Science.gov

Sample records for field-reversed configurations

  1. High Performance Field Reversed Configurations

    NASA Astrophysics Data System (ADS)

    Binderbauer, Michl

    2014-10-01

    The field-reversed configuration (FRC) is a prolate compact toroid with poloidal magnetic fields. FRCs could lead to economic fusion reactors with high power density, simple geometry, natural divertor, ease of translation, and possibly capable of burning aneutronic fuels. However, as in other high-beta plasmas, there are stability and confinement concerns. These concerns can be addressed by introducing and maintaining a significant fast ion population in the system. This is the approach adopted by TAE and implemented for the first time in the C-2 device. Studying the physics of FRCs driven by Neutral Beam (NB) injection, significant improvements were made in confinement and stability. Early C-2 discharges had relatively good confinement, but global power losses exceeded the available NB input power. The addition of axially streaming plasma guns, magnetic end plugs as well as advanced surface conditioning leads to dramatic reductions in turbulence driven losses and greatly improved stability. As a result, fast ion confinement significantly improved and allowed for build-up of a dominant fast particle population. Under such appropriate conditions we achieved highly reproducible, long-lived, macroscopically stable FRCs with record lifetimes. This demonstrated many beneficial effects of large orbit particles and their performance impact on FRCs Together these achievements point to the prospect of beam-driven FRCs as a path toward fusion reactors. This presentation will review and expand on key results and present context for their interpretation.

  2. Confinement of translated field-reversed configurations

    NASA Astrophysics Data System (ADS)

    Tuszewski, M.; Armstrong, W. T.; Chrien, R. E.; Klingner, P. L.; McKenna, K. F.; Rej, D. J.; Sherwood, E. G.; Siemon, R. E.

    1986-03-01

    The confinement properties of translating field-reversed configurations (FRC) in the FRX-C/T device [Phys. Fluids 29, (1986)] are analyzed and compared to previous data without translation and to available theory. Translation dynamics do not appear to appreciably modify the FRC confinement. Some empirical scaling laws with respect to various plasma parameters are extracted from the data. These are qualitatively similar to those obtained in the TRX-1 device [Phys. Fluids 28, 888 (1985)] without translation and with a different formation method. Translation with a static gas fill offers new opportunities such as improved particle confinement or refueling of the FRC particle inventory.

  3. A high performance field-reversed configuration

    SciTech Connect

    Binderbauer, M. W.; Tajima, T.; Steinhauer, L. C.; Garate, E.; Tuszewski, M.; Smirnov, A.; Gota, H.; Barnes, D.; Deng, B. H.; Thompson, M. C.; Trask, E.; Yang, X.; Putvinski, S.; Rostoker, N.; Andow, R.; Aefsky, S.; Bolte, N.; Bui, D. Q.; Ceccherini, F.; Clary, R.; and others

    2015-05-15

    Conventional field-reversed configurations (FRCs), high-beta, prolate compact toroids embedded in poloidal magnetic fields, face notable stability and confinement concerns. These can be ameliorated by various control techniques, such as introducing a significant fast ion population. Indeed, adding neutral beam injection into the FRC over the past half-decade has contributed to striking improvements in confinement and stability. Further, the addition of electrically biased plasma guns at the ends, magnetic end plugs, and advanced surface conditioning led to dramatic reductions in turbulence-driven losses and greatly improved stability. Together, these enabled the build-up of a well-confined and dominant fast-ion population. Under such conditions, highly reproducible, macroscopically stable hot FRCs (with total plasma temperature of ∼1 keV) with record lifetimes were achieved. These accomplishments point to the prospect of advanced, beam-driven FRCs as an intriguing path toward fusion reactors. This paper reviews key results and presents context for further interpretation.

  4. Equilibrium rotation in field-reversed configurations

    SciTech Connect

    Steinhauer, Loren

    2008-01-15

    The turbulence that drives anomalous transport in field-reversed configurations (FRCs) is believed to break the otherwise closed magnetic surfaces inside the separatrix. This places electrons in the core of the plasma in electrical contact with those in the periphery. This effect was proposed and investigated in the context of spheromaks [D. D. Ryutov, Phys. Plasmas 14, 022506 (2007)]. The opening up of internal magnetic field lines serves to regulate the electrostatic potential in the interior of the plasma, and in turn drives ion rotation. In effect, 'end-shorting', a well-known phenomenon in the FRC scrape-off layer, also extends into the plasma interior. For conditions relevant to experiments, the ion rotation can be expressed in terms of equilibrium properties (density and temperature gradients) and as such is the 'equilibrium' rotation. This theory is incomplete in that it neglects evolving, transport-related effects that modify the equilibrium and, indirectly, the rotation rate. Consequently, the equilibrium rotation theory is only partially successful in predicting experimental results: although it predicts the average rotation well, the estimated degree of rotational shear seems unlikely, especially at late times in the plasma lifetime.

  5. Field-Reversed Configurations in an Unmagnetized Plasma

    SciTech Connect

    Stenzel, R. L.; Urrutia, J. M.; Strohmaier, K. D.

    2008-09-26

    An oscillating magnetic field is applied with a loop antenna to an unmagnetized plasma. At small amplitudes the field is evanescent. At large amplitudes the field magnetizes the electrons, which allows deeper field penetration in the whistler modes. Field-reversed configurations are formed at each half cycle. Electrons are energized. Transient whistler instabilities produce high-frequency oscillations in the magnetized plasma volume.

  6. A Mirnov loop array for field-reversed configurations

    SciTech Connect

    Tuszewski, M.

    1990-01-01

    An array of 64 magnetic pick-up loops has been used for stability studies of large field-reversed configurations in the FRX-C/LSM device. This array proved reliable, could resolve signals of a few Gauss, and allowed the detection of several plasma instabilities. 3 refs., 4 figs.

  7. Optimizing Field-Reversed Configuration Plasmas for Plasma Compression Experiments

    NASA Astrophysics Data System (ADS)

    Grabowski, C.; Degnan, J. H.; Amdahl, D. J.; Domonkos, M.; Ruden, E. L.; White, W.; Wurden, G. A.; Frese, M. H.; Frese, S. D.; Camacho, J. F.; Coffey, S. K.; Kostora, M.; McCullough, J.; Sommars, W.; Kiuttu, G. F.; Lynn, A. G.; Yates, K.; Bauer, B. S.; Fuelling, S.; Pahl, R.

    2013-10-01

    The Field-Reversed Configuration Heating Experiment (FRCHX) is a collaborative experiment between the Air Force Research Laboratory (AFRL) and Los Alamos National Laboratory (LANL) to study high energy density plasmas and various associated phenomena. With FRCHX, a field-reversed configuration (FRC) plasma is formed via reversed-field theta pinch and then translated a short distance into a cylindrical aluminum shell (solid liner), where it is either compressed by the magnetically-driven implosion of the shell or diagnosed in preparation for such compression tests. The lifetime of the trapped magnetic flux within the FRC is an important parameter affecting the confinement of plasma during the compression and ultimately the final density, temperature, and yield of neutrons from the plasma. Processes occurring during formation, initial plasma temperature, and instabilities in turn all affect the trapped-flux lifetime and the integrity of the FRC. A discussion of FRC parameters measured on FRCHX and efforts that have been made to improve these parameters and the FRC stability will be presented in connection with results from recent FRCHX experiments. This work is supported by DOE-OFES.

  8. Field Reversed Configuration Translation and the Magnetized Target Fusion Collaboration

    NASA Astrophysics Data System (ADS)

    Intrator, T. P.; Wurden, G. A.; Sieck, P. E.; Waganaar, W. J.; Dorf, L.; Kostora, M.; Cortez, R. J.; Degnan, J. H.; Ruden, E. L.; Domonkos, M.; Adamson, P.; Grabowski, C.; Gale, D. G.; Kostora, M.; Sommars, W.; Frese, M.; Frese, S.; Camacho, J. F.; Parks, P.; Siemon, R. E.; Awe, T.; Lynn, A. G.; Gribble, R.

    2009-06-01

    After considerable design and construction, we describe the status of a physics exploration of magnetized target fusion (MTF) that will be carried out with the first flux conserving compression of a high pressure field-reversed configuration (FRC). The upgraded Los Alamos (LANL) high density FRC experiment FRXL has demonstrated that an appropriate FRC plasma target can be created and translated on a time scale fast enough to be useful for MTF. Compression to kilovolt temperature is expected to form a Mbar pressure, high energy density laboratory plasma (HEDLP). Integrated hardware on the new Field Reversed Compression and Heating Experiment (FRCHX) at the Air Force Research Laboratory Shiva Star facility, has formed initial FRC's and will radially compress them within a cylindrically symmetric aluminum "liner". FRXL has shown that time scales for FRC translation to the target region are significantly shorter than the typical FRC lifetime. The hardware, diagnostics, and design rationales are presented. Pre-compression plasma formation and trapping experimental data from FRXL and FRCHX are shown.

  9. Helical quadrupole field stabilization of field-reversed configuration plasma

    SciTech Connect

    Shimamura, S.; Nogi, Y.

    1986-01-01

    The n = 2 mode rotational instability, which appears on a field-reversed configuration plasma produced by a theta pinch, is stabilized by a helical quadrupole field. The critical strength of the field to stabilize the instability is obtained as a function of pitch angle of the helical coil ..cap alpha.. rad/m. Typically, the plasma in the ..cap alpha.. = 6 winding field is stabilized by about one-fifth of ..cap alpha.. = 0 field strength. To physically explain such a good effectiveness of the helical field, the rotation speed of the plasma is measured by a Doppler shift of a carbon V 2270.9-A line. However, the clear explanation to the helical effect is not yet given.

  10. Test ion transport in a collisional, field-reversed configuration

    NASA Astrophysics Data System (ADS)

    Roche, T.; McWilliams, R.; Heidbrink, W. W.; Bolte, N.; Garate, E. P.; Morehouse, M.; Slepchenkov, M.; Wessel, F.

    2014-08-01

    Diffusion of test-ions in a flux-coil generated, collisional, field-reversed configuration is measured via time-resolved tomographic reconstruction of Ar+ optical emission in the predominantly nitrogen plasma. Azimuthal test ion diffusion across magnetic field lines is found to be classical during the stable period of the discharge. Test ion radial confinement is enhanced by a radial electric field, reducing the observed outward radial transport rate below predictions based solely on classical cross-field diffusion rates. Test ion diffusion is ˜500 m2 s-1 during the stable period of the discharge. The electric field inferred from plasma potential measurements and from equilibrium calculations is consistent with the observed reduction in argon transport.

  11. Gyrokinetic particle simulation of a field reversed configuration

    NASA Astrophysics Data System (ADS)

    Fulton, D. P.; Lau, C. K.; Holod, I.; Lin, Z.; Dettrick, S.

    2016-01-01

    Gyrokinetic particle simulation of the field-reversed configuration (FRC) has been developed using the gyrokinetic toroidal code (GTC). The magnetohydrodynamic equilibrium is mapped from cylindrical coordinates to Boozer coordinates for the FRC core and scrape-off layer (SOL), respectively. A field-aligned mesh is constructed for solving self-consistent electric fields using a semi-spectral solver in a partial torus FRC geometry. This new simulation capability has been successfully verified and driftwave instability in the FRC has been studied using the gyrokinetic simulation for the first time. Initial GTC simulations find that in the FRC core, the ion-scale driftwave is stabilized by the large ion gyroradius. In the SOL, the driftwave is unstable on both ion and electron scales.

  12. Overview of C-2 Field Reversed Configuration Experiments

    NASA Astrophysics Data System (ADS)

    Guo, Houyang; TAE Team

    2013-10-01

    The C-2 compact toroid merging (CT) facility was built to form and sustain high temperature Field Reversed Configurations (FRC) with extremely high beta (i.e., with the ratio of confined plasma to external total magnetic pressure approaching 100%). Significant progress has been made in C-2 on both technology and physics fronts, achieving stable plasmas up to 5 ms with a dramatic improvement in confinement, far beyond the prediction from the conventional FRC scaling. The key approaches to these exciting achievements are (1) dynamic FRC formation by collisional merging of super-Alfvénic CTs, (2) effective control of stability and transport by plasma guns and neutral beam injection, and (3) active wall conditioning. The emerging confinement scaling for this new plasma regime shows a strong dependence on temperature in contrast to the usually observed Bohm or gyro-Bohm scaling in other magnetic confinement systems. This presentation highlights these recent advances.

  13. Profile stabilization of tilt mode in a Field Reversed Configuration

    SciTech Connect

    Cobb, J.W.; Tajima, T.; Barnes, D.C.

    1993-06-01

    The possibility of stabilizing the tilt mode in Field Reversed Configurations without resorting to explicit kinetic effects such as large ion orbits is investigated. Various pressure profiles, P({Psi}), are chosen, including ``hollow`` profiles where current is strongly peaked near the separatrix. Numerical equilibria are used as input for an initial value simulation which uses an extended Magnetohydrodynamic (MHD) model that includes viscous and Hall terms. Tilt stability is found for specific hollow profiles when accompanied by high values of separatrix beta, {beta}{sub sep}. The stable profiles also have moderate to large elongation, racetrack separatrix shape, and lower values of 3, average ratio of Larmor radius to device radius. The stability is unaffected by changes in viscosity, but the neglect of the Hall term does cause stable results to become marginal or unstable. Implications for interpretation of recent experiments are discussed.

  14. Rotational stability of a long field-reversed configuration

    SciTech Connect

    Barnes, D. C. Steinhauer, L. C.

    2014-02-15

    Rotationally driven modes of long systems with dominantly axial magnetic field are considered. We apply the incompressible model and order axial wavenumber small. A recently developed gyro-viscous model is incorporated. A one-dimensional equilibrium is assumed, but radial profiles are arbitrary. The dominant toroidal (azimuthal) mode numbers ℓ=1 and ℓ=2 modes are examined for a variety of non-reversed (B) and reversed profiles. Previous results for both systems with rigid rotor equilibria are reproduced. New results are obtained by incorporation of finite axial wavenumber and by relaxing the assumption of rigid electron and ion rotation. It is shown that the frequently troublesome ℓ=2 field reversed configuration (FRC) mode is not strongly affected by ion kinetic effects (in contrast to non-reversed cases) and is likely stabilized experimentally only by finite length effects. It is also shown that the ℓ=1 wobble mode has a complicated behavior and is affected by a variety of configuration and profile effects. The rotationally driven ℓ=1 wobble is completely stabilized by strong rotational shear, which is anticipated to be active in high performance FRC experiments. Thus, observed wobble modes in these systems are likely not driven by rotation alone.

  15. Tilting of Field-Reversed Configurations in an EMHD Plasma

    NASA Astrophysics Data System (ADS)

    Stenzel, R. L.; Urrutia, J. M.; Strohmaier, K. D.

    2004-11-01

    A field-reversed configuration (FRC) is established with a pulsed coil inside a large, magnetized laboratory plasma in the regime of electron magnetohydrodynamics (EMHD) ( R. L. Stenzel J. M. Urrutia K. D. Strohmaier M. C. Griskey, Experiments on Nonlinear EMHD Fields. Physica Scripta T107, 163 (2004)). The three-dimensional field configuration is measured with a movable probe from repeated experiments. During the free relaxation of the FRC, a tilt and precession of the current layer are observed. An axially symmetric FRC has two 3D null points on axis, a 2D toroidal null line and a closed separatrix surface. The tilt of such an FRC changes the topology to four null points (2 radial and 2 spiral nulls) and an open separatrix, both observed experimentally and in simulations. All the field lines are open, but the high pitch of the spiral nulls slows down the free flow of electrons along field lines. Observations show that a tilt of the field is coupled to a precession around the ambient field direction. In the late stage of the relaxation, the tilted current layer loses its 2D structure, which has not yet been investigated.

  16. Magnetic flux trapping during field reversal in the formation of a field-reversed configuration

    NASA Astrophysics Data System (ADS)

    Steinhauer, Loren C.

    1985-11-01

    The flow of plasma and magnetic flux toward a wall is examined in a slab geometry where the magnetic field is parallel to the wall. Magnetohydrodynamic (MHD) flow with a quasisteady approximation is assumed that reduces the problem to three coupled ordinary differential equations. The calculated behavior shows that a thin current sheath is established at the wall in which a variety of phenomena appear, including significant resistive heating and rapid deceleration of the plasma flow. The sheath physics determines the speed at which flux and plasma flow toward the wall. The model has been applied to the field-reversal phase of a field-reversed theta pinch, during which the reduced magnetic field near the wall drives an outward flow of plasma and magnetic flux. The analysis leads to approximate expressions for the instantaneous flow speed, the loss of magnetic flux during the field reversal phase, the integrated heat flow to the wall, and the highest possible magnetic flux retained after reversal. Predictions from this model are compared with previous time-dependent MHD calculations and with experimental results from the TRX-1 [Proceedings of the 4th Symposium on the Physics and Technology of Compact Toroids, 27-29 October 1981 (Lawrence Livermore National Laboratory, Livermore, CA, 1982), p. 61] and TRX-2 [Proceedings of the 6th U.S. Symposium on Compact Toroid Research, 20-23 February, 1984 (Princeton Plasma Physics Laboratory, Princeton, NJ, 1984), p. 154] experiments.

  17. Gyrokinetic simulation of driftwave instability in field-reversed configuration

    NASA Astrophysics Data System (ADS)

    Fulton, D. P.; Lau, C. K.; Schmitz, L.; Holod, I.; Lin, Z.; Tajima, T.; Binderbauer, M. W.

    2016-05-01

    Following the recent remarkable progress in magnetohydrodynamic (MHD) stability control in the C-2U advanced beam driven field-reversed configuration (FRC), turbulent transport has become one of the foremost obstacles on the path towards an FRC-based fusion reactor. Significant effort has been made to expand kinetic simulation capabilities in FRC magnetic geometry. The recently upgraded Gyrokinetic Toroidal Code (GTC) now accommodates realistic magnetic geometry from the C-2U experiment at Tri Alpha Energy, Inc. and is optimized to efficiently handle the FRC's magnetic field line orientation. Initial electrostatic GTC simulations find that ion-scale instabilities are linearly stable in the FRC core for realistic pressure gradient drives. Estimated instability thresholds from linear GTC simulations are qualitatively consistent with critical gradients determined from experimental Doppler backscattering fluctuation data, which also find ion scale modes to be depressed in the FRC core. Beyond GTC, A New Code (ANC) has been developed to accurately resolve the magnetic field separatrix and address the interaction between the core and scrape-off layer regions, which ultimately determines global plasma confinement in the FRC. The current status of ANC and future development targets are discussed.

  18. Spectral Diagnostics of Plasma Confined within a Field Reversed Configuration

    NASA Astrophysics Data System (ADS)

    Little, J. M.; Heidbrink, W. W.; Garate, E. P.; McWilliams, R.; Trask, E.; Harris, W. S.

    2006-10-01

    A field reversed configuration (FRC) consists of a toroidal plasma current confined by closed magnetic field lines within a cylindrical chamber. The FRC at the University of California Irvine is estimated to operate in a temperature range of 1eV-5eV at a density of approximately 5x10^13 cm-3. An impurity ion survey and temperature measurement are to be performed by analyzing the visible light emitted by the plasma. In order to determine the different species of ions confined within the field, a spectrometer with a resolution of one nanometer will be used. Light from the chamber will be collected using a collimating probe and transmitted to the spectrometer via fiber optic cable. Software will be used to analyze the data, which will then be compared to the NIST Atomic Spectra Database. Expected impurities include oxygen and carbon ions from the plasma injectors. Measurements of the ion temperature will be performed by an observation of the Doppler broadening of the H-alpha emission line. Assuming an ion temperature of 5eV, a resoultion of approximately one angstrom is needed to observe this effect. Due to limitations of the spectrometer, the light from the fiber optic cable will instead be sent through a high resolution spectrometer and imaged using a gated intensifier. By observing the H-alpha line shape the ion temperature can be determined.

  19. Transport studies in high-performance field reversed configuration plasmas

    NASA Astrophysics Data System (ADS)

    Gupta, S.; Barnes, D. C.; Dettrick, S. A.; Trask, E.; Tuszewski, M.; Deng, B. H.; Gota, H.; Gupta, D.; Hubbard, K.; Korepanov, S.; Thompson, M. C.; Zhai, K.; Tajima, T.

    2016-05-01

    A significant improvement of field reversed configuration (FRC) lifetime and plasma confinement times in the C-2 plasma, called High Performance FRC regime, has been observed with neutral beam injection (NBI), improved edge stability, and better wall conditioning [Binderbauer et al., Phys. Plasmas 22, 056110 (2015)]. A Quasi-1D (Q1D) fluid transport code has been developed and employed to carry out transport analysis of such C-2 plasma conditions. The Q1D code is coupled to a Monte-Carlo code to incorporate the effect of fast ions, due to NBI, on the background FRC plasma. Numerically, the Q1D transport behavior with enhanced transport coefficients (but with otherwise classical parametric dependencies) such as 5 times classical resistive diffusion, classical thermal ion conductivity, 20 times classical electron thermal conductivity, and classical fast ion behavior fit with the experimentally measured time evolution of the excluded flux radius, line-integrated density, and electron/ion temperature. The numerical study shows near sustainment of poloidal flux for nearly 1 ms in the presence of NBI.

  20. Rotating magnetic quadrupole current drive for field-reversed configurations

    SciTech Connect

    Milroy, Richard D.; Guo, H.Y.

    2005-07-15

    In the translation, confinement, and sustainment experiment [A. L. Hoffman, H. Y. Guo, J. T. Slough, S. J. Tobin, L. S. Schrank, W. A. Reass, and G. A. Wurden, Fusion Sci. Technol. 41, 92 (2002)], field-reversed configurations (FRCs) are created and sustained using a rotating magnetic field (RMF). The RMF is usually in the form of a rotating dipole, which in vacuum penetrates uniformly to the axis of symmetry. However, plasma conditions in the FRC normally adjust so that the RMF only partially penetrates the plasma column. We have investigated the possibility of using a rotating quadrupole rather than a rotating dipole magnetic field. The vacuum field from a quadrupole is proportional to radius and cannot penetrate to the axis of symmetry; however, this is not a disadvantage if the current drive is confined to the outer region of the FRC. It was found that the quadrupole drive efficiency is comparable to that of a dipole, but the rotating dipole is more effective at stabilizing the n=2 rotational instability. A strong internal oscillation in B{sub {theta}} is often observed in FRCs sustained by a quadrupole field. The spectral content of the signals indicates that an internal n=1 magnetic structure forms and corotates with the electrons. Similar but much lower amplitude structures can form when a rotating dipole is employed (edge-driven mode)

  1. Fusion proton diagnostic for the C-2 field reversed configuration

    SciTech Connect

    Magee, R. M. Clary, R.; Korepanov, S.; Smirnov, A.; Garate, E.; Knapp, K.; Tkachev, A.

    2014-11-15

    Measurements of the flux of fusion products from high temperature plasmas provide valuable insights into the ion energy distribution, as the fusion reaction rate is a very sensitive function of ion energy. In C-2, where field reversed configuration plasmas are formed by the collision of two compact toroids and partially sustained by high power neutral beam injection [M. Binderbauer et al., Phys. Rev. Lett. 105, 045003 (2010); M. Tuszewski et al., Phys. Rev. Lett. 108, 255008 (2012)], measurements of DD fusion neutron flux are used to diagnose ion temperature and study fast ion confinement and dynamics. In this paper, we will describe the development of a new 3 MeV proton detector that will complement existing neutron detectors. The detector is a large area (50 cm{sup 2}), partially depleted, ion implanted silicon diode operated in a pulse counting regime. While the scintillator-based neutron detectors allow for high time resolution measurements (∼100 kHz), they have no spatial or energy resolution. The proton detector will provide 10 cm spatial resolution, allowing us to determine if the axial distribution of fast ions is consistent with classical fast ion theory or whether anomalous scattering mechanisms are active. We will describe in detail the diagnostic design and present initial data from a neutral beam test chamber.

  2. Fusion proton diagnostic for the C-2 field reversed configuration.

    PubMed

    Magee, R M; Clary, R; Korepanov, S; Smirnov, A; Garate, E; Knapp, K; Tkachev, A

    2014-11-01

    Measurements of the flux of fusion products from high temperature plasmas provide valuable insights into the ion energy distribution, as the fusion reaction rate is a very sensitive function of ion energy. In C-2, where field reversed configuration plasmas are formed by the collision of two compact toroids and partially sustained by high power neutral beam injection [M. Binderbauer et al., Phys. Rev. Lett. 105, 045003 (2010); M. Tuszewski et al., Phys. Rev. Lett. 108, 255008 (2012)], measurements of DD fusion neutron flux are used to diagnose ion temperature and study fast ion confinement and dynamics. In this paper, we will describe the development of a new 3 MeV proton detector that will complement existing neutron detectors. The detector is a large area (50 cm(2)), partially depleted, ion implanted silicon diode operated in a pulse counting regime. While the scintillator-based neutron detectors allow for high time resolution measurements (∼100 kHz), they have no spatial or energy resolution. The proton detector will provide 10 cm spatial resolution, allowing us to determine if the axial distribution of fast ions is consistent with classical fast ion theory or whether anomalous scattering mechanisms are active. We will describe in detail the diagnostic design and present initial data from a neutral beam test chamber. PMID:25430264

  3. Two-dimensional interpreter for field-reversed configurations

    SciTech Connect

    Steinhauer, Loren

    2014-08-15

    An interpretive method is developed for extracting details of the fully two-dimensional (2D) “internal” structure of field-reversed configurations (FRC) from common diagnostics. The challenge is that only external and “gross” diagnostics are routinely available in FRC experiments. Inferring such critical quantities as the poloidal flux and the particle inventory has commonly relied on a theoretical construct based on a quasi-one-dimensional approximation. Such inferences sometimes differ markedly from the more accurate, fully 2D reconstructions of equilibria. An interpreter based on a fully 2D reconstruction is needed to enable realistic within-the-shot tracking of evolving equilibrium properties. Presented here is a flexible equilibrium reconstruction with which an extensive data base of equilibria was constructed. An automated interpreter then uses this data base as a look-up table to extract evolving properties. This tool is applied to data from the FRC facility at Tri Alpha Energy. It yields surprising results at several points, such as the inferences that the local β (plasma pressure/external magnetic pressure) of the plasma climbs well above unity and the poloidal flux loss time is somewhat longer than previously thought, both of which arise from full two-dimensionality of FRCs.

  4. Diagnosing the field reversed configuration plasmas on FRX-L

    NASA Astrophysics Data System (ADS)

    Zhang, S. Y.; Wurden, G. A.; Taccetti, J. M.; Intrator, T. P.; Sanchez, P.; Bass, C.; Carey, C.; Renneke, R.; Harris, M.; de Vries, S.; Liang, J.; Kozar, M.; Aragonez, R.; Maqueda, R. J.; Tuszewski, M.; Ruden, E.; Grabowski, C.; Degnan, J. H.; Sommars, W.; Analla, F.

    2002-11-01

    FRX-L is a plasma device designed to form field-reversed-configuration (FRC) plasma of about 200eV and 10**23m**(-3) with 20 micro seconds lifetime. Many diagnostic challenges are presented in such plasma device due to its severe electromagnetic environment and very limited access space. A number of diagnostics have been developed and operated on the device. This paper provides a review on the diagnostics on FRX-L, including a multi-chord laser interferometer (633 microns He-Ne laser; 8 chords designed, 2 chords operating now) for measuring the line integrated electron density, tiny magnetic pick-up coils (B-dot probes) for measuring the magnetic fields and excluded magnetic fluxes by FRC plasmas. Diagnostic capabilities are also described, for example, Impurity lines and visible light are monitored by optical multichannel analyzer spectrometers, photodiodes and photomultipliers with optical filters, which are fed by optical fibres; Time sequential plasma pictures are taken by end-on framing camera. New and planned diagnostics are also described, which include Thomson Scattering system, bolometer, neutron detector and an X-ray framing camera.

  5. Electrostatic Drift-Wave Instability in Field-Reversed Configuration

    NASA Astrophysics Data System (ADS)

    Lau, Calvin; Fulton, Daniel; Holod, Ihor; Lin, Zhihong; Binderbauer, Michl; Tajima, Toshiki; Schmitz, Lothar

    2015-11-01

    Recent progress in the C-2 advanced beam-driven field-reversed configuration (FRC) experiment [Binderbauer 2015] at Tri Alpha Energy has led to consistently reproducible plasma lifetimes of 5+ ms, ie. transport regimes. To understand the mechanisms, gyrokinetic particle-in-cell simulations of drift-wave instabilities have been carried out for the FRC [Fulton 2015]. The realistic magnetic geometry is represented in Boozer coordinates in the upgraded gyrokinetic toroidal code (GTC) [Lin 1998]. Radially local simulations find that, in the FRC core, ion scale modes are stable for realistic pressure gradients while the electron scale modes are unstable. On the other hand, in the scrape-off layer (SOL) outside of the separatrix, both ion and electron scale modes are unstable. These findings and linear instability thresholds found in simulation are consistent with the C-2 experimental measurements of density fluctuations [Schmitz 2015]. Collisional effects and instability drive mechanism will be clarified. Nonlocal and nonlinear simulation results will also be reported. supported by TAE.

  6. Confinement and heating studies of field-reversed configurations

    NASA Astrophysics Data System (ADS)

    Chrien, Robert E.

    1990-10-01

    Confinement studies of field-reversed configurations (FRCs) have been actively pursued during the past ten years with the larger and longer-lived FRCs produced in the FRX-C and FRX-C/LSM devices. Confinement measurements have included the global FRC quantities and, in some cases, profiles of electron temperature and density. The inferred confinement times and transport coefficients are used for comparison with transport models as well as to find the best operating conditions in the experiment. Global power flow modelling shows that energy confinement during the equilibrium phase is usually dominated by particle losses, with a substantial secondary contribution from electron thermal conduction. Particle losses in present kinetic FRCs are strongly influenced by open field line confinement, which complicates the study of transport mechanisms. The electron thermal conduction is observed to be anomalous, as in other plasma devices. The bulk electrical resistivity is also anomalous and shows no evidence of classical Spitzer scaling. Recently, the resistive anomaly has been shown to correlate with tilt-like magnetic perturbations observed with Mirnov coils. FRC confinement studies have also been extended to a higher temperature regime during magnetic compression heating. In these experiments, translated FRCs are compressed by increasing the external magnetic flux up to a factor of seven on a time scale between the radial Alfven time and the FRC lifetime. Electron and ion temperatures up to 0.4 keV and 1.6 keV, respectively have been obtained. Confinement times scale roughly as r(exp 2) during compression.

  7. Thick Liquid-Walled, Field-Reversed Configuration

    SciTech Connect

    Moir, R W; Bulmer, R H; Gulec, K; Fogarty, P; Nelson, B; Ohnishi, M; Rensink, M; Rognlien, T D; Santarious, J F; Sze, D K

    2000-09-22

    A thick flowing layer of liquid (e.g., flibe--a molten salt, or Sn{sub 80}Li{sub 20}--a liquid metal) protects the structural walls of the field-reversed configuration (FRC) so that they can last the life of the plant even with intense 14 MeV neutron bombardment from the D-T fusion reaction. The surface temperature of the liquid rises as it passes from the inlet nozzles to the exit or receiver nozzles due to absorption of line and bremsstrahlung radiation, and neutrons. The surface temperature can be reduced by enhancement of convection near the surface to transport hot surface liquid into the cooler interior. This surface temperature must be compatible with a practical heat transport and energy recovery system. The evaporative flux from the wall driven by the surface temperature must also result in an acceptable impurity level in the core plasma. The shielding of the core by the edge plasma is modeled with a 2D transport code for the resulting impurity ions; these ions are either swept out to the distant end tanks, or diffuse to the hot plasma core. An auxiliary plasma between the edge plasma and the liquid wall can further attenuate evaporating flux of atoms and molecules by ionization. The current in this auxiliary plasma might serve as the antenna for the current drive method, which produces a rotating magnetic field. Another method of current drive uses small spheromaks injected along the magnetic fields, which additionally provide fueling along with pellet fueling if necessary.

  8. Formation of Field-reversed-Configuration Plasma with Punctuated-betatron-orbit Electrons

    SciTech Connect

    Welch, D. R.; Cohen, S. A.; Genoni, T. C.; Glasser, A. H.

    2010-06-28

    We describe ab initio, self-consistent, 3D, fully electromagnetic numerical simulations of current drive and field-reversed-configuration plasma formation by odd-parity rotating magnetic fields (RMFo). Magnetic-separatrix formation and field reversal are attained from an initial mirror configuration. A population of punctuated-betatron-orbit electrons, generated by the RMFo, carries the majority of the field-normal azimuthal electrical current responsible for field reversal. Appreciable current and plasma pressure exist outside the magnetic separatrix whose shape is modulated by the RMFo phase. The predicted plasma density and electron energy distribution compare favorably with RMFo experiments. __________________________________________________

  9. Behavior of a Field-Reversed Configuration Translated into a Large-Bore Confinement Chamber

    NASA Astrophysics Data System (ADS)

    Sekiguchi, Jun'ichi; Asai, Tomohiko; Takahashi, Tsutomu; Ando, Hirotoshi; Inomoto, Michiaki; Takahashi, Toshiki; Steinhauer, Loren C.

    To demonstrate additional heating and control methods a new field-reversed configuration (FRC) machine called FAT (FRC Amplification via Translation) has begun operations. FAT has a field-reversed theta-pinch (FRTP) plasma source and a large-bore confinement chamber. In the initial experiments on FAT, fast FRC translation and trapping with the translation speeds 70 to 210 km/s has been performed successfully. The typical elongation of the trapped FRC is approximately 3. Disruptive global instability, such as tilt, is not observed.

  10. Formation, spin-up, and stability of field-reversed configurations

    DOE PAGESBeta

    Omelchenko, Yuri A.

    2015-08-24

    Formation, spontaneous spin-up and stability of theta-pinch formed field-reversed configurations are studied self-consistently in three dimensions with a multiscale hybrid model that treats all plasma ions as full-orbit collisional macro-particles and the electrons as a massless quasineutral fluid. The end-to-end hybrid simulations for the first time reveal poloidal profiles of implosion-driven fast toroidal plasma rotation and demonstrate three well-known discharge regimes as a function of experimental parameters: the decaying stable configuration, the tilt unstable configuration and the nonlinear evolution of a fast growing tearing mode.

  11. Electron density and temperature profile diagnostics for C-2 field reversed configuration plasmas

    SciTech Connect

    Deng, B. H.; Kinley, J. S.; Schroeder, J.

    2012-10-15

    The 9-point Thomson scattering diagnostic system for the C-2 field reversed configuration plasmas is improved and the measured electron temperature profiles are consistent with theoretical expectations. Rayleigh scattering revealed a finite line width of the ruby laser emission, which complicates density calibration. Taking advantage of the plasma wobble motion, density profile reconstruction accuracy from the 6-chord two-color CO{sub 2}/HeNe interferometer data is improved.

  12. Final report for the field-reversed configuration power plant critical-issue scoping study

    SciTech Connect

    Santarius, John F.; Mogahed, Elsayed A.; Emmert, Gilbert A.; Khater, Hesham Y.; Nguyen, Canh N.; Ryzhkov, Sergei V.; Stubna, Michael D.; Steinhauer, Loren C.; Miley, George H.

    2001-03-01

    This report describes research in which a team from the Universities of Wisconsin, Washington, and Illinois performed a scoping study of critical issues for field-reversed configuration (FRC) power plants. The key tasks for this research were (1) systems analysis of deuterium-tritium (D-T) FRC fusion power plants, and (2) conceptual design of the blanket and shield module for an FRC fusion core.

  13. Flux-trapping during the formation of field-reversed configurations

    NASA Astrophysics Data System (ADS)

    Armstrong, W. T.; Harding, D. G.; Crawford, E. A.; Hoffman, A. L.

    1981-10-01

    Optimized trapping of bias flux during the early formation phases of a Field Reversed Configuration was studied experimentally on the field reversed theta pinch TRX-1. An annular z-pinch preionizer was employed to permit ionization at high values of initial reverse bias flux. Octopole barrier fields are pulsed during field reversal to minimize plasma/wall contact and associated loss of reverse flux. Also, second half cycle operation was examined in obtaining very high values of reverse flux. Flux loss is generally observed to be governed by resistive diffusion through a current sheath at the plasma boundary, rather than flux convection to the plasma boundary. Trapped reverse flux at the time of field reversal, as well as after the radial implosion, is observed to increase with the applied bias field. This increase is greatest, and in fact nearly linear with bias field, when barrier fields are employed. Barrier fields also appear to broaden the current sheath, which results in some flux loss and a less dynamic radial implosion. A general model and one dimensional simulation of flux loss is described and correlated with experimental results.

  14. Plasma-gun-assisted field-reversed configuration formation in a conical θ-pinch

    NASA Astrophysics Data System (ADS)

    Weber, T. E.; Intrator, T. P.; Smith, R. J.

    2015-04-01

    Injection of plasma via an annular array of coaxial plasma guns during the pre-ionization phase of field-reversed configuration (FRC) formation is shown to catalyze the bulk ionization of a neutral gas prefill in the presence of a strong axial magnetic field and change the character of outward flux flow during field-reversal from a convective process to a much slower resistive diffusion process. This approach has been found to significantly improve FRC formation in a conical θ-pinch, resulting in a ˜350% increase in trapped flux at typical operating conditions, an expansion of accessible formation parameter space to lower densities and higher temperatures, and a reduction or elimination of several deleterious effects associated with the pre-ionization phase.

  15. Resistivity in the dynamic current sheath of a field reversed configuration

    NASA Astrophysics Data System (ADS)

    Kayama, M. E.

    2012-03-01

    The resistivity of a field reversed configuration in a theta-pinch with slow rising current was investigated during the turbulent phase from the moment of field reversal until end of plasma radial implosion. This transport coefficient was obtained in a hydrogen plasma by local measurements with magnetic probe and compared to numerical calculations with Chodura resistivity and evolution of lower hybrid drift instability. The values of resistivity are higher than those predicted by classical binary collision. During early phase of confinement, the doubly layer structure of current sheath in the low electric field machine was theoretically well reproduced with anomalous collision frequency calculated with Chodura resistivity that provides appropriate conditions for onset of lower hybrid drift instability and the regular evolution of pinch. The plasma dynamic, radial profiles of magnetic field during the radial compression and resistivity values were equally close to those observed by the measurements.

  16. Plasma-gun-assisted field-reversed configuration formation in a conical θ-pinch

    SciTech Connect

    Weber, T. E. Intrator, T. P.; Smith, R. J.

    2015-04-15

    Injection of plasma via an annular array of coaxial plasma guns during the pre-ionization phase of field-reversed configuration (FRC) formation is shown to catalyze the bulk ionization of a neutral gas prefill in the presence of a strong axial magnetic field and change the character of outward flux flow during field-reversal from a convective process to a much slower resistive diffusion process. This approach has been found to significantly improve FRC formation in a conical θ-pinch, resulting in a ∼350% increase in trapped flux at typical operating conditions, an expansion of accessible formation parameter space to lower densities and higher temperatures, and a reduction or elimination of several deleterious effects associated with the pre-ionization phase.

  17. Flux-trapping during the formation of field-reversed configurations

    NASA Astrophysics Data System (ADS)

    Armstrong, W. T.; Harding, D. G.; Crawford, E. A.; Hoffman, A. L.

    1982-11-01

    Flux-trapping during the early formation phases of a field-reversed configuration has been studied experimentally on the field-reversed theta-pinch TRX-1. An annular z-pinch preionizer was employed to permit ionization at high values of reverse-bias flux. Contrary to previous analysis, the rate of flux loss was not governed exclusively by inertially limited plasma convection to the tube walls. At high reverse flux levels, a pressure bearing sheath was observed to form at the tube walls and the flux loss was restricted by resistive diffusion across this sheath. The characteristic time for flux loss was 0.08rt (cm) μsec, independent of the bias field and independent of the fill pressure for fill pressures above 15 mTorr D2. Octopole barrier fields were found to be effective in limiting the inertially governed flux loss at very early times before the wall sheath formed.

  18. Plasma-gun-assisted field-reversed configuration formation in a conical θ-pinch

    DOE PAGESBeta

    Weber, T. E.; Intrator, T. P.; Smith, R. J.

    2015-04-29

    The injection of plasma via an annular array of coaxial plasma guns during the pre-ionization phase of field-reversed configuration (FRC) formation is shown to catalyze the bulk ionization of a neutral gas prefill in the presence of a strong axial magnetic field and change the character of outward flux flow during field-reversal from a convective process to a much slower resistive diffusion process. Our approach was found to significantly improve FRC formation in a conical θ-pinch, resulting in a ~350% increase in trapped flux at typical operating conditions, an expansion of accessible formation parameter space to lower densities and highermore » temperatures, and a reduction or elimination of several deleterious effects associated with the pre-ionization phase.« less

  19. Plasma-gun-assisted field-reversed configuration formation in a conical θ-pinch

    SciTech Connect

    Weber, T. E.; Intrator, T. P.; Smith, R. J.

    2015-04-29

    The injection of plasma via an annular array of coaxial plasma guns during the pre-ionization phase of field-reversed configuration (FRC) formation is shown to catalyze the bulk ionization of a neutral gas prefill in the presence of a strong axial magnetic field and change the character of outward flux flow during field-reversal from a convective process to a much slower resistive diffusion process. Our approach was found to significantly improve FRC formation in a conical θ-pinch, resulting in a ~350% increase in trapped flux at typical operating conditions, an expansion of accessible formation parameter space to lower densities and higher temperatures, and a reduction or elimination of several deleterious effects associated with the pre-ionization phase.

  20. Experimental study of the formation of field-reversed configurations employing high-order multipole fields

    NASA Astrophysics Data System (ADS)

    Slough, J. T.; Hoffman, A. L.

    1990-04-01

    A high-order multipole ``barrier'' field was applied at the vacuum tube wall in the TRX experiment [Phys. Fluids B 1, 840 (1989)] during both the preionization and field reversal phases of field-reversed configuration (FRC) formation. Use of this field during field reversal resulted in a significant reduction of impurities as well as increased flux trapping. With a large enough Bθ at the wall, sheath detachment from the wall became apparent, and flux loss through the sheath became negligible (<10%). At larger wall Bθ (>1.5 kG), destructive rotational spin-up occurred, driven by Hall current forces. When the multipole barrier field was also applied during either axial discharge or ringing theta current preionization, a very symmetric and uniform breakdown of the fill gas was achieved. In particular, using ringing theta preionization, complete ionization of the fill gas was accomplished with purely inductive fields of remarkably low magnitude, where Ez≤3 V/cm, and Eθ≤20 V/cm. Due to the improved ionization symmetry, about 65% to 75% of the lift-off flux (flux remaining after field reversal) could be retained through the remaining formation processes into an equilibrium FRC. Using the multipole field during both preionization and formation, it was possible to form FRC's with good confinement with greater than 3 mWb of trapped flux at 15 mTorr D2 or H2 in a 10 cm radius device. Values of s in excess of 4 could be achieved in this manner.

  1. Separatrix radius measurement of field-reversed configuration plasma in FRX-L

    SciTech Connect

    Zhang, S.Y.; Tejero, E.M.; Taccetti, J.M.; Wurden, G.A.; Intrator, T.P.; Waganaar, W.J.; Perkins, R.

    2004-10-01

    Magnetic pickup coils and single turn flux loops are installed on the FRX-L device. The combination of the two measurements provides the excluded flux radius that approximates the separatrix radius of the field-reversed configuration (FRC) plasma. Arrays of similar probes are used to map out local magnetic field dynamics beyond both ends of the theta-coil confinement region to help understand the effects of cusp locations on flux trapping during the FRC formation process. Details on the probe design and system calibrations are presented. The overall system calibration of excluded flux radius measurement is examined by replacing FRC plasma with a known radius aluminum conductor cylinder.

  2. Field Reversed Configuration Confinement Enhancement through Edge Biasing and Neutral Beam Injection

    NASA Astrophysics Data System (ADS)

    Tuszewski, M.; Smirnov, A.; Thompson, M. C.; Korepanov, S.; Akhmetov, T.; Ivanov, A.; Voskoboynikov, R.; Schmitz, L.; Barnes, D.; Binderbauer, M. W.; Brown, R.; Bui, D. Q.; Clary, R.; Conroy, K. D.; Deng, B. H.; Dettrick, S. A.; Douglass, J. D.; Garate, E.; Glass, F. J.; Gota, H.; Guo, H. Y.; Gupta, D.; Gupta, S.; Kinley, J. S.; Knapp, K.; Longman, A.; Hollins, M.; Li, X. L.; Luo, Y.; Mendoza, R.; Mok, Y.; Necas, A.; Primavera, S.; Ruskov, E.; Schroeder, J. H.; Sevier, L.; Sibley, A.; Song, Y.; Sun, X.; Trask, E.; Van Drie, A. D.; Walters, J. K.; Wyman, M. D.

    2012-06-01

    Field reversed configurations (FRCs) with high confinement are obtained in the C-2 device by combining plasma gun edge biasing and neutral beam injection. The plasma gun creates an inward radial electric field that counters the usual FRC spin-up. The n=2 rotational instability is stabilized without applying quadrupole magnetic fields. The FRCs are nearly axisymmetric, which enables fast ion confinement. The plasma gun also produces E×B shear in the FRC edge layer, which may explain the observed improved particle transport. The FRC confinement times are improved by factors 2 to 4, and the plasma lifetimes are extended from 1 to up to 4 ms.

  3. Field reversed configuration confinement enhancement through edge biasing and neutral beam injection.

    PubMed

    Tuszewski, M; Smirnov, A; Thompson, M C; Korepanov, S; Akhmetov, T; Ivanov, A; Voskoboynikov, R; Schmitz, L; Barnes, D; Binderbauer, M W; Brown, R; Bui, D Q; Clary, R; Conroy, K D; Deng, B H; Dettrick, S A; Douglass, J D; Garate, E; Glass, F J; Gota, H; Guo, H Y; Gupta, D; Gupta, S; Kinley, J S; Knapp, K; Longman, A; Hollins, M; Li, X L; Luo, Y; Mendoza, R; Mok, Y; Necas, A; Primavera, S; Ruskov, E; Schroeder, J H; Sevier, L; Sibley, A; Song, Y; Sun, X; Trask, E; Van Drie, A D; Walters, J K; Wyman, M D

    2012-06-22

    Field reversed configurations (FRCs) with high confinement are obtained in the C-2 device by combining plasma gun edge biasing and neutral beam injection. The plasma gun creates an inward radial electric field that counters the usual FRC spin-up. The n = 2 rotational instability is stabilized without applying quadrupole magnetic fields. The FRCs are nearly axisymmetric, which enables fast ion confinement. The plasma gun also produces E × B shear in the FRC edge layer, which may explain the observed improved particle transport. The FRC confinement times are improved by factors 2 to 4, and the plasma lifetimes are extended from 1 to up to 4 ms. PMID:23004613

  4. Study of the synchronous operation of an Annular Field Reversed Configuration plasma device

    NASA Astrophysics Data System (ADS)

    Kirtley, David E.

    Field Reversed Configuration (FRC) plasmas are high-density, magnetized, pulsed plasmas with unique translational and efficient formation properties that lend themselves to many uses. This dissertation furthers the understanding and empirical investigations into a slow-formation FRC, the low-voltage Annular Field Reversed Configuration plasma (AFRC) by successfully operating with heavy gases, at low-voltages, and in a synchronous discharge configuration. The AFRC plasma is an evolution of the cylindrical shock compression driven FRC that aims to increase compression times well into diffusive timescales, thereby increasing overall plasma content, lifetime, and greatly simplifying pulsed switching and transmission hardware. AFRC plasmas have uses ranging from primary pulsed magnetic fusion, refueling for Tokamak plasmas, and advanced space propulsion. In this thesis it is shown that AFRCs operating in a synchronous discharge configuration generate efficient, high-density magnetized toroidal plasmas with clear transitional regimes and optimal discharge parameters. A 10-kJ pulsed power facility and discharge network was constructed to explore AFRC plasmas. An extensive array of pulsed diagnostics were developed to explore the operational characteristics of a 40-cm outer diameter annular theta pinch and its pre-ionization, compression, field reversal, and translation configurations. Twelve high-speed, 3-axis B-dot probes were used to show plasma magnetization and compression for various discharge geometries. A fast DICAM and wide-angle photometer examined overall plasma content, compression regimes, downstream translation, and plasma instabilities for argon and xenon discharges ranging from 3--20 mTorr, 500--1000 V, and 185--450 mus discharge periods. Downstream B-dot probes and collimated, amplified photometers examined downstream plasma translation and magnetization. An axially-scanning internal triple probe was utilized to measure temporal plasma temperature, density

  5. Formation of a field reversed configuration for magnetic and electrostatic confinement of plasma

    DOEpatents

    Rostoker, Norman; Binderbauer, Michl

    2003-12-16

    A system and method for containing plasma and forming a Field Reversed Configuration (FRC) magnetic topology are described in which plasma ions are contained magnetically in stable, non-adiabatic orbits in the FRC. Further, the electrons are contained electrostatically in a deep energy well, created by tuning an externally applied magnetic field. The simultaneous electrostatic confinement of electrons and magnetic confinement of ions avoids anomalous transport and facilitates classical containment of both electrons and ions. In this configuration, ions and electrons may have adequate density and temperature so that upon collisions they are fused together by nuclear force, thus releasing fusion energy. Moreover, the fusion fuel plasmas that can be used with the present confinement system and method are not limited to neutronic fuels only, but also advantageously include advanced fuels.

  6. Formation of a field reversed configuration for magnetic and electrostatic confinement of plasma

    DOEpatents

    Rostoker, Norman; Binderbauer, Michl; Qerushi, Artan; Tahsiri, Hooshang

    2007-02-20

    A system and method for containing plasma and forming a Field Reversed Configuration (FRC) magnetic topology are described in which plasma ions are contained magnetically in stable, non-adiabatic orbits in the FRC. Further, the electrons are contained electrostatically in a deep energy well, created by tuning an externally applied magnetic field. The simultaneous electrostatic confinement of electrons and magnetic confinement of ions avoids anomalous transport and facilitates classical containment of both electrons and ions. In this configuration, ions and electrons may have adequate density and temperature so that upon collisions they are fused together by nuclear force, thus releasing fusion energy. Moreover, the fusion fuel plasmas that can be used with the present confinement system and method are not limited to neutronic fuels only, but also advantageously include advanced fuels.

  7. Formation of a field reversed configuration for magnetic and electrostatic confinement of plasma

    DOEpatents

    Rostoker, Norman; Binderbauer, Michl; Qerushi, Artan; Tahsiri, Hooshang

    2006-02-07

    A system and method for containing plasma and forming a Field Reversed Configuration (FRC) magnetic topology are described in which plasma ions are contained magnetically in stable, non-adiabatic orbits in the FRC. Further, the electrons are contained electrostatically in a deep energy well, created by tuning an externally applied magnetic field. The simultaneous electrostatic confinement of electrons and magnetic confinement of ions avoids anomalous transport and facilitates classical containment of both electrons and ions. In this configuration, ions and electrons may have adequate density and temperature so that upon collisions they are fused together by nuclear force, thus releasing fusion energy. Moreover, the fusion fuel plasmas that can be used with the present confinement system and method are not limited to neutronic fuels only, but also advantageously include advanced fuels.

  8. Simulations of Electron Bernstein Wave Heating in Field-Reversed Configuration Plasmas

    NASA Astrophysics Data System (ADS)

    Yang, Xiaokang; Petrov, Yuri; Koehn, Alf; Ceccherini, Francesco; Galeotti, Laura

    2015-11-01

    It is extremely challenging to use microwaves to heat electrons effectively in high-beta Field-Reversed Configurations (FRCs) such as the C-2U experiment. For a fixed two dimensional profile of C-2U equilibrium field, electron density and temperature, feasibility studies of electron Bernstein wave (EBW) heating via O-X-B mode conversion, have recently been conducted with use of the Genray ray-tracing code for six selected frequencies which cover the frequency range from fundamental electron cyclotron resonance (ECR) up to more than 20 harmonics of ECR. Very promising and also physically interesting simulation results, which are strongly related to the unique C-2U configuration, will be presented in detail

  9. Formation of field-reversed configuration by use of two merging spheromaks with opposing toroidal field

    NASA Astrophysics Data System (ADS)

    Ono, Yasushi

    2016-03-01

    In 1986, we, U. Tokyo group first reported the new formation of the field-reversed configuration (FRC) by two merging spheromaks with opposing toroidal field. This unique formation has been developed mainly in our TS-3 and TS- 4 merging experiments, leading us to a new scenario of FRC slow-formation, heating and current-amplification. Its formation efficiency is much higher than the conventional field-reversed theta-pinch method. The relaxation from the force-free (β˜0.05-0.1) spheromaks to the high-β (β˜0.7-1) FRC is caused by conversion of the toroidal (partly poloidal) magnetic energy of the spheromaks to the ion thermal energy of the FRC through the reconnection outflow. The reconnection heating energy scales with square of the reconnecting magnetic field, suggesting direct access to the alpha heating without using any additional heating. A central solenoid (CS) coil was installed successfully to amplify the FRC plasma current by factor 2. Our toroidal mode observations suggest that the tilting stability of the oblate FRC is provided by ion kinetic effect. As another important extension, fast application of external toroidal magnetic field transformed this oblate FRC into an ultra-high-β spherical tokamak (ST) with diamagnetic toroidal magnetic field, suggesting close relationship between FRCs and high-β STs in the second stable region for ballooning mode.

  10. Kinetic Effects on the Stability Properties of Field-reversed Configurations: II. Nonlinear Evolution

    SciTech Connect

    Elena V. Belova; Ronald C. Davidson; Hantao Ji; Masaaki Yamada

    2003-11-25

    Results of three-dimensional hybrid simulations of the field-reversed configuration (FRC) are presented. Emphasis of this work is on the nonlinear evolution of magnetohydrodynamic (MHD) instabilities in kinetic FRCs. A wide range of ''bar s'' values is considered, where the ''bar s'' is the FRC kinetic parameter, which measures the number of ion gyroradii in the configuration. The linear and nonlinear stability of MHD modes with toroidal mode numbers n greater than or equal to 1 is investigated, including the effects of ion rotation, finite electron pressure, and weak toroidal field. Low-''bar s'' simulations show nonlinear saturation of the n = 1 tilt mode. The n greater than or equal to 2 rotational modes are observed to grow during the nonlinear phase of the tilt instability due to ion spin-up in the toroidal direction. Large-''bar s'' simulations show no saturation of the tilt mode, and there is a slow nonlinear evolution of the instability after the initial fast linear growth. Overall, the hybrid simulations demonstrate the importance of nonlinear effects, which are responsible for the saturation of instabilities in low-''bar s'' configurations, and also for the increase in FRC life-time compared to MHD models in high-''bar s'' configurations.

  11. Overview of C-2 field-reversed configuration experiment plasma diagnostics.

    PubMed

    Gota, H; Thompson, M C; Tuszewski, M; Binderbauer, M W

    2014-11-01

    A comprehensive diagnostic suite for field-reversed configuration (FRC) plasmas has been developed and installed on the C-2 device at Tri Alpha Energy to investigate the dynamics of FRC formation as well as to understand key FRC physics properties, e.g., confinement and stability, throughout a discharge. C-2 is a unique, large compact-toroid merging device that produces FRC plasmas partially sustained for up to ∼5 ms by neutral-beam (NB) injection and end-on plasma-guns for stability control. Fundamental C-2 FRC properties are diagnosed by magnetics, interferometry, Thomson scattering, spectroscopy, bolometry, reflectometry, and NB-related fast-ion/neutral diagnostics. These diagnostics (totaling >50 systems) are essential to support the primary goal of developing a deep understanding of NB-driven FRCs. PMID:25430249

  12. Numerical simulation of magnetic compression on a field-reversed configuration plasma

    NASA Astrophysics Data System (ADS)

    Kanki, T.; Suzuki, Y.; Okada, S.; Goto, S.

    1999-12-01

    A two-dimensional magnetohydrodynamic (MHD) simulation of an axial magnetic compression on a field-reversed configuration (FRC) plasma is carried out for the parameter range of a corresponding experiment conducted on the FRC Injection Experiment (FIX) [S. Okada et al., 17th IAEA Fusion Energy Conference 1998 (International Atomic Energy Agency, Vienna) (in press)]. The simulation results show that during the initial stage of the magnetic compression the front part of the FRC plasma is mainly compressed radially, and that after this stage, the compression is primarily axial. Of particular interest is expected that the closed magnetic flux surfaces of the FRC can be retained without any degradation during the magnetic compression process. Further, it is observed in the simulation that the axial magnetic compression enables a transition of the MHD equilibrium from a long and thin to a short and fat FRC. The effects of this magnetic compression on FRC plasmas are discussed.

  13. Stochastic Ion Heating in a Field-reversed Configuration Geometry by Rotating Magnetic Fields

    SciTech Connect

    S.A. Cohen, A.S. Landsman, and A.H. Glasser

    2007-06-25

    Ion heating by application of rotating magnetic fields (RMF) to a prolate field-reversed configuration(FRC) is explored by analytical and numerical techniques. For odd-parity RMF (RMFo), perturbation analysis shows ions in figure-8 orbits gain energy at resonances of the RMFo frequency, ωR, with the figure-8 orbital frequency, ω. Since figure-8 orbits tend to gain the most energy from the RMF and are unlikely to escape in the cusp region (where most losses occur), they are optimal candidates for rapid stochastic heating, as compared to cyclotron and betatron orbits. Comparisons are made between heating caused by even- and odd-parity RMFs and between heating in currently operating and in reactor-scale FRC devices.

  14. Equilibrium of field reversed configurations with rotation. IV. Two space dimensions and many ion species

    NASA Astrophysics Data System (ADS)

    Qerushi, Artan; Rostoker, Norman

    2003-03-01

    In a previous paper [N. Rostoker and A. Qerushi, Phys. Plasmas 9, 3057 (2002)] a generalized Grad-Shafranov equation for the plasma flux function was derived which provides a complete description of equilibria of field reversed configurations with rotation. In this paper this fundamental equation is solved for two space dimensions and many ion species. The following fusion fuels are considered: D-T, D-He3, and p-B11. Using periodic boundary conditions the original differential equation is converted to an equivalent integral equation which involves a Green's function. The integral equation is solved by iteration. Approximate solutions are found for all the fusion fuels considered using a two-dimensional equilibrium model for one type of ion [A. Qerushi and N. Rostoker, Phys. Plasmas 9, 5001 (2002)]. They are used as starting trial functions of the iterations. They turn out to be so close to the real solutions that only a few iterations are needed.

  15. Equilibrium of field reversed configurations with rotation. II. One space dimension and many ion species

    NASA Astrophysics Data System (ADS)

    Qerushi, Artan; Rostoker, Norman

    2002-07-01

    In a previous paper [N. Rostoker and A. Qerushi, Phys. Plasmas 9, 3057 (2002)] it was shown that a complete description of equilibria of field reversed configurations with rotation can be obtained by solving a generalized Grad-Shafranov equation for the flux function. In this paper we show how to solve this equation in the case of one space dimension and many ion species. The following fusion fuels are considered: D-T, D-He3, and p-B11. Using a Green's function the generalized Grad-Shafranov equation is converted to an equivalent integral equation. The integral equation can be solved by iteration. Approximate analytic solutions for a plasma with many ion species are found. They are used as starting trial functions of the iterations. They turn out to be so close to the true solutions that only a few iterations are needed.

  16. Field-Reversed Configuration Power Plant Critical-Issue Scoping Study

    SciTech Connect

    Santarius, J. F.; Mogahed, E. A.; Emmert, G. A.; Khater, H. Y.; Nguyen, C. N.; Ryzhkov, S. V.; Stubna, M. D.

    2000-03-31

    A team from the Universities of Wisconsin, Washington, and Illinois performed an engineering scoping study of critical issues for field-reversed configuration (FRC) power plants. The key tasks for this research were (1) systems analysis for deuterium-tritium (D-T) FRC fusion power plants, and (2) conceptual design of the blanket and shield module for an FRC fusion core. For the engineering conceptual design of the fusion core, the project team focused on intermediate-term technology. For example, one decision was to use steele structure. The FRC systems analysis led to a fusion power plant with attractive features including modest size, cylindrical symmetry, good thermal efficiency (52%), relatively easy maintenance, and a high ratio of electric power to fusion core mass, indicating that it would have favorable economics.

  17. Convective Power Loss Measurements in a Field Reversed Configuration with Rotating Magnetic Field Current Drive

    NASA Astrophysics Data System (ADS)

    Melnik, Paul

    The Translation, Confinement, and Sustainment Upgrade (TCSU) experiment achieves direct formation and sustainment of a field reversed configuration (FRC) plasma through rotating magnetic fields (RMF). The pre-ionized gas necessary for FRC formation is supplied by a magnetized cascade arc source that has been developed for TCSU. To ensure ideal FRC performance, the condition of the vacuum chamber prior to RMF start-up has been characterized with the use of a fast response ion gauge. A circuit capable of gating the puff valves with initial high voltage for quick response and then indefinite operational voltage was also designed. A fully translatable combination Langmuir / Mach probe was also built to measure the electron temperature, electron density, and ion velocity of the FRC. These measurements were also successfully completed in the FRC exhaust jets allowing for an accurate analysis of the FRC power loss through convection.

  18. Overview of C-2 field-reversed configuration experiment plasma diagnostics

    SciTech Connect

    Gota, H. Thompson, M. C.; Tuszewski, M.; Binderbauer, M. W.

    2014-11-15

    A comprehensive diagnostic suite for field-reversed configuration (FRC) plasmas has been developed and installed on the C-2 device at Tri Alpha Energy to investigate the dynamics of FRC formation as well as to understand key FRC physics properties, e.g., confinement and stability, throughout a discharge. C-2 is a unique, large compact-toroid merging device that produces FRC plasmas partially sustained for up to ∼5 ms by neutral-beam (NB) injection and end-on plasma-guns for stability control. Fundamental C-2 FRC properties are diagnosed by magnetics, interferometry, Thomson scattering, spectroscopy, bolometry, reflectometry, and NB-related fast-ion/neutral diagnostics. These diagnostics (totaling >50 systems) are essential to support the primary goal of developing a deep understanding of NB-driven FRCs.

  19. Advanced Biasing Experiments on the C-2 Field-Reversed Configuration Device

    NASA Astrophysics Data System (ADS)

    Thompson, Matthew; Korepanov, Sergey; Garate, Eusebio; Yang, Xiaokang; Gota, Hiroshi; Douglass, Jon; Allfrey, Ian; Valentine, Travis; Uchizono, Nolan; TAE Team

    2014-10-01

    The C-2 experiment seeks to study the evolution, heating and sustainment effects of neutral beam injection on field-reversed configuration (FRC) plasmas. Recently, substantial improvements in plasma performance were achieved through the application of edge biasing with coaxial plasma guns located in the divertors. Edge biasing provides rotation control that reduces instabilities and E × B shear that improves confinement. Typically, the plasma gun arcs are run at ~ 10 MW for the entire shot duration (~ 5 ms), which will become unsustainable as the plasma duration increases. We have conducted several advanced biasing experiments with reduced-average-power plasma gun operating modes and alternative biasing cathodes in an effort to develop an effective biasing scenario applicable to steady state FRC plasmas. Early results show that several techniques can potentially provide effective, long-duration edge biasing.

  20. Overview of C-2 field-reversed configuration experiment plasma diagnosticsa)

    NASA Astrophysics Data System (ADS)

    Gota, H.; Thompson, M. C.; Tuszewski, M.; Binderbauer, M. W.

    2014-11-01

    A comprehensive diagnostic suite for field-reversed configuration (FRC) plasmas has been developed and installed on the C-2 device at Tri Alpha Energy to investigate the dynamics of FRC formation as well as to understand key FRC physics properties, e.g., confinement and stability, throughout a discharge. C-2 is a unique, large compact-toroid merging device that produces FRC plasmas partially sustained for up to ˜5 ms by neutral-beam (NB) injection and end-on plasma-guns for stability control. Fundamental C-2 FRC properties are diagnosed by magnetics, interferometry, Thomson scattering, spectroscopy, bolometry, reflectometry, and NB-related fast-ion/neutral diagnostics. These diagnostics (totaling >50 systems) are essential to support the primary goal of developing a deep understanding of NB-driven FRCs.

  1. A new high performance field reversed configuration operating regime in the C-2 device

    SciTech Connect

    Tuszewski, M.; Smirnov, A.; Thompson, M. C.; Barnes, D.; Binderbauer, M. W.; Brown, R.; Bui, D. Q.; Clary, R.; Conroy, K. D.; Deng, B. H.; Dettrick, S. A.; Douglass, J. D.; Garate, E.; Glass, F. J.; Gota, H.; Guo, H.Y.; Gupta, D.; Gupta, S.; Kinley, J. S.; Knapp, K.; and others

    2012-05-15

    Large field reversed configurations (FRCs) are produced in the C-2 device by combining dynamic formation and merging processes. The good confinement of these FRCs must be further improved to achieve sustainment with neutral beam (NB) injection and pellet fuelling. A plasma gun is installed at one end of the C-2 device to attempt electric field control of the FRC edge layer. The gun inward radial electric field counters the usual FRC spin-up and mitigates the n = 2 rotational instability without applying quadrupole magnetic fields. Better plasma centering is also obtained, presumably from line-tying to the gun electrodes. The combined effects of the plasma gun and of neutral beam injection lead to the high performance FRC operating regime, with FRC lifetimes up to 3 ms and with FRC confinement times improved by factors 2 to 4.

  2. A model for inferring transport rates from observed confinement times in field-reversed configurations

    NASA Astrophysics Data System (ADS)

    Steinhauer, Loren C.; Milroy, Richard D.; Slough, John T.

    1985-03-01

    A one-dimensional transport model is developed to simulate the confinement of plasma and magnetic flux in a field-reversed configuration. Given the resistivity, the confinement times can be calculated. Approximate expressions are found which yield the magnitude and gross profile of the resistivity if the confinement times are known. These results are applied to experimental data from experiments, primarily TRX-1, to uncover trends in the transport properties. Several important conclusions emerge. The transport depends profoundly, and inexplicably, on the plasma formation mode. The inferred transport differs in several ways from the predictions of local lower-hybrid-drift turbulence theory. Finally, the gross resistivity exhibits an unusual trend with xs (separatrix radius rs divided by the conducting wall radius rc ), and is peaked near the magnetic axis for certain predictable conditions.

  3. Multi-channel Doppler backscattering measurements in the C-2 field reversed configuration

    SciTech Connect

    Schmitz, L. Peebles, W. A.; Ruskov, E.; Deng, B. H.; Gota, H.; Gupta, D.; Tuszewski, M.; Douglass, J.; Binderbauer, M.; Tajima, T.

    2014-11-15

    A versatile heterodyne Doppler Backscattering (DBS) system is used to measure density fluctuation levels (in the wavenumber range kρ{sub s} ≤ 50), and the toroidal E × B flow velocity in the C-2 Field-Reversed Configuration (FRC). Six tunable frequencies in three waveguide bands (26 GHz ≤ f ≤ 90 GHz) are launched using monostatic beam optics, via a quasi-optical beam combiner/polarizer and an adjustable parabolic focusing mirror (inside the vacuum enclosure) achieving Gaussian beam spot sizes of 3–5.5 cm at the X/O-mode cutoff. The DBS system covers plasma densities of 0.8 × 10{sup 13} ≤ n{sub e} ≤ 1 × 10{sup 14} cm{sup −3}, and provides access to the FRC core (up to the field null) and across the FRC separatrix into the scrape-off layer plasma.

  4. Simulations of Experiments on Electron Magnetohydrodynamic Reconnection in a Field Reversed Configuration

    NASA Astrophysics Data System (ADS)

    Correa, Cynthia; Horton, Wendel

    2012-10-01

    Theory and simulations are developed to interpret laboratory electron magnetohydrodynamic reconnection experiments involving nonlinear whistlers by Stenzel et.al. [R.L. Stenzel, M.C. Griskey, J. M. Urrutia, and K.D. Strohmaier, Phys. Plasma 10, 2780 (2003)]. In that experiment, two current-carrying 30 cm antennas form a Helmholtz coil configuration and produce an elongated dipole field that opposes the uniform ambient field. The current is increased until a field-reversed-configuration with two 3D null points and a 2D null line has been established, and then the current is switched off. The EMHD dynamics are simulated with a 3D three-field nonlinear MHD code. The analytical model includes Poisson bracket nonlinearities that can give rise to vortices and couple energy to higher modes, as well as hyperviscosity to balance the energy exchange. Simulation field topology and dynamics are compared to the laboratory experiment as verification of the simulation code. The experimental setup and other variations are simulated and examined for occurrences of driven and undriven electron magnetohydrodynamic (EMHD) reconnection.

  5. Nonlinear electron magnetohydrodynamics physics. I. Whistler spheromaks, mirrors, and field reversed configurations

    SciTech Connect

    Stenzel, R. L.; Urrutia, J. M.; Strohmaier, K. D.

    2008-04-15

    The nonlinear interactions of time-varying magnetic fields with plasmas is investigated in the regime of electron magnetohydrodynamics. Simple magnetic field geometries are excited in a large laboratory plasma with a loop antenna driven with large oscillatory currents. When the axial loop field opposes the ambient field, the net field can be reversed to create a field-reversed configuration (FRC). In the opposite polarity, a strong field enhancement is produced. The time-varying antenna field excites whistler modes with wave magnetic fields exceeding the ambient magnetic field. The resulting magnetic field topologies have been measured. As the magnetic topology is changed from FRC to strong enhancement, two propagating field configurations resembling spheromaks are excited, one with positive and the other with negative helicity. Such 'whistler spheromaks' propagate with their null points along the weaker ambient magnetic field, with the current density localized around its O-line. In contrast, 'whistler mirrors' which have topologies similar to linear whistlers, except with B{sub wave}>B{sub 0}, have no null regions and, therefore, broad current layers. This paper describes the basic field topologies of whistler spheromaks and mirrors, while companion papers discuss the associated nonlinear phenomena as well as the interaction between them.

  6. A Field-Reversed Configuration Plasma Translated into a Neutral Gas Atmosphere

    NASA Astrophysics Data System (ADS)

    Sekiguchi, Jun'ichi; Asai, Tomohiko; Takahashi, Tsutomu; Ando, Hirotoshi; Arai, Mamiko; Katayama, Seri; Takahashi, Toshiki

    2014-10-01

    A field-reversed configuration (FRC) is a compact toroid dominantly with poloidal magnetic field. Because of its simply-connected configuration, an FRC can be translated axially along a gradient of guide magnetic field, and trapped in a confinement region with quasi-static external magnetic field. FRC translation experiments have been performed several facilities. Translation speed of those translated FRCs is comparable with super-Alfvenic speed of approximately 200 km/s. In this experiments, FRC translation has been performed on the FAT (FRC Amplification via Translation) facility. Achieved translation speed in the case of translation into a confinement chamber maintained as the vacuum state is in the range from 130 to 210 km/s. On the other hand, FRC translation into a statically filled deuterium gas atmosphere has also been performed. In the case of translation into filled neutral gas, FRC translation speed is approximately 80 km/s and the separatrix volume has extremely expanded compared with the case of a vacuum state. The phenomenon suggests the presence of regeneration process of translation kinetic energy back into the internal plasma energy during the translation process. This work was partially supported by ``Nihon University Symbolic Project.'' The authors gratefully acknowledge contributions from Nac Image Technology Inc. on the fast camera measurements.

  7. Kinetic Effects on the Stability Properties of Field-reversed Configurations: I. Linear Stability

    SciTech Connect

    Elena V. Belova; Ronald C. Davidson; Hantao Ji; Masaaki Yamada

    2003-01-28

    New computational results are presented which advance the understanding of the stability properties of the Field-Reversed Configuration (FRC). We present results of hybrid and two-fluid (Hall-MHD) simulations of prolate FRCs. The n = 1 tilt instability mechanism and growth rate reduction mechanisms are investigated in detail including resonant particle effects, finite Larmor radius and Hall stabilization, and profile effects. It is shown that the Hall effect determines the mode rotation and the change in the linear mode structure in the kinetic regime; however, the reduction in the growth rate is mostly due to finite Larmor radius effects. Resonant wave-particle interactions are studied as a function of (a) elongation, (b) the kinetic parameter S*, which is proportional to the ratio of the separatrix radius to the thermal ion Larmor radius, and (c) the separatrix shape. It is demonstrated that, contrary to the usually assumed stochasticity of the ion orbits in the FRC, a large fraction of the orbits are regular in long configurations when S* is small. A stochasticity condition is found, and a scaling with the S* parameter is presented. Resonant particle effects are shown to maintain the instability in the large gyroradius regime regardless of the separatrix shape.

  8. Interaction of Fast Ions with Global Plasma Modes in the C-2 Field Reversed Configuration Experiment

    NASA Astrophysics Data System (ADS)

    Smirnov, Artem; Dettrick, Sean; Clary, Ryan; Korepanov, Sergey; Thompson, Matthew; Trask, Erik; Tuszewski, Michel

    2012-10-01

    A high-confinement operating regime [1] with plasma lifetimes significantly exceeding past empirical scaling laws was recently obtained by combining plasma gun edge biasing and tangential Neutral Beam Injection (NBI) in the C-2 field-reversed configuration (FRC) experiment [2, 3]. We present experimental and computational results on the interaction of fast ions with the n=2 rotational and n=1 wobble modes in the C-2 FRC. It is found that the n=2 mode is similar to quadrupole magnetic fields in its detrimental effect on the fast ion transport due to symmetry breaking. The plasma gun generates an inward radial electric field, thus stabilizing the n=2 rotational instability without applying the quadrupole magnetic fields. The resultant FRCs are nearly axisymmetric, which enables fast ion confinement. The NBI further suppresses the n=2 mode, improves the plasma confinement characteristics, and increases the plasma configuration lifetime [4]. The n=1 wobble mode has relatively little effect on the fast ion transport, likely due to the approximate axisymmetry about the displaced plasma column. [4pt] [1] M. Tuszewski et al., Phys. Rev. Lett. 108, 255008 (2012).[0pt] [2] M. Binderbauer et al., Phys. Rev. Lett. 105, 045003 (2010).[0pt] [3] H.Y. Guo et al., Phys. Plasmas 18, 056110 (2011).[0pt] [4] M. Tuszewski et al., Phys. Plasmas 19, 056108 (2012)

  9. Radial current density effects on rotating magnetic field current drive in field-reversed configurations

    SciTech Connect

    Clemente, R. A.; Gilli, M.; Farengo, R.

    2008-10-15

    Steady state solutions, suitable for field-reversed configurations (FRCs) sustained by rotating magnetic fields (RMFs) are obtained by properly including three-dimensional effects, in the limit of large FRC elongation, and the radial component of Ohm's law. The steady electrostatic potential, necessary to satisfy Ohm's law, is considered to be a surface function. The problem is analyzed at the midplane of the configuration and it is reduced to the solution of two coupled nonlinear differential equations for the real and imaginary parts of the phasor associated to the longitudinal component of the vector potential. Additional constraints are obtained by requesting that the steady radial current density and poloidal magnetic flux vanish at the plasma boundary which is set at the time-averaged separatrix. The results are presented in terms of the degree of synchronism of the electrons with the RMF and compared with those obtained when radial current effects are neglected. Three important differences are observed when compared with the case without radial current density. First, at low penetration of the RMF into the plasma there is a significant increase in the driven azimuthal current. Second, the RMF amplitude necessary to access the high synchronism regime, starting from low synchronism, is larger and the difference appears to increase as the separatrix to classical skin depth ratio increases. Third, the minimum RMF amplitude necessary to sustain almost full synchronism is reduced.

  10. Influence of impurities on the plasma parameters and stability of a field-reversed configuration

    NASA Astrophysics Data System (ADS)

    König, R.; Kolk, K.-H.; Kunze, H.-J.

    1987-11-01

    Atoms of solid elements were injected into a theta-pinch discharge from both coil ends shortly before the start of the preionization discharge by a ruby-laser driven ablation from solid targets. The ablation process itself and the subsequent distribution of the impurities during the different stages of the discharge were studied experimentally as well as theoretically. The injection of aluminum from only one coil end resulted in an axial drift of the whole field-reversed configuration (FRC) at 5 cm/μsec. By injecting it from both ends it was again possible to keep the whole plasma configuration stable in the coil's midplane but at a reduced equilibrium plasma length. Small changes in the plasma parameters of the FRC were observed that are interpreted to be the consequence of a better ionization of the initial plasma and of a delay in the highly dynamic reconnection process. This delay is most probably caused by the increased mass density of the plasma.

  11. Passive Superconducting Flux Conservers for Rotating-Magnetic-Field-Driven Field-Reversed Configurations

    SciTech Connect

    Oz, E.; Myers, C. E.; Edwards, M. R.; Berlinger, B.; Brooks, A.; Cohen, S. A.

    2011-01-05

    The Princeton Field-Reversed Configuration (PFRC) experiment employs an odd-parity rotating magnetic field (RMFo) current drive and plasma heating system to form and sustain high-Β plasmas. For radial confinement, an array of coaxial, internal, passive, flux-conserving (FC) rings applies magnetic pressure to the plasma while still allowing radio-frequency RMFo from external coils to reach the plasma. The 3 ms pulse duration of the present experiment is limited by the skin time (τfc) of its room-temperature copper FC rings. To explore plasma phenomena with longer characteristic times, the pulse duration of the next-generation PFRC-2 device will exceed 100 ms, necessitating FC rings with (τfc > 300 ms. In this paper we review the physics of internal, discrete, passive FCs and describe the evolution of the PFRC's FC array. We then detail new experiments that have produced higher performance FC rings that contain embedded high-temperature superconducting (HTS) tapes. Several HTS tape winding configurations have been studied and a wide range of extended skin times, from 0.4 s to over 103 s, has been achieved. The new FC rings must carry up to 3 kA of current to balance the expected PFRC-2 plasma pressure, so the dependence of the HTS-FC critical current on the winding configuration and temperature was also studied. From these experiments, the key HTS-FC design considerations have been identified and HTS-FC rings with the desired performance characteristics have been produced.

  12. Nonlinear stability of field-reversed configurations with self-generated toroidal field

    SciTech Connect

    Omelchenko, Y. A.; Schaffer, M. J.; Parks, P. B.

    2001-10-01

    The field-reversed configuration (FRC) is a high-beta compact toroidal plasma confinement scheme in which the external poloidal field is reversed on the geometric axis by azimuthal (toroidal) plasma current. A quasineutral, hybrid, particle-in-cell (PIC) approach [Y. A. Omelchenko and R. N. Sudan, Phys. Plasmas 2, 2773 (1995)] is applied to study long-term nonlinear stability of computational FRC equilibria to a number of toroidal modes, including the most disruptive tilt mode. In particular, a self-generated toroidal magnetic field is found to be an important factor in mitigating the instability and preventing the confinement disruption. This is shown to be a unique FRC property resulting from the Hall effect in the regions of vanishing poloidal magnetic field. The instability-driven toroidal field stabilizes kink formation by increasing the magnetic field energy without destabilizing curvature-driven plasma motion. Finally, the tilt instability saturates due to nonlinear, finite Larmor radius (FLR) effects and plasma relaxation to a quasisteady kinetic state. During this transition the FRC is shown to dissipate a substantial amount of initially trapped flux and plasma energy. These effects are demonstrated for kinetic and fluid-like, spherical and prolate FRCs.

  13. Kinetic simulations of the formation and stability of the field-reversed configuration

    SciTech Connect

    Omelchenko, Yu. A.

    2000-05-01

    The Field-Reversed Configuration (FRC) is a high-beta compact toroidal plasma confined primarily by poloidal fields. In the FRC the external field is reversed on axis by the diamagnetic current carried by thermal plasma particles. A three-dimensional, hybrid, particle-in-cell (zero-inertia fluid electrons, and kinetic ions), code FLAME, previously used to study ion rings [Yu. A. Omelchenko and R. N. Sudan, J. Comp. Phys. 133, 146 (1997)], is applied to investigate FRC formation and tilt instability. Axisymmetric FRC equilibria are obtained by simulating the standard experimental reversed theta-pinch technique. These are used to study the nonlinear tilt mode in the ''kinetic'' and ''fluid-like'' cases characterized by ''small'' ({approx}3) and ''large'' ({approx}12) ratios of the characteristic radial plasma size to the mean ion gyro-radius, respectively. The formation simulations have revealed the presence of a substantial toroidal (azimuthal) magnetic field inside the separatrix, generated due to the stretching of the poloidal field by a sheared toroidal electron flow. This is shown to be an important tilt-stabilizing effect in both cases. On the other hand, the tilt mode stabilization by finite Larmor radius effects has been found relatively insignificant for the chosen equilibria. (c) 2000 American Institute of Physics.

  14. Electron Heating of a Field Reversed Configuration at the Upper Hybrid Resonance Frequency

    NASA Astrophysics Data System (ADS)

    Garate, Eusebio; Schmitz, Lothar; Trask, Erik; Yang, Xiaokang; Shalashov, Alexander; Balakin, Alexey; Gospodchikov, Egor; Denisov, Gregory; Litvak, Alexander; TAE Team

    2013-10-01

    Field reversed configurations (FRC) have closed field line regions in which the ratio of plasma to cyclotron frequencies is greater than 1. Usual electron heating scenarios, such as electron cyclotron resonance heating, cannot be used. Electron Bernstein wave coupling is a possible heating mechanism for such overdense plasma, as is heating at the upper hybrid resonance (UHR). Analytic and full wave calculations using simulated C-2 density and magnetic field profiles indicate > 90% coupling is theoretically possible at the UHR. Initial measurements have been carried out on C-2 to assess microwave absorption in the frequency range where upper hybrid electron heating would be expected according to the calculations. A Gaussian beam (2W0 ~ 4-6 cm) is launched using monostatic beam optics (40-60 GHz) and the reflected/ absorbed power is measured. O-mode and X-mode launches will be compared to discriminate O-X-B mode conversion/absorption. We will discuss both the theoretical and experimental results carried out on C-2.

  15. Rotating magnetic field current drive of high-temperature field reversed configurations with high {zeta} scaling

    SciTech Connect

    Guo, H. Y.; Hoffman, A. L.; Milroy, R. D.

    2007-11-15

    Greatly reduced recycling and impurity ingestion in the Translation, Confinement, and Sustainment--Upgrade (TCSU) device has allowed much higher plasma temperatures to be achieved in the field reversed configurations (FRC) under rotating magnetic field (RMF) formation and sustainment. The hotter plasmas have higher magnetic fields and much higher diamagnetic electron rotation rates so that the important ratio of average electron rotation frequency to RMF frequency, called {zeta}, approaches unity, for the first time, in TCSU. A large fraction of the RMF power is absorbed by an as yet unexplained (anomalous) mechanism directly proportional to the square of the RMF magnitude. It becomes of relatively lesser significance as the FRC current increases, and simple resistive heating begins to dominate, but the anomalous absorption is useful for initial plasma heating. Measurements of total absorbed power, and comparisons of applied RMF torque to torque on the electrons due to electron-ion friction under high-{zeta} operation, over a range of temperatures and fields, have allowed the separation of the classical Ohmic and anomalous heating to be inferred, and cross-field plasma resistivities to be calculated.

  16. Neutral beam system for the C-2-Upgrade Field Reversed Configuration Experiment

    NASA Astrophysics Data System (ADS)

    Korepanov, Sergey; Smirnov, Artem; Clary, Ryan; Dunaevsky, Alexandr; Isakov, Ivan; Magee, Richard; Matvienko, Vasily; van Drie, Alan; Deichuli, Petr; Ivanov, Alexandr; Pirogov, Konstantin; Sorokin, Aleksey; Stupishin, Nickolay; Vakhrushev, Roman; TAE Team; Budker Team

    2015-11-01

    In the C-2 field-reversed configuration (FRC) experiment, tangential neutral beam injection (NBI), coupled with electrically-biased plasma guns at the plasma ends and advanced surface conditioning, led to dramatic reductions in turbulence-driven losses. Under such conditions, highly reproducible, macroscopically stable, hot FRCs with a significant fast-ion population, total plasma temperature of ~ 1 keV and record lifetimes were achieved. To further improve the FRC sustainment and provide a better coupling with beams, the C-2 device has been upgraded with a new NBI system, which can deliver up to a total of 10 MW of hydrogen beam power (15 keV, 8 ms pulse), by far the largest ever used in compact toroid plasma experiments. The NBI system consists of six positive-ion based injectors featuring flexible, modular design. This presentation will provide an overview of the C-2U NBI system, including: 1) NBI test facility, beam characterization, and acceptance tests, 2) integration with the machine and operating experience, 3) improvements in plasma performance with increased beam power.

  17. Formation and sustainment of field reversed configuration (FRC) plasmas by spheromak merging and neutral beam injection

    DOE PAGESBeta

    Yamada, Masaaki

    2016-01-01

    This study briefly reviews a compact toroid reactor concept that addresses critical issues for forming, stabilizing and sustaining a field reversed configuration (FRC) with the use of plasma merging, plasma shaping, conducting shells, neutral beam injection (NBI). In this concept, an FRC plasma is generated by the merging of counter-helicity spheromaks produced by inductive discharges and sustained by the use of neutral beam injection (NBI). Plasma shaping, conducting shells, and the NBI would provide stabilization to global MHD modes. Although a specific FRC reactor design is outside the scope of the present paper, an example of a promising FRC reactormore » program is summarized based on the previously developed SPIRIT (Self-organized Plasmas by Induction, Reconnection and Injection Techniques) concept in order to connect this concept to the recently achieved the High Performance FRC plasmas obtained by Tri Alpha Energy [Binderbauer et al, Phys. Plasmas 22,056110, (2015)]. This paper includes a brief summary of the previous concept paper by M. Yamada et al, Plasma Fusion Res. 2, 004 (2007) and the recent experimental results from MRX.« less

  18. Numerical Study of Field-reversed Configurations: The Formation and Ion Spin-up

    SciTech Connect

    E.V. Belova; R.C. Davidson; H. Ji; M. Yamada; C.D. Cothran; M.R. Brown; M.J. Schaffer

    2005-06-06

    Results of three-dimensional numerical simulations of field-reversed configurations (FRCs) are presented. Emphasis of this work is on the nonlinear evolution of magnetohydrodynamic (MHD) instabilities in kinetic FRCs, and the new FRC formation method by counter-helicity spheromak merging. Kinetic simulations show nonlinear saturation of the n = 1 tilt mode, where n is the toroidal mode number. The n = 2 and n = 3 rotational modes are observed to grow during the nonlinear phase of the tilt instability due to the ion spin-up in the toroidal direction. The ion toroidal spin-up is shown to be related to the resistive decay of the internal flux, and the resulting loss of particle confinement. Three-dimensional MHD simulations of counter-helicity spheromak merging and FRC formation show good qualitative agreement with results from the SSX-FRC experiment. The simulations show formation of an FRC in about 20-30 Alfven times for typical experimental parameters. The growth rate of the n = 1 tilt mode is shown to be significantly reduced compared to the MHD growth rate due to the large plasma viscosity and field-line-tying effects.

  19. Power deposition by neutral beam injected fast ions in field-reversed configurations

    NASA Astrophysics Data System (ADS)

    Takahashi, Toshiki; Kato, Takayuki; Kondoh, Yoshiomi; Iwasawa, Naotaka

    2004-08-01

    The effects of Coulomb collisions on neutral beam (NB) injected fast ions into field-reversed configuration (FRC) plasmas are investigated by calculating the single particle orbits, where the ions are subject to the slowing-down and pitch-angle collisions. The Monte Carlo method is used for the pitch-angle scattering, and the friction term is added to the equation of motion to show the effects of the slowing-down collision, such as the deposited power profile. The calculation parameters used are relevant to the NB injection on the FRC injection experiment device [T. Asai, Y. Suzuki, T. Yoneda, F. Kodera, M. Okubo, and S. Goto, Phys. Plasmas 7, 2294 (2000)]. It is found that the dominant local power deposition occurs in the open field region between the X point and the mirror point because of a concentration of fast ions and a longer duration travel at the mirror reflection point. In the present calculation, the maximum deposited power to the FRC plasma is about 10% of the injected power. Although the pitch-angle scattering by Coulomb collision destroys the mirror confinement of NB injected fast ions, this effect is found to be negligible. The loss mechanism due to nonadiabatic fast ion motion, which is intrinsic in nonuniform FRC plasmas, has a much greater effect than the pitch-angle scattering by Coulomb collision.

  20. Electron Density Measurements of a Field-Reversed Configuration Using Fiber Probe Interferometry

    NASA Astrophysics Data System (ADS)

    Camacho, J. F.; Lynn, A. G.; Ruden, E. L.

    2010-11-01

    A HeNe laser interferometer operating at 632.8 nm with two single-mode optical fiber probe beams has been assembled to measure time history of the line-integrated electron density of a field-reversed configuration (FRC) for a magnetized target fusion (MTF) experiment. Our system features probe path lengths many times longer than the reference paths. We have performed simultaneous measurements along two diameters at different axial locations. During plasma formation, translation, and capture tests, the lower probe monitored the formation region, while the upper probe monitored the capture region corresponding to the location of an imploding cylindrical aluminum liner driven by the Shiva Star capacitor bank to compress and heat the FRC plasma. For the actual imploding liner experiment, the upper chord was moved to monitor the translating FRC at the entrance to the liner region. Results from the formation, translation, and capture tests as well as an actual imploding liner experiment will be presented. In addition, interferometer visibility measurements and other factors establishing the viability of our design will be discussed.

  1. Electron Density Profile Measurements of a Translated Field-Reversed Configuration

    NASA Astrophysics Data System (ADS)

    Camacho, J. F.; Brown, D. J.; Ruden, E. L.

    2008-11-01

    A four-chord HeNe laser interferometer operating at 632.8 nm is being used to measure the electron density of a field-reversed configuration (FRC) for the magnetized target fusion experiment at the Air Force Research Laboratory. The design of the interferometer has been previously described [Bull. Am. Phys. Soc. 52, 84 (2007)]. We are focusing our efforts on measuring the radial density profile of an axially translated FRC as a function of time as it emerges from the bore of the conical theta coil in which it is formed. The goal is to perform these measurements where the FRC is moving and then is captured by a magnetic mirror that will serve to trap it inside a cylindrical aluminum liner. The liner will be imploded by the Shiva Star capacitor bank to heat the plasma compressively to a fusion-relevant regime [Bull. Am. Phys. Soc. 52, 257 (2007)]. Data will be presented showing the density evolution of the FRC while it is in the formation, translation, and compression regions. We also plan to divert one of the four probe beams into a single-mode optical fiber whose collimated output can be used to sample a diameter of the plasma at different axial locations. Progress on obtaining density information as a function of axial position with this technique will also be reported.

  2. Magnetic pressure driven implosion of solid liner suitable for compression of field reverse configurations

    SciTech Connect

    Degnan, J.H.; Bartlett, R.; Cavazos, T.

    1999-07-01

    The initial design and performance of a magnetic pressure driven imploding solid liner with dimensions suitable for compressing a Field Reversed Configuration (FRC) is presented and discussed. The nominal liner parameters are 30 cm length, 5 cm outer radius, {approximately}0.1 cm thickness, Al material. The liner is imploded by magnetic pressure from an axial discharge driven by a 1,300 microfarad capacitor bank. Other nominal discharge parameters are {approximately}80 kV initial bank voltage, {approximately}44 nanohenry initial total inductance, and {approximately} milliohm series resistance. The discharge current exceeds 10 mega-amps in {approximately} 9 {micro}sec. Several types of calculations indicate that such a liner will implode in {approximately} 22 to 25 /{micro}sec, and will achieve a >0.3 cm/{micro}sec implosion velocity by the time the liner has imploded to {approximately}2.5 cm radius. This performance and these dimensions are suitable for FRC formation and compression, as discussed by K Schoenberg, R. Siemon, et al. (1). The diagnostics for the initial experiments include current (via Rogowski coils and inductive magnetic probes), voltage (via capacitive divider probes), flash radiography, and diagnostic magnetic field compression. Several types of simulations, including two dimensional magnetohydrodynamic simulations, are also discussed.

  3. Formation and sustainment of field reversed configuration (FRC) plasmas by spheromak merging and neutral beam injection

    NASA Astrophysics Data System (ADS)

    Yamada, Masaaki

    2016-03-01

    This paper briefly reviews a compact toroid reactor concept that addresses critical issues for forming, stabilizing and sustaining a field reversed configuration (FRC) with the use of plasma merging, plasma shaping, conducting shells, neutral beam injection (NBI). In this concept, an FRC plasma is generated by the merging of counter-helicity spheromaks produced by inductive discharges and sustained by the use of neutral beam injection (NBI). Plasma shaping, conducting shells, and the NBI would provide stabilization to global MHD modes. Although a specific FRC reactor design is outside the scope of the present paper, an example of a promising FRC reactor program is summarized based on the previously developed SPIRIT (Self-organized Plasmas by Induction, Reconnection and Injection Techniques) concept in order to connect this concept to the recently achieved the High Performance FRC plasmas obtained by Tri Alpha Energy [Binderbauer et al, Phys. Plasmas 22,056110, (2015)]. This paper includes a brief summary of the previous concept paper by M. Yamada et al, Plasma Fusion Res. 2, 004 (2007) and the recent experimental results from MRX.

  4. Design and Construction of Field Reversed Configuration Plasma Chamber for Plasma Material Interaction Studies

    NASA Astrophysics Data System (ADS)

    Smith, DuWayne L.

    A Field Reversed Configuration (FRC) plasma source was designed and constructed to conduct high energy plasma-materials interaction studies. The purpose of these studies is the development of advanced materials for use in plasma based electric propulsion systems and nuclear fusion containment vessels. Outlined within this thesis is the basic concept of FRC plasmoid creation, an overview of the device design and integration of various diagnostics systems for plasma conditions and characterization, discussion on the variety of material defects resulting from the plasma exposure with methods and tools designed for characterization. Using a Michelson interferometer it was determined that the FRC plasma densities are on the order of ~1021 m-3. A novel dynamic pressure probe was created to measure ion velocities averaging 300 km/s. Compensating flux loop arrays were used to measure magnetic field strength and verify the existence of the FRC plasmoid and when used in combination with density measurements it was determined that the average ion temperatures are ~130 eV. X-ray Photoelectron Spectroscopy (XPS) was employed as a means of characterizing the size and shape of the plasma jet in the sample exposure positions. SEM results from preliminary studies reveal significant morphological changes on plasma facing material surfaces, and use of XRD to elucidate fuel gas-ion implantation strain rates correlated to plasma exposure energies.

  5. Regular and Stochastic Orbits of Ions in a Highly Prolate Field-reversed Configuration

    SciTech Connect

    A.S. Landsman; S.A. Cohen; A.H. Glasser

    2003-10-09

    Ion dynamics in a field-reversed configuration (FRC) are explored for a highly elongated device, with emphasis placed on ions having positive canonical angular momentum. Due to angular invariance, the equations of motion are that of a two degree of freedom system with spatial variables rho and xi. As a result of separation of time scales of motion, caused by large elongation, there is a conserved adiabatic invariant, J(sub)rho, which breaks down during the crossing of the phase-space separatrix. For integrable motion, which conserves J(sub)rho, an approximate one-dimensional effective potential was obtained by averaging over the fast radial motion. This averaged potential has the shape of either a double or single symmetric well centered about xi = 0. The condition for the approach to the separatrix and therefore the breakdown of the adiabatic invariance of J(sub)rho is derived and studied under variation of J(sub)rho and conserved angular momentum, pi(sub)phi. Since repeated violation of J(sub)rho results in chaotic motion, this condition can be used to predict whether an ion (or distribution of ions) with given initial conditions will undergo chaotic motion.

  6. High Performance Field-Reversed Configuration Plasmas in the C-2 Device

    NASA Astrophysics Data System (ADS)

    Gota, H.; Tuszewski, M.; Smirnov, A.; Guo, H.; Binderbauer, M.; Barnes, D.; Akhmetov, T.; Ivanov, A.

    2012-10-01

    A high temperature, stable, long-lived field-reversed configuration (FRC) plasma state has been produced in the C-2 device by dynamically colliding and merging two oppositely directed compact toroids, by biasing edge plasma near the FRC separatrix from a plasma-gun (PG) located at one end of the C-2 device, and by neutral-beam (NB) injection. The PG creates an inward radial electric field (Er<0) which counters the usual FRC spin-up in the ion diamagnetic direction and mitigates the n = 2 rotational instability without applying quadrupole magnetic fields. Better plasma centering is also obtained, presumably from line-tying to the gun electrodes. The PG produces ExB velocity shear in the FRC edge layer which may explain observations of improved transport properties The FRCs are nearly axisymmetric, which enables fast ion confinement. The combined effects of the PG and of NB injection yield a new High Performance FRC (HPF) regime with confinement times improved by factors 2 to 4 and FRC lifetimes extended from 1 to 3 ms. A second PG was newly installed at the other end of the C-2 device, and new experimental campaigns with 2 PGs have been explored. Characteristics of the HPF regime will be presented at the meeting as well as newly obtained results with 2 PGs and NBs.

  7. Development of Field-Reversed Configuration Plasma Gun Formation Techniques for Magnetized Target Fusion

    NASA Astrophysics Data System (ADS)

    Lynn, Alan; Gilmore, Mark; Wynkoop, Tyler; Intrator, Thomas; Weber, Thomas

    2012-10-01

    Magnetized Target Fusion (MTF) is an innovative approach for a relatively fast and cheap path to the production of fusion energy that utilizes magnetic confinement to assist in the compression of a hot plasma to thermonuclear conditions by an external driver. Los Alamos National Laboratory (LANL) is currently pursing demonstration of the MTF concept via compression of an FRC (field-reversed configuration) plasma by a metal liner z-pinch in conjunction with the Air Force Research Laboratory in Albuquerque, NM. A key physics issue for the FRC as an MTF target lies in the initial pre-ionization (PI) stage. The PI formation process determines the amount of magnetic flux that can be trapped to form the FRC. This trapped flux plays an important role in the FRC's final equilibrium, transport, and stability properties. It also provides the route to greatest potential gains in FRC lifetime, which is essential to provide enough time to translate and compress the FRC effectively. In conjunction with LANL we plan to test and characterize a new system to improve the initial PI plasma formation. This system will use an array of plasma guns to form the initial plasma. Initial characterization of the plasma gun behavior will be presented.

  8. Formation and sustainment of field reversed configuration (FRC) plasmas by spheromak merging and neutral beam injection

    SciTech Connect

    Yamada, Masaaki

    2016-01-01

    This study briefly reviews a compact toroid reactor concept that addresses critical issues for forming, stabilizing and sustaining a field reversed configuration (FRC) with the use of plasma merging, plasma shaping, conducting shells, neutral beam injection (NBI). In this concept, an FRC plasma is generated by the merging of counter-helicity spheromaks produced by inductive discharges and sustained by the use of neutral beam injection (NBI). Plasma shaping, conducting shells, and the NBI would provide stabilization to global MHD modes. Although a specific FRC reactor design is outside the scope of the present paper, an example of a promising FRC reactor program is summarized based on the previously developed SPIRIT (Self-organized Plasmas by Induction, Reconnection and Injection Techniques) concept in order to connect this concept to the recently achieved the High Performance FRC plasmas obtained by Tri Alpha Energy [Binderbauer et al, Phys. Plasmas 22,056110, (2015)]. This paper includes a brief summary of the previous concept paper by M. Yamada et al, Plasma Fusion Res. 2, 004 (2007) and the recent experimental results from MRX.

  9. Langmuir probe diagnostic suite in the C-2 field-reversed configuration

    SciTech Connect

    Roche, T. Armstrong, S.; Knapp, K.; Slepchenkov, M.; Sun, X.

    2014-11-15

    Several in situ probes have been designed and implemented into the diagnostic array of the C-2 field-reversed configuration (FRC) at Tri Alpha Energy [M. Tuszewski et al. (the TAE Team), Phys. Rev. Lett. 108, 255008 (2012)]. The probes are all variations on the traditional Langmuir probe. They include linear arrays of triple probes, linear arrays of single-tipped swept probes, a multi-faced Gundestrup probe, and an ion-sensitive probe. The probes vary from 5 to 7 mm diameter in size to minimize plasma perturbations. They also have boron nitride outer casings that prevent unwanted electrical breakdown and reduce the introduction of impurities. The probes are mounted on motorized linear-actuators allowing for programmatic scans of the various plasma parameters over the course of several shots. Each probe has a custom set of electronics that allows for measurement of the desired signals. High frequency ( > 5MHz) analog optical-isolators ensure that plasma parameters can be measured at sub-microsecond time scales while providing electrical isolation between machine and data acquisition systems. With these probes time-resolved plasma parameters (temperature, density, spatial potential, flow, and electric field) can be directly/locally measured in the FRC jet and edge/scrape-off layer.

  10. Tomographic imaging system for measuring impurity line emission in a field-reversed configuration.

    PubMed

    Roche, T; Bolte, N; Garate, E; Heidbrink, W W; McWilliams, R; Wessel, F

    2012-10-01

    A 16 chord optical tomography system has been developed and implemented in the flux coil generated-field reversed configuration (FRC). The chords are arranged in two fans of eight, which cover ~35% of the vessel area at the midplane. Each illuminate separate photomultiplier tubes (PMTs) which are fitted with narrow band-pass filters. In this case, filters are centered at 434.8 nm to measure emission from singly ionized argon. PMT crosstalk is negligible. Background noise due to electron radiation and H(γ) line radiation is <10% of argon emission. The spatial resolution of the reconstruction is 1.5 cm. Argon is introduced using a puff valve and tube designed to impart the gas into the system as the FRC is forming. Reconstruction of experimental data results in time-dependent, 2D emissivity profiles of the impurity ions. Analysis of these data show radial, cross-field diffusion to be in the range of 10-10(3) m(2)∕s during FRC equilibrium. PMID:23127010

  11. Modeling of the merging of two colliding field reversed configuration plasmoids

    NASA Astrophysics Data System (ADS)

    Wang, Guanqiong; Wang, Xiaoguang; Li, Lulu; Yang, Xianjun

    2016-06-01

    The field reversed configuration (FRC) is one of the candidate plasma targets for the magneto-inertial fusion, and a high temperature FRC can be formed by using the collision-merging technology. Although the merging process and mechanism of FRC are quite complicated, it is thinkable to build a simple model to investigate the macroscopic equilibrium parameters including the density, the temperature and the separatrix volume, which may play an important role in the collision-merging process of FRC. It is quite interesting that the estimates of the related results based on our simple model are in agreement with the simulation results of a two-dimensional magneto-hydrodynamic code (MFP-2D), which has being developed by our group since the last couple of years, while these results can qualitatively fit the results of C-2 experiments by Tri-alpha energy company. On the other hand, the simple model can be used to investigate how to increase the density of the merged FRC. It is found that the amplification of the density depends on the poloidal flux-increase factor and the temperature increases with the translation speed of two plasmoids.

  12. Modelling of Field-Reversed Configuration Experiment with Large Safety Factor

    SciTech Connect

    Steinhauer, L; Guo, H; Hoffman, A; Ishida, A; Ryutov, D D

    2005-11-28

    The Translation-Confinement-Sustainment facility has been operated in the 'translation-formation' mode in which a plasma is ejected at high-speed from a {theta}-pinch-like source into a confinement chamber where it settles into a field-reversed-configuration state. Measurements of the poloidal and toroidal field have been the basis of modeling to infer the safety factor. It is found that the edge safety factor exceeds two, and that there is strong forward magnetic shear. The high-q arises because the large elongation compensates for the modest ratio of toroidal-to-poloidal field in the plasma. This is the first known instance of a very high-{beta} plasma with a safety factor greater than unity. Two-fluid modeling of the measurements also indicate several other significant features: a broad 'transition layer' at the plasma boundary with probable line-tying effects, complex high-speed flows, and the appearance of a two-fluid minimum-energy state in the plasma core. All these features may contribute to both the stability and good confinement of the plasma.

  13. Plasma wall sheath contributions to flux retention during the formation of field-reversed configurations

    NASA Astrophysics Data System (ADS)

    Milroy, R. D.; Slough, J. T.; Hoffman, A. L.

    1984-06-01

    Flux loss during field reversal on the TRX-1 field-reversed θ pinch is found to be much less than predicted by the inertial model of Green and Newton. This can be explained by a pressure bearing, conducting sheath which naturally forms at the wall and limits the flux loss. A one-dimensional (r-t) magnetohydrodynamic (MHD) numerical model has been used to study the formation and effectiveness of the sheath. The calculations are in excellent agreement with experimental measurements over a wide range of operating parameters. The results indicate that good flux trapping can be achieved through the field reversal phase of FRC formation with much slower external field reversal rates than in current experiments.

  14. Observations of improved confinement in field reversed configurations sustained by antisymmetric rotating magnetic fields

    SciTech Connect

    Guo, H.Y.; Hoffman, A.L.; Steinhauer, L.C.

    2005-06-15

    Rotating magnetic fields (RMF) have been employed to both form and sustain currents in field reversed configurations (FRC). A major concern about this method has been the fear of opening up magnetic field lines with even small ratios of vacuum RMF B{sub {omega}} to external confinement field B{sub e}. A recently proposed innovation was to use an antisymmetric arrangement of RMF, but vacuum calculations with full RMF penetration showed that very low values of B{sub {omega}}/B{sub e} would still be required to provide field-line closure. Recent comparisons of symmetric and antisymmetric RMF drive on the translation, confinement, and sustainment (TCS) facility [A. L. Hoffman, H. Y. Guo, J. T. Slough et al., Fusion Sci. Technol. 41, 92 (2002)] have shown strong improvements in the basic confinement properties of the FRCs when using antisymmetric drive, even with ratios of B{sub {omega}}/B{sub e} as high as 0.3. This is due to normal standard operation with only partial penetration of the RMF beyond the FRC separatrix. The uniform transverse RMF in vacuum is shielded by the conducting plasma, resulting in a mostly azimuthal field near the FRC separatrix with a very small radial component. Simple numerical calculations using analytical solutions for the partially penetrated antisymmetric RMF, superimposed on Grad-Shafranov solutions for the poloidal FRC fields, show good field-line closure for the TCS experimental conditions. The antisymmetric arrangement also leads to more efficient current drive and improved stabilization of rotational modes.

  15. Reduction of the density profile of a field-reversed configuration plasma from detailed interferometric measurements

    NASA Astrophysics Data System (ADS)

    Okada, S.; Kiso, Y.; Goto, S.; Ishimura, T.

    1989-06-01

    In order to obtain a detailed density profile of a field-reversed configuration (FRC) plasma, fast-response multichannel heterodyne quadrature interferometers are constructed. Using these interferometers and assuming a rigid-body radial shift motion of the plasma, a spatially fine-grained line integrated density (∫ n dl) profile at its axial midplane is measured. A radial density profile n(r) is reduced from spline fitting of ∫ n dl. The n(r) is found to be nearly an even function of u(=r2/R2-1, R is the magnetic axis radius) as expected. The n(r) is also obtained by the fitting of a line integral of a model n(r) consisting of a modified rigid rotor (RR) profile which can describe the density steepening near the separatrix of the FRC plasma. When the plasma is fat (xs =separatrix radius/coil inner radius=0.63), the density profile is very near to the RR profile itself given by sech2 (Ku), where K is a constant. When the plasma is slender (xs =0.43), the modification is somewhat pronounced. In both cases n(r) at r=R is flatter but near to the RR profile, and the scale length of the density gradient at the separatrix is about twice the ion gyroradius. Detailed error analyses of the fitting parameters are done to show the range of allowed profiles. Although the fitting is accomplished very well (root-mean-square excursion of the fitted ∫ n dl from the measured one is from 1.9% to 2.5%), much variation of n(r) is still possible.

  16. Principal physics of rotating magnetic-field current drive of field reversed configurations

    SciTech Connect

    Hoffman, A.L.; Guo, H.Y.; Miller, K.E.; Milroy, R.D.

    2006-01-15

    After extensive experimentation on the Translation, Confinement, and Sustainment rotating magnetic-field (RMF)-driven field reversed configuration (FRC) device [A. L. Hoffman et al., Fusion Sci. Technol. 41, 92 (2002)], the principal physics of RMF formation and sustainment of standard prolate FRCs inside a flux conserver is reasonably well understood. If the RMF magnitude B{sub {omega}} at a given frequency {omega} is high enough compared to other experimental parameters, it will drive the outer electrons of a plasma column into near synchronous rotation, allowing the RMF to penetrate into the plasma. If the resultant azimuthal current is strong enough to reverse an initial axial bias field B{sub o} a FRC will be formed. A balance between the RMF applied torque and electron-ion friction will determine the peak plasma density n{sub m}{proportional_to}B{sub {omega}}/{eta}{sup 1/2}{omega}{sup 1/2}r{sub s}, where r{sub s} is the FRC separatrix radius and {eta} is an effective weighted plasma resistivity. The plasma total temperature T{sub t} is free to be any value allowed by power balance as long as the ratio of FRC diamagnetic current, I{sup '}{sub dia}{approx_equal}2B{sub e}/{mu}{sub o}, is less than the maximum possible synchronous current, I{sup '}{sub sync}=e{omega}r{sub s}{sup 2}/2. The RMF will self-consistently penetrate a distance {delta}{sup *} governed by the ratio {zeta}=I{sup '}{sub dia}/I{sup '}{sub sync}. Since the FRC is a diamagnetic entity, its peak pressure p{sub m}=n{sub m}kT{sub t} determines its external magnetic field B{sub e}{approx_equal}(2{mu}{sub o}p{sub m}){sup 1/2}. Higher FRC currents, magnetic fields, and poloidal fluxes can thus be obtained, with the same RMF parameters, simply by raising the plasma temperature. Higher temperatures have also been noted to reduce the effective plasma resistivity, so that these higher currents can be supported with surprisingly little increase in absorbed RMF power.

  17. Formation of a long-lived hot field reversed configuration by dynamically merging two colliding high-β compact toroidsa)

    NASA Astrophysics Data System (ADS)

    Guo, H. Y.; Binderbauer, M. W.; Barnes, D.; Putvinski, S.; Rostoker, N.; Sevier, L.; Tuszewski, M.; Anderson, M. G.; Andow, R.; Bonelli, L.; Brandi, F.; Brown, R.; Bui, D. Q.; Bystritskii, V.; Ceccherini, F.; Clary, R.; Cheung, A. H.; Conroy, K. D.; Deng, B. H.; Dettrick, S. A.; Douglass, J. D.; Feng, P.; Galeotti, L.; Garate, E.; Giammanco, F.; Glass, F. J.; Gornostaeva, O.; Gota, H.; Gupta, D.; Gupta, S.; Kinley, J. S.; Knapp, K.; Korepanov, S.; Hollins, M.; Isakov, I.; Jose, V. A.; Li, X. L.; Luo, Y.; Marsili, P.; Mendoza, R.; Meekins, M.; Mok, Y.; Necas, A.; Paganini, E.; Pegoraro, F.; Pousa-Hijos, R.; Primavera, S.; Ruskov, E.; Qerushi, A.; Schmitz, L.; Schroeder, J. H.; Sibley, A.; Smirnov, A.; Song, Y.; Steinhauer, L. C.; Sun, X.; Thompson, M. C.; Van Drie, A. D.; Walters, J. K.; Wyman, M. D.

    2011-05-01

    A high temperature field reversed configuration (FRC) has been produced in the newly built, world's largest compact toroid (CT) facility, C-2, by colliding and merging two high-β CTs produced using the advanced field-reversed θ-pinch technology. This long-lived, stable merged state exhibits the following key properties: (1) apparent increase in the poloidal flux from the first pass to the final merged state, (2) significantly improved confinement compared to conventional θ-pinch FRCs with flux decay rates approaching classical values in some cases, (3) strong conversion from kinetic energy into thermal energy with total temperature (Te + Ti) exceeding 0.5 keV, predominantly into the ion channel. Detailed modeling using a new 2-D resistive magnetohydrodynamic (MHD) code, LamyRidge, has demonstrated, for the first time, the formation, translation, and merging/reconnection dynamics of such extremely high-β plasmas.

  18. Suppression of the n=2 rotational instability in field-reversed configurations

    NASA Astrophysics Data System (ADS)

    Hoffman, Alan L.; Slough, J.; Harding, Dennis G.

    1983-06-01

    Compact toroid plasmas formed in field-reversed theta pinches are generally destroyed after 30-50 μsec by a rotating n=2 instability. In the reported experiment, instability is controlled, and the plasma destruction is avoided in the TRX-1 theta pinch through the application of octopole magnetic fields. The decay times for loss of poloidal flux and particles are unaffected by the octopole fields. These decay times are about 100 μsec based on inferences from interferometry and excluded flux measurements. The weak, rotating elliptical disturbance (controlled n=2 mode) also made possible a novel determination of the density profile near the separatrix using single-chord interferometry. The local density gradient scale length in this region is found to be about one ion gyrodiameter.

  19. Space fusion energy conversion using a field reversed configuration reactor: A new technical approach for space propulsion and power

    NASA Technical Reports Server (NTRS)

    Schulze, Norman R.; Miley, George H.; Santarius, John F.

    1991-01-01

    The fusion energy conversion design approach, the Field Reversed Configuration (FRC) - when burning deuterium and helium-3, offers a new method and concept for space transportation with high energy demanding programs, like the Manned Mars Mission and planetary science outpost missions require. FRC's will increase safety, reduce costs, and enable new missions by providing a high specific power propulsion system from a high performance fusion engine system that can be optimally designed. By using spacecraft powered by FRC's the space program can fulfill High Energy Space Missions (HESM) in a manner not otherwise possible. FRC's can potentially enable the attainment of high payload mass fractions while doing so within shorter flight times.

  20. Measurements accounting for the impediment of ion spin-up in rotating magnetic field driven field reversed configurations

    SciTech Connect

    Deards, C. L.; Hoffman, A. L.; Steinhauer, L. C.

    2011-11-15

    Improved vacuum hygiene, wall conditioning, and reduced recycling in the rotating magnetic field (RMF) driven translation, confinement, and sustainment-upgrade (TCSU) field reversed configuration experiment have made possible a more accurate assessment of the forces affecting ion spin-up. This issue is critical in plasmas sustained by RMFs, such as TCSU since ion spin-up can substantially reduce or cancel the RMF current drive effect. Several diagnostics are brought to bear, including a 3-axis translatable magnetic probe allowing the first experimental measurement of the end shorting effect. These results show that the ion rotation is determined by a balance between electron-ion friction, the end shorting effect, and ion drag against neutrals.

  1. Measurements accounting for the impediment of ion spin-up in rotating magnetic field driven field reversed configurations

    NASA Astrophysics Data System (ADS)

    Deards, C. L.; Hoffman, A. L.; Steinhauer, L. C.

    2011-11-01

    Improved vacuum hygiene, wall conditioning, and reduced recycling in the rotating magnetic field (RMF) driven translation, confinement, and sustainment-upgrade (TCSU) field reversed configuration experiment have made possible a more accurate assessment of the forces affecting ion spin-up. This issue is critical in plasmas sustained by RMFs, such as TCSU since ion spin-up can substantially reduce or cancel the RMF current drive effect. Several diagnostics are brought to bear, including a 3-axis translatable magnetic probe allowing the first experimental measurement of the end shorting effect. These results show that the ion rotation is determined by a balance between electron-ion friction, the end shorting effect, and ion drag against neutrals.

  2. A one-and-a-quarter-dimensional transport code for field-reversed configuration studies: A user's guide for CFRX

    SciTech Connect

    Hsiao, Ming-Yuan; Werley, K.A.; Ling, Kuok-Mee

    1988-05-01

    A one-and-a-quarter-dimensional transport code, which includes radial as well as some two-dimensional effects for field-reversed configurations, is described. The set of transport equations is transformed to a set of new independent and dependent variables and is solved as a coupled initial-boundary value problem. The code simulation includes both the closed and open field regions. The axial effects incorporated include global axial force balance, axial losses in the open field region, and flux surface averaging over the closed field region. Input, output, and structure of the code are described in detail. A typical example of the code results is also given. 20 refs., 21 figs., 7 tabs.

  3. A search for lower-hybrid-drift fluctuations in a field-reversed configuration using CO2 heterodyne scattering

    NASA Astrophysics Data System (ADS)

    Carlson, Arthur W.

    1987-05-01

    An upper bound of (ñe/ne) <10-4 for frequencies and wavenumbers relevant to the lower-hybrid-drift (LHD) instability is set on fluctuations in field-reversed configurations (FRC's) produced by TRX-2 [Fusion Techn. 9, 48 (1986)]. LHD is a well-studied microinstability that is often invoked to explain particle loss rates in FRC's. The conventional technique of CO2 laser scattering with heterodyne detection is here modified to compensate for severe refraction. The calibration of the system is verified by scattering from acoustic waves in salt. The measured bound is two orders of magnitude below both the fluctuation level usually predicted and the level needed to account for observed particle loss rates. Electron collisionality is identified as the most likely LHD stabilization mechanism. Some alternative explanations of anomalous loss rates are discussed.

  4. Stabilization of lower hybrid drift modes by finite parallel wavenumber and electron temperature gradients in field-reversed configurations

    NASA Astrophysics Data System (ADS)

    Farengo, R.; Guzdar, P. N.; Lee, Y. C.

    1989-08-01

    The effect of finite parallel wavenumber and electron temperature gradients on the lower hybrid drift instability is studied in the parameter regime corresponding to the TRX-2 device [Fusion Technol. 9, 48 (1986)]. Perturbations in the electrostatic potential and all three components of the vector potential are considered and finite beta electron orbit modifications are included. The electron temperature gradient decreases the growth rate of the instability but, for kz=0, unstable modes exist for ηe(=T'en0/Ten0)>6. Since finite kz effects completely stabilize the mode at small values of kz/ky(≂5×10-3), magnetic shear could be responsible for stabilizing the lower hybrid drift instability in field-reversed configurations.

  5. Intermediate regime of charged particle scattering in the field-reversal configuration

    SciTech Connect

    Shustov, P. I. Yushkov, E. V.; Artemyev, A. V.

    2015-12-15

    In this paper, we investigate the charged particle scattering in the magnetic field configuration with stretched magnetic field lines. This scattering results from the violation of the adiabaticity of charged particle motion in the region with the strong gradient of the magnetic field. We consider the intermediate regime of charged particle dynamics, when the violation of the adiabaticity is significant enough, but particle motion is not chaotic. We demonstrate and describe the significant scattering of particles with large adiabatic invariants (magnetic moment). We discuss a possible application of obtained results for description of the peculiarities of pitch-angle diffusion of relativistic electrons in the Earth radiation belts.

  6. A multiframe soft x-ray camera with fast video capture for the LSX field reversed configuration (FRC) experiment

    SciTech Connect

    Crawford, E.A. )

    1992-10-01

    Soft x-ray pinhole imaging has proven to be an exceptionally useful diagnostic for qualitative observation of impurity radiation from field reversed configuration plasmas. We used a four frame device, similar in design to those discussed in an earlier paper (E. A. Crawford, D. P. Taggart, and A. D. Bailey III, Rev. Sci. Instrum. {bold 61}, 2795 (1990)) as a routine diagnostic during the last six months of the Large s Experiment (LSX) program. Our camera is an improvement over earlier implementations in several significant aspects. It was designed and used from the onset of the LSX experiments with a video frame capture system so that an instant visual record of the shot was available to the machine operator as well as facilitating quantitative interpretation of intensity information recorded in the images. The camera was installed in the end region of the LSX on axis approximately 5.5 m from the plasma midplane. Experience with bolometers on LSX showed serious problems with particle dumps'' at the axial location at various times during the plasma discharge. Therefore, the initial implementation of the camera included an effective magnetic sweeper assembly. Overall performance of the camera, video capture system, and sweeper is discussed.

  7. Probe measurements of the three-dimensional magnetic field structure in a rotating magnetic field sustained field-reversed configuration

    SciTech Connect

    Velas, K. M.; Milroy, R. D.

    2014-01-15

    A translatable three-axis probe was constructed and installed on the translation, confinement, and sustainment upgrade (TCSU) experiment. With ninety windings, the probe can simultaneously measure B{sub r}, B{sub θ}, and B{sub z} at 30 radial positions, and can be placed at any desired axial position within the field reversed configuration (FRC) confinement chamber. Positioning the probe at multiple axial positions and taking multiple repeatable shots allows for a full r-z map of the magnetic field. Measurements were made for odd-parity rotating magnetic field (RMF) antennas and even-parity RMF. The steady state data from applying a 10 kHz low pass filter used in conjunction with data at the RMF frequency yields a map of the full 3D rotating field structure. Comparisons will be made to the 3D magnetic structure predicted by NIMROD simulations, with parameters adjusted to match that of the TCSU experiments. The probe provides sufficient data to utilize a Maxwell stress tensor approach to directly measure the torque applied to the FRC's electrons, which combined with a resistive torque model, yields an estimate of the average FRC resistivity.

  8. Overview of the C-2 Field-Reversed Configuration Experimental Program and Future Plan on C-2 Upgrade

    NASA Astrophysics Data System (ADS)

    Yang, Xiaokang; Gota, Hiroshi; Binderbauer, Michl; Tuszewski, Michel; Guo, Houyang; Garate, Eusebio; Barnes, Dan; Putvinski, Sergei; Tajima, Toshiki; Sevier, Leigh

    2014-10-01

    C-2 is the world's largest compact-toroid (CT) device at Tri Alpha Energy that produces field-reversed configuration (FRC) plasmas by colliding/merging oppositely-directed CTs and seeks to study the evolution, heating and sustainment effects of neutral-beam (NB) injection into FRCs. Recently, significant progress has been made in C-2 on both technology and physics fronts, achieving ~ 5 ms stable plasmas with a dramatic improvement in confinement. FRCs are stabilized with an edge biasing using end-on plasma-guns and/or electrodes, and are partially sustained with NB injection (20 keV Hydrogen, ~ 4 MW). Recent work to reduce scrape-off layer and radiative losses has succeeded in reducing the average power balance deficit to ~ 1.5 MW. Increasing plasma pressure and electron temperature are now observed during brief periods of the discharge, which indicate a sign of NB injection effect such as accumulating fast-ions as well as heating core/edge plasmas. Highlights of these advances, broader C-2 experimental program, and future plan on upgrading the C-2 device with new NBs (15 keV, up to 10 MW injection power, selectable beam injection angle) will be presented.

  9. Development of a magnetized coaxial plasma gun for compact toroid injection into the C-2 field-reversed configuration device.

    PubMed

    Matsumoto, T; Sekiguchi, J; Asai, T; Gota, H; Garate, E; Allfrey, I; Valentine, T; Morehouse, M; Roche, T; Kinley, J; Aefsky, S; Cordero, M; Waggoner, W; Binderbauer, M; Tajima, T

    2016-05-01

    A compact toroid (CT) injector was developed for the C-2 device, primarily for refueling of field-reversed configurations. The CTs are formed by a magnetized coaxial plasma gun (MCPG), which consists of coaxial cylindrical electrodes and a bias coil for creating a magnetic field. First, a plasma ring is generated by a discharge between the electrodes and is accelerated by Lorenz self-force. Then, the plasma ring is captured by an interlinkage flux (poloidal flux). Finally, the fully formed CT is ejected from the MCPG. The MCPG described herein has two gas injection ports that are arranged tangentially on the outer electrode. A tungsten-coated inner electrode has a head which can be replaced with a longer one to extend the length of the acceleration region for the CT. The developed MCPG has achieved supersonic CT velocities of ∼100 km/s. Plasma parameters for electron density, electron temperature, and the number of particles are ∼5 × 10(21) m(-3), ∼40 eV, and 0.5-1.0 × 10(19), respectively. PMID:27250428

  10. Neutral-beam-injection fueling for a small, D-3He burning, field-reversed-configuration reactor

    NASA Astrophysics Data System (ADS)

    Buttolph, Michael; Stotler, Daren; Cohen, Samuel

    2013-10-01

    Rocket propulsion powered by the D-3He fusion reaction in a Field Reversed Configuration (FRC) has been proposed for a variety of solar-system missions. Two key unique features of this concept are a relatively small, 25-cm-radius, plasma core and a relatively thick (10 cm), dense (1e14 cm3), and cool (100 eV electron temperature) scrape-off layer (SOL). The SOL contains the heated propellant - likely hydrogen, deuterium or helium - and also fusion reaction products at a lower density (ca. 1e12 cm-3). A critical design question is the refueling of the fusion reactants. A moderate energy neutral-beam method is considered. It must be able to penetrate the SOL without significant losses but must be stopped in the core. DEGAS 2, a Monte-Carlo code designed to model neutral transport, was implemented to simulate beam-plasma interactions including ionization and charge exchange of the neutral beam's helium-3 and deuterium atoms by impact in the SOL and core plasma with thermal plasma constituents and fusion reaction products. Operational methods to alleviate the effects deleterious reactions such as deuterium charge-exchange in the SOL are described.

  11. Twenty-channel bolometer array for studying impurity radiation and transport in the TCS field-reversed configuration

    NASA Astrophysics Data System (ADS)

    Kostora, M. R.; Hsu, S. C.; Wurden, G. A.

    2006-10-01

    A bolometer array diagnostic has been developed for the University of Washington Translation, Confinement, and Sustainment (TCS) field-reversed configuration (FRC) experiment in order to measure radially resolved total radiated power per unit length of the FRC. This will provide radiation energy loss information, useful in power balance and impurity studies. The 20-element photodiode bolometer will be mounted at the midplane of the TCS cylindrical vacuum chamber to view the rotating magnetic field (RMF) generated FRC plasma. Key features of this new bolometer array are (1) extensive electrical shielding against the RMF, (2) robust electrical isolation, (3) trans-impedance amplifiers using a microcoax interface at the array and a fiber optic interface to the screen room, and (4) a custom glass-on-metal socket for the 20-element photodiode chip to ensure high vacuum compatibility. The bolometer array can be retracted behind a gate valve using a stepper motor to protect it during vacuum chamber bakeout. The slit assembly housing is interchangeable to provide flexibility for the viewing sightlines.

  12. Dynamic Formation of a Hot Field Reversed Configuration with Improved Confinement by Supersonic Merging of Two Colliding High-β Compact Toroids

    NASA Astrophysics Data System (ADS)

    Binderbauer, M. W.; Guo, H. Y.; Tuszewski, M.; Putvinski, S.; Sevier, L.; Barnes, D.; Rostoker, N.; Anderson, M. G.; Andow, R.; Bonelli, L.; Brandi, F.; Brown, R.; Bui, D. Q.; Bystritskii, V.; Ceccherini, F.; Clary, R.; Cheung, A. H.; Conroy, K. D.; Deng, B. H.; Dettrick, S. A.; Douglass, J. D.; Feng, P.; Galeotti, L.; Garate, E.; Giammanco, F.; Glass, F. J.; Gornostaeva, O.; Gota, H.; Gupta, D.; Gupta, S.; Kinley, J. S.; Knapp, K.; Korepanov, S.; Hollins, M.; Isakov, I.; Jose, V. A.; Li, X. L.; Luo, Y.; Marsili, P.; Mendoza, R.; Meekins, M.; Mok, Y.; Necas, A.; Paganini, E.; Pegoraro, F.; Pousa-Hijos, R.; Primavera, S.; Ruskov, E.; Qerushi, A.; Schmitz, L.; Schroeder, J. H.; Sibley, A.; Smirnov, A.; Song, Y.; Sun, X.; Thompson, M. C.; van Drie, A. D.; Walters, J. K.; Wyman, M. D.

    2010-07-01

    A hot stable field-reversed configuration (FRC) has been produced in the C-2 experiment by colliding and merging two high-β plasmoids preformed by the dynamic version of field-reversed θ-pinch technology. The merging process exhibits the highest poloidal flux amplification obtained in a magnetic confinement system (over tenfold increase). Most of the kinetic energy is converted into thermal energy with total temperature (Ti+Te) exceeding 0.5 keV. The final FRC state exhibits a record FRC lifetime with flux confinement approaching classical values. These findings should have significant implications for fusion research and the physics of magnetic reconnection.

  13. Final Report on Development of Optimized Field-Reversed Configuration Plasma Formation Techniques for Magnetized Target Fusion

    SciTech Connect

    Lynn, Alan

    2013-11-01

    The University of New Mexico (UNM) proposed a collaboration with Los Alamos National Laboratory (LANL) to develop and test methods for improved formation of field-reversed configuration (FRC) plasmas relevant to magnetized target fusion (MTF) energy research. MTF is an innovative approach for a relatively fast and cheap path to the production of fusion energy that utilizes magnetic confinement to assist in the compression of a hot plasma to thermonuclear conditions by an external driver. LANL is currently pursing demonstration of the MTF concept via compression of an FRC plasma by a metal liner z-pinch in conjunction with the Air Force Research Laboratory in Albuquerque, NM. A key physics issue for the FRC's ultimate success as an MTF target lies in the initial pre-ionization (PI) stage. The PI plasma sets the initial conditions from which the FRC is created. In particular, the PI formation process determines the amount of magnetic flux that can be trapped to form the FRC. A ringing theta pinch ionization (RTPI) technique, such as currently used by the FRX-L device at LANL, has the advantages of high ionization fraction, simplicity (since no additional coils are required), and does not require internal electrodes which can introduce impurities into the plasma. However RTPI has been shown to only trap 50% of the initial bias flux at best and imposes additional engineering constraints on the capacitor banks. The amount of trapped flux plays an important role in the FRC's final equilibrium, transport, and stability properties, and provides increased ohmic heating of the FRC through induced currents as the magnetic field decays. Increasing the trapped flux also provides the route to greatest potential gains in FRC lifetime, which is essential to provide enough time to translate and compress the FRC effectively. In conjunction with LANL we initially planned to develop and test a microwave break- down system to improve the initial PI plasma formation. The UNM team would

  14. Analysis of magnetic probe signals including effect of cylindrical conducting wall for field-reversed configuration experiment

    SciTech Connect

    Ikeyama, Taeko; Hiroi, Masanori; Nemoto, Yuuichi; Nogi, Yasuyuki

    2008-06-15

    A confinement field is disturbed by magnetohydrodynamic (MHD) motions of a field-reversed configuration (FRC) plasma in a cylindrical conductor. The effect of the conductor should be included to obtain a spatial structure of the disturbed field with a good precision. For this purpose, a toroidal current in the plasma and an eddy current on a conducting wall are replaced by magnetic dipole and image magnetic dipole moments, respectively. Typical spatial structures of the disturbed field are calculated by using the dipole moments for such MHD motions as radial shift, internal tilt, external tilt, and n=2 mode deformation. Then, analytic formulas for estimating the shift distance, tilt angle, and deformation rate of the MHD motions from magnetic probe signals are derived. It is estimated from the calculations by using the dipole moments that the analytic formulas include an approximately 40% error. Two kinds of experiment are carried out to investigate the reliability of the calculations. First, a magnetic field produced by a circular current is measured in an aluminum pipe to confirm the replacement of the eddy current with the image magnetic dipole moments. The measured fields coincide well with the calculated values including the image magnetic dipole moments. Second, magnetic probe signals measured from the FRC plasma are substituted into the analytic formulas to obtain shift distance and deformation rate. The experimental results are compared to the MHD motions measured by using a radiation from the plasma. If the error included in the analytic formulas and the difference between the magnetic and optical structures in the plasma are considered, the results of the radiation measurement support well those of the magnetic analysis.

  15. Inductive sustainment of oblate field-reversed configurations with the assistance of magnetic diffusion, shaping, and finite-Larmor radius stabilization

    SciTech Connect

    Gerhardt, S. P.; Belova, E. V.; Yamada, M.; Ji, H.; Jacobson, C. M.; McGeehan, B.; Ren, Y.; Inomoto, M.; Maqueda, R.

    2008-02-15

    Oblate field-reversed configurations (FRCs) have been sustained for >300 {mu}s, or >15 magnetic diffusion times, through the use of an inductive solenoid. These argon FRCs can have their poloidal flux sustained or increased, depending on the timing and strength of the induction. An inward pinch is observed during sustainment, leading to a peaking of the pressure profile and maintenance of the FRC equilibrium. The good stability observed in argon (and krypton) does not transfer to lighter gases, which develop terminal co-interchange instabilities. The stability in argon and krypton is attributed to a combination of external field shaping, magnetic diffusion, and finite-Larmor radius effects.

  16. Control of ion gyroscale fluctuations via electrostatic biasing and sheared E×B flow in the C-2 field reversed configuration

    NASA Astrophysics Data System (ADS)

    Schmitz, L.; Ruskov, E.; Deng, B. H.; Binderbauer, M.; Tajima, T.; Gota, H.; Tuszewski, M.

    2016-03-01

    Control of radial particle and thermal transport is instrumental for achieving and sustaining well-confined high-β plasma in a Field-Reversed Configuration (FRC). Radial profiles of low frequency ion gyro-scale density fluctuations (0.5≤kρs≤40), consistent with drift- or drift-interchange modes, have been measured in the scrape-off layer (SOL) and core of the C-2 Field-Reversed Configuration (FRC), together with the toroidal E×B velocity. It is shown here that axial electrostatic SOL biasing controls and reduces gyro-scale density fluctuations, resulting in very low FRC core fluctuation levels. When the radial E×B flow shearing rate decreases below the turbulence decorrelation rate, fluctuation levels increase substantially, concomitantly with onset of the n=2 instability and rapid loss of diamagnetism. Low turbulence levels, improved energy/particle confinement and substantially increased FRC life times are achieved when E×B shear near the separatrix is maintained via axial SOL biasing using an annular washer gun.

  17. Design of a fully-fiber multi-chord interferometer and a new phase-shift demodulation method for field-reversed configuration

    SciTech Connect

    Fang, Dongfan Sun, Qizhi; Zhao, Xiaoming; Jia, Yuesong

    2014-05-15

    A 633 nm laser interferometer has been designed based on a novel concept, which, without the acousto-optic modulator or the demodulator circuit, adopts the fibers to connect all elements except photodetectors and oscilloscope in this system to make it more compact, portable, and efficient. The noteworthy feature is to mathematically compare the two divided interference signals, which have the same phase-shift caused by the electron density but possess the different initial phase and low angular frequencies. It is possible to read the plasma density directly on the oscilloscope by our original mathematic demodulation method without a camera. Based on the Abel inversion algorithm, the radial electron density profiles versus time can be obtained by using the multi-chord system. The designed measurable phase shift ranges from 0 to 2π rad corresponding to the maximum line integral of electron density less than 3.5 × 10{sup 17} cm{sup −2}, and the phase accuracy is about 0.017 rad corresponding to the line integral of electron density accuracy of 1 × 10{sup 15} cm{sup −2}. After the construction of eight-chord interferometer, it will provide the detailed time resolved information of the spatial distribution of the electron density in the field-reversed configuration (FRC) plasma target produced by the “Yingguang-1” programmed-discharge device, which is being constructed in the Key Laboratory of Pulsed Power, China Academy of Engineering Physics.

  18. US-Japan workshop on field-reversed configurations with steady-state high-temperature fusion plasmas and the 11th US-Japan workshop on compact toroids

    SciTech Connect

    Barnes, D.C.; Fernandez, J.C.; Rej, D.J.

    1990-05-01

    The US-Japan Workshop on Field-Reversed Configurations with Steady-State High-Temperature Fusion Plasma and the 11th US-Japan Workshop on Compact Toroids were held at Los Alamos National Laboratory, Los Alamos, New Mexico on November 7--9, 1989. These proceedings contain the papers presented at the workshops as submitted by the authors. These papers have been indexed separately.

  19. Field reversed ion rings

    SciTech Connect

    Sudan, R.N.; Omelchenko, Y.A.

    1995-09-01

    In typical field-reversed ion ring experiments, an intense annular ion beam is injected across a plasma-filled magnetic cusp region into a neutral gas immersed in a ramped solenoidal magnetic field. Assuming the characteristic ionization time is much shorter than the long ({ital t}{approx_gt}2{pi}/{Omega}{sub {ital i}}) beam evolution time scale, we investigate the formation of an ion ring in the background plasma followed by field reversal, using a 21/2-D hybrid, PIC code FIRE, in which the beam and background ions are treated as particles and the electrons as a massless fluid. We show that beam bunching and trapping occurs downstream in a ramped magnetic field for an appropriate set of experimental parameters. We find that a compact ion ring is formed and a large field reversal {zeta}={delta}{ital B}/{ital B}{approx_gt}1 on axis develops. We also observe significant deceleration of the ring on reflection due to the transfer of its axial momentum to the background ions, which creates favorable trapping conditions. {copyright} {ital 1995 American Institute of Physics.}

  20. a Search for Lower-Hybrid Drift Fluctuations in a Field-Reversed Configuration by Means of Carbon Dioxide Heterodyne Scattering.

    NASA Astrophysics Data System (ADS)

    Carlson, Arthur William

    A measurement is reported which sets an upper bound on LHD-like density fluctuations in an FRC which is two orders of magnitude below the predicted levels. Particle loss from FRC's is known to occur anomalously fast, and this is usually attributed to effects of the LHD instability. If LHD waves are present, they can be measured using heterodyne detection of CO(,2) laser light scattered from the associated density fluctuations. In the present case, the usual scattering system was successfully modified to compensate for severe refraction of the beams by the plasma. This system was calibrated by detection of an electrooptically modulated CO(,2) laser beam, and by detection of light scattered from acoustic waves in salt. The plasma measurements made on the TRX-2 field-reversed theta-pinch covered all parameters at which LHD fluctuations might be expected to occur, namely wavenumbers from 30 to 240 cm('-1), frequencies from 10 to 300 MHz, and radii from one centimeter inside the separatrix to two centimeters outside. The lack of detectable scattered light under any of these conditions indicates ((delta)n/n) < 1 x 10('-4), compared to predictions of ((delta)n/n) ('(TURN)) 1 x 10('-2) based on mode coupling theory, ion -trapping theory, and observed transport rates. Several mechanisms are discussed which may stabilize LHD in these plasmas. Several alternate explanations of the observed anomalous transport rates in FRC's are also discussed.

  1. Field-reversed configuration (FRC) experiments

    NASA Astrophysics Data System (ADS)

    Siemon, R. E.; Chrien, R. E.; Hugrass, W. N.; Okada, S.; Rej, D. J.; Taggart, D. P.; Tuszewski, M.; Webster, R. B.; Wright, B. L.; Slough, J. T.

    FRCs with equilibrium separatrix radii up to 0.18 m have been formed and studied in FRX-C/LSM. For best formation conditions at low fill pressure, the particle confinement exceeds the predictions of LHD transport calculations by up to a factor of two; however, the inferred flux confinement is more anomalous than in smaller FRCs. Higher bias field produces axial shocks and degradation in confinement, while higher fill pressure results in gross fluting during formation. FRCs have been formed in TRX with s from 2 to 6. These relatively collisional FRCs exhibit flux lifetimes of 10 yields 20 kinetic growth times for the internal tilt mode. The coaxial slow source has produced annular FRCs in a coaxial coil geometry on slow time scales using low voltages.

  2. ASYMMETRIC SOLAR POLAR FIELD REVERSALS

    SciTech Connect

    Svalgaard, Leif; Kamide, Yohsuke

    2013-01-20

    The solar polar fields reverse because magnetic flux from decaying sunspots moves toward the poles, with a preponderance of flux from the trailing spots. If there is a strong asymmetry, in the sense that most activity is in the northern hemisphere, then that excess flux will move toward the north pole and reverse that pole first. If there is more activity in the south later on, then that flux will help to reverse the south pole. In this way, two humps in the solar activity and a corresponding difference in the time of reversals develop (in the ideal case). Such a difference was originally noted in the very first observation of polar field reversal just after the maximum of the strongly asymmetric solar cycle 19, when the southern hemisphere was most active before sunspot maximum and the south pole duly reversed first, followed by the northern hemisphere more than a year later, when that hemisphere became most active. Solar cycles since then have had the opposite asymmetry, with the northern hemisphere being most active before solar maximum. We show that polar field reversals for these cycles have all happened in the north first, as expected. This is especially noteworthy for the present solar cycle 24. We suggest that the association of two or more peaks of solar activity when separated by hemispheres with correspondingly different times of polar field reversals is a general feature of the cycle, and that asymmetric polar field reversals are simply a consequence of the asymmetry of solar activity.

  3. A high performance field-reversed configurationa)

    NASA Astrophysics Data System (ADS)

    Binderbauer, M. W.; Tajima, T.; Steinhauer, L. C.; Garate, E.; Tuszewski, M.; Schmitz, L.; Guo, H. Y.; Smirnov, A.; Gota, H.; Barnes, D.; Deng, B. H.; Thompson, M. C.; Trask, E.; Yang, X.; Putvinski, S.; Rostoker, N.; Andow, R.; Aefsky, S.; Bolte, N.; Bui, D. Q.; Ceccherini, F.; Clary, R.; Cheung, A. H.; Conroy, K. D.; Dettrick, S. A.; Douglass, J. D.; Feng, P.; Galeotti, L.; Giammanco, F.; Granstedt, E.; Gupta, D.; Gupta, S.; Ivanov, A. A.; Kinley, J. S.; Knapp, K.; Korepanov, S.; Hollins, M.; Magee, R.; Mendoza, R.; Mok, Y.; Necas, A.; Primavera, S.; Onofri, M.; Osin, D.; Rath, N.; Roche, T.; Romero, J.; Schroeder, J. H.; Sevier, L.; Sibley, A.; Song, Y.; Van Drie, A. D.; Walters, J. K.; Waggoner, W.; Yushmanov, P.; Zhai, K.

    2015-05-01

    Conventional field-reversed configurations (FRCs), high-beta, prolate compact toroids embedded in poloidal magnetic fields, face notable stability and confinement concerns. These can be ameliorated by various control techniques, such as introducing a significant fast ion population. Indeed, adding neutral beam injection into the FRC over the past half-decade has contributed to striking improvements in confinement and stability. Further, the addition of electrically biased plasma guns at the ends, magnetic end plugs, and advanced surface conditioning led to dramatic reductions in turbulence-driven losses and greatly improved stability. Together, these enabled the build-up of a well-confined and dominant fast-ion population. Under such conditions, highly reproducible, macroscopically stable hot FRCs (with total plasma temperature of ˜1 keV) with record lifetimes were achieved. These accomplishments point to the prospect of advanced, beam-driven FRCs as an intriguing path toward fusion reactors. This paper reviews key results and presents context for further interpretation.

  4. Estimation of neutral-beam-induced field reversal in MFTF by an approximate scaling law

    SciTech Connect

    Shearer, J.W.

    1980-04-28

    Scaling rules are derived for field-reversed plasmas whose dimensions are common multiples of the ion gyroradius in the vacuum field. These rules are then applied to the tandem MFTF configuration, and it is shown that field reversal appears to be possible for neutral beam currents of the order of 150 amperes, provided that the electron temperature is at least 500 eV.

  5. Atmospheric helium and geomagnetic field reversals.

    NASA Technical Reports Server (NTRS)

    Sheldon, W. R.; Kern, J. W.

    1972-01-01

    The problem of the earth's helium budget is examined in the light of recent work on the interaction of the solar wind with nonmagnetic planets. It is proposed that the dominant mode of helium (He4) loss is ion pumping by the solar wind during geomagnetic field reversals, when the earth's magnetic field is very small. The interaction of the solar wind with the earth's upper atmosphere during such a period is found to involve the formation of a bow shock. The penetration altitude of the shock-heated solar plasma is calculated to be about 700 km, and ionization rates above this level are estimated for a cascade ionization (electron avalanche) process to average 10 to the 9th power ions/sq cm/sec. The calculated ionization rates and the capacity of the solar wind to remove ionized helium (He4) from the upper atmosphere during geomagnetic dipole reversals are sufficient to yield a secular equilibrium over geologic time scales. The upward transport of helium from the lower atmosphere under these conditions is found to be adequate to sustain the proposed loss rate.

  6. Domino model for geomagnetic field reversals.

    PubMed

    Mori, N; Schmitt, D; Wicht, J; Ferriz-Mas, A; Mouri, H; Nakamichi, A; Morikawa, M

    2013-01-01

    We solve the equations of motion of a one-dimensional planar Heisenberg (or Vaks-Larkin) model consisting of a system of interacting macrospins aligned along a ring. Each spin has unit length and is described by its angle with respect to the rotational axis. The orientation of the spins can vary in time due to spin-spin interaction and random forcing. We statistically describe the behavior of the sum of all spins for different parameters. The term "domino model" in the title refers to the interaction among the spins. We compare the model results with geomagnetic field reversals and dynamo simulations and find strikingly similar behavior. The aggregate of all spins keeps the same direction for a long time and, once in a while, begins flipping to change the orientation by almost 180 degrees (mimicking a geomagnetic reversal) or to move back to the original direction (mimicking an excursion). Most of the time the spins are aligned or antialigned and deviate only slightly with respect to the rotational axis (mimicking the secular variation of the geomagnetic pole with respect to the geographic pole). Reversals are fast compared to the times in between and they occur at random times, both in the model and in the case of the Earth's magnetic field. PMID:23410284

  7. Sun's Polar Magnetic Field Reversals in Solar Cycle 24

    NASA Astrophysics Data System (ADS)

    Pishkalo, M. I.; Leiko, U. M.

    It is known that polar magnetic field of the Sun changes its sign at the maximum of solar cycle. These changes were called as polar field reversals. We investigated dynamics of high-latitude solar magnetic fields separately in northern and southern hemispheres. Solar polar field strength measurements from the Wilcox Solar Observatory and low-resolution synoptic magnetic maps from the SOLIS project and from Helioseismic and Magnetic Imager (HMI) onboard Solar Dynamics Observatory were used. We analyzed total magnetic flux at near-polar zones, starting from 55, 60, 65, 70, 75, 80 and 85 degrees of latitude, and found time points when the total magnetic flux changed its sign. It was concluded that total magnetic flux changed its sign at first at lower latitudes and finally near the poles. Single polar magnetic field reversal was found in the southern hemisphere. The northern hemisphere was characterized by three-fold magnetic field reversal. Polar magnetic field reversals finished in northern and southern hemispheres by CR 2150 and CR 2162, respectively.

  8. The moving-ring field-reversed mirror prototype reactor

    NASA Astrophysics Data System (ADS)

    Smith, A. C., Jr.; Carlson, G. A.; Fleischmann, H. H.; Grossman, W., Jr.; Kammash, T.; Schultz, K. R.; Woodall, D. M.

    1981-03-01

    A prototype fusion reactor was designed based on magnetic field reversed plasma confinement. A set of physics, technology, and mechanical design criteria were developed in order to make this concept attractive. Six major criteria guide the commercial prototype design. The prototype must: (1) produce net electricity decisively P sub net 70% of P sub gross; (2) scale to an economical commercial plant and have small physical size; (3) have all features required of a correcial upgrade plant (H-3 breeding, etc.); (4) minimize exotic technology and maintenance complexity; (5) promise significantly lower safety hazards than fission plants (environmentally and socially acceptable); and (6) be modular in design to permit repetitive production of components.

  9. Axial translation of field-reversing relativistic electron rings

    NASA Astrophysics Data System (ADS)

    Rej, D. J.

    1981-08-01

    As a consequence of experiments: (1) rings were generated for the first time in a low pressure ambient neutral gas (-10 mTorr H1 and D2), increasing their collisionally limited field-reversal times to over 1 millisecond or more than five times over that previously observed; (2) the first experimental test of adiabatic magnetic compression resulted in greater than factor of ten increases in the ring kinetic energy densities; and (3) two axially separted nonfield-reversed rings, generated from a single accelerator pulse, were successfully combined or stacked to form one field-reversed ring. A quantitative analysis of the translation data is made using retarding force calculations. The rings moved axially at the terminal speed associated with a balance between the accelerating and retarding forces. Conditions were found where the major contribution to the retarding force was due to either the resistive wall or plasma currents. The wall (plasma) force dominated when the rings were moved through the low (high) pressure background gas and inside of the higher (lower) conductivity wall.

  10. Feasibility study of microwave electron heating on the C-2 field-reversed configuration device

    NASA Astrophysics Data System (ADS)

    Yang, Xiaokang; Koehn, Alf; Petrov, Yuri; Ceccherini, Francesco; Dettrick, Sean; Binderbauer, Michl

    2015-12-01

    Different microwave heating scenarios for the C-2 plasmas have been investigated recently with use of both the Genray ray-racing code and the IPF-FDMC full-wave code, and the study was focused on the excitation of the electron Bernstein wave (EBW) with O-mode launch. For a given antenna position on C-2 and the fixed 2D plasma density and equilibrium field profiles, simulations have been done for six selected frequencies (2.45 GHz, 5 GHz, 8 GHz, 18 GHz, 28 GHz, and 50 GHz). Launch angles have been optimized for each case in order to achieve high coupling efficiencies to the EBW by the O-X-B mode conversion process and high power deposition. Results show that among those six frequencies, the case of 8 GHz is the most promising scenario, which has both high mode conversion efficiency (90%) and the relatively deeper power deposition.

  11. Thomson Scattering implementation on the FRX-L Field Reversed Configuration

    NASA Astrophysics Data System (ADS)

    Wurden, G. A.; Bass, C.; Devries, S.; Faulkner, J.; Wysocki, F. J.

    2002-11-01

    A multi-point TS system has been designed, constructed, and is undergoing tests on the FRX-L plasma experiment at Los Alamos. It uses a twin beam (12 Joule/beam) Quantel ruby laser, and a gated, intensified 80% QE PixelVision back-thinned 512x512 CCD array detector coupled to the holographic grating CTX TS spectrometer. Fiber bundles bring the scattered light from six different spatial locations to the spectrometer, with each bundle mapping two background points and one laser point into the spectrometer, so that a total of 32 individual spectra are collected on the blue side of the ruby laser line. The viewing access to the plasma is limited to 1 cm-wide slots in the FRC theta pinch coils, which we enlarge locally to accommodate 1" diameter collection optics. Expected electron temperatures coverage will range from 20-400 eV. Since the operating density is quite high (10^16 to 10^17 cm-3), and the quartz cylinder allows essentially no viewing dump, there will be a substantial plasma light background to contend with, which we will accomplish through the 16-bit dynamic range of the detector, and with nearby background subtraction (in space, not in time). Initial system and plasma measurements will be presented.

  12. Feasibility study of microwave electron heating on the C-2 field-reversed configuration device

    SciTech Connect

    Yang, Xiaokang Ceccherini, Francesco; Dettrick, Sean; Binderbauer, Michl; Koehn, Alf; Petrov, Yuri

    2015-12-10

    Different microwave heating scenarios for the C-2 plasmas have been investigated recently with use of both the Genray ray-racing code and the IPF-FDMC full-wave code, and the study was focused on the excitation of the electron Bernstein wave (EBW) with O-mode launch. For a given antenna position on C-2 and the fixed 2D plasma density and equilibrium field profiles, simulations have been done for six selected frequencies (2.45 GHz, 5 GHz, 8 GHz, 18 GHz, 28 GHz, and 50 GHz). Launch angles have been optimized for each case in order to achieve high coupling efficiencies to the EBW by the O-X-B mode conversion process and high power deposition. Results show that among those six frequencies, the case of 8 GHz is the most promising scenario, which has both high mode conversion efficiency (90%) and the relatively deeper power deposition.

  13. Study of fusion product effects in field-reversed mirrors

    SciTech Connect

    Driemeyer, D.E.

    1980-01-01

    The effect of fusion products (fps) on Field-Reversed Mirror (FRM) reactor concepts has been evaluated through the development of two new computer models. The first code (MCFRM) treats fps as test particles in a fixed background plasma, which is represented as a fluid. MCFRM includes a Monte Carlo treatment of Coulomb scattering and thus provides an accurate treatment of fp behavior even at lower energies where pitch-angle scattering becomes important. The second code (FRMOD) is a steady-state, globally averaged, two-fluid (ion and electron), point model of the FRM plasma that incorporates fp heating and ash buildup values which are consistent with the MCFRM calculations. These codes have been used extensively in the development of an advanced-fuel FRM reactor design (SAFFIRE). A Catalyzed-D version of the plant is also discussed along with an investigation of the steady-state energy distribution of fps in the FRM. User guides for the two computer codes are also included.

  14. Transport and equilibrium in field-reversed mirrors

    SciTech Connect

    Boyd, J.K.

    1982-09-01

    Two plasma models relevant to compact torus research have been developed to study transport and equilibrium in field reversed mirrors. In the first model for small Larmor radius and large collision frequency, the plasma is described as an adiabatic hydromagnetic fluid. In the second model for large Larmor radius and small collision frequency, a kinetic theory description has been developed. Various aspects of the two models have been studied in five computer codes ADB, AV, NEO, OHK, RES. The ADB code computes two dimensional equilibrium and one dimensional transport in a flux coordinate. The AV code calculates orbit average integrals in a harmonic oscillator potential. The NEO code follows particle trajectories in a Hill's vortex magnetic field to study stochasticity, invariants of the motion, and orbit average formulas. The OHK code displays analytic psi(r), B/sub Z/(r), phi(r), E/sub r/(r) formulas developed for the kinetic theory description. The RES code calculates resonance curves to consider overlap regions relevant to stochastic orbit behavior.

  15. End-on soft x ray imaging of Field-Reversed Configurations (FRCs) on the Field-Reversal-C (FRX-C)/Large Scale Modification (LSM) experiment

    NASA Astrophysics Data System (ADS)

    Taggart, D. P.; Gribble, R. J.; Bailey, A. D., III; Sugimoto, S.

    Recently, a prototype soft x ray pinhole camera was fielded on FRX-C/LSM at Los Alamos and TRX at Spectra Technology. The soft x ray FRC images obtained using this camera stand out in high contrast to their surroundings. It was particularly useful for studying the FRC during and shortly after formation when, at certain operating conditions, flute-like structures at the edge and internal structures of the FRC were observed which other diagnostics could not resolve. Building on this early experience, a new soft x ray pinhole camera was installed on FRX-C/LSM, which permits more rapid data acquisition and briefer exposures. It will be used to continue studying FRC formation and to look for internal structure later in time which could be a signature of instability. The initial operation of this camera is summarized.

  16. Tomographic imaging system for measuring impurity line emission in a field-reversed configurationa)

    NASA Astrophysics Data System (ADS)

    Roche, T.; Bolte, N.; Garate, E.; Heidbrink, W. W.; McWilliams, R.; Wessel, F.

    2012-10-01

    A 16 chord optical tomography system has been developed and implemented in the flux coil generated-field reversed configuration (FRC). The chords are arranged in two fans of eight, which cover ˜35% of the vessel area at the midplane. Each illuminate separate photomultiplier tubes (PMTs) which are fitted with narrow band-pass filters. In this case, filters are centered at 434.8 nm to measure emission from singly ionized argon. PMT crosstalk is negligible. Background noise due to electron radiation and Hγ line radiation is <10% of argon emission. The spatial resolution of the reconstruction is 1.5 cm. Argon is introduced using a puff valve and tube designed to impart the gas into the system as the FRC is forming. Reconstruction of experimental data results in time-dependent, 2D emissivity profiles of the impurity ions. Analysis of these data show radial, cross-field diffusion to be in the range of 10-103 m2/s during FRC equilibrium.

  17. Field reversals in electrically asymmetric capacitively coupled radio-frequency discharges in hydrogen

    NASA Astrophysics Data System (ADS)

    Mohr, Sebastian; Schüngel, Edmund; Schulze, Julian; Czarnetzki, Uwe

    2013-10-01

    In this paper, we present a simulation study of electrically asymmetric capacitively coupled radio-frequency hydrogen discharges using the hybrid plasma equipment model operated at the combined frequencies of 10 and 20 MHz. We find that, in such discharges, field reversals cause ionization near the electrodes during the sheath collapse. In the case of the investigated asymmetric voltage waveforms, the field reversals are asymmetrically distributed over the sheaths, which causes asymmetric ionization and density profiles. The asymmetry of these profiles can be controlled by the phase angle between the two frequencies. As a result, the possibility to control the ion energy independently from the ion flux via the electrical asymmetry effect (EAE) is reduced in discharges displaying strong field reversals, as the asymmetric field reversals compensate the electrically induced asymmetry. The reason for this is understood by an analytical model. Furthermore, we demonstrate, that the EAE can be restored by the addition of specific gases to a pure hydrogen discharge.

  18. Field reversing magnetotail current sheets: earth, Venus, and Comet Giacobini-Zinner

    SciTech Connect

    McComas, D.J.

    1986-09-01

    This dissertation examines the field reversing magnetotail current sheets at the earth, Venus, and Comet Giacobini-Zinner. In the near earth study a new analysis technique is developed to calculate the detailed current density distributions within the cross tail current sheet for the first time. This technique removes the effects of a variable sheet velocity by inverting intersatellite timings between the co-orbiting satellites ISEE-1 and -2. Case studies of three relatively geomagnetically quiet crossings are made; sheet thicknesses and peak current densities are approx.1-5 x 10/sup 4/ km and approx.5-50 nA/m/sup 2/. Current density distributions reveal a high density central region, lower density shoulders, and considerable fine structure throughout. In the Venus study another new analysis technique is developed to reconstruct the average tail configuration from a correlation between field magnitude and draping angle in a large statistical data set. In the comet study, high resolution magnetic field and plasma electron data from the ICE traversal of Giacobini-Zinner are combined for the first time to determine the tail/current sheet geometry and calculate certain important but unmeasured local ion and upstream properties. Pressure balance across the tail gives ion temperatures and betas of approx.1.2 x 10/sup 5/ K and approx.40 in the center of the current sheet to approx.1 x 10/sup 6/ K and approx.3 in the outer lobes. Axial stress balance shows that the velocity shear upstream near the nucleus is >6 (approx.1 at ICE), and that a region of strongly enhanced mass loading (ion source rate approx.24 times that upstream from lobes) exists upstream from the current sheet. The integrated downtail mass flux is approx.2.6 x 10/sup 26/ H/sub 2/O+/sec, which is only approx.1% of the independently determined total cometary efflux. 79 refs., 37 figs.

  19. Magnetic field reversals in the Milky Way- "cherchez le champ magnetique".

    NASA Astrophysics Data System (ADS)

    Vallee, J. P.

    1996-04-01

    Radio observations of nearby spiral galaxies have tremendously enhanced our knowledge of their global magnetic field distributions. Recent theoretical developments in the area of dynamos have also helped in the interpretation of magnetic field data in spiral galaxies. When it comes to the magnetic field in the Milky Way galaxy, our position in the Milky Way's galactic disk hinders our attempts at interpreting the observational data. This makes the proposition of "cherchez le champ magnetique" a difficult one to follow. Some recent papers have attempted to fit magnetic field models to spiral galaxies, and in particular to the Milky Way galaxy. Magnetic field reversals in the Milky Way are crucial to all interpretations, be they axisymmetric spiral (ASS) or bisymmetric spiral (BSS) global magnetic field models. Magnetic field reversals can be found in both ASS and BSS magnetic field models, not just BSS ones. The axisymmetric spiral (ASS) magnetic field models produced by the dynamo theory already predict magnetic field reversals, and they are of the type observed in the Milky Way. The small number of magnetic field reversals observed in the Milky Way is compatible with the ASS magnetic field models. The bisymmetric spiral (BSS) magnetic field models as applied to the pulsar RM data and to the QSO and galaxies data have many problems, due to the many pitfalls in model fitting the magnetic field reversals observed in the Milky Way. Many pitfalls are discussed here, including the incomplete comparisons of BSS versus ASS models, the number of spiral arms to be used in modelling, and the proper distance to pulsars via the more accurate distribution of thermal electrons within spiral arms. The two magnetic field reversals in our Milky Way are clearly located in the interarm regions. Predicted magnetic field reversals are periodic, while observed ones are not periodic. Magnetic field reversals cannot be masked effectively by local interstellar magnetised shells. The

  20. Tracking a large pseudostreamer to pinpoint the southern polar magnetic field reversal

    NASA Astrophysics Data System (ADS)

    Rachmeler, Laurel; Guennou, Chloé; Seaton, Daniel B.; Gibson, Sarah; Auchère, Frédéric

    2016-05-01

    The reversal of the solar polar magnetic field is notoriously hard to pin down due to the extreme viewing angle of the pole. In Cycle 24, the southern polar field reversal can be pinpointed with high accuracy due to a large-scale pseudostreamer that formed over the pole and persisted for approximately a year. We tracked the size and shape of this structure with multiple observations and analysis techniques including PROBA2/SWAP EUV images, AIA EUV images, CoMP data, and 3D tomographic reconstructions. We find that the heliospheric field reversed polarity in February 2014, whereas in the photosphere the last vestiges of the previous polar field polarity remained until March 2015.

  1. Production of field-reversed mirror plasma with a coaxial plasma gun

    DOEpatents

    Hartman, Charles W.; Shearer, James W.

    1982-01-01

    The use of a coaxial plasma gun to produce a plasma ring which is directed into a magnetic field so as to form a field-reversed plasma confined in a magnetic mirror. Plasma thus produced may be used as a target for subsequent neutral beam injection or other similarly produced and projected plasma rings or for direct fusion energy release in a pulsed mode.

  2. Production of field-reversed mirror plasma with a coaxial plasma gun

    DOEpatents

    Hartman, C.W.; Shearer, J.W.

    The use of a coaxial plasma gun to produce a plasma ring which is directed into a magnetic field so as to form a field-reversed plasma confined in a magnetic mirror. Plasma thus produced may be used as a target for subsequent neutral beam injection or other similarly produced and projected plasma rings or for direct fusion energy release in a pulsed mode.

  3. Formation of field-reversed ion rings in a magnetized background plasma

    SciTech Connect

    Omelchenko, Y.A.; Sudan, R.N.

    1995-07-01

    In typical field-reversed ion ring experiments, an intense annular ion beam is injected across a magnetic cusp into neutral gas immersed in a solenoidal magnetic field. In anticipation of a new experimental thrust to create strong field-reversed ion rings the beam evolution is investigated in a preformed background plasma on a time scale greater than an ion cyclotron period, using a new two and a half-dimensional (21/2-D) hybrid, particle-in-cell (PIC) code FIRE, in which the beam and background ions are treated as macro-particles and the electrons as a massless fluid. It is shown that under appropriate conditions axial beam bunching occurs in the downstream applied field and a compact field-reversed ring is formed. It is observed that the ring is reflected in a ramped magnetic field. Upon reflection its axial velocity is very much less than that expected from a single particle model due to the transfer of the mean axial momentum to the background ions. This increases the time available to apply a pulsed mirror for trapping the ring experimentally. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  4. Ion heating in the field-reversed configuration (FRC) by rotating magnetic fields (RMF) near cyclotron resonance

    SciTech Connect

    Samuel A. Cohen; Alan H. Glasser

    2000-07-20

    The trajectories of ions confined in a Solovev FRC equilibrium magnetic geometry and heated with a small-amplitude, odd-parity rotating magnetic field, have been studied with a Hamiltonian computer code. When the RMF frequency is in the ion-cyclotron range, explosive heating occurs. Higher-energy ions are found to have betatron-type orbits, preferentially localized near the FRC midplane. These results are relevant to a compact magnetic-fusion-reactor design.

  5. Pioneer 7 observations of plasma flow and field reversal regions in the distant geomagnetic tail

    NASA Technical Reports Server (NTRS)

    Walker, R. C.; Lazarus, A. J.; Villante, U.

    1975-01-01

    The present paper gives the results of an extensive analysis of plasma and magnetic-field data from Pioneer 7 taken in the geomagnetic tail approximately 1000 earth radii downstream from earth. The principal observations are: (1) measurable fluxes of protons in the tail, flowing away from earth, sometimes with a double-peaked velocity distribution; (2) field reversal regions in which the field changes from radial to antiradial by a vector rotation in the north-south plane; and (3) general characteristics of the tail similar to those observed near earth with good correlation between taillike magnetic fields and plasma.

  6. Particle Dynamics Discrimination Between Current Sheet Magnetic Field Reversal and Magnetic Neutral Line Fields

    NASA Astrophysics Data System (ADS)

    Martin, R. F., Jr.; Holland, D. L.; Svetich, J.

    2014-12-01

    We consider dynamical signatures of ion motion that discriminate between a current sheet magnetic field reversal and a magnetic neutral line field. These two related dynamical systems have been studied previously as chaotic scattering systems with application to the Earth's magnetotail. Both systems exhibit chaotic scattering over a wide range of parameter values. The structure and properties of their respective phase spaces have been used to elucidate potential dynamical signatures that affect spacecraft measured ion distributions. In this work we consider the problem of discrimination between these two magnetic structures using charged particle dynamics. For example we show that signatures based on the well known energy resonance in the current sheet field provide good discrimination since the resonance is not present in the neutral line case. While both fields can lead to fractal exit region structuring, their characteristics are different and also may provide some field discrimination. Application to magnetotail field and particle parameters will be presented

  7. On the Enhanced Coronal Mass Ejection Detection Rate since the Solar Cycle 23 Polar Field Reversal

    NASA Astrophysics Data System (ADS)

    Petrie, G. J. D.

    2015-10-01

    Compared to cycle 23, coronal mass ejections (CMEs) with angular widths >30° have been observed to occur at a higher rate during solar cycle 24, per sunspot number. This result is supported by data from three independent databases constructed using Large Angle and Spectrometric Coronagraph Experiment coronagraph images, two employing automated detection techniques and one compiled manually by human observers. According to the two databases that cover a larger field of view, the enhanced CME rate actually began shortly after the cycle 23 polar field reversal, in 2004, when the polar fields returned with a 40% reduction in strength and the interplanetary radial magnetic field became ≈30% weaker. This result is consistent with the link between anomalous CME expansion and the heliospheric total pressure decrease recently reported by Gopalswamy et al.

  8. 40Ar/39Ar Dating of the Brunhes-Matuyama Geomagnetic Field Reversal.

    PubMed

    Baksi, A K; Hsu, V; McWilliams, M O; Farrar, E

    1992-04-17

    Magnetostratigraphic studies are widely used in conjunction with the geomagnetic polarity time scale (GPTS) to date events in the range 0 to 5 million years ago. A critical tie point on the GPTS is the potassium-argon age of the most recent (Brunhes-Matuyama) geomagnetic field reversal. Astronomical values for the forcing frequencies observed in the oxygen isotope record in Ocean Drilling Project site 677 suggest that the age of this last reversal is 780 ka (thousand years ago), whereas the potassium-argon-based estimate is 730 ka. Results from 4039; Ar incremental heating studies on a series of lavas from Maui that straddle the Brunhes-Matuyama reversal give an age of 783 + 11 ka, in agreement with the astronomically derived value. The astronomically based technique appears to be a viable tool for dating young sedimentary sequences. PMID:17743111

  9. Paleomagnetic record of a geomagnetic field reversal from late miocene mafic intrusions, southern nevada.

    PubMed

    Ratcliff, C D; Geissman, J W; Perry, F V; Crowe, B M; Zeitler, P K

    1994-10-21

    Late Miocene (about 8.65 million years ago) mafic intrusions and lava flows along with remagnetized host rocks from Paiute Ridge, southern Nevada, provide a high-quality paleomagnetic record of a geomagnetic field reversal. These rocks yield thermoremanent magnetizations with declinations of 227 degrees to 310 degrees and inclinations of -7 degrees to 49 degrees , defining a reasonably continuous virtual geomagnetic pole path over west-central Pacific longitudes. Conductive cooling estimates for the intrusions suggest that this field transition, and mafic magmatism, lasted only a few hundred years. Because this record comes principally from intrusive rocks, rather than sediments or lavas, it is important in demonstrating the longitudinal confinement of the geomagnetic field during a reversal. PMID:17816684

  10. The Enhanced Coronal Mass Ejection Detection Rate since the Solar Cycle 23 Polar Field Reversal

    NASA Astrophysics Data System (ADS)

    Petrie, Gordon

    2016-05-01

    Compared to cycle 23, coronal mass ejections (CMEs) with angular widths >30° have been observed to occur at a higher rate during solar cycle 24, per sunspot number. This result is supported by data from three independent databases constructed using Large Angle and Spectrometric Coronagraph Experiment coronagraph images, two employing automated detection techniques and one compiled manually by human observers. According to the two databases that cover a larger field of view, the enhanced CME rate actually began shortly after the cycle 23 polar field reversal, in 2004, when the polar fields returned with a 40% reduction in strength and the interplanetary radial magnetic field became ≈30% weaker. This result is consistent with the link between anomalous CME expansion and the heliospheric total pressure decrease recently reported by Gopalswamy et al.

  11. Possible relationship between the Earth's rotation variations and geomagnetic field reversals over the past 510 Myr

    NASA Astrophysics Data System (ADS)

    Pacca, Igor; Frigo, Everton; Hartmann, Gelvam

    2015-04-01

    The Earth’s rotation can change as a result of several internal and external processes, each of which is at a different timescale. Here, we present some possible connections between the Earth’s rotation variations and the geomagnetic reversal frequency rates over the past 120 Myr. In addition, we show the possible relationship between the geomagnetic field reversal frequency and the δ18O oscillations. Because the latter reflects the glacial and interglacial periods, we hypothesize that it can be used as a possible indicator to explain the length of day (LOD) variations and consequently the reversal field frequency over the past 510 Myr. Therefore, our analysis suggests that the relationships between the geomagnetic reversal frequency rates and the Earth’s rotation changes during the Phanerozoic. However, more reversal data are required for periods before the KRS to strengthen the perspective of using the geomagnetic reversal data as a marker for the LOD variations through geological times.

  12. Study on the time difference of solar polar field reversal between the north and south hemisphere

    NASA Astrophysics Data System (ADS)

    Shukuya, D.; Kusano, K.

    2013-12-01

    Dynamo is a mechanism whereby the kinetic energy of plasma is converted to the magnetic energy. This mechanism works to generate and maintain the solar and stellar magnetic field. Since the sun is only a star whose magnetic field can be directly observed, the understanding of solar dynamo can provide clues to clarify dynamo mechanisms. On the other hand, because solar activities, which are caused by solar dynamo, can influence the Earth's climate, solar variability is an important issue also to understand long-term evolution of the Earth's climate. It is widely known that the polarity of the solar magnetic fields on the north and south poles periodically reverses at every sunspot maxima. It is also known that the reversal at one pole is followed by that on the other pole. The time difference of magnetic field reversal between the poles was first noted by Babcock (1959) from the very first observation of polar field. Recently, it was confirmed by detailed observations with the HINODE satellite (Shiota et al. 2012). Svalgaard and Kamide (2013) indicated that there is a relationship between the time difference of the polarity reversal and the hemispheric asymmetry of the sunspot activity. However, the mechanisms for the hemispheric asymmetry are still open to be revealed. In this paper, we study the asymmetric feature of the solar dynamo based on the flux transport dynamo model (Chatterjee et al. 2004) to explain the time difference of magnetic polarity reversal between the north and south poles. In order to calculate long-term variations of solar activities, we use the mean field kinematic dynamo model, which is derived from magnetohydrodynamics (MHD) equation through the mean field and other approximations. We carried out the mean field dynamo simulations using the updated SURYA code which was developed originally by Choudhuri and his collaborators (2004). We decomposed the symmetric and asymmetric components of magnetic field, which correspond respectively to the

  13. ON POLAR MAGNETIC FIELD REVERSAL AND SURFACE FLUX TRANSPORT DURING SOLAR CYCLE 24

    SciTech Connect

    Sun, Xudong; Todd Hoeksema, J.; Liu, Yang; Zhao, Junwei

    2015-01-10

    As each solar cycle progresses, remnant magnetic flux from active regions (ARs) migrates poleward to cancel the old-cycle polar field. We describe this polarity reversal process during Cycle 24 using four years (2010.33-2014.33) of line-of-sight magnetic field measurements from the Helioseismic and Magnetic Imager. The total flux associated with ARs reached maximum in the north in 2011, more than two years earlier than the south; the maximum is significantly weaker than Cycle 23. The process of polar field reversal is relatively slow, north-south asymmetric, and episodic. We estimate that the global axial dipole changed sign in 2013 October; the northern and southern polar fields (mean above 60° latitude) reversed in 2012 November and 2014 March, respectively, about 16 months apart. Notably, the poleward surges of flux in each hemisphere alternated in polarity, giving rise to multiple reversals in the north. We show that the surges of the trailing sunspot polarity tend to correspond to normal mean AR tilt, higher total AR flux, or slower mid-latitude near-surface meridional flow, while exceptions occur during low magnetic activity. In particular, the AR flux and the mid-latitude poleward flow speed exhibit a clear anti-correlation. We discuss how these features can be explained in a surface flux transport process that includes a field-dependent converging flow toward the ARs, a characteristic that may contribute to solar cycle variability.

  14. The effect of the solar field reversal on the modulation of galactic cosmic rays

    NASA Technical Reports Server (NTRS)

    Thomas, B. T.; Goldstein, B. E.

    1983-01-01

    There is now a growing awareness that solar cycle related changes in the large-scale structure of the interplanetary magnetic field (IMF) may play an important role in the modulation of galactic cosmic rays. To date, attention focussed on two aspects of the magnetic field structure: large scale compression regions produced by fast solar wind streams and solar flares, both of which are known to vary in intensity and number over the solar cycle, and the variable warp of the heliospheric current sheet. It is suggested that another feature of the solar cycle is worthy of consideration: the field reversal itself. If the Sun reverses its polarity by simply overturning the heliospheric current sheet (northern fields migrating southward and vice-versa) then there may well be an effect on cosmic ray intensity. However, such a simple picture of solar reversal seems improbable. Observations of the solar corona suggest the existence of not one but several current sheets in the heliosphere at solar maximum. The results of a simple calculation to demonstrate that the variation in cosmic ray intensities that will result can be as large as is actually observed over the solar cycle are given.

  15. Evaluation of using ferrofluid as an interface material for a field-reversible thermal connector

    NASA Astrophysics Data System (ADS)

    Yousif, Ahmed S.

    The electrical functionality of an avionics chassis is limited due to heat dissipation limits. The limits arise due to the fact that components in an avionic computer boxes are packed very compactly, with the components mounted onto plug-in cards, and the harsh environment experienced by the chassis limits how heat can be dissipated from the cards. Convective and radiative heat transfer to the ambient are generally not possible. Therefore it is necessary to have heat transferred from the components conducted to the edge of the plug-in cards. The heat then needs to conduct from the card edge to a cold block that not only holds the card in place, but also removes the generated heat by some heat transfer fluid that is circulated through the cold block. The interface between the plug-in card and the cold block typically has a high thermal resistance since it is necessary for the card to have the capability to be re-workable, meaning that the card can be removed and then returned to the chassis. Reducing the thermal resistance of the interface is the objective of the current study and the topic of this thesis. The current design uses a pressure interface between the card and cold block. The contact pressure is increased through the addition of a wedgelock, which is a field-reversible mechanical connector. To use a wedgelock, the cold block has channels milled on the surface with widths that are larger than the thickness of the plug-in card and the un-expanded wedgelock. The card edge is placed in the channel and placed against one of the channel walls. A wedgelock is then placed between the card and the other channel wall. The wedgelock is then expanded by using either a screw or a lever. As the wedgelock expands it fills in the remaining channel gap and bears against the other face of the plug-in card. The majority of heat generated by the components on the plug-in card is forced to conduct from the card into the wall of the cold block, effectively a single sided, dry

  16. Measurements of cosmic-ray low-energy antiproton and proton spectra in a transient period of solar field reversal.

    PubMed

    Asaoka, Y; Shikaze, Y; Abe, K; Anraku, K; Fujikawa, M; Fuke, H; Haino, S; Imori, M; Izumi, K; Maeno, T; Makida, Y; Matsuda, S; Matsui, N; Matsukawa, T; Matsumoto, H; Matsunaga, H; Mitchell, J; Mitsui, T; Moiseev, A; Motoki, M; Nishimura, J; Nozaki, M; Orito, S; Ormes, J F; Saeki, T; Sanuki, T; Sasaki, M; Seo, E S; Sonoda, T; Streitmatter, R; Suzuki, J; Tanaka, K; Tanizaki, K; Ueda, I; Wang, J Z; Yajima, Y; Yamagami, Y; Yamamoto, A; Yamamoto, Y; Yamato, K; Yoshida, T; Yoshimura, K

    2002-02-01

    The energy spectra of cosmic-ray low-energy antiprotons ( *p's) and protons ( p's) have been measured by BESS in 1999 and 2000, during a period covering reversal at the solar magnetic field. Based on these measurements, a sudden increase of the *p/p flux ratio following the solar magnetic field reversal was observed, and it generally agrees with a drift model of the solar modulation. PMID:11863712

  17. Module Configuration

    DOEpatents

    Oweis, Salah; D'Ussel, Louis; Chagnon, Guy; Zuhowski, Michael; Sack, Tim; Laucournet, Gaullume; Jackson, Edward J.

    2002-06-04

    A stand alone battery module including: (a) a mechanical configuration; (b) a thermal management configuration; (c) an electrical connection configuration; and (d) an electronics configuration. Such a module is fully interchangeable in a battery pack assembly, mechanically, from the thermal management point of view, and electrically. With the same hardware, the module can accommodate different cell sizes and, therefore, can easily have different capacities. The module structure is designed to accommodate the electronics monitoring, protection, and printed wiring assembly boards (PWAs), as well as to allow airflow through the module. A plurality of modules may easily be connected together to form a battery pack. The parts of the module are designed to facilitate their manufacture and assembly.

  18. Using Polar Coronal Hole Area Measurements to Determine the Solar Polar Magnetic Field Reversal in Solar Cycle 24

    NASA Technical Reports Server (NTRS)

    Karna, N.; Webber, S.A. Hess; Pesnell, W.D.

    2014-01-01

    An analysis of solar polar coronal hole (PCH) areas since the launch of the Solar Dynamics Observatory (SDO) shows how the polar regions have evolved during Solar Cycle 24. We present PCH areas from mid-2010 through 2013 using data from the Atmospheric Imager Assembly (AIA) and Helioseismic and Magnetic Imager (HMI) instruments onboard SDO. Our analysis shows that both the northern and southern PCH areas have decreased significantly in size since 2010. Linear fits to the areas derived from the magnetic-field properties indicate that, although the northern hemisphere went through polar-field reversal and reached solar-maximum conditions in mid-2012, the southern hemisphere had not reached solar-maximum conditions in the polar regions by the end of 2013. Our results show that solar-maximum conditions in each hemisphere, as measured by the area of the polar coronal holes and polar magnetic field, will be offset in time.

  19. Fingernail Configuration

    PubMed Central

    Jung, Jin Woo; Shin, Jun Ho; Kwon, Yu Jin; Hwang, Jae Ha; Lee, Sam Yong

    2015-01-01

    Background A number of conditions can alter a person's fingernail configuration. The ratio between fingernail width and length (W/L) is an important aesthetic criterion, and some underlying diseases can alter the size of the fingernail. Fingernail curvature can be altered by systemic disorders or disorders of the fingernail itself. Although the shape and curvature of the fingernail can provide diagnostic clues for various diseases, few studies have precisely characterized normal fingernail configuration. Methods We measured the W/L ratio of the fingernail, transverse fingernail curvature, hand length, hand breadth, and distal interphalangeal joint width in 300 volunteers with healthy fingernails. We also investigated whether age, sex, height, and handedness influenced the fingernail W/L ratio and transverse fingernail curvature. Results In women, fingernail W/L ratios were similar across all five fingers, and were lower than those in men. The highest value of transverse fingernail curvature was found in the thumb, followed by the index, middle, ring, and little fingers. Handedness and aging influenced transverse fingernail curvature, but not the fingernail W/L ratio. Fingernails were flatter on the dominant hand than on the non-dominant hand. The radius of transverse fingernail curvature increased with age, indicating that fingernails tended to flatten with age. Conclusions Our quantitative data on fingernail configuration can be used as a reference range for diagnosing various diseases and deformities of the fingernail, and for performing reconstructive or aesthetic fingernail surgery. PMID:26618124

  20. Simulation study of wave phenomena from the sheath region in single frequency capacitively coupled plasma discharges; field reversals and ion reflection

    SciTech Connect

    Sharma, S.; Turner, M. M.

    2013-07-15

    Capacitively coupled radio-frequency (RF) discharges have great significance for industrial applications. Collisionless electron heating in such discharges is important, and sometimes is the dominant mechanism. This heating is usually understood to originate in a stochastic interaction between electrons and the electric fields. However, other mechanisms may also be important. There is evidence of wave emission with a frequency near the electron plasma frequency, i.e., ω{sub pe}, from the sheath region in collisionless capacitive RF discharges. This is the result of a progressive breakdown of quasi-neutrality close to the electron sheath edge. These waves are damped in a few centimeters during their propagation from the sheath towards the bulk plasma. The damping occurs because of the Landau damping or some related mechanism. This research work reports that the emission of waves is associated with a field reversal during the expanding phase of the sheath. Trapping of electrons near to this field reversal region is observed. The amplitude of the wave increases with increasing RF current density amplitude J(tilde sign){sub 0} until some maximum is reached, beyond which the wave diminishes and a new regime appears. In this new regime, the density of the bulk plasma suddenly increases because of ion reflection, which occurs due to the presence of strong field reversal near sheath region. Our calculation shows that these waves are electron plasma waves. These phenomena occur under extreme conditions (i.e., higher J(tilde sign){sub 0} than in typical experiments) for sinusoidal current waveforms, but similar effects may occur with non-sinusoidal pulsed waveforms for conditions of experimental interest, because the rate of change of current is a relevant parameter. The effect of electron elastic collisions on plasma waves is also investigated.

  1. Operational Dynamic Configuration Analysis

    NASA Technical Reports Server (NTRS)

    Lai, Chok Fung; Zelinski, Shannon

    2010-01-01

    Sectors may combine or split within areas of specialization in response to changing traffic patterns. This method of managing capacity and controller workload could be made more flexible by dynamically modifying sector boundaries. Much work has been done on methods for dynamically creating new sector boundaries [1-5]. Many assessments of dynamic configuration methods assume the current day baseline configuration remains fixed [6-7]. A challenging question is how to select a dynamic configuration baseline to assess potential benefits of proposed dynamic configuration concepts. Bloem used operational sector reconfigurations as a baseline [8]. The main difficulty is that operational reconfiguration data is noisy. Reconfigurations often occur frequently to accommodate staff training or breaks, or to complete a more complicated reconfiguration through a rapid sequence of simpler reconfigurations. Gupta quantified a few aspects of airspace boundary changes from this data [9]. Most of these metrics are unique to sector combining operations and not applicable to more flexible dynamic configuration concepts. To better understand what sort of reconfigurations are acceptable or beneficial, more configuration change metrics should be developed and their distribution in current practice should be computed. This paper proposes a method to select a simple sequence of configurations among operational configurations to serve as a dynamic configuration baseline for future dynamic configuration concept assessments. New configuration change metrics are applied to the operational data to establish current day thresholds for these metrics. These thresholds are then corroborated, refined, or dismissed based on airspace practitioner feedback. The dynamic configuration baseline selection method uses a k-means clustering algorithm to select the sequence of configurations and trigger times from a given day of operational sector combination data. The clustering algorithm selects a simplified

  2. Computer Lab Configuration.

    ERIC Educational Resources Information Center

    Wodarz, Nan

    2003-01-01

    Describes the layout and elements of an effective school computer lab. Includes configuration, storage spaces, cabling and electrical requirements, lighting, furniture, and computer hardware and peripherals. (PKP)

  3. Estimation method of a separatrix profile of field-reduced configuration plasma with the deconvolution concept

    NASA Astrophysics Data System (ADS)

    Yamanaka, Koji; Suzuki, Yukihisa; Kitano, Katsuhisa; Ito, Shoji; Okada, Shigefumi; Goto, Seiichi

    1999-01-01

    A method to analyze the separatrix profile of a field-reversed configuration is presented that is based on a multichannel excluded flux measurement. In the method, the plasma current is represented by current filaments. This current code includes all the magnetic sources (e.g., a vacuum conducting vessel, coils for the confinement field, search coils, and coils for additional fields) as inputs to estimate the separatrix profile. With the aid of a numerically calculated function, experimental data are deconvolved to determine the current filament. The influence of measurement error included in the raw data of the calculated profiles is also discussed.

  4. Applying design principles to fusion reactor configurations for propulsion in space

    NASA Technical Reports Server (NTRS)

    Carpenter, Scott A.; Deveny, Marc E.; Schulze, Norman R.

    1993-01-01

    We applied three design principles (DPs) to adapt and optimize three candidate-terrestrial-fusion-reactor configurations for propulsion in space. The three design principles are: (1) provide maximum direct access to space for waste radiation, (2) operate components as passive radiators to minimize cooling-system mass, and (3) optimize the plasma fuel, fuel mix, and temperature for best specific Jet power. The three candidate-terrestrial-fusion-reactor configurations are: (1) the thermal-barrier-tandem-mirror (TBTM), (2) field-reversed-mirror (FRM), and (3) levitated-dipole-field (LDF). The resulting three candidate-space-fusion-propulsion systems have their initial-mass-to-LEO minimized and their specific jet power and reusability maximized. We performed a preliminary rating of these configurations and concluded that the leading engineering-design solution to space fusion propulsion is a modified TBTM that we call the Mirror Fusion Propulsion System.

  5. Applying design principles to fusion reactor configurations for propulsion in space

    NASA Astrophysics Data System (ADS)

    Carpenter, Scott A.; Deveny, Marc E.; Schulze, Norman R.

    1993-06-01

    We applied three design principles (DPs) to adapt and optimize three candidate-terrestrial-fusion-reactor configurations for propulsion in space. The three design principles are: (1) provide maximum direct access to space for waste radiation, (2) operate components as passive radiators to minimize cooling-system mass, and (3) optimize the plasma fuel, fuel mix, and temperature for best specific Jet power. The three candidate-terrestrial-fusion-reactor configurations are: (1) the thermal-barrier-tandem-mirror (TBTM), (2) field-reversed-mirror (FRM), and (3) levitated-dipole-field (LDF). The resulting three candidate-space-fusion-propulsion systems have their initial-mass-to-LEO minimized and their specific jet power and reusability maximized. We performed a preliminary rating of these configurations and concluded that the leading engineering-design solution to space fusion propulsion is a modified TBTM that we call the Mirror Fusion Propulsion System.

  6. FEL phased array configurations

    NASA Astrophysics Data System (ADS)

    Shellan, Jeffrey B.

    1986-01-01

    The advantages and disadvantages of various phased array and shared aperture concepts for FEL configurations are discussed. Consideration is given to the characteristics of intra- and inter-micropulse phasing; intra-macropulse phasing; an internal coupled resonator configuration; and an injection locked oscillator array. The use of a master oscillator power amplifier (MOPA) configuration with multiple or single master oscillators for FELs is examined. The venetian blind, rotating plate, single grating, and grating rhomb shared aperture concepts are analyzed. It is noted that the shared aperture approach using a grating rhomb and the MOPA concept with a single master oscillator and a coupled resonator are useful for FEL phased array configurations; and the MOPA concept is most applicable.

  7. ION Configuration Editor

    NASA Technical Reports Server (NTRS)

    Borgen, Richard L.

    2013-01-01

    The configuration of ION (Inter - planetary Overlay Network) network nodes is a manual task that is complex, time-consuming, and error-prone. This program seeks to accelerate this job and produce reliable configurations. The ION Configuration Editor is a model-based smart editor based on Eclipse Modeling Framework technology. An ION network designer uses this Eclipse-based GUI to construct a data model of the complete target network and then generate configurations. The data model is captured in an XML file. Intrinsic editor features aid in achieving model correctness, such as field fill-in, type-checking, lists of valid values, and suitable default values. Additionally, an explicit "validation" feature executes custom rules to catch more subtle model errors. A "survey" feature provides a set of reports providing an overview of the entire network, enabling a quick assessment of the model s completeness and correctness. The "configuration" feature produces the main final result, a complete set of ION configuration files (eight distinct file types) for each ION node in the network.

  8. Software Configuration Management Guidebook

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The growth in cost and importance of software to NASA has caused NASA to address the improvement of software development across the agency. One of the products of this program is a series of guidebooks that define a NASA concept of the assurance processes which are used in software development. The Software Assurance Guidebook, SMAP-GB-A201, issued in September, 1989, provides an overall picture of the concepts and practices of NASA in software assurance. Lower level guidebooks focus on specific activities that fall within the software assurance discipline, and provide more detailed information for the manager and/or practitioner. This is the Software Configuration Management Guidebook which describes software configuration management in a way that is compatible with practices in industry and at NASA Centers. Software configuration management is a key software development process, and is essential for doing software assurance.

  9. Oxygen configurations in silica

    SciTech Connect

    Chelikowsky, James R.; Chadi, D. J.; Binggeli, N.

    2000-07-15

    We propose a transition state for oxygen in silica. This state is produced by the insertion of an oxygen molecule into the Si-O-Si bond, i.e., it consists of producing a Si-O-O-O-Si bond. This state allows molecular oxygen diffusion in silica without breaking the molecular O{sub 2} bond and it is energetically more stable than a peroxy configuration. This configuration may allow for exchange of molecular oxygen with the oxygen in the silica framework. (c) 2000 The American Physical Society.

  10. Sonic boom configuration minimization

    NASA Technical Reports Server (NTRS)

    Sohn, Robert A.

    1992-01-01

    The topics covered include the following: the sonic boom 'big picture'; current low boom technology; Mach number impact on gross weight; equal loudness equivalent areas; performance and sizing results; potential configuration modifications; equivalent area matching; and impact of nose bluntness on aerodynamic characteristics.

  11. Space Station Final Configuration

    NASA Technical Reports Server (NTRS)

    1994-01-01

    An artist's conception of what the final configuration of the International Space Station (ISS) will look like when it is fully built and deployed. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide an unprecedented undertaking in scientific, technological, and international experimentation.

  12. Inclusive Services Innovation Configuration

    ERIC Educational Resources Information Center

    Holdheide, Lynn R.; Reschly, Daniel J.

    2011-01-01

    Teacher preparation to deliver inclusive services to students with disabilities is increasingly important because of changes in law and policy emphasizing student access to, and achievement in, the general education curriculum. This innovation configuration identifies the components of inclusive services that should be incorporated in teacher…

  13. Stability Of Plasma Configurations During Compression

    SciTech Connect

    Ruden, E L; Hammer, J H

    2006-10-27

    quasispherical (3-D) compression otherwise. Use of a Field Reversed Configuration (FRC) substantially resolves the wall contact issue, but at the cost of introducing a new (rotational) instability. An FRC has an open magnetic field outside a separatrix which effectively diverts wall material. However, FRC particles diffusing across the separatrix have a preferred angular momentum, causing the FRC within to counter-rotate in response. When the FRC's rotational-diamagnetic drift frequency ratio {alpha} reaches a critical value of order unity, the FRC undergoes a rotational instability that results in rapid particle loss. The instability is exacerbated by cylindrical compression since {beta} {approx} R{sup -2/5} during this phase, assuming angular momentum conservation. A multipole magnetic field frozen into the solid liner during compression may stabilize this mode directly and/or by impeding spin-up without significantly perturbing the implosion's azimuthal symmetry.

  14. Versatile composite amplifier configuration

    NASA Astrophysics Data System (ADS)

    Gift, Stephan J. G.; Maundy, Brent

    2015-06-01

    This paper describes a versatile composite amplifier in which a current feedback amplifier (CFA) drives an operational amplifier (OPA). In the conventional OPA-CFA composite amplifier, an OPA drives a CFA resulting in a composite structure that combines the DC input stability of the OPA and the high speed capability of the CFA. The proposed composite configuration combines different features of the CFA and OPA, specifically the constant bandwidth property of the CFA and the high power and high current output capacity of the OPA. The new circuit is easily implemented in the standard inverting and non-inverting configurations using commercially available devices, and the accuracy and constant bandwidth features were experimentally verified. Local feedback around the associated CFA ensures that the proposed composite amplifier possesses a higher level of bandwidth constancy than a single CFA.

  15. Dynamic Airspace Configuration

    NASA Technical Reports Server (NTRS)

    Bloem, Michael J.

    2014-01-01

    In air traffic management systems, airspace is partitioned into regions in part to distribute the tasks associated with managing air traffic among different systems and people. These regions, as well as the systems and people allocated to each, are changed dynamically so that air traffic can be safely and efficiently managed. It is expected that new air traffic control systems will enable greater flexibility in how airspace is partitioned and how resources are allocated to airspace regions. In this talk, I will begin by providing an overview of some previous work and open questions in Dynamic Airspace Configuration research, which is concerned with how to partition airspace and assign resources to regions of airspace. For example, I will introduce airspace partitioning algorithms based on clustering, integer programming optimization, and computational geometry. I will conclude by discussing the development of a tablet-based tool that is intended to help air traffic controller supervisors configure airspace and controllers in current operations.

  16. Modular small hydro configuration

    NASA Astrophysics Data System (ADS)

    1981-09-01

    Smaller sites (those under 750 kilowatts) which previously were not attractive to develop using equipment intended for application at larger scale sites, were the focal point in the conception of a system which utilizes standard industrial components which are generally available within short procurement times. Such components were integrated into a development scheme for sites having 20 feet to 150 feet of head. The modular small hydro configuration maximizes the use of available components and minimizes modification of existing civil works. A key aspect of the development concept is the use of a vertical turbine multistage pump, used in the reverse mode as a hydraulic turbine. The configuration allows for automated operation and control of the hydroelectric facilities with sufficient flexibility for inclusion of potential hydroelectric sites into dispersed storage and generation (DSG) utility grid systems.

  17. Weighted Configuration Model

    NASA Astrophysics Data System (ADS)

    Serrano, M. Ángeles; Boguñá, Marián

    2005-06-01

    The configuration model is one of the most successful models for generating uncorrelated random networks. We analyze its behavior when the expected degree sequence follows a power law with exponent smaller than two. In this situation, the resulting network can be viewed as a weighted network with non trivial correlations between strength and degree. Our results are tested against large scale numerical simulations, finding excellent agreement.

  18. Fuel cell system configurations

    DOEpatents

    Kothmann, Richard E.; Cyphers, Joseph A.

    1981-01-01

    Fuel cell stack configurations having elongated polygonal cross-sectional shapes and gaskets at the peripheral faces to which flow manifolds are sealingly affixed. Process channels convey a fuel and an oxidant through longer channels, and a cooling fluid is conveyed through relatively shorter cooling passages. The polygonal structure preferably includes at least two right angles, and the faces of the stack are arranged in opposite parallel pairs.

  19. Aquarius main structure configuration

    NASA Astrophysics Data System (ADS)

    Eremenko, A.

    The Aquarius/SAC-D Observatory is a joint US-Argentine mission to map the salinity at the ocean surface. This information is critical to improving our understanding of two major components of Earth's climate system - the water cycle and ocean circulation. By measuring ocean salinity from space, the Aquarius/SAC-D Mission will provide new insights into how the massive natural exchange of freshwater between the ocean, atmosphere and sea ice influences ocean circulation, weather and climate. Aquarius is the primary instrument on the SAC-D spacecraft. It consists of a Passive Microwave Radiometer to detect the surface emission that is used to obtain salinity and an Active Scatterometer to measure the ocean waves that affect the precision of the salinity measurement. The Aquarius Primary Structure houses instrument electronics, feed assemblies, and supports a deployable boom with a 2.5 m Reflector, and provides the structural interface to the SAC-D Spacecraft. The key challenge for the Aquarius main structure configuration is to satisfy the needs of component accommodations, ensuring that the instrument can meet all operational, pointing, environmental, and launch vehicle requirements. This paper describes the evolution of the Aquarius main structure configuration, the challenges of balancing the conflicting requirements, and the major configuration driving decisions and compromises.

  20. The Configuration Interaction Method

    NASA Astrophysics Data System (ADS)

    Sherrill, C. David; Schaefer, Henry F., III

    Highly correlated configuration interaction (CI) wavefunctions going beyond the simple singles and doubles (CISD) model space can provide very reliable potential energy surfaces, describe electronic excited states, and yield benchmark energies and molecular properties for use in calibrating more approximate methods. Unfortunately, such wavefunctions are also notoriously difficult to evaluate due to their extreme computational demands. The dimension of a full CI procedure, which represents the exact solution of the electronic Schrödinger equation for a fixed one-particle basis set, grows factorially with the number of electrons and basis functions. For very large configuration spaces, the number of CI coupling coefficients becomes prohibitively large to store on disk; these coefficients must be evaluated as needed in a so-called direct CI procedure. Work done by several groups since 1980 has focused on using Slater determinants rather than spin (S2) eigenfunctions because coupling coefficients are easier to compute with the former. We review the fundamentals of the configuration interaction method and discuss various determinant-based CI algorithms. Additionally, we consider some applications of highly correlated CI methods.

  1. Analyzing Visibility Configurations.

    PubMed

    Dachsbacher, C

    2011-04-01

    Many algorithms, such as level of detail rendering and occlusion culling methods, make decisions based on the degree of visibility of an object, but do not analyze the distribution, or structure, of the visible and occluded regions across surfaces. We present an efficient method to classify different visibility configurations and show how this can be used on top of existing methods based on visibility determination. We adapt co-occurrence matrices for visibility analysis and generalize them to operate on clusters of triangular surfaces instead of pixels. We employ machine learning techniques to reliably classify the thus extracted feature vectors. Our method allows perceptually motivated level of detail methods for real-time rendering applications by detecting configurations with expected visual masking. We exemplify the versatility of our method with an analysis of area light visibility configurations in ray tracing and an area-to-area visibility analysis suitable for hierarchical radiosity refinement. Initial results demonstrate the robustness, simplicity, and performance of our method in synthetic scenes, as well as real applications. PMID:20498504

  2. GSC configuration management plan

    NASA Technical Reports Server (NTRS)

    Withers, B. Edward

    1990-01-01

    The tools and methods used for the configuration management of the artifacts (including software and documentation) associated with the Guidance and Control Software (GCS) project are described. The GCS project is part of a software error studies research program. Three implementations of GCS are being produced in order to study the fundamental characteristics of the software failure process. The Code Management System (CMS) is used to track and retrieve versions of the documentation and software. Application of the CMS for this project is described and the numbering scheme is delineated for the versions of the project artifacts.

  3. Configurational Entropy Revisited

    NASA Astrophysics Data System (ADS)

    Lambert, Frank L.

    2007-09-01

    Entropy change is categorized in some prominent general chemistry textbooks as being either positional (configurational) or thermal. In those texts, the accompanying emphasis on the dispersal of matter—independent of energy considerations and thus in discord with kinetic molecular theory—is most troubling. This article shows that the variants of entropy can be treated from a unified viewpoint and argues that to decrease students' confusion about the nature of entropy change these variants of entropy should be merged. Molecular energy dispersal in space is implicit but unfortunately tacit in the cell models of statistical mechanics that develop the configurational entropy change in gas expansion, fluids mixing, or the addition of a non-volatile solute to a solvent. Two factors are necessary for entropy change in chemistry. An increase in thermodynamic entropy is enabled in a process by the motional energy of molecules (that, in chemical reactions, can arise from the energy released from a bond energy change). However, entropy increase is only actualized if the process results in a larger number of arrangements for the system's energy, that is, a final state that involves the most probable distribution for that energy under the new constraints. Positional entropy should be eliminated from general chemistry instruction and, especially benefiting "concrete minded" students, it should be replaced by emphasis on the motional energy of molecules as enabling entropy change.

  4. SIM Configuration Evolution

    NASA Technical Reports Server (NTRS)

    Aaron, Kim M.

    2000-01-01

    The Space Interferometry Mission (SIM) is a space-based 10 m baseline Michelson interferometer. Planned for launch in 2005 aboard a Delta III launch vehicle, or equivalent, its primary objective is to measure the positions of stars and other celestial objects with an unprecedented accuracy of 4 micro arc seconds. With such an instrument, tremendous advancement can be expected in our understanding of stellar and galactic dynamics. Using triangulation from opposite sides of the orbit around the sun (i.e. by using parallax) one can measure the distance to any observable object in our galaxy. By directly measuring the orbital wobble of nearby stars, the mass and orbit of planets can be determined over a wide range of parameters. The distribution of velocity within nearby galaxies will be measurable. Observations of these and other objects will improve the calibration of distance estimators by more than an order of magnitude. This will permit a much better determination of the Hubble Constant as well as improving our overall understanding of the evolution of the universe. SIM has undergone several transformations, especially over the past year and a half since the start of Phase A. During this phase of a project, it is desirable to perform system-level trade studies, so the substantial evolution of the design that has occurred is quite appropriate. Part of the trade-off process has addressed two major underlying architectures: SIM Classic; and Son of SIM. The difference between these two architectures is related to the overall arrangement of the optical elements and the associated metrology system. Several different configurations have been developed for each architecture. Each configuration is the result of design choices that are influenced by many competing considerations. Some of the more important aspects will be discussed. The Space Interferometry Mission has some extremely challenging goals: millikelvin thermal stability, nanometer stabilization of optics

  5. Ames Optimized TCA Configuration

    NASA Technical Reports Server (NTRS)

    Cliff, Susan E.; Reuther, James J.; Hicks, Raymond M.

    1999-01-01

    Configuration design at Ames was carried out with the SYN87-SB (single block) Euler code using a 193 x 49 x 65 C-H grid. The Euler solver is coupled to the constrained (NPSOL) and the unconstrained (QNMDIF) optimization packages. Since the single block grid is able to model only wing-body configurations, the nacelle/diverter effects were included in the optimization process by SYN87's option to superimpose the nacelle/diverter interference pressures on the wing. These interference pressures were calculated using the AIRPLANE code. AIRPLANE is an Euler solver that uses a unstructured tetrahedral mesh and is capable of computations about arbitrary complete configurations. In addition, the buoyancy effects of the nacelle/diverters were also included in the design process by imposing the pressure field obtained during the design process onto the triangulated surfaces of the nacelle/diverter mesh generated by AIRPLANE. The interference pressures and nacelle buoyancy effects are added to the final forces after each flow field calculation. Full details of the (recently enhanced) ghost nacelle capability are given in a related talk. The pseudo nacelle corrections were greatly improved during this design cycle. During the Ref H and Cycle 1 design activities, the nacelles were only translated and pitched. In the cycle 2 design effort the nacelles can translate vertically, and pitch to accommodate the changes in the lower surface geometry. The diverter heights (between their leading and trailing edges) were modified during design as the shape of the lower wing changed, with the drag of the diverter changing accordingly. Both adjoint and finite difference gradients were used during optimization. The adjoint-based gradients were found to give good direction in the design space for configurations near the starting point, but as the design approached a minimum, the finite difference gradients were found to be more accurate. Use of finite difference gradients was limited by the

  6. Power converter connection configuration

    DOEpatents

    Beihoff, Bruce C.; Kehl, Dennis L.; Gettelfinger, Lee A.; Kaishian, Steven C.; Phillips, Mark G.; Radosevich, Lawrence D.

    2008-11-11

    EMI shielding is provided for power electronics circuits and the like via a direct-mount reference plane support and shielding structure. The thermal support may receive one or more power electronic circuits. The support may aid in removing heat from the circuits through fluid circulating through the support. The support forms a shield from both external EMI/RFI and from interference generated by operation of the power electronic circuits. Features may be provided to permit and enhance connection of the circuitry to external circuitry, such as improved terminal configurations. Modular units may be assembled that may be coupled to electronic circuitry via plug-in arrangements or through interface with a backplane or similar mounting and interconnecting structures.

  7. Configurable Aperture Space Telescope

    NASA Technical Reports Server (NTRS)

    Ennico, Kimberly; Bendek, Eduardo

    2015-01-01

    In December 2014, we were awarded Center Innovation Fund to evaluate an optical and mechanical concept for a novel implementation of a segmented telescope based on modular, interconnected small sats (satlets). The concept is called CAST, a Configurable Aperture Space Telescope. With a current TRL is 2 we will aim to reach TLR 3 in Sept 2015 by demonstrating a 2x2 mirror system to validate our optical model and error budget, provide straw man mechanical architecture and structural damping analyses, and derive future satlet-based observatory performance requirements. CAST provides an alternative access to visible and/or UV wavelength space telescope with 1-meter or larger aperture for NASA SMD Astrophysics and Planetary Science community after the retirement of HST

  8. Software Configurable Multichannel Transceiver

    NASA Technical Reports Server (NTRS)

    Freudinger, Lawrence C.; Cornelius, Harold; Hickling, Ron; Brooks, Walter

    2009-01-01

    Emerging test instrumentation and test scenarios increasingly require network communication to manage complexity. Adapting wireless communication infrastructure to accommodate challenging testing needs can benefit from reconfigurable radio technology. A fundamental requirement for a software-definable radio system is independence from carrier frequencies, one of the radio components that to date has seen only limited progress toward programmability. This paper overviews an ongoing project to validate the viability of a promising chipset that performs conversion of radio frequency (RF) signals directly into digital data for the wireless receiver and, for the transmitter, converts digital data into RF signals. The Software Configurable Multichannel Transceiver (SCMT) enables four transmitters and four receivers in a single unit the size of a commodity disk drive, programmable for any frequency band between 1 MHz and 6 GHz.

  9. Inductrack magnet configuration

    DOEpatents

    Post, Richard Freeman

    2003-10-14

    A magnet configuration comprising a pair of Halbach arrays magnetically and structurally connected together are positioned with respect to each other so that a first component of their fields substantially cancels at a first plane between them, and a second component of their fields substantially adds at this first plane. A track of windings is located between the pair of Halbach arrays and a propulsion mechanism is provided for moving the pair of Halbach arrays along the track. When the pair of Halbach arrays move along the track and the track is not located at the first plane, a current is induced in the windings and a restoring force is exerted on the pair of Halbach arrays.

  10. Inductrack magnet configuration

    DOEpatents

    Post, Richard Freeman

    2003-12-16

    A magnet configuration comprising a pair of Halbach arrays magnetically and structurally connected together are positioned with respect to each other so that a first component of their fields substantially cancels at a first plane between them, and a second component of their fields substantially adds at this first plane. A track of windings is located between the pair of Halbach arrays and a propulsion mechanism is provided for moving the pair of Halbach arrays along the track. When the pair of Halbach arrays move along the track and the track is not located at the first plane, a current is induced in the windings and a restoring force is exerted on the pair of Halbach arrays.

  11. Hubble Space Telescope Configuration

    NASA Technical Reports Server (NTRS)

    1985-01-01

    This image illustrates the overall Hubble Space Telescope (HST) configuration. The HST is the product of a partnership between NASA, European Space Agency Contractors, and the international community of astronomers. It is named after Edwin P. Hubble, an American Astronomer who discovered the expanding nature of the universe and was the first to realize the true nature of galaxies. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST detects objects 25 times fainter than the dimmest objects seen from Earth and provides astronomers with an observable universe 250 times larger than visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The major elements of the HST are the Optical Telescope Assembly (OTA), the Support System Module (SSM), and the Scientific Instruments (SI). The HST is approximately the size of a railroad car, with two cylinders joined together and wrapped in a silvery reflective heat shield blanket. Wing-like solar arrays extend horizontally from each side of these cylinders, and dish-shaped anternas extend above and below the body of the telescope. The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Connecticut, developed the optical system and guidance sensors. The Lockheed Missile and Space Company of Sunnyvale, California produced the protective outer shroud and spacecraft systems, and assembled and tested the finished telescope.

  12. Applying design principles to fusion reactor configurations for propulsion in space

    NASA Technical Reports Server (NTRS)

    Carpenter, Scott A.; Deveny, Marc E.; Schulze, Norman R.

    1993-01-01

    The application of fusion power to space propulsion requires rethinking the engineering-design solution to controlled-fusion energy. Whereas the unit cost of electricity (COE) drives the engineering-design solution for utility-based fusion reactor configurations; initial mass to low earth orbit (IMLEO), specific jet power (kW(thrust)/kg(engine)), and reusability drive the engineering-design solution for successful application of fusion power to space propulsion. We applied three design principles (DP's) to adapt and optimize three candidate-terrestrial-fusion-reactor configurations for propulsion in space. The three design principles are: provide maximum direct access to space for waste radiation, operate components as passive radiators to minimize cooling-system mass, and optimize the plasma fuel, fuel mix, and temperature for best specific jet power. The three candidate terrestrial fusion reactor configurations are: the thermal barrier tandem mirror (TBTM), field reversed mirror (FRM), and levitated dipole field (LDF). The resulting three candidate space fusion propulsion systems have their IMLEO minimized and their specific jet power and reusability maximized. We performed a preliminary rating of these configurations and concluded that the leading engineering-design solution to space fusion propulsion is a modified TBTM that we call the Mirror Fusion Propulsion System (MFPS).

  13. Space Station reference configuration update

    NASA Technical Reports Server (NTRS)

    Bonner, Tom F., Jr.

    1985-01-01

    The reference configuration of the NASA Space Station as of November 1985 is presented in a series of diagrams, drawings, graphs, and tables. The configurations for components to be contributed by ESA, Canada, and Japan are included. Brief captions are provided, along with answers to questions raised at the conference.

  14. Radiant-interchange Configuration Factors

    NASA Technical Reports Server (NTRS)

    Hamilton, D C :; Morgan, W R

    1952-01-01

    A study is presented of the geometric configuration factors required for computing radiant heat transfer between opaque surfaces separated by a nonabsorbing medium and various methods of determining the configuration factors are discussed. Configuration-factor solutions available in the literature have been checked and the more complicated equations are presented as families of curves. Cases for point, line, and finite-area sources are worked out over a wide range of geometric proportions. These cases include several new configurations involving rectangles, triangles, and cylinders of finite length which are integrated and tabulated. An analysis is presented, in which configuration factors are employed of the radiant heat transfer to the rotor blades of a typical gas turbine under different conditions of temperature and pressure. (author)

  15. Parametric analysis of ATT configurations.

    NASA Technical Reports Server (NTRS)

    Lange, R. H.

    1972-01-01

    This paper describes the results of a Lockheed parametric analysis of the performance, environmental factors, and economics of an advanced commercial transport envisioned for operation in the post-1985 time period. The design parameters investigated include cruise speeds from Mach 0.85 to Mach 1.0, passenger capacities from 200 to 500, ranges of 2800 to 5500 nautical miles, and noise level criteria. NASA high performance configurations and alternate configurations are operated over domestic and international route structures. Indirect and direct costs and return on investment are determined for approximately 40 candidate aircraft configurations. The candidate configurations are input to an aircraft sizing and performance program which includes a subroutine for noise criteria. Comparisons are made between preferred configurations on the basis of maximum return on investment as a function of payload, range, and design cruise speed.

  16. Viscous Design of TCA Configuration

    NASA Technical Reports Server (NTRS)

    Krist, Steven E.; Bauer, Steven X. S.; Campbell, Richard L.

    1999-01-01

    The goal in this effort is to redesign the baseline TCA configuration for improved performance at both supersonic and transonic cruise. Viscous analyses are conducted with OVERFLOW, a Navier-Stokes code for overset grids, using PEGSUS to compute the interpolations between overset grids. Viscous designs are conducted with OVERDISC, a script which couples OVERFLOW with the Constrained Direct Iterative Surface Curvature (CDISC) inverse design method. The successful execution of any computational fluid dynamics (CFD) based aerodynamic design method for complex configurations requires an efficient method for regenerating the computational grids to account for modifications to the configuration shape. The first section of this presentation deals with the automated regridding procedure used to generate overset grids for the fuselage/wing/diverter/nacelle configurations analysed in this effort. The second section outlines the procedures utilized to conduct OVERDISC inverse designs. The third section briefly covers the work conducted by Dick Campbell, in which a dual-point design at Mach 2.4 and 0.9 was attempted using OVERDISC; the initial configuration from which this design effort was started is an early version of the optimized shape for the TCA configuration developed by the Boeing Commercial Airplane Group (BCAG), which eventually evolved into the NCV design. The final section presents results from application of the Natural Flow Wing design philosophy to the TCA configuration.

  17. Device configuration-management system

    SciTech Connect

    Nowell, D.M.

    1981-01-01

    The Fusion Chamber System, a major component of the Magnetic Fusion Test Facility, contains several hundred devices which report status to the Supervisory Control and Diagnostic System for control and monitoring purposes. To manage the large number of diversity of devices represented, a device configuration management system was required and developed. Key components of this software tool include the MFTF Data Base; a configuration editor; and a tree structure defining the relationships between the subsystem devices. This paper will describe how the configuration system easily accomodates recognizing new devices, restructuring existing devices, and modifying device profile information.

  18. SAMI Automated Plug Plate Configuration

    NASA Astrophysics Data System (ADS)

    Lorente, N. P. F.; Farrell, T.; Goodwin, M.

    2013-10-01

    The Sydney-AAO Multi-object Integral field spectrograph (SAMI) is a prototype wide-field system at the Anglo-Australian Telescope (AAT) which uses a plug-plate to mount its 13×61-core imaging fibre bundles (hexabundles) in the optical path at the telescope's prime focus. In this paper we describe the process of determining the positions of the plug-plate holes, where plates contain three or more stacked observation configurations. The process, which up until now has involved several separate processes and has required significant manual configuration and checking, is now being automated to increase efficiency and reduce error. This is carried out by means of a thin Java controller layer which drives the configuration cycle. This layer controls the user interface and the C++ algorithm layer where the plate configuration and optimisation is carried out. Additionally, through the Aladin display package, it provides visualisation and facilitates user verification of the resulting plates.

  19. Space Station reference configuration description

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The data generated by the Space Station Program Skunk Works over a period of 4 months which supports the definition of a Space Station reference configuration is documented. The data were generated to meet these objectives: (1) provide a focal point for the definition and assessment of program requirements; (2) establish a basis for estimating program cost; and (3) define a reference configuration in sufficient detail to allow its inclusion in the definition phase Request for Proposal (RFP).

  20. Context based configuration management system

    NASA Technical Reports Server (NTRS)

    Gawdiak, Yuri O. (Inventor); Gurram, Mohana M. (Inventor); Maluf, David A. (Inventor); Mederos, Luis A. (Inventor)

    2010-01-01

    A computer-based system for configuring and displaying information on changes in, and present status of, a collection of events associated with a project. Classes of icons for decision events, configurations and feedback mechanisms, and time lines (sequential and/or simultaneous) for related events are displayed. Metadata for each icon in each class is displayed by choosing and activating the corresponding icon. Access control (viewing, reading, writing, editing, deleting, etc.) is optionally imposed for metadata and other displayed information.

  1. Configurational entropy in thermoset polymers.

    PubMed

    Jensen, Martin; Jakobsen, Johnny

    2015-04-30

    The configurational entropy describes the atomic structure in a material and controls several material properties. Often the configurational entropy is determined through dielectric or calorimetric measurements where the difference between the entropies of the crystalline state and the amorphous state is determined. Many amorphous materials such as thermoset polymers have a high crystallization barrier, greatly limiting the applicability of the existing methods for determining the configurational entropy. In this work, a novel differential scanning calorimetry (DSC) method, based on measurement of the glass transition temperature at different heating rates, for determination of the configurational entropy is introduced. The theory behind the method has a universal character for amorphous materials, as it solely involves measurement of the glass transition temperature. The temperature dependency of the configurational entropy is determined for epoxy resins and PMMA (poly(methyl methacrylate)) to demonstrate the versatility of the method. On the basis of the findings of the introduced method, the influence of the degree of cross-linking and the chemical structure of the network is discussed. PMID:25844504

  2. NCSX Machine Configuration Design Progress

    NASA Astrophysics Data System (ADS)

    Neilson, G. H.; Brooks, A.; Johnson, D.; Kugel, H.; Majeski, R.; Reiersen, W.; Zarnstorff, M.; Berry, L.; Cole, M.; Hirshman, S.; Nelson, B.; Strickler, D.

    2000-10-01

    A new experimental facility, the National Compact Stellarator Experiment, is being designed to support the development of high-beta, low aspect-ratio stellarators. To fulfill its mission, the facility design is required to: 1)be based on a stellarator magnetic configuration which enables it to address reactor physics issues, 2)have high probability of achieving its physics mission within the uncertainties of present-day physics models, and 3)provide access for experimental tools such as plasma heating systems and diagnostics. The most critical machine component is the coil system which determines the plasma configuration and its properties. To gain an understanding of the practical implications of the mission requirements and determine the optimum approach to satisfying them, a range of coil configuration options was investigated. To address requirement 1, each option was designed to reconstruct a common stellarator plasma configuration with desired stability and transport properties. To mitigate mission risk (requirement 2), magnetic configuration flexibility features, e.g., coils for inductive current drive and axisymmetric field shaping and an operating space exceeding the nominal magnetic field and pulse-length requirements, were included in all designs. To implement requirement 3, port access requirements for neutral-beam and radiofrequency heating systems, a diagnostic array, and vacuum pumping were determined and these were used to analyze the various designs. Differential costs were evaluated to provide a basis for assessing benefit/cost.

  3. POLAR FIELD REVERSAL OBSERVATIONS WITH HINODE

    SciTech Connect

    Shiota, D.; Tsuneta, S.; Shimojo, M.; Orozco Suarez, D.; Ishikawa, R.; Sako, N.

    2012-07-10

    We have been monitoring yearly variation in the Sun's polar magnetic fields with the Solar Optical Telescope aboard Hinode to record their evolution and expected reversal near the solar maximum. All magnetic patches in the magnetic flux maps are automatically identified to obtain the number density and magnetic flux density as a function of the total magnetic flux per patch. The detected magnetic flux per patch ranges over four orders of magnitude (10{sup 15}-10{sup 20} Mx). The higher end of the magnetic flux in the polar regions is about one order of magnitude larger than that of the quiet Sun, and nearly that of pores. Almost all large patches ({>=}10{sup 18} Mx) have the same polarity, while smaller patches have a fair balance of both polarities. The polarity of the polar region as a whole is consequently determined only by the large magnetic concentrations. A clear decrease in the net flux of the polar region is detected in the slow rising phase of the current solar cycle. The decrease is more rapid in the north polar region than in the south. The decrease in the net flux is caused by a decrease in the number and size of the large flux concentrations as well as the appearance of patches with opposite polarity at lower latitudes. In contrast, we do not see temporal change in the magnetic flux associated with the smaller patches (<10{sup 18} Mx) and that of the horizontal magnetic fields during the years 2008-2012.

  4. Dynamical similarity of geomagnetic field reversals.

    PubMed

    Valet, Jean-Pierre; Fournier, Alexandre; Courtillot, Vincent; Herrero-Bervera, Emilio

    2012-10-01

    No consensus has been reached so far on the properties of the geomagnetic field during reversals or on the main features that might reveal its dynamics. A main characteristic of the reversing field is a large decrease in the axial dipole and the dominant role of non-dipole components. Other features strongly depend on whether they are derived from sedimentary or volcanic records. Only thermal remanent magnetization of lava flows can capture faithful records of a rapidly varying non-dipole field, but, because of episodic volcanic activity, sequences of overlying flows yield incomplete records. Here we show that the ten most detailed volcanic records of reversals can be matched in a very satisfactory way, under the assumption of a common duration, revealing common dynamical characteristics. We infer that the reversal process has remained unchanged, with the same time constants and durations, at least since 180 million years ago. We propose that the reversing field is characterized by three successive phases: a precursory event, a 180° polarity switch and a rebound. The first and third phases reflect the emergence of the non-dipole field with large-amplitude secular variation. They are rarely both recorded at the same site owing to the rapidly changing field geometry and last for less than 2,500 years. The actual transit between the two polarities does not last longer than 1,000 years and might therefore result from mechanisms other than those governing normal secular variation. Such changes are too brief to be accurately recorded by most sediments. PMID:23038471

  5. Configurable silicon photonic crystal waveguides

    SciTech Connect

    Prorok, Stefan; Petrov, Alexander; Eich, Manfred; Luo, Jingdong; Jen, Alex K.-Y.

    2013-12-23

    In this Letter, we demonstrate that the mode cut off of a photonic crystal waveguide can be trimmed with high accuracy by electron beam bleaching of a chromophore doped polymer cladding. Using this method, configurable waveguides are realized, which allow for spatially resolved changes of the photonic crystal's effective lattice constant as small as 7.6 pm. We show three different examples how to take advantage of configurable photonic crystal waveguides: Shifting of the complete transmission spectrum, definition of cavities with high quality factor, and tuning of existing cavities.

  6. Runway configuration improvement programming model.

    NASA Technical Reports Server (NTRS)

    Yu, J. C.; Gibson, D. R.

    1973-01-01

    The basic objectives of the study were to subject a set of runway configurations to cost analysis and to develop a dynamic programming model which would enable an airport to economically match the ground capacity to its air traffic demand. Quantitative differences in the capacity of runway configurations result from the various aircraft/aircraft and aircraft/air-system interactions. A problem formulation and solution procedure is presented which is intended to be a meaningful technique for the long-range planning of runway expansion programs.

  7. Configurable silicon photonic crystal waveguides

    NASA Astrophysics Data System (ADS)

    Prorok, Stefan; Petrov, Alexander; Eich, Manfred; Luo, Jingdong; Jen, Alex K.-Y.

    2013-12-01

    In this Letter, we demonstrate that the mode cut off of a photonic crystal waveguide can be trimmed with high accuracy by electron beam bleaching of a chromophore doped polymer cladding. Using this method, configurable waveguides are realized, which allow for spatially resolved changes of the photonic crystal's effective lattice constant as small as 7.6 pm. We show three different examples how to take advantage of configurable photonic crystal waveguides: Shifting of the complete transmission spectrum, definition of cavities with high quality factor, and tuning of existing cavities.

  8. A Communication Configuration of AIDS.

    ERIC Educational Resources Information Center

    Hughey, Jim D.

    A study focused on the way that image, knowledge, behavioral intent, and communicative responsiveness are configured for Acquired Immunodeficiency Syndrome (AIDS). The classic model of the adoption process expects that knowledge about a subject will lead to a favorable evaluation of it, which in turn will lead to a decision to act. But the…

  9. Inversion and Configuration of Faces.

    ERIC Educational Resources Information Center

    Bartlett, James C.; Searcy, Jean

    1993-01-01

    The Thatcher illusion, in which the inverted mouth and eyes of a face appear grotesque when upright, but not when the whole configuration is inverted, was studied in 3 experiments involving 89 undergraduates. Results suggest that the illusion represents a disruption of encoding of holistic information when faces are inverted. (SLD)

  10. Configuration Effects on Liner Performance

    NASA Technical Reports Server (NTRS)

    Gerhold, Carl H.; Brown, Martha C.; Jones, Michael G.; Howerton, Brian M.

    2012-01-01

    The acoustic performance of a duct liner depends not only on the intrinsic properties of the liner but also on the configuration of the duct in which it is used. A series of experiments is performed in the NASA Langley Research Center Curved Duct Test Rig (at Mach 0.275) to evaluate the effect of duct configuration on the acoustic performance of single degree of freedom perforate-over-honeycomb liners. The liners form the sidewalls of the duct's test section. Variations of duct configuration include: asymmetric (liner on one side and hard wall opposite) and symmetric (liner on both sides) wall treatment; inlet and exhaust orientation, in which the sound propagates either against or with the flow; and straight and curved flow path. The effect that duct configuration has on the overall acoustic performance, particularly the shift in frequency and magnitude of peak attenuation, is quantified. The redistribution of incident mode content is shown. The liners constitute the side walls of the liner test section and the scatter of incident horizontal order 1 mode by the asymmetric treatment and order 2 mode by the symmetric treatment into order 0 mode is shown. Scatter of order 0 incident modes into higher order modes is also shown. This redistribution of mode content is significant because it indicates that the liner design can be manipulated such that energy is scattered into more highly attenuated modes, thus enhancing liner performance.

  11. NCCDS configuration management process improvement

    NASA Technical Reports Server (NTRS)

    Shay, Kathy

    1993-01-01

    By concentrating on defining and improving specific Configuration Management (CM) functions, processes, procedures, personnel selection/development, and tools, internal and external customers received improved CM services. Job performance within the section increased in both satisfaction and output. Participation in achieving major improvements has led to the delivery of consistent quality CM products as well as significant decreases in every measured CM metrics category.

  12. Configuration Aerodynamics: Past - Present - Future

    NASA Technical Reports Server (NTRS)

    Wood, Richard M.; Agrawal, Shreekant; Bencze, Daniel P.; Kulfan, Robert M.; Wilson, Douglas L.

    1999-01-01

    The Configuration Aerodynamics (CA) element of the High Speed Research (HSR) program is managed by a joint NASA and Industry team, referred to as the Technology Integration Development (ITD) team. This team is responsible for the development of a broad range of technologies for improved aerodynamic performance and stability and control characteristics at subsonic to supersonic flight conditions. These objectives are pursued through the aggressive use of advanced experimental test techniques and state of the art computational methods. As the HSR program matures and transitions into the next phase the objectives of the Configuration Aerodynamics ITD are being refined to address the drag reduction needs and stability and control requirements of High Speed Civil Transport (HSCT) aircraft. In addition, the experimental and computational tools are being refined and improved to meet these challenges. The presentation will review the work performed within the Configuration Aerodynamics element in 1994 and 1995 and then discuss the plans for the 1996-1998 time period. The final portion of the presentation will review several observations of the HSR program and the design activity within Configuration Aerodynamics.

  13. Configural Processing and Face Viewpoint

    ERIC Educational Resources Information Center

    McKone, Elinor

    2008-01-01

    Configural/holistic processing, a key property of face recognition, has previously been examined only for front views of faces. Here, 6 experiments tested front (0 degree), three-quarter (45 degree), and profile views (90 degree), using composite and peripheral inversion tasks. Results showed an overall disadvantage in identifying profiles. This…

  14. Configuration based Collisional-Radiative Model including configuration interaction

    NASA Astrophysics Data System (ADS)

    Busquet, Michel

    2007-11-01

    Atomic levels mixing through Configuration Interaction (CI) yields important effects. It transfers oscillator strengthes from allowed lines to forbidden lines, and produces strong shift and broadening of line arrays, although the total emissivity is almost insensitive to CI, being proportional to the average wave number. However for hi Z material, like Xe or Sn (potential xuv-ray source for micro-lithography), a non-LTE calculation accounting for all relevant levels wiill be untractable with billions of states. The model we constructed, CAVCRM (caf'e-crème), is a non-LTE C.R.M. where states are configurations but it includes C.I. to give full richness of spectral quantities, using the latest version of the HULLAC-v9 suite of codes and our newly developped algorithm for large set of states with as many as 50,000 states [1]. [1] M.Klapisch et al, this conference

  15. Plasma Component of Self-gravitating Disks and Relevant Magnetic Configurations

    NASA Astrophysics Data System (ADS)

    Bertin, G.; Coppi, B.

    2006-04-01

    Astrophysical disks in which the disk self-gravity is more important than the gravity force associated with the central object can have significant plasma components where appreciable toroidal current densities are produced. When the vertical confinement of the plasma rotating structures that can form is kept by the Lorentz force rather than by the vertical component of the gravity force, the disk self-gravity remains important only in the radial equilibrium condition, modifying the rotation curve from the commonly considered Keplerian rotation. The equilibrium equations that are solved involve the vertical and the horizontal components of the total momentum conservation equations, coupled with the lowest order form of the gravitational Poisson's equation. The resulting poloidal field configuration can be visualized as a sequence [1] of Field Reverse Configurations, in the radial direction, consisting of pairs of oppositely directed current channels. The plasma density thus acquires a significant radial modulation that may grow to the point where plasma rings can form [2]. [1] B. Coppi, Phys. Plasmas, 12, 057302 (2005) [2] B. Coppi and F. Rousseau, to be published in Astrophys. J. (April 2006)

  16. Propagation and absorption of ion cyclotron resonant waves in an FRC configuration

    NASA Astrophysics Data System (ADS)

    Ceccherini, Francesco; Galeotti, Laura; Brambilla, Marco; Barnes, Daniel C.; Yang, Xiaokang; TAE Team

    2013-10-01

    The generation and propagation of an ion cyclotron resonant wave is studied in a Field Reversed Configuration (FRC) plasma which includes at least two different ion species. We consider minority heating as the main process through which energy is transferred to the ions and we take two scenarios into account. In the first scenario the charge/mass ratio of the minority species is higher than the corresponding ratio of the majority species and in the second scenario the opposite is considered. The first case is particularly interesting because it allows the study of absorption rates of ions for frequency values higher than the maximun cyclotron frequency of the majority species and lower than the maximum cyclotron frequency of the minority species. In such a frequency range the majority species can absorb energy through second or higher harmonic processes only. Because of the very peculiar magnetic field structure of FRCs, the second scenario may be required in case the resonance process must take place in the very inner regions of the plasma. In this latter case the electron absorption may play a very significant role and we give a preliminary description of the key parameters in the antenna configuration, which can reduce or enhance such an effect.

  17. Generalized Ellipsometry in Unusual Configurations

    SciTech Connect

    Jellison Jr, Gerald Earle; Holcomb, David Eugene; Hunn, John D; Rouleau, Christopher M; Wright, Gomez W

    2006-01-01

    Most ellipsometry experiments are performed by shining polarized light onto a sample at a large angle of incidence, and the results are interpreted in terms of thin film thicknesses and isotropic optical functions of the film or substrate. However, it is possible to alter the geometrical arrangement, either by observing the sample in transmission or at normal-incidence reflection. In both cases, the experiment is fundamentally the same, but the interpretation of the results is considerably different. Both configurations can be used in conjunction with microscope optics, allowing for images to be made of the sample. The results of three examples of these different configurations using the two-modulator generalized ellipsometer (2-MGE) are reported: (1) spectroscopic birefringence measurements of ZnO, (2) electric field-induced birefringence (Pockels effect) in GaAs, and (3) normal-incidence reflection anisotropy of highly oriented pyrolytic graphite (HOPG).

  18. Solar disk sextant optical configuration

    NASA Technical Reports Server (NTRS)

    Chiu, H.-Y.; Maier, E.; Schatten, K. H.; Sofia, S.

    1984-01-01

    In this paper the performance of a plausible configuration for the solar disk sextant, an instrument to be used to monitor the solar diameter, is evaluated. Overall system requirements are evaluated, and tolerable uncertainties are obtained. It is concluded that by using a beam splitting wedge, a folded optics design can be used to measure the solar diameter to an accuracy of 10 to the -6th, despite the greater aberrations present in such optical systems.

  19. Unlimited full configuration interaction calculations

    NASA Astrophysics Data System (ADS)

    Knowles, Peter J.; Handy, Nicholas C.

    1989-08-01

    In very large full configuration interaction (full CI), nearly all of the CI coefficients are very small. Calculations, using a newly developed algorithm which exploits this fact, on NH3 with a DZP basis are reported, involving 2×108 Slater determinants. Such calculations are impossible with other existing full CI codes. The new algorithm opens up the opportunity of full CI calculations which are unlimited in size.

  20. Stereoscopic Configurations To Minimize Distortions

    NASA Technical Reports Server (NTRS)

    Diner, Daniel B.

    1991-01-01

    Proposed television system provides two stereoscopic displays. Two-camera, two-monitor system used in various camera configurations and with stereoscopic images on monitors magnified to various degrees. Designed to satisfy observer's need to perceive spatial relationships accurately throughout workspace or to perceive them at high resolution in small region of workspace. Potential applications include industrial, medical, and entertainment imaging and monitoring and control of telemanipulators, telerobots, and remotely piloted vehicles.

  1. Predictive Modeling of Tokamak Configurations*

    NASA Astrophysics Data System (ADS)

    Casper, T. A.; Lodestro, L. L.; Pearlstein, L. D.; Bulmer, R. H.; Jong, R. A.; Kaiser, T. B.; Moller, J. M.

    2001-10-01

    The Corsica code provides comprehensive toroidal plasma simulation and design capabilities with current applications [1] to tokamak, reversed field pinch (RFP) and spheromak configurations. It calculates fixed and free boundary equilibria coupled to Ohm's law, sources, transport models and MHD stability modules. We are exploring operations scenarios for both the DIII-D and KSTAR tokamaks. We will present simulations of the effects of electron cyclotron heating (ECH) and current drive (ECCD) relevant to the Quiescent Double Barrier (QDB) regime on DIII-D exploring long pulse operation issues. KSTAR simulations using ECH/ECCD in negative central shear configurations explore evolution to steady state while shape evolution studies during current ramp up using a hyper-resistivity model investigate startup scenarios and limitations. Studies of high bootstrap fraction operation stimulated by recent ECH/ECCD experiments on DIIID will also be presented. [1] Pearlstein, L.D., et al, Predictive Modeling of Axisymmetric Toroidal Configurations, 28th EPS Conference on Controlled Fusion and Plasma Physics, Madeira, Portugal, June 18-22, 2001. * Work performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

  2. Configuration Management Process Assessment Strategy

    NASA Technical Reports Server (NTRS)

    Henry, Thad

    2014-01-01

    Purpose: To propose a strategy for assessing the development and effectiveness of configuration management systems within Programs, Projects, and Design Activities performed by technical organizations and their supporting development contractors. Scope: Various entities CM Systems will be assessed dependent on Project Scope (DDT&E), Support Services and Acquisition Agreements. Approach: Model based structured against assessing organizations CM requirements including best practices maturity criteria. The model is tailored to the entity being assessed dependent on their CM system. The assessment approach provides objective feedback to Engineering and Project Management of the observed CM system maturity state versus the ideal state of the configuration management processes and outcomes(system). center dot Identifies strengths and risks versus audit gotcha's (findings/observations). center dot Used "recursively and iteratively" throughout program lifecycle at select points of need. (Typical assessments timing is Post PDR/Post CDR) center dot Ideal state criteria and maturity targets are reviewed with the assessed entity prior to an assessment (Tailoring) and is dependent on the assessed phase of the CM system. center dot Supports exit success criteria for Preliminary and Critical Design Reviews. center dot Gives a comprehensive CM system assessment which ultimately supports configuration verification activities.*

  3. Ringed Accretion Disks: Equilibrium Configurations

    NASA Astrophysics Data System (ADS)

    Pugliese, D.; Stuchlík, Z.

    2015-12-01

    We investigate a model of a ringed accretion disk, made up by several rings rotating around a supermassive Kerr black hole attractor. Each toroid of the ringed disk is governed by the general relativity hydrodynamic Boyer condition of equilibrium configurations of rotating perfect fluids. Properties of the tori can then be determined by an appropriately defined effective potential reflecting the background Kerr geometry and the centrifugal effects. The ringed disks could be created in various regimes during the evolution of matter configurations around supermassive black holes. Therefore, both corotating and counterrotating rings have to be considered as being a constituent of the ringed disk. We provide constraints on the model parameters for the existence and stability of various ringed configurations and discuss occurrence of accretion onto the Kerr black hole and possible launching of jets from the ringed disk. We demonstrate that various ringed disks can be characterized by a maximum number of rings. We present also a perturbation analysis based on evolution of the oscillating components of the ringed disk. The dynamics of the unstable phases of the ringed disk evolution seems to be promising in relation to high-energy phenomena demonstrated in active galactic nuclei.

  4. Multiple forearm robotic elbow configuration

    SciTech Connect

    Fisher, J.J.

    1990-09-11

    This patent describes a dual forearmed robotic elbow configuration comprises a main arm having a double elbow from which two coplanar forearms depend, two actuators carried in the double elbow for moving the forearms, and separate, independent end effectors, operated by a cable carried from the main arm through the elbow, is attached to the distal end of each forearm. Coiling the cables around the actuators prevents bending or kinking when the forearms are rotated 360 degrees. The end effectors can have similar or different capabilities. Actuator canisters within the dual elbow are modular for rapid replacement or maintenance. Coarse and fine resolver transducers within the actuators provide accurate position referencing information.

  5. Self-Configuring Network Monitor

    Energy Science and Technology Software Center (ESTSC)

    2004-05-01

    Self-Configuring Network Monitor (SCNM) is a passive monitoring that can collect packet headers from any point in a network path. SCNM uses special activation packets to automatically activate monitors deployed at the layer three ingress and egress routers of the wide-area network, and at critical points within the site networks. Monitoring output data is sent back to the application data source or destination host. No modifications are required to the application or network routing infrastructuremore » in order to activate monitoring of traffic for an application. This ensures that the monitoring operation does not add a burden to the networks administrator.« less

  6. Configuration optimization of space structures

    NASA Technical Reports Server (NTRS)

    Felippa, Carlos; Crivelli, Luis A.; Vandenbelt, David

    1991-01-01

    The objective is to develop a computer aid for the conceptual/initial design of aerospace structures, allowing configurations and shape to be apriori design variables. The topics are presented in viewgraph form and include the following: Kikuchi's homogenization method; a classical shape design problem; homogenization method steps; a 3D mechanical component design example; forming a homogenized finite element; a 2D optimization problem; treatment of volume inequality constraint; algorithms for the volume inequality constraint; object function derivatives--taking advantage of design locality; stiffness variations; variations of potential; and schematics of the optimization problem.

  7. Configurational diffusion of coal macromolecules

    SciTech Connect

    Guin, J.A.; Curtis, C.W.; Tarrer, A.R.

    1990-01-01

    As shown in last quarter's report on the configurational diffusion of coal macromolecules, the hindered diffusion data for both TPP and coal macromolecules were significantly different from the theoretical correlations. In order to evaluate the factors which could lead to this difference an error analysis was conducted, and the detailed results reported herein. Generally, we did not find any errors which could account for the deviation from the theory, and thus we conclude that this deviation is real and can be ascribed to some factor not considered by the hindered diffusion theory, i.e., attractive or repulsive forces. 2 refs., 4 figs., 4 tabs.

  8. Multiple forearm robotic elbow configuration

    SciTech Connect

    Fisher, John J.

    1990-01-01

    A dual forearmed robotic elbow configuration comprises a main arm having a double elbow from which two coplanar forearms depend, two actuators carried in the double elbow for moving the forearms, and separate, independent end effectors, operated by a cable carried from the main arm through the elbow, is attached to the distal end of each forearm. Coiling the cables around the actuators prevents bending or kinking when the forearms are rotated 360 degrees. The end effectors can have similar or different capabilities. Actuator cannisters within the dual elbow are modular for rapid replacement or maintenance. Coarse and fine resolver transducers within the actuators provide accurate position referencing information.

  9. Interface Configuration Experiment: Preliminary results

    SciTech Connect

    Concus, P.; Finn, R.; Weislogel, M.

    1993-09-01

    The Interface Configuration Experiment (ICE) was carried out on USML-1 to investigate liquid-gas interfaces in certain rotationally-symmetric containers having prescribed, mathematically derived shapes. These containers have the property that they admit an entire continuum of distinct equilibrium rotationally-symmetric interfaces for a given liquid volume and contact angle. Furthermore, it can be shown that none of these interfaces can be stable. It was found, after the containers were filled in orbit, that an initial equilibrium interface from the symmetric continuum reoriented, when perturbed, to a stable interface that was not rotationally symmetric, in accordance with the mathematical theory.

  10. Interface Configuration Experiment: Preliminary Results

    NASA Technical Reports Server (NTRS)

    Concus, Paul; Finn, Robert; Weislogel, Mark

    1994-01-01

    The Interface Configuration Experiment (ICE) was carried out on USML-1 to investigate liquid-gas interfaces in certain rotationally-symmetric containers having prescribed, mathematically derived shapes. These containers have the property that they admit an entire continuum of distinct equilibrium rotationally-symmetric interfaces for a given liquid volume and contact angle. Furthermore, it can be shown that none of these interfaces can be stable. It was found, after the containers were filled in orbit, that an initial equilibrium interface from the symmetric continuum re-oriented, when perturbed, to a stable interface that was not rotationally symmetric, in accordance with the mathematical theory.

  11. Dimensional regularization in configuration space

    SciTech Connect

    Bollini, C.G. |; Giambiagi, J.J.

    1996-05-01

    Dimensional regularization is introduced in configuration space by Fourier transforming in {nu} dimensions the perturbative momentum space Green functions. For this transformation, the Bochner theorem is used; no extra parameters, such as those of Feynman or Bogoliubov and Shirkov, are needed for convolutions. The regularized causal functions in {ital x} space have {nu}-dependent moderated singularities at the origin. They can be multiplied together and Fourier transformed (Bochner) without divergence problems. The usual ultraviolet divergences appear as poles of the resultant analytic functions of {nu}. Several examples are discussed. {copyright} {ital 1996 The American Physical Society.}

  12. Configurational diffusion of coal macromolecules

    SciTech Connect

    Guin, J.A.; Curtis, C.W.; Tarrer, A.R.; Kim, S.; Hwang, D.; Chen, C.C.; Chiou, Z.

    1991-01-01

    The objective of our research was to obtain fundamental information regarding the functional dependence of the diffusion coefficient of coal molecules on the ratio of molecule to pore diameter. That is, the objective of our study was to examine the effect of molecule size and configuration on hindered diffusion of coal macromolecules through as porous medium. To best accomplish this task, we circumvented the complexities of an actual porous catalyst by using a well defined porous matrix with uniform capillaric pores, i.e., a track-etched membrane. In this way, useful information was obtained regarding the relationship of molecular size and configuration on the diffusion rate of coal derived macromolecules through a pore structure with known geometry. Similar studies were performed using a pellet formed of porous alumina, to provide a link between the idealized membranes and the actual complex pore structure of real catalyst extrudates. The fundamental information from our study will be useful toward the tailoring of catalysts to minimize diffusional influences and thereby increase coal conversion and selectivity for desirable products. (VC)

  13. Vertical and horizontal access configurations

    SciTech Connect

    Spampinato, P.T.

    1987-01-01

    A number of configuration features and maintenance operations are influenced by the choice of whether a design is based on vertical or horizontal access for replacing reactor components. The features which are impacted most include the first wall/blanket segmentation, the poloidal field coil locations, the toroidal field coil number and size, access port size for in-vessel components, and facilities. Since either configuration can be made to work, the choice between the two is not clear cut because both have certain advantages. It is apparent that there are large cost benefits in the poloidal field coil system for ideal coil locations for high elongation plasmas and marginal savings for the INTOR case. If we assume that a new tokamak design will require a higher plasma elongation, the recommendation is to arrange the poloidal field coils in a cost-effective manner while providing reasonable midplane access for heating interfaces and test modules. If a new design study is not based on a high elongation plasma, it still appears prudent to consider this approach so that in-vessel maintenance can be accomplished without moving very massive structures such as the bulk shield. 10 refs., 29 figs., 3 tabs.

  14. Computational methods for stellerator configurations

    NASA Astrophysics Data System (ADS)

    Betancourt, O.

    This project had two main objectives. The first one was to continue to develop computational methods for the study of three dimensional magnetic confinement configurations. The second one was to collaborate and interact with researchers in the field who can use these techniques to study and design fusion experiments. The first objective has been achieved with the development of the spectral code BETAS and the formulation of a new variational approach for the study of magnetic island formation in a self consistent fashion. The code can compute the correct island width corresponding to the saturated island, a result shown by comparing the computed island with the results of unstable tearing modes in Tokamaks and with experimental results in the IMS Stellarator. In addition to studying three dimensional nonlinear effects in Tokamaks configurations, these self consistent computed island equilibria will be used to study transport effects due to magnetic island formation and to nonlinearly bifurcated equilibria. The second objective was achieved through direct collaboration with Steve Hirshman at Oak Ridge, D. Anderson and R. Talmage at Wisconsin as well as through participation in the Sherwood and APS meetings.

  15. Relatedness with different interaction configurations.

    PubMed

    Taylor, Peter D; Grafen, A

    2010-02-01

    In an inclusive fitness model of social behaviour, a key concept is that of the relatedness between two interactants. This is typically calculated with reference to a "focal" actor taken to be representative of all actors, but when there are different interaction configurations, relatedness must be constructed as an average over all such configurations. We provide an example of such a calculation in an island model with local reproduction but global mortality, leading to variable island size and hence variable numbers of individual interactions. We find that the analysis of this example significantly sharpens our understanding of relatedness. As an application, we obtain a version of Hamilton's rule for a tag-based model of altruism in a randomly mixed population. For large populations, the selective advantage of altruism is enhanced by low (but not too low) tag mutation rates and large numbers of tags. For moderate population sizes and moderate numbers of tags, we find a window of tag mutation rates with critical benefit/cost ratios of between 1 and 3. PMID:19833134

  16. Tank waste remediation system configuration management plan

    SciTech Connect

    Vann, J.M.

    1998-01-08

    The configuration management program for the Tank Waste Remediation System (TWRS) Project Mission supports management of the project baseline by providing the mechanisms to identify, document, and control the functional and physical characteristics of the products. This document is one of the tools used to develop and control the mission and work. It is an integrated approach for control of technical, cost, schedule, and administrative information necessary to manage the configurations for the TWRS Project Mission. Configuration management focuses on five principal activities: configuration management system management, configuration identification, configuration status accounting, change control, and configuration management assessments. TWRS Project personnel must execute work in a controlled fashion. Work must be performed by verbatim use of authorized and released technical information and documentation. Application of configuration management will be consistently applied across all TWRS Project activities and assessed accordingly. The Project Hanford Management Contract (PHMC) configuration management requirements are prescribed in HNF-MP-013, Configuration Management Plan (FDH 1997a). This TWRS Configuration Management Plan (CMP) implements those requirements and supersedes the Tank Waste Remediation System Configuration Management Program Plan described in Vann, 1996. HNF-SD-WM-CM-014, Tank Waste Remediation System Configuration Management Implementation Plan (Vann, 1997) will be revised to implement the requirements of this plan. This plan provides the responsibilities, actions and tools necessary to implement the requirements as defined in the above referenced documents.

  17. Preliminary design study of lunar housing configurations

    NASA Technical Reports Server (NTRS)

    Reynolds, K. H.

    1992-01-01

    A preliminary design study assesses various configurations for habitation of the lunar surface. The study assumes an initial 4-man habitation module expandable to a 48-man concept. Through the numerous coupling combinations of identical modules, five basic configuration types are identified. A design model presents each configuration in light of certain issues. The issues include circulation, internal and external spatial characteristics, functional organizations, and future growth potential. The study discusses the attributes, potentials, and unique requirements of each configuration.

  18. 47 CFR 22.623 - System configuration.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 2 2011-10-01 2011-10-01 false System configuration. 22.623 Section 22.623... Paging and Radiotelephone Service Point-To-Multipoint Operation § 22.623 System configuration. This section requires a minimum configuration for point-to-multipoint systems using the channels listed in §...

  19. 47 CFR 22.623 - System configuration.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false System configuration. 22.623 Section 22.623... Paging and Radiotelephone Service Point-To-Multipoint Operation § 22.623 System configuration. This section requires a minimum configuration for point-to-multipoint systems using the channels listed in §...

  20. Resolvability and the Tetrahedral Configuration of Carbon.

    ERIC Educational Resources Information Center

    Kauffman, George B.

    1983-01-01

    Discusses evidence for the tetrahedral configuration of the carbon atom, indicating that three symmetrical configurations are theoretically possible for coordination number four. Includes table indicating that resolvability of compounds of type CR'R"R"'R"" is a necessary but not sufficient condition for proving tetrahedral configuration. (JN)

  1. Reactor Configuration Development for ARIES-CS

    SciTech Connect

    Ku LP, the ARIES-CS Team

    2005-09-27

    New compact, quasi-axially symmetric stellarator configurations have been developed as part of the ARIES-CS reactor studies. These new configurations have good plasma confinement and transport properties, including low losses of α particles and good integrity of flux surfaces at high β. We summarize the recent progress by showcasing two attractive classes of configurationsconfigurations with judiciously chosen rotational transforms to avoid undesirable effects of low order resonances on the flux surface integrity and configurations with very small aspect ratios (∼2.5) that have excellent quasi-axisymmetry and low field ripples.

  2. Stable molecular configuration in crystalline carboxylic acids

    NASA Astrophysics Data System (ADS)

    Hayashi, Soichi; Umemura, Junzo; Nakamura, Ryoko

    1980-12-01

    The stable (lower enthalpy) molecular configurations of propionic, butyric, Jeric and lauric acids in the crystalline state have been examined via their atom-atom potentials. It was found that the cis configuration is more stable than the trans configuration for propionic, butyric and valeric acids, and that the trans configuration is more stable than the cis configuration for lauric acid, in accord with a previous IR spectral analysis. The potential energy of benzoic acid was recalculated using the positions of atoms given by Speakman, and indicates that the A form is more stable than the B form, in agreement with the results of previous work.

  3. Configurational forces in solid nanostructures

    SciTech Connect

    Zhigang Suo

    2006-06-12

    The DOE grant (DE-FG02-99ER45787) to Princeton University, entitled Configurational Forces in Solid Nanostructures, was intended to cover the four-year period from September 1999 to September 2003. Effective 1 July 2003, the PI will relocate from Princeton to join the Harvard faculty. Princeton University will submit the Final Financial Report, the Final Property Report, and the Final Patent Report. The expenditures to date are $261,513 with %8,487 remaining of the awarded amount of $320,000. Harvard University will submit a request for the remaining amount. This Final Technical Report covers from the period between September 1999 to June 2003. Three Ph.D. students, Wei Lu, Yanfei Gao and Wei Hong, admitted to Princeton in the fall of 1998, 1999, 2002, respectively, have been dedicated to this project. Wei Lu earned his Ph.D. in August 2001, and is now an assistant professor at The University of Michigan, Ann Arbor. Yanfei Gao earned his Ph.D. in February 2003, and is now a post-doc at Brown University. The amount of funding covers one student at a time. All three students received first-year fellowships from Princeton University. In the Mechanical and Aerospace Engineering Department, to fulfill a doctoral degree requirement, every student serves as a teaching assistant for three semesters, for which the student is partially paid by the University.

  4. Space Station-Baseline Configuration

    NASA Technical Reports Server (NTRS)

    1989-01-01

    In response to President Reagan's directive to NASA to develop a permanent marned Space Station within a decade, part of the State of the Union message to Congress on January 25, 1984, NASA and the Administration adopted a phased approach to Station development. This approach provided an initial capability at reduced costs, to be followed by an enhanced Space Station capability in the future. This illustration depicts the baseline configuration, which features a 110-meter-long horizontal boom with four pressurized modules attached in the middle. Located at each end are four photovoltaic arrays generating a total of 75-kW of power. Two attachment points for external payloads are provided along this boom. The four pressurized modules include the following: A laboratory and habitation module provided by the United States; two additional laboratories, one each provided by the European Space Agency (ESA) and Japan; and an ESA-provided Man-Tended Free Flyer, a pressurized module capable of operations both attached to and separate from the Space Station core. Canada was expected to provide the first increment of a Mobile Serving System.

  5. Skylab Components in Launch Configuration

    NASA Technical Reports Server (NTRS)

    1969-01-01

    This cutaway drawing illustrates major Skylab components in launch configuration on top of the Saturn V. In an early effort to extend the use of Apollo for further applications, NASA established the Apollo Applications Program (AAP) in August of 1965. The AAP was to include long duration Earth orbital missions during which astronauts would carry out scientific, technological, and engineering experiments in space by utilizing modified Saturn launch vehicles and the Apollo spacecraft. Established in 1970, the Skylab Program was the forerurner of the AAP. The goals of the Skylab were to enrich our scientific knowledge of the Earth, the Sun, the stars, and cosmic space; to study the effects of weightlessness on living organisms, including man; to study the effects of the processing and manufacturing of materials utilizing the absence of gravity; and to conduct Earth resource observations. The Skylab also conducted 19 selected experiments submitted by high school students. Skylab's 3 different 3-man crews spent up to 84 days in Earth orbit. The Marshall Space Flight Center (MSFC) had responsibility for developing and integrating most of the major components of the Skylab: the Orbital Workshop (OWS), Airlock Module (AM), Multiple Docking Adapter (MDA), Apollo Telescope Mount (ATM), Payload Shroud (PS), and most of the experiments. MSFC was also responsible for providing the Saturn IB launch vehicles for three Apollo spacecraft and crews and a Saturn V launch vehicle for the Skylab.

  6. RCA direct broadcast satellite configuration

    NASA Astrophysics Data System (ADS)

    Miller, R.; Buntschuh, R. F.

    System requirements and the spacecraft configuration for a DBS mission in 1986, contracted by RCA Americom, are presented. Performance features are to include a dc power of 315 W, a stationkeeping accuracy of up to 0.1 deg, a pointing accuracy of up to 0.05 deg, and continental U.S. coverage. Four on-orbit operating satellites are needed, each weighing at least 1100 kg, having antennas of about 3 m diam, six RF channels, and no eclipse operating requirements. Three-axis stabilization, a pivoted momentum wheel, hydrazine thrusters, a bipropellant liquid perigee stage, a solid apogee kick motor, Ni-Cd batteries, 230 W power amplifiers, and launch compatibility with the STS. The spacecraft length will be approximately 23 m with solar panels deployed. Feedhorns will be used on for transmissions and a switching network will be installed to optimize time zone coverage. Each spacecraft will generate over 1.38 kW of on-board RF power.

  7. Breast tomosynthesis imaging configuration analysis.

    PubMed

    Rayford, Cleveland E; Zhou, Weihua; Chen, Ying

    2013-01-01

    Traditional two-dimensional (2D) X-ray mammography is the most commonly used method for breast cancer diagnosis. Recently, a three-dimensional (3D) Digital Breast Tomosynthesis (DBT) system has been invented, which is likely to challenge the current mammography technology. The DBT system provides stunning 3D information, giving physicians increased detail of anatomical information, while reducing the chance of false negative screening. In this research, two reconstruction algorithms, Back Projection (BP) and Shift-And-Add (SAA), were used to investigate and compare View Angle (VA) and the number of projection images (N) with parallel imaging configurations. In addition, in order to better determine which method displayed better-quality imaging, Modulation Transfer Function (MTF) analyses were conducted with both algorithms, ultimately producing results which improve upon better breast cancer detection. Research studies find evidence that early detection of the disease is the best way to conquer breast cancer, and earlier detection results in the increase of life span for the affected person. PMID:23900440

  8. Metrics for measuring distances in configuration spaces.

    PubMed

    Sadeghi, Ali; Ghasemi, S Alireza; Schaefer, Bastian; Mohr, Stephan; Lill, Markus A; Goedecker, Stefan

    2013-11-14

    In order to characterize molecular structures we introduce configurational fingerprint vectors which are counterparts of quantities used experimentally to identify structures. The Euclidean distance between the configurational fingerprint vectors satisfies the properties of a metric and can therefore safely be used to measure dissimilarities between configurations in the high dimensional configuration space. In particular we show that these metrics are a perfect and computationally cheap replacement for the root-mean-square distance (RMSD) when one has to decide whether two noise contaminated configurations are identical or not. We introduce a Monte Carlo approach to obtain the global minimum of the RMSD between configurations, which is obtained from a global minimization over all translations, rotations, and permutations of atomic indices. PMID:24320265

  9. Metrics for measuring distances in configuration spaces

    SciTech Connect

    Sadeghi, Ali Ghasemi, S. Alireza; Schaefer, Bastian; Mohr, Stephan; Goedecker, Stefan; Lill, Markus A.

    2013-11-14

    In order to characterize molecular structures we introduce configurational fingerprint vectors which are counterparts of quantities used experimentally to identify structures. The Euclidean distance between the configurational fingerprint vectors satisfies the properties of a metric and can therefore safely be used to measure dissimilarities between configurations in the high dimensional configuration space. In particular we show that these metrics are a perfect and computationally cheap replacement for the root-mean-square distance (RMSD) when one has to decide whether two noise contaminated configurations are identical or not. We introduce a Monte Carlo approach to obtain the global minimum of the RMSD between configurations, which is obtained from a global minimization over all translations, rotations, and permutations of atomic indices.

  10. Configuration management: Phase II implementation guidance

    SciTech Connect

    Not Available

    1994-03-01

    Configuration management (CM) is essential to maintaining an acceptable level of risk to the public, workers, environment, or mission success. It is a set of activities and techniques used to maintain consistency among physical and functional configuration, applicable requirements, and key documents. This document provides guidance for continuing the implementation of CM in a phased and graded manner. It describes a cost-effective approach to documented consistency with requirements, with early emphasis on items most important to safety and environmental protection. It is intended to help responsible line managers and configuration management staff personnel in meeting the Energy Systems configuration management policy standard.

  11. The Database Driven ATLAS Trigger Configuration System

    NASA Astrophysics Data System (ADS)

    Chavez, Carlos; Gianelli, Michele; Martyniuk, Alex; Stelzer, Joerg; Stockton, Mark; Vazquez, Will

    2015-12-01

    The ATLAS trigger configuration system uses a centrally provided relational database to store the configurations for all levels of the ATLAS trigger system. The configuration used at any point during data taking is maintained in this database. A interface to this database is provided by the TriggerTool, a Java-based graphical user interface. The TriggerTool has been designed to work as both a convenient browser and editor of configurations in the database for both general users and experts. The updates to the trigger system necessitated by the upgrades and changes in both hardware and software during the first long shut down of the LHC will be explored.

  12. International Space Station Configuration Analysis and Integration

    NASA Technical Reports Server (NTRS)

    Anchondo, Rebekah

    2016-01-01

    Ambitious engineering projects, such as NASA's International Space Station (ISS), require dependable modeling, analysis, visualization, and robotics to ensure that complex mission strategies are carried out cost effectively, sustainably, and safely. Learn how Booz Allen Hamilton's Modeling, Analysis, Visualization, and Robotics Integration Center (MAVRIC) team performs engineering analysis of the ISS Configuration based primarily on the use of 3D CAD models. To support mission planning and execution, the team tracks the configuration of ISS and maintains configuration requirements to ensure operational goals are met. The MAVRIC team performs multi-disciplinary integration and trade studies to ensure future configurations meet stakeholder needs.

  13. Peltier Current Leads with conical configuration

    NASA Astrophysics Data System (ADS)

    Hakimi, I.; Nikulshin, Y.; Wolfus, S.; Yeshurun, Y.

    2016-04-01

    Current leads in cryogenic systems are a major heat source which eventually affects the entire system. It has been shown in recent years that Peltier elements are useful in reducing incoming heat into the cold system. In this article we present a new tapered cone-like configuration of the Peltier Current Leads which increases the power saving. This configuration is compared to the standard cylindrical configuration utilizing advanced ANSYS simulations. The simulations show an additional power saving of 4% when using the tapered lead configuration.

  14. Configurable Multi-Purpose Processor

    NASA Technical Reports Server (NTRS)

    Valencia, J. Emilio; Forney, Chirstopher; Morrison, Robert; Birr, Richard

    2010-01-01

    Advancements in technology have allowed the miniaturization of systems used in aerospace vehicles. This technology is driven by the need for next-generation systems that provide reliable, responsive, and cost-effective range operations while providing increased capabilities such as simultaneous mission support, increased launch trajectories, improved launch, and landing opportunities, etc. Leveraging the newest technologies, the command and telemetry processor (CTP) concept provides for a compact, flexible, and integrated solution for flight command and telemetry systems and range systems. The CTP is a relatively small circuit board that serves as a processing platform for high dynamic, high vibration environments. The CTP can be reconfigured and reprogrammed, allowing it to be adapted for many different applications. The design is centered around a configurable field-programmable gate array (FPGA) device that contains numerous logic cells that can be used to implement traditional integrated circuits. The FPGA contains two PowerPC processors running the Vx-Works real-time operating system and are used to execute software programs specific to each application. The CTP was designed and developed specifically to provide telemetry functions; namely, the command processing, telemetry processing, and GPS metric tracking of a flight vehicle. However, it can be used as a general-purpose processor board to perform numerous functions implemented in either hardware or software using the FPGA s processors and/or logic cells. Functionally, the CTP was designed for range safety applications where it would ultimately become part of a vehicle s flight termination system. Consequently, the major functions of the CTP are to perform the forward link command processing, GPS metric tracking, return link telemetry data processing, error detection and correction, data encryption/ decryption, and initiate flight termination action commands. Also, the CTP had to be designed to survive and

  15. Switching ferroelectric domain configurations using both electric and magnetic fields in Pb(Zr,Ti)O3–Pb(Fe,Ta)O3 single-crystal lamellae

    PubMed Central

    Evans, D. M.; Schilling, A.; Kumar, Ashok; Sanchez, D.; Ortega, N.; Katiyar, R. S.; Scott, J. F.; Gregg, J. M.

    2014-01-01

    Thin single-crystal lamellae cut from Pb(Zr,Ti)O3–Pb(Fe,Ta)O3 ceramic samples have been integrated into simple coplanar capacitor devices. The influence of applied electric and magnetic fields on ferroelectric domain configurations has been mapped, using piezoresponse force microscopy. The extent to which magnetic fields alter the ferroelectric domains was found to be strongly history dependent: after switching had been induced by applying electric fields, the susceptibility of the domains to change under a magnetic field (the effective magnetoelectric coupling parameter) was large. Such large, magnetic field-induced changes resulted in a remanent domain state very similar to the remanent state induced by an electric field. Subsequent magnetic field reversal induced more modest ferroelectric switching. PMID:24421376

  16. Experiment Configurations for the DAST

    NASA Technical Reports Server (NTRS)

    1978-01-01

    This image shows three vehicle configurations considered for the Drones for Aerodynamic and Structural Testing (DAST) program, conducted at NASA's Dryden Flight Research Center between 1977 and 1983. The DAST project planned for three wing configurations. These were the Instrumented Standard Wing (ISW), the Aeroelastic Research Wing-1 (ARW-1), and the ARW-2. After the DAST-1 crash, project personnel fitted a second Firebee II with a rebuilt ARW-1 wing. Due to the project's ending, it never flew the ARW-2 wing. These are the image contact sheets for each image resolution of the NASA Dryden Drones for Aerodynamic and Structural Testing (DAST) Photo Gallery. From 1977 to 1983, the Dryden Flight Research Center, Edwards, California, (under two different names) conducted the DAST Program as a high-risk flight experiment using a ground-controlled, pilotless aircraft. Described by NASA engineers as a 'wind tunnel in the sky,' the DAST was a specially modified Teledyne-Ryan BQM-34E/F Firebee II supersonic target drone that was flown to validate theoretical predictions under actual flight conditions in a joint project with the Langley Research Center, Hampton, Virginia. The DAST Program merged advances in electronic remote control systems with advances in airplane design. Drones (remotely controlled, missile-like vehicles initially developed to serve as gunnery targets) had been deployed successfully during the Vietnamese conflict as reconnaissance aircraft. After the war, the energy crisis of the 1970s led NASA to seek new ways to cut fuel use and improve airplane efficiency. The DAST Program's drones provided an economical, fuel-conscious method for conducting in-flight experiments from a remote ground site. DAST explored the technology required to build wing structures with less than normal stiffness. This was done because stiffness requires structural weight but ensures freedom from flutter-an uncontrolled, divergent oscillation of the structure, driven by aerodynamic

  17. Rare Relativistic Configuration Interaction Calculations

    NASA Astrophysics Data System (ADS)

    Dinov, Konstantin Dimitrov

    1995-01-01

    Valence shell Relativistic Configuration Interaction (RCI) Calculations for several Rare Earth elements resulted the following electron affinities: (1) Ce^ - 6p attachment to the 4f 5d 6s^2 ^1G_sp{4 }{circ} ground state: (2J,EA) = (9,259 meV), (7,147 meV), [7_ {rm first exc.},55 rm meV], (5,105 meV), (3,43 meV). The electron affinity of the 5d attachment in 4f 5d^2 6s^2 ^5H _{7/2} is 178 meV. (2) Pr ^- 6p attachment to the 4f^3 6s^2 ^4I_sp {9/2}{circ} ground state gives 128 meV for the 4f^3 6s^2 6p J = 5 state (^5K 60%), and 110 meV for the J = 4 state (^5I 42%). No evidence for 5d attachment was found. (3) U^- 7p attachment to the 5f ^3 6d 7s^2 ^5L _sp{6}{circ} ground state gives: 175 meV for the 2J = 13 state (^6M 54%). No other 7p or 6d bound states were found. The hyperfine structure constants for the 5f^3 6d 7s^2 7p, 2J = 13 state are A = -72.4 MHz, B = 2644 MHz. No evidence is found to support f attachment in these species. We investigated two low lying 4f ^2 thresholds in Ce, to which one could attach s or p electron, but neither attachment gives enough energy to bind the negative ion. The missing core-valence effects may reduce the EAs by 0.06 eV, based on the difference between the theoretical predictions and experimental measurements for the electron affinity of Strontium. These results correspond to the observed negative ion yields: high for Ce^ -, moderate for Pr^-, and small for U^-.. The REDUCE method was extensively used for the U^- case. The current version of the RCI program allows up to 7 000 vectors (10M elements) in RAM. The enhancement of the computer programs is by a speed factor of 6, and 7 times bigger matrices. A parallel version of the RCI programs was developed. All of these systems are unbound at the MCDF level (single manifold). By far the biggest contributor to the binding is nsto (n-1)d correlation, while the biggest unbinding comes from ns^2 to np^2 correlation. Other important correlations are: ns^2to (n-1)d^2, (n-1)d nsto np^2 & np

  18. Configuration analysis of nickel hydrogen cell

    NASA Technical Reports Server (NTRS)

    Holleck, G.

    1978-01-01

    The significance of various stack configurations and components on the cycle life for nickel hydrogen cells for synchronous orbit used was evaluated. Failure modes of electrolyte management and 02 management were solved by modifications in the reservoir, the wick, and/or the stack configuration.

  19. Configuration-Control Scheme Copes With Singularities

    NASA Technical Reports Server (NTRS)

    Seraji, Homayoun; Colbaugh, Richard D.

    1993-01-01

    Improved configuration-control scheme for robotic manipulator having redundant degrees of freedom suppresses large joint velocities near singularities, at expense of small trajectory errors. Provides means to enforce order of priority of tasks assigned to robot. Basic concept of configuration control of redundant robot described in "Increasing The Dexterity Of Redundant Robots" (NPO-17801).

  20. 40 CFR 610.41 - Test configurations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Test configurations. 610.41 Section... ECONOMY RETROFIT DEVICES Test Procedures and Evaluation Criteria General Vehicle Test Procedures § 610.41 Test configurations. (a) In order to measure the effectiveness of a retrofit device at least two,...

  1. 14 CFR 35.2 - Propeller configuration.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Propeller configuration. 35.2 Section 35.2 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: PROPELLERS General § 35.2 Propeller configuration. The applicant must provide a list of all the components, including references...

  2. Marking up lattice QCD configurations and ensembles

    SciTech Connect

    P.Coddington; B.Joo; C.M.Maynard; D.Pleiter; T.Yoshie

    2007-10-01

    QCDml is an XML-based markup language designed for sharing QCD configurations and ensembles world-wide via the International Lattice Data Grid (ILDG). Based on the latest release, we present key ingredients of the QCDml in order to provide some starting points for colleagues in this community to markup valuable configurations and submit them to the ILDG.

  3. When One Configuration Is Not Enough

    ERIC Educational Resources Information Center

    McMillin, David R.

    2008-01-01

    For most molecules molecular orbital theory predicts a ground-state electronic configuration that is useful for rationalizing relative bond lengths, magnetic properties, and so forth. However, when electron correlation is a dominant consideration, the ground-state configuration may provide a poor representation of the system. In such cases,…

  4. System for Configuring Modular Telemetry Transponders

    NASA Technical Reports Server (NTRS)

    Varnavas, Kosta A. (Inventor); Sims, William Herbert, III (Inventor)

    2014-01-01

    A system for configuring telemetry transponder cards uses a database of error checking protocol data structures, each containing data to implement at least one CCSDS protocol algorithm. Using a user interface, a user selects at least one telemetry specific error checking protocol from the database. A compiler configures an FPGA with the data from the data structures to implement the error checking protocol.

  5. 40 CFR 610.41 - Test configurations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 30 2011-07-01 2011-07-01 false Test configurations. 610.41 Section... ECONOMY RETROFIT DEVICES Test Procedures and Evaluation Criteria General Vehicle Test Procedures § 610.41 Test configurations. (a) In order to measure the effectiveness of a retrofit device at least two,...

  6. 40 CFR 610.41 - Test configurations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 30 2014-07-01 2014-07-01 false Test configurations. 610.41 Section... ECONOMY RETROFIT DEVICES Test Procedures and Evaluation Criteria General Vehicle Test Procedures § 610.41 Test configurations. (a) In order to measure the effectiveness of a retrofit device at least two,...

  7. 40 CFR 610.41 - Test configurations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 31 2012-07-01 2012-07-01 false Test configurations. 610.41 Section... ECONOMY RETROFIT DEVICES Test Procedures and Evaluation Criteria General Vehicle Test Procedures § 610.41 Test configurations. (a) In order to measure the effectiveness of a retrofit device at least two,...

  8. 14 CFR 35.2 - Propeller configuration.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Propeller configuration. 35.2 Section 35.2 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: PROPELLERS General § 35.2 Propeller configuration. The applicant must provide a list of all...

  9. Configuration Management Plan for K Basins

    SciTech Connect

    Weir, W.R.; Laney, T.

    1995-01-27

    This plan describes a configuration management program for K Basins that establishes the systems, processes, and responsibilities necessary for implementation. The K Basins configuration management plan provides the methodology to establish, upgrade, reconstitute, and maintain the technical consistency among the requirements, physical configuration, and documentation. The technical consistency afforded by this plan ensures accurate technical information necessary to achieve the mission objectives that provide for the safe, economic, and environmentally sound management of K Basins and the stored material. The configuration management program architecture presented in this plan is based on the functional model established in the DOE Standard, DOE-STD-1073-93, {open_quotes}Guide for Operational Configuration Management Program{close_quotes}.

  10. Evolution of the Configuration Database Design

    SciTech Connect

    Salnikov, A

    2006-04-19

    The BABAR experiment at SLAC successfully collects physics data since 1999. One of the major parts of its on-line system is the configuration database which provides other parts of the system with the configuration data necessary for data taking. Originally the configuration database was implemented in the Objectivity/DB ODBMS. Recently BABAR performed a successful migration of its event store from Objectivity/DB to ROOT and this prompted a complete phase-out of the Objectivity/DB in all other BABAR databases. It required the complete redesign of the configuration database to hide any implementation details and to support multiple storage technologies. In this paper we describe the process of the migration of the configuration database, its new design, implementation strategy and details.

  11. CFD Simulations of Tiltrotor Configurations in Hover

    NASA Technical Reports Server (NTRS)

    Potsdam, Mark a.; Strawn, Roger C.

    2002-01-01

    Navier-Stokes computational fluid dynamics calculations are presented for isolated, half-span, and full-span V-22 tiltrotor hover configurations. These computational results extend the validity of CFD hover methodology beyond conventional rotorcraft applications to tiltrotor configurations. Computed steady-state, isolated rotor performance agrees well with experimental measurements, showing little sensitivity to grid resolution. However, blade-vortex interaction flowfield details are sensitive to numerical dissipation and are more difficult to model accurately. Time-dependent, dynamic, half- and full-span installed configurations show sensitivities in performance to the tiltrotor fountain flow. As such, the full-span configuration exhibits higher rotor performance and lower airframe download than the half-span configuration. Half-span rotor installation trends match available half-span data, and airframe downloads are reasonably well predicted. Overall, the CFD solutions provide a wealth of flowfield details that can be used to analyze and improve tiltrotor aerodynamic performance.

  12. Improving motorcycle conspicuity through innovative headlight configurations.

    PubMed

    Ranchet, Maud; Cavallo, Viola; Dang, Nguyen-Thong; Vienne, Fabrice

    2016-09-01

    Most motorcycle crashes involve another vehicle that violated the motorcycle's right-of-way at an intersection. Two kinds of perceptual failures of other road users are often the cause of such accidents: motorcycle-detection failures and motion-perception errors. The aim of this study is to investigate the effect of different headlight configurations on motorcycle detectability when the motorcycle is in visual competition with cars. Three innovative headlight configurations were tested: (1) standard yellow (central yellow headlight), (2) vertical white (one white light on the motorcyclist's helmet and two white lights on the fork in addition to the central white headlight), and (3) vertical yellow (same configuration as (2) with yellow lights instead of white). These three headlight configurations were evaluated in comparison to the standard configuration (central white headlight) in three environments containing visual distractors formed by car lights: (1) daytime running lights (DRLs), (2) low beams, or (3) DRLs and low beams. Video clips of computer-generated traffic situations were displayed briefly (250ms) to 57 drivers. The results revealed a beneficial effect of standard yellow configuration and the vertical yellow configuration on motorcycle detectability. However, this effect was modulated by the car-DRL environment. Findings and practical recommendations are discussed with regard to possible applications for motorcycles. PMID:27280780

  13. Zigzag configurations and air classifier performance

    SciTech Connect

    Peirce, J.; Wittenberg, N.

    1984-03-01

    The fundamental aspects of zigzag air classifier configurations are studied in terms of the design and operation of a waste-to-energy production facility. The development of a method of performance evaluation defined by operating range is examined. Historically, air classification has been used in industry and agriculture in mineral extraction, limestone sizing, and seed and grain cleaning. However, the adaption of air classifiers to resource recovery and waste-to-energy production facilities presents new problems due to the complex and variable nature of the wastes. A series of configurations providing a continuous range of zigzag classifier shape components are tested. Each configuration is evaluated to determine its efficiency of separation, and sensitivity to operating air speeds. Results indicate that the configuration of a zigzag classifier does not influence its peak efficiency of separation. However, findings point to distinct limits on operating parameters which lead to peak efficiencies for the different configurations. These operating range values represent the sensitivity of the air classifier to changes in the air flow. A major finding concerns the effect of configuration on the particle size distribution observed in the material exiting the classifier: smaller particles appear to be influenced by configuration changes and larger particles do not. A new method for classifer performance evaluation is developed and applied.

  14. Zigzag configurations and air classifier performance

    SciTech Connect

    Peirce, J.J.; Wittenberg, N.

    1984-03-01

    The fundamental aspects of zigzag air classifier configurations are studied in terms of the design and operation of a waste-to-energy production facility. The development of a method of performance evaluation defined by operating range is examined. Historically, air classification has been used in industry and agriculture in mineral extraction, limestone sizing, and seed and grain cleaning. However, the adaption of air classifiers to resource recovery and waste-to-energy production facilities presents new problems due to the complex and variable nature of the wastes. A series of configurations providing a continuous range of zigzag classifier shape components are tested. Each configuration is evaluated to determine its efficiency of separation, and sensitivity to operating air speeds. Results indicate that the configuration of a zigzag classifier does not influence its peak efficiency of separation. However, findings point to distinct limits on operating parameters which lead to peak efficiencies for the different configurations. These operating range values represent the sensitivity of the air classifier to changes in the air flow. A major finding concerns the effect of configuration on the particle size distribution observed in the material exiting the classifier: smaller particles appear to be influenced by configuration changes and larger particles do not. A new method for classifier performance evaluation is developed and applied.

  15. Configuration effects on satellite charging response

    NASA Technical Reports Server (NTRS)

    Purvis, C. K.

    1980-01-01

    The response of various spacecraft configurations to a charging environment in sunlight was studied using the NASA Charging Analyzer Program code. The configuration features geometry, type of stabilization, and overall size. Results indicate that sunlight charging response is dominated by differential charging effects. Shaded insulation charges negatively result in the formation of potential barriers which suppress photoelectron emission from sunlit surfaces. Sunlight charging occurs relatively slowly: with 30 minutes of charging simulations, in none of the configurations modeled did the most negative surface cell reach half its equilibrium potential in eclipse.

  16. Atom localization with double-cascade configuration

    NASA Astrophysics Data System (ADS)

    Gordeev, Maksim Yu; Efremova, Ekaterina A.; Rozhdestvensky, Yuri V.

    2016-03-01

    We investigate the one-dimensional (1D) and two-dimensional (2D) atom localization of a four-level system in a double-cascade configuration. We demonstrate the possibility of 1D localization in the field of a standing wave, 2D localization in the field of two standing waves and 2D localization only in the field of running waves by using different configurations of driven waves on transitions. In addition, for each configuration we reached a high-precision atom localization in one of the states at scales much smaller than the wavelength of the incident optical radiation.

  17. PDSS configuration control plan and procedures

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The payload development support system (PDSS) configuration control plan and procedures are presented. These plans and procedures establish the process for maintaining configuration control of the PDSS system, especially the Spacelab experiment interface device's (SEID) RAU, HRM, and PDI interface simulations and the PDSS ECOS DEP Services simulation. The plans and procedures as specified are designed to provide a simplified but complete configuration control process. The intent is to require a minimum amount of paperwork but provide total traceability of PDSS during experiment test activities.

  18. Space Transportation Booster Engine (STBE) configuration study

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The overall objective of this Space Transportation Booster Engine (STBE) study is to identify candidate engine configurations which enhance vehicle performance and provide operational flexibility at low cost. The specific objectives are as follows: (1) to identify and evaluate candidate LOX/HC engine configurations for the Advanced Space Transportation System for an early 1995 IOC and a late 2000 IOC; (2) to select one optimum engine for each time period; 3) to prepare a conceptual design for each configuration; (4) to develop a technology plan for the 2000 IOC engine; and, (5) to prepare preliminary programmatic planning and analysis for the 1995 IOC engine.

  19. Metastable configurations of small-world networks.

    PubMed

    Heylen, R; Skantzos, N S; Blanco, J Busquets; Bollé, D

    2006-01-01

    We calculate the number of metastable configurations of Ising small-world networks that are constructed upon superimposing sparse Poisson random graphs onto a one-dimensional chain. Our solution is based on replicated transfer-matrix techniques. We examine the denegeracy of the ground state and find a jump in the entropy of metastable configurations exactly at the crossover between the small-world and the Poisson random graph structures. We also examine the difference in entropy between metastable and all possible configurations, for both ferromagnetic and bond-disordered long-range couplings. PMID:16486247

  20. Metastable configurations of small-world networks

    NASA Astrophysics Data System (ADS)

    Heylen, R.; Skantzos, N. S.; Blanco, J. Busquets; Bollé, D.

    2006-01-01

    We calculate the number of metastable configurations of Ising small-world networks that are constructed upon superimposing sparse Poisson random graphs onto a one-dimensional chain. Our solution is based on replicated transfer-matrix techniques. We examine the denegeracy of the ground state and find a jump in the entropy of metastable configurations exactly at the crossover between the small-world and the Poisson random graph structures. We also examine the difference in entropy between metastable and all possible configurations, for both ferromagnetic and bond-disordered long-range couplings.

  1. Rigged Configurations and the Bethe Ansatz

    NASA Astrophysics Data System (ADS)

    Schilling, Anne

    2003-07-01

    This note is a review of rigged configurations and the Bethe Ansatz. In the first part, we focus on the algebraic Bethe Ansatz for the spin 1/2 XXX model and explain how rigged configurations label the solutions of the Bethe equations. This yields the bijection between rigged configurations and crystal paths/Young tableaux of Kerov, Kirillov and Reshetikhin. In the second part, we discuss a generalization of this bijection for the symmetry algebra Dn(1) , based on work in collaboration with Okado and Shimozono.

  2. Shuttle Liquid Fly Back Booster Configuration Options

    NASA Technical Reports Server (NTRS)

    Healy, T. J., Jr.

    1998-01-01

    This paper surveys the basic configuration options available to a Liquid Fly Back Booster (LFBB), integrated with the Space Shuttle system. The background of the development of the LFBB concept is given. The influence of the main booster engine (BME) installations and the Fly Back Engine (FBE) installation on the aerodynamic configurations are also discussed. Limits on the LFBB configuration design space imposed by the existing Shuttle flight and ground elements are also described. The objective of the paper is to put the constrains and design space for an LFBB in perspective. The object of the work is to define LFBB configurations that significantly improve safety, operability, reliability and performance of the Shuttle system and dramatically lower operations costs.

  3. Handling qualities requirements for control configured vehicles

    NASA Technical Reports Server (NTRS)

    Woodcock, R. J.; George, F. L.

    1976-01-01

    The potential effects of fly by wire and control configured vehicle concepts on flying qualities are considered. Failure mode probabilities and consequences, controllability, and dynamics of highly augmented aircraft are among the factors discussed in terms of design criteria.

  4. Shuttle Liquid Fly Back Booster Configuration Options

    NASA Technical Reports Server (NTRS)

    Healy, Thomas J., Jr.

    1998-01-01

    This paper surveys the basic configuration options available to a Liquid Fly Back Booster (LFBB), integrated with the Space Shuttle system. The background of the development of the LFBB concept is given. The influence of the main booster engine (BME) installations and the fly back engine (FBE) installation on the aerodynamic configurations are also discussed. Limits on the LFBB configuration design space imposed by the existing Shuttle flight and ground elements are also described. The objective of the paper is to put the constrains and design space for an LFBB in perspective. The object of the work is to define LFBB configurations that significantly improve safety, operability, reliability and performance of the Shuttle system and dramatically lower operations costs.

  5. CICADA -- Configurable Instrument Control and Data Acquisition

    NASA Astrophysics Data System (ADS)

    Young, Peter J.; Roberts, William H.; Sebo, Kim M.

    CICADA (Young et al. 1997) is a multi-process, distributed application for the control of astronomical data acquisition systems. It comprises elements that control the operation of, and data flow from CCD camera systems; and the operation of telescope instrument control systems. CICADA can be used to dynamically configure support for astronomical instruments that can be made up of multiple cameras and multiple instrument controllers. Each camera is described by a hierarchy of parts that are each individually configured and linked together. Most of CICADA is written in C++ and much of the configurability of CICADA comes from the use of inheritance and polymorphism. An example of a multiple part instrument configuration -- a wide field imager (WFI) -- is described here. WFI, presently under construction, is made up of eight 2k x 4k CCDs with dual SDSU II controllers and will be used at Siding Spring's ANU 40in and AAO 3.9m telescopes.

  6. Habitat Demonstration Unit - Deep Space Habitat Configuration

    NASA Video Gallery

    This animated video shows the process of transporting, assembling and testing the Habitat Demonstration Unit - Deep Space Habitat (HDU DSH) configuration, which will be deployed during the 2011 Des...

  7. Space shuttle configuration accounting functional design specification

    NASA Technical Reports Server (NTRS)

    1974-01-01

    An analysis is presented of the requirements for an on-line automated system which must be capable of tracking the status of requirements and engineering changes and of providing accurate and timely records. The functional design specification provides the definition, description, and character length of the required data elements and the interrelationship of data elements to adequately track, display, and report the status of active configuration changes. As changes to the space shuttle program levels II and III configuration are proposed, evaluated, and dispositioned, it is the function of the configuration management office to maintain records regarding changes to the baseline and to track and report the status of those changes. The configuration accounting system will consist of a combination of computers, computer terminals, software, and procedures, all of which are designed to store, retrieve, display, and process information required to track proposed and proved engineering changes to maintain baseline documentation of the space shuttle program levels II and III.

  8. A New Gimmick for Assigning Absolute Configuration.

    ERIC Educational Resources Information Center

    Ayorinde, F. O.

    1983-01-01

    A five-step procedure is provided to help students in making the assignment absolute configuration less bothersome. Examples for both single (2-butanol) and multi-chiral carbon (3-chloro-2-butanol) molecules are included. (JN)

  9. The configuration space of vibrated granular rings.

    NASA Astrophysics Data System (ADS)

    Daya, Zahir A.; Rivera, Michael K.; Ben-Naim, Eli; Ecke, Robert E.

    2003-03-01

    When granular chains, which consist of spherical beads connected by rods, are energetically excited by vertical vibration they explore the space of permissible geometric configurations. The size of the configuration space is determined by the physical constraints of the chain's construction and possibly by its dynamics. Under weak vibration when the chain is largely two-dimensional (2D) its configuration resembles a 2D self-avoiding walk (SAW). Here we consider chains whose ends are joined to form rings and compare them to SAWs that return to the origin. From large numbers of digital images of rings with N beads we estimate the size of the configuration space as a function of N. We obtain the estimate from an extrapolation of a coarse-grained counting of distinct configurations. The same procedure was applied to return-to-the-origin SAWs on a square lattice that were generated using Monte Carlo simulations. We compare our results with enumerations of SAWs and discuss the role of a configuration entropy for granular chains and generic filamentary objects such as flexible polymers and bio-macromolecules.

  10. Pressure Driven Currents in the Cdx-U Trapped Particle Configuration

    NASA Astrophysics Data System (ADS)

    Forest, Cary Brett

    A novel, non-inductive current drive technique has been developed for initiating and maintaining tokamak discharges in CDX-U: the current drive experiment-upgrade, a low-aspect-ratio tokamak facility. The new method utilizes naturally occurring internally generated currents which are present in toroidal plasmas. On CDX-U, electron cyclotron heating (ECH) was used to provide the heating power necessary to create and maintain a high-beta_ {pol} plasma, the plasma for which self -generated currents are significant. A novel poloidal field configuration provided initial confinement for an ECH produced, trapped electron population. The ECH power, injected through a simple (non-phased) waveguide, was well suited to produce a hot, low-collisionality electrons needed for current generation. With application of ECH, internal plasma generated currents occurred spontaneously and increased with applied ECH power. The generated current scaled inversely with neutral particle density, showing the importance of reducing the plasma collisionality. The current direction depended only on the poloidal field direction, not on the toroidal field direction. The currents flowing into segmented limiters were found to be very small, confirming that the currents were internally generated. With application of ~8 kW of ECH power, a toroidal plasma current of up to 1200 A was generated. At this plasma current level, the poloidal fields from the plasma currents were sufficiently large to form a low-aspect-ratio tokamak plasma, demonstrated unambiguously by poloidal field reversal on the inner wall of the vessel. The beta_ {pol} in this experiment was high, epsilonbeta_{pol}~eq 1, consistent with the observed pressure driven currents. Furthermore, the normalized collisionality- -the ratio of the electron bounce period to collision time --was less than one in regions of strong current density; thus, the observed currents were consistent with theoretical predictions of trapped particle generated

  11. A Vertical Differential Configuration in GPR prospecting

    NASA Astrophysics Data System (ADS)

    Persico, Raffaele; Pochanin, Gennadiy; Varianytsia-Roshchupkina, Liudmyla; Catapano, Ilaria; Gennarelli, Gianluca; Soldovieri, Francesco

    2015-04-01

    The rejection of the direct coupling between the antennas is an issue of interest in several GPR applications, especially when it is important to distinguish the targets of interest from the clutter and the signal reflected from the air soil interface. Therefore, in this framework several hardware and software strategies have been proposed. Among the software strategies, probably the most common one is the background removal [1], whereas as an hardware strategy the differential configuration has been introduced in [2-3] and then further on studied in [4] with respect to the spatial filtering properties of the relevant mathematical operator. In particular, the studies proposed in [1] and [4] have shown that, in general, all the strategies for the rejection of the direct coupling have necessarily some drawback, essentially because it is not possible to erase all and only the undesired contributions leaving "untouched" the contributions of the targets of interest to the gathered signal. With specific regard to the differential configuration, in [2-3], the differential configuration consisted in a couple of receiving antennas symmetrically placed around the transmitting one, being the three antennas placed along the same horizontal segment. Therefore, we might define that configuration as a "horizontal differential configuration". Here, we propose a novel differential GPR configuration, where the two receiving antennas are still symmetrically located with respect to the transmitting one, but are placed piled on each other at different heights from the air-soil interface, whereas the transmitting antenna is at the medium height between the two receiving one (however, it is not at the same abscissa but at a fixed horizontal offset from the receiving antennas). Such a differential configuration has been previously presented in [5-6] and allows a good isolation between the antennas, while preserving the possibility to collect backscattered signals from both electrically

  12. Configuring Airspace Sectors with Approximate Dynamic Programming

    NASA Technical Reports Server (NTRS)

    Bloem, Michael; Gupta, Pramod

    2010-01-01

    In response to changing traffic and staffing conditions, supervisors dynamically configure airspace sectors by assigning them to control positions. A finite horizon airspace sector configuration problem models this supervisor decision. The problem is to select an airspace configuration at each time step while considering a workload cost, a reconfiguration cost, and a constraint on the number of control positions at each time step. Three algorithms for this problem are proposed and evaluated: a myopic heuristic, an exact dynamic programming algorithm, and a rollouts approximate dynamic programming algorithm. On problem instances from current operations with only dozens of possible configurations, an exact dynamic programming solution gives the optimal cost value. The rollouts algorithm achieves costs within 2% of optimal for these instances, on average. For larger problem instances that are representative of future operations and have thousands of possible configurations, excessive computation time prohibits the use of exact dynamic programming. On such problem instances, the rollouts algorithm reduces the cost achieved by the heuristic by more than 15% on average with an acceptable computation time.

  13. Thruster configurations for maneuvering heavy payloads

    NASA Technical Reports Server (NTRS)

    Tsugawa, Roy K.; Draznin, Michael E.; Dabney, Richard W.

    1991-01-01

    The cargo transfer vehicle (CTV) will be required to perform six degree of freedom (6DOF) maneuvers while carrying a wide range of payloads varying from 100,000 lbm to no payload. The current baseline design configuration for the CTV uses a forward propulsion module (FPM) mounted in front of the payload and the CTV behind the payload so that the center of gravity (CG) of the combined stack is contained between the thruster sets. This allows for efficient rotation and translations of heavy payloads in all directions; however, the FPM is a costly item, so it is desirable to find design solutions which do not require the FPM. This presentation provides an overview of the work performed in analyzing the FPM requirements for the CTV. Specifically, key issues related to thruster configuration requirements for operating the CTV without the FPM, throughout the 100,000 lbm payload to no payload range, will be highlighted. In this study, only the reaction control system (RCS) thruster configurations are considered and the orbit adjust engines are not addressed. An important output of this study is the viable alternative thruster configurations which eliminate the need for the FPM. Initial results were derived using analytical techniques and simulation analysis tools. Results from the preliminary analysis were used as inputs for our 6DOF simulation. The 6DOF simulation was used to validate our design guidelines and to verify the performance of the thruster configurations.

  14. Oblique wing transonic transport configuration development

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Studies of transport aircraft designed for boom-free supersonic flight show the variable sweep oblique wing to be the most efficient configuration for flight at low supersonic speeds. Use of this concept leads to a configuration that is lighter, quieter, and more fuel efficient than symmetric aircraft designed for the same mission. Aerodynamic structural, weight, aeroelastic and flight control studies show the oblique wing concept to be technically feasible. Investigations are reported for wing planform and thickness, pivot design and weight estimation, engine cycle (bypass ratio), and climb, descent and reserve fuel. Results are incorporated into a final configuration. Performance, weight, and balance characteristics are evaluated. Flight control requirements are reviewed, and areas in which further research is needed are identified.

  15. Fiber optic configurations for local area networks

    NASA Technical Reports Server (NTRS)

    Nassehi, M. M.; Tobagi, F. A.; Marhic, M. E.

    1985-01-01

    A number of fiber optic configurations for a new class of demand assignment multiple-access local area networks requiring a physical ordering among stations are proposed. In such networks, the data transmission and linear-ordering functions may be distinguished and be provided by separate data and control subnetworks. The configurations proposed for the data subnetwork are based on the linear, star, and tree topologies. To provide the linear-ordering function, the control subnetwork must always have a linear unidirectional bus structure. Due to the reciprocity and excess loss of optical couplers, the number of stations that can be accommodated on a linear fiber optic bus is severely limited. Two techniques are proposed to overcome this limitation. For each of the data and control subnetwork configurations, the maximum number of stations as a function of the power margin, for both reciprocal and nonreciprocal couplers, is computed.

  16. DAQMAN - A flexible configurable data acquisition system

    SciTech Connect

    Sivertz, Michael; Larry Hoff, Seth Nemesure

    2012-08-01

    DAQMAN is a flexible configurable interface that allows the user to build and operate a VME-based data acquisition system on a Linux workstation. It consists of two parts: a Java-based Graphical User Interface to configure the system, and a C-based utility that reads out the data and creates the output ASCII data file, with two levels of diagnostic tools. The data acquisition system requires a CAEN CONET-VME Bridge to communicate between the hardware in the VME crate and the Linux workstation. Data acquisition modules, such as ADCs, TDC, Scalers, can be loaded into the system, or removed easily. The GUI allows users to activate modules, and channels within modules by clicking on icons. Running configurations are stored; data are collected and can be viewed either as raw numbers, or by charts and histograms that update as the data are accumulated. Data files are written to disk in ASCII format, with a date and time stamp.

  17. Comparing Methods for Dynamic Airspace Configuration

    NASA Technical Reports Server (NTRS)

    Zelinski, Shannon; Lai, Chok Fung

    2011-01-01

    This paper compares airspace design solutions for dynamically reconfiguring airspace in response to nominal daily traffic volume fluctuation. Airspace designs from seven algorithmic methods and a representation of current day operations in Kansas City Center were simulated with two times today's demand traffic. A three-configuration scenario was used to represent current day operations. Algorithms used projected unimpeded flight tracks to design initial 24-hour plans to switch between three configurations at predetermined reconfiguration times. At each reconfiguration time, algorithms used updated projected flight tracks to update the subsequent planned configurations. Compared to the baseline, most airspace design methods reduced delay and increased reconfiguration complexity, with similar traffic pattern complexity results. Design updates enabled several methods to as much as half the delay from their original designs. Freeform design methods reduced delay and increased reconfiguration complexity the most.

  18. Visible upconversion fiber lasers in ring configuration

    NASA Astrophysics Data System (ADS)

    Caspary, Reinhard; Baraniecki, Tomasz P.; Kozak, Marcin M.; Kowalsky, Wolfgang

    2005-09-01

    Up-conversion fiber lasers based on Pr3+/Yb3+ doped fluoride fibers and pumped at 835 nm can operate on emission lines in the red, orange, green, and blue spectral region. Up to now only Fabry-Perot configurations with two mirrors butt-coupled to the fiber ends were investigated. In this paper we present the first visible Pr3+/Yb3+ fiber lasers in a ring configuration. In contrast to the usual Fabry-Perot configuration, the basic ring resonator setup contains no free-space optics and no parts which need to be adjusted. The main challenge for such a setup is the connection between the fluoride laser fiber and the remaining part of the ring resonator, which is made from silica fibers. Due to the very different melting temperatures of both glasses usual fusion splices are impossible. We use a special technique to couple the fibers with glue.

  19. Configurations of Time in Bereaved Parents' Narratives.

    PubMed

    Barak, Adi; Leichtentritt, Ronit D

    2014-06-25

    In this study, we examined the configurations of time within narratives of bereaved Israeli parents, employing Gadamer's hermeneutic philosophy as the research methodology. Our results reveal that following a sudden violent loss, parents experienced a change in their sense of time. Three nonexclusive time possibilities were evident in the participants' narratives: time stopped, time moved forward, and time moved backward. Although most of the social science literature highlights the importance of linear temporal configuration to enhance the coherence of text, based on our study we call for other forms of temporal ordering, as varied time configurations were used by the bereaved and were perceived to have beneficial outcomes. Finally, we outline implications for mental health professionals. PMID:24966197

  20. Omnidirectional Structured Light in a Flexible Configuration

    PubMed Central

    Paniagua, Carmen; Puig, Luis; Guerrero, José J.

    2013-01-01

    Structured light is a perception method that allows us to obtain 3D information from images of the scene by projecting synthetic features with a light emitter. Traditionally, this method considers a rigid configuration, where the position and orientation of the light emitter with respect to the camera are known and calibrated beforehand. In this paper we propose a new omnidirectional structured light system in flexible configuration, which overcomes the rigidness of the traditional structured light systems. We propose the use of an omnidirectional camera combined with a conic pattern light, i.e., the 3D information of the conic in the space. This reconstruction considers the recovery of the depth and orientation of the scene surface where the conic pattern is projected. One application of our proposed structured light system in flexible configuration consists of a wearable omnicamera with a low-cost laser in hand for visual impaired personal assistance. PMID:24129024

  1. A historic review of canard configurations

    NASA Technical Reports Server (NTRS)

    Anderson, S. B.; Feistel, T. W.

    1985-01-01

    The first human-powered flight was achieved by a canard-configured aircraft (Wright Brothers). Although other canard concepts were flown with varying degrees of success over the years, the tail-aft configuration has dominated the aircraft market for both military and civil use. This paper reviews the development of canard aircraft with emphasis on stability and control, handling qualities, and operating problems. The results show that early canard concepts suffered adversely in flight behavior because of a lack of understanding of the sensitivities of these concepts to basic stability and control principles. Modern canard designs have been made competitive with tail-aft configurations by using appropriate handling qualities design criteria.

  2. Three-Dimensional MHD Simulation of FTEs Produced by Merging at an Isolated Point in a Sheared Magnetic Field Configuration

    NASA Technical Reports Server (NTRS)

    Santos, J. C.; Sibeck, D. G.; Buchner, J.; Gonzalez, W. D.; Ferreira, J. L.

    2014-01-01

    We present predictions for the evolution of FTEs generated by localized bursts of reconnection on a planar magnetopause that separates a magnetosheath region of high densities and weak magnetic field from a magnetospheric region of low densities and strong magnetic field. The magnetic fields present a shear angle of 105 degrees. Reconnection forms a pair of FTEs each crossing the magnetopause in the field reversal region and bulging into the magnetosphere and magnetosheath. At their initial stage they can be characterized as flux tubes since the newly reconnected magnetic field lines are not twisted. Reconnection launches Alfvenic perturbations that propagate along the FTEs generating high-speed jets, which move the pair of FTEs in opposite directions. As the FTE moves, it displaces the ambient magnetic field and plasma producing bipolar magnetic field and plasma velocity signatures normal to the nominal magnetopause in the regions surrounding the FTE. The combination of the ambient plasma with the FTE flows generates a vortical velocity pattern around the reconnected field lines. During its evolution the FTE evolves to a flux rope configuration due to the twist of the magnetic field lines. The alfvenic perturbations propagate faster along the part of the FTE bulging into the magnetosphere than in the magnetosheath, and due to the differences between the plasma and magnetic field properties the perturbations have slightly different signatures in the two regions. As a consequence, the FTEs have different signatures depending on whether the satellite encounters the part bulging into the magnetosphere or into the magnetosheath.

  3. Configurations of the amphiphilic molecules in micelles

    SciTech Connect

    Dill, K.A.

    1982-04-29

    Several theoretic models aim to account for the properties of micelles in terms of the configurations of the constituent amphiphilic chain molecules. Recent /sup 13/C NMR measurement of one property of the configuration distribution of the the hydrocarbon chain segments allows critical evaluation of these theories. It is concluded that the interphase and singly-bent chain theories, which fully account for chain continuity and for intermolecular constraints imposed by hydrophobic and steric forces, give a more satisfactory description of micellar molecular organization than models in which chains are ordered and radially aligned, or in which they have the complete disorder characteristic of an amorphous hydrocarbon liquid.

  4. Minimum induced drag configurations with jet interaction

    NASA Technical Reports Server (NTRS)

    Pao, J. L.; Lan, C. E.

    1978-01-01

    A theoretical method is presented for determining the optimum camber shape and twist distribution for the minimum induced drag in the wing-alone case without prescribing the span loading shape. The same method was applied to find the corresponding minimum induced drag configuration with the upper-surface-blowing jet. Lan's quasi-vortex-lattice method and his wing-jet interaction theory was used. Comparison of the predicted results with another theoretical method shows good agreement for configurations without the flowing jet. More applicable experimental data with blowing jets are needed to establish the accuracy of the theory.

  5. CFDP Configuration: Enclid and Juice Scenarios

    NASA Astrophysics Data System (ADS)

    Valverde, Alberto; Taylor, Chris; Montesinos, Juan Antonio; Maiorano, Elena; Colombo, Cyril; Erd, Christian; Magistrati, Giorgio

    2014-08-01

    This paper presents the work done within the ESA ESTEC Data Systems Division, targeting the implementation of CFDP in future ESA Science Missions. EUCLID and JUICE currently include CCSDS File Delivery Protocol (CFDP) as baseline for payload data transfer to ground. The two missions have completely different characteristics, although both present quite demanding scenarios. Using the communication link characteristics as an input, some simulations have been performed to optimize the CFDP configuration and get some preliminary figures on the retransmission overhead, payload data bandwidth and number of parallel transactions needed to maintain full bandwidth utilization. The paper provides some guidelines on CFDP configuration and usage that can be useful in future CFDP implementations.

  6. Some aerodynamic considerations for advanced aircraft configurations

    NASA Technical Reports Server (NTRS)

    Williams, L. J.; Johnson, J. L., Jr.; Yip, L. P.

    1984-01-01

    Recent NASA wind-tunnel investigations of advanced unconventional configurations are surveyed, with an emphasis on those applicable to general-aviation aircraft. Photographs of typical models and graphs of aerodynamic parameters are provided. The designs discussed include aft installation of tractor or pusher-propellor engines; forward-swept wings; canards; combinations of canard, wing, and horizontal tail; and propeller-over-the-wing configurations. Consideration is given to canard-wing flow-field interactions, natural laminar flow, the choice of canard airfoil, directional stability and control, and propulsion-system location.

  7. CFD Computations on Multi-GPU Configurations.

    NASA Astrophysics Data System (ADS)

    Menon, Sandeep; Perot, Blair

    2007-11-01

    Programmable graphics processors have shown favorable potential for use in practical CFD simulations -- often delivering a speed-up factor between 3 to 5 times over conventional CPUs. In recent times, most PCs are supplied with the option of installing multiple GPUs on a single motherboard, thereby providing the option of a parallel GPU configuration in a shared-memory paradigm. We demonstrate our implementation of an unstructured CFD solver using a set up which is configured to run two GPUs in parallel, and discuss its performance details.

  8. 14 CFR 23.1524 - Maximum passenger seating configuration.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Maximum passenger seating configuration. 23... Operating Limitations and Information § 23.1524 Maximum passenger seating configuration. The maximum passenger seating configuration must be established....

  9. 14 CFR 23.1524 - Maximum passenger seating configuration.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Maximum passenger seating configuration. 23... Operating Limitations and Information § 23.1524 Maximum passenger seating configuration. The maximum passenger seating configuration must be established....

  10. 14 CFR 23.1524 - Maximum passenger seating configuration.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Maximum passenger seating configuration. 23... Operating Limitations and Information § 23.1524 Maximum passenger seating configuration. The maximum passenger seating configuration must be established....

  11. 14 CFR 23.1524 - Maximum passenger seating configuration.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Maximum passenger seating configuration. 23... Operating Limitations and Information § 23.1524 Maximum passenger seating configuration. The maximum passenger seating configuration must be established....

  12. 14 CFR 23.1524 - Maximum passenger seating configuration.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Maximum passenger seating configuration. 23... Operating Limitations and Information § 23.1524 Maximum passenger seating configuration. The maximum passenger seating configuration must be established....

  13. 24 CFR 3285.304 - Pier configuration.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... configuration. (a) Concrete blocks. Installation instructions for concrete block piers must be developed in...-bearing (not decorative) concrete blocks must have nominal dimensions of at least 8 inches × 8 inches × 16 inches; (2) The concrete blocks must be stacked with their hollow cells aligned vertically; and (3)...

  14. 24 CFR 3285.304 - Pier configuration.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... configuration. (a) Concrete blocks. Installation instructions for concrete block piers must be developed in...-bearing (not decorative) concrete blocks must have nominal dimensions of at least 8 inches × 8 inches × 16 inches; (2) The concrete blocks must be stacked with their hollow cells aligned vertically; and (3)...

  15. 24 CFR 3285.304 - Pier configuration.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... configuration. (a) Concrete blocks. Installation instructions for concrete block piers must be developed in...-bearing (not decorative) concrete blocks must have nominal dimensions of at least 8 inches × 8 inches × 16 inches; (2) The concrete blocks must be stacked with their hollow cells aligned vertically; and (3)...

  16. 24 CFR 3285.304 - Pier configuration.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... configuration. (a) Concrete blocks. Installation instructions for concrete block piers must be developed in...-bearing (not decorative) concrete blocks must have nominal dimensions of at least 8 inches × 8 inches × 16 inches; (2) The concrete blocks must be stacked with their hollow cells aligned vertically; and (3)...

  17. 24 CFR 3285.304 - Pier configuration.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... configuration. (a) Concrete blocks. Installation instructions for concrete block piers must be developed in...-bearing (not decorative) concrete blocks must have nominal dimensions of at least 8 inches × 8 inches × 16 inches; (2) The concrete blocks must be stacked with their hollow cells aligned vertically; and (3)...

  18. Linking Assessment and Instruction Innovation Configuration

    ERIC Educational Resources Information Center

    Hosp, John L.

    2011-01-01

    This innovation configuration identifies the skills and competencies teachers need to make sound decisions about using assessment information to improve instruction and establishes a framework and justification for effective ways that teachers can collect and use assessment data to make instructional decisions. It is designed to provide a…

  19. Configurations of Common Childhood Psychosocial Risk Factors

    ERIC Educational Resources Information Center

    Copeland, William; Shanahan, Lilly; Costello, E. Jane; Angold, Adrian

    2009-01-01

    Background: Co-occurrence of psychosocial risk factors is commonplace, but little is known about psychiatrically-predictive configurations of psychosocial risk factors. Methods: Latent class analysis (LCA) was applied to 17 putative psychosocial risk factors in a representative population sample of 920 children ages 9 to 17. The resultant class…

  20. Examining issues with water quality model configuration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Complex watershed–scale, water quality models require a considerable amount of data in order to be properly configured, especially in view of the scarcity of data in many regions due to temporal and economic constraints. In this study, we examined two different input issues incurred while building ...

  1. Optimal triple configurations of stationary shocks

    NASA Astrophysics Data System (ADS)

    Tao, G.; Uskov, V. N.; Chernyshov, M. V.

    Shock-wave systems consisted of three stationary shocks with common (triple) point T (Fig. 1,a-e) are called triple configurations. The slipstream (τ) emanates from the triple point and divides the streams that have gone through the sequence of shocks 1-2 and through the alone (main) shock 3 at another side of the triple point.

  2. Status Configurations, Military Service and Higher Education

    ERIC Educational Resources Information Center

    Wang, Lin; Elder, Glen H., Jr.; Spence, Naomi J.

    2012-01-01

    The U.S. Armed Forces offer educational and training benefits as incentives for service. This study investigates the influence of status configurations on military enlistment and their link to greater educational opportunity. Three statuses (socioeconomic status of origin, cognitive ability and academic performance) have particular relevance for…

  3. Advanced Multiple Processor Configuration Study. Final Report.

    ERIC Educational Resources Information Center

    Clymer, S. J.

    This summary of a study on multiple processor configurations includes the objectives, background, approach, and results of research undertaken to provide the Air Force with a generalized model of computer processor combinations for use in the evaluation of proposed flight training simulator computational designs. An analysis of a real-time flight…

  4. The Diversity of School Organizational Configurations

    ERIC Educational Resources Information Center

    Lee, Linda C.

    2013-01-01

    School reform on a large scale has largely been unsuccessful. Approaches designed to document and understand the variety of organizational conditions that comprise our school systems are needed so that reforms can be tailored and results scaled. Therefore, this article develops a configurational framework that allows a systematic analysis of many…

  5. Film bonded fuel cell interface configuration

    DOEpatents

    Kaufman, Arthur; Terry, Peter L.

    1985-01-01

    An improved interface configuration for use between adjacent elements of a fuel cell stack. The interface is impervious to gas and liquid and provides resistance to corrosion by the electrolyte of the fuel cell. A multi-layer arrangement for the interface provides bridging electrical contact with a hot-pressed resin filling the void space.

  6. NASA's acquisition requirements for configuration management

    NASA Technical Reports Server (NTRS)

    Coletta, Mark P.

    1992-01-01

    A viewgraph presentation on NASA's acquisition requirements for configuration management (CM) goes over CM requirements for single mission and multi-mission orientations, CM automation and CALS implementation initiatives, NASA implementation of DOD standards and DID's (data item descriptions), impact of traceability in NASA CM support, NASA's CM efforts in modifying/upgrading equipment, and CM control of multi-vendor hardware.

  7. Sandia software guidelines, Volume 4: Configuration management

    SciTech Connect

    Not Available

    1992-06-01

    This volume is one in a series of Sandia Software Guidelines for use in producing quality software within Sandia National Laboratories. This volume is based on the IEEE standard and guide for software configuration management. The basic concepts and detailed guidance on implementation of these concepts are discussed for several software project types. Example planning documents for both projects and organizations are included.

  8. 40 CFR 610.50 - Test configurations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Test configurations. 610.50 Section... ECONOMY RETROFIT DEVICES Test Procedures and Evaluation Criteria Durability Test Procedures § 610.50 Test... the same test sequence for fuel economy and exhaust emissions as specified in subpart D....

  9. A determinant based full configuration interaction program

    NASA Astrophysics Data System (ADS)

    Knowles, Peter J.; Handy, Nicholas C.

    1989-04-01

    The program FCI solves the Full Configuration Interaction (Full CI) problem of quantum chemistry, in which the electronic Schrödinger equation is solved exactly within a given one particle basis set. The Slater determinant based algorithm leads to highly efficient implementation on a vector computer, and has enabled Full CI calculations of dimension more than 10 7 to be performed.

  10. Aeropropulsion facilities configuration control: Procedures manual

    NASA Technical Reports Server (NTRS)

    Lavelle, James J.

    1990-01-01

    Lewis Research Center senior management directed that the aeropropulsion facilities be put under configuration control. A Configuration Management (CM) program was established by the Facilities Management Branch of the Aeropropulsion Facilities and Experiments Division. Under the CM program, a support service contractor was engaged to staff and implement the program. The Aeronautics Directorate has over 30 facilities at Lewis of various sizes and complexities. Under the program, a Facility Baseline List (FBL) was established for each facility, listing which systems and their documents were to be placed under configuration control. A Change Control System (CCS) was established requiring that any proposed changes to FBL systems or their documents were to be processed as per the CCS. Limited access control of the FBL master drawings was implemented and an audit system established to ensure all facility changes are properly processed. This procedures manual sets forth the policy and responsibilities to ensure all key documents constituting a facilities configuration are kept current, modified as needed, and verified to reflect any proposed change. This is the essence of the CM program.

  11. 40 CFR 610.50 - Test configurations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 30 2014-07-01 2014-07-01 false Test configurations. 610.50 Section... ECONOMY RETROFIT DEVICES Test Procedures and Evaluation Criteria Durability Test Procedures § 610.50 Test... the same test sequence for fuel economy and exhaust emissions as specified in subpart D....

  12. 40 CFR 610.50 - Test configurations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 31 2012-07-01 2012-07-01 false Test configurations. 610.50 Section... ECONOMY RETROFIT DEVICES Test Procedures and Evaluation Criteria Durability Test Procedures § 610.50 Test... the same test sequence for fuel economy and exhaust emissions as specified in subpart D....

  13. 40 CFR 610.50 - Test configurations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 30 2011-07-01 2011-07-01 false Test configurations. 610.50 Section... ECONOMY RETROFIT DEVICES Test Procedures and Evaluation Criteria Durability Test Procedures § 610.50 Test... the same test sequence for fuel economy and exhaust emissions as specified in subpart D....

  14. Thruster configurations for maneuvering heavy payloads

    NASA Technical Reports Server (NTRS)

    Tsugawa, Roy K.; Draznin, Michael E.; Dabney, Richard W.

    1991-01-01

    The Cargo Transfer Vehicle (CTV) will be required to perform six degree of freedom (6 DOF) maneuvers while carrying a wide range of payloads varying from 100,000 lbm to no payload. The current baseline design configuration for the CTV uses a forward propulsion module (FPM) mounted in front of the payload with the CTV behind the payload so that the center of gravity (CG) of the combined stack is centered between the thruster sets. This allows for efficient rotations and translations of heavy payloads in all directions; however, the FPM is a costly item, so it is desirable to find design solutions that do not require the FPM. This presentation provides an overview of the analysis of the FPM requirements for the CTV. In this study, only the reaction control system (RCS) thruster configurations are considered for 6 DOF maneuvers of various CTV cargo configurations. An important output of this study are the viable alternative thruster configurations that eliminate the need for the FPM. Initial results were derived using analytical techniques and simulation analysis tools. Results from the preliminary analysis were validated using our 6 DOF simulation.

  15. Stimulus Configuration, Classical Conditioning, and Hippocampal Function.

    ERIC Educational Resources Information Center

    Schmajuk, Nestor A.; DiCarlo, James J.

    1991-01-01

    The participation of the hippocampus in classical conditioning is described in terms of a multilayer network portraying stimulus configuration. A model of hippocampal function is presented, and computer simulations are used to study neural activity in the various brain areas mapped according to the model. (SLD)

  16. Dynamics and configurations of galaxy triplets

    NASA Technical Reports Server (NTRS)

    Anosova, Joanna P.; Orlov, Victor V.; Chernin, Arthur D.; Ivanov, Alexei V.; Kiseleva, Ljudmila G.

    1990-01-01

    The purpose is to infer the probable dynamical states of galaxy triplets by the observed data on their configurations. Two methods are proposed for describing the distributions of the triplet configuration parameters characterizing a tendency to alignment and hierarchy: (1) obtaining a representative sample of configurations and determining its statistical parameters (moments and percentages); and (2) dividing the region of possible configurations of triple systems (Agekian and Anosova, 1967) into a set of segments and finding the probabilities for the configurations to find themselves in each of them. Both these methods allow representation of the data by numerical simulations as well as observations. The effect of projection was studied. It rather overestimates the alignment and hierarchy of the triple systems. Among the parameters of interest there are found some parameters that are least sensitive to projection effects. The samples consist of simulated galaxy triplets (with hidden mass) as well as of 46 probably physical triple galaxies (Karachentseva et al., 1979). The observed triples as well as numerical models show a tendency to alignment. The triple galaxies do not show any tendency to hierarchy (formation of the temporary binaries), but this tendency may be present for simulated triplets without significant dark matter. The significant hidden mass (of order ten times the total mass of a triplet) decreases the probability of forming a binary and so weakens the hierarchy. Small galaxy groups consisting of 3 to 7 members are probably the most prevalent types of galaxy aggregate (Gorbatsky, 1987). Galaxy triplets are the simplest groups, but dynamically nontrivial ones.

  17. A Vertical Differential Configuration in GPR prospecting

    NASA Astrophysics Data System (ADS)

    Persico, Raffaele; Pochanin, Gennadiy; Varianytsia-Roshchupkina, Liudmyla; Catapano, Ilaria; Gennarelli, Gianluca; Soldovieri, Francesco

    2015-04-01

    The rejection of the direct coupling between the antennas is an issue of interest in several GPR applications, especially when it is important to distinguish the targets of interest from the clutter and the signal reflected from the air soil interface. Therefore, in this framework several hardware and software strategies have been proposed. Among the software strategies, probably the most common one is the background removal [1], whereas as an hardware strategy the differential configuration has been introduced in [2-3] and then further on studied in [4] with respect to the spatial filtering properties of the relevant mathematical operator. In particular, the studies proposed in [1] and [4] have shown that, in general, all the strategies for the rejection of the direct coupling have necessarily some drawback, essentially because it is not possible to erase all and only the undesired contributions leaving "untouched" the contributions of the targets of interest to the gathered signal. With specific regard to the differential configuration, in [2-3], the differential configuration consisted in a couple of receiving antennas symmetrically placed around the transmitting one, being the three antennas placed along the same horizontal segment. Therefore, we might define that configuration as a "horizontal differential configuration". Here, we propose a novel differential GPR configuration, where the two receiving antennas are still symmetrically located with respect to the transmitting one, but are placed piled on each other at different heights from the air-soil interface, whereas the transmitting antenna is at the medium height between the two receiving one (however, it is not at the same abscissa but at a fixed horizontal offset from the receiving antennas). Such a differential configuration has been previously presented in [5-6] and allows a good isolation between the antennas, while preserving the possibility to collect backscattered signals from both electrically

  18. Magnetospheric equilibrium configurations and slow adiabatic convection

    NASA Technical Reports Server (NTRS)

    Voigt, Gerd-Hannes

    1986-01-01

    This review paper demonstrates how the magnetohydrostatic equilibrium (MHE) theory can be used to describe the large-scale magnetic field configuration of the magnetosphere and its time evolution under the influence of magnetospheric convection. The equilibrium problem is reviewed, and levels of B-field modelling are examined for vacuum models, quasi-static equilibrium models, and MHD models. Results from two-dimensional MHE theory as they apply to the Grad-Shafranov equation, linear equilibria, the asymptotic theory, magnetospheric convection and the substorm mechanism, and plasma anisotropies are addressed. Results from three-dimensional MHE theory are considered as they apply to an intermediate analytical magnetospheric model, magnetotail configurations, and magnetopause boundary conditions and the influence of the IMF.

  19. Sustainable Supply Chain Design: A Configurational Approach

    PubMed Central

    Masoumik, S. Maryam; Raja Ghazilla, Raja Ariffin

    2014-01-01

    Designing the right supply chain that meets the requirements of sustainable development is a significant challenge. Although there are a considerable number of studies on issues relating to sustainable supply chain design (SSCD) in terms of designing the practices, processes, and structures, they have rarely demonstrated how these components can be aligned to form an effective sustainable supply chain (SSC). Considering this gap in the literature, this study adopts the configurational approach to develop a conceptual framework that could configure the components of a SSC. In this respect, a process-oriented approach is utilized to classify and harmonize the design components. A natural-resource-based view (NRBV) is adopted to determine the central theme to align the design components around. The proposed framework presents three types of SSC, namely, efficient SSC, innovative SSC, and reputed SSC. The study culminates with recommendations concerning the direction for future research. PMID:24523652

  20. Space station configuration and flight dynamics identification

    NASA Technical Reports Server (NTRS)

    Metter, E.; Milman, M. H.

    1985-01-01

    The Space Station will be assembled in low earth orbit by a combination of deployable and space erectable modules that are progressively integrated during successive flights of the Shuttle. The crew assisted space construction will result in a configuration which is a large scale composite of structural elements having connectivity with a wide range of possible end conditions and imprecisely known dynamic characteristics. The generic applications of Flight Dynamics Identification to the candidate Space Station configurations currently under consideration are described. Identification functions are categorized, and the various methods for extracting parameter estimates are correlated with the sensing of parameter estimates are correlated with the sensing of specific characteristics of interest to both engineering subsystems and users of the Station's commercial and scientific facilities. Onboard implementation architecture and constraints are discussed from the viewpoint of maximizing integration of the Identification process with the flight subsystem's data and signal flow.

  1. Applicability of a double-undulator configuration

    NASA Astrophysics Data System (ADS)

    Huang, Jui-Che; Kitamura, Hideo; Yang, Chin-Kang; Chiu, Mau-Sen; Chang, Cheng-Hsiang; Hwang, Ching-Shiang

    2016-02-01

    The applicability of the double-undulator concept for an electron storage ring of 3-GeV class is evaluated based on the parameters of Taiwan Photon Source. In the soft X-ray case, the fundamental harmonic is mainly used, the interference effect is preserved at some level, which means that the brilliance from a double-undulator is expected to be much greater than that of a single undulator. In the hard X-ray case, harmonics number greater than five are generally used, the interference effect cannot, however, be preserved, which means that a double undulator configuration can be assumed to comprise two independent and uncorrelated sources. The total coherent flux obtained from a double-undulator configuration is found to be much less than twice that of a single undulator. The double-undulator concept is hence inapplicable in the hard X-ray region from the viewpoint of high coherent flux performance.

  2. Configuration management; Operating power station electrical systems

    SciTech Connect

    Beavers, R.R.; Sumiec, K.F. )

    1989-01-01

    Increasing regulatory and industry attention has been focused on properly controlling electrical design changes. These changes can be controlled by using configuration management techniques. Typically, there are ongoing modifications to various process systems or additions due to new requirements at every power plant. Proper control of these changes requires that an organized method be used to ensure that all important parameters of the electrical auxiliary systems are analyzed and that these parameters are evaluated accurately. This process, commonly referred to as configuration management, is becoming more important on both fossil and nuclear plants. Recent NRC- and utility-initiated inspections have identified problems due to incomplete analysis of changes to electrical auxiliary systems at nuclear stations.

  3. Calculation of vortex flows on complex configurations

    NASA Technical Reports Server (NTRS)

    Maskew, B.; Rao, B. M.

    1982-01-01

    The calculation of aerodynamic characteristics of complex configurations having strongly coupled vortex flows is a non-linear problem requiring iterative solution techniques. This paper discusses the use of a low-order panel method as a means of obtaining practical solutions to such problems. The panel method is based on piecewise constant source and doublet quadrilateral panels and uses the internal Dirichlet boundary condition of zero perturbation potential. The problems of predicting vortex/surface interaction and vortex separation are discussed. Some example calculations are included but further test cases have yet to be carried out, in particular for comparisons with experimental data. The problem of convergence on the iterative calculation for the shape of the free vortex sheet is addressed and a preprocessor routine, based on an unsteady, two-dimensional version of the panel method, is put forward as a cost-effective way of generating an initial vortex structure for use as a starting solution for general configurations.

  4. A modified electrode configuration for brain EIT

    NASA Astrophysics Data System (ADS)

    Manwaring, P. K.; Halter, R. J.; Borsic, A.; Hartov, A.

    2010-04-01

    Electrical impedance tomography (EIT) of the brain holds great promise for long term non-ionizing detection and imaging of blood flow, ischemia, stroke, and even neuronal activity. One of the most difficult challenges with this modality, however, is overcoming the high impedance of the skull, which severely limits current passage through the intracranial space and "washes out" the tissue property images. There are situations, however, in which invasive electrode configurations are appropriate to overcome this limitation. We propose the use of a central and circumferential-electrode configuration to improve detection and localization of edema, hemorrhage, and ischemia within the cranium. Results from a simulation study and a phantom experiment verifying the simulation are shown.

  5. Sustainable supply chain design: a configurational approach.

    PubMed

    Masoumik, S Maryam; Abdul-Rashid, Salwa Hanim; Olugu, Ezutah Udoncy; Raja Ghazilla, Raja Ariffin

    2014-01-01

    Designing the right supply chain that meets the requirements of sustainable development is a significant challenge. Although there are a considerable number of studies on issues relating to sustainable supply chain design (SSCD) in terms of designing the practices, processes, and structures, they have rarely demonstrated how these components can be aligned to form an effective sustainable supply chain (SSC). Considering this gap in the literature, this study adopts the configurational approach to develop a conceptual framework that could configure the components of a SSC. In this respect, a process-oriented approach is utilized to classify and harmonize the design components. A natural-resource-based view (NRBV) is adopted to determine the central theme to align the design components around. The proposed framework presents three types of SSC, namely, efficient SSC, innovative SSC, and reputed SSC. The study culminates with recommendations concerning the direction for future research. PMID:24523652

  6. On configurational weak phase transitions in graphene

    NASA Astrophysics Data System (ADS)

    Sfyris, Dimitris

    2016-07-01

    We report a study on configurational weak phase transitions for a freestanding monolayer graphene. Firstly, we characterize weak transformation neighborhoods by suitably bounding the metric components. Then, we distinguish between structural and configurational phase changes and elaborate on the second class of them. We evaluate the irreducible invariant subspaces corresponding to these phase changes and lay down symmetry-breaking as well as symmetry-preserving stretches. In the reduced bifurcation diagram, symmetry-preserving stretches are related to a turning point with a change of stability but not of symmetry. Symmetry-breaking stretches are related to a first-order weak phase transition. We evaluate symmetry-breaking stretches as well as their generating cosets. The reduced bifurcation diagram consists of three transcritical bifurcating curves which are all unstable but can be stabilized producing a subcritical bifurcation. We, also, shortly comment on the hysteretical behavior that might appear in this case.

  7. Spacecraft (Mobile Satellite) configuration design study

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The relative costs to procure and operate a two-satellite mobile satellite system designed to operate either in the UHF band of the L Band, and with several antenna diameter options in each frequency band was investigated. As configured, the size of the spacecraft is limited to the current RCA Series 4000 Geosynchronous Communications Spacecraft bus, which spans the range from 4000 to 5800 pounds in the transfer orbit. The Series 4000 bus forms the basis around which the Mobile Satellite transponder and associated antennas were appended. Although the resultant configuration has little outward resemblance to the present Series 4000 microwave communications spacecraft, the structure, attitude control, thermal, power, and command and control subsystems of the Series 4000 spacecraft are all adapted to support the Mobile Satellite mission.

  8. Multiblock grid generation for jet engine configurations

    NASA Technical Reports Server (NTRS)

    Stewart, Mark E. M.

    1992-01-01

    The goal was to create methods for generating grids with minimal human intervention that are applicable to a wide range of problems and compatible with existing numerical methods and with existing and proposed computers. The following topics that are related to multiblock grid generation are briefly covered in viewgraph form: finding a domain decomposition, dimensioning grids, grid smoothing, manipulating grids and decompositions, and some specializations for jet engine configurations.

  9. Very large full configuration interaction calculations

    NASA Astrophysics Data System (ADS)

    Knowles, Peter J.

    1989-03-01

    The extreme sparsity of the solution of the full configuration interaction (full CI) secular equations is exploited in a new algorithm. For very large problems, the high speed memory, disk storage, and CPU requirements are reduced considerably, compared to previous techniques. This allows the possibility of full CI calculations with more than 10 8 Slater determinants. The power of the method is demonstrated in preliminary full CI calculations for the NH molecule, including up to 27901690 determinants.

  10. Equilibrium configurations of degenerate fluid spheres

    SciTech Connect

    Whitman, P.G.

    1985-04-01

    Equilibrium configurations of degenerate fluid spheres which assume a polytropic form in the ultrahigh-density regime are considered. We show that analytic solutions more general than those of Misner and Zapolsky exist which possess the asymptotic equation of state. Simple expressions are derived which indicate this nature of the fluids in the extreme relativistic limit, and the stability of these interiors is considered in the asymptotic region.

  11. Synchronization configurations of two coupled double pendula

    NASA Astrophysics Data System (ADS)

    Koluda, Piotr; Perlikowski, Przemyslaw; Czolczynski, Krzysztof; Kapitaniak, Tomasz

    2014-04-01

    We consider the synchronization of two self-excited double pendula hanging from a horizontal beam which can roll on the parallel surface. We show that such pendula can obtain four different robust synchronous configurations. Our approximate analytical analysis allows to derive the synchronization conditions and explains the observed types of synchronizations. We consider the energy balance in the system and show how the energy is transferred between the pendula via the oscillating beam allowing the pendula' synchronization.

  12. Adaptive anisotropic kernels for nonparametric estimation of absolute configurational entropies in high-dimensional configuration spaces.

    PubMed

    Hensen, Ulf; Grubmüller, Helmut; Lange, Oliver F

    2009-07-01

    The quasiharmonic approximation is the most widely used estimate for the configurational entropy of macromolecules from configurational ensembles generated from atomistic simulations. This method, however, rests on two assumptions that severely limit its applicability, (i) that a principal component analysis yields sufficiently uncorrelated modes and (ii) that configurational densities can be well approximated by Gaussian functions. In this paper we introduce a nonparametric density estimation method which rests on adaptive anisotropic kernels. It is shown that this method provides accurate configurational entropies for up to 45 dimensions thus improving on the quasiharmonic approximation. When embedded in the minimally coupled subspace framework, large macromolecules of biological interest become accessible, as demonstrated for the 67-residue coldshock protein. PMID:19658735

  13. Configurationally exhaustive first-principles study of a quaternary superalloy with a vast configuration space

    NASA Astrophysics Data System (ADS)

    Maisel, S. B.; Höfler, M.; Müller, S.

    2016-07-01

    Exploration of the vast configuration space encountered in a multicomponent alloy is impossible without a suitable engine like the cluster-expansion (CE) method. While a CE ansatz can be formulated for an arbitrary number of components n , the combinatorial explosion of configuration space with increasing n can still be prohibitive. In this paper, we present a configurationally exhaustive study of a four-component nickel-based superalloy. We obtain all ground-state compounds, temperature- and concentration-dependent configurational energies, and micrographs of the γ /γ' microstructure of the γ'-strengthened superalloy Ni-Al-Ta-W. Several phenomena that cannot be studied from the binary building blocks Ni-Al, Ni-W, or Ni-Ta alone are discussed, e.g., the suppression of γ'' formation in Al-Ni-Ta-W, the effect of Ta on the γ' composition, and the tungsten partitioning ratio as a function of both temperature and bulk composition.

  14. Permutation-invariant distance between atomic configurations

    NASA Astrophysics Data System (ADS)

    Ferré, Grégoire; Maillet, Jean-Bernard; Stoltz, Gabriel

    2015-09-01

    We present a permutation-invariant distance between atomic configurations, defined through a functional representation of atomic positions. This distance enables us to directly compare different atomic environments with an arbitrary number of particles, without going through a space of reduced dimensionality (i.e., fingerprints) as an intermediate step. Moreover, this distance is naturally invariant through permutations of atoms, avoiding the time consuming associated minimization required by other common criteria (like the root mean square distance). Finally, the invariance through global rotations is accounted for by a minimization procedure in the space of rotations solved by Monte Carlo simulated annealing. A formal framework is also introduced, showing that the distance we propose verifies the property of a metric on the space of atomic configurations. Two examples of applications are proposed. The first one consists in evaluating faithfulness of some fingerprints (or descriptors), i.e., their capacity to represent the structural information of a configuration. The second application concerns structural analysis, where our distance proves to be efficient in discriminating different local structures and even classifying their degree of similarity.

  15. DAQMAN - A flexible configurable data acquisition system

    Energy Science and Technology Software Center (ESTSC)

    2012-08-01

    DAQMAN is a flexible configurable interface that allows the user to build and operate a VME-based data acquisition system on a Linux workstation. It consists of two parts: a Java-based Graphical User Interface to configure the system, and a C-based utility that reads out the data and creates the output ASCII data file, with two levels of diagnostic tools. The data acquisition system requires a CAEN CONET-VME Bridge to communicate between the hardware in themore » VME crate and the Linux workstation. Data acquisition modules, such as ADCs, TDC, Scalers, can be loaded into the system, or removed easily. The GUI allows users to activate modules, and channels within modules by clicking on icons. Running configurations are stored; data are collected and can be viewed either as raw numbers, or by charts and histograms that update as the data are accumulated. Data files are written to disk in ASCII format, with a date and time stamp.« less

  16. Computational Aeroheating Predictions for Mars Lander Configurations

    NASA Technical Reports Server (NTRS)

    Edquist, Karl T.; Alter, Stephen J.

    2003-01-01

    The proposed Mars Science Laboratory (MSL) mission is intended to deliver a large rover to the Martian surface within 10 km of the target site. This paper presents computational fluid dynamics (CFD) predictions of forebody heating rates for two MSL entry configurations with fixed aerodynamic trim tabs. Results are compared to heating on a 70-deg sphere-cone reference geometry. All three heatshield geometries are designed to trim hypersonically at a 16 deg angle of attack in order to generate the lift-to-drag ratio (LID) required for precision landing. Comparisons between CFD and tunnel data are generally in good agreement for each configuration, but the computations predict more flow separation and higher heating on a trim tab inclined 10 deg relative to the surface. CFD solutions at flight conditions were obtained using an 8-species Mars gas in chemical and thermal non-equilibrium. Laminar and Baldwin-Lomax solutions were used to estimate the effects of the trim tabs and turbulence on heating. A tab extending smoothly from the heatshield flank is not predicted to increase laminar or turbulent heating rates above the reference levels. Laminar heating on a tab deflected 10 deg from the conical heatshield is influenced by flow separation and is up to 35% above the baseline heating rate. The turbulent solution on the inclined tab configuration predicts attached flow and a 43% heating increase above the reference level.

  17. Computational Aeroheating Predictions for Mars Lander Configurations

    NASA Technical Reports Server (NTRS)

    Edquist, Karl T.; Alter, Stephen J.

    2003-01-01

    The proposed Mars Science Laboratory (MSL) mission is intended to deliver a large rover to the Martian surface within 10 km of the target site. This paper presents computational fluid dynamics (CFD) predictions of forebody heating rates for two MSL entry configurations with fixed aerodynamic trim tabs. Results are compared to heating on a 70-deg sphere-cone reference geometry. All three heatshield geometries are designed to trim hypersonically at a 16 deg angle of attack in order to generate the lift-to-drag ratio (L/D) required for precision landing. Comparisons between CFD and tunnel data are generally in good agreement for each configuration, but the computations predict more flow separation and higher heating on a trim tab inclined 10 deg relative to the surface. CFD solutions at flight conditions were obtained using an 8-species Mars gas in chemical and thermal nonequilibrium. Laminar and Baldwin-Lomax solutions were used to estimate the effects of the trim tabs and turbulence on heating. A tab extending smoothly from the heatshield flank is not predicted to increase laminar or turbulent heating rates above the reference levels. Laminar heating on a tab deflected 10 deg from the conical heatshield is influenced by flow separation and is up to 35% above the baseline heating rate. The turbulent solution on the inclined tab configuration predicts attached flow and a 43% heating increase above the reference level.

  18. Redundant Array Configurations for 21 cm Cosmology

    NASA Astrophysics Data System (ADS)

    Dillon, Joshua S.; Parsons, Aaron R.

    2016-08-01

    Realizing the potential of 21 cm tomography to statistically probe the intergalactic medium before and during the Epoch of Reionization requires large telescopes and precise control of systematics. Next-generation telescopes are now being designed and built to meet these challenges, drawing lessons from first-generation experiments that showed the benefits of densely packed, highly redundant arrays—in which the same mode on the sky is sampled by many antenna pairs—for achieving high sensitivity, precise calibration, and robust foreground mitigation. In this work, we focus on the Hydrogen Epoch of Reionization Array (HERA) as an interferometer with a dense, redundant core designed following these lessons to be optimized for 21 cm cosmology. We show how modestly supplementing or modifying a compact design like HERA’s can still deliver high sensitivity while enhancing strategies for calibration and foreground mitigation. In particular, we compare the imaging capability of several array configurations, both instantaneously (to address instrumental and ionospheric effects) and with rotation synthesis (for foreground removal). We also examine the effects that configuration has on calibratability using instantaneous redundancy. We find that improved imaging with sub-aperture sampling via “off-grid” antennas and increased angular resolution via far-flung “outrigger” antennas is possible with a redundantly calibratable array configuration.

  19. Permutation-invariant distance between atomic configurations

    SciTech Connect

    Ferré, Grégoire; Maillet, Jean-Bernard; Stoltz, Gabriel

    2015-09-14

    We present a permutation-invariant distance between atomic configurations, defined through a functional representation of atomic positions. This distance enables us to directly compare different atomic environments with an arbitrary number of particles, without going through a space of reduced dimensionality (i.e., fingerprints) as an intermediate step. Moreover, this distance is naturally invariant through permutations of atoms, avoiding the time consuming associated minimization required by other common criteria (like the root mean square distance). Finally, the invariance through global rotations is accounted for by a minimization procedure in the space of rotations solved by Monte Carlo simulated annealing. A formal framework is also introduced, showing that the distance we propose verifies the property of a metric on the space of atomic configurations. Two examples of applications are proposed. The first one consists in evaluating faithfulness of some fingerprints (or descriptors), i.e., their capacity to represent the structural information of a configuration. The second application concerns structural analysis, where our distance proves to be efficient in discriminating different local structures and even classifying their degree of similarity.

  20. Future configurations of the Intelsat space segment

    NASA Astrophysics Data System (ADS)

    Quaglione, G.; Fariello, E.; Bartone, F.

    The potential of implementing a coupled satellite configuration, one operating at 6/4 GHz and the other at 14/11 GHz, in future Intelsat configurations is discussed. The formation flying concept is suggested as a means to avoiding orbital congestion in high demand service areas, such as over the Atlantic and Indian Oceans. It is projected that 257,000 circuits will be needed in the Atlantic segment by the year 2000, double that of the projected 1990 capacity using Intelsat VI spacecraft. The links will be divided among a small number of countries with a large volume traffic and a large number of countries with a relatively low volume of interconnections. The former spacecraft could have only a few transponders with high data rate handling capabilities, while the latter could have a high number of links with lower data rates. Both configurations would be smaller than current Intelsat spacecraft, thus saving on launch and component costs due to lighter weight and simplified designs. Specific assignment areas, performance specifications, and applicable launch vehicles are outlined for the coupled satellite system.

  1. Process configuration role in anaerobic biotransformations

    SciTech Connect

    Speece, R.E.

    1998-07-01

    Defining the environmental conditions which would enable anaerobic processes to consistently produce effluents containing only non-detectable concentrations of degradable organics would remove one of the main drawbacks to wider application of this important treatment technology. Recently specific metabolic intermediates formed in the anaerobic biotransformation of complex organics have been found to enhance or curtail process performance. Using acrylate and acrolein as representative hazardous chemicals, modifications in staging and reactor operation procedures have been observed in the author's laboratory to profoundly impact the rate and completeness of the biotransformation process. Specific metabolic intermediates formed in the biotransformation of complex substrates to a large extent will control a given process performance and process configuration greatly impacts the metabolic pathway, thus impacting the intermediates formed as well. There is a growing body of literature to indicate that process performance in anaerobic biotransformation is greatly impacted by reactor configuration. There is also some evidence that metabolic precursors impact the subsequent efficiency of conversion of volatile fatty acids (VFA) ultimately to CH{sub 4}. But although profound differences in the performance of anaerobic biotransformation are reported for various process configurations, there are no published criteria to guide the rational design of stages/phased processes. Clarification of the relative merits of single stage, two stage, two phase, granules and biofilms as well as CSTR and plug flow modes in the biotransformation of hazardous pollutants would be foundational for future research and development.

  2. Spectral Functions for Generalized Piston Configurations

    NASA Astrophysics Data System (ADS)

    Morales-Almazan, Pedro Fernando

    In this work we explore various piston configurations with different types of potentials. We analyze Laplace-type operators P = --gij 1Ei1Ej + V where V is the potential. First we study delta potentials and rectangular potentials as examples of non-smooth potentials and find the spectral zeta functions for these piston configurations on manifolds I x N , where I is an interval and N is a smooth compact Riemannian d - 1 dimensional manifold. Then we consider the case of any smooth potential with a compact support and develop a method to find spectral functions by finding the asymptotic behavior of the characteristic function of the eigenvalues for P. By means of the spectral zeta function on these various configurations, we obtain the Casimir force and the one-loop effective action for these systems as the values at s = -1/2 and the derivative at s = 0. Information about the heat kernel coefficients can also be found in the spectral zeta function in the form of residues, which provide an indirect way of finding this geometric information about the manifold and the operator.

  3. Hybrid Wing Body Configuration Scaling Study

    NASA Technical Reports Server (NTRS)

    Nickol, Craig L.

    2012-01-01

    The Hybrid Wing Body (HWB) configuration is a subsonic transport aircraft concept with the potential to simultaneously reduce fuel burn, noise and emissions compared to conventional concepts. Initial studies focused on very large applications with capacities for up to 800 passengers. More recent studies have focused on the large, twin-aisle class with passenger capacities in the 300-450 range. Efficiently scaling this concept down to the single aisle or smaller size is challenging due to geometric constraints, potentially reducing the desirability of this concept for applications in the 100-200 passenger capacity range or less. In order to quantify this scaling challenge, five advanced conventional (tube-and-wing layout) concepts were developed, along with equivalent (payload/range/technology) HWB concepts, and their fuel burn performance compared. The comparison showed that the HWB concepts have fuel burn advantages over advanced tube-and-wing concepts in the larger payload/range classes (roughly 767-sized and larger). Although noise performance was not quantified in this study, the HWB concept has distinct noise advantages over the conventional tube-and-wing configuration due to the inherent noise shielding features of the HWB. NASA s Environmentally Responsible Aviation (ERA) project will continue to investigate advanced configurations, such as the HWB, due to their potential to simultaneously reduce fuel burn, noise and emissions.

  4. Configuration management plan for the GENII software

    SciTech Connect

    Rittmann, P.D.

    1994-12-12

    The GENII program calculates doses from radionuclides released into the environment for a variety of possible exposure scenarios. The user prepares an input data file with the necessary modelling assumptions and parameters. The program reads the user`s input file, computes the necessary doses and stores these results in an output file. The output file also contains a listing of the user`s input and gives the title lines from the data libraries which are accessed in the course of the calculations. The purpose of this document is to provide users of the GENII software with the configuration controls which are planned for use by WHC in accordance with WHC-CM-3-10. The controls are solely for WHC employees. Non-WHC individuals are not excluded, but no promise is made or implied that they will be informed of errors or revisions to the software. The configuration controls cover the GENII software, the GENII user`s guide, the list of GENII users at WHC, and the backup copies. Revisions to the software must be approved prior to distribution in accordance with this configuration management plan.

  5. Configuration and Data Management Process and the System Safety Professional

    NASA Technical Reports Server (NTRS)

    Shivers, Charles Herbert; Parker, Nelson C. (Technical Monitor)

    2001-01-01

    This article presents a discussion of the configuration management (CM) and the Data Management (DM) functions and provides a perspective of the importance of configuration and data management processes to the success of system safety activities. The article addresses the basic requirements of configuration and data management generally based on NASA configuration and data management policies and practices, although the concepts are likely to represent processes of any public or private organization's well-designed configuration and data management program.

  6. Flammability Configuration Analysis for Spacecraft Applications

    NASA Technical Reports Server (NTRS)

    Pedley, Michael D.

    2014-01-01

    Fire is one of the many potentially catastrophic hazards associated with the operation of crewed spacecraft. A major lesson learned by NASA from the Apollo 204 fire in 1966 was that ignition sources in an electrically powered vehicle should and can be minimized, but can never be eliminated completely. For this reason, spacecraft fire control is based on minimizing potential ignition sources and eliminating materials that can propagate fire. Fire extinguishers are always provided on crewed spacecraft, but are not considered as part of the fire control process. "Eliminating materials that can propagate fire" does not mean eliminating all flammable materials - the cost of designing and building spacecraft using only nonflammable materials is extraordinary and unnecessary. It means controlling the quantity and configuration of such materials to eliminate potential fire propagation paths and thus ensure that any fire would be small, localized, and isolated, and would self-extinguish without harm to the crew. Over the years, NASA has developed many solutions for controlling the configuration of flammable materials (and potentially flammable materials in commercial "off-the-shelf" hardware) so that they can be used safely in air and oxygen-enriched environments in crewed spacecraft. This document describes and explains these design solutions so payload customers and other organizations can use them in designing safe and cost-effective flight hardware. Proper application of these guidelines will produce acceptable flammability configurations for hardware located in any compartment of the International Space Station or other program crewed vehicles and habitats. However, use of these guidelines does not exempt hardware organizations of the responsibility for safety of the hardware under their control.

  7. ATLAS software configuration and build tool optimisation

    NASA Astrophysics Data System (ADS)

    Rybkin, Grigory; Atlas Collaboration

    2014-06-01

    ATLAS software code base is over 6 million lines organised in about 2000 packages. It makes use of some 100 external software packages, is developed by more than 400 developers and used by more than 2500 physicists from over 200 universities and laboratories in 6 continents. To meet the challenge of configuration and building of this software, the Configuration Management Tool (CMT) is used. CMT expects each package to describe its build targets, build and environment setup parameters, dependencies on other packages in a text file called requirements, and each project (group of packages) to describe its policies and dependencies on other projects in a text project file. Based on the effective set of configuration parameters read from the requirements files of dependent packages and project files, CMT commands build the packages, generate the environment for their use, or query the packages. The main focus was on build time performance that was optimised within several approaches: reduction of the number of reads of requirements files that are now read once per package by a CMT build command that generates cached requirements files for subsequent CMT build commands; introduction of more fine-grained build parallelism at package task level, i.e., dependent applications and libraries are compiled in parallel; code optimisation of CMT commands used for build; introduction of package level build parallelism, i. e., parallelise the build of independent packages. By default, CMT launches NUMBER-OF-PROCESSORS build commands in parallel. The other focus was on CMT commands optimisation in general that made them approximately 2 times faster. CMT can generate a cached requirements file for the environment setup command, which is especially useful for deployment on distributed file systems like AFS or CERN VMFS. The use of parallelism, caching and code optimisation significantly-by several times-reduced software build time, environment setup time, increased the efficiency of

  8. Configuration management for hardware-software codesign

    SciTech Connect

    Kobialka, H.U.; Gnedina, A.; Wilberg, J.

    1996-12-31

    Configuration Management (CM) has a long tradition in the area of software development. In other areas CM is still more a promise than a product to be used. During HW/SW codesign a large design space has to be explored in order to find the optimal combination of software and hardware. This is an optimization process where many variants (> 1000) and associated analysis results have to be maintained for later exploration. Each variant consists of hundreds of files. This paper describes the CM requirements we encountered when introducing CM in a HW/SW codesign project. CM support for HW/SW codesign has been implemented in the ADDD development environment.

  9. Sitnikov problem in the cyclic kite configuration

    NASA Astrophysics Data System (ADS)

    Shahbaz Ullah, M.; Bhatnagar, K. B.; Hassan, M. R.

    2014-12-01

    This manuscript deals with the development of the series solutions of the Sitnikov kite configuration by the methods given of Lindstedt-Poincarė, using Green's function and MacMillan. Next we have developed averaged equation of motion by applying the Van der Pol transformation and averaging technique of Guckenheimer and Holmes (Nonlinear oscillations, dynamical system bifurcations of vector fields. Springer, Berlin, 1983). In addition to the resonance criterion at the 3/2 commensurability we have chosen ω=2 n/3, n=2, ω is the angular velocity of the coordinate system. Lastly the periodicity of the solutions has been examined by the Poincarė section.

  10. Soliton configurations in generalized Mie electrodynamics

    SciTech Connect

    Rybakov, Yu. P.

    2011-07-15

    The generalization of the Mie electrodynamics within the scope of the effective 8-spinor field model is suggested, with the Lagrangian including Higgs-like potential and higher degrees of the invariant A{sub Micro-Sign }A{sup Micro-Sign }. Using special Brioschi 8-spinor identity, we show that the model includes the Skyrme and the Faddeev models as particular cases. We investigate the large-distance asymptotic of static solutions and estimate the electromagnetic contribution to the energy of the localized charged configuration.

  11. Optimization of reactor configuration in coal liquefaction

    SciTech Connect

    Comolli, A.G.; Johanson, E.S.; Lee, L.K.; Stalzer, R.M.

    1992-12-01

    This quarterly report covers activities of optimization of Reactor Configuration in Coal Liquefaction during the period July 1--September 30, 1992, at Hydrocarbon Research, Inc. in Lawrenceville and Princeton, New Jersey. This DOE contract period is from October 1, 1991 to September 30, 1993. The overall objective of the program is to achieve a new approach to liquefaction that generates an all distillates product slate at reduced cost of about $25 per barrel of crude oil equivalent. The quarterly report covers work on Laboratory Support, Laboratory Scale Operations, Technical Assessment, and Project Management.

  12. Spill response system configuration study. Final report

    SciTech Connect

    Desimone, R.V.; Agosta, J.M.

    1996-05-01

    This report describes the development of a prototype decision support system for oil spill response configuration planning that will help U.S. Coast Guard planners to determine the appropriate response equipment and personnel for major spills. The report discusses the application of advanced artificial intelligence planning techniques, as well as other software tools for spill trajectory modeling, plan evaluation and map display. The implementation of the prototype system is discussed in the context of two specific major spill scenarios in the San Francisco Bay.

  13. New QP/QI Symmetric Stellarator Configurations

    SciTech Connect

    Spong, Donald A; Harris, Jeffrey H

    2010-01-01

    A unique characteristic of the quasi-poloidal/isodynamic transport optimization strategy is that it can lead to stellarators that deviate from the usual 'doughnut' shape; i.e., they can have extended relatively straight cylindrical sections of plasma (connected by corner regions). This offers a number of potential design advantages, including simplified coil geometries, novel divertor approaches, low bootstrap current (less potential for ELMs and disruptions), more acceptable wall heat fluxes, and demountable blankets for reactors. The STELLOPT approach has been used to develop optimized configurations of this type for two and four field periods with aspect ratio / in the range of 8 to 16.

  14. In-Tube Laser Propulsion Configurations

    NASA Astrophysics Data System (ADS)

    Kim, Sukyum; Urabe, Naohide; Torikai, Hiroyuki; Sasoh, Akihiro; Jeung, In-Seuck

    2003-05-01

    Laser propulsion research activities at Shock Wave Research Center, Institute of Fluid Science, Tohoku University, focus themselves on `in-tube' configurations. The thrust is enhanced in a confined acceleration region. Other advantages are obtained from the viewpoint of practical application. We are now investigating various extensions of the Laser-driven In-Tube Accelerator (LITA) (1) ablative in-tube propulsion, (2) thrust enhancement using applied magnetic field, (3) plasma pre-generation using a pilot laser irradiation, (4) demonstration of supersonic laser propulsion. The progresses in these subjects are presented.

  15. Distance distribution in configuration-model networks

    NASA Astrophysics Data System (ADS)

    Nitzan, Mor; Katzav, Eytan; Kühn, Reimer; Biham, Ofer

    2016-06-01

    We present analytical results for the distribution of shortest path lengths between random pairs of nodes in configuration model networks. The results, which are based on recursion equations, are shown to be in good agreement with numerical simulations for networks with degenerate, binomial, and power-law degree distributions. The mean, mode, and variance of the distribution of shortest path lengths are also evaluated. These results provide expressions for central measures and dispersion measures of the distribution of shortest path lengths in terms of moments of the degree distribution, illuminating the connection between the two distributions.

  16. Tunable configurational anisotropy of concave triangular nanomagnets

    NASA Astrophysics Data System (ADS)

    Nanayakkara, Kasuni; Vasil'evskii, Ivan S.; Eremin, Igor S.; Kolentsova, Olga S.; Kargin, Nikolay I.; Anferov, Alexander; Kozhanov, Alexander

    2016-06-01

    Shape and dimension variation effects on the configurational anisotropy and magnetization ground states of single domain triangular nano-magnets are investigated using micromagnetic simulations and magnetic force microscopy. We show that introducing concavity or elongating vertexes stabilize the Y magnetization ground states of triangular nanomagnets. A phenomenological model relating the magnetization anisotropy and triangle geometry parameters is developed. MFM imaging reveals shape defined buckle and Y ground states that are in good agreement with numeric simulations. Concavity and vertex extrusion allow for the form-ruled magnetization ground state engineering in the shapes with higher orders of symmetry.

  17. VU: A configurable environment for data visualization

    NASA Astrophysics Data System (ADS)

    Ozell, B.; Guibault, F.; Camarero, R.; Magnan, R.

    A software package, VU, resulting from an ongoing activity in the area of data visualization issued from the numerical solution of partial differential equations is presented. The goal is to produce a visualization program stemming from the computational engineering world rather than the computer science world and, as such, targeting the requirements of field practitioners. The functional structure of VU is described and its configurability is discussed. The basic objects of VU and its capabilities are detailed. Implementation details and integration into a code development environment, PIRATE, are described.

  18. Structural complexity and configurational entropy of crystals.

    PubMed

    Krivovichev, Sergey V

    2016-04-01

    Using a statistical approach, it is demonstrated that the complexity of a crystal structure measured as the Shannon information per atom [Krivovichev (2012). Acta Cryst. A68, 393-398] represents a negative contribution to the configurational entropy of a crystalline solid. This conclusion is in full accordance with the general agreement that information and entropy are reciprocal variables. It also agrees well with the understanding that complex structures possess lower entropies relative to their simpler counterparts. The obtained equation is consistent with the Landauer principle and points out that the information encoded in a crystal structure has a physical nature. PMID:27048729

  19. CFD configurations for hydraulic turbine startup

    NASA Astrophysics Data System (ADS)

    Nicolle, J.; Giroux, A. M.; Morissette, J. F.

    2014-03-01

    This paper presents various numerical setups for modelling Francis turbine startups involving moving meshes and variable runner speed in order to help define best practices. During the accelerating phase of the startup, the flow is self-similar between channels, thus making single sector configuration appropriate. Adding the draft tube improves the results by allowing pressure recovery midway during in the startup. At the speed no-load regime, a rotating stall phenomenon occurs and can only be capted with the full runner included in the simulation. Comparison with experimental data, such as runner speed and strain gauge measurements, generally shows good agreement.

  20. Operational benefits from the terminal configured vehicle

    NASA Technical Reports Server (NTRS)

    Reeder, J. P.; Schmitz, R. A.; Clark, L. V.

    1979-01-01

    The NASA Terminal Configured Vehicle is a flying laboratory used to conduct research and development on improved airborne systems (including avionics) and operational flight procedures, with particular emphasis on utilization in the terminal area environment. The objectives of this technology development activity, focused on conventional transport aircraft, are to develop and demonstrate improvements which can lead to increased airport and runway capacity, increased air traffic controller productivity, energy efficient terminal area operations, reduced weather minima with safety, and reduced community noise by use of appropriate procedures. This paper discusses some early results of this activity in addition to defining present efforts and future research plans.

  1. HotSpot Software Configuration Management Plan

    SciTech Connect

    Walker, H; Homann, S G

    2009-03-12

    This Software Configuration Management Plan (SCMP) describes the software configuration management procedures used to ensure that the HotSpot dispersion model meets the requirements of its user base, which includes: (1) Users of the PC version of HotSpot for consequence assessment, hazard assessment and safety analysis calculations; and (2) Users of the NARAC Web and iClient software tools, which allow users to run HotSpot for consequence assessment modeling These users and sponsors of the HotSpot software and the organizations they represent constitute the intended audience for this document. This plan is intended to meet Critical Recommendations 1 and 3 from the Software Evaluation of HotSpot and DOE Safety Software Toolbox Recommendation for inclusion of HotSpot in the Department of Energy (DOE) Safety Software Toolbox. HotSpot software is maintained for the Department of Energy Office of Emergency Operations by the National Atmospheric Release Advisory Center (NARAC) at Lawrence Livermore National Laboratory (LLNL). An overview of HotSpot and NARAC are provided.

  2. Technical activities of the configuration aeroelasticity branch

    NASA Technical Reports Server (NTRS)

    Cole, Stanley R. (Editor)

    1991-01-01

    A number of recent technical activities of the Configuration Aeroelasticity Branch of the NASA Langley Research Center are discussed in detail. The information on the research branch is compiled in twelve separate papers. The first of these topics is a summary of the purpose of the branch, including a full description of the branch and its associated projects and program efforts. The next ten papers cover specific projects and are as follows: Experimental transonic flutter characteristics of supersonic cruise configurations; Aeroelastic effects of spoiler surfaces mounted on a low aspect ratio rectangular wing; Planform curvature effects on flutter of 56 degree swept wing determined in Transonic Dynamics Tunnel (TDT); An introduction to rotorcraft testing in TDT; Rotorcraft vibration reduction research at the TDT; A preliminary study to determine the effects of tip geometry on the flutter of aft swept wings; Aeroelastic models program; NACA 0012 pressure model and test plan; Investigation of the use of extension twist coupling in composite rotor blades; and Improved finite element methods for rotorcraft structures. The final paper describes the primary facility operation by the branch, the Langley TDT.

  3. Computation of Lifting Wing-Flap Configurations

    NASA Technical Reports Server (NTRS)

    Cantwell, Brian; Kwak, Dochan

    1996-01-01

    Research has been carried out on the computation of lifting wing-flap configurations. The long term goal of the research is to develop improved computational tools for the analysis and design of high lift systems. Results show that state-of-the-art computational methods are sufficient to predict time-averaged lift and overall flow field characteristics on simple high-lift configurations. Recently there has been an increased interest in the problem of airframe generated noise and experiments carried out in the 7 x 10 wind tunnel at NASA Ames have identified the flap edge as an important source of noise. A follow-on set of experiments will be conducted toward the end of 1995. The computations being carried out under this project are coordinated with these experiments. In particular, the model geometry being used in the computations is the same as that in the experiments. The geometry consists of a NACA 63-215 Mod B airfoil section which spans the 7 x lO tunnel. The wing is unswept and has an aspect ratio of two. A 30% chord Fowler flap is deployed modifications of the flap edge geometry have been shown to be effective in reducing noise and the existing code is currently being used to compute the effect of a modified geometry on the edge flow.

  4. The configuration of the Brazilian scientific field.

    PubMed

    Barata, Rita B; Aragão, Erika; de Sousa, Luis E P Fernandes; Santana, Taris M; Barreto, Mauricio L

    2014-03-01

    This article describes the configuration of the scientific field in Brazil, characterizing the scientific communities in every major area of knowledge in terms of installed capacity, ability to train new researchers, and capacity for academic production. Empirical data from several sources of information are used to characterize the different communities. Articulating the theoretical contributions of Pierre Bourdieu, Ludwik Fleck, and Thomas Kuhn, the following types of capital are analyzed for each community: social capital (scientific prestige), symbolic capital (dominant paradigm), political capital (leadership in S & T policy), and economic capital (resources). Scientific prestige is analyzed by taking into account the volume of production, activity index, citations, and other indicators. To characterize symbolic capital, the dominant paradigms that distinguish the natural sciences, the humanities, applied sciences, and technology development are analyzed theoretically. Political capital is measured by presidency in one of the main agencies in the S & T national system, and research resources and fellowships define the economic capital. The article discusses the composition of these different types of capital and their correspondence to structural capacities in various communities with the aim of describing the configuration of the Brazilian scientific field. PMID:24676181

  5. Ligand configurational entropy and protein binding.

    PubMed

    Chang, Chia-en A; Chen, Wei; Gilson, Michael K

    2007-01-30

    The restriction of a small molecule's motion on binding to a protein causes a loss of configurational entropy, and thus a penalty in binding affinity. Some energy models used in computer-aided ligand design neglect this entropic penalty, whereas others account for it based on an expected drop in the number of accessible rotamers upon binding. However, the validity of the physical assumptions underlying the various approaches is largely unexamined. The present study addresses this issue by using Mining Minima calculations to analyze the association of amprenavir with HIV protease. The computed loss in ligand configurational entropy is large, contributing approximately 25 kcal/mol (4.184 kJ/kcal) to DeltaG degrees. Most of this loss results from narrower energy wells in the bound state, rather than a drop in the number of accessible rotamers. Coupling among rotation/translation and internal degrees of freedom complicates the decomposition of the entropy change into additive terms. The results highlight the potential to gain affinity by designing conformationally restricted ligands and have implications for the formulation of energy models for ligand scoring. PMID:17242351

  6. Configuration interaction calculations with infinite angular = expansions

    SciTech Connect

    Goldman, S.P.; Glickman, T.

    1996-05-01

    The Modified Configuration Interaction (MCI) method improves the angular convergence of Configuration Interaction (CI) calculations by several orders of magnitude by mixing a priori a large number of angular basis functions. With MCI one can therefore use basis functions with very large angular momentum quantum numbers, overcoming an important limitation of conventional CI. Although this is desirable given the excellent convergence obtained, the large number of angular integrations and the calculation of n-j symbols with large values of l to high accuracy, make the angular calculations lengthy. In this work a new angular representation for CI calculations is presented that is much more efficient and powerful. Instead of the large number of angular functions of MCI the authors use a basis set containing an infinite linear combination of angular functions. All the necessary integrations involving these infinite expansions are done in closed form and are actually easy and fast to compute. The linear coefficients in the angular expansion are optimized in terms of a few non-linear parameters. Several examples will be presented with applications to two-electron systems.

  7. Ligand configurational entropy and protein binding

    PubMed Central

    Chang, Chia-en A.; Chen, Wei; Gilson, Michael K.

    2007-01-01

    The restriction of a small molecule's motion on binding to a protein causes a loss of configurational entropy, and thus a penalty in binding affinity. Some energy models used in computer-aided ligand design neglect this entropic penalty, whereas others account for it based on an expected drop in the number of accessible rotamers upon binding. However, the validity of the physical assumptions underlying the various approaches is largely unexamined. The present study addresses this issue by using Mining Minima calculations to analyze the association of amprenavir with HIV protease. The computed loss in ligand configurational entropy is large, contributing ∼25 kcal/mol (4.184 kJ/kcal) to ΔG°. Most of this loss results from narrower energy wells in the bound state, rather than a drop in the number of accessible rotamers. Coupling among rotation/translation and internal degrees of freedom complicates the decomposition of the entropy change into additive terms. The results highlight the potential to gain affinity by designing conformationally restricted ligands and have implications for the formulation of energy models for ligand scoring. PMID:17242351

  8. Average configuration of the induced venus magnetotail

    SciTech Connect

    McComas, D.J.; Spence, H.E.; Russell, C.T.

    1985-01-01

    In this paper we discuss the interaction of the solar wind flow with Venus and describe the morphology of magnetic field line draping in the Venus magnetotail. In particular, we describe the importance of the interplanetary magnetic field (IMF) X-component in controlling the configuration of field draping in this induced magnetotail, and using the results of a recently developed technique, we examine the average magnetic configuration of this magnetotail. The derived J x B forces must balance the average, steady state acceleration of, and pressure gradients in, the tail plasma. From this relation the average tail plasma velocity, lobe and current sheet densities, and average ion temperature have been derived. In this study we extend these results by making a connection between the derived consistent plasma flow speed and density, and the observational energy/charge range and sensitivity of the Pioneer Venus Orbiter (PVO) plasma analyzer, and demonstrate that if the tail is principally composed of O/sup +/, the bulk of the plasma should not be observable much of the time that the PVO is within the tail. Finally, we examine the importance of solar wind slowing upstream of the obstacle and its implications for the temperature of pick-up planetary ions, compare the derived ion temperatures with their theoretical maximum values, and discuss the implications of this process for comets and AMPTE-type releases.

  9. Solar Magnetic Field Reversals and the Role of Dynamo Families

    NASA Astrophysics Data System (ADS)

    DeRosa, M. L.; Brun, A. S.; Hoeksema, J. T.

    2012-09-01

    The variable magnetic field of the solar photosphere exhibits periodic reversals as a result of dynamo activity occurring within the solar interior. We decompose the surface field as observed by both the Wilcox Solar Observatory and the Michelson Doppler Imager into its harmonic constituents, and present the time evolution of the mode coefficients for the past three sunspot cycles. The interplay between the various modes is then interpreted from the perspective of general dynamo theory, where the coupling between the primary and secondary families of modes is found to correlate with large-scale polarity reversals for many examples of cyclic dynamos. Mean-field dynamos based on the solar parameter regime are then used to explore how such couplings may result in the various long-term trends in the surface magnetic field observed to occur in the solar case.

  10. The Asymmetric Polar Field Reversal - Long Term Observations from WSO

    NASA Astrophysics Data System (ADS)

    Hoeksema, J. T.

    2012-12-01

    The Sun's polar field above 55 degrees in the northern hemisphere is reversing and the southern field may be beginning to weaken. This asymmetry is not unusual and is related to the poleward transport of flux that emerged in the active region bands earlier in the cycle. In the declining phase of Cycle 23 the poles were fairly equal, but the northern field began to decay in early 2009. Prior cycles have behaved differently, as observed by the Wilcox Solar Observatory and elsewhere.

  11. SOLAR MAGNETIC FIELD REVERSALS AND THE ROLE OF DYNAMO FAMILIES

    SciTech Connect

    DeRosa, M. L.

    2012-09-20

    The variable magnetic field of the solar photosphere exhibits periodic reversals as a result of dynamo activity occurring within the solar interior. We decompose the surface field as observed by both the Wilcox Solar Observatory and the Michelson Doppler Imager into its harmonic constituents, and present the time evolution of the mode coefficients for the past three sunspot cycles. The interplay between the various modes is then interpreted from the perspective of general dynamo theory, where the coupling between the primary and secondary families of modes is found to correlate with large-scale polarity reversals for many examples of cyclic dynamos. Mean-field dynamos based on the solar parameter regime are then used to explore how such couplings may result in the various long-term trends in the surface magnetic field observed to occur in the solar case.

  12. Field-Reversal Source for Negative Halogen Ions

    NASA Technical Reports Server (NTRS)

    Chutjian, A.; Orient, O. J.; Aladzhadzhyan, S. H.

    1987-01-01

    Large zero-energy electron-attachment cross sections result in intense ion beams. Concept for producing negative halogen ions takes advantage of large cross sections at zero kinetic energy for dissociative attachment of electrons to such halogen-containing gases as SF6, CFCI3, and CCI4.

  13. Magnetic field reversals, polar wander, and core-mantle coupling.

    PubMed

    Courtillot, V; Besse, J

    1987-09-01

    True polar wander, the shifting of the entire mantle relative to the earth's spin axis, has been reanalyzed. Over the last 200 million years, true polar wander has been fast (approximately 5 centimeters per year) most of the time, except for a remarkable standstill from 170 to 110 million years ago. This standstill correlates with a decrease in the reversal frequency of the geomagnetic field and episodes of continental breakup. Conversely, true polar wander is high when reversal frequency increases. It is proposed that intermittent convection modulates the thickness of a thermal boundary layer at the base of the mantle and consequently the core-to-mantle heat flux. Emission of hot thermals from the boundary layer leads to increases in mantle convection and true polar wander. In conjunction, cold thermals released from a boundary layer at the top of the liquid core eventually lead to reversals. Changes in the locations of subduction zones may also affect true polar wander. Exceptional volcanism and mass extinctions at the Cretaceous-Tertiary and Permo-Triassic boundaries may be related to thermals released after two unusually long periods with no magnetic reversals. These environmental catastrophes may therefore be a consequence of thermal and chemical couplings in the earth's multilayer heat engine rather than have an extraterrestrial cause. PMID:17801638

  14. Spurious behavior in volcanic records of geomagnetic field reversals

    NASA Astrophysics Data System (ADS)

    Carlut, Julie; Vella, Jerome; Valet, Jean-Pierre; Soler, Vicente; Legoff, Maxime

    2016-04-01

    Very large directional variations of magnetization have been reported in several lava flows recording a geomagnetic reversal. Such behavior could reflect real geomagnetic changes or be caused by artifacts due to post-emplacement alteration and/or non-ideal magnetic behavior. More recently, a high resolution paleomagnetic record from sediments pleads also for an extremely rapid reversal process during the last reversal. Assuming that the geomagnetic field would have moved by tens of degrees during cooling of moderate thickness lava flows implies brief episodes of rapid changes by a few degrees per day that are difficult to reconcile with the rate of liquid motions at the core surface. Systematical mineralogical bias is a most likely explanation to promote such behavior as recently reconsidered by Coe et al., 2014 for the rapid field changes recorded at Steens Mountain. We resampled three lava flows at La Palma island (Canarias) that are sandwiched between reverse polarity and normal polarity flows associated with the last reversal. The results show an evolution of the magnetization direction from top to bottom. Thermal demagnetization experiments were conducted using different heating and cooling rates. Similarly, continuous demagnetization and measurements. In both cases, we did not notice any remagnetization associated with mineralogical transformations during the experiments. Magnetic grain sizes do not show any correlation with the amplitude of the deviations. Microscopic observations indicate poor exsolution, which could suggests post-cooling thermochemical remagnetization processes.

  15. Necessary stability condition for field-reversed theta pinches

    SciTech Connect

    Cary, J. R.

    1981-03-01

    Toroidal systems of arbitrary cross section without toroidal magnetic field are analyzed via the double adiabatic fluid equations. Such systems are shown to be unstable if there exists one closed field line on which the average of kapparB/sup 2/ is positive, where kappa is the curvature. A similar criterion is derived for linear systems and is applied to a noncircular z-pinch.

  16. Advanced design concepts in nuclear electric propulsion. [and spacecraft configurations

    NASA Technical Reports Server (NTRS)

    Peelgren, M. L.; Mondt, J. F.

    1974-01-01

    Conceptual designs of the nuclear propulsion programs are reported. Major areas of investigation were (1) design efforts on spacecraft configuration and heat rejection subsystem, (2) high-voltage thermionic reactor concepts, and (3) dual-mode spacecraft configuration study.

  17. SEPAC software configuration control plan and procedures, revision 1

    NASA Technical Reports Server (NTRS)

    1981-01-01

    SEPAC Software Configuration Control Plan and Procedures are presented. The objective of the software configuration control is to establish the process for maintaining configuration control of the SEPAC software beginning with the baselining of SEPAC Flight Software Version 1 and encompass the integration and verification tests through Spacelab Level IV Integration. They are designed to provide a simplified but complete configuration control process. The intent is to require a minimum amount of paperwork but provide total traceability of SEPAC software.

  18. Optimized geometric configuration of active ring laser gyroscopes

    NASA Astrophysics Data System (ADS)

    Gormley, John; Salloum, Tony

    2016-05-01

    We present a thorough derivation of the Sagnac effect for a ring laser gyroscope of any arbitrary polygonal configuration. We determine optimized alternative geometric configurations for the mirrors. The simulations incur the implementation of a lasing medium with the standard square system, triangular, pentagonal, and oblongated square configuration (diamond). Simulations of possible new geometric configurations are considered, as well as the possibility of adjusting the concavity of the mirrors.

  19. Neuroplasmonics: From Kretschmann configuration to plasmonic crystals

    NASA Astrophysics Data System (ADS)

    Sohrabi, Foozieh; Hamidi, Seyedeh Mehri

    2016-07-01

    Recently, a worldwide attempt for understanding the functions of brain and nervous system has been made. Hence, various aspects of neuroscience have been investigated through different techniques. Among these techniques, neuroplasmonics as a newborn branch of this science tries to seize the realm of in vitro and in vivo neural imaging, recording and healing. Neuroplasmonics offers advantages comprising rapidity, high sensitivity, biological compatibility, label-free and real-time detection by benefiting from the sensing and thermal characteristics of surface plasmon resonances (SPRs). This paper reviews four main branches of neuroplasmonics comprising prism coupler configurations, the combination of SPR and fluorescence microscopy and methods based on nanorods and plasmonic crystals. For each division, the advantages, disadvantages and the provided facilities will be discussed in detail.

  20. Generator configuration for solid oxide fuel cells

    DOEpatents

    Reichner, Philip

    1989-01-01

    Disclosed are improvements in a solid oxide fuel cell generator 1 having a multiplicity of electrically connected solid oxide fuel cells 2, where a fuel gas is passed over one side of said cells and an oxygen-containing gas is passed over the other side of said cells resulting in the generation of heat and electricity. The improvements comprise arranging the cells in the configuration of a circle, a spiral, or folded rows within a cylindrical generator, and modifying the flow rate, oxygen concentration, and/or temperature of the oxygen-containing gases that flow to those cells that are at the periphery of the generator relative to those cells that are at the center of the generator. In these ways, a more uniform temperature is obtained throughout the generator.

  1. SOFIA Optical Design for the Aft Configuration

    NASA Technical Reports Server (NTRS)

    Davis, Paul K.; Melugin, Ramsey K.

    1994-01-01

    The Stratospheric Observatory for Infrared Astronomy (SOFIA) is a planned NASA facility consisting of an infrared telescope of 2.5 meter system aperture flying in a modified Boeing 747. It will have an image diameter of 1.5 arc seconds, an operating wavelength range from visible through 1 millimeter, an 8 arc minute field of view, and a chopping secondary. the configuration is a Cassegrian with a diagonal tertiary to direct the beam to a Nasmyth focus. The new choice of a location aft of the wings allows the primary mirror to have about an f/1.4 focal ratio, which is preferable to f/1.1 previously planned for the forward location.

  2. Optimal configuration algorithm of a satellite transponder

    NASA Astrophysics Data System (ADS)

    Sukhodoev, M. S.; Savenko, I. I.; Martynov, Y. A.; Savina, N. I.; Asmolovskiy, V. V.

    2016-04-01

    This paper describes the algorithm of determining the optimal transponder configuration of the communication satellite while in service. This method uses a mathematical model of the pay load scheme based on the finite-state machine. The repeater scheme is shown as a weighted oriented graph that is represented as plexus in the program view. This paper considers an algorithm example for application with a typical transparent repeater scheme. In addition, the complexity of the current algorithm has been calculated. The main peculiarity of this algorithm is that it takes into account the functionality and state of devices, reserved equipment and input-output ports ranged in accordance with their priority. All described limitations allow a significant decrease in possible payload commutation variants and enable a satellite operator to make reconfiguration solutions operatively.

  3. Intermediate filaments in small configuration spaces.

    PubMed

    Nöding, Bernd; Köster, Sarah

    2012-02-24

    Intermediate filaments play a key role in cell mechanics. Apart from their great importance from a biomedical point of view, they also act as a very suitable micrometer-sized model system for semiflexible polymers. We perform a statistical analysis of the thermal fluctuations of individual filaments confined in microchannels. The small channel width and the resulting deflections at the walls give rise to a reduction of the configuration space by about 2 orders of magnitude. This circumstance enables us to precisely measure the intrinsic persistence length of vimentin intermediate filaments and to show that they behave as ideal wormlike chains; we observe that small fluctuations in perpendicular planes decouple. Furthermore, the inclusion of results for confined actin filaments demonstrates that the Odijk confinement regime is valid over at least 1 order of magnitude in persistence length. PMID:22463576

  4. Configuration space representation in parallel coordinates

    NASA Technical Reports Server (NTRS)

    Fiorini, Paolo; Inselberg, Alfred

    1989-01-01

    By means of a system of parallel coordinates, a nonprojective mapping from R exp N to R squared is obtained for any positive integer N. In this way multivariate data and relations can be represented in the Euclidean plane (embedded in the projective plane). Basically, R squared with Cartesian coordinates is augmented by N parallel axes, one for each variable. The N joint variables of a robotic device can be represented graphically by using parallel coordinates. It is pointed out that some properties of the relation are better perceived visually from the parallel coordinate representation, and that new algorithms and data structures can be obtained from this representation. The main features of parallel coordinates are described, and an example is presented of their use for configuration space representation of a mechanical arm (where Cartesian coordinates cannot be used).

  5. Canard configured aircraft with 2-D nozzle

    NASA Technical Reports Server (NTRS)

    Child, R. D.; Henderson, W. P.

    1978-01-01

    A closely-coupled canard fighter with vectorable two-dimensional nozzle was designed for enhanced transonic maneuvering. The HiMAT maneuver goal of a sustained 8g turn at a free-stream Mach number of 0.9 and 30,000 feet was the primary design consideration. The aerodynamic design process was initiated with a linear theory optimization minimizing the zero percent suction drag including jet effects and refined with three-dimensional nonlinear potential flow techniques. Allowances were made for mutual interference and viscous effects. The design process to arrive at the resultant configuration is described, and the design of a powered 2-D nozzle model to be tested in the LRC 16-foot Propulsion Wind Tunnel is shown.

  6. TIBER II configuration and structural design

    SciTech Connect

    Doggett, J.N.

    1986-08-29

    The TIBER-II machine is a minimum-size steady-state tokamak with sufficient fusion power, wall flux, and fluence to be used for undertaking a nuclear test mission. Although the machine is envisioned as an engineering device, it will demonstrate reactor-relevant physics. To achieve the small size and high performance goals of TIBER II, the engineered systems must be based on aggressive assumptions. In addition, the machine must be designed for ease of maintenance to ensure reaching the fluence goal of 5 MW yr/m/sup 2/ in a design lifetime of 13 years. This paper concentrates on the configuration and structural issues of designing a small, high-field, and high-flux device.

  7. MarFS-Requirements-Design-Configuration-Admin

    SciTech Connect

    Kettering, Brett Michael; Grider, Gary Alan

    2015-07-08

    This document will be organized into sections that are defined by the requirements for a file system that presents a near-POSIX (Portable Operating System Interface) interface to the user, but whose data is stored in whatever form is most efficient for the type of data being stored. After defining the requirement the design for meeting the requirement will be explained. Finally there will be sections on configuring and administering this file system. More and more, data dominates the computing world. There is a “sea” of data out there in many different formats that needs to be managed and used. “Mar” means “sea” in Spanish. Thus, this product is dubbed MarFS, a file system for a sea of data.

  8. Initial dynamic load estimates during configuration design

    NASA Technical Reports Server (NTRS)

    Schiff, Daniel

    1987-01-01

    This analysis includes the structural response to shock and vibration and evaluates the maximum deflections and material stresses and the potential for the occurrence of elastic instability, fatigue and fracture. The required computations are often performed by means of finite element analysis (FEA) computer programs in which the structure is simulated by a finite element model which may contain thousands of elements. The formulation of a finite element model can be time consuming, and substantial additional modeling effort may be necessary if the structure requires significant changes after initial analysis. Rapid methods for obtaining rough estimates of the structural response to shock and vibration are presented for the purpose of providing guidance during the initial mechanical design configuration stage.

  9. Potential flow applications to complex configurations

    NASA Technical Reports Server (NTRS)

    Cenko, A.; Tseng, W.; Madson, M.

    1991-01-01

    Recent advances in CFD methods have enabled the analytic calculation of the carriage loads for stores mounted on complex aircraft. The latest results have demonstrated excellent agreement with test data for the F-15 at M = 0.98. However, in a preliminary design environment, the necessity of generating and validating a Euler grid to fit the aircraft and store arrangement may not be feasible, particularly when effects of configuration changes are considered. For that reason alternative approaches which require less time to arrive at an answer deserve consideration. The paper presents the results of a study to determine if potential flow solutions can give acceptable estimates of store carriage loads at transonic speeds in a timely manner.

  10. Entropies for severely contracted configuration space.

    PubMed

    Yalcin, G Cigdem; Velarde, Carlos; Robledo, Alberto

    2015-11-01

    We demonstrate that dual entropy expressions of the Tsallis type apply naturally to statistical-mechanical systems that experience an exceptional contraction of their configuration space. The entropic index [Formula: see text] describes the contraction process, while the dual index [Formula: see text] defines the contraction dimension at which extensivity is restored. We study this circumstance along the three routes to chaos in low-dimensional nonlinear maps where the attractors at the transitions, between regular and chaotic behavior, drive phase-space contraction for ensembles of trajectories. We illustrate this circumstance for properties of systems that find descriptions in terms of nonlinear maps. These are size-rank functions, urbanization and similar processes, and settings where frequency locking takes place. PMID:27441229

  11. Optimal Configurations for Rotating Spacecraft Formations

    NASA Technical Reports Server (NTRS)

    Hughes, Steven P.; Hall, Christopher D.

    2000-01-01

    In this paper a new class of formations that maintain a constant shape as viewed from the Earth is introduced. An algorithm is developed to place n spacecraft in a constant shape formation spaced equally in time using the classical orbital elements. To first order, the dimensions of the formation are shown to be simple functions of orbit eccentricity and inclination. The performance of the formation is investigated over a Keplerian orbit using a performance measure based on a weighted average of the angular separations between spacecraft in formation. Analytic approximations are developed that yield optimum configurations for different values of n. The analytic approximations are shown to be in excellent agreement with the exact solutions.

  12. Terminal configured vehicle program: Test facilities guide

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The terminal configured vehicle (TCV) program was established to conduct research and to develop and evaluate aircraft and flight management system technology concepts that will benefit conventional take off and landing operations in the terminal area. Emphasis is placed on the development of operating methods for the highly automated environment anticipated in the future. The program involves analyses, simulation, and flight experiments. Flight experiments are conducted using a modified Boeing 737 airplane equipped with highly flexible display and control equipment and an aft flight deck for research purposes. The experimental systems of the Boeing 737 are described including the flight control computer systems, the navigation/guidance system, the control and command panel, and the electronic display system. The ground based facilities used in the program are described including the visual motion simulator, the fixed base simulator, the verification and validation laboratory, and the radio frequency anechoic facility.

  13. Vehicle drive module having improved cooling configuration

    DOEpatents

    Radosevich, Lawrence D.; Meyer, Andreas A.; Kannenberg, Daniel G.; Kaishian, Steven C.; Beihoff, Bruce C.

    2007-02-13

    An electric vehicle drive includes a thermal support may receive one or more power electronic circuits. The support may aid in removing heat from the circuits through fluid circulating through the support. Power electronic circuits are thermally matched, such as between component layers and between the circuits and the support. The support may form a shield from both external EMI/RFI and from interference generated by operation of the power electronic circuits. Features may be provided to permit and enhance connection of the circuitry to external circuitry, such as improved terminal configurations. Modular units may be assembled that may be coupled to electronic circuitry via plug-in arrangements or through interface with a backplane or similar mounting and interconnecting structures.

  14. Hierarchical motion organization in random dot configurations

    NASA Technical Reports Server (NTRS)

    Bertamini, M.; Proffitt, D. R.; Kaiser, M. K. (Principal Investigator)

    2000-01-01

    Motion organization has 2 aspects: the extraction of a (moving) frame of reference and the hierarchical organization of moving elements within the reference frame. Using a discrimination of relative motions task, the authors found large differences between different types of motion (translation, divergence, and rotation) in the degree to which each can serve as a moving frame of reference. Translation and divergence are superior to rotation. There are, however, situations in which rotation can serve as a reference frame. This is due to the presence of a second factor, structural invariants (SIs). SIs are spatial relationships persisting among the elements within a configuration such as a collinearity among points or one point coinciding with the center of rotation for another (invariant radius). The combined effect of these 2 factors--motion type and SIs-influences perceptual motion organization.

  15. 40 CFR 204.55-3 - Configuration identification.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Configuration identification. 204.55-3... Configuration identification. (a) A separate compressor configuration shall be determined by each combination of... compressor stages. (3) Maximum pressure (psi). (4) Air intake system of compressor: (i) Number of...

  16. 40 CFR 205.55-3 - Configuration identification.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Configuration identification. 205.55-3... identification. (a) A separate vehicle configuration shall be determined by each combination of the following parameters: (1) Exhaust system configuration. (i) Single vertical. (ii) Dual vertical. (iii)...

  17. 40 CFR 205.55-3 - Configuration identification.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Configuration identification. 205.55-3... identification. (a) A separate vehicle configuration shall be determined by each combination of the following parameters: (1) Exhaust system configuration. (i) Single vertical. (ii) Dual vertical. (iii)...

  18. 40 CFR 204.55-3 - Configuration identification.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Configuration identification. 204.55-3... Configuration identification. (a) A separate compressor configuration shall be determined by each combination of... compressor stages. (3) Maximum pressure (psi). (4) Air intake system of compressor: (i) Number of...

  19. 40 CFR 204.55-3 - Configuration identification.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Configuration identification. 204.55-3... Configuration identification. (a) A separate compressor configuration shall be determined by each combination of... compressor stages. (3) Maximum pressure (psi). (4) Air intake system of compressor: (i) Number of...

  20. 40 CFR 204.55-3 - Configuration identification.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Configuration identification. 204.55-3... Configuration identification. (a) A separate compressor configuration shall be determined by each combination of... compressor stages. (3) Maximum pressure (psi). (4) Air intake system of compressor: (i) Number of...

  1. School Configurations in Indiana and Their Perceived Impact in Education

    ERIC Educational Resources Information Center

    Hauswald, Jeff

    2012-01-01

    Despite the research conducted on school configurations, little is known about the landscape of school configurations in Indiana and about the perspectives of school leaders on school configurations and their perceived impact in education. District leaders do not have the information to make informed decisions relative to the best configuration…

  2. autokonf - A Configuration Script Generator Implemented in Perl

    SciTech Connect

    Reus, J F

    2005-01-12

    This paper discusses configuration scripts in general and the scripting language issues involved. A brief description of GNU autoconf is provided along with a contrasting overview of autokonf, a configuration script generator implemented in Perl, whose macros are implemented in Perl, generating a configuration script in Perl. It is very portable, easily extensible, and readily mastered.

  3. Toward a Phonetic Representation of Hand Configuration: The Thumb

    ERIC Educational Resources Information Center

    Johnson, Robert E.; Liddell, Scott K.

    2012-01-01

    In this article, we present a system for the representation of the configurations of the thumb in the hand configurations of signed languages and for the interactions of the thumb with the four fingers proper. The configuration of the thumb is described as a componential combination of the descriptions of thumb opposition, abduction of the CM…

  4. Microscopic Approaches to Nuclear Structure: Configuration Interaction

    SciTech Connect

    Ormand, W E

    2007-09-21

    The configuration interaction (CI) approach to solving the nuclear many-body problem, also known as the interacting shell model, has proven to be powerful tool in understanding the structure of nuclei. The principal criticism of past applications of the shell model is the reliance on empirical tuning to interaction matrix elements. If an accurate description of nuclei far from the valley of stability, where little or no data is available, a more fundamental approach is needed. This starts with recent ab initio approaches with effective interactions in the no-core shell model (NCSM). Using effective-field theory for guidance, fully ab initio descriptions of nuclei up to {sup 16}O with QCD based NN, NNN, and NNNN interactions will be possible within the next five years. An important task is then to determine how to use these NCSM results to develop effective interactions to describe heavier nuclei without the need to resort to an empirical retuning with every model space. Thus, it is likely that more traditional CI applications utilizing direct diagonalization and more fundamental interactions will be applicable to nuclei with perhaps up to one hundred constituents. But, these direct diagonalization CI applications will always be computationally limited due to the rapid increase in the number of configurations with particle number. Very recently, the shifted-contour method has been applied to the Auxiliary-field Monte Carlo approach to the Shell Model (AFMCSM), and preliminary applications exhibit a remarkable taming of the notorious sign problem. If the mitigation of the sign problem holds true, the AFMCSM will offer a method to compute quantum correlations to mean-field applications for just about all nuclei; giving exact results for CI model spaces that can approach 10{sup 20-25}. In these lectures, I will discuss modern applications of CI to the nuclear many-body problem that have the potential to guide nuclear structure theory into the next decade.

  5. Nonequilibrium dynamics of emergent field configurations

    NASA Astrophysics Data System (ADS)

    Howell, Rafael Cassidy

    The processes by which nonlinear physical systems approach thermal equilibrium is of great importance in many areas of science. Central to this is the mechanism by which energy is transferred between the many degrees of freedom comprising these systems. With this in mind, in this research the nonequilibrium dynamics of nonperturbative fluctuations within Ginzburg-Landau models are investigated. In particular, two questions are addressed. In both cases the system is initially prepared in one of two minima of a double-well potential. First, within the context of a (2 + 1) dimensional field theory, we investigate whether emergent spatio-temporal coherent structures play a dynamcal role in the equilibration of the field. We find that the answer is sensitive to the initial temperature of the system. At low initial temperatures, the dynamics are well approximated with a time-dependent mean-field theory. For higher temperatures, the strong nonlinear coupling between the modes in the field does give rise to the synchronized emergence of coherent spatio-temporal configurations, identified with oscillons. These are long-lived coherent field configurations characterized by their persistent oscillatory behavior at their core. This initial global emergence is seen to be a consequence of resonant behavior in the long wavelength modes in the system. A second question concerns the emergence of disorder in a highly viscous system modeled by a (3 + 1) dimensional field theory. An integro-differential Boltzmann equation is derived to model the thermal nucleation of precursors of one phase within the homogeneous background. The fraction of the volume populated by these precursors is computed as a function of temperature. This model is capable of describing the onset of percolation, characterizing the approach to criticality (i.e. disorder). It also provides a nonperturbative correction to the critical temperature based on the nonequilibrium dynamics of the system.

  6. Hybrid Wing Body Configuration System Studies

    NASA Technical Reports Server (NTRS)

    Nickol, Craig L.; McCullers, Arnie

    2009-01-01

    The objective of this study was to develop a hybrid wing body (HWB) sizing and analysis capability, apply that capability to estimate the fuel burn potential for an HWB concept, and identify associated technology requirements. An advanced tube with wings concept was also developed for comparison purposes. NASA s Flight Optimization System (FLOPS) conceptual aircraft sizing and synthesis software was modified to enable the sizing and analysis of HWB concepts. The noncircular pressurized centerbody of the HWB concept was modeled, and several options were created for defining the outboard wing sections. Weight and drag estimation routines were modified to accommodate the unique aspects of an HWB configuration. The resulting capability was then utilized to model a proprietary Boeing blended wing body (BWB) concept for comparison purposes. FLOPS predicted approximately a 15 percent greater drag, mainly caused by differences in compressibility drag estimation, and approximately a 5 percent greater takeoff gross weight, mainly caused by the additional fuel required, as compared with the Boeing data. Next, a 777-like reference vehicle was modeled in FLOPS and calibrated to published Boeing performance data; the same mission definition was used to size an HWB in FLOPS. Advanced airframe and propulsion technology assumptions were applied to the HWB to develop an estimate for potential fuel burn savings from such a concept. The same technology assumptions, where applicable, were then applied to an advanced tube-with-wings concept. The HWB concept had a 39 percent lower block fuel burn than the reference vehicle and a 12 percent lower block fuel burn than the advanced tube-with-wings configuration. However, this fuel burn advantage is partially derived from assuming the high-risk technology of embedded engines with boundary-layer-ingesting inlets. The HWB concept does have the potential for significantly reduced noise as a result of the shielding advantages that are inherent

  7. Using HPC within an operational forecasting configuration

    NASA Astrophysics Data System (ADS)

    Jagers, H. R. A.; Genseberger, M.; van den Broek, M. A. F. H.

    2012-04-01

    Various natural disasters are caused by high-intensity events, for example: extreme rainfall can in a short time cause major damage in river catchments, storms can cause havoc in coastal areas. To assist emergency response teams in operational decisions, it's important to have reliable information and predictions as soon as possible. This starts before the event by providing early warnings about imminent risks and estimated probabilities of possible scenarios. In the context of various applications worldwide, Deltares has developed an open and highly configurable forecasting and early warning system: Delft-FEWS. Finding the right balance between simulation time (and hence prediction lead time) and simulation accuracy and detail is challenging. Model resolution may be crucial to capture certain critical physical processes. Uncertainty in forcing conditions may require running large ensembles of models; data assimilation techniques may require additional ensembles and repeated simulations. The computational demand is steadily increasing and data streams become bigger. Using HPC resources is a logical step; in different settings Delft-FEWS has been configured to take advantage of distributed computational resources available to improve and accelerate the forecasting process (e.g. Montanari et al, 2006). We will illustrate the system by means of a couple of practical applications including the real-time dynamic forecasting of wind driven waves, flow of water, and wave overtopping at dikes of Lake IJssel and neighboring lakes in the center of The Netherlands. Montanari et al., 2006. Development of an ensemble flood forecasting system for the Po river basin, First MAP D-PHASE Scientific Meeting, 6-8 November 2006, Vienna, Austria.

  8. Configuration Studies and Recommendations for the ILC DampingRings

    SciTech Connect

    Wolski, Andrzej; Gao, Jie; Guiducci, Susanna

    2006-02-04

    We describe the results of studies comparing different options for the baseline configuration of the ILC damping rings. The principal configuration decisions apply to the circumference, beam energy, lattice type, and technology options for key components, including the injection/extraction kickers and the damping wigglers. To arrive at our recommended configuration, we performed detailed studies of a range of lattices representing a variety of different configuration options; these lattices are described in Chapter 2. The results of the various studies are reported in chapters covering issues of beam dynamics, technical subsystems, costs, and commissioning, reliability and upgrade ability. Our detailed recommendations for the baseline configuration are given in Chapter 7, where we also outline further research and development that is needed before a machine using our recommended configuration can be built and operated successfully. In the same chapter, we suggest possible alternatives to the baseline configuration.

  9. Method and apparatus configured for identification of a material

    DOEpatents

    Slater, John M.; Crawford, Thomas M.

    2000-01-01

    The present invention includes an apparatus configured for identification of a material, and methods of identifying a material. One embodiment of the invention provides an apparatus including a first region configured to receive a first sample, the first region being configured to output a first spectrum corresponding to the first sample and responsive to exposure of the first sample to radiation; a modulator configured to modulate the first spectrum according to a first frequency; a second region configured to receive a second sample, the second region being configured to output a second spectrum corresponding to the second sample and responsive to exposure of the second sample to the modulated first spectrum; and a detector configured to detect the second spectrum having a second frequency greater than the first frequency.

  10. Configurationally-Coupled Protonation of Polyproline-7.

    PubMed

    Shi, Liuqing; Holliday, Alison E; Khanal, Neelam; Russell, David H; Clemmer, David E

    2015-07-15

    Structure and dynamics regulate protein function, but much less is known about how biomolecule-solvent interactions affect the structure-function relationship. Even less is known about the thermodynamics of biomolecule-solvent interactions and how such interactions influence conformational entropy. When transferred from propanol into 40:60 propanol:water under acidic conditions, a remarkably slow protonation reaction coupled with the conversion of the polyproline-I helix (PPI, having all cis-configured peptide bonds) into polyproline-II (PPII, all trans) helix is observed in this work. Kinetics and equilibrium measurements as a function of temperature allow determination of the thermochemistry and insight into how proton transfer is regulated in this system. For the proton-transfer process, PPI(+)(PrOH) + H3O(+) → PPII(2+)(PrOH/aq) + H2O, we determine ΔG = -20 ± 19 kJ·mol(-1), ΔH = -75 ± 14 kJ·mol(-1), and ΔS= -188 ± 48 J·mol(-1)·K(-1) for the overall reaction, and values of ΔG(⧧) = 91 ± 3 kJ·mol(-1), ΔH(⧧) = 84 ± 9 kJ·mol(-1), and ΔS(⧧) = -23 ± 31 J·mol(-1)·K(-1) for the transition state. For a minor process, PPI(+)(PrOH) → PPII(+)(PrOH/aq) without protonation, we determine ΔG = -9 ± 20 kJ·mol(-1), ΔH = 64 ± 14 kJ·mol(-1), and ΔS= 247 ± 50 J·mol(-1)·K(-1). This thermochemistry yields ΔG = -10 ± 29 kJ·mol(-1), ΔH = -139 ± 20 kJ·mol(-1), and ΔS= -435 ± 70 J·mol(-1)·K(-1) for PPII(+)(PrOH/aq) + H3O(+) → PPII(2+)(PrOH/aq) +H2O. The extraordinarily slow proton transfer appears to be an outcome of configurational coupling through a PPI-like transition state. PMID:26115587

  11. Reactor core length, externally configured thermionic converter.

    NASA Technical Reports Server (NTRS)

    Shimada, K.; Rouklove, P.

    1971-01-01

    Results of testing a converter having an external emitter configuration for 190 hours using RF induction heating. The converter was assembled with a rhenium emitter, 25.4 cm long, having a 91.2 sq cm emitting area, and a niobium collector with a molybdenum coating to improve its electronic property. The collector was water-cooled. The test included: static power output measurements, dynamic characteristics, and the effects of the temperature distribution along the emitter. The maximum power output achieved from the converter at an emitter temperature of 1942 K was 178 W at 0.48 V output, with a power density of 1.95 W/sq cm and an efficiency of 5.5%. The static characteristics also indicated that, with a constant power input, the converter power output does not vary with the output voltage as a result of self-adjustment of the emitter temperature. An investigation of the effects of the temperature distribution along the emitter length showed a 33% improvement in the converter output power with a flattening of the emitter temperature.

  12. Configuration interaction with antisymmetrized geminal powers

    NASA Astrophysics Data System (ADS)

    Uemura, Wataru; Kasamatsu, Shusuke; Sugino, Osamu

    2015-06-01

    To avoid the combinatorial computational cost of configuration interaction (CI), we previously introduced the symmetric tensor decomposition CI (STD-CI) method, which takes advantage of the antisymmetric nature of the electronic wave function and expresses the CI coefficients compactly as a series of Kronecker product states (STD series) [W. Uemura and O. Sugino, Phys. Rev. Lett. 109, 253001 (2012), 10.1103/PhysRevLett.109.253001]. Here we extend the variational degrees of freedom by using different molecular orbitals for different terms in the STD series. This scheme is equivalent to the linear combination of the Hartree-Fock-Bogoliubov state or the antisymmetrized geminal powers (AGPs). The total energy converges very rapidly within 0.72 μ hartree taking only 10 terms for the water molecule, and the convergence is likewise fast for Hubbard tetramers. The computational cost scales as the fifth power of the number of electrons and the square of the number of terms in the STD series, indicating the promise of this AGP-based scheme for highly accurate and efficient computation of quantum systems.

  13. Space Station-Baseline Configuration With Callouts

    NASA Technical Reports Server (NTRS)

    1989-01-01

    In response to President Reagan's directive to NASA to develop a permanent marned Space Station within a decade, part of the State of the Union message to Congress on January 25, 1984, NASA and the Administration adopted a phased approach to Station development. This approach provided an initial capability at reduced costs, to be followed by an enhanced Space Station capability in the future. This illustration depicts the baseline configuration, which features a 110-meter-long horizontal boom with four pressurized modules attached in the middle. Located at each end are four photovoltaic arrays generating a total of 75-kW of power. Two attachment points for external payloads are provided along this boom. The four pressurized modules include the following: A laboratory and habitation module provided by the United States; two additional laboratories, one each provided by the European Space Agency (ESA) and Japan; and an ESA-provided Man-Tended Free Flyer, a pressurized module capable of operations both attached to and separate from the Space Station core. Canada was expected to provide the first increment of a Mobile Serving System.

  14. Biosensing Configurations Using Guided Wave Resonant Structures

    NASA Astrophysics Data System (ADS)

    Abdulhalim, I.

    Resonant structures are characterized by a high quality factor representing the sensitivity to perturbations in a cavity. In guided wave resonant structures the optical field is evanescent, forming a region where the resonance can be modified by externally varying the refractive index within this evanescence region. The resonance nature of these structures then allows high sensitivity to analytes, gases, or other external index perturbations down to the order of 10-8 RIU. In this article several configurations of guided wave resonant structures and their use for sensing are reviewed with special emphasis on grating coupled resonant structures. The sensor performance is discussed using analytic approaches based on planar waveguide sensors theory and using the 4 × 4 characteristic matrix approaches for multilayered structure and with homogenized grating treated as a uniaxial thin film. The results agree very well with experiment and with rigorous electromagnetic calculations even when the cover is anisotropic medium such as a liquid crystal that can be used for tunable filtering or temperature sensing.

  15. Blank fire configuration for automatic pistol

    DOEpatents

    Teague, Tommy L.

    1990-01-01

    A pistol configured to fire blank cartridges includes a modified barrel with a breech portion connected to an aligned inner sleeve. Around the inner sleeve, there is disposed an outer sleeve having a vent therein through which the cartridge discharges. The breech portion is connected to a barrel anchor to move backward in a slight arc when the pistol is fired. A spring retention rod projects from the barrel anchor and receives a shortened recoil spring therearound which recoil spring has one end abutting a stop on the barrel anchor and the other end in abutment with the end of a spring retaining cup. The spring retaining cup is engaged by a flange projecting from a slide so that when the pistol is fired, the slide moves rearwardly against the compression of the spring to eject the spent cartridge and then moves forwardly under the urging of the spring to load a fresh cartridge into the breech portion. The spring then returns all of the slidable elements to their initial position so that the pistol may again be fired.

  16. Resistive evolution of general plasma configurations

    SciTech Connect

    Miller, G.

    1984-09-01

    The resistive evolution through equilibrium states of general plasma configurations with closed magnetic field lines is described. Cases where the magnetic field forms magnetic surfaces and where the magnetic field is ergodic are treated. In the former case, a simple equation for the rate of change of rotational transform at fixed values of toroidal flux is obtained, as is already known. In the latter case the evolution of the equilibrium is naturally described in terms of the magnetic helicity by use of the formalism of relaxed states introduced by J.B. Taylor. The equation for rate of change of magnetic helicity is shown to be a general law of resistive evolution, implying the former equation for rotational transform in the case of magnetic surfaces. In principle, the resistive evolution model provides a complete description of global long-time-scale plasma behavior in the limit where the plasma density vanishes. In this limit, the magnetohydrodynamic description of a plasma is not practical because of the vanishing of the inertial time scale.

  17. Base drag prediction on missile configurations

    NASA Technical Reports Server (NTRS)

    Moore, F. G.; Hymer, T.; Wilcox, F.

    1993-01-01

    New wind tunnel data have been taken, and a new empirical model has been developed for predicting base drag on missile configurations. The new wind tunnel data were taken at NASA-Langley in the Unitary Wind Tunnel at Mach numbers from 2.0 to 4.5, angles of attack to 16 deg, fin control deflections up to 20 deg, fin thickness/chord of 0.05 to 0.15, and fin locations from 'flush with the base' to two chord-lengths upstream of the base. The empirical model uses these data along with previous wind tunnel data, estimating base drag as a function of all these variables as well as boat-tail and power-on/power-off effects. The new model yields improved accuracy, compared to wind tunnel data. The new model also is more robust due to inclusion of additional variables. On the other hand, additional wind tunnel data are needed to validate or modify the current empirical model in areas where data are not available.

  18. SAPHIRE 8 Software Configuration Management Plan

    SciTech Connect

    Curtis Smith

    2010-01-01

    The INL software developers use version control for both the formally released SAPHIRE versions, as well as for source code. For each formal release of the software, the developers perform an acceptance test: the software must pass a suite of automated tests prior to official release. Each official release of SAPHIRE is assigned a unique version identifier. The release is bundled into a standard installation package for easy and consistent set-up by individual users. Included in the release is a list of bug fixes and new features for the current release, as well as a history of those items for past releases. Each formal release of SAPHIRE will have passed an acceptance test. In addition to assignment of a unique version identifier for an official software release, each source code file is kept in a controlled library. Source code is a collection of all the computer instructions written by developers to create the finished product. The library is kept on a server, where back-ups are regularly made. This document describes the configuration management approach used as part of the SAPHIRE development.

  19. Effects of cavity configuration on composite restoration.

    PubMed

    Choi, Kyoung-Kyu; Ryu, Gil-Joo; Choi, Seung-Mo; Lee, Min-Jo; Park, Sang-Jin; Ferracane, Jack L

    2004-01-01

    This study evaluated the effects of various cavity configurations on the bond strength, microleakage, flexural strength and elastic modulus of a hybrid (Clearfil AP-X) and a microhybrid (Esthet-X) composite restorative. After the specimens were made with C-factors of less than 1, 2.4 and 3.4, flexural strength and elastic modulus were evaluated in three-point bending using a mechanical testing machine. Fragments of the fractured specimens were selected randomly and the fracture surfaces were examined in SEM. To evaluate the microtensile bond strength and microleakage of composite restorations in bovine cavities, C-factors (ratio of bonded to non-bonded cavity surface) were controlled as 1.0, 2.3, 3.0 and 3.7. All specimens were stored in distilled water at 37 degrees C for 24 hours and tested in a universal testing machine (EZ Test, Shimadzu, Japan). For the microleakage test, teeth with restorations were stained with silver nitrate and examined by two examiners under a stereomicroscope at 40x magnification. The hybrid composite showed higher mechanical properties than the microhybrid composite. The flexural strength and elastic modulus of both composites decreased when polymerized under greater constraint, that is, with increasing C-factor. Mean microtensile bond strength to dentin was also decreased with increasing C-factor for both types of composites. Microleakage scores for the hybrid composite restorations were generally higher than the microhybrid composite. PMID:15279488

  20. Reusable Reentry Satellite (RRS): Configuration trade study

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The overall Reusable Reentry Satellite (RRS) Phase B Study objective is to design a relatively inexpensive satellite to access space for extended periods of time, with eventual recovery of experiments on Earth. The expected principal use for such a system is research on the effects of variable gravity (0-1.5 g) and radiation on small animals, plants, lower life forms, tissue samples, and materials processes. The RRS will be capable of: (1) being launched by a variety of expendable launch vehicles; (2) operating in low earth orbit as a free flying unmanned laboratory; and (3) executing independent atmospheric reentry and soft landing. The RRS will be designed to be refurbished and reused up to three times a year for a period of 10 years. The information provided in this report describes the process involved in the evolution of the RRS overall configuration. This process considered reentry aerodynamics, aerothermodynamics, internal equipment layout, and vehicle mass properties. This report delineates the baseline design decisions that were used to initiate the RRS design effort. As a result, there will be deviations between this report and the RRS Final Report. In those instances, the RRS Final Report shall be considered to be the definitive reference.

  1. Multiple cell configuration electromagnetic vibration energy harvester

    NASA Astrophysics Data System (ADS)

    Marin, Anthony; Bressers, Scott; Priya, Shashank

    2011-07-01

    This paper reports the design of an electromagnetic vibration energy harvester that doubles the magnitude of output power generated by the prior four-bar magnet configuration. This enhancement was achieved with minor increase in volume by 23% and mass by 30%. The new 'double cell' design utilizes an additional pair of magnets to create a secondary air gap, or cell, for a second coil to vibrate within. To further reduce the dimensions of the device, two coils were attached to one common cantilever beam. These unique features lead to improvements of 66% in output power per unit volume (power density) and 27% increase in output power per unit volume and mass (specific power density), from 0.1 to 0.17 mW cm-3 and 0.41 to 0.51 mW cm-3 kg-1 respectively. Using the ANSYS multiphysics analysis, it was determined that for the double cell harvester, adding one additional pair of magnets created a small magnetic gradient between air gaps of 0.001 T which is insignificant in terms of electromagnetic damping. An analytical model was developed to optimize the magnitude of transformation factor and magnetic field gradient within the gap.

  2. Multisensor configurations for early sniper detection

    NASA Astrophysics Data System (ADS)

    Lindgren, D.; Bank, D.; Carlsson, L.; Dulski, R.; Duval, Y.; Fournier, G.; Grasser, R.; Habberstad, H.; Jacquelard, C.; Kastek, M.; Otterlei, R.; Piau, G.-P.; Pierre, F.; Renhorn, I.; Sjöqvist, L.; Steinvall, O.; Trzaskawka, P.

    2011-11-01

    This contribution reports some of the fusion results from the EDA SNIPOD project, where different multisensor configurations for sniper detection and localization have been studied. A project aim has been to cover the whole time line from sniper transport and establishment to shot. To do so, different optical sensors with and without laser illumination have been tested, as well as acoustic arrays and solid state projectile radar. A sensor fusion node collects detections and background statistics from all sensors and employs hypothesis testing and multisensor estimation programs to produce unified and reliable sniper alarms and accurate sniper localizations. Operator interfaces that connect to the fusion node should be able to support both sniper countermeasures and the guidance of personnel to safety. Although the integrated platform has not been actually built, sensors have been evaluated at common field trials with military ammunitions in the caliber range 5.56 to 12.7 mm, and at sniper distances up to 900 m. It is concluded that integrating complementary sensors for pre- and postshot sniper detection in a common system with automatic detection and fusion will give superior performance, compared to stand alone sensors. A practical system is most likely designed with a cost effective subset of available complementary sensors.

  3. Blank fire configuration for automatic pistol

    SciTech Connect

    Teague, T.L.

    1990-03-13

    This patent describes a pistol configured to fire blank cartridges that includes a modified barrel with a breech portion connected to an aligned inner sleeve. Around the inner sleeve, there is disposed an outer sleeve having a vent therein through which the cartridge discharges. The breech portion is connected to a barrel anchor to move backward in a slight arc when the pistol is fired. A spring retention rod projects from the barrel anchor and receives a shortened recoil spring therearound which recoil spring has one end abutting a stop on the barrel anchor and the other end in abutment with the end of a spring retaining cup. The spring retaining cup is engaged by a flange projecting from a slide so that when the pistol is fired, the slide moves rearwardly against the compression of the spring to eject the spent cartridge and then moves forwardly under the urging of the spring to load a fresh cartridge into the breech portion. The spring then returns all of the slidable elements to their initial position so that the pistol may again be fired.

  4. Blank fire configuration for automatic pistol

    SciTech Connect

    Teague, T.L.

    1988-08-31

    A pistol configured to fire blank cartridges includes a modified barrel with a breach portion connected to an aligned inner sleeve. Around the inner sleeve, there is disposed an outer sleeve having a vent therein through which the cartridge discharges. The breach portion is connected to a barrel anchor to move backward in a slight arc when the pistol is fired. A spring retaining rod projects from the barrel anchor and receives a coiled recoil spring therearound which recoil spring has one end abutting a stop on the barrel anchor and the other end in abutment with the end of a spring retaining cup. The spring retaining cup is engaged by a flange projecting from the slider so that when the pistol is fired, the slider moves rearwardly against the compression of the spring to eject the spent cartridge and then moves forwardly under the urging of the spring to load a fresh cartridge into the breach portion. The spring then returns all of the slidable elements to their initial position so that the pistol may again be fired. 4 figs.

  5. Configurable Cellular Automata for Pseudorandom Number Generation

    NASA Astrophysics Data System (ADS)

    Quieta, Marie Therese; Guan, Sheng-Uei

    This paper proposes a generalized structure of cellular automata (CA) — the configurable cellular automata (CoCA). With selected properties from programmable CA (PCA) and controllable CA (CCA), a new approach to cellular automata is developed. In CoCA, the cells are dynamically reconfigured at run-time via a control CA. Reconfiguration of a cell simply means varying the properties of that cell with time. Some examples of properties to be reconfigured are rule selection, boundary condition, and radius. While the objective of this paper is to propose CoCA as a new CA method, the main focus is to design a CoCA that can function as a good pseudorandom number generator (PRNG). As a PRNG, CoCA can be a suitable candidate as it can pass 17 out of 18 Diehard tests with 31 cells. CoCA PRNG's performance based on Diehard test is considered superior over other CA PRNG works. Moreover, CoCA opens new rooms for research not only in the field of random number generation, but in modeling complex systems as well.

  6. Design of a control configured tanker aircraft

    NASA Technical Reports Server (NTRS)

    Walker, S. A.

    1976-01-01

    The benefits that accrue from using control configured vehicle (CCV) concepts were examined along with the techniques for applying these concepts to an advanced tanker aircraft design. Reduced static stability (RSS) and flutter mode control (FMC) were the two primary CCV concepts used in the design. The CCV tanker was designed to the same mission requirements specified for a conventional tanker design. A seven degree of freedom mathematical model of the flexible aircraft was derived and used to synthesize a lateral stability augmentation system (SAS), a longitudinal control augmentation system (CAS), and a FMC system. Fatigue life and cost analyses followed the control system synthesis, after which a comparative evaluation of the CCV and conventional tankers was made. This comparison indicated that the CCV weight and cost were lower but that, for this design iteration, the CCV fatigue life was shorter. Also, the CCV crew station acceleration was lower, but the acceleration at the boom operator station was higher relative to the corresponding conventional tanker. Comparison of the design processes used in the CCV and conventional design studies revealed that they were basically the same.

  7. Cryogenics Testbed Laboratory Flange Baseline Configuration

    NASA Technical Reports Server (NTRS)

    Acuna, Marie Lei Ysabel D.

    2013-01-01

    As an intern at Kennedy Space Center (KSC), I was involved in research for the Fluids and Propulsion Division of the NASA Engineering (NE) Directorate. I was immersed in the Integrated Ground Operations Demonstration Units (IGODU) project for the majority of my time at KSC, primarily with the Ground Operations Demonstration Unit Liquid Oxygen (GODU L02) branch of IGODU. This project was established to develop advancements in cryogenic systems as a part of KSC's Advanced Exploration Systems (AES) program. The vision of AES is to develop new approaches for human exploration, and operations in and beyond low Earth orbit. Advanced cryogenic systems are crucial to minimize the consumable losses of cryogenic propellants, develop higher performance launch vehicles, and decrease operations cost for future launch programs. During my internship, I conducted a flange torque tracking study that established a baseline configuration for the flanges in the Simulated Propellant Loading System (SPLS) at the KSC Cryogenics Test Laboratory (CTL) - the testing environment for GODU L02.

  8. Phased array-fed antenna configuration study

    NASA Technical Reports Server (NTRS)

    Crosswell, W. F.; Ball, D. E.; Taylor, R. C.

    1983-01-01

    The scope of this contract entails a configuration study for a phased array fed transmit antenna operating in the frequency band of 17.7 to 20.2 GHz. This initial contract provides a basis for understanding the design limitations and advantages of advanced phased array and cluster feeds (both utilizing intergral MMIC modules) illuminating folded reflector optics (both near field and focused types). Design parametric analyses are performed utilizing as constraints the objective secondary performance requirements of the Advanced Communications Technology Satellite (Table 1.0). The output of the study provides design information which serves as a data base for future active phased array fed antenna studies such as detailed designs required to support the development of a ground tested breadboard. In general, this study is significant because it provides the antenna community with an understanding of the basic principles which govern near field phased scanned feed effects on secondary reflector system performance. Although several articles have been written on analysis procedures and results for these systems, the authors of this report have observed phenomenon of near field antenna systems not previously documented. Because the physical justification for the exhibited performance is provided herein, the findings of this study add a new dimension to the available knowledge of the subject matter.

  9. New configuration factors for curved surfaces

    NASA Astrophysics Data System (ADS)

    Cabeza-Lainez, Jose M.; Pulido-Arcas, Jesus A.

    2013-03-01

    Curved surfaces have not been thoroughly considered in radiative transfer analysis mainly due to the difficulties arisen in the integration process and perhaps because of the lack of spatial vision of the researchers. It is a fact, especially for architectural lighting, that when concave geometries appear inside a curved space, they are mostly avoided. In this way, a vast repertoire of significant forms is neglected and energy waste is evident. Starting from the properties of volumes enclosed by the minimum number of surfaces, the authors formulate, with little calculus, new simple laws, which enable them to discover a set of configuration factors for caps and various segments of the sphere. The procedure is subsequently extended to previously unimagined surfaces as the paraboloid, the ellipsoid or the cone. Appropriate combination of the said forms with right truncated cones produces several complex volumes, often used in architectural and engineering creations and whose radiative performance could not be accurately predicted for decades. To complete the research, a new method for determining interreflections in curved volumes is also presented. Radiative transfer simulation benefits from these findings, as the simplicity of the results has led the authors to create innovative software more efficient for design and evaluation and applicable to emerging fields like LED lighting.

  10. Measuring the configurational temperature of granular media

    NASA Astrophysics Data System (ADS)

    Schröter, Matthias

    2009-03-01

    Twenty years ago Edwards and Oakeshott suggested developing a statistical mechanics of static granular media based on the idea that the logarithm of the number of mechanically stable states of a specific sample constitutes the relevant entropy [1]. From this entropy then, a configurational temperature, named compactivity, could be derived. However, in the absence of an appropriate thermometer to measure compactivity, the question if it is indeed a relevant state variable remained untested. Only recently it was shown that the steady state volume fluctuations of a periodically driven sample can be used to measure the compactivity of a granular sample including its dependence on volume fraction and surface friction of the particles [2]. This opens up the possibility of studying questions like the existence of a zeroth law of granular thermodynamics or the relationship between compactivity and other forms of granular temperature. [1] Edwards and Oakeshott, Physica A 157, 1080 (1989). [2] M. Schr"oter, D. Goldman, and H. L. Swinney Phys. Rev. E 71, 030301(R) (2005)

  11. A Moving Target Environment for Computer Configurations Using Genetic Algorithms

    SciTech Connect

    Crouse, Michael; Fulp, Errin W.

    2011-10-31

    Moving Target (MT) environments for computer systems provide security through diversity by changing various system properties that are explicitly defined in the computer configuration. Temporal diversity can be achieved by making periodic configuration changes; however in an infrastructure of multiple similarly purposed computers diversity must also be spatial, ensuring multiple computers do not simultaneously share the same configuration and potential vulnerabilities. Given the number of possible changes and their potential interdependencies discovering computer configurations that are secure, functional, and diverse is challenging. This paper describes how a Genetic Algorithm (GA) can be employed to find temporally and spatially diverse secure computer configurations. In the proposed approach a computer configuration is modeled as a chromosome, where an individual configuration setting is a trait or allele. The GA operates by combining multiple chromosomes (configurations) which are tested for feasibility and ranked based on performance which will be measured as resistance to attack. The result of successive iterations of the GA are secure configurations that are diverse due to the crossover and mutation processes. Simulations results will demonstrate this approach can provide at MT environment for a large infrastructure of similarly purposed computers by discovering temporally and spatially diverse secure configurations.

  12. Configuration Management Plan for the Tank Farm Contractor

    SciTech Connect

    WEIR, W.R.

    2000-04-21

    The Configuration Management Plan for the Tank Farm Contractor describes configuration management the contractor uses to manage and integrate its technical baseline with the programmatic and functional operations to perform work. The Configuration Management Plan for the Tank Farm Contractor supports the management of the project baseline by providing the mechanisms to identify, document, and control the technical characteristics of the products, processes, and structures, systems, and components (SSC). This plan is one of the tools used to identify and provide controls for the technical baseline of the Tank Farm Contractor (TFC). The configuration management plan is listed in the management process documents for TFC as depicted in Attachment 1, TFC Document Structure. The configuration management plan is an integrated approach for control of technical, schedule, cost, and administrative processes necessary to manage the mission of the TFC. Configuration management encompasses the five functional elements of: (1) configuration management administration, (2) configuration identification, (3) configuration status accounting, (4) change control, and (5 ) configuration management assessments.

  13. Dynamic positioning configuration and its first-order optimization

    NASA Astrophysics Data System (ADS)

    Xue, Shuqiang; Yang, Yuanxi; Dang, Yamin; Chen, Wu

    2014-02-01

    Traditional geodetic network optimization deals with static and discrete control points. The modern space geodetic network is, on the other hand, composed of moving control points in space (satellites) and on the Earth (ground stations). The network configuration composed of these facilities is essentially dynamic and continuous. Moreover, besides the position parameter which needs to be estimated, other geophysical information or signals can also be extracted from the continuous observations. The dynamic (continuous) configuration of the space network determines whether a particular frequency of signals can be identified by this system. In this paper, we employ the functional analysis and graph theory to study the dynamic configuration of space geodetic networks, and mainly focus on the optimal estimation of the position and clock-offset parameters. The principle of the D-optimization is introduced in the Hilbert space after the concept of the traditional discrete configuration is generalized from the finite space to the infinite space. It shows that the D-optimization developed in the discrete optimization is still valid in the dynamic configuration optimization, and this is attributed to the natural generalization of least squares from the Euclidean space to the Hilbert space. Then, we introduce the principle of D-optimality invariance under the combination operation and rotation operation, and propose some D-optimal simplex dynamic configurations: (1) (Semi) circular configuration in 2-dimensional space; (2) the D-optimal cone configuration and D-optimal helical configuration which is close to the GPS constellation in 3-dimensional space. The initial design of GPS constellation can be approximately treated as a combination of 24 D-optimal helixes by properly adjusting the ascending node of different satellites to realize a so-called Walker constellation. In the case of estimating the receiver clock-offset parameter, we show that the circular configuration, the

  14. Self-Configuring Universal Linear Optics

    NASA Astrophysics Data System (ADS)

    Miller, David

    2015-03-01

    Until recently, it was not clear whether we could make or even design arbitrary linear optical devices or transforms on light fields. A single thin dielectric structure or meta material layer is not sufficiently general, for example. The canonical arbitrary linear problem is to separate and separately modulate arbitrary overlapping orthogonal light beams at a given wavelength without fundamental loss and then transform them into other arbitrary orthogonal beams; such a mode conversion corresponds to multiplying by an arbitrary matrix, so solving this problem in general enables arbitrary linear transforms (unitary or non-unitary). Recently we showed constructively how to implement any such linear transform, thereby solving the design problem in principle. Furthermore, we showed that this could be done entirely by training a mesh of interferometers and modulators with desired inputs and outputs, without any calculations and without any calibration of components. This approach relies on simple single-parameter feedback loops that minimize power on detectors, in completely progressive algorithms, and could be implemented in silicon photonics. It could solve practical problems such as separating spatial modes in telecommunications, automatically aligning beams, and finding optimal channels through scatterers. It offers new possibilities for self-configuring and self-stabilizing optical systems, and could enable complicated optics, such as for quantum networks and information, well beyond current capabilities. One interesting open question is how to exploit such approaches with nanoscale optics. This project was supported by DARPA InPho program, and by MURI grants (AFOSR, FA9550-10-1-0264 and FA9550-09-0704).

  15. Sparse source configurations for asteroid tomography

    NASA Astrophysics Data System (ADS)

    Pursiainen, S.; Kaasalainen, M.

    2014-04-01

    The objective of our recent research has been to develop non-invasive imaging techniques for future planetary research and mining activities involving a challenging in situ environment and tight payload limits [1]. This presentation will deal in particular with an approach in which the internal relative permittivity ∈r or the refractive index n = √ ∈r of an asteroid is to be recovered based on radio signal transmitted by a sparse set [2] of fixed or movable landers. To address important aspects of mission planning, we have analyzed different signal source configurations to find the minimal number of source positions needed for robust localization of anomalies, such as internal voids. Characteristic to this inverse problem are the large relative changes in signal speed caused by the high permittivity of typical asteroid minerals (e.g. basalt), leading to strong refractions and reflections of the signal. Finding an appropriate problemspecific signaling arrangement is an important premission goal for successful in situ measurements. This presentation will include inversion results obtained with laboratory-recorded travel time data y of the form in which n δ denotes a perturbation of a refractive index n = n δ + nbg; gi estimates the total noise due to different error sources; (ybg)i = ∫Ci nbg ds is an entry of noiseless background data ybg; and Ci is a signal path. Also simulated time-evolution data will be covered with respect to potential u satisfying the wave equation ∈rδ2/δt2+ ōδu/δt-∆u = f, where ō is a (latent) conductivity distribution and f is a source term. Special interest will be paid to inversion robustness regarding changes of the prior model and source positioning. Among other things, our analysis suggests that strongly refractive anomalies can be detected with three or four sources independently of their positioning.

  16. The Memory of MICE: The Configuration Database

    NASA Astrophysics Data System (ADS)

    Wilson, A. J.; Colling, D. J.; Hanlet, P.

    2012-12-01

    The configuration database (CDB) is the memory of the Muon Ionisation Cooling Experiment (MICE). Its principle aim is to store temporal data associated with the running of the experiment; these data are used throughout the life cycle of experiment, from running the experiment through data analysis. The CDB also serves as a moderator in the MICE state machine by defining allowable operating states of subsystems depending on the overall state of MICE and other subsystems. Master and slave CDBs, with multiple mirrored pair raid arrays, have been set up in different parts of the site to increase resilience, as well as off site backups. Access to the CDB is via a Python API, which communicates with a WSDL interface provided by a web-service on the CDB. The priority is to ensure availability of the CDB in the experiment control room. The master CDB is located in the MICE control where it is only used by the running experiment. In the event of the failure of the master, the slave can easily be promoted to master. Read only access to the CDB for data analysis and reconstruction is provided by the slave which has an up to the minute copy of the data. As MICE is a precision experiment which will measure a 10% muon cooling effect with 1% precision, it is imperative that we minimize our systematic errors; the CDB will ensure reproducible and documented running conditions in a highly resilient manner. A description of the hardware and software used in the the MICE CDB will be described in what follows.

  17. Positioning configurations with the lowest GDOP and their classification

    NASA Astrophysics Data System (ADS)

    Xue, Shuqiang; Yang, Yuanxi

    2015-01-01

    The positioning configuration optimization is a basic problem in surveying, and the geometric dilution of precision (GDOP) is a key index to handle this problem. Simplex graphs as regular polygons and regular polyhedrons are the well-known configurations with the lowest GDOP. However, it has been proved that there are at most five kinds of regular polyhedrons. We analytically solve the GDOP minimization problem with arbitrary observational freedom to extend the current knowledge. The configuration optimization framework established is composed of the algebraic and geometric operators (including combination, reflection, collinear mapping, projection and three kinds of equivalence relations), basic properties to GDOP minimization (including continuity, combination invariant, reflection invariant, rotation invariant and collinear invariant) and the lowest GDOP configurations (including cones, regular polygons, regular polyhedrons, Descartes configuration, helical configuration and generalized Walker configuration, and their reflections and combinations). GDOP minimization criterion and D-maximization criterion both reduce to the same criterion matrices that the optimization becomes the problem for solving an underdetermined quadratic equation system. Making use of the concepts for solving underdetermined linear equation system, the concepts of base configuration (single classification) and general configuration (combined classification) are applied to the GDOP minimization to analytically solve the quadratic equation system. Firstly, the problems are divided into two subproblems by two kinds of GDOP to reveal the impact of the clock-offset on the configuration optimization, and it shows that the symmetry and uniformity play a key role in identifying the systematic errors. Then, the solution of the GDOP minimization is classified by the number of symmetry axes, that the base configurations with at least one symmetry axis and the general configurations without symmetry

  18. A Modular Re-configurable Rover System

    NASA Astrophysics Data System (ADS)

    Bouloubasis, A.; McKee, G.; Active Robotics Lab

    In this paper we present the novel concepts incorporated in a planetary surface exploration rover design that is currently under development. The Multitasking Rover (MTR) aims to demonstrate functionality that will cover many of the current and future needs such as rough-terrain mobility, modularity and upgradeability [1]. The rover system has enhanced mobility characteristics. It operates in conjunction with Science Packs (SPs) and Tool Packs (TPs) - modules attached to the main frame of the rover, which are either special tools or science instruments and alter the operation capabilities of the system. To date, each rover system design is very much task driven for example, the scenario of cooperative transportation of extended payloads [2], comprises two rovers each equipped with a manipulator dedicated to the task [3]. The MTR approach focuses mostly on modularity and upgradeability presenting at the same time a fair amount of internal re-configurability for the sake of rough terrain stability. The rover itself does not carry any scientific instruments or tools. To carry out the scenario mentioned above, the MTR would have to locate and pick-up a TP with the associated manipulator. After the completion of the task the TP could be put away to a storage location enabling the rover to utilize a different Pack. The rover will not only offer mobility to these modules, but also use them as tools, transforming its role and functionality. The advantage of this approach is that instead of sending a large number of rovers to perform a variety of tasks, a smaller number of MTRs could be deployed with a large number of SPs/TPs, offering multiples of the functionality at a reduced payload. Two SPs or TPs (or a combination of) can be carried and deployed. One of the key elements in the design of the four wheeled rover, lies within its suspension system. It comprises a linear actuator located within each leg and also an active differential linking the two shoulders. This novel

  19. Gauge Configurations for Lattice QCD from The Gauge Connection

    DOE Data Explorer

    The Gauge Connection is an experimental archive for lattice QCD and a repository of gauge configurations made freely available to the community. Contributors to the archive include the Columbia QCDSP collaboration, the MILC collaboration, and others. Configurations are stored in QCD archive format, consisting of an ASCII header which defines various parameters, followed by binary data. NERSC has also provided some utilities and examples that will aid users in handling the data. Users may browse the archive, but are required to register for a password in order to download data. Contents of the archive are organized under four broad headings: Quenched (more than 1200 configurations); Dynamical, Zero Temperature (more than 300 configurations); MILC Improved Staggered Asqtad Lattices (more than 7000 configurations); and Dynamical, Finite Temperature (more than 1200 configurations)

  20. Physics in the magnetic configuration space of W7-X

    NASA Astrophysics Data System (ADS)

    Geiger, J.; Beidler, C. D.; Feng, Y.; Maaßberg, H.; Marushchenko, N. B.; Turkin, Y.

    2015-01-01

    The neoclassical confinement and the bootstrap current are analysed in the configuration space of W7-X by self-consistent neoclassical transport simulations. Since the establishment of quasi-stationary operation is the most important goal for W7-X, the analysis concentrates on high-performance discharge scenarios in magnetic configurations which are adjusted so that bootstrap current vanishes, or, alternatively, on scenarios where the bootstrap current can be balanced by strong ECCD. Both scenarios lead to restrictions either in the configuration space or in plasma parameters and ECRH heating scenarios. Furthermore, the flexibility of the magnetic configuration space of W7-X is briefly described with emphasis on other physics topics of interest, for example, ballooning unstable configurations as well as configurations with a magnetic hill which might lead to interchange instability.

  1. Concealed configuration mixing and shape coexistence in the platinum nuclei

    SciTech Connect

    Garcia-Ramos, J. E.; Hellemans, V.; Heyde, K.

    2012-10-20

    The role of configuration mixing in the Pt region is investigated. The nature of the ground state changes smoothly, being spherical around mass A{approx} 174 and A{approx} 192 and deformed around the mid-shell N= 104 region. Interacting Boson Model with configuration mixing calculations are presented for deformations and isotope shifts. The assumption of the existence of two configurations with very different deformation provides a simple framework to explain the observed isotope shifts systematics.

  2. Meta-Stable Brane Configurations by Quartic Superpotential for Bifundamentals

    NASA Astrophysics Data System (ADS)

    Ahn, Changhyun

    The type IIA nonsupersymmetric meta-stable brane configuration consisting of three NS5-branes, D4-branes and anti-D4-branes where the electric gauge theory superpotential has a quartic term for the bifundamentals besides a mass term is constructed. By adding the orientifold 4-plane and 6-plane to this brane configuration, we also describe the intersecting brane configurations of type IIA string theory corresponding to the meta-stable nonsupersymmetric vacua of corresponding gauge theories.

  3. Configural learning in contextual cuing of visual search.

    PubMed

    Beesley, Tom; Vadillo, Miguel A; Pearson, Daniel; Shanks, David R

    2016-08-01

    Two experiments were conducted to explore the role of configural representations in contextual cuing of visual search. Repeating patterns of distractors (contexts) were trained incidentally as predictive of the target location. Training participants with repeating contexts of consistent configurations led to stronger contextual cuing than when participants were trained with contexts of inconsistent configurations. Computational simulations with an elemental associative learning model of contextual cuing demonstrated that purely elemental representations could not account for the results. However, a configural model of associative learning was able to simulate the ordinal pattern of data. (PsycINFO Database Record PMID:26913779

  4. Positronic molecule calculations using Monte Carlo configuration interaction

    NASA Astrophysics Data System (ADS)

    Coe, Jeremy P.; Paterson, Martin J.

    2016-02-01

    We modify the Monte Carlo configuration interaction procedure to model atoms and molecules combined with a positron. We test this method with standard quantum chemistry basis sets on a number of positronic systems and compare results with the literature and full configuration interaction when appropriate. We consider positronium hydride, positronium hydroxide, lithium positride and a positron interacting with lithium, magnesium or lithium hydride. We demonstrate that we can capture much of the full configuration interaction results, but often require less than 10% of the configurations of these multireference wavefunctions. The effect of the number of frozen orbitals is also discussed.

  5. Configurational temperature profile in confined fluids. II. Molecular fluids

    NASA Astrophysics Data System (ADS)

    Delhommelle, Jerome; Evans, Denis J.

    2001-04-01

    In an earlier paper, we applied configurational expressions of the temperature to the calculation of temperature profiles within a confined atomic fluid. This paper focuses on the application of these expressions to confined molecular fluids using ethane and hexane as examples. We first give configurational expressions for the temperature for these constrained systems. The configurational temperature profiles so obtained are compared to the kinetic temperature calculated using the equipartition principle, in equilibrium systems. These expressions are then used in nonequilibrium molecular dynamics (NEMD) simulations of fluids undergoing planar Poiseuille flow. We show that these configurational expressions provide a direct and accurate determination of the temperature profile for these systems.

  6. Study of operational risk-based configuration control

    SciTech Connect

    Vesely, W E; Samanta, P K; Kim, I S

    1991-08-01

    This report studies aspects of a risk-based configuration control system to detect and control plant configurations from a risk perspective. Configuration control, as the term is used here, is the management of component configurations to achieve specific objectives. One important objective is to control risk and safety. Another is to operate efficiently and make effective use of available resources. PSA-based evaluations are performed to study configuration to core-melt frequency and core-melt probability for two plants. Some equipment configurations can cause large core-melt frequency and there are a number of such configurations that are not currently controlled by technical specifications. However, the expected frequency of occurrence of the impacting configurations is small and the core-melt probability contributions are also generally small. The insights from this evaluation are used to develop the framework for an effective risk-based configuration control system. The focal points of such a system and the requirements for tools development for implementing the system are defined. The requirements of risk models needed for the system, and the uses of plant-specific data are also discussed. 18 refs., 25 figs., 10 tabs.

  7. Configural information is processed differently in human action.

    PubMed

    Loucks, Jeff

    2011-01-01

    Recent evidence indicates that observers' sensitivity to configural information in dynamic human action is disrupted when action is inverted, whereas sensitivity to featural action information is not. The current research involved two experiments that expand upon this basic finding. Experiment 1 revealed that featural and configural action information are processed similarly in static representations of action as in dynamic action. Experiment 2 indicated that configural processing is uniquely sensitive to orientation only in human action as compared to a similar control stimulus. These findings further support the idea that the perception of action recruits specialized orientation-specific configural processing, and parallel similar findings in face perception and visual expertise. PMID:22208127

  8. SOFIA (Stratospheric Observatory For Infrared Astronomy) with Telescope Configuration Changes

    NASA Technical Reports Server (NTRS)

    2001-01-01

    SOFIA (Stratospheric Observatory For Infrared Astronomy) with Telescope Configuration Changes Artwork. Concepts: Based on 18 Years of Experience of Kuiper Airborne Observatory (KAO) Operation, Characteristics, Operations and Science

  9. Dynamic configuration of the CMS Data Acquisition cluster

    NASA Astrophysics Data System (ADS)

    Bauer, G.; Behrens, U.; Biery, K.; Boyer, V.; Branson, J.; Cano, E.; Cheung, H.; Ciganek, M.; Cittolin, S.; Coarasa, J. A.; Deldicque, C.; Dusinberre, E.; Erhan, S.; Fortes Rodrigues, F.; Gigi, D.; Glege, F.; Gomez-Reino, R.; Gutleber, J.; Hatton, D.; Laurens, J. F.; Lopez Perez, J. A.; Meijers, F.; Meschi, E.; Meyer, A.; Mommsen, R. K.; Moser, R.; O'Dell, V.; Oh, A.; Orsini, L. B.; Patras, V.; Paus, C.; Petrucci, A.; Pieri, M.; Racz, A.; Sakulin, H.; Sani, M.; Schieferdecker, P.; Schwick, C.; Shpakov, D.; Simon, S.; Sumorok, K.; Zanetti, M.

    2010-04-01

    The CMS Data Acquisition cluster, which runs around 10000 applications, is configured dynamically at run time. XML configuration documents determine what applications are executed on each node and over what networks these applications communicate. Through this mechanism the DAQ System may be adapted to the required performance, partitioned in order to perform (test-) runs in parallel, or re-structured in case of hardware faults. This paper presents the configuration procedure and the CMS DAQ Configurator tool, which is used to generate comprehensive configurations of the CMS DAQ system based on a high-level description given by the user. Using a database of configuration templates and a database containing a detailed model of hardware modules, data and control links, nodes and the network topology, the tool automatically determines which applications are needed, on which nodes they should run, and over which networks the event traffic will flow. The tool computes application parameters and generates the XML configuration documents and the configuration of the run-control system. The performance of the configuration procedure and the tool as well as operational experience during CMS commissioning and the first LHC runs are discussed.

  10. Configuration of a shear web based actuation system

    NASA Astrophysics Data System (ADS)

    Natterer, Franz Josef; Monner, Hans-Peter

    2010-04-01

    Shape adaptive systems and structural configurations are necessary to fulfill the demands of a future unmanned aerial vehicle structure. Predominantly the present approaches are based on a passive load-bearing structure having smart actuation systems deforming the passive structural configuration elastically in the wanted shape. Therefore the actuation system can be based on discrete actuators, like electrically driven motors using gearing systems to transform the displacement into the structure or on smart material configurations placed on the load bearing passive structure, deforming the structure within the elastic region into the wanted shape. Using smart materials within load-bearing structures, elastic and static strength properties vary between passive and active structures. Matching these properties is a great challenge for future structural configurations. This is a successful approach for certain applications, e.g. smart rotor blade. The availability of two-dimensional smart actuator configurations with distinct actuation orientation allows the definition of a distinct load bearing active structure. Therefore the so called "web" of a spar-equivalent configuration was substituted by such a smart material actuator also known as macro fiber composite (MFC). Activating the web of the active cantilevered spar-configuration is resulting in a free end displacement. The main advantage lies in the fact that this approach will allow larger active displacements in comparison to a passive structural configuration with applied smart material actuators. Within the paper the process of developing the shear web based actuation system with configuration details will be illustrated and future steps will be proposed.

  11. Assembly of filamentary void galaxy configurations

    NASA Astrophysics Data System (ADS)

    Rieder, Steven; van de Weygaert, Rien; Cautun, Marius; Beygu, Burcu; Portegies Zwart, Simon

    2013-10-01

    We study the formation and evolution of filamentary configurations of dark matter haloes in voids. Our investigation uses the high-resolution Λ cold dark matter simulation CosmoGrid to look for void systems resembling the VGS_31 elongated system of three interacting galaxies that was recently discovered by the Void Galaxy Survey inside a large void in the Sloan Digital Sky Survey galaxy redshift survey. H I data revealed these galaxies to be embedded in a common elongated envelope, possibly embedded in intravoid filament. In the CosmoGrid simulation we look for systems similar to VGS_31 in mass, size and environment. We find a total of eight such systems. For these systems, we study the distribution of neighbour haloes, the assembly and evolution of the main haloes and the dynamical evolution of the haloes, as well as the evolution of the large-scale structure in which the systems are embedded. The spatial distribution of the haloes follows that of the dark matter environment. We find that VGS_31-like systems have a large variation in formation time, having formed between 10 Gyr ago and the present epoch. However, the environments in which the systems are embedded evolved to resemble each other substantially. Each of the VGS_31-like systems is embedded in an intravoid wall, that no later than z = 0.5 became the only prominent feature in its environment. While part of the void walls retain a rather featureless character, we find that around half of them are marked by a pronounced and rapidly evolving substructure. Five haloes find themselves in a tenuous filament of a few h-1 Mpc long inside the intravoid wall. Finally, we compare the results to observed data from VGS_31. Our study implies that the VGS_31 galaxies formed in the same (proto)filament, and did not meet just recently. The diversity amongst the simulated halo systems indicates that VGS_31 may not be typical for groups of galaxies in voids.

  12. CRANS - CONFIGURABLE REAL-TIME ANALYSIS SYSTEM

    NASA Technical Reports Server (NTRS)

    Mccluney, K.

    1994-01-01

    In a real-time environment, the results of changes or failures in a complex, interconnected system need evaluation quickly. Tabulations showing the effects of changes and/or failures of a given item in the system are generally only useful for a single input, and only with regard to that item. Subsequent changes become harder to evaluate as combinations of failures produce a cascade effect. When confronted by multiple indicated failures in the system, it becomes necessary to determine a single cause. In this case, failure tables are not very helpful. CRANS, the Configurable Real-time ANalysis System, can interpret a logic tree, constructed by the user, describing a complex system and determine the effects of changes and failures in it. Items in the tree are related to each other by Boolean operators. The user is then able to change the state of these items (ON/OFF FAILED/UNFAILED). The program then evaluates the logic tree based on these changes and determines any resultant changes to other items in the tree. CRANS can also search for a common cause for multiple item failures, and allow the user to explore the logic tree from within the program. A "help" mode and a reference check provide the user with a means of exploring an item's underlying logic from within the program. A commonality check determines single point failures for an item or group of items. Output is in the form of a user-defined matrix or matrices of colored boxes, each box representing an item or set of items from the logic tree. Input is via mouse selection of the matrix boxes, using the mouse buttons to toggle the state of the item. CRANS is written in C-language and requires the MIT X Window System, Version 11 Revision 4 or Revision 5. It requires 78K of RAM for execution and a three button mouse. It has been successfully implemented on Sun4 workstations running SunOS, HP9000 workstations running HP-UX, and DECstations running ULTRIX. No executable is provided on the distribution medium; however

  13. An experimental study of several wind tunnel wall configurations using two V/STOL model configurations. [low speed wind tunnels

    NASA Technical Reports Server (NTRS)

    Binion, T. W., Jr.

    1975-01-01

    Experiments were conducted in the low speed wind tunnel using two V/STOL models, a jet-flap and a jet-in-fuselage configuration, to search for a wind tunnel wall configuration to minimize wall interference on V/STOL models. Data were also obtained on the jet-flap model with a uniform slotted wall configuration to provide comparisons between theoretical and experimental wall interference. A test section configuration was found which provided some data in reasonable agreement with interference-free results over a wide range of momentum coefficients.

  14. Are Preschoolers Sensitive to Configural Information in Faces?

    ERIC Educational Resources Information Center

    Pellicano, Elizabeth; Rhodes, Gillian; Peters, Marianne

    2006-01-01

    Several researchers have proposed that developmental improvements in children's face recognition abilities might reflect an increasing reliance on configural information (i.e. spatial relations between features) in faces (Carey & Diamond, 1994; Mondloch, Le Grand & Maurer, 2002). We investigated 4- and 5-year-olds' use of configural information…

  15. 47 CFR 22.923 - Cellular system configuration.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Cellular system configuration. 22.923 Section... MOBILE SERVICES Cellular Radiotelephone Service § 22.923 Cellular system configuration. Mobile stations... directly or through cellular repeaters. Auxiliary test stations may communicate with base or...

  16. 40 CFR 204.55-3 - Configuration identification.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Configuration identification. 204.55-3 Section 204.55-3 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) NOISE ABATEMENT PROGRAMS NOISE EMISSION STANDARDS FOR CONSTRUCTION EQUIPMENT Portable Air Compressors § 204.55-3 Configuration identification. (a) A...

  17. 40 CFR 205.55-3 - Configuration identification.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Configuration identification. 205.55-3 Section 205.55-3 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) NOISE ABATEMENT PROGRAMS TRANSPORTATION EQUIPMENT NOISE EMISSION CONTROLS Medium and Heavy Trucks § 205.55-3 Configuration identification. (a) A separate...

  18. Criteria Underlying the Formation of Alternative IMS Configurations.

    ERIC Educational Resources Information Center

    Dave, Ashok

    To assist the formation of IMS (Instructional Management System) configurations, three categories of characteristics are developed and explained. Categories 1 and 2 emphasize automation, and the necessity of forming workable configurations to carry out instructional management for Southwest Regional Laboratory developed instructional and/or…

  19. Three Configurations of School-University Partnerships: An Exploratory Study

    ERIC Educational Resources Information Center

    Baker, Paul J.

    2011-01-01

    This paper presents an array of structural configurations that invite new consideration of the necessary conditions for developing systemic school reform; first by reviewing the current literature, and then by examining thirty-six existing partnerships as structural configurations, an exploratory typology for the analysis of successful…

  20. Narrative Configuration: Some Notes on the Workings of Hindsight

    ERIC Educational Resources Information Center

    Kvernbekk, Tone

    2013-01-01

    In this paper I analyze the role of hindsight in narrative configuration. Configuration means the grasping together of disparate elements into a coherent whole. I argue that hindsight, importantly, brings the temporal constraints on what we can know to the fore, but is a double-edged sword. On the one hand, hindsight is an indispensable tool both…

  1. Automatic blocking for complex three-dimensional configurations

    NASA Technical Reports Server (NTRS)

    Dannenhoffer, John F., III

    1995-01-01

    A new blocking technique for complex three-dimensional configurations is described. This new technique is based upon the concept of an abstraction, or squared-up representation, of the configuration and the associated grid. By allowing the user to describe blocking requirements in natural terms (such as 'wrap a grid around this leading edge' or 'make all grid lines emanating from this wall orthogonal to it'), users can quickly generate complex grids around complex configurations, while still maintaining a high level of control where desired. An added advantage of the abstraction concept is that once a blocking is defined for a class of configurations, it can be automatically applied to other configurations of the same class, making the new technique particularly well suited for the parametric variations which typically occur during design processes. Grids have been generated for a variety of real-world, two- and three-dimensional configurations. In all cases, the time required to generate the grid, given just an electronic form of the configuration, was at most a few days. Hence with this new technique, the generation of a block-structured grid is only slightly more expensive than the generation of an unstructured grid for the same configuration.

  2. Three Studies on Configural Face Processing by Chimpanzees

    ERIC Educational Resources Information Center

    Parr, Lisa A.; Heintz, Matthew; Akamagwuna, Unoma

    2006-01-01

    Previous studies have demonstrated the sensitivity of chimpanzees to facial configurations. Three studies further these findings by showing this sensitivity to be specific to second-order relational properties. In humans, this type of configural processing requires prolonged experience and enables subordinate-level discriminations of many…

  3. Software configuration management plan for HANDI 2000 business management system

    SciTech Connect

    BENNION, S.I.

    1999-02-10

    The Software Configuration Management Plan (SCMP) describes the configuration management and control environment for HANDI 2000 for the PP and PS software, as well as any custom developed software. This plan establishes requirements and processes for uniform documentation and coordination of HANDI 2000. This SCMP becomes effective as of this document's acceptance and will provide guidance through implementation efforts.

  4. On Configurational Formulations in the Director Theory of Rods

    NASA Astrophysics Data System (ADS)

    Irschik, Hans

    It is shown how the configurational laws of balance and jump for the director theory of rods can be derived as consequences of the fundamental rod laws of balance of linear, director and angular momentum, and of energy. The configura-tional relations so derived are independent from constitutive relations.

  5. 48 CFR 352.239-70 - Standard for security configurations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 4 2010-10-01 2010-10-01 false Standard for security... Standard for security configurations. As prescribed in 339.101(d)(1), the Contracting Officer shall insert the following clause: Standard for Security Configurations (January 2010) (a) The Contractor...

  6. 48 CFR 352.239-70 - Standard for security configurations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 4 2012-10-01 2012-10-01 false Standard for security... Standard for security configurations. As prescribed in 339.101(d)(1), the Contracting Officer shall insert the following clause: Standard for Security Configurations (January 2010) (a) The Contractor...

  7. 48 CFR 352.239-70 - Standard for security configurations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 4 2014-10-01 2014-10-01 false Standard for security... Standard for security configurations. As prescribed in 339.101(d)(1), the Contracting Officer shall insert the following clause: Standard for Security Configurations (January 2010) (a) The Contractor...

  8. 48 CFR 352.239-70 - Standard for security configurations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 4 2011-10-01 2011-10-01 false Standard for security... Standard for security configurations. As prescribed in 339.101(d)(1), the Contracting Officer shall insert the following clause: Standard for Security Configurations (January 2010) (a) The Contractor...

  9. 48 CFR 352.239-70 - Standard for security configurations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 4 2013-10-01 2013-10-01 false Standard for security... Standard for security configurations. As prescribed in 339.101(d)(1), the Contracting Officer shall insert the following clause: Standard for Security Configurations (January 2010) (a) The Contractor...

  10. Heuristic search in robot configuration space using variable metric

    NASA Technical Reports Server (NTRS)

    Verwer, Ben J. H.

    1987-01-01

    A method to generate obstacle free trajectories for both mobile robots and linked robots is proposed. The approach generates the shortest paths in a configuration space. The metric in the configuration space can be adjusted to obtain a tradeoff between safety and velocity by imposing extra costs on paths near obstacles.

  11. Demystifying Introductory Chemistry. Part 1: Electron Configurations from Experiment.

    ERIC Educational Resources Information Center

    Gillespie, Ronald J.; And Others

    1996-01-01

    Presents suggestions for alternative presentations of some of the material that usually forms part of the introductory chemistry course. Emphasizes development of concepts from experimental results. Discusses electronic configurations and quantum numbers, experimental evidence for electron configurations, deducing the shell model from the periodic…

  12. Turning Configural Processing Upside Down: Part and Whole Body Postures

    ERIC Educational Resources Information Center

    Reed, Catherine L.; Stone, Valerie E.; Grubb, Jefferson D.; McGoldrick, John E.

    2006-01-01

    Like faces, body postures are susceptible to an inversion effect in untrained viewers. The inversion effect may be indicative of configural processing, but what kind of configural processing is used for the recognition of body postures must be specified. The information available in the body stimulus was manipulated. The presence and magnitude of…

  13. Robust design of configurations and parameters of adaptable products

    NASA Astrophysics Data System (ADS)

    Zhang, Jian; Chen, Yongliang; Xue, Deyi; Gu, Peihua

    2014-03-01

    An adaptable product can satisfy different customer requirements by changing its configuration and parameter values during the operation stage. Design of adaptable products aims at reducing the environment impact through replacement of multiple different products with single adaptable ones. Due to the complex architecture, multiple functional requirements, and changes of product configurations and parameter values in operation, impact of uncertainties to the functional performance measures needs to be considered in design of adaptable products. In this paper, a robust design approach is introduced to identify the optimal design configuration and parameters of an adaptable product whose functional performance measures are the least sensitive to uncertainties. An adaptable product in this paper is modeled by both configurations and parameters. At the configuration level, methods to model different product configuration candidates in design and different product configuration states in operation to satisfy design requirements are introduced. At the parameter level, four types of product/operating parameters and relations among these parameters are discussed. A two-level optimization approach is developed to identify the optimal design configuration and its parameter values of the adaptable product. A case study is implemented to illustrate the effectiveness of the newly developed robust adaptable design method.

  14. CMS Configuration Editor: GUI based application for user analysis job

    NASA Astrophysics Data System (ADS)

    de Cosa, A.

    2011-12-01

    We present the user interface and the software architecture of the Configuration Editor for the CMS experiment. The analysis workflow is organized in a modular way integrated within the CMS framework that organizes in a flexible way user analysis code. The Python scripting language is adopted to define the job configuration that drives the analysis workflow. It could be a challenging task for users, especially for newcomers, to develop analysis jobs managing the configuration of many required modules. For this reason a graphical tool has been conceived in order to edit and inspect configuration files. A set of common analysis tools defined in the CMS Physics Analysis Toolkit (PAT) can be steered and configured using the Config Editor. A user-defined analysis workflow can be produced starting from a standard configuration file, applying and configuring PAT tools according to the specific user requirements. CMS users can adopt this tool, the Config Editor, to create their analysis visualizing in real time which are the effects of their actions. They can visualize the structure of their configuration, look at the modules included in the workflow, inspect the dependences existing among the modules and check the data flow. They can visualize at which values parameters are set and change them according to what is required by their analysis task. The integration of common tools in the GUI needed to adopt an object-oriented structure in the Python definition of the PAT tools and the definition of a layer of abstraction from which all PAT tools inherit.

  15. 14 CFR 23.302 - Canard or tandem wing configurations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Canard or tandem wing configurations. 23.302 Section 23.302 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... General § 23.302 Canard or tandem wing configurations. The forward structure of a canard or tandem...

  16. 14 CFR 23.302 - Canard or tandem wing configurations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Canard or tandem wing configurations. 23.302 Section 23.302 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... General § 23.302 Canard or tandem wing configurations. The forward structure of a canard or tandem...

  17. 14 CFR 23.302 - Canard or tandem wing configurations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Canard or tandem wing configurations. 23.302 Section 23.302 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... General § 23.302 Canard or tandem wing configurations. The forward structure of a canard or tandem...

  18. 14 CFR 23.302 - Canard or tandem wing configurations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Canard or tandem wing configurations. 23.302 Section 23.302 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... General § 23.302 Canard or tandem wing configurations. The forward structure of a canard or tandem...

  19. 14 CFR 23.302 - Canard or tandem wing configurations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Canard or tandem wing configurations. 23.302 Section 23.302 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... General § 23.302 Canard or tandem wing configurations. The forward structure of a canard or tandem...

  20. Configurating a supercomputer for an interactive scientific workload

    SciTech Connect

    Anderson, W.; Brice, R.; Alexander, W.

    1982-01-01

    A detailed, validated simulation model of an existing Cray-1 running under an interactive operating system was used to investigate configurations of a new supercomputer recently announced by the same vendor. The goal was to determine the optimum configuration for a known interactive scientific workload. Questions considered included how much main memory would be needed and whether to acquire an optional fast swapping device.