman Esmaeil; Jöns, Klaus D.; Fognini, Andreas; Reimer, Michael E.; Zhang, Jiaxiang; Dalacu, Dan; Poole, Philip J.; Ding, Fei; Zwiller, Val; Schmidt, Oliver G.

    2016-05-01

    We present an experimental route to engineer the exciton energies of single quantum dots in nanowires. By integrating the nanowires onto a piezoelectric crystal, we controllably apply strain fields to the nanowire quantum dots. Consequently, the exciton energy of a single quantum dot in the nanowire is shifted by several meVs without degrading its optical intensity and single-photon purity. Second-order autocorrelation measurements are performed at different strain fields on the same nanowire quantum dot. The suppressed multi-photon events at zero time delay clearly verify that the quantum nature of single-photon emission is well preserved under external strain fields. The work presented here could facilitate on-chip optical quantum information processing with the nanowire based single photon emitters.

  13. Differentiation of field isolates and vaccine strains of infectious laryngotracheitis virus by DNA sequencing.

    PubMed

    Chacón, Jorge Luis; Ferreira, Antonio J Piantino

    2009-11-12

    Two different regions of the infected cell protein 4 (ICP4) gene of infectious laryngotracheitis virus (ILTV) were amplified and sequenced for characterization of field isolates and tissue culture-origin (TCO) and chicken embryo-origin (CEO) vaccine strains. Phylogenetic analysis of the two regions showed differences in nucleotide and amino acid sequences between field isolates and attenuated vaccines. The PCR-RFLP results were identical to those obtained by DNA sequencing and validated their use to differentiate ILTV strains. The approach using the sequencing of the two fragments of the ICP4 gene showed to be an efficient and practical procedure to differentiate between field isolates and vaccine strains of ILTV. PMID:19747995

  14. Two-dimensional GeS with tunable electronic properties via external electric field and strain.

    PubMed

    Zhang, Shengli; Wang, Ning; Liu, Shangguo; Huang, Shiping; Zhou, Wenhan; Cai, Bo; Xie, Meiqiu; Yang, Qun; Chen, Xianping; Zeng, Haibo

    2016-07-01

    Experimentally, GeS nanosheets have been successfully synthesized using vapor deposition processes and the one-pot strategy. Quite recently, GeS monolayer, the isoelectronic counterpart of phosphorene, has attracted much attention due to promising properties. By means of comprehensive first-principles calculations, we studied the stability and electronic properties of GeS monolayer. Especially, electric field and in-plane strain were used to tailor its electronic band gap. Upon applying electric field, the band gap of GeS monolayer greatly reduces and a semiconductor-metal transition happens under the application of a certain external electric field. Our calculations reveal that the band gaps of GeS monolayer are rather sensitive to the external electric field. On the other hand, for GeS under external strain, quite interestingly, we found that the band gap presents an approximately linear increase not only under compression strain but also under tensile strain from -10% to 10%. For biaxial compressive and tensile strains, the band gap follows the same trend as that of the uniaxial in the zigzag x direction. The present results provide a simple and effective route to tune the electronic properties of GeS monolayer over a wide range and also facilitate the design of GeS-based two-dimensional devices. PMID:27232104

  15. Two-dimensional GeS with tunable electronic properties via external electric field and strain

    NASA Astrophysics Data System (ADS)

    Zhang, Shengli; Wang, Ning; Liu, Shangguo; Huang, Shiping; Zhou, Wenhan; Cai, Bo; Xie, Meiqiu; Yang, Qun; Chen, Xianping; Zeng, Haibo

    2016-07-01

    Experimentally, GeS nanosheets have been successfully synthesized using vapor deposition processes and the one-pot strategy. Quite recently, GeS monolayer, the isoelectronic counterpart of phosphorene, has attracted much attention due to promising properties. By means of comprehensive first-principles calculations, we studied the stability and electronic properties of GeS monolayer. Especially, electric field and in-plane strain were used to tailor its electronic band gap. Upon applying electric field, the band gap of GeS monolayer greatly reduces and a semiconductor–metal transition happens under the application of a certain external electric field. Our calculations reveal that the band gaps of GeS monolayer are rather sensitive to the external electric field. On the other hand, for GeS under external strain, quite interestingly, we found that the band gap presents an approximately linear increase not only under compression strain but also under tensile strain from ‑10% to 10%. For biaxial compressive and tensile strains, the band gap follows the same trend as that of the uniaxial in the zigzag x direction. The present results provide a simple and effective route to tune the electronic properties of GeS monolayer over a wide range and also facilitate the design of GeS-based two-dimensional devices.

  16. Full-field strain measurement and fracture analysis of rat femora in compression test.

    PubMed

    Amin Yavari, Saber; van der Stok, Johan; Weinans, Harrie; Zadpoor, Amir Abbas

    2013-04-26

    There is a growing interest in studying the fracture behavior of bones, primarily due to the increasing societal burden of osteoporotic fractures. In addition, bone is one of the most important biological materials whose fracture behavior is not yet well understood. This is partly due to the fact that bone is a complex hierarchical material, and exhibits heterogeneous, anisotropic, and viscoelastic mechanical behavior. Understanding the fracture behavior of such a complex material requires application of a full-field strain measurement technique. Digital image correlation (DIC) is a relatively new full-field strain measurement technique that can be used for measurement of 3D surface strains during mechanical testing of different types of bones. In this study, we use the DIC technique to measure the surface strains during compression testing of two groups of rat femora. The first group of femora was harvested from young animals (12 weeks), while the second group was harvested from more mature animals (26 weeks). The surface strains are measured both in the linear range and close to the fracture. Using the measured data, we assess two strain-based fracture prediction criteria, namely equivalent strain fracture criterion and fracture limit diagram, to determine whether they can consistently predict the onset of fracture. The maximum load is measured to be 296±22 N (mean±SD) for young animals and 670±123 N for mature animals. It is shown that fracture in the vast majority of cases occurs in the area of maximum tensile strain. The equivalent strain fracture criterion predicts that the fracture occurs when the equivalent strain reaches 1.04±0.02% (average±SD) for young animals and 1.39±0.24% for mature animals. The fracture limit diagram predicts that the fracture occurs once the sum of major and minor principal surface strains reaches 0.63±0.23% for young animals and -0.63±0.30% for mature animals. Based on these numbers and consistency of the criteria with the

  17. Dynamic Recrystallization in Ice : In-Situ Observation of the Strain Field during Grain Nucleation.

    NASA Astrophysics Data System (ADS)

    Chauve, T.; Montagnat, M.; Tommasi, A.; Vacher, P.

    2014-12-01

    Dynamic recrystallization (DRX) occurs in minerals, metals, ice and impact on large scale mechanisms as seismic anisotropy, mechanical properties inside the Earth mantle, material forming and anisotropic flow in polar ice sheet, for instance. In this frame, ice can be considered as a model material due to a strong viscoplastic anisotropy and deformation heterogeneities, which are precursors of the recrystallization. During creep deformation at high temperature, DRX occurs from 1% strain and involves grain nucleation and grain boundary migration. As DRX induces an evolution of microstructure and texture, it strongly affects the mechanical behavior, and it is expected to modify the strain field at the grain and/or the sample scale. Creep test (σ=0.5-0.8 MPa) were performed at high temperature (T/Tf 0,98) on granular polycrystalline ice (grains size 1mm) and columnar polycrystalline ice (microstructure 2D 1/2 in plane grain size 10mm) up to 18 % strain. Columnar ice provides interesting feature as it contains only one grain through the thickness and the columns are parallel. Post-deformation texture analysis with an Automatic Ice Texture Analyzer (AITA) and with EBSD (Geoscience Montpellier) were used to investigate DRX impact on texture and microstructure, at different scales. With increasing strain texture evolves to a strong concentrated girdle with a preferential orientation of c-axis close to 35° from the compression axis. During the experiment, local strain field is measured on the surface of the sample by Digital Image Correlation (DIC) with a spatial resolution between 0.2 and 0.5 mm, and a strain resolution between 0.2% to 1%. Grain size being large, we obtain a relatively good intra-granular resolution of the strain field. Thanks to the 2D configuration of the columnar ice samples, we can superimpose the strain field measured by DIC. We will present an overview of the impact of DRX on the texture and microstructure, from the 3D configuration down to a

  18. Laboratory and field performance of FOS sensors in static and dynamic strain monitoring in concrete bridge decks

    NASA Astrophysics Data System (ADS)

    Benmokrane, B.; Debaiky, A.; El-Ragaby, A.; Roy, R.; El-Gamal, S.; El-Salakawy, E.

    2006-03-01

    There is a growing need for designing and constructing innovative concrete bridges using FRP reinforcing bars as internal reinforcement to avoid the corrosion problems and high costs of maintenance and repair. For efficient use and to increase the lifetime of these bridges, it is important to develop efficient monitoring systems for such innovative structures. Fabry-Perot and Bragg fibre optic sensors (FOS) that can measure the strains and temperature are promising candidates for life-long health monitoring of these structures. This article reports laboratory and field performance of Fabry-Perot and Bragg FOS sensors as well as electrical strain gauges in static and dynamic strain monitoring in concrete bridge decks. The laboratory tests include tensile testing of glass FRP bars and testing of full-scale concrete bridge deck slabs reinforced with glass and carbon FRP bars under static and cyclic concentrated loads. The field tests include static and dynamic testing of two bridges reinforced with steel and glass FRP bars. The obtained strain results showed satisfactory agreement between the different gauges.

  19. Co-seismic dilatational strain in the far field of great earthquakes

    NASA Astrophysics Data System (ADS)

    Zhang, Yan; Fu, Li-Yun; Wang, Chi-yuen; Yan, Rui; Zhao, Lian-feng

    2016-04-01

    The mechanism of the coseismic dilatational strain has been a topic of active debate. Recent studies show that the co-seismic change of dilatational strain in the far field of large earthquakes is often far greater than that predicted from static strain theory, but the underlying mechanism is not understood. Here we study this mechanism by comparing the tidal responses of crustal strain and water level documented in the Fuxin well, northeastern China, before and after three great earthquakes (the 2008 Mw 7.9 Wenchuan earthquake, the 2011 Mw 9.1 Tohoku earthquake and the 2012 Mw 8.6 Sumatra earthquake). We show that, before each earthquake, the phase of water-level fluctuation lagged behind that of the dilatational strain, due to the delay of groundwater flow to the well with respect to the tidal strain. Following each earthquake, however, the phase of water-level fluctuations increased and became the same as that of the dilatational strain. In addition, we show that the predicted change in water level from the co-seismic dilatational strain has the same sign, amplitude and time history as those of the observed coseismic change in water level. The similarity between the simulated and observed coseismic water-level change, together with the similarity in phase between the tidal response of water level and that of dilatational strain after the earthquake, suggest that the dominant mechanism for the coseismic dilatational strain in the Fuxin well is the co-seismic change in pore pressure in the vicinity of the well.

  20. Strain localization in carbonate rocks experimentally deformed in the ductile field

    NASA Astrophysics Data System (ADS)

    Rybacki, E.; Morales, L. F. G.; Dresen, G.

    2012-04-01

    The deformation of rocks in the Earth's crust is often localized, varying from brittle fault gauges in shallow environments to mylonites in ductile shear zones at greater depth. A number of theoretical, experimental, and field studies focused on the evolution and extend of brittle fault zones, but little is known so far about initiation of ductile shear zones. Strain localization in rocks deforming at high temperature and pressure may be induced by several physical, chemical, or structurally-related mechanisms. We performed simple and pure shear deformation experiments on carbonate rocks containing structural inhomogenities in the ductile deformation regime. The results may help to gain insight into the evolution of high temperature shear zones. As starting material we used cylindrical samples of coarse-grained Carrara marble containing one or two 1 mm thin artificially prepared sheets of fine-grained Solnhofen limestone, which act as soft inclusions under the applied experimental conditions. Length and diameter of the investigated solid and hollow cylinders were 10-20 mm and 10-15 mm, respectively. Samples were deformed in a Paterson-type gas deformation apparatus at 900° C temperature and confining pressures of 300 and 400 MPa. Three samples were deformed in axial compression at a bulk strain rate of 8x10-5 s-1to axial strains between 0.02 and 0.21 and 15 samples were twisted in torsion at a bulk shear strain rate of 2x10-4 s-1 to shear strains between 0.01 and 3.74. At low strain, specimens deformed axially and in torsion show minor strain hardening that is replaced by strain weakening at shear strains in excess of about 0.2. Peak shear stress at the imposed condition is about 20 MPa. Strain localized strongly within the weak inclusions as indicated by inhomogeneous bending of initially straight strain markers on sample jackets. Maximum strain concentration within inclusions with respect to the adjacent matrix was between 4 and 40, depending on total strain and

  1. Full-field characterization of wishboning strain in the colobine mandibular symphysis.

    PubMed

    Bucinell, Ronald B; Daegling, David J; McGraw, W Scott; Rapoff, Andrew J

    2010-04-01

    The masticatory loading regime of lateral transverse bending (wishboning) is hypothesized to be instrumental in the evolution of symphyseal form among primates. The biomechanics of wishboning have largely been inferred by assuming that the mandible behaves as a curved beam under this load; however, the characterization of stress and strain in the anthropoid symphysis has been interpretively challenging. This is due, in part, to both limitations of sampling strain in an in vivo context and the incongruence of beam theory assumptions on the one hand, and the anatomical complexity of mandibular morphology on the other. Utilizing three-dimensional (3D) Digital Image Correlation (DIC), we employ an in vitro approach to characterize the strain field in a sample of colobine mandibles under simulated wishboning loads in order to assess the utility of idealized curved beam models for characterizing strain gradients in symphyseal bone. Conventional theory of curved beams suggest that colobine mandibles should exhibit reduced disparity of labial and lingual stresses relative to papionin primates given differences in overall mandibular architecture. This prediction is borne out by our analysis: whereas macaques experience lingual:labial strain disparities of 3.5:1, the colobine mandibles exhibit ratios on the order of 2-3:1. However, despite the fact that wishboning loads represent a case of asymmetric bending, details of the wishboning strain field do not conform to expected stress distribution under this model. PMID:20235311

  2. Strain on field effect transistors with single–walled–carbon nanotube network on flexible substrate

    SciTech Connect

    Kim, T. G.; Kim, U. J.; Lee, E. H.; Hwang, J. S.; Hwang, S. W. E-mail: sangsig@korea.ac.kr; Kim, S. E-mail: sangsig@korea.ac.kr

    2013-12-07

    We have systematically analyzed the effect of strain on the electrical properties of flexible field effect transistors with a single-walled carbon nanotube (SWCNT) network on a polyethersulfone substrate. The strain was applied and estimated at the microscopic scale (<1 μm) by using scanning electron microscope (SEM) equipped with indigenously designed special bending jig. Interestingly, the strain estimated at the microscopic scale was found to be significantly different from the strain calculated at the macroscopic scale (centimeter-scale), by a factor of up to 4. Further in-depth analysis using SEM indicated that the significant difference in strain, obtained from two different measurement scales (microscale and macroscale), could be attributed to the formation of cracks and tears in the SWCNT network, or at the junction of SWCNT network and electrode during the strain process. Due to this irreversible morphological change, the electrical properties, such as on current level and field effect mobility, lowered by 14.3% and 4.6%, respectively.

  3. Computational study on electrical properties of transition metal dichalcogenide field-effect transistors with strained channel

    SciTech Connect

    Harada, Naoki; Sato, Shintaro; Yokoyama, Naoki

    2014-01-21

    The performance limits of monolayer transition metal dichalcogenide (TMDC) field-effect transistors (FETs) with isotropic biaxial strain were examined with the “top-of-the-barrier” ballistic MOSFET model. Using a first-principle theory, we calculated the band structures and density of states of strained monolayer MoS{sub 2} and WS{sub 2}, and used the results in model calculations. Introducing strain moves the positions of the conduction band minimum and valence band maximum in k-space with resultant variation in the effective mass and population of carriers. Introducing 2% tensile strain into n-type MoS{sub 2} FETs decreases the electron effective mass and, at the same time, increases energy separation between the lower and the higher valleys in the conduction band, resulting in 26% improvement of the ON current up to 1260 A/m. Whereas compressive strain results in complicated effects, −2% strain also improves the ON current by 15%. These results suggest that introducing artificial strain is promising to improve TMDC FET performance.

  4. Different resistance patterns of reference and field strains of Brucella abortus

    PubMed Central

    Miranda, Karina L.; Dorneles, Elaine M. S.; Poester, Fernando P.; Martins, Paulo S.; Pauletti, Rebeca B.; Lage, Andrey P.

    2015-01-01

    The aim of this study was to evaluate the growth of the B. abortus reference strains and field isolates on media containing different inhibitor agents. Reference strains were seeded on tryptose agar containing: i-erythritol (1.0 mg/mL), fuchsin (20 μg/mL and 80 μg/mL), thionin (2.5 μg/mL and 10 μg/mL), rifampicin (200 μg/mL) and safranin O (200 μg/mL). Field isolates were tested only on media containing i-erythritol, rifampicin and thionin. Furthermore, each suspension was also inoculated on tryptose agar incubated in air, to test its ability to grow without CO 2 . Sensitivity to fuchsin was similar among reference strains evaluated. Growth of S19, 544 and 2308 but not RB51 were inhibited on media containing rifampicin. Medium with safranin O showed no inhibition for RB51, 544 and 2308, but it partially inhibited the S19 growth as well as medium containing i-erythritol. Treatment/control growth ratio for 2308 on tryptose agar containing thionin (2.5 μg/mL) was approximatelly 1.0, whereas S19 and RB51 showed 0.85 and 0.89 ratios, respectively. Growth of 544, S19 and RB51 but not 2308 was completely inhibited on medium with thionin (10 μg/mL). All field strains grew on medium containing i-erythritol, but were completelly inhibited by rifampicin. With exception of A1 ( B. abortus biovar 3) all field isolates grew on medium with thionin, although some strains showed a treatment/control growth ratio of 0.75–0.80 (10 μg/mL). These results showed that tryptose agar with thionin, i-erythritol or rifampicin could be useful for differentiating vaccine, challenge and field strains of B. abortus. PMID:26221116

  5. Different resistance patterns of reference and field strains of Brucella abortus.

    PubMed

    Miranda, Karina L; Dorneles, Elaine M S; Poester, Fernando P; Martins Filho, Paulo S; Pauletti, Rebeca B; Lage, Andrey P

    2015-03-01

    The aim of this study was to evaluate the growth of the B. abortus reference strains and field isolates on media containing different inhibitor agents. Reference strains were seeded on tryptose agar containing: i-erythritol (1.0 mg/mL), fuchsin (20 μg/mL and 80 μg/mL), thionin (2.5 μg/mL and 10 μg/mL), rifampicin (200 μg/mL) and safranin O (200 μg/mL). Field isolates were tested only on media containing i-erythritol, rifampicin and thionin. Furthermore, each suspension was also inoculated on tryptose agar incubated in air, to test its ability to grow without CO 2 . Sensitivity to fuchsin was similar among reference strains evaluated. Growth of S19, 544 and 2308 but not RB51 were inhibited on media containing rifampicin. Medium with safranin O showed no inhibition for RB51, 544 and 2308, but it partially inhibited the S19 growth as well as medium containing i-erythritol. Treatment/control growth ratio for 2308 on tryptose agar containing thionin (2.5 μg/mL) was approximatelly 1.0, whereas S19 and RB51 showed 0.85 and 0.89 ratios, respectively. Growth of 544, S19 and RB51 but not 2308 was completely inhibited on medium with thionin (10 μg/mL). All field strains grew on medium containing i-erythritol, but were completelly inhibited by rifampicin. With exception of A1 ( B. abortus biovar 3) all field isolates grew on medium with thionin, although some strains showed a treatment/control growth ratio of 0.75-0.80 (10 μg/mL). These results showed that tryptose agar with thionin, i-erythritol or rifampicin could be useful for differentiating vaccine, challenge and field strains of B. abortus. PMID:26221116

  6. High resolution monitoring of strain fields in concrete during hydraulic fracturing processes.

    PubMed

    Chen, Rongzhang; Zaghloul, Mohamed A S; Yan, Aidong; Li, Shuo; Lu, Guanyi; Ames, Brandon C; Zolfaghari, Navid; Bunger, Andrew P; Li, Ming-Jun; Chen, Kevin P

    2016-02-22

    We present a distributed fiber optic sensing scheme to image 3D strain fields inside concrete blocks during laboratory-scale hydraulic fracturing. Strain fields were measured by optical fibers embedded during casting of the concrete blocks. The axial strain profile along the optical fiber was interrogated by the in-fiber Rayleigh backscattering with 1-cm spatial resolution using optical frequency domain reflectometry (OFDR). The 3D strain fields inside the cubes under various driving pressures and pumping schedules were measured and used to characterize the location, shape, and growth rate of the hydraulic fractures. The fiber optic sensor detection method presented in this paper provides scientists and engineers an unique laboratory tool to understand the hydraulic fracturing processes via internal, 3D strain measurements with the potential to ascertain mechanisms related to crack growth and its associated damage of the surrounding material as well as poromechanically-coupled mechanisms driven by fluid diffusion from the crack into the permeable matrix of concrete specimens. PMID:26907042

  7. Full-field strain measurements on turbomachinery components using 3D SLDV technology

    NASA Astrophysics Data System (ADS)

    Maguire, Martyn; Sever, Ibrahim

    2016-06-01

    This paper focuses on measurements of 3D Operating Deflection Shapes (ODSs), and subsequently, construction of full-field surface strain maps of a number of turbomachinery components. For this purpose a 3D Scanning Laser Doppler Vibrometer (SLDV) is used. The ODS measurements are performed for a large number of modes and results obtained are compared with the 1-D shapes that are most commonly measured. It is demonstrated that the 3D measurements are a significant improvement over the 1-D case in terms of independent amount of extra information they provide. This is confirmed through comparisons with FE results. Special tests are carried out to recover the full-field strain on scanned faces of the components used. Visual comparison of these measurements with FE counterparts reveal that strain maps can be successfully measured, not only for low frequency modes but also for highly complex high frequency ones. These maps are measured with different levels of input force to assess the linearity of strain results to varying response amplitudes. Lessons learnt and observations made are summarised in concluding remarks and the scope of future work to take this study into the production environment is discussed. This study constitutes a unique comprehensive investigation into full-field strain measurements using real application hardware and a large frequency range.

  8. Strain field evolution during creep on ice. Impact of dynamic recrystallization mechanisms.

    NASA Astrophysics Data System (ADS)

    Chauve, Thomas; Montagnat, Maurine; Barou, Fabrice; Hidas, Karoly; Tommasi, Andréa; Vacher, Pierre

    2015-04-01

    Discontinuous Dynamic Recrystallization (DDRX) occurs in minerals, metals, ice and impacts on texture and microstructure evolution during deformation. It therefore impacts on large scale mechanisms as seismic anisotropy, mechanical properties inside the Earth mantle, material forming and anisotropic flow in polar ice sheet, for instance. In this frame, ice can be considered as a model material due to a strong viscoplastic anisotropy inducing strong deformation heterogeneities, that are precursors of recrystallization. During creep deformation at high temperature in the laboratory, DDRX occurs from 1% strain and involves grain nucleation and grain boundary migration. As DDRX induces an evolution of microstructure and texture, it strongly affects the mechanical behavior (1,2), and it is expected to modify the strain field at the grain and/or the sample scale. Compressive creep test (σ=0.5-0.8 MPa) were performed at high temperature (T/Tf 0,98) on granular polycrystalline ice (grains size 1mm) and columnar polycrystalline ice (microstructure 2D 1/2 in plane grain size 10mm) up to 18 % strain. Columnar ice provides interesting feature as it contains only one grain through the thickness and the columns are parallel. Post-deformation texture analyses with an Automatic Ice Texture Analyzer (AITA) and with EBSD (CrystalProbe MEB of Geoscience Montpellier) were used to investigate DDRX mechanisms at high resolution, and deduce their impact on texture and microstructure, at different scales. During the experiment, local strain field is measured on the surface of the sample by Digital Image Correlation (DIC) (3) with a spatial resolution between 0.2 and 0.5 mm, and a strain resolution between 0.2% to 1%. Grain size being large, we obtain a relatively good intra-granular resolution of the strain field. Thanks to the 2D configuration of the columnar ice samples, we can superimpose the initial microstructure to the strain field measured by DIC. We will present an overview of

  9. Giant electric-field-induced strain in lead-free piezoelectric materials.

    PubMed

    Chen, Lan; Yang, Yurong; Meng, X K

    2016-01-01

    First-principles calculations are performed to investigate the structures, electrical, and magnetic properties of compressive BiFeO3 films under electric-field and pressure perpendicular to the films. A reversible electric-field-induced strain up 10% is achieved in the compressive BiFeO3 films. The giant strain originates from rhombohedral-tetragonal (R-T) phase transition under electric-filed, and is recoverable from tetragonal-rhombohedral (T-R) phase transition by compressive stress. Additionally, the weak ferromagnetism in BiFeO3 films is largely changed in R-T phase transition under electric-filed and T-R phase transition under pressure - reminiscent of magnetoelectric effect and magnetoelastic effect. These results suggest exciting device opportunities arising from the giant filed-induced strain, large magnetoelectric effect and magnetoelastic effect. PMID:27139526

  10. Giant electric-field-induced strain in lead-free piezoelectric materials

    PubMed Central

    Chen, Lan; Yang, Yurong; Meng, X. K.

    2016-01-01

    First-principles calculations are performed to investigate the structures, electrical, and magnetic properties of compressive BiFeO3 films under electric-field and pressure perpendicular to the films. A reversible electric-field-induced strain up 10% is achieved in the compressive BiFeO3 films. The giant strain originates from rhombohedral-tetragonal (R-T) phase transition under electric-filed, and is recoverable from tetragonal-rhombohedral (T-R) phase transition by compressive stress. Additionally, the weak ferromagnetism in BiFeO3 films is largely changed in R-T phase transition under electric-filed and T-R phase transition under pressure – reminiscent of magnetoelectric effect and magnetoelastic effect. These results suggest exciting device opportunities arising from the giant filed-induced strain, large magnetoelectric effect and magnetoelastic effect. PMID:27139526

  11. Note: Dynamic strain field mapping with synchrotron X-ray digital image correlation

    SciTech Connect

    Lu, L.; Fan, D.; Luo, S. N.; Bie, B. X.; Ran, X. X.; Qi, M. L.; Parab, N.; Sun, J. Z.; Liao, H. J.; Hudspeth, M. C.; Claus, B.; Fezzaa, K.; Sun, T.; Chen, W.; Gong, X. L.

    2014-07-15

    We present a dynamic strain field mapping method based on synchrotron X-ray digital image correlation (XDIC). Synchrotron X-ray sources are advantageous for imaging with exceptional spatial and temporal resolutions, and X-ray speckles can be produced either from surface roughness or internal inhomogeneities. Combining speckled X-ray imaging with DIC allows one to map strain fields with high resolutions. Based on experiments on void growth in Al and deformation of a granular material during Kolsky bar/gas gun loading at the Advanced Photon Source beamline 32ID, we demonstrate the feasibility of dynamic XDIC. XDIC is particularly useful for dynamic, in-volume, measurements on opaque materials under high strain-rate, large, deformation.

  12. Giant electric-field-induced strain in lead-free piezoelectric materials

    NASA Astrophysics Data System (ADS)

    Chen, Lan; Yang, Yurong; Meng, X. K.

    2016-05-01

    First-principles calculations are performed to investigate the structures, electrical, and magnetic properties of compressive BiFeO3 films under electric-field and pressure perpendicular to the films. A reversible electric-field-induced strain up 10% is achieved in the compressive BiFeO3 films. The giant strain originates from rhombohedral-tetragonal (R-T) phase transition under electric-filed, and is recoverable from tetragonal-rhombohedral (T-R) phase transition by compressive stress. Additionally, the weak ferromagnetism in BiFeO3 films is largely changed in R-T phase transition under electric-filed and T-R phase transition under pressure – reminiscent of magnetoelectric effect and magnetoelastic effect. These results suggest exciting device opportunities arising from the giant filed-induced strain, large magnetoelectric effect and magnetoelastic effect.

  13. Mechanical characteristics of strained vibrating strings and a vibration-induced electric field

    NASA Astrophysics Data System (ADS)

    Bivin, Yu. K.

    2012-11-01

    The mechanical characteristics of vibrating strings strained between rigid supports and a vibration-induced electric field are studied. Experiments are conducted with nylon, rubber, and metallic strings. Vibrations are excited by a pinch at different sites along the string. The motion of the string is filmed, and the attendant electric field is detected. Experimental data are analyzed under the assumption that the field is induced by unlike charges generated by the moving string. It is found that the field allows one to determine the time characteristics of the motion of the string and discriminate the types of its deformations. Young moduli observed under the static extension of thin nylon strings are compared with those calculated from the natural frequencies of vibration measured for differently strained strings. The mathematical pattern of the motion of the string is compared with the real situation.

  14. Determination of Strain Field on the Superior Surface of Excised Larynx Vocal Folds Using DIC

    PubMed Central

    Bakhshaee, Hani; Young, Jonathan; Yang, Justin C. W.; Mongeau, Luc; Miri, Amir K.

    2013-01-01

    Summary Objective/Hypothesis The objective of the present study was to quantify the mechanical strain and stress in excised porcine larynges during self-oscillation using digital image correlation (DIC) method. The use of DIC in the excised larynx setup may yield accurate measurements of the vocal fold displacement field. Study Design Ex vivo animal larynx. Methods Measurements were performed using excised porcine larynges on a humidified flow bench, equipped with two high-speed cameras and a commercially available DIC software. Surface deformations were calculated from digital images recorded at 3000 frames per second during continuous self-oscillation for four excised porcine larynges. Larynx preparation consisted of removing the supraglottal wall and the false folds. DIC yielded the deformation field on the superior visible surface of the vocal folds. Measurement data for adducted and freely suspended vocal folds were also used to estimate the distribution of the initial prephonatory strain field. An isotropic constitutive law, the polymer eight-chain model, was used to estimate the surface distributions of planar stresses from the strain data. Results The Lagrangian normal strain values were between ~16% and ~29% along the anterior-posterior direction. The motion of material points on the vocal fold surface described an elliptical trajectory during oscillation. A phase difference was observed between the anterior-posterior and the medial-lateral component of the displacement. The strain data and eight-chain model yielded a maximum stress of ~4 kPa along the medial-lateral direction on the superior surface. Conclusion DIC allowed the strain field over the superior surface of an excised porcine larynx to be quantified during self-oscillation. The approach allowed the determination of the trajectory of specific points on the vocal fold surface. The results for the excised larynx were found to be significantly different than previous results obtained using

  15. Strain-Induced Pseudo--Magnetic Fields in Graphene: MegaGauss in Nanobubbles

    NASA Astrophysics Data System (ADS)

    Levy, Niv

    2011-03-01

    Recent theoretical proposals suggest that strain can be used to modify graphene electronic states through the creation of a pseudo--magnetic field. This effect is unique to graphene because of its massless Dirac fermion-like band structure and particular lattice symmetry (C3v). Scanning tunneling microscopy shows that graphene grown on a platinum (111) surface forms nanobubbles, which are highly strained due to thermal expansion mismatch between the film and the substrate. We find that scanning tunneling spectroscopy measurements of these nanobubbles exhibit Landau levels that form in the presence of strain-induced pseudo--magnetic fields greater than 300 Tesla. This demonstration of enormous pseudo--magnetic fields opens the door to both the study of charge carriers in previously inaccessible high magnetic field regimes and deliberate mechanical control over electronic structure in graphene or so-called ``strain engineering''. In collaboration with S. A. Burke ,2 , K. L. Meaker 2 , M. Panlasigui 2 , A. Zettl 2,3 , F. Guinea 4 , A. H. Castro Neto 5 and M. F. Crommie 2,3 . 1. Present address: Department of Physics and Astronomy and Department of Chemistry, University of British Columbia, Vancouver, BC V6T 121, Canada. 2. Department of Physics, University of California, Berkeley, CA 94720, USA. 3. Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA. 4. Instituto de Ciencia de Materiales de Madrid (CSIC), Madrid 28049, Spain. 5. Department of Physics, Boston University, Boston, MA 02215, USA.

  16. Growth Kinetics and Transmission Potential of Existing and Emerging Field Strains of Infectious Laryngotracheitis Virus

    PubMed Central

    Coppo, Mauricio J. C.; Vaz, Paola K.; Legione, Alistair R.; Quinteros, José A.; Noormohammadi, Amir H.; Markham, Phillip F.; Browning, Glenn F.; Devlin, Joanne M.

    2015-01-01

    Attenuated live infectious laryngotracheitis virus (ILTV) vaccines are widely used in the poultry industry to control outbreaks of disease. Natural recombination between commercial ILTV vaccines has resulted in virulent recombinant viruses that cause severe disease, and that have now emerged as the dominant field strains in important poultry producing regions in Australia. Genotype analysis using PCR—restriction fragment length polymorphism has shown one recombinant virus (class 9) has largely replaced the previously dominant class 2 field strain. To examine potential reasons for this displacement we compared the growth kinetics and transmission potential of class 2 and class 9 viruses. The class 9 ILTV grew to higher titres in cell culture and embryonated eggs, but no differences were observed in entry kinetics or egress into the allantoic fluid from the chorioallantoic membrane. In vivo studies showed that birds inoculated with class 9 ILTV had more severe tracheal pathology and greater weight loss than those inoculated with the class 2 virus. Consistent with the predominance of class 9 field strains, birds inoculated with 102 or 103 plaque forming units of class 9 ILTV consistently transmitted virus to in-contact birds, whereas this could only be seen in birds inoculated with 104 PFU of the class 2 virus. Taken together, the improved growth kinetics and transmission potential of the class 9 virus is consistent with improved fitness of the recombinant virus over the previously dominant field strain. PMID:25785629

  17. Growth kinetics and transmission potential of existing and emerging field strains of infectious laryngotracheitis virus.

    PubMed

    Lee, Sang-Won; Hartley, Carol A; Coppo, Mauricio J C; Vaz, Paola K; Legione, Alistair R; Quinteros, José A; Noormohammadi, Amir H; Markham, Phillip F; Browning, Glenn F; Devlin, Joanne M

    2015-01-01

    Attenuated live infectious laryngotracheitis virus (ILTV) vaccines are widely used in the poultry industry to control outbreaks of disease. Natural recombination between commercial ILTV vaccines has resulted in virulent recombinant viruses that cause severe disease, and that have now emerged as the dominant field strains in important poultry producing regions in Australia. Genotype analysis using PCR-restriction fragment length polymorphism has shown one recombinant virus (class 9) has largely replaced the previously dominant class 2 field strain. To examine potential reasons for this displacement we compared the growth kinetics and transmission potential of class 2 and class 9 viruses. The class 9 ILTV grew to higher titres in cell culture and embryonated eggs, but no differences were observed in entry kinetics or egress into the allantoic fluid from the chorioallantoic membrane. In vivo studies showed that birds inoculated with class 9 ILTV had more severe tracheal pathology and greater weight loss than those inoculated with the class 2 virus. Consistent with the predominance of class 9 field strains, birds inoculated with 10(2) or 10(3) plaque forming units of class 9 ILTV consistently transmitted virus to in-contact birds, whereas this could only be seen in birds inoculated with 10(4) PFU of the class 2 virus. Taken together, the improved growth kinetics and transmission potential of the class 9 virus is consistent with improved fitness of the recombinant virus over the previously dominant field strain. PMID:25785629

  18. Surface strain-field determination of tympanic membrane using 3D-digital holographic interferometry

    NASA Astrophysics Data System (ADS)

    Hernandez-Montes, María del S.; Mendoza Santoyo, Fernando; Muñoz, Silvino; Perez, Carlos; de la Torre, Manuel; Flores, Mauricio; Alvarez, Luis

    2015-08-01

    In order to increase the understanding of soft tissues mechanical properties, 3D Digital Holographic Interferometry (3D-DHI) was used to quantify the strain-field on a cat tympanic membrane (TM) surface. The experiments were carried out applying a constant sound-stimuli pressure of 90 dB SPL (0.632 Pa) on the TM at 1.2 kHz. The technique allows the accurate acquisition of the micro-displacement data along the x, y and z directions, which is a must for a full characterization of the tissue mechanical behavior under load, and for the calculation of the strain-field in situ. The displacements repeatability in z direction shows a standard deviation of 0.062 μm at 95% confidence level. In order to realize the full 3D characterization correctly the contour of the TM surface was measured employing the optically non-contact two-illumination positions contouring method. The x, y and z displacements combined with the TM contour data allow the evaluation its strain-field by spatially differentiating the u(m,n), v(m,n), and w(m,n) deformation components. The accurate and correct determination of the TM strain-field leads to describing its elasticity, which is an important parameter needed to improve ear biomechanics studies, audition processes and TM mobility in both experimental measurements and theoretical analysis of ear functionality and its modeling.

  19. Comparison between Digital Image Correlation and Thermoelasticity for Strain Field Analysis

    NASA Astrophysics Data System (ADS)

    Becchetti, M.; Flori, R.; Marsili, M.; Moretti, M.

    2010-05-01

    The non contact measurement technique known as "Digital Image Correlation" (DIC) is a well known experimental method to analyze strain field on the surface of specimen and mechanical components, and since about 1980, for the development of high performance data processing and image acquisition systems, with a large number of applications in experimental mechanics. In this work, using the most recent data acquisition and processing techniques, performance and optimal selection of data acquisition and processing parameter are analyzed. To better understand the performance of this technique a comparison with thermoelastic images has been performed. The thermoelastic effect is usually used to investigate the stress field on surface of specimen or mechanical components (TSA: thermoelastic Stress Analysis) and can be demonstrated that this technique (TSA) can be useful to investigate the strain field too. This allow a direct comparison of results collected with DIC and thermoelastic strain analysis. Comparisons are performed measuring the first invariant of strain field on the surface of an AISI 304 thin test specimen with an hole on its center.

  20. Simulation-based design of a strained graphene field effect transistor incorporating the pseudo magnetic field effect

    SciTech Connect

    Souma, Satofumi Ueyama, Masayuki; Ogawa, Matsuto

    2014-05-26

    We present a numerical study on the performance of strained graphene-based field-effect transistors. A local strain less than 10% is applied over a central channel region of the graphene to induce the shift of the Dirac point in the channel region along the transverse momentum direction. The left and the right unstrained graphene regions are doped to be either n-type or p-type. By using the atomistic tight-binding model and a Green's function method, we predict that the gate voltage applied to the central strained graphene region can switch the drain current on and off with an on/off ratio of more than six orders of magnitude at room temperature. This is in spite of the absence of a bandgap in the strained channel region. Steeper subthreshold slopes below 60 mV/decade are also predicted at room temperature because of a mechanism similar to the band-to-band tunneling field-effect transistors.

  1. Misleading Performance Reporting in the Supercomputing Field

    NASA Technical Reports Server (NTRS)

    Bailey, David H.; Kutler, Paul (Technical Monitor)

    1992-01-01

    In a previous humorous note, I outlined twelve ways in which performance figures for scientific supercomputers can be distorted. In this paper, the problem of potentially misleading performance reporting is discussed in detail. Included are some examples that have appeared in recent published scientific papers. This paper also includes some proposed guidelines for reporting performance, the adoption of which would raise the level of professionalism and reduce the level of confusion in the field of supercomputing.

  2. Strain and electric field co-modulation of electronic properties of bilayer boronitrene.

    PubMed

    Wang, Rui-Ning; Yang, Ming; Dong, Guo-Yi; Wang, Shu-Fang; Fu, Guang-Sheng; Wang, Jiang-Long

    2016-02-10

    The electronic properties of bilayer strained boronitrenes are investigated under an external electric field using density functional methods. Our result is just the same as the previous conclusion: ie, that the electric field will reduce their band gaps. Except for the decrease of their band gaps, the degeneracy of π valence bands at K points will be lifted and the degenerate gap will increase with the electric field increasing. Moreover, the widths of π valence bands are nearly robust and increase a little. In addition, a simple tight-binding model, where different electrostatic potentials are applied to boronitrene layers, can be sufficient to describe the variations of their band gaps. It is found that the interlayer hopping interaction increases while the intralayer hopping parameter changes little with increasing the electric field. Furthermore, a band gap phase diagram is determined within the in-plane strain [-0.2, 0.2] and the interlayer bias [0, 10] V nm(-1). The strain could make the bottom of conduction bands shift from K to M, then to Γ in the Brillouin zone, while the top of valence bands shifts from K to Γ. Thus, a direct-gap semiconductor at K points is changed into an indirect-gap semiconductor, and then a semiconductor with the direct band gap at Γ points. When bilayer boronitrene is a semiconductor with a direct gap at K points, the electric field and strain are inverse proportional relationships. Particularly, when the compressive strain exceeds  -0.194, there is an insulator-metal transition and the system becomes metallic with sizable pocket Fermi surfaces. PMID:26760530

  3. Crack-tip strain field mapping and the toughness of metallic glasses.

    PubMed

    Hufnagel, Todd C; Vempati, Uday K; Almer, Jonathan D

    2013-01-01

    We have used high-energy x-ray scattering to map the strain fields around crack tips in fracture specimens of a bulk metallic glass under load at room temperature and below. From the measured strain fields we can calculate the components of the stress tensor as a function of position and determine the size and shape of the plastic process zone around the crack tip. Specimens tested at room temperature develop substantial plastic zones and achieve high stress intensities ((K(If) = 76 MPa m(1/2)) prior to fracture. Specimens tested at cryogenic temperatures fail at reduced but still substantial stress intensities (K(If) = 39 MPa m(1/2)) and show only limited evidence of crack-tip plasticity. We propose that the difference in behavior is associated with changes in the flow stress and elastic constants, which influence the number density of shear bands in the plastic zone and thus the strain required to initiate fracture on an individual band. A secondary effect is a change in the triaxial state of stress around the crack tip due to the temperature dependence of Poisson's ratio. It is likely that this ability to map elastic strains on the microscale will be useful in other contexts, although interpreting shifts in the position of the scattering peaks in amorphous materials in terms of elastic strains must be done with caution. PMID:24386172

  4. Crack-Tip Strain Field Mapping and the Toughness of Metallic Glasses

    PubMed Central

    Hufnagel, Todd C.; Vempati, Uday K.; Almer, Jonathan D.

    2013-01-01

    We have used high-energy x-ray scattering to map the strain fields around crack tips in fracture specimens of a bulk metallic glass under load at room temperature and below. From the measured strain fields we can calculate the components of the stress tensor as a function of position and determine the size and shape of the plastic process zone around the crack tip. Specimens tested at room temperature develop substantial plastic zones and achieve high stress intensities () prior to fracture. Specimens tested at cryogenic temperatures fail at reduced but still substantial stress intensities () and show only limited evidence of crack-tip plasticity. We propose that the difference in behavior is associated with changes in the flow stress and elastic constants, which influence the number density of shear bands in the plastic zone and thus the strain required to initiate fracture on an individual band. A secondary effect is a change in the triaxial state of stress around the crack tip due to the temperature dependence of Poisson's ratio. It is likely that this ability to map elastic strains on the microscale will be useful in other contexts, although interpreting shifts in the position of the scattering peaks in amorphous materials in terms of elastic strains must be done with caution. PMID:24386172

  5. Analyzing aging under oscillatory strain field through the soft glassy rheology model.

    PubMed

    Kaushal, Manish; Joshi, Yogesh M

    2016-06-28

    In this work, we solve the Soft Glassy Rheology (SGR) model under application of oscillatory deformation field with varying magnitudes of strain as well as frequency for different noise temperatures. In the glassy domain, the SGR model undergoes time evolution of elastic modulus. Increase in strain magnitude beyond the linear regime is observed to enhance the rate of aging as manifested by a faster evolution of elastic modulus with increase in strain amplitude due to overaging. However at higher strain magnitudes, the rejuvenation effect starts dominating over the aging, thereby reducing the rate at which elastic modulus evolves. We also plot the aging phase diagram describing an occurrence of the linear, the overaging, and the rejuvenation regimes as a function of strain and frequency for different noise temperatures. The aging phase diagram suggests that while the linear regime remains unaffected by the changes in frequency and noise temperature, the width of the overaging regime increases with increase in frequency and noise temperature. We also study the time evolution of the shapes of relaxation time spectra as a function of strain amplitude, which renders further insight into the overaging and the rejuvenation behavior. While the phenomenon of overaging is observed to be an inherent character of the SGR model, experimentally not all the materials demonstrate overaging. Such a discrepancy suggests that the energy well depths before and after a yielding event may not be completely uncorrelated as assumed in the SGR formalism. PMID:27369524

  6. Strain field measurements around notches using SIFT features and meshless methods.

    PubMed

    Gonzáles, Giancarlo; Meggiolaro, Marco

    2015-05-10

    This work proposes a hybrid experimental-numerical technique with the aim to improve strain measurements at stress concentration regions. The novel technique is performed employing the computer vision scale invariant feature transform (SIFT) algorithm and meshless methods, here termed SIFT-meshless. The SIFT is applied to perform feature points matching in two images of the specimen surface at different stages of mechanical deformation. The output data are provided as a set of displacement measurements by tracking matched feature points. This information is then used to model displacement and strain field on the surface by means of a meshless formulation based on the moving least squares approximation. By applying the proposed SIFT-meshless method, the strain distribution around a semicircular notch in a plate under bending load was investigated. The experimental results were compared with those obtained by a digital image correlation technique based on a subset approach and to simulations from finite element analysis software. The experimental results demonstrated that the present method is capable of performing reliable strain measurements at distances close to the notch where the peak strain value is expected, even in the presence of high strain gradients. PMID:25967511

  7. Direct observation of nanometer-scale strain field around CoSi{sub 2}/Si interface using scanning moiré fringe imaging

    SciTech Connect

    Kim, Suhyun; Jung, Younheum; Jung Kim, Joong; Byun, Gwangseon; Lee, Sunyoung; Lee, Heabum

    2014-04-21

    We report the use of scanning moiré fringe (SMF) imaging through high-angle annular dark-field scanning transmission electron microscopy (STEM) to measure the strain field around a CoSi{sub 2} contact embedded in the source and drain (S/D) region of a transistor. The atomic arrangement of the CoSi{sub 2}/Si (111) interface was determined from the high-resolution (HR)-STEM images, and the strain field formed around the S/D region was revealed by nanometer-scale SMFs appearing in the STEM image. In addition, we showed that the strain field in the S/D region measured by SMF imaging agreed with results obtained via peak-pairs analysis of HR-STEM images.

  8. Strain mapping of tensiley strained silicon transistors with embedded Si1-yCy source and drain by dark-field holography

    NASA Astrophysics Data System (ADS)

    Hüe, Florian; Hÿtch, Martin; Houdellier, Florent; Bender, Hugo; Claverie, Alain

    2009-08-01

    Dark-field holography, a new transmission electron microscopy technique for mapping strain distributions at the nanoscale, is used to characterize strained-silicon n-type transistors with a channel width of 65 nm. The strain in the channel region, which enhances electron mobilities, is engineered by recessed Si0.99C0.01 source and drain stressors. The strain distribution is measured across an array of five transistors over a total area of 1.6 μm wide. The longitudinal tensile strain reaches a maximum of 0.58%±0.02% under the gate oxide. Theoretical strain maps obtained by finite element method agree well with the experimental results.

  9. New bridge-circuit-type detector to measure precise resistance change of strain gauge at low temperature and magnetic field

    NASA Astrophysics Data System (ADS)

    Ohashi, Masashi; Kishii, Nobuya; Tateno, Shota

    2016-04-01

    We report a new highly accurate and versatile bridge-circuit-type detector that has a simple structure and demonstrates a low degree of error for measurements of thermal expansion and magnetostriction by the strain gauge method. As an example, a commercial physical property measurement system (PPMS) is combined with a compact bridge-circuit box. Thermal expansion and magnetostriction are calculated from the resistance of the bridge and bridge voltage, measured by the operation of a standard PPMS resistivity option. The performance of the new detector is demonstrated by measuring the temperature and magnetic field dependences of the strain to obtain the thermal expansion coefficient and magnetostriction of the single crystals of rare-earth compounds RAl2 (R = Dy, Tb).

  10. Mesoscopic strain fields in woven composites: Experiments vs. finite element modeling

    NASA Astrophysics Data System (ADS)

    Nicoletto, Gianni; Anzelotti, Giancarlo; Riva, Enrica

    2009-03-01

    Detailed determination of strain in woven composite materials is fundamental for understanding their mechanics and for validating sophisticated computational models. The digital image correlation technique is briefly presented and applied to the full-field strain determination in a twill-weave carbon-fiber-reinforced-plastic (CFRP) composite under in-plane loading. The experimental results are used to assess companion results obtained with an ad hoc finite element-based model. The DIC vs. FEM comparison is carried out at the mesoscopic scale.

  11. Genetic characterization of Italian field strains of Schmallenberg virus based on N and NSs genes.

    PubMed

    Izzo, Francesca; Cosseddu, Gian Mario; Polci, Andrea; Iapaolo, Federica; Pinoni, Chiara; Capobianco Dondona, Andrea; Valleriani, Fabrizia; Monaco, Federica

    2016-08-01

    Following its first identification in Germany in 2011, the Schmallenberg virus (SBV) has rapidly spread to many other European countries. Despite the wide dissemination, the molecular characterization of the circulating strains is limited to German, Belgian, Dutch, and Swiss viruses. To fill this gap, partial genetic characterization of 15 Italian field strains was performed, based on S segment genes. Samples were collected in 2012 in two different regions where outbreaks occurred during distinct epidemic seasons. The comparative sequence analysis demonstrated a high molecular stability of the circulating viruses; nevertheless, we identified several variants of the N and NSs proteins not described in other SBV isolates circulating in Europe. PMID:27059241

  12. Phenotypic and molecular characterization of native Azospirillum strains from rice fields to improve crop productivity.

    PubMed

    Sahoo, Ranjan K; Ansari, Mohammad W; Pradhan, Madhusmita; Dangar, Tushar K; Mohanty, Santanu; Tuteja, Narendra

    2014-07-01

    Beneficial microorganisms have been considered as an important tool for crop improvement. Native isolates of Azospirillum spp. were obtained from the rhizospheres of different rice fields. Phenotypic, biochemical and molecular characterizations of these isolates led to the identification of six efficient strain of Azospirillum. PCR amplification of the nif genes (nifH, nifD and nifK) and protein profile of Azospirillum strains revealed inter-generic and inter-specific diversity among the strains. In vitro nitrogen fixation performance and the plant growth promotion activities, viz. siderophore, HCN, salicylic acid, IAA, GA, zeatin, ABA, NH3, phosphorus metabolism, ACC deaminase and iron tolerance were found to vary among the Azospirillum strains. The effect of Azospirillum formulations on growth of rice var. Khandagiri under field condition was evaluated, which revealed that the native formulation of Azospirillum of CRRI field (As6) was most effective to elevate endogenous nutrient content, and improved growth and better yield are the result. The 16S rRNA sequence revealed novelty of native Azospirillum lipoferum (As6) (JQ796078) in the NCBI database. PMID:24414168

  13. Dark-field electron holography for the mapping of strain in nanostructures: correcting artefacts and aberrations

    NASA Astrophysics Data System (ADS)

    Hÿtch, M. J.; Houdellier, F.; Hüe, F.; Snoeck, E.

    2010-07-01

    We present details of the new electron holographic dark-field technique (HoloDark) for mapping strain in nanostructures. A diffracted beam emanating from an unstrained region of crystal is interfered (with the aid of an electrostatic biprism) with a diffracted beam from the strained region of interest. Geometric phase analysis (GPA) of the holographic fringes determines the relative deformation of the two crystalline lattices. Strain can be measured to high precision, with nanometre spatial resolution and for micron fields of view. Experiments are carried out on the SACTEM-Toulouse, a Tecnai F20 (FEI) equipped with imaging aberration corrector (CEOS), field-emission gun and rotatable biprism (FEI). We operate the microscope in free-lens control with the main objective lens switched off and using the corrector transfer lenses as a Lorentz lens. We will present measurements of strain in test nanostructures and show how artefacts from thickness variations can be removed. Finally, we show our first results using a recently developed aberration-corrected Lorentz mode (CEOS).

  14. Tuning the energy gap of bilayer α-graphyne by applying strain and electric field

    NASA Astrophysics Data System (ADS)

    Yang, Hang; Wu, Wen-Zhi; Jin, Yu; Wan-Lin, Guo

    2016-02-01

    Our density functional theory calculations show that the energy gap of bilayer α-graphyne can be modulated by a vertically applied electric field and interlayer strain. Like bilayer graphene, the bilayer α-graphyne has electronic properties that are hardly changed under purely mechanical strain, while an external electric field can open the gap up to 120 meV. It is of special interest that compressive strain can further enlarge the field induced gap up to 160 meV, while tensile strain reduces the gap. We attribute the gap variation to the novel interlayer charge redistribution between bilayer α-graphynes. These findings shed light on the modulation of Dirac cone structures and potential applications of graphyne in mechanical-electric devices. Project supported by the National Key Basic Research Program of China (Grant Nos. 2013CB932604 and 2012CB933403), the National Natural Science Foundation of China (Grant Nos. 51472117 and 51535005), the Research Fund of State Key Laboratory of Mechanics and Control of Mechanical Structures, China (Grant No. 0414K01), the Nanjing University of Aeronautics and Astronautics (NUAA) Fundamental Research Funds, China (Grant No. NP2015203), and the Priority Academic Program Development of Jiangsu Higher Education Institutions.

  15. Isotropic realizability of a strain field for the two‑dimensional incompressible elasticity system

    NASA Astrophysics Data System (ADS)

    Briane, M.

    2016-06-01

    In the paper we study the problem of the isotropic realizability in {{{R}}}2 of a regular strain field e(U)=\\tfrac{1}{2}({DU}+{{DU}}T) for the incompressible elasticity system, namely the existence of a positive shear modulus μ \\gt 0 solving the elasticity system in {{{R}}}2 with the prescribed field e(U). We show that if e(U) does not vanish at some point, then the isotropic realizability holds in the neighborhood of that point. The global realizability in {{{R}}}2 or in the torus is much more delicate, since it involves the global existence of a regular solution to a semilinear wave equation, the coefficients of which depend on the derivatives of U. Using this semilinear wave equation we prove a small perturbation result: if DU is periodic and close enough to its average value for the C 4‑norm, then the associated strain field is isotropically realizable in a given disk centered at the origin. On the other hand, a counterexample shows that the global realizability in {{{R}}}2 may hold without the realizability in the torus, and it is discussed in connection with the associated semilinear wave equation. The case where the strain field vanishes is illustrated by an example. The singular case of a rank-one laminate field is also investigated.

  16. Characterization of Genomic Island 3 and Genetic Variability of Chilean Field Strains of Brucella abortus▿

    PubMed Central

    Céspedes, Sandra; Salgado, Paulina; Valenzuela, Patricio; Vidal, Roberto; Oñate, Angel A.

    2011-01-01

    One of the capabilities developed by bacteria is the ability to gain large fragments of DNA from other bacteria or to lose portions of their own genomes. Among these exchangeable fragments are the genomic islands (GIs). Nine GIs have been identified in Brucella, and genomic island 3 (GI-3) is shared by two pathogenic species, B. melitensis and B. abortus. GI-3 encodes mostly unknown proteins. One of the aims of this study was to perform pulsed-field gel electrophoresis (PFGE) on field isolates of B. abortus from Chile to determine whether these isolates are clonally related. Furthermore, we focused on the characterization of GI-3, studying its organization and the genetic conservation of the GI-3 sequence using techniques such as tiling-path PCR (TP-PCR) and restriction fragment length polymorphism-PCR (RFLP-PCR). Our results, after PFGE was performed on 69 field isolates of B. abortus from Chile, showed that the strains were genetically homogeneous. To increase the power of genetic discrimination among these strains, we used multiple locus variable-number tandem-repeat (VNTR) analysis with 16 loci (MLVA-16). The results obtained by MLVA-16 showed that the strains of B. abortus were genetically heterogeneous and that most of them clustered according to their geographic origin. Of the genetic loci studied, panel 2B was the one describing the highest diversity in the analysis, as well as locus Bruce19 in panel 2A. In relation to the study of GI-3, our experimental analysis by TP-PCR identified and confirmed that GI-3 is present in all wild strains of B. abortus, demonstrating the high stability of gene cluster GI-3 in Chilean field strains. PMID:21543580

  17. Draft Genome Sequence of the Field Isolate Brucella melitensis Strain Bm IND1 from India

    PubMed Central

    Rao, Sashi Bhushan; Gupta, Vivek K.; Kumar, Mukesh; Hegde, Nagendra R.; Splitter, Gary A.; Reddanna, Pallu

    2014-01-01

    Brucella spp. are facultative intracellular bacterial pathogens causing the zoonotic disease brucellosis. Here, we report the draft genome sequence of the Brucella melitensis strain from India designated Bm IND1, isolated from stomach contents of an aborted goat fetus. PMID:24874680

  18. Largely defocused probe scanning transmission electron microscopy for imaging local modulation of strain field in a hetero interface

    SciTech Connect

    Kim, Suhyun Jung, Younheum; Kim, Joong Jung; Lee, Sunyoung; Lee, Haebum; Oshima, Yoshifumi

    2014-10-13

    We present an innovative method for characterizing the strain field in three dimensions in a hetero interface. Largely defocused probe scanning transmission electron microscopy (LDP-STEM) was employed for imaging the inhomogeneous strain field in a germanium (Ge) layer deposited on a silicon (Si) substrate. In the LDP-STEM image, Ge-atomic columns that are relaxed or strained to the Si substrate in the Si/Ge hetero interface were observed to be distinguishable, allowing for the qualitative characterization of the coherency of the crystal growth. Our results revealed that the strain field is locally modulated along the in-plane direction in the Si/Ge hetero interface.

  19. Temperature and Field Induced Strain Measurements in Single Crystal Gd5Si2Ge2

    NASA Astrophysics Data System (ADS)

    McCall, S. K.; Nersessian, N.; Carman, G. P.; Pecharsky, V. K.; Schlagel, D. L.; Radousky, H. B.

    2016-06-01

    The first-order magneto-structural transformation that occurs in Gd5Si2Ge2 near room temperature makes it a strong candidate for many energy harvesting applications. Understanding the single crystal properties is crucial for allowing simulations of device performance. In this study, magnetically and thermally induced transformation strains were measured in a single crystal of Gd5Si2.05Ge1.95 as it transforms from a high-temperature monoclinic paramagnet to a lower-temperature orthorhombic ferromagnet. Thermally induced transformation strains of -8500 ppm, +960 ppm and +1800 ppm, and magnetically induced transformation strains of -8500 ppm, +900 ppm and +2300 ppm were measured along the a, b and c axes, respectively. Using experimental data coupled with general thermodynamic considerations, a universal phase diagram was constructed showing the transition from the monoclinic to the orthorhombic phase as a function of temperature and magnetic field.

  20. Electric field controlled strain induced reversible switching of magnetization in Galfenol nanomagnets delineated on PMN-PT substrate

    NASA Astrophysics Data System (ADS)

    Ahmad, Hasnain; Atulasimha, Jayasimha; Bandyopadhyay, Supriyo

    We report a non-volatile converse magneto-electric effect in elliptical Galfenol (FeGa) nanomagnets of ~300 nm lateral dimensions and ~10nm thickness delineated on a PMN-PT substrate. This effect can be harnessed for energy-efficient non-volatile memory. The nanomagnets are fabricated with e-beam lithography and sputtering. Their major axes are aligned parallel to the direction in which the substrate is poled and they are magnetized in this direction with a magnetic field. An electric field in the opposite direction generates compressive strain in the piezoelectric substrate which is partially transferred to the nanomagnets and rotates their magnetization away from the major axes to metastable orientations. There they remain after the field is removed, resulting in non-volatility. Reversing the electric field generates tensile strain which returns the magnetization to the original state. The two states can encode two binary bits which can be written using the correct voltage polarity, resulting in non-toggle behavior. Scaled memory fashioned on this effect can exhibit write energy dissipation of only ~2 aJ. Work is supported by NSF under ECCS-1124714 and CCF-1216614. Sputtering was carried out at NIST Gaithersburg.

  1. Draft Genome Sequence of Methylosinus sp. Strain 3S-1, an Isolate from Rice Root in a Low-Nitrogen Paddy Field

    PubMed Central

    Bao, Zhihua; Shinoda, Ryo

    2016-01-01

    N2-fixing methanotrophs play an important role in the methane-nitrogen cycle in rice paddies. We report here the draft genome sequence of Methylosinus sp. strain 3S-1 isolated from rice root in a paddy field without N fertilizer input. PMID:27587832

  2. Draft Genome Sequence of Methylosinus sp. Strain 3S-1, an Isolate from Rice Root in a Low-Nitrogen Paddy Field.

    PubMed

    Bao, Zhihua; Shinoda, Ryo; Minamisawa, Kiwamu

    2016-01-01

    N2-fixing methanotrophs play an important role in the methane-nitrogen cycle in rice paddies. We report here the draft genome sequence of Methylosinus sp. strain 3S-1 isolated from rice root in a paddy field without N fertilizer input. PMID:27587832

  3. Extracting full-field dynamic strain response of a rotating wind turbine using photogrammetry

    NASA Astrophysics Data System (ADS)

    Baqersad, Javad; Poozesh, Peyman; Niezrecki, Christopher; Avitabile, Peter

    2015-04-01

    Health monitoring of wind turbines is typically performed using conventional sensors (e.g. strain-gages and accelerometers) that are usually mounted to the nacelle or gearbox. Although many wind turbines stop operating due to blade failures, there are typically few to no sensor mounted on the blades. Placing sensors on the rotating parts of the structure is a challenge due to the wiring and data transmission constraints. Within the current work, an approach to monitor full-field dynamic response of rotating structures (e.g. wind turbine blades or helicopter rotors) is developed and experimentally verified. A wind turbine rotor was used as the test structure and was mounted to a block and horizontally placed on the ground. A pair of bearings connected to the rotor shaft allowed the turbine to freely spin along the shaft. Several optical targets were mounted to the blades and a pair of high-speed cameras was used to monitor the dynamics of the spinning turbine. Displacements of the targets during rotation were measured using three-dimensional point tracking. The point tracking technique measured both rigid body displacement and flexible deformation of the blades at target locations. While the structure is rotating, only flap displacements of optical targets (displacements out of the rotation plane) were used in strain prediction process. The measured displacements were expanded and applied to the finite element model of the turbine to extract full-field dynamic strain on the structure. The proposed approach enabled the prediction of dynamic response on the outer surface as well as within the inner points of the structure where no other sensor could be easily mounted. In order to validate the proposed approach, the predicted strain was compared to strain measured at four locations on the spinning blades using a wireless strain-gage system.

  4. Studies of resistance to anticoccidials in Eimeria field isolates and pure Eimeria strains.

    PubMed

    Stephen, B; Rommel, M; Daugschies, A; Haberkorn, A

    1997-04-01

    Ten Eimeria field isolates from North Germany were studied in battery tests for sensitivity to selected anticoccidials. A high percentage of the Eimeria field isolates (9 out of 10) showed resistance to anticoccidials, mostly multiple resistance. Partial or complete resistance to maduramicin was found in 7 field isolates, to monensin in 6, to salinomycin in 5, to nicarbazin in 8, to halofuginone in 7, to robenidine and toltrazuril in 1, and to diclazuril in 2 field isolates. Multiple resistance had developed in 7 of the 10 isolates. Cross-resistance between maduramicin, monensin, and salinomycin occurred in 5 Eimeria isolates. One isolate showed cross-resistance between diclazuril and toltrazuril. From the resistant isolates 15 pure E. acerculina and 5 pure E. brunetti strains were obtained by single oocyst infections. Seven of the E. acerculina and 4 of the E. brunetti strains showed resistance or partial resistance that was also present in the original isolate. Ten of 11 resistant strains were multiply resistant. PMID:9187026

  5. Long-term field release of bioluminescent Sinorhizobium meliloti strains to assess the influence of a recA mutation on the strains' survival.

    PubMed

    Selbitschka, W; Keller, M; Miethling-Graff, R; Dresing, U; Schwieger, F; Krahn, I; Homann, I; Dammann-Kalinowski, T; Pühler, A; Tebbe, C C

    2006-10-01

    A field release experiment was carried out to study the fate of the isogenic, firefly luciferase (luc) gene-tagged Sinorhizobium meliloti strains L1 (RecA-) and L33 (RecA+) in the environment. Both strains were released at concentrations of approximately 10(6) cfu g(-1) soil in replicate and randomized field plots, which had been sown with alfalfa (Medicago sativa). The survival of both strains during the following 7 years could be subdivided into three phases: a sharp decline for more than two orders of magnitude within the first 4 months (phase I), followed by fluctuations around an average number of 10(4) cfu g(-1) soil for nearly 4 years (phase II), and a further decline to approximately 60 cfu g(-1) (phase III). At most sampling dates, no significant differences in the survival of both strains were detected, indicating that the recA gene function was dispensable under these environmental conditions. During the field inoculation, both strains were dispersed accidentally by wind in small numbers to noninoculated field plots. Strain L33 established at a concentration of more than 10(3) cfu g(-1) soil with subsequent seasonal fluctuations. Although strain L1 must have been disseminated to a similar extent, it could never be recovered from noninoculated field plots, indicating that the recA mutation interfered with the strain's capability to establish there. At the beginning of the field experiment, an indigenous alfalfa-nodulating population was below the limit of detection. In the following years, however, an indigenous population arose, which finally outcompeted both strains for saprophytic growth and alfalfa nodulation. RecA- strain L1 was outcompeted for alfalfa nodulation slightly faster than its RecA+ counterpart L33. The diversity of the indigenous population was characterized by employing the Enterobacterial Repetitive Intergenic Consensus polymerase chain reaction fingerprint method. Typing of 2731 root nodule isolates revealed a total of 38 fingerprint

  6. Establishment of a nanoparticle-assisted RT-PCR assay to distinguish field strains and attenuated strains of porcine epidemic diarrhea virus.

    PubMed

    Zhu, Yu; Wang, Gui-Hua; Cui, Yu-Dong; Cui, Shang-Jin

    2016-09-01

    Porcine epidemic diarrhea virus (PEDV) can cause serious disease and even death in neonatal piglets, resulting in serious damage to the swine industry worldwide. Open reading frame 3 (ORF3) is the only accessory gene in the PEDV genome. Previous studies have indicated that PEDV vaccine strains have a partial deletion in ORF3. In this study, a nanoparticle-assisted polymerase chain reaction (nanoparticle-assisted RT-PCR) assay targeting the ORF3 of PEDV was developed to distinguish PEDV field strains from attenuated strains by using a specific pair of primers. The PCR products of field strains and attenuated strains were 264 bp and 215 bp in length, respectively. The sensitivity and specificity of this assay were also assessed. The nanoparticle-assisted RT-PCR assay was 10-100 times more sensitive than the conventional RT-PCR assay, with no cross-reactions when amplifying porcine pseudorabies virus (PRV), porcine circovirus type 2 (PCV2), classical swine fever virus (CSFV), porcine parvovirus (PPV), porcine reproductive and respiratory syndrome virus (PRRSV), porcine rotavirus (RV), and porcine transmissible gastroenteritis virus (TGEV). The nanoparticle-assisted RT-PCR assay we describe here can be used to distinguish field strains from vaccine strains of PEDV, and it shows promise for reducing economic loss due to PEDV infection. PMID:27287433

  7. In situ SEM observation of microscale strain fields around a crack tip in polycrystalline molybdenum

    NASA Astrophysics Data System (ADS)

    Li, J. J.; Li, W. C.; Jin, Y. J.; Wang, L. F.; Zhao, C. W.; Xing, Y. M.; Lang, F. C.; Yan, L.; Yang, S. T.

    2016-06-01

    In situ scanning electron microscopy was employed to investigate the crack initiation and propagation in polycrystalline molybdenum under uniaxial tensile load at room temperature. The microscale grid pattern was fabricated using the sputtering deposition technology on the specimen surface covered with a fine square mesh copper grid. The microscale strain fields around the crack tip were measured by geometric phase analysis technique and compared with the theoretical solutions based on the linear elastic fracture mechanics theory. The results showed that as the displacement increases, the crack propagated mainly perpendicular to the tensile direction during the fracture process of molybdenum. The normal strain ɛ xx and shear strain ɛ xy are relatively small, and the normal strain ɛ yy holds a dominant position in the deformation fields and plays a key role in the whole fracture process of molybdenum. With the increase in displacement, the ɛ yy increases rapidly and the two lobes grow significantly but maintain the same shape and orientation. The experimental ɛ yy is in agreement with the theoretical solution. Along the x-axis in front of the crack tip, there is minor discrepancy between the experimental ɛ yy and theoretical ɛ yy within 25 μm from the crack tip, but the agreement between them is very good far from the crack tip (>25 μm).

  8. The threshold electric field of 180° domain switching in the misfit strain-external electric field phase diagram

    NASA Astrophysics Data System (ADS)

    Zhu, Z.; Zheng, X. J.; Jiang, D. D.; Yang, Z. C.

    2011-08-01

    The single domain treatment on the selected single grain was performed by the negative DC bias in order to obtain the single-domain state, and the opposite color contrasts within the selected grain in piezoelectric phase images of Pb(Zr0.52Ti0.48)O3 ferroelectric thin film were observed by piezoelectric force microscopy. Based on nonlinear thermodynamic theory, the a1c- and r- phases with the negative P3 component are introduced to describe the electric-generated domain switching, and the external misfit strain-electric field phase diagram and the electric field-polarization components curve are simulated at the simplification of uniform stress/electric distribution for the single-domain state of a single grain. In phase diagram, the electric field at the misfit strain -0.002 evaluated by x ray diffraction is 139 kV/cm for the phase transition from a1c- phase to c+ phase, and it is corresponding to the threshold electric field for 180° domain switching observed by the piezoelectric phase images.

  9. The application of strain field intensity method in the steel bridge fatigue life evaluation

    NASA Astrophysics Data System (ADS)

    Zhao, Xuefeng; Wang, Yanhong; Cui, Yanjun; Cao, Kaisheng

    2012-04-01

    Asce's survey shows that 80%--90% bridge damage were associated with fatigue and fracture problems. With the operation of vehicle weight and traffic volume increases constantly, the fatigue of welded steel bridge is becoming more and more serious in recent years. A large number of studies show that most prone to fatigue damage of steel bridge is part of the welding position. Thus, it's important to find a more precise method to assess the fatigue life of steel bridge. Three kinds of fatigue analysis method is commonly used in engineering practice, such as nominal stress method, the local stress strain method and field intensity method. The first two methods frequently used for fatigue life assessment of steel bridge, but field intensity method uses less ,and it widely used in fatigue life assessment of aerospace and mechanical. Nominal stress method and the local stress strain method in engineering has been widely applied, but not considering stress gradient and multiaxial stress effects, the accuracy of calculation stability is relatively poor, so it's difficult to fully explain the fatigue damage mechanism. Therefore, it used strain field intensity method to evaluate the fatigue life of steel bridge. The fatigue life research of the steel bridge based on the strain field method and the fatigue life of the I-section plate girder was analyzed. Using Ansys on the elastoplastic finite element analysis determined the dangerous part of the structure and got the stress-strain history of the dangerous point. At the same time, in order to divide the unit more elaborate introduced the sub-structure technology. Finally, it applies K.N. Smith damage equation to calculate the fatigue life of the dangerous point. In order to better simulating the actual welding defects, it dug a small hole in the welding parts. It dug different holds from different view in the welding parts and plused the same load to calculate its fatigue life. Comparing the results found that the welding

  10. Multi phase field model for solid state transformation with elastic strain

    NASA Astrophysics Data System (ADS)

    Steinbach, I.; Apel, M.

    2006-05-01

    A multi phase field model is presented for the investigation of the effect of transformation strain on the transformation kinetics, morphology and thermodynamic stability in multi phase materials. The model conserves homogeneity of stress in the diffuse interface between elastically inhomogeneous phases, in which respect it differs from previous models. The model is formulated consistently with the multi phase field model for diffusional and surface driven phase transitions [I. Steinbach, F. Pezzolla, B. Nestler, M. Seeßelberg, R. Prieler, G.J. Schmitz, J.L.L. Rezende, A phase field concept for multiphase systems, Physica D 94 (1996) 135-147; J. Tiaden, B. Nestler, H.J. Diepers, I. Steinbach, The multiphase-field model with an integrated concept for modeling solute diffusion, Physica D 115 (1998) 73-86; I. Steinbach, F. Pezzolla, A generalized field method for multiphase transformations using interface fields, Physica D 134 (1999) 385] and gives a consistent description of interfacial tension, multi phase thermodynamics and elastic stress balance in multiple junctions between an arbitrary number of grains and phases. Some aspects of the model are demonstrated with respect to numerical accuracy and the relation between transformation strain, external stress and thermodynamic equilibrium.

  11. Strain Determination On Curved Surfaces Using Far-Field Objective Laser Speckles

    NASA Astrophysics Data System (ADS)

    Chiang, F. P.; Kin, C. C.

    1982-06-01

    Most of the laser speckle methods utilize subjective speckles in that speckles are recorded through a lens whose aperture determines the admitted spatial frequencies. Objective speckles are those intrinsically formed by the scattering wavelets. In this paper we propose the use of far-field objective speckles generated from a ground glass to measure surface displacement and strain. The object's surface is coated with a photosensitive material and placed inside the speckle field. Double exposure is made on the photosenstive coating before and after the application of load. Young's fringes are generated by probing the surface coating with a narrow laser beam. Surface strain can then be calculated from these fringes. The method can be applied to doubly-curved surfaces and opaque materials.

  12. A phase-field model for ductile fracture at finite strains and its experimental verification

    NASA Astrophysics Data System (ADS)

    Ambati, Marreddy; Kruse, Roland; De Lorenzis, Laura

    2016-01-01

    In this paper, a phase-field model for ductile fracture previously proposed in the kinematically linear regime is extended to the three-dimensional finite strain setting, and its predictions are qualitatively and quantitatively compared with several experimental results, both from ad-hoc tests carried out by the authors and from the available literature. The proposed model is based on the physical assumption that fracture occurs when a scalar measure of the accumulated plastic strain reaches a critical value, and such assumption is introduced through the dependency of the phase-field degradation function on this scalar measure. The proposed model is able to capture the experimentally observed sequence of elasto-plastic deformation, necking and fracture phenomena in flat specimens; the occurrence of cup-and-cone fracture patterns in axisymmetric specimens; the role played by notches and by their size on the measured displacement at fracture; and the sequence of distinct cracking events observed in more complex specimens.

  13. Automated field detection of rock fracturing, microclimate, and diurnal rock temperature and strain fields

    NASA Astrophysics Data System (ADS)

    Warren, K.; Eppes, M.-C.; Swami, S.; Garbini, J.; Putkonen, J.

    2013-07-01

    The rates and processes that lead to non-tectonic rock fracture on the Earth's surface are widely debated but poorly understood. Few, if any, studies have made the direct observations of rock fracturing under natural conditions that are necessary to directly address this problem. An instrumentation design that enables concurrent high spatial and temporal monitoring resolution of (1) diurnal environmental conditions of a natural boulder and its surroundings in addition to (2) the fracturing of that boulder under natural full-sun exposure is described herein. The surface of a fluvially transported granite boulder was instrumented with (1) six acoustic emission (AE) sensors that record micro-crack associated, elastic wave-generated activity within the three-dimensional space of the boulder, (2) eight rectangular rosette foil strain gages to measure surface strain, (3) eight thermocouples to measure surface temperature, and (4) one surface moisture sensor. Additionally, a soil moisture probe and a full weather station that measures ambient temperature, relative humidity, wind speed, wind direction, barometric pressure, insolation, and precipitation were installed adjacent to the test boulder. AE activity was continuously monitored by one logger while all other variables were acquired by a separate logger every 60 s. The protocols associated with the instrumentation, data acquisition, and analyses are discussed in detail. During the first four months, the deployed boulder experienced almost 12 000 AE events, the majority of which occur in the afternoon when temperatures are decreasing. This paper presents preliminary data that illustrates data validity and typical patterns and behaviors observed. This system offers the potential to (1) obtain an unprecedented record of the natural conditions under which rocks fracture and (2) decipher the mechanical processes that lead to rock fracture at a variety of temporal scales under a range of natural conditions.

  14. Automated field detection of rock fracturing, microclimate, and diurnal rock temperature and strain fields

    NASA Astrophysics Data System (ADS)

    Warren, K.; Eppes, M.-C.; Swami, S.; Garbini, J.; Putkonen, J.

    2013-11-01

    The rates and processes that lead to non-tectonic rock fracture on Earth's surface are widely debated but poorly understood. Few, if any, studies have made the direct observations of rock fracturing under natural conditions that are necessary to directly address this problem. An instrumentation design that enables concurrent high spatial and temporal monitoring resolution of (1) diurnal environmental conditions of a natural boulder and its surroundings in addition to (2) the fracturing of that boulder under natural full-sun exposure is described herein. The surface of a fluvially transported granite boulder was instrumented with (1) six acoustic emission (AE) sensors that record micro-crack associated, elastic wave-generated activity within the three-dimensional space of the boulder, (2) eight rectangular rosette foil strain gages to measure surface strain, (3) eight thermocouples to measure surface temperature, and (4) one surface moisture sensor. Additionally, a soil moisture probe and a full weather station that measures ambient temperature, relative humidity, wind speed, wind direction, barometric pressure, insolation, and precipitation were installed adjacent to the test boulder. AE activity was continuously monitored by one logger while all other variables were acquired by a separate logger every 60 s. The protocols associated with the instrumentation, data acquisition, and analysis are discussed in detail. During the first four months, the deployed boulder experienced almost 12 000 AE events, the majority of which occur in the afternoon when temperatures are decreasing. This paper presents preliminary data that illustrates data validity and typical patterns and behaviors observed. This system offers the potential to (1) obtain an unprecedented record of the natural conditions under which rocks fracture and (2) decipher the mechanical processes that lead to rock fracture at a variety of temporal scales under a range of natural conditions.

  15. Mobility enhancement of strained GaSb p-channel metal-oxide-semiconductor field-effect transistors with biaxial compressive strain

    NASA Astrophysics Data System (ADS)

    Yan-Wen, Chen; Zhen, Tan; Lian-Feng, Zhao; Jing, Wang; Yi-Zhou, Liu; Chen, Si; Fang, Yuan; Wen-Hui, Duan; Jun, Xu

    2016-03-01

    Various biaxial compressive strained GaSb p-channel metal-oxide-semiconductor field-effect transistors (MOSFETs) are experimentally and theoretically investigated. The biaxial compressive strained GaSb MOSFETs show a high peak mobility of 638 cm2/V·s, which is 3.86 times of the extracted mobility of the fabricated GaSb MOSFETs without strain. Meanwhile, first principles calculations show that the hole effective mass of GaSb depends on the biaxial compressive strain. The biaxial compressive strain brings a remarkable enhancement of the hole mobility caused by a significant reduction in the hole effective mass due to the modulation of the valence bands. Project supported by the National Basic Research Program of China (Grant No. 2011CBA00602) and the National Science and Technology Major Project of the Ministry of Science and Technology of China (Grant No. 2011ZX02708-002).

  16. AC Electrostatic Field Study : Final Report.

    SciTech Connect

    Lebby, Gary L.

    1990-08-28

    The phenomenon of fast transients propagating to the outer sheath of a gas insulated substation (GIS) during switching and disconnect operations as well as the distortion of the electric field gradient around an electric transmission line in the presence of field measuring equipment are examples of electrostatic and electromagnetic field problems that are very much on the minds of both power engineers and maintenance personnel alike. Maintenance personnel working on high voltage equipment want to know the areas that have the highest electric field strength gradients and they want to reduce the risk of being shocked when touching a conventionally 60 Hz grounded GIS enclosure due to fast transients initiated by faults and switching operations. In studying these phenomena during the performance period of this grant, tower configurations for the electric field strength gradient measurements were tested with the ESURF3D program acquired from BPA and gas insulated substation test pole (GISTP) models were tested using the Alternative Transients Program (ATP) version Electromagnets Transients Program (EMTP). The results of these two modeling paradigms are presented in this report not as the last word on these subjects, but as a couple of the many ways one can approach two classical electromagnetic waves problems. 19 refs., 13 figs., 3 tabs.

  17. In-fiber Fabry-Perot interferometer for strain and magnetic field sensing.

    PubMed

    Costa, Greice K B; Gouvêa, Paula M P; Soares, Larissa M B; Pereira, João M B; Favero, Fernando; Braga, Arthur M B; Palffy-Muhoray, Peter; Bruno, Antonio C; Carvalho, Isabel C S

    2016-06-27

    In this paper we discuss the results obtained with an in-fiber Fabry-Perot interferometer (FPI) used in strain and magnetic field (or force) sensing. The intrinsic FPI was constructed by splicing a small section of a capillary optical fiber between two pieces of standard telecommunication fiber. The sensor was built by attaching the FPI to a magnetostrictive alloy in one configuration and also by attaching the FPI to a small magnet in another. Our sensors were found to be over 4 times more sensitive to magnetic fields and around 10 times less sensitive to temperature when compared to sensors constructed with Fiber Bragg Grating (FBG). PMID:27410621

  18. Full field strain measurements of collagenous tissue by tracking fiber alignment through vector correlation.

    PubMed

    Quinn, Kyle P; Winkelstein, Beth A

    2010-09-17

    Full field strain measurements of biological tissue during loading are often limited to the quantification of fiduciary marker displacements on the tissue surface. These marker measurements can lack the necessary spatial resolution to characterize non-uniform deformation and may not represent the deformation of the load-bearing collagen microstructure. To overcome these potential limitations, a method was developed to track the deformation of the collagen fiber microstructure in ligament tissue. Using quantitative polarized light imaging, fiber alignment maps incorporating both direction and alignment strength at each pixel were generated during facet capsular ligament loading. A grid of virtual markers was superimposed over the tissue in the alignment maps, and the maximization of a vector correlation calculation between fiber alignment maps was used to track marker displacement. Tracking error was quantified through comparisons to the displacements of excised ligament tissue (n=3); separate studies applied uniaxial tension to isolated facet capsular ligament tissue (n=4) to evaluate tracking capabilities during large tissue deformations. The average difference between virtual marker and tissue displacements was 0.07+/-0.06pixels. This error in marker location produced principal strain measurements of 1.2+/-1.6% when markers were spaced 4pixels apart. During tensile tissue loading, substantial inhomogeneity was detected in the strain field using vector correlation tracking, and the location of maximum strain differed from that produced by standard tracking techniques using coarser meshes. These findings provide a method to directly measure fiber network strains using quantitative fiber alignment data, enabling a better understanding of structure-function relationships in tissues at different length scales. PMID:20494363

  19. Strain-assisted current-induced magnetization reversal in magnetic tunnel junctions: A micromagnetic study with phase-field microelasticity

    SciTech Connect

    Huang, H. B.; Hu, J. M.; Yang, T. N.; Chen, L. Q.; Ma, X. Q.

    2014-09-22

    Effect of substrate misfit strain on current-induced in-plane magnetization reversal in CoFeB-MgO based magnetic tunnel junctions is investigated by combining micromagnetic simulations with phase-field microelasticity theory. It is found that the critical current density for in-plane magnetization reversal decreases dramatically with an increasing substrate strain, since the effective elastic field can drag the magnetization to one of the four in-plane diagonal directions. A potential strain-assisted multilevel bit spin transfer magnetization switching device using substrate misfit strain is also proposed.

  20. Study of canine parvovirus evolution: comparative analysis of full-length VP2 gene sequences from Argentina and international field strains.

    PubMed

    Gallo Calderón, Marina; Wilda, Maximiliano; Boado, Lorena; Keller, Leticia; Malirat, Viviana; Iglesias, Marcela; Mattion, Nora; La Torre, Jose

    2012-02-01

    The continuous emergence of new strains of canine parvovirus (CPV), poorly protected by current vaccination, is a concern among breeders, veterinarians, and dog owners around the world. Therefore, the understanding of the genetic variation in emerging CPV strains is crucial for the design of disease control strategies, including vaccines. In this paper, we obtained the sequences of the full-length gene encoding for the main capsid protein (VP2) of 11 canine parvovirus type 2 (CPV-2) Argentine representative field strains, selected from a total of 75 positive samples studied in our laboratory in the last 9 years. A comparative sequence analysis was performed on 9 CPV-2c, one CPV-2a, and one CPV-2b Argentine strains with respect to international strains reported in the GenBank database. In agreement with previous reports, a high degree of identity was found among CPV-2c Argentine strains (99.6-100% and 99.7-100% at nucleotide and amino acid levels, respectively). However, the appearance of a new substitution in the 440 position (T440A) in four CPV-2c Argentine strains obtained after the year 2009 gives support to the variability observed for this position located within the VP2, three-fold spike. This is the first report on the genetic characterization of the full-length VP2 gene of emerging CPV strains in South America and shows that all the Argentine CPV-2c isolates cluster together with European and North American CPV-2c strains. PMID:21858463

  1. Genome Sequence of Hydrocarbon-Degrading Cronobacter sp. Strain DJ34 Isolated from Crude Oil-Containing Sludge from the Duliajan Oil Fields, Assam, India.

    PubMed

    Pal, Siddhartha; Das Banerjee, Tirtha; Roy, Ajoy; Sar, Pinaki; Kazy, Sufia K

    2015-01-01

    We report here the 4,856,096-bp draft genome sequence of hydrocarbon-degrading Cronobacter sp. strain DJ34 isolated from crude oil-containing sludge from the Duliajan oil fields, India. DJ34 contains genes that mediate hydrocarbon degradation, metal resistance, and biosurfactant production. This is the first report of the genome sequence of Cronobacter sp. inhabiting an oil-contaminated environment. PMID:26564043

  2. Genome Sequence of Hydrocarbon-Degrading Cronobacter sp. Strain DJ34 Isolated from Crude Oil-Containing Sludge from the Duliajan Oil Fields, Assam, India

    PubMed Central

    Pal, Siddhartha; Das Banerjee, Tirtha; Roy, Ajoy; Sar, Pinaki

    2015-01-01

    We report here the 4,856,096-bp draft genome sequence of hydrocarbon-degrading Cronobacter sp. strain DJ34 isolated from crude oil-containing sludge from the Duliajan oil fields, India. DJ34 contains genes that mediate hydrocarbon degradation, metal resistance, and biosurfactant production. This is the first report of the genome sequence of Cronobacter sp. inhabiting an oil-contaminated environment. PMID:26564043

  3. Differential phase-contrast dark-field electron holography for strain mapping.

    PubMed

    Denneulin, Thibaud; Houdellier, Florent; Hÿtch, Martin

    2016-01-01

    Strain mapping is an active area of research in transmission electron microscopy. Here we introduce a dark-field electron holographic technique that shares several aspects in common with both off-axis and in-line holography. Two incident and convergent plane waves are produced in front of the specimen thanks to an electrostatic biprism in the condenser system of a transmission electron microscope. The interference of electron beams diffracted by the illuminated crystal is then recorded in a defocused plane. The differential phase recovered from the hologram is directly proportional to the strain in the sample. The strain can be quantified if the separation of the images due to the defocus is precisely determined. The present technique has the advantage that the derivative of the phase is measured directly which allows us to avoid numerical differentiation. The distribution of the noise in the reconstructed strain maps is isotropic and more homogeneous. This technique was used to investigate different samples: a Si/SiGe superlattice, transistors with SiGe source/drain and epitaxial PZT thin films. PMID:26476802

  4. Quantitative full-field strain measurements by SAOED (SrAl2O4:Eu2+,Dy3+) mechanoluminescent materials

    NASA Astrophysics Data System (ADS)

    Imani Azad, Ali; Rahimi, Mohammad Reza; Yun, Gun Jin

    2016-09-01

    In this paper, a new calibration method for mechano-luminescence (ML) thin film sensors was proposed to enable quantitative full-field strain measurements in pixel-level resolution for the first time along with two standard reference test methods. The proposed method has a distinct advantage of its facet-free full-field strain sensing capability with pixel-level resolution. For the ML sensor, standard reference test methods were proposed for developing calibrated relationships between ML light intensity and effective strains: (1) uniaxial tensile reference test and (2) non-uniform strain reference test. From the reference tests, two different calibration models were developed in a recurrence equation form and validated measuring general strain distributions on different experimental specimens. Verified finite element (FE) simulation results were compared with ML effective strains to confirm its accuracy. The comparisons of the ML effective strains with FE simulation results showed that the calibration models can acceptably measure full-field strains. Limitations, sources of errors, suggestions for improving accuracy and practical considerations were also discussed. A conclusion of this research is that the proposed method enables ML sensing films to measure quantitative full-field strain distributions.

  5. Mechanical deformation model of the western United States instantaneous strain-rate field

    USGS Publications Warehouse

    Pollitz, F.F.; Vergnolle, M.

    2006-01-01

    We present a relationship between the long-term fault slip rates and instantaneous velocities as measured by Global Positioning System (GPS) or other geodetic measurements over a short time span. The main elements are the secularly increasing forces imposed by the bounding Pacific and Juan de Fuca (JdF) plates on the North American plate, viscoelastic relaxation following selected large earthquakes occurring on faults that are locked during their respective interseismic periods, and steady slip along creeping portions of faults in the context of a thin-plate system. In detail, the physical model allows separate treatments of faults with known geometry and slip history, faults with incomplete characterization (i.e. fault geometry but not necessarily slip history is available), creeping faults, and dislocation sources distributed between the faults. We model the western United States strain-rate field, derived from 746 GPS velocity vectors, in order to test the importance of the relaxation from historic events and characterize the tectonic forces imposed by the bounding Pacific and JdF plates. Relaxation following major earthquakes (M ??? 8.0) strongly shapes the present strain-rate field over most of the plate boundary zone. Equally important are lateral shear transmitted across the Pacific-North America plate boundary along ???1000 km of the continental shelf, downdip forces distributed along the Cascadia subduction interface, and distributed slip in the lower lithosphere. Post-earthquake relaxation and tectonic forcing, combined with distributed deep slip, constructively interfere near the western margin of the plate boundary zone, producing locally large strain accumulation along the San Andreas fault (SAF) system. However, they destructively interfere further into the plate interior, resulting in smaller and more variable strain accumulation patterns in the eastern part of the plate boundary zone. Much of the right-lateral strain accumulation along the SAF

  6. Trip Report-Produced-Water Field Testing

    SciTech Connect

    Sullivan, Enid J.

    2012-05-25

    Los Alamos National Laboratory (LANL) conducted field testing of a produced-water pretreatment apparatus with assistance from faculty at the Texas A&M University (TAMU) protein separation sciences laboratory located on the TAMU main campus. The following report details all of the logistics surrounding the testing. The purpose of the test was to use a new, commercially-available filter media housing containing modified zeolite (surfactant-modified zeolite or SMZ) porous medium for use in pretreatment of oil and gas produced water (PW) and frac-flowback waters. The SMZ was tested previously in October, 2010 in a lab-constructed configuration ('old multicolumn system'), and performed well for removal of benzene, toluene, ethylbenzene, and xylenes (BTEX) from PW. However, a less-expensive, modular configuration is needed for field use. A modular system will allow the field operator to add or subtract SMZ filters as needed to accommodate site specific conditions, and to swap out used filters easily in a multi-unit system. This test demonstrated the use of a commercial filter housing with a simple flow modification and packed with SMZ for removing BTEX from a PW source in College Station, Texas. The system will be tested in June 2012 at a field site in Pennsylvania for treating frac-flowback waters. The goals of this test are: (1) to determine sorption efficiency of BTEX in the new configuration; and (2) to observe the range of flow rates, backpressures, and total volume treated at a given flow rate.

  7. The dynamic Virtual Fields Method on rubbers at medium and high strain rates

    NASA Astrophysics Data System (ADS)

    Yoon, Sung-Ho; Siviour, Clive R.

    2015-09-01

    Elastomeric materials are widely used for energy absorption applications, often experiencing high strain rate deformations. The mechanical characterization of rubbers at high strain rates presents several experimental difficulties, especially associated with achieving adequate signal to noise ratio and static stress equilibrium, when using a conventional technique such as the split Hopkinson pressure bar. In the present study, these problems are avoided by using the dynamic Virtual Fields Method (VFM) in which acceleration fields, clearly generated by the non-equilibrium state, are utilized as a force measurement with in the frame work of the principle of virtual work equation. In this paper, two dynamic VFM based techniques are used to characterise an EPDM rubber. These are denoted as the linear and nonlinear VFM and are developed for (respectively) medium (drop-weight) and high (gas-gun) strain-rate experiments. The use of the two VFMs combined with high-speed imaging analysed by digital imaging correlation allows the identification of the parameters of a given rubber mechanical model; in this case the Ogden model is used.

  8. The unique effect of in-plane anisotropic strain in the magnetization control by electric field

    NASA Astrophysics Data System (ADS)

    Zhao, Y. Y.; Wang, J.; Hu, F. X.; Liu, Y.; Kuang, H.; Wu, R. R.; Sun, J. R.; Shen, B. G.

    2016-05-01

    The electric field control of magnetization in both (100)- and (011)-Pr0.7Sr0.3MnO3/Pb(Mg1/3Nb2/3)0.7Ti0.3O3(PSMO/PMN-PT) heterostructures were investigated. It was found that the in-plane isotropic strain induced by electric field only slightly reduces the magnetization at low temperature in (100)-PSMO/PMN-PT film. On the other hand, for (011)-PSMO/PMN-PT film, the in-plane anisotropic strain results in in-plane anisotropic, nonvolatile change of magnetization at low-temperature. The magnetization, remanence and coercivity along in-plane [100] direction are suppressed by the electric field while the ones along [01-1] direction are enhanced, which is ascribed to the extra effective magnetic anisotropy induced by the electric field via anisotropic piezostrains. More interestingly, such anisotropic modulation behaviors are nonvolatile, demonstrating a memory effect.

  9. First report in Thailand of a stx-negative Escherichia Coli 0157 strain from a patient with diarrhea.

    PubMed

    Themphachana, Monchanok; Nakaguchi, Yoshitsugu; Nishibuchi, Mitsuaki; Seto, Kazuko; Rattanachuay, Pattamarat; Singkhamanan, Kamonnut; Sukhumungoon, Pharanai

    2014-07-01

    E. coli serotype 0157 is well known to cause serious illnesses in humans. However, there has been no case report to date of this serotype in Thailand. In this study, we report for the first time E. coli 0157 (designated as PSU120) isolated from a stool sample among 228 diarrheal swab samples at Hat Yai Hospital, Songkhla Province, Thailand. This PSU120 was identified as being stx-negative and lacked eae but carried escV, a marker for the locus of enterocyte effacement. Of the five reported integration sites frequently occupied by stx phages, the sbcB and yehV loci were occupied, suggesting that PSU120 is active in horizontal genetic transfer. Antimicrobial susceptibility assay revealed that E. coli 0157 strain PSU120 was resistant to cephalothin, erythromycin, methicillin and vancomycin. Using pulsed- field gel-electrophoresis to compare the genetic relatedness of E. coli 0157 strain PSU120 to two other E. coli 0157 strains, namely, the well-established EHEC strain EDL933 and PSU2, a surrogate of E. coli 0157:H7 whose genotype stx1-, stx2+, eae+ is frequently obtained from the environment in this area during the last decade, revealed 88.6% in similarity. We suggest that PSU120 was originally stx+ but lostthe gene after establishing infection. PMID:25507607

  10. First report in Thailand of a stx-negative Escherichia Coli 0157 strain from a patient with diarrhea.

    PubMed

    Themphachana, Monchanok; Nakaguchi, Yoshitsugu; Nishibuchi, Mitsuaki; Seto, Kazuko; Rattanachuay, Pattamarat; Singkhamanan, Kamonnut; Sukhumungoon, Pharanai

    2014-07-01

    E. coli serotype 0157 is well known to cause serious illnesses in humans. However, there has been no case report to date of this serotype in Thailand. In this study, we report for the first time E. coli 0157 (designated as PSU120) isolated from a stool sample among 228 diarrheal swab samples at Hat Yai Hospital, Songkhla Province, Thailand. This PSU120 was identified as being stx-negative and lacked eae but carried escV, a marker for the locus of enterocyte effacement. Of the five reported integration sites frequently occupied by stx phages, the sbcB and yehV loci were occupied, suggesting that PSU120 is active in horizontal genetic transfer. Antimicrobial susceptibility assay revealed that E. coli 0157 strain PSU120 was resistant to cephalothin, erythromycin, methicillin and vancomycin. Using pulsed- field gel-electrophoresis to compare the genetic relatedness of E. coli 0157 strain PSU120 to two other E. coli 0157 strains, namely, the well-established EHEC strain EDL933 and PSU2, a surrogate of E. coli 0157:H7 whose genotype stx1-, stx2+, eae+ is frequently obtained from the environment in this area during the last decade, revealed 88.6% in similarity. We suggest that PSU120 was originally stx+ but lostthe gene after establishing infection. PMID:25427357

  11. Investigation of Specific Substitutions in Virulence Genes Characterizing Phenotypic Groups of Low-Virulence Field Strains of Listeria monocytogenes

    PubMed Central

    Roche, S. M.; Gracieux, P.; Milohanic, E.; Albert, I.; Virlogeux-Payant, I.; Témoin, S.; Grépinet, O.; Kerouanton, A.; Jacquet, C.; Cossart, P.; Velge, P.

    2005-01-01

    Several models have shown that virulence varies from one strain of Listeria monocytogenes to another, but little is known about the cause of low virulence. Twenty-six field L. monocytogenes strains were shown to be of low virulence in a plaque-forming assay and in a subcutaneous inoculation test in mice. Using the results of cell infection assays and phospholipase activities, the low-virulence strains were assigned to one of four groups by cluster analysis and then virulence-related genes were sequenced. Group I included 11 strains that did not enter cells and had no phospholipase activity. These strains exhibited a mutated PrfA; eight strains had a single amino acid substitution, PrfAK220T, and the other three had a truncated PrfA, PrfAΔ174-237. These genetic modifications could explain the low virulence of group I strains, since mutated PrfA proteins were inactive. Group II and III strains entered cells but did not form plaques. Group II strains had low phosphatidylcholine phospholipase C activity, whereas group III strains had low phosphatidylinositol phospholipase C activity. Several substitutions were observed for five out of six group III strains in the plcA gene and for one out of three group II strains in the plcB gene. Group IV strains poorly colonized spleens of mice and were practically indistinguishable from fully virulent strains on the basis of the above-mentioned in vitro criteria. These results demonstrate a relationship between the phenotypic classification and the genotypic modifications for at least group I and III strains and suggest a common evolution of these strains within a group. PMID:16204519

  12. 4D STUDY OF STRAIN GRADIENTS EVOLUTION IN TWINNED NiMnGa SINGLE CRYSTALS UNDER MAGNETIC FIELD

    SciTech Connect

    Barabash, Rozaliya; Xu, Ruqing; Barabash, Oleg M; Sozinov, Alexei

    2014-01-01

    Time-resolved 3D X-ray microscopy with a submicron beam size was used to follow the evolution of strains in off-stoichiometric NiMnGa twinned crystals near type I (hard) twin boundary under magnetic field. Laminate A/B microstructure was revealed near the twin boundaries in A variant. Large strain gradients are observed in the C variant in the immediate vicinity of the type I twin boundary: the lattice is under large tensile strains ~0.4% along the c- axes within first micron. Distinct a and b lattice parameter evolution with temperature and magnetic field is demonstrated. In an applied magnetic field the strain field was observed at larger distances from the twin boundary and becomes more complex. Stochastic twin boundary motion was observed after the magnetic field reaches a certain critical value.

  13. Full-Field Strain Measurement On Titanium Welds And Local Elasto-Plastic Identification With The Virtual Fields Method

    SciTech Connect

    Tattoli, F.; Casavola, C.; Pierron, F.; Rotinat, R.; Pappalettere, C.

    2011-01-17

    One of the main problems in welding is the microstructural transformation within the area affected by the thermal history. The resulting heterogeneous microstructure within the weld nugget and the heat affected zones is often associated with changes in local material properties. The present work deals with the identification of material parameters governing the elasto--plastic behaviour of the fused and heat affected zones as well as the base material for titanium hybrid welded joints (Ti6Al4V alloy). The material parameters are identified from heterogeneous strain fields with the Virtual Fields Method. This method is based on a relevant use of the principle of virtual work and it has been shown to be useful and much less time consuming than classical finite element model updating approaches applied to similar problems. The paper will present results and discuss the problem of selection of the weld zones for the identification.

  14. Whole field displacement and strain rosettes by grating objective speckle method

    NASA Astrophysics Data System (ADS)

    Tu, Meirong; Gielisse, Peter J.; Xu, Wei

    1991-12-01

    The grating objective speckle method was applied for whole field displacement measurements to a high transition temperature superconductor (YBa2Cu3Ox) disk under diametral-compression. Four fringe patterns were obtained from one single specklegram, indicating the displacement components along four different directions, with 45 degree intervals. The spatial frequencies, which represent the sensitivities of the fringe intervals, were 2400 lines/mm for Ux and Uy, and 1697 lines/mm for U45 and U135, respectively. The normal strain components, (epsilon) x, (epsilon) y, (epsilon) 135, can be directly transformed. The shear strain, (gamma) xy, can therefore be calculated by the rosette equations without the need for first cross-derivatives from two displacement contour maps, which is highly sensitive to accidental rigid-body rotations. The technique provides an extremely simple set-up for the recording system. There is no laser, no camera, no laborious optical alignment, and no requirement for vibration isolation.

  15. RAPID COMMUNICATION: Effect of strain, magnetic field and field angle on the critical current density of Y Ba2Cu3O7-δ coated conductors

    NASA Astrophysics Data System (ADS)

    van der Laan, D. C.; Ekin, J. W.; Douglas, J. F.; Clickner, C. C.; Stauffer, T. C.; Goodrich, L. F.

    2010-07-01

    A large, magnetic-field-dependent, reversible reduction in critical current density with axial strain in Y Ba2Cu3O7-δ coated conductors at 75.9 K has been measured. This effect may have important implications for the performance of Y Ba2Cu3O7-δ coated conductors in applications where the conductor experiences large stresses in the presence of a magnetic field. Previous studies have been performed only under tensile strain and could provide only a limited understanding of the in-field strain effect. We now have constructed a device for measuring the critical current density as a function of axial compressive and tensile strain and applied magnetic field as well as magnetic field angle, in order to determine the magnitude of this effect and to create a better understanding of its origin. The reversible reduction in critical current density with strain becomes larger with increasing magnetic field at all field angles. At 76 K the critical current density is reduced by about 30% at - 0.5% strain when a magnetic field of 5 T is applied parallel to the c-axis of the conductor or 8 T is applied in the ab-plane, compared to a reduction of only 13% in self-field. Differences in the strain response of the critical current density at various magnetic field angles indicate that the pinning mechanisms in Y Ba2Cu3O7-δ coated conductors are uniquely affected by strain. Contribution of NIST, not subject to US copyright.

  16. The 3-D strain patterns in Turkey using geodetic velocity fields from the RTK-CORS (TR) network

    NASA Astrophysics Data System (ADS)

    Kutoglu, Hakan Senol; Toker, Mustafa; Mekik, Cetin

    2016-03-01

    This study presents our use of GPS data to obtain and quantify the full continuous strain tensor using a 3-D velocity field in Turkey. In this study, GPS velocities improve the estimation of short-term strain tensor fields for determining the seismic hazard of Turkey. The tensorial analysis presents different aspects of deformation, such as the normal and shear strains, including their directions, the compressional and extensional strains. This analysis is appropriate for the characterizing the state of the current seismic deformation. GPS velocity data from continuous measurements (2009-2012) to estimate deformations were processed using the GAMIT/GLOBK software. Using high-rate GPS data from permanent 146 GNSS stations (RTK-CORS-TR network), the strain distribution was determined and interpolated using a biharmonic spline technique. We show the strain field patterns within axial and plane form at several critical locations, and discuss these results within the context of the seismic and tectonic deformation of Turkey. We conclude that the knowledge of the crustal strain patterns provides important information on the location of the main faults and strain accumulation for the hazard assessment. The results show an agreement between the seismic and tectonic strains confirming that there are active crustal deformations in Turkey.

  17. Present-day CGPS-derived Crustal Strain Rate Field of the Saint Lawrence River Valley

    NASA Astrophysics Data System (ADS)

    Goudarzi, M. A.; Cocard, M.; Santerre, R.

    2015-12-01

    The Saint Lawrence River valley (SLRV) is one of the most seismically active areas in eastern Canada. Along the SLRV and the Ottawa valley, earthquakes are concentrated on three distinct zones of western Quebec along the Ottawa River, Charlevoix, and Lower Saint Lawrence. The entire area is also subject to the glacial isostatic adjustment (GIA). We studied the earth's surface deformation of the area using the velocity field of 51 continuous GPS (CGPS) stations and the least-squares collocation method. While the intraplate horizontal velocities showed a coherent horizontal motion towards southeast with the typical magnitude of ~1.3 mm/yr for stations along the SLRV, the interpolated vertical velocities demonstrated a coherent uplift with the average rate of 3.1 mm/yr. We estimated strain rate tensors including the effect of vertical velocity. A NNW-SSE shortening with a typical rate of ~3.6-8.1 nstrain/yr was observed over Lower Saint Lawrence. In Charlevoix, an extension with a typical rate of ~3.0-7.1 nstrain/yr was oriented in ENE-WSW parallel to the SLRV. In western Quebec, the deformation has a shear straining mechanism with a typical shortening rate of ~1.0-5.1 nstrain/yr and extension rate of ~1.6-4.1 nstrain/yr. The extension over the northern model is consistent with the prediction of the GIA models. The range of the estimated strain rates of the area (~1.0-8.1 nstrain/yr) is between typical values of rigid blocks (< 0.1 nstrain/yr) and active tectonic regions (> 100 μstrain/yr). A strong correlation was observed between epicenters of earthquakes and areas with the highest rate of shear strain. We found a good agreement between the orientations of the principal axes of strain rate tensors and the maximum horizontal compressional stress σH from World Stress Map 2008 for both strike-slip and thrust faulting regimes especially those derived from focal mechanisms. This shows our CGPS intraplate velocities are representative of the current crustal deformation

  18. Strain gage sting balance 204-6. Calibration report

    NASA Astrophysics Data System (ADS)

    Blaettler, Heinz

    1986-12-01

    The strain gage sting balance 204-6 was developed for aerodynamic measurements on rocket models in the transonic and supersonic wind tunnel. Data are: X = +/- 50 (N); Y = +/- 150 (N); Z = +/- 400 (N); Mx = +/- 1.5 (Nm); My = +/- 20 (Nm); and Mz = +/- 10 (Nm). Compared to the existing balances of same size the ratio Y/Z is changed from 1:8 to 1:3.75. This change of specifications was introduced with regard to measurements to be taken with a sting providing automatic roll positioning around the X-axis. The resistance module was separately constructed and prestressed by a factor of 0.5, and connected to the model and sting part of the balance by electron-beam welding.

  19. Development and Field Release of a Genetic Sexing Strain of the Melon Fly, Bactrocera Cucurbitae in Hawaii

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The first practical genetic sexing strain for the melon fly, Bactrocera cucurbitae, developed in Hawaii was mass-reared and released as sterile males into wild fly populations. Significant improvements in the field quality of sterile males were made with the pupal color strain in which males can be ...

  20. Strain rate tensor in Iran from a new GPS velocity field

    NASA Astrophysics Data System (ADS)

    Masson, Frédéric; Lehujeur, Maximilien; Ziegler, Yann; Doubre, Cécile

    2014-04-01

    The aim of this paper is to determine the strain rate tensor (SRT) for the Iranian region. In this study, (1) we apply a method of computation of the SRT never used for the Iranian area and (2) we use a new GPS velocity field obtained from several previously published velocity fields. First, the method is described and tested on a synthetic case, which mimics the real Iranian case. The synthetic tests confirm that the method allows us to both retrieve high gradients of the strain rate field and reduce the effect of an erroneous velocity vector. Second, the method is applied to a real data set covering the Arabia-Eurasia collision zone in Iran. We particularly focus on the Zagros-Makran transition zone, the Central Iran region and the northernmost part of the Arabia-Eurasia collision zone (NW Iran-Caucasus-East Turkey). Whereas the main characteristics of the obtained SRT are consistent with known tectonic features, important new results are found in the Central Iran, with the strike-slip style along the Anar and Deshir faults, and the Zagros-Makran transition zone, with a north-south variation of the SRT along the Zendan-Minab-Palami fault system. We link these results to recent active tectonic studies.

  1. In vitro activity of tylvalosin against Spanish field strains of Mycoplasma hyopneumoniae.

    PubMed

    Tavío, M M; Poveda, C; Assunção, P; Ramírez, A S; Poveda, J B

    2014-11-29

    Mycoplasma hyopneumoniae is involved in the porcine enzootic pneumonia and respiratory disease complex; therefore, the search for new treatment options that contribute to the control of this organism is relevant. The minimal inhibitory concentrations (MICs) and minimal bactericidal concentrations of tylvalosin and 19 other antimicrobial agents against 20 Spanish field isolates of M. hyopneumoniae were determined using the broth microdilution method, with the type strain (J) as a control strain. Tylvalosin had MIC50 and MIC90 values of 0.016 and 0.06 µg/ml, respectively, and was the second-most effective of the assayed antibiotics, after valnemulin. Tiamulin, tylosin and lincomycin were also among the antibiotics with the lowest MIC50 and MIC90 values against the 20 field isolates (0.06-0.25 µg/ml). However, resistance to tylosin and spiramycin, which like tylvalosin, are 16-membered macrolides, was observed. The MIC50 and MIC90 values for ciprofloxacin and enrofloxacin ranged from 0.125 to 1 µg/ml; the corresponding values ranged from 2 to 4 µg/ml for oxytetracyline, which was the most active tetracycline. Furthermore, tylvalosin and valnemulin exhibited the highest bactericidal activities. In conclusion, the macrolide tylvalosin and the pleuromutilin valnemulin exhibited the highest in vitro antimicrobial activities against M. hyopneumoniae field isolates in comparison with the other tested antibiotics. PMID:25185108

  2. Strain-induced anisotropic low-field magnetoresistance of La-Sr-Mn-O thin films

    NASA Astrophysics Data System (ADS)

    Choi, Kyung-Ku; Taniyama, Tomoyasu; Yamazaki, Yohtaro

    2001-12-01

    Sputtered La0.71Sr0.29Mn1.01O3-δ (LSMO) thin films on (001) SrTiO3, polycrystalline yttria-stabilized zirconia (YSZ) and (112¯0) sapphire substrates demonstrate the distinctive low-field magnetoresistance (MR) correlated with the microstructure and the strain of the films. The epitaxial LSMO film on (001) SrTiO3 shows the in-plane magnetic anisotropy with [110] easy axis and the attendant anisotropic MR. The polycrystalline films on YSZ and sapphire substrates with grain sizes from 20 to 60 nm exhibit different anisotropic feature of transport: the isotropic MR of the film on YSZ and the large anisotropy on sapphire substrates. Moreover, in the (112¯0) film plane of sapphire substrate, the [1¯100]SAP magnetic easy axis appears due to a large tensile stress, and the longitudinal MR becomes pronounced along the [0001]SAP hard axis. This implies that the anisotropy of the low-field MR is attributed to the stress induced by the thermal expansion mismatch between film and substrate. These results emphasize that the low-field MR in the polycrystalline manganite can be advanced by the strain induced magnetic anisotropy.

  3. Phylogenomics of Xanthomonas field strains infecting pepper and tomato reveals diversity in effector repertoires and identifies determinants of host specificity

    PubMed Central

    Schwartz, Allison R.; Potnis, Neha; Timilsina, Sujan; Wilson, Mark; Patané, José; Martins, Joaquim; Minsavage, Gerald V.; Dahlbeck, Douglas; Akhunova, Alina; Almeida, Nalvo; Vallad, Gary E.; Barak, Jeri D.; White, Frank F.; Miller, Sally A.; Ritchie, David; Goss, Erica; Bart, Rebecca S.; Setubal, João C.; Jones, Jeffrey B.; Staskawicz, Brian J.

    2015-01-01

    Bacterial spot disease of pepper and tomato is caused by four distinct Xanthomonas species and is a severely limiting factor on fruit yield in these crops. The genetic diversity and the type III effector repertoires of a large sampling of field strains for this disease have yet to be explored on a genomic scale, limiting our understanding of pathogen evolution in an agricultural setting. Genomes of 67 Xanthomonas euvesicatoria (Xe), Xanthomonas perforans (Xp), and Xanthomonas gardneri (Xg) strains isolated from diseased pepper and tomato fields in the southeastern and midwestern United States were sequenced in order to determine the genetic diversity in field strains. Type III effector repertoires were computationally predicted for each strain, and multiple methods of constructing phylogenies were employed to understand better the genetic relationship of strains in the collection. A division in the Xp population was detected based on core genome phylogeny, supporting a model whereby the host-range expansion of Xp field strains on pepper is due, in part, to a loss of the effector AvrBsT. Xp-host compatibility was further studied with the observation that a double deletion of AvrBsT and XopQ allows a host range expansion for Nicotiana benthamiana. Extensive sampling of field strains and an improved understanding of effector content will aid in efforts to design disease resistance strategies targeted against highly conserved core effectors. PMID:26089818

  4. Phylogenomics of Xanthomonas field strains infecting pepper and tomato reveals diversity in effector repertoires and identifies determinants of host specificity.

    PubMed

    Schwartz, Allison R; Potnis, Neha; Timilsina, Sujan; Wilson, Mark; Patané, José; Martins, Joaquim; Minsavage, Gerald V; Dahlbeck, Douglas; Akhunova, Alina; Almeida, Nalvo; Vallad, Gary E; Barak, Jeri D; White, Frank F; Miller, Sally A; Ritchie, David; Goss, Erica; Bart, Rebecca S; Setubal, João C; Jones, Jeffrey B; Staskawicz, Brian J

    2015-01-01

    Bacterial spot disease of pepper and tomato is caused by four distinct Xanthomonas species and is a severely limiting factor on fruit yield in these crops. The genetic diversity and the type III effector repertoires of a large sampling of field strains for this disease have yet to be explored on a genomic scale, limiting our understanding of pathogen evolution in an agricultural setting. Genomes of 67 Xanthomonas euvesicatoria (Xe), Xanthomonas perforans (Xp), and Xanthomonas gardneri (Xg) strains isolated from diseased pepper and tomato fields in the southeastern and midwestern United States were sequenced in order to determine the genetic diversity in field strains. Type III effector repertoires were computationally predicted for each strain, and multiple methods of constructing phylogenies were employed to understand better the genetic relationship of strains in the collection. A division in the Xp population was detected based on core genome phylogeny, supporting a model whereby the host-range expansion of Xp field strains on pepper is due, in part, to a loss of the effector AvrBsT. Xp-host compatibility was further studied with the observation that a double deletion of AvrBsT and XopQ allows a host range expansion for Nicotiana benthamiana. Extensive sampling of field strains and an improved understanding of effector content will aid in efforts to design disease resistance strategies targeted against highly conserved core effectors. PMID:26089818

  5. Tuning Magnetism and Electronic Phase Transitions by Strain and Electric Field in Zigzag MoS2 Nanoribbons.

    PubMed

    Kou, Liangzhi; Tang, Chun; Zhang, Yi; Heine, Thomas; Chen, Changfeng; Frauenheim, Thomas

    2012-10-18

    Effective modulation of physical properties via external control may open various potential nanoelectronic applications of single-layer MoS2 nanoribbons (MoS2NRs). We show by first-principles calculations that the magnetic and electronic properties of zigzag MoS2NRs exhibit sensitive response to applied strain and electric field. Tensile strain in the zigzag direction produces reversible modulation of magnetic moments and electronic phase transitions among metallic, half-metallic, and semiconducting states, which stem from the energy-level shifts induced by an internal electric polarization and the competing covalent/ionic interactions. A simultaneously applied electric field further enhances or suppresses the strain-induced modulations depending on the direction of the electric field relative to the internal polarization. These findings suggest a robust and efficient approach to modulating the properties of MoS2NRs by a combination of strain engineering and electric field tuning. PMID:26292229

  6. Inter-dot strain field effect on the optoelectronic properties of realistic InP lateral quantum-dot molecules

    NASA Astrophysics Data System (ADS)

    Barettin, Daniele; Auf der Maur, Matthias; De Angelis, Roberta; Prosposito, Paolo; Casalboni, Mauro; Pecchia, Alessandro

    2015-03-01

    We report on numerical simulations of InP surface lateral quantum-dot molecules on In0.48Ga0.52P buffer, using a model strictly derived by experimental results by extrapolation of the molecules shape from atomic force microscopy images. Our study has been inspired by the comparison of a photoluminescence spectrum of a high-density InP surface quantum dot sample with a numerical ensemble average given by a weighted sum of simulated single quantum-dot spectra. A lack of experimental optical response from the smaller dots of the sample is found to be due to strong inter-dot strain fields, which influence the optoelectronic properties of lateral quantum-dot molecules. Continuum electromechanical, k →.p → bandstructure, and optical calculations are presented for two different molecules, the first composed of two dots of nearly identical dimensions (homonuclear), the second of two dots with rather different sizes (heteronuclear). We show that in the homonuclear molecule the hydrostatic strain raises a potential barrier for the electrons in the connection zone between the dots, while conversely the holes do not experience any barrier, which considerably increases the coupling. Results for the heteronuclear molecule show instead that its dots do not appear as two separate and distinguishable structures, but as a single large dot, and no optical emission is observed in the range of higher energies where the smaller dot is supposed to emit. We believe that in samples of such a high density the smaller dots result as practically incorporated into bigger molecular structures, an effect strongly enforced by the inter-dot strain fields, and consequently it is not possible to experimentally obtain a separate optical emission from the smaller dots.

  7. Inter-dot strain field effect on the optoelectronic properties of realistic InP lateral quantum-dot molecules

    SciTech Connect

    Barettin, Daniele Auf der Maur, Matthias; De Angelis, Roberta; Prosposito, Paolo; Casalboni, Mauro; Pecchia, Alessandro

    2015-03-07

    We report on numerical simulations of InP surface lateral quantum-dot molecules on In{sub 0.48}Ga{sub 0.52 }P buffer, using a model strictly derived by experimental results by extrapolation of the molecules shape from atomic force microscopy images. Our study has been inspired by the comparison of a photoluminescence spectrum of a high-density InP surface quantum dot sample with a numerical ensemble average given by a weighted sum of simulated single quantum-dot spectra. A lack of experimental optical response from the smaller dots of the sample is found to be due to strong inter-dot strain fields, which influence the optoelectronic properties of lateral quantum-dot molecules. Continuum electromechanical, k{sup →}·p{sup →} bandstructure, and optical calculations are presented for two different molecules, the first composed of two dots of nearly identical dimensions (homonuclear), the second of two dots with rather different sizes (heteronuclear). We show that in the homonuclear molecule the hydrostatic strain raises a potential barrier for the electrons in the connection zone between the dots, while conversely the holes do not experience any barrier, which considerably increases the coupling. Results for the heteronuclear molecule show instead that its dots do not appear as two separate and distinguishable structures, but as a single large dot, and no optical emission is observed in the range of higher energies where the smaller dot is supposed to emit. We believe that in samples of such a high density the smaller dots result as practically incorporated into bigger molecular structures, an effect strongly enforced by the inter-dot strain fields, and consequently it is not possible to experimentally obtain a separate optical emission from the smaller dots.

  8. Vadose Zone Transport Field Study: Summary Report

    SciTech Connect

    Ward, Andy L.; Conrad, Mark E.; Daily, William D.; Fink, James B.; Freedman, Vicky L.; Gee, Glendon W.; Hoversten, Gary M.; Keller, Jason M.; Majer, Ernest L.; Murray, Christopher J.; White, Mark D.; Yabusaki, Steven B.; Zhang, Z. F.

    2006-07-31

    From FY 2000 through FY 2003, a series of vadose zone transport field experiments were conducted as part of the U.S. Department of Energy’s Groundwater/Vadose Zone Integration Project Science and Technology Project, now known as the Remediation and Closure Science Project, and managed by the Pacific Northwest National Laboratory (PNNL). The series of experiments included two major field campaigns, one at a 299-E24-11 injection test site near PUREX and a second at a clastic dike site off Army Loop Road. The goals of these experiments were to improve our understanding of vadose zone transport processes; to develop data sets to validate and calibrate vadose zone flow and transport models; and to identify advanced monitoring techniques useful for evaluating flow-and-transport mechanisms and delineating contaminant plumes in the vadose zone at the Hanford Site. This report summarizes the key findings from the field studies and demonstrates how data collected from these studies are being used to improve conceptual models and develop numerical models of flow and transport in Hanford’s vadose zone. Results of these tests have led to a better understanding of the vadose zone. Fine-scale geologic heterogeneities, including grain fabric and lamination, were observed to have a strong effect on the large-scale behavior of contaminant plumes, primarily through increased lateral spreading resulting from anisotropy. Conceptual models have been updated to include lateral spreading and numerical models of unsaturated flow and transport have revised accordingly. A new robust model based on the concept of a connectivity tensor was developed to describe saturation-dependent anisotropy in strongly heterogeneous soils and has been incorporated into PNNL’s Subsurface Transport Over Multiple Phases (STOMP) simulator. Application to field-scale transport problems have led to a better understanding plume behavior at a number of sites where lateral spreading may have dominated waste

  9. Mechanically tunable strain fields in suspended graphene by micro electromechanical systems

    NASA Astrophysics Data System (ADS)

    Khodkov, Tymofiy; Goldsche, Matthias; Sonntag, Jens; Reichardt, Sven; Verbiest, Gerard; Trellenkamp, Stephan; Stampfer, Christoph

    The discovery of graphene triggered an enormous interest on the class of two-dimensional (2D) materials. 2D materials manifested high sensitivity of their thermal, optical or electric response to applied tensile stress. Therefore, a rigorous and systematic investigation of their mechanical properties is extremely important. On the example of graphene - a top candidate for future flexible electronic devices and sensors - we demonstrate fully controlled and restorable realization of various strain fields in 2D membranes by coupling them to Si-based electrostatic micro-actuators (comb-drives). The comb-drive actuators are capable to provide significant forces and they are made of highly-doped silicon, i.e. they can be operated down to cryogenic temperatures allowing the investigation of quantum effects in electromechanical systems. Using confocal Raman spectroscopy we characterize strain distribution in suspended mono- and bilayer graphene sheets under induced tension (up to 0.5%). A detailed analysis clearly show that graphene samples reproducibly experience strain in different directions only while applying voltages to the micro-actuator. This approach empowers accurate tuning of applied tension in any isolated 2D materials independent on other crucial parameters.

  10. Intragranular strain field in columnar ice during elasto-viscoplatic transient creep regime

    NASA Astrophysics Data System (ADS)

    Grennerat, F.; Montagnat, M.; Castelnau, O.; Duval, P.; Vacher, P.

    2010-12-01

    Transient effects in the creep of polycrystalline ice could play a crucial role for several ice flows (e.g. interaction between Antarctic ice shelves and ocean tides) and also ave a major impact concerning deformation mechanisms of ice. During creep deformation of polycrystalline ice, strong stress and strain-rate intragranular heterogeneities are expected. These heterogeneities come from the very large viscoplastic anisotropy of ice crystals (with essentially a single easy plane for the dislocations to glide) which is responsible for the strong mechanical interaction between adjacent grains. In order to go one step further in the quantitative understanding of this process, and to characterize the development of strain heterogeneities at a microscopic (intragranular) scale, we have performed deformation tests on 2-D polycrystalline ice exhibiting columnar grains with controlled grain size. Specimens were submitted to creep test and transient effects, in which both elastic and viscoplastic responses come in play, are investigated. A Digital Image Correlation (DIC) technique, with spatial resolution far smaller than the mean grain size, has been set to get continuous record of the intragranular displacement field during the test. Experimental parameters have been optimized to improve the precision of the DIC results. In parallel, specimen microstructures were analyzed with an automatic ice texture analyzer, before and after deformation, and post-mortem measurements of local misorientations at the intragranular scale were performed. For the first time in ice, this work presents a direct link between grain orientation, strain localization, and lattice distortion at the intragranular scale.

  11. Optical-fibre backscatter polarimetry for the distributed measurement of full strain fields

    NASA Astrophysics Data System (ADS)

    Rogers, A. J.; Shatalin, S. V.; Kannellopoulos, S. E.

    2005-11-01

    Fully-distributed optical-fibre sensing (FDOFS) systems are developing rapidly and are offering significant advantages for measurement functions in a variety of structural applications, especially in the oil industry, the power supply industry, the aerospace industries and civil engineering construction. Polarization techniques are well established in FDOFS, and in the analysis of polarization-mode dispersion (PMD) for optical-fibre telecommunications. However, a major problem has been that of determining, from one end of the fibre, the distribution of the full polarization properties of a monomode optical fibre, along its length, with some specific spatial resolution. This paper will present a new technique for providing this full information, and thus for measuring the distribution of any parameter, external to the fibre, which can modify its polarization behaviour. As a result, for example, it becomes possible to measure simultaneously the distribution of a strain field comprising the longitudinal and the two transverse components of direct strain, plus the transverse shear strain. The technique comprises an extension of polarization-optical time domain reflectometry (POTDR) [16], and necessitates on-line processing. Details of the physical principles, the algorithms and the polarimetry will be presented, together with some early results illustrating the measurement accuracies which can be achieved.

  12. Temperature and field induced strain measurements in single crystal Gd5Si2Ge2

    DOE PAGESBeta

    McCall, S. K.; Nersessian, N.; Carman, G. P.; Pecharsky, V. K.; Schlagel, D. L.; Radousky, H. B.

    2016-03-29

    The first-order magneto-structural transformation that occurs in Gd5Si2Ge2 near room temperature makes it a strong candidate for many energy harvesting applications. Understanding the single crystal properties is crucial for allowing simulations of device performance. In this study, magnetically and thermally induced transformation strains were measured in a single crystal of Gd5Si2.05Ge1.95 as it transforms from a high-temperature monoclinic paramagnet to a lower-temperature orthorhombic ferromagnet. Thermally induced transformation strains of –8500 ppm, +960 ppm and +1800 ppm, and magnetically induced transformation strains of –8500 ppm, +900 ppm and +2300 ppm were measured along the a, b and c axes, respectively. Furthermore,more » using experimental data coupled with general thermodynamic considerations, a universal phase diagram was constructed showing the transition from the monoclinic to the orthorhombic phase as a function of temperature and magnetic field.« less

  13. Correlation-based methods in calibrating an FBG sensor with strain field non-uniformity

    NASA Astrophysics Data System (ADS)

    Cieszczyk, S.

    2015-12-01

    Fibre Bragg gratings have many sensing applications, mainly for measuring strain and temperature. The physical quantity that influences grating uniformly along its length causes a related shift of the Bragg wavelength. Many peak detection algorithms have been proposed, among which the most popular are the detection of maximum intensity, the centroid detection, the least square method, the cross-correlation, auto-correlation and fast phase correlation. Nonuniform gratings elongation is a cause of spectrum deformation. The introduction of non-uniformity can be intentional or appear as an unintended effect of placing sensing elements in the tested structure. Heterogeneous impacts on grating may result in additional errors and the difficulty in tracking the Bragg wavelength based on a distorted spectrum. This paper presents the application of correlation methods of peak wavelength shifts estimation for non-uniform Bragg grating elongation. The autocorrelation, cross-correlation and fast phase correlation algorithms are considered and experimental spectra measured for axisymmetric strain field along the Bragg grating are analyzed. The strain profile consists of constant and variable components. The results of this study indicate the properties of correlation algorithms applied to moderately non-uniform elongation of an FBG sensor.

  14. Colonization of a marker and field strain of Salmonella Enteritidis and a marker strain of Salmonella Typhimurium in vancomycin pretreated and non-pretreated laying hens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was conducted to evaluate the effects of a vancomycin pre-treatment on the ability of marker (nalidixic acid-resistant) S. Enteritidis (SE-M), field S. Enteritidis (SE-F), and marker S. Typhimurium (ST-M) strains to colonize within the intestinal and reproductive tracts and translocate to...

  15. Characterization of field strains of infectious laryngotracheitis virus in China by restriction fragment length polymorphism and sequence analysis.

    PubMed

    Yan, Zhuanqiang; Li, Shengpeng; Xie, Qingmei; Chen, Feng; Bi, Yingzuo

    2016-01-01

    Nineteen strains of infectious laryngotracheitis virus (ILTV; Gallid herpesvirus 1) were isolated from dead or diseased birds in chicken flocks from different areas of China between 2010 and 2014 and used to investigate ILTV epidemiology. These strains were characterized using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) patterns and sequence analysis of the thymidine kinase (TK) gene. PCR-RFLP analysis showed that the TK gene generated 2 patterns when digested with restriction endonuclease enzymes. Pattern A corresponded to 2 virulent field strains, while pattern B was characteristic of 2 virulent field strains, 15 low pathogenicity field strains, and all vaccine strains. Sequence analysis of the TK gene indicated that the messenger RNA polyadenylation signals could be identified in some isolates where amino acid 252 was threonine, and in those with methionine at that position. The present study has demonstrated that most of the outbreaks of ILT in China were caused either by low virulence strains or by vaccine-related strains, and also emphasizes the importance of reinforcing ILTV surveillance in both vaccinated and nonvaccinated flocks. PMID:26699520

  16. Working Group Report: Lattice Field Theory

    SciTech Connect

    Blum, T.; et al.,

    2013-10-22

    This is the report of the Computing Frontier working group on Lattice Field Theory prepared for the proceedings of the 2013 Community Summer Study ("Snowmass"). We present the future computing needs and plans of the U.S. lattice gauge theory community and argue that continued support of the U.S. (and worldwide) lattice-QCD effort is essential to fully capitalize on the enormous investment in the high-energy physics experimental program. We first summarize the dramatic progress of numerical lattice-QCD simulations in the past decade, with some emphasis on calculations carried out under the auspices of the U.S. Lattice-QCD Collaboration, and describe a broad program of lattice-QCD calculations that will be relevant for future experiments at the intensity and energy frontiers. We then present details of the computational hardware and software resources needed to undertake these calculations.

  17. Strain mapping for the semiconductor industry by dark-field electron holography and nanobeam electron diffraction with nm resolution

    NASA Astrophysics Data System (ADS)

    Cooper, David; Béché, Armand; Hartmann, Jean Michel; Carron, Veronique; Rouvière, Jean-Luc

    2010-09-01

    There is a requirement of the semiconductor industry to measure strain in semiconductor devices with nm-scale resolution. Here we show that dark-field electron holography and nanobeam electron diffraction (NBED) are both complementary techniques that can be used to determine the strain in these devices. We show two-dimensional strain maps acquired by dark holography and line profiles that have been acquired by NBED of recessed SiGe sources and drains with a variety of different gate lengths and Ge concentrations. We have also used dark-field electron holography to measure the evolution in strain during the silicidation process, showing that this can reduce the applied uniaxial compressive strain in the conduction channel by up to a factor of 3.

  18. Near Field Environment Process Model Report

    SciTech Connect

    R.A. Wagner

    2000-11-14

    Waste emplacement and activities associated with construction of a repository system potentially will change environmental conditions within the repository system. These environmental changes principally result from heat generated by the decay of the radioactive waste, which elevates temperatures within the repository system. Elevated temperatures affect distribution of water, increase kinetic rates of geochemical processes, and cause stresses to change in magnitude and orientation from the stresses resulting from the overlying rock and from underground construction activities. The recognition of this evolving environment has been reflected in activities, studies and discussions generally associated with what has been termed the Near-Field Environment (NFE). The NFE interacts directly with waste packages and engineered barriers as well as potentially changing the fluid composition and flow conditions within the mountain. As such, the NFE defines the environment for assessing the performance of a potential Monitored Geologic Repository at Yucca Mountain, Nevada. The NFe evolves over time, and therefore is not amenable to direct characterization or measurement in the ambient system. Analysis or assessment of the NFE must rely upon projections based on tests and models that encompass the long-term processes of the evolution of this environment. This NFE Process Model Report (PMR) describes the analyses and modeling based on current understanding of the evolution of the near-field within the rock mass extending outward from the drift wall.

  19. Field Operations Program Activities Status Report

    SciTech Connect

    J. E. Francfort; D. V. O'Hara; L. A. Slezak

    1999-05-01

    The Field Operations Program is an electric vehicle testing and evaluation program sponsored by US Department of Energy and managed by the Idaho National Engineering and Environmental Laboratory. The Program's goals are to evaluate electric vehicles in real-world applications and environments, support electric vehicle technology advancement, develop infrastructure elements necessary to support significant electric vehicle use, support increased use of electric vehicles in federal fleets, and increase overall awareness and acceptance of electric vehicles. This report covers Program activities from fiscal year 1997 through mid-fiscal year 1999. The Field Operations Program succeeded the Site Operator Program, which ended in September 1996. Electric vehicle testing conducted by the Program includes baseline performance testing (EV America testing), accelerated reliability (life-cycle) testing, and fleet testing. The baseline performance parameters include accelerations, braking, range, energy efficiency, and charging time. The Program collects accelerated reliability and fleet operations data on electric vehicles operated by the Program's Qualified Vehicle Testing (QVT) partners. The Program's QVT partners have over 3 million miles of electric vehicle operating experience.

  20. Electric-field control of magnetism via strain transfer across ferromagnetic/ferroelectric interfaces.

    PubMed

    Taniyama, Tomoyasu

    2015-12-23

    By taking advantage of the coupling between magnetism and ferroelectricity, ferromagnetic (FM)/ferroelectric (FE) multiferroic interfaces play a pivotal role in manipulating magnetism by electric fields. Integrating the multiferroic heterostructures into spintronic devices significantly reduces energy dissipation from Joule heating because only an electric field is required to switch the magnetic element. New concepts of storage and processing of information thus can be envisioned when the electric-field control of magnetism is a viable alternative to the traditional current based means of controlling magnetism. This article reviews some salient aspects of the electric-field effects on magnetism, providing a short overview of the mechanisms of magneto-electric (ME) coupling at the FM/FE interfaces. A particular emphasis is placed on the ME effect via interfacial magneto-elastic coupling arising from strain transfer from the FE to FM layer. Recent results that demonstrate the electric-field control of magnetic anisotropy, magnetic order, magnetic domain wall motion, and etc are described. Obstacles that need to be overcome are also discussed for making this a reality for future device applications. PMID:26613163

  1. Strain field of the monovacancy in silicene: First-principles study

    NASA Astrophysics Data System (ADS)

    Li, Rui; Liu, Zhongli; Ma, Wenqiang; Tan, Yonggang

    2016-05-01

    The in-plane strain fields of single-vacancy silicene with different monovacancy (MV) concentrations, as well as the corresponding electronic band structures, are investigated by using the first-principle calculations. Firstly the self-healing MV is found to be the most stable ground structure in silicene, which is different from the other 2D hexagonal honeycomb materials, e.g. graphene, h-BN. In the isolated MV center, the bonds along the pentagons are compressed, creating a compress field, and those close to the distorted hexagons are stretched, creating a stretch field. As the MV concentration increasing, the interacted compress field tends to corrugate the defected silicene, while the interacted stretch field impacts little on the low-buckled structure. Especially, the corrugation presents in those supercells with small MV concentration, just as the (4, 5), (4, 6), (4, 7), (4, 8) supercells. The corrugations approach zero at both low and high MV concentrations, and the (4, 6) supercell with a MV concentration of about 0.021, has a peak value of 3.23Å. The electronic calculations show that the linear dispersion at Γ point in pristine silicene is broken by the lower lattice symmetry of the self-healing MV reconstruction, which translates it into metal as well.

  2. Electric-field control of magnetism via strain transfer across ferromagnetic/ferroelectric interfaces

    NASA Astrophysics Data System (ADS)

    Taniyama, Tomoyasu

    2015-12-01

    By taking advantage of the coupling between magnetism and ferroelectricity, ferromagnetic (FM)/ferroelectric (FE) multiferroic interfaces play a pivotal role in manipulating magnetism by electric fields. Integrating the multiferroic heterostructures into spintronic devices significantly reduces energy dissipation from Joule heating because only an electric field is required to switch the magnetic element. New concepts of storage and processing of information thus can be envisioned when the electric-field control of magnetism is a viable alternative to the traditional current based means of controlling magnetism. This article reviews some salient aspects of the electric-field effects on magnetism, providing a short overview of the mechanisms of magneto-electric (ME) coupling at the FM/FE interfaces. A particular emphasis is placed on the ME effect via interfacial magneto-elastic coupling arising from strain transfer from the FE to FM layer. Recent results that demonstrate the electric-field control of magnetic anisotropy, magnetic order, magnetic domain wall motion, and etc are described. Obstacles that need to be overcome are also discussed for making this a reality for future device applications.

  3. Genomic relatedness among Actinobacillus pleuropneumoniae field strains of sterotypes 1 and 5 isolated from healthy and diseased pigs.

    PubMed Central

    Chatellier, S; Harel, J; Dugourd, D; Chevallier, B; Kobisch, M; Gottschalk, M

    1999-01-01

    Forty-four Actinobacillus pleuropneumoniae isolates recovered from both healthy and diseased pigs were characterized by random amplified polymorphic DNA analysis (RAPD), pulsed field gel electrophoresis (PFGE) and apx toxin gene typing. Nine RAPD types and 14 PFGE patterns were identified. No common RAPD or PFGE patterns were found between strains of serotype 1 and those of serotype 5. The RAPD analysis indicated that the 15 serotype 1 strains isolated from diseased pigs were assigned to 4 RAPD types, with 66% of strains characterized by the same RAPD type. By contrast, the 5 strains of serotype 1 isolated from healthy carriers were dispersed in 4 RAPD types. These data suggest that the diversity of strains isolated from healthy pigs could be higher than that of strains recovered from diseased pigs. In addition, all serotype 5 strains exhibited a unique RAPD type. Unlike RAPD, PFGE analysis allowed discrimination among isolates of serotype 1 and among those of serotype 5. All but 3 isolates showed the same apx genotype as their respective serotype reference strain. These data indicate that RAPD analysis is a valuable rapid tool for routine subtyping of strains of serotype 1. For strains of serotype 5, a combination of several typing methods, such as PFGE and apx gene typing, is needed to provide useful information on the molecular epidemiology of swine pleuropneumonia. Images Figure 1. Figure 3. PMID:10480458

  4. Characterization of landslide ground surface kinematics from terrestrial laser scanning and strain field computation

    NASA Astrophysics Data System (ADS)

    Teza, Giordano; Pesci, Arianna; Genevois, Rinaldo; Galgaro, Antonio

    2008-05-01

    Assessment and mitigation of the risk induced by landslide activation need an appropriate phenomenon investigation, to obtain useful information about the failure processes. The first step is the complete kinematics characterization of the landslide ground surface, by evaluating the involved displacement and deformation patterns. A dense displacement field can be obtained from comparison of a series of multi-temporal observations performed by means of terrestrial laser scanning. Subsequently, the strain field can be computed from displacement vectors. In this paper, a modified least square technique is employed to compute the strain on the nodes of a regular grid (2D approach) or on the points of a digital terrain model (3D approach). Such a computation takes into account the displacements, their spatial distribution, as well as the measurement and modelling errors. A scale factor is introduced in order to emphasize the contributions of the experimental points on the basis of their distance from each computation point, and to recognize possible scale-depending behaviours. This method has been implemented in Matlab and applied on two landslides located in the northeastern Italian Alps (Lamosano and Perarolo di Cadore). The experiments show that different kinematics can be recognized, and the presence and influence of eventual discontinuities can be revealed.

  5. Simultaneous analysis of multiple enzymes increases accuracy of pulsed-field gel electrophoresis in assigning genetic relationships among homogeneous Salmonella strains.

    PubMed

    Zheng, Jie; Keys, Christine E; Zhao, Shaohua; Ahmed, Rafiq; Meng, Jianghong; Brown, Eric W

    2011-01-01

    Due to a highly homogeneous genetic composition, the subtyping of Salmonella enterica serovar Enteritidis strains to an epidemiologically relevant level remains intangible for pulsed-field gel electrophoresis (PFGE). We reported previously on a highly discriminatory PFGE-based subtyping scheme for S. enterica serovar Enteritidis that relies on a single combined cluster analysis of multiple restriction enzymes. However, the ability of a subtyping method to correctly infer genetic relatedness among outbreak strains is also essential for effective molecular epidemiological traceback. In this study, genetic and phylogenetic analyses were performed to assess whether concatenated enzyme methods can cluster closely related salmonellae into epidemiologically relevant hierarchies. PFGE profiles were generated by use of six restriction enzymes (XbaI, BlnI, SpeI, SfiI, PacI, and NotI) for 74 strains each of S. enterica serovar Enteritidis and S. enterica serovar Typhimurium. Correlation analysis of Dice similarity coefficients for all pairwise strain comparisons underscored the importance of combining multiple enzymes for the accurate assignment of genetic relatedness among Salmonella strains. The mean correlation increased from 81% and 41% for single-enzyme PFGE up to 99% and 96% for five-enzyme combined PFGE for S. enterica serovar Enteritidis and S. enterica serovar Typhimurium strains, respectively. Data regressions approached 100% correlation among Dice similarities for S. enterica serovar Enteritidis and S. enterica serovar Typhimurium strains when a minimum of six enzymes were concatenated. Phylogenetic congruence measures singled out XbaI, BlnI, SfiI, and PacI as most concordant for S. enterica serovar Enteritidis, while XbaI, BlnI, and SpeI were most concordant among S. enterica serovar Typhimurium strains. Together, these data indicate that PFGE coupled with sufficient enzyme numbers and combinations is capable of discerning accurate genetic relationships among

  6. Near-field/altered-zone models report

    SciTech Connect

    Hardin, E. L., LLNL

    1998-03-01

    lithophysal units. These units are made up of moderately to densely welded, devitrified, fractured tuff. The rock's chemical composition is comparable to that of typical granite, but has textural features and mineralogical characteristics of large-scale, silicic volcanism. Because the repository horizon will be approximately 300 m below the ground surface and 200 m above the water table, the repository will be partially saturated. The welded tuff matrix in the host units is highly impermeable, but water and gas flow readily through fractures. The degree of fracturing in these units is highly variable, and the hydrologic significance of fracturing is an important aspect of site investigation. This report describes the characterization and modeling of a region around the potential repository--the altered zone--a region in which the temperature will be increased significantly by waste-generated heat. Numerical simulation has shown that, depending on the boundary conditions, rock properties, and repository design features incorporated in the models, the altered zone (AZ) may extend from the water table to the ground surface. This report also describes models of the near field, the region comprising the repository emplacement drifts and the surrounding rock, which are critical to the performance of engineered components. Investigations of near-field and altered-zone (NF/AZ) processes support the design of underground repository facilities and engineered barriers and also provide constraint data for probabilistic calculations of waste-isolation performance (i.e., performance assessment). The approach to investigation, which is an iterative process involving hypothesis testing and experimentation, has relied on conceptualizing engineered barriers and on performance analysis. This report is a collection, emphasizing conceptual and numerical models, of the recent results contributed from studies of NF/AZ processes and of quantitative measures of NF/AZ performance. The selection and

  7. Direct synchrotron x-ray measurements of local strain fields in elastically and plastically bent metallic glasses

    SciTech Connect

    Wu, Yuan; Stoica, Alexandru Dan; Ren, Yang; Ma, Dong; Gao, Yanfei F.; Bei, Hongbin

    2015-09-03

    In situ high-energy synchrotron X-ray diffraction was conducted on elastically and plastically bent bulk metallic glass (BMG) thin plates, from which distinct local elastic strain fields were mapped spatially. These directly measured residual strain fields can be nicely interpreted by our stress analysis, and also validate a previously proposed indirect residual-stress-measurement method by relating nanoindentation hardness to residual stresses. Local shear strain variations on the cross sections of these thin plates were found in the plastically bent BMG, which however cannot be determined from the indirect indentation method. As a result, this study has important implications in designing and manipulating internal strain fields in BMGs for the purpose of ductility enhancement.

  8. Direct synchrotron x-ray measurements of local strain fields in elastically and plastically bent metallic glasses

    DOE PAGESBeta

    Wu, Yuan; Stoica, Alexandru Dan; Ren, Yang; Ma, Dong; Gao, Yanfei F.; Bei, Hongbin

    2015-09-03

    In situ high-energy synchrotron X-ray diffraction was conducted on elastically and plastically bent bulk metallic glass (BMG) thin plates, from which distinct local elastic strain fields were mapped spatially. These directly measured residual strain fields can be nicely interpreted by our stress analysis, and also validate a previously proposed indirect residual-stress-measurement method by relating nanoindentation hardness to residual stresses. Local shear strain variations on the cross sections of these thin plates were found in the plastically bent BMG, which however cannot be determined from the indirect indentation method. As a result, this study has important implications in designing and manipulatingmore » internal strain fields in BMGs for the purpose of ductility enhancement.« less

  9. Finite strain and relative rheology from field exposures of mantle peridotite, Twin Sisters, Washington

    NASA Astrophysics Data System (ADS)

    Tikoff, B.; Larson, C. E.; Newman, J.; Little, T.

    2004-12-01

    We present estimates of finite strain and relative rheology of naturally deformed mantle materials based on field observations in the Twin Sisters Range of Washington state. The Twin Sisters ultramafic body is a 16 by 5.5 km body located 30 km east of Bellingham, Washington. The outcrops show virtually no serpentinization away from the metamorphic sole. We conducted detailed structural mapping in a 100 by 150 meter field area located east of the crest of the Twin Sisters range and approximately midway between the north and south ends. The foliation strikes ~155 and the lineation pitches 40 S. Folded orthopyroxenite dikes within the host dunite allow us to characterize the finite strain. Dikes trending NE-SE were folded, while dikes trending NW-SE were elongated or boudinaged. Using the method of Talbot (1970), the principal stretch directions in the horizontal plane were calculated using the deformed dikes. We calculated a maximum stretch of 1.596 oriented at 151 (similar to the trace of the foliation) and a minimum stretch of 0.286 in direction 061. Assuming that the lineation and foliation represent the orientation of S1 and the S1S2 plane, respectively, a finite strain ellipsoid was determined. The best fitting answer defines an oblate ellipsoid with S1=3.15, S2=1.11, and S3=0.286. Thus, on this outcrop, the Twin Sisters dunite has an oblate-shaped finite strain ellipsoid whose long axis plunges 40 to the SE. The same area provides constraints on relative rheology. Folded orthopyroxenite dikes show a linear relationship between fold wavelength and dike thickness, indicating that they initiated as buckle folds. Using dynamic instability analysis, the orthopyroxene within the dikes is calculated to have ~31 times the effective viscosity of olivine of the dunite matrix, assuming a power law exponenent of n=3 (dislocation creep) for both the dikes and the matrix. Although not investigated in detail, similar orientations of fabrics are observed throughout the Twin

  10. Finite Element Analysis of Cross Rolling on AISI 304 Stainless Steel: Prediction of Stress and Strain Fields

    NASA Astrophysics Data System (ADS)

    Rout, Matruprasad; Pal, Surjya Kanta; Singh, Shiv Brat

    2016-05-01

    Studies on the effect of strain path during rolling has been carried out for a long time, but the same has not been done using Finite Element Analysis (FEA). Change in strain path affects the state variables in the rolled plate like stress, strain, temperature etc. In the current work, Finite Element Analysis for cross rolling of AISI 304 austenitic stainless steel has been carried out by rotating the plate by 90° in between the passes. To analyze stress and strain fields in the material for cross rolling, a full 3D model of work-roll and plate has been developed using rigid-viscoplastic finite element method. The stress and strain fields, considering von-Mises yield criteria, are calculated by using updated Lagrangian method. In addition to these, the model also calculates the normal pressure and strain rate distribution in the plate during cross rolling. The nature of the variations of stress and strain fields in the plate, predicted by the model, is in good agreement with the previously published works for unidirectional rolling.

  11. Microhardness and Strain Field Characterization of Self-Reacting Friction Stir and Plug Welds of Dissimilar Aluminum Alloys

    NASA Technical Reports Server (NTRS)

    Horton, Karla Renee

    2011-01-01

    Friction stir welding (FSW) is a solid state welding process with potential advantages for aerospace and automotive industries dealing with light alloys. Self-reacting friction stir welding (SR-FSW) is one variation of the FSW process being developed at the National Aeronautics and Space Administration (NASA) for use in the fabrication of propellant tanks. Friction plug welding is used to seal the exit hole that remains in a circumferential SR-FSW. This work reports on material properties and strain patterns developed in a SR-FSW with a friction plug weld. Specifically, this study examines the behavior of a SR-FSW formed between an AA 2014-T6 plate on the advancing side and an AA 2219-T87 plate on the retreating side and a SR-FSW (AA 2014-T6 to AA 2219-T87) with a 2219-T87 plug weld. This study presents the results of a characterization of the micro-hardness, joint strength, and strain field characterization of SR-FSW and FPW joints tested at room temperature and cryogenic temperatures.

  12. Severe Congenital Toxoplasmosis: A Case Report and Strain Characterization

    PubMed Central

    Sarkari, Bahador; Abdolahi Khabisi, Samaneh

    2015-01-01

    We report a fatal congenital toxoplasmosis case in an Iranian woman in the south of Iran. A pregnant mother had been admitted at the 15th week of her pregnancy on account of a febrile illness, symptoms of common cold, and enlargement of submandibular lymph nodes. Serological testing of the mother's serum revealed positive IgG and IgM anti-Toxoplasma antibodies. Amniotic fluid was taken and evaluated by polymerase chain reaction (PCR) assay with a direct amplification of the Toxoplasma URPT gene which was found to be positive. Sequencing and analysis of PCR product revealed that the isolate has the most similarity with type I of Toxoplasma gondii. Fetal scan showed anomaly in fetus including mild hydrocephaly. Termination of the pregnancy was suggested by the physician and pregnancy was terminated 178 days after conception. PMID:25685568

  13. Substrate-mediated strain effect on the role of thermal heating and electric field on metal-insulator transition in vanadium dioxide nanobeams.

    PubMed

    Kim, Min-Woo; Jung, Wan-Gil; Hyun-Cho; Bae, Tae-Sung; Chang, Sung-Jin; Jang, Ja-Soon; Hong, Woong-Ki; Kim, Bong-Joong

    2015-01-01

    Single-crystalline vanadium dioxide (VO2) nanostructures have recently attracted great attention because of their single domain metal-insulator transition (MIT) nature that differs from a bulk sample. The VO2 nanostructures can also provide new opportunities to explore, understand, and ultimately engineer MIT properties for applications of novel functional devices. Importantly, the MIT properties of the VO2 nanostructures are significantly affected by stoichiometry, doping, size effect, defects, and in particular, strain. Here, we report the effect of substrate-mediated strain on the correlative role of thermal heating and electric field on the MIT in the VO2 nanobeams by altering the strength of the substrate attachment. Our study may provide helpful information on controlling the properties of VO2 nanobeam for the device applications by changing temperature and voltage with a properly engineered strain. PMID:26040637

  14. Substrate-mediated strain effect on the role of thermal heating and electric field on metal-insulator transition in vanadium dioxide nanobeams

    NASA Astrophysics Data System (ADS)

    Kim, Min-Woo; Jung, Wan-Gil; Hyun-Cho; Bae, Tae-Sung; Chang, Sung-Jin; Jang, Ja-Soon; Hong, Woong-Ki; Kim, Bong-Joong

    2015-06-01

    Single-crystalline vanadium dioxide (VO2) nanostructures have recently attracted great attention because of their single domain metal-insulator transition (MIT) nature that differs from a bulk sample. The VO2 nanostructures can also provide new opportunities to explore, understand, and ultimately engineer MIT properties for applications of novel functional devices. Importantly, the MIT properties of the VO2 nanostructures are significantly affected by stoichiometry, doping, size effect, defects, and in particular, strain. Here, we report the effect of substrate-mediated strain on the correlative role of thermal heating and electric field on the MIT in the VO2 nanobeams by altering the strength of the substrate attachment. Our study may provide helpful information on controlling the properties of VO2 nanobeam for the device applications by changing temperature and voltage with a properly engineered strain.

  15. Substrate-mediated strain effect on the role of thermal heating and electric field on metal-insulator transition in vanadium dioxide nanobeams

    PubMed Central

    Kim, Min-Woo; Jung, Wan-Gil; Hyun-Cho; Bae, Tae-Sung; Chang, Sung-Jin; Jang, Ja-Soon; Hong, Woong-Ki; Kim, Bong-Joong

    2015-01-01

    Single-crystalline vanadium dioxide (VO2) nanostructures have recently attracted great attention because of their single domain metal-insulator transition (MIT) nature that differs from a bulk sample. The VO2 nanostructures can also provide new opportunities to explore, understand, and ultimately engineer MIT properties for applications of novel functional devices. Importantly, the MIT properties of the VO2 nanostructures are significantly affected by stoichiometry, doping, size effect, defects, and in particular, strain. Here, we report the effect of substrate-mediated strain on the correlative role of thermal heating and electric field on the MIT in the VO2 nanobeams by altering the strength of the substrate attachment. Our study may provide helpful information on controlling the properties of VO2 nanobeam for the device applications by changing temperature and voltage with a properly engineered strain. PMID:26040637

  16. Bovine herpesvirus-1: evaluation of genetic diversity of subtypes derived from field strains of varied clinical syndromes and their relationship to vaccine strains.

    PubMed

    Fulton, R W; d'Offay, J M; Eberle, R; Moeller, R B; Campen, H Van; O'Toole, D; Chase, C; Miller, M M; Sprowls, R; Nydam, D V

    2015-01-15

    Bovine herpesvirus-1 (BoHV-1) causes significant disease in cattle. Control programs in North America incorporate vaccination with modified live viral (MLV) or killed (KV) vaccine. BoHV-1 strains are isolated from diseased animals or fetuses after vaccination. There are markers for differentiating MLV from field strains using whole-genome sequencing and analysis identifying single nucleotide polymorphisms (SNPs). Using multiple primer sets and sequencing of products permits association of BoHV-1 isolates with vaccines. To determine association between vaccine virus and strains isolated from clinical cases following vaccination, we analyzed 12 BoHV-1 isolates from animals with various clinical syndromes; 9 corresponded to BoHV-1.1 respiratory group. The remaining three corresponded to BoHV-1.2b, typically found in genital tracts of cattle. Four BoHV-1 isolates were identical to a vaccine strain; three were from post-vaccination abortion episodes with typical herpetic lesions whose dams had received MLV vaccine during pregnancy, and one from a heifer given a related MLV vaccine; Sequences of two respiratory isolates perfectly matched mutations characterizing RLB106 strain, a temperature sensitive mutant used in intranasal and parenteral vaccines. The last three respiratory strains clearly appeared related to a group of MLV vaccines. Previously the MLV vaccines were grouped into four groups based on SNPs patterns. In contrast with above-mentioned isolates that closely matched SNP patterns of their respective MLV vaccine virus, these 3 strains both lacked some and possessed a number of additional mutations compared to a group of MLV vaccine viral genome. Finding BoHV-1.2b in respiratory cases indicates focus should be given BoHV-1.2b as an emerging virus or a virus not recognized nor fully characterized in BRD. PMID:25454086

  17. Thermodynamically consistent phase field approach to dislocation evolution at small and large strains

    NASA Astrophysics Data System (ADS)

    Levitas, Valery I.; Javanbakht, Mahdi

    2015-09-01

    A thermodynamically consistent, large strain phase field approach to dislocation nucleation and evolution at the nanoscale is developed. Each dislocation is defined by an order parameter, which determines the magnitude of the Burgers vector for the given slip planes and directions. The kinematics is based on the multiplicative decomposition of the deformation gradient into elastic and plastic contributions. The relationship between the rates of the plastic deformation gradient and the order parameters is consistent with phenomenological crystal plasticity. Thermodynamic and stability conditions for homogeneous states are formulated and satisfied by the proper choice of the Helmholtz free energy and the order parameter dependence on the Burgers vector. They allow us to reproduce desired lattice instability conditions and a stress-order parameter curve, as well as to obtain a stress-independent equilibrium Burgers vector and to avoid artificial dissipation during elastic deformation. The Ginzburg-Landau equations are obtained as the linear kinetic relations between the rate of change of the order parameters and the conjugate thermodynamic driving forces. A crystalline energy coefficient for dislocations is defined as a periodic step-wise function of the coordinate along the normal to the slip plane, which provides an energy barrier normal to the slip plane and determines the desired, mesh-independent height of the dislocation bands for any slip system orientation. Gradient energy contains an additional term, which excludes the localization of a dislocation within a height smaller than the prescribed height, but it does not produce artificial interface energy. An additional energy term is introduced that penalizes the interaction of different dislocations at the same point. Non-periodic boundary conditions for dislocations are introduced which include the change of the surface energy due to the exit of dislocations from the crystal. Obtained kinematics, thermodynamics

  18. Risk assessment, cross-resistance potential, and biochemical mechanism of resistance to emamectin benzoate in a field strain of house fly (Musca domestica Linnaeus).

    PubMed

    Khan, Hafiz Azhar Ali; Akram, Waseem; Khan, Tiyyabah; Haider, Muhammad Saleem; Iqbal, Naeem; Zubair, Muhammad

    2016-05-01

    Reduced sensitivity to insecticides in insect pests often results in control failures and increases in the dose and frequency of applications, ultimately polluting the environment. Reduced sensitivity to emamectin benzoate, a broad-spectrum agrochemical belonging to the avermectin group of pesticides, was reported in house flies (Musca domestica L.) collected from Punjab, Pakistan, in 2013. The aim of the present study was to investigate the risk for resistance development, biochemical mechanism, and cross-resistance potential to other insecticides in an emamectin benzoate selected (EB-SEL) strain of house flies. A field-collected strain showing reduced sensitivity to emamectin was re-selected in the laboratory for five consecutive generations and compared with a laboratory susceptible (Lab-Susceptible) reference strain, using bioassays. The field strain showed rapid development of resistance to emamectin (resistance ratio (RR) increased from 35.15 to 149.26-fold) as a result of selection experiments; however, resistance declined when the selection pressure uplifted. The EB-SEL strain showed reduction in resistance to abamectin, indoxacarb, and thiamethoxam. The results of synergism experiments using piperonyl butoxide (PBO) and S,S,S-tributylphosphorotrithioate (DEF) enzyme inhibitors and biochemical analyses revealed that the metabolic resistance mechanism was not responsible in developing emamectin resistance in the EB-SEL strain. In conclusion, the risk for the rapid development of emamectin resistance under continuous selection pressure suggests using a multifaceted integrated pest management approach for house flies. Moreover, the instable nature of emamectin resistance in the EB-SEL strain and lack of cross-resistance to other insecticides provide windows for the rotational use of insecticides with different modes of action. This will ultimately reduce emamectin selection pressure and help improving management programs for house flies without polluting the

  19. Emergence of antigenic variants of Foot-and-Mouth Disease Virus serotype O in Ecuador and preliminary evaluation of a field strain as a vaccine candidate.

    PubMed

    Maradei, Eduardo; Malirat, Viviana; Beascoechea, Claudia Perez; Espinoza, Ana María; Novo, Sabrina Galdo; Smitsaart, Eliana; Salgado, Gustavo; Mattion, Nora; Toledo, Jorge Rodriguez; Bergmann, Ingrid E

    2014-05-01

    Foot-and-Mouth Disease Virus serotype O has been circulating regularly throughout most provinces of Ecuador, one of the two South American countries that still remain endemic, although satisfactory vaccination coverage was reported. This study concentrates in the characterization of isolates collected during 2008-2011, focusing particularly on the antigenic and immunogenic relationships of the field viruses with the O1/Campos vaccine strain in use in the region and with an experimental vaccine formulated with a representative strain of the 2010 epidemic. The results established that antigenically divergent variants poorly protected by the vaccine in use emerged and co-circulated in a limited period of time. A monovalent vaccine formulated with the representative 2010 strain elicited high antibody titers and protected against challenge with homologous virus. In addition, cross-reactive antibodies to predominant viruses in the region were established. In overall this study indicates the ability of the virus to diversify under field conditions in which a vaccine strain with poor match is applied, and the potential of the selected 2010 field virus as a vaccine candidate for incorporation into strategic antigen banks and/or for addition to current formulations for systematic vaccination, in order to prevent the emergence of even more divergent isolates in the future. PMID:24625343

  20. Effect of strain on ferroelectric field effect in strongly correlated oxide Sm0.5Nd0.5NiO3

    NASA Astrophysics Data System (ADS)

    Zhang, Le; Chen, Xuegang; Gardner, H. Jeffrey; Koten, Mark A.; Shield, Jeffrey E.; Hong, Xia

    We report the effect of epitaxial strain on the magnitude and retention of the ferroelectric field effect in a prototype FerroFET based on a charge transfer-type Mott insulator, Sm0.5Nd0.5NiO3 (SNNO). It has been shown that epitaxial strain can change the transition temperature TMI in SNNO by more than 100 K, and modify the metal-insulator transition (MIT) characteristic between first-order and second-order. We have fabricated epitaxial PbZr0.3Ti0.7O3 (PZT)/3.8-4.3 nm SNNO heterostructures on (001) LaAlO3 (LAO) and SrTiO3 (STO) substrates. The magnitude of the field effect modulation can differ by more than one order of magnitude in these two systems, which has been attributed to strain modified MIT characteristic in SNNO. In both systems, we also observe a pronounced relaxation of off state resistance Roff, showing a thermally activated behavior with corresponding activation energy of 22 meV (28 meV) for devices on LAO (STO). The time dynamics and thermal response of the retention behavior suggest that strain-induced oxygen vacancies play a critical role in the ferroelectric field effect instability. L. Zhang et al ., Appl. Phys. Lett. 107 , 152906 (2015).

  1. Strain fields around high-energy ion tracks in {alpha}-quartz

    SciTech Connect

    Follstaedt, D. M.; Norman, A. K.; Doyle, B. L.; McDaniel, F. D.

    2006-09-15

    Transmission electron microscopy has been used to image the tracks of high-energy {sup 197}Au{sup +26} (374 MeV) and {sup 127}I{sup +18} (241 MeV) ions incident in a nonchanneling direction through a prethinned specimen of hexagonal {alpha}-quartz (SiO{sub 2}). These ions have high electronic stopping powers in quartz, 24 and 19 keV/nm, respectively, which are sufficient to produce a disordered latent track. When the tracks are imaged with diffraction contrast using several different reciprocal lattice vectors, they exhibit a radial strain extending outward from their disordered centerline approximately 16 nm into the crystalline surroundings. The images are consistent with a radial strain field with cylindrical symmetry around the amorphous track, like that found in models developed to account for the lateral expansion of amorphous SiO{sub 2} films produced by irradiation with high-energy ions. These findings provide an experimental basis for increased confidence in such modeling.

  2. Performance optimization of a diagnostic system based upon a simulated strain field for fatigue damage characterization

    NASA Astrophysics Data System (ADS)

    Sbarufatti, C.; Manes, A.; Giglio, M.

    2013-11-01

    The work presented hereafter is about the development of a diagnostic system for crack damage detection, localization and quantification on a typical metallic aeronautical structure (skin stiffened through riveted stringers). Crack detection and characterization are based upon strain field sensitivity to damage. The structural diagnosis is carried out by a dedicated smart algorithm (Artificial Neural Network) which is trained on a database of Finite Element simulations relative to damaged and undamaged conditions, providing the system with an accurate predictor at low overall cost. The algorithm, trained on numerical damage experience, is used in a simulated environment to provide reliable preliminary information concerning the algorithm performances for damage diagnosis, thus further reducing the experimental costs and efforts associated with the development and optimization of such systems. The same algorithm has been tested on real experimental strain patterns acquired during real fatigue crack propagation, thus verifying the capability of the numerically trained algorithm for anomaly detection, damage assessment and localization on a real complex structure. The load variability, the discrepancy between the Finite Element Model and the real structure, and the uncertainty in the algorithm training process have been addressed in order to enhance the robustness of the system inference process. Some further algorithm training strategies are discussed, aimed at minimizing the risk for false alarms while maintaining a high probability of damage detection.

  3. Field study of age-differentiated strain for assembly line workers in the automotive industry.

    PubMed

    Börner, Kerstin; Scherf, Christian; Leitner-Mai, Bianca; Spanner-Ulmer, Birgit

    2012-01-01

    A field study in an automotive supply industry company was conducted to explore age-differentiated strain of assembly line workers. Subjective and objective data from 23 female workers aged between 27 and 57 years were collected at the workplace belt buckle assembly during morning shifts. Subjects with medication or chronic diseases affecting heart rate and breath rate were excluded. For subjective data generation different questionnaires were used. Before the Work Ability Index and the Munich Chronotype Questionnaire were completed by the subjects. Short questionnaires (strain-ratings, NASA-TLX) directly at begin and end of the work were used for obtaining shift-related data. During the whole shift (6 a.m. - 2.45 p.m.) bodily functions were logged with a wireless chest strap. In addition, the motion of the hand-arm-system was recorded for 30 times, 3 minutes each after a fixed time-schedule. First results show that younger subjects need significant less time for assembly (mean = 14.940 s) compared to older subjects (mean = 17.040 s; t(472.026) = -9.278 , p < 0.01). PMID:22317519

  4. Phenotypic and genotypic (pulsed-field gel electrophoresis) characteristics of enterotoxin-A-producing Staphylococcus aureus strains.

    PubMed

    Gouloumès, C; Bes, M; Renaud, F; Lina, B; Reverdy, M E; Brun, Y; Fleurette, J

    1996-05-01

    The phenotypic (antibiotype, serotype, phagetype) and genotypic (SmaI restriction patterns using pulsed-field gel electrophoresis) characters of 162 Staphylococcus aureus epidemiologically unrelated strains were studied. Eighty-two of the isolates produced enterotoxin-A (SEA+), while 80 produced none (SEA-). None of the phenotypic characters observed were characteristic of SEA+ strains. On the other hand, the electrophoretic profiles revealed a non-random distribution of the SEA+ strains (p < 0.01 in groups PI and PIII, and p < 0.03 in group PII). It can therefore reasonably be assumed that the enterotoxin-A-producing strains did not constitute a single clone, but rather, seemed to belong to strains derived from at least three clones with distinct genetic organization. PMID:8763613

  5. Phase field modelling of strain induced crystal growth in an elastic matrix.

    PubMed

    Laghmach, Rabia; Candau, Nicolas; Chazeau, Laurent; Munch, Etienne; Biben, Thierry

    2015-06-28

    When a crystal phase grows in an amorphous matrix, such as a crystallisable elastomer, containing cross-links and/or entanglements, these "topological constraints" need to be pushed away from the crystal phase to allow further crystallization. The accumulation of these topological constraints in the vicinity of the crystal interface may store elastic energy and affect the phase transition. To evaluate the consequences of such mechanism, we introduce a phase field model based on the Flory theory of entropic elasticity. We show that the growth process is indeed sensibly affected, in particular, an exponential increase of the surface energy with the displacement of the interface is induced. This explains the formation of stable nano-crystallites as it is observed in the Strain Induced Crystallization (SIC) of natural rubber. Although simple, the model developed here is able to account for many interesting features of SIC, for instance, the crystallite shapes and their sizes which depend on the applied deformation. PMID:26133455

  6. Effects of lateral asymmetry on electronic structure of strained semiconductor nanorings in a magnetic field

    NASA Astrophysics Data System (ADS)

    Milošević, M. M.; Tadić, M.; Peeters, F. M.

    2008-11-01

    The influence of lateral asymmetry on the electronic structure and optical transitions in elliptical strained InAs nanorings is analyzed in the presence of a perpendicular magnetic field. Two-dimensional rings are assumed to have elliptical inner and outer boundaries oriented in mutually orthogonal directions. The influence of the eccentricity of the ring on the energy levels is analyzed. For large eccentricity of the ring, we do not find any Aharonov-Bohm effect, in contrast to circular rings. Rather, the single-particle states of the electrons and the holes are localized as in two laterally coupled quantum dots formed in the lobes of the nanoring. Our work indicates that the control of shape is important for the existence of the Aharonov-Bohm effect in semiconductor nanorings.

  7. Effects of lateral asymmetry on electronic structure of strained semiconductor nanorings in a magnetic field.

    PubMed

    Milošević, M M; Tadić, M; Peeters, F M

    2008-11-12

    The influence of lateral asymmetry on the electronic structure and optical transitions in elliptical strained InAs nanorings is analyzed in the presence of a perpendicular magnetic field. Two-dimensional rings are assumed to have elliptical inner and outer boundaries oriented in mutually orthogonal directions. The influence of the eccentricity of the ring on the energy levels is analyzed. For large eccentricity of the ring, we do not find any Aharonov-Bohm effect, in contrast to circular rings. Rather, the single-particle states of the electrons and the holes are localized as in two laterally coupled quantum dots formed in the lobes of the nanoring. Our work indicates that the control of shape is important for the existence of the Aharonov-Bohm effect in semiconductor nanorings. PMID:21832775

  8. Phase-field model of strain-induced grain-boundary premelting

    NASA Astrophysics Data System (ADS)

    Wang, Nan; Spatschek, Robert; Karma, Alain

    2008-03-01

    Grain-boundary premelting depends in a complex way on the relative magnitude of the solid-liquid interfacial free-energy and grain boundary energy as well as temperature and strain. We study this dependence in a bicrystal geometry using a phenomenological three-order parameter phase-field model. This model describes the short scale attractive or repulsive interaction between crystal-melt interfaces and macroscopic linear elasticity including the important effect of the density contrast between solid and liquid. The model exhibits a rich behavior characterized by single or multiple premelting transitions between dry or wet grain boundaries with different liquid layer thicknesses as a function of applied tensile stress. The results have important implications for the phenomenon of liquid metal embrittlement associated with the stress-driven penetration of nanometric liquid films along grain boundaries.

  9. Phase field modelling of strain induced crystal growth in an elastic matrix

    NASA Astrophysics Data System (ADS)

    Laghmach, Rabia; Candau, Nicolas; Chazeau, Laurent; Munch, Etienne; Biben, Thierry

    2015-06-01

    When a crystal phase grows in an amorphous matrix, such as a crystallisable elastomer, containing cross-links and/or entanglements, these "topological constraints" need to be pushed away from the crystal phase to allow further crystallization. The accumulation of these topological constraints in the vicinity of the crystal interface may store elastic energy and affect the phase transition. To evaluate the consequences of such mechanism, we introduce a phase field model based on the Flory theory of entropic elasticity. We show that the growth process is indeed sensibly affected, in particular, an exponential increase of the surface energy with the displacement of the interface is induced. This explains the formation of stable nano-crystallites as it is observed in the Strain Induced Crystallization (SIC) of natural rubber. Although simple, the model developed here is able to account for many interesting features of SIC, for instance, the crystallite shapes and their sizes which depend on the applied deformation.

  10. Thermal conductivity of bulk GaN—Effects of oxygen, magnesium doping, and strain field compensation

    SciTech Connect

    Simon, Roland B.; Anaya, Julian; Kuball, Martin

    2014-11-17

    The effect of oxygen doping (n-type) and oxygen (O)-magnesium (Mg) co-doping (semi-insulating) on the thermal conductivity of ammonothermal bulk GaN was studied via 3-omega measurements and a modified Callaway model. Oxygen doping was shown to significantly reduce thermal conductivity, whereas O-Mg co-doped GaN exhibited a thermal conductivity close to that of undoped GaN. The latter was attributed to a decreased phonon scattering rate due the compensation of impurity-generated strain fields as a result of dopant-complex formation. The results have great implications for GaN electronic and optoelectronic device applications on bulk GaN substrates.

  11. Balancing ballistic protection against physiological strain: evidence from laboratory and field trials.

    PubMed

    Taylor, Nigel A S; Burdon, Catriona A; van den Heuvel, Anne M J; Fogarty, Alison L; Notley, Sean R; Hunt, Andrew P; Billing, Daniel C; Drain, Jace R; Silk, Aaron J; Patterson, Mark J; Peoples, Gregory E

    2016-02-01

    This project was based on the premise that decisions concerning the ballistic protection provided to defence personnel should derive from an evaluation of the balance between protection level and its impact on physiological function, mobility, and operational capability. Civilians and soldiers participated in laboratory- and field-based studies in which ensembles providing five levels of ballistic protection were evaluated, each with progressive increases in protection, mass (3.4-11.0 kg), and surface-area coverage (0.25-0.52 m(2)). Physiological trials were conducted on volunteers (N = 8) in a laboratory, under hot-dry conditions simulating an urban patrol: walking at 4 km·h(-1) (90 min) and 6 km·h(-1) (30 min or to fatigue). Field-based trials were used to evaluate tactical battlefield movements (mobility) of soldiers (N = 31) under tropical conditions, and across functional tests of power, speed, agility, endurance, and balance. Finally, trials were conducted at a jungle training centre, with soldiers (N = 32) patrolling under tropical conditions (averaging 5 h). In the laboratory, work tolerance was reduced as protection increased, with deep-body temperature climbing relentlessly. However, the protective ensembles could be grouped into two equally stressful categories, each providing a different level of ballistic protection. This outcome was supported during the mobility trials, with the greatest performance decrement evident during fire and movement simulations, as the ensemble mass was increased (-2.12%·kg(-1)). The jungle patrol trials similarly supported this outcome. Therefore, although ballistic protection does increase physiological strain, this research has provided a basis on which to determine how that strain can be balanced against the mission-specific level of required personal protection. PMID:26771198

  12. Strain characterization of fin-shaped field effect transistors with SiGe stressors using nanobeam electron diffraction

    SciTech Connect

    Kim, Sun-Wook; Byeon, Dae-Seop; Jang, Hyunchul; Koo, Sang-Mo; Ko, Dae-Hong; Lee, Hoo-Jeong

    2014-08-25

    This study undertook strain analysis on fin-shaped field effect transistor structures with epitaxial Si{sub 1−x}Ge{sub x} stressors, using nano-beam electron diffraction and finite elements method. Combining the two methods disclosed dynamic strain distribution in the source/drain and channel region of the fin structure, and the effects of dimensional factors such as the stressor thickness and fin width, offering valuable information for device design.

  13. Band Gap Modulation of Bilayer MoS2 Under Strain Engineering and Electric Field: A Density Functional Theory

    NASA Astrophysics Data System (ADS)

    Nguyen, Chuong V.; Hieu, Nguyen N.; Ilyasov, Victor V.

    2016-08-01

    In this work, we investigate band-gap tuning in bilayer MoS2 by an external electric field and by applied biaxial strain. Our calculations show that the band gaps of bilayer MoS2 can be tuned by the perpendicular electric field or biaxial strain. The band gaps of bilayer MoS2 decrease with increasing applied electric field or biaxial strain. When the electric field was introduced, electronic levels are split due to the separation of the valence sub-band and the conduction sub-band states. Our calculations also show that the change in the band gap of bilayer MoS2 is due to the separation of electronic levels by electric field via the Stark effect. At the electric field E_{Field} = 5.5 V/nm or biaxial strain ɛ = 15%, bilayer MoS2 becomes metallic. The semiconductor-metal phase transition in bilayer MoS2 plays an important role in its application for nanodevices.

  14. Band Gap Modulation of Bilayer MoS2 Under Strain Engineering and Electric Field: A Density Functional Theory

    NASA Astrophysics Data System (ADS)

    Nguyen, Chuong V.; Hieu, Nguyen N.; Ilyasov, Victor V.

    2016-05-01

    In this work, we investigate band-gap tuning in bilayer MoS2 by an external electric field and by applied biaxial strain. Our calculations show that the band gaps of bilayer MoS2 can be tuned by the perpendicular electric field or biaxial strain. The band gaps of bilayer MoS2 decrease with increasing applied electric field or biaxial strain. When the electric field was introduced, electronic levels are split due to the separation of the valence sub-band and the conduction sub-band states. Our calculations also show that the change in the band gap of bilayer MoS2 is due to the separation of electronic levels by electric field via the Stark effect. At the electric field E_{Field} = 5.5 V/nm or biaxial strain \\varepsilon = 15%, bilayer MoS2 becomes metallic. The semiconductor-metal phase transition in bilayer MoS2 plays an important role in its application for nanodevices.

  15. Afar-wide Crustal Strain Field from Multiple InSAR Tracks

    NASA Astrophysics Data System (ADS)

    Pagli, C.; Wright, T. J.; Wang, H.; Calais, E.; Bennati Rassion, L. S.; Ebinger, C. J.; Lewi, E.

    2010-12-01

    Onset of a rifting episode in the Dabbahu volcanic segment, Afar (Ethiopia), in 2005 renewed interest in crustal deformation studies in the area. As a consequence, an extensive geodetic data set, including InSAR and GPS measurements have been acquired over Afar and hold great potential towards improving our understanding of the extensional processes that operate during the final stages of continental rupture. The current geodetic observational and modelling strategy has focused on detailed, localised studies of dyke intrusions and eruptions mainly in the Dabbahu segment. However, an eruption in the Erta ‘Ale volcanic segment in 2008, and cluster of earthquakes observed in the Tat Ale segment, are testament to activity elsewhere in Afar. Here we make use of the vast geodetic dataset available to obtain strain information over the whole Afar depression. A systematic analysis of all the volcanic segments, including Dabbahu, Manda-Hararo, Alayta, Tat ‘Ale Erta Ale and the Djibouti deformation zone, is undertaken. We use InSAR data from multiple tracks together with available GPS measurements to obtain a velocity field model for Afar. We use over 300 radar images acquired by the Envisat satellite in both descending and ascending orbits, from 12 distinct tracks in image and wide swath modes, spanning the time period from October 2005 to present time. We obtain the line-of-sight deformation rates from each InSAR track using a network approach and then combine the InSAR velocities with the GPS observations, as suggested by Wright and Wang (2010) following the method of England and Molnar (1997). A mesh is constructed over the Afar area and then we solve for the horizontal and vertical velocities on each node. The resultant full 3D Afar-wide velocity field shows where current strains are being accumulated within the various volcanic segments of Afar, the width of the plate boundary deformation zone and possible connections between distinct volcanic segments on a

  16. Strain fields and damage around notches in ceramic-matrix composites

    SciTech Connect

    Mackin, T.J.; Perry, K.E.; Epstein, J.S.; Cady, C.; Evans, A.G.

    1996-01-01

    Strain development in several notched ceramic-matrix composites (CMCs) has been monitored over a broad range of load. This was achieved by using phase-shifting moire interferometry, which provides a map of the surface strains. A sequence of fringe patterns was used to chart the evolution of strain redistribution as a function of load. The ensuing strains were related to the micromechanical damage mechanisms. Stress concentrations were estimated from the strain by using stress/strain curves. Implications for the notch sensitivity of CMCs are discussed.

  17. Draft Genome Sequence of Strain ATCC 33958, Reported To Be Elizabethkingia miricola

    PubMed Central

    Matyi, Stephanie A.; Hoyt, Peter R.; Ayoubi-Canaan, Patricia; Hasan, Nabeeh A.

    2015-01-01

    We report the draft genome of Elizabethkingia strain ATCC 33958, which has been classified as Elizabethkingia miricola. Similar to other Elizabethkingia species, the ATCC 33958 draft genome contains numerous β-lactamase genes. ATCC 33958 also harbors a urease gene cluster which supports classification as E. miricola. PMID:26205869

  18. Posttranslationally caused bioluminescence burst of the Escherichia coli luciferase reporter strain.

    PubMed

    Ideguchi, Yamato; Oshikoshi, Yuta; Ryo, Masashi; Motoki, Shogo; Kuwano, Takashi; Tezuka, Takafumi; Aoki, Setsuyuki

    2016-01-01

    We continuously monitored bioluminescence from a wild-type reporter strain of Escherichia coli (lacp::luc+/WT), which carries the promoter of the lac operon (lacp) fused with the firefly luciferase gene (luc+). This strain showed a bioluminescence burst when shifted into the stationary growth phase. Bioluminescence profiles of other wild-type reporter strains (rpsPp::luc+ and argAp::luc+) and gene-deletion reporter strains (lacp::luc+/crp- and lacp::luc+/lacI-) indicate that transcriptional regulation is not responsible for generation of the burst. Consistently, changes in the luciferase protein levels did not recapitulate the profile of the burst. On the other hand, dissolved oxygen levels increased over the period across the burst, suggesting that the burst is, at least partially, caused by an increase in intracellular oxygen levels. We discuss limits of the firefly luciferase when used as a reporter for gene expression and its potential utility for monitoring metabolic changes in cells. PMID:26506945

  19. Observation of Rashba zero-field spin splitting in a strained germanium 2D hole gas

    SciTech Connect

    Morrison, C. Rhead, S. D.; Foronda, J.; Leadley, D. R.; Myronov, M.; Wiśniewski, P.

    2014-11-03

    We report the observation, through Shubnikov-de Haas oscillations in the magnetoresistance, of spin splitting caused by the Rashba spin-orbit interaction in a strained Ge quantum well epitaxially grown on a standard Si(001) substrate. The Shubnikov-de Haas oscillations display a beating pattern due to the spin split Landau levels. The spin-orbit parameter and Rashba spin-splitting energy are found to be 1.0 × 10{sup −28 } eVm{sup 3} and 1.4 meV, respectively. This energy is comparable to 2D electron gases in III-V semiconductors, but substantially larger than in Si, and illustrates the suitability of Ge for modulated hole spin transport devices.

  20. Electric-field and strain-tunable electronic properties of MoS2/h-BN/graphene vertical heterostructures.

    PubMed

    Zan, Wenyan; Geng, Wei; Liu, Huanxiang; Yao, Xiaojun

    2016-01-28

    Vertical heterostructures of MoS2/h-BN/graphene have been successfully fabricated in recent experiments. Using first-principles analysis, we show that the structural and electronic properties of such vertical heterostructures are sensitive to applied vertical electric fields and strain. The applied electric field not only enhances the interlayer coupling but also linearly controls the charge transfer between graphene and MoS2 layers, leading to a tunable doping in graphene and controllable Schottky barrier height. Applied biaxial strain could weaken the interlayer coupling and results in a slight shift of graphene's Dirac point with respect to the Fermi level. It is of practical importance that the tunable electronic properties by strain and electric fields are immune to the presence of sulfur vacancies, the most common defect in MoS2. PMID:26742838

  1. The elastostatic plane strain mode I crack tip stress and displacement fields in a generalized linear neo-Hookean elastomer

    NASA Astrophysics Data System (ADS)

    Begley, Matthew R.; Creton, Costantino; McMeeking, Robert M.

    2015-11-01

    A general asymptotic plane strain crack tip stress field is constructed for linear versions of neo-Hookean materials, which spans a wide variety of special cases including incompressible Mooney elastomers, the compressible Blatz-Ko elastomer, several cases of the Ogden constitutive law and a new result for a compressible linear neo-Hookean material. The nominal stress field has dominant terms that have a square root singularity with respect to the distance of material points from the crack tip in the undeformed reference configuration. At second order, there is a uniform tension parallel to the crack. The associated displacement field in plane strain at leading order has dependence proportional to the square root of the same coordinate. The relationship between the amplitude of the crack tip singularity (a stress intensity factor) and the plane strain energy release rate is outlined for the general linear material, with simplified relationships presented for notable special cases.

  2. Analysis of Genomic Diversity among Helicobacter pylori Strains Isolated from Iranian Children by Pulsed Field Gel Electrophoresis

    PubMed Central

    Falsafi, Tahereh; Sotoudeh, Nazli; Feizabadi, Mohammad-Mehdi; Mahjoub, Fatemeh

    2014-01-01

    Objective: Presence of genomic diversity among Helicobacter pylori (H. pylori) strains have been suggested by numerous investigators. Little is known about diversity of H. pylori strains isolated from Iranian children and their association with virulence of the strains. Our purpose was to assess the degree of genomic diversity among H. pylori strains isolated from Iranian-children, on the basis of vacA genotype, cagA status of the strains, sex, age as well as the pathological status of the patients. Methods: Genomic DNA from 44 unrelated H. pylori strains isolated during 1997–2009, was examined by pulse-field gel electrophoresis (PFGE). Pathological status of the patients was performed according to the modified Sydney-system and genotype/status of vacA/cagA genes was determined by PCR. PFGE was performed using XbaI restriction-endonuclease and the field inversion-gel electrophoresis system. Findings: No significant relationship was observed between the patterns of PFGE and the cagA/vacA status/genotype. Also no relationship was observed between age, sex, and pathological status of the children and the PFGE patterns of their isolates. Similar conclusion was obtained by Total Lab software. However, more relationship was observed between the strains isolated in the close period (1997–2009, 2001–2003, 2005–2007, and 2007–2009) and more difference was observed among those obtained in the distant periods (1997 and 2009). Conclusion: H. pylori strains isolated from children in Iran are extremely diverse and this diversity is not related to their virulence characteristics. Occurrence of this extreme diversity may be related to adaptation of H. pylori strains to variable living conditions during transmission between various host individuals. PMID:26019775

  3. Transplacental transmission of field and rescued strains of BTV-2 and BTV-8 in experimentally infected sheep

    PubMed Central

    2013-01-01

    Transplacental transmission of bluetongue virus has been shown previously for the North European strain of serotype 8 (BTV-8) and for tissue culture or chicken egg-adapted vaccine strains but not for field strains of other serotypes. In this study, pregnant ewes (6 per group) were inoculated with either field or rescued strains of BTV-2 and BTV-8 in order to determine the ability of these viruses to cross the placental barrier. The field BTV-2 and BTV-8 strains was passaged once in Culicoides KC cells and once in mammalian cells. All virus inoculated sheep became infected and seroconverted against the different BTV strains used in this study. BTV RNA was detectable in the blood of all but two ewes for over 28 days but infectious virus could only be detected in the blood for a much shorter period. Interestingly, transplacental transmission of BTV-2 (both field and rescued strains) was demonstrated at high efficiency (6 out of 13 lambs born to BTV-2 infected ewes) while only 1 lamb of 12 born to BTV-8 infected ewes showed evidence of in utero infection. In addition, evidence for horizontal transmission of BTV-2 between ewes was observed. As expected, the parental BTV-2 and BTV-8 viruses and the viruses rescued by reverse genetics showed very similar properties to each other. This study showed, for the first time, that transplacental transmission of BTV-2, which had been minimally passaged in cell culture, can occur; hence such transmission might be more frequent than previously thought. PMID:24007601

  4. Channel Strain in Advanced Complementary Metal-Oxide-Semiconductor Field Effect Transistors Measured Using Nano-Beam Electron Diffraction

    NASA Astrophysics Data System (ADS)

    Toda, Akio; Nakamura, Hidetatsu; Fukai, Toshinori; Ikarashi, Nobuyuki

    2008-04-01

    Using high-precision nano-beam electron diffraction (NBD), we clarified the influences of stress liner and the stress of shallow trench isolation on channel strain in advanced metal-oxide-semiconductor field effect transistors (MOSFETs). For systematic strain measurements, we improved the precision of NBD by observing large reciprocal lattice vectors under appropriate diffraction conditions. The absolute value of the channel strain increases by stress liner as gate length decreases, although the drive current increase due to stress liner saturates at a shorter channel length. The normal strain in the gate length direction is inversely proportional to the distance from the gate electrode to the shallow trench isolation (STI). Furthermore, the relationship between measured channel strain induced by STI and drive current change was shown. The drive current of n- and p-MOSFET changes about 5% with 2×10-3 channel strain variation. This result suggests that reducing the shallow trench isolation stress is effective for controlling the drive current change, depending on the active region layout. We conclude that the experimental measurement of channel strain is necessary for device and circuit design.

  5. Electric-field-induced AFE-FE transitions and associated strain/preferred orientation in antiferroelectric PLZST

    PubMed Central

    Lu, Teng; Studer, Andrew J.; Noren, Lasse; Hu, Wanbiao; Yu, Dehong; McBride, Bethany; Feng, Yujun; Withers, Ray L.; Chen, Hua; Xu, Zhuo; Liu, Yun

    2016-01-01

    Electric-field-induced, antiferroelectric-ferroelectric (AFE-FE) phase transitions are common for AFE materials. To date, the strain and preferred orientation evolution as well as the role of the intermediate FE state during the successive AFE-FE-AFE phase transitions has not been clear. To this end, we have herein studied a typical AFE Pb0.97La0.02(Zr0.56Sn0.33Ti0.11)O3 (PLZST) material using in-situ neutron diffraction. It is striking that the AFE-FE phase transition is not fully reversible: in the electric-field-induced FE state, the induced strain exhibits an elliptical distribution, which in turn leads to significant preferred orientation in the final AFE state after withdrawal of the applied electric-field. The ω-dependent neutron diffraction patterns show clear evidence of the induced strain distribution and associated preferred orientation arising from the AFE-FE phase transition. The current work also provides an explanation for several temperature and electric-field dependent dielectric anomalies as well as unrecovered strain change which appear in AFE materials after exposure to sufficiently high electric fields. PMID:27025685

  6. Electric-field-induced AFE-FE transitions and associated strain/preferred orientation in antiferroelectric PLZST.

    PubMed

    Lu, Teng; Studer, Andrew J; Noren, Lasse; Hu, Wanbiao; Yu, Dehong; McBride, Bethany; Feng, Yujun; Withers, Ray L; Chen, Hua; Xu, Zhuo; Liu, Yun

    2016-01-01

    Electric-field-induced, antiferroelectric-ferroelectric (AFE-FE) phase transitions are common for AFE materials. To date, the strain and preferred orientation evolution as well as the role of the intermediate FE state during the successive AFE-FE-AFE phase transitions has not been clear. To this end, we have herein studied a typical AFE Pb0.97La0.02(Zr0.56Sn0.33Ti0.11)O3 (PLZST) material using in-situ neutron diffraction. It is striking that the AFE-FE phase transition is not fully reversible: in the electric-field-induced FE state, the induced strain exhibits an elliptical distribution, which in turn leads to significant preferred orientation in the final AFE state after withdrawal of the applied electric-field. The ω-dependent neutron diffraction patterns show clear evidence of the induced strain distribution and associated preferred orientation arising from the AFE-FE phase transition. The current work also provides an explanation for several temperature and electric-field dependent dielectric anomalies as well as unrecovered strain change which appear in AFE materials after exposure to sufficiently high electric fields. PMID:27025685

  7. Microbial field pilot study. Final report

    SciTech Connect

    Knapp, R.M.; McInerney, M.J.; Menzie, D.E.; Coates, J.D.; Chisholm, J.L.

    1993-05-01

    A multi-well microbially enhanced oil recovery field pilot has been performed in the Southeast Vassar Vertz Sand Unit in Payne County, Oklahoma. The primary emphasis of the experiment was preferential plugging of high permeability zones for the purpose of improving waterflood sweep efficiency. Studies were performed to determine reservoir chemistry, ecology, and indigenous bacteria populations. Growth experiments were used to select a nutrient system compatible with the reservoir that encouraged growth of a group of indigenous nitrate-using bacteria and inhibit growth of sulfate-reducing bacteria. A specific field pilot area behind an active line drive waterflood was selected. Surface facilities were designed and installed. Injection protocols of bulk nutrient materials were prepared to facilitate uniform distribution of nutrients within the pilot area. By the end of December, 1991, 82.5 tons (75.0 tonnes) of nutrients had been injected in the field. A tracer test identified significant heterogeneity in the SEVVSU and made it necessary to monitor additional production wells in the field. The tracer tests and changes in production behavior indicate the additional production wells monitored during the field trial were also affected. Eighty two and one half barrels (13.1 m{sup 3}) of tertiary oil have been recovered. Microbial activity has increased CO{sub 2} content as indicated by increased alkalinity. A temporary rise in sulfide concentration was experienced. These indicate an active microbial community was generated in the field by the nutrient injection. Pilot area interwell pressure interference test results showed that significant permeability reduction occurred. The interwell permeabilities in the pilot area between the injector and the three pilot production wells were made more uniform which indicates a successful preferential plugging enhanced oil recovery project.

  8. Highly localized strain fields due to planar defects in epitaxial SrBi2Nb2O9 thin films

    NASA Astrophysics Data System (ADS)

    Boulle, A.; Guinebretière, R.; Dauger, A.

    2005-04-01

    Thin films of (00l) oriented SrBi2Nb2O9 epitaxially grown on SrTiO3 by sol-gel spin coating have been studied by means of high-resolution x-ray diffraction reciprocal space mapping. It is shown that these materials contain highly localized heterogeneous strain fields due to imperfect stacking faults (i.e., faults that do not propagate throughout the crystallites building up the film). In the film plane, the strain fields are confined to 11 nm wide regions and characterized by a vertical displacement of 0.18c (where c is the cell parameter) showing that the stacking faults are mainly composed of one additional (or missing) perovskite layer. Prolonged thermal annealing at 700 °C strongly reduces the density of stacking faults and yields a more uniform strain distribution within the film volume without inducing significant grain growth.

  9. Typing of cytopathic and noncytopathic bovine viral diarrhea virus reference and Canadian field strains using a neutralizing monoclonal antibody.

    PubMed Central

    Magar, R; Minocha, H C; Montpetit, C; Carman, P S; Lecomte, J

    1988-01-01

    Cytopathic and noncytopathic reference strains as well as Canadian field isolates of bovine viral diarrhea virus were analyzed by neutralization and immunofluorescence tests using a bovine viral diarrhea virus-specific neutralizing monoclonal antibody. Results on reference strains indicated three major antigenic groups: I) NADL-like, II) New York 1-like and III) Oregon C24V-like. Field isolates could be segregated into groups I and II and none could be typed into the group III. It appears that most bovine viral diarrhea virus strains share a common antigen which carries a major neutralization epitope. These characteristics would make this monoclonal antibody a useful reagent for taxonomic and epizootiological studies. Images Fig. 1. PMID:2450629

  10. Natural Strain

    NASA Technical Reports Server (NTRS)

    Freed, Alan D.

    1995-01-01

    The purpose of this paper is to present a consistent and thorough development of the strain and strain-rate measures affiliated with Hencky. Natural measures for strain and strain-rate, as I refer to them, are first expressed in terms of of the fundamental body-metric tensors of Lodge. These strain and strain-rate measures are mixed tensor fields. They are mapped from the body to space in both the Eulerian and Lagrangian configurations, and then transformed from general to Cartesian fields. There they are compared with the various strain and strain-rate measures found in the literature. A simple Cartesian description for Hencky strain-rate in the Lagrangian state is obtained.

  11. A comparison of susceptibility to Myxobolus cerebralis among strains of rainbow trout and steelhead in field and laboratory trials

    USGS Publications Warehouse

    Densmore, Christine L.; Blazer, V.S.; Cartwright, Deborah D.; Schill, W.B.; Schachte, J.H.; Petrie, C.J.; Batur, M.V.; Waldrop, T.B.; Mack, A.; Pooler, P.S.

    2001-01-01

    Three strains of rainbow trout and steelhead Oncorhynchus mykiss were evaluated for the presence of whirling disease in field and laboratory trials. In the field exposures, fingerling Salmon River steelhead and Cayuga Lake and Randolph strains of rainbow trout were placed in wire cages in an earthen, stream-fed pond in New York State that was known to harbor Myxobolus cerebralis. Control fish were held at another hatchery that was free of whirling disease. In the controlled trials at the National Fish Health Research Laboratory, fingerling steelhead and Cayuga Lake and Mount Lassen rainbow trout were exposed to triactinomyxons at low (200 triactinomyxons/fish) or high (2,000 triactinomyxons/fish) levels for 2 h. Controls of each group were sham-exposed. Following an incubation period of 154 d for laboratory trials and 180 d for field trials, cranial tissue samples were taken for spore enumeration (field and laboratory trials) and histological analyses (laboratory only). Clinical signs of disease, including whirling behavior, blacktail, and skeletal deformities, were recorded for each fish in the laboratory trial at the terminal sampling. No clinical evidence of disease was noted among fish in the field trials. Clinical signs were noted among all strains in the laboratory trials at both exposure levels, and these signs were consistently greatest for the Mount Lassen strain. Whirling and skeletal deformities were more evident in the steelhead than in the Cayuga Lake rainbow trout; blacktail was more common in the Cayuga Lake fish. In both field and laboratory trials, spore counts were significantly higher for Cayuga Lake rainbow trout than in steelhead. In laboratory trials, moderate to marked cranial tissue lesions predominated in all three strains.

  12. Parameters of the response of the volumetric strain field to the external acting processes

    NASA Astrophysics Data System (ADS)

    Cherepantsev, A. S.

    2013-11-01

    It is necessary to widen the registration amplitude range by controlling the influence factors on different time scales in order to analyze the properties of the dynamic system, forming the observed data of different-nature geophysical fields. The data on the volumetric strain variations, obtained in the scope of the PBO project (Parkfield, California), make it possible to construct the correct regression model for the external influence tidal and baric factors, as well as for the precipitation factor. The specific features of separation of the deformation components caused by the external sources, including the relation between the baric and tidal influences and the additional component reflecting the deformation process internal dynamics, are considered. The precipitation cumulative series has been considered in order to remove seasonal variations in the time range T ≤ 10 days. The estimated error of the amplitudes, determined based on the proposed component method, proved to be close to the initial data accuracy. An inhomogeneous complex structure of the geological environment in the zone adjacent to the San Andreas fault could be responsible for the difference in the character of the deformation processes and the response to the external influences at the considered observation points.

  13. Effect of residual strain in Fe-based amorphous alloys on field induced magnetic anisotropy and domain structure

    NASA Astrophysics Data System (ADS)

    Azuma, Daichi; Hasegawa, Ryusuke; Saito, Shin; Takahashi, Migaku

    2013-05-01

    Field induced magnetic anisotropy in two Fe-based amorphous alloys with different saturation induction levels (1.56 T and 1.64 T) was investigated by varying magnetic field strength and annealing temperature and domain images were taken on these samples. Residual strain was evaluated by measuring coercivities of the materials after stress-relief annealing. These results are discussed, clarifying the difference between the two Fe-based amorphous alloys.

  14. Electrical and magneto-resistance of Co/CNT/Epoxy thin film for strain and magnetic field sensing

    NASA Astrophysics Data System (ADS)

    Anand, Sandeep V.; Isaac, Rejin; Roy Mahapatra, D.

    2009-03-01

    Cobalt and iron nanoparticles are doped in carbon nanotube (CNT)/polymer matrix composites and studied for strain and magnetic field sensing properties. Characterization of these samples is done for various volume fractions of each constituent (Co and Fe nanoparticles and CNTs) and also for cases when only either of the metallic components is present. The relation between the magnetic field and polarization-induced strain are exploited. The electronic bandgap change in the CNTs is obtained by a simplified tight-binding formulation in terms of strain and magnetic field. A nonlinear constitutive model of glassy polymer is employed to account for (1) electric bias field dependent softening/hardening (2) CNT orientations as a statistical ensemble and (3) CNT volume fraction. An effective medium theory is then employed where the CNTs and nanoparticles are treated as inclusions. The intensity of the applied magnetic field is read indirectly as the change in resistance of the sample. Very small magnetic fields can be detected using this technique since the resistance is highly sensitive to strain. Its sensitivity due to the CNT volume fraction is also discussed. The advantage of this sensor lies in the fact that it can be molded into desirable shape and can be used in fabrication of embedded sensors where the material can detect external magnetic fields on its own. Besides, the stress-controlled hysteresis of the sample can be used in designing memory devices. These composites have potential for use in magnetic encoders, which are made of a magnetic field sensor and a barcode.

  15. Occurrence, characterization and insecticidal activity of Bacillus thuringiensis strains isolated from argan fields in Morocco.

    PubMed

    Aboussaid, H; Vidal-Quist, J C; Oufdou, K; El Messoussi, S; Castañera, P; González-Cabrera, J

    2011-01-01

    Soils collected from five locations in the argan forest (an endemic plant) in Morocco were used to form the first collection of Bacillus thuringiensis (Bt) strains from this area (58 strains). Here we found that the argan forest is a major source of Bt, as 90.62% of the samples contained Bt strains. These strains produced mainly spherical or irregular crystals that in some cases remained adhered to the spore after cell lysis. There was no strain producing bipyramidal crystals, suggesting the absence of strains bearing crv1 genes. This was confirmed by PCR analysis using eight primer pairs that can potentially detect 13 different groups of cry and cyt genes. Strains containing cry7/8 were the most abundant (25.53%), followed by strains harbouring cry9A (14.89%), cry11 (8.51%) and cry4 (4.25%). The mixtures of spores and crystals as well as culture supernatants were assayed for toxicity towards Ceratitis capitata (Medfly), showing up to 30% mortality. Our findings suggest that the argan region is a suitable target for future and wider screening programmes looking for strains bearing toxins or combinations of them to develop more efficient Bt-based formulates. PMID:21970180

  16. Determination of gradient elastic tensors: stress and strain dependencies of electric field gradients in cubic and hexagonal systems

    NASA Astrophysics Data System (ADS)

    Brüsewitz, C.; Vetter, U.; Hofsäss, H.

    2015-02-01

    We present ab-initio calculations of the independent components of gradient elastic tensors, so-called gradient elastic constants, which relate electric field gradient tensors to stress or strain tensors. The constants of cubic and hexagonal metals, MAX phases, and zinc oxide were determined within the framework of density functional theory by using the augmented plane waves plus local orbitals method implemented in the WIEN2k code. Comparison with experimental gradient elastic constants and electric field gradients' stress dependencies suggest an accuracy of about 30% of the calculated constants, independent of the probe that detects the field gradient being self- or foreign-atom. Changes in the electric field gradient take place by strain-induced asymmetric occupations of the p and d states in the valence region for all investigated materials. Volume and structural dependencies of the electric field gradient can directly be determined from this fundamental approach and are, for hexagonal closed packed metals, consistent with vanishing electric field gradients around ideal close packing and volume dependencies larger than one. The concept of these calculations is applicable in any hyperfine interaction method and, thus, can be used to gain information about intrinsic strains in systems where the experimental gradient elastic constants are inaccessible.

  17. Population Genetic Structure of Listeria monocytogenes Strains as Determined by Pulsed-Field Gel Electrophoresis and Multilocus Sequence Typing

    PubMed Central

    Henri, Clémentine; Félix, Benjamin; Guillier, Laurent; Leekitcharoenphon, Pimlapas; Michelon, Damien; Mariet, Jean-François; Aarestrup, Frank M.; Mistou, Michel-Yves; Hendriksen, René S.

    2016-01-01

    ABSTRACT Listeria monocytogenes is a ubiquitous bacterium that may cause the foodborne illness listeriosis. Only a small amount of data about the population genetic structure of strains isolated from food is available. This study aimed to provide an accurate view of the L. monocytogenes food strain population in France. From 1999 to 2014, 1,894 L. monocytogenes strains were isolated from food at the French National Reference Laboratory for L. monocytogenes and classified according to the five risk food matrices defined by the European Food Safety Authority (EFSA). A total of 396 strains were selected on the basis of different pulsed-field gel electrophoresis (PFGE) clusters, serotypes, and strain origins and typed by multilocus sequence typing (MLST), and the MLST results were supplemented with MLST data available from Institut Pasteur, representing human and additional food strains from France. The distribution of sequence types (STs) was compared between food and clinical strains on a panel of 675 strains. High congruence between PFGE and MLST was found. Out of 73 PFGE clusters, the two most prevalent corresponded to ST9 and ST121. Using original statistical analysis, we demonstrated that (i) there was not a clear association between ST9 and ST121 and the food matrices, (ii) serotype IIc, ST8, and ST4 were associated with meat products, and (iii) ST13 was associated with dairy products. Of the two major STs, ST121 was the ST that included the fewest clinical strains, which might indicate lower virulence. This observation may be directly relevant for refining risk analysis models for the better management of food safety. IMPORTANCE This study showed a very useful backward compatibility between PFGE and MLST for surveillance. The results enabled better understanding of the population structure of L. monocytogenes strains isolated from food and management of the health risks associated with L. monocytogenes food strains. Moreover, this work provided an accurate view

  18. Complement-mediated neutralization of canine distemper virus in vitro: cross-reaction between vaccine Onderstepoort and field KDK-1 strains with different hemagglutinin gene characteristics.

    PubMed

    Mochizuki, Masami; Motoyoshi, Megumi; Maeda, Ken; Kai, Kazunari

    2002-07-01

    The properties of neutralization of antigens of canine distemper virus Onderstepoort and a recent field isolate, KDK-1, were investigated with strain-specific dog sera. A conventional neutralization assay indicated antigenic dissimilarity between the strains; however, when guinea pig complement was included in the reaction mixture, the strains were neutralized with not only the homologous but also the heterologous antibodies. PMID:12093697

  19. Geodetic Monitoring of The Strain Evolution Field During The July - August 2001 Mt. Etna Eruption

    NASA Astrophysics Data System (ADS)

    Puglisi, G.; Etna01-Geo Team

    Since the beginning of the 2001 Etna eruption, EDM and GPS measurements have been carried out to monitor the evolution of the ground deformation pattern of the volcano during the particular period of activity. The ground deformation pattern pre- ceding the eruption was known thanks to previous EDM and GPS surveys carried out and completed just few days before the onset of the eruption. During the period of activity, EDM measurements have been carried out daily on the uppermost part of the southern and northeastern trilateration networks in order to monitor the strain of the areas surrounding the eruptive fractures. These surveys allowed following the evolu- tion of the strain field since the beginning of the seismic swarm preceding the opening of the eruptive fracture system. Most of the ground deformation has been observed during the very first days of the eruption. Starting from the last days of the activity, the three EDM networks located on the NE, SW and S flanks of the volcano have been completely measured to fix the ground deformation pattern caused by the eruption. During the opening of the fracture system, the N-S GPS profile (17 stations), starting from the NE Rift to the Rifugio Sapienza area, has been measured together with a few GPS stations on the upper part of the volcano. The comparison of these measurements with the previous ones carried out the day before the seismic swarm, depicts a strong ground deformation pattern in good agreement with the dynamics of the intrusion. Later, several measurements have been carried out also during the eruption, on part of the N-S profile (12 stations), from the NE rift to the Piano del Lago area, very near the upper part of the eruptive fracture, because some of the southernmost stations were covered by the lava flows during the first days of the eruption. GPS sessions have been also carried out almost daily on an E-W profile, consisting of 16 stations and cross- ing the Rifugio Sapienza and the 1989 fracture

  20. Characterization of two Austrian porcine reproductive and respiratory syndrome virus (PRRSV) field isolates reveals relationship to East Asian strains.

    PubMed

    Sinn, Leonie J; Zieglowski, Leonie; Koinig, Hanna; Lamp, Benjamin; Jansko, Bettina; Mößlacher, Georg; Riedel, Christiane; Hennig-Pauka, Isabel; Rümenapf, Till

    2016-01-01

    Porcine reproductive and respiratory syndrome virus (PRRSV) causes major problems for the swine industry worldwide. Due to Austria's central location in Europe, a large number of animals are transported through the country. However, little is known about current PRRSV strains and epidemiology. We determined full-length genome sequences of two Austrian field isolates (AUT13-883 and AUT14-440) from recent PRRSV outbreaks and of a related German isolate (GER09-613). Phylogenetic analysis revealed that the strains belong to European genotype 1 subtype 1 and form a cluster together with a South Korean strain. Remarkably, AUT14-440 infected the simian cell line MARC-145 without prior adaptation. In addition, this isolate showed exceptional deletions in nonstructural protein 2, in the overlapping region of glycoprotein 3 and 4 and in the 3' untranslated region. Both Austrian isolates caused similar lung lesions but only pigs infected with AUT14-440 developed clear clinical signs of infection. Taken together, the genetic and biological characterization of two novel Austrian PRRSV field isolates revealed similarities to East Asian strains. This stresses the necessity for a more detailed analysis of current PRRSV strains in Europe beyond the determination of short ORF5 and ORF7 sequences. PMID:26754154

  1. Analytical modeling of uniaxial strain effects on the performance of double-gate graphene nanoribbon field-effect transistors

    PubMed Central

    2014-01-01

    The effects of uniaxial tensile strain on the ultimate performance of a dual-gated graphene nanoribbon field-effect transistor (GNR-FET) are studied using a fully analytical model based on effective mass approximation and semiclassical ballistic transport. The model incorporates the effects of edge bond relaxation and third nearest neighbor (3NN) interaction. To calculate the performance metrics of GNR-FETs, analytical expressions are used for the charge density, quantum capacitance, and drain current as functions of both gate and drain voltages. It is found that the current under a fixed bias can change several times with applied uniaxial strain and these changes are strongly related to strain-induced changes in both band gap and effective mass of the GNR. Intrinsic switching delay time, cutoff frequency, and Ion/Ioff ratio are also calculated for various uniaxial strain values. The results indicate that the variation in both cutoff frequency and Ion/Ioff ratio versus applied tensile strain inversely corresponds to that of the band gap and effective mass. Although a significant high frequency and switching performance can be achieved by uniaxial strain engineering, tradeoff issues should be carefully considered. PMID:24506842

  2. Strained Si, SiGe, and Ge channels for high-mobility metal-oxide-semiconductor field-effect transistors

    NASA Astrophysics Data System (ADS)

    Lee, Minjoo L.; Fitzgerald, Eugene A.; Bulsara, Mayank T.; Currie, Matthew T.; Lochtefeld, Anthony

    2005-01-01

    This article reviews the history and current progress in high-mobility strained Si, SiGe, and Ge channel metal-oxide-semiconductor field-effect transistors (MOSFETs). We start by providing a chronological overview of important milestones and discoveries that have allowed heterostructures grown on Si substrates to transition from purely academic research in the 1980's and 1990's to the commercial development that is taking place today. We next provide a topical review of the various types of strain-engineered MOSFETs that can be integrated onto relaxed Si1-xGex, including surface-channel strained Si n- and p-MOSFETs, as well as double-heterostructure MOSFETs which combine a strained Si surface channel with a Ge-rich buried channel. In all cases, we will focus on the connections between layer structure, band structure, and MOS mobility characteristics. Although the surface and starting substrate are composed of pure Si, the use of strained Si still creates new challenges, and we shall also review the literature on short-channel device performance and process integration of strained Si. The review concludes with a global summary of the mobility enhancements available in the SiGe materials system and a discussion of implications for future technology generations.

  3. Full-field dynamic strain prediction on a wind turbine using displacements of optical targets measured by stereophotogrammetry

    NASA Astrophysics Data System (ADS)

    Baqersad, Javad; Niezrecki, Christopher; Avitabile, Peter

    2015-10-01

    Health monitoring of rotating structures (e.g. wind turbines and helicopter blades) has historically been a challenge due to sensing and data transmission problems. Unfortunately mechanical failure in many structures initiates at components on or inside the structure where there is no sensor located to predict the failure. In this paper, a wind turbine was mounted with a semi-built-in configuration and was excited using a mechanical shaker. A series of optical targets was distributed along the blades and the fixture and the displacement of those targets during excitation was measured using a pair of high speed cameras. Measured displacements with three dimensional point tracking were transformed to all finite element degrees of freedom using a modal expansion algorithm. The expanded displacements were applied to the finite element model to predict the full-field dynamic strain on the surface of the structure as well as within the interior points. To validate the methodology of dynamic strain prediction, the predicted strain was compared to measured strain by using six mounted strain-gages. To verify if a simpler model of the turbine can be used for the expansion, the expansion process was performed both by using the modes of the entire turbine and modes of a single cantilever blade. The results indicate that the expansion approach can accurately predict the strain throughout the turbine blades from displacements measured by using stereophotogrammetry.

  4. Young Unwed Fathers: Report from the Field.

    ERIC Educational Resources Information Center

    Achatz, Mary; MacAllum, Crystal A.

    This report is based on an intensive 18-month ethnographic study of 47 young fathers enrolled in Public/Private Ventures' Young Unwed Fathers Pilot Project. It presents a detailed look at selected aspects of the lives of these fathers before and during program participation, as well as outcomes of the pilot intervention. Following an introductory…

  5. Field monitoring of the ice load of an icebreaker propeller blade using fiber optic strain gauges

    NASA Astrophysics Data System (ADS)

    Morin, Andre; Caron, Serge; Van Neste, Richard; Edgecombe, Merv H.

    1996-05-01

    Navigation in polar waters presents a formidable challenge to ships' propulsion systems as large ice pieces impinging on their propeller blades sometimes result in stresses exceeding the yield strength of the blade material. Damage to propellers is costly and can also spell disaster if a ship becomes disabled in a remote area. To prevent such situations, design practice must be improved and theoretical models of propeller/ice interaction must be validated against experimental data. The blade shape requires that the load be monitored at many locations in order to obtain an accurate picture of the stress and load distribution. Fiber optic sensors are ideally suited for such an application, owing to their small size, stability over time, immunity to electro-magnetic interference, resistance to corrosion and chemical attack by sea water and hydraulic oil. We report the full-scale instrumentation of an icebreaker propeller blade with 54 Fabry-Perot based fiber optic strain gauges and shaft-mounted electronics. The instrumentation design and installation procedures are described. Additional data gathered from the propulsion control system and the ship's navigation equipment is presented and the data fusion performed with underwater video imagery of the instrumented blade is also discussed. An overview of the noise-free data obtained during the Antarctic trials is given. We finally discuss the sensors behavior and long term response, presenting their applicability to smart structures.

  6. Full-Field Strain Methods for Investigating Failure Mechanisms in Triaxial Braided Composites

    NASA Technical Reports Server (NTRS)

    Littell, Justin D.; Binienda, Wieslaw K.; Goldberg, Robert K.; Roberts, Gary D.

    2008-01-01

    Recent advancements in braiding technology have led to commercially viable manufacturing approaches for making large structures with complex shape out of triaxial braided composite materials. In some cases, the static load capability of structures made using these materials has been higher than expected based on material strength properties measured using standard coupon tests. A more detailed investigation of deformation and failure processes in large-unit-cell-size triaxial braid composites is needed to evaluate the applicability of standard test methods for these materials and to develop alternative testing approaches. This report presents some new techniques that have been developed to investigate local deformation and failure using digital image correlation techniques. The methods were used to measure both local and global strains during standard straight-sided coupon tensile tests on composite materials made with 12- and 24-k yarns and a 0 /+60 /-60 triaxial braid architecture. Local deformation and failure within fiber bundles was observed and correlations were made between these local failures and global composite deformation and strength.

  7. Exploitation of Mycobacterium tuberculosis Reporter Strains to Probe the Impact of Vaccination at Sites of Infection

    PubMed Central

    Aldridge, Bree B.; Russell, David G.

    2014-01-01

    Mycobacterium tuberculosis (Mtb) remains a major public health problem, with an effective vaccine continuing to prove elusive. Progress in vaccination strategies has been hampered by a lack of appreciation of the bacterium's response to dynamic changes in the host immune environment. Here, we utilize reporter Mtb strains that respond to specific host immune stresses such as hypoxia and nitric oxide (hspX′::GFP), and phagosomal maturation (rv2390c′::GFP), to investigate vaccine-induced alterations in the environmental niche during experimental murine infections. While vaccination undoubtedly decreased bacterial burden, we found that it also appeared to accelerate Mtb's adoption of a phenotype better equipped to survive in its host. We subsequently utilized a novel replication reporter strain of Mtb to demonstrate that, in addition to these alterations in host stress response, there is a decreased percentage of actively replicating Mtb in vaccinated hosts. This observation was supported by the differential sensitivity of recovered bacteria to the front-line drug isoniazid. Our study documents the natural history of the impact that vaccination has on Mtb's physiology and replication and highlights the value of reporter Mtb strains for probing heterogeneous Mtb populations in the context of a complex, whole animal model. PMID:25233380

  8. Microstructure from ferroelastic transitions using strain pseudospin clock models in two and three dimensions: A local mean-field analysis

    NASA Astrophysics Data System (ADS)

    Vasseur, Romain; Lookman, Turab; Shenoy, Subodh R.

    2010-09-01

    We show how microstructure can arise in first-order ferroelastic structural transitions, in two and three spatial dimensions, through a local mean-field approximation of their pseudospin Hamiltonians, that include anisotropic elastic interactions. Such transitions have symmetry-selected physical strains as their NOP -component order parameters, with Landau free energies that have a single zero-strain “austenite” minimum at high temperatures, and spontaneous-strain “martensite” minima of NV structural variants at low temperatures. The total free energy also has gradient terms, and power-law anisotropic effective interactions, induced by “no-dislocation” St Venant compatibility constraints. In a reduced description, the strains at Landau minima induce temperature dependent, clocklike ZNV+1 Hamiltonians, with NOP -component strain-pseudospin vectors S⃗ pointing to NV+1 discrete values (including zero). We study elastic texturing in five such first-order structural transitions through a local mean-field approximation of their pseudospin Hamiltonians, that include the power-law interactions. As a prototype, we consider the two-variant square/rectangle transition, with a one-component pseudospin taking NV+1=3 values of S=0,±1 , as in a generalized Blume-Capel model. We then consider transitions with two-component (NOP=2) pseudospins: the equilateral to centered rectangle (NV=3) ; the square to oblique polygon (NV=4) ; the triangle to oblique (NV=6) transitions; and finally the three-dimensional (3D) cubic to tetragonal transition (NV=3) . The local mean-field solutions in two-dimensional and 3D yield oriented domain-wall patterns as from continuous-variable strain dynamics, showing the discrete-variable models capture the essential ferroelastic texturings. Other related Hamiltonians illustrate that structural transitions in materials science can be the source of interesting spin models in statistical mechanics.

  9. [Production of a vaccine against enterotoxemia from Clostridium perfringens strains isolated in the field].

    PubMed

    Cherfaoui, S; Kadra, B

    1992-01-01

    We have isolated eight strains of C. perfringens from cases of enterotoxaemia. Five of these strains have revealed themselves toxic with respective types (type "A":2, type "C":2, type "D":1). In order to produce anti-enterotoxaemia vaccine, we have proceeded at the cultivation in fermenter of isolated strains and reference strains CWA 35, CWC and CWD AF. At the end of fermentation, we have evaluated the two following parameters: obtained biomass, and toxin titers. With the two classes of strains we reached an important biomass but toxins titers relatively weak comparatively to that which is usually required. It will be necessary then, to demonstrate the immunogen value of the produced vaccines by testing their efficacity. PMID:1309137

  10. ICD-10 FIELD TRIALS IN INDIA - A REPORT

    PubMed Central

    Raghuram, R.; Shamasundar, C.

    1992-01-01

    The draft of the tenth revision of the International Classification Of Diseases, Chapter V (ICD-10) was subjected to extensive field trials throughout the world. In India, Nine Field Trial Centres (PTCs) conducted the field trials. The results showed that the ICD-10 was quite adequate in its face-validity, reliability, applicability and ease of use. A brief account of the field trials and the result are reported. PMID:21776123

  11. Strained germanium-tin (GeSn) p-channel metal-oxide-semiconductor field-effect-transistors (p-MOSFETs) with ammonium sulfide passivation

    NASA Astrophysics Data System (ADS)

    Wang, Lanxiang; Su, Shaojian; Wang, Wei; Gong, Xiao; Yang, Yue; Guo, Pengfei; Zhang, Guangze; Xue, Chunlai; Cheng, Buwen; Han, Genquan; Yeo, Yee-Chia

    2013-05-01

    High-mobility strained Ge0.958Sn0.042 p-channel metal-oxide-semiconductor field-effect-transistors (p-MOSFETs) with ammonium sulfide [(NH4)2S] surface passivation were demonstrated. A ˜10 nm thick fully-strained single crystalline GeSn layer was epitaxially grown on Ge (1 0 0) substrate as the channel layer. (NH4)2S surface passivation was performed for the GeSn surface, followed by gate stack formation. Ge0.958Sn0.042 p-MOSFETs with (NH4)2S passivation show decent electrical characteristics and a peak effective mobility of 509 cm2/V s, which is the highest reported peak mobility obtained for GeSn channel p-MOSFETs so far.

  12. Uniform strain field inside a non-circular inhomogeneity with homogeneously imperfect interface in anisotropic anti-plane shear

    NASA Astrophysics Data System (ADS)

    Dai, Ming; Schiavone, Peter; Gao, Cun-Fa

    2016-06-01

    We re-examine the conclusion established earlier in the literature that in the presence of a homogeneously imperfect interface, the circular inhomogeneity is the only shape of inhomogeneity which can achieve a uniform internal strain field in an isotropic or anisotropic material subjected to anti-plane shear. We show that under certain conditions, it is indeed possible to design such non-circular inhomogeneities despite the limitation of a homogeneously imperfect interface. Our method proceeds by prescribing a uniform strain field inside a non-circular inhomogeneity via perturbations of the uniform strain field inside the analogous circular inhomogeneity and then subsequently identifying the corresponding (non-circular) shape via the use of a conformal mapping whose unknown coefficients are determined from a system of nonlinear equations. We illustrate our results with several examples. We note also that, for a given size of inhomogeneity, the minimum value of the interface parameter required to guarantee the desired uniform internal strain increases as the elastic constants of the inclusion approach those of the matrix. Finally, we discuss in detail the relationship between the curvature of the interface and the displacement jump across the interface in the design of such inhomogeneities.

  13. Strain mapping of LED devices by dark-field inline electron holography: comparison between deterministic and iterative phase retrieval approaches.

    PubMed

    Song, Kyung; Shin, Ga-Young; Kim, Jong Kyu; Oh, Sang Ho; Koch, Christoph T

    2013-04-01

    Dark-field inline electron holography has recently been established as a convenient method to map strain in semiconductor devices, combining high precision, low noise, sub-nm spatial resolution and fields-of-view larger than 1 μm. Here we compare two approaches to reconstruct the geometric phase from a transmission electron microscopy dark-field focal series and their effects on the strain measurement: the transport-of-intensity-equation (TIE) and a flux-preserving iterative approach. For this task, we used a GaN-based light emitting diode with a highly complex heterostructure as a model system. While the TIE relies on 3 images only but requires the optimization of two free parameters (defocus step and low-limit cut-off frequency), the iterative reconstruction algorithm involves no adjustable parameters and uses images recorded at 9 different planes of focus with quadratically increasing defocus values. Optimum parameters for the TIE-reconstruction could be identified. However, the iterative phase retrieval approach yields the strain values that agree best with the expected strain levels and provides also higher spatial resolution. PMID:22910615

  14. Evaluation of a New Entomopathogenic Strain of Beauveria bassiana and a New Field Delivery Method against Solenopsis invicta

    PubMed Central

    Li, Jun; Guo, Qiang; Lin, Miaofeng; Jiang, Lu; Ye, Jingwen; Chen, Dasong; Li, Zhigang; Dai, Jianqing; Han, Shichou

    2016-01-01

    Solenopsis invicta Buren is one of the most important pests in China, and control measures are mainly based on the use of synthetic pesticides, which may be inadequate and unsustainable. Hence, there is a growing interest in developing biological control alternatives for managing S. invicta, such as the use of entomopathogenic fungi. To facilitate the commercialization of entomopathogenic fungi against S. invicta, 10 Beauveria bassiana isolates originating from different hosts were tested for virulence in laboratory bioassays, and the most pathogenic strain, ZGNKY-5, was tested in field studies using an improved pathogen delivery system. The cumulative mortality rate reached 93.40% at 1×108 mL-1 conidia after 504 h. The germination and invasion of the spores were observed under a scanning electron microscope, and several conidia adhered to the cuticle of S. invicta after 2 h. Furthermore, the germ tubes of the conidia oriented toward the cuticle after 48 h, and the mycelium colonized the entire body after 96 h. Based on the efficacy observed in the laboratory trials, further experiments were performed with ZGNKY-5 strain to evaluate its utility in an injection control technology against S. invicta in the field. We found that three dosage treatments of ZGNKY-5 strain (500 mL, 750 mL, and 1,000 mL per nest) had significant control effects. Our results show that this strain of Beauveria bassiana and our control method were effective against S. invicta in both laboratory and field settings. PMID:27341441

  15. Strain-Engineering of Giant Pseudo-Magnetic Fields in Graphene/Boron Nitride (BN) Periodic Nanostructures

    NASA Astrophysics Data System (ADS)

    Hsu, Chen-Chih; Wang, Jiaqing; Teague, Marcus; Chen, Chien-Chang; Yeh, Nai-Chang

    2015-03-01

    Ideal graphene is strain-free whereas non-trivial strain can induce pseudo-magnetic fields as predicted theoretically and manifested experimentally. Here we employ nearly strain-free single-domain graphene, grown by plasma-enhanced chemical vapor deposition (PECVD) at low temperatures, to induce controlled strain by placing the PECVD-graphene on substrates containing engineered nanostructures. We fabricate periodic pyramid nanostructures (typically 100 ~ 200 nm laterally and 10 ~ 60 nm in height) on Si substrates by focused ion beam, and determine the topography of these nanostructures using atomic force microscopy and scanning electron microscopy after we transferred monolayer h-BN followed by PECVD-graphene onto these substrates. We find both layers conform well to the nanostructures so that we can control the size, arrangement, separation, and shape of the nanostructures to generate desirable pseudo-magnetic fields. We also employ molecular dynamics simulation to determine the displacement of carbon atoms under a given nanostructure. The pseudo-magnetic field thus obtained is ~150T in the center, relatively homogeneous over 50% of the area, and drops off precipitously near the edge. These findings are extended to arrays of nanostructures and compared with topographic and spectroscopic studies by STM. Supported by NSF.

  16. Evaluation of a New Entomopathogenic Strain of Beauveria bassiana and a New Field Delivery Method against Solenopsis invicta.

    PubMed

    Li, Jun; Guo, Qiang; Lin, Miaofeng; Jiang, Lu; Ye, Jingwen; Chen, Dasong; Li, Zhigang; Dai, Jianqing; Han, Shichou

    2016-01-01

    Solenopsis invicta Buren is one of the most important pests in China, and control measures are mainly based on the use of synthetic pesticides, which may be inadequate and unsustainable. Hence, there is a growing interest in developing biological control alternatives for managing S. invicta, such as the use of entomopathogenic fungi. To facilitate the commercialization of entomopathogenic fungi against S. invicta, 10 Beauveria bassiana isolates originating from different hosts were tested for virulence in laboratory bioassays, and the most pathogenic strain, ZGNKY-5, was tested in field studies using an improved pathogen delivery system. The cumulative mortality rate reached 93.40% at 1×108 mL-1 conidia after 504 h. The germination and invasion of the spores were observed under a scanning electron microscope, and several conidia adhered to the cuticle of S. invicta after 2 h. Furthermore, the germ tubes of the conidia oriented toward the cuticle after 48 h, and the mycelium colonized the entire body after 96 h. Based on the efficacy observed in the laboratory trials, further experiments were performed with ZGNKY-5 strain to evaluate its utility in an injection control technology against S. invicta in the field. We found that three dosage treatments of ZGNKY-5 strain (500 mL, 750 mL, and 1,000 mL per nest) had significant control effects. Our results show that this strain of Beauveria bassiana and our control method were effective against S. invicta in both laboratory and field settings. PMID:27341441

  17. Capripox disease in Ethiopia: Genetic differences between field isolates and vaccine strain, and implications for vaccination failure.

    PubMed

    Gelaye, Esayas; Belay, Alebachew; Ayelet, Gelagay; Jenberie, Shiferaw; Yami, Martha; Loitsch, Angelika; Tuppurainen, Eeva; Grabherr, Reingard; Diallo, Adama; Lamien, Charles Euloge

    2015-07-01

    Sheeppox virus (SPPV), goatpox virus (GTPV) and lumpy skin disease virus (LSDV) of the genus Capripoxvirus (CaPV) cause capripox disease in sheep, goats and cattle, respectively. These viruses are not strictly host-specific and their geographical distribution is complex. In Ethiopia, where sheep, goats and cattle are all affected, a live attenuated vaccine strain (KS1-O180) is used for immunization of both small ruminants and cattle. Although occurrences of the disease in vaccinated cattle are frequently reported, information on the circulating isolates and their relation to the vaccine strain in use are still missing. The present study addressed the parameters associated with vaccination failure in Ethiopia. Retrospective outbreak data were compiled and isolates collected from thirteen outbreaks in small ruminants and cattle at various geographical locations and years were analyzed and compared to the vaccine strain. Isolates of GTPV and LSDV genotypes were responsible for the capripox outbreaks in small ruminants and cattle, respectively, while SPPV was absent. Pathogenic isolates collected from vaccinated cattle were identical to those from the non-vaccinated ones. The vaccine strain, genetically distinct from the outbreak isolates, was not responsible for these outbreaks. This study shows capripox to be highly significant in Ethiopia due to low performance of the local vaccine and insufficient vaccination coverage. The development of new, more efficient vaccine strains, a GTPV strain for small ruminants and a LSDV for cattle, is needed to promote the acceptance by farmers, thus contribute to better control of CaPVs in Ethiopia. PMID:25907637

  18. A Guide to Writing Student Laboratory and Field Research Reports.

    ERIC Educational Resources Information Center

    Schlenker, Richard M.

    This document outlines the procedures to be followed in writing a field or research report. It describes the rationale behind a good report and explains the proper format and use of title, introduction, methods, data, discussion, conclusion, references, and abstract or summary elements. This guide gives aids to writing a good report. Finally, it…

  19. Report on the Summer MONEX Field Phase

    NASA Technical Reports Server (NTRS)

    Fein, J. S.; Kuettner, J. P.

    1980-01-01

    The Summer Monsoon Experiment (MONEX) which was conducted over the Indian Ocean and adjacent land areas from May to August 1979, and overlapped with the second Special Observing Period of the Global Weather Experiment (FGGE). Attention is given to the scientific goals of Summer MONEX which cover (1) planetary scale aspects, (2) synoptic scale aspects, (3) interactions with atmospheric circulation in the Pacific, Southern Hemisphere, Northern midlatitudes, and stratosphere, and (4) numerical simulation and prediction. The observing system and field operations designed to attain these goals are discussed in detail. In conclusion, it is noted that the combined MONEX and FGGE observations should provide an unprecedented data set for a basic study of the monsoon phenomena.

  20. Strain fields for aluminum at different tooling temperatures and extrusion ratios

    SciTech Connect

    Peacock, H.B.; Berghaus, D.G.

    1985-03-01

    Strain distributions throughout the die region are obtained for axisymmetric extrusion of aluminum billets. Results which include the three extensional strains and accumulated shear are produced from an analysis of experimentally obtained laminar flow lines on extruded specimens. Extrusion experiments are performed at average tooling temperatures of 174/sup 0/C and 354/sup 0/C and for extrusion ratios from 1.9 to 12.4. Both tooling temperatures and extrusion ratios affect the magnitude and/or the distribution of plastic strains in extruded aluminum.

  1. TRMM Field Campaigns: Objectives and Status Report

    NASA Technical Reports Server (NTRS)

    Zipser, Edward I.; Heymsfield, Gerald; Kummerow, Christian; Simpson, Joanne; Thiele, Otto; Rutledge, Steven; Dias, Maria Assuncio Silva; Houze, Robert A., Jr.; Yuter, Sandra; Kakar, Ramesh

    1999-01-01

    The Tropical Rainfall Measuring Mission (TRMM) satellite has been sending valuable data since launch in November 1997. Some of the key goals of the joint NASA (US) and NASDA (Japan) mission are: (1) to estimate the four-dimensional diabatic heating in the tropical and subtropical atmosphere, (2) understand the role of latent heating in driving tropical and extratropical circulations, (3) obtain monthly area-averaged estimates of rainfall over the data-sparse oceans, and (4) estimate the relative contribution of convective and stratiform precipitation over different regions during different seasons. The overarching scientific objective is to understand and improve estimates of rainfall and latent heating profiles throughout the global tropics. This requires observations for fundamental understanding of cloud dynamics and microphysics, as well as for validation, testing assumptions and error estimates of cloud-resolving models, forward radiative transfer models, algorithms used to estimate rainfall statistics and vertical structure of precipitation from surface-based radar, and from satellites. Field experiments designed to contribute to this understanding have been conducted in Texas and the South China Sea in spring of 1998, Florida in summer of 1998, and interior Brazil in (boreal) winter 1999. In summer 1999, a major oceanic campaign will be based at Kwajalein Atoll. Some early results will be highlighted, noting some significant contrasts between oceanic and continental convective systems.

  2. First report of two rapid-onset fatal infections caused by a newly emerging hypervirulent K. Pneumonia ST86 strain of serotype K2 in China

    PubMed Central

    Zhang, Yibo; Sun, Jingyong; Mi, Chenrong; Li, Wenhui; Zhao, Shengyuan; Wang, Qun; Shi, Dake; Liu, Luo; Ding, Bingyu; Chang, Yung-Fu; Guo, Hongxiong; Guo, XiaoKui; Li, Qingtian; Zhu, Yongzhang

    2015-01-01

    Here, we present the first report of one suspected dead case and two confirmed rapid-onset fatal infections caused by a newly emerging hypervirulent Klebsiella pneumoniae ST86 strain of serotype K2. The three cases occurred in a surgery ward during 2013 in Shanghai, China. A combination of multilocus sequence typing, pulsed-field gel electrophoresis, phenotypic and PCR tests for detecting virulence factors (VFs) was used to identify the isolates as K2 ST86 strains with common VFs, including Aerobactin and rmpA. Furthermore, the two K2 ST86 strains additionally harbored a distinct VF kfu (responsible for iron uptake system), which commonly existed in invasive K1 strains only. Thus, the unusual presence of both K1 and K2 VFs in the lethal ST86 strain might further enhance its hypervirulence and cause rapid onset of a life-threatening infection. Nevertheless, despite the administration of a combined antibiotic treatment, these three patients all died within 24 h of acute onset, thereby highlighting that the importance of early diagnosis to determine whether the ST86 strains harbor key K2 VF and unusual K1 kfu and whether patients should receive a timely and targeted antibiotic therapy to prevent ST86 induced fatal pneumonia. Finally, even though these patients are clinically improved, keeping on with oral antibiotic treatment for additional 2–3 weeks will be also vital for successfully preventing hvKP reinfection or relapse. PMID:26257712

  3. First report of metallo-β-lactamases producing Enterobacter spp. strains from Venezuela.

    PubMed

    Martínez, Dianny; Rodulfo, Hectorina E; Rodríguez, Lucy; Caña, Luisa E; Medina, Belkis; Guzman, Militza; Carreño, Numirin; Marcano, Daniel; De Donato, Marcos

    2014-01-01

    Clinical strains of Enterobacter were isolated from Cumana's Central Hospital in Venezuela, and classified as E. cloacae (21), E. aerogenes (7), E. intermedium (1), E. sakazakii (1) and three unclassified. The strains showed high levels of resistance, especially to SXT (58.1%), CRO (48.8%), CAZ (46.6%), PIP (46.4%), CIP (45.2%) and ATM (43.3%). This is the first report for South America of blaVIM-2 in two E. cloacae and one Enterobacter sp., which also showed multiple mechanisms of resistance. Both E. cloacae showed blaTEM-1, but only one showed blaCTX-M-15 gene, while no blaSHV was detected. PMID:24553611

  4. FIRST REPORT OF METALLO-β-LACTAMASES PRODUCING Enterobacter spp. STRAINS FROM VENEZUELA

    PubMed Central

    Martínez, Dianny; Rodulfo, Hectorina E.; Rodríguez, Lucy; Caña, Luisa E.; Medina, Belkis; Guzman, Militza; Carreño, Numirin; Marcano, Daniel; Donato, Marcos De

    2014-01-01

    Clinical strains of Enterobacter were isolated from Cumana's Central Hospital in Venezuela, and classified as E. cloacae (21), E. aerogenes (7), E. intermedium (1), E. sakazakii (1) and three unclassified. The strains showed high levels of resistance, especially to SXT (58.1%), CRO (48.8%), CAZ (46.6%), PIP (46.4%), CIP (45.2%) and ATM (43.3%). This is the first report for South America of bla VIM-2 in two E. cloacae and one Enterobacter sp., which also showed multiple mechanisms of resistance. Both E. cloacae showed bla TEM-1, but only one showed bla CTX-M-15 gene, while no bla SHV was detected. PMID:24553611

  5. Dendritic flux avalanches and the accompanied thermal strain in type-II superconducting films: effect of magnetic field ramp rate

    NASA Astrophysics Data System (ADS)

    Jing, Ze; Yong, Huadong; Zhou, You-He

    2015-07-01

    Dendritic flux avalanches and the accompanying thermal stress and strain in type-II superconducting thin films under transverse magnetic fields are numerically simulated in this paper. The influence of the magnetic field ramp rate, edge defects, and the temperature of the surrounding coolant are considered. Maxwell's equations and the highly nonlinear E-J power-law characteristics of superconductors, coupled with the heat diffusion equation, are adopted to formulate these phenomena. The fast Fourier transform-based iteration scheme is used to track the evolution of the magnetic flux and the temperature in the superconducting film. The finite element method is used to analyze the thermal stress and strain induced in the superconducting film. It is found that the ramp rate has a significant effect on the flux avalanche process. The avalanches nucleate more easily for a film under a large magnetic field ramp rate than for a film under a small one. In addition, the avalanches always initiate from edge defects or areas that experience larger magnetic fields. The superconducting films experience large thermal strain induced by the large temperature gradient during the avalanche process, which may even lead to the failure of the sample.

  6. Construction and characterization of outbreak Escherichia coli O157:H7 surrogate strains for use in field studies.

    PubMed

    Webb, Cathy C; Erickson, Marilyn C; Davey, Lindsey E; Payton, Alison S; Doyle, Michael P

    2014-11-01

    Escherichia coli O157:H7 has been the causative agent of many outbreaks associated with leafy green produce consumption. Elucidating the mechanism by which contamination occurs requires monitoring interactions between the pathogen and the plant under typical production conditions. Intentional introduction of virulent strains into fields is not an acceptable practice. As an alternative, attenuated strains of natural isolates have been used as surrogates of the virulent strains; however, the attachment properties and environmental stabilities of these attenuated isolates may differ from the unattenuated outbreak strains. In this study, the Shiga toxin (stx1, stx2, and/or stx2c) genes as well as the eae gene encoding intimin of two E. coli O157:H7 outbreak isolates, F4546 (1997 alfalfa sprout) and K4492 (2006 lettuce), were deleted. Individual gene deletions were confirmed by polymerase chain reaction (PCR) and DNA sequencing. The mutant strains did not produce Shiga toxin. The growth kinetics of these mutant strains under nutrient-rich and minimal conditions were identical to those of their wild-type strains. Attachment to the surface of lettuce leaves was comparable between wild-type/mutant pairs F4546/MD46 and K4492/MD47. Adherence to soil particles was also comparable between the virulent and surrogate pairs, although the F4546/MD46 pair exhibited statistically greater attachment than the K4492/MD47 pair (p≤0.05). Wild-type and mutant pairs F4546/MD46 and K4492/MD47 inoculated into wet or dry soils had statistically similar survival rates over the 7-day storage period at 20°C. A plasmid, pGFPuv, containing green fluorescent protein was transformed into each of the mutant strains, allowing for ease of identification and detection of surrogate strains on plant material or soil. These pGFPuv-containing surrogate strains will enable the investigation of pathogen interaction with plants and soil in the farm production environment where the virulent pathogen cannot

  7. Genome Sequences of Two Tunisian Field Strains of Avian Mycoplasma, M. meleagridis and M. gallinarum

    PubMed Central

    Yacoub, Elhem; Sirand-Pugnet, Pascal; Barré, Aurélien; Blanchard, Alain; Hubert, Christophe; Maurier, Florence; Bouilhol, Emmanuel

    2016-01-01

    Mycoplasma meleagridis and Mycoplasma gallinarum are bacteria that affect birds, but little is known about the genetic basis of their interaction with chickens and other poultry. Here, we sequenced the genomes of M. meleagridis strain MM_26B8_IPT and M. gallinarum strain Mgn_IPT, both isolated from chickens showing respiratory symptoms, poor growth, reduction in hatchability, and loss of production. PMID:27313300

  8. Genome Sequences of Two Tunisian Field Strains of Avian Mycoplasma, M. meleagridis and M. gallinarum.

    PubMed

    Yacoub, Elhem; Sirand-Pugnet, Pascal; Barré, Aurélien; Blanchard, Alain; Hubert, Christophe; Maurier, Florence; Bouilhol, Emmanuel; Ben Abdelmoumen Mardassi, Boutheina

    2016-01-01

    Mycoplasma meleagridis and Mycoplasma gallinarum are bacteria that affect birds, but little is known about the genetic basis of their interaction with chickens and other poultry. Here, we sequenced the genomes of M. meleagridis strain MM_26B8_IPT and M. gallinarum strain Mgn_IPT, both isolated from chickens showing respiratory symptoms, poor growth, reduction in hatchability, and loss of production. PMID:27313300

  9. Continuous borehole strain and pore pressure in the near field of the 28 September 2004 M 6.0 parkfield, California, earthquake: Implications for nucleation, fault response, earthquake prediction and tremor

    USGS Publications Warehouse

    Johnston, M.J.S.; Borcherdt, R.D.; Linde, A.T.; Gladwin, M.T.

    2006-01-01

    Near-field observations of high-precision borehole strain and pore pressure, show no indication of coherent accelerating strain or pore pressure during the weeks to seconds before the 28 September 2004 M 6.0 Parkfield earthquake. Minor changes in strain rate did occur at a few sites during the last 24 hr before the earthquake but these changes are neither significant nor have the form expected for strain during slip coalescence initiating fault failure. Seconds before the event, strain is stable at the 10-11 level. Final prerupture nucleation slip in the hypocentral region is constrained to have a moment less than 2 ?? 1012 N m (M 2.2) and a source size less than 30 m. Ground displacement data indicate similar constraints. Localized rupture nucleation and runaway precludes useful prediction of damaging earthquakes. Coseismic dynamic strains of about 10 microstrain peak-to-peak were superimposed on volumetric strain offsets of about 0.5 microstrain to the northwest of the epicenter and about 0.2 microstrain to the southeast of the epicenter, consistent with right lateral slip. Observed strain and Global Positioning System (GPS) offsets can be simply fit with 20 cm of slip between 4 and 10 km on a 20-km segment of the fault north of Gold Hill (M0 = 7 ?? 1017 N m). Variable slip inversion models using GPS data and seismic data indicate similar moments. Observed postseismic strain is 60% to 300% of the coseismic strain, indicating incomplete release of accumulated strain. No measurable change in fault zone compliance preceding or following the earthquake is indicated by stable earth tidal response. No indications of strain change accompany nonvolcanic tremor events reported prior to and following the earthquake.

  10. A thermo-mechanical model for Nb3Sn filaments and wires: strain field for different strand layouts

    NASA Astrophysics Data System (ADS)

    Boso, Daniela P.; Lefik, Marek

    2009-12-01

    In Nb3Sn CIC conductors, the superconducting compound is distributed into fine filaments and embedded in a resistive matrix for electrical and thermal stability. Nb3Sn formation requires a solid state diffusion reaction at high temperature, which causes an Sn gradient inside the filaments. It is well known that the critical parameters vary with composition (Sn content) and strain state. In this work the complete 3D strain field is computed for different wire layouts. First, the relation between the grade of filament reaction and strain is investigated: superconducting wires are studied, taking into consideration non-homogeneous Nb3Sn filaments, i.e. considering an unreacted core of pure Nb. Furthermore, the case when the filaments agglomerate together to give a 'macrofilament' is also taken into consideration (internal tin wires). A finite element discretization fine enough to take into consideration non-homogeneous filaments would result in a very high number of unknowns, which could be beyond the capacity of today's computers. Therefore a thermo-mechanical model is formulated, based on the generalized self-consistent method, suitably developed to deal with the material nonlinearity and the coupling between the thermal and mechanical fields. In this way, equivalent homogeneous properties are obtained and the analysis of the wires becomes feasible. An appropriate unsmearing technique finally gives the strain state in the real, not homogenized, materials.

  11. Report on Non-Contact DC Electric Field Sensors

    SciTech Connect

    Miles, R; Bond, T; Meyer, G

    2009-06-16

    This document reports on methods used to measure DC electrostatic fields in the range of 100 to 4000 V/m using a non-contact method. The project for which this report is written requires this capability. Non-contact measurements of DC fields is complicated by the effect of the accumulation of random space-charges near the sensors which interfere with the measurement of the field-of-interest and consequently, many forms of field measurements are either limited to AC measurements or use oscillating devices to create pseudo-AC fields. The intent of this document is to report on methods discussed in the literature for non-contact measurement of DC fields. Electric field meters report either the electric field expressed in volts per distance or the voltage measured with respect to a ground reference. Common commercial applications for measuring static (DC) electric fields include measurement of surface charge on materials near electronic equipment to prevent arcing which can destroy sensitive electronic components, measurement of the potential for lightning to strike buildings or other exposed assets, measurement of the electric fields under power lines to investigate potential health risks from exposure to EM fields and measurement of fields emanating from the brain for brain diagnostic purposes. Companies that make electric field sensors include Trek (Medina, NY), MKS Instruments, Boltek, Campbell Systems, Mission Instruments, Monroe Electronics, AlphaLab, Inc. and others. In addition to commercial vendors, there are research activities continuing in the MEMS and optical arenas to make compact devices using the principles applied to the larger commercial sensors.

  12. FIELD ANALYTICAL SCREENING PROGRAM: PCP METHOD - INNOVATIVE TECHNOLOGY EVALUATION REPORT

    EPA Science Inventory

    This innovative technology evaluation report (ITER) presents information on the demonstration of the U.S. Environmental Protection Agency (EPA) Region 7 Superfund Field Analytical Screening Program (FASP) method for determining pentachlorophenol (PCP) contamination in soil and wa...

  13. FIELD ANALYTICAL SCREENING PROGRAM PCB METHOD: INNOVATIVE TECHNOLOGY EVALUATION REPORT

    EPA Science Inventory

    This innovative technology evaluation report (ITER) presents information on the demonstration of the U.S. Environmental Protection Agency (EPA) Region 7 Superfund Field Analytical Screening Program (FASP) method for determining polychlorinated biphenyl (PCB) contamination in soil...

  14. FIELD ANALYTICAL SCREENING PROGRAM: PCB METHOD - INNOVATIVE TECHNOLOGY REPORT

    EPA Science Inventory

    This innovative technology evaluation report (ITER) presents information on the demonstration of the U.S. Environmental Protection Agency (EPA) Region 7 Superfund Field Analytical Screening Program (FASP) method for determining polychlorinated biphenyl (PCB) contamination in soil...

  15. POPLITEUS STRAIN WITH CONCURRENT DELTOID LIGAMENT SPRAIN IN AN ELITE SOCCER ATHLETE: A CASE REPORT

    PubMed Central

    Beaumont, Josh; Tarnay, Lorena; Silvers, Holly

    2013-01-01

    Study Design: Case Report (Differential diagnosis) Background and Purpose: Differential diagnosis of knee pathology after trauma may be difficult when diagnosing an isolated popliteus strain and concurrent medial deltoid ligament sprain. Upon a thorough search of the published literature, the authors found no reports delineating a popliteus strain in professional soccer in the United States. The joints most affected by injury in soccer players are the knee and ankle joints. The purpose of this case report is to describe the presentation of and difficulties encountered in diagnosing a popliteus strain in a Major League Soccer athlete. Case Description: During an in-season away game, an outside defender was slide-tackled from behind when his right shank was caught in an externally rotated position underneath himself and the opposing player. The initial point of contact was made to the proximal third of the posterior right shank with an anteromedially directed force. The medial longitudinal arch of the foot was forced into a more midfoot pronated position and the subtalar joint was forced into eversion. Diagnosis: The athlete was diagnosed with a moderate strain of the right popliteus muscle with a concurrent medial deltoid ligament sprain of the right ankle. This mechanism of injury, pain with passive knee flexion and internal rotation during McMurray's test, pain with Garrick's Test and magnetic resonance imaging (MRI) study confirmed the diagnosis. The athlete returned to full ninety-minute game participation after an intensive 15-day rehabilitation program. Discussion: This case is unique because the injury manifested itself at multiple joints and specifically involved the popliteus muscle. The mechanism of injury can be associated with many other soft tissue injuries to the knee, and thus, may not lead the clinician initially to consider the diagnosis of a popliteus strain. Diagnosis of this entity may be difficult due to the possible shared attachment of the

  16. Near-field strain observations of the October 2013 Ruisui, Taiwan, earthquake: source parameters and limits of very short-term strain detection

    NASA Astrophysics Data System (ADS)

    Canitano, Alexandre; Hsu, Ya-Ju; Lee, Hsin-Ming; Linde, Alan T.; Sacks, Selwyn

    2015-08-01

    Volumetric strain changes associated with the October 2013 M w 6.2 Ruisui earthquake were recorded by a network made up with four borehole Sacks-Evertson dilatometers in eastern Taiwan. These instruments are located within 25-30 km of the seismic source providing also high-resolution near-field observations. Co-seismic offsets larger than a few 102 n ɛ were seen by most of the sensors. We relocated the 30 km × 30 km fault plane through a grid-search approach. The inferred fault parameters (217°, 48°, 49°) are in reasonable agreement with those resulting from the inversions of long-period seismic waves (209°, 59°, 50°) as well as from GPS data inversion (200°, 45°, 42°). Moreover, analysis of the 100-Hz sampling data 10 s before seismic radiations indicate no pre-seismic strain change emergent from the instrumental noise level (from 10 -2 to 10 -1 n ɛ). Such an observation sets limits on any precursory change in a nucleation area, taken to have dimensions of about 250-300 m, seconds before the mainshock. Thus, the upper limit of any pre-seismic moment is about 10 -5 % of the total seismic moment of the Ruisui earthquake.

  17. Full-field Strain Methods for Investigating Failure Mechanisms in Triaxial Braided Composites

    NASA Technical Reports Server (NTRS)

    Littell, Justin D.; Binienda, Wieslaw K.; Goldberg, Robert K.; Roberts, Gary D.

    2008-01-01

    Composite materials made with triaxial braid architecture and large tow size carbon fibers are beginning to be used in many applications, including composite aircraft and engine structures. Recent advancements in braiding technology have led to commercially viable manufacturing approaches for making large structures with complex shape. Although the large unit cell size of these materials is an advantage for manufacturing efficiency, the fiber architecture presents some challenges for materials characterization, design, and analysis. In some cases, the static load capability of structures made using these materials has been higher than expected based on material strength properties measured using standard coupon tests. A potential problem with using standard tests methods for these materials is that the unit cell size can be an unacceptably large fraction of the specimen dimensions. More detailed investigation of deformation and failure processes in large unit cell size triaxial braid composites is needed to evaluate the applicability of standard test methods for these materials and to develop alternative testing approaches. In recent years, commercial equipment has become available that enables digital image correlation to be used on a more routine basis for investigation of full field 3D deformation in materials and structures. In this paper, some new techniques that have been developed to investigate local deformation and failure using digital image correlation techniques are presented. The methods were used to measure both local and global strains during standard straight-sided coupon tensile tests on composite materials made with 12 and 24 k yarns and a 0/+60/-60 triaxial braid architecture. Local deformation and failure within fiber bundles was observed, and this local failure had a significant effect on global stiffness and strength. The matrix material had a large effect on local damage initiation for the two matrix materials used in this investigation

  18. X-ray dynamical diffraction from single crystals with arbitrary shape and strain field: A universal approach to modeling

    NASA Astrophysics Data System (ADS)

    Yan, Hanfei; Li, Li

    2014-01-01

    The effects of dynamical diffraction in single crystals engender many unique diffraction phenomena that cannot be interpreted by the kinematical-diffraction theory, yet knowledge of them is vital to resolving a vast variety of scientific problems ranging from crystal optics to strain measurements in crystalline specimens. Although the fundamental dynamical-diffraction theory was established decades ago, modeling it remains a challenge in a general case wherein the crystal has complex boundaries and mixed diffraction geometries (Bragg or Laue). Here, we propose a universal approach for modeling x-ray dynamical diffraction from a single crystal with arbitrary shape and strain field that is based on the integral representation of the Takagi-Taupin equations. Using it, we can construct the solution iteratively via a converging series, independent of the diffraction geometry. Moreover, the integral equations offer additional insights into the diffraction physics that are not readily apparent in its differential counterparts. To demonstrate this approach, we studied the dynamical diffraction from a slab of single crystal with both Bragg and Laue diffraction excited on the entrance boundaries, a problem that is difficult to model by other methods. We also explored the mirage effect caused by the presence of a linear strain field and compared it to the Eikonal theory. Lastly, we derived a dynamical-diffraction equation correlating the structural properties of a particle to its far-field Bragg-diffraction pattern, shedding light on how dynamical diffraction affects these kinematical-diffraction-based inverse techniques for reconstructing the shape and the strain field.

  19. Neural Network Prediction of Failure of Damaged Composite Pressure Vessels from Strain Field Data Acquired by a Computer Vision Method

    NASA Technical Reports Server (NTRS)

    Russell, Samuel S.; Lansing, Matthew D.

    1997-01-01

    This effort used a new and novel method of acquiring strains called Sub-pixel Digital Video Image Correlation (SDVIC) on impact damaged Kevlar/epoxy filament wound pressure vessels during a proof test. To predict the burst pressure, the hoop strain field distribution around the impact location from three vessels was used to train a neural network. The network was then tested on additional pressure vessels. Several variations on the network were tried. The best results were obtained using a single hidden layer. SDVIC is a fill-field non-contact computer vision technique which provides in-plane deformation and strain data over a load differential. This method was used to determine hoop and axial displacements, hoop and axial linear strains, the in-plane shear strains and rotations in the regions surrounding impact sites in filament wound pressure vessels (FWPV) during proof loading by internal pressurization. The relationship between these deformation measurement values and the remaining life of the pressure vessels, however, requires a complex theoretical model or numerical simulation. Both of these techniques are time consuming and complicated. Previous results using neural network methods had been successful in predicting the burst pressure for graphite/epoxy pressure vessels based upon acoustic emission (AE) measurements in similar tests. The neural network associates the character of the AE amplitude distribution, which depends upon the extent of impact damage, with the burst pressure. Similarly, higher amounts of impact damage are theorized to cause a higher amount of strain concentration in the damage effected zone at a given pressure and result in lower burst pressures. This relationship suggests that a neural network might be able to find an empirical relationship between the SDVIC strain field data and the burst pressure, analogous to the AE method, with greater speed and simplicity than theoretical or finite element modeling. The process of testing SDVIC

  20. First report of fluazuron resistance in Rhipicephalus microplus: a field tick population resistant to six classes of acaricides.

    PubMed

    Reck, José; Klafke, Guilherme Marcondes; Webster, Anelise; Dall'Agnol, Bruno; Scheffer, Ramon; Souza, Ugo Araújo; Corassini, Vivian Bamberg; Vargas, Rafael; dos Santos, Julsan Silveira; Martins, João Ricardo de Souza

    2014-03-17

    The control of the cattle tick Rhipicephalus microplus is based mainly on the use of chemical acaricides, which has contributed to the emerging problem of selection of resistant tick populations. Currently, there are six main classes of acaricides commercially available in Brazil to control cattle ticks, with fluazuron, a tick growth regulator with acaricidal properties, being the only active ingredient with no previous reports of resistance. Ticks (designated the Jaguar strain) were collected in a beef cattle ranch located at Rio Grande do Sul state, Southern Brazil, after a complaint of fluazuron treatment failure. To characterise the resistance of this strain against acaricides, larval tests were performed and showed that the Jaguar strain was resistant to all of the drugs tested: cypermethrin (resistance ratio, RR=31.242), chlorpyriphos (RR=103.926), fipronil (RR=4.441), amitraz (RR=11.907) and ivermectin (3.081). A field trial was conducted to evaluate the efficacy of fluazuron treatment in heifers that had been experimentally infested with the Jaguar or a susceptible strain. Between 14 and 28 days after treatment, the average efficacy in cattle experimentally infested with the susceptible strain was 96%, while for the Jaguar strain the efficacy was zero. Additionally, the Jaguar strain response to fluazuron was evaluated in vitro using a modified adult immersion test (AIT) and the artificial feeding assay (AFA). With the AIT, 50 ppm of fluazuron inhibited 99% of larvae hatching in the susceptible strain (POA) and less than 50% in the Jaguar strain. Results of the AFA showed a larval hatching rate of 67% at 2.5 ppm of fluazuron with the Jaguar strain; conversely, only 3% of larvae of the susceptible strain hatched at the same fluazuron concentration. The results showed here demonstrated the first case of fluazuron resistance in R. microplus and the first tick population resistant to six classes of acaricides in Brazil. PMID:24560364

  1. Bovine herpesvirus-1: Genetic diversity of field strains from cattle with respiratory disease, genital, fetal disease and systemic neonatal disease and their relationship to vaccine strains.

    PubMed

    Fulton, R W; d'Offay, J M; Dubovi, E J; Eberle, R

    2016-09-01

    Bovine herpesvirus-1 (BoHV-1) causes disease in cattle with varied clinical forms. In the U.S. there are two BoHV1 subtypes, BoHV-1.1 and BoHV-1.2b. Control programs in North America incorporate modified live (MLV) or killed (KV) viral vaccines. However, BoHV-1 strains continue to be isolated from diseased animals or fetuses after vaccination. It is possible to differentiate BoHV-1 wild-type from MLV vaccine strains by determining their single nucleotide polymorphism (SNP) patterns through either whole-genome sequencing or PCR sequencing of genomic regions containing vaccine-defining SNPs. To determine the BoHV-1 subtype in clinical isolates and their relationship to MLV strains, 8 isolates from varied clinical disease at three different laboratories in the U.S. were sequenced and phylogenetically analyzed. Five samples were isolated within the past 5 years from New York and 3 were archived samples recovered 35 years prior from Oklahoma and Louisiana. Based on phylogenetic analysis, four of the cases appeared to be due to an MLV vaccine: 3 cases of aborted fetuses and one neonate with systemic BoHV-1 disease. One aborted fetus was from a herd with no reported history of MLV vaccination in two years. The remaining four isolates did not group with any MLV vaccines: two were associated with bovine respiratory disease, one with vulvovaginitis, and a fourth was determined to be a BoHV-1.2b respiratory isolate. Recovery of BoHV-1.1 that is very closely related to an MLV vaccine virus from a herd not receiving vaccines in an extended period prior to its isolation suggests that MLV viruses may remain latent or circulate within herds for long periods. PMID:27374060

  2. First report of an OXA-48-producing multidrug-resistant Proteus mirabilis strain from Gaza, Palestine.

    PubMed

    Chen, Liang; Al Laham, Nahed; Chavda, Kalyan D; Mediavilla, Jose R; Jacobs, Michael R; Bonomo, Robert A; Kreiswirth, Barry N

    2015-07-01

    We report the first multidrug-resistant Proteus mirabilis strain producing the carbapenemase OXA-48 (Pm-OXA-48) isolated at Al-Shifa hospital in Gaza, Palestine. Draft genome sequencing of Pm-OXA-48 identified 16 antimicrobial resistance genes, encoding resistance to β-lactams, aminoglycosides, fluoroquinolones, phenicols, streptothricin, tetracycline, and trimethoprim-sulfamethoxazole. Complete sequencing of the bla(OXA-48)-harboring plasmid revealed that it is a 72 kb long IncL/M plasmid, harboring carbapenemase gene bla(OXA-48), extended spectrum β-lactamase gene bla(CTX-M-14), and aminoglycoside resistance genes strA, strB, and aph(3')-VIb. PMID:25896692

  3. Theoretical model of the polarization Coulomb field scattering in strained AlGaN/AlN/GaN heterostructure field-effect transistors

    SciTech Connect

    Luan, Chongbiao; Lin, Zhaojun Zhao, Jingtao; Wang, Yutang; Lv, Yuanjie; Chen, Hong; Wang, Zhanguo

    2014-07-28

    The theoretical model of the polarization Coulomb field scattering (PCF) caused by the polarization charge density variation at the AlGaN/AlN interface in strained AlGaN/AlN/GaN heterostructure field-effect transistors has been developed. And the theoretical values for the electron drift mobility, which were calculated using the Matthiessen's rule that includes PCF, piezoelectric scattering, polar optical-phonon scattering, and interface roughness scattering, are in good agreement with our experimental values. Therefore, the theoretical model for PCF has been confirmed.

  4. Single Nucleotide Polymorphism Genotyping and Distribution of Coxiella burnetii Strains from Field Samples in Belgium

    PubMed Central

    Dal Pozzo, Fabiana; Renaville, Bénédicte; Martinelle, Ludovic; Renaville, Robert; Thys, Christine; Smeets, François; Kirschvink, Nathalie; Grégoire, Fabien; Delooz, Laurent; Czaplicki, Guy

    2015-01-01

    The genotypic characterization of Coxiella burnetii provides useful information about the strains circulating at the farm, region, or country level and may be used to identify the source of infection for animals and humans. The aim of the present study was to investigate the strains of C. burnetii circulating in caprine and bovine Belgian farms using a single nucleotide polymorphism (SNP) technique. Direct genotyping was applied to different samples (bulk tank milk, individual milk, vaginal swab, fetal product, and air sample). Besides the well-known SNP genotypes, unreported ones were found in bovine and caprine samples, increasing the variability of the strains found in the two species in Belgium. Moreover, multiple genotypes were detected contemporarily in caprine farms at different years of sampling and by using different samples. Interestingly, certain SNP genotypes were detected in both bovine and caprine samples, raising the question of interspecies transmission of the pathogen. PMID:26475104

  5. Tensile strained Ge tunnel field-effect transistors: k · p material modeling and numerical device simulation

    SciTech Connect

    Kao, Kuo-Hsing; De Meyer, Kristin; Verhulst, Anne S.; Van de Put, Maarten; Soree, Bart; Magnus, Wim; Vandenberghe, William G.

    2014-01-28

    Group IV based tunnel field-effect transistors generally show lower on-current than III-V based devices because of the weaker phonon-assisted tunneling transitions in the group IV indirect bandgap materials. Direct tunneling in Ge, however, can be enhanced by strain engineering. In this work, we use a 30-band k · p method to calculate the band structure of biaxial tensile strained Ge and then extract the bandgaps and effective masses at Γ and L symmetry points in k-space, from which the parameters for the direct and indirect band-to-band tunneling (BTBT) models are determined. While transitions from the heavy and light hole valence bands to the conduction band edge at the L point are always bridged by phonon scattering, we highlight a new finding that only the light-hole-like valence band is strongly coupling to the conduction band at the Γ point even in the presence of strain based on the 30-band k · p analysis. By utilizing a Technology Computer Aided Design simulator equipped with the calculated band-to-band tunneling BTBT models, the electrical characteristics of tensile strained Ge point and line tunneling devices are self-consistently computed considering multiple dynamic nonlocal tunnel paths. The influence of field-induced quantum confinement on the tunneling onset is included. Our simulation predicts that an on-current up to 160 (260) μA/μm can be achieved along with on/off ratio > 10{sup 6} for V{sub DD} = 0.5 V by the n-type (p-type) line tunneling device made of 2.5% biaxial tensile strained Ge.

  6. Microhardness, strength and strain field characterization of self-reacting friction stir and plug welds of dissimilar aluminum alloys

    NASA Astrophysics Data System (ADS)

    Horton, Karla Renee

    Friction stir welding (FSW) is a solid state welding process with potential advantages for aerospace and automotive industries dealing with light alloys. Self-reacting friction stir welding (SR-FSW) is one variation of the FSW process being developed at the National Aeronautics and Space Administration (NASA) for use in the fabrication of propellant tanks. Friction plug welding is used to seal the exit hole that remains in a circumferential SR-FSW. This work reports on material properties and strain patterns developed in a SR-FSW with a friction plug weld. Specifically, this study examines the behavior of a SR-FSW formed between an AA2014-T6 plate on the advancing side and an AA2219-T87 plate on the retreating side and a SR-FSW (AA2014-T6 to AA2219-T87) with a 2219-T87 plug weld. This study presents the results of a characterization of the micro-hardness, joint strength, and strain field characterization of SR-FSW and FPW joints tested at room temperature and cryogenic temperatures. The initial weld microstructure analysis showed a nugget region with fine grains and a displaced weld seam from the advancing side past the thermo-mechanical affected zone (TMAZ) into the nugget region. The displaced material shared the same hardness as the parent material. Dynamic recrystallization was observed in the SR-FSW zone and the displaced weld seam region. The welds revealed a fine grain structure in the SR-FSW zone with a sharp demarcation seen on the advancing side and fairly diffuse flow observed on the retreating side. The parent material hardness is 145 HV700g with a drop in hardness starting at the HAZ to 130 HV700g. The hardness further drops in the TMAZ to118 HV700g with an increase representing a dispersed interface of AA2014-T6 material to 135 HV700g. The hardness then drops significantly within the nugget region to 85 HV700g followed by an increase through the retreating side TMAZ into the HAZ to 135 HV 700g. There was a sharp increase in the hardness value within

  7. Intragranular strain field in columnar ice during elasto-viscoplatic transient creep regime, and relation with the local microstructure

    NASA Astrophysics Data System (ADS)

    Grennerat, F.; Montagnat, M.; Duval, P.; Vacher, P.; Castelnau, O.

    2009-12-01

    The viscoplastic behaviour of polycrystalline ice is strongly affected by the very strong anisotropy of ice crystals. Indeed, in the dislocations creep regime relevant e.g. for ice sheet flow, dislocation glide on the basal plane of ice single crystals leads to strain-rates ˜6 order of magnitude larger than strain-rates that might be obtain if only non-basal glide is activated. At the polycrystal scale, this behaviour is responsible for a strong mechanical interaction between grains in the secondary (stationary) creep regime, and strain-rate is essentially partitioned between soft grains well-oriented for basal glide and hard grains exhibiting an unfavourable orientation for basal slip. As a consequence, the macroscopic flow stress at the polycrystal scale essentially depends on the resistance of the hardest slip systems or on the associated accommodation processes such as climb of basal dislocation on non-basal planes. One therefore expects very strong strain localization in polycrystalline ice in this viscoplastic regime. On the other hand, during transient effects, elasticity comes in plays. But since elasticity of ice single crystal is almost isotropic, very different strain localizations are expected in purely elastic and purely viscoplastic deformation regimes. Consequently, strain-rate decreases by several orders of magnitude during the transient creep of polycrystalline ice. This effect is associated to stress redistribution between hard and soft grains, and is probably of great importance e.g. to understand transient regimes such as tide effects on ice shelves or on icy planets. It can be described by the coupling between elastic and viscoplastic responses, and the associated long-term memory effect. In view of a better understanding of such effects, and development of adapted micromechanical models, we are engaged in the measurement of intragranular strain field and field heterogeneities is columnar ices deformed under loading involving stress increments

  8. Faulting of rocks in three-dimensional strain fields I. Failure of rocks in polyaxial, servo-control experiments

    USGS Publications Warehouse

    Reches, Z.; Dieterich, J.H.

    1983-01-01

    The dependence of the number of sets of faults and their orientation on the intermediate strain axis is investigated through polyaxial tests, reported here, and theoretical analysis, reported in an accompanying paper. In the experiments, cubic samples of Berea sandstone, Sierra-White and Westerly granites, and Candoro and Solnhofen limestones were loaded on their three pairs of faces by three independent, mutually perpendicular presses at room temperature. Two of the presses were servo-controlled and applied constant displacement rates throughout the experiment. Most samples display three or four sets of faults in orthorhombic symmetry. These faults form in several yielding events that follow a stage of elastic deformation. In many experiments, the maximum and the intermediate compressive stresses interchange orientations during the yielding events, where the corresponding strains are constant. The final stage of most experiments is characterized by slip along the faults. ?? 1983.

  9. Characterization of a Hemolysin-like Activity of Ornithobacterium Rhinotracheale Field Strains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Seasonal Ornithobacterium rhinotracheale (ORT) infection of chickens and turkeys causes significant losses to the poultry industry. Little information is available in the literature on the virulence factors of ORT. This study describes a hemolysin-like activity of ORT strains, as observed on sheep b...

  10. Different quasispecies with great mutations hide in the same subgroup J field strain of avian leukosis virus.

    PubMed

    Mao, Yaqing; Li, Weihua; Dong, Xuan; Liu, Jinhua; Zhao, Peng

    2013-05-01

    Blood samples were collected from a local strain of chickens associated with serious tumor cases in Shandong Province. The samples were inoculated into chicken embryo fibroblast and DF-1 cells for virus isolation and identification, respectively. The inoculated cells were screened for three common chicken tumor viruses. Nine strains of avian leukosis virus subgroup J (ALV-J) were identified, and were designated LY1201-LY1209. The env gene from the LY1201 strain was amplified and cloned. All nine resultant env clones (clones 01-09) were sequenced, and the gp85 and gp37 amino acid regions were subjected to homology analysis. Clones 01 and 03 had 10 amino acid deletions in the gp85 region compared to the other seven clones, suggesting that at least two quasispecies with obvious mutations coexist in the same field strain. Among these nine clones, three had identical gp85 and gp37 sequences, and were recognized as the dominant LY1201 quasispecies. The amino acid sequence homology of gp37 and gp85 among the nine clones was 98.5%-100.0% and 96.6%-100.0% respectively, suggesting that the gp85 region of the env gene can better display the quasispecies diversity of ALV-J than gp37. PMID:23633073

  11. Biosynthesis of compatible solutes in rhizobial strains isolated from Phaseolus vulgaris nodules in Tunisian fields

    PubMed Central

    2010-01-01

    Background Associated with appropriate crop and soil management, inoculation of legumes with microbial biofertilizers can improve food legume yield and soil fertility and reduce pollution by inorganic fertilizers. Rhizospheric bacteria are subjected to osmotic stress imposed by drought and/or NaCl, two abiotic constraints frequently found in semi-arid lands. Osmostress response in bacteria involves the accumulation of small organic compounds called compatible solutes. Whereas most studies on rhizobial osmoadaptation have focussed on the model species Sinorhizobium meliloti, little is known on the osmoadaptive mechanisms used by native rhizobia, which are good sources of inoculants. In this work, we investigated the synthesis and accumulations of compatible solutes by four rhizobial strains isolated from root nodules of Phaseolus vulgaris in Tunisia, as well as by the reference strain Rhizobium tropici CIAT 899T. Results The most NaCl-tolerant strain was A. tumefaciens 10c2, followed (in decreasing order) by R. tropici CIAT 899, R. leguminosarum bv. phaseoli 31c3, R. etli 12a3 and R. gallicum bv. phaseoli 8a3. 13C- and 1H-NMR analyses showed that all Rhizobium strains synthesized trehalose whereas A. tumefaciens 10c2 synthesized mannosucrose. Glutamate synthesis was also observed in R. tropici CIAT 899, R. leguminosarum bv. phaseoli 31c3 and A. tumefaciens 10c2. When added as a carbon source, mannitol was also accumulated by all strains. Accumulation of trehalose in R. tropici CIAT 899 and of mannosucrose in A. tumefaciens 10c2 was osmoregulated, suggesting their involvement in osmotolerance. The phylogenetic analysis of the otsA gene, encoding the trehalose-6-phosphate synthase, suggested the existence of lateral transfer events. In vivo 13C labeling experiments together with genomic analysis led us to propose the uptake and conversion pathways of different carbon sources into trehalose. Collaterally, the β-1,2-cyclic glucan from R. tropici CIAT 899 was co

  12. Field application of polymerase chain reaction diagnosis and strain typing of Trypanosoma cruzi in Bolivian triatomines.

    PubMed

    Breniere, S F; Bosseno, M F; Telleria, J; Carrasco, R; Vargas, F; Yaksic, N; Noireau, F

    1995-08-01

    A new approach for direct identification and characterization of Trypanosoma cruzi stocks in biological samples was tested for field applicability on an extensive sample of feces collected from triatomine vectors from four different species found in Bolivia. The first step of the technique is polymerase chain reaction (PCR) amplification of the hypervariable region of kinetoplast DNA minicircles of T. cruzi parasites. In this report, 345 fecal samples were analyzed and the PCR results were compared with microscopic examination. For Triatoma infestans, the principal Bolivian vector, both techniques were in concordance 85.3% of the time. For the three other species, Rhodnius pictipes, Eratyrus mucronatus, and Triatoma sordida, the fecal samples were all negative by microscopic examination whereas PCR results showed several T. cruzi-infected insects in each species. The second step of the procedure is the characterization of the T. cruzi clones by means of hybridization of the PCR products with clone-specific probes generated by the PCR. We used two probes corresponding to major clones circulating in high frequency in Bolivia (as shown by previous population genetic studies using isoenzyme characterization). We obtained four primary results: 1) we confirm the importance of two major clones in Bolivia in two distinct regions; 2) we report high rates of mixed infections (multiple clones in a single vector) in Triatoma infestans, up to 22% and 35% in Cochabamba and La Paz departments, respectively; 3) the results favor the absence of interaction between different clones; and 4) we find, for the first time, evidence of the major clones circulating in three species of triatomines that are known as mainly sylvatic species.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7677221

  13. A Novel Reporter Rat Strain That Conditionally Expresses the Bright Red Fluorescent Protein tdTomato

    PubMed Central

    Igarashi, Hiroyuki; Koizumi, Kyo; Kaneko, Ryosuke; Ikeda, Keiko; Egawa, Ryo; Yanagawa, Yuchio; Muramatsu, Shin-ichi; Onimaru, Hiroshi; Ishizuka, Toru; Yawo, Hiromu

    2016-01-01

    Despite the strength of the Cre/loxP recombination system in animal models, its application in rats trails that in mice because of the lack of relevant reporter strains. Here, we generated a floxed STOP tdTomato rat that conditionally expresses a red fluorescent protein variant (tdTomato) in the presence of exogenous Cre recombinase. The tdTomato signal vividly visualizes neurons including their projection fibers and spines without any histological enhancement. In addition, a transgenic rat line (FLAME) that ubiquitously expresses tdTomato was successfully established by injecting intracytoplasmic Cre mRNA into fertilized ova. Our rat reporter system will facilitate connectome studies as well as the visualization of the fine structures of genetically identified cells for long periods both in vivo and ex vivo. Furthermore, FLAME is an ideal model for organ transplantation research owing to improved traceability of cells/tissues. PMID:27195805

  14. A Novel Reporter Rat Strain That Conditionally Expresses the Bright Red Fluorescent Protein tdTomato.

    PubMed

    Igarashi, Hiroyuki; Koizumi, Kyo; Kaneko, Ryosuke; Ikeda, Keiko; Egawa, Ryo; Yanagawa, Yuchio; Muramatsu, Shin-Ichi; Onimaru, Hiroshi; Ishizuka, Toru; Yawo, Hiromu

    2016-01-01

    Despite the strength of the Cre/loxP recombination system in animal models, its application in rats trails that in mice because of the lack of relevant reporter strains. Here, we generated a floxed STOP tdTomato rat that conditionally expresses a red fluorescent protein variant (tdTomato) in the presence of exogenous Cre recombinase. The tdTomato signal vividly visualizes neurons including their projection fibers and spines without any histological enhancement. In addition, a transgenic rat line (FLAME) that ubiquitously expresses tdTomato was successfully established by injecting intracytoplasmic Cre mRNA into fertilized ova. Our rat reporter system will facilitate connectome studies as well as the visualization of the fine structures of genetically identified cells for long periods both in vivo and ex vivo. Furthermore, FLAME is an ideal model for organ transplantation research owing to improved traceability of cells/tissues. PMID:27195805

  15. A strain or electric field induced direct bandgap in ultrathin silicon film and its application in photovoltaics or photocatalysis.

    PubMed

    Cao, Tengfei; Wang, Da; Geng, Dong-Sheng; Liu, Li-Min; Zhao, Jijun

    2016-03-01

    The indirect bandgap character of silicon greatly limits its applications in electronic or optoelectronic devices, and direct bandgaps are highly desirable in all silicon allotropes. The successful synthesis of ultrathin or even monolayer silicon films experimentally has opened new opportunities to further modulate the electronic structure of silicon through external modulation. In this work, strain or electric field effects on the electronic structure of ultrathin silicon film (USF) are systematically explored. The results demonstrate that all USFs are indirect band-gap semiconductors; interestingly, tensile strain or electric field efficiently tunes the USFs into direct band gap semiconductors. The indirect to direct band gap transition in the USFs not only extends their light adsorption spectra into the visible light region but also greatly enhances the adsorption intensity. Because of this, strained USFs have great potential to be used as a high-performance photovoltaic material. Furthermore, the high stability, moderate band-gap and proper band edge positions demonstrate that monolayer and bilayer USFs can also be used as photocatalysts for water splitting. PMID:26888664

  16. Misfit strain-temperature phase diagrams and domain stability of asymmetric ferroelectric capacitors: Thermodynamic calculation and phase-field simulation

    SciTech Connect

    Chen, W. J.; Zheng, Yue Wu, C. M.; Wang, B. Ma, D. C.

    2014-03-07

    Thermodynamic calculation and phase-field simulation have been conducted to investigate the misfit strain-temperature phase diagrams, dielectric property, and domain stability of asymmetric ferroelectric capacitors (FCs), with considering the effects of dissimilar screening properties and work function steps at the two interfaces. The distinct features of asymmetric FCs from their symmetric counterparts have been revealed and discussed. Polar states with nonzero out-of-plane polarization in parallel with the built-in field are found preferential to form in asymmetric FCs. Meanwhile, the built-in field breaks the degeneracy of states with out-of-plane polarization in anti-directions. This leads to the necessity of redefining phases according to the bistability of out-of-plane polarization. Moreover, the phase stability as well as the dielectric behavior can be significantly controlled by the properties of electrodes, misfit strain, and temperature. The phase-field simulation result also shows that polydomain instability would happen in asymmetric FCs as the equivalence of domain stability in anti-directions is destroyed.

  17. Effect of uniaxial strain on electrical properties of CNT-based junctionless field-effect transistor: Numerical study

    NASA Astrophysics Data System (ADS)

    Pourian, Parisa; Yousefi, Reza; Ghoreishi, Seyed Saleh

    2016-05-01

    Numerical studies on junctionless carbon nanotube field-effect transistors (JL-CNTFETs) have indicated that these devices produce more ON current than silicon junctionless transistors in comparable dimensions. Nevertheless, due to the smaller bandgap and quantum confinement effects, they provide weaker results in the OFF state. Since the change of energy bandgap is one of the effects of applying uniaxial strain on CNTs, in this paper, using non-equilibrium Green's function method (NEGF), the effects of applying strain on electrical characteristics of JL-CNTFETs, such as ION and IOFF, intrinsic delay, ION/IOFF ratio, power-delay product, unity-gain frequency, gate transconductance, and output resistance are investigated. The simulation results show that uniaxial stain, significantly alters the OFF state behavior and as a result the electrical properties of the device.

  18. Effects of strain, electric field and correlations on the resistance noise in epitaxial NdNiO3 films

    NASA Astrophysics Data System (ADS)

    Sambandamurthy, G.; Alsaqqa, Ali; Singh, Sujay; Middey, Srimanta; Kareev, Michael; Chakhalian, Jak

    Rare earth nickelates are strongly correlated materials that exhibit metal-insulator and Neel transitions as a function of temperature. The nature of the transport mechanisms in individual phases (paramagnetic metal, paramagnetic insulator and antiferromagnetic insulator) is an active area of research. We use low frequency (1 mHz < f < 10 Hz) resistance noise spectroscopy to probe the phases and the transitions between them in ultrathin epitaxial films of NdNiO3 grown on substrates that introduce different strains. While the transport behavior and the transition temperatures are greatly affected by the strain, the noise behavior across the transitions is found to be similar. In the low temperature antiferromagnetic phase, an intriguing switching between two distinct grounds states is observed pointing to a subtle competition in the energy landscape. The noise magnitude as a function of electric field in submicron devices will also be presented. This work is supported by NSF DMR 0847324.

  19. Mapping the evolving strain field during continental breakup from crustal anisotropy in the Afar Depression.

    PubMed

    Keir, Derek; Belachew, M; Ebinger, C J; Kendall, J-M; Hammond, J O S; Stuart, G W; Ayele, A; Rowland, J V

    2011-01-01

    Rifting of the continents leading to plate rupture occurs by a combination of mechanical deformation and magma intrusion, yet the spatial and temporal scales over which these alternate mechanisms localize extensional strain remain controversial. Here we quantify anisotropy of the upper crust across the volcanically active Afar Triple Junction using shear-wave splitting from local earthquakes to evaluate the distribution and orientation of strain in a region of continental breakup. The pattern of S-wave splitting in Afar is best explained by anisotropy from deformation-related structures, with the dramatic change in splitting parameters into the rift axis from the increased density of dyke-induced faulting combined with a contribution from oriented melt pockets near volcanic centres. The lack of rift-perpendicular anisotropy in the lithosphere, and corroborating geoscientific evidence of extension dominated by dyking, provide strong evidence that magma intrusion achieves the majority of plate opening in this zone of incipient plate rupture. PMID:21505441

  20. Mapping the evolving strain field during continental breakup from crustal anisotropy in the Afar Depression

    PubMed Central

    Keir, Derek; Belachew, M.; Ebinger, C.J.; Kendall, J.-M.; Hammond, J.O.S.; Stuart, G.W.; Ayele, A.; Rowland, J.V.

    2011-01-01

    Rifting of the continents leading to plate rupture occurs by a combination of mechanical deformation and magma intrusion, yet the spatial and temporal scales over which these alternate mechanisms localize extensional strain remain controversial. Here we quantify anisotropy of the upper crust across the volcanically active Afar Triple Junction using shear-wave splitting from local earthquakes to evaluate the distribution and orientation of strain in a region of continental breakup. The pattern of S-wave splitting in Afar is best explained by anisotropy from deformation-related structures, with the dramatic change in splitting parameters into the rift axis from the increased density of dyke-induced faulting combined with a contribution from oriented melt pockets near volcanic centres. The lack of rift-perpendicular anisotropy in the lithosphere, and corroborating geoscientific evidence of extension dominated by dyking, provide strong evidence that magma intrusion achieves the majority of plate opening in this zone of incipient plate rupture. PMID:21505441

  1. Effects of local field and inherent strain in reflectance anisotropy spectra of AIIIBV semiconductors with naturally oxidized surfaces

    NASA Astrophysics Data System (ADS)

    Berkovits, V. L.; Kosobukin, V. A.; Gordeeva, A. B.

    2015-12-01

    Reflectance anisotropy (RA) spectra of naturally oxidized (001) surfaces of GaAs and InAs crystals are measured for photon energies from 1.5 up to 5.5 eV. The differential high-accuracy RA spectra reveal features substantially different from those caused by either a reconstruction of clean surface or a built-in near-surface electric field. Models of atomic structure with anisotropic transition layers of excess arsenic atoms specific for GaAs(001)/oxide and InAs(001)/oxide interfaces are proposed. In conformity with these models, a general theory of reflectance anisotropy is developed for semiconductor/oxide interfaces within the Green's function technique. The theory takes into account the combined effect of local field due to interface dipoles and of intrinsic near-surface strain of the crystal. Measured RA spectra are analyzed in the model of valence-bond dipoles occupying a rectangular lattice in a multilayer medium. Comparing the measured and calculated spectra, we conclude that RA spectra of oxidized GaAs(001) and InAs(001) surfaces are simultaneously influenced by interface and near-surface anisotropies. The former is responsible for the broad-band spectral features which are associated with polarizability of the valence bonds attached to As atoms at the crystal/oxide interface. The near-surface anisotropy is due to inherent uniaxial straining the near-surface region of crystal. The effect of strain on RA spectra is experimentally and theoretically substantiated for GaAs crystal wafers undergone a uniaxial applied stress. Basically, this work results in the following. It establishes the physical nature of different levels of RA spectra observed in a majority of papers, but never analyzed. It demonstrates how the studied features of RA spectra could be applied for optical characterization of strained interfaces and atomic layers.

  2. Laboratory and field evaluation of entomopathogenic fungi for the control of amitraz-resistant and susceptible strains of Rhipicephalus decoloratus.

    PubMed

    Murigu, Mercy M; Nana, Paulin; Waruiru, Robert M; Nga'nga', Chege J; Ekesi, Sunday; Maniania, Nguya K

    2016-07-30

    Rhipicephalus decoloratus causes serious economic losses in cattle industry every year in East Africa. Biological control using entomopathogenic fungi is seen as a promising alternative to chemical acaricides being used for their control. The pathogenicity of Metarhizium anisopliae and of Beauveria bassiana isolates was tested in the laboratory against amitraz-resistant and amitraz-susceptible strains of R. decoloratus. Unfed larvae were sprayed with conidial suspensions of 1×10(9) conidia ml(-1). Fungal isolates were pathogenic to R. decoloratus larvae, causing mortality of between 10.0 and 100% and between 12.1 and 100% of amitraz-susceptible and amitraz-resistant strains, respectively. The LT50 values of selected fungal isolates varied between 2.6-4.2days in amitraz-susceptible strain and between 2.8-3.9days in amitraz-resistant strain. The LC50 values varied between 0.4±0.1 and 200.0±60×10(3) conidia ml(-1) and between 0.1±0.1 and 200.0±31.0×10(3) conidia ml(-1) in amitraz-susceptible and amitraz-resistant strains, respectively. Metarhizium anisopliae isolate ICIPE 7 outperformed the other isolates and was selected for compatibility study with amitraz and field trial. ICIPE 7 was compatible with amitraz. In the field, four treatments including control, ICIPE 7 alone, amitraz alone and ICIPE 7/amitraz were applied on cattle. All the treatments significantly reduced the number of ticks on all the sampling dates: day 7 (F3,8=3.917; P=0.0284), day 14 (F3,8=9.090; P=0.0275), day 21 (F3,8=37.971; P=0.0001) and day 28 (F3,8=8.170; P=0.0016) compared to the control. Results of the present study indicate that ICIPE 7 can be used for the management of amitraz-resistant strain of R. decoloratus. PMID:27369570

  3. Measurement and modeling of strain fields in zirconium hydrides precipitated at a stress concentration

    SciTech Connect

    Allen, Gregory B.; Kerr, Matthew; Daymond, Mark R.

    2012-10-23

    Hydrogen adsorption into zirconium, as a result of corrosion in aqueous environments, leads to the precipitation of a secondary brittle hydride phase. These hydrides tend to first form at stress concentrations such as fretting flaws or cracks in engineering components, potentially degrading the structural integrity of the component. One mechanism for component failure is a slow crack growth mechanism known as Delayed Hydride Cracking (DHC), where hydride fracture occurs followed by crack arrest in the ductile zirconium matrix. The current work employs both an experimental and a modeling approach to better characterize the effects and behavior of hydride precipitation at such stress concentrations. Strains around stress concentrations containing hydrides were mapped using High Energy X-ray Diffraction (HEXRD). These studies highlighted important differences in the behavior of the hydride phase and the surrounding zirconium matrix, as well as the strain associated with the precipitation of the hydride. A finite element model was also developed and compared to the X-ray strain mapping results. This model provided greater insight into details that could not be obtained directly from the experimental approaches, as well as providing a framework for future modeling to predict the effects of hydride precipitation under varied conditions.

  4. Band structure engineering via piezoelectric fields in strained anisotropic CdSe/CdS nanocrystals

    PubMed Central

    Christodoulou, Sotirios; Rajadell, Fernando; Casu, Alberto; Vaccaro, Gianfranco; Grim, Joel Q.; Genovese, Alessandro; Manna, Liberato; Climente, Juan I.; Meinardi, Francesco; Rainò, Gabriele; Stöferle, Thilo; Mahrt, Rainer F.; Planelles, Josep; Brovelli, Sergio; Moreels, Iwan

    2015-01-01

    Strain in colloidal heteronanocrystals with non-centrosymmetric lattices presents a unique opportunity for controlling optoelectronic properties and adds a new degree of freedom to existing wavefunction engineering and doping paradigms. We synthesized wurtzite CdSe nanorods embedded in a thick CdS shell, hereby exploiting the large lattice mismatch between the two domains to generate a compressive strain of the CdSe core and a strong piezoelectric potential along its c-axis. Efficient charge separation results in an indirect ground-state transition with a lifetime of several microseconds, almost one order of magnitude longer than any other CdSe/CdS nanocrystal. Higher excited states recombine radiatively in the nanosecond time range, due to increasingly overlapping excited-state orbitals. k̇p calculations confirm the importance of the anisotropic shape and crystal structure in the buildup of the piezoelectric potential. Strain engineering thus presents an efficient approach to highly tunable single- and multiexciton interactions, driven by a dedicated core/shell nanocrystal design. PMID:26219691

  5. A sample cell for in situ electric-field-dependent structural characterization and macroscopic strain measurements.

    PubMed

    Hossain, Mohammad J; Wang, Lijun; Wang, Zhiyang; Khansur, Neamul H; Hinterstein, Manuel; Kimpton, Justin A; Daniels, John E

    2016-05-01

    When studying electro-mechanical materials, observing the structural changes during the actuation process is necessary for gaining a complete picture of the structure-property relationship as certain mechanisms may be meta-stable during actuation. In situ diffraction methods offer a powerful and direct means of quantifying the structural contributions to the macroscopic strain of these materials. Here, a sample cell is demonstrated capable of measuring the structural variations of electro-mechanical materials under applied electric potentials up to 10 kV. The cell is designed for use with X-ray scattering techniques in reflection geometry, while simultaneously collecting macroscopic strain data using a linear displacement sensor. The results show that the macroscopic strain measured using the cell can be directly correlated with the microscopic response of the material obtained from diffraction data. The capabilities of the cell have been successfully demonstrated at the Powder Diffraction beamline of the Australian Synchrotron and the potential implementation of this cell with laboratory X-ray diffraction instrumentation is also discussed. PMID:27140148

  6. Bsn-t Alleles from French Field Strains of Agaricus bisporus

    PubMed Central

    Callac, Philippe; Hocquart, Sophie; Imbernon, Micheline; Desmerger, Christophe; Olivier, Jean-Marc

    1998-01-01

    In the Agaricus bisporus desert population in California, the dominant Bsn-t allele determines the production of tetrasporic basidia and homokaryotic spores (n) that characterize a heterothallic life cycle. Strains belonging to a French population have the Bsn-b/b genotype that results in bisporic basidia that produce heterokaryotic spores (n + n) which characterize a pseudohomothallic life cycle. More recombination occurs in the tetrasporic population than in the bisporic population. In France, tetrasporic strains are rare. For two such isolates, Bs 261 and Bs 423, we determined the life cycle, the heritability of the tetrasporic trait, the amount of variation in the recombination rate, and the haploid fruiting ability. We found that (i) Bs 261 was heterothallic, (ii) Bs 423 was homokaryotic and homothallic, (iii) Bs 261 was Bsn-t/b, (iv) recombination on a segment of chromosome I depended on the genotype at BSN, (v) some of the homokaryotic offspring of Bs 261 and all of the progeny of Bs 423 were able to fruit, (vi) Bs 261 and Bs 423 were closely related, and (vii) Bs 423 was partially intersterile with other strains of the species. PMID:9603821

  7. Measurement and modeling of strain fields in zirconium hydrides precipitated at a stress concentration

    NASA Astrophysics Data System (ADS)

    Allen, Gregory B.; Kerr, Matthew; Daymond, Mark R.

    2012-11-01

    Hydrogen adsorption into zirconium, as a result of corrosion in aqueous environments, leads to the precipitation of a secondary brittle hydride phase. These hydrides tend to first form at stress concentrations such as fretting flaws or cracks in engineering components, potentially degrading the structural integrity of the component. One mechanism for component failure is a slow crack growth mechanism known as Delayed Hydride Cracking (DHC), where hydride fracture occurs followed by crack arrest in the ductile zirconium matrix. The current work employs both an experimental and a modeling approach to better characterize the effects and behavior of hydride precipitation at such stress concentrations. Strains around stress concentrations containing hydrides were mapped using High Energy X-ray Diffraction (HEXRD). These studies highlighted important differences in the behavior of the hydride phase and the surrounding zirconium matrix, as well as the strain associated with the precipitation of the hydride. A finite element model was also developed and compared to the X-ray strain mapping results. This model provided greater insight into details that could not be obtained directly from the experimental approaches, as well as providing a framework for future modeling to predict the effects of hydride precipitation under varied conditions.

  8. Exposure to static magnetic field stimulates quorum sensing circuit in luminescent Vibrio strains of the Harveyi clade.

    PubMed

    Talà, Adelfia; Delle Side, Domenico; Buccolieri, Giovanni; Tredici, Salvatore Maurizio; Velardi, Luciano; Paladini, Fabio; De Stefano, Mario; Nassisi, Vincenzo; Alifano, Pietro

    2014-01-01

    In this study, the evidence of electron-dense magnetic inclusions with polyhedral shape in the cytoplasm of Harveyi clade Vibrio strain PS1, a bioluminescent bacterium living in symbiosis with marine organisms, led us to investigate the behavior of this bacterium under exposure to static magnetic fields ranging between 20 and 2000 Gauss. When compared to sham-exposed, the light emission of magnetic field-exposed bacteria growing on solid medium at 18°C ±0.1°C was increased up to two-fold as a function of dose and growth phase. Stimulation of bioluminescence by magnetic field was more pronounced during the post-exponential growth and stationary phase, and was lost when bacteria were grown in the presence of the iron chelator deferoxamine, which caused disassembly of the magnetic inclusions suggesting their involvement in magnetic response. As in luminescent Vibrio spp. bioluminescence is regulated by quorum sensing, possible effects of magnetic field exposure on quorum sensing were investigated. Measurement of mRNA levels by reverse transcriptase real time-PCR demonstrated that luxR regulatory gene and luxCDABE operon coding for luciferase and fatty acid reductase complex were significantly up-regulated in magnetic field-exposed bacteria. In contrast, genes coding for a type III secretion system, whose expression was negatively affected by LuxR, were down-regulated. Up-regulation of luxR paralleled with down-regulation of small RNAs that mediate destabilization of luxR mRNA in quorum sensing signaling pathways. The results of experiments with the well-studied Vibrio campbellii strain BB120 (originally classified as Vibrio harveyi) and derivative mutants unable to synthesize autoinducers suggest that the effects of magnetic fields on quorum sensing may be mediated by AI-2, the interspecies quorum sensing signal molecule. PMID:24960170

  9. Exposure to Static Magnetic Field Stimulates Quorum Sensing Circuit in Luminescent Vibrio Strains of the Harveyi Clade

    PubMed Central

    Talà, Adelfia; Delle Side, Domenico; Buccolieri, Giovanni; Tredici, Salvatore Maurizio; Velardi, Luciano; Paladini, Fabio; De Stefano, Mario; Nassisi, Vincenzo; Alifano, Pietro

    2014-01-01

    In this study, the evidence of electron-dense magnetic inclusions with polyhedral shape in the cytoplasm of Harveyi clade Vibrio strain PS1, a bioluminescent bacterium living in symbiosis with marine organisms, led us to investigate the behavior of this bacterium under exposure to static magnetic fields ranging between 20 and 2000 Gauss. When compared to sham-exposed, the light emission of magnetic field-exposed bacteria growing on solid medium at 18°C ±0.1°C was increased up to two-fold as a function of dose and growth phase. Stimulation of bioluminescence by magnetic field was more pronounced during the post-exponential growth and stationary phase, and was lost when bacteria were grown in the presence of the iron chelator deferoxamine, which caused disassembly of the magnetic inclusions suggesting their involvement in magnetic response. As in luminescent Vibrio spp. bioluminescence is regulated by quorum sensing, possible effects of magnetic field exposure on quorum sensing were investigated. Measurement of mRNA levels by reverse transcriptase real time-PCR demonstrated that luxR regulatory gene and luxCDABE operon coding for luciferase and fatty acid reductase complex were significantly up-regulated in magnetic field-exposed bacteria. In contrast, genes coding for a type III secretion system, whose expression was negatively affected by LuxR, were down-regulated. Up-regulation of luxR paralleled with down-regulation of small RNAs that mediate destabilization of luxR mRNA in quorum sensing signaling pathways. The results of experiments with the well-studied Vibrio campbellii strain BB120 (originally classified as Vibrio harveyi) and derivative mutants unable to synthesize autoinducers suggest that the effects of magnetic fields on quorum sensing may be mediated by AI-2, the interspecies quorum sensing signal molecule. PMID:24960170

  10. Aspergillus flavus genetic diversity of corn fields treated with non-toxigenic strain afla-guard in the southern U.S

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aspergillus flavus genetic diversity of corn fields treated with the non-toxigenic strain Afla-Guard (NRRL 21882) was determined for 384 A. flavus isolates from 14 locations within 6 states in the southern U.S. ELISA test has determined low levels of toxigenic strains (only 91 positive). Nearly hal...

  11. Molecular typing of Iranian field isolates Mycoplasma synoviae and their differentiation from the live commercial vaccine strain MS-H using vlhA gene.

    PubMed

    Bayatzadeh, Mohammad Ali; Pourbakhsh, Seyed Ali; Ashtari, Abass; Abtin, Ali Reza; Abdoshah, Mohammad

    2014-01-01

    1. The single-copy domain of the N-terminal region of the vlhA gene of Mycoplasma synoviae was sequenced, analysed and verified and used to type Iranian field isolates of M. synoviae and the MS-H live vaccine strain. In addition, a restriction fragment length polymorphism (RFLP) method was developed to differentiate between field isolates of Iranian and MS-H vaccine strains. 2. All sequences were analysed and aligned; the percentage similarity of the DNA was calculated and dendrograms were constructed. Based on single nucleotide polymorphism (SNP) that existed in all field isolates in Iran, the PCR-RFLP method allowed the differentiation of all M. synoviae field isolates from the vaccine strain. 3. Using phylogenetic analysis, the isolates were assigned to 8 unique genotypes and, within each group, DNA had a high level of similarity. 4. DNA sequence analysis and PCR-RFLP of the amplicon based on percent similarity and evolutionary relationship appeared to be useful tools for strain differentiation whether M. synoviae clinical isolates from infected chickens were derived from the vaccine strain or wild-type strains. 5. This study confirms the potential value of strain typing for epidemiological purposes and suggests that phylogenetic studies are essential to understand the true relationships between strains. PMID:24405029

  12. Strain Field in Ultrasmall Gold Nanoparticles Supported on Cerium-Based Mixed Oxides. Key Influence of the Support Redox State.

    PubMed

    López-Haro, Miguel; Yoshida, Kenta; Del Río, Eloy; Pérez-Omil, José A; Boyes, Edward D; Trasobares, Susana; Zuo, Jian-Min; Gai, Pratibha L; Calvino, José J

    2016-05-01

    Using a method that combines experimental and simulated Aberration-Corrected High Resolution Electron Microscopy images with digital image processing and structure modeling, strain distribution maps within gold nanoparticles relevant to real powder type catalysts, i.e., smaller than 3 nm, and supported on a ceria-based mixed oxide have been determined. The influence of the reduction state of the support and particle size has been examined. In this respect, it has been proven that reduction even at low temperatures induces a much larger compressive strain on the first {111} planes at the interface. This increase in compression fully explains, in accordance with previous DFT calculations, the loss of CO adsorption capacity of the interface area previously reported for Au supported on ceria-based oxides. PMID:27058299

  13. Magnetic field induced third order susceptibility of third order harmonic generation in a ZnMgSe strained quantum well

    SciTech Connect

    Mark, J. Abraham Hudson Peter, A. John

    2014-04-24

    Third order susceptibility of third order harmonic generation is investigated in a Zn{sub 0.1}Mg{sub 0.9}Se/Zn{sub 0.8}Mg{sub 0.2}Se/Zn{sub 0.1}Mg{sub 0.9}Se quantum well in the presence of magnetic field strength. The confinement potential is considered as the addition of energy offsets of the conduction band (or valence band) and the strain-induced potential in our calculations. The material dependent effective mass is followed throughout the computation because it has a high influence on the electron energy levels in low dimensional semiconductor systems.

  14. First Report of an OXA-48-Producing Multidrug-Resistant Proteus mirabilis Strain from Gaza, Palestine

    PubMed Central

    Chen, Liang; Chavda, Kalyan D.; Mediavilla, Jose R.; Jacobs, Michael R.; Bonomo, Robert A.

    2015-01-01

    We report the first multidrug-resistant Proteus mirabilis strain producing the carbapenemase OXA-48 (Pm-OXA-48) isolated at Al-Shifa hospital in Gaza, Palestine. Draft genome sequencing of Pm-OXA-48 identified 16 antimicrobial resistance genes, encoding resistance to β-lactams, aminoglycosides, fluoroquinolones, phenicols, streptothricin, tetracycline, and trimethoprim-sulfamethoxazole. Complete sequencing of the blaOXA-48-harboring plasmid revealed that it is a 72 kb long IncL/M plasmid, harboring carbapenemase gene blaOXA-48, extended spectrum β-lactamase gene blaCTX-M-14, and aminoglycoside resistance genes strA, strB, and aph(3′)-VIb. PMID:25896692

  15. Inoculation of Acacia mangium with Alginate Beads Containing Selected Bradyrhizobium Strains under Field Conditions: Long-Term Effect on Plant Growth and Persistence of the Introduced Strains in Soil.

    PubMed

    Galiana, A; Prin, Y; Mallet, B; Gnahoua, G M; Poitel, M; Diem, H G

    1994-11-01

    The growth response of Acacia mangium Willd. to inoculation with selected Bradyrhizobium strains was investigated in two field trials in the Ivory Coast (West Africa). In the first trial (Anguededou), four provenances (i.e., trees originating from seeds harvested in different geographical areas) of A. mangium were inoculated with four Bradyrhizobium strains from different origins. Six months after being transplanted in the field, the heights of all inoculated trees showed a statistically significant increase of 9 to 26% compared with those of uninoculated trees, with the most effective strain being Aust 13c. After 19 months, the positive effect of inoculation on tree growth was confirmed. The effect of A. mangium provenance on tree growth was also highly significant. Trees from the Oriomo provenance of Papua New Guinea had a mean height that was 25% greater than those of other provenances. Analysis of variance showed a highly significant effect of interaction between strain and host provenance factors. Thus, most effective strain x provenance combinations could be proposed. Immunological identification of strains clearly showed that 90 to 100% of nodules from trees inoculated with three of the four Bradyrhizobium strains or from uninoculated trees contained exclusively Aust 13c 23 months after tree transplantation. This predominance of Aust 13c in nodules was still observed 42 months after tree transplantation. The second experiment (Port-Bouët), performed with a different soil, confirmed the long-term positive effect of Aust 13c on plant growth, its high competitive ability against indigenous strains, and its persistence in soil. Strain Aust 13c should thus be of great interest for inoculating A. mangium under a wide range of field conditions. PMID:16349430

  16. 43 CFR 3.13 - Report of field officer.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 1 2014-10-01 2014-10-01 false Report of field officer. 3.13 Section 3.13 Public Lands: Interior Office of the Secretary of the Interior PRESERVATION OF AMERICAN ANTIQUITIES § 3... antiquity, historic landmarks, historic and prehistoric structures, and other objects of historic...

  17. 43 CFR 3.13 - Report of field officer.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 1 2011-10-01 2011-10-01 false Report of field officer. 3.13 Section 3.13 Public Lands: Interior Office of the Secretary of the Interior PRESERVATION OF AMERICAN ANTIQUITIES § 3... antiquity, historic landmarks, historic and prehistoric structures, and other objects of historic...

  18. 43 CFR 3.13 - Report of field officer.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 1 2013-10-01 2013-10-01 false Report of field officer. 3.13 Section 3.13 Public Lands: Interior Office of the Secretary of the Interior PRESERVATION OF AMERICAN ANTIQUITIES § 3... antiquity, historic landmarks, historic and prehistoric structures, and other objects of historic...

  19. 43 CFR 3.13 - Report of field officer.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 1 2012-10-01 2011-10-01 true Report of field officer. 3.13 Section 3.13 Public Lands: Interior Office of the Secretary of the Interior PRESERVATION OF AMERICAN ANTIQUITIES § 3... antiquity, historic landmarks, historic and prehistoric structures, and other objects of historic...

  20. 43 CFR 3.13 - Report of field officer.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false Report of field officer. 3.13 Section 3.13 Public Lands: Interior Office of the Secretary of the Interior PRESERVATION OF AMERICAN ANTIQUITIES § 3... antiquity, historic landmarks, historic and prehistoric structures, and other objects of historic...

  1. Annual Report for 2003 Wild Horse Research and Field Activities

    USGS Publications Warehouse

    Ransom, Jason; Singer, Francis J.; Zeigenfuss, Linda C.

    2004-01-01

    This report is meant to highlight the activities of the 2003 field season, as well as to provide a general overview of the data collected. More in-depth data analysis will be conducted following the conclusion of each I phase of the research project, and in many cases will not be possible until several seasons of data are collected.

  2. Evaluation Report: Early Childhood Education Program, 1969 Field Test.

    ERIC Educational Resources Information Center

    Appalachia Educational Lab., Charleston, WV.

    Reported are findings from the first year's field test of the home-oriented Appalachia Educational Laboratory (AEL) Early Childhood Education Program for 3-, 4-, and 5-year-olds. The program consists of a 30-minute daily television lesson, a weekly home visit by a paraprofessional, and group instruction once a week in a mobile classroom. The…

  3. Experimental investigation of stress and strain fields in a ductile matrix surrounding an elastic inclusion

    SciTech Connect

    Nugent, E.E.; Calhoun, R.B.; Mortensen, A.

    2000-04-19

    A method for measuring stress and strain distributions within a ductile material deforming by dislocational slip is developed. The method exploits the transparency and room-temperature ductility of silver chloride, and combines the techniques of photoelasticity and marker tracking. This method is used to investigate the deformation of an elasto-plastic ductile matrix surrounding an isolated stiff fiber, the grain size of the material being slightly smaller than the fiber length. The data are compared to predictions of finite element calculations which take the matrix to be an isotropic elasto-plastic von Mises continuum. It is found that this model does not fully capture all of the features of the experimental data. Data suggest that the cause for observed discrepancies is the strong influence exerted by grain boundaries and grain orientation on the distribution of stress and strain within the matrix. A comparison is also made between the data and predictions of the Eshelby equivalent inclusion calculation, to show that a far higher level of discrepancy results than with the finite element calculations; this is caused by the fact that the Eshelby equivalent inclusion calculation is essentially elastic and thus allows significant stress concentrations.

  4. Sequential mutations in the NS genes of influenza virus field strains.

    PubMed Central

    Krystal, M; Buonagurio, D; Young, J F; Palese, P

    1983-01-01

    The complete nucleotide sequences of the NS genes from three human influenza viruses, A/FM/1/47 (H1N1), A/FW/1/50 (H1N1), and A/USSR/90/77 (H1N1), were determined. Only five single-base differences were found within the sequences of the A/FW/1/50 and A/USSR/90/77 NS genes, thus confirming earlier data suggesting that the 1977 H1N1 viruses are closely related to virus strains that were circulating around 1950. Comparison of all three sequences with those from A/PR/8/34 and A/Udorn/72 viruses illustrates that these genes (with the exception of that of the A/USSR/90/77 strain) evolve through cumulative base changes along a single common lineage. A nucleotide sequence variation of approximately 2.2 to 3.4% per 10 years was determined for the NS gene segments. Extensive size variation was also observed among the NS1 proteins of the various human viruses. The A/FM/1/47 NS1 protein, which consists of 202 amino acids, is 15% shorter than the A/Udorn/72 NS1 protein, which consists of 237 amino acids. PMID:6834468

  5. Earth strain measurements with the transportable laser ranging system: Field techniques and planning

    NASA Technical Reports Server (NTRS)

    Nakamura, Y.; Dorman, H. J.; Cahill, T.

    1982-01-01

    The potential of the transportable laser ranging system for monitoring the ground deformation around satellite ranging stations and other geodetic control points was examined with emphasis on testing the usefulness of the relative alteration technique. The temporal variation of the ratio of the length of each survey line to the mean length of all survey lines in a given area is directly related to the mean shear strain rate for the area. The data from a series of experimental measurements taken over the Los Angeles basin from a TLRS station at Mt. Wilson show that such ratios can be determined to an accuracy of one part in 10 million with a measurement program lasting for three days and without using any corrections for variations in atmospheric conditions. A numerical experiment using a set of hypothetical data indicates that reasonable estimates of the present shear strain rate and the direction of the principal axes in southern California can be deduced from such measurements over an interval of one to two years.

  6. Molecular evolution of American field strains of bluetongue and epizootic haemorrhagic disease viruses.

    PubMed

    Wilson, William C; Gaudreault, Natasha N; Jasperson, Dane C; Johnson, Donna J; Ostlund, Eileen N; Chase, Christopher L; Ruder, Mark G; Stallknecht, David E

    2015-01-01

    Recent Orbivirus occurrences in the Americas have been investigated using whole genome amplification and sequencing followed by phylogenetic analysis. The bluetongue virus (BTV) and epizootic haemorrhagic disease virus (EHDV) whole genomes were amplified without prior sequence knowledge and deep sequenced. This technology was applied to evaluate BTV‑3 isolates spanning 4 decades from Florida, Arkansas, Mississippi, South Dakota, Central America, and the Caribbean basin. The results of the dataset analysis are consistent with the hypothesis that these viruses were introduced into the United States from Central America and the Caribbean basin. A similar analysis has been performed on a recent BTV‑2 isolate from California. It indicates that the BTV‑2 strain was likely introduced into Florida and then moved South to the Caribbean and West to California. A historical (1955‑2012) molecular characterisation of EHDV strains was also completed, and subsequently used as reference sequence for comparison of genomes from recent 2012 cattle isolates associated with clinical disease. Finally, this analysis was performed on BTV‑11 isolated from 2 canine cases and demonstrated that the genome sequences of the virus isolates from these cases were almost identical. These studies indicate the value of this technology in understanding virus epidemiology and ecology. PMID:26741243

  7. Enhancing the stability and ecological safety of mass-reared transgenic strains for field release by redundant conditional lethality systems.

    PubMed

    Handler, Alfred M

    2016-04-01

    The genetic manipulation of agriculturally important insects now allows the development of genetic sexing and male sterility systems for more highly efficient biologically-based population control programs, most notably the Sterile Insect Technique (SIT), for both plant and animal insect pests. Tetracycline-suppressible (Tet-off) conditional lethal systems may function together so that transgenic strains will be viable and fertile on a tetracycline-containing diet, but female-lethal and male sterile in tetracycline-free conditions. This would allow their most efficacious use in a unified system for sterile male-only production for SIT. A critical consideration for the field release of such transgenic insect strains, however, is a determination of the frequency and genetic basis of lethality revertant survival. This will provide knowledge essential to evaluating the genetic stability of the lethality system, its environmental safety, and provide the basis for modifications ensuring optimal efficacy. For Tet-off lethal survival determinations, development of large-scale screening protocols should also allow the testing of these modifications, and test the ability of other conditional lethal systems to fully suppress propagation of rare Tet-off survivors. If a dominant temperature sensitive (DTS) pupal lethality system proves efficient for secondary lethality in Drosophila, it may provide the safeguard needed to support the release of sexing/sterility strains, and potentially, the release of unisex lethality strains as a form of genetic male sterility. Should the DTS Prosβ2(1) mutation prove effective for redundant lethality, its high level of structural and functional conservation should allow host-specific cognates to be created for a wide range of insect species. PMID:26097098

  8. Random amplified polymorphic DNA assay is less discriminant than pulsed-field gel electrophoresis for typing strains of methicillin-resistant Staphylococcus aureus.

    PubMed

    Saulnier, P; Bourneix, C; Prévost, G; Andremont, A

    1993-04-01

    Twenty-six strains of methicillin-resistant Staphylococcus aureus with different pulsed-field gel electrophoresis fingerprints were tested by random amplified polymorphic DNA assay with three primers, resulting in 15 to 20 different random amplified polymorphic DNA fingerprints. By summing the results for the three primers, the number of different fingerprints increased to 25, but two strains could not be differentiated. We conclude that pulsed-field gel electrophoresis remains the best method of typing methicillin-resistant S. aureus strains. PMID:8463406

  9. Random amplified polymorphic DNA assay is less discriminant than pulsed-field gel electrophoresis for typing strains of methicillin-resistant Staphylococcus aureus.

    PubMed Central

    Saulnier, P; Bourneix, C; Prévost, G; Andremont, A

    1993-01-01

    Twenty-six strains of methicillin-resistant Staphylococcus aureus with different pulsed-field gel electrophoresis fingerprints were tested by random amplified polymorphic DNA assay with three primers, resulting in 15 to 20 different random amplified polymorphic DNA fingerprints. By summing the results for the three primers, the number of different fingerprints increased to 25, but two strains could not be differentiated. We conclude that pulsed-field gel electrophoresis remains the best method of typing methicillin-resistant S. aureus strains. Images PMID:8463406

  10. Detection and characterization of viruses as field and vaccine strains in feedlot cattle with bovine respiratory disease.

    PubMed

    Fulton, R W; d'Offay, J M; Landis, C; Miles, D G; Smith, R A; Saliki, J T; Ridpath, J F; Confer, A W; Neill, J D; Eberle, R; Clement, T J; Chase, C C L; Burge, L J; Payton, M E

    2016-06-24

    This study investigated viruses in bovine respiratory disease (BRD) cases in feedlots, including bovine herpesvirus-1 (BoHV-1), bovine viral diarrhea virus (BVDV), bovine respiratory syncytial virus (BRSV), bovine coronaviruses (BoCV) and parainfluenza-3 virus (PI3V). Nasal swabs were collected from 114 cattle on initial BRD treatment. Processing included modified live virus (MLV) vaccination. Seven BRD necropsy cases were included for 121 total cases. Mean number of days on feed before first sample was 14.9 days. Swabs and tissue homogenates were tested by gel based PCR (G-PCR), quantitative-PCR (qPCR) and quantitative real time reverse transcriptase PCR (qRT-PCR) and viral culture. There were 87/114 (76.3%) swabs positive for at least one virus by at least one test. All necropsy cases were positive for at least one virus. Of 121 cases, positives included 18/121 (14.9%) BoHV-1; 19/121 (15.7%) BVDV; 76/121 (62.8%) BoCV; 11/121 (9.1%) BRSV; and 10/121 (8.3%) PI3V. For nasal swabs, G-PCR (5 viruses) detected 44/114 (38.6%); q-PCR and qRT-PCR (4 viruses) detected 81/114 (71.6%); and virus isolation detected 40/114 (35.1%). Most were positive for only one or two tests, but not all three tests. Necropsy cases had positives: 5/7 G-PCR, 5/7 q-PCR and qRT-PCR, and all were positive by cell culture. In some cases, G-PCR and both real time PCR were negative for BoHV-1, BVDV, and PI3V in samples positive by culture. PCR did not differentiate field from vaccines strains of BoHV-1, BVDV, and PI3V. However based on sequencing and analysis, field and vaccine strains of culture positive BoHV-1, BoCV, BVDV, and PI3V, 11/18 (61.1%) of BoHV-1 isolates, 6/17 (35.3%) BVDV isolates, and 1/10 (10.0%) PI3V identified as vaccine. BRSV was only identified by PCR testing. Interpretation of laboratory tests is appropriate as molecular based tests and virus isolation cannot separate field from vaccine strains. Additional testing using sequencing appears appropriate for identifying vaccine

  11. Characterization of High Current RRP(R) Wires as a Function of Magnetic Field, Temperature and Strain

    SciTech Connect

    Godeke, A.; Mentink, M.G.T.; Dietderich, D. R.; den Ouden, A.

    2009-08-16

    A new instrument for the characterization of superconducting materials as a function of Magnetic Field, Temperature and Strain, was designed, constructed and tested at Lawrence Berkeley National Laboratory (LBNL). A U-shaped bending spring was selected, since that design has proven to enable accurate characterizations of a multitude of superconducting materials for more than a decade. The new device is validated though measurements on very high current Rod Restack Processed (RRP) Internal-Tin (IT) wires, for which we will present initial results, including parameterizations of the superconducting phase boundaries and comparisons with other wire types. Accurate parametrization of modern high magnetic field conductors is important for the analysis of the performance of magnet systems.

  12. Small scale field trials of Bacillus sphaericus (strain 2362) against anopheline and culicine mosquito larvae in southern Mexico.

    PubMed

    Arredondo-Jiménez, J I; López, T; Rodríguez, M H; Bown, D N

    1990-06-01

    Experimental breeding sites simulating natural conditions were used to evaluate the efficacy of 2 formulations of Bacillus sphaericus (strain 2362) against Anopheles albimanus and culicine (mostly Culex coronator and Cx. quinquefasciatus) mosquito larvae of southern Mexico. Three doses of each formulation were used in a first field trial: 2, 3 and 4 g/m2 (granular) or 2, 3 and 4 ml/m2 (liquid); and in a second field trial: 0.125, 0.24 and 0.5 g/m2 (granular) or 0.125, 0.25 and 0.5 ml/m2 (liquid). The optimum concentrations of each formulation for effective control of larval populations over periods of 3-4 months were 0.125 ml/m2 of liquid product for Culex spp. and 2 g/m2 of granular product for An. albimanus (ca. 70% mean reduction). PMID:2370538

  13. Sudden motility reversal indicates sensing of magnetic field gradients in Magnetospirillum magneticum AMB-1 strain

    PubMed Central

    González, Lina M; Ruder, Warren C; Mitchell, Aaron P; Messner, William C; LeDuc, Philip R

    2015-01-01

    Many motile unicellular organisms have evolved specialized behaviors for detecting and responding to environmental cues such as chemical gradients (chemotaxis) and oxygen gradients (aerotaxis). Magnetotaxis is found in magnetotactic bacteria and it is defined as the passive alignment of these cells to the geomagnetic field along with active swimming. Herein we show that Magnetospirillum magneticum (AMB-1) show a unique set of responses that indicates they sense and respond not only to the direction of magnetic fields by aligning and swimming, but also to changes in the magnetic field or magnetic field gradients. We present data showing that AMB-1 cells exhibit sudden motility reversals when we impose them to local magnetic field gradients. Our system employs permalloy (Ni80Fe20) islands to curve and diverge the magnetic field lines emanating from our custom-designed Helmholtz coils in the vicinity of the islands (creating a drop in the field across the islands). The three distinct movements we have observed as they approach the permalloy islands are: unidirectional, single reverse and double reverse. Our findings indicate that these reverse movements occur in response to magnetic field gradients. In addition, using a permanent magnet we found further evidence that supports this claim. Motile AMB-1 cells swim away from the north and south poles of a permanent magnet when the magnet is positioned less than ∼30 mm from the droplet of cells. All together, these results indicate previously unknown response capabilities arising from the magnetic sensing systems of AMB-1 cells. These responses could enable them to cope with magnetic disturbances that could in turn potentially inhibit their efficient search for nutrients. PMID:25478682

  14. Sudden motility reversal indicates sensing of magnetic field gradients in Magnetospirillum magneticum AMB-1 strain.

    PubMed

    González, Lina M; Ruder, Warren C; Mitchell, Aaron P; Messner, William C; LeDuc, Philip R

    2015-06-01

    Many motile unicellular organisms have evolved specialized behaviors for detecting and responding to environmental cues such as chemical gradients (chemotaxis) and oxygen gradients (aerotaxis). Magnetotaxis is found in magnetotactic bacteria and it is defined as the passive alignment of these cells to the geomagnetic field along with active swimming. Herein we show that Magnetospirillum magneticum (AMB-1) show a unique set of responses that indicates they sense and respond not only to the direction of magnetic fields by aligning and swimming, but also to changes in the magnetic field or magnetic field gradients. We present data showing that AMB-1 cells exhibit sudden motility reversals when we impose them to local magnetic field gradients. Our system employs permalloy (Ni(80)Fe(20)) islands to curve and diverge the magnetic field lines emanating from our custom-designed Helmholtz coils in the vicinity of the islands (creating a drop in the field across the islands). The three distinct movements we have observed as they approach the permalloy islands are: unidirectional, single reverse and double reverse. Our findings indicate that these reverse movements occur in response to magnetic field gradients. In addition, using a permanent magnet we found further evidence that supports this claim. Motile AMB-1 cells swim away from the north and south poles of a permanent magnet when the magnet is positioned less than ∼30 mm from the droplet of cells. All together, these results indicate previously unknown response capabilities arising from the magnetic sensing systems of AMB-1 cells. These responses could enable them to cope with magnetic disturbances that could in turn potentially inhibit their efficient search for nutrients. PMID:25478682

  15. Rapid methodology for antigenic profiling of FMDV field strains and for the control of identity, purity and viral integrity in commercial virus vaccines using monoclonal antibodies.

    PubMed

    Seki, Cristina; Robiolo, Blanca; Periolo, Osvaldo; Iglesias, Marcela; D'Antuono, Alejandra; Maradei, Eduardo; Barros, Virginia; La Torre, José; Mattion, Nora

    2009-01-13

    Monoclonal antibodies (MAbs) developed against different foot-and-mouth disease virus (FMDV) vaccine strains were extensively used to study any possible antigenic variations during vaccine production in Argentine facilities. Additionally, a typing ELISA using strain specific MAbs was developed to detect potential cross contaminations among FMDV strains in master and working seeds with high specificity and sensitivity and to confirm strains identity in formulated vaccines. This assay was carried out for the South American strains currently in use in production facilities in Argentina (A24/Cruzeiro, A/Argentina/01, O1/Campos and C3/Indaial) and for the strain O/Taiwan, produced only for export to Asia. These non-cross reactive MAbs were also used to analyze the integrity of viral particles belonging to each one of the individual strains, following isolation of 140S virions by means of sucrose density gradients from the aqueous phase of commercial polyvalent vaccines. Antigenic profiles were defined for FMDV reference strains using panels of MAbs, and a coefficient of correlation of reactivity with these panels was calculated to establish consistent identity upon serial passages of master and production seeds. A comparison of vaccine and field strain antigenic profiles performed using coefficients of correlation allowed the rapid identification of two main groups of serotype A viruses collected during the last FMD epidemic in Argentina, whose reactivity matched closely to A/Argentina/2000 and A/Argentina/2001 strains. PMID:18774662

  16. Surfactant-enhanced alkaline flooding field project. Annual report, Revision

    SciTech Connect

    French, T.R.

    1991-10-01

    The Tucker sand of Helper (KS) field is a candidate for surfactant-enhanced alkaline flooding. The geology of the Helper site is typical of many DOE Class I reservoirs. The Tucker sand of Helper field was deposited in a fluvial dominated deltaic environment. Helper oil can be mobilized with either chemical system 2 or chemical system 3, as described in this report. Oil fields in the Gulf Coast region are also good candidates for surfactant-enhanced alkaline flooding. The results from laboratory tests conducted in Berea sandstone cores with oil brine from Helper (KS) field are encouraging. The crude oil is viscous and non-acidic and, yet, was mobilized by the chemical formulations described in this report. Significant amounts of the oil were mobilized under simulated reservoir conditions. The results in Berea sandstone cores were encouraging and should be verified by tests with field core. Consumption of alkali, measured with field core, was very low. Surfactant loss appeared to be acceptable. Despite the good potential for mobilization of Helper oil, certain reservoir characteristics such as low permeability, compartmentalization, and shallow depth place constraints on applications of any chemical system in the Tucker sand. These constraints are typical of many DOE Class I reservoirs. Although Hepler field is not a perfect reservoir in which to apply surfactant- enhanced alkaline flooding, Hepler oil is particularly amenable to mobilization by surfactant-enhanced alkaline systems. A field test is recommended, dependent upon final evaluation of well logs and cores from the proposed pilot area. 14 refs., 21 figs., 10 tabs.

  17. Field Longevity of a Fluorescent Protein Marker in an Engineered Strain of the Pink Bollworm, Pectinophora gossypiella (Saunders)

    PubMed Central

    Claus, John; Tang, Guolei; Phillips, Caroline E.; Young, Robin; Zink, Richard T.; Alphey, Luke

    2012-01-01

    The cotton pest, pink bollworm (Pectinophora gossypiella (Saunders)), is a significant pest in most cotton-growing areas around the world. In southwestern USA and northern Mexico, pink bollworm is the target of the sterile insect technique (SIT), which relies on the mass-release of sterile pink bollworm adults to over-flood the wild population and thereby reduce it over time. Sterile moths reared for release are currently marked with a dye provided in their larval diet. There are concerns, however, that this marker fails from time to time, leading to sterile moths being misidentified in monitoring traps as wild moths. This can lead to expensive reactionary releases of sterile moths. We have developed a genetically marked strain that is engineered to express a fluorescent protein, DsRed2, which is easily screened under a specialised microscope. In order to test this marker under field conditions, we placed wild-type and genetically marked moths on traps and placed them in field cages. The moths were then screened, in a double-blind fashion, for DsRed2 fluorescence at regular intervals to determine marker reliability over time. The marker was shown to be robust in very high temperatures and generally proved reliable for a week or longer. More importantly, genotyping of moths on traps by PCR screening of the moths was 100% correct. Our findings indicate that this strain - and fluorescent protein markers in general - could make a valuable contribution to SIT. PMID:22693645

  18. Whole field strain measurement in critical thin adhesive layer of single- and double-sided repaired CFRP panel using DIC

    NASA Astrophysics Data System (ADS)

    Kashfuddoja, Mohammad; Ramji, M.

    2015-03-01

    In the present work, the behavior of thin adhesively layer in patch repaired carbon fiber reinforced polymer (CFRP) panel under tensile load is investigated experimentally using digital image correlation (DIC) technique. The panel is made of Carbon/epoxy composite laminate and the stacking sequence in the panel is [0º]4. A circular hole of 10 mm diameter (d) is drilled at the center of the panel to mimic the case of low velocity impact damage removal. The panel with open hole is repaired with double sided (symmetrical) and single sided (unsymmetrical) rectangular patch made of same panel material having stacking sequence of [0º]3. Araldite 2011 is used for bonding the patch onto the panel over the damaged area. The global behavior of thin adhesive layer is examined by analyzing whole field strain distribution using DIC. Longitudinal, peel and shear strain field in both double and single sided repair configuration is studied and a compression is made between them. An estimate of shear transfer length which is an essential parameter in arriving at an appropriate overlap length in patch design is proposed from DIC and FEA. Damage development, failure mechanism and load displacement behavior is also investigated. The experimental results are compared with the numerical predictions.

  19. In-situ lattice-strain analysis of a ferroelectric thin film under an applied pulse electric field

    SciTech Connect

    Sakata, O.; Yasui, S.; Yamada, T.; Funakubo, H.; Yabashi, M.

    2010-06-23

    We developed an in-situ measurement system for characterizing the relationship between ferroelectricity and lattice distortion of a ferroelectric thin film at BL13XU, SPring-8. The dielectric polarization obtained and the lattice strain evaluated provide us with the electrostrictive coefficient of the film. The system for the method consists of a refractive lens for two dimensional micron focusing, ferroelectric characterization system, high-precision four-circle diffractometer, and time-resolved photon counting system. It enables in-situ measurements of the electric polarization of the film and an electric-field-induced strain using nano-second order time-resolved synchrotron diffraction. We applied the method to determining the lattice constant distorted by the electric field and the polarization value of a 410 nm-thick BiFeO{sub 3} thin film. The piezoelectric constant d{sub 33} evaluated was about 28 pm/V. The polarization observed allowed us to evaluate an electrostrictive coefficient Q of 1{center_dot}4x10{sup -2} m{sup 4}/C{sup 2}.

  20. Strain and electric field induced electronic properties of two-dimensional hybrid bilayers of transition-metal dichalcogenides

    SciTech Connect

    Sharma, Munish E-mail: pk-ahluwalia7@yahoo.com; Kumar, Ashok; Ahluwalia, P. K. E-mail: pk-ahluwalia7@yahoo.com; Pandey, Ravindra

    2014-08-14

    Tunability of the electronic properties of two-dimensional bilayer hetero structures of transition-metal dichalcogenides (i.e., MX{sub 2}-M′X′{sub 2} with (M, M′ = Mo, W; X, X′ = S, Se) is investigated. Application of both strain and electric field is found to modify the band gap and carrier effective mass in the hybrid bilayers considered. The calculated results based on density functional theory suggest that the tensile strain considerably changes the band gap of semiconducting bilayers; it makes the band gap to be indirect, and later initiates the semiconductor-to-metal transition. Application of the external electric fields, on the other hand, shows asymmetric variation in the band gap leading to the closure of the gap at about 0.5–1.0 V/Å. Tuning of the band gap and carrier effective mass in such a controlled manner makes the hybrid bilayers of transition metal dichalcogenides to be promising candidates for application in electronic devices at nanoscale.

  1. Mycoplasma gallisepticum transmission: Comparison of commercial F-strain vaccine versus layer complex-derived field strains in a tunnel ventilated house

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two simultaneous trials were conducted using a commercially available, live, F strain Mycoplasma gallisepticum (FMG) vaccine [Trial 1] or two inocula of layer complex-derived MG strains (LCD-MG) [Trial 2]. In each of the two trials, four commercial turkeys were housed in each of two adjoining pens ...

  2. Solid Fuel Burning in Steady, Strained, Premixed Flow Fields: The Graphite/Air/Methane System

    NASA Technical Reports Server (NTRS)

    Egolfopoulos, Fokion N.; Wu, Ming-Shin (Technical Monitor)

    2000-01-01

    A detailed numerical investigation was conducted on the simultaneous burning of laminar premixed CH4/air flames and solid graphite in a stagnation flow configuration. The graphite and methane were chosen for this model, given that they are practical fuels and their chemical kinetics are considered as the most reliable ones among solid and hydrocarbon fuels, respectively. The simulation was performed by solving the quasi-one-dimensional equations of mass, momentum, energy, and species. The GRI 2.1 scheme was used for the gas-phase kinetics, while the heterogeneous kinetics were described by a six-step mechanism including stable and radical species. The effects of the graphite surface temperature, the gas-phase equivalence ratio, and the aerodynamic strain rate on the graphite burning rate and NO, production and destruction mechanisms were assessed. Results indicate that as the graphite temperature increases, its burning rate as well as the NO, concentration increase. Furthermore, it was found that by increasing the strain rate, the graphite burning rate increases as a result of the augmented supply of the gas-phase reactants towards the surface, while the NO, concentration decreases as a result of the reduced residence time. The effect of the equivalence ratio on both the graphite burning rate and NO, concentration was found to be non-monotonic and strongly dependent on the graphite temperature. Comparisons between results obtained for a graphite and a chemically inert surface revealed that the chemical activity of the graphite surface can result to the reduction of NO through reactions of the CH3, CH2, CH, and N radicals with NO.

  3. Over-expression of multiple cytochrome P450 genes in fenvalerate-resistant field strains of Helicoverpa armigera from north of China.

    PubMed

    Xu, Li; Li, Dongzhi; Qin, Jianying; Zhao, Weisong; Qiu, Lihong

    2016-09-01

    Pyrethroid resistance was one of the main reasons for control failure of cotton bollworm Helicoverpa armigera (Hübner) in China. The promotion of Bt crops decreased the application of chemical insecticides in controlling H.armigera. However, the cotton bollworm still kept high levels of resistance to fenvalerate. In this study, the resistance levels of 8 field-collected strains of H. armigera from north of China to 4 insecticides, as well as the expression levels of related P450 genes were investigated. The results of bioassay indicated that the resistance levels to fenvalerate in the field strains varied from 5.4- to 114.7-fold, while the resistance levels to lambda-cyhalothrin, phoxim and methomyl were low, which were ranged from 1.5- to 5.2-, 0.2- to 1.6-, and 2.9- to 8.3- fold, respectively, compared to a susceptible strain. Synergistic experiment showed that PBO was the most effective synergist in increasing the sensitivity of H. armigera to fenvalerate, suggesting that P450 enzymes were involved in the pyrethroid resistance in the field strains. The results of quantitative RT-PCR indicated that eight P450 genes (CYP332A1, CYP4L11, CYP4L5, CYP4M6, CYP4M7, CYP6B7, CYP9A12, CYP9A14) were all significantly overexpressed in Hejian1 and Xiajin1 strains of H. armigera collected in 2013, and CYP4L5 was significantly overexpressed in all the 6 field strains collected in 2014. CYP332A1, CYP6B7 and CYP9A12 had very high overexpression levels in all the field strains, indicating their important roles in fenvalerate resistance. The results suggested that multiple P450 genes were involved in the high-level fenvalerate-resistance in different field strains of H. armigera collected from north of China. PMID:27521913

  4. Inhomogeneous strains in small particles

    NASA Astrophysics Data System (ADS)

    Marks, L. D.

    1985-02-01

    This paper considers the evidence for strains in small particles. Firstly, the dynamical electron diffraction theory for dark field imaging of small particles is briefly reviewed, considering primarily the effects of strain on wedge crystals and identifying the fingerprint of strain contrast effects under strong beam conditions. Evidence included herein and from published papers by other authors clearly shows inhomogeneous strain effects in both multiply twinned particles and single crystals. Considering these results and earlier reports of lattice parameter changes, there are problems with the uniqueness of these analyses, and the strains in the small single crystals are thought more likely to be due to interfacial stresses or contaminants than any intrinsic particle effect; there are so many different origins of this type of strain that we cannot with confidence isolate a unique source. It is emphasised that the uniqueness of any interpretation of experimental results from small particles must be very carefully considered.

  5. Comparative analysis of the efficiency and specificity of myeloid-Cre deleting strains using ROSA-EYFP reporter mice.

    PubMed

    Abram, Clare L; Roberge, Gray L; Hu, Yongmei; Lowell, Clifford A

    2014-06-01

    Since the first example of conditional gene targeting in mice in 1994, the use of Cre recombinase and loxP flanked sequences has become an invaluable technique to generate tissue and temporal specific gene knockouts. The number of mouse strains expressing floxed-gene sequences, and tissue-specific or temporal-specific Cre-recombinase that have been reported in the literature has grown exponentially. However, increased use of this technology has highlighted several problems that can impact the interpretation of any phenotype observed in these mouse models. In particular, accurate knowledge of the specificity of Cre expression in each strain is critical in order to make conclusions about the role of specific cell types in the phenotypes observed. Cre-mediated deletion specificity and efficiency have been described in many different ways in the literature, making direct comparisons between these Cre strains impossible. Here we report crossing thirteen different myeloid-Cre mouse strains to ROSA-EYFP reporter mice and assaying YFP expression in a variety of naïve unstimulated hematopoietic cells, in parallel. By focusing on myeloid subsets, we directly compare the relative efficiency and specificity of myeloid deletion in these strains under steady-state conditions. PMID:24857755

  6. Comparative analysis of the efficiency and specificity of myeloid-Cre deleting strains using ROSA-EYFP reporter mice

    PubMed Central

    Abram, Clare L.; Roberge, Gray L.; Hu, Yongmei; Lowell, Clifford A.

    2014-01-01

    Since the first example of conditional gene targeting in mice in 1994, the use of Cre recombinase and loxP flanked sequences has become an invaluable technique to generate tissue and temporal specific gene knockouts. The number of mouse strains expressing floxed-gene sequences, and tissue-specific or temporal-specific Cre-recombinase that have been reported in the literature has grown exponentially. However, increased use of this technology has highlighted several problems that can impact the interpretation of any phenotype observed in these mouse models. In particular, accurate knowledge of the specificity of Cre expression in each strain is critical in order to make conclusions about the role of specific cell types in the phenotypes observed. Cre-mediated deletion specificity and efficiency has been described in many different ways in the literature, making direct comparisons between these Cre strains impossible. Here we report crossing thirteen different myeloid-Cre mouse strains to ROSA-EYFP reporter mice and assaying YFP expression in a variety of naïve unstimulated hematopoietic cells, in parallel. By focusing on myeloid subsets, we directly compare the relative efficiency and specificity of myeloid deletion in these strains under steady-state conditions. PMID:24857755

  7. Predicting full-field dynamic strain on a three-bladed wind turbine using three dimensional point tracking and expansion techniques

    NASA Astrophysics Data System (ADS)

    Baqersad, Javad; Niezrecki, Christopher; Avitabile, Peter

    2014-03-01

    As part of a project to predict the full-field dynamic strain in rotating structures (e.g. wind turbines and helicopter blades), an experimental measurement was performed on a wind turbine attached to a 500-lb steel block and excited using a mechanical shaker. In this paper, the dynamic displacement of several optical targets mounted to a turbine placed in a semi-built-in configuration was measured by using three-dimensional point tracking. Using an expansion algorithm in conjunction with a finite element model of the blades, the measured displacements were expanded to all finite element degrees of freedom. The calculated displacements were applied to the finite element model to extract dynamic strain on the surface as well as within the interior points of the structure. To validate the technique for dynamic strain prediction, the physical strain at eight locations on the blades was measured during excitation using strain-gages. The expansion was performed by using both structural modes of an individual cantilevered blade and using modes of the entire structure (three-bladed wind turbine and the fixture) and the predicted strain was compared to the physical strain-gage measurements. The results demonstrate the ability of the technique to predict full-field dynamic strain from limited sets of measurements and can be used as a condition based monitoring tool to help provide damage prognosis of structures during operation.

  8. Large electric-field control of perpendicular magnetic anisotropy in strained [Co/Ni] / PZT heterostructures

    NASA Astrophysics Data System (ADS)

    Gopman, Daniel; Dennis, Cindi; Chen, P. J.; Iunin, Yury; Shull, Robert

    We present a piezoelectric/ferromagnetic heterostructure with PMA - a Co/Ni multilayer sputtered directly onto a Pb(Zr,Ti)O3 (PZT) substrate. Chemical-mechanical polishing was used to reduce the roughness of PZT plates to below 2 nm rms, enabling optimal magnetoelectric coupling via the direct interface between PZT and sputtered Co/Ni films with large PMA (Keff = (95 +/-9 kJ/m3)) . We grew the following layer stack: Ta(3)/Pt(2)/[Co(0.15)/Ni(0.6)]x4/Co(0.15)/Pt(2)/Ta(3); numbers in parentheses indicate thicknesses in nm. Applied electric fields up to +/- 2 MV/m to the PZT generated 0.05% in-plane compression in the Co/Ni multilayer, enabling a large electric-field reduction of the PMA (ΔKeff >= 103 J/m3) and of the coercive field (35%). Our results demonstrate that: (i) heterostructures combining PZT and [Co/Ni] exhibit larger PMA (Keff ~105 J/m3) than previous magnetoelectric heterostructures based on Co/Pt and CoFeB, enabling thermally stable hybrid magnetoelectric/spintronic devices only tens of nm in diameter and (ii) electric-field control of the PMA is promising for more energy efficient switching of spintronic devices.

  9. Direct observation of piezoelectric fields in GaN/ InGaN/GaN strained quantum wells

    PubMed

    Barnard; Cherns

    2000-01-01

    Off-axis electron holography is used to examine a single thin InGaN quantum well in GaN viewed in cross-section. The results show a phase offset across the well, which, under weakly diffracting conditions, is an approximately linear function of specimen thickness. This phase offset is ascribed to a change AV0 in the specimen mean inner potential V0 caused by a piezoelectric field induced by misfit strains in the InGaN layer. This paper examines the dependence of the phase offset on the diffracting conditions and on thin foil relaxation effects. It is shown that relaxation is negligible for the film thicknesses involved. Using a range of weakly diffracting conditions, the phase offset is measured as deltaV0/V0 = 0.042+/-0.012. Zone axis convergent beam electron diffraction patterns were taken and compared to simulations to determine the crystal polarity, showing the magnitude of the inner potential increased in the [0001] direction. By using dark-field displacement fringes to measure the InGaN layer thickness, and recent estimates of V0, the magnitude of the piezoelectric field is determined. This paper assesses the accuracy and limitations of electron holography for the studies of electric fields in other GaN structures. PMID:11108051

  10. Effect of electric field and strain on the magnetic properties of phase separated manganites

    NASA Astrophysics Data System (ADS)

    Grant, Daniel M.

    Perovskite manganese oxide (manganites) have attracted research attention due to a wide variety of complex behaviors observed, including colossal responses to external perturbations. More recent work has focused on the competing ground states and the coexistence of magnetic and non-magnetic phases in manganites. Anisotropic resistance changes have been observed in high quality thin film manganites, possibly due to dielectrophoresis, upon application of an electric field. Dielectrophoresis is usually observed in fluid-like systems in an electric field but is surprisingly useful in explaining the transport properties of manganites due to the fluid-like behavior of competing phases. A main goal of this dissertation is to explore the role of magnetic interactions on the dielectrophoresis effects on ferromagnetic metallic regions in phase separated manganite thin films. The combined effect of electric and magnetic fields in these manganites could reveal a novel form of magnetoelectric effect. In one set of experiments, a magnetic field decreased the amount of time needed for the dielectrophoresis to lead to a large drop in the resistance along one direction, showing the importance of magnetic interactions in dielectrophoresis. In another set of experiments, breaking down the large resistance of a manganite sample produced a small change in coercive field, further confirming the relationship between electric and magnetic effects in manganites. However, the largest effect on the magnetic properties of the thin films was from confinement of the competing phases in micrometer scale structures fabricated on the thin films. Coercive field increases of about 100- 400% were observed in a certain range of film thicknesses. To analyze such behavior in manganites, high quality thin films of the phase-separated manganite (La1-xPrx)1-yCa yMnO3 (LPCMO) were grown on NdGaO3 (NGO) substrates using pulsed laser deposition. Mangetotransport, magnetization, and scanning probe microscopy

  11. Surface coal mine emission factor field study. Final report

    SciTech Connect

    Muleski, G.E.; Garmen, G.; Cowherd, C.

    1994-01-01

    The report presents the results of an emissions sampling program to measure airborne particulate matter released from the activities conducted at open pit coal mines in the western United States. The principal objective of the study was to compare field measurements against available emission factors for surface coal mines and to revise the factors as necessary. The field measurements were conducted during the fall of 1992 at the Cordero surface coal mine in the Powder River Basin of Wyoming. A total of 36 PM-10 emission tests, distributed over various sources and five test sites, was performed. The report presents the sampling methodology used, the emission measurement results, the ambient monitoring results, the results of the reexamination of current emission factors, and recommended emission factor models for haul truck travel, light-duty vehicle travel and scraper travel on upaved roads.

  12. Genetic stability of vaccine strains by multilocus sequence typing and pulsed-field gel electrophoresis analysis: Implications for quality control of the leptospiral vaccine

    PubMed Central

    Xu, Yinghua; Zhang, Jinlong; Cui, Shenghui; Li, Min; Zhang, Ying; Xue, Honggang; Xin, Xiaofang; Wang, Junzhi

    2015-01-01

    Quality control of vaccine strains is directly associated with the safety and efficacy of inactivated whole bacterial vaccines. The assessment of genetic stability is one of the essential elements to guarantee the quality of vaccine strains. The multiple-valence inactivated leptospiral vaccine, comprising the main circulating serogroups, has played an important role in the control of Leptospira infection in China. In the present study, to assess the genetic stability of vaccine strains and develop novel quality control tests that enhance and extend the existing procedures, 7 Chinese leptospiral vaccine strains were characterized during in vivo and in vitro passages by multilocus sequence typing (MLST) and pulsed-field gel electrophoresis (PFGE) analysis. The seven vaccine strains were found to have distinct sequence types (STs) and PFGE profiles. Further analysis showed that the ST and PFGE pattern of each vaccine strain, after in vivo or serial in vitro passages (up to 20 passages), were identical to those of the initial strain, demonstrating that these strains were genetically stable and homogeneous. Taken together, PFGE and MLST provide a reproducible and reliable means for confirming the identity and genetic stability of vaccine seeds, suggesting that these approaches can be used to evaluate the quality of leptospiral vaccine strains. PMID:25806658

  13. Full-field in vitro measurements and in silico predictions of strain shielding in the implanted femur after total hip arthroplasty.

    PubMed

    Chanda, Souptick; Dickinson, Alexander; Gupta, Sanjay; Browne, Martin

    2015-08-01

    Alterations in bone strain as a result of implantation may contribute towards periprosthetic bone density changes after total hip arthroplasty. Computational models provide full-field strain predictions in implant-bone constructs; however, these predictions should be verified using experimental models wherever it is possible. In this work, finite element predictions of surface strains in intact and implanted composite femurs were verified using digital image correlation. Relationships were sought between post-implantation strain states across seven defined Gruen zones and clinically observed longer-term bone density changes. Computational predictions of strain distributions in intact and implanted femurs were compared to digital image correlation measurements in two regions of interest. Regression analyses indicated a strong linear correlation between measurements and predictions (R = 0.927 intact, 0.926 implanted) with low standard error (standard error = 38 µε intact, 26 µε implanted). Pre- to post-operative changes in measured and predicted surface strains were found to relate qualitatively to clinically observed volumetric bone density changes across seven Gruen zones: marked proximal bone density loss corresponded with a 50%-64% drop in surface strain, and slight distal density changes corresponded with 4%-14% strain increase. These results support the use of digital image correlation as a pre-clinical tool for predicting post-implantation strain shielding, indicative of long-term bone adaptations. PMID:26112349

  14. Comparison of ribotyping, randomly amplified polymorphic DNA analysis, and pulsed-field gel electrophoresis in typing of Lactobacillus rhamnosus and L. casei strains.

    PubMed

    Tynkkynen, S; Satokari, R; Saarela, M; Mattila-Sandholm, T; Saxelin, M

    1999-09-01

    A total of 24 strains, biochemically identified as members of the Lactobacillus casei group, were identified by PCR with species-specific primers. The same set of strains was typed by randomly amplified polymorphic DNA (RAPD) analysis, ribotyping, and pulsed-field gel electrophoresis (PFGE) in order to compare the discriminatory power of the methods. Species-specific primers for L. rhamnosus and L. casei identified the type strain L. rhamnosus ATCC 7469 and the neotype strain L. casei ATCC 334, respectively, but did not give any signal with the recently revived species L. zeae, which contains the type strain ATCC 15820 and the strain ATCC 393, which was previously classified as L. casei. Our results are in accordance with the suggested new classification of the L. casei group. Altogether, 21 of the 24 strains studied were identified with the species-specific primers. In strain typing, PFGE was the most discriminatory method, revealing 17 genotypes for the 24 strains studied. Ribotyping and RAPD analysis yielded 15 and 12 genotypes, respectively. PMID:10473394

  15. Comparison of Ribotyping, Randomly Amplified Polymorphic DNA Analysis, and Pulsed-Field Gel Electrophoresis in Typing of Lactobacillus rhamnosus and L. casei Strains

    PubMed Central

    Tynkkynen, Soile; Satokari, Reetta; Saarela, Maria; Mattila-Sandholm, Tiina; Saxelin, Maija

    1999-01-01

    A total of 24 strains, biochemically identified as members of the Lactobacillus casei group, were identified by PCR with species-specific primers. The same set of strains was typed by randomly amplified polymorphic DNA (RAPD) analysis, ribotyping, and pulsed-field gel electrophoresis (PFGE) in order to compare the discriminatory power of the methods. Species-specific primers for L. rhamnosus and L. casei identified the type strain L. rhamnosus ATCC 7469 and the neotype strain L. casei ATCC 334, respectively, but did not give any signal with the recently revived species L. zeae, which contains the type strain ATCC 15820 and the strain ATCC 393, which was previously classified as L. casei. Our results are in accordance with the suggested new classification of the L. casei group. Altogether, 21 of the 24 strains studied were identified with the species-specific primers. In strain typing, PFGE was the most discriminatory method, revealing 17 genotypes for the 24 strains studied. Ribotyping and RAPD analysis yielded 15 and 12 genotypes, respectively. PMID:10473394

  16. Two-dimensional electron gases in strained quantum wells for AlN/GaN/AlN double heterostructure field-effect transistors on AlN

    NASA Astrophysics Data System (ADS)

    Li, Guowang; Song, Bo; Ganguly, Satyaki; Zhu, Mingda; Wang, Ronghua; Yan, Xiaodong; Verma, Jai; Protasenko, Vladimir; Grace Xing, Huili; Jena, Debdeep

    2014-05-01

    Double heterostructures of strained GaN quantum wells (QWs) sandwiched between relaxed AlN layers provide a platform to investigate the quantum-confined electronic and optical properties of the wells. The growth of AlN/GaN/AlN heterostructures with varying GaN quantum well thicknesses on AlN by plasma molecular beam epitaxy (MBE) is reported. Photoluminescence spectra provide the optical signature of the thin GaN QWs. Reciprocal space mapping in X-ray diffraction shows that a GaN layer as thick as ˜28 nm is compressively strained to the AlN layer underneath. The density of the polarization-induced two-dimensional electron gas (2DEG) in the undoped heterostructures increases with the GaN QW thickness, reaching ˜2.5 × 1013/cm2. This provides a way to tune the 2DEG channel density without changing the thickness of the top barrier layer. Electron mobilities less than ˜400 cm2/Vs are observed, leaving ample room for improvement. Nevertheless, owing to the high 2DEG density, strained GaN QW field-effect transistors with MBE regrown ohmic contacts exhibit an on-current density ˜1.4 A/mm, a transconductance ˜280 mS/mm, and a cut off frequency fT˜104 GHz for a 100-nm-gate-length device. These observations indicate high potential for high-speed radio frequency and high voltage applications that stand to benefit from the extreme-bandgap and high thermal conductivity of AlN.

  17. Two-dimensional electron gases in strained quantum wells for AlN/GaN/AlN double heterostructure field-effect transistors on AlN

    SciTech Connect

    Li, Guowang; Song, Bo; Ganguly, Satyaki; Zhu, Mingda; Wang, Ronghua; Yan, Xiaodong; Verma, Jai; Protasenko, Vladimir; Grace Xing, Huili; Jena, Debdeep

    2014-05-12

    Double heterostructures of strained GaN quantum wells (QWs) sandwiched between relaxed AlN layers provide a platform to investigate the quantum-confined electronic and optical properties of the wells. The growth of AlN/GaN/AlN heterostructures with varying GaN quantum well thicknesses on AlN by plasma molecular beam epitaxy (MBE) is reported. Photoluminescence spectra provide the optical signature of the thin GaN QWs. Reciprocal space mapping in X-ray diffraction shows that a GaN layer as thick as ∼28 nm is compressively strained to the AlN layer underneath. The density of the polarization-induced two-dimensional electron gas (2DEG) in the undoped heterostructures increases with the GaN QW thickness, reaching ∼2.5 × 10{sup 13}/cm{sup 2}. This provides a way to tune the 2DEG channel density without changing the thickness of the top barrier layer. Electron mobilities less than ∼400 cm{sup 2}/Vs are observed, leaving ample room for improvement. Nevertheless, owing to the high 2DEG density, strained GaN QW field-effect transistors with MBE regrown ohmic contacts exhibit an on-current density ∼1.4 A/mm, a transconductance ∼280 mS/mm, and a cut off frequency f{sub T}∼104 GHz for a 100-nm-gate-length device. These observations indicate high potential for high-speed radio frequency and high voltage applications that stand to benefit from the extreme-bandgap and high thermal conductivity of AlN.

  18. Oxygen-Sensing Reporter Strain of Pseudomonas fluorescens for Monitoring the Distribution of Low-Oxygen Habitats in Soil

    PubMed Central

    Højberg, Ole; Schnider, Ursula; Winteler, Harald V.; Sørensen, Jan; Haas, Dieter

    1999-01-01

    The root-colonizing bacterium Pseudomonas fluorescens CHA0 was used to construct an oxygen-responsive biosensor. An anaerobically inducible promoter of Pseudomonas aeruginosa, which depends on the FNR (fumarate and nitrate reductase regulation)-like transcriptional regulator ANR (anaerobic regulation of arginine deiminase and nitrate reductase pathways), was fused to the structural lacZ gene of Escherichia coli. By inserting the reporter fusion into the chromosomal attTn7 site of P. fluorescens CHA0 by using a mini-Tn7 transposon, the reporter strain, CHA900, was obtained. Grown in glutamate-yeast extract medium in an oxystat at defined oxygen levels, the biosensor CHA900 responded to a decrease in oxygen concentration from 210 × 102 Pa to 2 × 102 Pa of O2 by a nearly 100-fold increase in β-galactosidase activity. Half-maximal induction of the reporter occurred at about 5 × 102 Pa. This dose response closely resembles that found for E. coli promoters which are activated by the FNR protein. In a carbon-free buffer or in bulk soil, the biosensor CHA900 still responded to a decrease in oxygen concentration, although here induction was about 10 times lower and the low oxygen response was gradually lost within 3 days. Introduced into a barley-soil microcosm, the biosensor could report decreasing oxygen concentrations in the rhizosphere for a 6-day period. When the water content in the microcosm was raised from 60% to 85% of field capacity, expression of the reporter gene was elevated about twofold above a basal level after 2 days of incubation, suggesting that a water content of 85% caused mild anoxia. Increased compaction of the soil was shown to have a faster and more dramatic effect on the expression of the oxygen reporter than soil water content alone, indicating that factors other than the water-filled pore space influenced the oxygen status of the soil. These experiments illustrate the utility of the biosensor for detecting low oxygen concentrations in the

  19. Reconstruction of the strain pattern in the Somma-Vesuvius area: field and remote sensing analyses

    NASA Astrophysics Data System (ADS)

    D'Assisi Tramparulo, Francesco; Bisson, Marina; Isaia, Roberto; Tadini, Alessandro; Vitale, Stefano

    2016-04-01

    Keywords: Somma-Vesuvio, structural analysis, volcano-tectonics. This study present a detailed structural analysis of the Somma-Vesuvio (SV) volcanic complex that couples field data about faults, fractures and dykes with the analysis of lineaments identified from high-resolution (1m) DTM deriving from LiDAR data. Field data were collected within the SV caldera,in some quarries along the volcano flanks, and in few outcrops along the carbonate reliefs bounding the southern sector of the Campania plain. A total of 8,500 orientation data have been analyzed through rose diagrams and inversion methods while a total of more than 4,000 lineaments were identified after the analyses of multiple hill shades obtained by applying different pseudo-illuminations (from NW, NE, SE and SW) and appropriate filters to the original DTM. Results indicate a complex interaction between volcanic (local) and tectonic (regional) stress fields. The preliminary analysis of lineaments indicate that most of them are radial with respect to the center of the caldera, however a "tectonic" component is present, mainly represented by the NNE-SSW, ENE-WSW and the well-known Apenninic (NW-SE) direction.

  20. Wave Phase-Sensitive Transformation of 3d-Straining of Mechanical Fields

    NASA Astrophysics Data System (ADS)

    Smirnov, I. N.; Speranskiy, A. A.

    2015-11-01

    It is the area of research of oscillatory processes in elastic mechanical systems. Technical result of innovation is creation of spectral set of multidimensional images which reflect time-correlated three-dimensional vector parameters of metrological, and\\or estimated, and\\or design parameters of oscillations in mechanical systems. Reconstructed images of different dimensionality integrated in various combinations depending on their objective function can be used as homeostatic profile or cybernetic image of oscillatory processes in mechanical systems for an objective estimation of current operational conditions in real time. The innovation can be widely used to enhance the efficiency of monitoring and research of oscillation processes in mechanical systems (objects) in construction, mechanical engineering, acoustics, etc. Concept method of vector vibrometry based on application of vector 3D phase- sensitive vibro-transducers permits unique evaluation of real stressed-strained states of power aggregates and loaded constructions and opens fundamental innovation opportunities: conduct of continuous (on-line regime) reliable monitoring of turboagregates of electrical machines, compressor installations, bases, supports, pipe-lines and other objects subjected to damaging effect of vibrations; control of operational safety of technical systems at all the stages of life cycle including design, test production, tuning, testing, operational use, repairs and resource enlargement; creation of vibro-diagnostic systems of authentic non-destructive control of anisotropic characteristics of materials resistance of power aggregates and loaded constructions under outer effects and operational flaws. The described technology is revolutionary, universal and common for all branches of engineering industry and construction building objects.

  1. Calculation of Tectonic Strain Release from an Explosion in a Three-Dimensional Stress Field

    NASA Astrophysics Data System (ADS)

    Stevens, J. L.; O'Brien, M. S.

    2012-12-01

    We have developed a 3D nonlinear finite element code designed for calculation of explosions in 3D heterogeneous media and have incorporated the capability to perform explosion calculations in a prestressed medium. The effect of tectonic prestress on explosion-generated surface waves has been discussed since the 1960's. In most of these studies tectonic release was described as superposition of a tectonic source modeled as a double couple, multipole or moment tensor, plus a point explosion source. The size of the tectonic source was determined by comparison with the observed Love waves and the Rayleigh wave radiation pattern. Day et al. (1987) first attempted to perform numerical modeling of tectonic release through an axisymmetric calculation of the explosion Piledriver. To the best of our knowledge no one has previously performed numerical calculations for an explosion in a three-dimensional stress field. Calculation of tectonic release depends on a realistic representation of the stress state in the earth. In general the vertical stress is equal to the overburden weight of the material above at any given point. The horizontal stresses may be larger or smaller than this value up to the point where failure due to frictional sliding relieves the stress. In our calculations, we use the normal overburden calculation to determine the vertical stress, and then modify the horizontal stresses to some fraction of the frictional limit. This is the initial stable state of the calculation prior to introduction of the explosion. Note that although the vertical stress is still equivalent to the overburden weight, the pressure is not, and it may be either increased or reduced by the tectonic stresses. Since material strength increases with pressure, this also can substantially affect the seismic source. In general, normal faulting regimes will amplify seismic signals, while reverse faulting regimes will decrease seismic signals; strike-slip regimes may do either. We performed a

  2. Gene transcription and electromagnetic fields. Final progress report

    SciTech Connect

    Henderson, A.S.

    1992-12-31

    Our overall aim is to obtain sufficient information to allow us to ultimately determine whether ELF EM field exposure is an initiating factor in neoplastic transformation and/or if exposure can mimic characteristics of the second-step counterpart in neoplastic disease. This aim is based on our previous findings that levels of some transcripts are increased in cells exposed to EM fields. While the research is basic in nature, the ramifications have bearing on the general safety of exposure to EM fields in industrial and everyday life. A large array of diverse biological effects are reported to occur as the result of exposure to elf EM fields, suggesting that the cell response to EM fields is at a basic level, presumably initiated by molecular and/or biophysical events at the cell membrane. The hypothesized route is a signal transduction pathway involving membrane calcium fluxes. Information flow resulting from signal transduction can mediate the induction of regulatory factors in the cell, and directly affect how transcription is regulated.

  3. Job Strain and Self-Reported Insomnia Symptoms among Nurses: What about the Influence of Emotional Demands and Social Support?

    PubMed

    Portela, Luciana Fernandes; Kröning Luna, Caroline; Rotenberg, Lúcia; Silva-Costa, Aline; Toivanen, Susanna; Araújo, Tania; Griep, Rosane Härter

    2015-01-01

    Job strain, derived from high psychological demands and low job control, is associated with insomnia, but information on the role of emotional demands and social support in this relationship is scarce. The aims of this study were (i) to test the association between job strain and self-reported insomnia symptoms, (ii) to evaluate the combination of emotional demands and job control regarding insomnia symptoms, and (iii) to analyze the influence of social support in these relationships. This cross-sectional study refers to a sample of nurses (N = 3,013 and N = 3,035 for Job Strain and Emotional demand-control model, resp.) working at public hospitals in Rio de Janeiro, Brazil. Data were collected through a self-report questionnaire. The prevalence of insomnia symptoms was 34.3%. Job strain was associated with increased odds for insomnia symptoms (OR: 2.20); the same result was observed with the combination of emotional demands and low job control (OR: 1.99). In both models, the inclusion of low social support combined with high demands and low job control led to increased odds for insomnia symptoms, compared to groups with high social support from coworkers and supervisors. Besides job strain, the study of emotional demands and social support are promising with regards to insomnia symptoms, particularly among nurses. PMID:26557699

  4. Comparison of arbitrarily primed PCR and macrorestriction (pulsed-field gel electrophoresis) typing of Pseudomonas aeruginosa strains from cystic fibrosis patients.

    PubMed Central

    Kersulyte, D; Struelens, M J; Deplano, A; Berg, D E

    1995-01-01

    Arbitrarily primed PCR fingerprinting was carried out on 43 Pseudomonas aeruginosa isolates from cystic fibrosis (CF) patients. Seventeen major groups of strains that coincided with groups also distinguished by macrorestriction (pulsed-field gel electrophoresis) typing were identified. Our results illustrated that a CF patient can carry more than one strain and can carry a given strain for long periods of time and that strains can evolve by changes in drug resistance or other phenotypic traits during long-term colonization. The arbitrarily primed PCR method is recommended for first-pass screening of P. aeruginosa isolates from CF patients, especially when many strains are to be typed, because of its sensitivity and efficiency. PMID:7559985

  5. Ballistic electron transport calculation of strained germanium-tin fin field-effect transistors

    SciTech Connect

    Lan, H.-S.; Liu, C. W.

    2014-05-12

    The dependence of ballistic electron current on Sn content, sidewall orientations, fin width, and uniaxial stress is theoretically studied for the GeSn fin field-effect transistors. Alloying Sn increases the direct Γ valley occupancy and enhances the injection velocity at virtual source node. (112{sup ¯}) sidewall gives the highest current enhancement due to the rapidly increasing Γ valley occupancy. The non-parabolicity of the Γ valley affects the occupancy significantly. However, uniaxial tensile stress and the shrinkage of fin width reduce the Γ valley occupancy, and the currents are enhanced by increasing occupancy of specific indirect L valleys with high injection velocity.

  6. A traditional Japanese-style salt field is a niche for haloarchaeal strains that can survive in 0.5% salt solution

    PubMed Central

    Fukushima, Tadamasa; Usami, Ron; Kamekura, Masahiro

    2007-01-01

    Background Most of the haloarchaeal strains have been isolated from hypersaline environments such as solar evaporation ponds, salt lakes, or salt deposits, and they, with some exceptions, lyse or lose viability in very low-salt concentrations. There are no salty environments suitable for the growth of haloarchaea in Japan. Although Natrialba asiatica and Haloarcula japonica were isolated many years ago, the question, "Are haloarchaea really thriving in natural environments of Japan?" has remained unanswered. Results Ten strains were isolated from a traditional Japanese-style salt field at Nie, Noto Peninsula, Japan by plating out the soil samples directly on agar plates containing 30% (w/v) salts and 0.5% yeast extract. They were most closely related to strains of three genera, Haladaptatus, Halococcus, and Halogeometricum. Survival rates in 3% and 0.5% SW (Salt Water, solutions containing salts in approximately the same proportions as found in seawater) solutions at 37°C differed considerably depending on the strains. Two strains belonging to Halogeometricum as well as the type strain Hgm. borinquense died and lysed immediately after suspension. Five strains that belonged to Halococcus and a strain that may be a member of Halogeometricum survived for 1–2 days in 0.5% SW solution. Two strains most closely related to Haladaptatus possessed extraordinary strong tolerance to low salt conditions. About 20 to 34% of the cells remained viable in 0.5% SW after 9 days incubation. Conclusion In this study we have demonstrated that haloarchaea are really thriving in the soil of Japanese-style salt field. The haloarchaeal cells, particularly the fragile strains are suggested to survive in the micropores of smaller size silt fraction, one of the components of soil. The inside of the silt particles is filled with concentrated salt solution and kept intact even upon suspension in rainwater. Possible origins of the haloarchaea isolated in this study are discussed. PMID

  7. Nanoscale strain distributions in embedded SiGe semiconductor devices revealed by precession electron diffraction and dual lens dark field electron holography

    SciTech Connect

    Wang, Y. Y.; Cooper, D.; Bernier, N.; Rouviere, J.; Murray, C. E.; Bruley, J.

    2015-01-26

    The detailed strain distributions produced by embedded SiGe stressor structures are measured at high spatial resolution with high precision, with dual lens dark field electron holography and precession electron diffraction. Shear strain and lattice rotation within the crystalline lattice are observed at the boundaries between the SiGe and Si regions. The experimental results are compared to micromechanical modeling simulations to understand the mechanisms of elastic relaxation on all the modes of deformation at a sub-micron length scale.

  8. Nondestructive and Localized Measurements of Stress-Strain Curves and Fracture Toughness of Ferritic Steels at Various Temperatures Using Innovative Stress-Strain Microprobe Technology. Final Report for Period 8/13/1996--06/16/1999

    SciTech Connect

    Fahmy M. Haggag

    1999-10-29

    The results presented in this report demonstrate the capabilities of Advanced Technology Corporation's patented Portable/In Situ Stress-Strain Microprobe (TM) (SSM) System and its Automated Ball Indentation (ABI) test techniques to nondestructively measure the yield strength, the stress-strain curve, and the fracture toughness of ferritic steel samples and components in a reliable and accurate manner.

  9. Modulation of metal-insulator transitions by field-controlled strain in NdNiO3/SrTiO3/PMN-PT (001) heterostructures

    PubMed Central

    Heo, Seungyang; Oh, Chadol; Eom, Man Jin; Kim, Jun Sung; Ryu, Jungho; Son, Junwoo; Jang, Hyun Myung

    2016-01-01

    The band width control through external stress has been demonstrated as a useful knob to modulate metal-insulator transition (MIT) in RNiO3 as a prototype correlated materials. In particular, lattice mismatch strain using different substrates have been widely utilized to investigate the effect of strain on transition temperature so far but the results were inconsistent in the previous literatures. Here, we demonstrate dynamic modulation of MIT based on electric field-controlled pure strain in high-quality NdNiO3 (NNO) thin films utilizing converse-piezoelectric effect of (001)-cut - (PMN-PT) single crystal substrates. Despite the difficulty in the NNO growth on rough PMN-PT substrates, the structural quality of NNO thin films has been significantly improved by inserting SrTiO3 (STO) buffer layers. Interestingly, the MIT temperature in NNO is downward shifted by ~3.3 K in response of 0.25% in-plane compressive strain, which indicates less effective TMI modulation of field-induced strain than substrate-induced strain. This study provides not only scientific insights on band-width control of correlated materials using pure strain but also potentials for energy-efficient electronic devices. PMID:26916618

  10. Modulation of metal-insulator transitions by field-controlled strain in NdNiO3/SrTiO3/PMN-PT (001) heterostructures

    NASA Astrophysics Data System (ADS)

    Heo, Seungyang; Oh, Chadol; Eom, Man Jin; Kim, Jun Sung; Ryu, Jungho; Son, Junwoo; Jang, Hyun Myung

    2016-02-01

    The band width control through external stress has been demonstrated as a useful knob to modulate metal-insulator transition (MIT) in RNiO3 as a prototype correlated materials. In particular, lattice mismatch strain using different substrates have been widely utilized to investigate the effect of strain on transition temperature so far but the results were inconsistent in the previous literatures. Here, we demonstrate dynamic modulation of MIT based on electric field-controlled pure strain in high-quality NdNiO3 (NNO) thin films utilizing converse-piezoelectric effect of (001)-cut - (PMN-PT) single crystal substrates. Despite the difficulty in the NNO growth on rough PMN-PT substrates, the structural quality of NNO thin films has been significantly improved by inserting SrTiO3 (STO) buffer layers. Interestingly, the MIT temperature in NNO is downward shifted by ~3.3 K in response of 0.25% in-plane compressive strain, which indicates less effective TMI modulation of field-induced strain than substrate-induced strain. This study provides not only scientific insights on band-width control of correlated materials using pure strain but also potentials for energy-efficient electronic devices.

  11. Modulation of metal-insulator transitions by field-controlled strain in NdNiO3/SrTiO3/PMN-PT (001) heterostructures.

    PubMed

    Heo, Seungyang; Oh, Chadol; Eom, Man Jin; Kim, Jun Sung; Ryu, Jungho; Son, Junwoo; Jang, Hyun Myung

    2016-01-01

    The band width control through external stress has been demonstrated as a useful knob to modulate metal-insulator transition (MIT) in RNiO3 as a prototype correlated materials. In particular, lattice mismatch strain using different substrates have been widely utilized to investigate the effect of strain on transition temperature so far but the results were inconsistent in the previous literatures. Here, we demonstrate dynamic modulation of MIT based on electric field-controlled pure strain in high-quality NdNiO3 (NNO) thin films utilizing converse-piezoelectric effect of (001)-cut Pb(Mg(1/3)Nb(2/3)O3-(PbTiO3) (PMN-PT) single crystal substrates. Despite the difficulty in the NNO growth on rough PMN-PT substrates, the structural quality of NNO thin films has been significantly improved by inserting SrTiO3 (STO) buffer layers. Interestingly, the MIT temperature in NNO is downward shifted by ~3.3 K in response of 0.25% in-plane compressive strain, which indicates less effective TMI modulation of field-induced strain than substrate-induced strain. This study provides not only scientific insights on band-width control of correlated materials using pure strain but also potentials for energy-efficient electronic devices. PMID:26916618

  12. Nanoscale Strain Fields Research of Boundaries between B2 Matrix and G.P. Zone in Ni-Ti Alloy Thin Films

    PubMed Central

    Zhao, Shilei; Zhao, Chunwang

    2014-01-01

    Ti-47at.%Ni alloy films were prepared by magnetron sputtering followed by 460°C for 40 minutes heat-treatment. The strain fields between B2 phase matrix and G.P. zone were mapped by a combination of high-resolution transmission electron microscopy and geometric phase analysis method. It was found that there is a compressive strain region parallel to the longitudinal axis of G.P. zone with 2 nm in width, −2.2% in average strain at the boundaries between B2 phase and G.P. zone. PMID:24782660

  13. Lower Crustal Seismicity, Volatiles, and Evolving Strain Fields During the Initial Stages of Cratonic Rifting

    NASA Astrophysics Data System (ADS)

    Lambert, C.; Muirhead, J.; Ebinger, C. J.; Tiberi, C.; Roecker, S. W.; Ferdinand-Wambura, R.; Kianji, G.; Mulibo, G. D.

    2014-12-01

    The volcanically active East African rift system in southern Kenya and northern Tanzania transects thick cratonic lithosphere, and comprises several basins characterized by deep crustal seismicity. The US-French-Tanzania-Kenya CRAFTI project aims to understand the role of magma and volatile movement during the initiation and evolution of rifting in cratonic lithosphere. Our 38-station broadband network spans all or parts of fault-bounded rift segments, enabling comparison of lithospheric structure, fault kinematics, and seismogenic layer thickness with age and proximity to the deeply rooted Archaen craton. Seismicity levels are high in all basins, but we find profound differences in seismogenic layer thickness along the length of the rift. Seismicity in the Manyara basin occurs almost exclusively within the lower crust, and in spatial clusters that have been active since 1990. In contrast, seismicity in the ~ 5 My older Magadi basin is localized in the upper crust, and the long border fault bounding the west side of the basin is seismically inactive. Between these two basins lies the Natron rift segment, which shows seismicity between ~ 20 and ~2 km depth, and high concentrations at Oldoinyo Lengai and Gelai volcanoes. Older volcanoes on the uplifted western flank (e.g., Ngorongoro) experience swarms of activity, suggesting that active magmatism and degassing are widespread. Focal mechanisms of the frequent earthquakes recorded across the array are spatially variable, and indicate a stress field strongly influenced by (1) Holocene volcanoes, (2) mechanical interactions between adjacent rift basins, and (3) a far-field ESE-WNW extensional stress regime. We explore the spatial correlation between zones of intense degassing along fault systems and seismicity, and examine the influence of high gas pressures on lower and upper crustal seismicity in this youthful cratonic rift zone.

  14. Evolution of the stress and strain fields in the Eastern Cordillera, Colombia

    NASA Astrophysics Data System (ADS)

    Kellogg, J. N.; Egbue, O. K.; Aguirre, H.; Torres, C.

    2013-05-01

    This work integrates stress data from Global Positioning System measurements and earthquake focal mechanism solutions, with new borehole breakout and natural fracture system data to better understand the complex interactions between the major tectonic plates in northwestern South America and to examine how the stress regime in the Eastern Cordillera and the Llanos foothills in Colombia has evolved through time. The dataset was used to generate an integrated stress map of the northern Andes and to propose a model for stress evolution in the Eastern Cordillera. In the Cordillera, the primary present-day maximum principal stress direction is WNW-ESE to NW-SE, and is in the direction of maximum shortening in the mountain range. There is also a secondary maximum principal stress direction that is E-W to ENE-WSW, which is associated with the northeastward "escape" of the North Andean block, relative to stable South America. In the Cupiagua hydrocarbon field, located in the Llanos foothills, the dominant NNE-SSW fractures are produced by the Panama arc-North Andes collision and range-normal compression. However, less well developed asymmetrical fractures oriented E-W to WSW-ENE and NNW-SSE are also present, and may be related to pre-folding stresses in the foreland basin of the Central Cordillera or to present-day shear associated with the northeastward "escape" of the north Andean block. Our study results suggest that an important driver for orogenic deformation and changes in the stress field at obliquely convergent subduction zone boundaries is the arrival of thickened crust, such as island arcs and aseismic ridges, at the trench. Schematic 3-D tectonic model for the northern Andes showing principal plate boundaries

  15. Evolution of the stress and strain fields in the Eastern Cordillera, Colombia

    NASA Astrophysics Data System (ADS)

    Egbue, Obi; Kellogg, James; Aguirre, Hector; Torres, Carolina

    2014-01-01

    This work integrates stress data from Global Positioning System measurements and earthquake focal mechanism solutions, with new borehole breakout and natural fracture system data to better understand the complex interactions between the major tectonic plates in northwestern South America and to examine how the stress regime in the Eastern Cordillera and the Llanos foothills in Colombia has evolved through time. The dataset was used to generate an integrated stress map of the northern Andes and to propose a model for stress evolution in the Eastern Cordillera. In the Cordillera, the primary present-day maximum principal stress direction is WNW-ESE to NW-SE, and is in the direction of maximum shortening in the mountain range. There is also a secondary maximum principal stress direction that is E-W to ENE-WSW, which is associated with the northeastward “escape” of the North Andean block, relative to stable South America. In the Cupiagua hydrocarbon field, located in the Llanos foothills, the dominant NNE-SSW fractures are produced by the Panama arc-North Andes collision and range-normal compression. However, less well developed asymmetrical fractures oriented E-W to WSW-ENE and NNW-SSE are also present, and may be related to pre-folding stresses in the foreland basin of the Central Cordillera or to present-day shear associated with the northeastward “escape” of the north Andean block. Our study results suggest that an important driver for orogenic deformation and changes in the stress field at obliquely convergent subduction zone boundaries is the arrival of thickened crust, such as island arcs and aseismic ridges, at the trench.

  16. Condensation of two-dimensional oxide-interfacial charges into one-dimensional electron chains by the misfit-dislocation strain field

    NASA Astrophysics Data System (ADS)

    Chang, C.-P.; Chu, M.-W.; Jeng, H. T.; Cheng, S.-L.; Lin, J. G.; Yang, J.-R.; Chen, C. H.

    2014-03-01

    The success of semiconductor technology is largely ascribed to controlled impacts of strains and defects on the two-dimensional interfacial charges. Interfacial charges also appear in oxide heterojunctions such as LaAlO3/SrTiO3 and (Nd0.35Sr0.65)MnO3/SrTiO3. How the localized strain field of one-dimensional misfit dislocations, defects resulting from the intrinsic misfit strains, would affect the extended oxide-interfacial charges is intriguing and remains unresolved. Here we show the atomic-scale observation of one-dimensional electron chains formed in (Nd0.35Sr0.65)MnO3/SrTiO3 by the condensation of characteristic two-dimensional interfacial charges into the strain field of periodically arrayed misfit dislocations, using chemical mapping and quantification by scanning transmission electron microscopy. The strain-relaxed inter-dislocation regions are readily charge depleted, otherwise decorated by the pristine charges, and the corresponding total-energy calculations unravel the undocumented charge-reservoir role played by the dislocation-strain field. This two-dimensional-to-one-dimensional electronic condensation represents a novel electronic-inhomogeneity mechanism at oxide interfaces and could stimulate further studies of one-dimensional electron density in oxide heterostructures.

  17. Condensation of two-dimensional oxide-interfacial charges into one-dimensional electron chains by the misfit-dislocation strain field.

    PubMed

    Chang, C-P; Chu, M-W; Jeng, H T; Cheng, S-L; Lin, J G; Yang, J-R; Chen, C H

    2014-01-01

    The success of semiconductor technology is largely ascribed to controlled impacts of strains and defects on the two-dimensional interfacial charges. Interfacial charges also appear in oxide heterojunctions such as LaAlO3/SrTiO3 and (Nd0.35Sr0.65)MnO3/SrTiO3. How the localized strain field of one-dimensional misfit dislocations, defects resulting from the intrinsic misfit strains, would affect the extended oxide-interfacial charges is intriguing and remains unresolved. Here we show the atomic-scale observation of one-dimensional electron chains formed in (Nd0.35Sr0.65)MnO3/SrTiO3 by the condensation of characteristic two-dimensional interfacial charges into the strain field of periodically arrayed misfit dislocations, using chemical mapping and quantification by scanning transmission electron microscopy. The strain-relaxed inter-dislocation regions are readily charge depleted, otherwise decorated by the pristine charges, and the corresponding total-energy calculations unravel the undocumented charge-reservoir role played by the dislocation-strain field. This two-dimensional-to-one-dimensional electronic condensation represents a novel electronic-inhomogeneity mechanism at oxide interfaces and could stimulate further studies of one-dimensional electron density in oxide heterostructures. PMID:24663109

  18. Trip report for field visit to Fayetteville Shale gas wells.

    SciTech Connect

    Veil, J. A.; Environmental Science Division

    2007-09-30

    This report describes a visit to several gas well sites in the Fayetteville Shale on August 9, 2007. I met with George Sheffer, Desoto Field Manager for SEECO, Inc. (a large gas producer in Arkansas). We talked in his Conway, Arkansas, office for an hour and a half about the processes and technologies that SEECO uses. We then drove into the field to some of SEECO's properties to see first-hand what the well sites looked like. In 2006, the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL) made several funding awards under a program called Low Impact Natural Gas and Oil (LINGO). One of the projects that received an award is 'Probabilistic Risk-Based Decision Support for Oil and Gas Exploration and Production Facilities in Sensitive Ecosystems'. The University of Arkansas at Fayetteville has the lead on the project, and Argonne National Laboratory is a partner. The goal of the project is to develop a Web-based decision support tool that will be used by mid- and small-sized oil and gas companies as well as environmental regulators and other stakeholders to proactively minimize adverse ecosystem impacts associated with the recovery of gas reserves in sensitive areas. The project focuses on a large new natural gas field called the Fayetteville Shale. Part of the project involves learning how the natural gas operators do business in the area and the technologies they employ. The field trip on August 9 provided an opportunity to do that.

  19. Strains and polarization developed during electric field-induced antiferroelectric to ferroelectric phase transformations in lead zirconate-based ceramics

    NASA Astrophysics Data System (ADS)

    Frederick, Joshua

    Widespread adoption of renewable energy sources, such as wind and solar power, will necessitate an efficient way to interface with energy storage devices in order to ensure around-the-clock energy delivery during off-peak hours. Energy storage devices implementing linear dielectric capacitors offer exceptional power density (i.e. rate of charge/discharge), but cannot match the energy density (i.e. storage capacity) of batteries. However, replacing the linear dielectric in capacitors with an antiferroelectric material has the potential to increase the energy density by approximately one order of magnitude. Since the energy is stored via a reversible and diffusionless antiferroelectric-to-ferroelectric phase transformation, the high power density is maintained. In this study, the response of antiferroelectric Pb0.99Nb 0.02[(Zr0.57Sn0.43)1-yTi y]0.98O3 ceramics with compositions near an antiferroelectric/ferroelectric phase boundary were systemically characterized in the presence of electric fields. By altering the titanium content ( y in the chemical formula) the phase boundary was incrementally approached, allowing for detailed study of the electric field-induced phase transformation in this region of structural instability. The key parameters of polarization, longitudinal strain, and transverse strain were simultaneously recorded as a function of externally applied electric fields on all compositions. It was found that the volume expansion and polarization developed during the antiferroelectric-to-ferroelectric phase transformation remained ~0.4% and ~30 muC/cm2, respectively, regardless of the composition in the range of 0.060 ≤ y ≤ 0.075. However, the critical field strengths associated with the phase transformation varied in a linear fashion with y, supporting the suggestion that increasing the titanium content strengthens the ferroelectric ordering of the system. Application of axial and radial compressive pre-stresses to samples with composition y = 0

  20. X-ray diffraction mapping of strain fields and chemical composition of SiGe:Si(001) quantum dot molecules

    SciTech Connect

    Leite, M. S.; Gray, J. L.; Hull, R.; Floro, J. A.; Magalhaes-Paniago, R.; Medeiros-Ribeiro, G.

    2006-03-15

    A variety of surface morphologies can be formed by controlling kinetic parameters during heteroepitaxial film growth. The system reported is a Si{sub 0.7}Ge{sub 0.3} film grown by molecular beam epitaxy at 550 deg. C and a 1 A/s deposition rate, producing quantum dot molecule (QDM) structures. These nanostructures are very uniform in size and shape, allowing strain mapping and chemical composition evaluation by means of anomalous x-ray diffraction in a grazing incidence geometry. Tensile and compressed regions coexist inside QDMs, in accordance with the finite-element calculations of lattice relaxation. The Ge content was found to vary significantly within the structures, and to be quite different from the nominal composition.

  1. A Summary of Fault Recurrence and Strain Rates in the Vicinity of the Hanford Site--Topical Report

    SciTech Connect

    Bjornstad, Bruce N.; Winsor, Kelsey; Unwin, Stephen D.

    2012-08-01

    This document is one in a series of topical reports compiled by the Pacific Northwest National Laboratory to summarize technical information on selected topics important to the performance of a probabilistic seismic hazard analysis of the Hanford Site. The purpose of this report is to summarize available data and analyses relevant to fault recurrence and strain rates within the Yakima Fold Belt. Strain rates have met with contention in the expert community and may have a significant potential for impact on the seismic hazard estimate at the Hanford Site. This report identifies the alternative conceptual models relevant to this technical issue and the arguments and data that support those models. It provides a brief description of the technical issue and principal uncertainties; a general overview on the nature of the technical issue, along with alternative conceptual models, supporting arguments and information, and uncertainties; and finally, suggests some prospective approaches to reducing uncertainties about earthquake recurrence rates for the Yakima Fold Belt.

  2. Effect of in-plane magnetic field and applied strain in quantum spin Hall systems: Application to InAs/GaSb quantum wells

    NASA Astrophysics Data System (ADS)

    Hu, Lun-Hui; Xu, Dong-Hui; Zhang, Fu-Chun; Zhou, Yi

    2016-08-01

    Motivated by the recent discovery of quantized spin Hall effect in InAs/GaSb quantum wells [Du, Knez, Sullivan, and Du, Phys. Rev. Lett. 114, 096802 (2015), 10.1103/PhysRevLett.114.096802], we theoretically study the effects of in-plane magnetic field and strain effect to the quantization of charge conductance by using Landauer-B ütikker formalism. Our theory predicts a robustness of the conductance quantization against the in-plane magnetic field up to a very high field of 20 T. We use a disordered hopping term to model the strain and show that the strain may help the quantization of the conductance. Relevance to the experiments will be discussed.

  3. Effect of biaxial strain and external electric field on electronic properties of MoS2 monolayer: A first-principle study

    NASA Astrophysics Data System (ADS)

    Nguyen, Chuong V.; Hieu, Nguyen N.

    2016-04-01

    In this work, making use of density functional theory (DFT) computations, we systematically investigate the effect of biaxial strain engineering and external electric field applied perpendicular to the layers on the band gaps and electronic properties of monolayer MoS2. The direct-to-indirect band gaps and semiconductor-to-metal transition are observed in monolayer MoS2 when strain and electric field are applied in our calculation. We show that when the biaxial strain and external electric field are introduced, the electronic properties including band gaps of monolayer MoS2 can be reduced to zero. Our results provide many useful insights for the wide applications of monolayer MoS2 in electronics and optoelectronics.

  4. Comparison of multiple genes and 16S-23S rRNA intergenic space region for their capacity in high resolution melt curve analysis to differentiate Mycoplasma gallisepticum vaccine strain ts-11 from field strains.

    PubMed

    Ghorashi, Seyed A; Bradbury, Janet M; Ferguson-Noel, Naola M; Noormohammadi, Amir H

    2013-12-27

    Mycoplasma gallisepticum (MG) is an important avian pathogen causing significant economic losses in the global poultry industry. In an attempt to compare and evaluate existing genotyping methods for differentiation of MG strains/isolates, high resolution melt (HRM) curve analysis was applied to 5 different PCR methods targeting vlhA, pvpA, gapA, mgc2 genes and 16S-23S rRNA intergenic space region (IGSR). To assess the discriminatory power of PCR-HRM of examined genes and IGSR, MG strains ts-11, F, 6/85 and S6, and, initially, 8 field isolates were tested. All MG strains/isolates were differentiated using PCR-HRM curve analysis and genotype confidence percentage (GCP) values of vlhA and pvpA genes, while only 0, 3 and 4 out of 12 MG strains/isolates were differentiated using gapA, mgc2 genes and IGSR, respectively. The HRM curve analysis of vlhA and pvpA genes was found to be highly correlated with the genetic diversity of the targeted genes confirmed by sequence analysis of amplicons generated from MG strains. The potential of the vlhA and pvpA genes was also demonstrated for genotyping of 12 additional MG strains from Europe and the USA. Results from this study provide a direct comparison between genes previously used in sequencing-based genotyping methods for MG strain identification and highlight the usefulness of vlhA and pvpA HRM curve analyses as rapid and reliable tools specially for diagnosis and differentiation of MG strains used here. PMID:24238667

  5. Genetic Variability and Geographical Distribution of Mycotoxigenic Fusarium verticillioides Strains Isolated from Maize Fields in Texas

    PubMed Central

    Ortiz, Carlos S.; Richards, Casey; Terry, Ashlee; Parra, Joselyn; Shim, Won-Bo

    2015-01-01

    Maize is the dominant cereal crop produced in the US. One of the main fungal pathogens of maize is Fusarium verticillioides, the causative agent of ear and stalk rots. Significantly, the fungus produces a group of mycotoxins - fumonisins - on infested kernels, which have been linked to various illnesses in humans and animals. Nonetheless, durable resistance against F. verticillioides in maize is not currently available. In Texas, over 2.1 million acres of maize are vulnerable to fumonisin contamination, but understanding of the distribution of toxigenic F. verticillioides in maize-producing areas is currently lacking. Our goal was to investigate the genetic variability of F. verticillioides in Texas with an emphasis on fumonisin trait and geographical distribution. A total of 164 F. verticillioides cultures were isolated from 65 maize-producing counties. DNA from each isolate was extracted and analyzed by PCR for the presence of FUM1- a key fumonisin biosynthesis gene - and mating type genes. Results showed that all isolates are in fact F. verticillioides capable of producing fumonisins with a 1:1 mating-type gene ratio in the population. To further study the genetic diversity of the population, isolates were analyzed using RAPD fingerprinting. Polymorphic markers were identified and the analysis showed no clear correlation between the RAPD profile of the isolates and their corresponding geographical origin. Our data suggest the toxigenic F. verticillioides population in Texas is widely distributed wherever maize is grown. We also hypothesize that the population is fluid, with active movement and genetic recombination occurring in the field. PMID:26361468

  6. Genetic Variability and Geographical Distribution of Mycotoxigenic Fusarium verticillioides Strains Isolated from Maize Fields in Texas.

    PubMed

    Ortiz, Carlos S; Richards, Casey; Terry, Ashlee; Parra, Joselyn; Shim, Won-Bo

    2015-09-01

    Maize is the dominant cereal crop produced in the US. One of the main fungal pathogens of maize is Fusarium verticillioides, the causative agent of ear and stalk rots. Significantly, the fungus produces a group of mycotoxins - fumonisins - on infested kernels, which have been linked to various illnesses in humans and animals. Nonetheless, durable resistance against F. verticillioides in maize is not currently available. In Texas, over 2.1 million acres of maize are vulnerable to fumonisin contamination, but understanding of the distribution of toxigenic F. verticillioides in maize-producing areas is currently lacking. Our goal was to investigate the genetic variability of F. verticillioides in Texas with an emphasis on fumonisin trait and geographical distribution. A total of 164 F. verticillioides cultures were isolated from 65 maize-producing counties. DNA from each isolate was extracted and analyzed by PCR for the presence of FUM1- a key fumonisin biosynthesis gene - and mating type genes. Results showed that all isolates are in fact F. verticillioides capable of producing fumonisins with a 1:1 mating-type gene ratio in the population. To further study the genetic diversity of the population, isolates were analyzed using RAPD fingerprinting. Polymorphic markers were identified and the analysis showed no clear correlation between the RAPD profile of the isolates and their corresponding geographical origin. Our data suggest the toxigenic F. verticillioides population in Texas is widely distributed wherever maize is grown. We also hypothesize that the population is fluid, with active movement and genetic recombination occurring in the field. PMID:26361468

  7. Field trip report: Observations made at Yucca Mountain, Nye County, Nevada. Special report No. 2

    SciTech Connect

    Hill, C.A.

    1993-03-01

    A field trip was made to the Yucca Mountain area on December 5-9, 1992 by Jerry Frazier, Don Livingston, Christine Schluter, Russell Harmon, and Carol Hill. Forty-three separate stops were made and 275 lbs. of rocks were collected during the five days of the field trip. Key localities visited were the Bare Mountains, Yucca Mountain, Calico Hills, Busted Butte, Harper Valley, Red Cliff Gulch, Wahmonie Hills, Crater Flat, and Lathrop Wells Cone. This report only describes field observations made by Carol Hill. Drawings are used rather than photographs because cameras were not permitted on the Nevada Test Site during this trip.

  8. Projector Augmented-Wave formulation of response to strain and electric field perturbation within the density-functional perturbation theory

    NASA Astrophysics Data System (ADS)

    Martin, Alexandre; Torrent, Marc; Caracas, Razvan

    2015-03-01

    A formulation of the response of a system to strain and electric field perturbations in the pseudopotential-based density functional perturbation theory (DFPT) has been proposed by D.R Hamman and co-workers. It uses an elegant formalism based on the expression of DFT total energy in reduced coordinates, the key quantity being the metric tensor and its first and second derivatives. We propose to extend this formulation to the Projector Augmented-Wave approach (PAW). In this context, we express the full elastic tensor including the clamped-atom tensor, the atomic-relaxation contributions (internal stresses) and the response to electric field change (piezoelectric tensor and effective charges). With this we are able to compute the elastic tensor for all materials (metals and insulators) within a fully analytical formulation. The comparison with finite differences calculations on simple systems shows an excellent agreement. This formalism has been implemented in the plane-wave based DFT ABINIT code. We apply it to the computation of elastic properties and seismic-wave velocities of iron with impurity elements. By analogy with the materials contained in meteorites, tested impurities are light elements (H, O, C, S, Si).

  9. Electric field-induced nonlinearity enhancement in strained semi-spheroid-shaped quantum dots coupled to wetting layer

    SciTech Connect

    Sabaeian, Mohammad Shahzadeh, Mohammadreza; Farbod, Mansoor

    2014-12-15

    In this work, the effects of vertical electric field on the electronic and optical properties of strained semi-spheroid-shaped InAs/GaAs quantum dot (QD) coupled to its wetting layer (WL) aimed to enhance the nonlinear optical properties were investigated. The dependence of energy eigenvalues of S- and P- states and intersubband P-to-S transition energy on applied electric field was studied. A ∼∓10 meV Stark shift in the intersubband P-to-S transition energy was calculated for a semi-spheroid-shaped QD with height of 5 nm and base-length of 20 nm when bias voltage was varied from 0 V to ±0.8V. The dependence of transition dipole moment and linear and nonlinear optical properties of the system on bias voltage was also studied. It was concluded that increasing the bias voltage from -0.8V to +0.8V leads to increase in figure of merit of the system from ∼0.153 to ∼0.198.

  10. Microstructure for ferroelastic transitions from strain pseudo-spin clock models in two and three dimensions: a mean field analysis

    SciTech Connect

    Lookman, Turab; Vasseur, Romain

    2009-01-01

    We obtain the microstructure of ferroelastic transitions in two and three dimensions from the solution of their corresponding discrete pseudo-spin models. In two dimensions we consider two transitions each from the high symmetry square and triangle symmetries: square-to-rectangle (SR), square-to-oblique (SO), triangle-to-centered rectangle (TR) and triangle-to-oblique (TO). In three dimensions we study the corresponding spin model for the cubic to tetragonal transition. The Landau free energies for these transitions result in N+ I states clock models (Z{sub N}) with long range interactions and we derive mean-field self-consistency equations for the clock model Hamiltonians. The microstructures from the mean-field solutions of the models are very similar to those obtained from the original continuum models or Monte Carlo simulations on the spin models (in the SR case), illustrating that these discrete models capture the salient physics. The models, in the presence of disorder, provide the basis for the study of the strain glass phase observed in martensitic alloys.

  11. Field transportable beta spectrometer. Innovative technology summary report

    SciTech Connect

    1998-12-01

    The objective of the Large-Scale Demonstration Project (LSDP) is to select and demonstrate potentially beneficial technologies at the Argonne National Laboratory-East (ANL) Chicago Pile-5 Test Reactor (CP-5). The purpose of the LSDP is to demonstrate that by using innovative and improved deactivation and decommissioning (D and D) technologies from various sources, significant benefits can be achieved when compared to baseline D and D technologies. One such capability being addressed by the D and D Focus Area is rapid characterization for facility contaminants. The technology was field demonstrated during the period January 7 through January 9, 1997, and offers several potential benefits, including faster turn-around time, cost reduction, and reduction in secondary waste. This report describes a PC controlled, field-transportable beta counter-spectrometer which uses solid scintillation coincident counting and low-noise photomultiplier tubes to count element-selective filters and other solid media. The dry scintillation counter used in combination with an element-selective technology eliminates the mess and disposal costs of liquid scintillation cocktails. Software in the instrument provides real-time spectral analysis. The instrument can detect and measure Tc-99, Sr-90, and other beta emitters reaching detection limits in the 20 pCi range (with shielding). Full analysis can be achieved in 30 minutes. The potential advantages of a field-portable beta counter-spectrometer include the savings gained from field generated results. The basis for decision-making is provided with a rapid turnaround analysis in the field. This technology would be competitive with the radiometric analysis done in fixed laboratories and the associated chain of custody operations.

  12. Cascaded fiber-optic Fabry-Perot interferometers with Vernier effect for highly sensitive measurement of axial strain and magnetic field.

    PubMed

    Zhang, Peng; Tang, Ming; Gao, Feng; Zhu, Benpeng; Fu, Songnian; Ouyang, Jun; Shum, Perry Ping; Liu, Deming

    2014-08-11

    We report a highly sensitive fiber-optic sensor based on two cascaded intrinsic fiber Fabry-Perot interferometers (IFFPIs). The cascaded IFFPIs have different free spectral ranges (FSRs) and are formed by a short section of hollow core photonic crystal fiber sandwiched by two single mode fibers. With the superposition of reflective spectrum with different FSRs, the Vernier effect will be generated in the proposed sensor and we found that the strain sensitivity of the proposed sensor can be improved from 1.6 pm/με for a single IFFPI sensor to 47.14 pm/με by employing the Vernier effect. The sensor embed with a metglas ribbon can be also used to measure the magnetic field according to the similar principle. The sensitivity of the magnetic field measurement is achieved to be 71.57 pm/Oe that is significantly larger than the 2.5 pm/Oe for a single IFFPI sensor. PMID:25321041

  13. Electronic and magnetic properties of armchair MoS{sub 2} nanoribbons under both external strain and electric field, studied by first principles calculations

    SciTech Connect

    Hu, Ting; Dong, Jinming; Zhou, Jian; Kawazoe, Yoshiyuki

    2014-08-14

    The electronic and magnetic properties of armchair edge MoS{sub 2} nanoribbons (MoS{sub 2}-ANRs) underboth the external strain and transverse electric field (E{sub t}) have been systematically investigated by using the first-principles calculations. It is found that: (1) If no electric field is applied, an interesting structural phase transition would appear under a large tensile strain, leading to a new phase MoS{sub 2}-A'NR, and inducing a big jump peak of the band gap in the transition region. But, the band gap response to compressive strains is much different from that to tensile strain, showing no the structural phase transition. (2) Under the small tensile strains (<10%), the combined E{sub t} and tensile strain give rise to a positive superposition (resonant) effect on the band gap reduction at low E{sub t} (<3 V/nm), and oppositely a negative superposition (antiresonant) one at high E{sub t} (>4 V/nm). On the other hand, the external compressive strains have always presented the resonant effect on the band gap reduction, induced by the electric field. (3) After the structural phase transition, an external large tensile strain could greatly reduce the critical field E{sub tc} causing the band gap closure, and make the system become a ferromagnetic (FM) metal at a relative low E{sub t} (e.g., <4 V/nm), which is very helpful for its promising applications in nano-mechanical spintronics devices. (4) At high E{sub t} (>10 V/nm), the magnetic moments of both the MoS{sub 2}-ANR and MoS{sub 2}-A'NR in their FM states could be enhanced greatly by a tensile strain. Our numerical results of effectively tuning physical properties of MoS{sub 2}-ANRs by combined external strain and electric field may open their new potential applications in nanoelectronics and spintronics.

  14. Formation mechanism of germanium self-assembled quantum dots (SAQDs) on silicon(001) with an undulated strain field

    NASA Astrophysics Data System (ADS)

    Kim, Hyung Jun

    Ge self-assembled quantum dots (SAQDs) are grown on a relaxed Si 1-xGex buffer layer in molecular beam epitaxy (MBE). The formation mechanism and process of Ge SAQDs are investigated for the ultimate goal of size and shape uniformity with regular distribution. Many factors influencing the uniformity and spatial distribution are interrelated but have not been understood completely. Understanding key parameters of the uniformity as well as the surface diffusion of Ge adatom facilitate the fabrication of SAQDs for better opto-electronic device performance. A relaxed Si1-x Gex buffer layer grown on a Si(001) substrate leads to undulated strain field by the formation of buried dislocations. As a result, Ge SAQDs are preferentially nucleated over the buried dislocations. Major findings of this thesis research include the following Si-Ge inter-diffusion is much more rapid at the surface comparing to at the interface inside the bulk crystal; commonly observed pyramid-to-dome transition of Ge SAQDs on Si(001) depends significantly on the strain in SAQDs; a well designed, partially relaxed buffer layer is a very useful vehicle for studying surface processes. Two-step growth for Ge SAQDs employed in this study greatly improves the size and shape uniformity with a dominant shape of dome. Ge wetting-layer is grown at a significantly lower temperature compared to three-dimensional Ge islands. This new approach minimizes the inter-diffusion causing the bulk diffusion of Si from a substrate into Ge SAQDs. The critical size of pyramid-to-dome transition strongly depending on the misfit strain within dots is considerably smaller in two-step samples, implying the lower faction of Si in Ge SAQDs. The larger critical size of SiyGe1-y alloy SAQDs with higher Si fraction further illustrates the effect of the lower misfit strain resulting from the inter-diffusion. On the other hand, the buried misfit dislocations not only provide the lowest energy site for Ge SAQDs nucleation but also

  15. Strain measurement at the nanoscale: Comparison between convergent beam electron diffraction, nano-beam electron diffraction, high resolution imaging and dark field electron holography.

    PubMed

    Béché, A; Rouvière, J L; Barnes, J P; Cooper, D

    2013-08-01

    Convergent beam electron diffraction (CBED), nano-beam electron diffraction (NBED or NBD), high resolution imaging (HRTEM and HRSTEM) and dark field electron holography (DFEH or HoloDark) are five TEM based techniques able to quantitatively measure strain at the nanometer scale. In order to demonstrate the advantages and disadvantages of each technique, two samples composed of epitaxial silicon-germanium layers embedded in a silicon matrix have been investigated. The five techniques are then compared in terms of strain precision and accuracy, spatial resolution, field of view, mapping abilities and ease of performance and analysis. PMID:23673283

  16. Full Genome Characterisation of Bluetongue Virus Serotype 6 from the Netherlands 2008 and Comparison to Other Field and Vaccine Strains

    PubMed Central

    Maan, Sushila; Maan, Narender S.; van Rijn, Piet A.; van Gennip, René G. P.; Sanders, Anna; Wright, Isabel M.; Batten, Carrie; Hoffmann, Bernd; Eschbaumer, Michael; Oura, Chris A. L.; Potgieter, Abraham C.; Nomikou, Kyriaki; Mertens, Peter P.C.

    2010-01-01

    In mid September 2008, clinical signs of bluetongue (particularly coronitis) were observed in cows on three different farms in eastern Netherlands (Luttenberg, Heeten, and Barchem), two of which had been vaccinated with an inactivated BTV-8 vaccine (during May-June 2008). Bluetongue virus (BTV) infection was also detected on a fourth farm (Oldenzaal) in the same area while testing for export. BTV RNA was subsequently identified by real time RT-PCR targeting genome-segment (Seg-) 10, in blood samples from each farm. The virus was isolated from the Heeten sample (IAH “dsRNA virus reference collection” [dsRNA-VRC] isolate number NET2008/05) and typed as BTV-6 by RT-PCR targeting Seg-2. Sequencing confirmed the virus type, showing an identical Seg-2 sequence to that of the South African BTV-6 live-vaccine-strain. Although most of the other genome segments also showed very high levels of identity to the BTV-6 vaccine (99.7 to 100%), Seg-10 showed greatest identity (98.4%) to the BTV-2 vaccine (RSAvvv2/02), indicating that NET2008/05 had acquired a different Seg-10 by reassortment. Although Seg-7 from NET2008/05 was also most closely related to the BTV-6 vaccine (99.7/100% nt/aa identity), the Seg-7 sequence derived from the blood sample of the same animal (NET2008/06) was identical to that of the Netherlands BTV-8 (NET2006/04 and NET2007/01). This indicates that the blood contained two different Seg-7 sequences, one of which (from the BTV-6 vaccine) was selected during virus isolation in cell-culture. The predominance of the BTV-8 Seg-7 in the blood sample suggests that the virus was in the process of reassorting with the northern field strain of BTV-8. Two genome segments of the virus showed significant differences from the BTV-6 vaccine, indicating that they had been acquired by reassortment event with BTV-8, and another unknown parental-strain. However, the route by which BTV-6 and BTV-8 entered northern Europe was not established. PMID:20428242

  17. Co-transmission of the non-transmissible South African Babesia bovis S24 vaccine strain during mixed infection with a field isolate.

    PubMed

    Combrink, M P; Troskie, P C; de Klerk, D G; Pienaar, R; Latif, A A; Mans, B J

    2015-03-01

    The South African Babesia bovis live blood vaccine, originating from a field isolate attenuated by 23 serial syringe passages in splenectomized calves, has lost the ability to infect the natural vector Rhipicephalus (Boophilus) microplus. In this study, infection with mixed parasites from the vaccine strain and a field isolate, resulted in transmission of both genotype populations. Comparing the field isolate and transmitted combination indicated no significant difference in their virulence, while challenge of vaccinated cattle with these isolates showed the ability of the vaccine to protect against both. Limiting dilution of the transmitted combination, followed by infection of splenectomized cattle (n=34) yielded no single infections for the vaccine strain genotype, seven clonal lines of the field isolate and one mixture of vaccine strain and field isolate. Only one of two field isolate clonal lines selected for vector transmission study was transmitted. Showing that B. bovis isolates can contain both tick transmissible and non-transmissible subpopulations. The findings of this study also indicate the probability of vaccine co-infection transmission occurring in the field, which may result in new genotype populations of B. bovis. However, the impact of this recombination with field isolates is considered negligible since a genotypically diverse population of B. bovis is already present in South Africa. PMID:25544307

  18. ISSOE. Field Test--Prototype Student Reporting System for ISSOE. Final Report, Findings and Recommendations.

    ERIC Educational Resources Information Center

    Cornell Univ., Ithaca, NY. Inst. for Research and Development in Occupational Education.

    A prototype manual Instructional Support System for Occupational Education (ISSOE) student reporting system (SRS) developed in 1977-78 (see note) was field tested to determine the feasibility of collecting data on student progress from teachers, processing it at a central location, and returning student informational forms to teachers and…

  19. Mapping strain fields induced in Zr-based bulk metallic glasses during in-situ nanoindentation by X-ray nanodiffraction

    NASA Astrophysics Data System (ADS)

    Gamcová, J.; Mohanty, G.; Michalik, Š.; Wehrs, J.; Bednarčík, J.; Krywka, C.; Breguet, J. M.; Michler, J.; Franz, H.

    2016-01-01

    A pioneer in-situ synchrotron X-ray nanodiffraction approach for characterization and visualization of strain fields induced by nanoindentation in amorphous materials is introduced. In-situ nanoindentation experiments were performed in transmission mode using a monochromatic and highly focused sub-micron X-ray beam on 40 μm thick Zr-based bulk metallic glass under two loading conditions. Spatially resolved X-ray diffraction scans in the deformed volume of Zr-based bulk metallic glass covering an area of 40 × 40 μm2 beneath the pyramidal indenter revealed two-dimensional map of elastic strains. The largest value of compressive elastic strain calculated from diffraction data at 1 N load was -0.65%. The region of high elastic compressive strains (<-0.3%) is located beneath the indenter tip and has radius of 7 μm.

  20. Final Report for Award DE-SC0005403. Improved Electrochemical Performance of Strained Lattice Electrolytes via Modulated Doping

    SciTech Connect

    Hertz, Joshua L.; Prasad, Ajay K.

    2015-09-06

    The enclosed document provides a final report to document the research performed at the University of Delaware under Grant DE-SC0005403: Improved Electrochemical Performance of Strained Lattice Electrolytes via Modulated Doping. The ultimate goal of this project was to learn how to systematically strain the inter-atomic distance in thin ceramic films and how to use this newfound control to improve the ease by which oxygen ions can conduct through the films. Increasing the ionic conductivity of ceramics holds the promise of drastic improvements in the performance of solid oxide fuel cells, chemical sensors, gas permeation membranes, and related devices. Before this work, the experimental evidence advocating for strain-based techniques was often controversial and poorly characterized. Enabling much of this work was a new method to quickly create a very wide range of ceramic nanostructures that was established during the first phase of the project. Following this initial phase, we created a variety of promising nanostructured epitaxial films and multilayers with systematic variations in lattice mismatch and dopant content. Over the course of the work, a positive effect of tensile atomic strain on the oxygen conductivity was conclusively found using a few different forms of samples and experimental techniques. The samples were built by sputtering, an industrially scalable technique, and thus the technological implementation of these results may be economically feasible. Still, two other results consistently achieved over multiple efforts in this work give pause. The first of these results was that very specific, pristine surfaces upon which to build the nanostructures were strictly required in order to achieve measurable results. The second of these results was that compressively strained films with concomitant reductions in oxygen conductivity are much easier to obtain relative to tensile-strained films with increased conductivity.

  1. Isolation and Characterization of Strains CVO and FWKO B, Two Novel Nitrate-Reducing, Sulfide-Oxidizing Bacteria Isolated from Oil Field Brine

    PubMed Central

    Gevertz, Diane; Telang, Anita J.; Voordouw, Gerrit; Jenneman, Gary E.

    2000-01-01

    Bacterial strains CVO and FWKO B were isolated from produced brine at the Coleville oil field in Saskatchewan, Canada. Both strains are obligate chemolithotrophs, with hydrogen, formate, and sulfide serving as the only known energy sources for FWKO B, whereas sulfide and elemental sulfur are the only known electron donors for CVO. Neither strain uses thiosulfate as an energy source. Both strains are microaerophiles (1% O2). In addition, CVO grows by denitrification of nitrate or nitrite whereas FWKO B reduces nitrate only to nitrite. Elemental sulfur is the sole product of sulfide oxidation by FWKO B, while CVO produces either elemental sulfur or sulfate, depending on the initial concentration of sulfide. Both strains are capable of growth under strictly autotrophic conditions, but CVO uses acetate as well as CO2 as its sole carbon source. Neither strain reduces sulfate; however, FWKO B reduces sulfur and displays chemolithoautotrophic growth in the presence of elemental sulfur, hydrogen, and CO2. Both strains grow at temperatures between 5 and 40°C. CVO is capable of growth at NaCl concentrations as high as 7%. The present 16s rRNA analysis suggests that both strains are members of the epsilon subdivision of the division Proteobacteria, with CVO most closely related to Thiomicrospira denitrifcans and FWKO B most closely related to members of the genus Arcobacter. The isolation of these two novel chemolithotrophic sulfur bacteria from oil field brine suggests the presence of a subterranean sulfur cycle driven entirely by hydrogen, carbon dioxide, and nitrate. PMID:10831429

  2. Bioinformatics insight into the spike glycoprotein gene of field porcine epidemic diarrhea strains during 2011-2013 in Guangdong, China.

    PubMed

    Hao, Jianwei; Xue, Chunyi; He, Liangliang; Wang, Yang; Cao, Yongchang

    2014-08-01

    Three strains of porcine epidemic diarrhea virus (PEDV) were isolated from dead or diseased pigs at different swine farms in Guangdong during 2011-2013, and their S genes were sequenced. In the same period, seven PEDV strains were also isolated in Guangdong by other laboratories. The spike sequences of 10 Guangdong isolates were compared with vaccine strains and reference pathogenic isolates using six bioinformatics tools. The results revealed that 10 Guangdong strains, excluding strain GDS03, had distinct characteristics in terms of primary structure, secondary structure, high-specificity N-glycosylation sites, potential phosphorylation sites, and palmitoylation sites. Phylogenetic analysis also confirmed these findings and revealed that all PEDV strains were clustered into three distinct groups. Ten Guangdong strains, not including GDS03, belong to Group 1, whereas four vaccine strains and GDS03 belong to Group 3, which is evolutionarily distant from Group 1. Alignment analysis of the neutralizing region amino acid sequences indicated that the amino acid substitutions of Y/D766S, T549S, and G594S that are present in the Guangdong strains, not including GDS03, were a sign of predominant genetic changes among the isolated strains. GDS03 is closely related to the 83P-5 vaccine strain, which suggests that it might represent re-isolation of the vaccine strain or vaccine variants. Taken together, these results indicate that there have been predominant new strains circulating in Guangdong from 2011 to 2013, and the circulating PEDV strains have a genetic composition that is distant from reference strains, especially the vaccine strains; however, the vaccinations might also provide some level of cross-protection, as there have been no changes in the neutralizing epitopes of SS2 and 2C10. This explains why there have been constant but infrequent outbreaks recently in comparison to late 2010 in which PEDV outbreaks were more frequent and severe. In addition, the USA

  3. InSAR velocity field across the North Anatolian Fault (eastern Turkey): Implications for the loading and release of interseismic strain accumulation

    NASA Astrophysics Data System (ADS)

    Cakir, Ziyadin; Ergintav, Semih; Akoǧlu, Ahmet M.; ćakmak, Rahşan; Tatar, Orhan; Meghraoui, Mustapha

    2014-10-01

    We use the Persistent Scatterer Interferometric Synthetic Aperture Radar (PS-InSAR) technique with the European Space Agency's Envisat and ERS SAR data acquired on three neighboring descending tracks (T350, T078, and T307) to map the interseismic strain accumulation along a ~225 km long, NW-SE trending section of the North Anatolian Fault that ruptured during the 1939, 1942, and 1943 earthquakes in eastern Turkey. We derive a line-of-sight velocity map of the region with a high spatial resolution and accuracy which, together with the maps of earthquake surface ruptures, shed light on the style of continental deformation and the relationships between the loading and release of interseismic strain along segmented continental strike-slip faults. In contrast with the geometric complexities at the ground surface that appear to control rupture propagation of the 1939 event, modeling of the high-resolution PS-InSAR velocity field reveals a fairly linear and narrow throughgoing shear zone with an overall 20 ± 3 mm/yr slip rate above an unexpectedly shallow 7 ± 2 km locking depth. Such a shallow locking depth may result from the postseismic effects following recent earthquakes or from a simplified model that assumes a uniform degree of locking with depth on the fault. A narrow throughgoing shear zone supports the thick lithosphere model in which continental strike-slip faults are thought to extend as discrete shear zones through the entire crust. Fault segmentation previously reported from coseismic surface ruptures is thus likely inherited from heterogeneities in the upper crust that either preexist and/or develop during coseismic rupture propagation. The geometrical complexities that apparently persist for long periods may guide the dynamic rupture propagation surviving thousands of earthquake cycles.

  4. ITS1 Copy Number Varies among Batrachochytrium dendrobatidis Strains: Implications for qPCR Estimates of Infection Intensity from Field-Collected Amphibian Skin Swabs

    PubMed Central

    Longo, Ana V.; Rodriguez, David; da Silva Leite, Domingos; Toledo, Luís Felipe; Mendoza Almeralla, Cinthya; Burrowes, Patricia A.; Zamudio, Kelly R.

    2013-01-01

    Genomic studies of the amphibian-killing fungus (Batrachochytrium dendrobatidis, [Bd]) identified three highly divergent genetic lineages, only one of which has a global distribution. Bd strains within these linages show variable genomic content due to differential loss of heterozygosity and recombination. The current quantitative polymerase chain reaction (qPCR) protocol to detect the fungus from amphibian skin swabs targets the intergenic transcribed spacer 1 (ITS1) region using a TaqMan fluorescent probe specific to Bd. We investigated the consequences of genomic differences in the quantification of ITS1 from eight distinct Bd strains, including representatives from North America, South America, the Caribbean, and Australia. To test for potential differences in amplification, we compared qPCR standards made from Bd zoospore counts for each strain, and showed that they differ significantly in amplification rates. To test potential mechanisms leading to strain differences in qPCR reaction parameters (slope and y-intercept), we: a) compared standard curves from the same strains made from extracted Bd genomic DNA in equimolar solutions, b) quantified the number of ITS1 copies per zoospore using a standard curve made from PCR-amplicons of the ITS1 region, and c) cloned and sequenced PCR-amplified ITS1 regions from these same strains to verify the presence of the probe site in all haplotypes. We found high strain variability in ITS1 copy number, ranging from 10 to 144 copies per single zoospore. Our results indicate that genome size might explain strain differences in ITS1 copy number, but not ITS1 sequence variation because the probe-binding site and primers were conserved across all haplotypes. For standards constructed from uncharacterized Bd strains, we recommend the use of single ITS1 PCR-amplicons as the absolute standard in conjunction with current quantitative assays to inform on copy number variation and provide universal estimates of pathogen zoospore loads

  5. High-aspect-ratio gold nanorods: their synthesis and application to image cell-induced strain fields in collagen films.

    PubMed

    Chernak, Davin J; Sisco, Patrick N; Goldsmith, Edie C; Baxter, Sarah C; Murphy, Catherine J

    2013-01-01

    Gold nanoparticles are receiving considerable attention due to their novel properties and the potential variety of their uses. Long gold nanorods with dimensions of approximately 20 × 400 nm exhibit strong light scattering and can be easily observed under dark-field microscopy. Here we describe the use of this light-scattering property to track micrometer scale strains in collagen gels and thick films, which result from cell traction forces applied by neonatal heart fibroblasts. The use of such collagen constructs to model cell behavior in the extracellular matrix is common, and describing local mechanical environments on such a small scale is necessary to understand the complex factors associated with the remodeling of the collagen network. Unlike other particles used for tracking purposes, gold nanorods do not photobleach, allowing their optical signal to be tracked for longer periods of time, and they can be easily synthesized and coated with various charged or neutral shells, potentially reducing the effect of their presence on the cell system or allowing selective placement. Techniques described here are ultimately applicable for investigations with a wide variety of cells and cell environments. PMID:23749565

  6. Field-oriented trial of the Chinese Brucella suis strain 2 vaccine on sheep and goats in Libya.

    PubMed

    Mustafa, A A; Abusowa, M

    1993-01-01

    The Chinese Brucella suis S2 vaccine was studied in a flock of sheep and goats in field conditions. The locally-produced vaccine was orally administered in the form of a drench to 446 ewes, 50 lambs and 20 adult goats. After vaccination, abortion and excretion of the vaccine strain in vaginal discharges or in milk did not occur. Serological tests became positive in 92% of animals at 4 wk post-vaccination and declined to near nil after 1 yr. The protection conferred by the vaccine against a double virulent B melitensis conjunctival challenge which infected 10/10 control ewes was on average 53% in ewes (32/60) and 71% in goats (5/7). Abortion rates were respectively 100% (7/7) in control ewes versus 44% (25/57) and 28% (2/7) in vaccinated ewes and goats. The vaccine was thus found to be safe, antigenic and reasonably protective against the challenge dose used. PMID:8260964

  7. Draft Genome Sequence of Rhodococcus rhodochrous Strain KG-21, a Soil Isolate from Oil Fields of Krishna-Godavari Basin, India

    PubMed Central

    Dawar, Chhavi

    2015-01-01

    Here, we present the 6.1-Mb draft genome sequence of Rhodococcus rhodochrous strain KG-21, a soil isolate from the oil fields of Krishna-Godavari Basin in Andhra Pradesh, India. This genomic resource may help in the identification of the gene(s) involved in hydrocarbon degradation and their possible deployment for bioremediation. PMID:26472842

  8. Draft Genome Sequence of Aeribacillus pallidus Strain 8m3, a Thermophilic Hydrocarbon-Oxidizing Bacterium Isolated from the Dagang Oil Field (China)

    PubMed Central

    Poltaraus, Andrey B.; Sokolova, Diyana S.; Grouzdev, Denis S.; Ivanov, Timophey M.; Malakho, Sophia G.; Korshunova, Alena V.; Rozanov, Aleksey S.; Tourova, Tatiyana P.

    2016-01-01

    The draft genome sequence of Aeribacillus pallidus strain 8m3, a thermophilic aerobic oil-oxidizing bacterium isolated from production water from the Dagang high-temperature oil field, China, is presented here. The genome is annotated to provide insights into the genomic and phenotypic diversity of the genus Aeribacillus. PMID:27284131

  9. Detection of a Bacteriophage Gene Encoding a Mu-like Portal Protein in Haemophilus parasuis Reference Strains and Field Isolates by Nested Polymerase Chain Reaction

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A nested PCR assay was developed to determine the presence of a gene encoding a bacteriophage Mu-like portal protein, gp29, in 15 reference strains and 31 field isolates of Haemophilus parasuis. Specific primers, based on the gene’s sequence, were utilized. A majority of the virulent reference strai...

  10. Biological Control of Pathogens Causing Root Rot Complex in Field Pea Using Clonostachys rosea Strain ACM941.

    PubMed

    Xue, Allen G

    2003-03-01

    ABSTRACT Pea root rot complex (PRRC), caused by Alternaria alternata, Aphanomyces euteiches, Fusarium oxysporum f. sp. pisi, F. solani f. sp. pisi, Mycosphaerella pinodes, Pythium spp., Rhizoctonia solani, and Sclerotinia sclerotiorum, is a major yield-limiting factor for field pea production in Canada. A strain of Clonostachys rosea (syn. Gliocladium roseum), ACM941 (ATCC 74447), was identified as a mycoparasite against these pathogens. When grown near the pathogen, ACM941 often was stimulated to produce lateral branches that grew directly toward the pathogen mycelium, typically entwining around the pathogen mycelium. When applied to the seed, ACM941 propagated in the rhizosphere and colonized the seed coat, hypocotyl, and roots as the plant developed and grew. ACM941 significantly reduced the recovery of all fungal pathogens from infected seed, increased in vitro seed germination by 44% and seedling emergence by 22%, and reduced root rot severity by 76%. The effects were similar to those of thiram fungicide, which increased germination and emergence by 33 and 29%, respectively, and reduced root rot severity by 65%. When soil was inoculated with selected PRRC pathogens in a controlled environment, seed treatment with ACM941 significantly increased emergence by 26, 38, 28, 13, and 21% for F. oxysporum f. sp. pisi, F. solani f. sp. pisi, M. pinodes, R. solani, and S. sclerotiorum, respectively. Under field conditions from 1995 to 1997, ACM941 increased emergence by 17, 23, 22, 13, and 18% and yield by 15, 6, 28, 6, and 19% for the five respective pathogens. The seed treatment effects of ACM941 on these PRRC pathogens were greater or statistically equivalent to those achieved with thiram. Results of this study suggest that ACM941 is an effective bioagent in controlling PRRC and is an alternative to existing chemical products. PMID:18944343

  11. Shemya AFB, Alaska 1992 IRP field investigation report

    SciTech Connect

    Not Available

    1993-02-01

    The US Air Force is currently investigating 22 sites on Shemya Air Force Base (AFB) to determine if past spill and disposal activities have caused environmental damage. These investigations are being carried out under the Air Force's Installation Restoration Program (IRP). Field investigations were performed in 1992 to obtain the information needed to assess what future actions will need to be carried out at each site. The island's drinking water supply was also investigated. Activities completed at 10 selected sites during the 1992 field investigation included surface sampling to determine the lateral extent of contamination, subsurface sampling to determine the vertical extent of contamination, and the installation of well points and monitoring wells to determine the direction of groundwater flow and if the groundwater has been affected by a site. In addition, geophysical surveys were performed at most sites to identify site boundaries and check for the presence of buried metal to be avoided during drilling activities. This report, appendix A, contains the analytical results.

  12. Field joint protection system rain qualification test report

    NASA Technical Reports Server (NTRS)

    Cook, M.

    1989-01-01

    This report documents the procedures, performance, and results obtained from the Field Joint Protection System (FJPS) rain test. This test was performed to validate that the flight configuration FJPS prevents the accumulation of moisture in the redesigned solid rocket motor (RSRM) field joints when subjected to simulated prelaunch natural rain environments. The FJPS test article was exposed to rain simulation for approximately 50 minutes. During the test, water entered through the open upper end of the systems tunnel and was funneled down between the tunnel and case. A sealant void at the moisture seal butt splice allowed this water to flow underneath the FJPS. The most likely cause of voids was improper bondline preparation, particularly on the moisture seal surface. In total, water penetrated underneath approximately 60 percent of the FJPS circumference. Because the test article was substantially different from flight configuration (no systems tunnel closeout), results of this test will not affect current flight motors. Due to the omission of systems tunnel covers and systems tunnel floor plate closeout, the test assembly was not representative of flight hardware and resulted in a gross overtest. It is therefore recommended that the test be declared void. It is also recommended that the test be repeated with a complete closeout of the systems tunnel, sealed systems tunnel ends, and improved adhesive bondline preparation.

  13. Prototype Engineered Barrier System Field Test (PEBSFT); Final report

    SciTech Connect

    Ramirez, A.L.; Buscheck, T.; Carlson, R.; Daily, W.; Lee, K.; Lin, Wunan; Mao, Nai-hsien; Ueng, Tzou-Shin; Wang, H.; Watwood, D.

    1991-08-01

    This final report represents a summary of data and interpretations obtained from the Prototype Engineered Barrier System Field Test (PEBSFT) performed in G-Tunnel within the Nevada Test Site. The PEBSFT was conducted to evaluate the applicability of measurement techniques, numerical models, and procedures developed for future field tests that will be conducted in the Exploratory Studies Facilities (ESF) at Yucca Mountain. The primary objective of the test was to provide a basis for determining whether tests planned for the ESF have the potential to be successful. Chapter 1 on high frequency electromagnetic tomography discusses the rock mass electromagnetic permittivity and attenuation rate changes that were measured to characterize the water distribution in the near field of a simulated waste container. The data are used to obtain quantitative estimates of how the moisture content in the rock mass changes during heating and to infer properties of the spatial variability of water distribution, leading to conclusions about the role of fractures in the system. Chapter 2 discusses the changes in rock moisture content detected by the neutron logging probe. Chapter 3 permeability tests discusses the characterization of the in-situ permeability of the fractured tuff around the borehole. The air permeability testing apparatus, the testing procedures, and the data analysis are presented. Chapter 4 describes the moisture collection system installed in the heater borehole to trap and measure the moisture volumes. Chapter 5 describes relative humidity measurements made with the thermocouple psychrometer and capacitance sensors. Chapter 6 discusses gas pressure measurements in the G-Tunnel, addressing the calibration and installation of piezoresistive-gaged transducers. Chapter 7 describes the calibration and installation of thermocouples for temperature measurements. Chapter 8 discusses the results of the PEBSFT.

  14. Field verification of CO{sub 2} Foam. Final report

    SciTech Connect

    Martin, F.D.; Heller, J.P.; Weiss, W.W.

    1996-02-01

    The East Vacuum Grayburg/San Andres Unit (EVGSAU), operated by Phillips Petroleum Company, was the site selected for a comprehensive evaluation of the use of foam for improving the effectiveness of a CO{sub 2} flood. This project, entitled {open_quotes}Field Verification of CO{sub 2-}Foam,{close_quotes} was jointly funded by the EVGSAU working interest owners, the U.S. Department of Energy (DOE), and the State of New Mexico. The DOE provided $2 million or approximately 34% of the total project costs, the EVGSAU provided $2.46 million, the State of New Mexico contributed approximately $1.2 million, and about $103,000 of other industrial funds were used. The Petroleum Recovery Research Center (PRRC), a division of the New Mexico Institute of Mining and Technology, provided laboratory and research support for the project. A joint project advisory team composed of technical representatives from several major oil companies provided input, review, and guidance for the project. The project, which began in 1989, had a scheduled duration of four years, but the DOE granted a no-cost extension to the end of March 1995 for the purpose of continued project evaluation. A field test of the CO{sub 2}-foam has been successfully conducted, and preliminary results are promising. Response in the foam injection well has been as anticipated, and an offset producing well experienced a positive oil response as a result of the foam test. Based on the favorable results observed in the foam injection test, a second foam test was conducted. The monitoring program included analysis of injectivity data, pressure falloff tests, observation well logs, interwell tracer response, production logs, history of production rates, and changes in gas-oil ratio. This report presents an overview of the project and provides results of the laboratory work, simulation studies, and field tests.

  15. Field verification of CO{sub 2} foam. Final report

    SciTech Connect

    Martin, F.D.; Heller, J.P.; Weiss, W.W.

    1995-06-01

    The East Vacuum Grayburg/San Andres Unit (EVGSAU), operated by Phillips Petroleum Company, was the site selected for a comprehensive evaluation of the use of foam for improving the effectiveness of a CO{sub 2} flood. This project, entitled ``Field Verification of CO{sub 2}-Foam,`` was jointly funded by the EVGSAU working interest owners, the US Department of Energy (DOE), and the State of New Mexico. The DOE provided $2 million or approximately 34% of the total project costs, the EVGSAU provided $2.46 million, the State of New Mexico contributed approximately $1.2 million, and about $103,000 of other industrial funds were used. The Petroleum Recovery Research Center (PRRC), a division of the New Mexico Institute of Mining and Technology, provided laboratory and research support for the project. A joint project advisory team composed of technical representatives from several major oil companies provided input, review, and guidance for the project. The project, which began in 1989, had a scheduled duration of four years, but the DOE granted a no-cost extension to the end of March 1995 for the purpose of continued project evaluation. A field test of the CO{sub 2}-foam has been successfully conducted, and preliminary results are promising. Response in the foam injection well has been as anticipated, and an offset producing well experienced a positive oil response as a result of the foam test. Based on the favorable results observed in the foam injection test, a second foam test was conducted. The monitoring program included analysis of injectivity data, pressure falloff tests, observation well logs, interwell tracer response, production logs, history of production rates, and changes in gas-oil ratio. This report presents an overview of the project and provides results of the laboratory work, simulation studies, and field tests.

  16. Collection of High Energy Yielding Strains of Saline Microalgae from Southwestern States: Final Report Draft

    SciTech Connect

    Sommerfield, M. R.

    1986-01-01

    Approximately 1,400 individual isolates of microalgae were obtained from surface waters in the Southwest. Of the initial 23 algae screened for growth characteristics, the majority grew best at the lower salinities in both SERI Type I and Type II Media. Growth rates for selected strains approached three doublings per day.

  17. Variation in susceptibility of laboratory and field strains of three stored-grain insect species to beta-cyfluthrin and chlorpyrifos-methyl plus deltamethrin applied to concrete surfaces

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The efficacy of beta-cyfluthrin and chlorpyrifos-methyl plus deltamethrin applied to clean, concrete floors of empty bins prior to grain storage against field strains of stored-grain insects is unknown. We exposed adults of 16 strains of the red flour beetle, Tribolium castaneum (Herbst); 8 strains ...

  18. Efficacy of Fostera PRRS modified live virus vaccine against a Canadian heterologous virulent field strain of porcine reproductive and respiratory syndrome virus

    PubMed Central

    Savard, Christian; Alvarez, Fernando; Provost, Chantale; Chorfi, Younes; D’Allaire, Sylvie; Benoit-Biancamano, Marie-Odile; Gagnon, Carl A.

    2016-01-01

    Vaccination is a useful option to control infection with porcine reproductive and respiratory syndrome virus (PRRSV), and several modified live-PRRSV vaccines have been developed. These vaccines have shown some efficacy in reducing the incidence and severity of clinical disease as well as the duration of viremia and virus shedding but have failed to provide sterilizing immunity. The efficacy of modified live-virus (MLV) vaccines is greater against a homologous strain compared with heterologous PRRSV strains. The objective of this study was to evaluate the efficacy of Fostera PRRS MLV vaccine in protecting against challenge with a heterologous field strain widely circulating in the swine herds of eastern Canada. Forty-six piglets were divided into 4 groups: nonvaccinated-nonchallenged; nonvaccinated-challenged; vaccinated-challenged; and vaccinated-nonchallenged. The animals were vaccinated at 23 d of age with Fostera PRRS and challenged 23 d later with a heterologous field strain of PRRSV (FMV12-1425619). Overall, the vaccine showed some beneficial effects in the challenged animals by reducing the severity of clinical signs and the viral load. A significant difference between nonvaccinated and vaccinated animals was detected for some parameters starting 11 to 13 d after challenge, which suggested that the cell-mediated immune response or other delayed responses could be more important than pre-existing PRRSV antibodies in vaccinated animals within the context of protection against heterologous strains. PMID:26732457

  19. Practical aspects of strain measurement in thin SiGe layers by (004) dark-field electron holography in Lorentz mode.

    PubMed

    Denneulin, T; Cooper, D; Rouviere, J L

    2014-07-01

    Dark-field electron holography (DFEH) is a powerful transmission electron microscopy technique for mapping strain with nanometer resolution and high precision. However the technique can be difficult to set up if some practical steps are not respected. In this article, several measurements were performed on thin Si(1-x)Gex layers using (004) DFEH in Lorentz mode. Different practical aspects are discussed such as sample preparation, reconstruction of the holograms and interpretation of the strain maps in terms of sensitivity and accuracy. It was shown that the measurements are not significantly dependent on the preparation tool. Good results can be obtained using both FIB and mechanical polishing. Usually the most important aspect is a precise control of the thickness of the sample. A problem when reconstructing (004) dark-field holograms is the relatively high phase gradient that characterises the strained regions. It can be difficult to perform reconstructions with high sensitivity in both strained and unstrained regions. Here we introduce simple methods to minimise the noise in the different regions using a specific mask shape in Fourier space or by combining several reconstructions. As a test, DFEH was applied to the characterization of eight Si(1-x)Gex samples with different Ge concentrations. The sensitivity of the strain measured in the layers varies between 0.08% and 0.03% for spatial resolutions of 3.5-7 nm. The results were also compared to finite element mechanical simulations. A good accuracy of ±0.1% between experiment and simulation was obtained for strains up to 1.5% and ±0.25% for strains up to 2.5%. PMID:24811992

  20. How accurately can subject-specific finite element models predict strains and strength of human femora? Investigation using full-field measurements.

    PubMed

    Grassi, Lorenzo; Väänänen, Sami P; Ristinmaa, Matti; Jurvelin, Jukka S; Isaksson, Hanna

    2016-03-21

    Subject-specific finite element models have been proposed as a tool to improve fracture risk assessment in individuals. A thorough laboratory validation against experimental data is required before introducing such models in clinical practice. Results from digital image correlation can provide full-field strain distribution over the specimen surface during in vitro test, instead of at a few pre-defined locations as with strain gauges. The aim of this study was to validate finite element models of human femora against experimental data from three cadaver femora, both in terms of femoral strength and of the full-field strain distribution collected with digital image correlation. The results showed a high accuracy between predicted and measured principal strains (R(2)=0.93, RMSE=10%, 1600 validated data points per specimen). Femoral strength was predicted using a rate dependent material model with specific strain limit values for yield and failure. This provided an accurate prediction (<2% error) for two out of three specimens. In the third specimen, an accidental change in the boundary conditions occurred during the experiment, which compromised the femoral strength validation. The achieved strain accuracy was comparable to that obtained in state-of-the-art studies which validated their prediction accuracy against 10-16 strain gauge measurements. Fracture force was accurately predicted, with the predicted failure location being very close to the experimental fracture rim. Despite the low sample size and the single loading condition tested, the present combined numerical-experimental method showed that finite element models can predict femoral strength by providing a thorough description of the local bone mechanical response. PMID:26944687

  1. Extracting full-field dynamic strain on a wind turbine rotor subjected to arbitrary excitations using 3D point tracking and a modal expansion technique

    NASA Astrophysics Data System (ADS)

    Baqersad, Javad; Niezrecki, Christopher; Avitabile, Peter

    2015-09-01

    Health monitoring of rotating structures such as wind turbines and helicopter rotors is generally performed using conventional sensors that provide a limited set of data at discrete locations near or on the hub. These sensors usually provide no data on the blades or inside them where failures might occur. Within this paper, an approach was used to extract the full-field dynamic strain on a wind turbine assembly subject to arbitrary loading conditions. A three-bladed wind turbine having 2.3-m long blades was placed in a semi-built-in boundary condition using a hub, a machining chuck, and a steel block. For three different test cases, the turbine was excited using (1) pluck testing, (2) random impacts on blades with three impact hammers, and (3) random excitation by a mechanical shaker. The response of the structure to the excitations was measured using three-dimensional point tracking. A pair of high-speed cameras was used to measure displacement of optical targets on the structure when the blades were vibrating. The measured displacements at discrete locations were expanded and applied to the finite element model of the structure to extract the full-field dynamic strain. The results of the paper show an excellent correlation between the strain predicted using the proposed approach and the strain measured with strain-gages for each of the three loading conditions. The approach used in this paper to predict the strain showed higher accuracy than the digital image correlation technique. The new expansion approach is able to extract dynamic strain all over the entire structure, even inside the structure beyond the line of sight of the measurement system. Because the method is based on a non-contacting measurement approach, it can be readily applied to a variety of structures having different boundary and operating conditions, including rotating blades.

  2. Effect of the strain Bacillus amyloliquefaciens FZB42 on the microbial community in the rhizosphere of lettuce under field conditions analyzed by whole metagenome sequencing

    PubMed Central

    Kröber, Magdalena; Wibberg, Daniel; Grosch, Rita; Eikmeyer, Felix; Verwaaijen, Bart; Chowdhury, Soumitra P.; Hartmann, Anton; Pühler, Alfred; Schlüter, Andreas

    2014-01-01

    Application of the plant associated bacterium Bacillus amyloliquefaciens FZB42 on lettuce (Lactuca sativa) confirmed its capability to promote plant growth and health by reducing disease severity (DS) caused by the phytopathogenic fungus Rhizoctonia solani. Therefore this strain is commercially applied as an eco-friendly plant protective agent. It is able to produce cyclic lipopeptides (CLP) and polyketides featuring antifungal and antibacterial properties. Production of these secondary metabolites led to the question of a possible impact of strain FZB42 on the composition of microbial rhizosphere communities after its application. Rating of DS and lettuce growth during a field trial confirmed the positive impact of strain FZB42 on the health of the host plant. To verify B. amyloliquefaciens as an environmentally compatible plant protective agent, its effect on the indigenous rhizosphere community was analyzed by metagenome sequencing. Rhizosphere microbial communities of lettuce treated with B. amyloliquefaciens FZB42 and non-treated plants were profiled by high-throughput metagenome sequencing of whole community DNA. Fragment recruitments of metagenome sequence reads on the genome sequence of B. amyloliquefaciens FZB42 proved the presence of the strain in the rhizosphere over 5 weeks of the field trial. Comparison of taxonomic community profiles only revealed marginal changes after application of strain FZB42. The orders Burkholderiales, Actinomycetales and Rhizobiales were most abundant in all samples. Depending on plant age a general shift within the composition of the microbial communities that was independent of the application of strain FZB42 was observed. In addition to the taxonomic profiling, functional analysis of annotated sequences revealed no major differences between samples regarding application of the inoculant strain. PMID:24904564

  3. Genome Sequences of Two Pseudomonas syringae pv. tomato Race 1 Strains, Isolated from Tomato Fields in California.

    PubMed

    Thapa, Shree P; Coaker, Gitta

    2016-01-01

    Pseudomonas syringae pv. tomato race 1 strains have evolved to overcome genetic resistance in tomato. Here, we present the draft genome sequences of two race 1 P. syringae pv. tomato strains, A9 and 407, isolated from diseased tomato plants in California. PMID:26966221

  4. Field Assessment of Non-toxigenic Aspergillus flavus Strain K49 in Competitive Displacement of Toxigenic Isolates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Non-toxigenic strains of Aspergillus flavus offer the potential to control aflatoxin contamination by competitive displacement of indigenous populations of A. flavus colonizing corn grain. Two sets of experiments were conducted to assess the competitiveness of strain K49 when challenged against two...

  5. Enhanced carrier mobility and direct tunneling probability of biaxially strained Ge1-xSnx alloys for field-effect transistors applications

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Liang, Renrong; Wang, Jing; Xu, Jun

    2015-05-01

    The carrier transport and tunneling capabilities of biaxially strained Ge1-xSnx alloys with (001), (110), and (111) orientations were comprehensively investigated and compared. The electron band structures of biaxially strained Ge1-xSnx alloys were calculated by the nonlocal empirical pseudopotential method and the modified virtual crystal approximation was adopted in the calculation. The electron and hole effective masses at the band edges were extracted using a parabolic line fit. It is shown that the applied biaxial strain and the high Sn composition are both helpful for the reduction of carrier effective masses, which leads to the enhanced carrier mobility and the boosted direct band-to-band-tunneling probability. Furthermore, the strain induced valance band splitting reduces the hole interband scattering, and the splitting also results in the significantly enhanced direct tunneling rate along the out-of-plane direction compared with that along the in-plane direction. The biaxially strained (111) Ge1-xSnx alloys exhibit the smallest band gaps compared with (001) and (110) orientations, leading to the highest in-plane and out-of-plane direct tunneling probabilities. The small effective masses on (110) and (111) planes in some strained conditions also contribute to the enhanced carrier mobility and tunneling probability. Therefore, the biaxially strained (110) and (111) Ge1-xSnx alloys have the potential to outperform the corresponding (001) Ge1-xSnx devices. It is important to optimize the applied biaxial strain, the Sn composition, and the substrate orientation for the design of high performance Ge1-xSnx field-effect transistors.

  6. Enhanced carrier mobility and direct tunneling probability of biaxially strained Ge{sub 1−x}Sn{sub x} alloys for field-effect transistors applications

    SciTech Connect

    Liu, Lei; Liang, Renrong E-mail: junxu@tsinghua.edu.cn; Wang, Jing; Xu, Jun E-mail: junxu@tsinghua.edu.cn

    2015-05-14

    The carrier transport and tunneling capabilities of biaxially strained Ge{sub 1−x}Sn{sub x} alloys with (001), (110), and (111) orientations were comprehensively investigated and compared. The electron band structures of biaxially strained Ge{sub 1−x}Sn{sub x} alloys were calculated by the nonlocal empirical pseudopotential method and the modified virtual crystal approximation was adopted in the calculation. The electron and hole effective masses at the band edges were extracted using a parabolic line fit. It is shown that the applied biaxial strain and the high Sn composition are both helpful for the reduction of carrier effective masses, which leads to the enhanced carrier mobility and the boosted direct band-to-band-tunneling probability. Furthermore, the strain induced valance band splitting reduces the hole interband scattering, and the splitting also results in the significantly enhanced direct tunneling rate along the out-of-plane direction compared with that along the in-plane direction. The biaxially strained (111) Ge{sub 1−x}Sn{sub x} alloys exhibit the smallest band gaps compared with (001) and (110) orientations, leading to the highest in-plane and out-of-plane direct tunneling probabilities. The small effective masses on (110) and (111) planes in some strained conditions also contribute to the enhanced carrier mobility and tunneling probability. Therefore, the biaxially strained (110) and (111) Ge{sub 1−x}Sn{sub x} alloys have the potential to outperform the corresponding (001) Ge{sub 1−x}Sn{sub x} devices. It is important to optimize the applied biaxial strain, the Sn composition, and the substrate orientation for the design of high performance Ge{sub 1−x}Sn{sub x} field-effect transistors.

  7. Genome sequences of Mannheimia haemolytica serotype A1 strains D153 and D193 from bovine pneumonia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Here we report two genomes, one complete and one draft, from virulent bovine strains of Mannheimia haemolytica(strains D171 and D35)serotype A2 recovered prior to the field usage of modern antimicrobial drugs....

  8. Persistence and spreading of field and vaccine strains of infectious laryngotracheitis virus (ILTV) in vaccinated and unvaccinated geographic regions, in Brazil.

    PubMed

    Chacón, Jorge Luis; Núñez, Luis Fabian Naranjo; Vejarano, Maria Pilar; Parra, Silvana Hipatia Santander; Astolfi-Ferreira, Claudete Serrano; Ferreira, Antonio José Piantino

    2015-08-01

    Infectious laryngotracheitis (ILT) is a highly infectious respiratory disease that causes morbidity and mortality in commercial chickens. Despite the use of attenuated vaccines, ILT outbreaks have been described in broiler and long-lived birds. Molecular approaches, including polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and DNA sequencing, are used to characterize ILT viruses (ILTVs) detected in vaccinated and unvaccinated geographical regions. As part of an ILT control program implemented in a region of commercial layer production, samples of conjunctiva, trachea, and trigeminal ganglia were collected from chickens in a vaccinated and quarantined region over a period of 8 years after initiation of vaccination. To determine the origin of new ILT outbreaks in unvaccinated regions, samples collected from ill chickens were also analyzed. Chicken embryo origin (CEO) vaccine viruses and the Bastos field strain were detected circulating in healthy chickens in the vaccinated region. CEO strains and field viruses molecularly related to the Bastos strain were also detected outside of the quarantined region in chickens showing clinical signs of ILT. This study reveals the persistence and circulation of a wild field strain, despite the intensive use of tissue culture origin (TCO) and CEO vaccines in a quarantined region. Spreading of CEO viruses to unvaccinated regions and the capacity of this virus to establish latent infections and cause severe outbreaks were also observed. PMID:25904510

  9. Using digital image correlation and three dimensional point tracking in conjunction with real time operating data expansion techniques to predict full-field dynamic strain

    NASA Astrophysics Data System (ADS)

    Avitabile, Peter; Baqersad, Javad; Niezrecki, Christopher

    2014-05-01

    Large structures pose unique difficulties in the acquisition of measured dynamic data with conventional techniques that are further complicated when the structure also has rotating members such as wind turbine blades and helicopter blades. Optical techniques (digital image correlation and dynamic point tracking) are used to measure line of sight data without the need to contact the structure, eliminating cumbersome cabling issues. The data acquired from these optical approaches are used in conjunction with a unique real time operating data expansion process to obtain full-field dynamic displacement and dynamic strain. The measurement approaches are described in this paper along with the expansion procedures. The data is collected for a single blade from a wind turbine and also for a three bladed assembled wind turbine configuration. Measured strains are compared to results from a limited set of optical measurements used to perform the expansion to obtain full-field strain results including locations that are not available from the line of sight measurements acquired. The success of the approach clearly shows that there are some very extraordinary possibilities that exist to provide very desperately needed full field displacement and strain information that can be used to help identify the structural health of structures.

  10. A Study of Piezoelectric Field Related Strain Difference in GaN-Based Blue Light-Emitting Diodes Grown on Silicon(111) and Sapphire Substrates.

    PubMed

    Jeon, K S; Sung, J H; Lee, M W; Song, H Y; Shin, H Y; Park, W H; Jang, Y I; Kang, M G; Choi, Y H; Lee, J S; Ko, D H; Ryu, H Y

    2016-02-01

    We investigate the strain difference in InGaN/GaN multiple quantum wells of blue light-emitting diode (LED) structures grown on silicon(1 11) and c-plane sapphire substrates by comparing the strength of piezo-electric fields in MQWs. The piezo-electric fields for two LED samples grown on silicon and sapphire substrates are measured by using the reverse-bias electro-reflectance (ER) spectroscopy. The flat-band voltage is obtained by measuring the applied reverse bias voltage that induces a phase inversion in the ER spectra, which is used to calculate the strength of piezo-electric fields. The piezo-electric field is determined to be 1.36 MV/cm for the LED on silicon substrate and 1.83 MV/cm for the LED on sapphire substrate. The ER measurement results indicate that the strain-induced piezo-electric field is greatly reduced in the LED grown on silicon substrates consistent with previous strain measurement results by micro-Raman spectroscopy and high-resolution transmission electron microscopy. PMID:27433673

  11. Observation of magnetic-field-induced transformation in MnCo0.78Fe0.22Ge alloys with colossal strain output and large magnetocaloric effect

    NASA Astrophysics Data System (ADS)

    Wang, Zilong; Xiu, Pengyuan; Huang, Lian; Nie, Zhihua; Zeng, Junxi; Brown, Dennis E.; Ren, Yang; Wang, Yandong

    2016-05-01

    The thermal, structural and magnetic properties were studied for the hexagonal MnCo0.78Fe0.22Ge alloys, which undergoes a first-order phase transformation from paramagnetic hexagonal phase into ferromagnetic orthorhombic martensite on cooling. Owing to the magnetostructural coupling, large magnetocaloric effect (∆SM=-10.97 J kg-1 K-1) was obtained at 254 K. In-situ synchrotron high-energy X-ray diffraction experiments were conducted to reveal the detailed change in crystallographic structure of phases and the effect of applied magnetic field on phase transformation behaviors. An anomalously huge strain of 11.89% and volume expansion of 4.35% in unit-cell were obtained between martensite and parent phase across the transformation. Furthermore, the magnetic field-induced martensitic transformation was directly evidenced at 250 K, which eventually demonstrates the possibility to achieve magnetic-field-induced strain and large magnetocaloric effect simultaneously.

  12. Short report: high prevalence of serine protease autotransporter cytotoxins among strains of enteroaggregative Escherichia coli.

    PubMed

    Boisen, Nadia; Ruiz-Perez, Fernando; Scheutz, Flemming; Krogfelt, Karen A; Nataro, James P

    2009-02-01

    Enteroaggregative Escherichia coli (EAEC) pathogenesis is thought to comprise intestinal colonization followed by the release of enterotoxins and cytotoxins. Here, we use a polymerase chain reaction (PCR) to determine the prevalence of 10 genes encoding serine protease autotransporter toxins (SPATEs) in a collection of clinical EAEC isolates. Eighty-six percent of EAEC strains harbored genes encoding one or more class I cytotoxic SPATE proteins (Pet, Sat, EspP, or SigA). Two Class II, non-cytotoxic, SPATE genes were found among EAEC strains: pic and sepA, each originally described in Shigella flexneri 2a. Using a multiplex PCR for five SPATE genes (pet, sat, sigA, pic, and sepA), we found that most of the Shigella isolates also harbored more than one SPATE, whereas members of most other E. coli pathotypes rarely harbored a cytotoxic SPATE gene. SPATEs may be relevant to the pathogenesis of both EAEC and Shigella spp. PMID:19190229

  13. Strain gage balance for half models 302-6. Calibration report

    NASA Astrophysics Data System (ADS)

    Blaettler, Heinz

    1986-02-01

    A six-component strain gage balance for half models 302-6 for the transonic wind tunnel was developed and calibrated. The calibration was executed with a special lever, so that forces and moments could be loaded at the point of attack of the model. Point 8 (for recording buffering) was also measured. The balance is conceived for: X = +/- 100 (N); Mx = +/- 200 (Nm); Y = +/- 200 (N); My = +/- 35 (Nm); Z = +/- 1000 (N); and Mz = +/- 30 (Nm).

  14. Comparison of restriction endonuclease analysis, ribotyping, and pulsed-field gel electrophoresis for molecular differentiation of Clostridium difficile strains.

    PubMed Central

    Kristjánsson, M; Samore, M H; Gerding, D N; DeGirolami, P C; Bettin, K M; Karchmer, A W; Arbeit, R D

    1994-01-01

    A combined clinical and molecular epidemiologic analysis of 46 strains of Clostridium difficile, including 16 nosocomial isolates from one ward (outbreak ward) plus 17 other nosocomial isolates and 13 community-acquired isolates, was performed. HindIII digests of total cellular DNA were analyzed by restriction enzyme analysis (REA) and ribotyping; SmaI digests were analyzed by pulsed-field gel electrophoresis (PFGE). Isolates were assigned to typing groups on the basis of the profiles detected; isolates with closely related profiles were assigned to subgroups. The 16 isolates from the outbreak ward were resolved by both REA and PFGE into five distinct groups; 13 isolates represented two REA groups and three PFGE groups and two isolates were resolved as distinct groups by both techniques. DNA obtained from one isolate was persistently partially degraded, precluding analysis by PFGE. Seventeen sporadic nosocomial isolates were resolved by REA and PFGE into comparable numbers of groups (i.e., nine groups) and subgroups (i.e., 15 and 14 subgroups, respectively), with two isolates not evaluable by PFGE. The 13 epidemiologically unrelated community-acquired isolates were assigned to 11 groups by REA and to 12 groups by PFGE. Overall, ribotyping identified only nine groups among the 46 isolates. We conclude that REA and PFGE have comparable discriminatory powers for epidemiologic typing of C. difficile isolates and that ribotyping is appreciably less discriminatory. For a few isolates, partial DNA degradation prevented analysis by PFGE but not by REA or ribotyping; the cause of the degradation is unknown. Images PMID:7989550

  15. Characteristics of resistance to Bacillus thuringiensis toxin Cry2Ab in a strain of Helicoverpa punctigera (Lepidoptera: Noctuidae) isolated from a field population.

    PubMed

    Downes, S; Parker, T L; Mahon, R J

    2010-12-01

    In 1996, the Australian cotton industry adopted Ingard that expresses the Bacillus thuringiensis (Bt) toxin gene cry1Ac and was planted at a cap of 30%. In 2004-2005, Bollgard II, which expresses cry1Ac and cry2Ab, replaced Ingard in Australia, and subsequently has made up >80% of the area planted to cotton, Gossypium hirsutum L. The Australian target species Helicoverpa armigera (Hübner) and Helicoverpa punctigera (Wallengren) are innately moderately tolerant to Bt toxins, but the absence of a history of insecticide resistance indicates that the latter species is less likely to develop resistance to Bt cotton. From 2002-2003 to 2006-2007, F2 screens were deployed to detect resistance to CrylAc or Cry2Ab in natural populations of H. punctigera. Alleles that conferred an advantage against CrylAc were not detected, but those that conferred resistance to Cry2Ab were present at a frequency of 0.0018 (n = 2,192 alleles). Importantly, the first isolation of Cry2Ab resistance in H. punctigera occurred before significant opportunities to develop resistance in response to Bollgard II. We established a colony (designated Hp4-13) consisting of homozygous resistant individuals and examined their characteristics through comparison with individuals from a Bt-susceptible laboratory colony. Through specific crosses and bioassays, we established that the resistance present in Hp4-13 is due to a single autosomal gene. The resistance is fully recessive. Homozygotes are able to survive a dose of Cry2Ab toxin that is 15 times the reported concentration in field grown Bollgard II in Australia (500 microg/ml) and are fully susceptible to Cry1Ac and to the Bt product DiPel. These characteristics are the same as those described for the first Cry2Ab resistant strain of H. armigera isolated from a field population in Australia. PMID:21309238

  16. Tensile-Strained GeSn Metal-Oxide-Semiconductor Field-Effect Transistor Devices on Si(111) Using Solid Phase Epitaxy

    NASA Astrophysics Data System (ADS)

    Lieten, Ruben R.; Maeda, Tatsuro; Jevasuwan, Wipakorn; Hattori, Hiroyuki; Uchida, Noriyuki; Miura, Shu; Tanaka, Masatoshi; Locquet, Jean-Pierre

    2013-10-01

    We demonstrate tensile-strained GeSn metal-oxide-semiconductor field-effect transistor (MOSFET) devices on Si(111) substrates using solid phase epitaxy of amorphous GeSn layers. Amorphous GeSn layers are obtained by limiting the adatom surface mobility during deposition. Subsequent annealing transforms the amorphous layer into single-crystalline GeSn by solid phase epitaxy. Single-crystalline GeSn layers with 4.5% Sn and 0.33% tensile strain are fabricated on Si(111) substrates. To verify the structural quality of thin-film GeSn as a channel material, we fabricate ultrathin GeSn p-channel MOSFETs (pMOSFETs) on Si(111). We demonstrate junctionless depletion-mode operation of tensile-strained GeSn(111) pMOSFETs on Si substrates.

  17. High-k gate stacks on low bandgap tensile strained Ge and GeSn alloys for field-effect transistors.

    PubMed

    Wirths, Stephan; Stange, Daniela; Pampillón, Maria-Angela; Tiedemann, Andreas T; Mussler, Gregor; Fox, Alfred; Breuer, Uwe; Baert, Bruno; San Andrés, Enrique; Nguyen, Ngoc D; Hartmann, Jean-Michel; Ikonic, Zoran; Mantl, Siegfried; Buca, Dan

    2015-01-14

    We present the epitaxial growth of Ge and Ge0.94Sn0.06 layers with 1.4% and 0.4% tensile strain, respectively, by reduced pressure chemical vapor deposition on relaxed GeSn buffers and the formation of high-k/metal gate stacks thereon. Annealing experiments reveal that process temperatures are limited to 350 °C to avoid Sn diffusion. Particular emphasis is placed on the electrical characterization of various high-k dielectrics, as 5 nm Al2O3, 5 nm HfO2, or 1 nmAl2O3/4 nm HfO2, on strained Ge and strained Ge0.94Sn0.06. Experimental capacitance-voltage characteristics are presented and the effect of the small bandgap, like strong response of minority carriers at applied field, are discussed via simulations. PMID:25531887

  18. Shemya AFB, Alaska 1992 IRP field investigation report

    SciTech Connect

    Not Available

    1993-02-01

    The US Air Force is currently investigating 22 sites on Shemya Air Force Base (AFB) to determine if past spill and disposal activities have caused environmental damage. These investigations are being carried out under the Air Force's Installation Restoration Program (IRP). Field investigations were performed in 1992 to obtain the information needed to assess what future actions will need to be carried out at each site. The island's drinking water supply was also investigated. Activities completed at 10 selected sites included surface sampling to determine the lateral extent of contamination, subsurface sampling to determine the vertical extent of contamination, and the installation of well points and monitoring wells to determine the direction of groundwater flow and if the groundwater has been affected by a site. In addition, geophysical surveys were performed at most sites to identify site boundaries and check for the presence of buried metal, to be avoided during drilling activities. This report contains appendices E and F with information on the following: soil boring logs, and data validation of samples analyzed.

  19. Shemya AFB, Alaska 1992 IRP field investigation report

    SciTech Connect

    Not Available

    1993-02-01

    The US Air Force is currently investigating 22 sites on Shemya Air Force Base (AFB) to determine if past spill and disposal activities have caused environmental damage. These investigations are being carried out under the Air Force's Installation Restoration Program (IRP). Field investigations were performed in 1992 to obtain the information needed to assess what future actions will need to be carried out at each site. The island's drinking water supply was also investigated. Activities completed at 10 selected sites included surface sampling to determine the lateral extent of contamination, subsurface sampling to determine the vertical extent of contamination, and the installation of well points and monitoring wells to determine the direction of groundwater flow and if the groundwater has been affected by a site. Geophysical surveys were performed at most sites to identify site boundaries and check for the presence of buried metal to be avoided during drilling activities. This report, appendices B, C, and D contains information on the following: geophysical contour maps and profile plots; human health risk assessment; and ecological risk assessment.

  20. Report of the working group on far field accelerators

    NASA Astrophysics Data System (ADS)

    Tang, Cha-Mei

    1993-04-01

    This report describes the accomplishments of the Working Group on Far Field Accelerators. In addition to hearing presentations of current research, the group produced designs for 100 MeV demonstrations accelerators, 1 GeV conceptual accelerators, and a small electron beam source. Two of the 100 MeV designs, an Inverse Free Electron Laser (IFEL) and an Inverse Cerenkov Accelerator (ICA), use the CO2 laser and the 50 MeV linac at the Advanced Test Facility (ATF) at Brookhaven National Laboratory (BNL), requiring only the modest changes in the current experimental setups. By upgrading the laser, an ICA design demonstrated 1 GeV acceleration in a gas cell about 50 cm in length. For high average power accelerators, examples based on the IFEL concept were also produced utilizing accelerators driven by high average power FELs. The Working Group also designed a small electron beam source based on the inverse electron cyclotron resonance concept. Accelerators based on the IFEL and ICA may be the first to achieve 100 MeV and 1 GeV energy gain demonstration with high accelerating gradients.

  1. Wide-Field Infrared Survey Telescope (WFIRST) Interim Report

    NASA Technical Reports Server (NTRS)

    Green, J.; Schechter, P.; Baltay, C.; Bean, R.; Bennett, D.; Brown, R.; Conselice, C.; Donahue, M.; Gaudi, S.; Lauer, T.; Perlmutter, S.; Rauscher, B.; Rhodes, J.; Roellig, T.; Stern, D.; Sumi, T.; Gerhels, N.; Sambruna, R.; Barry, R. K.; Content, D.; Grady, K; Jackson, C.; Kruk, J.; Melton, M.; Rioux, N.

    2011-01-01

    The New Worlds, New Horizons (NWNH) in Astronomy and Astrophysics 2010 Decadal Survey prioritized the community consensus for ground-based and space-based observatories. Recognizing that many of the community s key questions could be answered with a wide-field infrared survey telescope in space, and that the decade would be one of budget austerity, WFIRST was top ranked in the large space mission category. In addition to the powerful new science that could be accomplished with a wide-field infrared telescope, the WFIRST mission was determined to be both technologically ready and only a small fraction of the cost of previous flagship missions, such as HST or JWST. In response to the top ranking by the community, NASA formed the WFIRST Science Definition Team (SDT) and Project Office. The SDT was charged with fleshing out the NWNH scientific requirements to a greater level of detail. NWNH evaluated the risk and cost of the JDEM-Omega mission design, as submitted by NASA, and stated that it should serve as the basis for the WFIRST mission. The SDT and Project Office were charged with developing a mission optimized for achieving the science goals laid out by the NWNH re-port. The SDT and Project Office opted to use the JDEM-Omega hardware configuration as an initial start-ing point for the hardware implementation. JDEM-Omega and WFIRST both have an infrared imager with a filter wheel, as well as counter-dispersed moderate resolution spectrometers. The primary advantage of space observations is being above the Earth's atmosphere, which absorbs, scatters, warps and emits light. Observing from above the atmosphere enables WFIRST to obtain precision infrared measurements of the shapes of galaxies for weak lensing, infrared light-curves of supernovae and exoplanet microlensing events with low systematic errors, and infrared measurements of the H hydrogen line to be cleanly detected in the 1

  2. Characterization of western European field isolates and vaccine strains of avian infectious laryngotracheitis virus by restriction fragment length polymorphism and sequence analysis.

    PubMed

    Neff, C; Sudler, C; Hoop, R K

    2008-06-01

    Infectious laryngotracheitis is a dramatic disease of the upper respiratory tract in poultry caused by a herpesvirus. In this study we investigated the characteristics of western European field isolates of infectious laryngotracheitis virus (ILTV) to gain more information on their diversity. The examined 104 isolates, collected from acute outbreaks during the last 35 years, originated from eight different countries: Switzerland (48), Germany (21), Sweden (14), the United Kingdom (9), Italy (5), Belgium (4), Austria (2), and Norway (1). Two vaccines, a chicken embryo origin product and a tissue culture origin product, were included in the survey. Polymerase chain reaction (PCR) was performed to amplify a 2.1-kb DNA fragment of ILTV using primers generated for the thymidine kinase (TK) gene. After digestion of the resulting PCR products by restriction endonuclease HaeIII, restriction fragment length polymorphism analysis was carried out. PCR amplicons of three field isolates and both vaccine strains were selected for sequencing. Here 98 field isolates showed the same cleavage pattern and were identical to both vaccine strains (clone 1). They differed from five Swiss isolates with identical cleavage pattern (clone 2) and one Swedish isolate (clone 3). The present study demonstrated that at least three clones of ILTV have been circulating in western Europe during the last 35 years. The 104 isolates analyzed showed a high genetic similarity regarding the TK gene, and a large majority of the field isolates (98/104) were genetically related to the vaccine strains. PMID:18646457

  3. TESTING AND ANALYSIS OF CAP CONCRETE STRESS AND STRAIN DUE TO SHRINKAGE, CREEP, AND EXPANSION FINAL REPORT

    SciTech Connect

    Guerrero, H.; Restivo, M.

    2011-08-01

    concrete mixture that did not employ humidity sensors and the admixtures used in this program. Yuan and Wan tried to predict the shrinkage strains and stresses in the Kim and Lee experiment, but did not include a creep analysis. Grasley and Lange conducted full restraint load tests on a concrete prism instrumented with humidity sensors over a 7 day curing period. The hypothetical case of full-scale placement of the Cap Concrete was also analyzed using the developed analytical methods. The calculation performed in this report is for scoping purposes only.

  4. Effect of axial strain on the critical current of Ag-sheathed Bi-based superconductors in magnetic fields up to 25 T

    SciTech Connect

    Ekin, J.W. ); Finnemore, D.K.; Li, Q. ); Tenbrink, J. ); Carter, W. )

    1992-08-17

    The irreversible strain limit {epsilon}{sub irrev} for the onset of permanent axial strain damage to Ag-sheathed Bi{sub 2}Sr{sub 2}Ca{sub 1}Cu{sub 2}O{sub 8+{ital x}} and Bi{sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub 10+{ital x}} superconductors has been measured to be in the range of 0.2%--0.35%. This strain damage onset is about an order of magnitude higher than for {ital bulk} {ital sintered} Y-, Bi-, or Tl-based superconductors and is approaching practical values for magnet design. The measurements show that the value of {epsilon}{sub irrev} is not dependent on magnetic field, nor does the critical current depend on strain below {epsilon}{sub irrev} at least up to 25 T at 4.2 K. Both of these factors indicate that the observed strain effect in Ag-sheathed Bi-based superconductors is not intrinsic to the superconductor material. Rather, the effect is extrinsic and arises from superconductor fracture. Thus, the damage onset is amenable to further enhancement. Indeed, the data suggest that subdividing the superconductor into fine filaments or adding Ag to the superconductor powder prior to processing significantly enhances the damage threshold {epsilon}{sub irrev} to above 0.6%.

  5. Physiological strain during exercise-heat stress experienced by soldiers wearing candidate chemical protective fabric systems. Technical report

    SciTech Connect

    Wenger, C.B.; Santee, W.R.

    1988-06-01

    The heat-stress problem of soldiers working in warm environments wearing chemical protective clothing is well documented. The thermal insulation and low moisture permeability of such clothing severely limit the effectiveness of the body's heat dissipating mechanisms. Several foreign and domestic experimental fabric systems are now available, and the thermal and vapor transfer characteristics of some of these systems have been tested in static configurations. This technical report describes the evaluation of three experimental fabric systems for their effect on thermal strain experienced by soldiers during exercise in the heat.

  6. Two-dimensional strain fields on the cross-section of the bovine humeral head under contact loading.

    PubMed

    Canal, Clare E; Hung, Clark T; Ateshian, Gerard A

    2008-11-14

    The objective of this study was to provide a detailed experimental assessment of the two-dimensional cartilage strain distribution on the cross-section of immature and mature bovine humeral heads subjected to contact loading at a relatively rapid physiological loading rate. Six immature and six mature humeral head specimens were loaded against glass and strains were measured at the end of a 5s loading ramp on the textured articular cross-section using digital image correlation analysis. The primary findings indicate that elevated tensile and compressive strains occur near the articular surface, around the center of the contact region. Few qualitative or quantitative differences were observed between mature and immature joints. Under an average contact stress of approximately 1.7 MPa, the peak compressive strains averaged -0.131+/-0.048, which was significantly less than the relative change in cartilage thickness, -0.104+/-0.032 (p<0.05). The peak tensile strains were significantly smaller in magnitude, at 0.0325+/-0.013. These experimental findings differ from a previous finite element analysis of articular contact, which predicted peak strains at the cartilage-bone interface even when accounting for the porous-hydrated nature of the tissue, its depth-dependent inhomogeneity, and the disparity between its tensile and compressive properties. These experimental results yield new insights into the local mechanical environment of the tissue and cells, and suggest that further refinements are needed in the modeling of contacting articular layers. PMID:18952212

  7. Electric-field-induced strain effects on the magnetization of a Pr0.67Sr0.33MnO3 film

    DOE PAGESBeta

    Zhang, B.; Sun, C. -J.; Lu, W.; Venkatesan, T.; Han, M. -G.; Zhu, Y.; Chen, J.; Chow, G. M.

    2015-05-26

    The electric-field control of magnetic properties of Pr0.67Sr0.33MnO3 (PSMO) film on piezoelectric Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMNT) substrate was investigated. The piezoelectric response of the PMNT substrate to the electric field produced strain that was coupled to the PSMO film. The in-plane compressive (tensile) strain increased (decreased) the magnetization. The change of magnetic moment was associated with the Mn ions. First principle simulations showed that the strain-induced electronic redistribution of the two eg orbitals (3dz2 and 3dx2-y2) of Mn ions was responsible for the change of magnetic moment. This work demonstrates that the magnetoelectric effect in manganite/piezoelectric hetero-structures originates from the change inmore » eg orbital occupancy of Mn ions induced by strain rather than the interfacial effect.« less

  8. Straining graphene using thin film shrinkage methods.

    PubMed

    Shioya, Hiroki; Craciun, Monica F; Russo, Saverio; Yamamoto, Michihisa; Tarucha, Seigo

    2014-03-12

    Theoretical works suggest the possibility and usefulness of strain engineering of graphene by predicting remarkable properties, such as Dirac cone merging, bandgap opening and pseudo magnetic field generation. However, most of these predictions have not yet been confirmed because it is experimentally difficult to control the magnitude and type (e.g., uniaxial, biaxial, and so forth) of strain in graphene devices. Here we report two novel methods to apply strain without bending the substrate. We employ thin films of evaporated metal and organic insulator deposited on graphene, which shrink after electron beam irradiation or heat application. These methods make it possible to apply both biaxial strain and in-plane isotropic compressive strain in a well-controlled manner. Raman spectroscopy measurements show a clear splitting of the degenerate states of the G-band in the case of biaxial strain, and G-band blue shift without splitting in the case of in-plane isotropic compressive strain. In the case of biaxial strain application, we find out the ratio of the strain component perpendicular to the stretching direction is at least three times larger than what was previously observed, indicating that shrinkage of the metal or organic insulator deposited on graphene induces both tensile and compressive strain in this atomically thin material. Our studies present for the first time a viable way to apply strain to graphene without the need to bend the substrate. PMID:24490629

  9. Straining Graphene Using Thin Film Shrinkage Methods

    PubMed Central

    2014-01-01

    Theoretical works suggest the possibility and usefulness of strain engineering of graphene by predicting remarkable properties, such as Dirac cone merging, bandgap opening and pseudo magnetic field generation. However, most of these predictions have not yet been confirmed because it is experimentally difficult to control the magnitude and type (e.g., uniaxial, biaxial, and so forth) of strain in graphene devices. Here we report two novel methods to apply strain without bending the substrate. We employ thin films of evaporated metal and organic insulator deposited on graphene, which shrink after electron beam irradiation or heat application. These methods make it possible to apply both biaxial strain and in-plane isotropic compressive strain in a well-controlled manner. Raman spectroscopy measurements show a clear splitting of the degenerate states of the G-band in the case of biaxial strain, and G-band blue shift without splitting in the case of in-plane isotropic compressive strain. In the case of biaxial strain application, we find out the ratio of the strain component perpendicular to the stretching direction is at least three times larger than what was previously observed, indicating that shrinkage of the metal or organic insulator deposited on graphene induces both tensile and compressive strain in this atomically thin material. Our studies present for the first time a viable way to apply strain to graphene without the need to bend the substrate. PMID:24490629

  10. Evaluation of heat-strain-monitoring methods for workers in encapsulating, impermeable protective clothing. Final report

    SciTech Connect

    Eley, W.D.

    1987-05-01

    Heat strain for six young, healthy, acclimized men (mean age 26.2 yrs., weight 84.1 kg) was measured during moderate exercise at various ambient conditions (21.5 C, 28 C, 31.5 C with sunshine) while wearing fully encapsulating chemical protective suits with self-contained breathing apparatus. The total weight of the Coast Guard Chemical Response Suit was 26.3 kg. The subjects performed a total of 35 minutes (20 minutes exercise, as determined by V(O2) measurements was 383 kcal/hr. Heart rate and mean skin temperature rose significantly as ambient temperature increased. Under the most adverse ambient condition (31.5 C with sunshine), the mean heart rate and skin temperature were elevated 39.6 bpm and 4.1 C, respectively, over those recorded for control conditions. Significant increases in rectal temperature were not noted. A mean difference in weight loss was only observed with significance between control conditions and the most severe ambient environment. The five-minute recovery heart rate, recorded at minute 25 after 20 minutes of exercise, increased significantly as ambient temperature conditions became more adverse. It is concluded that wearers of impermeable protective clothing show progressive increases in heat strain as ambient temperature increases. This study indicates that recovery heart rate is probably the best indicator of heat tolerance endpoints for work in encapsulating, impermeable protective clothing.

  11. Effect of strain-polarization fields on optical transitions in AlGaN/GaN multi-quantum well structures

    NASA Astrophysics Data System (ADS)

    Kladko, V.; Kuchuk, A.; Naumov, A.; Safriuk, N.; Kolomys, O.; Kryvyi, S.; Stanchu, H.; Belyaev, A.; Strelchuk, V.; Yavich, B.; Mazur, Yu. I.; Ware, M. E.; Salamo, G. J.

    2016-02-01

    The influence of strain and barrier/well thickness ratio on recombination processes in multi-quantum well (MQW) Al0.1Ga0.9N/GaN structures was investigated using X-ray diffraction and Raman and photoluminescence spectroscopies. The deformation state of the wells and barriers was determined. In addition, the value of the polarization fields, the density of polarization charges, and the positions of energy levels for optical transitions within the quantum wells were calculated. It was established that compressive strain in the buffer layer as well as in the layers of the MQWs with respect to the buffer layer lead to the piezoelectric fields having equal sign in the well and the barrier. As a result, the recombination of donor-acceptor pairs dominates over transitions between electron and hole states in the quantum well.

  12. Can strain magnetize light?

    NASA Astrophysics Data System (ADS)

    2013-02-01

    Strain in photonic structures can induce pseudomagnetic fields and Landau levels. Nature Photonics spoke to Mordechai Segev, Mikael Rechtsman, Alexander Szameit and Julia Zeuner about their unique approach.

  13. Analysis of pulsed field gel electrophoresis profiles using multiple enzymes for predicting potential source reservoirs for strains of Salmonella Enteritidis and Salmonella Typhimurium isolated from humans.

    PubMed

    Son, Insook; Zheng, Jie; Keys, Christine E; Zhao, Shaohua; Meng, Jianghong; Brown, Eric W

    2013-06-01

    We reported previously on a highly discriminatory pulsed field gel electrophoresis-based (PFGE) subtyping scheme for Salmonella enterica serovar Enteritidis (SE) and Salmonella Typhimurium (ST) that relies on combined cluster analysis of up to six restriction enzymes. This approach allowed for the high-resolution separation of numerous poultry-derived SE and ST isolates into several distinct clusters that sorted along several geographical and host-linked boundaries. In this study, 101 SE and 151 ST strains isolated from poultry, swine, beef, mouse, and produce origins were combined with 62 human SE and ST isolates of unknown sources. PFGE profiles were generated across six restriction enzymes (XbaI, BlnI, SpeI, SfiI, PacI, and NotI) for human SE and ST isolates. The combined six-enzyme UPGMA trees of SE and ST revealed six separate origins of North American human SE isolates including one association with a "cosmopolitan" cluster of SEs from poultry originating in Scotland, Mexico, and China. In the case of ST, human isolates assorted readily along host lines rather than geographical partitions with the majority of human STs clustering in a larger group of STs of potential porcine origin. Such observations may underscore the ecological importance of poultry and pork reservoirs for SE and ST transmission to humans, respectively. In an examination of the relationship between enzyme diversity and congruence among enzymes, pairwise genetic diversity ranged from 6.5% to 9.7% for SE isolates and, more widely, from 17.5% to 27.4% for ST isolates. Phylogenetic congruence measures singled out XbaI, BlnI, and SfiI as most concordant for SE while XbaI and SfiI were most concordant among ST strains. Thus, these data provide the first proof of principal for concatenated PFGE, when coupled with sufficient enzyme numbers and combinations, as one effective means for predicting geographical and food source reservoirs for human isolates of these two highly prevalent Salmonella

  14. Preliminary Report on the Feasibility of Using Synthetic Aperture Radar Interferometry to Image Localized Strain as a Discriminator of Geothermal Resources

    SciTech Connect

    Foxall, W

    2005-06-15

    Most producing geothermal fields and known geothermal resources in the Basin and Range province are associated with Quaternary active fault systems, within which hydrothermal fluids are presumed to circulate from depth to relatively shallow production levels through high permeability fractures. Research at the Dixie Valley field by Barton et al. (1997) indicates that hydraulically conductive fractures within the Stillwater fault zone are those that have orientations such that the fractures are critically stressed for normal shear failure under the regional tectonic stress field. In general, therefore, we might expect geothermal resources to occur in areas of high inter-seismic strain accumulation, and where faults are favorably oriented with respect to the regional strain tensor; in the case of Basin and Range normal faults, these would generally be faults striking normal to the direction of maximum extension. Expanding this hypothesis, Blewitt et al. (2003), based on preliminary, broad-scale analysis of regional strain and average fault strike in the northwestern Basin and Range, have proposed that geothermal resources occur in areas where fault-normal extension associated with shear strain is the greatest. Caskey and Wesnousky (2000) presented evidence that the Dixie Valley field occupies a 10 km-long gap between prehistoric Holocene ruptures of the fault segments on either side. Modeled maximum shear and Coulomb failure stress are high within the gap owing to the stress concentrations at the ends of the ruptures. These results suggest that a major contributing factor to the enhanced permeability at fault-hosted geothermal systems may be localized stress and strain concentrations within fault zone segments. This notion is generally consistent with the common occurrence of geothermal fields within fault offsets (pull-aparts) along strike-slip fault systems, where the local strain field has a large extensional component (e.g., Salton Sea and Coso). Blewitt et al

  15. Characterization by restriction fragment length polymorphism and sequence analysis of field and vaccine strains of infectious laryngotracheitis virus involved in severe outbreaks.

    PubMed

    Chacon, Jorge Luis; Mizuma, Matheus Y; Piantino Ferreira, Antonio J

    2010-12-01

    At the end of 2002 and throughout 2003, there was a severe outbreak of infectious laryngotracheitis (ILT) in an intensive production area of commercial hens in the Sao Paulo State of Brazil. ILT virus was isolated from 28 flocks, and 21 isolates were genotyped by polymerase chain reaction and restriction fragment length polymorphism (PCR-RFLP) using four genes and eight restriction enzymes, and by partial sequencing of the infected cell protein 4 (ICP4) and thymidine kinase (TK) genes. Three groups resulted from the combinations of PCR-RFLP patterns: 19 field isolates formed Group I, and the remaining two isolates together with the chicken embryo origin (CEO) vaccine strains formed Group II. Group III comprised the tissue-culture origin (TCO) vaccine strain by itself. The PCR-RFLP results agreed with the sequencing results of two ICP4 gene fragments. The ICP4 gene sequence analysis showed that the 19 field isolates classified into Group I by RFLP-PCR were identical among themselves, but were different to the TCO and CEO vaccines. The two Group II isolates could not be distinguished from one of the CEO vaccines. The nucleotide and amino acid sequence analyses discriminated between the Brazilian and non-Brazilian isolates, as well as between the TCO and CEO vaccines. Sequence analysis of the TK gene enabled classification of the field isolates (Group I) as virulent and non-vaccine. This work shows that the severe ILT outbreak was caused by a highly virulent, non-vaccine strain. PMID:21154050

  16. A non-contacting approach for full field dynamic strain monitoring of rotating structures using the photogrammetry, finite element, and modal expansion techniques

    NASA Astrophysics Data System (ADS)

    Baqersad, Javad

    Health monitoring of rotating structures such as wind turbines and helicopter rotors is generally performed using conventional sensors that provide a limited set of data at discrete locations near or on the hub. These sensors usually provide no data on the blades or interior locations where failures may occur. Within this work, an unique expansion algorithm was extended and combined with finite element (FE) modeling and an optical measurement technique to identify the dynamic strain in rotating structures. The merit of the approach is shown by using the approach to predict the dynamic strain on a small non-rotating and rotating wind turbine. A three-bladed wind turbine having 2.3-meter long blades was placed in a semi-built-in boundary condition using a hub, a machining chuck, and a steel block. A finite element model of the three wind turbine blades assembled to the hub was created and used to extract resonant frequencies and mode shapes. The FE model was validated and updated using experimental modal tests. For the non-rotating optical test, the turbine was excited using a sinusoidal excitation, a pluck test, arbitrary impacts on three blades, and random force excitations with a mechanical shaker. The response of the structure to the excitations was measured using three-dimensional point tracking. A pair of high-speed cameras was used to measure the displacement of optical targets on the structure when the blades were vibrating. The measured displacements at discrete locations were expanded and applied to the finite element model of the structure to extract the full-field dynamic strain. The results of the work show an excellent correlation between the strain predicted using the proposed approach and the strain measured with strain-gages for all of the three loading conditions. Similar to the non-rotating case, optical measurements were also preformed on a rotating wind turbine. The point tracking technique measured both rigid body displacement and flexible

  17. A Descriptive Analysis of the Del Mod System's Field Agent Component, Final Report, Volume III.

    ERIC Educational Resources Information Center

    Golts, Uldis R.

    This monograph describes the field agent of the Delaware Del Mod System. The following sections are included in the report: (1) The Duties and Activities of the Del Mod System Field Agents; (2) The Field Agents' Mode of Operation; (3) The Conduct of Projects; (4) The Hiring and Training of Del Mod Field Agents; (5) The Administration of Del Mod…

  18. Rapid real-time PCR methods to distinguish Salmonella Enteritidis wildtype field isolates from vaccine strains Salmovac SE/Gallivac SE and AviPro SALMONELLA VAC E.

    PubMed

    Maurischat, Sven; Szabo, Istvan; Baumann, Beatrice; Malorny, Burkhard

    2015-05-01

    Salmonella enterica serovar Enteritidis is a major non-typhoid Salmonella serovar causing human salmonellosis mainly associated with the consumption of poultry and products thereof. To reduce infections in poultry, S. Enteritidis live vaccine strains AviPro SALMONELLA VAC E and Salmovac SE/Gallivac SE have been licensed and used in several countries worldwide. To definitively diagnose a S. Enteritidis contamination in vaccinated herds a reliable and fast method for the differentiation between vaccine and wildtype field isolates is required. In this study, we developed and validated real-time PCR (qPCR) assays to distinguish those variants genetically. Suitable target sequences were identified by whole genome sequencing (WGS) using the Illumina MiSeq system. SNP regions in kdpA and nhaA proved to be most useful for differentiation of AviPro SALMONELLA VAC E and Salmovac SE/Gallivac SE, respectively, from wildtype strains. For each vaccine strain one TaqMan-qPCR assay and one alternative approach using High Resolution Melting (HRM) analysis was designed. All 30 Salmovac SE and 7 AviPro SALMONELLA VAC E vaccine strain reisolates tested were correctly identified by both approaches (100% inclusivity). Furthermore, all 137 (TaqMan) and 97 (HRM) Salmonella non-vaccine and related Enterobacteriaceae strains tested were excluded (100% exclusivity). The analytical detection limits were determined to be approx. 10(2) genome copies/reaction for the TaqMan and 10(4) genome copies/reaction for the HRM approach. The real-time PCR assays proved to be a reliable and fast alternative to the cultural vaccine strain identification tests helping decision makers in control measurements to take action within a shorter period of time. PMID:25794902

  19. Association of Job Strain With Cortisol and Alpha-Amylase Among Shift-Working Health Care Professionals in Laboratory and Field.

    PubMed

    Karhula, Kati; Härmä, Mikko; Sallinen, Mikael; Lindholm, Harri; Hirvonen, Ari; Elovainio, Marko; Kivimäki, Mika; Vahtera, Jussi; Puttonen, Sampsa

    2016-01-01

    Although the prevalence of work-related stress has increased, knowledge on the contributions of that stress to long-term adverse health effects is still lacking. Stress biomarkers can reveal early signs of negative health effects, but no previous studies have measured both acute stress reactions and long-term exposure to job strain using both salivary cortisol and α-amylase (AA). The present study examines the association between job strain and these biomarkers among shift-working female health care professionals in the laboratory and the field. The 95 participants were recruited from hospital wards categorized in either the top (high job strain [HJS] group, n = 42) or the bottom quartile of job strain (low job strain [LJS] group, n = 53), as rated by survey responses. Participants' self-perceived job strain was at least as high or low as the ward's average estimation. Saliva samples were collected during the Trier Social Stress Test (TSST), preselected morning and night shifts, and a day off. There was a larger increase in the cortisol concentration of participants in the HJS than in the LJS group (2.27- vs. 1.48-fold, respectively, nonsignificant) during the TSST. Participants in the HJS group also had higher salivary AA levels 30 min after awakening on the morning-shift day than those in the LJS group (p = .02), whereas the salivary cortisol awakening response on the day off was higher in the LJS group (p = .05, education as a covariate). The remaining stress-biomarker results did not differ significantly between groups. These data suggest that HJS in shift-working health care professionals is weakly associated with changes in stress biomarkers. PMID:25827426

  20. Estimates of stress and strain rate in mylonites based on the boundary between the fields of grain-size sensitive and insensitive creep

    NASA Astrophysics Data System (ADS)

    Okudaira, Takamoto; Shigematsu, Norio

    2012-03-01

    Microstructural analyses of mylonites next to the Median Tectonic Line (MTL), SW Japan, reveal a transition in the dominant deformation mechanism of quartz from grain-size-insensitive dislocation creep to grain-size-sensitive grain-boundary sliding (GBS). The transition occurred under greenschist-facies conditions (˜300-400°C) during grain-size reduction by dynamic recrystallization. The stereologically corrected grain size for the transition is approximately 4.3 μm. At the boundary between the fields of dislocation creep and GBS, as calculated from creep constitutive relations, the differential stress and strain rate for this corrected grain size are estimated to be ˜280 MPa and 1.2 × 10-11 s-1 for 300°C, and ˜110 MPa and 1.0 × 10-10 s-1 for 400°C. The strain rates estimated for the mylonites next to the MTL are much higher than those estimated for the surrounding metamorphic rocks (˜10-14 s-1), and the displacement rates calculated based on the thickness of high-strain mylonites and their strain rates are comparable with the average slip rates of the most active intraplate faults in Japan. These inferences suggest that the high-strain mylonite zones next to the MTL are the exhumed downward extension of a seismogenic fault in the ductile region. The zones were highly localized (<10 m) and experienced very high strain rates (10-11 to 10-10 s-1).

  1. Phylogenetic comparison of the S3 gene of United States prototype strains of bluetongue virus with that of field isolates from California.

    PubMed Central

    de Mattos, C C; de Mattos, C A; MacLachlan, N J; Giavedoni, L D; Yilma, T; Osburn, B I

    1996-01-01

    To better define the molecular epidemiology of bluetongue virus (BTV) infection, the genetic characteristics and phylogenetic relationships of the S3 genes of the five U.S. prototype strains of BTV, the commercially available serotype 10 modified live virus vaccine, and 18 field isolates of BTV serotypes 10, 11, 13, and 17 obtained in California during 1980, 1981, 1989, and 1990 were determined. With the exception of the S3 gene of the U.S. prototype strain of BTV serotype 2 (BTV 2), these viruses had an overall sequence homology of between 95 and 100%. Phylogenetic analyses segregated the prototype U.S. BTV 2 strain to a unique branch (100% bootstrap value), whereas the rest of the viruses clustered in two main monophyletic groups that were not correlated with their serotype, year of isolation, or geographical origin. The lack of consistent association between S3 gene sequence and virus serotype likely is a consequence of reassortment of BTV gene segments during natural mixed infections of vertebrate and invertebrate hosts. The prototype strain of BTV 13, which is considered an introduction to the U.S. like BTV 2, presents an S3 gene which is highly homologous to those of some isolates of BTV 10 and especially to that of the vaccine strain. This finding strongly suggests that the U.S. prototype strain of BTV 13 is a natural reassortant. The different topologies of the phylogenetic trees of the L2 and S3 genes of the various viruses indicate that these two genome segments evolve independently. We conclude that the S3 gene segment of populations of BTV in California is formed by different consensus sequences which cocirculate and which cannot be grouped by serotype. PMID:8764098

  2. Electric and Magnetic Fields (EMF) RAPID Program Engineering Project 8: FINAL REPORT, Evaluation of Field Reduction Technologies, Volume 1 (Report) and Volume 2 (Appendices)

    SciTech Connect

    Commonwealth Associates, Inc.; IIT Research Institute

    1997-08-01

    This draft report consists of two volumes. Volume 1, the main body, contains an introducto~ sectionj an overview of magnetic fields sectio~ and field reduction technology evaluation section. Magnetic field reduction methods are evalpated for transmission lines, distribution Iines,sulxtations, building wiring applkmd machinery, and transportation systems. The evaluation considers effectiveness, co% and other ftiors. Volume 2 contains five appendices, Append~ A presents magnetic field shielding information. Appendices B and C present design assumptions and magnetic field plots for transmission and distribution lines, respectively. Appendices D and E present cost estimate details for transmission and distribution limes, respectively.

  3. Application of optical sensing technology to the civil engineering field with optical fiber strain measurement device (BOTDR)

    NASA Astrophysics Data System (ADS)

    Komatsu, Koji; Fujihashi, Kazuhiko; Okutsu, Masaru

    2002-09-01

    Nippon Telegraph and Telephone Corporation (NTT)has developed a device (BOTDR)for measuring the strain occurring in optical fibers as a means of monitoring the condition of optical fiber telecommunications cables.The authors are promoting development of a system that uses this device to measure and monitor structural and ground deformation. This paper first introduces the measurement principle of the strain measurement method using optical fibers (BOTDR method).It then presents case studies of application to the deformation of telecommunications tunnels,ground subject to landslides and so on,and also an outline of an automatic measuring system.

  4. Strain-mediated electric-field control of exchange bias in a Co90Fe10/BiFeO3/SrRuO3/PMN-PT heterostructure.

    PubMed

    Wu, S Z; Miao, J; Xu, X G; Yan, W; Reeve, R; Zhang, X H; Jiang, Y

    2015-01-01

    The electric-field (E-field) controlled exchange bias (EB) in a Co90Fe10/BiFeO3 (BFO)/SrRuO3/PMN-PT heterostructure has been investigated under different tensile strain states. The in-plane tensile strain of the BFO film is changed from +0.52% to +0.43% as a result of external E-field applied to the PMN-PT substrate. An obvious change of EB by the control of non-volatile strain has been observed. A magnetization reversal driven by E-field has been observed in the absence of magnetic field. Our results indicate that a reversible non-volatile E-field control of a ferromagnetic layer through strain modulated multiferroic BFO could be achieved at room temperature. PMID:25752272

  5. Strain-mediated electric-field control of exchange bias in a Co90Fe10/BiFeO3/SrRuO3/PMN-PT heterostructure

    NASA Astrophysics Data System (ADS)

    Wu, S. Z.; Miao, J.; Xu, X. G.; Yan, W.; Reeve, R.; Zhang, X. H.; Jiang, Y.

    2015-03-01

    The electric-field (E-field) controlled exchange bias (EB) in a Co90Fe10/BiFeO3 (BFO)/SrRuO3/PMN-PT heterostructure has been investigated under different tensile strain states. The in-plane tensile strain of the BFO film is changed from +0.52% to +0.43% as a result of external E-field applied to the PMN-PT substrate. An obvious change of EB by the control of non-volatile strain has been observed. A magnetization reversal driven by E-field has been observed in the absence of magnetic field. Our results indicate that a reversible non-volatile E-field control of a ferromagnetic layer through strain modulated multiferroic BFO could be achieved at room temperature.

  6. Strain-mediated electric-field control of exchange bias in a Co90Fe10/BiFeO3/SrRuO3/PMN-PT heterostructure

    PubMed Central

    Wu, S. Z.; Miao, J.; Xu, X. G.; Yan, W.; Reeve, R.; Zhang, X. H.; Jiang, Y.

    2015-01-01

    The electric-field (E-field) controlled exchange bias (EB) in a Co90Fe10/BiFeO3 (BFO)/SrRuO3/PMN-PT heterostructure has been investigated under different tensile strain states. The in-plane tensile strain of the BFO film is changed from +0.52% to +0.43% as a result of external E-field applied to the PMN-PT substrate. An obvious change of EB by the control of non-volatile strain has been observed. A magnetization reversal driven by E-field has been observed in the absence of magnetic field. Our results indicate that a reversible non-volatile E-field control of a ferromagnetic layer through strain modulated multiferroic BFO could be achieved at room temperature. PMID:25752272

  7. Transfer of the virulence-associated protein A-bearing plasmid between field strains of virulent and avirulent Rhodococcus equi

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Virulent and avirulent isolates coexist in equine feces and the environment and serve as a source of infection for foals. The extent to which conjugative plasmid transfer occurs between these strains is unknown and is important for understanding the epidemiology of Rhodococcus equi infections of fo...

  8. Community structure of Aspergillus flavus and persistence of the atoxigenic strain A flavus AF36 in applied fields

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aflatoxins are toxic and carcinogenic metabolites produced by several fungi in Aspergillus Section Flavi that frequently contaminate crops. Aflatoxins impact the value of crops. The use of atoxigenic strains of A. flavus to displace aflatoxin producers is a proven method to reduce aflatoxin contamin...

  9. Report of the panel on geopotential fields: Magnetic field, section 9

    NASA Technical Reports Server (NTRS)

    Achache, Jose J.; Backus, George E.; Benton, Edward R.; Harrison, Christopher G. A.; Langel, Robert A.

    1991-01-01

    The objective of the NASA Geodynamics program for magnetic field measurements is to study the physical state, processes and evolution of the Earth and its environment via interpretation of measurements of the near Earth magnetic field in conjunction with other geophysical data. The fields measured derive from sources in the core, the lithosphere, the ionosphere, and the magnetosphere. Panel recommendations include initiation of multi-decade long continuous scalar and vector measurements of the Earth's magnetic field by launching a five year satellite mission to measure the field to about 1 nT accuracy, improvement of our resolution of the lithographic component of the field by developing a low altitude satellite mission, and support of theoretical studies and continuing analysis of data to better understand the source physics and improve the modeling capabilities for different source regions.

  10. Microbial strain improvement for organosulfur removal from coal. Technical report, December 1, 1992--February 28, 1993

    SciTech Connect

    Kilbane, J.J. II; Ho, K.

    1993-05-01

    IGT has developed a microbial culture of Rhodococcus rhodochrous, designated as IGTS8, that is capable of specifically cleaving carbon-sulfur bonds in a range of organosulfur model compounds and is capable of removing organic sulfur from coal and petroleum without significantly sacrificing the calorific value of the fuel. Although IGTSS possesses the ability to specifically remove organic sulfur from coal, a major research need is to develop strains of microorganisms that possess higher levels of desulfurization activity. During the past quarter, the DNA sequence of the promoter region of the chloramphenicol resistance gene of pRF2 was determined and tentatively localized to a 50 bp region. To further define the important sequences of this promoter mutants were generated that may have altered promoters allowing higher levels of expression of the chloramphenicol resistance gene. The promoter region from twenty such mutants has been subcloned. Additionally, promoter probe vectors were used to isolate small DNA fragments from the chromosome that possess promoters. These studies will lead to the identification and/or the construction of particularly strong Rhodococcus promoters which will subsequently be used to express the desulfurization genes.

  11. CAPSULE REPORT: DISPOSAL OF FLUE GAS DESULFURIZATION WASTES: SHAWNEE FIELD EVALUATION

    EPA Science Inventory

    This capsule report describes activities and results of the Shawnee FGD Field Disposal Evaluation Project, located near Paducah, KY. valuated in this report are FGD wastes that were either chemically treated, left untreated, or force-oxidized to gypsum.

  12. 1994 Fernald field characterization demonstration program data report

    SciTech Connect

    Rautman, C.A.; Cromer, M.V.; Newman, G.C.; Beiso, D.A.

    1995-12-01

    The 1994 Fernald field characterization demonstration program, hosted by Fernald Environmental Management Project, was established to investigate technologies that are applicable to the characterization and remediation of soils contaminated with uranium. An important part of this effort was evaluating field-screening tools potentially capable of acquiring high-resolution information on uranium contamination distribution in surface soils. Further-more, the information needed to be obtained in a cost- and time-efficient manner. Seven advanced field-screening technologies were demonstrated at a uranium-contaminated site at Fernald, located 29 kilometers northwest of Cincinnati, Ohio. The seven technologies tested were: (1) alpha-track detectors, (2) a high-energy beta scintillometer, (3) electret ionization chambers, (4) and (5) two variants of gamma-ray spectrometry, (6) laser ablation-inductively coupled plasma-atomic emission spectroscopy, and (7) long-range alpha detection. The goals of this field demonstration were to evaluate the capabilities of the detectors and to demonstrate their utility within the US Department of Energy`s Environmental Restoration Program. Identical field studies were conducted using four industry-standard characterization tools: (1) a sodium-iodide scintillometer, (2) a low-energy FIDLER scintillometer, (3) a field-portable x-ray fluorescence detector, and (4) standard soil sampling coupled with laboratory analysis. Another important aspect of this program was the application of a cost/risk decision model to guide characterization of the site. This document is a compilation of raw data submitted by the technologies and converted total uranium data from the 1994 Fernald field characterization demonstration.

  13. Phonon-limited resistivity of graphene by first-principles calculations: Electron-phonon interactions, strain-induced gauge field, and Boltzmann equation

    NASA Astrophysics Data System (ADS)

    Sohier, Thibault; Calandra, Matteo; Park, Cheol-Hwan; Bonini, Nicola; Marzari, Nicola; Mauri, Francesco

    2014-09-01

    We use first-principles calculations, at the density-functional-theory (DFT) and GW levels, to study both the electron-phonon interaction for acoustic phonons and the "synthetic" vector potential induced by a strain deformation (responsible for an effective magnetic field in case of a nonuniform strain). In particular, the interactions between electrons and acoustic phonon modes, the so-called gauge-field and deformation potential, are calculated at the DFT level in the framework of linear response. The zero-momentum limit of acoustic phonons is interpreted as a strain of the crystal unit cell, allowing the calculation of the acoustic gauge-field parameter (synthetic vector potential) within the GW approximation as well. We find that using an accurate model for the polarizations of the acoustic phonon modes is crucial to obtain correct numerical results. Similarly, in the presence of a strain deformation, the relaxation of atomic internal coordinates cannot be neglected. The role of electronic screening on the electron-phonon matrix elements is carefully investigated. We then solve the Boltzmann equation semianalytically in graphene, including both acoustic and optical phonon scattering. We show that, in the Bloch-Grüneisen and equipartition regimes, the electronic transport is mainly ruled by the unscreened acoustic gauge field, while the contribution due to the deformation potential is negligible and strongly screened. We show that the contribution of acoustic phonons to resistivity is doping and substrate independent, in agreement with experimental observations. The first-principles calculations, even at the GW level, underestimate this contribution to resistivity by ≈30%. At high temperature (T >270 K), the calculated resistivity underestimates the experimental one more severely, the underestimation being larger at lower doping. We show that, besides remote phonon scattering, a possible explanation for this disagreement is the electron-electron interaction

  14. Internal electrical and strain fields influence on the electrical tunability of epitaxial Ba0.7Sr0.3TiO3 thin films

    NASA Astrophysics Data System (ADS)

    Bagdzevicius, S.; Mackeviciute, R.; Ivanov, M.; Fraygola, B.; Sandu, C. S.; Setter, N.; Banys, J.

    2016-03-01

    Perpetual demand for higher transfer speed and ever increasing miniaturization of radio and microwave telecommunication devices demands new materials with high electrical tunability. We have investigated built in electrical and strain fields' influence on the electrical tunability in Ba0.7Sr0.3TiO3 thin film hetero-system grown by pulsed laser deposition technique. We observed the built in electrical field by local piezo-force microscopy (as deflected hysteresis loops) and macroscopic impedance analysis (as asymmetric tunability curves), with the calculated 88 kV/cm built in field at room temperature. Negative -1.4% misfit strain (due to clamping by the substrate) enhanced ferroelectric phase transition temperature in Ba0.7Sr0.3TiO3 thin film by more than 300 K. Built in fields do not deteriorate functional film properties—dielectric permittivity and tunability are comparable to the best to date values observed in Ba1-xSrxTiO3 thin films.

  15. Missile launch detection electric field perturbation experiment. Final report

    SciTech Connect

    Kane, R.J.; Rynne, T.M.

    1993-04-28

    The Lawrence Livermore National Laboratory and SARA Inc. participated in the ATMD missile launch activities that occurred at WSMR during January 1993. LLNL and SARA deployed sensors for monitoring of basic phenomena. An attempt was made to measure perturbations of the earth geo-potential during the launch of a Lance missile. The occurrence of the perturbation is expected from the conducting body of the missile and the exhaust plume. A set of voltage-probe antennas were used to monitor the local electric field perturbation from the launch at ranges of approximately 1 km. Examination of the data acquired during the launch period failed to show identifiable correlation of the field variations with the launch event. Three reasons are ascribed to this lack of event data: (1) The electric field potential variations have a limited spatial correlation length - the fields measured in one region have little correlation to measurements made at distances of a kilometer away. The potential variations are related to localized atmospheric disturbances and are generally unpredictable. A value for the spatial correlation length is also not known. (2) The conductivity of the plume and missile body are not adequate to produce a field perturbation of adequate magnitude. Phenomena related to the exhaust plume and missile may exist and be outside of the collection range of the equipment employed for these measurements. (3) The presence of 60 Hz power line noise was of sufficient magnitude to irreversibly contaminate measurements.

  16. Shemya AFB, Alaska 1992 IRP field investigation report. Volume 2, Appendix A: Final report

    SciTech Connect

    Not Available

    1993-02-01

    The US Air Force is currently investigating 22 sites on Shemya Air Force Base (AFB) to determine if past spill and disposal activities have caused environmental damage. These investigations are being carried out under the Air Force`s Installation Restoration Program (IRP). Field investigations were performed in 1992 to obtain the information needed to assess what future actions will need to be carried out at each site. The island`s drinking water supply was also investigated. Activities completed at 10 selected sites during the 1992 field investigation included surface sampling to determine the lateral extent of contamination, subsurface sampling to determine the vertical extent of contamination, and the installation of well points and monitoring wells to determine the direction of groundwater flow and if the groundwater has been affected by a site. In addition, geophysical surveys were performed at most sites to identify site boundaries and check for the presence of buried metal to be avoided during drilling activities. This report, appendix A, contains the analytical results.

  17. Evaluation of Infectivity, Virulence and Transmission of FDMV Field Strains of Serotypes O and A Isolated In 2010 from Outbreaks in the Republic of Korea.

    PubMed

    Pacheco, Juan M; Lee, Kwang-Nyeong; Eschbaumer, Michael; Bishop, Elizabeth A; Hartwig, Ethan J; Pauszek, Steven J; Smoliga, George R; Kim, Su-Mi; Park, Jong-Hyeon; Ko, Young-Joon; Lee, Hyang-Sim; Tark, Dongseob; Cho, In-Soo; Kim, Byounghan; Rodriguez, Luis L; Arzt, Jonathan

    2016-01-01

    Since the early 2000s outbreaks of foot-and-mouth disease (FMD) have been described in several previously FMD-free Asian nations, including the Republic of Korea (South Korea). One outbreak with FMD virus (FDMV) serotype A and two with serotype O occurred in South Korea in 2010/2011. The causative viruses belonged to lineages that had been spreading in South East Asia, far East and East Asia since 2009 and presented a great threat to the countries in that region. Most FMDV strains infect ruminants and pigs, as it happened during the outbreaks of FMDV serotype O in South Korea. Contrastingly, the strain of serotype A affected only ruminants. Based upon these findings, the intention of the work described in the current report was to characterize and compare the infectivity, virulence and transmission of both strains under laboratory conditions in cattle and pigs, by direct inoculation and contact exposure. As expected, FMDV serotype O was highly virulent in both cattle and swine by contact exposure and direct inoculation. Surprisingly, FMDV serotype A was highly virulent in swine, but was less infectious in cattle by contact exposure to infected swine or cattle. Interestingly, similar quantities of aerosolized FMDV RNA were detected during experiments with viruses of serotypes O and A. Specific virus-host interaction of A/SKR/2010 could affect the transmission of this strain to cattle, and this may explain in part the limited spread of the serotype A epizootic. PMID:26735130

  18. Evaluation of Infectivity, Virulence and Transmission of FDMV Field Strains of Serotypes O and A Isolated In 2010 from Outbreaks in the Republic of Korea

    PubMed Central

    Pacheco, Juan M.; Lee, Kwang-Nyeong; Eschbaumer, Michael; Bishop, Elizabeth A.; Hartwig, Ethan J.; Pauszek, Steven J.; Smoliga, George R.; Kim, Su-Mi; Park, Jong-Hyeon; Ko, Young-Joon; Lee, Hyang-Sim; Tark, Dongseob; Cho, In-Soo; Kim, Byounghan; Rodriguez, Luis L.; Arzt, Jonathan

    2016-01-01

    Since the early 2000s outbreaks of foot-and-mouth disease (FMD) have been described in several previously FMD-free Asian nations, including the Republic of Korea (South Korea). One outbreak with FMD virus (FDMV) serotype A and two with serotype O occurred in South Korea in 2010/2011. The causative viruses belonged to lineages that had been spreading in South East Asia, far East and East Asia since 2009 and presented a great threat to the countries in that region. Most FMDV strains infect ruminants and pigs, as it happened during the outbreaks of FMDV serotype O in South Korea. Contrastingly, the strain of serotype A affected only ruminants. Based upon these findings, the intention of the work described in the current report was to characterize and compare the infectivity, virulence and transmission of both strains under laboratory conditions in cattle and pigs, by direct inoculation and contact exposure. As expected, FMDV serotype O was highly virulent in both cattle and swine by contact exposure and direct inoculation. Surprisingly, FMDV serotype A was highly virulent in swine, but was less infectious in cattle by contact exposure to infected swine or cattle. Interestingly, similar quantities of aerosolized FMDV RNA were detected during experiments with viruses of serotypes O and A. Specific virus-host interaction of A/SKR/2010 could affect the transmission of this strain to cattle, and this may explain in part the limited spread of the serotype A epizootic. PMID:26735130

  19. A field laboratory for improved oil recovery. Final report

    SciTech Connect

    Hildebrandt, A.F.; McDonald, J.; Claridge, E.; Killough, J.

    1992-09-01

    The purpose of Annex III of the Memorandum of Understanding, undertaken by the Houston Petroleum Research Center at the University of Houston, was to develop a field laboratory for research in improved oil recovery using a Gulf Coast reservoir in Texas. The participants: (1) make a field site selection and conducted a high resolution seismic survey in the demonstration field, (2) obtained characteristics of the reservoir (3) developed an evaluation of local flood efficiency in different parts of the demonstration reservoir, (4) used diverse methodology to evaluate the potential recovery of the remaining oil in the test reservoir, (5) developed cross-well seismic tomography, and (6) will transfer the learned technologies to oil operators through publication and workshops. This abstract is an overview of these tasks.

  20. Prototype Engineered Barrier System Field Tests; Progress report

    SciTech Connect

    Ramirez, A.L.; Beatty, J.; Buscheck, T.A.; Carlson, R.; Daily, W.; LaTorre, V.R.; Lee, K.; Lin, Wunan; Mao, Nai-hsien; Nitao, J.J.; Towse, D.; Ueng, Tzou-Shin; Watwood, D.; Wilder, D.

    1989-07-26

    This paper presents selected preliminary results obtained during the first 54 days of the Prototype Engineered Barrier System Field Tests (PEBSFT) that are being performed in G-Tunnel within the Nevada Test Site. The test described is a precursor to the Engineered Barrier Systems Field Tests (EBSFT). The EBSFT will consist of in situ tests of the geohydrologic and geochemical environment in the near field (within a few meters) of heaters emplaced in welded tuff to simulate the thermal effects of waste packages. The PEBSFTs are being conducted to evaluate the applicability of measurement techniques, numerical models, and procedures for future investigations that will be conducted in the Exploratory Shaft Facilities of the Yucca Mountain Project (YMP). The paper discusses the evolution of hydrothermal behavior during the prototype test, including rock temperatures, changes in rock moisture content, air permeability of fractures, gas pressures, and rock mass gas-phase humidity. 10 refs., 12 figs.