Kheirandish, F.; Amooshahi, M.
2008-11-18
Quantum field theory of a damped vibrating string as the simplest dissipative scalar field theory is investigated by introducing a minimal coupling method. The rate of energy flowing between the system and its environment is obtained.
NASA Astrophysics Data System (ADS)
Bergshoeff, Eric A.; Hohm, Olaf; Penas, Victor A.; Riccioni, Fabio
2016-06-01
We present the dual formulation of double field theory at the linearized level. This is a classically equivalent theory describing the duals of the dilaton, the Kalb-Ramond field and the graviton in a T-duality or O( D, D) covariant way. In agreement with previous proposals, the resulting theory encodes fields in mixed Young-tableau representations, combining them into an antisymmetric 4-tensor under O( D, D). In contrast to previous proposals, the theory also requires an antisymmetric 2-tensor and a singlet, which are not all pure gauge. The need for these additional fields is analogous to a similar phenomenon for "exotic" dualizations, and we clarify this by comparing with the dualizations of the component fields. We close with some speculative remarks on the significance of these observations for the full non-linear theory yet to be constructed.
NASA Astrophysics Data System (ADS)
Dankova, T. S.; Rosensteel, G.
1998-10-01
Mean field theory has an unexpected group theoretic mathematical foundation. Instead of representation theory which applies to most group theoretic quantum models, Hartree-Fock and Hartree-Fock-Bogoliubov have been formulated in terms of coadjoint orbits for the groups U(n) and O(2n). The general theory of mean fields is formulated for an arbitrary Lie algebra L of fermion operators. The moment map provides the correspondence between the Hilbert space of microscopic wave functions and the dual space L^* of densities. The coadjoint orbits of the group in the dual space are phase spaces on which time-dependent mean field theory is equivalent to a classical Hamiltonian dynamical system. Indeed it forms a finite-dimensional Lax system. The mean field theories for the Elliott SU(3) and symplectic Sp(3,R) algebras are constructed explicitly in the coadjoint orbit framework.
NASA Astrophysics Data System (ADS)
Detournay, Stéphane; Hartman, Thomas; Hofman, Diego M.
2012-12-01
We study field theories in two spacetime dimensions invariant under a chiral scaling symmetry that acts only on right-movers. The local symmetries include one copy of the Virasoro algebra and a U(1) current algebra. This differs from the two-dimensional conformal group but in some respects is equally powerful in constraining the theory. In particular, the symmetries on a torus lead to modular covariance of the partition function, which is used to derive a universal formula for the asymptotic density of states. For an application we turn to the holographic description of black holes in quantum gravity, motivated by the fact that the symmetries in the near-horizon geometry of any extremal black hole are identical to those of a two-dimensional field theory with chiral scaling. We consider two examples: black holes in warped AdS3 in topologically massive gravity and in string theory. In both cases, the density of states in the two-dimensional field theory reproduces the Bekenstein-Hawking entropy of black holes in the gravity theory.
Quaternionic quantum field theory
Adler, S.L.
1985-08-19
We show that a quaternionic quantum field theory can be formulated when the numbers of bosonic and fermionic degrees of freedom are equal and the fermions, as well as the bosons, obey a second-order wave equation. The theory is initially defined in terms of a quaternion-imaginary Lagrangian using the Feynman sum over histories. A Schroedinger equation can be derived from the functional integral, which identifies the quaternion-imaginary quantum Hamiltonian. Conversely, the transformation theory based on this Hamiltonian can be used to rederive the functional-integral formulation.
NASA Astrophysics Data System (ADS)
You, Setthivoine
2015-11-01
A new canonical field theory has been developed to help interpret the interaction between plasma flows and magnetic fields. The theory augments the Lagrangian of general dynamical systems to rigourously demonstrate that canonical helicity transport is valid across single particle, kinetic and fluid regimes, on scales ranging from classical to general relativistic. The Lagrangian is augmented with two extra terms that represent the interaction between the motion of matter and electromagnetic fields. The dynamical equations can then be re-formulated as a canonical form of Maxwell's equations or a canonical form of Ohm's law valid across all non-quantum regimes. The field theory rigourously shows that helicity can be preserved in kinetic regimes and not only fluid regimes, that helicity transfer between species governs the formation of flows or magnetic fields, and that helicity changes little compared to total energy only if density gradients are shallow. The theory suggests a possible interpretation of particle energization partitioning during magnetic reconnection as canonical wave interactions. This work is supported by US DOE Grant DE-SC0010340.
Extended conformal field theories
NASA Astrophysics Data System (ADS)
Taormina, Anne
1990-08-01
Some extended conformal field theories are briefly reviewed. They illustrate how non minimal models of the Virasoro algebra (c≥1) can become minimal with respect to a larger algebra. The accent is put on N-extended superconformal algebras, which are relevant in superstring compactification.
Holographic effective field theories
NASA Astrophysics Data System (ADS)
Martucci, Luca; Zaffaroni, Alberto
2016-06-01
We derive the four-dimensional low-energy effective field theory governing the moduli space of strongly coupled superconformal quiver gauge theories associated with D3-branes at Calabi-Yau conical singularities in the holographic regime of validity. We use the dual supergravity description provided by warped resolved conical geometries with mobile D3-branes. Information on the baryonic directions of the moduli space is also obtained by using wrapped Euclidean D3-branes. We illustrate our general results by discussing in detail their application to the Klebanov-Witten model.
Supersymmetric Quantum Field Theories
NASA Astrophysics Data System (ADS)
Grigore, D. R.
2005-03-01
We consider some supersymmetric multiplets in a purely quantum framework. A crucial point is to ensure the positivity of the scalar product in the Hilbert space of the quantum system. For the vector multiplet we obtain some discrepancies with respect to the literature in the expression of the super-propagator and we prove that the model is consistent only for positive mass. The gauge structure is constructed purely deductive and leads to the necessity of introducing scalar ghost superfields, in analogy to the usual gauge theories. Then we consider a supersymmetric extension of quantum gauge theory based on a vector multiplet containing supersymmetric partners of spin 3/2 for the vector fields. As an application we consider the supersymmetric electroweak theory. The resulting self-couplings of the gauge bosons agree with the standard model up to a divergence.
Beyond mean field theory: statistical field theory for neural networks
Buice, Michael A; Chow, Carson C
2014-01-01
Mean field theories have been a stalwart for studying the dynamics of networks of coupled neurons. They are convenient because they are relatively simple and possible to analyze. However, classical mean field theory neglects the effects of fluctuations and correlations due to single neuron effects. Here, we consider various possible approaches for going beyond mean field theory and incorporating correlation effects. Statistical field theory methods, in particular the Doi–Peliti–Janssen formalism, are particularly useful in this regard. PMID:25243014
Logarithmic conformal field theory
NASA Astrophysics Data System (ADS)
Gainutdinov, Azat; Ridout, David; Runkel, Ingo
2013-12-01
Conformal field theory (CFT) has proven to be one of the richest and deepest subjects of modern theoretical and mathematical physics research, especially as regards statistical mechanics and string theory. It has also stimulated an enormous amount of activity in mathematics, shaping and building bridges between seemingly disparate fields through the study of vertex operator algebras, a (partial) axiomatisation of a chiral CFT. One can add to this that the successes of CFT, particularly when applied to statistical lattice models, have also served as an inspiration for mathematicians to develop entirely new fields: the Schramm-Loewner evolution and Smirnov's discrete complex analysis being notable examples. When the energy operator fails to be diagonalisable on the quantum state space, the CFT is said to be logarithmic. Consequently, a logarithmic CFT is one whose quantum space of states is constructed from a collection of representations which includes reducible but indecomposable ones. This qualifier arises because of the consequence that certain correlation functions will possess logarithmic singularities, something that contrasts with the familiar case of power law singularities. While such logarithmic singularities and reducible representations were noted by Rozansky and Saleur in their study of the U (1|1) Wess-Zumino-Witten model in 1992, the link between the non-diagonalisability of the energy operator and logarithmic singularities in correlators is usually ascribed to Gurarie's 1993 article (his paper also contains the first usage of the term 'logarithmic conformal field theory'). The class of CFTs that were under control at this time was quite small. In particular, an enormous amount of work from the statistical mechanics and string theory communities had produced a fairly detailed understanding of the (so-called) rational CFTs. However, physicists from both camps were well aware that applications from many diverse fields required significantly more
NASA Astrophysics Data System (ADS)
Choy, Ting-Pong
One of the leading problems in condensed matter physics is what state of matter obtain when there is a strong Coulomb repulsion between the electrons. One of the exotic examples is the high temperature superconductivity which was discovered in copper-oxide ceramics (cuprates) over twenty years ago. Thus far, a satisfactory theory is absent. In particular, the nature of the electron state outside the superconducting phase remains controversial. In analogy with the BCS theory of a conventional superconductor, in which the metal is well known to be a Fermi liquid, a complete understanding of the normal state of cuprate is necessary prior to the study of the superconducting mechanism in the high temperature superconductors. In this thesis, we will provide a theory for these exotic normal state properties by studying the minimal microscopic model which captures the physics of strong electron correlation. Even in such a simple microscopic model, striking properties including charge localization and presence of a Luttinger surface resemble the normal state properties of cuprate. An exact low energy theory of a doped Mott insulator will be constructed by explicitly integrating (rather than projecting) out the degrees of freedom far away from the chemical potential. The exact low energy theory contains degrees of freedom that cannot be obtained from projective schemes. In particular, a charge 2e bosonic field which is not made out of elemental excitations emerges at low energies. Such a field accounts for dynamical spectral weight transfer across the Mott gap. At half-filling, we show that two such excitations emerge which play a crucial role in preserving the Luttinger surface along which the single-particle Green function vanishes. We also apply this method to the Anderson-U impurity and show that in addition to the Kondo interaction, bosonic degrees of freedom appear as well. We show that many of the normal state properties of the cuprates can result from this new charge
Logarithmic conformal field theory
NASA Astrophysics Data System (ADS)
Gainutdinov, Azat; Ridout, David; Runkel, Ingo
2013-12-01
Conformal field theory (CFT) has proven to be one of the richest and deepest subjects of modern theoretical and mathematical physics research, especially as regards statistical mechanics and string theory. It has also stimulated an enormous amount of activity in mathematics, shaping and building bridges between seemingly disparate fields through the study of vertex operator algebras, a (partial) axiomatisation of a chiral CFT. One can add to this that the successes of CFT, particularly when applied to statistical lattice models, have also served as an inspiration for mathematicians to develop entirely new fields: the Schramm-Loewner evolution and Smirnov's discrete complex analysis being notable examples. When the energy operator fails to be diagonalisable on the quantum state space, the CFT is said to be logarithmic. Consequently, a logarithmic CFT is one whose quantum space of states is constructed from a collection of representations which includes reducible but indecomposable ones. This qualifier arises because of the consequence that certain correlation functions will possess logarithmic singularities, something that contrasts with the familiar case of power law singularities. While such logarithmic singularities and reducible representations were noted by Rozansky and Saleur in their study of the U (1|1) Wess-Zumino-Witten model in 1992, the link between the non-diagonalisability of the energy operator and logarithmic singularities in correlators is usually ascribed to Gurarie's 1993 article (his paper also contains the first usage of the term 'logarithmic conformal field theory'). The class of CFTs that were under control at this time was quite small. In particular, an enormous amount of work from the statistical mechanics and string theory communities had produced a fairly detailed understanding of the (so-called) rational CFTs. However, physicists from both camps were well aware that applications from many diverse fields required significantly more
Polymer parametrized field theory
Laddha, Alok; Varadarajan, Madhavan
2008-08-15
Free scalar field theory on 2-dimensional flat spacetime, cast in diffeomorphism invariant guise by treating the inertial coordinates of the spacetime as dynamical variables, is quantized using loop quantum gravity (LQG) type 'polymer' representations for the matter field and the inertial variables. The quantum constraints are solved via group averaging techniques and, analogous to the case of spatial geometry in LQG, the smooth (flat) spacetime geometry is replaced by a discrete quantum structure. An overcomplete set of Dirac observables, consisting of (a) (exponentials of) the standard free scalar field creation-annihilation modes and (b) canonical transformations corresponding to conformal isometries, are represented as operators on the physical Hilbert space. None of these constructions suffer from any of the 'triangulation'-dependent choices which arise in treatments of LQG. In contrast to the standard Fock quantization, the non-Fock nature of the representation ensures that the group of conformal isometries as well as that of the gauge transformations generated by the constraints are represented in an anomaly free manner. Semiclassical states can be analyzed at the gauge invariant level. It is shown that 'physical weaves' necessarily underlie such states and that such states display semiclassicality with respect to, at most, a countable subset of the (uncountably large) set of observables of type (a). The model thus offers a fertile testing ground for proposed definitions of quantum dynamics as well as semiclassical states in LQG.
Kirby S. Chapman; Sarah R. Nuss-Warren
2007-02-01
The objective of this project is to identify, develop, test, and commercialize emissions control and monitoring technologies that can be implemented by exploration and production (E&P) operators to significantly lower the cost of environmental compliance and expedite project permitting. The project team takes considerable advantage of the emissions control research and development efforts and practices that have been underway in the gas pipeline industry for the last 12 years. These efforts and practices are expected to closely interface with the E&P industry to develop cost-effective options that apply to widely-used field and gathering engines, and which can be readily commercialized. The project is separated into two phases. Phase 1 work establishes an E&P industry liaison group, develops a frequency distribution of installed E&P field engines, and identifies and assesses commercially available and emerging engine emissions control and monitoring technologies. Current and expected E&P engine emissions and monitoring requirements are reviewed, and priority technologies are identified for further development. The identified promising technologies are tested on a laboratory engine to confirm their generic viability. In addition, a full-scale field test of prototype emissions controls will be conducted on at least ten representative field engine models with challenging emissions profiles. Emissions monitoring systems that are integrated with existing controls packages will be developed. Technology transfer/commercialization is expected to be implemented through compressor fleet leasing operators, engine component suppliers, the industry liaison group, and the Petroleum Technology Transfer Council. This topical report discusses work completed during Phase 1 of the project Cost Effective Reciprocating Engine Emissions Control and Monitoring for E&P Field and Gathering Engines. In this report information, data, and results are compiled and summarized from quarterly
Vector field theories in cosmology
Tartaglia, A.; Radicella, N.
2007-10-15
Recently proposed theories based on the cosmic presence of a vectorial field are compared and contrasted. In particular the so-called Einstein aether theory is discussed in parallel with a recent proposal of a strained space-time theory (cosmic defect theory). We show that the latter fits reasonably well the cosmic observed data with only one, or at most two, adjustable parameters, while other vector theories use much more. The Newtonian limits are also compared. Finally we show that the cosmic defect theory may be considered as a special case of the aether theories, corresponding to a more compact and consistent paradigm.
Field theory and particle physics
Eboli, O.J.P.; Gomes, M.; Santoro, A.
1990-01-01
This book contains the proceedings of the topics covered during the fifth Jorge Andre Swieca Summer School. The first part of the book collects the material devoted to quantum field theory. There were four courses on methods in Field Theory; H. O. Girotti lectured on constrained dynamics, R. Jackiw on the Schrodinger representation in Field Theory, S.-Y. Pi on the application of this representation to quantum fields in a Robertson-Walker spacetime, and L. Vinet on Berry Connections. There were three courses on Conformal Field Theory: I. Todorov focused on the problem of construction and classification of conformal field theories. Lattice models, two-dimensional S matrices and conformal field theory were looked from the unifying perspective of the Yang-Baxter algebras in the lectures given by M. Karowski. Parasupersymmetric quantum mechanics was discussed in the lectures by L. Vinet. Besides those courses, there was an introduction to string field theory given by G. Horowitz. There were also three seminars: F. Schaposnik reported on recent applications of topological methods in field theory, P. Gerbert gave a seminar on three dimensional gravity and V. Kurak talked on two dimensional parafermionic models. The second part of this proceedings is devoted to phenomenology. There were three courses on Particle Physics: Dan Green lectured on collider physics, E. Predrazzi on strong interactions and G. Cohen-Tanoudji on the use of strings in strong interactions.
Invariants from classical field theory
Diaz, Rafael; Leal, Lorenzo
2008-06-15
We introduce a method that generates invariant functions from perturbative classical field theories depending on external parameters. By applying our methods to several field theories such as Abelian BF, Chern-Simons, and two-dimensional Yang-Mills theory, we obtain, respectively, the linking number for embedded submanifolds in compact varieties, the Gauss' and the second Milnor's invariant for links in S{sup 3}, and invariants under area-preserving diffeomorphisms for configurations of immersed planar curves.
Resolving Witten's superstring field theory
NASA Astrophysics Data System (ADS)
Erler, Theodore; Konopka, Sebastian; Sachs, Ivo
2014-04-01
We regulate Witten's open superstring field theory by replacing the picturechanging insertion at the midpoint with a contour integral of picture changing insertions over the half-string overlaps of the cubic vertex. The resulting product between string fields is non-associative, but we provide a solution to the A ∞ relations defining all higher vertices. The result is an explicit covariant superstring field theory which by construction satisfies the classical BV master equation.
The Nonlinear Field Space Theory
NASA Astrophysics Data System (ADS)
Mielczarek, Jakub; Trześniewski, Tomasz
2016-08-01
In recent years the idea that not only the configuration space of particles, i.e. spacetime, but also the corresponding momentum space may have nontrivial geometry has attracted significant attention, especially in the context of quantum gravity. The aim of this letter is to extend this concept to the domain of field theories, by introducing field spaces (i.e. phase spaces of field values) that are not affine spaces. After discussing the motivation and general aspects of our approach we present a detailed analysis of the prototype (quantum) Nonlinear Field Space Theory of a scalar field on the Minkowski background. We show that the nonlinear structure of a field space leads to numerous interesting predictions, including: non-locality, generalization of the uncertainty relations, algebra deformations, constraining of the maximal occupation number, shifting of the vacuum energy and renormalization of the charge and speed of propagation of field excitations. Furthermore, a compact field space is a natural way to implement the "Principle of finiteness" of physical theories, which once motivated the Born-Infeld theory. Thus the presented framework has a variety of potential applications in the theories of fundamental interactions (e.g. quantum gravity), as well as in condensed matter physics (e.g. continuous spin chains), and can shed new light on the issue of divergences in quantum field theories.
String field theory and tachyon field
NASA Astrophysics Data System (ADS)
Yang, Yi
In this thesis, we study Sen's conjecture on tachyon condensation by using string field theories, i.e. boundary string field theory (BSFT) and cubic string field theory (CSFT). In the BSFT side, the first explicit calculation of effective tachyon action for the bosonic string was given by Witten ten years ago and by many other authors in the last two years. It was extended to the superstring case shortly after. In our work, we give an explicit calculation of Green functions for the fermionic fields and compute the effective tachyon action for the superstring. The results we obtain agree with earlier results. We then generalize the BSFT method to one loop level. The tachyon condensation at one loop level is systematically studied, and many interesting results are obtained which verify Sen's conjecture. We also apply this method to the non-orientable theory at one loop level, where the expected divergence cancellation is reproduced and the similar effective tachyon action is obtained. By using the boundary state formalism, we verify the duality between open and closed strings. In the CSFT side, since there is no known solution to this theory, tachyon condensation can only be studied by numerical methods, i.e. level truncation. However, at the tachyon vacuum, CSFT is simplified to vacuum string field theory (VSFT) which has a solution - sliver state. By adding a tachyon vertex to the boundary of the sliver state, we have calculated the effective action.
Introduction to Statistical Field Theory
NASA Astrophysics Data System (ADS)
Brézin, Edouard
2010-07-01
1. A few well-known basic results; 2. Introduction: order parameters, broken symmetries; 3. Examples of physical situations modelled by the Ising model; 4. A few results about the Ising model; 5. High temperature and low temperature expansions; 6. Some geometric problems related to phase transitions; 7. Phenomenological description of the critical behaviour; 8. Mean field theory; 9. Beyond mean field theory; 10. Introduction to the renormalization group; 11. Renormalization group for the φ4 theory; 12. Renormalized theory; 13. Goldstone modes; 14. Large n; Index.
Studies in quantum field theory
NASA Astrophysics Data System (ADS)
Polmar, S. K.
The theoretical physics group at Washington University has been devoted to the solution of problems in theoretical and mathematical physics. All of the personnel on this task have a similar approach to their research in that they apply sophisticated analytical and numerical techniques to problems primarily in quantum field theory. Specifically, this group has worked on quantum chromodynamics, classical Yang-Mills fields, chiral symmetry breaking condensates, lattice field theory, strong-coupling approximations, perturbation theory in large order, nonlinear waves, 1/N expansions, quantum solitons, phase transitions, nuclear potentials, and early universe calculations.
The Theory of Conceptual Fields
ERIC Educational Resources Information Center
Vergnaud, Gerard
2009-01-01
The theory of conceptual fields is a developmental theory. It has two aims: (1) to describe and analyse the progressive complexity, on a long- and medium-term basis, of the mathematical competences that students develop inside and outside school, and (2) to establish better connections between the operational form of knowledge, which consists in…
Double field theory inspired cosmology
Wu, Houwen; Yang, Haitang E-mail: hyanga@scu.edu.cn
2014-07-01
Double field theory proposes a generalized spacetime action possessing manifest T-duality on the level of component fields. We calculate the cosmological solutions of double field theory with vanishing Kalb-Ramond field. It turns out that double field theory provides a more consistent way to construct cosmological solutions than the standard string cosmology. We construct solutions for vanishing and non-vanishing symmetry preserving dilaton potentials. The solutions assemble the pre- and post-big bang evolutions in one single line element. Our results show a smooth evolution from an anisotropic early stage to an isotropic phase without any special initial conditions in contrast to previous models. In addition, we demonstrate that the contraction of the dual space automatically leads to both an inflation phase and a decelerated expansion of the ordinary space during different evolution stages.
Nonlocal and quasilocal field theories
NASA Astrophysics Data System (ADS)
Tomboulis, E. T.
2015-12-01
We investigate nonlocal field theories, a subject that has attracted some renewed interest in connection with nonlocal gravity models. We study, in particular, scalar theories of interacting delocalized fields, the delocalization being specified by nonlocal integral kernels. We distinguish between strictly nonlocal and quasilocal (compact support) kernels and impose conditions on them to insure UV finiteness and unitarity of amplitudes. We study the classical initial value problem for the partial integro-differential equations of motion in detail. We give rigorous proofs of the existence but accompanying loss of uniqueness of solutions due to the presence of future, as well as past, "delays," a manifestation of acausality. In the quantum theory we derive a generalization of the Bogoliubov causality condition equation for amplitudes, which explicitly exhibits the corrections due to nonlocality. One finds that, remarkably, for quasilocal kernels all acausal effects are confined within the compact support regions. We briefly discuss the extension to other types of fields and prospects of such theories.
(Studies in quantum field theory)
Not Available
1990-01-01
During the period 4/1/89--3/31/90 the theoretical physics group supported by Department of Energy Contract No. AC02-78ER04915.A015 and consisting of Professors Bender and Shrauner, Associate Professor Papanicolaou, Assistant Professor Ogilvie, and Senior Research Associate Visser has made progress in many areas of theoretical and mathematical physics. Professors Bender and Shrauner, Associate Professor Papanicolaou, Assistant Professor Ogilvie, and Research Associate Visser are currently conducting research in many areas of high energy theoretical and mathematical physics. These areas include: strong-coupling approximation; classical solutions of non-Abelian gauge theories; mean-field approximation in quantum field theory; path integral and coherent state representations in quantum field theory; lattice gauge calculations; the nature of perturbation theory in large order; quark condensation in QCD; chiral symmetry breaking; the 1/N expansion in quantum field theory; effective potential and action in quantum field theories, including OCD; studies of the early universe and inflation, and quantum gravity.
Field-theory methods in coagulation theory
Lushnikov, A. A.
2011-08-15
Coagulating systems are systems of chaotically moving particles that collide and coalesce, producing daughter particles of mass equal to the sum of the masses involved in the respective collision event. The present article puts forth basic ideas underlying the application of methods of quantum-field theory to the theory of coagulating systems. Instead of the generally accepted treatment based on the use of a standard kinetic equation that describes the time evolution of concentrations of particles consisting of a preset number of identical objects (monomers in the following), one introduces the probability W(Q, t) to find the system in some state Q at an instant t for a specific rate of transitions between various states. Each state Q is characterized by a set of occupation numbers Q = (n{sub 1}, n{sub 2}, ..., n{sub g}, ...), where n{sub g} is the total number of particles containing precisely g monomers. Thereupon, one introduces the generating functional {Psi} for the probability W(Q, t). The time evolution of {Psi} is described by an equation that is similar to the Schroedinger equation for a one-dimensional Bose field. This equation is solved exactly for transition rates proportional to the product of the masses of colliding particles. It is shown that, within a finite time interval, which is independent of the total mass of the entire system, a giant particle of mass about the mass of the entire system may appear in this system. The particle in question is unobservable in the thermodynamic limit, and this explains the well-known paradox of mass-concentration nonconservation in classical kinetic theory. The theory described in the present article is successfully applied in studying the time evolution of random graphs.
Field-theory methods in coagulation theory
NASA Astrophysics Data System (ADS)
Lushnikov, A. A.
2011-08-01
Coagulating systems are systems of chaotically moving particles that collide and coalesce, producing daughter particles of mass equal to the sum of the masses involved in the respective collision event. The present article puts forth basic ideas underlying the application of methods of quantum-field theory to the theory of coagulating systems. Instead of the generally accepted treatment based on the use of a standard kinetic equation that describes the time evolution of concentrations of particles consisting of a preset number of identical objects (monomers in the following), one introduces the probability W( Q, t) to find the system in some state Q at an instant t for a specific rate of transitions between various states. Each state Q is characterized by a set of occupation numbers Q = { n 1, n 2, ..., n g , ...}, where n g is the total number of particles containing precisely g monomers. Thereupon, one introduces the generating functional Ψ for the probability W( Q, t). The time evolution of Ψ is described by an equation that is similar to the Schrödinger equation for a one-dimensional Bose field. This equation is solved exactly for transition rates proportional to the product of the masses of colliding particles. It is shown that, within a finite time interval, which is independent of the total mass of the entire system, a giant particle of mass about the mass of the entire system may appear in this system. The particle in question is unobservable in the thermodynamic limit, and this explains the well-known paradox of mass-concentration nonconservation in classical kinetic theory. The theory described in the present article is successfully applied in studying the time evolution of random graphs.
Study of Low Temperature Baking Effect on Field Emission on Nb Samples Treated by BEP, EP, and BCP
Andy Wu, Song Jin, Robert Rimmer, Xiang Yang Lu, K. Zhao, Laura MacIntyre, Robert Ike
2010-05-01
Field emission is still one of the major obstacles facing Nb superconducting radio frequency (SRF) community for allowing Nb SRF cavities to reach routinely accelerating gradient of 35 MV/m that is required for the international linear collider. Nowadays, the well know low temperature backing at 120 oC for 48 hours is a common procedure used in the SRF community to improve the high field Q slope. However, some cavity production data have showed that the low temperature baking may induce field emission for cavities treated by EP. On the other hand, an earlier study of field emission on Nb flat samples treated by BCP showed an opposite conclusion. In this presentation, the preliminary measurements of Nb flat samples treated by BEP, EP, and BCP via our unique home-made scanning field emission microscope before and after the low temperature baking are reported. Some correlations between surface smoothness and the number of the observed field emitters were found. The observed experimental results can be understood, at least partially, by a simple model that involves the change of the thickness of the pent-oxide layer on Nb surfaces.
Exceptional field theory: SL(5)
NASA Astrophysics Data System (ADS)
Musaev, Edvard T.
2016-02-01
In this work the exceptional field theory formulation of supergravity with SL (5) gauge group is considered. This group appears as a U-duality group of D = 7 maximal supergravity. In the formalism presented the hidden global duality group is promoted into a gauge group of a theory in dimensions 7+number of extended directions. This work is a continuation of the series of works for E 8,7,6 , SO (5 , 5) and SL (3) × SL (2) duality groups.
Field theory for string fluids
NASA Astrophysics Data System (ADS)
Schubring, Daniel; Vanchurin, Vitaly
2015-08-01
We develop a field theory description of nondissipative string fluids and construct an explicit mapping between field theory degrees of freedom and hydrodynamic variables. The theory generalizes both a perfect particle fluid and pressureless string fluid to what we call a perfect string fluid. Ideal magnetohydrodynamics is shown to be an example of the perfect string fluid whose equations of motion can be obtained from a particular choice of the Lagrangian. The Lagrangian framework suggests a straightforward extension of the perfect string fluid to more general anisotropic fluids describing higher dimensional branes such as domain walls. Other modifications of the Lagrangian are discussed which may be useful in describing relativistic superfluids and fluids containing additional currents.
Introduction to string theory and conformal field theory
Belavin, A. A. Tarnopolsky, G. M.
2010-05-15
A concise survey of noncritical string theory and two-dimensional conformal field theory is presented. A detailed derivation of a conformal anomaly and the definition and general properties of conformal field theory are given. Minimal string theory, which is a special version of the theory, is considered. Expressions for the string susceptibility and gravitational dimensions are derived.
Variational methods for field theories
Ben-Menahem, S.
1986-09-01
Four field theory models are studied: Periodic Quantum Electrodynamics (PQED) in (2 + 1) dimensions, free scalar field theory in (1 + 1) dimensions, the Quantum XY model in (1 + 1) dimensions, and the (1 + 1) dimensional Ising model in a transverse magnetic field. The last three parts deal exclusively with variational methods; the PQED part involves mainly the path-integral approach. The PQED calculation results in a better understanding of the connection between electric confinement through monopole screening, and confinement through tunneling between degenerate vacua. This includes a better quantitative agreement for the string tensions in the two approaches. Free field theory is used as a laboratory for a new variational blocking-truncation approximation, in which the high-frequency modes in a block are truncated to wave functions that depend on the slower background modes (Boron-Oppenheimer approximation). This ''adiabatic truncation'' method gives very accurate results for ground-state energy density and correlation functions. Various adiabatic schemes, with one variable kept per site and then two variables per site, are used. For the XY model, several trial wave functions for the ground state are explored, with an emphasis on the periodic Gaussian. A connection is established with the vortex Coulomb gas of the Euclidean path integral approach. The approximations used are taken from the realms of statistical mechanics (mean field approximation, transfer-matrix methods) and of quantum mechanics (iterative blocking schemes). In developing blocking schemes based on continuous variables, problems due to the periodicity of the model were solved. Our results exhibit an order-disorder phase transition. The transfer-matrix method is used to find a good (non-blocking) trial ground state for the Ising model in a transverse magnetic field in (1 + 1) dimensions.
A Lagrangian effective field theory
Vlah, Zvonimir; White, Martin; Aviles, Alejandro
2015-09-02
We have continued the development of Lagrangian, cosmological perturbation theory for the low-order correlators of the matter density field. We provide a new route to understanding how the effective field theory (EFT) of large-scale structure can be formulated in the Lagrandian framework and a new resummation scheme, comparing our results to earlier work and to a series of high-resolution N-body simulations in both Fourier and configuration space. The `new' terms arising from EFT serve to tame the dependence of perturbation theory on small-scale physics and improve agreement with simulations (though with an additional free parameter). We find that all ofmore » our models fare well on scales larger than about two to three times the non-linear scale, but fail as the non-linear scale is approached. This is slightly less reach than has been seen previously. At low redshift the Lagrangian model fares as well as EFT in its Eulerian formulation, but at higher z the Eulerian EFT fits the data to smaller scales than resummed, Lagrangian EFT. Furthermore, all the perturbative models fare better than linear theory.« less
A Lagrangian effective field theory
Vlah, Zvonimir; White, Martin; Aviles, Alejandro
2015-09-02
We have continued the development of Lagrangian, cosmological perturbation theory for the low-order correlators of the matter density field. We provide a new route to understanding how the effective field theory (EFT) of large-scale structure can be formulated in the Lagrandian framework and a new resummation scheme, comparing our results to earlier work and to a series of high-resolution N-body simulations in both Fourier and configuration space. The `new' terms arising from EFT serve to tame the dependence of perturbation theory on small-scale physics and improve agreement with simulations (though with an additional free parameter). We find that all of our models fare well on scales larger than about two to three times the non-linear scale, but fail as the non-linear scale is approached. This is slightly less reach than has been seen previously. At low redshift the Lagrangian model fares as well as EFT in its Eulerian formulation, but at higher z the Eulerian EFT fits the data to smaller scales than resummed, Lagrangian EFT. Furthermore, all the perturbative models fare better than linear theory.
Quantum field perturbation theory revisited
NASA Astrophysics Data System (ADS)
Matone, Marco
2016-03-01
Schwinger's formalism in quantum field theory can be easily implemented in the case of scalar theories in D dimension with exponential interactions, such as μDexp (α ϕ ). In particular, we use the relation exp (α δ/δ J (x ) )exp (-Z0[J ])=exp (-Z0[J +αx]) with J the external source, and αx(y )=α δ (y -x ). Such a shift is strictly related to the normal ordering of exp (α ϕ ) and to a scaling relation which follows by renormalizing μ . Next, we derive a new formulation of perturbation theory for the potentials V (ϕ )=λ/n ! :ϕn: , using the generating functional associated to :exp (α ϕ ):. The Δ (0 )-terms related to the normal ordering are absorbed at once. The functional derivatives with respect to J to compute the generating functional are replaced by ordinary derivatives with respect to auxiliary parameters. We focus on scalar theories, but the method is general and similar investigations extend to other theories.
Rearranging Pionless Effective Field Theory
Martin Savage; Silas Beane
2001-11-19
We point out a redundancy in the operator structure of the pionless effective field theory which dramatically simplifies computations. This redundancy is best exploited by using dibaryon fields as fundamental degrees of freedom. In turn, this suggests a new power counting scheme which sums range corrections to all orders. We explore this method with a few simple observables: the deuteron charge form factor, n p -> d gamma, and Compton scattering from the deuteron. Higher dimension operators involving electroweak gauge fields are not renormalized by the s-wave strong interactions, and therefore do not scale with inverse powers of the renormalization scale. Thus, naive dimensional analysis of these operators is sufficient to estimate their contribution to a given process.
NASA Astrophysics Data System (ADS)
Tzeferacos, Petros; Daley, Christopher; Fatenejad, Milad; Flocke, Norbert; Graziani, Carlo; Lamb, Donald Q.; Lee, Dongwook; Scopatz, Anthony; Weide, Klaus; Doyle, Hugo; Gregori, Gianluca; Meinecke, Jena; Reville, Brian; Miniati, Francesco
2013-10-01
The process of generation and amplification of Biermann battery magnetic fields is closely linked to the development of turbulence. In an astrophysical environment, a small seed field can be formed in asymmetric supernova remnant blast waves due to misaligned pressure and density gradients. Inhomogeneities in the density distribution can cause the flow to become turbulent and the B-field can be amplified via dynamo action. In this context, the COSMOLAB team will perform experiments using the Omega EP laser at LLE, that represent a scaled-down model of the astrophysical process in a controlled environment. The experiments involve the illumination of a slab-like target, which produces a plasma flow and a Biermann battery field. The flow then propagates through a grid that creates turbulence and amplifies the field. In this study we describe 2D and 3D radiative MHD simulations of the experimental setup, carried out using the FLASH code on Mira (BG/Q) at ALCF. The objective of these simulations is to explore the morphology and strength of the B-fields generated by ablation of target material by the laser, and their amplification due to the grid. This work was supported by DOE NNSA ASC.
Collective field theory for quantum Hall states
NASA Astrophysics Data System (ADS)
Laskin, M.; Can, T.; Wiegmann, P.
2015-12-01
We develop a collective field theory for fractional quantum Hall (FQH) states. We show that in the leading approximation for a large number of particles, the properties of Laughlin states are captured by a Gaussian free field theory with a background charge. Gradient corrections to the Gaussian field theory arise from the covariant ultraviolet regularization of the theory, which produces the gravitational anomaly. These corrections are described by a theory closely related to the Liouville theory of quantum gravity. The field theory simplifies the computation of correlation functions in FQH states and makes manifest the effect of quantum anomalies.
Topics in low-dimensional field theory
Crescimanno, M.J.
1991-04-30
Conformal field theory is a natural tool for understanding two- dimensional critical systems. This work presents results in the lagrangian approach to conformal field theory. The first sections are chiefly about a particular class of field theories called coset constructions and the last part is an exposition of the connection between two-dimensional conformal theory and a three-dimensional gauge theory whose lagrangian is the Chern-Simons density.
Haag's theorem in noncommutative quantum field theory
Antipin, K. V.; Mnatsakanova, M. N.; Vernov, Yu. S.
2013-08-15
Haag's theorem was extended to the general case of noncommutative quantum field theory when time does not commute with spatial variables. It was proven that if S matrix is equal to unity in one of two theories related by unitary transformation, then the corresponding one in the other theory is equal to unity as well. In fact, this result is valid in any SO(1, 1)-invariant quantum field theory, an important example of which is noncommutative quantum field theory.
Effective field theory in nuclear physics
Martin J. Savage
2000-12-12
I review recent developments in the application of effective field theory to nuclear physics. Emphasis is placed on precision two-body calculations and efforts to formulate the nuclear shell model in terms of an effective field theory.
Effective field theory, past and future
NASA Astrophysics Data System (ADS)
Weinberg, Steven
2016-02-01
I reminisce about the early development of effective field theories of the strong interactions, comment briefly on some other applications of effective field theories, and then take up the idea that the Standard Model and General Relativity are the leading terms in an effective field theory. Finally, I cite recent calculations that suggest that the effective field theory of gravitation and matter is asymptotically safe.
Vertex operator algebras and conformal field theory
Huang, Y.Z. )
1992-04-20
This paper discusses conformal field theory, an important physical theory, describing both two-dimensional critical phenomena in condensed matter physics and classical motions of strings in string theory. The study of conformal field theory will deepen the understanding of these theories and will help to understand string theory conceptually. Besides its importance in physics, the beautiful and rich mathematical structure of conformal field theory has interested many mathematicians. New relations between different branches of mathematics, such as representations of infinite-dimensional Lie algebras and Lie groups, Riemann surfaces and algebraic curves, the Monster sporadic group, modular functions and modular forms, elliptic genera and elliptic cohomology, Calabi-Yau manifolds, tensor categories, and knot theory, are revealed in the study of conformal field theory. It is therefore believed that the study of the mathematics involved in conformal field theory will ultimately lead to new mathematical structures which would be important to both mathematics and physics.
Quantum Field Theory in (0 + 1) Dimensions
ERIC Educational Resources Information Center
Boozer, A. D.
2007-01-01
We show that many of the key ideas of quantum field theory can be illustrated simply and straightforwardly by using toy models in (0 + 1) dimensions. Because quantum field theory in (0 + 1) dimensions is equivalent to quantum mechanics, these models allow us to use techniques from quantum mechanics to gain insight into quantum field theory. In…
Instantons in Lifshitz field theories
NASA Astrophysics Data System (ADS)
Fujimori, Toshiaki; Nitta, Muneto
2015-10-01
BPS instantons are discussed in Lifshitz-type anisotropic field theories. We consider generalizations of the sigma model/Yang-Mills instantons in renormalizable higher dimensional models with the classical Lifshitz scaling invariance. In each model, BPS instanton equation takes the form of the gradient flow equations for "the superpotential" defining "the detailed balance condition". The anisotropic Weyl rescaling and the coset space dimensional reduction are used to map rotationally symmetric instantons to vortices in two-dimensional anisotropic systems on the hyperbolic plane. As examples, we study anisotropic BPS baby Skyrmion 1+1 dimensions and BPS Skyrmion in 2+1 dimensions, for which we take Kähler 1-form and the Wess-Zumiono-Witten term as the superpotentials, respectively, and an anisotropic generalized Yang-Mills instanton in 4 + 1 dimensions, for which we take the Chern-Simons term as the superpotential.
Non-Perturbative Field Theories.
NASA Astrophysics Data System (ADS)
Stephenson, David
Available from UMI in association with The British Library. Requires signed TDF. Some non-perturbative aspects of field theories are studied by applying lattice gauge theory techniques. The low-lying hadronic mass spectrum is calculated numerically using quenched lattice quantum chromodynamics. The results of large numerical simulations performed on a distributed array processor are presented and analysed. Particular emphasis is stressed upon the understanding of systematic and statistical errors in the calculation. In addition, the pion decay constant and the chiral condensate are evaluated. An attempt is made to relate the numerical findings to the experimentally measured quantities. A pioneering attempt to understand Yukawa couplings is discussed. A toy Fermion-Higgs system is studied numerically on a transputer array. Dynamical fermions are included in the investigation of the behavior of the system over a wide range of Yukawa couplings. A phase diagram is found for the model which shows evidence of spontaneous chiral symmetry breaking transitions. Extensions of the model are discussed together some speculations concerning the behaviour of Yukawa couplings in general. The possibility of using the lattice as a model for space-time is investigated by studying the propagation of particles on a fractal lattice. In addition, the use of truncated fractals as novel regulators is studied numerically in the hope that the problem of fermion doubling will be alleviated.
Group field theory with noncommutative metric variables.
Baratin, Aristide; Oriti, Daniele
2010-11-26
We introduce a dual formulation of group field theories as a type of noncommutative field theories, making their simplicial geometry manifest. For Ooguri-type models, the Feynman amplitudes are simplicial path integrals for BF theories. We give a new definition of the Barrett-Crane model for gravity by imposing the simplicity constraints directly at the level of the group field theory action. PMID:21231377
Perturbative double field theory on general backgrounds
NASA Astrophysics Data System (ADS)
Hohm, Olaf; Marques, Diego
2016-01-01
We develop the perturbation theory of double field theory around arbitrary solutions of its field equations. The exact gauge transformations are written in a manifestly background covariant way and contain at most quadratic terms in the field fluctuations. We expand the generalized curvature scalar to cubic order in fluctuations and thereby determine the cubic action in a manifestly background covariant form. As a first application we specialize this theory to group manifold backgrounds, such as S U (2 )≃S3 with H -flux. In the full string theory this corresponds to a Wess-Zumino-Witten background CFT. Starting from closed string field theory, the cubic action around such backgrounds has been computed before by Blumenhagen, Hassler, and Lüst. We establish precise agreement with the cubic action derived from double field theory. This result confirms that double field theory is applicable to arbitrary curved background solutions, disproving assertions in the literature to the contrary.
Toward a gauge field theory of gravity.
NASA Astrophysics Data System (ADS)
Yilmaz, H.
Joint use of two differential identities (Bianchi and Freud) permits a gauge field theory of gravity in which the gravitational energy is localizable. The theory is compatible with quantum mechanics and is experimentally viable.
Homotopy Classification of Bosonic String Field Theory
NASA Astrophysics Data System (ADS)
Münster, Korbinian; Sachs, Ivo
2014-09-01
We prove the decomposition theorem for the loop homotopy Lie algebra of quantum closed string field theory and use it to show that closed string field theory is unique up to gauge transformations on a given string background and given S-matrix. For the theory of open and closed strings we use results in open-closed homotopy algebra to show that the space of inequivalent open string field theories is isomorphic to the space of classical closed string backgrounds. As a further application of the open-closed homotopy algebra, we show that string field theory is background independent and locally unique in a very precise sense. Finally, we discuss topological string theory in the framework of homotopy algebras and find a generalized correspondence between closed strings and open string field theories.
Towards weakly constrained double field theory
NASA Astrophysics Data System (ADS)
Lee, Kanghoon
2016-08-01
We show that it is possible to construct a well-defined effective field theory incorporating string winding modes without using strong constraint in double field theory. We show that X-ray (Radon) transform on a torus is well-suited for describing weakly constrained double fields, and any weakly constrained fields are represented as a sum of strongly constrained fields. Using inverse X-ray transform we define a novel binary operation which is compatible with the level matching constraint. Based on this formalism, we construct a consistent gauge transform and gauge invariant action without using strong constraint. We then discuss the relation of our result to the closed string field theory. Our construction suggests that there exists an effective field theory description for massless sector of closed string field theory on a torus in an associative truncation.
Kirby S. Chapman; Sarah R. Nuss-Warren
2006-12-31
This report highlights work done on a project intended to lower the cost of environmental compliance and expedite project permitting for Exploration and Production (E&P) operators by identifying, developing, testing, and commercializing emissions control and monitoring technologies. Promising technologies have already been identified and developed. Current work focuses on testing these promising technologies. Specifically, several technologies are being tested in the laboratory for application to lean-burn engines or fully characterized on-site for use with rich-burn engines. Upon completion of these tests, the most cost-effective and robust technologies will be tested in the field and commercialization will ensue. During this quarter, progress in laboratory testing for lean-burn engines was limited by maintenance issues on the KSU Ajax DP-115. The difficulties that required maintenance to be performed will likely require that the 180 psig prototype valve be tested in the future, if possible. The maintenance was performed, and it is expected that the Ajax will be available for testing in the coming quarter. Although laboratory testing was slowed as a result of maintenance issues, progress in experimental characterization of technologies has been significant. NSCR systems will be characterized as applied to rich-burn engines on-site. This characterization will ensure high-quality data in final field testing on rich-burn engines and is considered to be essential, despite that the work requires the delay of official field testing until 2008. Many preliminary and administrative tasks have been completed, including initial site selection, official proposal submittal, and beginning a process to approve necessary changes to installed field engines.
Singularity theory and N = 2 superconformal field theories
Warner, N.P.
1989-01-01
The N = 2 superconformal field theories that appear at the fixed points of the renormalization group flows of Landau-Ginsburg models are discussed. Some of the techniques of singularity theory are employed to deduce properties of these superconformal theories. These ideas are then used to deduce the relationship between Calabi-Yau compactifications and tensored discrete series models. The chiral rings of general N = 2 superconformal theories are also described. 14 refs.
Gauge anomalies in an effective field theory
Preskill, J. )
1991-09-01
A four-dimensional gauge theory with anomalous fermion content can be consistently quantized, provided that at least some gauge fields are permitted to have nonvanishing masses. Such a theory is nonrenormalizable; there is a maximal value of the ultraviolet cutoff {Lambda}, beyond which the locality of the theory breaks down. The maximal {Lambda} can be estimated in perturbation theory and has a qualitatively different character in Abelian and non-Abelian anomalous gauge theories.
Logarithmic operators and logarithmic conformal field theories
NASA Astrophysics Data System (ADS)
Gurarie, Victor
2013-12-01
Logarithmic operators and logarithmic conformal field theories are reviewed. Prominent examples considered here include c = -2 and c = 0 logarithmic conformal field theories. c = 0 logarithmic conformal field theories are especially interesting since they describe some of the critical points of a variety of longstanding problems involving a two dimensional quantum particle moving in a spatially random potential, as well as critical two dimensional self-avoiding random walks and percolation. Lack of classification of logarithmic conformal field theories remains a major impediment to progress towards finding complete solutions to these problems.
Boson formulation of fermion field theories
Ha, Y.K.
1984-04-15
The nonperturbative connection between a canonical Fermi field and a canonical Bose field in two dimensions is developed and its validity verified according to the tenets of quantum field theory. We advocate the point of view that a boson formulation offers a unifying theme in understanding the structure of many theories. This is illustrated by the boson formulation of a multifermion theory with chiral and internal symmetries. Many features of the massless theory, such as dynamical mass generation with asymptotic-freedom behavior, hidden chiral symmetry, and connections with models of apparently different internal symmetries, are readily transparent through such fermion-boson metamorphosis.
Three approaches to classical thermal field theory
NASA Astrophysics Data System (ADS)
Gozzi, E.; Penco, R.
2011-04-01
In this paper we study three different functional approaches to classical thermal field theory, which turn out to be the classical counterparts of three well-known different formulations of quantum thermal field theory: the closed-time path (CTP) formalism, the thermofield dynamics (TFD) and the Matsubara approach.
Descent relations in cubic superstring field theory
NASA Astrophysics Data System (ADS)
Aref'eva, I. Y.; Gorbachev, R.; Medvedev, P. B.; Rychkov, D. V.
2008-01-01
The descent relations between string field theory (SFT) vertices are characteristic relations of the operator formulation of SFT and they provide self-consistency of this theory. The descent relations langleV2|V1rangle and langleV3|V1rangle in the NS fermionic string field theory in the κ and discrete bases are established. Different regularizations and schemes of calculations are considered and relations between them are discussed.
E11 and exceptional field theory
NASA Astrophysics Data System (ADS)
Tumanov, Alexander G.; West, Peter
2016-04-01
We argue that the exceptional field theory is a truncation of the nonlinear realisation of the semi-direct product of E11 and its first fundamental as proposed in 2003. Evaluating the simple equations of the E11 approach, and using the commutators of the E11 algebra, we find the local variations of the fields of exceptional field theory after making a radical truncation. This procedure does not respect any of the higher level E11 symmetries and so these are lost. We suggest that the need for the section condition in the exceptional field theory could be a consequence of the truncation.
Introduction to conformal field theory and string theory
Dixon, L.J.
1989-12-01
These lectures are meant to provide a brief introduction to conformal field theory (CFT) and string theory for those with no prior exposure to the subjects. There are many excellent reviews already available, and most of these go in to much more detail than I will be able to here. 52 refs., 11 figs.
Keith Hohn; Sarah R. Nuss-Warren
2011-08-31
This final report describes a project intended to identify, develop, test, and commercialize emissions control and monitoring technologies that can be implemented by E&P operators to significantly lower their cost of environmental compliance and expedite project permitting. Technologies were installed and tested in controlled laboratory situations and then installed and tested on field engines based on the recommendations of an industry-based steering committee, analysis of installed horsepower, analysis of available emissions control and monitoring technologies, and review of technology and market gaps. The industry-recognized solution for lean-burn engines, a low-emissions-retrofit including increased airflow and pre-combustion chambers, was found to successfully control engine emissions of oxides of nitrogen (NO{sub X}) and carbon monoxide (CO). However, the standard non-selective catalytic reduction (NSCR) system recognized by the industry was found to be unable to consistently control both NO{sub X} and CO emissions. The standard NSCR system was observed to produce emissions levels that changed dramatically on a day-to-day or even hour-to-hour basis. Because difficulties with this system seemed to be the result of exhaust gas oxygen (EGO) sensors that produced identical output for very different exhaust gas conditions, models were developed to describe the behavior of the EGO sensor and an alternative, the universal exhaust gas oxygen (UEGO) sensor. Meanwhile, an integrated NSCR system using an advanced, signal-conditioned UEGO sensor was tested and found to control both NO{sub X} and CO emissions. In conjunction with this project, advanced monitoring technologies, such as Ion Sense, and improved sensors for emissions control, such as the AFM1000+ have been developed and commercialized.
Understanding conformal field theory through parafermions and Chern Simons theory
Hotes, S.A.
1992-11-19
Conformal field theories comprise a vast class of exactly solvable two dimensional quantum field theories. Conformal theories with an enlarged symmetry group, the current algebra symmetry, axe a key ingredient to possible string compactification models. The following work explores a Lagrangian approach to these theories. In the first part of this thesis, a large class of conformal theories, the so-called coset models, are derived semi-classically from a gauged version Of the Wess-Zumino-Witten functional. A non-local field transformation to the parafermionic field description is employed in the quantization procedure. Classically, these parafermionic fields satisfy non-trivial Poisson brackets, providing insight into the fractional spin nature of the conformal theory. The W-algebra symmetry is shown to appear naturally in this approach. In the second part of this thesis, the connection between the fusion algebra structure of Wess-Zumino-Witten models and the quantization of the Chern-Simons action on the torus is made explicit. The modular properties of the conformal model are also derived in this context, giving a natural demonstration of the Verlinde conjecture. The effects of background gauge fields and monopoles are also discussed.
The facets of relativistic quantum field theory
NASA Astrophysics Data System (ADS)
Dosch, H. G.; Müller, V. F.
2010-04-01
Relativistic quantum field theory is generally recognized to form the adequate theoretical frame for subatomic physics, with the Standard Model of Particle Physics as a major achievement. We point out that quantum field theory in its present form is not a monolithic theory, but rather consists of distinct facets, which aim at a common ideal goal. We give a short overview of the strengths and limitations of these facets. We emphasize the theory-dependent relation between the quantum fields, and the basic objects in the empirical domain, the particles. Given the marked conceptual differences between the facets, we argue to view these, and therefore also the Standard Model, as symbolic constructions. We finally note that this view of physical theories originated in the 19th century and is related to the emergence of the classical field as an autonomous concept.
The facets of relativistic quantum field theory
NASA Astrophysics Data System (ADS)
Dosch, H. G.; Müller, V. F.
2011-04-01
Relativistic quantum field theory is generally recognized to form the adequate theoretical frame for subatomic physics, with the Standard Model of Particle Physics as a major achievement. We point out that quantum field theory in its present form is not a monolithic theory, but rather consists of distinct facets, which aim at a common ideal goal. We give a short overview of the strengths and limitations of these facets. We emphasize the theory-dependent relation between the quantum fields, and the basic objects in the empirical domain, the particles. Given the marked conceptual differences between the facets, we argue to view these, and therefore also the Standard Model, as symbolic constructions. We finally note that this view of physical theories originated in the 19th century and is related to the emergence of the classical field as an autonomous concept.
Fermion boson metamorphosis in field theory
Ha, Y.K.
1982-01-01
In two-dimensional field theories many features are especially transparent if the Fermi fields are represented by non-local expressions of the Bose fields. Such a procedure is known as boson representation. Bilinear quantities appear in the Lagrangian of a fermion theory transform, however, as simple local expressions of the bosons so that the resulting theory may be written as a theory of bosons. Conversely, a theory of bosons may be transformed into an equivalent theory of fermions. Together they provide a basis for generating many interesting equivalences between theories of different types. In the present work a consistent scheme for constructing a canonical Fermi field in terms of a real scalar field is developed and such a procedure is valid and consistent with the tenets of quantum field theory is verified. A boson formulation offers a unifying theme in understanding the structure of many theories. This is illustrated by the boson formulation of a multifermion theory with chiral and internal symmetries. The nature of dynamical generation of mass when the theory undergoes boson transmutation and the preservation of continuous chiral symmetry in the massive case are examined. The dynamics of the system depends to a great extent on the specific number of fermions and different models of the same system can have very different properties. Many unusual symmetries of the fermion theory, such as hidden symmetry, duality and triality symmetries, are only manifest in the boson formulation. The underlying connections between some models with U(N) internal symmetry and another class of fermion models built with Majorana fermions which have O(2N) internal symmetry are uncovered.
On causality in polymer scalar field theory
NASA Astrophysics Data System (ADS)
García-Chung, Angel A.; Morales-Técotl, Hugo A.
2011-10-01
The properties of spacetime corresponding to a proposed quantum gravity theory might modify the high energy behavior of quantum fields. Motivated by loop quantum gravity, recently, Hossain et al [1] have considered a polymer field algebra that replaces the standard canonical one in order to calculate the propagator of a real scalar field in flat spacetime. This propagator features Lorentz violations. Motivated by the relation between Lorentz invariance and causality in standard Quantum Field Theory, in this work we investigate the causality behavior of the polymer scalar field.
Ostrogradsky in theories with multiple fields
NASA Astrophysics Data System (ADS)
de Rham, Claudia; Matas, Andrew
2016-06-01
We review how the (absence of) Ostrogradsky instability manifests itself in theories with multiple fields. It has recently been appreciated that when multiple fields are present, the existence of higher derivatives may not automatically imply the existence of ghosts. We discuss the connection with gravitational theories like massive gravity and beyond Horndeski which manifest higher derivatives in some formulations and yet are free of Ostrogradsky ghost. We also examine an interesting new class of Extended Scalar-Tensor Theories of gravity which has been recently proposed. We show that for a subclass of these theories, the tensor modes are either not dynamical or are infinitely strongly coupled. Among the remaining theories for which the tensor modes are well-defined one counts one new model that is not field-redefinable to Horndeski via a conformal and disformal transformation but that does require the vacuum to break Lorentz invariance. We discuss the implications for the effective field theory of dark energy and the stability of the theory. In particular we find that if we restrict ourselves to the Extended Scalar-Tensor class of theories for which the tensors are well-behaved and the scalar is free from gradient or ghost instabilities on FLRW then we recover Horndeski up to field redefinitions.
Metric quantum field theory: A preliminary look
Watson, W.N.
1988-01-01
Spacetime coordinates are involved in uncertainty relations; spacetime itself appears to exhibit curvature. Could the continua associated with field variables exhibit curvature This question, as well as the ideas that (a) difficulties with quantum theories of gravitation may be due to their formulation in an incorrect analogy with other quantum field theories, (b) spacetime variables should not be any more basic than others for describing physical phenomena, and (c) if field continua do not exhibit curvature, the reasons would be of interest, motivated the formulation of a theory of variable curvature and torsion in the electromagnetic four-potential's reciprocal space. Curvature and torsion equation completely analogous to those for a gauge theory of gravitation (the Einstein-Cartan-Sciama-Kibble theory) are assumed for this continuum. The interaction-Hamiltonian density of this theory, to a first approximation, implies that in addition to the Maxwell-Dirac field interaction of ordinary quantum electrodynamics, there should also be an interaction between Dirac-field vector and pseudovector currents unmediated by photons, as well as other interactions involving two or three Dirac-field currents interacting with the Maxwell field at single spacetime events. Calculations expressing Bhabha-scattering cross sections for incident beams with parallel spins differ from those of unmodified quantum electrodynamics by terms of first order in the gravitational constant of the theory, but the corresponding cross section for unpolarized incident beams differs from that of the unmodified theory only by terms of higher order in that constant. Undesirable features of the present theory include its nonrenormalizability, the obscurity of the meaning of its inverse field operator, and its being based on electrodynamics rather than electroweak dynamics.
An introduction to conformal field theory
NASA Astrophysics Data System (ADS)
Gaberdiel, Matthias R.
2000-04-01
A comprehensive introduction to two-dimensional conformal field theory is given. The structure of the meromorphic subtheory is described in detail, and a number of examples are presented explicitly. Standard constructions such as the coset and the orbifold construction are explained. The concept of a representation of the meromorphic theory is introduced, and the role of Zhu's algebra in classifying highest weight representations is elucidated. The fusion product of two representations and the corresponding fusion rules are defined, and Verlinde's formula is explained. Finally, higher correlation functions are considered, and the polynomial relations of Moore and Seiberg and the quantum group structure of chiral conformal field theory are discussed. The treatment is relatively general and also allows for a description of less well known classes of theories such as logarithmic conformal field theories.
Relativistic mean-field theory
NASA Astrophysics Data System (ADS)
Meng, Jie; Ring, Peter; Zhao, Pengwei
In this chapter, the covariant energy density functional is constructed with both the meson-exchange and the point-coupling pictures. Several widely used functionals with either nonlinear or density-dependent effective interactions are introduced. The applications of covariant density functional theory are demonstrated for infinite nuclear matter and finite nuclei with spherical symmetry, axially symmetric quadrupole deformation, and triaxial quadrupole shapes. Finally, a relativistic description of the nuclear landscape has been discussed, which is not only important for nuclear structure, but also important for nuclear astrophysics, where we are facing the problem of a reliable extrapolation to the very neutron-rich nuclei.
A nonlinear field theory of deformable dielectrics
NASA Astrophysics Data System (ADS)
Suo, Zhigang; Zhao, Xuanhe; Greene, William H.
Two difficulties have long troubled the field theory of dielectric solids. First, when two electric charges are placed inside a dielectric solid, the force between them is not a measurable quantity. Second, when a dielectric solid deforms, the true electric field and true electric displacement are not work conjugates. These difficulties are circumvented in a new formulation of the theory in this paper. Imagine that each material particle in a dielectric is attached with a weight and a battery, and prescribe a field of virtual displacement and a field of virtual voltage. Associated with the virtual work done by the weights and inertia, define the nominal stress as the conjugate to the gradient of the virtual displacement. Associated with the virtual work done by the batteries, define the nominal electric displacement as the conjugate to the gradient of virtual voltage. The approach does not start with Newton's laws of mechanics and Maxwell-Faraday theory of electrostatics, but produces them as consequences. The definitions lead to familiar and decoupled field equations. Electromechanical coupling enters the theory through material laws. In the limiting case of a fluid dielectric, the theory recovers the Maxwell stress. The approach is developed for finite deformation, and is applicable to both elastic and inelastic dielectrics. As applications of the theory, we discuss material laws for elastic dielectrics, and study infinitesimal fields superimposed upon a given field, including phenomena such as vibration, wave propagation, and bifurcation.
Yang, Guang; Ren, Zhen; Mei, Yan-Ai
2015-10-01
Previous work from both our lab and others have indicated that exposure to 50 Hz magnetic fields (ELF-MF) was able to modify ion channel functions. However, very few studies have investigated the effects of MF on γ-aminobutyric acid (GABA) type A receptors (GABA(A) Rs) channel functioning, which are fundamental to overall neuronal excitability. Here, our major goal is to reveal the potential effects of ELF-MF on GABA(A) Rs activity in rat cerebellar granule neurons (CGNs). Our results indicated that exposing CGNs to 1 mT ELF-MF for 60 min. significantly increased GABA(A) R currents without modifying sensitivity to GABA. However, activation of PKA by db-cAMP failed to do so, but led to a slight decrease instead. On the other hand, PKC activation or inhibition by PMA or Bis and Docosahexaenoic acid (DHA) mimicked or eliminated the field-induced-increase of GABA(A) R currents. Western blot analysis indicated that the intracellular levels of phosphorylated PKC (pPKC) were significantly elevated after 60 min. of ELF-MF exposure, which was subsequently blocked by application of DHA or EP1 receptor-specific (prostaglandin E receptor 1) antagonist (SC19220), but not by EP2-EP4 receptor-specific antagonists. SC19220 also significantly inhibited the ELF-MF-induced elevation on GABA(A) R currents. Together, these data obviously demonstrated for the first time that neuronal GABA(A) currents are significantly increased by ELF-MF exposure, and also suggest that these effects are mediated via an EP1 receptor-mediated PKC pathway. Future work will focus on a more comprehensive analysis of the physiological and/or pathological consequences of these effects. PMID:26176998
Yang, Guang; Ren, Zhen; Mei, Yan-Ai
2015-01-01
Previous work from both our lab and others have indicated that exposure to 50 Hz magnetic fields (ELF-MF) was able to modify ion channel functions. However, very few studies have investigated the effects of MF on γ-aminobutyric acid (GABA) type A receptors (GABAARs) channel functioning, which are fundamental to overall neuronal excitability. Here, our major goal is to reveal the potential effects of ELF-MF on GABAARs activity in rat cerebellar granule neurons (CGNs). Our results indicated that exposing CGNs to 1 mT ELF-MF for 60 min. significantly increased GABAAR currents without modifying sensitivity to GABA. However, activation of PKA by db-cAMP failed to do so, but led to a slight decrease instead. On the other hand, PKC activation or inhibition by PMA or Bis and Docosahexaenoic acid (DHA) mimicked or eliminated the field-induced-increase of GABAAR currents. Western blot analysis indicated that the intracellular levels of phosphorylated PKC (pPKC) were significantly elevated after 60 min. of ELF-MF exposure, which was subsequently blocked by application of DHA or EP1 receptor-specific (prostaglandin E receptor 1) antagonist (SC19220), but not by EP2-EP4 receptor-specific antagonists. SC19220 also significantly inhibited the ELF-MF-induced elevation on GABAAR currents. Together, these data obviously demonstrated for the first time that neuronal GABAA currents are significantly increased by ELF-MF exposure, and also suggest that these effects are mediated via an EP1 receptor-mediated PKC pathway. Future work will focus on a more comprehensive analysis of the physiological and/or pathological consequences of these effects. PMID:26176998
Quantum statistical correlations in thermal field theories: Boundary effective theory
Bessa, A.; Brandt, F. T.; Carvalho, C. A. A. de; Fraga, E. S.
2010-09-15
We show that the one-loop effective action at finite temperature for a scalar field with quartic interaction has the same renormalized expression as at zero temperature if written in terms of a certain classical field {phi}{sub c}, and if we trade free propagators at zero temperature for their finite-temperature counterparts. The result follows if we write the partition function as an integral over field eigenstates (boundary fields) of the density matrix element in the functional Schroedinger field representation, and perform a semiclassical expansion in two steps: first, we integrate around the saddle point for fixed boundary fields, which is the classical field {phi}{sub c}, a functional of the boundary fields; then, we perform a saddle-point integration over the boundary fields, whose correlations characterize the thermal properties of the system. This procedure provides a dimensionally reduced effective theory for the thermal system. We calculate the two-point correlation as an example.
Weyl's Abandonment of Unified Field Theory
NASA Astrophysics Data System (ADS)
Sieroka, Norman
2015-01-01
In 1918, Hermann Weyl proposed a generalisation of Riemannian geometry, in order to unify general relativity and electrodynamics. This paper investigates the physical, mathematical and philosophical reasons for his subsequent abandonment of any such attempt towards a unified field theory.
Pure field theories and MACSYMA algorithms
NASA Technical Reports Server (NTRS)
Ament, W. S.
1977-01-01
A pure field theory attempts to describe physical phenomena through singularity-free solutions of field equations resulting from an action principle. The physics goes into forming the action principle and interpreting specific results. Algorithms for the intervening mathematical steps are sketched. Vacuum general relativity is a pure field theory, serving as model and providing checks for generalizations. The fields of general relativity are the 10 components of a symmetric Riemannian metric tensor; those of the Einstein-Straus generalization are the 16 components of a nonsymmetric. Algebraic properties are exploited in top level MACSYMA commands toward performing some of the algorithms of that generalization. The light cone for the theory as left by Einstein and Straus is found and simplifications of that theory are discussed.
Geometric continuum regularization of quantum field theory
Halpern, M.B. . Dept. of Physics)
1989-11-08
An overview of the continuum regularization program is given. The program is traced from its roots in stochastic quantization, with emphasis on the examples of regularized gauge theory, the regularized general nonlinear sigma model and regularized quantum gravity. In its coordinate-invariant form, the regularization is seen as entirely geometric: only the supermetric on field deformations is regularized, and the prescription provides universal nonperturbative invariant continuum regularization across all quantum field theory. 54 refs.
Reductionism, emergence, and effective field theories
NASA Astrophysics Data System (ADS)
Castellani, Elena
In recent years, a "change in attitude" in particle physics has led to our understanding current quantum field theories as effective field theories (EFTs). The present paper is concerned with the significance of this EFT approach, especially from the viewpoint of the debate on reductionism in science. In particular, I shall show how EFTs provide a new and interesting case study in current philosophical discussion on reduction, emergence, and inter-level relationships in general.
Conserved currents of double field theory
NASA Astrophysics Data System (ADS)
Blair, Chris D. A.
2016-04-01
We find the conserved current associated to invariance under generalised diffeomorphisms in double field theory. This can be used to define a generalised Komar integral. We comment on its applications to solutions, in particular to the fundamental string/pp-wave. We also discuss the current in the context of Scherk-Schwarz compactifications. We calculate the current for both the original double field theory action, corresponding to the NSNS sector alone, and for the RR sector.
Effective field theory out of equilibrium: Brownian quantum fields
NASA Astrophysics Data System (ADS)
Boyanovsky, D.
2015-06-01
The emergence of an effective field theory out of equilibrium is studied in the case in which a light field—the system—interacts with very heavy fields in a finite temperature bath. We obtain the reduced density matrix for the light field, its time evolution is determined by an effective action that includes the influence action from correlations of the heavy degrees of freedom. The non-equilibrium effective field theory yields a Langevin equation of motion for the light field in terms of dissipative and noise kernels that obey a generalized fluctuation dissipation relation. These are completely determined by the spectral density of the bath which is analyzed in detail for several cases. At T = 0 we elucidate the effect of thresholds in the renormalization aspects and the asymptotic emergence of a local effective field theory with unitary time evolution. At T\
Quantum algorithms for quantum field theories.
Jordan, Stephen P; Lee, Keith S M; Preskill, John
2012-06-01
Quantum field theory reconciles quantum mechanics and special relativity, and plays a central role in many areas of physics. We developed a quantum algorithm to compute relativistic scattering probabilities in a massive quantum field theory with quartic self-interactions (φ(4) theory) in spacetime of four and fewer dimensions. Its run time is polynomial in the number of particles, their energy, and the desired precision, and applies at both weak and strong coupling. In the strong-coupling and high-precision regimes, our quantum algorithm achieves exponential speedup over the fastest known classical algorithm. PMID:22654052
Relativistic Quantum Mechanics and Field Theory
NASA Astrophysics Data System (ADS)
Gross, Franz
1999-04-01
An accessible, comprehensive reference to modern quantum mechanics and field theory. In surveying available books on advanced quantum mechanics and field theory, Franz Gross determined that while established books were outdated, newer titles tended to focus on recent developments and disregard the basics. Relativistic Quantum Mechanics and Field Theory fills this striking gap in the field. With a strong emphasis on applications to practical problems as well as calculations, Dr. Gross provides complete, up-to-date coverage of both elementary and advanced topics essential for a well-rounded understanding of the field. Developing the material at a level accessible even to newcomers to quantum mechanics, the book begins with topics that every physicist should know-quantization of the electromagnetic field, relativistic one body wave equations, and the theoretical explanation of atomic decay. Subsequent chapters prepare readers for advanced work, covering such major topics as gauge theories, path integral techniques, spontaneous symmetry breaking, and an introduction to QCD, chiral symmetry, and the Standard Model. A special chapter is devoted to relativistic bound state wave equations-an important topic that is often overlooked in other books. Clear and concise throughout, Relativistic Quantum Mechanics and Field Theory boasts examples from atomic and nuclear physics as well as particle physics, and includes appendices with background material. It is an essential reference for anyone working in quantum mechanics today.
"Quantum Field Theory and QCD"
Jaffe, Arthur M.
2006-02-25
This grant partially funded a meeting, "QFT & QCD: Past, Present and Future" held at Harvard University, Cambridge, MA on March 18-19, 2005. The participants ranged from senior scientists (including at least 9 Nobel Prize winners, and 1 Fields medalist) to graduate students and undergraduates. There were several hundred persons in attendance at each lecture. The lectures ranged from superlative reviews of past progress, lists of important, unsolved questions, to provocative hypotheses for future discovery. The project generated a great deal of interest on the internet, raising awareness and interest in the open questions of theoretical physics.
Entanglement entropy in warped conformal field theories
NASA Astrophysics Data System (ADS)
Castro, Alejandra; Hofman, Diego M.; Iqbal, Nabil
2016-02-01
We present a detailed discussion of entanglement entropy in (1+1)-dimensional Warped Conformal Field Theories (WCFTs). We implement the Rindler method to evaluate entanglement and Renyi entropies for a single interval and along the way we interpret our results in terms of twist field correlation functions. Holographically a WCFT can be described in terms of Lower Spin Gravity, a SL (2, ℝ) × U (1) Chern-Simons theory in three dimensions. We show how to obtain the universal field theory results for entanglement in a WCFT via holography. For the geometrical description of the theory we introduce the concept of geodesic and massive point particles in the warped geometry associated to Lower Spin Gravity. In the Chern-Simons description we evaluate the appropriate Wilson line that captures the dynamics of a massive particle.
The Theory of Quantized Fields. II
DOE R&D Accomplishments Database
Schwinger, J.
1951-01-01
The arguments leading to the formulation of the Action Principle for a general field are presented. In association with the complete reduction of all numerical matrices into symmetrical and anti-symmetrical parts, the general field is decomposed into two sets, which are identified with Bose-Einstein and Fermi-Dirac fields. The spin restriction on the two kinds of fields is inferred from the time reflection invariance requirement. The consistency of the theory is verified in terms of a criterion involving the various generators of infinitesimal transformations. Following a discussion of charged fields, the electromagnetic field is introduced to satisfy the postulate of general gauge invariance. As an aspect of the latter, it is recognized that the electromagnetic field and charged fields are not kinematically independent. After a discussion of the field-strength commutation relations, the independent dynamical variable of the electromagnetic field are exhibited in terms of a special gauge.
From theory to field experiments
NASA Astrophysics Data System (ADS)
de Vos, Bram
2016-04-01
Peter Raats' achievements in Haren (NL) 1986-1997 were based on a solid theoretical insight in hydrology and transport process in soil. However, Peter was also the driving force behind many experimental studies and applied research. This will be illustrated by a broad range of examples ranging from the dynamics of composting processes of organic material; modelling and monitoring nutrient leaching at field-scale; wind erosion; water and nutrient dynamics in horticultural production systems; oxygen diffusion in soils; and processes of water and nutrient uptake by plant roots. Peter's leadership led to may new approaches and the introduction of innovative measurement techniques in Dutch research; ranging from TDR to nutrient concentration measurements in closed fertigation systems. This presentation will give a brief overview how Peter's theoretical and mathematical insights accelerated this applied research.
Backlund Transformation in Quantum Field Theory
NASA Astrophysics Data System (ADS)
Burt, Philip
1996-11-01
Solutions of nonlinear field equations with polynomial nonlin earities are well known(P.B.Burt,Quantum Mechanics and Nonlinear Waves,Harwood Academic,Chur,1981).These solutions have been used to describe spin zero systems with self interactions. General- izations to systmes of fermions and bosons with various inter- actions lend themselves to description of quantum field theories with proper normalization. No ultraviolet divergences occur in such theories. The solutions themselves represent weak Backlund transformation of the nonlinear field equations and the related Klein Gordonequation(C.Rogers and W.F.Ames,Nonlinear Boundary Value Problems in Science and Engineering, Academic Press,New York,1989).
Phase-space quantization of field theory.
Curtright, T.; Zachos, C.
1999-04-20
In this lecture, a limited introduction of gauge invariance in phase-space is provided, predicated on canonical transformations in quantum phase-space. Exact characteristic trajectories are also specified for the time-propagating Wigner phase-space distribution function: they are especially simple--indeed, classical--for the quantized simple harmonic oscillator. This serves as the underpinning of the field theoretic Wigner functional formulation introduced. Scalar field theory is thus reformulated in terms of distributions in field phase-space. This is a pedagogical selection from work published and reported at the Yukawa Institute Workshop ''Gauge Theory and Integrable Models'', 26-29 January, 1999.
Nonequilibrium statistical field theory for classical particles: Basic kinetic theory
NASA Astrophysics Data System (ADS)
Viermann, Celia; Fabis, Felix; Kozlikin, Elena; Lilow, Robert; Bartelmann, Matthias
2015-06-01
Recently Mazenko and Das and Mazenko [Phys. Rev. E 81, 061102 (2010), 10.1103/PhysRevE.81.061102; J. Stat. Phys. 149, 643 (2012), 10.1007/s10955-012-0610-y; J. Stat. Phys. 152, 159 (2013), 10.1007/s10955-013-0755-3; Phys. Rev. E 83, 041125 (2011), 10.1103/PhysRevE.83.041125] introduced a nonequilibrium field-theoretical approach to describe the statistical properties of a classical particle ensemble starting from the microscopic equations of motion of each individual particle. We use this theory to investigate the transition from those microscopic degrees of freedom to the evolution equations of the macroscopic observables of the ensemble. For the free theory, we recover the continuity and Jeans equations of a collisionless gas. For a theory containing two-particle interactions in a canonical perturbation series, we find the macroscopic evolution equations to be described by the Born-Bogoliubov-Green-Kirkwood-Yvon hierarchy with a truncation criterion depending on the order in perturbation theory. This establishes a direct link between the classical and the field-theoretical approaches to kinetic theory that might serve as a starting point to investigate kinetic theory beyond the classical limits.
Effective Field Theories, Reductionism and Scientific Explanation
NASA Astrophysics Data System (ADS)
Hartmann, Stephan
Effective field theories have been a very popular tool in quantum physics for almost two decades. And there are good reasons for this. I will argue that effective field theories share many of the advantages of both fundamental theories and phenomenological models, while avoiding their respective shortcomings. They are, for example, flexible enough to cover a wide range of phenomena, and concrete enough to provide a detailed story of the specific mechanisms at work at a given energy scale. So will all of physics eventually converge on effective field theories? This paper argues that good scientific research can be characterised by a fruitful interaction between fundamental theories, phenomenological models and effective field theories. All of them have their appropriate functions in the research process, and all of them are indispensable. They complement each other and hang together in a coherent way which I shall characterise in some detail. To illustrate all this I will present a case study from nuclear and particle physics. The resulting view about scientific theorising is inherently pluralistic, and has implications for the debates about reductionism and scientific explanation.
Quantum Cylindrical Waves and Parametrized Field Theory
NASA Astrophysics Data System (ADS)
Varadarajan, Madhavan
In this article, we review some illustrative results in the study of two related toy models for quantum gravity, namely cylindrical waves (which are cylindrically symmetric gravitational fields)and parametrized field theory (which is just free scalar field theory on a flat space-time in generally covariant disguise). In the former, we focus on the phenomenon of unexpected large quantum gravity effects in regions of weak classical gravitational fields and on an analysis of causality in a quantum geometry. In the latter, we focus on Dirac quantization, argue that this is related to the unitary implementability of free scalar field evolution along curved foliations of the flat space-time and review the relevant results for unitary implementability.
Field Theory for Multi-Particle System
NASA Astrophysics Data System (ADS)
Wang, Shouhong; Ma, Tian
2016-03-01
The main objectives of this talk are 1) to introduce some basic postulates for quantum multi-particle systems, and 2) to develop a universal field theory for interacting multi-particle systems coupling both particle fields and interacting fields. By carefully examining the nature of interactions between multi-particles, we conclude that multi-particle systems must obey i) the gauge symmetry, ii) the principle of interaction dynamics (PID), and iii) the principle of representation invariance (PRI). Intuitively, PID takes the variation of the action functional under energy-momentum conservation constraint, offers a different and natural way of introducing Higgs fields, and is also required by the presence of dark matter and dark energy and the quark confinement. PRI requires that the SU(N) gauge theory be independent of representations of SU(N). Based on these principles, a few basic postulates for multi-particle systems are introduced in this talk, leading to a field theory for interacting multi-particle systems. A direct consequence of the field theory is the derivation of general atomic spectrum equations. Supported in Part by the Office of Naval Research, by the US National Science Foundation, and by the Chinese National Science Foundation.
Non Perturbative Aspects of Field Theory
Bashir, A.
2009-04-20
For any quantum field theory (QFT), there exists a set of Schwinger-Dyson equations (SDE) for all its Green functions. However, it is not always straight forward to extract quantitatively exact physical information from this set of equations, especially in the non perturbative regime. The situation becomes increasingly complex with growing number of external legs. I give a qualitative account of the hunt for the non perturbative Green functions in gauge theories.
The amplitude of quantum field theory
Medvedev, B.V. ); Pavlov, V.P.; Polivanov, M.K. ); Sukhanov, A.D. )
1989-05-01
General properties of the transition amplitude in axiomatic quantum field theory are discussed. Bogolyubov's axiomatic method is chosen as the variant of the theory. The axioms of this method are analyzed. In particular, the significance of the off-shell extension and of the various forms of the causality condition are examined. A complete proof is given of the existence of a single analytic function whose boundary values are the amplitudes of all channels of a process with given particle number.
Noncommutative Geometry in M-Theory and Conformal Field Theory
Morariu, Bogdan
1999-05-01
In the first part of the thesis I will investigate in the Matrix theory framework, the subgroup of dualities of the Discrete Light Cone Quantization of M-theory compactified on tori, which corresponds to T-duality in the auxiliary Type II string theory. After a review of matrix theory compactification leading to noncommutative supersymmetric Yang-Mills gauge theory, I will present solutions for the fundamental and adjoint sections on a two-dimensional twisted quantum torus and generalize to three-dimensional twisted quantum tori. After showing how M-theory T-duality is realized in supersymmetric Yang-Mills gauge theories on dual noncommutative tori I will relate this to the mathematical concept of Morita equivalence of C*-algebras. As a further generalization, I consider arbitrary Ramond-Ramond backgrounds. I will also discuss the spectrum of the toroidally compactified Matrix theory corresponding to quantized electric fluxes on two and three tori. In the second part of the thesis I will present an application to conformal field theory involving quantum groups, another important example of a noncommutative space. First, I will give an introduction to Poisson-Lie groups and arrive at quantum groups using the Feynman path integral. I will quantize the symplectic leaves of the Poisson-Lie group SU(2)*. In this way we obtain the unitary representations of U{sub q}(SU(2)). I discuss the X-structure of SU(2)* and give a detailed description of its leaves using various parametrizations. Then, I will introduce a new reality structure on the Heisenberg double of Fun{sub q} (SL(N,C)) for q phase, which can be interpreted as the quantum phase space of a particle on the q-deformed mass-hyperboloid. I also present evidence that the above real form describes zero modes of certain non-compact WZNW-models.
Kirby S. Chapman
2003-12-01
During the second reporting period, the project team focused on identifying promising technologies that can then be used to monitor and control emissions from E&P engines. These technologies include control and monitoring technologies and in most cases can be used to monitor engine performance as well as control and monitor engine emissions. The project team also identified three potential sources to receive a Cooper Ajax engine that is approximately 100 bhp. The goal is to have this engine delivered to the project team by the end of the calendar year 2003. This will then allow the team to prepare the engine for testing at Ricardo in early 2004.
Kirby S. Chapman; Allen J. Adriani
2004-01-01
For the period of the 8th reporting period high-impact control technologies were identified during the meeting at Cooper in Oklahoma City. The technologies that were identified will be tested on the Ajax DP-115 engine and are capable of being widely utilized by the E&P industry. Two major areas where engine controls and ignition systems, but still included were other alternatives to reduce emissions. The most exhilarating item for this quarter was when Ajax engine was delivered to the test bed at the NGML.
Global anomalies and effective field theory
NASA Astrophysics Data System (ADS)
Golkar, Siavash; Sethi, Savdeep
2016-05-01
We show that matching anomalies under large gauge transformations and large diffeomorphisms can explain the appearance and non-renormalization of couplings in effective field theory. We focus on thermal effective field theory, where we argue that the appearance of certain unusual Chern-Simons couplings is a consequence of global anomalies. As an example, we show that a mixed global anomaly in four dimensions fixes the chiral vortical effect coefficient (up to an overall additive factor). This is an experimentally measurable prediction from a global anomaly. For certain situations, we propose a simpler method for calculating global anomalies which uses correlation functions rather than eta invariants.
Effective field theory for deformed atomic nuclei
Papenbrock, Thomas F.; Weidenmüller, H. A.
2016-04-13
In this paper, we present an effective field theory (EFT) for a model-independent description of deformed atomic nuclei. In leading order this approach recovers the well-known results from the collective model by Bohr and Mottelson. When higher-order corrections are computed, the EFT accounts for finer details such as the variation of the moment of inertia with the band head and the small magnitudes of interband E2 transitions. Finally, for rotational bands with a finite spin of the band head, the EFT is equivalent to the theory of a charged particle on the sphere subject to a magnetic monopole field.
Effective field theory for deformed atomic nuclei
NASA Astrophysics Data System (ADS)
Papenbrock, T.; Weidenmüller, H. A.
2016-05-01
We present an effective field theory (EFT) for a model-independent description of deformed atomic nuclei. In leading order this approach recovers the well-known results from the collective model by Bohr and Mottelson. When higher-order corrections are computed, the EFT accounts for finer details such as the variation of the moment of inertia with the band head and the small magnitudes of interband E2 transitions. For rotational bands with a finite spin of the band head, the EFT is equivalent to the theory of a charged particle on the sphere subject to a magnetic monopole field.
Generalized Quantum Theory and Mathematical Foundations of Quantum Field Theory
NASA Astrophysics Data System (ADS)
Maroun, Michael Anthony
This dissertation is divided into two main topics. The first is the generalization of quantum dynamics when the Schrodinger partial differential equation is not defined even in the weak mathematical sense because the potential function itself is a distribution in the spatial variable, the same variable that is used to define the kinetic energy operator, i.e. the Laplace operator. The procedure is an extension and broadening of the distributional calculus and offers spectral results as an alternative to the only other two known methods to date, namely a) the functional calculi; and b) non-standard analysis. Furthermore, the generalizations of quantum dynamics presented within give a resolution to the time asymmetry paradox created by multi-particle quantum mechanics due to the time evolution still being unitary. A consequence is the randomization of phases needed for the fundamental justification Pauli master equation. The second topic is foundations of the quantum theory of fields. The title is phrased as ``foundations'' to emphasize that there is no claim of uniqueness but rather a proposal is put forth, which is markedly different than that of constructive or axiomatic field theory. In particular, the space of fields is defined as a space of generalized functions with involutive symmetry maps (the CPT invariance) that affect the topology of the field space. The space of quantum fields is then endowed the Frechet property and interactions change the topology in such a way as to cause some field spaces to be incompatible with others. This is seen in the consequences of the Haag theorem. Various examples and discussions are given that elucidate a new view of the quantum theory of fields and its (lack of) mathematical structure.
Astrophysical data analysis with information field theory
Enßlin, Torsten
2014-12-05
Non-parametric imaging and data analysis in astrophysics and cosmology can be addressed by information field theory (IFT), a means of Bayesian, data based inference on spatially distributed signal fields. IFT is a statistical field theory, which permits the construction of optimal signal recovery algorithms. It exploits spatial correlations of the signal fields even for nonlinear and non-Gaussian signal inference problems. The alleviation of a perception threshold for recovering signals of unknown correlation structure by using IFT will be discussed in particular as well as a novel improvement on instrumental self-calibration schemes. IFT can be applied to many areas. Here, applications in in cosmology (cosmic microwave background, large-scale structure) and astrophysics (galactic magnetism, radio interferometry) are presented.
On the History of Unified Field Theories
NASA Astrophysics Data System (ADS)
Goenner, Hubert F. M.
2004-02-01
This article is intended to give a review of the history of the classical aspects of unified field theories in the 20th century. It includes brief technical descriptions of the theories suggested, short biographical notes concerning the scientists involved, and an extensive bibliography. The present first installment covers the time span between 1914 and 1933, i.e., when Einstein was living and working in Berlin - with occasional digressions into other periods. Thus, the main theme is the unification of the electromagnetic and gravitational fields augmented by short-lived attempts to include the matter field described by Schrödinger's or Dirac's equations. While my focus lies on the conceptual development of the field, by also paying attention to the interaction of various schools of mathematicians with the research done by physicists, some prosopocraphical remarks are included.
Natural discretization in noncommutative field theory
NASA Astrophysics Data System (ADS)
Acatrinei, Ciprian Sorin
2015-12-01
A discretization scheme for field theory is developed, in which the space time coordinates are assumed to be operators forming a noncommutative algebra. Generic waves without rotational symmetry are studied in (2+1) - dimensional scalar field theory with Heisenberg-type noncommutativity. In the representation chosen, the radial coordinate is naturally rendered discrete. Nonlocality along this coordinate, induced by noncommutativity, accounts for the angular dependence of the fields. A complete solution and the interpretation of its nonlocal features are given. The exact form of standing and propagating waves on such a discrete space is found in terms of finite series. A precise correspondence is established between the degree of nonlocality and the angular momentum of a field configuration. At small distance no classical singularities appear, even at the location of the sources. At large radius one recovers the usual commutative/continuum behaviour.
Natural discretization in noncommutative field theory
Acatrinei, Ciprian Sorin
2015-12-07
A discretization scheme for field theory is developed, in which the space time coordinates are assumed to be operators forming a noncommutative algebra. Generic waves without rotational symmetry are studied in (2+1) - dimensional scalar field theory with Heisenberg-type noncommutativity. In the representation chosen, the radial coordinate is naturally rendered discrete. Nonlocality along this coordinate, induced by noncommutativity, accounts for the angular dependence of the fields. A complete solution and the interpretation of its nonlocal features are given. The exact form of standing and propagating waves on such a discrete space is found in terms of finite series. A precise correspondence is established between the degree of nonlocality and the angular momentum of a field configuration. At small distance no classical singularities appear, even at the location of the sources. At large radius one recovers the usual commutative/continuum behaviour.
Symmetry analysis for anisotropic field theories
Parra, Lorena; Vergara, J. David
2012-08-24
The purpose of this paper is to study with the help of Noether's theorem the symmetries of anisotropic actions for arbitrary fields which generally depend on higher order spatial derivatives, and to find the corresponding current densities and the Noether charges. We study in particular scale invariance and consider the cases of higher derivative extensions of the scalar field, electrodynamics and Chern-Simons theory.
The Mean-Field Flux Pinning Theory
NASA Astrophysics Data System (ADS)
Stejic, George
We develop the Mean-Field Flux Pinning Theory, designed to model the flux line lattice (FLL) as it interacts with itself, the flux pinning centers and the geometry of the superconductor. Like other mean-field theories, the mean-field flux pinning theory does not attempt to model the FLL completely. Instead, it utilizes a simplified model for the FLL, termed the mean-field FLL, in which the FLL is modelled as a continuous vector field rather than as discrete fluxons as in other theories. By so doing, the interactions of the FLL are greatly simplified and more easily modelled. One application of the mean-field flux pinning theory is to predict J_{c} from microstructural data, which we use to determine the optimal Nb-Ti microstructures with (1) alpha -Ti pinning centers and (2) Nb pinning centers. The microstructure is modelled on a grid in which the local values of T_{c} and kappa reflect the spatial distribution of the pinning centers and the superconductor. Using this model, we solve the G-L equations and calculate the pinning potential defined as the vortex free energy as a function of position. We conclude that the ideal Nb-Ti microstructure with alpha-Ti pinning centers would require 40 volume percent of alpha -Ti and have 6nm thick pinning centers. In the Nb pinning center case, the ideal microstructure requires 50 volume percent of Nb and would have 6nm pinning centers. Another application for the mean-field flux pinning theory is to model the FLL as it interacts with the penetrating magnetic fields within lambda of the superconducting surface. Using this theory, we study the effects of sample geometry on the FLL and J _{c} for the thin film geometry. We find that the FLL becomes increasingly distorted as the film thickness is reduced and that J_{c } increases sharply for dimensions less that lambda. These predictions are experimentally evaluated in Nb-Ti thin films. Our results show that J_{c} values as high as 1/3 of J_{d} and a strong orientational
Continuous wavelet transform in quantum field theory
NASA Astrophysics Data System (ADS)
Altaisky, M. V.; Kaputkina, N. E.
2013-07-01
We describe the application of the continuous wavelet transform to calculation of the Green functions in quantum field theory: scalar ϕ4 theory, quantum electrodynamics, and quantum chromodynamics. The method of continuous wavelet transform in quantum field theory, presented by Altaisky [Phys. Rev. D 81, 125003 (2010)] for the scalar ϕ4 theory, consists in substitution of the local fields ϕ(x) by those dependent on both the position x and the resolution a. The substitution of the action S[ϕ(x)] by the action S[ϕa(x)] makes the local theory into a nonlocal one and implies the causality conditions related to the scale a, the region causality [J. D. Christensen and L. Crane, J. Math. Phys. (N.Y.) 46, 122502 (2005)]. These conditions make the Green functions G(x1,a1,…,xn,an)=⟨ϕa1(x1)…ϕan(xn)⟩ finite for any given set of regions by means of an effective cutoff scale A=min(a1,…,an).
Integrable structures in quantum field theory
NASA Astrophysics Data System (ADS)
Negro, Stefano
2016-08-01
This review was born as notes for a lecture given at the Young Researchers Integrability School (YRIS) school on integrability in Durham, in the summer of 2015. It deals with a beautiful method, developed in the mid-nineties by Bazhanov, Lukyanov and Zamolodchikov and, as such, called BLZ. This method can be interpreted as a field theory version of the quantum inverse scattering, also known as the algebraic Bethe ansatz. Starting with the case of conformal field theories (CFTs) we show how to build the field theory analogues of commuting transfer T matrices and Baxter Q-operators of integrable lattice models. These objects contain the complete information of the integrable structure of the theory, viz. the integrals of motion, and can be used, as we will show, to derive the thermodynamic Bethe ansatz and nonlinear integral equations. This same method can be easily extended to the description of integrable structures of certain particular massive deformations of CFTs; these, in turn, can be described as quantum group reductions of the quantum sine-Gordon model and it is an easy step to include this last theory in the framework of BLZ approach. Finally we show an interesting and surprising connection of the BLZ structures with classical objects emerging from the study of classical integrable models via the inverse scattering transform method. This connection goes under the name of ODE/IM correspondence and we will present it for the specific case of quantum sine-Gordon model only.
Dual field theories of quantum computation
NASA Astrophysics Data System (ADS)
Vanchurin, Vitaly
2016-06-01
Given two quantum states of N q-bits we are interested to find the shortest quantum circuit consisting of only one- and two- q-bit gates that would transfer one state into another. We call it the quantum maze problem for the reasons described in the paper. We argue that in a large N limit the quantum maze problem is equivalent to the problem of finding a semiclassical trajectory of some lattice field theory (the dual theory) on an N +1 dimensional space-time with geometrically flat, but topologically compact spatial slices. The spatial fundamental domain is an N dimensional hyper-rhombohedron, and the temporal direction describes transitions from an arbitrary initial state to an arbitrary target state and so the initial and final dual field theory conditions are described by these two quantum computational states. We first consider a complex Klein-Gordon field theory and argue that it can only be used to study the shortest quantum circuits which do not involve generators composed of tensor products of multiple Pauli Z matrices. Since such situation is not generic we call it the Z-problem. On the dual field theory side the Z-problem corresponds to massless excitations of the phase (Goldstone modes) that we attempt to fix using Higgs mechanism. The simplest dual theory which does not suffer from the massless excitation (or from the Z-problem) is the Abelian-Higgs model which we argue can be used for finding the shortest quantum circuits. Since every trajectory of the field theory is mapped directly to a quantum circuit, the shortest quantum circuits are identified with semiclassical trajectories. We also discuss the complexity of an actual algorithm that uses a dual theory prospective for solving the quantum maze problem and compare it with a geometric approach. We argue that it might be possible to solve the problem in sub-exponential time in 2 N , but for that we must consider the Klein-Gordon theory on curved spatial geometry and/or more complicated (than N -torus
Logarithmic conformal field theory: beyond an introduction
NASA Astrophysics Data System (ADS)
Creutzig, Thomas; Ridout, David
2013-12-01
This article aims to review a selection of central topics and examples in logarithmic conformal field theory. It begins with the remarkable observation of Cardy that the horizontal crossing probability of critical percolation may be computed analytically within the formalism of boundary conformal field theory. Cardy’s derivation relies on certain implicit assumptions which are shown to lead inexorably to indecomposable modules and logarithmic singularities in correlators. For this, a short introduction to the fusion algorithm of Nahm, Gaberdiel and Kausch is provided. While the percolation logarithmic conformal field theory is still not completely understood, there are several examples for which the formalism familiar from rational conformal field theory, including bulk partition functions, correlation functions, modular transformations, fusion rules and the Verlinde formula, has been successfully generalized. This is illustrated for three examples: the singlet model \\mathfrak {M} (1,2), related to the triplet model \\mathfrak {W} (1,2), symplectic fermions and the fermionic bc ghost system; the fractional level Wess-Zumino-Witten model based on \\widehat{\\mathfrak {sl}} \\left( 2 \\right) at k=-\\frac{1}{2}, related to the bosonic βγ ghost system; and the Wess-Zumino-Witten model for the Lie supergroup \\mathsf {GL} \\left( 1 {\\mid} 1 \\right), related to \\mathsf {SL} \\left( 2 {\\mid} 1 \\right) at k=-\\frac{1}{2} and 1, the Bershadsky-Polyakov algebra W_3^{(2)} and the Feigin-Semikhatov algebras W_n^{(2)}. These examples have been chosen because they represent the most accessible, and most useful, members of the three best-understood families of logarithmic conformal field theories. The logarithmic minimal models \\mathfrak {W} (q,p), the fractional level Wess-Zumino-Witten models, and the Wess-Zumino-Witten models on Lie supergroups (excluding \\mathsf {OSP} \\left( 1 {\\mid} 2n \\right)). In this review, the emphasis lies on the representation theory
Causality constraints in conformal field theory
NASA Astrophysics Data System (ADS)
Hartman, Thomas; Jain, Sachin; Kundu, Sandipan
2016-05-01
Causality places nontrivial constraints on QFT in Lorentzian signature, for example fixing the signs of certain terms in the low energy Lagrangian. In d dimensional conformal field theory, we show how such constraints are encoded in crossing symmetry of Euclidean correlators, and derive analogous constraints directly from the conformal bootstrap (analytically). The bootstrap setup is a Lorentzian four-point function corresponding to propagation through a shockwave. Crossing symmetry fixes the signs of certain log terms that appear in the conformal block expansion, which constrains the interactions of low-lying operators. As an application, we use the bootstrap to rederive the well known sign constraint on the (∂ ϕ)4 coupling in effective field theory, from a dual CFT. We also find constraints on theories with higher spin conserved currents. Our analysis is restricted to scalar correlators, but we argue that similar methods should also impose nontrivial constraints on the interactions of spinning operators.
Effective Field Theory in Nuclear Astrophysics
NASA Astrophysics Data System (ADS)
Chen, Jiunn-Wei
2001-04-01
I will discuss some basic ideas of effective field theory and its application to two nucleon systems. The theory allows a perturbative treatment of strongly interacting, bound state problems such that the calculations can be systematically improved and reliable error estimation performed. Also, the field theory formalism naturally allows manifest incorporation of symmetry properties such as gauge symmetry and Lorentz symmetry. Emphasis will be placed on some high precision calculations to low energy astrophysical problems: neutron radiative capture onto proton which is relevant to big-bang nucleosynthesis; neutrino deuteron inelastic scattering employed in the solar neutrino detection by Sudbury Neutrino Observatory (SNO) and the proton-proton solar fusion process which is an important process to fuel the sun. The last two classes of processes share the same two-body operator which is proposed to be measured at ORLAND and could serve to calibrate SNO and the solar fusion rate.
Double field theory: a pedagogical review
NASA Astrophysics Data System (ADS)
Aldazabal, Gerardo; Marqués, Diego; Núñez, Carmen
2013-08-01
Double field theory (DFT) is a proposal to incorporate T-duality, a distinctive symmetry of string theory, as a symmetry of a field theory defined on a double configuration space. The aim of this review is to provide a pedagogical presentation of DFT and its applications. We first introduce some basic ideas on T-duality and supergravity in order to proceed to the construction of generalized diffeomorphisms and an invariant action on the double space. Steps towards the construction of a geometry on the double space are discussed. We then address generalized Scherk-Schwarz compactifications of DFT and their connection to gauged supergravity and flux compactifications. We also discuss U-duality extensions and present a brief parcours on worldsheet approaches to DFT. Finally, we provide a summary of other developments and applications that are not discussed in detail in the review.
Cross Sections From Scalar Field Theory
NASA Technical Reports Server (NTRS)
Norbury, John W.; Dick, Frank; Norman, Ryan B.; Nasto, Rachel
2008-01-01
A one pion exchange scalar model is used to calculate differential and total cross sections for pion production through nucleon- nucleon collisions. The collisions involve intermediate delta particle production and decay to nucleons and a pion. The model provides the basic theoretical framework for scalar field theory and can be applied to particle production processes where the effects of spin can be neglected.
Prequantum Classical Statistical Field Theory: Fundamentals
Khrennikov, Andrei
2011-03-28
We present fundamentals of a prequantum model with hidden variables of the classical field type. In some sense this is the comeback of classical wave mechanics. Our approach also can be considered as incorporation of quantum mechanics into classical signal theory. All quantum averages (including correlations of entangled systems) can be represented as classical signal averages and correlations.
Perturbative quantum gravity in double field theory
NASA Astrophysics Data System (ADS)
Boels, Rutger H.; Horst, Christoph
2016-04-01
We study perturbative general relativity with a two-form and a dilaton using the double field theory formulation which features explicit index factorisation at the Lagrangian level. Explicit checks to known tree level results are performed. In a natural covariant gauge a ghost-like scalar which contributes even at tree level is shown to decouple consistently as required by perturbative unitarity. In addition, a lightcone gauge is explored which bypasses the problem altogether. Using this gauge to study BCFW on-shell recursion, we can show that most of the D-dimensional tree level S-matrix of the theory, including all pure graviton scattering amplitudes, is reproduced by the double field theory. More generally, we argue that the integrand may be reconstructed from its single cuts and provide limited evidence for off-shell cancellations in the Feynman graphs. As a straightforward application of the developed technology double field theory-like expressions for four field string corrections are derived.
Global effects in quaternionic quantum field theory
NASA Astrophysics Data System (ADS)
Brumby, S. P.; Joshi, G. C.
1996-12-01
We present some striking global consequences of a model quaternionic quantum field theory which is locally complex. We show how making the quaternionic structure a dynamical quantity naturally leads to the prediction of cosmic strings and nonbaryonic hot dark matter candidates.
Quantum stability of chameleon field theories.
Upadhye, Amol; Hu, Wayne; Khoury, Justin
2012-07-27
Chameleon scalar fields are dark-energy candidates which suppress fifth forces in high density regions of the Universe by becoming massive. We consider chameleon models as effective field theories and estimate quantum corrections to their potentials. Requiring that quantum corrections be small, so as to allow reliable predictions of fifth forces, leads to an upper bound m<0.0073(ρ/10 g cm(-3))(1/3) eV for gravitational-strength coupling whereas fifth force experiments place a lower bound of m>0.0042 eV. An improvement of less than a factor of two in the range of fifth force experiments could test all classical chameleon field theories whose quantum corrections are well controlled and couple to matter with nearly gravitational strength regardless of the specific form of the chameleon potential. PMID:23006073
Effective Field Theory for Jet Processes
NASA Astrophysics Data System (ADS)
Becher, Thomas; Neubert, Matthias; Rothen, Lorena; Shao, Ding Yu
2016-05-01
Processes involving narrow jets receive perturbative corrections enhanced by logarithms of the jet opening angle and the ratio of the energies inside and outside the jets. Analyzing cone-jet processes in effective field theory, we find that in addition to soft and collinear fields their description requires degrees of freedom that are simultaneously soft and collinear to the jets. These collinear-soft particles can resolve individual collinear partons, leading to a complicated multi-Wilson-line structure of the associated operators at higher orders. Our effective field theory provides, for the first time, a factorization formula for a cone-jet process, which fully separates the physics at different energy scales. Its renormalization-group equations control all logarithmically enhanced higher-order terms, in particular also the nonglobal logarithms.
Effective Field Theory for Jet Processes.
Becher, Thomas; Neubert, Matthias; Rothen, Lorena; Shao, Ding Yu
2016-05-13
Processes involving narrow jets receive perturbative corrections enhanced by logarithms of the jet opening angle and the ratio of the energies inside and outside the jets. Analyzing cone-jet processes in effective field theory, we find that in addition to soft and collinear fields their description requires degrees of freedom that are simultaneously soft and collinear to the jets. These collinear-soft particles can resolve individual collinear partons, leading to a complicated multi-Wilson-line structure of the associated operators at higher orders. Our effective field theory provides, for the first time, a factorization formula for a cone-jet process, which fully separates the physics at different energy scales. Its renormalization-group equations control all logarithmically enhanced higher-order terms, in particular also the nonglobal logarithms. PMID:27232017
Quantization of non-local field theory and string field theory
NASA Astrophysics Data System (ADS)
Hata, Hiroyuki
1989-02-01
The interaction vertex in covariant string field theory (SFT) is non-local in the time coordinate and the conventional canonical quantization is inapplicable to it. As an approach to quantizing this system we apply Hayashi's theory of the Hamilton formalism for field theories with non-local interactions. We find that the resulting one-loop amplitudes in covariant closed SFT coincide with those in the light-cone gauge SFT. I would like to thank T. Kugo, H. Kunitomo, M.M. Nojiri, K. Ogawa and K. Suehiro for valuable discussions, and especially Professor S. Tanaka for directing my attention to Hayashi's theory.
A computational theory of visual receptive fields.
Lindeberg, Tony
2013-12-01
A receptive field constitutes a region in the visual field where a visual cell or a visual operator responds to visual stimuli. This paper presents a theory for what types of receptive field profiles can be regarded as natural for an idealized vision system, given a set of structural requirements on the first stages of visual processing that reflect symmetry properties of the surrounding world. These symmetry properties include (i) covariance properties under scale changes, affine image deformations, and Galilean transformations of space-time as occur for real-world image data as well as specific requirements of (ii) temporal causality implying that the future cannot be accessed and (iii) a time-recursive updating mechanism of a limited temporal buffer of the past as is necessary for a genuine real-time system. Fundamental structural requirements are also imposed to ensure (iv) mutual consistency and a proper handling of internal representations at different spatial and temporal scales. It is shown how a set of families of idealized receptive field profiles can be derived by necessity regarding spatial, spatio-chromatic, and spatio-temporal receptive fields in terms of Gaussian kernels, Gaussian derivatives, or closely related operators. Such image filters have been successfully used as a basis for expressing a large number of visual operations in computer vision, regarding feature detection, feature classification, motion estimation, object recognition, spatio-temporal recognition, and shape estimation. Hence, the associated so-called scale-space theory constitutes a both theoretically well-founded and general framework for expressing visual operations. There are very close similarities between receptive field profiles predicted from this scale-space theory and receptive field profiles found by cell recordings in biological vision. Among the family of receptive field profiles derived by necessity from the assumptions, idealized models with very good qualitative
Kirby S. Chapman; Allen J. Adriani
2005-04-01
During the eighth reporting period, high-impact monitoring and control technologies were identified during a series of meetings at Ajax/Cooper in Oklahoma City. Many of the technologies that were identified will be tested on the Ajax DP-115 engine and are capable of being widely utilized by the E&P industry. Two major areas were engine controls and ignition systems but still included other alternatives to reduce emissions. Another major advance was the completion of setting the Ajax DP-115 engine. This includes anchoring and leveling the engine. Shortly after the engine was prepared, all the necessary utilities were installed. Once the utilities were installed the engine was successfully operated over its normal operating range at the end of the reporting period.
Kirby S. Chapman
2004-01-01
During the fourth reporting period, the project team investigated the Non-Selective Catalytic Reduction technologies that are in use on rich-burn four-stroke cycle engines. Several engines were instrumented and data collected to obtain a rich set of engine emissions and performance data. During the data collection, the performance of the catalyst under a variety of operating conditions was measured. This information will be necessary to specify a set of sensors that can then be used to reliably implement NSCRs as plausible technologies to reduce NOx emissions for four-stroke cycle engines used in the E&P industry. A complete summary all the technologies investigated to data is included in the report. For each technology, the summary includes a description of the process, the emission reduction that is to be expected, information on the cost of the technology, development status, practical considerations, compatibility with other air pollutant control technologies, and any references used to obtain the information.
Transformations among large c conformal field theories
NASA Astrophysics Data System (ADS)
Jankiewicz, Marcin; Kephart, Thomas W.
2006-06-01
We show that there is a set of transformations that relates all of the 24 dimensional even self-dual (Niemeier) lattices, and also leads to non-lattice objects some of which can perhaps be interpreted as a basis for the construction of holomorphic conformal field theory. In the second part of this paper, we extend our observations to higher-dimensional conformal field theories build on extremal partition functions, where we generate c=24k theories. We argue that there exists generalizations of the c=24 models based on Niemeier lattices and of the non-Niemeier spin-1 theories. The extremal cases have spectra decomposable into the irreducible representations of the Fischer-Griess Monster. This additional symmetry leads us to conjecture that these extremal theories, as well as the higher-dimensional analogs of the group lattice bases Niemeiers, will eventually yield to a full construction of their associated CFTs. We observe interesting periodicities in the coefficients of extremal partition functions and characters of the extremal vertex operator algebras.
Inflation and deformation of conformal field theory
Garriga, Jaume; Urakawa, Yuko E-mail: yurakawa@ffn.ub.es
2013-07-01
It has recently been suggested that a strongly coupled phase of inflation may be described holographically in terms of a weakly coupled quantum field theory (QFT). Here, we explore the possibility that the wave function of an inflationary universe may be given by the partition function of a boundary QFT. We consider the case when the field theory is a small deformation of a conformal field theory (CFT), by the addition of a relevant operator O, and calculate the primordial spectrum predicted in the corresponding holographic inflation scenario. Using the Ward-Takahashi identity associated with Weyl rescalings, we derive a simple relation between correlators of the curvature perturbation ζ and correlators of the deformation operator O at the boundary. This is done without specifying the bulk theory of gravitation, so that the result would also apply to cases where the bulk dynamics is strongly coupled. We comment on the validity of the Suyama-Yamaguchi inequality, relating the bi-spectrum and tri-spectrum of the curvature perturbation.
A Field Theory Problem Relating to Questions in Hyperfield Theory
NASA Astrophysics Data System (ADS)
Massouros, Ch. G.
2011-09-01
M. Krasner introduced the notions of the hypefield and the hyperring in 1956. Much later, he constructed the quotient hyperfield/hyperrring, using a field/ring and a subgroup of its multiplicative group/semigroup. The existence of non-quotient hyperfields and hyperrings was an essential question for the self-sufficiency of the theory of hyperfields and hyperrings vis-à-vis that of fields and rings. The momogene hyperfield, which was introduced by the author, is a hyperfield H having the property x - x = H for all x≠0. The existence of non-quotient monogene hyperfields is a hitherto open question. The answer to this question is directly connected with the answer to the question which fields can be expressed as a difference of a subgroup of their multiplicative group from itself and which these subgroups are. These issues, as well as some relevant theorems are presented in this paper.
Alpha particles in effective field theory
Caniu, C.
2014-11-11
Using an effective field theory for alpha (α) particles at non-relativistic energies, we calculate the strong scattering amplitude modified by Coulomb corrections for a system of two αs. For the strong interaction, we consider a momentum-dependent interaction which, in contrast to an energy dependent interaction alone [1], could be more useful in extending the theory to systems with more than two α particles. We will present preliminary results of our EFT calculations for systems with two alpha particles.
Marginal deformations of nonrelativistic field theories
NASA Astrophysics Data System (ADS)
Mallayev, Davron; Vázquez-Poritz, Justin F.; Zhang, Zhibai
2014-11-01
We construct the supergravity duals of marginal deformations of a (0, 2) Landau-Ginsburg theory that describes the supersymmetric lowest Landau level. These deformations preserve supersymmetry and it is proposed that they are associated with the introduction of a phase in the (0, 2) superpotential. We also consider marginal deformations of various field theories that exhibit Schrödinger symmetry and Lifshitz scaling. This includes countably infinite examples with dynamical exponent z =2 based on the Sasaki-Einstein spaces Yp ,q and Lp ,q ,r, as well as an example with general dynamical exponent z ≥1 .
Bayesian parameter estimation for effective field theories
NASA Astrophysics Data System (ADS)
Wesolowski, Sarah; Klco, Natalie; Furnstahl, Richard; Phillips, Daniel; Thapilaya, Arbin
2015-10-01
We present a procedure based on Bayesian statistics for effective field theory (EFT) parameter estimation from experimental or lattice data. The extraction of low-energy constants (LECs) is guided by physical principles such as naturalness in a quantifiable way and various sources of uncertainty are included by the specification of Bayesian priors. Special issues for EFT parameter estimation are demonstrated using representative model problems, and a set of diagnostics is developed to isolate and resolve these issues. We apply the framework to the extraction of the LECs of the nucleon mass expansion in SU(2) chiral perturbation theory from synthetic lattice data.
Nonlinear quantum equations: Classical field theory
Rego-Monteiro, M. A.; Nobre, F. D.
2013-10-15
An exact classical field theory for nonlinear quantum equations is presented herein. It has been applied recently to a nonlinear Schrödinger equation, and it is shown herein to hold also for a nonlinear generalization of the Klein-Gordon equation. These generalizations were carried by introducing nonlinear terms, characterized by exponents depending on an index q, in such a way that the standard, linear equations, are recovered in the limit q→ 1. The main characteristic of this field theory consists on the fact that besides the usual Ψ(x(vector sign),t), a new field Φ(x(vector sign),t) needs to be introduced in the Lagrangian, as well. The field Φ(x(vector sign),t), which is defined by means of an additional equation, becomes Ψ{sup *}(x(vector sign),t) only when q→ 1. The solutions for the fields Ψ(x(vector sign),t) and Φ(x(vector sign),t) are found herein, being expressed in terms of a q-plane wave; moreover, both field equations lead to the relation E{sup 2}=p{sup 2}c{sup 2}+m{sup 2}c{sup 4}, for all values of q. The fact that such a classical field theory works well for two very distinct nonlinear quantum equations, namely, the Schrödinger and Klein-Gordon ones, suggests that this procedure should be appropriate for a wider class nonlinear equations. It is shown that the standard global gauge invariance is broken as a consequence of the nonlinearity.
Relative entropies in conformal field theory.
Lashkari, Nima
2014-08-01
Relative entropy is a measure of distinguishability for quantum states, and it plays a central role in quantum information theory. The family of Renyi entropies generalizes to Renyi relative entropies that include, as special cases, most entropy measures used in quantum information theory. We construct a Euclidean path-integral approach to Renyi relative entropies in conformal field theory, then compute the fidelity and the relative entropy of states in one spatial dimension at zero and finite temperature using a replica trick. In contrast to the entanglement entropy, the relative entropy is free of ultraviolet divergences, and is obtained as a limit of certain correlation functions. The relative entropy of two states provides an upper bound on their trace distance. PMID:25126908
Twistor Diagrams and Quantum Field Theory.
NASA Astrophysics Data System (ADS)
O'Donald, Lewis
Available from UMI in association with The British Library. Requires signed TDF. This thesis uses twistor diagram theory, as developed by Penrose (1975) and Hodges (1990c), to try to approach some of the difficulties inherent in the standard quantum field theoretic description of particle interactions. The resolution of these issues is the eventual goal of the twistor diagram program. First twistor diagram theory is introduced from a physical view-point, with the aim of studying larger diagrams than have been typically explored. Methods are evolved to tackle the double box and triple box diagrams. These lead to three methods of constructing an amplitude for the double box, and two ways for the triple box. Next this theory is applied to translate the channels of a Yukawa Feynman diagram, which has more than four external states, into various twistor diagrams. This provides a test of the skeleton hypothesis (of Hodges, 1990c) in these cases, and also shows that conformal breaking must enter into twistor diagrams before the translation of loop level Feynman diagrams. The issue of divergent Feynman diagrams is then considered. By using a twistor equivalent of the sum-over -states idea of quantum field theory, twistor translations of loop diagrams are conjectured. The various massless propagator corrections and vacuum diagrams calculated give results consistent with Feynman theory. Two diagrams are also found that give agreement with the finite parts of the Feynman "fish" diagrams of phi^4 -theory. However it is found that a more rigorous translation for the time-like fish requires new boundaries to be added to the twistor sum-over-states. The twistor diagram obtained is found to give the finite part of the relevant Feynman diagram.
Effective Field Theory for Lattice Nuclei
NASA Astrophysics Data System (ADS)
Barnea, N.; Contessi, L.; Gazit, D.; Pederiva, F.; van Kolck, U.
2015-02-01
We show how nuclear effective field theory (EFT) and ab initio nuclear-structure methods can turn input from lattice quantum chromodynamics (LQCD) into predictions for the properties of nuclei. We argue that pionless EFT is the appropriate theory to describe the light nuclei obtained in LQCD simulations carried out at pion masses heavier than the physical pion mass. We solve the EFT using the effective-interaction hyperspherical harmonics and auxiliary-field diffusion Monte Carlo methods. Fitting the three leading-order EFT parameters to the deuteron, dineutron, and triton LQCD energies at mπ≈800 MeV , we reproduce the corresponding alpha-particle binding and predict the binding energies of mass-5 and mass-6 ground states.
Effective field theory for lattice nuclei.
Barnea, N; Contessi, L; Gazit, D; Pederiva, F; van Kolck, U
2015-02-01
We show how nuclear effective field theory (EFT) and ab initio nuclear-structure methods can turn input from lattice quantum chromodynamics (LQCD) into predictions for the properties of nuclei. We argue that pionless EFT is the appropriate theory to describe the light nuclei obtained in LQCD simulations carried out at pion masses heavier than the physical pion mass. We solve the EFT using the effective-interaction hyperspherical harmonics and auxiliary-field diffusion Monte Carlo methods. Fitting the three leading-order EFT parameters to the deuteron, dineutron, and triton LQCD energies at m_{π}≈800 MeV, we reproduce the corresponding alpha-particle binding and predict the binding energies of mass-5 and mass-6 ground states. PMID:25699436
Magnetic fields and density functional theory
Salsbury Jr., Freddie
1999-02-01
A major focus of this dissertation is the development of functionals for the magnetic susceptibility and the chemical shielding within the context of magnetic field density functional theory (BDFT). These functionals depend on the electron density in the absence of the field, which is unlike any other treatment of these responses. There have been several advances made within this theory. The first of which is the development of local density functionals for chemical shieldings and magnetic susceptibilities. There are the first such functionals ever proposed. These parameters have been studied by constructing functionals for the current density and then using the Biot-Savart equations to obtain the responses. In order to examine the advantages and disadvantages of the local functionals, they were tested numerically on some small molecules.
Radiative reactions in halo effective field theory
NASA Astrophysics Data System (ADS)
Rupak, Gautam
2016-03-01
In this article we review the recent progress in radiative reaction calculations in halo effective field theory. We look at radiative capture and breakup processes that involve a halo nucleus with a single valence neutron or proton. Looking at 7Li(n,γ) 8Li,14C(n,γ)15C and related reactions, the dominant source of theoretical uncertainty in s- and p-wave halo nuclei reaction calculations is quantified in a model-independent framework. The analysis for neutron halos is extended to proton halo systems. The effective field theory results quantify which observable parameters of the strong interaction at low energy need to be determined more precisely for accurate cross-section calculations.
Quantitative field theory of the glass transition
Franz, Silvio; Jacquin, Hugo; Parisi, Giorgio; Urbani, Pierfrancesco; Zamponi, Francesco
2012-01-01
We develop a full microscopic replica field theory of the dynamical transition in glasses. By studying the soft modes that appear at the dynamical temperature, we obtain an effective theory for the critical fluctuations. This analysis leads to several results: we give expressions for the mean field critical exponents, and we analytically study the critical behavior of a set of four-points correlation functions, from which we can extract the dynamical correlation length. Finally, we can obtain a Ginzburg criterion that states the range of validity of our analysis. We compute all these quantities within the hypernetted chain approximation for the Gibbs free energy, and we find results that are consistent with numerical simulations. PMID:23112202
Quantum algorithms for quantum field theories
NASA Astrophysics Data System (ADS)
Jordan, Stephen
2015-03-01
Ever since Feynman's original proposal for quantum computers, one of the primary applications envisioned has been efficient simulation of other quantum systems. In fact, it has been conjectured that quantum computers would be universal simulators, which can simulate all physical systems using computational resources that scale polynomially with the system's number of degrees of freedom. Quantum field theories have posed a challenge in that the set of degrees of freedom is formally infinite. We show how quantum computers, if built, could nevertheless efficiently simulate certain quantum field theories at bounded energy scales. Our algorithm includes a new state preparation technique which we believe may find additional applications in quantum algorithms. Joint work with Keith Lee and John Preskill.
Entanglement entropy in scalar field theory
NASA Astrophysics Data System (ADS)
Hertzberg, Mark P.
2013-01-01
Understanding the dependence of entanglement entropy on the renormalized mass in quantum field theories can provide insight into phenomena such as quantum phase transitions, since the mass varies in a singular way near the transition. Here we perturbatively calculate the entanglement entropy in interacting scalar field theory, focusing on the dependence on the field’s mass. We study λϕ4 and gϕ3 theories in their ground state. By tracing over a half space, using the replica trick and position space Green’s functions on the cone, we show that spacetime volume divergences cancel and renormalization can be consistently performed in this conical geometry. We establish finite contributions to the entanglement entropy up to two-loop order, involving a finite area law. The resulting entropy is simple and intuitive: the free theory result in d = 3 (that we included in an earlier publication) ΔS ˜ A m2ln (m2) is altered, to leading order, by replacing the bare mass m by the renormalized mass mr evaluated at the renormalization scale of zero momentum.
Complete action for open superstring field theory
NASA Astrophysics Data System (ADS)
Kunitomo, Hiroshi; Okawa, Yuji
2016-02-01
We construct a complete action for open superstring field theory that includes the Neveu-Schwarz sector and the Ramond sector. For the Neveu-Schwarz sector, we use the string field in the large Hilbert space of the superconformal ghost sector, and the action in the Neveu-Schwarz sector is the same as the Wess-Zumino-Witten-like action of the Berkovits formulation. For the Ramond sector, it is known that the BRST cohomology on an appropriate subspace of the small Hilbert space reproduces the correct spectrum, and we use the string field projected to this subspace. We show that the action is invariant under gauge transformations that are consistent with the projection for the string field in the Ramond sector.
Higher spin double field theory: a proposal
NASA Astrophysics Data System (ADS)
Bekaert, Xavier; Park, Jeong-Hyuck
2016-07-01
We construct a double field theory coupled to the fields present in Vasiliev's equations. Employing the "semi-covariant" differential geometry, we spell a functional in which each term is completely covariant with respect to O(4, 4) T-duality, doubled diffeomorphisms, Spin(1, 3) local Lorentz symmetry and, separately, HS(4) higher spin gauge symmetry. We identify a minimal set of BPS-like conditions whose solutions automatically satisfy the full Euler-Lagrange equations. As such a solution, we derive a linear dilaton vacuum. With extra algebraic constraints further supplemented, the BPS-like conditions reduce to the bosonic Vasiliev equations.
Capture Reactions with Halo Effective Field Theory
NASA Astrophysics Data System (ADS)
Higa, R.
2015-12-01
Loosely bound nuclei far from the stability region emerge as a quantum phenomenon with many universal properties. The connection between these properties and the underlying symmetries can be best explored with halo/cluster EFT, an effective field theory where the softness of the binding momentum and the hardness of the core(s) form the expansion parameter of a given perturbative approach. In the following I highlight a particular application where these ideas are being tested, namely capture reactions.
Halo Effective Field Theory of 6He
NASA Astrophysics Data System (ADS)
Thapaliya, Arbin; Ji, Chen; Phillips, Daniel
2016-03-01
6He has a cluster structure with a tight 4He (α) core surrounded by two loosely bound neutrons (n) making it a halo nucleus. The leading-order (LO) Halo Effective Field Theory (EFT) [1, 2] calculations using momentum-space Faddeev equations pertinent to a bound 6He were carried out in [3]. In this work, we investigate 6He up to next-to-leading order (NLO) within Halo EFT.
Closed string field theory from polyhedra
NASA Astrophysics Data System (ADS)
Saadi, Maha; Zwiebach, Barton
1989-05-01
A fully nonpolynomial framework for closed string field theory is studied. All interactions are geometrical, the pattern of string overlaps gives polyhedra with equal perimeter faces and three edges at each vertex. All interactions are cubic in the sense that at most three strings can coincide at a point. The three point vertex used is that of Witten which is seen to be quite natural in the framework of quadratic differentials and to induce a very symmetric decomposition of moduli space.
Fundamentals of nonassociative classical field theory
Kurdgelaidze, D.F.
1987-05-01
A nonassociative classical field theory is constructed. Octonion algebra is studied. The octonion is represented as the sum of a quaternion and an associator. The octonion algebra is expanded and Lorentz group generators are specified in terms of octonion bases in one of the subalgebras. Lorentz vectors and spinors are constructed in the nonassociative algebra. The representation of the Lorentz group in terms of spin and the associator is obtained.
String theory, supergravity and four-dimensional field theories
NASA Astrophysics Data System (ADS)
Burrington, Benjamin A.
In this dissertation I present some of the basic computations in string theory and supergravity with an eye for their use in AdS/CFT. I then go on to present several investigations centering around the framework of dualities between gauge theory and gravity systems. In chapters 2, 3, and 4 we consider several 10D solutions. Chapter 2 deals with the inclusion of D7 branes in a D3 brane background, which amounts to adding fundamental matter in the gauge theory dual. We consider including the gravitational backreaction of the D7 branes in these solutions. In chapter 3, we consider modifications to the 6D space transverse to a stack of D3 branes. The 6D spaces that we consider are cones over the so called Y p,q geometries. We consider a geometric deformation for each of these spaces which explicitly breaks a U(1) isometry. In chapter 4, the leading Regge behavior string states are examined. We calculate the effective coupling of such string states to the five form and metric in a flat space background, and obtain an effective Lagrangian. Using this Lagrangian, we examine the energy, spin and angular momentum of these states in the AdS 5 x S5 background which is then compared to the semiclassical analysis of the literature. In chapters 5 and 6, we turn to discussions of the AdS5 factor. The Karch Randall scenario, a brane world scenario based oil AdS4 slices of AdS5 naturally suggests considering transparent boundary conditions for the field theory in AdS4. In chapter 5 we show that with these boundary conditions, a mass is induced for the graviphoton, and that this mass is in the correct proportion to the graviton mass (studied in the literature) to preserve supersymmetry. In chapter 6 we examine black hole solutions in AdS5. The presence of the black hole breaks some of the global supersymmetries (present in pure AdS5) which we use to generate the superpartners to these black holes. Using boundary counter term techniques, we find the mass, angular momentum, and charge
Backreacted axion field ranges in string theory
NASA Astrophysics Data System (ADS)
Baume, Florent; Palti, Eran
2016-08-01
String theory axions are interesting candidates for fields whose potential might be controllable over super-Planckian field ranges and therefore as possible candidates for inflatons in large field inflation. Axion monodromy scenarios are setups where the axion shift symmetry is broken by some effect such that the axion can traverse a large number of periods potentially leading to super-Planckian excursions. We study such scenarios in type IIA string theory where the axion shift symmetry is broken by background fluxes. In particular we calculate the backreaction of the energy density induced by the axion vacuum expectation value on its own field space metric. We find universal behaviour for all the compactifications studied where up to a certain critical axion value there is only a small backreaction effect. Beyond the critical value the backreaction is strong and implies that the proper field distance as measured by the backreacted metric increases at best logarithmically with the axion vev, thereby placing strong limitations on extending the field distance any further. The critical axion value can be made arbitrarily large by the choice of fluxes. However the backreaction of these fluxes on the axion field space metric ensures a precise cancellation such that the proper field distance up to the critical axion value is flux independent and remains sub-Planckian. We also study an axion alignment scenario for type IIA compactifications on a twisted torus with four fundamental axions mixing to leave an axion with an effective decay constant which is flux dependent. There is a choice of fluxes for which the alignment parameter controlling the effective decay constant is unconstrained by tadpoles and can in principle lead to an arbitrarily large effective decay constant. However we show that these fluxes backreact on the fundamental decay constants so as to precisely cancel any enhancement leaving a sub-Planckian effective decay constant.
Gauge field theory of covariant strings
NASA Astrophysics Data System (ADS)
Kaku, Michio
1986-03-01
We present a gauge covariant second-quantized field theory of strings which is explicitly invariant under the gauge transformations generated by the Virasoro algebra. Unlike the old field theory strings [1] this new formulation is Lorentz covariant as well as gauge covariant under the continuous group Diff( S1) and its central extension. We derive the free action: L=Φ(X) †P[i∂ τ-(L 0-1)]PΦ(X) , in the same way that Feynman derived the Schrödinger equation from the path integral formalism. The action is manifestly invariant under the gauge transformation δΦ(X)= limit∑n=1∞ɛ -nL -nΦ(X) , where P is a projection operator which annihilates spurious states. We give three distinct formulations of this operator P to all orders, the first based on extracting the operator from the functional formulation of the Nambu-Goto action, and the second and third based on inverting the Shapovalov matrix on a Verma module. This gauge covariant formulation can be easily extended to the Green-Schwarz superstring [2,3]. One element application of these methods is to re-express the old Neveu-Schwarz-Ramond model as a field theory which is manifestly invariant under space-time supersymmetric transformations.
Scalar Field Theories with Polynomial Shift Symmetries
NASA Astrophysics Data System (ADS)
Griffin, Tom; Grosvenor, Kevin T.; Hořava, Petr; Yan, Ziqi
2015-12-01
We continue our study of naturalness in nonrelativistic QFTs of the Lifshitz type, focusing on scalar fields that can play the role of Nambu-Goldstone (NG) modes associated with spontaneous symmetry breaking. Such systems allow for an extension of the constant shift symmetry to a shift by a polynomial of degree P in spatial coordinates. These "polynomial shift symmetries" in turn protect the technical naturalness of modes with a higher-order dispersion relation, and lead to a refinement of the proposed classification of infrared Gaussian fixed points available to describe NG modes in nonrelativistic theories. Generic interactions in such theories break the polynomial shift symmetry explicitly to the constant shift. It is thus natural to ask: Given a Gaussian fixed point with polynomial shift symmetry of degree P, what are the lowest-dimension operators that preserve this symmetry, and deform the theory into a self-interacting scalar field theory with the shift symmetry of degree P? To answer this (essentially cohomological) question, we develop a new graph-theoretical technique, and use it to prove several classification theorems. First, in the special case of P = 1 (essentially equivalent to Galileons), we reproduce the known Galileon N-point invariants, and find their novel interpretation in terms of graph theory, as an equal-weight sum over all labeled trees with N vertices. Then we extend the classification to P > 1 and find a whole host of new invariants, including those that represent the most relevant (or least irrelevant) deformations of the corresponding Gaussian fixed points, and we study their uniqueness.
Review of micro/nano technologies and theories for electroporation of biological cells
NASA Astrophysics Data System (ADS)
Lee, YiKuen; Deng, PeiGang
2012-06-01
Electroporation (EP) is one of the important techniques for the introduction of genes and drugs into cells with intense pulsed electric field to induce nanometer-sized electropores on cell membranes. Recently, micro/nano technology has been applied to many novel micro EP devices which can not only significantly increase uptake of biomolecules, DNA transfection and cell viability, but also enable large-scale single-cell EP. However, most EP theories developed in the past three decades can not precisely predict the experimental results of EP of biological cells. With the advanced micro EP chips for large-scale single-cell EP experiments, more precise EP theoretical models can be developed to describe the complicated multiscale dynamic behavior of EP.
Multiloop calculations in perturbative quantum field theory
NASA Astrophysics Data System (ADS)
Blokland, Ian Richard
This thesis deals with high-precision calculations in perturbative quantum field theory. In conjunction with detailed experimental measurements, perturbative quantum field theory provides the quantitative framework with which much of modern particle physics is understood. The results of three new theoretical calculations are presented. The first is a definitive resolution of a recent controversy involving the interaction of a muon with a magnetic field. Specifically, the light-by-light scattering contribution to the anomalous magnetic moment of the muon is shown to be of positive sign, thereby decreasing the discrepancy between theory and experiment. Despite this adjustment to the theoretical prediction, the remaining discrepancy might be a subtle signature of new kinds of particles. The second calculation involves the energy levels of a bound state formed from two charged particles of arbitrary masses. By employing recently developed mass expansion techniques, new classes of solutions are obtained for problems in a field of particle physics with a very rich history. The third calculation provides an improved prediction for the decay of a top quark. In order to obtain this result, a large class of multiloop integrals has been solved for the first time. Top quark decay is just one member of a family of interesting physical processes to which these new results apply. Since specialized calculational techniques are essential ingredients in all three calculations, they are motivated and explained carefully in this thesis. These techniques, once automated with symbolic computational software, have recently opened avenues of solution to a wide variety of important problems in particle physics.
On conformal field theories with extremal values
NASA Astrophysics Data System (ADS)
Zhiboedov, Alexander
2014-04-01
Unitary conformal field theories (CFTs) are believed to have positive (non-negative) energy correlators. Energy correlators are universal observables in higher-dimensional CFTs built out of integrated Wightman functions of the stress-energy tensor. We analyze energy correlators in parity invariant four-dimensional CFTs. The goal is to use the positivity of energy correlators to further constrain unitary CFTs. It is known that the positivity of the simplest one-point energy correlator implies that where a and c are the Weyl anomaly coefficients. We use the positivity of higher point energy correlators to show that CFTs with extremal values of have trivial scattering observables. More precisely, for and all energy correlators are fixed to be the ones of the free boson and the free vector theory correspondingly. Similarly, we show that the positivity and finiteness of energy correlators together imply that the three-point function of the stress tensor in a CFT cannot be proportional to the one in the theory of free boson, free fermion or free vector field.
Inhomogeneous field theory inside the arctic circle
NASA Astrophysics Data System (ADS)
Allegra, Nicolas; Dubail, Jérôme; Stéphan, Jean-Marie; Viti, Jacopo
2016-05-01
Motivated by quantum quenches in spin chains, a one-dimensional toy-model of fermionic particles evolving in imaginary-time from a domain-wall initial state is solved. The main interest of this toy-model is that it exhibits the arctic circle phenomenon, namely a spatial phase separation between a critically fluctuating region and a frozen region. Large-scale correlations inside the critical region are expressed in terms of correlators in a (euclidean) two-dimensional massless Dirac field theory. It is observed that this theory is inhomogenous: the metric is position-dependent, so it is in fact a Dirac theory in curved space. The technique used to solve the toy-model is then extended to deal with the transfer matrices of other models: dimers on the honeycomb and square lattice, and the six-vertex model at the free fermion point (Δ =0 ). In all cases, explicit expressions are given for the long-range correlations in the critical region, as well as for the underlying Dirac action. Although the setup developed here is heavily based on fermionic observables, the results can be translated into the language of height configurations and of the gaussian free field, via bosonization. Correlations close to the phase boundary and the generic appearance of Airy processes in all these models are also briefly revisited in the appendix.
Scalar field theory on noncommutative Snyder spacetime
Battisti, Marco Valerio; Meljanac, Stjepan
2010-07-15
We construct a scalar field theory on the Snyder noncommutative space-time. The symmetry underlying the Snyder geometry is deformed at the co-algebraic level only, while its Poincare algebra is undeformed. The Lorentz sector is undeformed at both the algebraic and co-algebraic level, but the coproduct for momenta (defining the star product) is non-coassociative. The Snyder-deformed Poincare group is described by a non-coassociative Hopf algebra. The definition of the interacting theory in terms of a nonassociative star product is thus questionable. We avoid the nonassociativity by the use of a space-time picture based on the concept of the realization of a noncommutative geometry. The two main results we obtain are (i) the generic (namely, for any realization) construction of the co-algebraic sector underlying the Snyder geometry and (ii) the definition of a nonambiguous self-interacting scalar field theory on this space-time. The first-order correction terms of the corresponding Lagrangian are explicitly computed. The possibility to derive Noether charges for the Snyder space-time is also discussed.
Working Group Report: Lattice Field Theory
Blum, T.; et al.,
2013-10-22
This is the report of the Computing Frontier working group on Lattice Field Theory prepared for the proceedings of the 2013 Community Summer Study ("Snowmass"). We present the future computing needs and plans of the U.S. lattice gauge theory community and argue that continued support of the U.S. (and worldwide) lattice-QCD effort is essential to fully capitalize on the enormous investment in the high-energy physics experimental program. We first summarize the dramatic progress of numerical lattice-QCD simulations in the past decade, with some emphasis on calculations carried out under the auspices of the U.S. Lattice-QCD Collaboration, and describe a broad program of lattice-QCD calculations that will be relevant for future experiments at the intensity and energy frontiers. We then present details of the computational hardware and software resources needed to undertake these calculations.
Bayesian parameter estimation for effective field theories
NASA Astrophysics Data System (ADS)
Wesolowski, S.; Klco, N.; Furnstahl, R. J.; Phillips, D. R.; Thapaliya, A.
2016-07-01
We present procedures based on Bayesian statistics for estimating, from data, the parameters of effective field theories (EFTs). The extraction of low-energy constants (LECs) is guided by theoretical expectations in a quantifiable way through the specification of Bayesian priors. A prior for natural-sized LECs reduces the possibility of overfitting, and leads to a consistent accounting of different sources of uncertainty. A set of diagnostic tools is developed that analyzes the fit and ensures that the priors do not bias the EFT parameter estimation. The procedures are illustrated using representative model problems, including the extraction of LECs for the nucleon-mass expansion in SU(2) chiral perturbation theory from synthetic lattice data.
The effective field theory of dark energy
NASA Astrophysics Data System (ADS)
Gubitosi, Giulia; Piazza, Federico; Vernizzi, Filippo
2013-02-01
We propose a universal description of dark energy and modified gravity that includes all single-field models. By extending a formalism previously applied to inflation, we consider the metric universally coupled to matter fields and we write in terms of it the most general unitary gauge action consistent with the residual unbroken symmetries of spatial diffeomorphisms. Our action is particularly suited for cosmological perturbation theory: the background evolution depends on only three operators. All other operators start at least at quadratic order in the perturbations and their effects can be studied independently and systematically. In particular, we focus on the properties of a few operators which appear in non-minimally coupled scalar-tensor gravity and galileon theories. In this context, we study the mixing between gravity and the scalar degree of freedom. We assess the quantum and classical stability, derive the speed of sound of fluctuations and the renormalization of the Newton constant. The scalar can always be de-mixed from gravity at quadratic order in the perturbations, but not necessarily through a conformal rescaling of the metric. We show how to express covariant field-operators in our formalism and give several explicit examples of dark energy and modified gravity models in our language. Finally, we discuss the relation with the covariant EFT methods recently appeared in the literature.
Conformal field theories, representations and lattice constructions
NASA Astrophysics Data System (ADS)
Dolan, L.; Goddard, P.; Montague, P.
1996-07-01
An account is given of the structure and representations of chiral bosonic meromorphic conformal field theories (CFT's), and, in particular, the conditions under which such a CFT may be extended by a representation to form a new theory. This general approach is illustrated by considering the untwisted and Z 2-twisted theories, ℋ( Λ) andtilde H(Λ ) respectively, which may be constructed from a suitable even Euclidean lattice Λ. Similarly, one may construct latticesΛ _C andtilde Λ _C by analogous constructions from a doubly-even binary codeC. In the case whenC is self-dual, the corresponding lattices are also. Similarly, ℋ( Λ) andtilde H(Λ ) are self-dual if and only if Λ is. We show thatH(Λ _C ) has a natural “triality” structure, which induces an isomorphismH(tilde Λ _C ) ≡tilde H(Λ _C ) and also a triality structure ontilde H(tilde Λ _C ). ForC the Golay code,tilde Λ _C is the Leech lattice, and the triality ontilde H(tilde Λ _C ) is the symmetry which extends the natural action of (an extension of) Conway's group on this theory to the Monster, so setting triality and Frenkel, Lepowsky and Meurman's construction of the natural Monster module in a more general context. The results also serve to shed some light on the classification of self-dual CFT's. We find that of the 48 theories ℋ( Λ) andtilde H(Λ ) with central charge 24 that there are 39 distinct ones, and further that all 9 coincidences are accounted for by the isomorphism detailed above, induced by the existence of a doubly-even self-dual binary code.
Canonical quantization of Galilean covariant field theories
NASA Astrophysics Data System (ADS)
Santos, E. S.; de Montigny, M.; Khanna, F. C.
2005-11-01
The Galilean-invariant field theories are quantized by using the canonical method and the five-dimensional Lorentz-like covariant expressions of non-relativistic field equations. This method is motivated by the fact that the extended Galilei group in 3 + 1 dimensions is a subgroup of the inhomogeneous Lorentz group in 4 + 1 dimensions. First, we consider complex scalar fields, where the Schrödinger field follows from a reduction of the Klein-Gordon equation in the extended space. The underlying discrete symmetries are discussed, and we calculate the scattering cross-sections for the Coulomb interaction and for the self-interacting term λΦ4. Then, we turn to the Dirac equation, which, upon dimensional reduction, leads to the Lévy-Leblond equations. Like its relativistic analogue, the model allows for the existence of antiparticles. Scattering amplitudes and cross-sections are calculated for the Coulomb interaction, the electron-electron and the electron-positron scattering. These examples show that the so-called 'non-relativistic' approximations, obtained in low-velocity limits, must be treated with great care to be Galilei-invariant. The non-relativistic Proca field is discussed briefly.
Scalar-field theory of dark matter
NASA Astrophysics Data System (ADS)
Huang, Kerson; Xiong, Chi; Zhao, Xiaofei
2014-05-01
We develop a theory of dark matter based on a previously proposed picture, in which a complex vacuum scalar field makes the universe a superfluid, with the energy density of the superfluid giving rise to dark energy, and variations from vacuum density giving rise to dark matter. We formulate a nonlinear Klein-Gordon equation to describe the superfluid, treating galaxies as external sources. We study the response of the superfluid to the galaxies, in particular, the emergence of the dark-matter galactic halo, contortions during galaxy collisions and the creation of vortices due to galactic rotation.
Temperature Gradient Field Theory of Nucleation
NASA Astrophysics Data System (ADS)
Das, S.; Ain, W. Q.; Azhari, A.; Prasada Rao, A. K.
2016-02-01
According to the proposed theory, ceramic particles present in molten metal, lose heat at a slower rate than the metallic liquid during cooling. Such condition results in the formation of a spherical thermal gradient field (TGF) around each particle. Hence, the interstitials (low temperature) of such TGFs are the regions to reach the nucleation temperature first, owing to low energy barrier than the liquid-particle interface (higher temperature). Analytics also indicate that the nucleation rate is higher at the TGF interstitials, than at the liquid-particle interface. Such TGF network results in simultaneous nucleation throughout the system, resulting in grain refinement.
QCD unitarity constraints on Reggeon Field Theory
NASA Astrophysics Data System (ADS)
Kovner, Alex; Levin, Eugene; Lublinsky, Michael
2016-08-01
We point out that the s-channel unitarity of QCD imposes meaningful constraints on a possible form of the QCD Reggeon Field Theory. We show that neither the BFKL nor JIMWLK nor Braun's Hamiltonian satisfy the said constraints. In a toy, zero transverse dimensional case we construct a model that satisfies the analogous constraint and show that at infinite energy it indeed tends to a "black disk limit" as opposed to the model with triple Pomeron vertex only, routinely used as a toy model in the literature.
Theory of microemulsions in a gravitational field
NASA Technical Reports Server (NTRS)
Jeng, J. F.; Miller, Clarence A.
1989-01-01
A theory of microemulsions developed previously is extended to include the effect of a gravitational field. It predicts variation with position of drop size, drop volume fraction, and area per molecule in the surfactant films within a microemulsion phase. Variation in volume fraction is greatest and occurs in such a way that oil content increases with increasing elevation, as has been found experimentally. Large composition variations are predicted within a middle phase microemulsion near optimal conditions because inversion from the water-continuous to the oil-continuous arrangement occurs with increasing elevation. Generally speaking, gravity reduces solubilization within microemulsions and promotes separation of excess phases.
Thermalization of Strongly Coupled Field Theories
Balasubramanian, V.; Bernamonti, A.; Copland, N.; Craps, B.; Staessens, W.; Boer, J. de; Keski-Vakkuri, E.; Mueller, B.; Schaefer, A.; Shigemori, M.
2011-05-13
Using the holographic mapping to a gravity dual, we calculate 2-point functions, Wilson loops, and entanglement entropy in strongly coupled field theories in d=2, 3, and 4 to probe the scale dependence of thermalization following a sudden injection of energy. For homogeneous initial conditions, the entanglement entropy thermalizes slowest and sets a time scale for equilibration that saturates a causality bound. The growth rate of entanglement entropy density is nearly volume-independent for small volumes but slows for larger volumes. In this setting, the UV thermalizes first.
Thermalization of strongly coupled field theories.
Balasubramanian, V; Bernamonti, A; de Boer, J; Copland, N; Craps, B; Keski-Vakkuri, E; Müller, B; Schäfer, A; Shigemori, M; Staessens, W
2011-05-13
Using the holographic mapping to a gravity dual, we calculate 2-point functions, Wilson loops, and entanglement entropy in strongly coupled field theories in d=2, 3, and 4 to probe the scale dependence of thermalization following a sudden injection of energy. For homogeneous initial conditions, the entanglement entropy thermalizes slowest and sets a time scale for equilibration that saturates a causality bound. The growth rate of entanglement entropy density is nearly volume-independent for small volumes but slows for larger volumes. In this setting, the UV thermalizes first. PMID:21668141
Compact boson stars in K field theories
NASA Astrophysics Data System (ADS)
Adam, C.; Grandi, N.; Klimas, P.; Sánchez-Guillén, J.; Wereszczyński, A.
2010-11-01
We study a scalar field theory with a non-standard kinetic term minimally coupled to gravity. We establish the existence of compact boson stars, that is, static solutions with compact support of the full system with self-gravitation taken into account. Concretely, there exist two types of solutions, namely compact balls on the one hand, and compact shells on the other hand. The compact balls have a naked singularity at the center. The inner boundary of the compact shells is singular, as well, but it is, at the same time, a Killing horizon. These singular, compact shells therefore resemble black holes.
XXIVth International Symposium on Lattice Field Theory
NASA Astrophysics Data System (ADS)
2006-12-01
Lattice 2006, the XXIV International Symposium on Lattice Field Theory, was held from July 23-28, 2006 at the Starr Pass Hotel near Tucson, Arizona, USA, hosted by the University of Arizona Physics Department. The scientific program contained 25 plenary session talks and 193 parallel session contributions (talks and posters). Topics in lattice QCD included: hadron spectroscopy; hadronic interactions and structure; algorithms, machines, and networks; chiral symmetry; QCD confinement and topology; quark masses, gauge couplings, and renormalization; electroweak decays and mixing; high temperature and density; and theoretical developments. Topics beyond QCD included large Nc, Higgs, SUSY, gravity, and strings.
Drift estimation from a simple field theory
Mendes, F. M.; Figueiredo, A.
2008-11-06
Given the outcome of a Wiener process, what can be said about the drift and diffusion coefficients? If the process is stationary, these coefficients are related to the mean and variance of the position displacements distribution. However, if either drift or diffusion are time-dependent, very little can be said unless some assumption about that dependency is made. In Bayesian statistics, this should be translated into some specific prior probability. We use Bayes rule to estimate these coefficients from a single trajectory. This defines a simple, and analytically tractable, field theory.
Purely cubic action for string field theory
NASA Technical Reports Server (NTRS)
Horowitz, G. T.; Lykken, J.; Rohm, R.; Strominger, A.
1986-01-01
It is shown that Witten's (1986) open-bosonic-string field-theory action and a closed-string analog can be written as a purely cubic interaction term. The conventional form of the action arises by expansion around particular solutions of the classical equations of motion. The explicit background dependence of the conventional action via the Becchi-Rouet-Stora-Tyutin operator is eliminated in the cubic formulation. A closed-form expression is found for the full nonlinear gauge-transformation law.
Pauli-Villars regulatization of supergravity and field theory anomalies
Gaillard, M.K.
1995-06-01
A procedure for Pauli-Villars regularization of locally and globally supersymmetric theories is described. Implications for specific theories, especially those obtained from superstrings, are discussed with emphasis on the role of field theory anomalies.
Towards a quantum field theory of primitive string fields
Ruehl, W.
2012-10-15
We denote generating functions of massless even higher-spin fields 'primitive string fields' (PSF's). In an introduction we present the necessary definitions and derive propagators and currents of these PDF's on flat space. Their off-shell cubic interaction can be derived after all off-shell cubic interactions of triplets of higher-spin fields have become known. Then we discuss four-point functions of any quartet of PSF's. In subsequent sections we exploit the fact that higher-spin field theories in AdS{sub d+1} are determined by AdS/CFT correspondence from universality classes of critical systems in d-dimensional flat spaces. The O(N) invariant sectors of the O(N) vector models for 1 {<=} N {<=}{infinity} play for us the role of 'standard models', for varying N, they contain, e.g., the Ising model for N = 1 and the spherical model for N = {infinity}. A formula for the masses squared that break gauge symmetry for these O(N) classes is presented for d = 3. For the PSF on AdS space it is shown that it can be derived by lifting the PSF on flat space by a simple kernel which contains the sum over all spins. Finally we use an algorithm to derive all symmetric tensor higher-spin fields. They arise from monomials of scalar fields by derivation and selection of conformal (quasiprimary) fields. Typically one monomial produces a multiplet of spin s conformal higher-spin fields for all s {>=} 4, they are distinguished by their anomalous dimensions (in CFT{sub 3}) or by theirmass (in AdS{sub 4}). We sum over these multiplets and the spins to obtain 'string type fields', one for each such monomial.
PT-Symmetric Quantum Field Theory
NASA Astrophysics Data System (ADS)
Bender, Carl M.
2011-09-01
In 1998 it was discovered that the requirement that a Hamiltonian be Dirac Hermitian (H = H†) can be weakened and generalized to the requirement that a Hamiltonian be PT symmetric ([H,PT] = 0); that is, invariant under combined space reflection and time reversal. Weakening the constraint of Hermiticity allows one to consider new kinds of physically acceptable Hamiltonians and, in effect, it amounts to extending quantum mechanics from the real (Hermitian) domain into the complex domain. Much work has been done on the analysis of various PT-symmetric quantum-mechanical models. However, only very little analysis has been done on PT-symmetric quantum-field-theoretic models. Here, we describe some of what has been done in the context of PT-symmetric quantum field theory and describe some possible fundamental applications.
Causality Is Inconsistent With Quantum Field Theory
Wolf, Fred Alan
2011-11-29
Causality in quantum field theory means the vanishing of commutators for spacelike separated fields (VCSSF). I will show that VCSSF is not tenable. For VCSSF to be tenable, and therefore, to have both retarded and advanced propagators vanish in the elsewhere, a superposition of negative energy antiparticle and positive energy particle propagators, traveling forward in time, and a superposition of negative energy particle and positive energy antiparticle propagators, traveling backward in time, are required. Hence VCSSF predicts non-vanishing probabilities for both negative energy particles in the forward-through-time direction and positive energy antiparticles in the backwards-through-time direction. Therefore, since VCSSF is unrealizable in a stable universe, tachyonic propagation must occur in denial of causality.
Conformal field theory of critical Casimir forces
NASA Astrophysics Data System (ADS)
Emig, Thorsten; Bimonte, Giuseppe; Kardar, Mehran
2015-03-01
Thermal fluctuations of a critical system induce long-ranged Casimir forces between objects that couple to the underlying field. For two dimensional conformal field theories (CFT) we derive exact results for the Casimir interaction for a deformed strip and for two compact objects of arbitrary shape in terms of the free energy of a standard region (circular ring or flat strip) whose dimension is determined by the mutual capacitance of two conductors with the objects' shape; and a purely geometric energy that is proportional to conformal charge of the CFT, but otherwise super-universal in that it depends only on the shapes and is independent of boundary conditions and other details. The effect of inhomogenous boundary conditions is also discussed.
Gauge gravitation theory: Gravity as a Higgs field
NASA Astrophysics Data System (ADS)
Sardanashvily, Gennadi
2016-05-01
Gravitation theory is formulated as gauge theory on natural bundles with spontaneous symmetry breaking, where gauge symmetries are general covariant transformations, gauge fields are general linear connections, and Higgs fields are pseudo-Riemannian metrics.
Ramond equations of motion in superstring field theory
NASA Astrophysics Data System (ADS)
Erler, Theodore; Konopka, Sebastian; Sachs, Ivo
2015-11-01
We extend the recently constructed NS superstring field theories in the small Hilbert space to give classical field equations for all superstring theories, including Ramond sectors. We also comment on the realization of supersymmetry in this framework.
Continuum regularization of quantum field theory
Bern, Z.
1986-04-01
Possible nonperturbative continuum regularization schemes for quantum field theory are discussed which are based upon the Langevin equation of Parisi and Wu. Breit, Gupta and Zaks made the first proposal for new gauge invariant nonperturbative regularization. The scheme is based on smearing in the ''fifth-time'' of the Langevin equation. An analysis of their stochastic regularization scheme for the case of scalar electrodynamics with the standard covariant gauge fixing is given. Their scheme is shown to preserve the masslessness of the photon and the tensor structure of the photon vacuum polarization at the one-loop level. Although stochastic regularization is viable in one-loop electrodynamics, two difficulties arise which, in general, ruins the scheme. One problem is that the superficial quadratic divergences force a bottomless action for the noise. Another difficulty is that stochastic regularization by fifth-time smearing is incompatible with Zwanziger's gauge fixing, which is the only known nonperturbaive covariant gauge fixing for nonabelian gauge theories. Finally, a successful covariant derivative scheme is discussed which avoids the difficulties encountered with the earlier stochastic regularization by fifth-time smearing. For QCD the regularized formulation is manifestly Lorentz invariant, gauge invariant, ghost free and finite to all orders. A vanishing gluon mass is explicitly verified at one loop. The method is designed to respect relevant symmetries, and is expected to provide suitable regularization for any theory of interest. Hopefully, the scheme will lend itself to nonperturbative analysis. 44 refs., 16 figs.
The effective field theory treatment of quantum gravity
Donoghue, John F.
2012-09-24
This is a pedagogical introduction to the treatment of quantum general relativity as an effective field theory. It starts with an overview of the methods of effective field theory and includes an explicit example. Quantum general relativity matches this framework and I discuss gravitational examples as well as the limits of the effective field theory. I also discuss the insights from effective field theory on the gravitational effects on running couplings in the perturbative regime.
Perfect magnetohydrodynamics as a field theory
Bekenstein, Jacob D.; Betschart, Gerold
2006-10-15
We propose the generally covariant action for the theory of a self-coupled complex scalar field and electromagnetism which by virtue of constraints is equivalent, in the regime of long wavelengths, to perfect magnetohydrodynamics (MHD). We recover from it the Euler equation with Lorentz force, and the thermodynamic relations for a prefect fluid. The equation of state of the latter is related to the scalar field's self potential. We introduce 1+3 notation to elucidate the relation between MHD and field variables. In our approach the requirement that the scalar field be single valued leads to the quantization of a certain circulation in steps of ({Dirac_h}/2{pi}); this feature leads, in the classical limit, to the conservation of that circulation. The circulation is identical to that in Oron's generalization of Kelvin's circulation theorem to perfect MHD; we here characterize the new conserved helicity associated with it. We also demonstrate the existence for MHD of two Bernoulli-like theorems for each spacetime symmetry of the flow and geometry; one of these is pertinent to suitably defined potential flow. We exhibit the conserved quantities explicitly in the case that two symmetries are simultaneously present, and give examples. Also in this case we exhibit a new conserved MHD circulation distinct from Oron's, and provide an example.
Marginally Relevant Topics in Conformal Field Theories
NASA Astrophysics Data System (ADS)
Cleary, Kevin Francis
We consider a set of topics in conformal field theory. We provide an example of a 4D theory that exhibits the Contino-Pomarol-Rattazzi mechanism, where breaking conformal symmetry by an almost marginal operator leads to a light pseudo-Goldstone boson, the dilaton, and a parametrically suppressed contribution to vacuum energy. We consider SUSY QCD at the edge of the conformal window and break conformal symmetry by weakly gauging a subgroup of the flavor symmetry. Using Seiberg duality we show that for a range of parameters the singlet meson in the dual theory reaches the unitarity bound, however, this theory does not have a stable vacuum. We stabilize the vacuum with soft breaking terms, compute the mass of the dilaton, and determine the range of parameters where the leading contribution to the dilaton mass is from the almost marginal coupling. We also weigh in on a widely held belief that increasing bounds on the gluino mass, which feeds down to the stop mass through renormalization group running, are making a light stop increasingly unlikely. Here we present a counter-example. We examine the case of the Minimal Composite Supersymmetric Standard Model which has a light composite stop. The large anomalous dimension of the stop from strong dynamics pushes the stop mass toward a quasi-fixed point in the infrared, which is smaller than standard estimates by a factor of a large logarithm. The gluino can be about three times heavier than the stop, which is comparable to hierarchy achieved with supersoft Dirac gluino masses. Thus, in this class of models, a heavy gluino is not necessarily indicative of a heavy stop.
Machine Learning for Dynamical Mean Field Theory
NASA Astrophysics Data System (ADS)
Arsenault, Louis-Francois; Lopez-Bezanilla, Alejandro; von Lilienfeld, O. Anatole; Littlewood, P. B.; Millis, Andy
2014-03-01
Machine Learning (ML), an approach that infers new results from accumulated knowledge, is in use for a variety of tasks ranging from face and voice recognition to internet searching and has recently been gaining increasing importance in chemistry and physics. In this talk, we investigate the possibility of using ML to solve the equations of dynamical mean field theory which otherwise requires the (numerically very expensive) solution of a quantum impurity model. Our ML scheme requires the relation between two functions: the hybridization function describing the bare (local) electronic structure of a material and the self-energy describing the many body physics. We discuss the parameterization of the two functions for the exact diagonalization solver and present examples, beginning with the Anderson Impurity model with a fixed bath density of states, demonstrating the advantages and the pitfalls of the method. DOE contract DE-AC02-06CH11357.
Effective field theory analysis of Higgs naturalness
Bar-Shalom, Shaouly; Soni, Amarjit; Wudka, Jose
2015-07-20
Assuming the presence of physics beyond the Standard Model ( SM) with a characteristic scale M ~ O (10) TeV, we investigate the naturalness of the Higgs sector at scales below M using an effective field theory (EFT) approach. We obtain the leading 1 -loop EFT contributions to the Higgs mass with a Wilsonian-like hard cutoff, and determine t he constraints on the corresponding operator coefficients for these effects to alleviate the little hierarchy problem up to the scale of the effective action Λ < M , a condition we denote by “EFT-naturalness”. We also determine the types of physics that can lead to EFT-naturalness and show that these types of new physics are best probed in vector-boson and multiple-Higgs production. The current experimental constraints on these coefficients are also discussed.
Standard Model as a Double Field Theory.
Choi, Kang-Sin; Park, Jeong-Hyuck
2015-10-23
We show that, without any extra physical degree introduced, the standard model can be readily reformulated as a double field theory. Consequently, the standard model can couple to an arbitrary stringy gravitational background in an O(4,4) T-duality covariant manner and manifest two independent local Lorentz symmetries, Spin(1,3)×Spin(3,1). While the diagonal gauge fixing of the twofold spin groups leads to the conventional formulation on the flat Minkowskian background, the enhanced symmetry makes the standard model more rigid, and also stringy, than it appeared. The CP violating θ term may no longer be allowed by the symmetry, and hence the strong CP problem can be solved. There are now stronger constraints imposed on the possible higher order corrections. We speculate that the quarks and the leptons may belong to the two different spin classes. PMID:26551099
Standard Model as a Double Field Theory
NASA Astrophysics Data System (ADS)
Choi, Kang-Sin; Park, Jeong-Hyuck
2015-10-01
We show that, without any extra physical degree introduced, the standard model can be readily reformulated as a double field theory. Consequently, the standard model can couple to an arbitrary stringy gravitational background in an O (4 ,4 ) T -duality covariant manner and manifest two independent local Lorentz symmetries, Spin(1 ,3 )×Spin(3 ,1 ) . While the diagonal gauge fixing of the twofold spin groups leads to the conventional formulation on the flat Minkowskian background, the enhanced symmetry makes the standard model more rigid, and also stringy, than it appeared. The C P violating θ term may no longer be allowed by the symmetry, and hence the strong C P problem can be solved. There are now stronger constraints imposed on the possible higher order corrections. We speculate that the quarks and the leptons may belong to the two different spin classes.
Matrix product states for gauge field theories.
Buyens, Boye; Haegeman, Jutho; Van Acoleyen, Karel; Verschelde, Henri; Verstraete, Frank
2014-08-29
The matrix product state formalism is used to simulate Hamiltonian lattice gauge theories. To this end, we define matrix product state manifolds which are manifestly gauge invariant. As an application, we study (1+1)-dimensional one flavor quantum electrodynamics, also known as the massive Schwinger model, and are able to determine very accurately the ground-state properties and elementary one-particle excitations in the continuum limit. In particular, a novel particle excitation in the form of a heavy vector boson is uncovered, compatible with the strong coupling expansion in the continuum. We also study full quantum nonequilibrium dynamics by simulating the real-time evolution of the system induced by a quench in the form of a uniform background electric field. PMID:25215973
The $\\hbar$ Expansion in Quantum Field Theory
Brodsky, Stanley J.; Hoyer, Paul; /Southern Denmark U., CP3-Origins /Helsinki U. /Helsinki Inst. of Phys.
2010-10-27
We show how expansions in powers of Planck's constant {h_bar} = h = 2{pi} can give new insights into perturbative and nonperturbative properties of quantum field theories. Since {h_bar} is a fundamental parameter, exact Lorentz invariance and gauge invariance are maintained at each order of the expansion. The physics of the {h_bar} expansion depends on the scheme; i.e., different expansions are obtained depending on which quantities (momenta, couplings and masses) are assumed to be independent of {h_bar}. We show that if the coupling and mass parameters appearing in the Lagrangian density are taken to be independent of {h_bar}, then each loop in perturbation theory brings a factor of {h_bar}. In the case of quantum electrodynamics, this scheme implies that the classical charge e, as well as the fine structure constant are linear in {h_bar}. The connection between the number of loops and factors of {h_bar} is more subtle for bound states since the binding energies and bound-state momenta themselves scale with {h_bar}. The {h_bar} expansion allows one to identify equal-time relativistic bound states in QED and QCD which are of lowest order in {h_bar} and transform dynamically under Lorentz boosts. The possibility to use retarded propagators at the Born level gives valence-like wave-functions which implicitly describe the sea constituents of the bound states normally present in its Fock state representation.
Statistical field theory of a nonadditive system
NASA Astrophysics Data System (ADS)
Olemskoi, A. I.; Yushchenko, O. V.; Badalyan, A. Yu.
2013-03-01
Based on quantum field methods, we develop a statistical theory of complex systems with nonadditive potentials. Using the Martin-Siggia-Rose method, we find the effective system Lagrangian, from which we obtain evolution equations for the most probable values of the order parameter and its fluctuation amplitudes. We show that these equations are unchanged under deformations of the statistical distribution while the probabilities of realizing different phase trajectories depend essentially on the nonadditivity parameter. We find the generating functional of a nonadditive system and establish its relation to correlation functions; we introduce a pair of additive generating functionals whose expansion terms determine the set of multipoint Green's functions and their self-energy parts. We find equations for the generating functional of a system having an internal symmetry and constraints. In the harmonic approximation framework, we determine the partition function and moments of the order parameter depending on the nonadditivity parameter. We develop a perturbation theory that allows calculating corrections of an arbitrary order to the indicated quantities.
Multidimensional wave field signal theory: Mathematical foundations
NASA Astrophysics Data System (ADS)
Baddour, Natalie
2011-06-01
Many important physical phenomena are described by wave or diffusion-wave type equations. Since these equations are linear, it would be useful to be able to use tools from the theory of linear signals and systems in solving related forward or inverse problems. In particular, the transform domain signal description from linear system theory has shown concrete promise for the solution of problems that are governed by a multidimensional wave field. The aim is to develop a unified framework for the description of wavefields via multidimensional signals. However, certain preliminary mathematical results are crucial for the development of this framework. This first paper on this topic thus introduces the mathematical foundations and proves some important mathematical results. The foundation of the framework starts with the inhomogeneous Helmholtz or pseudo-Helmholtz equation, which is the mathematical basis of a large class of wavefields. Application of the appropriate multi-dimensional Fourier transform leads to a transfer function description. To return to the physical spatial domain, certain mathematical results are necessary and these are presented and proved here as six fundamental theorems. These theorems are crucial for the evaluation of a certain class of improper integrals which arise in the evaluation of inverse multi-dimensional Fourier and Hankel transforms, upon which the framework is based. Subsequently, applications of these theorems are demonstrated, in particular for the derivation of Green's functions in different coordinate systems.
Quantum spectral dimension in quantum field theory
NASA Astrophysics Data System (ADS)
Calcagni, Gianluca; Modesto, Leonardo; Nardelli, Giuseppe
2016-03-01
We reinterpret the spectral dimension of spacetimes as the scaling of an effective self-energy transition amplitude in quantum field theory (QFT), when the system is probed at a given resolution. This picture has four main advantages: (a) it dispenses with the usual interpretation (unsatisfactory in covariant approaches) where, instead of a transition amplitude, one has a probability density solving a nonrelativistic diffusion equation in an abstract diffusion time; (b) it solves the problem of negative probabilities known for higher-order and nonlocal dispersion relations in classical and quantum gravity; (c) it clarifies the concept of quantum spectral dimension as opposed to the classical one. We then consider a class of logarithmic dispersion relations associated with quantum particles and show that the spectral dimension dS of spacetime as felt by these quantum probes can deviate from its classical value, equal to the topological dimension D. In particular, in the presence of higher momentum powers it changes with the scale, dropping from D in the infrared (IR) to a value dSUV ≤ D in the ultraviolet (UV). We apply this general result to Stelle theory of renormalizable gravity, which attains the universal value dSUV = 2 for any dimension D.
Hamiltonian constraint in polymer parametrized field theory
Laddha, Alok; Varadarajan, Madhavan
2011-01-15
Recently, a generally covariant reformulation of two-dimensional flat spacetime free scalar field theory known as parametrized field theory was quantized using loop quantum gravity (LQG) type ''polymer'' representations. Physical states were constructed, without intermediate regularization structures, by averaging over the group of gauge transformations generated by the constraints, the constraint algebra being a Lie algebra. We consider classically equivalent combinations of these constraints corresponding to a diffeomorphism and a Hamiltonian constraint, which, as in gravity, define a Dirac algebra. Our treatment of the quantum constraints parallels that of LQG and obtains the following results, expected to be of use in the construction of the quantum dynamics of LQG: (i) the (triangulated) Hamiltonian constraint acts only on vertices, its construction involves some of the same ambiguities as in LQG and its action on diffeomorphism invariant states admits a continuum limit, (ii) if the regulating holonomies are in representations tailored to the edge labels of the state, all previously obtained physical states lie in the kernel of the Hamiltonian constraint, (iii) the commutator of two (density weight 1) Hamiltonian constraints as well as the operator correspondent of their classical Poisson bracket converge to zero in the continuum limit defined by diffeomorphism invariant states, and vanish on the Lewandowski-Marolf habitat, (iv) the rescaled density 2 Hamiltonian constraints and their commutator are ill-defined on the Lewandowski-Marolf habitat despite the well-definedness of the operator correspondent of their classical Poisson bracket there, (v) there is a new habitat which supports a nontrivial representation of the Poisson-Lie algebra of density 2 constraints.
Characterization of Pressure Transients Generated by Nanosecond Electrical Pulse (nsEP) Exposure
NASA Astrophysics Data System (ADS)
Roth, Caleb C.; Barnes, Ronald A., Jr.; Ibey, Bennett L.; Beier, Hope T.; Christopher Mimun, L.; Maswadi, Saher M.; Shadaram, Mehdi; Glickman, Randolph D.
2015-10-01
The mechanism(s) responsible for the breakdown (nanoporation) of cell plasma membranes after nanosecond pulse (nsEP) exposure remains poorly understood. Current theories focus exclusively on the electrical field, citing electrostriction, water dipole alignment and/or electrodeformation as the primary mechanisms for pore formation. However, the delivery of a high-voltage nsEP to cells by tungsten electrodes creates a multitude of biophysical phenomena, including electrohydraulic cavitation, electrochemical interactions, thermoelastic expansion, and others. To date, very limited research has investigated non-electric phenomena occurring during nsEP exposures and their potential effect on cell nanoporation. Of primary interest is the production of acoustic shock waves during nsEP exposure, as it is known that acoustic shock waves can cause membrane poration (sonoporation). Based on these observations, our group characterized the acoustic pressure transients generated by nsEP and determined if such transients played any role in nanoporation. In this paper, we show that nsEP exposures, equivalent to those used in cellular studies, are capable of generating high-frequency (2.5 MHz), high-intensity (>13 kPa) pressure transients. Using confocal microscopy to measure cell uptake of YO-PRO®-1 (indicator of nanoporation of the plasma membrane) and changing the electrode geometry, we determined that acoustic waves alone are not responsible for poration of the membrane.
Characterization of Pressure Transients Generated by Nanosecond Electrical Pulse (nsEP) Exposure.
Roth, Caleb C; Barnes, Ronald A; Ibey, Bennett L; Beier, Hope T; Christopher Mimun, L; Maswadi, Saher M; Shadaram, Mehdi; Glickman, Randolph D
2015-01-01
The mechanism(s) responsible for the breakdown (nanoporation) of cell plasma membranes after nanosecond pulse (nsEP) exposure remains poorly understood. Current theories focus exclusively on the electrical field, citing electrostriction, water dipole alignment and/or electrodeformation as the primary mechanisms for pore formation. However, the delivery of a high-voltage nsEP to cells by tungsten electrodes creates a multitude of biophysical phenomena, including electrohydraulic cavitation, electrochemical interactions, thermoelastic expansion, and others. To date, very limited research has investigated non-electric phenomena occurring during nsEP exposures and their potential effect on cell nanoporation. Of primary interest is the production of acoustic shock waves during nsEP exposure, as it is known that acoustic shock waves can cause membrane poration (sonoporation). Based on these observations, our group characterized the acoustic pressure transients generated by nsEP and determined if such transients played any role in nanoporation. In this paper, we show that nsEP exposures, equivalent to those used in cellular studies, are capable of generating high-frequency (2.5 MHz), high-intensity (>13 kPa) pressure transients. Using confocal microscopy to measure cell uptake of YO-PRO®-1 (indicator of nanoporation of the plasma membrane) and changing the electrode geometry, we determined that acoustic waves alone are not responsible for poration of the membrane. PMID:26450165
Characterization of Pressure Transients Generated by Nanosecond Electrical Pulse (nsEP) Exposure
Roth, Caleb C.; Barnes Jr., Ronald A.; Ibey, Bennett L.; Beier, Hope T.; Christopher Mimun, L.; Maswadi, Saher M.; Shadaram, Mehdi; Glickman, Randolph D.
2015-01-01
The mechanism(s) responsible for the breakdown (nanoporation) of cell plasma membranes after nanosecond pulse (nsEP) exposure remains poorly understood. Current theories focus exclusively on the electrical field, citing electrostriction, water dipole alignment and/or electrodeformation as the primary mechanisms for pore formation. However, the delivery of a high-voltage nsEP to cells by tungsten electrodes creates a multitude of biophysical phenomena, including electrohydraulic cavitation, electrochemical interactions, thermoelastic expansion, and others. To date, very limited research has investigated non-electric phenomena occurring during nsEP exposures and their potential effect on cell nanoporation. Of primary interest is the production of acoustic shock waves during nsEP exposure, as it is known that acoustic shock waves can cause membrane poration (sonoporation). Based on these observations, our group characterized the acoustic pressure transients generated by nsEP and determined if such transients played any role in nanoporation. In this paper, we show that nsEP exposures, equivalent to those used in cellular studies, are capable of generating high-frequency (2.5 MHz), high-intensity (>13 kPa) pressure transients. Using confocal microscopy to measure cell uptake of YO-PRO®-1 (indicator of nanoporation of the plasma membrane) and changing the electrode geometry, we determined that acoustic waves alone are not responsible for poration of the membrane. PMID:26450165
Greg Beshouri; Kirby S. Chapman; Jim McCarthy; Sarah R. Nuss-Warren; Mike Whelan
2006-03-01
This quarterly report re-evaluates current market objectives in the exploration and production industry, discusses continuing progress in testing that evaluates emission control technologies applied to a two-stroke cycle natural gas-fueled engine, and presents a scheme for enacting remote monitoring and control of engines during upcoming field tests. The examination of current market objectives takes into account technological developments and changing expectations for environmental permitting which may have occurred over the last year. This demonstrates that the continuing work in controlled testing and toward field testing is on track Market pressures currently affecting the gas exploration and production industry are shown to include a push for increased production, as well as an increasing cost for environmental compliance. This cost includes the direct cost of adding control technologies to field engines as well as the indirect cost of difficulty obtaining permits. Environmental regulations continue to require lower emissions targets, and some groups of engines which had not previously been regulated will be required to obtain permits in the future. While the focus remains on NOx and CO, some permits require reporting of additional emissions chemicals. Continuing work in controlled testing uses a one cylinder Ajax DP-115 (a 13.25 in bore x 16 in stroke, 360 rpm engine) to assess a sequential analysis and evaluation of a series of engine upgrades. As with most of the engines used in the natural gas industry, the Ajax engine is a mature engine with widespread usage throughout the gas gathering industry. The end point is an assessment of these technologies that assigns a cost per unit reduction in NOx emissions. Technologies including one pre-combustion chamber, in-cylinder sensors, the means to adjust the air-to-fuel ratio, and modification of the air filter housing have been evaluated in previous reports. Current work focuses on final preparations for testing
Topological field theory of dynamical systems
Ovchinnikov, Igor V.
2012-09-15
Here, it is shown that the path-integral representation of any stochastic or deterministic continuous-time dynamical model is a cohomological or Witten-type topological field theory, i.e., a model with global topological supersymmetry (Q-symmetry). As many other supersymmetries, Q-symmetry must be perturbatively stable due to what is generically known as non-renormalization theorems. As a result, all (equilibrium) dynamical models are divided into three major categories: Markovian models with unbroken Q-symmetry, chaotic models with Q-symmetry spontaneously broken on the mean-field level by, e.g., fractal invariant sets (e.g., strange attractors), and intermittent or self-organized critical (SOC) models with Q-symmetry dynamically broken by the condensation of instanton-antiinstanton configurations (earthquakes, avalanches, etc.) SOC is a full-dimensional phase separating chaos and Markovian dynamics. In the deterministic limit, however, antiinstantons disappear and SOC collapses into the 'edge of chaos.' Goldstone theorem stands behind spatio-temporal self-similarity of Q-broken phases known under such names as algebraic statistics of avalanches, 1/f noise, sensitivity to initial conditions, etc. Other fundamental differences of Q-broken phases is that they can be effectively viewed as quantum dynamics and that they must also have time-reversal symmetry spontaneously broken. Q-symmetry breaking in non-equilibrium situations (quenches, Barkhausen effect, etc.) is also briefly discussed.
Kirby S. Chapman; Sarah R. Nuss-Warren
2006-07-01
Continuing work in controlled testing uses a one cylinder Ajax DP-115 (a 13.25 in bore x 16 in stroke, 360 rpm engine) to assess a sequential analysis and evaluation of a series of engine upgrades. As with most of the engines used in the natural gas industry, the Ajax engine is a mature engine with widespread usage throughout the gas gathering industry. The end point is an assessment of these technologies that assigns a cost per unit reduction in NOX emissions. Technologies including one pre-combustion chamber, in-cylinder sensors, the means to adjust the air-to-fuel ratio, and modification of the air filter housing have been evaluated in previous reports. Current work focuses on final preparations for testing pre-combustion chambers with different characteristics and using mid-to-high-pressure fuel valves and initial runs of these tests. By using the Ajax DP-115 these tests are completed in a low-cost and efficient manner. The various technologies can be quickly exchanged with different hardware, and it is inexpensive to run the engine. Progress in moving toward field testing is discussed, and changes to the first planned field test are presented. Although changes have been made to the previous plan, it is expected that several new sites will be selected soon. Field tests will begin in the next quarter.
Intracardiac electrophysiology study (EPS)
... called catheter ablation ) Watch this video about: Cardiac conduction system How to Prepare for the Test You ... study - intracardiac; EPS - intracardiac Images Heart, front view Conduction system of the heart References Miller JM, Zipes ...
The field theory of specific heat
NASA Astrophysics Data System (ADS)
Gusev, Yu. V.
2016-01-01
Finite temperature quantum field theory in the heat kernel method is used to study the heat capacity of condensed matter. The lattice heat is treated à la P. Debye as energy of the elastic (sound) waves. The dimensionless functional of free energy is re-derived with a cut-off parameter and used to obtain the specific heat of crystal lattices. The new dimensionless thermodynamical variable is formed as Planck's inverse temperature divided by the lattice constant. The dimensionless constant, universal for the class of crystal lattices, which determines the low temperature region of molar specific heat, is introduced and tested with the data for diamond lattice crystals. The low temperature asymptotics of specific heat is found to be the fourth power in temperature instead of the cubic power law of the Debye theory. Experimental data for the carbon group elements (silicon, germanium) and other materials decisively confirm the quartic law. The true low temperature regime of specific heat is defined by the surface heat, therefore, it depends on the geometrical characteristics of the body, while the absolute zero temperature limit is geometrically forbidden. The limit on the growth of specific heat at temperatures close to critical points, known as the Dulong-Petit law, appears from the lattice constant cut-off. Its value depends on the lattice type and it is the same for materials with the same crystal lattice. The Dulong-Petit values of compounds are equal to those of elements with the same crystal lattice type, if one mole of solid state matter were taken as the Avogadro number of the composing atoms. Thus, the Neumann-Kopp law is valid only in some special cases.
The Physical Renormalization of Quantum Field Theories
Binger, Michael William.; /Stanford U., Phys. Dept. /SLAC
2007-02-20
The profound revolutions in particle physics likely to emerge from current and future experiments motivates an improved understanding of the precise predictions of the Standard Model and new physics models. Higher order predictions in quantum field theories inevitably requires the renormalization procedure, which makes sensible predictions out of the naively divergent results of perturbation theory. Thus, a robust understanding of renormalization is crucial for identifying and interpreting the possible discovery of new physics. The results of this thesis represent a broad set of investigations in to the nature of renormalization. The author begins by motivating a more physical approach to renormalization based on gauge-invariant Green's functions. The resulting effective charges are first applied to gauge coupling unification. This approach provides an elegant formalism for understanding all threshold corrections, and the gauge couplings unify in a more physical manner compared to the usual methods. Next, the gauge-invariant three-gluon vertex is studied in detail, revealing an interesting and rich structure. The effective coupling for the three-gluon vertex, {alpha}(k{sub 1}{sup 2}, k{sub 2}{sup 2}, k{sub 3}{sup 2}), depends on three momentum scales and gives rise to an effective scale Q{sub eff}{sup 2}(k{sub 1}{sup 2}, k{sub 2}{sup 2}, k{sub 3}{sup 2}) which governs the (sometimes surprising) behavior of the vertex. The effects of nonzero internal masses are important and have a complicated threshold and pseudo-threshold structure. The pinch-technique effective charge is also calculated to two-loops and several applications are discussed. The Higgs boson mass in Split Supersymmetry is calculated to two-loops, including all one-loop threshold effects, leading to a downward shift in the Higgs mass of a few GeV. Finally, the author discusses some ideas regarding the overall structure of perturbation theory. This thesis lays the foundation for a comprehensive multi
Gravitational consequences of modern field theories
NASA Technical Reports Server (NTRS)
Horowitz, Gary T.
1989-01-01
Some gravitational consequences of certain extensions of Einstein's general theory of relativity are discussed. These theories are not alternative theories of gravity in the usual sense. It is assumed that general relativity is the appropriate description of all gravitational phenomena which were observed to date.
Quarkonium hybrids with nonrelativistic effective field theories
NASA Astrophysics Data System (ADS)
Berwein, Matthias; Brambilla, Nora; Tarrús Castellà, Jaume; Vairo, Antonio
2015-12-01
We construct a nonrelativistic effective field theory description of heavy quarkonium hybrids from QCD. We identify the symmetries of the system made of a heavy quark, a heavy antiquark, and glue in the static limit. Corrections to this limit can be obtained order by order in an expansion in the inverse of the mass m of the heavy quark. At order 1 /m in the expansion, we obtain, at the level of potential nonrelativistic QCD, a system of coupled Schrödinger equations that describes hybrid spin-symmetry multiplets, including the mixing of different static energies into the hybrid states, an effect known as Λ doubling in molecular physics. In the short distance, the static potentials depend on two nonperturbative parameters, the gluelump mass and the quadratic slope, which can be determined from lattice calculations. We adopt a renormalon subtraction scheme for the calculation of the perturbative part of the potential. We numerically solve the coupled Schrödinger equations and obtain the masses for the lowest lying spin-symmetry multiplets for c c ¯, b c ¯, and b b ¯ hybrids. The Λ -doubling effect breaks the degeneracy between opposite-parity spin-symmetry multiplets and lowers the mass of the multiplets that get mixed contributions of different static energies. We compare our findings to the experimental data, direct lattice computations, and sum rule calculations, and discuss the relation to the Born-Oppenheimer approximation.
Effective Field Theory for Rydberg Polaritons
NASA Astrophysics Data System (ADS)
Gullans, M. J.; Wang, Y.; Thompson, J. D.; Liang, Q.-Y.; Vuletic, V.; Lukin, M. D.; Gorshkov, A. V.
2016-05-01
Photons can be made to strongly interact by dressing them with atomic Rydberg states under conditions of electromagnetic induced transparency. Probing Rydberg polaritons in the few-body limit, recent experiments were able to observe non-perturbative two-body effects including: single photon switching and the formation of bound states. Although the two-body problem is amenable to exact solutions, such approaches quickly become intractable for more than two particles. To overcome this problem, we study non-perturbative effects in N-body scattering of Rydberg polaritons using effective field theory (EFT). For attractive interactions, we show how a suitably long medium can be used to prepare shallow N-body bound states in one dimension. We verify this prediction for two and three photons using full numerical simulations. We then consider conditions under which the effective interactions are repulsive and study two and three photon transmission. Finally, we show how to go beyond EFT by measuring the three-body contact force or, alternatively, scattering at high relative momenta.
Gravitational Descendants in Symplectic Field Theory
NASA Astrophysics Data System (ADS)
Fabert, Oliver
2011-02-01
It was pointed out by Y. Eliashberg in his ICM 2006 plenary talk that the rich algebraic formalism of symplectic field theory leads to a natural appearance of quantum and classical integrable systems, at least in the case when the contact manifold is the prequantization space of a symplectic manifold. In this paper we generalize the definition of gravitational descendants in SFT from circle bundles in the Morse-Bott case to general contact manifolds. After we have shown using the ideas in Okounkov and Pandharipande (Ann Math 163(2):517-560, 2006) that for the basic examples of holomorphic curves in SFT, that is, branched covers of cylinders over closed Reeb orbits, the gravitational descendants have a geometric interpretation in terms of branching conditions, we follow the ideas in Cieliebak and Latschev (
Logarithmic conformal field theory: a lattice approach
NASA Astrophysics Data System (ADS)
Gainutdinov, A. M.; Jacobsen, J. L.; Read, N.; Saleur, H.; Vasseur, R.
2013-12-01
Logarithmic conformal field theories (LCFT) play a key role, for instance, in the description of critical geometrical problems (percolation, self-avoiding walks, etc), or of critical points in several classes of disordered systems (transition between plateaux in the integer and spin quantum Hall effects). Much progress in their understanding has been obtained by studying algebraic features of their lattice regularizations. For reasons which are not entirely understood, the non-semi-simple associative algebras underlying these lattice models—such as the Temperley-Lieb algebra or the blob algebra—indeed exhibit, in finite size, properties that are in full correspondence with those of their continuum limits. This applies not only to the structure of indecomposable modules, but also to fusion rules, and provides an ‘experimental’ way of measuring couplings, such as the ‘number b’ quantifying the logarithmic coupling of the stress-energy tensor with its partner. Most results obtained so far have concerned boundary LCFTs and the associated indecomposability in the chiral sector. While the bulk case is considerably more involved (mixing in general left and right moving sectors), progress has also recently been made in this direction, uncovering fascinating structures. This study provides a short general review of our work in this area.
Cluster Mass Inference via Random Field Theory
Zhang, Hui; Nichols, Thomas E.; Johnson, Timothy D.
2009-01-01
Cluster extent and voxel intensity are two widely used statistics in neuroimaging inference. Cluster extent is sensitive to spatially extended signals while voxel intensity is better for intense but focal signals. In order to leverage strength from both statistics, several nonparametric permutation methods have been proposed to combine the two methods. Simulation studies have shown that of the different cluster permutation methods, the cluster mass statistic is generally the best. However, to date, there is no parametric cluster mass inference method available. In this paper, we propose a cluster mass inference method based on random field theory (RFT). We develop this method for Gaussian images, evaluate it on Gaussian and Gaussianized t-statistic images and investigate its statistical properties via simulation studies and real data. Simulation results show that the method is valid under the null hypothesis and demonstrate that it can be more powerful than the cluster extent inference method. Further, analyses with a single-subject and a group fMRI dataset demonstrate better power than traditional cluster extent inference, and good accuracy relative to a gold-standard permutation test. PMID:18805493
Superconformal field theory and Jack superpolynomials
NASA Astrophysics Data System (ADS)
Desrosiers, Patrick; Lapointe, Luc; Mathieu, Pierre
2012-09-01
We uncover a deep connection between the {N} = {1} superconformal field theory in 2 D and eigenfunctions of the supersymmetric Sutherland model known as Jack super-polynomials (sJacks). Specifically, the singular vector at level rs/2 of the Kac module labeled by the two integers r and s are given explicitly as a sum of sJacks whose indexing diagrams are contained in a rectangle with r columns and s rows. As a second compelling evidence for the distinguished status of the sJack-basis in SCFT, we find that the degenerate Whittaker vectors (Gaiotto states) can be expressed as a remarkably simple linear combination of sJacks. As a consequence, we are able to reformulate the supersymmetric version of the (degenerate) AGT conjecture in terms of the combinatorics of sJacks. The closed-form formulas for the singular vectors and the degenerate Whittaker vectors, although only conjectured in general, have been heavily tested (in some cases, up to level 33/2). Both the Neveu-Schwarz and Ramond sectors are treated.
Next-to-simplest quantum field theories
NASA Astrophysics Data System (ADS)
Lal, Shailesh; Raju, Suvrat
2010-05-01
We describe new on-shell recursion relations for tree amplitudes in N=1 and N=2 gauge theories and use these to show that the structure of the one-loop S-matrix in pure (i.e. without any matter) N=1 and N=2 gauge theories resembles that of pure Yang-Mills theory. We proceed to study gluon scattering in gauge theories coupled to matter in arbitrary representations. The contribution of matter to individual bubble and triangle coefficients can depend on the fourth- and sixth-order indices of the matter representation, respectively. So, the condition that one-loop amplitudes be free of bubbles and triangles can be written as a set of linear Diophantine equations involving these higher-order indices. These equations simplify for supersymmetric theories. We present new examples of supersymmetric theories that have only boxes (and no triangles or bubbles at one-loop) and nonsupersymmetric theories that are free of bubbles. These theories see simplifications in their S-matrices that cannot be deduced just from naive power-counting. In particular, our results indicate that one-loop scattering amplitudes in the N=2, SU(N) theory with a symmetric tensor hypermultiplet and an antisymmetric tensor hypermultiplet are simple like those in the N=4 theory.
Next-to-simplest quantum field theories
Lal, Shailesh; Raju, Suvrat
2010-05-15
We describe new on-shell recursion relations for tree amplitudes in N=1 and N=2 gauge theories and use these to show that the structure of the one-loop S-matrix in pure (i.e. without any matter) N=1 and N=2 gauge theories resembles that of pure Yang-Mills theory. We proceed to study gluon scattering in gauge theories coupled to matter in arbitrary representations. The contribution of matter to individual bubble and triangle coefficients can depend on the fourth- and sixth-order indices of the matter representation, respectively. So, the condition that one-loop amplitudes be free of bubbles and triangles can be written as a set of linear Diophantine equations involving these higher-order indices. These equations simplify for supersymmetric theories. We present new examples of supersymmetric theories that have only boxes (and no triangles or bubbles at one-loop) and nonsupersymmetric theories that are free of bubbles. These theories see simplifications in their S-matrices that cannot be deduced just from naive power-counting. In particular, our results indicate that one-loop scattering amplitudes in the N=2, SU(N) theory with a symmetric tensor hypermultiplet and an antisymmetric tensor hypermultiplet are simple like those in the N=4 theory.
NASA Astrophysics Data System (ADS)
Zatloukal, Václav
2016-04-01
Classical field theory is considered as a theory of unparametrized surfaces embedded in a configuration space, which accommodates, in a symmetric way, spacetime positions and field values. Dynamics is defined by a (Hamiltonian) constraint between multivector-valued generalized momenta, and points in the configuration space. Starting from a variational principle, we derive local equations of motion, that is, differential equations that determine classical surfaces and momenta. A local Hamilton-Jacobi equation applicable in the field theory then follows readily. The general method is illustrated with three examples: non-relativistic Hamiltonian mechanics, De Donder-Weyl scalar field theory, and string theory.
Mean field theory for long chain molecules
NASA Astrophysics Data System (ADS)
Pereira, Gerald G.
1996-06-01
We provide a mathematical formalism for a self-consistent mean field treatment of long chain molecules. The formalism is applied to the case of a neutral polymer under the excluded volume interaction. Upon scaling the problem in the N→∞ limit we find the natural scaling length RN, of the polymer, which is made up of (N+1) monomers or beads, is RN˜N3/5, the well known Flory result. The asymptotics of the problem is dominated by the neighborhood of the turning point, so that a uniformly valid Green's function solution of the differential equations is necessary. In the neighborhood of a point y* the scaled polymer density fN(x), is found to decay sharply. If we let x denote the scaled distance from one end of the chain to a point in space we obtain, for y*-x≳O(N-2/15), a closed form expression for the polymer density viz., fN(x)˜{1/2x2[fN(x)-fN(y*)]1/2} while for x-y*≳O(N-2/15) the density is shown to be, to leading order, zero. Although our results imply the rate of decay of the density at y* is O(N1/5) we are unable to verify this explicitly by calculating fN'(y*). We believe this is due to the inability of the WKB theory to correctly approximate solutions in regions of rapid variation. We suggest remedies for this, so that a complete self-consistent solution may be obtained.
Field theory on R× S 3 topology. VI: Gravitation
NASA Astrophysics Data System (ADS)
Carmeli, M.; Malin, S.
1987-04-01
We extend to curved space-time the field theory on R×S3 topology in which field equations were obtained for scalar particles, spin one-half particles, the electromagnetic field of magnetic moments, an SU2 gauge theory, and a Schrödinger-type equation, as compared to ordinary field equations that are formulated on a Minkowskian metric. The theory obtained is an angular-momentum representation of gravitation. Gravitational field equations are presented and compared to the Einstein field equations, and the mathematical and physical similarity and differences between them are pointed out. The problem of motion is discussed, and the equations of motion of a rigid body are developed and given explicitly. One result which is worth emphazing is that while general relativity theory yields Newton's law of motion in the lowest approximation, our theory gives Euler's equations of motion for a rigid body in its lowest approximation.
Reggeon Field Theory and the phases of QCD
White, A.R.
1987-07-21
We propose a Reggeon Field Theory phase diagram involving Sub-critical and Super-critical Pomeron behavior and the Expanding Disc. We describe the derivation of Reggeon Field Theory from QCD using infra-red analysis of the reggeon diagrams of the spontaneously broken theory. Matching the Reggeon Field Theory phase-diagram to that of lattice QCD with many fermions has significant implications for the chiral properties of continuum QCD when the number of flavors is less than the maximum allowed by asymptotic freedom. 19 refs., 7 figs.
Multiscale quantum simulation of quantum field theory using wavelets
NASA Astrophysics Data System (ADS)
Brennen, Gavin K.; Rohde, Peter; Sanders, Barry C.; Singh, Sukhwinder
2015-09-01
A successful approach to understand field theories is to resolve the physics into different length or energy scales using the renormalization group framework. We propose a quantum simulation of quantum field theory which encodes field degrees of freedom in a wavelet basis—a multiscale description of the theory. Since wavelet families can be constructed to have compact support at all resolutions, this encoding allows for quantum simulations to create particle excitations which are local at some chosen scale and provides a natural way to associate observables in the theory to finite-resolution detectors.
Modern Quantum Field Theory II - Proceeeings of the International Colloquium
NASA Astrophysics Data System (ADS)
Das, S. R.; Mandal, G.; Mukhi, S.; Wadia, S. R.
1995-08-01
The Table of Contents for the book is as follows: * Foreword * 1. Black Holes and Quantum Gravity * Quantum Black Holes and the Problem of Time * Black Hole Entropy and the Semiclassical Approximation * Entropy and Information Loss in Two Dimensions * Strings on a Cone and Black Hole Entropy (Abstract) * Boundary Dynamics, Black Holes and Spacetime Fluctuations in Dilation Gravity (Abstract) * Pair Creation of Black Holes (Abstract) * A Brief View of 2-Dim. String Theory and Black Holes (Abstract) * 2. String Theory * Non-Abelian Duality in WZW Models * Operators and Correlation Functions in c ≤ 1 String Theory * New Symmetries in String Theory * A Look at the Discretized Superstring Using Random Matrices * The Nested BRST Structure of Wn-Symmetries * Landau-Ginzburg Model for a Critical Topological String (Abstract) * On the Geometry of Wn Gravity (Abstract) * O(d, d) Tranformations, Marginal Deformations and the Coset Construction in WZNW Models (Abstract) * Nonperturbative Effects and Multicritical Behaviour of c = 1 Matrix Model (Abstract) * Singular Limits and String Solutions (Abstract) * BV Algebra on the Moduli Spaces of Riemann Surfaces and String Field Theory (Abstract) * 3. Condensed Matter and Statistical Mechanics * Stochastic Dynamics in a Deposition-Evaporation Model on a Line * Models with Inverse-Square Interactions: Conjectured Dynamical Correlation Functions of the Calogero-Sutherland Model at Rational Couplings * Turbulence and Generic Scale Invariance * Singular Perturbation Approach to Phase Ordering Dynamics * Kinetics of Diffusion-Controlled and Ballistically-Controlled Reactions * Field Theory of a Frustrated Heisenberg Spin Chain * FQHE Physics in Relativistic Field Theories * Importance of Initial Conditions in Determining the Dynamical Class of Cellular Automata (Abstract) * Do Hard-Core Bosons Exhibit Quantum Hall Effect? (Abstract) * Hysteresis in Ferromagnets * 4. Fundamental Aspects of Quantum Mechanics and Quantum Field Theory
Effective field theory of broken spatial diffeomorphisms
NASA Astrophysics Data System (ADS)
Lin, Chunshan; Labun, Lance Z.
2016-03-01
We study the low energy effective theory describing gravity with broken spatial diffeomorphism invariance. In the unitary gauge, the Goldstone bosons associated with broken diffeomorphisms are eaten and the graviton becomes a massive spin-2 particle with 5 well-behaved degrees of freedom. In this gauge, the most general theory is built with the lowest dimension operators invariant under only temporal diffeomorphisms. Imposing the additional shift and SO(3) internal symmetries, we analyze the perturbations on a FRW background. At linear perturbation level, the observables of this theory are characterized by five parameters, including the usual cosmological parameters and one additional coupling constant for the symmetry-breaking scalars. In the de Sitter and Minkowski limit, the three Goldstone bosons are supermassive and can be integrated out, leaving two massive tensor modes as the only propagating degrees of freedom. We discuss several examples relevant to theories of massive gravity.
NS-NS sector of closed superstring field theory
NASA Astrophysics Data System (ADS)
Erler, Theodore; Konopka, Sebastian; Sachs, Ivo
2014-08-01
We give a construction for a general class of vertices in superstring field theory which include integration over bosonic moduli as well as the required picture changing insertions. We apply this procedure to find a covariant action for the NS-NS sector of Type II closed superstring field theory.
Electroweak Sudakov Corrections using Effective Field Theory
Chiu Juiyu; Golf, Frank; Kelley, Randall; Manohar, Aneesh V.
2008-01-18
Electroweak Sudakov corrections of the form {alpha}{sup n}log{sup m}s/M{sub W,Z}{sup 2} are summed using renormalization group evolution in soft-collinear effective theory. Results are given for the scalar, vector, and tensor form factors for fermion and scalar particles. The formalism for including massive gauge bosons in soft-collinear effective theory is developed.
Effective field theory: A modern approach to anomalous couplings
Degrande, Céline; Centre for Particle Physics and Phenomenology , Université Catholique de Louvain, Chemin du Cyclotron 2, B-1348 Louvain-la-Neuve ; Greiner, Nicolas; Max-Planck-Institut für Physik, Föhringer Ring 6, 80805 München ; Kilian, Wolfgang; University of Siegen, Fachbereich Physik, D-57068 Siegen ; Mattelaer, Olivier; Mebane, Harrison; Stelzer, Tim; Willenbrock, Scott; Zhang, Cen; Centre for Particle Physics and Phenomenology , Université Catholique de Louvain, Chemin du Cyclotron 2, B-1348 Louvain-la-Neuve
2013-08-15
We advocate an effective field theory approach to anomalous couplings. The effective field theory approach is the natural way to extend the standard model such that the gauge symmetries are respected. It is general enough to capture any physics beyond the standard model, yet also provides guidance as to the most likely place to see the effects of new physics. The effective field theory approach also clarifies that one need not be concerned with the violation of unitarity in scattering processes at high energy. We apply these ideas to pair production of electroweak vector bosons. -- Highlights: •We discuss the advantages of effective field theories compared to anomalous couplings. •We show that one need not be concerned with unitarity violation at high energy. •We discuss the application of effective field theory to weak boson physics.
Soft theorems from effective field theory
NASA Astrophysics Data System (ADS)
Larkoski, Andrew J.; Neill, Duff; Stewart, Iain W.
2015-06-01
The singular limits of massless gauge theory amplitudes are described by an effective theory, called soft-collinear effective theory (SCET), which has been applied most successfully to make all-orders predictions for observables in collider physics and weak decays. At tree-level, the emission of a soft gauge boson at subleading order in its energy is given by the Low-Burnett-Kroll theorem, with the angular momentum operator acting on a lower-point amplitude. For well separated particles at tree-level, we prove the Low-Burnett-Kroll theorem using matrix elements of subleading SCET Lagrangian and operator insertions which are individually gauge invariant. These contributions are uniquely determined by gauge invariance and the reparametrization invariance (RPI) symmetry of SCET. RPI in SCET is connected to the infinite-dimensional asymptotic symmetries of the S-matrix. The Low-Burnett-Kroll theorem is generically spoiled by on-shell corrections, including collinear loops and collinear emissions. We demonstrate this explicitly both at tree-level and at one-loop. The effective theory correctly describes these configurations, and we generalize the Low-Burnett-Kroll theorem into a new one-loop subleading soft theorem for amplitudes. Our analysis is presented in a manner that illustrates the wider utility of using effective theory techniques to understand the perturbative S-matrix.
Nonlocal Stochastic Model for the Free Scalar Field Theory
NASA Astrophysics Data System (ADS)
Namsrai, Kh.
1981-05-01
The free scalar field is investigated within the framework of the Davidson stochastic model and of the hypothesis on space-time stochasticity. It is shown that the resulting Markov field obtained by averaging in this space-time is equivalent to a nonlocal Euclidean Markov field with the times scaled by a common factor which depends on the diffusion parameter ν. Our result generalizes Guerra and Ruggiero's procedure of stochastic quantization of scalar fields. On the basis of the assumption about unobservability of ν in quantum field theory, the Efimov nonlocal theory is obtained from Euclidean Markov field with form factors of the class of entire analytical functions.
Comparisons and connections between mean field dynamo theory and accretion disc theory
NASA Astrophysics Data System (ADS)
Blackman, E. G.
2010-01-01
The origin of large scale magnetic fields in astrophysical rotators, and the conversion of gravitational energy into radiation near stars and compact objects via accretion have been subjects of active research for a half century. Magnetohydrodynamic turbulence makes both problems highly nonlinear, so both subjects have benefitted from numerical simulations.However, understanding the key principles and practical modeling of observations warrants testable semi-analytic mean field theories that distill the essential physics. Mean field dynamo (MFD) theory and alpha-viscosity accretion disc theory exemplify this pursuit. That the latter is a mean field theory is not always made explicit but the combination of turbulence and global symmetry imply such. The more commonly explicit presentation of assumptions in 20th century textbook MFDT has exposed it to arguably more widespread criticism than incurred by 20th century alpha-accretion theory despite complementary weaknesses. In the 21st century however, MFDT has experienced a breakthrough with a dynamical saturation theory that consistently agrees with simulations. Such has not yet occurred in accretion disc theory, though progress is emerging. Ironically however, for accretion engines, MFDT and accretion theory are presently two artificially uncoupled pieces of what should be a single coupled theory. Large scale fields and accretion flows are dynamically intertwined because large scale fields likely play a key role in angular momentum transport. I discuss and synthesize aspects of recent progress in MFDT and accretion disc theory to suggest why the two likely conspire in a unified theory.
Heavy Quarks, QCD, and Effective Field Theory
Thomas Mehen
2012-10-09
The research supported by this OJI award is in the area of heavy quark and quarkonium production, especially the application Soft-Collinear E ective Theory (SCET) to the hadronic production of quarkonia. SCET is an e ffective theory which allows one to derive factorization theorems and perform all order resummations for QCD processes. Factorization theorems allow one to separate the various scales entering a QCD process, and in particular, separate perturbative scales from nonperturbative scales. The perturbative physics can then be calculated using QCD perturbation theory. Universal functions with precise fi eld theoretic de nitions describe the nonperturbative physics. In addition, higher order perturbative QCD corrections that are enhanced by large logarithms can be resummed using the renormalization group equations of SCET. The applies SCET to the physics of heavy quarks, heavy quarkonium, and similar particles.
Field Theory Model of the Flyby Anomaly
Lewis, R. A
2009-03-16
Precision tracking of spacecraft on interplanetary missions has turned up several anomalous deviations from predictions of general relativity. The Flyby Anomaly, wherein spacecraft gain or lose energy in an earth-centric frame after an encounter with earth, is clearly associated with the rotation of the earth. The possibility that the missing ingredient is a new type of potential field surrounding the earth is assessed in this write-up. A scalar field with the kinetic energy distribution of the earth as a source is evaluated numerically, with an amplitude parameter adjusted to match the data of Anderson et al.(2008). The new field can be interpreted as a coupling between kinetic energies of objects, a field analogous to fluid mechanics, or a field coupled to acceleration. The potential field violates various aspects of standard physics, such as energy non-conservation.
Mean-field theory for Bose-Hubbard model under a magnetic field
Oktel, M. Oe.; Tanatar, B.; Nita, M.
2007-01-15
We consider the superfluid-insulator transition for cold bosons under an effective magnetic field. We investigate how the applied magnetic field affects the Mott transition within mean-field theory and find that the critical hopping strength (t/U){sub c} increases with the applied field. The increase in the critical hopping follows the bandwidth of the Hofstadter butterfly at the given value of the magnetic field. We also calculate the magnetization and superfluid density within mean-field theory.
Open superstring field theory on the restricted Hilbert space
NASA Astrophysics Data System (ADS)
Konopka, Sebastian; Sachs, Ivo
2016-04-01
It appears that the formulation of an action for the Ramond sector of open superstring field theory requires to either restrict the Hilbert space for the Ramond sector or to introduce auxiliary fields with picture -3/2. The purpose of this note is to clarify the relation of the restricted Hilbert space with other approaches and to formulate open superstring field theory entirely in the small Hilbert space.
Lorentz symmetric quantum field theory for symplectic fermions
Robinson, Dean J.; Kapit, Eliot; LeClair, Andre
2009-11-15
A free quantum field theory with Lorentz symmetry is derived for spin-half symplectic fermions in 2+1 dimensions. In particular, we show that fermionic spin-half fields may be canonically quantized in a free theory with a Klein-Gordon Lagrangian. This theory is shown to have all the required properties of a consistent free quantum field theory, namely, causality, unitarity, adherence to the spin-statistics theorem, CPT symmetry, and the Hermiticity and positive definiteness of the Hamiltonian. The global symmetry of the free theory is Sp(4){approx_equal}SO(5). Possible interacting theories of both the pseudo-Hermitian and Hermitian variety are then examined briefly.
Lorentz symmetry breaking as a quantum field theory regulator
Visser, Matt
2009-07-15
Perturbative expansions of quantum field theories typically lead to ultraviolet (short-distance) divergences requiring regularization and renormalization. Many different regularization techniques have been developed over the years, but most regularizations require severe mutilation of the logical foundations of the theory. In contrast, breaking Lorentz invariance, while it is certainly a radical step, at least does not damage the logical foundations of the theory. I shall explore the features of a Lorentz symmetry breaking regulator in a simple polynomial scalar field theory and discuss its implications. In particular, I shall quantify just 'how much' Lorentz symmetry breaking is required to fully regulate the quantum theory and render it finite. This scalar field theory provides a simple way of understanding many of the key features of Horava's recent article [Phys. Rev. D 79, 084008 (2009)] on 3+1 dimensional quantum gravity.
On the stability of the asymptotically free scalar field theories
Shalaby, A M.
2015-03-30
Asymptotic freedom plays a vital role in our understanding of the theory of particle interactions. To have this property, one has to resort to a Non-abelian gauge theory with the number of colors equal to or greater than three (QCD). However, recent studies have shown that simple scalar field theories can possess this interesting property. These theories have non-Hermitian effective field forms but their classical potentials are bounded from above. In this work, we shall address the stability of the vacua of the bounded from above (−Φ{sup 4+n}) scalar field theories. Moreover, we shall cover the effect of the distribution of the Stokes wedges in the complex Φ-plane on the features of the vacuum condensate within these theories.
Lorentz symmetry breaking as a quantum field theory regulator
NASA Astrophysics Data System (ADS)
Visser, Matt
2009-07-01
Perturbative expansions of quantum field theories typically lead to ultraviolet (short-distance) divergences requiring regularization and renormalization. Many different regularization techniques have been developed over the years, but most regularizations require severe mutilation of the logical foundations of the theory. In contrast, breaking Lorentz invariance, while it is certainly a radical step, at least does not damage the logical foundations of the theory. I shall explore the features of a Lorentz symmetry breaking regulator in a simple polynomial scalar field theory and discuss its implications. In particular, I shall quantify just “how much” Lorentz symmetry breaking is required to fully regulate the quantum theory and render it finite. This scalar field theory provides a simple way of understanding many of the key features of Hořava’s recent article [Phys. Rev. DPRVDAQ1550-7998 79, 084008 (2009)10.1103/PhysRevD.79.084008] on 3+1 dimensional quantum gravity.
Applying Power Theories to Field Settings.
ERIC Educational Resources Information Center
Liss, Lora
To test theories presented in the sociology course "Social Policies and Community Power Structure," a team of undergraduate students and their instructor attended a national professional conference. The following are examples of those concepts the students observed in operation at the conference: Social structure affects social policies; the…
A class of effective field theory models of cosmic acceleration
NASA Astrophysics Data System (ADS)
Bloomfield, Jolyon K.; Flanagan, Éanna É.
2012-10-01
We explore a class of effective field theory models of cosmic acceleration involving a metric and a single scalar field. These models can be obtained by starting with a set of ultralight pseudo-Nambu-Goldstone bosons whose couplings to matter satisfy the weak equivalence principle, assuming that one boson is lighter than all the others, and integrating out the heavier fields. The result is a quintessence model with matter coupling, together with a series of correction terms in the action in a covariant derivative expansion, with specific scalings for the coefficients. After eliminating higher derivative terms and exploiting the field redefinition freedom, we show that the resulting theory contains nine independent free functions of the scalar field when truncated at four derivatives. This is in contrast to the four free functions found in similar theories of single-field inflation, where matter is not present. We discuss several different representations of the theory that can be obtained using the field redefinition freedom. For perturbations to the quintessence field today on subhorizon lengthscales larger than the Compton wavelength of the heavy fields, the theory is weakly coupled and natural in the sense of t'Hooft. The theory admits a regime where the perturbations become modestly nonlinear, but very strong nonlinearities lie outside its domain of validity.
Unambiguous formalism for higher order Lagrangian field theories
NASA Astrophysics Data System (ADS)
Campos, Cédric M.; de León, Manuel; Martín de Diego, David; Vankerschaver, Joris
2009-11-01
The aim of this paper is to propose an unambiguous intrinsic formalism for higher order field theories which avoids the arbitrariness in the generalization of the conventional description of field theories, and implies the existence of different Cartan forms and Legendre transformations. We propose a differential-geometric setting for the dynamics of a higher order field theory, based on the Skinner and Rusk formalism for mechanics. This approach incorporates aspects of both the Lagrangian and the Hamiltonian description, since the field equations are formulated using the Lagrangian on a higher order jet bundle and the canonical multisymplectic form on its affine dual. As both of these objects are uniquely defined, the Skinner-Rusk approach has the advantage that it does not suffer from the arbitrariness in conventional descriptions. The result is that we obtain a unique and global intrinsic version of the Euler-Lagrange equations for higher order field theories. Several examples illustrate our construction.
Fermionic field theory for trees and forests.
Caracciolo, Sergio; Jacobsen, Jesper Lykke; Saleur, Hubert; Sokal, Alan D; Sportiello, Andrea
2004-08-20
We prove a generalization of Kirchhoff's matrix-tree theorem in which a large class of combinatorial objects are represented by non-Gaussian Grassmann integrals. As a special case, we show that unrooted spanning forests, which arise as a q-->0 limit of the Potts model, can be represented by a Grassmann theory involving a Gaussian term and a particular bilocal four-fermion term. We show that this latter model can be mapped, to all orders in perturbation theory, onto the N-vector model at N=-1 or, equivalently, onto the sigma model taking values in the unit supersphere in R(1|2). It follows that, in two dimensions, this fermionic model is perturbatively asymptotically free. PMID:15447166
Incorporation of generalized uncertainty principle into Lifshitz field theories
Faizal, Mir; Majumder, Barun
2015-06-15
In this paper, we will incorporate the generalized uncertainty principle into field theories with Lifshitz scaling. We will first construct both bosonic and fermionic theories with Lifshitz scaling based on generalized uncertainty principle. After that we will incorporate the generalized uncertainty principle into a non-abelian gauge theory with Lifshitz scaling. We will observe that even though the action for this theory is non-local, it is invariant under local gauge transformations. We will also perform the stochastic quantization of this Lifshitz fermionic theory based generalized uncertainty principle.
Toward a quantum theory of tachyon fields
NASA Astrophysics Data System (ADS)
Schwartz, Charles
2016-03-01
We construct momentum space expansions for the wave functions that solve the Klein-Gordon and Dirac equations for tachyons, recognizing that the mass shell for such fields is very different from what we are used to for ordinary (slower than light) particles. We find that we can postulate commutation or anticommutation rules for the operators that lead to physically sensible results: causality, for tachyon fields, means that there is no connection between space-time points separated by a timelike interval. Calculating the conserved charge and four-momentum for these fields allows us to interpret the number operators for particles and antiparticles in a consistent manner; and we see that helicity plays a critical role for the spinor field. Some questions about Lorentz invariance are addressed and some remain unresolved; and we show how to handle the group representation for tachyon spinors.
Killing vector fields and harmonic superfield theories
Groeger, Josua
2014-09-15
The harmonic action functional allows a natural generalisation to semi-Riemannian supergeometry, also referred to as harmonic, which resembles the supersymmetric sigma models studied in high energy physics. We show that Killing vector fields are infinitesimal supersymmetries of this harmonic action and prove three different Noether theorems in this context. En passant, we provide a homogeneous treatment of five characterisations of Killing vector fields on semi-Riemannian supermanifolds, thus filling a gap in the literature.
Killing vector fields and harmonic superfield theories
NASA Astrophysics Data System (ADS)
Groeger, Josua
2014-09-01
The harmonic action functional allows a natural generalisation to semi-Riemannian supergeometry, also referred to as harmonic, which resembles the supersymmetric sigma models studied in high energy physics. We show that Killing vector fields are infinitesimal supersymmetries of this harmonic action and prove three different Noether theorems in this context. En passant, we provide a homogeneous treatment of five characterisations of Killing vector fields on semi-Riemannian supermanifolds, thus filling a gap in the literature.
Quantum Simulation of Quantum Field Theories in Trapped Ions
Casanova, J.; Lamata, L.; Egusquiza, I. L.; Gerritsma, R.; Roos, C. F.; Garcia-Ripoll, J. J.; Solano, E.
2011-12-23
We propose the quantum simulation of fermion and antifermion field modes interacting via a bosonic field mode, and present a possible implementation with two trapped ions. This quantum platform allows for the scalable add up of bosonic and fermionic modes, and represents an avenue towards quantum simulations of quantum field theories in perturbative and nonperturbative regimes.
A New Lorentz Violating Nonlocal Field Theory From String-Theory
Ganor, Ori J.
2007-10-04
A four-dimensional field theory with a qualitatively new type of nonlocality is constructed from a setting where Kaluza-Klein particles probe toroidally compactified string theory with twisted boundary conditions. In this theory fundamental particles are not pointlike and occupy a volume proportional to their R-charge. The theory breaks Lorentz invariance but appears to preserve spatial rotations. At low energies, it is approximately N=4 Super Yang-Mills theory, deformed by an operator of dimension seven. The dispersion relation of massless modes in vacuum is unchanged, but under certain conditions in this theory, particles can travel at superluminal velocities.
Statistical field theories deformed within different calculi
NASA Astrophysics Data System (ADS)
Olemskoi, A. I.; Borysov, S. S.; Shuda, I. A.
2010-09-01
Within the framework of basic-deformed and finite-difference calculi, as well as deformation procedures proposed by Tsallis, Abe, and Kaniadakis and generalized by Naudts, we develop field-theoretical schemes of statistically distributed fields. We construct a set of generating functionals and find their connection with corresponding correlators for basic-deformed, finite-difference, and Kaniadakis calculi. Moreover, we introduce pair of additive functionals, which expansions into deformed series yield both Green functions and their irreducible proper vertices. We find as well formal equations, governing by the generating functionals of systems which possess a symmetry with respect to a field variation and are subjected to an arbitrary constrain. Finally, we generalize field-theoretical schemes inherent in concrete calculi in the Naudts manner. From the physical point of view, we study dependences of both one-site partition function and variance of free fields on deformations. We show that within the basic-deformed statistics dependence of the specific partition function on deformation has in logarithmic axes symmetrical form with respect to maximum related to deformation absence; in case of the finite-difference statistics, the partition function takes non-deformed value; for the Kaniadakis statistics, curves of related dependences have convex symmetrical form at small curvatures of the effective action and concave form at large ones. We demonstrate that only moment of the second order of free fields takes non-zero values to be proportional to inverse curvature of effective action. In dependence of the deformation parameter, the free field variance has linearly arising form for the basic-deformed distribution and increases non-linearly rapidly in case of the finite-difference statistics; for more complicated case of the Kaniadakis distribution, related dependence has double-well form.
New class of effective field theories from embedded branes.
Goon, Garrett L; Hinterbichler, Kurt; Trodden, Mark
2011-06-10
We present a new general class of four-dimensional effective field theories with interesting global symmetry groups. These theories arise from purely gravitational actions for (3+1)-dimensional branes embedded in higher dimensional spaces with induced gravity terms. The simplest example is the well known Galileon theory, with its associated Galilean symmetry, arising as the limit of a DGP brane world. However, we demonstrate that this is a special case of a much wider range of theories, with varying structures, but with the same attractive features such as second order equations. In some circumstances, these new effective field theories allow potentials for the scalar fields on curved space, with small masses protected by nonlinear symmetries. Such models may prove relevant to the cosmology of both the early and late universe. PMID:21770494
On the global symmetries of 6D superconformal field theories
NASA Astrophysics Data System (ADS)
Bertolini, Marco; Merkx, Peter R.; Morrison, David R.
2016-07-01
We study global symmetry groups of six-dimensional superconformal field theories (SCFTs). In the Coulomb branch we use field theoretical arguments to predict an upper bound for the global symmetry of the SCFT. We then analyze global symmetry groups of F-theory constructions of SCFTs with a one-dimensional Coulomb branch. While in the vast majority of cases, all of the global symmetries allowed by our Coulomb branch analysis can be realized in F-theory, in a handful of cases we find that F-theory models fail to realize the full symmetry of the theory on the Coulomb branch. In one particularly mysterious case, F-theory models realize several distinct maximal subgroups of the predicted group, but not the predicted group itself.
Using Self Consistent Field Theory on Polymeric Mixtures
NASA Astrophysics Data System (ADS)
von Konigslow, Kier; Park, Chul; Thompson, Russell
The ability to predict the solubility of a particular solvent in a polymer fluid is essential to the production of polymer foams. For the past 40 years, the primary model employed to this end has been an expansion of Flory-Huggins lattice fluid theory developed by Sanchez and Lacombe (S-L theory). S-L theory, while useful in the uniform limit, is limited to homogeneous systems. Self-Consistent Field Theory (SCFT), which has long been in use in polymer physics, is a mean-field theory capable of modeling the equilibrium behaviour of both homogeneous and inhomogeneous systems. We are investigating whether SCFT, applied to polymer-solvent mixtures, is in agreement with SL-theory in the homogeneous limit. Should this prove successful, we hope to use SCFT to model more general mixtures, including inhomogeneous nanocellular polymer foam systems.
The Theory of Quantized Fields. III
DOE R&D Accomplishments Database
Schwinger, J.
1953-05-01
In this paper we discuss the electromagnetic field, as perturbed by a prescribed current. All quantities of physical interest in various situations, eigenvalues, eigenfunctions, and transformation probabilities, are derived from a general transformation function which is expressed in a non-Hermitian representation. The problems treated are: the determination of the energy-momentum eigenvalues and eigenfunctions for the isolated electromagnetic field, and the energy eigenvalues and eigenfunctions for the field perturbed by a time-independent current that departs from zero only within a finite time interval, and for a time-dependent current that assumes non-vanishing time-independent values initially and finally. The results are applied in a discussion of the intra-red catastrophe and of the adiabatic theorem. It is shown how the latter can be exploited to give a uniform formulation for all problems requiring the evaluation of transition probabilities or eigenvalue displacements.
Lattice Study of Magnetic Catalysis in Graphene Effective Field Theory
NASA Astrophysics Data System (ADS)
Winterowd, Christopher; Detar, Carleton; Zafeiropoulos, Savvas
2016-03-01
The discovery of graphene ranks as one of the most important developments in condensed matter physics in recent years. As a strongly interacting system whose low-energy excitations are described by the Dirac equation, graphene has many similarities with other strongly interacting field theories, particularly quantum chromodynamics (QCD). Graphene, along with other relativistic field theories, have been predicted to exhibit spontaneous symmetry breaking (SSB) when an external magnetic field is present. Using nonperturbative methods developed to study QCD, we study the low-energy effective field theory (EFT) of graphene subject to an external magnetic field. We find strong evidence supporting the existence of SSB at zero-temperature and characterize the dependence of the chiral condensate on the external magnetic field. We also present results for the mass of the Nambu-Goldstone boson and the dynamically generated quasiparticle mass that result from the SSB.
Topological Field Theory of Time-Reversal Invariant Insulators
Qi, Xiao-Liang; Hughes, Taylor; Zhang, Shou-Cheng; /Stanford U., Phys. Dept.
2010-03-19
We show that the fundamental time reversal invariant (TRI) insulator exists in 4 + 1 dimensions, where the effective field theory is described by the 4 + 1 dimensional Chern-Simons theory and the topological properties of the electronic structure is classified by the second Chern number. These topological properties are the natural generalizations of the time reversal breaking (TRB) quantum Hall insulator in 2 + 1 dimensions. The TRI quantum spin Hall insulator in 2 + 1 dimensions and the topological insulator in 3 + 1 dimension can be obtained as descendants from the fundamental TRI insulator in 4 + 1 dimensions through a dimensional reduction procedure. The effective topological field theory, and the Z{sub 2} topological classification for the TRI insulators in 2+1 and 3+1 dimensions are naturally obtained from this procedure. All physically measurable topological response functions of the TRI insulators are completely described by the effective topological field theory. Our effective topological field theory predicts a number of novel and measurable phenomena, the most striking of which is the topological magneto-electric effect, where an electric field generates a magnetic field in the same direction, with an universal constant of proportionality quantized in odd multiples of the fine structure constant {alpha} = e{sup 2}/hc. Finally, we present a general classification of all topological insulators in various dimensions, and describe them in terms of a unified topological Chern-Simons field theory in phase space.