Science.gov

Sample records for figure-eight-shaped null-flux coil

  1. Magnetic damping forces in figure-eight-shaped null-flux coil suspension systems

    SciTech Connect

    He, Jianliang; Coffey, H.

    1997-08-01

    This paper discusses magnetic damping forces in figure-eight-shaped null-flux coil suspension systems, focusing on the Holloman maglev rocket system. The paper also discusses simulating the damping plate, which is attached to the superconducting magnet by two short-circuited loop coils in the guideway. Closed-form formulas for the magnetic damping coefficient as functions of heave-and-sway displacements are derived by using a dynamic circuit model. These formulas are useful for dynamic stability studies.

  2. Computer modeling and experimental verification of figure-eight-shaped null-flux coil suspension system

    SciTech Connect

    He, J.L.; Mulcahey, T.M.; Rote, D.M.; Kelly, T.

    1994-12-01

    This report discusses the computer modeling and experimental verification of the magnetic forces associated with a figure-eight-shaped null-flux coil suspension system. A set of computer codes called COILGDWY, were developed on the basis of the dynamic circuit model and verified by means of a laboratory model. The experimental verification was conducted with a rotating PVC drum, the surface of which held various types of figure-eight-shaped null-flux coils that interacted with a stationary permanent magnet. The transient and dynamic magnetic forces between the stationary magnet and the rotating conducting coils were measured and compared with results obtained from the computer model. Good agreement between the experimental results and computer simulations was obtained. The computer model can also be used to calculate magnetic forces in a large-scale magnetic-levitation system.

  3. Study on figure-eight-shaped coil electrodynamic suspension magnetic levitation systems without cross-connection

    SciTech Connect

    Ribani, P.L.; Urbano, N.

    2000-01-01

    Two figure-eight-shaped coils for electrodynamic suspension (EDS) magnetic levitation (MAGLEV) systems without cross-connection are proposed and analyzed. The guideway coils are positioned under the MAGLEV vehicle; they are parallel to the horizontal plane. The interaction of a magnetic module on the vehicle, composed of three or four superconducting (SC) coils, with a guideway module, comprised of two figure-eight coils, is studied by means of the dynamic circuit theory. The currents in the SC coils are supposed to be constant in time while they move as a rigid body, with a constant velocity. Some results are presented and compared with those for a standard side-wall cross-connected system.

  4. Designing with null flux coils

    SciTech Connect

    Davey, K.R.

    1997-09-01

    Null flux were suggested by Danby and Powell in the late 1960`s as a useful means for realizing induced lift with little drag. As an array of alternating magnets is translated past a set of null flux coils, the currents induced in these coils act to vertically center the magnets on those coils. At present, one Japanese MAGLEV system company and two American-based companies are employing either null flux or flux eliminating coils in their design for high speed magnetically levitated transportation. The principle question addressed in paper is: what is the proper choice of coil length to magnet length in a null flux system? A generic analysis in the time and frequency domain is laid out with the intent of showing the optimal design specification in terms of coil parameters.

  5. Calculation of motion induced eddy current forces in null flux coils

    SciTech Connect

    Davey, K.; Morris, T.; Shaaf, J.; Rote, D.

    1995-11-01

    Time dependent motion induced eddy current forces can be quite difficult to compute. The movement of null flux coils between magnets is approached using a coupled boundary element-circuit approach to compute the forces on the structure. The technique involves treating the magnets as a separate circuit whose current is dictated by the product of the magnet thickness and the working coercivity. The mutual inductance between the windows of the moving null flux coil and the stationary equivalent magnet coil hold the key for predicting lift, guidance, and drag forces on the coil. The rate of change of these inductances with respect to position determines the forces and currents. A steady state approximation to these forces is derived in addition to a numerical simulation when the steady state assumption is invalid. The results compare favorably to laboratory results from a 4 ft. diameter experimental test wheel.

  6. Dual-keel electrodynamic maglev system

    DOEpatents

    He, Jianliang; Wang, Zian; Rote, Donald M.; Coffey, Howard T.; Hull, John R.; Mulcahy, Thomas M.; Cal, Yigang

    1996-01-01

    A propulsion and stabilization system with a plurality of superconducting magnetic devices affixed to the dual-keels of a vehicle, where the superconducting magnetic devices produce a magnetic field when energized. The system also includes a plurality of figure-eight shaped null-flux coils affixed to opposing vertical sides of slots in a guideway. The figure-eight shaped null-flux coils are vertically oriented, laterally cross-connected in parallel, longitudinally connected in series, and continue the length of the vertical slots providing levitation and guidance force. An external power source energizes the figure-eight shaped null-flux coils to create a magnetic traveling wave that interacts with the magnetic field produced by the superconducting magnets to impart motion to the vehicle.

  7. Dual-keel electrodynamic maglev system

    DOEpatents

    He, J.L.; Wang, Z.; Rote, D.M.; Coffey, H.T.; Hull, J.R.; Mulcahy, T.M.; Cal, Y.

    1996-12-24

    A propulsion and stabilization system is disclosed with a plurality of superconducting magnetic devices affixed to the dual-keels of a vehicle, where the superconducting magnetic devices produce a magnetic field when energized. The system also includes a plurality of figure-eight shaped null-flux coils affixed to opposing vertical sides of slots in a guideway. The figure-eight shaped null-flux coils are vertically oriented, laterally cross-connected in parallel, longitudinally connected in series, and continue the length of the vertical slots providing levitation and guidance force. An external power source energizes the figure-eight shaped null-flux coils to create a magnetic traveling wave that interacts with the magnetic field produced by the superconducting magnets to impart motion to the vehicle. 6 figs.

  8. Dual-keel electrodynamic maglev system

    SciTech Connect

    He, J.; Wang, Z.; Rote, D.M.; Coffey, H.T.; Hull, J.R.; Mulcahy, T.M.; Cai, Y.

    1995-12-31

    A propulsion and stabilization system with a plurality of superconducting magnetic devices affixed to the dual-keels of a vehicle, where the superconducting magnetic devices produce a magnetic field when energized. The system also includes a plurality of figure-eight shaped null-flux coils affixed to opposing vertical sides of slots in a guideway. The figure-eight shaped null-flux coils are vertically oriented, laterally cross-connected in parallel, longitudinally connected in series, and continue the length of the vertical slots providing levitation and guidance force. An external power source energizes the figure-eight shaped null-flux coils to create a magnetic traveling wave that interacts with the magnetic field produced by the superconducting magnets to impart motion to the vehicle.

  9. Dynamic Stability of Lateral and Yawing Motions in the Double Null-Flux EDS System

    NASA Astrophysics Data System (ADS)

    Murai, Toshiaki; Yoshioka, Hiroshi; Sugino, Motohiko

    The double null-flux electro-dynamic suspension (EDS) in the superconducting maglev has the coupling lateral and yawing stiffness, which does not coincide with each other, so special attention should be paid to the dynamic stability of lateral and yawing motions. This paper describes their intrinsic dynamic stability by analyzing the lateral and yawing motions of bogie levitated by the double null-flux EDS.

  10. Study of Japanese electrodynamic-suspension maglev systems

    NASA Astrophysics Data System (ADS)

    He, J. L.; Rote, D. M.; Coffey, H. T.

    1994-04-01

    This report presents the results of a study of the Japanese MLU magnetic levitation (maglev) system. The development of the MLU system is reviewed, and the dynamic circuit model then is introduced and applied to the figure-eight-shaped null-flux coil suspension system. Three different types of figure-eight-shaped null-flux suspension systems are discussed in detail: (1) the figure-eight-shaped null-flux coil suspension system without cross-connection; (2) the combined suspension and guidance system; and (3) the combined propulsion, levitation, and guidance system. The electrodynamic suspension maglev systems developed in Japan seem to be very promising and could result in a commercial application in the near future.

  11. Study of Japanese electrodynamic-suspension maglev systems

    SciTech Connect

    He, J.L.; Rote, D.M.; Coffey, H.T.

    1994-04-01

    This report presents the results of a study of the Japanese MLU magnetic-levitation (maglev) system. The development of the MLU system is reviewed, and the dynamic circuit model then is introduced and applied to the figure-eight-shaped null-flux coil suspension system. Three different types of figure-eight-shaped null-flux suspension systems are discussed in detail: (1) the figure-eight-shaped null-flux coil suspension system without cross-connection; (2) the combined suspension and guidance system; and (3) the combined propulsion, levitation, and guidance system. The electrodynamic-suspension maglev systems developed in Japan seem to be very promising and could result in a commercial application in the near future.

  12. Design approaches and parameters for magnetically levitated transport systems. [Null flux suspension (Maglev)

    SciTech Connect

    Danby, G.T.; Powell, J.R.

    1988-01-01

    Mechanically levitated transport system approaches are assessed with regard to thrust power needs, track cost, suspension stability, and safety. The null flux suspension appears as the favored approach, having the least thrust power requirements, highest stability, and lowest amount of track material. Various null flux configurations are described together with their operating parameters. The Linear Synchronous Motor (LSM) propulsion system is also described for propelling the suspended vehicles. Cryogenics and superconductivity aspects are discussed and the effect of high T/sub c/ superconductors evaluated. 13 refs., 16 figs., 2 tabs.

  13. Forces on a magnet moving past figure-eight coils

    SciTech Connect

    Mulcahy, T.H.; He, Jianliang; Rote, D.M.; Rossing, T.D.

    1993-03-01

    For the first time, the lift, drag, and guidance forces acting on a permanent magnet are measured as the magnet passes over different arrays of figure-eight (null-flux) coils. The experimental results are in good agreement with the predictions of dynamic circuit theory, which is used to explain more optimal coil arrays.

  14. Dual-keel electrodynamic Maglev system

    SciTech Connect

    He, Jianliang; Rote, D.M.; Wang, Zian; Coffey, H.T.

    1995-12-31

    This paper introduces a new concept for an electrodynamic-suspension maglev system that has a dual-keel arrangement. Each keel consists of a row of superconducting magnets aboard the vehicle. The keels move in troughs in the guideway that are each lined with pairs of figure-eight-shaped null-flux coils. Each pair of null-flux coils is cross-connected to produce null-flux suspension and guidance force. The cross-connected figure-eight null-flux coils in each trough are also energized by a three-phase power supply to produce propulsive force. Preliminary analysis shows that the new system has many advantages over other EDS systems in terms of system performance and dynamic stability.

  15. Integrated null-flux suspension and multiphase propulsion system for magnetically-levitated vehicles

    DOEpatents

    Rote, D.M.; He, Jianliang; Johnson, L.R.

    1992-01-01

    This report discusses a propulsion and stabilization system comprising a series of figure 8 coils mounted vertically on the walls of the guideway to provide suspension, lateral guidance and propulsion of a magnetically levitated vehicle. This system further allows for altering the magnetic field effects by changing the relative position of the loops comprising the figure 8 coils either longitudinally and/or vertically with resulting changes in the propulsion, the vertical stability, and the suspension.

  16. Integrated null-flux suspension and multiphase propulsion system for magnetically-levitated vehicles

    DOEpatents

    Rote, Donald M.; He, Jianliang; Johnson, Larry R.

    1994-01-01

    A propulsion and stabilization system comprising a series of FIG. 8 coils mounted vertically on the walls of the guideway to provide suspension, lateral guidance and propulsion of a magnetically levitated vehicle. This system further allows for altering the magnetic field effects by changing the relative position of the loops comprising the FIG. 8 coils either longitudinally and/or vertically with resulting changes in the propulsion, the vertical stability, and the suspension.

  17. Integrated null-flux suspension and multiphase propulsion system for magnetically-levitated vehicles

    DOEpatents

    Rote, D.M.; He, J.; Johnson, L.R.

    1994-01-04

    A propulsion and stabilization system are described comprising a series of coils mounted vertically on the walls of the guideway to provide suspension, lateral guidance, and propulsion of a magnetically levitated vehicle. This system further allows for altering the magnetic field effects by changing the relative position of the loops comprising the coils either longitudinally and/or vertically with resulting changes in the propulsion, the vertical stability, and the suspension. 8 figures.

  18. Forces on a magnet moving past figure-eight coils

    SciTech Connect

    Mulcahy, T.M.; He, J.; Rote, D.M. ); Rossing, T.D. . Dept. of Physics)

    1993-11-01

    Considerable attention has been given to the magnetic levitation of vehicles over guideways consisting of periodically-spaced conducting coils. Examples of proposed guideway configurations include arrays of independent coils (''loop track''), interconnected coils (''ladder track''), two layers of coils (double-layer ''null-flux'' track), and figure-eight coils (single-layer ''null-flux'' track). Typically, widely-separated superconducting magnets are mounted in the vehicle. A system that achieves both lift and guidance from vertical figure-eight coils in the guideway sidewalls has been developed in Japan. This system, when well designed, can have a very large lift-to-drag ratio. The authors conducted an experimental and theoretical investigation of the lift, drag, and guidance forces on a permanent magnet moving close to various arrays of figure-eight coils. The measured time-histories of the forces provide a basis for the evaluation of electrodynamic models and codes developed to analyze the magnetic levitation of vehicles using the discrete suspension coils of the null-flux type. Good correlation was found between the experimental data and the predictions of the code COIL GDWY. The authors report some of the results and discuss their application to the design of maglev systems.

  19. Design Optimization for a Maglev System Employing Flux Eliminating Coils

    NASA Technical Reports Server (NTRS)

    Davey, Kent R.

    1996-01-01

    Flux eliminating coils have received no little attention over the past thirty years as an alternative for realizing lift in a MAGLEV system. When the magnets on board the vehicle are displaced from the equilibrium or null flux point of these coils, they induce current in those coils which act to restore the coil to its null flux or centerline position. The question being addressed in this paper is that of how to choose the best coil for a given system. What appears at first glance to be an innocent question is in fact one that is actually quite involved, encompassing both the global economics and physics of the system. The real key in analyzing that question is to derive an optimization index or functional which represents the cost of the system subject to constraints, the primary constraint being that the vehicle lift itself at a certain threshold speed. Outlined in this paper is one scenario for realizing a total system design which uses sequential quadratic programming techniques.

  20. Computation of magnetic suspension of maglev systems using dynamic circuit theory

    SciTech Connect

    He, J.L.; Rote, D.M.; Coffey, H.T.

    1991-01-01

    Dynamic circuit theory is applied to several magnetic suspensions associated with maglev systems. These suspension systems are the loop-shaped coil guideway, the figure-eight-shaped null-flux coil guideway, and the continuous sheet guideway. Mathematical models, which can be used for the development of computer codes, are provided for each of these suspension systems. The differences and similarities of the models in using dynamic circuit theory are discussed in the paper. The paper emphasizes the transient and dynamic analysis and computer simulation of maglev systems. In general, the method discussed here can be applied to many electrodynamic suspension system design concepts. It is also suited for the computation of the performance of maglev propulsion systems. Numerical examples are presented in the paper. 15 refs., 7 figs., 1 tab.

  1. Computation of magnetic suspension of maglev systems using dynamic circuit theory

    NASA Technical Reports Server (NTRS)

    He, J. L.; Rote, D. M.; Coffey, H. T.

    1992-01-01

    Dynamic circuit theory is applied to several magnetic suspensions associated with maglev systems. These suspension systems are the loop-shaped coil guideway, the figure-eight-shaped null-flux coil guideway, and the continuous sheet guideway. Mathematical models, which can be used for the development of computer codes, are provided for each of these suspension systems. The differences and similarities of the models in using dynamic circuit theory are discussed in the paper. The paper emphasizes the transient and dynamic analysis and computer simulation of maglev systems. In general, the method discussed here can be applied to many electrodynamic suspension system design concepts. It is also suited for the computation of the performance of maglev propulsion systems. Numerical examples are presented in the paper.

  2. Applications of the dynamic circuit theory to maglev suspension systems

    SciTech Connect

    He, Jian Liang; Rote, D.M.; Coffey, H.T.

    1993-11-01

    This paper discusses the applications of dynamic circuit theory to electrodynamic suspension EDS systems. In particular, the paper focuses on the loop-shaped coil and the figure-eight-shaped null-flux coil suspension systems. Mathematical models, including very general force expressions that can be used for the development of computer codes, are provided for each of these suspension systems. General applications and advantages of the dynamic circuit model are summarized. The paper emphasizes the transient and dynamic analysis and computer simulation of maglev systems. In general, the method discussed here can be applied to many EDS maglev design concepts. It is also suited for the computation of the performance of maglev propulsion systems. Numerical examples are presented in the paper to demonstrate the capability of the model.

  3. α/β coiled coils

    PubMed Central

    Hartmann, Marcus D; Mendler, Claudia T; Bassler, Jens; Karamichali, Ioanna; Ridderbusch, Oswin; Lupas, Andrei N; Hernandez Alvarez, Birte

    2016-01-01

    Coiled coils are the best-understood protein fold, as their backbone structure can uniquely be described by parametric equations. This level of understanding has allowed their manipulation in unprecedented detail. They do not seem a likely source of surprises, yet we describe here the unexpected formation of a new type of fiber by the simple insertion of two or six residues into the underlying heptad repeat of a parallel, trimeric coiled coil. These insertions strain the supercoil to the breaking point, causing the local formation of short β-strands, which move the path of the chain by 120° around the trimer axis. The result is an α/β coiled coil, which retains only one backbone hydrogen bond per repeat unit from the parent coiled coil. Our results show that a substantially novel backbone structure is possible within the allowed regions of the Ramachandran space with only minor mutations to a known fold. DOI: http://dx.doi.org/10.7554/eLife.11861.001 PMID:26771248

  4. Pulse Coil Tester

    NASA Technical Reports Server (NTRS)

    Simon, Richard A.

    1988-01-01

    Set of relays tested easily and repeatedly. Pulse coil tester causes coil under test to generate transient voltage; waveform indicates condition of coil. Tester accommodates assembly of up to four coils at a time.

  5. Molecular basis of coiled-coil formation.

    PubMed

    Steinmetz, Michel O; Jelesarov, Ilian; Matousek, William M; Honnappa, Srinivas; Jahnke, Wolfgang; Missimer, John H; Frank, Sabine; Alexandrescu, Andrei T; Kammerer, Richard A

    2007-04-24

    Coiled coils have attracted considerable interest as design templates in a wide range of applications. Successful coiled-coil design strategies therefore require a detailed understanding of coiled-coil folding. One common feature shared by coiled coils is the presence of a short autonomous helical folding unit, termed "trigger sequence," that is indispensable for folding. Detailed knowledge of trigger sequences at the molecular level is thus key to a general understanding of coiled-coil formation. Using a multidisciplinary approach, we identify and characterize here the molecular determinants that specify the helical conformation of the monomeric early folding intermediate of the GCN4 coiled coil. We demonstrate that a network of hydrogen-bonding and electrostatic interactions stabilize the trigger-sequence helix. This network is rearranged in the final dimeric coiled-coil structure, and its destabilization significantly slows down GCN4 leucine zipper folding. Our findings provide a general explanation for the molecular mechanism of coiled-coil formation. PMID:17438295

  6. Coil Welding Aid

    NASA Technical Reports Server (NTRS)

    Wiesenbach, W. T.; Clark, M. C.

    1983-01-01

    Positioner holds coil inside cylinder during tack welding. Welding aid spaces turns of coil inside cylinder and applies contact pressure while coil is tack-welded to cylinder. Device facilitates fabrication of heat exchangers and other structures by eliminating hand-positioning and clamping of individual coil turns.

  7. Starfire poloidal coil systems

    SciTech Connect

    Evans, K. Jr.; Kim, S.H.; Turner, L.R.; Wang, S.T.

    1980-01-01

    The poloidal coils for STARFIRE consists of three systems: (1) equilibrium field (EF) coils; (2) ohmic heating (OH) coils; and (3) correction field (CF) coils. The EF coils are superconducting and lie outside the toroidal field (TF) coils. These coils provide the bulk of the equilibrium field necessary to keep the plasma positioned in the vacuum chamber with the desired cross sectional shape and pressure and current distributions. Having these coils outside of the TF coils requires that they have a larger stored energy and larger currents but eases the assembly, maintenance, and reliability of the coils. The STARFIRE OH system is relatively small compared to tokamaks in which the current is entirely ohmically driven. It is designed to provide sufficient flux in the early startup to raise the plasma current to the point (1 to 2 MA) where the rf current drive can take over.

  8. Protective link for superconducting coil

    DOEpatents

    Umans, Stephen D.

    2009-12-08

    A superconducting coil system includes a superconducting coil and a protective link of superconducting material coupled to the superconducting coil. A rotating machine includes first and second coils and a protective link of superconducting material. The second coil is operable to rotate with respect to the first coil. One of the first and second coils is a superconducting coil. The protective link is coupled to the superconducting coil.

  9. Immune responses to coiled coil supramolecular biomaterials

    PubMed Central

    Rudra, Jai S.; Tripathi, Pulak; Hildeman, David A.; Jung, Jangwook P.; Collier, Joel H.

    2010-01-01

    Self-assembly has been increasingly utilized in recent years to create peptide-based biomaterials for 3D cell culture, tissue engineering, and regenerative medicine, but the molecular determinants of these materials' immunogenicity have remained largely unexplored. In this study, a set of molecules that self-assembled through coiled coil oligomerization was designed and synthesized, and immune responses against them were investigated in mice. Experimental groups spanned a range of oligomerization behaviors and included a peptide from the coiled coil region of mouse fibrin that did not form supramolecular structures, an engineered version of this peptide that formed coiled coil bundles, and a peptide-PEG-peptide triblock bioconjugate that formed coiled coil multimers and supramolecular aggregates. In mice, the native peptide and engineered peptide did not produce any detectable antibody response, and none of the materials elicited detectable peptide-specific T cell responses, as evidenced by the absence of IL-2 and interferon-gamma in cultures of peptide-challenged splenocytes or draining lymph node cells. However, specific antibody responses were elevated in mice injected with the multimerizing peptide-PEG-peptide. Minimal changes in secondary structure were observed between the engineered peptide and the triblock peptide-PEG-peptide, making it possible that the triblock's multimerization was responsible for this antibody response. PMID:20708258

  10. Kinking the coiled coil--negatively charged residues at the coiled-coil interface.

    PubMed

    Straussman, Ravid; Ben-Ya'acov, Ami; Woolfson, Derek N; Ravid, Shoshana

    2007-03-01

    The coiled coil is one of the most common protein-structure motifs. It is believed to be adopted by 3-5% of all amino acids in proteins. It comprises two or more alpha-helical chains wrapped around one another. The sequences of most coiled coils are characterized by a seven-residue (heptad) repeat, denoted (abcdefg)(n). Residues at the a and d positions define the helical interface (core) and are usually hydrophobic, though about 20% are polar or charged. We show that parallel coiled-coils have a unique pattern of their negatively charged residues at the core positions: aspartic acid is excluded from these positions while glutamic acid is not. In contrast the antiparallel structures are more permissive in their amino acid usage. We show further, and for the first time, that incorporation of Asp but not Glu into the a positions of a parallel coiled coil creates a flexible hinge and that the maximal hinge angle is being directly related to the number of incorporated mutations. These new computational and experimental observations will be of use in improving protein-structure predictions, and as rules to guide rational design of novel coiled-coil motifs and coiled coil-based materials. PMID:17207815

  11. NCSX Trim Coil Design

    SciTech Connect

    M. Kalish, A. Brooks, J. Rushinski, R. Upcavage

    2009-05-29

    The National Compact Stellarator Experiment (NCSX) was being constructed at the Princeton Plasma Physics Laboratory in partnership with Oak Ridge National Laboratory before work was stopped in 2008. The objective of this experiment was to develop the stellarator concept and evaluate it's potential as a model for future fusion power plants. Stellarator design requires very precisely positioned Modular Coils of complex shape to form 3D plasmas. In the design of NCSX, Trim Coils were required to compensate for both the positioning of the coils during assembly and the fabrication tolerances of the Modular Coils. Use of the Trim Coils allowed for larger tolerances increasing ease of assembly and decreasing overall cost. A set of Trim coils was developed to suppress the toroidal flux in island regions due to misalignment, magnetic materials, and eddy currents. The requirement imposed upon the design forced the toroidal flux in island regions below 10% of the total toroidal flux in the plasma. An analysis was first performed to evaluate candidate Trim Coil configurations iterating both the size, number, and position of the coils. The design was optimized considering both performance and cost while staying within the tight restraints presented by the space limited geometry. The final design of the Trim Coils incorporated a 48 Coil top bottom symmetric set. Fabrication costs were minimized by having only two coil types and using a planar conventional design with off the shelf commercial conductor. The Trim Coil design incorporated supports made from simple structural shapes assembled together in a way which allowed for adjustment as well as accommodation for the tolerance build up on the mating surfaces. This paper will summarize the analysis that led to the optimization of the Trim Coils set, the trim coil mechanical design, thermal and stress analysis, and the design of the supporting Trim Coil structure.

  12. Electromagnetic pump stator coil

    DOEpatents

    Fanning, Alan W.; Dahl, Leslie R.

    1996-01-01

    An electrical stator coil for an electromagnetic pump includes a continuous conductor strip having first and second terminals at opposite ends thereof and an intermediate section disposed therebetween. The strip is configured in first and second coil halves, with the first coil half including a plurality of windings extending from the first terminal to the intermediate section, and the second coil half including a plurality of windings extending from the second terminal to the intermediate section. The first and second coil halves are disposed coaxially, and the first and second terminals are disposed radially inwardly therefrom with the intermediate section being disposed radially outwardly therefrom.

  13. Electromagnetic pump stator coil

    DOEpatents

    Fanning, A.W.; Dahl, L.R.

    1996-06-25

    An electrical stator coil for an electromagnetic pump includes a continuous conductor strip having first and second terminals at opposite ends thereof and an intermediate section disposed therebetween. The strip is configured in first and second coil halves, with the first coil half including a plurality of windings extending from the first terminal to the intermediate section, and the second coil half including a plurality of windings extending from the second terminal to the intermediate section. The first and second coil halves are disposed coaxially, and the first and second terminals are disposed radially inwardly therefrom with the intermediate section being disposed radially outwardly therefrom. 9 figs.

  14. Biplanar Radiofrequency Coil Design

    NASA Astrophysics Data System (ADS)

    Roberts, D. A.; Insko, E. K.; Bolinger, L.; Leigh, J. S.

    A novel geometry for radiofrequency coil design is described. In this geometry, longitudinal wires of the coil lie on two parallel planes. The currents in the wires of one plane run in the direction opposite to those of the other plane. An analytic solution is provided for the field produced by infinite surface currents running in the biplanar geometry. For the case of discrete wires, computer-generated field maps imply that the homogeneity and sensitivity of the biplanar design are superior to those of a saddle coil, but worse than those obtained in an equivalent discrete cosine or birdcage coil design. Optimization of this coil design was performed using computer simulations. The measured B1 map of an optimized, single-tuned biplanar coil compares favorably to that of an equivalent discrete cosine coil, demonstrating excellent homogeneity in the central region of the coil. A 30 × 24 × 40 cm biplanar coil has been coupled to a 1.5 T imaging system. Images of the human abdomen generated with this coil demonstrate a high degree of homogeneity across nearly all of the sensitive region of the coil.

  15. Coil bobbin for stable superconducting coils

    SciTech Connect

    Kashima, T.; Yamanaka, A.; Nishijima, S.; Okada, T.

    1996-12-31

    The coil bobbin for a.c. coils have been prepared with the high strength polyethylene fiber (DF) reinforced plastics (DFRP) or with hybrid composites reinforced by DF and glass fiber (GF). The coils with the bobbin were found to be markedly stable. The DF has a large negative thermal expansion coefficient and hence the circumferential thermal strain of bobbin can be designed by changing the ratio of DF to GF layer thickness (DF/GF). It was found that the thermal expansion coefficient in the circumferential direction of the outer surface changed from negative to positive with increasing DF/GF and became nearly zero at a DF/GF of approximately 5.1 kA rms class a.c. coils having a bobbin with a negative thermal expansion coefficient or small thermal contraction in the circumferential direction were fabricated and were confirmed to show higher quench current than that with a GFRP bobbin.

  16. Superconducting magnetic coil

    DOEpatents

    Aized, Dawood; Schwall, Robert E.

    1999-06-22

    A superconducting magnetic coil includes a plurality of sections positioned axially along the longitudinal axis of the coil, each section being formed of an anisotropic high temperature superconductor material wound about a longitudinal axis of the coil and having an associated critical current value that is dependent on the orientation of the magnetic field of the coil. The cross section of the superconductor, or the type of superconductor material, at sections along the axial and radial axes of the coil are changed to provide an increased critical current at those regions where the magnetic field is oriented more perpendicularly to the conductor plane, to thereby increase the critical current at these regions and to maintain an overall higher critical current of the coil.

  17. Superconducting magnetic coil

    DOEpatents

    Aized, D.; Schwall, R.E.

    1999-06-22

    A superconducting magnetic coil includes a plurality of sections positioned axially along the longitudinal axis of the coil, each section being formed of an anisotropic high temperature superconductor material wound about a longitudinal axis of the coil and having an associated critical current value that is dependent on the orientation of the magnetic field of the coil. The cross section of the superconductor, or the type of superconductor material, at sections along the axial and radial axes of the coil are changed to provide an increased critical current at those regions where the magnetic field is oriented more perpendicularly to the conductor plane, to thereby increase the critical current at these regions and to maintain an overall higher critical current of the coil. 15 figs.

  18. Superconducting magnetic coil

    DOEpatents

    Aized, Dawood; Schwall, Robert E.

    1996-06-11

    A superconducting magnetic coil includes a plurality of sections positioned axially along the longitudinal axis of the coil, each section being formed of an anisotropic high temperature superconductor material wound about a longitudinal axis of the coil and having an associated critical current value that is dependent on the orientation of the magnetic field of the coil. The cross section of the superconductor, or the type of superconductor material, at sections along the axial and radial axes of the coil are changed to provide an increased critical current at those regions where the magnetic field is oriented more perpendicularly to the conductor plane, to thereby increase the critical current at these regions and to maintain an overall higher critical current of the coil.

  19. MINIMARS choke coil design

    SciTech Connect

    Gurol, H.; Parmer, J.E.

    1986-01-01

    The choke coil is one of the most advanced of all the magnets in the MINIMARS tandem mirror reactor. Recent developments have enabled the high-field choke coil to be much more compact and consume less power than past designs. There are three main technology areas that have had the greatest impact on the choke coil design: (1) superfluid helium (He-II) at 1.8 K; (2) Nb/sub 3/Sn superconductor; and (3) high-strength alloys for conductor reinforcement. The purpose of this paper is to discuss the 24-T MINIMARS choke coil configuration. It is a hybrid design consisting of a superconducting (S/C) background coil and a normal (N/C) insert coil.

  20. Coil system for plasmoid thruster

    NASA Technical Reports Server (NTRS)

    Eskridge, Richard H. (Inventor); Lee, Michael H. (Inventor); Martin, Adam K. (Inventor); Fimognari, Peter J. (Inventor)

    2010-01-01

    A coil system for a plasmoid thruster includes a bias coil, a drive coil and field coils. The bias and drive coils are interleaved with one another as they are helically wound about a conical region. A first field coil defines a first passage at one end of the conical region, and is connected in series with the bias coil. A second field coil defines a second passage at an opposing end of the conical region, and is connected in series with the bias coil.

  1. Commercial applications for COIL

    NASA Astrophysics Data System (ADS)

    Solomon, Wayne C.; Carroll, David L.; King, D. M.; Fockler, L. A.; Stromberg, D. S.; Sexauer, M.; Milmoe, A.; Sentman, Lee H.

    2000-01-01

    The chemical oxygen-iodine laser (COIL) is a high power, fiber deliverable tool, which can be used for a number of different industrial applications. COIL is of particular interest because of its short fiber deliverable wavelength, high scaleable continuous wave power, and excellent material interaction properties. In past research the University of Illinois at Urbana-Champaign identified and decommissioning and decontamination (DD) of nuclear facilities as a primary focus for COIL technology. DD will be a major challenge in the coming decades. The use of a robotically driven fiber delivered cutting/ablation tool in contaminated areas promises to lower risks to workers for the DD mission. Further, the high cutting speed of COIL will significantly reduce the time required to cut contaminated equipment, reducing costs. The high power of COIL will permit the dismantling of thick stacks of piping and equipment as well as reactor vessels. COIL is very promising for the removal of material from contaminated surfaces, perhaps to depths thicker than an inch. Laser cutting and ablation minimizes dust and fumes, which reduces the required number of high efficiency particulate accumulator filters, thus reducing costly waste disposal. Other potential industrial applications for COIL are shipbuilding, automotive manufacturing, heavy machinery manufacturing, tasks requiring underwater cutting or welding, and there appear to be very promising applications for high powers lasers in the oil industry.

  2. Open coil traction system.

    PubMed

    Vibhute, Pavankumar Janardan

    2012-01-01

    Sliding mechanics have become a popular method for space closure, with the development of preadjusted edgewise appliances. Furthermore, various space closing auxiliaries have been developed and extensively evaluated for their clinical efficiency. Their effectiveness is enhanced with optimum force magnitude and low load deflection rate/force decay. With the advent of nickel-titanium (Ni-Ti) springs in orthodontics, load deflection rates have been markedly reduced. To use Ni-Ti springs, clinicians have to depend upon prefabricated closed coil springs. The open coil traction system, or open coil retraction spring, is developed utilizing Ni-Ti open coil springs for orthodontic space closure. This article describes the fabrication and clinical application of the open coil traction system, which has a number of advantages. It sustains a low load deflection rate with optimum force magnitude, and its design is adjustable for a desired length and force level. It is fail-safe for both activation and deactivation (ie, it cannot be overactivated, and the decompression limit of the open coil is controlled by the operator). The open coil traction system can be offset from the mucosa to help reduce soft tissue impingement. PMID:22567645

  3. Coil spring venting arrangement

    DOEpatents

    McCugh, R.M.

    1975-10-21

    A simple venting device for trapped gas pockets in hydraulic systems is inserted through a small access passages, operated remotely, and removed completely. The device comprises a small diameter, closely wound coil spring which is pushed through a guide temporarily inserted in the access passage. The guide has a central passageway which directs the coil spring radially upward into the pocket, so that, with the guide properly positioned for depth and properly oriented, the coil spring can be pushed up into the top of the pocket to vent it. By positioning a seal around the free end of the guide, the spring and guide are removed and the passage is sealed.

  4. Correction coil cable

    DOEpatents

    Wang, S.T.

    1994-11-01

    A wire cable assembly adapted for the winding of electrical coils is taught. A primary intended use is for use in particle tube assemblies for the Superconducting Super Collider. The correction coil cables have wires collected in wire array with a center rib sandwiched therebetween to form a core assembly. The core assembly is surrounded by an assembly housing having an inner spiral wrap and a counter wound outer spiral wrap. An alternate embodiment of the invention is rolled into a keystoned shape to improve radial alignment of the correction coil cable on a particle tube in a particle tube assembly. 7 figs.

  5. ELECTRICAL COIL STRUCTURE

    DOEpatents

    Baker, W.R.; Hartwig, A.

    1962-09-25

    A compactly wound electrical coil is designed for carrying intense pulsed currents such as are characteristic of controlled thermonuclear reaction devices. A flat strip of conductor is tightly wound in a spiral with a matching flat strip of insulator. To provide for a high fluid coolant flow through the coil with minimum pumping pressure, a surface of the conductor is scored with parallel transverse grooves which form short longitudinal coolant pasaages when the conductor is wound in the spiral configuration. Owing to this construction, the coil is extremely resistant to thermal and magnetic shock from sudden high currents. (AEC)

  6. Magnetic microhelix coil structures.

    PubMed

    Smith, Elliot J; Makarov, Denys; Sanchez, Samuel; Fomin, Vladimir M; Schmidt, Oliver G

    2011-08-26

    Together with the well-known ferro- and antiferromagnetic ordering, nature has created a variety of complex helical magnetic configurations. Here, we design and investigate three-dimensional microhelix coil structures that are radial-, corkscrew-, and hollow-bar-magnetized. The magnetization configurations of the differently magnetized coils are experimentally revealed by probing their specific dynamic response to an external magnetic field. Helix coils offer an opportunity to realize microscale geometries of the magnetic toroidal moment, observed so far only in bulk multiferroic materials. PMID:21929266

  7. Magnetic Microhelix Coil Structures

    NASA Astrophysics Data System (ADS)

    Smith, Elliot J.; Makarov, Denys; Sanchez, Samuel; Fomin, Vladimir M.; Schmidt, Oliver G.

    2011-08-01

    Together with the well-known ferro- and antiferromagnetic ordering, nature has created a variety of complex helical magnetic configurations. Here, we design and investigate three-dimensional microhelix coil structures that are radial-, corkscrew-, and hollow-bar-magnetized. The magnetization configurations of the differently magnetized coils are experimentally revealed by probing their specific dynamic response to an external magnetic field. Helix coils offer an opportunity to realize microscale geometries of the magnetic toroidal moment, observed so far only in bulk multiferroic materials.

  8. Disruption of Bcr-Abl Coiled Coil Oligomerization by Design*

    PubMed Central

    Dixon, Andrew S.; Pendley, Scott S.; Bruno, Benjamin J.; Woessner, David W.; Shimpi, Adrian A.; Cheatham, Thomas E.; Lim, Carol S.

    2011-01-01

    Oligomerization is an important regulatory mechanism for many proteins, including oncoproteins and other pathogenic proteins. The oncoprotein Bcr-Abl relies on oligomerization via its coiled coil domain for its kinase activity, suggesting that a designed coiled coil domain with enhanced binding to Bcr-Abl and reduced self-oligomerization would be therapeutically useful. Key mutations in the coiled coil domain of Bcr-Abl were identified that reduce homo-oligomerization through intermolecular charge-charge repulsion yet increase interaction with the Bcr-Abl coiled coil through additional salt bridges, resulting in an enhanced ability to disrupt the oligomeric state of Bcr-Abl. The mutations were modeled computationally to optimize the design. Assays performed in vitro confirmed the validity and functionality of the optimal mutations, which were found to exhibit reduced homo-oligomerization and increased binding to the Bcr-Abl coiled coil domain. Introduction of the mutant coiled coil into K562 cells resulted in decreased phosphorylation of Bcr-Abl, reduced cell proliferation, and increased caspase-3/7 activity and DNA segmentation. Importantly, the mutant coiled coil domain was more efficacious than the wild type in all experiments performed. The improved inhibition of Bcr-Abl through oligomeric disruption resulting from this modified coiled coil domain represents a viable alternative to small molecule inhibitors for therapeutic intervention. PMID:21659527

  9. Theory of myelin coiling.

    PubMed

    Huang, J-R

    2006-04-01

    A new model is proposed to explain coiling of myelins composed of fluid bilayers. This model allows the constituent bilayer cylinders of a myelin to be non-coaxial and the bilayer lateral tension to vary from bilayer to bilayer. The calculations show that a myelin would bend or coil to lower its free energy when the bilayer lateral tension is sufficiently large. From a mechanical point of view, the proposed coiling mechanism is analogous to the classical Euler buckling of a thin elastic rod under axial compression. The analysis of a simple two-bilayer case suggests that a bilayer lateral tension of about 1 dyne/cm can easily induce coiling of myelins of typical lipid bilayers. This model signifies the importance of bilayer lateral tension in determining the morphology of myelinic structures. PMID:16465468

  10. Borehole induction coil transmitter

    DOEpatents

    Holladay, Gale; Wilt, Michael J.

    2002-01-01

    A borehole induction coil transmitter which is a part of a cross-borehole electromagnetic field system that is used for underground imaging applications. The transmitter consists of four major parts: 1) a wound ferrite or mu-metal core, 2) an array of tuning capacitors, 3) a current driver circuit board, and 4) a flux monitor. The core is wound with several hundred turns of wire and connected in series with the capacitor array, to produce a tuned coil. This tuned coil uses internal circuitry to generate sinusoidal signals that are transmitted through the earth to a receiver coil in another borehole. The transmitter can operate at frequencies from 1-200 kHz and supplies sufficient power to permit the field system to operate in boreholes separated by up to 400 meters.

  11. NCSX Toroidal Field Coil Design

    SciTech Connect

    Kalish, M.; Rushinski, J.; Myatt, L.; Brooks, A.; Dahlgren, F.; Chrzanowski, J.; Reiersen, W.; Freudenberg, K.

    2005-10-07

    The National Compact Stellarator Experiment (NCSX) is an experimental device whose design and construction is underway at the Department of Energy's Princeton Plasma Physics Laboratory (PPPL). The primary coil systems for the NCSX device consist of the twisted plasma-shaping Modular Coils, the Poloidal Field Coils, and the Toroidal Field (TF) Coils. The TF Coils are D-shaped coils wound from hollow copper conductor, and vacuum impregnated with a glass-epoxy resin system. There are 18 identical, equally spaced TF coils providing 1/R field at the plasma. They operate within a cryostat, and are cooled by LN2, nominally, to 80K. Wedge shaped castings are assembled to the inboard face of these coils, so that inward radial loads are reacted via the nesting of each of the coils against their adjacent partners. This paper outlines the TF Coil design methodology, reviews the analysis results, and summarizes how the design and analysis support the design requirements.

  12. Hierarchical Cascades of Instability Govern the Mechanics of Coiled Coils: Helix Unfolding Precedes Coil Unzipping

    PubMed Central

    Hamed, Elham; Keten, Sinan

    2014-01-01

    Coiled coils are a fundamental emergent motif in proteins found in structural biomaterials, consisting of α-helical secondary structures wrapped in a supercoil. A fundamental question regarding the thermal and mechanical stability of coiled coils in extreme environments is the sequence of events leading to the disassembly of individual oligomers from the universal coiled-coil motifs. To shed light on this phenomenon, here we report atomistic simulations of a trimeric coiled coil in an explicit water solvent and investigate the mechanisms underlying helix unfolding and coil unzipping in the assembly. We employ advanced sampling techniques involving steered molecular dynamics and metadynamics simulations to obtain the free-energy landscapes of single-strand unfolding and unzipping in a three-stranded assembly. Our comparative analysis of the free-energy landscapes of instability pathways shows that coil unzipping is a sequential process involving multiple intermediates. At each intermediate state, one heptad repeat of the coiled coil first unfolds and then unzips due to the loss of contacts with the hydrophobic core. This observation suggests that helix unfolding facilitates the initiation of coiled-coil disassembly, which is confirmed by our 2D metadynamics simulations showing that unzipping of one strand requires less energy in the unfolded state compared with the folded state. Our results explain recent experimental findings and lay the groundwork for studying the hierarchical molecular mechanisms that underpin the thermomechanical stability/instability of coiled coils and similar protein assemblies. PMID:25028889

  13. AAFreqCoil: a new classifier to distinguish parallel dimeric and trimeric coiled coils.

    PubMed

    Wang, Xiaofeng; Zhou, Yuan; Yan, Renxiang

    2015-07-01

    Coiled coils are characteristic rope-like protein structures, constituted by one or more heptad repeats. Native coiled-coil structures play important roles in various biological processes, while the designed ones are widely employed in medicine and industry. To date, two major oligomeric states (i.e. dimeric and trimeric states) of a coiled-coil structure have been observed, plausibly exerting different biological functions. Therefore, exploration of the relationship between heptad repeat sequences and coiled coil structures is highly important. In this paper, we develop a new method named AAFreqCoil to classify parallel dimeric and trimeric coiled coils. Our method demonstrated its competitive performance when benchmarked based on 10-fold cross validation and jackknife cross validation. Meanwhile, the rules that can explicitly explain the prediction results of the test coiled coil can be extracted from the AAFreqCoil model for a better explanation of user predictions. A web server and stand-alone program implementing the AAFreqCoil algorithm are freely available at . PMID:25918905

  14. Correction coil cable

    DOEpatents

    Wang, Sou-Tien

    1994-11-01

    A wire cable assembly (10, 310) adapted for the winding of electrical coils is taught. A primary intended use is for use in particle tube assemblies (532) for the superconducting super collider. The correction coil cables (10, 310) have wires (14, 314) collected in wire arrays (12, 312) with a center rib (16, 316) sandwiched therebetween to form a core assembly (18, 318 ). The core assembly (18, 318) is surrounded by an assembly housing (20, 320) having an inner spiral wrap (22, 322) and a counter wound outer spiral wrap (24, 324). An alternate embodiment (410) of the invention is rolled into a keystoned shape to improve radial alignment of the correction coil cable (410) on a particle tube (733) in a particle tube assembly (732).

  15. Coiling of Elastic Ropes

    NASA Astrophysics Data System (ADS)

    Habibi, M.; Ribe, N. M.; Bonn, Daniel

    2007-10-01

    A rope falling onto a solid surface typically forms a series of regular coils. Here, we study this phenomenon using laboratory experiments (with cotton threads and softened spaghetti) and an asymptotic “slender-rope” numerical model. The excellent agreement between the two with no adjustable parameters allows us to determine a complete phase diagram for elastic coiling comprising three basic regimes involving different force balances (elastic, gravitational, and inertial) together with resonant “whirling string” and “whirling shaft” eigenmodes in the inertial regime.

  16. Imprinted Clay Coil Vessels

    ERIC Educational Resources Information Center

    Lohr, Tresa Rae

    2006-01-01

    The author teaches clay vessel construction in the fifth grade, and it is amazing what can be accomplished in one forty-five minute period when the expectations are clarified in the initial lesson. The author introduces clay coil vessels with a discussion of the sources of clay and how clay relates to fifth-grade science curriculum concepts such…

  17. Improved Coil for Hydrogen Dissociators

    NASA Technical Reports Server (NTRS)

    Vessot, R.

    1984-01-01

    Flat coil has rigid printed circuit substrate. New coil structure minimizes RF electric field near glass walls of plasma vessel; therefore reduces direct electron bombardment of glass. Design lends itself well to high production and standardized dimensions.

  18. Pulse Test of Coil Insulation

    NASA Technical Reports Server (NTRS)

    Kroy, Ralph E.

    1987-01-01

    Waveform of back-electromotive force reveals defects. Simple pulse test reveals defects in inductor coils. Devised for use on servovalve solenoid coils on Space Shuttle, test also applicable to transformer windings, chokes, relays, and the like.

  19. Magnetic Coil Design and Analysis

    NASA Astrophysics Data System (ADS)

    Bulatowicz, Michael

    2012-06-01

    Modified magnetic field coil geometries as described in U.S. Patent Applications US20100194506 and US20110247414 can produce substantially greater magnetic field homogeneity as compared to the traditional realized versions of idealized magnetic coil geometries such as spherical or Helmholtz. The new coil geometries will be described in detail and will be compared and contrasted to realized versions of idealized geometries, including discussion of errors not typically accounted for in traditional coil design and analysis.

  20. Wet Winding Improves Coil Encapsulation

    NASA Technical Reports Server (NTRS)

    Hill, A. J.

    1987-01-01

    Wet-winding process encapsulates electrical coils more uniformily than conventional processes. Process requires no vacuum pump and adapts easily to existing winding machines. Encapsulant applied to each layer of wire as soon as added to coil. Wet-winding process eliminates voids, giving more uniformly encapsulated coil.

  1. Design of printed circuit coils

    NASA Technical Reports Server (NTRS)

    Higgins, W. T.

    1969-01-01

    Spiral-like coil is printed with several extra turns which increase the realizable coil inductance. Included are shorting connections which not only short the extra turns, but also short out several turns of the main body. Coil tuning is accomplished by removing the shorts until the desired inductance is obtained.

  2. Coiled-coil networking shapes cell molecular machinery

    PubMed Central

    Wang, Yongqiang; Zhang, Xinlei; Zhang, Hong; Lu, Yi; Huang, Haolong; Dong, Xiaoxi; Chen, Jinan; Dong, Jiuhong; Yang, Xiao; Hang, Haiying; Jiang, Taijiao

    2012-01-01

    The highly abundant α-helical coiled-coil motif not only mediates crucial protein–protein interactions in the cell but is also an attractive scaffold in synthetic biology and material science and a potential target for disease intervention. Therefore a systematic understanding of the coiled-coil interactions (CCIs) at the organismal level would help unravel the full spectrum of the biological function of this interaction motif and facilitate its application in therapeutics. We report the first identified genome-wide CCI network in Saccharomyces cerevisiae, which consists of 3495 pair-wise interactions among 598 predicted coiled-coil regions. Computational analysis revealed that the CCI network is specifically and functionally organized and extensively involved in the organization of cell machinery. We further show that CCIs play a critical role in the assembly of the kinetochore, and disruption of the CCI network leads to defects in kinetochore assembly and cell division. The CCI network identified in this study is a valuable resource for systematic characterization of coiled coils in the shaping and regulation of a host of cellular machineries and provides a basis for the utilization of coiled coils as domain-based probes for network perturbation and pharmacological applications. PMID:22875988

  3. The Automotive Ignition Coil

    NASA Technical Reports Server (NTRS)

    Darnell, T H

    1932-01-01

    This report gives the results of a series of measurements on the secondary voltage induced in an ignition coil of typical construction under a variety of operating conditions. These results show that the theoretical predictions hitherto made as to the behavior of this type of apparatus are in satisfactory agreement with the observed facts. The large mass of data obtained is here published both for the use of other investigators who may wish to compare them with other theoretical predictions and for the use of automotive engineers who will here find definite experimental results showing the effect of secondary capacity and resistance on the crest voltage produced by ignition apparatus.

  4. Triple Halo Coil: Development and Comparison with Other TMS Coils

    NASA Astrophysics Data System (ADS)

    Rastogi, Priyam; Hadimani, Ravi; Jiles, David

    Transcranial Magnetic Stimulation (TMS) is a non-invasive stimulation technique that can be used for the treatment of various neurological disorders such as Parkinson's Disease, PTSD, TBI and anxiety by regulating synaptic activity. TMS is FDA approved for the treatment of major depressive disorder. There is a critical need to develop deep TMS coils that can stimulate deeper regions of the brain without excessively stimulating the cortex in order to provide an alternative to surgical methods. We have developed a novel multi-coil configuration called ``Triple Halo Coil'' (THC) that can stimulate deep brain regions. Investigation of induced electric and magnetic field in these regions have been achieved by computer modelling. Comparison of the results due to THC configuration have been conducted with other TMS coils such as ``Halo Coil'', circular coil and ``Figure of Eight'' coil. There was an improvement of more than 15 times in the strength of magnetic field, induced by THC configuration at 10 cm below the vertex of the head when compared with the ``Figure of Eight'' coil alone. Carver Charitable Trust.

  5. A Parallel Coiled-Coil Tetramer with Offset Helices

    SciTech Connect

    Liu,J.; Deng, Y.; Zheng, Q.; Cheng, C.; Kallenbach, N.; Lu, M.

    2006-01-01

    Specific helix-helix interactions are fundamental in assembling the native state of proteins and in protein-protein interfaces. Coiled coils afford a unique model system for elucidating principles of molecular recognition between {alpha} helices. The coiled-coil fold is specified by a characteristic seven amino acid repeat containing hydrophobic residues at the first (a) and fourth (d) positions. Nonpolar side chains spaced three and four residues apart are referred to as the 3-4 hydrophobic repeat. The presence of apolar amino acids at the e or g positions (corresponding to a 3-3-1 hydrophobic repeat) can provide new possibilities for close-packing of {alpha}-helices that includes examples such as the lac repressor tetramerization domain. Here we demonstrate that an unprecedented coiled-coil interface results from replacement of three charged residues at the e positions in the dimeric GCN4 leucine zipper by nonpolar valine side chains. Equilibrium circular dichroism and analytical ultracentrifugation studies indicate that the valine-containing mutant forms a discrete {alpha}-helical tetramer with a significantly higher stability than the parent leucine-zipper molecule. The 1.35 {angstrom} resolution crystal structure of the tetramer reveals a parallel four-stranded coiled coil with a three-residue interhelical offset. The local packing geometry of the three hydrophobic positions in the tetramer conformation is completely different from that seen in classical tetrameric structures yet bears resemblance to that in three-stranded coiled coils. These studies demonstrate that distinct van der Waals interactions beyond the a and d side chains can generate a diverse set of helix-helix interfaces and three-dimensional supercoil structures.

  6. Replaceable Sleeve Protects Welder Coil

    NASA Technical Reports Server (NTRS)

    Baker, W. L.; Simpson, C., E.

    1983-01-01

    New replaceable carbon insert for deflection coil in electron-beam welder promises to decrease maintenance costs. Inserts made from materials other than carbon (not yet tried) are less expensive, thus reducing costs even further. With carbon insert, deflection coils last longer and are easier to maintain.

  7. Magnet Coil Shorted Turn Detector

    SciTech Connect

    Dinkel, J.A.; Biggs, J.E.

    1994-03-01

    The Magnet Coil Shorted Turn Detector has been developed to facilitate the location of shorted turns in magnet coils. Finding these shorted turns is necessary to determine failure modes that are a necessary step in developing future production techniques. Up to this point, coils with shorted turns had the insulation burned off without the fault having been located. This disassembly process destroyed any chance of being able to find the fault. In order to maintain a flux balance in a coupled system such as a magnet coil, the current in a shorted turn must be opposed to the incident current. If the direction of the current in each conductor can be measured relative to the incident current, then the exact location of the short can be determined. In this device, an AC voltage is applied to the magnet under test. A small hand held B-dot pickup coil monitors the magnetic field produced by current in the individual magnet conductors. The relative phase of this pickup coil voltage is compared to a reference signal derived from the input current to detect a current reversal as the B-dot pickup coil is swept over the conductors of the coil under test. This technique however, is limited to only those conductors that are accessible to the hand held probe.

  8. The Coil Method in Contemporary Ceramics

    ERIC Educational Resources Information Center

    Nigrosh, Leon I.

    1976-01-01

    For centuries coil building has been the primary method of making pottery the world over. Many classrooms still reflect this preference for symmetrical coil building. Describes coil building and what forms can be made from it. (Author/RK)

  9. Coiled-coil intermediate filament stutter instability and molecular unfolding.

    PubMed

    Arslan, Melis; Qin, Zhao; Buehler, Markus J

    2011-05-01

    Intermediate filaments (IFs) are the key components of cytoskeleton in eukaryotic cells and are critical for cell mechanics. The building block of IFs is a coiled-coil alpha-helical dimer, consisting of several domains that include linkers and other structural discontinuities. One of the discontinuities in the dimer's coiled-coil region is the so-called 'stutter' region. The stutter is a region where a variation of the amino acid sequence pattern from other parts of the alpha-helical domains of the protein is found. It was suggested in earlier works that due to this sequence variation, the perfect coiled-coil arrangement ceases to exist. Here, we show using explicit water molecular dynamics and well-tempered metadynamics that for the coil2 domain of vimentin IFs the stutter is more stable in a non-alpha-helical, unfolded state. This causes a local structural disturbance in the alpha helix, which has a global effect on the nanomechanics of the structure. Our analysis suggests that the stutter features an enhanced tendency to unfolding even under the absence of external forces, implying a much greater structural instability than previously assumed. As a result it features a smaller local bending stiffness than other segments and presents a seed for the initiation of molecular bending and unfolding at large deformation. PMID:21516532

  10. Optimized quadrature surface coil designs

    PubMed Central

    Kumar, Ananda; Bottomley, Paul A.

    2008-01-01

    Background Quadrature surface MRI/MRS detectors comprised of circular loop and figure-8 or butterfly-shaped coils offer improved signal-to-noise-ratios (SNR) compared to single surface coils, and reduced power and specific absorption rates (SAR) when used for MRI excitation. While the radius of the optimum loop coil for performing MRI at depth d in a sample is known, the optimum geometry for figure-8 and butterfly coils is not. Materials and methods The geometries of figure-8 and square butterfly detector coils that deliver the optimum SNR are determined numerically by the electromagnetic method of moments. Figure-8 and loop detectors are then combined to create SNR-optimized quadrature detectors whose theoretical and experimental SNR performance are compared with a novel quadrature detector comprised of a strip and a loop, and with two overlapped loops optimized for the same depth at 3 T. The quadrature detection efficiency and local SAR during transmission for the three quadrature configurations are analyzed and compared. Results The SNR-optimized figure-8 detector has loop radius r8 ∼ 0.6d, so r8/r0 ∼ 1.3 in an optimized quadrature detector at 3 T. The optimized butterfly coil has side length ∼ d and crossover angle of ≥ 150° at the center. Conclusions These new design rules for figure-8 and butterfly coils optimize their performance as linear and quadrature detectors. PMID:18057975

  11. Improved Sensing Coils for SQUIDs

    NASA Technical Reports Server (NTRS)

    Penanen, Konstantin; Hahn, Inseob; Eom, Byeong Ho

    2007-01-01

    An improvement in the design and fabrication of sensing coils of superconducting quantum interference device (SQUID) magnetometers has been proposed to increase sensitivity. It has been estimated that, in some cases, it would be possible to increase sensitivity by about half or to reduce measurement time correspondingly. The pertinent aspects of the problems of design and fabrication can be summarized as follows: In general, to increase the sensitivity of a SQUID magnetometer, it is necessary to maximize the magnetic flux enclosed by the sensing coil while minimizing the self-inductance of this coil. It is often beneficial to fabricate the coil from a thicker wire to reduce its self-inductance. Moreover, to optimize the design of the coil with respect to sensitivity, it may be necessary to shape the wire to other than a commonly available circular or square cross-section. On the other hand, it is not practical to use thicker superconducting wire for the entire superconducting circuit, especially if the design of a specific device requires a persistent-current loop enclosing a remotely placed SQUID sensor. It may be possible to bond a thicker sensing-coil wire to thinner superconducting wires leading to a SQUID sensor, but it could be difficult to ensure reliable superconducting connections, especially if the bonded wires are made of different materials. The main idea is to mold the sensing coil in place, to more nearly optimum cross sectional shape, instead of making the coil by winding standard pre-fabricated wire. For this purpose, a thin superconducting wire loop that is an essential part of the SQUID magnetometer would be encapsulated in a form that would serve as a mold. A low-melting-temperature superconducting metal (e.g., indium, tin, or a lead/tin alloy) would be melted into the form, which would be sized and shaped to impart the required cross section to the coil thus formed.

  12. Coiling of a viscous filament

    NASA Astrophysics Data System (ADS)

    Samuel, A. D. T.; Ryu, W. S.; Mahadevan, L.

    1997-11-01

    A classic demonstration of fluid buckling is a daily occurence at the breakfast table, where a continuous stream of viscous fluid (honey) is often poured onto a flat surface (toast) from a sufficient height. The thin fluid filament quickly settles into a steady state; near the surface it bends into a helical shape while simultaneously rotating about the vertical and is laid out in a regular coil. This behavior is reminiscent of the coiling of a falling flexible rope. We derive a simple scaling law that predicts the coiling frequency in terms of the filament radius and the flow rate. We also verify this scaling law with the results of experiments.

  13. Laminated magnet field coil sheath

    DOEpatents

    Skaritka, John R.

    1987-12-01

    a method for manufacturing a magnet cable trim coil in a sheath assembly for use in a cryogenic particle accelerator. A precisely positioned pattern of trim coil turns is bonded to a flexible substrate sheath that is capable of withstanding cryogenic operating conditions. In the method of the invention the flexible sheath, with the trim coil pattern precisely positioned thereon, is accurately positioned at a precise location relative to a bore tube assembly of an accelerator and is then bonded to the bore tube with a tape suitable for cryogenic application. The resultant assembly can be readily handled and installed within an iron magnet yoke assembly of a suitable cryogenic particle accelerator.

  14. Laminated magnet field coil sheath

    DOEpatents

    Skaritka, J.R.

    1987-05-15

    A method for manufacturing a magnetic cable trim coil in a sheath assembly for use in a cryogenic particle accelerator. A precisely positioned pattern of trim coil turns is bonded to a flexible substrate sheath that is capable of withstanding cryogenic operating conditions. In the method of the invention the flexible substrate sheath, with the trim coil pattern precisely location relative to a bore tube assembly of an accelerator and is then bonded to the bore tube with a tape suitable for cryogenic application. The resultant assembly can be readily handled and installed within an iron magnet yoke assembly of a suitable cryogenic particle accelerator. 1 fig.

  15. ASTROMAG coil cooling study

    NASA Technical Reports Server (NTRS)

    Maytal, Ben-Zion; Vansciver, Steven W.

    1990-01-01

    ASTROMAG is a planned particle astrophysics magnetic facility. Basically it is a large magnetic spectrometer outside the Earth's atmosphere for an extended period of time in orbit on a space station. A definition team summarized its scientific objectives assumably related to fundamental questions of astrophysics, cosmology, and elementary particle physics. Since magnetic induction of about 7 Tesla is desired, it is planned to be a superconducting magnet cooled to liquid helium 2 temperatures. The general structure of ASTROMAG is based on: (1) two superconducting magnetic coils, (2) dewar of liquid helium 2 to provide cooling capability for the magnets; (3) instrumentation, matter-anti matter spectrometer (MAS) and cosmic ray isotope spectrometer (CRIS); and (4) interfaces to the shuttle and space station. Many configurations of the superconducting magnets and the dewar were proposed and evaluated, since those are the heart of the ASTROMAG. Baseline of the magnet configuration and cryostat as presented in the phase A study and the one kept in mind while doing the present study are presented. ASTROMAG's development schedule reflects the plan of launching to the space station in 1995.

  16. Growth factor identity is encoded by discrete coiled coil rotamers in the EGFR juxtamembrane region

    PubMed Central

    Doerner, Amy; Scheck, Rebecca; Schepartz, Alanna

    2015-01-01

    Summary Binding of the growth factor TGF-α to the EGFR extracellular domain is encoded through the formation of a unique anti-parallel coiled coil within the juxtamembrane segment. This new coiled coil is an ‘inside-out’ version of the coiled coil formed in the presence of EGF. A third, intermediary coiled coil interface is formed in the juxtamembrane segment when EGFR is stimulated with betacellulin. The seven growth factors that activate EGFR in mammalian systems (EGF, TGF-α, epigen, epiregulin, betacellulin, heparin-binding EGF, and amphiregulin) fall into distinct categories in which the structure of the coiled coil induced within the juxtamembrane segment correlates with cell state. The observation that coiled coil state tracks with the downstream signaling profiles for each ligand provides evidence for growth factor functional selectivity by EGFR. Encoding growth factor identity in alternative coiled coil rotamers provides a simple and elegant method for communicating chemical information across the plasma membrane. PMID:26091170

  17. High-resolution structures of a heterochiral coiled coil

    PubMed Central

    Mortenson, David E.; Steinkruger, Jay D.; Kreitler, Dale F.; Perroni, Dominic V.; Sorenson, Gregory P.; Huang, Lijun; Mittal, Ritesh; Yun, Hyun Gi; Travis, Benjamin R.; Mahanthappa, Mahesh K.; Forest, Katrina T.; Gellman, Samuel H.

    2015-01-01

    Interactions between polypeptide chains containing amino acid residues with opposite absolute configurations have long been a source of interest and speculation, but there is very little structural information for such heterochiral associations. The need to address this lacuna has grown in recent years because of increasing interest in the use of peptides generated from d amino acids (d peptides) as specific ligands for natural proteins, e.g., to inhibit deleterious protein–protein interactions. Coiled–coil interactions, between or among α-helices, represent the most common tertiary and quaternary packing motif in proteins. Heterochiral coiled–coil interactions were predicted over 50 years ago by Crick, and limited experimental data obtained in solution suggest that such interactions can indeed occur. To address the dearth of atomic-level structural characterization of heterochiral helix pairings, we report two independent crystal structures that elucidate coiled-coil packing between l- and d-peptide helices. Both structures resulted from racemic crystallization of a peptide corresponding to the transmembrane segment of the influenza M2 protein. Networks of canonical knobs-into-holes side-chain packing interactions are observed at each helical interface. However, the underlying patterns for these heterochiral coiled coils seem to deviate from the heptad sequence repeat that is characteristic of most homochiral analogs, with an apparent preference for a hendecad repeat pattern. PMID:26460035

  18. Adjustable Induction-Heating Coil

    NASA Technical Reports Server (NTRS)

    Ellis, Rod; Bartolotta, Paul

    1990-01-01

    Improved design for induction-heating work coil facilitates optimization of heating in different metal specimens. Three segments adjusted independently to obtain desired distribution of temperature. Reduces time needed to achieve required temperature profiles.

  19. Zero-angle helical coil

    NASA Technical Reports Server (NTRS)

    Troendle, J. A.

    1976-01-01

    Device is constructed of bimetallic stock material formed into segments of small diameters and fastened together by metal strips. Coil is useful in various types of actuators, such as temperature controls.

  20. Dynamics of liquid rope coiling

    NASA Astrophysics Data System (ADS)

    Habibi, Mehdi; Maleki, Maniya; Golestanian, Ramin; Ribe, Neil M.; Bonn, Daniel

    2006-12-01

    We present a combined experimental and numerical investigation of the coiling of a liquid “rope” falling on a solid surface, focusing on three little-explored aspects of the phenomenon: The time dependence of “inertio-gravitational” coiling, the systematic dependence of the radii of the coil and the rope on the experimental parameters, and the “secondary buckling” of the columnar structure generated by high-frequency coiling. Inertio-gravitational coiling is characterized by oscillations between states with different frequencies, and we present experimental observations of four distinct branches of such states in the frequency-fall height space. The transitions between coexisting states have no characteristic period, may take place with or without a change in the sense of rotation, and usually (but not always) occur via an intermediate “figure of eight” state. We present extensive laboratory measurements of the radii of the coil and of the rope within it, and show that they agree well with the predictions of a “slender-rope” numerical model. Finally, we use dimensional analysis to reveal a systematic variation of the critical column height for secondary buckling as a function of (dimensionless) flow rate and surface tension parameters.

  1. Nylon screws make inexpensive coil forms

    NASA Technical Reports Server (NTRS)

    Aucoin, G.; Rosenthal, C.

    1978-01-01

    Standard nylon screws act as coil form copper wire laid down in spiral thread. Completed coil may be bonded to printed-circuit board. However, it is impossible to tune coil by adjusting spacing between windings, technique sometimes used with air-core coils.

  2. Retrieval of Distally Migrated Coils with Detachable Intracranial Stent during Coil Embolization of Cerebral Aneurysm

    PubMed Central

    Singh, Devendra Pal; Huang, Lijin; Lee, Won Joo

    2016-01-01

    Migration of coils during endovascular procedures is a rare, but well-known complication. We are reporting two cases of successfully retrieving migrated coil using detachable intracranial stent. In both of our cases there was distal migration of coil during the intracranial aneurysm coiling procedure. The Solitaire® AB stent (Covidien, Irvine, CA, USA) was used to retrieve those coils. The stent was passed distal to the migrated coil using standard technique. It was then partially deployed and gradually withdrawn along with the entangled coil. Coil retrieval using the fully retrievable intracranial stent is a very simple, safe and easily available alternative for retrieval of distally migrated coil. PMID:27114967

  3. JET divertor coils, manufacture, assembly and testing

    NASA Astrophysics Data System (ADS)

    Dolgetta, N.; Bertolini, E.; D'Urzo, C.; Last, J. R.; Laurenti, A.; Presle, P.; Sannazzaro, G.; Tait, J.; Tesini, A.

    1994-07-01

    Four coils have been built and installed in the JET vacuum vessel to produce divertor plasmas. The coils are copper with glass epoxy insulation and are enclosed in vacuum tight Inconel cases. At the coil contractor's factory, the coil parts were manufactured and process techniques qualified. In the JET vacuum vessel the conductor bars were brazed to form the coils, which were inserted in the casings and impregnated and cured with epoxy resin.

  4. Tropomyosin lysine reactivities and relationship to coiled-coil structure.

    PubMed

    Hitchcock-DeGregori, S E; Lewis, S F; Chou, T M

    1985-06-18

    We have carried out a detailed analysis of tropomyosin structure using lysines as specific probes for the protein surface in regions of the molecule that have not been investigated by other methods. We have measured the relative reactivities of lysines in rabbit skeletal muscle alpha, alpha-tropomyosin with acetic anhydride using a competitive labeling procedure. We have identified 37 of 39 lysines and find that they range 20-fold in reactivity. The observed reactivities are related to the coiled-coil model of the tropomyosin molecule [Crick, F.H.C. (1953) Acta Crystallogr. 6, 689-697; McLachlan, A.D., Stewart, M., & Smillie, L.B. (1975) J. Mol. Biol. 98, 281-291] and other available chemical and physical information about the structure. In most cases, the observed lysine reactivities can be explained by allowable interactions with neighboring amino acid side chains on the same or facing alpha-helix. However, we found no correlation between reactivity and helical position of a given lysine. For example, lysines in the outer helical positions included lysines of low as well as high reactivity, indicating that they vary widely in their accessibility to solvent and that the coiled coil is heterogeneous along its length. Furthermore, the middle of the molecule (residues 126-182) that is susceptible to proteolysis and known to be the least stable region of the protein also contains some of the least and most reactive lysines. We have discussed the implications of our results on our understanding the structures of tropomyosin and other coiled-coil proteins as well as globular proteins containing helical regions. PMID:3927977

  5. Designed coiled coils promote folding of a recombinant bacterial collagen.

    PubMed

    Yoshizumi, Ayumi; Fletcher, Jordan M; Yu, Zhuoxin; Persikov, Anton V; Bartlett, Gail J; Boyle, Aimee L; Vincent, Thomas L; Woolfson, Derek N; Brodsky, Barbara

    2011-05-20

    Collagen triple helices fold slowly and inefficiently, often requiring adjacent globular domains to assist this process. In the Streptococcus pyogenes collagen-like protein Scl2, a V domain predicted to be largely α-helical, occurs N-terminal to the collagen triple helix (CL). Here, we replace this natural trimerization domain with a de novo designed, hyperstable, parallel, three-stranded, α-helical coiled coil (CC), either at the N terminus (CC-CL) or the C terminus (CL-CC) of the collagen domain. CD spectra of the constructs are consistent with additivity of independently and fully folded CC and CL domains, and the proteins retain their distinctive thermal stabilities, CL at ∼37 °C and CC at >90 °C. Heating the hybrid proteins to 50 °C unfolds CL, leaving CC intact, and upon cooling, the rate of CL refolding is somewhat faster for CL-CC than for CC-CL. A construct with coiled coils on both ends, CC-CL-CC, retains the ∼37 °C thermal stability for CL but shows less triple helix at low temperature and less denaturation at 50 °C. Most strikingly however, in CC-CL-CC, the CL refolds slower than in either CC-CL or CL-CC by almost two orders of magnitude. We propose that a single CC promotes folding of the CL domain via nucleation and in-register growth from one end, whereas initiation and growth from both ends in CC-CL-CC results in mismatched registers that frustrate folding. Bioinformatics analysis of natural collagens lends support to this because, where present, there is generally only one coiled-coil domain close to the triple helix, and it is nearly always N-terminal to the collagen repeat. PMID:21454493

  6. Transient voltage oscillations in coils

    SciTech Connect

    Chowdhuri, P.

    1985-01-01

    Magnet coils may be excited into internal voltage oscillations by transient voltages. Such oscillations may electrically stress the magnet's dielectric components to many times its normal stress. This may precipitate a dielectric failure, and the attendant prolonged loss of service and costly repair work. Therefore, it is important to know the natural frequencies of oscillations of a magnet during the design stage, and to determine whether the expected switching transient voltages can excite the magnet into high-voltage internal oscillations. The series capacitance of a winding significantly affects its natural frequencies. However, the series capacitance is difficult to calculate, because it may comprise complex capacitance network, consisting of intra- and inter-coil turn-to-turn capacitances of the coil sections. A method of calculating the series capacitance of a winding is proposed. This method is rigorous but simple to execute. The time-varying transient voltages along the winding are also calculated.

  7. The structure of the GemC1 coiled coil and its interaction with the Geminin family of coiled-coil proteins

    SciTech Connect

    Caillat, Christophe; Fish, Alexander; Pefani, Dafni-Eleftheria; Taraviras, Stavros; Lygerou, Zoi; Perrakis, Anastassis

    2015-10-31

    The GemC1 coiled-coil structure has subtle differences compared with its homologues Geminin and Idas. Co-expression experiments in cells and biophysical stability analysis of the Geminin-family coiled coils suggest that the GemC1 coiled coil alone is unstable. GemC1, together with Idas and Geminin, an important regulator of DNA-replication licensing and differentiation decisions, constitute a superfamily sharing a homologous central coiled-coil domain. To better understand this family of proteins, the crystal structure of a GemC1 coiled-coil domain variant engineered for better solubility was determined to 2.2 Å resolution. GemC1 shows a less typical coiled coil compared with the Geminin homodimer and the Geminin–Idas heterodimer structures. It is also shown that both in vitro and in cells GemC1 interacts with Geminin through its coiled-coil domain, forming a heterodimer that is more stable that the GemC1 homodimer. Comparative analysis of the thermal stability of all of the possible superfamily complexes, using circular dichroism to follow the unfolding of the entire helix of the coiled coil, or intrinsic tryptophan fluorescence of a unique conserved N-terminal tryptophan, shows that the unfolding of the coiled coil is likely to take place from the C-terminus towards the N-terminus. It is also shown that homodimers show a single-state unfolding, while heterodimers show a two-state unfolding, suggesting that the dimer first falls apart and the helices then unfold according to the stability of each protein. The findings argue that Geminin-family members form homodimers and heterodimers between them, and this ability is likely to be important for modulating their function in cycling and differentiating cells.

  8. Electromagnetic Gun With Commutated Coils

    NASA Technical Reports Server (NTRS)

    Elliott, David G.

    1991-01-01

    Proposed electromagnetic gun includes electromagnet coil, turns of which commutated in sequence along barrel. Electrical current fed to two armatures by brushes sliding on bus bars in barrel. Interaction between armature currents and magnetic field from coil produces force accelerating armature, which in turn, pushes on projectile. Commutation scheme chosen so magnetic field approximately coincides and moves with cylindrical region defined by armatures. Scheme has disadvantage of complexity, but in return, enables designer to increase driving magnetic field without increasing armature current. Attainable muzzle velocity increased substantially.

  9. [Two Cases of Ruptured Cerebral Aneurysm Complicated with Delayed Coil Protrusion after Coil Embolization].

    PubMed

    Furukawa, Takashi; Ogata, Atsushi; Ebashi, Ryo; Takase, Yukinori; Masuoka, Jun; Kawashima, Masatou; Abe, Tatsuya

    2016-07-01

    We report two cases of delayed coil protrusion after coil embolization for ruptured cerebral aneurysms. Case 1:An 82-year-old woman with a subarachnoid hemorrhage due to a ruptured small anterior communicating artery aneurysm underwent successful coil embolization. Eighteen days after the procedure, coil protrusion from the aneurysm into the right anterior cerebral artery was observed without any symptoms. Further coil protrusion did not develop after 28 days. Case 2:A 78-year-old woman with a subarachnoid hemorrhage due to a ruptured small left middle cerebral artery aneurysm underwent successful coil embolization. Twenty days after the procedure, coil protrusion from the aneurysm into the left middle cerebral artery was observed, with a transient ischemic attack. Further coil protrusion did not develop. Both patients recovered with antithrombotic treatment. Even though delayed coil protrusion after coil embolization is rare, it should be recognized as a long-term complication of coil embolization for cerebral aneurysms. PMID:27384117

  10. Finite element coiled cochlea model

    NASA Astrophysics Data System (ADS)

    Isailovic, Velibor; Nikolic, Milica; Milosevic, Zarko; Saveljic, Igor; Nikolic, Dalibor; Radovic, Milos; Filipović, Nenad

    2015-12-01

    Cochlea is important part of the hearing system, and thanks to special structure converts external sound waves into neural impulses which go to the brain. Shape of the cochlea is like snail, so geometry of the cochlea model is complex. The simplified cochlea coiled model was developed using finite element method inside SIFEM FP7 project. Software application is created on the way that user can prescribe set of the parameters for spiral cochlea, as well as material properties and boundary conditions to the model. Several mathematical models were tested. The acoustic wave equation for describing fluid in the cochlea chambers - scala vestibuli and scala timpani, and Newtonian dynamics for describing vibrations of the basilar membrane are used. The mechanical behavior of the coiled cochlea was analyzed and the third chamber, scala media, was not modeled because it does not have a significant impact on the mechanical vibrations of the basilar membrane. The obtained results are in good agreement with experimental measurements. Future work is needed for more realistic geometry model. Coiled model of the cochlea was created and results are compared with initial simplified coiled model of the cochlea.

  11. Wedding ring shaped excitation coil

    DOEpatents

    MacLennan, Donald A.; Tsai, Peter

    2001-01-01

    A high frequency inductively coupled electrodeless lamp includes an excitation coil with an effective electrical length which is less than one half wavelength of a driving frequency applied thereto, preferably much less. The driving frequency may be greater than 100 MHz and is preferably as high as 915 MHz. Preferably, the excitation coil is configured as a non-helical, semi-cylindrical conductive surface having less than one turn, in the general shape of a wedding ring. At high frequencies, the current in the coil forms two loops which are spaced apart and parallel to each other. Configured appropriately, the coil approximates a Helmholtz configuration. The lamp preferably utilizes an bulb encased in a reflective ceramic cup with a pre-formed aperture defined therethrough. The ceramic cup may include structural features to aid in alignment and/or a flanged face to aid in thermal management. The lamp head is preferably an integrated lamp head comprising a metal matrix composite surrounding an insulating ceramic with the excitation integrally formed on the ceramic. A novel solid-state oscillator preferably provides RF power to the lamp. The oscillator is a single active element device capable of providing over 70 watts of power at over 70% efficiency.

  12. Coupled Coils, Magnets and Lenz's Law

    ERIC Educational Resources Information Center

    Thompson, Frank

    2010-01-01

    Great scientists in the past have experimented with coils and magnets. Here we have a variation where coupling occurs between two coils and the oscillatory motion of two magnets to give somewhat surprising results. (Contains 6 figures and 1 footnote.)

  13. Bow-shaped toroidal field coils

    SciTech Connect

    Bonanos, P.

    1981-05-01

    Design features of Bow-Shaped Toroidal Field Coils are described and compared with circular and D shaped coils. The results indicate that bow coils can produce higher field strengths, store more energy and be made demountable. The design offers the potential for the production of ultrahigh toroidal fields. Included are representative coil shapes and their engineering properties, a suggested structural design and an analysis of a specific case.

  14. Design and modelling of a SMES coil

    NASA Astrophysics Data System (ADS)

    Yuan, Weijia; Campbell, A. M.; Coombs, T. A.

    2010-06-01

    The design of a Superconducting Magnetic Energy Storage (SMES) coil wound by coated conductors has been presented. Based on an existing model for coated conductor pancake coils, this paper analysed the magnetic field and current density distribution of the coil at two different operation temperatures, 77K and 22K. A comparison table of the critical currents and AC losses at these two temperatures has been presented. Several steps to improve the transport current of the coil have been suggested as well.

  15. Rotor assembly including superconducting magnetic coil

    DOEpatents

    Snitchler, Gregory L.; Gamble, Bruce B.; Voccio, John P.

    2003-01-01

    Superconducting coils and methods of manufacture include a superconductor tape wound concentrically about and disposed along an axis of the coil to define an opening having a dimension which gradually decreases, in the direction along the axis, from a first end to a second end of the coil. Each turn of the superconductor tape has a broad surface maintained substantially parallel to the axis of the coil.

  16. Multi-Canted Coils, Tubes, and Structures

    NASA Technical Reports Server (NTRS)

    Jaster, Mark L. (Inventor)

    2015-01-01

    Coil, tube, and other structures configured with a plurality of individual coils, internal structures, legs or extensions with each having multiple cants per coil, internal structure, leg or extension, and wherein the cants formed therein allow for a load-deflection force when each is compressed. In addition, any horizontal or moment forces are substantially reduced and/or eliminated when a downward vertical force is applied, as minimal or no torsion is created in the individual coils, legs or extensions.

  17. Inductively coupled wireless RF coil arrays.

    PubMed

    Bulumulla, S B; Fiveland, E; Park, K J; Foo, T K; Hardy, C J

    2015-04-01

    As the number of coils increases in multi-channel MRI receiver-coil arrays, RF cables and connectors become increasingly bulky and heavy, degrading patient comfort and slowing workflow. Inductive coupling of signals provides an attractive "wireless" approach, with the potential to reduce coil weight and cost while simplifying patient setup. In this work, multi-channel inductively coupled anterior arrays were developed and characterized for 1.5T imaging. These comprised MR receiver coils inductively (or "wirelessly") linked to secondary or "sniffer" coils whose outputs were transmitted via preamps to the MR system cabinet. The induced currents in the imaging coils were blocked by passive diode circuits during RF transmit. The imaging arrays were totally passive, obviating the need to deliver power to the coils, and providing lightweight, untethered signal reception with easily positioned coils. Single-shot fast spin echo images were acquired from 5 volunteers using a 7-element inductively coupled coil array and a conventionally cabled 7-element coil array of identical geometry, with the inductively-coupled array showing a relative signal-to-noise ratio of 0.86 +/- 0.07. The concept was extended to a larger 9-element coil array to demonstrate the effect of coil element size on signal transfer and RF-transmit blocking. PMID:25523607

  18. Split Coil Forms for Rotary Transformers

    NASA Technical Reports Server (NTRS)

    Mclyman, C. W. T.

    1982-01-01

    Split cores for rotor and stator windings of rotary transformer mounted around their respective coils (which are in bobbins) and cemented together. This arrangement simplifies winding of stator coil to go in a slot in inner diameter of stator coil. One practical application of rotary transformers fabricated according to this technique is for centrifuges, in which conventional sliprings are of uncertain reliability.

  19. Three-dimensional coil inductor

    DOEpatents

    Bernhardt, Anthony F.; Malba, Vincent

    2002-01-01

    A three-dimensional coil inductor is disclosed. The inductor includes a substrate; a set of lower electrically conductive traces positioned on the substrate; a core placed over the lower traces; a set of side electrically conductive traces laid on the core and the lower traces; and a set of upper electrically conductive traces attached to the side traces so as to form the inductor. Fabrication of the inductor includes the steps of forming a set of lower traces on a substrate; positioning a core over the lower traces; forming a set of side traces on the core; connecting the side traces to the lower traces; forming a set of upper traces on the core; and connecting the upper traces to the side traces so as to form a coil structure.

  20. Coil Embolization for Intracranial Aneurysms

    PubMed Central

    2006-01-01

    Executive Summary Objective To determine the effectiveness and cost-effectiveness of coil embolization compared with surgical clipping to treat intracranial aneurysms. The Technology Endovascular coil embolization is a percutaneous approach to treat an intracranial aneurysm from within the blood vessel without the need of a craniotomy. In this procedure, a microcatheter is inserted into the femoral artery near the groin and navigated to the site of the aneurysm. Small helical platinum coils are deployed through the microcatheter to fill the aneurysm, and prevent it from further expansion and rupture. Health Canada has approved numerous types of coils and coil delivery systems to treat intracranial aneurysms. The most favoured are controlled detachable coils. Coil embolization may be used with other adjunct endovascular devices such as stents and balloons. Background Intracranial Aneurysms Intracranial aneurysms are the dilation or ballooning of part of a blood vessel in the brain. Intracranial aneurysms range in size from small (<12 mm in diameter) to large (12–25 mm), and to giant (>25 mm). There are 3 main types of aneurysms. Fusiform aneurysms involve the entire circumference of the artery; saccular aneurysms have outpouchings; and dissecting aneurysms have tears in the arterial wall. Berry aneurysms are saccular aneurysms with well-defined necks. Intracranial aneurysms may occur in any blood vessel of the brain; however, they are most commonly found at the branch points of large arteries that form the circle of Willis at the base of the brain. In 85% to 95% of patients, they are found in the anterior circulation. Aneurysms in the posterior circulation are less frequent, and are more difficult to treat surgically due to inaccessibility. Most intracranial aneurysms are small and asymptomatic. Large aneurysms may have a mass effect, causing compression on the brain and cranial nerves and neurological deficits. When an intracranial aneurysm ruptures and bleeds

  1. Segmented Coil Fails In Steps

    NASA Technical Reports Server (NTRS)

    Stedman, Ronald S.

    1990-01-01

    Electromagnetic coil degrades in steps when faults occur, continues to operate at reduced level instead of failing catastrophically. Made in segments connected in series and separated by electrically insulating barriers. Fault does not damage adjacent components or create hazard. Used to control valves in such critical applications as cooling systems of power generators and chemical process equipment, where flammable liquids or gases handled. Also adapts to electrical control of motors.

  2. Equations determine coiled tubing collapse pressure

    SciTech Connect

    Avakov, V.; Taliaferro, W.

    1995-07-24

    A set of equations has been developed for calculating pipe collapse pressure for oval tubing such as coiled tubing. When coiled tubing is placed onto a reel, the tubing is forced into an oval shape and never again returns to perfect roundness because the coiling process exceeds the plasticity limits of the tubing. Straightening the tubing for the trip into the well does not restore roundness. The consequence of this physical property is that all coiled tubing collapse pressure calculations should be made considering oval tubing, not round tubing. Tubing collapse can occur when formation pressure against the coiled tubing exceeds the collapse resistance inherent in the coiled tubing. As coiled tubing becomes more oval in shape, it becomes more oval in shape, it becomes more susceptible to collapse from outside pressure.

  3. Coiled transmission line pulse generators

    DOEpatents

    McDonald, Kenneth Fox

    2010-11-09

    Methods and apparatus are provided for fabricating and constructing solid dielectric "Coiled Transmission Line" pulse generators in radial or axial coiled geometries. The pour and cure fabrication process enables a wide variety of geometries and form factors. The volume between the conductors is filled with liquid blends of monomers, polymers, oligomers, and/or cross-linkers and dielectric powders; and then cured to form high field strength and high dielectric constant solid dielectric transmission lines that intrinsically produce ideal rectangular high voltage pulses when charged and switched into matched impedance loads. Voltage levels may be increased by Marx and/or Blumlein principles incorporating spark gap or, preferentially, solid state switches (such as optically triggered thyristors) which produce reliable, high repetition rate operation. Moreover, these Marxed pulse generators can be DC charged and do not require additional pulse forming circuitry, pulse forming lines, transformers, or an a high voltage spark gap output switch. The apparatus accommodates a wide range of voltages, impedances, pulse durations, pulse repetition rates, and duty cycles. The resulting mobile or flight platform friendly cylindrical geometric configuration is much more compact, light-weight, and robust than conventional linear geometries, or pulse generators constructed from conventional components. Installing additional circuitry may accommodate optional pulse shape improvements. The Coiled Transmission Lines can also be connected in parallel to decrease the impedance, or in series to increase the pulse length.

  4. A thermodynamic model for the helix-coil transition coupled to dimerization of short coiled-coil peptides.

    PubMed Central

    Qian, H

    1994-01-01

    A simple thermodynamic formalism is presented to model the conformational transition between a random-coil monomeric peptide and a coiled-coil helical dimer. The coiled-coil helical dimer is the structure of a class of proteins also called leucine zipper, which has been studied intensively in recent years. Our model, which is appropriate particularly for short peptides, is an alternative to the theory developed by Skolnick and Holtzer. Using the present formalism, we discuss the multi-equilibriatory nature of this transition and provide an explanation for the apparent two-state behavior of coiled-coil formation when the helix-coil transition is coupled to dimerization. It is found that such coupling between multi-equilibria and a true two-state transition can simplify the data analysis, but care must be taken in using the overall association constant to determine helix propensities (w) of single residues. Successful use of the two-state model does not imply that the helix-coil transition is all-or-none. The all-or-none assumption can provide good numerical estimates when w is around unity (0.35 < or = w < or = 1.35), but when w is small (w < 0.01), similar estimations can lead to large errors. The theory of the helix-coil transition in denaturation experiments is also discussed. PMID:7919005

  5. A comparison of coupling efficiencies for a Stix coil and an m equals 1 coil

    NASA Technical Reports Server (NTRS)

    Sigman, D. R.

    1972-01-01

    This theoretical and experimental study compares the ion-cyclotron wave generating characteristics of a Stix coil (which generates waves with azimuthal mode number m = 0) with those of a coil which produces primarily m = + or -1 ion-cyclotron modes. The theoretical work of J.E. Hipp, which predicted very good coupling for the m = 1 coil, was extended to determine the scaling laws for plasma column radius and coil wavelength. Experimentally, an m = 1 coil and an m = 0 coil were used to generate ion-cyclotron waves on a beam generated plasma column with electron density = 10 to the 12th power/cu cm. Coupling resonances with peak efficiencies of approximately 40 to 50 percent were measured for both coils in low power (approximately 10k W) experiments. For equal power transfer to the plasma, the m = 0 coil voltage was more than a factor of two greater than that for the m = 1 coil.

  6. A Mechanical Coil Insertion System for Endovascular Coil Embolization of Intracranial Aneurysms

    PubMed Central

    Haraguchi, K.; Miyachi, S.; Matsubara, N.; Nagano, Y.; Yamada, H.; Marui, N.; Sano, A.; Fujimoto, H.; Izumi, T.; Yamanouchi, T.; Asai, T.; Wakabayashi, T.

    2013-01-01

    Summary Like other fields of medicine, robotics and mechanization might be introduced into endovascular coil embolization of intracranial aneurysms for effective treatment. We have already reported that coil insertion force could be smaller and more stable when the coil delivery wire is driven mechanically at a constant speed. Another background is the difficulty in synchronizing operators' minds and hands when two operators control the microcatheter and the coil respectively. We have therefore developed a mechanical coil insertion system enabling a single operator to insert coils at a fixed speed while controlling the microcatheter. Using our new system, the operator manipulated the microcatheter with both hands and drove the coil using foot switches simultaneously. A delivery wire force sensor previously reported was used concurrently, allowing the operator to detect excessive stress on the wire. In vitro coil embolization was performed using three methods: simple mechanical advance of the coil; simple mechanical advance of the coil with microcatheter control; and driving (forward and backward) of the coil using foot switches in addition to microcatheter control. The system worked without any problems, and did not interfere with any procedures. In experimental coil embolization, delivery wire control using the foot switches as well as microcatheter manipulation helped to achieve successful insertion of coils. This system could offer the possibility of developing safer and more efficient coil embolization. Although we aim at total mechanization and automation of procedures in the future, microcatheter manipulation and synchronized delivery wire control are still indispensable using this system. PMID:23693038

  7. A mechanical coil insertion system for endovascular coil embolization of intracranial aneurysms.

    PubMed

    Haraguchi, K; Miyachi, S; Matsubara, N; Nagano, Y; Yamada, H; Marui, N; Sano, A; Fujimoto, H; Izumi, T; Yamanouchi, T; Asai, T; Wakabayashi, T

    2013-06-01

    Like other fields of medicine, robotics and mechanization might be introduced into endovascular coil embolization of intracranial aneurysms for effective treatment. We have already reported that coil insertion force could be smaller and more stable when the coil delivery wire is driven mechanically at a constant speed. Another background is the difficulty in synchronizing operators' minds and hands when two operators control the microcatheter and the coil respectively. We have therefore developed a mechanical coil insertion system enabling a single operator to insert coils at a fixed speed while controlling the microcatheter. Using our new system, the operator manipulated the microcatheter with both hands and drove the coil using foot switches simultaneously. A delivery wire force sensor previously reported was used concurrently, allowing the operator to detect excessive stress on the wire. In vitro coil embolization was performed using three methods: simple mechanical advance of the coil; simple mechanical advance of the coil with microcatheter control; and driving (forward and backward) of the coil using foot switches in addition to microcatheter control. The system worked without any problems, and did not interfere with any procedures. In experimental coil embolization, delivery wire control using the foot switches as well as microcatheter manipulation helped to achieve successful insertion of coils. This system could offer the possibility of developing safer and more efficient coil embolization. Although we aim at total mechanization and automation of procedures in the future, microcatheter manipulation and synchronized delivery wire control are still indispensable using this system. PMID:23693038

  8. Optimized Geometry for Superconducting Sensing Coils

    NASA Technical Reports Server (NTRS)

    Eom, Byeong Ho; Pananen, Konstantin; Hahn, Inseob

    2008-01-01

    An optimized geometry has been proposed for superconducting sensing coils that are used in conjunction with superconducting quantum interference devices (SQUIDs) in magnetic resonance imaging (MRI), magnetoencephalography (MEG), and related applications in which magnetic fields of small dipoles are detected. In designing a coil of this type, as in designing other sensing coils, one seeks to maximize the sensitivity of the detector of which the coil is a part, subject to geometric constraints arising from the proximity of other required equipment. In MRI or MEG, the main benefit of maximizing the sensitivity would be to enable minimization of measurement time. In general, to maximize the sensitivity of a detector based on a sensing coil coupled with a SQUID sensor, it is necessary to maximize the magnetic flux enclosed by the sensing coil while minimizing the self-inductance of this coil. Simply making the coil larger may increase its self-inductance and does not necessarily increase sensitivity because it also effectively increases the distance from the sample that contains the source of the signal that one seeks to detect. Additional constraints on the size and shape of the coil and on the distance from the sample arise from the fact that the sample is at room temperature but the coil and the SQUID sensor must be enclosed within a cryogenic shield to maintain superconductivity.

  9. Coiled-coil protein composition of 22 proteomes – differences and common themes in subcellular infrastructure and traffic control

    PubMed Central

    Rose, Annkatrin; Schraegle, Shannon J; Stahlberg, Eric A; Meier, Iris

    2005-01-01

    Background Long alpha-helical coiled-coil proteins are involved in diverse organizational and regulatory processes in eukaryotic cells. They provide cables and networks in the cyto- and nucleoskeleton, molecular scaffolds that organize membrane systems and tissues, motors, levers, rotating arms, and possibly springs. Mutations in long coiled-coil proteins have been implemented in a growing number of human diseases. Using the coiled-coil prediction program MultiCoil, we have previously identified all long coiled-coil proteins from the model plant Arabidopsis thaliana and have established a searchable Arabidopsis coiled-coil protein database. Results Here, we have identified all proteins with long coiled-coil domains from 21 additional fully sequenced genomes. Because regions predicted to form coiled-coils interfere with sequence homology determination, we have developed a sequence comparison and clustering strategy based on masking predicted coiled-coil domains. Comparing and grouping all long coiled-coil proteins from 22 genomes, the kingdom-specificity of coiled-coil protein families was determined. At the same time, a number of proteins with unknown function could be grouped with already characterized proteins from other organisms. Conclusion MultiCoil predicts proteins with extended coiled-coil domains (more than 250 amino acids) to be largely absent from bacterial genomes, but present in archaea and eukaryotes. The structural maintenance of chromosomes proteins and their relatives are the only long coiled-coil protein family clearly conserved throughout all kingdoms, indicating their ancient nature. Motor proteins, membrane tethering and vesicle transport proteins are the dominant eukaryote-specific long coiled-coil proteins, suggesting that coiled-coil proteins have gained functions in the increasingly complex processes of subcellular infrastructure maintenance and trafficking control of the eukaryotic cell. PMID:16288662

  10. De Novo Design of Ln(III) Coiled Coils for Imaging Applications

    PubMed Central

    2014-01-01

    A new peptide sequence (MB1) has been designed which, in the presence of a trivalent lanthanide ion, has been programmed to self-assemble to form a three stranded metallo-coiled coil, Ln(III)(MB1)3. The binding site has been incorporated into the hydrophobic core using natural amino acids, restricting water access to the lanthanide. The resulting terbium coiled coil displays luminescent properties consistent with a lack of first coordination sphere water molecules. Despite this the gadolinium coiled coil, the first to be reported, displays promising magnetic resonance contrast capabilities. PMID:24405157

  11. The Golgin Family of Coiled-Coil Tethering Proteins

    PubMed Central

    Witkos, Tomasz M.; Lowe, Martin

    2016-01-01

    The golgins are a family of predominantly coiled-coil proteins that are localized to the Golgi apparatus. Golgins are present in all eukaryotes, suggesting an evolutionary conserved function. Golgins are anchored to the Golgi membrane by their carboxy terminus and are predicted to adopt an extended conformation that projects into the surrounding cytoplasm. This arrangement is ideal for the capture or tethering of nearby membranes or cytoskeletal elements. Golgin-mediated tethering is thought to be important for vesicular traffic at the Golgi apparatus, the maintenance of Golgi architecture, as well as the positioning of the Golgi apparatus within cells. In addition to acting as tethers, some golgins can also sequester various factors at the Golgi membrane, allowing for the spatiotemporal regulation of downstream cellular functions. Although it is now established that golgins are membrane and cytoskeleton tethers, the mechanisms underlying tethering remain poorly defined. Moreover, the importance of golgin-mediated tethering in a physiological context remains to be fully explored. This review will describe our current understanding of golgin function, highlighting recent progress that has been made, and goes on to discuss outstanding questions and potential avenues for future research with regard to this family of conserved Golgi-associated proteins. PMID:26793708

  12. Current COIL research in Samara

    NASA Astrophysics Data System (ADS)

    Nikolaev, Valeri D.

    1996-02-01

    Development of the high pressure singlet oxygen generator (SOG) is a very important aspect for chemical oxygen-iodine laser (COIL). Increasing of oxygen pressure up to 30 torr and more at conserving high O2(1(Delta) ) yield and maintaining BHP temperature at minus (10 divided by 20) degrees Celsius permits us to decrease ration [H2O]/[O2] to 5% and less. In this case COIL can operate successfully without a water vapor trap. With raising the total pressure Reynolds number increases too, diminishing boundary layers in supersonic nozzles and improving pressure recovery. The weight and dimensions of the SOG and laser become reduced for the same gas flow rate. For solving these problems the jet SOG has been suggested and developed in Lebedev Physical Institute, Samara Branch. The advantages of the jet SOG consist of the following: (1) Large and controlled specific surface of contact liquid-gas provides for high mass transfer efficiency. (2) High jets velocity guarantees fast basic hydrogen peroxide (BHP) surface renovation. (3) High gas velocity in the reaction zone diminishes O2(1(Delta) ) quenching. (4) Efficient gas-liquid heat exchange eliminates the gas heating and generation water vapor due O2(1(Delta) ) quenching. (5) Counterflowing design of the jet SOG produces the best conditions for self-cleaning gas flow of droplets in the reaction zone and gives the possibility of COIL operation without droplets separator. High pressure jet SOG has some features connected with intrachannel jet formation, free space jets reconstruction, interaction jets ensemble with counter moving gas flow and drag part of gas by jets, disintegrating jets, generation and separation of droplets, heat effects, surface renovation, impoverishment BHP surface by HO2- ions, moving solution film on the reaction zone walls, etc. In this communication our current understanding of the major processes in the jet SOG is set forth. The complex gas and hydrodynamic processes with heat and mass transfer

  13. Critical evaluation of in silico methods for prediction of coiled-coil domains in proteins.

    PubMed

    Li, Chen; Ching Han Chang, Catherine; Nagel, Jeremy; Porebski, Benjamin T; Hayashida, Morihiro; Akutsu, Tatsuya; Song, Jiangning; Buckle, Ashley M

    2016-03-01

    Coiled-coils refer to a bundle of helices coiled together like strands of a rope. It has been estimated that nearly 3% of protein-encoding regions of genes harbour coiled-coil domains (CCDs). Experimental studies have confirmed that CCDs play a fundamental role in subcellular infrastructure and controlling trafficking of eukaryotic cells. Given the importance of coiled-coils, multiple bioinformatics tools have been developed to facilitate the systematic and high-throughput prediction of CCDs in proteins. In this article, we review and compare 12 sequence-based bioinformatics approaches and tools for coiled-coil prediction. These approaches can be categorized into two classes: coiled-coil detection and coiled-coil oligomeric state prediction. We evaluated and compared these methods in terms of their input/output, algorithm, prediction performance, validation methods and software utility. All the independent testing data sets are available at http://lightning.med.monash.edu/coiledcoil/. In addition, we conducted a case study of nine human polyglutamine (PolyQ) disease-related proteins and predicted CCDs and oligomeric states using various predictors. Prediction results for CCDs were highly variable among different predictors. Only two peptides from two proteins were confirmed to be CCDs by majority voting. Both domains were predicted to form dimeric coiled-coils using oligomeric state prediction. We anticipate that this comprehensive analysis will be an insightful resource for structural biologists with limited prior experience in bioinformatics tools, and for bioinformaticians who are interested in designing novel approaches for coiled-coil and its oligomeric state prediction. PMID:26177815

  14. Crystal Structure of a Super Leucine Zipper an Extended Two-Stranded Super Long Coiled Coil

    SciTech Connect

    J Diao

    2011-12-31

    Coiled coil is a ubiquitous structural motif in proteins, with two to seven alpha helices coiled together like the strands of a rope, and coiled coil folding and assembly is not completely understood. A GCN4 leucine zipper mutant with four mutations of K3A, D7A, Y17W, and H18N has been designed, and the crystal structure has been determined at 1.6 {angstrom} resolution. The peptide monomer shows a helix trunk with short curved N- and C-termini. In the crystal, two monomers cross in 35{sup o} and form an X-shaped dimer, and each X-shaped dimer is welded into the next one through sticky hydrophobic ends, thus forming an extended two-stranded, parallel, super long coiled coil rather than a discrete, two-helix coiled coil of the wild-type GCN4 leucine zipper. Leucine residues appear at every seventh position in the super long coiled coil, suggesting that it is an extended super leucine zipper. Compared to the wild-type leucine zipper, the N-terminus of the mutant has a dramatic conformational change and the C-terminus has one more residue Glu 32 determined. The mutant X-shaped dimer has a large crossing angle of 35{sup o} instead of 18{sup o} in the wild-type dimer. The results show a novel assembly mode and oligomeric state of coiled coil, and demonstrate that mutations may affect folding and assembly of the overall coiled coil. Analysis of the formation mechanism of the super long coiled coil may help understand and design self-assembling protein fibers.

  15. Development of a new error field correction coil (C-coil) for DIII-D

    SciTech Connect

    Robinson, J.I.; Scoville, J.T.

    1995-12-01

    The C-coil recently installed on the DIII-D tokamak was developed to reduce the error fields created by imperfections in the location and geometry of the existing coils used to confine, heat, and shape the plasma. First results from C-coil experiments include stable operation in a 1.6 MA plasma with a density less than 1.0 {times} 10{sup 13} cm{sup {minus}3}, nearly a factor of three lower density than that achievable without the C-coil. The C-coil has also been used in magnetic braking of the plasma rotation and high energy particle confinement experiments. The C-coil system consists of six individual saddle coils, each 60{degree} wide toroidally, spanning the midplane of the vessel with a vertical height of 1.6 m. The coils are located at a major radius of 3.2 m, just outside of the toroidal field coils. The actual shape and geometry of each coil section varied somewhat from the nominal dimensions due to the large number of obstructions to the desired coil path around the already crowded tokamak. Each coil section consists of four turns of 750 MCM insulated copper cable banded with stainless steel straps within the web of a 3 in. x 3 in. stainless steel angle frame. The C-coil structure was designed to resist peak transient radial forces (up to 1,800 Nm) exerted on the coil by the toroidal and ploidal fields. The coil frames were supported from existing poloidal field coil case brackets, coil studs, and various other structures on the tokamak.

  16. Electromagnetic levitation coil fabrication technique for MSFC containerless processing facilities

    NASA Technical Reports Server (NTRS)

    Ethridge, E. C.; Theiss, J.; Curreri, P. A.; Abbaschian, G. J.

    1983-01-01

    A technique is described for more reproducible fabrication of electromagnetic levitation coils. A split mandrel was developed upon which the coil is wound. After fabrication the mandrel can be disassembled to remove it from the coil. Previously, a full day was required to fabricate a levitation coil and the success rate for a functional coil was only 50 percent. About eight coils may be completed in one day using the technique developed and 95 percent of them are good levitation coils.

  17. The structure of the GemC1 coiled coil and its interaction with the Geminin family of coiled-coil proteins

    PubMed Central

    Caillat, Christophe; Fish, Alexander; Pefani, Dafni-Eleftheria; Taraviras, Stavros; Lygerou, Zoi; Perrakis, Anastassis

    2015-01-01

    GemC1, together with Idas and Geminin, an important regulator of DNA-replication licensing and differentiation decisions, constitute a superfamily sharing a homologous central coiled-coil domain. To better understand this family of proteins, the crystal structure of a GemC1 coiled-coil domain variant engineered for better solubility was determined to 2.2 Å resolution. GemC1 shows a less typical coiled coil compared with the Geminin homodimer and the Geminin–Idas heterodimer structures. It is also shown that both in vitro and in cells GemC1 interacts with Geminin through its coiled-coil domain, forming a heterodimer that is more stable that the GemC1 homodimer. Comparative analysis of the thermal stability of all of the possible superfamily complexes, using circular dichroism to follow the unfolding of the entire helix of the coiled coil, or intrinsic tryptophan fluorescence of a unique conserved N-terminal tryptophan, shows that the unfolding of the coiled coil is likely to take place from the C-terminus towards the N-terminus. It is also shown that homodimers show a single-state unfolding, while heterodimers show a two-state unfolding, suggesting that the dimer first falls apart and the helices then unfold according to the stability of each protein. The findings argue that Geminin-family members form homodimers and heterodimers between them, and this ability is likely to be important for modulating their function in cycling and differentiating cells. PMID:26527144

  18. A precise technique for manufacturing correction coil

    SciTech Connect

    Schieber, L.

    1992-11-01

    An automated method of manufacturing correction coils has been developed which provides a precise embodiment of the coil design. Numerically controlled machines have been developed to accurately position coil windings on the beam tube. Two types of machines have been built. One machine bonds the wire to a substrate which is wrapped around the beam tube after it is completed while the second machine bonds the wire directly to the beam tube. Both machines use the Multiwire{reg_sign} technique of bonding the wire to the substrate utilizing an ultrasonic stylus. These machines are being used to manufacture coils for both the SSC and RHIC.

  19. A precise technique for manufacturing correction coil

    SciTech Connect

    Schieber, L.

    1992-01-01

    An automated method of manufacturing correction coils has been developed which provides a precise embodiment of the coil design. Numerically controlled machines have been developed to accurately position coil windings on the beam tube. Two types of machines have been built. One machine bonds the wire to a substrate which is wrapped around the beam tube after it is completed while the second machine bonds the wire directly to the beam tube. Both machines use the Multiwire[reg sign] technique of bonding the wire to the substrate utilizing an ultrasonic stylus. These machines are being used to manufacture coils for both the SSC and RHIC.

  20. Transient response of coaxial pulse coils

    NASA Astrophysics Data System (ADS)

    Clifton, S.; Mongeau, P.

    1984-03-01

    Of central importance in designing coaxial launcher systems is understanding the mechanical response and structural limits of the magnetic pulse coils. In normal operation the driving frequency can vary from static conditions through the lowest natural modes to well beyond the highest frequencies. By using a lumped parameter model the transient behavior of a magnetic pulse coil can be readily characterized. In an effort to understand the failure mechanism of coaxial pulse coils the results of this model are compared to the experimental performance of several thin build coils.

  1. Defect-Free Carbon Nanotube Coils.

    PubMed

    Shadmi, Nitzan; Kremen, Anna; Frenkel, Yiftach; Lapin, Zachary J; Machado, Leonardo D; Legoas, Sergio B; Bitton, Ora; Rechav, Katya; Popovitz-Biro, Ronit; Galvão, Douglas S; Jorio, Ado; Novotny, Lukas; Kalisky, Beena; Joselevich, Ernesto

    2016-04-13

    Carbon nanotubes are promising building blocks for various nanoelectronic components. A highly desirable geometry for such applications is a coil. However, coiled nanotube structures reported so far were inherently defective or had no free ends accessible for contacting. Here we demonstrate the spontaneous self-coiling of single-wall carbon nanotubes into defect-free coils of up to more than 70 turns with identical diameter and chirality, and free ends. We characterize the structure, formation mechanism, and electrical properties of these coils by different microscopies, molecular dynamics simulations, Raman spectroscopy, and electrical and magnetic measurements. The coils are highly conductive, as expected for defect-free carbon nanotubes, but adjacent nanotube segments in the coil are more highly coupled than in regular bundles of single-wall carbon nanotubes, owing to their perfect crystal momentum matching, which enables tunneling between the turns. Although this behavior does not yet enable the performance of these nanotube coils as inductive devices, it does point a clear path for their realization. Hence, this study represents a major step toward the production of many different nanotube coil devices, including inductors, electromagnets, transformers, and dynamos. PMID:26708150

  2. Helical axis stellarator with noninterlocking planar coils

    DOEpatents

    Reiman, Allan; Boozer, Allen H.

    1987-01-01

    A helical axis stellarator using only noninterlocking planar, non-circular coils, generates magnetic fields having a magnetic well and large rotational transform with resultant large equilibrium beta.

  3. Self-correction coil: Operation mechanism of self-correction coil

    NASA Astrophysics Data System (ADS)

    Hosoyama, K.

    1983-06-01

    The operation mechanism of self-correction coil is extended with a simple model. For the ideal self-correction coil case, The self-inductance L of the self-correction coil is calculated. This calculation method is extended to a non-ideal self-correction coil case. For measure of completeness of self-correction coil is measured by the ratio of induced magnetic field by the self-correction coil and error field. Examples are L, M and N calculated for two cases; one is a single block approximation of self-correction coil winding and the other is a two block approximation case. By choosing the adequate angles of self-correction coil winding, one can get about 98% efficiency for single block approximation case and 99.8% for two block approximation case.

  4. pH sensitive coiled coils: a strategy for enhanced liposomal drug delivery.

    PubMed

    Reja, Rahi M; Khan, Mohsina; Singh, Sumeet K; Misra, Rajkumar; Shiras, Anjali; Gopi, Hosahudya N

    2016-03-01

    Stimuli responsive controlled release from liposome based vesicles is a promising strategy for the site specific delivery of drugs. Herein, we report the design of pH sensitive coiled coils and their incorporation into the liposome as triggers for the controlled release of encapsulated drugs. The designed coiled coil peptides with the incorporation of environment sensitive fluorescent amino acids were found to be stable at physiological pH and unstructured while changing the pH of the environment to either acidic or basic. This pH dependent conformational switch of the coiled-coil polypeptides was exploited as triggers for the enhanced release of the encapsulated drug molecules from liposomes. The SEM, DLS and TEM analysis revealed the uniform morphology of the peptide liposome hybrid vesicles. Further, the drug encapsulated liposome internalization experiments with cancer cells revealed the enhanced release and accumulation of drugs in the acidic lysosomal compartments in comparison with liposomes without coiled coils. PMID:26876788

  5. Transport Vesicle Tethering at the Trans Golgi Network: Coiled Coil Proteins in Action

    PubMed Central

    Cheung, Pak-yan P.; Pfeffer, Suzanne R.

    2016-01-01

    The Golgi complex is decorated with so-called Golgin proteins that share a common feature: a large proportion of their amino acid sequences are predicted to form coiled-coil structures. The possible presence of extensive coiled coils implies that these proteins are highly elongated molecules that can extend a significant distance from the Golgi surface. This property would help them to capture or trap inbound transport vesicles and to tether Golgi mini-stacks together. This review will summarize our current understanding of coiled coil tethers that are needed for the receipt of transport vesicles at the trans Golgi network (TGN). How do long tethering proteins actually catch vesicles? Golgi-associated, coiled coil tethers contain numerous binding sites for small GTPases, SNARE proteins, and vesicle coat proteins. How are these interactions coordinated and are any or all of them important for the tethering process? Progress toward understanding these questions and remaining, unresolved mysteries will be discussed. PMID:27014693

  6. Compact stellarators with modular coils

    PubMed Central

    Garabedian, P. R.

    2000-01-01

    Compact stellarator designs with modular coils and only two or three field periods are now available; these designs have both good stability and quasiaxial symmetry providing adequate transport for a magnetic fusion reactor. If the bootstrap current assumes theoretically predicted values a three field period configuration is optimal, but if that net current turns out to be lower, a device with two periods and just 12 modular coils might be better. There are also attractive designs with quasihelical symmetry and four or five periods whose properties depend less on the bootstrap current. Good performance requires that there be a satisfactory magnetic well in the vacuum field, which is a property lacking in a stellarator-tokamak hybrid that has been proposed for a proof of principle experiment. In this paper, we present an analysis of stability for these configurations that is based on a mountain pass theorem asserting that, if two solutions of the problem of magnetohydrodynamic equilibrium can be found, then there has to be an unstable solution. We compare results of our theory of equilibrium, stability, and transport with recently announced measurements from the large LHD experiment in Japan. PMID:10899993

  7. A Non-perturbing Probe of Coiled Coil Formation Based on Electron Transfer Mediated Fluorescence Quenching.

    PubMed

    Watson, Matthew D; Peran, Ivan; Raleigh, Daniel P

    2016-07-01

    Coiled coils are abundant in nature, occurring in ∼3% of proteins across sequenced genomes, and are found in proteins ranging from transcription factors to structural proteins. The motif continues to be an important model system for understanding protein-protein interactions and is finding increased use in bioinspired materials and synthetic biology. Knowledge of the thermodynamics of self-assembly, particularly the dissociation constant KD, is essential for the application of designed coiled coils and for understanding the in vivo specificity of natural coiled coils. Standard methods for measuring KD typically rely on concentration dependent circular dichroism (CD). Fluorescence methods are an attractive alternative; however Trp is rarely found in an interior position of a coiled coil, and appending unnatural fluorophores can perturb the system. We demonstrate a simple, non-perturbing method to monitor coiled coil formation using p-cyanophenylalanine (FCN) and selenomethionine (MSe), the Se analogue of Met. FCN fluorescence can be selectively excited and is effectively quenched by electron transfer with MSe. Both FCN and MSe represent minimally perturbing substitutions in coiled coils. MSe quenching of FCN fluorescence is shown to offer a non-perturbing method for following coiled coil formation and for accurately determining dissociation constants. The method is validated using a designed heterodimeric coiled coil. The KD deduced by fluorescence monitored titration is in excellent agreement with the value deduced from concentration dependent CD measurements to within the uncertainty of the measurement. However, the fluorescence approach requires less protein, is less time-consuming, can be applied to lower concentrations and could be applied to high throughput screens. PMID:27258904

  8. Accommodation of structural rearrangements in the huntingtin-interacting protein 1 coiled-coil domain

    SciTech Connect

    Wilbur, Jeremy D.; Hwang, Peter K.; Brodsky, Frances M.; Fletterick, Robert J.

    2010-03-01

    Variable packing interaction related to the conformational flexibility within the huntingtin-interacting protein 1 coiled coil domain. Huntingtin-interacting protein 1 (HIP1) is an important link between the actin cytoskeleton and clathrin-mediated endocytosis machinery. HIP1 has also been implicated in the pathogenesis of Huntington’s disease. The binding of HIP1 to actin is regulated through an interaction with clathrin light chain. Clathrin light chain binds to a flexible coiled-coil domain in HIP1 and induces a compact state that is refractory to actin binding. To understand the mechanism of this conformational regulation, a high-resolution crystal structure of a stable fragment from the HIP1 coiled-coil domain was determined. The flexibility of the HIP1 coiled-coil region was evident from its variation from a previously determined structure of a similar region. A hydrogen-bond network and changes in coiled-coil monomer interaction suggest that the HIP1 coiled-coil domain is uniquely suited to allow conformational flexibility.

  9. Structural Characteristics of the Redox-sensing Coiled Coil in the Voltage-gated H+ Channel*

    PubMed Central

    Fujiwara, Yuichiro; Takeshita, Kohei; Nakagawa, Atsushi; Okamura, Yasushi

    2013-01-01

    Oxidation is an important biochemical defense mechanism, but it also elicits toxicity; therefore, oxidation must be under strict control. In phagocytotic events in neutrophils, the voltage-gated H+ (Hv) channel is a key regulator of the production of reactive oxygen species against invading bacteria. The cytoplasmic domain of the Hv channel forms a dimeric coiled coil underpinning a dimerized functional unit. Importantly, in the alignment of the coiled-coil core, a conserved cysteine residue forms a potential intersubunit disulfide bond. In this study, we solved the crystal structures of the coiled-coil domain in reduced, oxidized, and mutated (Cys → Ser) states. The crystal structures indicate that a pair of Cys residues forms an intersubunit disulfide bond dependent on the redox conditions. CD spectroscopy revealed that the disulfide bond increases the thermal stability of the coiled-coil protein. We also reveal that two thiol modifier molecules are able to bind to Cys in a redox-dependent manner without disruption of the dimeric coiled-coil assembly. Thus, the biochemical properties of the cytoplasmic coiled-coil domain in the Hv channel depend on the redox condition, which may play a role in redox sensing in the phagosome. PMID:23667254

  10. A comparative study of flat coil and coil sensor for landslide detection

    NASA Astrophysics Data System (ADS)

    Sanjaya, Edi; Muslimin, Ahmad Novi; Djamal, Mitra; Suprijadi, Handayani, Gunawan; Ramli

    2016-03-01

    The landslide is one of the most costly catastrophic events in terms of human lives and infrastructure damage, thus an early warning monitoring for landslides becomes more and more important. Currently existing monitoring systems for early warning are available in terms of monolithic systems. This is a very cost-intensive way, considering installation as well as operational and personal expenses. We have been developing a landslide detection system based on flat coil and coil sensor. The flat coil element being developed is an inductive proximity sensor for detection mass of soil movement. The simple method of flat coil manufactures and low cost, is an attraction that is still inspired to develop flat coil sensors. Meanwhile, although it has a drawback in terms of their size, the coil sensor is still required in many fields due to their sensitivity and robustness. The simple method of coil manufacture and the materials are commonly available and low cost, is an attraction that is still inspired to develop induction coil sensors. A comparative study of alternative configuration of sensor based on flat coil elements and a coil in application to landslide detection has been discussed in this paper. The purpose of this comparison is to show the ideal conditions and the challenges for each sensor. Furthermore, a comparison between flat coil and coil sensor is presented.

  11. Natural templates for coiled-coil biomaterials from praying mantis egg cases.

    PubMed

    Walker, Andrew A; Weisman, Sarah; Kameda, Tsunenori; Sutherland, Tara D

    2012-12-10

    Whereas there is growing interest in producing biomaterials containing coiled-coils, relatively few studies have made use of naturally occurring fibrous proteins. In this study, we have characterized fibrous proteins used by mother praying mantises to produce an extensive covering for their eggs called an ootheca and demonstrate the production of artificial ootheca using recombinantly produced proteins. Examination of natural oothecae by infrared spectroscopy and solid-state nuclear magnetic resonance revealed the material to consist of proteins organized predominately as coiled-coils. Two structural proteins, Mantis Fibroin 1 and Mantis Fibroin 2, were identified in ootheca from each of three species. Between species, the primary sequences of both proteins had diverged considerably, but other features were tightly conserved, including low molecular weight, high abundance of Ala, Glu, Lys, and Ser, and a triblock-like architecture with extensive central coiled-coil domain. Mantis fibroin hydrophobic cores had an unusual composition containing high levels of alanine and aromatic residues. Recombinantly produced mantis fibroins folded into coiled-coils in solution and could be fabricated into solid materials with high coiled-coil content. The structural features of mantis fibroins and their straightforward recombinant production make them promising templates for the production of coiled-coil biomimetics materials. PMID:23137042

  12. Designed Coiled-Coil Peptides Inhibit the Type Three Secretion System of Enteropathogenic Escherichia coli

    PubMed Central

    Larzábal, Mariano; Mercado, Elsa C.; Vilte, Daniel A.; Salazar-González, Hector; Cataldi, Angel; Navarro-Garcia, Fernando

    2010-01-01

    Background Enteropathogenic E. coli (EPEC) and enterohemorrhagic E. coli (EHEC) are two categories of E. coli strains associated with human disease. A major virulence factor of both pathotypes is the expression of a type three secretion system (TTSS), responsible for their ability to adhere to gut mucosa causing a characteristic attaching and effacing lesion (A/E). The TTSS translocates effector proteins directly into the host cell that subvert mammalian cell biochemistry. Methods/Principal Findings We examined synthetic peptides designed to inhibit the TTSS. CoilA and CoilB peptides, both representing coiled-coil regions of the translocator protein EspA, and CoilD peptide, corresponding to a coiled–coil region of the needle protein EscF, were effective in inhibiting the TTSS dependent hemolysis of red blood cells by the EPEC E2348/69 strain. CoilA and CoilB peptides also reduced the formation of actin pedestals by the same strain in HEp-2 cells and impaired the TTSS-mediated protein translocation into the epithelial cell. Interestingly, CoilA and CoilB were able to block EspA assembly, destabilizing the TTSS and thereby Tir translocation. This blockage of EspA polymerization by CoilA or CoilB peptides, also inhibited the correct delivery of EspB and EspD as detected by immunoblotting. Interestingly, electron microscopy of bacteria incubated with the CoilA peptide showed a reduction of the length of EspA filaments. Conclusions Our data indicate that coiled-coil peptides can prevent the assembly and thus the functionality of the TTSS apparatus and suggest that these peptides could provide an attractive tool to block EPEC and EHEC pathogenesis. PMID:20140230

  13. Optimal Coil Orientation for Transcranial Magnetic Stimulation

    PubMed Central

    Richter, Lars; Neumann, Gunnar; Oung, Stephen; Schweikard, Achim; Trillenberg, Peter

    2013-01-01

    We study the impact of coil orientation on the motor threshold (MT) and present an optimal coil orientation for stimulation of the foot. The result can be compared to results of models that predict this orientation from electrodynamic properties of the media in the skull and from orientations of cells, respectively. We used a robotized TMS system for precise coil placement and recorded motor-evoked potentials with surface electrodes on the abductor hallucis muscle of the right foot in 8 healthy control subjects. First, we performed a hot-spot search in standard (lateral) orientation and then rotated the coil in steps of 10° or 20°. At each step we estimated the MT. For navigated stimulation and for correlation with the underlying anatomy a structural MRI scan was obtained. Optimal coil orientation was 33.1±18.3° anteriorly in relation to the standard lateral orientation. In this orientation the threshold was 54±18% in units of maximum stimulator output. There was a significant difference of 8.0±5.9% between the MTs at optimal and at standard orientation. The optimal coil orientations were significantly correlated with the direction perpendicular to the postcentral gyrus (). Robotized TMS facilitates sufficiently precise coil positioning and orientation to study even small variations of the MT with coil orientation. The deviations from standard orientation are more closely matched by models based on field propagation in media than by models based on orientations of pyramidal cells. PMID:23593200

  14. Completion of the Polo model coil

    SciTech Connect

    Bourquard, A.; Plat, X.; Bonnet, P.; Semal, D.; Personeni, G.; Bernaudat, M.; Hacquard, A.; Salvador, R.; Dombrowski, D.

    1996-07-01

    A superconducting poloidal field model coil as needed for tokamaks has been constructed by GEC Alsthom within the Polo project in effective collaboration with Forschungszentrum Karlsruhe, Institut fuer Technische Physik, Germany. The manufacturing procedures for the coil and its terminals are described.

  15. Undulator Long Coil Measurement System Tests

    SciTech Connect

    Wolf, Zachary; Levashov, Yurii; /SLAC

    2010-11-24

    The first and second field integrals in the LCLS undulators must be below a specified limit. To accurately measure the field integrals, a long coil system is used. This note describes a set of tests which were used to check the performance of the long coil system. A long coil system was constructed to measure the first and second field integrals of the LCLS undulators. The long coil measurements of the background fields were compared to field integrals obtained by sampling the background fields and numerically calculating the integrals. This test showed that the long coil has the sensitivity required to measure at the levels specified for the field integrals. Tests were also performed by making long coil measurements of short magnets of known strength placed at various positions The long coil measurements agreed with the known field integrals obtained by independent measurements and calculation. Our tests showed that the long coil measurements are a valid way to determine whether the LCLS undulator field integrals are below the specified limits.

  16. Magnetic Fields at the Center of Coils

    ERIC Educational Resources Information Center

    Binder, Philippe; Hui, Kaleonui; Goldman, Jesse

    2014-01-01

    In this note we synthesize and extend expressions for the magnetic field at the center of very short and very long current-carrying coils. Elementary physics textbooks present the following equation for the magnetic field inside a very long current-carrying coil (solenoid): B[subscript sol] = µ[subscript 0] (N/L) I, (1) where I is the current, N…

  17. Precise Fabrication of Electromagnetic-Levitation Coils

    NASA Technical Reports Server (NTRS)

    Ethridge, E.; Curreri, P.; Theiss, J.; Abbaschian, G.

    1985-01-01

    Winding copper tubing on jig ensures reproducible performance. Sequence of steps insures consistent fabrication of levitation-and-melting coils. New method enables technician to produce eight coils per day, 95 percent of them acceptable. Method employs precise step-by-step procedure on specially designed wrapping and winding jig.

  18. Novel transcranial magnetic stimulation coil for mice

    NASA Astrophysics Data System (ADS)

    March, Stephen; Stark, Spencer; Crowther, Lawrence; Hadimani, Ravi; Jiles, David

    2014-03-01

    Transcranial magnetic stimulation (TMS) shows potential for non-invasive treatment of various neurological disorders. Significant work has been performed on the design of coils used for TMS on human subjects but few reports have been made on the design of coils for use on the brains of animals such as mice. This work is needed as TMS studies utilizing mice can allow rapid preclinical development of TMS for human disorders but the coil designs developed for use on humans are inadequate for optimal stimulation of the much smaller mouse brain. A novel TMS coil has been developed with the goal of inducing strong and focused electric fields for the stimulation of small animals such as mice. Calculations of induced electric fields were performed utilizing an MRI derived inhomogeneous model of an adult male mouse. Mechanical and thermal analysis of this new TMS helmet-coil design have also been performed at anticipated TMS operating conditions to ensure mechanical stability of the new coil and establish expected linear attraction and rotational force values. Calculated temperature increases for typical stimulation periods indicate the helmet-coil system is capable of operating within established medical standards. A prototype of the coil has been fabricated and characterization results are presented.

  19. Operator coil monitoring Acceptance Test Procedure

    SciTech Connect

    Erhart, M.F.

    1995-05-16

    The readiness of the Data Acquisition and Control System (DACS) to provide monitoring and control of the Programmable Logic Controller (PLC) abort coils from the Master and RSS stations will be systematically tested during performance of this procedure. It should be noted that these are not physical abort coils but software coils controlled by the software`s ladder logic. The readiness of the DACS to properly interface with the ENRAF wire level gauge installed in the SY-101 storage tank will also be tested. During this test, a verification of all abort coil indications will be conducted at the DACS Development Facility in the 306E Building by injecting an input signal for each DACS sensor that has an associated abort coil until the abort coil actuates, and then ensuring that the status of the abort coil indicated at the Master and RSS stations is correct. Each abort coil will also be tested to ensure that the ``ENABLE`` and ``DISABLE`` controls from the Master and RSS stations function correctly, and only with the use of proper passwords.

  20. Operator coil monitoring acceptance test procedure

    SciTech Connect

    Erhart, M.F.

    1995-06-05

    The readiness of the Data Acquisition and Control System (DACS) to provide monitoring and control of the Programmable Logic Controller (PLC) abort coils from the Master and RSS stations will be systematically tested during performance of this procedure. It should be noted that these are not physical abort coils but software coils controlled by the software`s ladder logic. The readiness of the DACS to properly interface with the ENRAF wire level gauge installed in the SY101 storage tank will also be tested. During this test, a verification of all abort coil indications will be conducted at the DACS Development Facility in the 306E Building by injecting an input signal for each DACS sensor that has an associated abort coil until the abort coil actuates, and then ensuring that the status of the abort coil indicated at the Master and RSS stations correct. Each abort coil will also be tested to ensure that the ``ENABLE`` and ``DISABLE`` controls from the Master and RSS stations function correctly, and only with the use of proper passwords.

  1. Helical axis stellarator with noninterlocking planar coils

    DOEpatents

    Reiman, A.; Boozer, A.H.

    1984-03-06

    The present invention generates stellarator fields having favorable properties (magnetic well and large rotational transform) by a simple coil system consisting only of unlinked planar non-circular coils. At large rotational transform toroidal effects on magnetic well and rotational transform are small and can be ignored. We do so herein, specializing in straight helical systems.

  2. NMR local coil with adjustable spacing

    SciTech Connect

    Dembinski, G.T.

    1988-03-22

    A local coil assembly for use in NMR imaging is described which comprises: a base; a first local coil module mounted to the base and extending upward therefrom; sockets disposed in the base, each at a different distance from the first local coil module; a second local coil module having a connector therein which mates with each of the sockets to enable the second local coil module to be connected to the base at any one of the sockets; and a set of reactive components. The values of the respective reactive components are selected such that the second local oil module may be connected to any of the sockets without any substantial change in the resonant frequency of the assembly.

  3. Rod-Coil Block Polyimide Copolymers

    NASA Technical Reports Server (NTRS)

    Meador, Mary Ann B. (Inventor); Kinder, James D. (Inventor)

    2005-01-01

    This invention is a series of rod-coil block polyimide copolymers that are easy to fabricate into mechanically resilient films with acceptable ionic or protonic conductivity at a variety of temperatures. The copolymers consist of short-rigid polyimide rod segments alternating with polyether coil segments. The rods and coil segments can be linear, branched or mixtures of linear and branched segments. The highly incompatible rods and coil segments phase separate, providing nanoscale channels for ion conduction. The polyimide segments provide dimensional and mechanical stability and can be functionalized in a number of ways to provide specialized functions for a given application. These rod-coil black polyimide copolymers are particularly useful in the preparation of ion conductive membranes for use in the manufacture of fuel cells and lithium based polymer batteries.

  4. MIT 12 Tesla Coil test results

    NASA Astrophysics Data System (ADS)

    Steeves, M. M.; Hoenig, M. O.

    1985-07-01

    Test results from the MIT 12 Tesla Coil experiment are presented. The coil was tested in the High Field Test Facility (HFTF) of the Lawrence Livermore National Laboratory in October 1984 and January 1985. The experiment measured the performance of an Internally Cooled, Cabled Superconductor (ICCS) of practical size, intended for use in magnetic fusion experiments. The MIT coil carried 15 kA at 11 T for 5 min with no sign of instability. A half turn length in a 10 T field was able to absorb a heat load in 4 msec of more than 200 mJ sub cm of cable volume while carrying a current of 12 kA. The MIT coil successfully met the performance requirements of the Department of Energy's 12 Tesla Coil Program.

  5. Recent advances in helix-coil theory.

    PubMed

    Doig, Andrew J

    2002-12-10

    Peptide helices in solution form a complex mixture of all helix, all coil or, most frequently, central helices with frayed coil ends. In order to interpret experiments on helical peptides and make theoretical predictions on helices, it is therefore essential to use a helix-coil theory that takes account of this equilibrium. The original Zimm-Bragg and Lifson-Roig helix-coil theories have been greatly extended in the last 10 years to include additional interactions. These include preferences for the N-cap, N1, N2, N3 and C-cap positions, capping motifs, helix dipoles, side chain interactions and 3(10)-helix formation. These have been applied to determine energies for these preferences from experimental data and to predict the helix contents of peptides. This review discusses these newly recognised structural features of helices and how they have been included in helix-coil models. PMID:12488008

  6. Intra-coil interactions in split gradient coils in a hybrid MRI-LINAC system.

    PubMed

    Tang, Fangfang; Freschi, Fabio; Sanchez Lopez, Hector; Repetto, Maurizio; Liu, Feng; Crozier, Stuart

    2016-04-01

    An MRI-LINAC system combines a magnetic resonance imaging (MRI) system with a medical linear accelerator (LINAC) to provide image-guided radiotherapy for targeting tumors in real-time. In an MRI-LINAC system, a set of split gradient coils is employed to produce orthogonal gradient fields for spatial signal encoding. Owing to this unconventional gradient configuration, eddy currents induced by switching gradient coils on and off may be of particular concern. It is expected that strong intra-coil interactions in the set will be present due to the constrained return paths, leading to potential degradation of the gradient field linearity and image distortion. In this study, a series of gradient coils with different track widths have been designed and analyzed to investigate the electromagnetic interactions between coils in a split gradient set. A driving current, with frequencies from 100Hz to 10kHz, was applied to study the inductive coupling effects with respect to conductor geometry and operating frequency. It was found that the eddy currents induced in the un-energized coils (hereby-referred to as passive coils) positively correlated with track width and frequency. The magnetic field induced by the eddy currents in the passive coils with wide tracks was several times larger than that induced by eddy currents in the cold shield of cryostat. The power loss in the passive coils increased with the track width. Therefore, intra-coil interactions should be included in the coil design and analysis process. PMID:26852418

  7. A study on geometry effect of transmission coil for micro size magnetic induction coil

    NASA Astrophysics Data System (ADS)

    Lee, Kyung Hwa; Jun, Byoung Ok; Kim, Seunguk; Lee, Gwang Jun; Ryu, Mingyu; Choi, Ji-Woong; Jang, Jae Eun

    2016-05-01

    The effects of transmission (Tx) coil structure have been studied for micro-size magnetic induction coil. The size of the receiving (Rx) coil should be shrunk to the micrometer level for the various new applications such as micro-robot and wireless body implanted devices. In case of the macro-scale magnetic induction coil, the power transmission efficiency is generally considered to be higher as the inductance of the transmission coil became larger; however, the large size difference between macro-size Tx coil and micro-size Rx coil can decrease the power transmission efficiency due to the difference of resonance frequency. Here, we study a correlation of the power transmission with the size and distance between the macro-size Tx and micro-size Rx coils using magnetic induction technique. The maximum power efficiency was 0.28/0.23/0.13/0.12% at the distance of 0.3/1/3/5 cm between Rx and Tx coil. In addition, more efficient wireless power transferring method is suggested with a floating coil for the body implantable devices. The voltage output increased up to 5.4 mV than the original one Tx coil system. The results demonstrated the foundational wireless power transferring system with enhanced power efficiency.

  8. Intra-coil interactions in split gradient coils in a hybrid MRI-LINAC system

    NASA Astrophysics Data System (ADS)

    Tang, Fangfang; Freschi, Fabio; Sanchez Lopez, Hector; Repetto, Maurizio; Liu, Feng; Crozier, Stuart

    2016-04-01

    An MRI-LINAC system combines a magnetic resonance imaging (MRI) system with a medical linear accelerator (LINAC) to provide image-guided radiotherapy for targeting tumors in real-time. In an MRI-LINAC system, a set of split gradient coils is employed to produce orthogonal gradient fields for spatial signal encoding. Owing to this unconventional gradient configuration, eddy currents induced by switching gradient coils on and off may be of particular concern. It is expected that strong intra-coil interactions in the set will be present due to the constrained return paths, leading to potential degradation of the gradient field linearity and image distortion. In this study, a series of gradient coils with different track widths have been designed and analyzed to investigate the electromagnetic interactions between coils in a split gradient set. A driving current, with frequencies from 100 Hz to 10 kHz, was applied to study the inductive coupling effects with respect to conductor geometry and operating frequency. It was found that the eddy currents induced in the un-energized coils (hereby-referred to as passive coils) positively correlated with track width and frequency. The magnetic field induced by the eddy currents in the passive coils with wide tracks was several times larger than that induced by eddy currents in the cold shield of cryostat. The power loss in the passive coils increased with the track width. Therefore, intra-coil interactions should be included in the coil design and analysis process.

  9. Performance improvement of a high-temperature superconducting coil by separating and grading the coil edge

    NASA Astrophysics Data System (ADS)

    Ishiguri, Shinichi; Funamoto, Taisuke

    2011-06-01

    In this paper, we establish a model to analyze the transport current performance of a high-temperature superconducting (HTS) coil, considering the dependencies of critical current and n-value of an HTS tape on magnetic field and magnetic field angles. This analysis shows that relatively large electric fields appear at the coil’s edges, preventing improvement in the transport current performance of the coil. To solve this problem, in this paper, we propose a graded coil in which several coil edges of different heights are separated and graded. Analysis of its performance shows that the coil’s critical current increases, thus confirming that there exists an optimum coil cross section at which the stored energy and central magnetic field improve 2.1 times and 45%, respectively, compared with a typical rectangular coil that employs the same total length of the HTS tape. It is recommended that these results of the coil should be applied to SMES.

  10. Optimization of RMP Coils for ELM Control

    NASA Astrophysics Data System (ADS)

    Dutta, Someswar; Evans, T. E.; Orlov, D. M.

    2015-11-01

    Advanced DIII-D RMP coils with improved capabilities are studied using a vacuum island overlap width (VIOW) criterion. Changes in characteristics of the RMP field produced by different geometrical parameters using both ex-vessel (C- and O-) and in-vessel (I- and CP-) coils are discussed. By reducing the poloidal span of each coil, the spacing between them and varying the geometric angle between the coils and the plasma, the resonant field can be adjusted to optimize the edge VIOW criterion while minimizing core resonances. Three separate phase scans using a combination of the as built I-coils and proposed CP-coils are compared for three different equilibria. Two of these equilibria have different edge safety factors and the third one has a different gap between plasma and wall than the standard equilibrium scenario of DIII D. The scan results show that the VIOW correlation criterion is well satisfied in all three cases, resulting in a new way to optimize the RMP coils for the future reactors in order to achieve the ELM suppression criterion over a significantly wider range of fusion plasma operating scenarios. Work supported by the U.S. DOE under DE-FG02-05ER54809 and DE-FC02-04ER54698.

  11. ENGINEERING OF THE AGS SNAKE COIL ASSEMBLY.

    SciTech Connect

    ANERELLA,M.GUPTA,R.KOVACH,P.MARONE,A.PLATE,S.POWER,K.SCHMALZLE,J.WILLEN,E.

    2003-05-12

    A 30% Snake superconducting magnet is proposed to maintain polarization in the AGS proton beam, the magnetic design of which is described elsewhere. The required helical coils for this magnet push the limits of the technology developed for the RHIC Snake coils. First, fields must be provided with differing pitch along the length of the magnet. To accomplish this, a new 3-D CAD system (''Pro/Engineer'' from PTC), which uses parametric techniques to enable fast iterations, has been employed. Revised magnetic field calculations are then based on the output of the mechanical model. Changes are made in turn to the model on the basis of those field calculations. To ensure that accuracy is maintained, the final solid model is imported directly into the CNC machine programming software, rather than by the use of graphics translating software. Next, due to the large coil size and magnetic field, there was concern whether the structure could contain the coil forces. A finite element analysis was performed, using the 3-D model, to ensure that the stresses and deflections were acceptable. Finally, a method was developed using ultrasonic energy to improve conductor placement during coil winding, in an effort to minimize electrical shorts due to conductor misplacement, a problem that occurred in the RHIC helical coil program. Each of these activities represents a significant improvement in technology over that which was used previously for the RHIC snake coils.

  12. Switching transients in a superconducting coil

    SciTech Connect

    Owen, E.W.; Shimer, D.W.

    1983-11-18

    A study is made of the transients caused by the fast dump of large superconducting coils. Theoretical analysis, computer simulation, and actual measurements are used. Theoretical analysis can only be applied to the simplest of models. In the computer simulations two models are used, one in which the coil is divided into ten segments and another in which a single coil is employed. The circuit breaker that interrupts the current to the power supply, causing a fast dump, is represented by a time and current dependent conductance. Actual measurements are limited to measurements made incidental to performance tests on the MFTF Yin-yang coils. It is found that the breaker opening time is the critical factor in determining the size and shape of the transient. Instantaneous opening of the breaker causes a lightly damped transient with large amplitude voltages to ground. Increasing the opening time causes the transient to become a monopulse of decreasing amplitude. The voltages at the external terminals are determined by the parameters of the external circuit. For fast opening times the frequency depends on the dump resistor inductance, the circuit capacitance, and the amplitude on the coil current. For slower openings the dump resistor inductance and the current determine the amplitude of the voltage to ground at the terminals. Voltages to ground are less in the interior of the coil, where transients related to the parameters of the coil itself are observed.

  13. Microsensor coils for miniature fiber optic gyroscopes

    NASA Astrophysics Data System (ADS)

    Ruffin, Paul B.; Baeder, Janet S.

    2004-10-01

    Depolarized Interferometric Fiber Optic Gyroscopes (D-IFOGs) that are constructed with inexpensive single mode (SM) fiber have provided an opportunity for developers to meet Army emerging missions goals for affordable, small volume, reliable inertial guidance systems for use in small missiles, munitions, and future micro-unmanned autonomous vehicles. However, there remain several vital issues associated with substantially reducing the diameter of the sensor coil. Optical fiber that is precision-wound onto a micro coil experiences increased stress due to small radius bending, fiber distortions at crossover sites, and increased interlayer pressures as a result of multiple layers of fiber wound under tension. Tension and small radius bending stresses can have a detrimental effect on the performance of D-IFOGs. Therefore, other scenarios for the application of SM fiber to a micro-sensor coil must be considered. One scheme involves taking advantage of the bending-induced birefringence and employing the low cost SM fiber as a polarization-maintaining (PM) fiber. The mechanics of how a substantial reduction in the coil radius produces PM fiber properties in SM fiber is investigated under this research effort. Conventional and specialty SM fibers are characterized to identify optimal fibers for the development of micro-sensor coils. The results from extinction ratio measurements on the SM fibers and micro-sensor coils are presented in this paper. The significant cross coupling suggests that scattering centers are present in very small radius bending. Also, measurements show that optical loss is significant in micro IFOG coils.

  14. A Synthetic Coiled-Coil Interactome Provides Heterospecific Modules for Molecular Engineering

    SciTech Connect

    Reinke, Aaron W.; Grant, Robert A.; Keating, Amy E.

    2010-06-21

    The versatile coiled-coil protein motif is widely used to induce and control macromolecular interactions in biology and materials science. Yet the types of interaction patterns that can be constructed using known coiled coils are limited. Here we greatly expand the coiled-coil toolkit by measuring the complete pairwise interactions of 48 synthetic coiled coils and 7 human bZIP coiled coils using peptide microarrays. The resulting 55-member protein 'interactome' includes 27 pairs of interacting peptides that preferentially heteroassociate. The 27 pairs can be used in combinations to assemble sets of 3 to 6 proteins that compose networks of varying topologies. Of special interest are heterospecific peptide pairs that participate in mutually orthogonal interactions. Such pairs provide the opportunity to dimerize two separate molecular systems without undesired crosstalk. Solution and structural characterization of two such sets of orthogonal heterodimers provide details of their interaction geometries. The orthogonal pair, along with the many other network motifs discovered in our screen, provide new capabilities for synthetic biology and other applications.

  15. Crystal Structure of a Coiled-Coil Domain from Human ROCK I

    PubMed Central

    Tu, Daqi; Li, Yiqun; Song, Hyun Kyu; Toms, Angela V.; Gould, Christopher J.; Ficarro, Scott B.; Marto, Jarrod A.; Goode, Bruce L.; Eck, Michael J.

    2011-01-01

    The small GTPase Rho and one of its targets, Rho-associated kinase (ROCK), participate in a variety of actin-based cellular processes including smooth muscle contraction, cell migration, and stress fiber formation. The ROCK protein consists of an N-terminal kinase domain, a central coiled-coil domain containing a Rho binding site, and a C-terminal pleckstrin homology domain. Here we present the crystal structure of a large section of the central coiled-coil domain of human ROCK I (amino acids 535–700). The structure forms a parallel α-helical coiled-coil dimer that is structurally similar to tropomyosin, an actin filament binding protein. There is an unusual discontinuity in the coiled-coil; three charged residues (E613, R617 and D620) are positioned at what is normally the hydrophobic core of coiled-coil packing. We speculate that this conserved irregularity could function as a hinge that allows ROCK to adopt its autoinhibited conformation. PMID:21445309

  16. Phase reconstruction from multiple coil data using a virtual reference coil

    PubMed Central

    Parker, Dennis L.; Payne, Allison; Todd, Nick; Hadley, J. Rock

    2013-01-01

    Purpose This paper develops a method to obtain optimal estimates of absolute magnetization phase from multiple-coil MRI data. Methods The element-specific phases of a multi-element receiver coil array are accounted for by using the phase of a real or virtual reference coil that is sensitive over the entire imaged volume. The virtual-reference coil is generated as a weighted combination of measurements from all receiver coils. The phase-corrected multiple coil complex images are combined using the inverse covariance matrix. These methods are tested on images of an agar phantom, an in vivo breast, and an anesthetized rabbit obtained using combinations of four, nine, and three receiver channels, respectively. Results The four- and three- channel acquisitions require formation of a virtual-reference receiver coil while one channel of the nine-channel receive array has a sensitivity profile covering the entire imaged volume. Referencing to a real or virtual coil gives receiver phases that are essentially identical except for the individual receiver channel noise. The resulting combined images, which account for receiver channel noise covariance, show the expected reduction in phase variance. Conclusions The proposed virtual reference coil method determines a phase distribution for each coil from which an optimal phase map can be obtained. PMID:24006172

  17. Crystal Structure of the Central Coiled-Coil Domain from Human Liprin-[beta]2

    SciTech Connect

    Stafford, Ryan L.; Tang, Ming-Yun; Sawaya, Michael R.; Phillips, Martin L.; Bowie, James U.

    2012-02-07

    Liprins are a conserved family of scaffolding proteins important for the proper regulation and development of neuronal synapses. Humans have four liprin-{alpha}s and two liprin-{beta}s which all contain long coiled-coil domains followed by three tandem SAM domains. Complex interactions between the coiled-coil and SAM domains are thought to create liprin scaffolds, but the structural and biochemical properties of these domains remain largely uncharacterized. In this study we find that the human liprin-{beta}2 coiled-coil forms an extended dimer. Several protease-resistant subdomains within the liprin-{beta}1 and liprin-{beta}2 coiled-coils were also identified. A 2.0 {angstrom} crystal structure of the central, protease-resistant core of the liprin-{beta}2 coiled-coil reveals a parallel helix orientation. These studies represent an initial step toward determining the overall architecture of liprin scaffolds and understanding the molecular basis for their synaptic functions.

  18. Comparison of Coil and Kiil Dialysers

    PubMed Central

    Down, P. F.; Farrand, D. E.; Wood, S. E.; Lee, H. A.

    1970-01-01

    To assess the comparative efficiency, safety, and cost of maintenance dialysis, the treatment of 13 patients with a Kiil dialyser (representing 1,477 hospital and 735 home dialyses) was compared with that of 11 patients using a coil dialyser (898 hospital and 396 home dialyses). Kiil and coil dialysers proved equally satisfactory from a medical standpoint and equally acceptable to the patients. The capital costs of home dialysis were considerably reduced without any threat to safety or efficiency. The running costs of coil dialysers approximate to those of Kiil dialysers. ImagesFig. 3 PMID:4320676

  19. Coiled Fiber Pulsed Laser Simulator

    Energy Science and Technology Software Center (ESTSC)

    2009-01-29

    This suite of codes simulates the transient output pulse from an optically-pumped coiled fiber amplifier. The input pulse is assumed to have a Gaussian time dependence and a spatial dependence that may be Gaussian or an eigenmode of the straight of bent fiber computed using bend10 or bend20. Only one field component is used (semivectorial approximation). The fully-spatially-dependent fiber gain profile is specified is subroutines "inversion" and "interp_inversion" and is presently read from a datamore » file, although other means of specifying fiber gain could be reallized through modification of these subroutines. The input pulse is propagated through the fiber, including the following physical effects: spatial and temporal gain saturation, self-focusing, bend losses, and confinement from a user-defined fiber index profile. The user can follow the propagation progress with 3D graphics that show an intensity profile via user-modifiable cutting planes through the time space axes. A restart capability is also included. Approximate solutions in the frequency domain may be obtained much faster using the auxilliary codes bendbpm10 (full vector), bendbpm20 (semivectoral), and bendbpm21 (semivectoral with gain sheet spproximation for gain and self-focusing). These codes all include bend loss and spatial (but not temporal) gain saturation.« less

  20. Coiled Fiber Pulsed Laser Simulator

    SciTech Connect

    Hadley, G. Ronald

    2009-01-29

    This suite of codes simulates the transient output pulse from an optically-pumped coiled fiber amplifier. The input pulse is assumed to have a Gaussian time dependence and a spatial dependence that may be Gaussian or an eigenmode of the straight of bent fiber computed using bend10 or bend20. Only one field component is used (semivectorial approximation). The fully-spatially-dependent fiber gain profile is specified is subroutines "inversion" and "interp_inversion" and is presently read from a data file, although other means of specifying fiber gain could be reallized through modification of these subroutines. The input pulse is propagated through the fiber, including the following physical effects: spatial and temporal gain saturation, self-focusing, bend losses, and confinement from a user-defined fiber index profile. The user can follow the propagation progress with 3D graphics that show an intensity profile via user-modifiable cutting planes through the time space axes. A restart capability is also included. Approximate solutions in the frequency domain may be obtained much faster using the auxilliary codes bendbpm10 (full vector), bendbpm20 (semivectoral), and bendbpm21 (semivectoral with gain sheet spproximation for gain and self-focusing). These codes all include bend loss and spatial (but not temporal) gain saturation.

  1. Helical coil thermal hydraulic model

    NASA Astrophysics Data System (ADS)

    Caramello, M.; Bertani, C.; De Salve, M.; Panella, B.

    2014-11-01

    A model has been developed in Matlab environment for the thermal hydraulic analysis of helical coil and shell steam generators. The model considers the internal flow inside one helix and its associated control volume of water on the external side, both characterized by their inlet thermodynamic conditions and the characteristic geometry data. The model evaluates the behaviour of the thermal-hydraulic parameters of the two fluids, such as temperature, pressure, heat transfer coefficients, flow quality, void fraction and heat flux. The evaluation of the heat transfer coefficients as well as the pressure drops has been performed by means of the most validated literature correlations. The model has been applied to one of the steam generators of the IRIS modular reactor and a comparison has been performed with the RELAP5/Mod.3.3 code applied to an inclined straight pipe that has the same length and the same elevation change between inlet and outlet of the real helix. The predictions of the developed model and RELAP5/Mod.3.3 code are in fairly good agreement before the dryout region, while the dryout front inside the helical pipes is predicted at a lower distance from inlet by the model.

  2. Screen-printed flexible MRI receive coils

    NASA Astrophysics Data System (ADS)

    Corea, Joseph R.; Flynn, Anita M.; Lechêne, Balthazar; Scott, Greig; Reed, Galen D.; Shin, Peter J.; Lustig, Michael; Arias, Ana C.

    2016-03-01

    Magnetic resonance imaging is an inherently signal-to-noise-starved technique that limits the spatial resolution, diagnostic image quality and results in typically long acquisition times that are prone to motion artefacts. This limitation is exacerbated when receive coils have poor fit due to lack of flexibility or need for padding for patient comfort. Here, we report a new approach that uses printing for fabricating receive coils. Our approach enables highly flexible, extremely lightweight conforming devices. We show that these devices exhibit similar to higher signal-to-noise ratio than conventional ones, in clinical scenarios when coils could be displaced more than 18 mm away from the body. In addition, we provide detailed material properties and components performance analysis. Prototype arrays are incorporated within infant blankets for in vivo studies. This work presents the first fully functional, printed coils for 1.5- and 3-T clinical scanners.

  3. Coiling Temperature Control in Hot Strip Mill

    NASA Astrophysics Data System (ADS)

    Imanari, Hiroyuki; Fujiyama, Hiroaki

    Coiling temperature is one of the most significant factors in products of hot strip mill to determine material properties such as strength, toughness of steel, so it is very important to achieve accurate coiling temperature control (CTC). Usually there are a few pyrometers on the run out table in hot strip mill, therefore temperature model and its adapting system have large influences on the accuracy of CTC. Also unscheduled change of rolling speed has a bad effect to keep coiling temperature as its target. Newly developed CTC system is able to get very accurate coiling temperature against uncertain factors and disturbances by adopting easily identified temperature model, learning method and dynamic set up function. The features of the CTC system are discussed with actual data, and the effectiveness of the system is shown by actual control results.

  4. Screen-printed flexible MRI receive coils.

    PubMed

    Corea, Joseph R; Flynn, Anita M; Lechêne, Balthazar; Scott, Greig; Reed, Galen D; Shin, Peter J; Lustig, Michael; Arias, Ana C

    2016-01-01

    Magnetic resonance imaging is an inherently signal-to-noise-starved technique that limits the spatial resolution, diagnostic image quality and results in typically long acquisition times that are prone to motion artefacts. This limitation is exacerbated when receive coils have poor fit due to lack of flexibility or need for padding for patient comfort. Here, we report a new approach that uses printing for fabricating receive coils. Our approach enables highly flexible, extremely lightweight conforming devices. We show that these devices exhibit similar to higher signal-to-noise ratio than conventional ones, in clinical scenarios when coils could be displaced more than 18 mm away from the body. In addition, we provide detailed material properties and components performance analysis. Prototype arrays are incorporated within infant blankets for in vivo studies. This work presents the first fully functional, printed coils for 1.5- and 3-T clinical scanners. PMID:26961073

  5. Electrical wire insulation and electromagnetic coil

    DOEpatents

    Bich, George J.; Gupta, Tapan K.

    1984-01-01

    An electromagnetic coil for high temperature and high radiation application in which glass is used to insulate the electrical wire. A process for applying the insulation to the wire is disclosed which results in improved insulation properties.

  6. Electrical Wire Insulation and Electromagnetic Coil

    SciTech Connect

    Bich, G. J.; Gupta, T. K.

    1984-01-31

    An electromagnetic coil for high temperature and high radiation application in which glass is used to insulate the electrical wire. A process for applying the insulation to the wire is disclosed which results in improved insulation properties.

  7. Magnetic propulsion of a magnetic device using three square-Helmholtz coils and a square-Maxwell coil.

    PubMed

    Ha, Yong H; Han, Byung H; Lee, Soo Y

    2010-02-01

    We introduce a square coil system for remote magnetic navigation of a magnetic device without any physical movements of the coils. We used three square-Helmholtz coils and a square-Maxwell coil for magnetic propulsion of a small magnet along the desired path. All the square coils are mountable on a cubic frame that has an opening to accommodate a living subject. The square-Helmholtz coils control the magnetic propulsion direction by generating uniform magnetic field along the desired direction while the square-Maxwell coil controls the propulsion force by generating magnetic gradient field. We performed magnetic propulsion experiments with a down-scaled coil set and a three-channel coil driver. Experimental results demonstrate that we can use the square coil set for magnetic navigation of a magnetic device without any physical movements of the coils. PMID:20054666

  8. Passive energy dump for superconducting coil protection

    DOEpatents

    Luton, J.N. Jr.

    1973-01-16

    The patent describes a passive resistance type energy dump for the protection of the coils of a superconducting magnet. Insertion heaters are immersed in a rigid container filled with a fusible alloy. The energy dump is connected across the coils of the superconducting magnet wherein individual heater elements are connected singly to the windings or otherwise according to the energy dumping requirements upon transition of the magnet to a normal state.

  9. Nanopottery: coiling of electrospun polymer nanofibers.

    PubMed

    Kim, Ho-Young; Lee, Minhee; Park, Kun Joong; Kim, Sungho; Mahadevan, L

    2010-06-01

    We show that a nanoscale polymer solution electrojet can coil to form free-standing hollow pottery as the jet is focused onto a sharp electrode tip. A scaling law is given based on the balance of the electrostatic compression force and the elastic resistance to predict the coil radius and frequency as the functions of relevant physical parameters. The structures formed by the nanofibers can be used in diverse fields of nanotechnology, for example, as nanomagnets, bioscaffolds, and nanochannels. PMID:20486713

  10. Heterogeneous Superconducting Low-Noise Sensing Coils

    NASA Technical Reports Server (NTRS)

    Hahn, Inseob; Penanen, Konstantin I.; Ho Eom, Byeong

    2008-01-01

    A heterogeneous material construction has been devised for sensing coils of superconducting quantum interference device (SQUID) magnetometers that are subject to a combination of requirements peculiar to some advanced applications, notably including low-field magnetic resonance imaging for medical diagnosis. The requirements in question are the following: The sensing coils must be large enough (in some cases having dimensions of as much as tens of centimeters) to afford adequate sensitivity; The sensing coils must be made electrically superconductive to eliminate Johnson noise (thermally induced noise proportional to electrical resistance); and Although the sensing coils must be cooled to below their superconducting- transition temperatures with sufficient cooling power to overcome moderate ambient radiative heat leakage, they must not be immersed in cryogenic liquid baths. For a given superconducting sensing coil, this combination of requirements can be satisfied by providing a sufficiently thermally conductive link between the coil and a cold source. However, the superconducting coil material is not suitable as such a link because electrically superconductive materials are typically poor thermal conductors. The heterogeneous material construction makes it possible to solve both the electrical- and thermal-conductivity problems. The basic idea is to construct the coil as a skeleton made of a highly thermally conductive material (typically, annealed copper), then coat the skeleton with an electrically superconductive alloy (typically, a lead-tin solder) [see figure]. In operation, the copper skeleton provides the required thermally conductive connection to the cold source, while the electrically superconductive coating material shields against Johnson noise that originates in the copper skeleton.

  11. AC loss measurements in HTS coil assemblies with hybrid coil structures

    NASA Astrophysics Data System (ADS)

    Jiang, Zhenan; Long, Nicholas J.; Staines, Mike; Badcock, Rodney A.; Bumby, Chris W.; Buckley, Robert G.; Amemiya, Naoyuki

    2016-09-01

    Both AC loss and wire cost in coil windings are critical factors for high temperature superconductor (HTS) AC machinery applications. We present AC loss measurement results in three HTS coil assemblies at 77 K and 65 K which have a hybrid coil structure comprising one central winding (CW) and two end windings (EWs) wound with ReBCO and BSCCO wires with different self-field I c values at 77 K. All AC loss results in the coil assemblies are hysteretic and the normalized AC losses in the coil assemblies at different temperatures can be scaled with the I c value of the coil assemblies. The normalised results show that AC loss in a coil assembly with BSCCO CW can be reduced by using EWs wound with high I c ReBCO wires, whilst further AC loss reduction can be achieved by replacing the BSCCO CW with ReBCO CW. The results imply that a flexible hybrid coil structure is possible which considers both AC loss and wire cost in coil assemblies.

  12. pH sensitive coiled coils: a strategy for enhanced liposomal drug delivery

    NASA Astrophysics Data System (ADS)

    Reja, Rahi M.; Khan, Mohsina; Singh, Sumeet K.; Misra, Rajkumar; Shiras, Anjali; Gopi, Hosahudya N.

    2016-02-01

    Stimuli responsive controlled release from liposome based vesicles is a promising strategy for the site specific delivery of drugs. Herein, we report the design of pH sensitive coiled coils and their incorporation into the liposome as triggers for the controlled release of encapsulated drugs. The designed coiled coil peptides with the incorporation of environment sensitive fluorescent amino acids were found to be stable at physiological pH and unstructured while changing the pH of the environment to either acidic or basic. This pH dependent conformational switch of the coiled-coil polypeptides was exploited as triggers for the enhanced release of the encapsulated drug molecules from liposomes. The SEM, DLS and TEM analysis revealed the uniform morphology of the peptide liposome hybrid vesicles. Further, the drug encapsulated liposome internalization experiments with cancer cells revealed the enhanced release and accumulation of drugs in the acidic lysosomal compartments in comparison with liposomes without coiled coils.Stimuli responsive controlled release from liposome based vesicles is a promising strategy for the site specific delivery of drugs. Herein, we report the design of pH sensitive coiled coils and their incorporation into the liposome as triggers for the controlled release of encapsulated drugs. The designed coiled coil peptides with the incorporation of environment sensitive fluorescent amino acids were found to be stable at physiological pH and unstructured while changing the pH of the environment to either acidic or basic. This pH dependent conformational switch of the coiled-coil polypeptides was exploited as triggers for the enhanced release of the encapsulated drug molecules from liposomes. The SEM, DLS and TEM analysis revealed the uniform morphology of the peptide liposome hybrid vesicles. Further, the drug encapsulated liposome internalization experiments with cancer cells revealed the enhanced release and accumulation of drugs in the acidic

  13. Thermal Performance of the LDX Floating Coil

    NASA Astrophysics Data System (ADS)

    Zhukovsky, A.; Garnier, D. T.; Radovinsky, A. L.

    2006-04-01

    The Levitated Dipole Experiment (LDX) is an innovative facility to study plasma confinement in a dipole magnetic field, created by a superconducting solenoid (floating coil), which is magnetically levitated in the center of a 5 m diameter by 3 m tall vacuum chamber. The floating coil (F-coil) consists of a Nb3Sn magnet installed inside a strong vessel filled with high-pressure helium gas at room temperature. It is surrounded by a fiberglass-lead composite radiation shield and by a toroidal vacuum shell. The cryostat design provides the ability to operate the magnet for several hours of wanning while suspended in the middle of the vacuum chamber without electric and cryogenic connections to the coil. For this reason the magnet is charged/discharged inductively in a lower part of the vacuum chamber. The retractable cryogenic transfer lines serve to cool down the magnet to 4.5 K before it is lifted to the operating position. The F-coil can be re-cooled multiple times while maintaining its field and current. This paper describes the thermal performance of the F-coil.

  14. Image reconstructions with the rotating RF coil.

    PubMed

    Trakic, A; Wang, H; Weber, E; Li, B K; Poole, M; Liu, F; Crozier, S

    2009-12-01

    Recent studies have shown that rotating a single RF transceive coil (RRFC) provides a uniform coverage of the object and brings a number of hardware advantages (i.e. requires only one RF channel, averts coil-coil coupling interactions and facilitates large-scale multi-nuclear imaging). Motion of the RF coil sensitivity profile however violates the standard Fourier Transform definition of a time-invariant signal, and the images reconstructed in this conventional manner can be degraded by ghosting artifacts. To overcome this problem, this paper presents Time Division Multiplexed-Sensitivity Encoding (TDM-SENSE), as a new image reconstruction scheme that exploits the rotation of the RF coil sensitivity profile to facilitate ghost-free image reconstructions and reductions in image acquisition time. A transceive RRFC system for head imaging at 2 Tesla was constructed and applied in a number of in vivo experiments. In this initial study, alias-free head images were obtained in half the usual scan time. It is hoped that new sequences and methods will be developed by taking advantage of coil motion. PMID:19800824

  15. Divertor Coil Design and Implementation on Pegasus

    NASA Astrophysics Data System (ADS)

    Shriwise, P. C.; Bongard, M. W.; Cole, J. A.; Fonck, R. J.; Kujak-Ford, B. A.; Lewicki, B. T.; Winz, G. R.

    2012-10-01

    An upgraded divertor coil system is being commissioned on the Pegasus Toroidal Experiment in conjunction with power system upgrades in order to achieve higher β plasmas, reduce impurities, and possibly achieve H-mode operation. Design points for the divertor coil locations and estimates of their necessary current ratings were found using predictive equilibrium modeling based upon a 300 kA target plasma. This modeling represented existing Pegasus coil locations and current drive limits. The resultant design calls for 125 kA-turns from the divertor system to support the creation of a double null magnetic topology in plasmas with Ip<=300 kA. Initial experiments using this system will employ 900 V IGBT power supply modules to provide IDIV<=4 kA. The resulting 20 kA-turn capability of the existing divertor coil will be augmented by a new coil providing additional A-turns in series. Induced vessel wall current modeling indicates the time response of a 28 turn augmentation coil remains fast compared to the poloidal field penetration rate through the vessel. First results operating the augmented system are shown.

  16. Image reconstructions with the rotating RF coil

    NASA Astrophysics Data System (ADS)

    Trakic, A.; Wang, H.; Weber, E.; Li, B. K.; Poole, M.; Liu, F.; Crozier, S.

    2009-12-01

    Recent studies have shown that rotating a single RF transceive coil (RRFC) provides a uniform coverage of the object and brings a number of hardware advantages (i.e. requires only one RF channel, averts coil-coil coupling interactions and facilitates large-scale multi-nuclear imaging). Motion of the RF coil sensitivity profile however violates the standard Fourier Transform definition of a time-invariant signal, and the images reconstructed in this conventional manner can be degraded by ghosting artifacts. To overcome this problem, this paper presents Time Division Multiplexed — Sensitivity Encoding (TDM-SENSE), as a new image reconstruction scheme that exploits the rotation of the RF coil sensitivity profile to facilitate ghost-free image reconstructions and reductions in image acquisition time. A transceive RRFC system for head imaging at 2 Tesla was constructed and applied in a number of in vivo experiments. In this initial study, alias-free head images were obtained in half the usual scan time. It is hoped that new sequences and methods will be developed by taking advantage of coil motion.

  17. Auxiliary coil controls temperature of RF induction heater

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Auxiliary coil controls the temperature of an RF induction furnace that is powered by a relatively unstable RF generator. Manual or servoed adjustments of the relative position of the auxiliary coil, which is placed in close proximity to the RF coil, changes the looseness of the RF coil and hence the corresponding heating effect of its RF field.

  18. Radiation-hard electrical coil and method for its fabrication

    DOEpatents

    Grieggs, R.J.; Blake, R.D.; Gac, F.D.

    1982-06-29

    A radiation-hard insulated electrical coil and method for making the same are disclosed. In accordance with the method, a conductor, preferably copper, is wrapped with an aluminum strip and then tightly wound into a coil. The aluminum-wrapped coil is then annealed to relax the conductor in the coiled configuration. The annealed coil is then immersed in an alkaline solution to dissolve the aluminum strip, leaving the bare conductor in a coiled configuration with all of the windings closely packed yet uniformly spaced from one another. The coil is then insulated with a refractory insulating material. In the preferred embodiment, the coil is insulated by coating it with a vitreous enamel and subsequently potting the enamelled coil in a castable ceramic concrete. The resulting coil is substantially insensitive to radiation and may be operated continuously in high radiation environments for long periods of time.

  19. Transient Heat Transfer in TCAP Coils

    SciTech Connect

    Steimke, J.L.

    1999-03-09

    The Thermal Cycling Absorption Process (TCAP) is used to separate isotopes of hydrogen. TCAP involves passing a stream of mixed hydrogen isotopes through palladium deposited on kieselguhr (Pd/k) while cycling the temperature of the Pd/k. Kieselguhr is a silica mineral also called diatomite. To aid in the design of a full scale facility, the Thermal Fluids Laboratory was used by the Chemical and Hydrogen Technology Section to compare the heat transfer properties of three different configurations of stainless steel coils containing kieselguhr and helium. Testing of coils containing Pd/k and hydrogen isotopes would have been more prototypical but would have been too expensive. Three stainless steel coils filled with kieselguhr were tested; one made from 2.0 inch diameter tubing, one made from 2.0 inch diameter tubing with foam copper embedded in the kieselguhr and one made from 1.25 inch diameter tubing. It was known prior to testing that increasing the tubing diameter from 1.25 inch to 2.0 inch would slow the rate of temperature change. The primary purpose of the testing was to measure to what extent the presence of copper foam in a 2.0" tubing coil would compensate for the effect of larger diameter. Each coil was connected to a pressure gage and the coil was evacuated and backfilled with helium gas. Helium was used instead of a mixture of hydrogen isotopes for reasons of safety. Each coil was quickly immersed in a stirred bath of ethylene glycol at a temperature of approximately 100 degrees Celsius. The coil pressure increased, reflecting the increase in average temperature of its contents. The pressure transient was recored as a function of time after immersion. Because of the actual process will use Pd/k instead of kieselguhr, additional tests were run to determine the differences in thermal properties between the two materials. The method was to position a thermocouple at the center of a hollow sphere and pack the sphere with Pd/k. The sphere was sealed, quickly

  20. Transient Heat Transfer in TCAP Coils

    SciTech Connect

    Steimke, J.L.

    1999-03-09

    The Thermal Cycling Absorption Process (TCAP) is used to separate isotopes of hydrogen. TCAP involves passing a stream of mixed hydrogen isotopes through palladium deposited on kieselguhr (Pd/k) while cycling the temperature of the Pd/k. Kieselguhr is a silica mineral also called diatomite. To aid in the design of a full scale facility, the Thermal Fluids Laboratory was used by the Chemical and Hydrogen Technology Section to compare the heat transfer properties of three different configurations of stainless steel coils containing kieselguhr and helium. Testing of coils containing Pd/k and hydrogen isotopes would have been more prototypical but would have been too expensive. Three stainless steel coils filled with kieselguhr were tested; one made from 2.0 inch diameter tubing, one made from 2.0 inch diameter tubing with foam copper embedded in the kieselguhr and one made from 1.25 inch diameter tubing. It was known prior to testing that increasing the tubing diameter from 1.25 inch to 2.0 inch would slow the rate of temperature change. The primary purpose of the testing was to measure to what extent the presence of copper foam in a 2.0 tubing coil would compensate for the effect of larger diameter. Each coil was connected to a pressure gage and the coil was evacuated and backfilled with helium gas. Helium was used instead of a mixture of hydrogen isotopes for reasons of safety. Each coil was quickly immersed in a stirred bath of ethylene glycol at a temperature of approximately 100 degrees Celsius. The coil pressure increased, reflecting the increase in average temperature of its contents. The pressure transient was recored as a function of time after immersion. Because of the actual process will use Pd/k instead of kieselguhr, additional tests were run to determine the differences in thermal properties between the two materials. The method was to position a thermocouple at the center of a hollow sphere and pack the sphere with Pd/k. The sphere was sealed, quickly

  1. Structural Correlation of the Neck Coil with the Coiled-coil (CC1)-Forkhead-associated (FHA) Tandem for Active Kinesin-3 KIF13A.

    PubMed

    Ren, Jinqi; Huo, Lin; Wang, Wenjuan; Zhang, Yong; Li, Wei; Lou, Jizhong; Xu, Tao; Feng, Wei

    2016-02-12

    Processive kinesin motors often contain a coiled-coil neck that controls the directionality and processivity. However, the neck coil (NC) of kinesin-3 is too short to form a stable coiled-coil dimer. Here, we found that the coiled-coil (CC1)-forkhead-associated (FHA) tandem (that is connected to NC by Pro-390) of kinesin-3 KIF13A assembles as an extended dimer. With the removal of Pro-390, the NC-CC1 tandem of KIF13A unexpectedly forms a continuous coiled-coil dimer that can be well aligned into the CC1-FHA dimer. The reverse introduction of Pro-390 breaks the NC-CC1 coiled-coil dimer but provides the intrinsic flexibility to couple NC with the CC1-FHA tandem. Mutations of either NC, CC1, or the FHA domain all significantly impaired the motor activity. Thus, the three elements within the NC-CC1-FHA tandem of KIF13A are structurally interrelated to form a stable dimer for activating the motor. This work also provides the first direct structural evidence to support the formation of a coiled-coil neck by the short characteristic neck domain of kinesin-3. PMID:26680000

  2. Gradient coil system for nuclear magnetic resonance apparatus

    SciTech Connect

    Frese, G.; Siebold, H.

    1984-08-28

    A gradient coil system for an image-generating, nuclear magnetic resonance tomographic apparatus, particularly a zeugmatographic apparatus. The gradient coil system is arranged on a support body of rotational symmetry, illustratively a hollow cylindrical support body, having an axis which extends along the z-direction of an x, y, z coordinate system which has an origin in the center of imaging region. The gradient coil system contains two pairs of toroidal individual coils which are arranged symmetrically with respect to an x-y plane which extends through the center of the imaging region and which are arranged perpendicular to the z-axis. The direction of current flow in the individual coils of a coil pair is opposite to the direction of flow in the individual coils of the other coil pair. Moreover, further sets of coils are provided for generating field gradient Gx in the x-direction, and Gy in the y-direction. The hollow cylindrical shape of the support body on which the individual coils are arranged permit an imaging region having a substantially spherical volume with a substantially constant field gradient Gz to be achieved. Each of the coils has a predetermined linkage factor which corresponds to the product of the current flowing through the number of coil turns of the coil. Those coils which are arranged further from the plane of symmetry have a substantially larger linkage factor than the coils which are nearer to the plane of symmetry.

  3. A coiled-coil domain acts as a molecular ruler in LPS chain length regulation

    PubMed Central

    Tuukkanen, Anne; Danciu, Iulia; Svergun, Dmitri I.; Hussain, Rohanah; Liu, Huanting; Whitfield, Chris; Naismith, James H.

    2014-01-01

    Long-chain bacterial polysaccharides play important roles in pathogenicity. In Escherichia coli O9a, a model for ABC transporter dependent polysaccharide assembly, a large extracellular carbohydrate with a narrow distribution of size is polymerized from monosaccharides by a complex of two proteins, WbdA (polymerase) and WbdD (terminating protein). Such careful control of polymerization is recurring theme in biology. Combining crystallography and small angle X-ray scattering, we show that the C-terminal domain of WbdD contains an extended coiled-coil that physically separates WbdA from the catalytic domain of WbdD. The effects of insertions and deletions within the coiled-coil region were analyzed in vivo, revealing that polymer size is controlled by varying the length of the coiled-coil domain. Thus, the coiled-coil domain of WbdD functions as a molecular ruler that, along with WbdA:WbdD stoichiometry, controls the chain length of a model bacterial polysaccharide. PMID:25504321

  4. Self-sorting heterodimeric coiled coil peptides with defined and tuneable self-assembly properties

    PubMed Central

    Aronsson, Christopher; Dånmark, Staffan; Zhou, Feng; Öberg, Per; Enander, Karin; Su, Haibin; Aili, Daniel

    2015-01-01

    Coiled coils with defined assembly properties and dissociation constants are highly attractive components in synthetic biology and for fabrication of peptide-based hybrid nanomaterials and nanostructures. Complex assemblies based on multiple different peptides typically require orthogonal peptides obtained by negative design. Negative design does not necessarily exclude formation of undesired species and may eventually compromise the stability of the desired coiled coils. This work describe a set of four promiscuous 28-residue de novo designed peptides that heterodimerize and fold into parallel coiled coils. The peptides are non-orthogonal and can form four different heterodimers albeit with large differences in affinities. The peptides display dissociation constants for dimerization spanning from the micromolar to the picomolar range. The significant differences in affinities for dimerization make the peptides prone to thermodynamic social self-sorting as shown by thermal unfolding and fluorescence experiments, and confirmed by simulations. The peptides self-sort with high fidelity to form the two coiled coils with the highest and lowest affinities for heterodimerization. The possibility to exploit self-sorting of mutually complementary peptides could hence be a viable approach to guide the assembly of higher order architectures and a powerful strategy for fabrication of dynamic and tuneable nanostructured materials. PMID:26370878

  5. The tripartite motif coiled-coil is an elongated antiparallel hairpin dimer

    PubMed Central

    Sanchez, Jacint G.; Okreglicka, Katarzyna; Chandrasekaran, Viswanathan; Welker, Jordan M.; Sundquist, Wesley I.; Pornillos, Owen

    2014-01-01

    Tripartite motif (TRIM) proteins make up a large family of coiled-coil-containing RING E3 ligases that function in many cellular processes, particularly innate antiviral response pathways. Both dimerization and higher-order assembly are important elements of TRIM protein function, but the atomic details of TRIM tertiary and quaternary structure have not been fully understood. Here, we present crystallographic and biochemical analyses of the TRIM coiled-coil and show that TRIM proteins dimerize by forming interdigitating antiparallel helical hairpins that position the N-terminal catalytic RING domains at opposite ends of the dimer and the C-terminal substrate-binding domains at the center. The dimer core comprises an antiparallel coiled-coil with a distinctive, symmetric pattern of flanking heptad and central hendecad repeats that appear to be conserved across the entire TRIM family. Our studies reveal how the coiled-coil organizes TRIM25 to polyubiquitylate the RIG-I/viral RNA recognition complex and how dimers of the TRIM5α protein are arranged within hexagonal arrays that recognize the HIV-1 capsid lattice and restrict retroviral replication. PMID:24550273

  6. Self-Assembling Peptide-Polymer Hydrogels Designed From the Coiled Coil Region of Fibrin

    PubMed Central

    Jing, Peng; Rudra, Jai S.; Herr, Andrew B.; Collier, Joel H.

    2010-01-01

    Biomaterials constructed from self-assembling peptides, peptide derivatives, and peptide-polymer conjugates are receiving increasing attention as defined matrices for tissue engineering, controlled therapeutic release, and in vitro cell expansion, but many are constructed from peptide structures not typically found in the human extracellular matrix. Here we report a self-assembling biomaterial constructed from a designed peptide inspired by the coiled coil domain of human fibrin, the major protein constituent of blood clots and the provisional scaffold of wound healing. Targeted substitutions were made in the residues forming the interface between coiled coil strands for a 37-amino acid peptide from human fibrinogen to stabilize the coiled coil peptide bundle, while the solvent-exposed residues were left unchanged to provide a surface similar to that of the native protein. This peptide, which self-assembled into coiled coil dimers and tetramers, was then used to produce triblock peptide-PEG-peptide bioconjugates that self-assembled into viscoelastic hydrogel biomaterials. PMID:18712921

  7. Antiparallel Four-Stranded Coiled Coil Specified by a 3-3-1 Hyrdrophobic Heptad Repeat

    SciTech Connect

    Deng,Y.; Liu, J.; Zheng, Q.; Eliezer, D.; Kallenbach, N.; Lu, M.

    2006-01-01

    Coiled-coil sequences in proteins commonly share a seven-amino acid repeat with nonpolar side chains at the first (a) and fourth (d) positions. We investigate here the role of a 3-3-1 hydrophobic repeat containing nonpolar amino acids at the a, d, and g positions in determining the structures of coiled coils using mutants of the GCN4 leucine zipper dimerization domain. When three charged residues at the g positions in the parental sequence are replaced by nonpolar alanine or valine side chains, stable four-helix structures result. The X-ray crystal structures of the tetramers reveal antiparallel, four-stranded coiled coils in which the a, d, and g side chains interlock in a combination of knobs-into-knobs and knobs-into-holes packing. Interfacial interactions in a coiled coil can therefore be prescribed by hydrophobic-polar patterns beyond the canonical 3-4 heptad repeat. The results suggest that the conserved, charged residues at the g positions in the GCN4 leucine zipper can impart a negative design element to disfavor thermodynamically more stable, antiparallel tetramers.

  8. Forced Unfolding of the Coiled-Coils of Fibrinogen by Single-Molecule AFM

    NASA Astrophysics Data System (ADS)

    Brown, Andre; Litvinov, Rustem; Discher, Dennis; Weisel, John

    2007-03-01

    A blood clot needs to have the right degree of stiffness and plasticity for hemostasis, but the origin of these mechanical properties is unknown. Here we report the first measurements using single molecule atomic force microscopy (AFM) to study the forced unfolding of fibrinogen to begin addressing this problem. To generate longer reproducible curves than are possible using monomer, factor XIIIa cross-linked, single chain fibrinogen oligomers were used. When extended under force, these oligomers showed sawtooth shaped force-extension patterns characteristic of unfolding proteins with a peak-to-peak separation of approximately 26 nm, consistent with the independent unfolding of the coiled-coils. These results were then reproduced using a Monte Carlo simulation with parameters in the same range as those previously used for unfolding globular domains. In particular, we found that the refolding time was negligible on experimental time and force scales in contrast to previous work on simpler coiled-coils. We suggest that this difference may be due to fibrinogen's structurally and topologically more complex coiled-coils and that an interaction between the alpha C and central domains may be involved. These results suggest a new functional property of fibrinogen and that the coiled-coil is more than a passive structural element of this molecule.

  9. Coil in coil - components for the high voltage superconducting resistive current limiter CULT 110

    NASA Astrophysics Data System (ADS)

    Elschner, S.; Stemmle, M.; Breuer, F.; Walter, H.; Frohne, C.; Noe, M.; Bock, J.

    2008-02-01

    The German government (BMBF/VDI) funded project CULT 110 is presently the largest European current limiter project and aims at the development of a one-phase resistive limiter for the voltage level of 110 kV. The contribution presents the actual state of development of the superconducting components. As in the successful predecessor project CURL 10 these are made of melt cast processed BSCCO 2212 bulk material, however monofilar instead of bifilar coils are used. The electrical protection concept is based on a normal conducting coil arranged around a superconducting coil and connected in parallel. Simultaneously this coil serves as an electrical bypass and, under fault conditions, generates a magnetic field for quench homogenisation. Since no continuously connected shunt is needed, a much higher voltage during faults can be applied. The rules for an optimum superconductor and coil design are given and the viability of the whole concept is demonstrated by both, experiment and numerical simulation.

  10. Residual Stress Measurement Using Rectangular Spiral Coils

    NASA Astrophysics Data System (ADS)

    Sun, Haiyan; Plotnikov, Yuri

    2008-02-01

    Shot peening process provides compressive residual stress within a depth of about 150˜200 um from the surface. It has been demonstrated that multi-frequency eddy current measurement can be effectively used for the residual stress estimation on Ni-based superalloys. In order to measure the stress profile over the entire compressive zone, the probe needs to work in a wide frequency range from 0.1 MHz to above 50 MHz. Due to its wide bandwidth and high precision fabrication process, spiral coils fabricated on flexible substrate using photolithographic technology are good candidate for this task It is useful to develop a coil model in order to optimize coil design, minimize liftoff effect and maximize coil gauge factor. In this work, a 3D analytical model was used to simulate rectangular spiral coil response on a half-space conductor. The results were compared with commercial available 3D finite element software and experimental results. The analytical model was also used to simulate 4-point calibration process that was used to calculate apparent eddy current conductivity (AECC). The experimental setup was described and AECC profile was obtained for shot-peening samples with different peening intensity and different heat treatment.

  11. Dual Frequency Coil Array for MR Imaging

    NASA Astrophysics Data System (ADS)

    Amador-Baheza, R.; Sacristan-Rock, E.; Rodríguez, A. O.

    2002-08-01

    An array coil to perform in vivo Magnetic Resonance Imaging and Spectroscopy was developed to study the intestinal wall. It consisted of two surface rectangular-shaped coils mounted on cylindrical structure forming an orthogonal assembly. Since this design is intended to generate images and spectra, each element was tuned to a different resonant frequency: a) imaging: 200 MHz (1H) and b) spectroscopy: 81 MHz (31P). However, at this stage of the research, imaging experiments were only conducted on a Bruker 4.7 Tesla animal system. High-resolution images were obtained from a saline filled phantom and from the intestinal wall of a fully anaesthetised rabbit. The dual frequency coil array can be used to study the pathophysiology of intestinal ischemia.

  12. Acoustic rainbow trapping by coiling up space.

    PubMed

    Ni, Xu; Wu, Ying; Chen, Ze-Guo; Zheng, Li-Yang; Xu, Ye-Long; Nayar, Priyanka; Liu, Xiao-Ping; Lu, Ming-Hui; Chen, Yan-Feng

    2014-01-01

    We numerically realize the acoustic rainbow trapping effect by tapping an air waveguide with space-coiling metamaterials. Due to the high refractive-index of the space-coiling metamaterials, our device is more compact compared to the reported trapped-rainbow devices. A numerical model utilizing effective parameters is also calculated, whose results are consistent well with the direct numerical simulation of space-coiling structure. Moreover, such device with the capability of dropping different frequency components of a broadband incident temporal acoustic signal into different channels can function as an acoustic wavelength division de-multiplexer. These results may have potential applications in acoustic device design such as an acoustic filter and an artificial cochlea. PMID:25392033

  13. Output beam analysis of high power COIL

    NASA Astrophysics Data System (ADS)

    Yu, Deli; Sang, Fengting; Jin, Yuqi; Sun, Yizhu

    2003-03-01

    As the output power of a chemical oxygen iodine laser (COIL) increases, the output laser beam instability appears as the far-field beam spot drift and deformation for the large Fresnel number unstable resonator. In order to interpret this phenomenon, an output beam mode simulation code was developed with the fast Fourier transform method. The calculation results show that the presence of the nonuniform gain in COIL produces a skewed output intensity distribution, which causes the mirror tilt and bulge due to the thermal expansion. With the output power of COIL increases, the mirror surfaces, especially the back surface of the scraper mirror, absorb more and more heat, which causes the drift and deformation of far field beam spot seriously. The initial misalignment direction is an important factor for the far field beam spot drifting and deformation.

  14. Gas Filled Coaxial Accelerator with Compression Coil

    NASA Technical Reports Server (NTRS)

    Espy, Patrick N. (Inventor)

    1976-01-01

    A self-energized plasma compressor which compresses plasma discharged from a coaxial plasma generator. The device includes a helical shaped coil which is coaxially aligned with the center axis of the coaxial plasma generator. The plasma generator creates a current through the helical coil which, in turn, generates a time varying magnetic field that generates a force which acts radially upon the plasma. A seal is carried on the end of the coaxial plasma generator for containing gas therein. As the plasma is accelerated out the outer end of the generator, it forces the gas outwardly also compressing such. Beads are carried adjacent the small end of the helical shaped coil for being accelerated to hypervelocities by the plasma and gas. As a result of utilizing gas in the coaxial plasma generator, such minimizes ablation of the beads as well as accelerates such to higher velocities.

  15. Measuring the orthogonality error of coil systems

    USGS Publications Warehouse

    Heilig, B.; Csontos, A.; Pajunpää, K.; White, Tim; St. Louis, B.; Calp, D.

    2012-01-01

    Recently, a simple method was proposed for the determination of pitch angle between two coil axes by means of a total field magnetometer. The method is applicable when the homogeneous volume in the centre of the coil system is large enough to accommodate the total field sensor. Orthogonality of calibration coil systems used for calibrating vector magnetometers can be attained by this procedure. In addition, the method can be easily automated and applied to the calibration of delta inclination–delta declination (dIdD) magnetometers. The method was tested by several independent research groups, having a variety of test equipment, and located at differing geomagnetic observatories, including: Nurmijärvi, Finland; Hermanus, South Africa; Ottawa, Canada; Tihany, Hungary. This paper summarizes the test results, and discusses the advantages and limitations of the method.

  16. Acoustic rainbow trapping by coiling up space

    PubMed Central

    Ni, Xu; Wu, Ying; Chen, Ze-Guo; Zheng, Li-Yang; Xu, Ye-Long; Nayar, Priyanka; Liu, Xiao-Ping; Lu, Ming-Hui; Chen, Yan-Feng

    2014-01-01

    We numerically realize the acoustic rainbow trapping effect by tapping an air waveguide with space-coiling metamaterials. Due to the high refractive-index of the space-coiling metamaterials, our device is more compact compared to the reported trapped-rainbow devices. A numerical model utilizing effective parameters is also calculated, whose results are consistent well with the direct numerical simulation of space-coiling structure. Moreover, such device with the capability of dropping different frequency components of a broadband incident temporal acoustic signal into different channels can function as an acoustic wavelength division de-multiplexer. These results may have potential applications in acoustic device design such as an acoustic filter and an artificial cochlea. PMID:25392033

  17. Coupled wave model for large magnet coils

    NASA Technical Reports Server (NTRS)

    Gabriel, G. J.

    1980-01-01

    A wave coupled model based on field theory is evolved for analysis of fast electromagnetic transients on superconducting coils. It is expected to play a useful role in the design of protection methods against damage due to high voltages or any adverse effects that might arise from unintentional transients. The significant parameters of the coil are identified to be the turn to turn wave coupling coefficients and the travel time of an electromagnetic disturbance around a single turn. Unlike circuit theoretic inductor, the coil response evolves in discrete steps having durations equal to this travel time. It is during such intervals that high voltages are likely to occur. The model also bridges the gap between the low and high ends of the frequency spectrum.

  18. Superconductor coil geometry and ac losses

    NASA Technical Reports Server (NTRS)

    Pierce, T. V., Jr.; Zapata, R. N.

    1976-01-01

    An empirical relation is presented which allows simple computation of volume-averaged winding fields from central fields for coils of small rectangular cross sections. This relation suggests that, in certain applications, ac-loss minimization can be accomplished by use of low winding densities, provided that hysteresis losses are independent of winding density. The ac-loss measurements on coils wound of twisted multifilamentary composite superconductors show no significant dependence on ac losses on winding density, thus permitting the use of winding density as an independent design parameter in loss minimization.

  19. Coiled coil interactions for the targeting of liposomes for nucleic acid delivery

    NASA Astrophysics Data System (ADS)

    Oude Blenke, Erik E.; van den Dikkenberg, Joep; van Kolck, Bartjan; Kros, Alexander; Mastrobattista, Enrico

    2016-04-01

    Coiled coil interactions are strong protein-protein interactions that are involved in many biological processes, including intracellular trafficking and membrane fusion. A synthetic heterodimeric coiled-coil forming peptide pair, known as E3 (EIAALEK)3 and K3 (KIAALKE)3 was used to functionalize liposomes encapsulating a splice correcting oligonucleotide or siRNA. These peptide-functionalized vesicles are highly stable in solution but start to cluster when vesicles modified with complementary peptides are mixed together, demonstrating that the peptides quickly coil and crosslink the vesicles. When one of the peptides was anchored to the cell membrane using a hydrophobic cholesterol anchor, vesicles functionalized with the complementary peptide could be docked to these cells, whereas non-functionalized cells did not show any vesicle tethering. Although the anchored peptides do not have a downstream signaling pathway, microscopy pictures revealed that after four hours, the majority of the docked vesicles were internalized by endocytosis. Finally, for the first time, it was shown that the coiled coil assembly at the interface between the vesicles and the cell membrane induces active uptake and leads to cytosolic delivery of the nucleic acid cargo. Both the siRNA and the splice correcting oligonucleotide were functionally delivered, resulting respectively in the silencing or recovery of luciferase expression in the appropriate cell lines. These results demonstrate that the docking to the cell by coiled coil interaction can induce active uptake and achieve the successful intracellular delivery of otherwise membrane impermeable nucleic acids in a highly specific manner.Coiled coil interactions are strong protein-protein interactions that are involved in many biological processes, including intracellular trafficking and membrane fusion. A synthetic heterodimeric coiled-coil forming peptide pair, known as E3 (EIAALEK)3 and K3 (KIAALKE)3 was used to functionalize liposomes

  20. Coiled coil interactions for the targeting of liposomes for nucleic acid delivery

    NASA Astrophysics Data System (ADS)

    Oude Blenke, Erik E.; van den Dikkenberg, Joep; van Kolck, Bartjan; Kros, Alexander; Mastrobattista, Enrico

    2016-04-01

    Coiled coil interactions are strong protein-protein interactions that are involved in many biological processes, including intracellular trafficking and membrane fusion. A synthetic heterodimeric coiled-coil forming peptide pair, known as E3 (EIAALEK)3 and K3 (KIAALKE)3 was used to functionalize liposomes encapsulating a splice correcting oligonucleotide or siRNA. These peptide-functionalized vesicles are highly stable in solution but start to cluster when vesicles modified with complementary peptides are mixed together, demonstrating that the peptides quickly coil and crosslink the vesicles. When one of the peptides was anchored to the cell membrane using a hydrophobic cholesterol anchor, vesicles functionalized with the complementary peptide could be docked to these cells, whereas non-functionalized cells did not show any vesicle tethering. Although the anchored peptides do not have a downstream signaling pathway, microscopy pictures revealed that after four hours, the majority of the docked vesicles were internalized by endocytosis. Finally, for the first time, it was shown that the coiled coil assembly at the interface between the vesicles and the cell membrane induces active uptake and leads to cytosolic delivery of the nucleic acid cargo. Both the siRNA and the splice correcting oligonucleotide were functionally delivered, resulting respectively in the silencing or recovery of luciferase expression in the appropriate cell lines. These results demonstrate that the docking to the cell by coiled coil interaction can induce active uptake and achieve the successful intracellular delivery of otherwise membrane impermeable nucleic acids in a highly specific manner.Coiled coil interactions are strong protein-protein interactions that are involved in many biological processes, including intracellular trafficking and membrane fusion. A synthetic heterodimeric coiled-coil forming peptide pair, known as E3 (EIAALEK)3 and K3 (KIAALKE)3 was used to functionalize liposomes

  1. Dynamics of the coiled-coil unfolding transition of myosin rod probed by dissipation force spectrum.

    PubMed

    Taniguchi, Yukinori; Khatri, Bhavin S; Brockwell, David J; Paci, Emanuele; Kawakami, Masaru

    2010-07-01

    The motor protein myosin II plays a crucial role in muscle contraction. The mechanical properties of its coiled-coil region, the myosin rod, are important for effective force transduction during muscle function. Previous studies have investigated the static elastic response of the myosin rod. However, analogous to the study of macroscopic complex fluids, how myosin will respond to physiological time-dependent loads can only be understood from its viscoelastic response. Here, we apply atomic force microscopy using a magnetically driven oscillating cantilever to measure the dissipative properties of single myosin rods that provide unique dynamical information about the coiled-coil structure as a function of force. We find that the friction constant of the single myosin rod has a highly nontrivial variation with force; in particular, the single-molecule friction constant is reduced dramatically and increases again as it passes through the coiled-uncoiled transition. This is a direct indication of a large free-energy barrier to uncoiling, which may be related to a fine-tuned dynamic mechanosignaling response to large and unexpected physiological loads. Further, from the critical force at which the minimum in friction occurs we determine the asymmetry of the bistable landscape that controls uncoiling of the coiled coil. This work highlights the sensitivity of the dissipative signal in force unfolding to dynamic molecular structure that is hidden to the elastic signal. PMID:20655854

  2. Resistive demountable toroidal-field coils for tokamak reactors

    SciTech Connect

    Jassby, D.L.; Jacobsen, R.A.; Kalnavarns, J.; Masson, L.S.; Sekot, J.P.

    1981-07-01

    Readily demountable TF (toroidal-field) coils allow complete access to the internal components of a tokamak reactor for maintenance of replacement. The requirement of readily demountable joints dictates the use of water-cooled resistive coils, which have a host of decisive advantages over superconducting coils. Previous papers have shown that resistive TF coils for tokamak reactors can operate in the steady state with acceptable power dissipation (typically, 175 to 300 MW). This paper summarizes results of parametric studies of size optimization of rectangular TF coils and of a finite-element stress analysis, and examines several candidate methods of implementing demountable joints for rectangular coils constructed of plate segments.

  3. Characteristics of bowl-shaped coils for transcranial magnetic stimulation

    NASA Astrophysics Data System (ADS)

    Yamamoto, Keita; Suyama, Momoko; Takiyama, Yoshihiro; Kim, Dongmin; Saitoh, Youichi; Sekino, Masaki

    2015-05-01

    Transcranial magnetic stimulation (TMS) has recently been used as a method for the treatment of neurological and psychiatric diseases. Daily TMS sessions can provide continuous therapeutic effectiveness, and the installation of TMS systems at patients' homes has been proposed. A figure-eight coil, which is normally used for TMS therapy, induces a highly localized electric field; however, it is challenging to achieve accurate coil positioning above the targeted brain area using this coil. In this paper, a bowl-shaped coil for stimulating a localized but wider area of the brain is proposed. The coil's electromagnetic characteristics were analyzed using finite element methods, and the analysis showed that the bowl-shaped coil induced electric fields in a wider area of the brain model than a figure-eight coil. The expanded distribution of the electric field led to greater robustness of the coil to the coil-positioning error. To improve the efficiency of the coil, the relationship between individual coil design parameters and the resulting coil characteristics was numerically analyzed. It was concluded that lengthening the outer spherical radius and narrowing the width of the coil were effective methods for obtaining a more effective and more uniform distribution of the electric field.

  4. COMPACT COILED DENUDER FOR ATMOSPHERIC SAMPLING

    EPA Science Inventory

    A compact coiled denuder has been designed and its performance evaluated both theoretically and experimentally. he design is based on special features of laminar flow in a curved tube, which significantly enhance the mass transfer Sherwood number governing gas collection at the w...

  5. Tool Removes Coil-Spring Thread Inserts

    NASA Technical Reports Server (NTRS)

    Collins, Gerald J., Jr.; Swenson, Gary J.; Mcclellan, J. Scott

    1991-01-01

    Tool removes coil-spring thread inserts from threaded holes. Threads into hole, pries insert loose, grips insert, then pulls insert to thread it out of hole. Effects essentially reverse of insertion process to ease removal and avoid further damage to threaded inner surface of hole.

  6. Simplified deflection-coil linearity testing

    NASA Technical Reports Server (NTRS)

    Kramer, G. P.

    1976-01-01

    Mask placed over face of image-dissecting photomultiplier tube has precision array of pinholes that permit light to impinge on tube at known points. Signals are fed to deflection coil which sweeps beam across each point without complex operator procedures.

  7. High-field superconducting nested coil magnet

    NASA Technical Reports Server (NTRS)

    Laverick, C.; Lobell, G. M.

    1970-01-01

    Superconducting magnet, employed in conjunction with five types of superconducting cables in a nested solenoid configuration, produces total, central magnetic field strengths approaching 70 kG. The multiple coils permit maximum information on cable characteristics to be gathered from one test.

  8. Transcatheter Coil Embolization of Splenic Artery Aneurysm

    SciTech Connect

    Yamamoto, Satoshi Hirota, Shozo; Maeda, Hiroaki; Achiwa, Sachiko Arai, Keisuke; Kobayashi, Kaoru; Nakao, Norio

    2008-05-15

    The purpose of this study was to evaluate clinical results and technical problems of transcatheter coil embolization for splenic artery aneurysm. Subjects were 16 patients (8 men, 8 women; age range, 40-80 years) who underwent transcatheter embolization for splenic artery aneurysm (14 true aneurysms, 2 false aneurysms) at one of our hospitals during the period January 1997 through July 2005. Two aneurysms (12.5%) were diagnosed at the time of rupture. Multiple splenic aneurysms were found in seven patients. Aneurysms were classified by site as proximal (or strictly ostial) (n = 3), middle (n = 3), or hilar (n = 10). The indication for transcatheter arterial embolization was a false or true aneurysm 20 mm in diameter. Embolic materials were fibered coils and interlocking detachable coils. Embolization was performed by the isolation technique, the packing technique, or both. Technically, all aneurysms were devascularized without severe complications. Embolized aneurysms were 6-40 mm in diameter (mean, 25 mm). Overall, the primary technical success rate was 88% (14 of 16 patients). In the remaining 2 patients (12.5%), partial recanalization occurred, and re-embolization was performed. The secondary technical success rate was 100%. Seven (44%) of the 16 study patients suffered partial splenic infarction. Intrasplenic branching originating from the aneurysm was observed in five patients. We conclude that transcatheter coil embolization should be the initial treatment of choice for splenic artery aneurysm.

  9. Stellarator Coil Design and Plasma Sensitivity

    SciTech Connect

    Long-Poe Ku and Allen H. Boozer

    2010-11-03

    The rich information contained in the plasma response to external magnetic perturbations can be used to help design stellarator coils more effectively. We demonstrate the feasibility by first devel- oping a simple, direct method to study perturbations in stellarators that do not break stellarator symmetry and periodicity. The method applies a small perturbation to the plasma boundary and evaluates the resulting perturbed free-boundary equilibrium to build up a sensitivity matrix for the important physics attributes of the underlying configuration. Using this sensitivity information, design methods for better stellarator coils are then developed. The procedure and a proof-of-principle application are given that (1) determine the spatial distributions of external normal magnetic field at the location of the unperturbed plasma boundary to which the plasma properties are most sen- sitive, (2) determine the distributions of external normal magnetic field that can be produced most efficiently by distant coils, (3) choose the ratios of the magnitudes of the the efficiently produced magnetic distributions so the sensitive plasma properties can be controlled. Using these methods, sets of modular coils are found for the National Compact Stellarator Experiment (NCSX) that are either smoother or can be located much farther from the plasma boundary than those of the present design.

  10. 49 CFR 236.730 - Coil, receiver.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Definitions § 236.730 Coil, receiver. Concentric layers of insulated wire wound around the core of a receiver of an automatic train stop, train control or cab signal device on a locomotive....

  11. Mechanical design of a high field common coil magnet

    SciTech Connect

    Caspi, S.; Chow, K.; Dietderich, D.; Gourlay, S.; Gupta, R.; McInturff, A.; Millos, G.; Scanlan, R.

    1999-03-18

    A common coil design for high field 2-in-1 accelerator magnets has been previously presented as a 'conductor-friendly' option for high field magnets applicable for a Very Large Hadron Collider. This paper presents the mechanical design for a 14 tesla 2-in-1 dipole based on the common coil design approach. The magnet will use a high current density Nb{sub 3}Sn conductor. The design addresses mechanical issues particular to the common coil geometry: horizontal support against coil edges, vertical preload on coil faces, end loading and support, and coil stresses and strains. The magnet is the second in a series of racetrack coil magnets that will provide experimental verification of the common coil design approach.

  12. Modular Coils and Plasma Configurations for Quasi-axisymmetric Stellarators

    SciTech Connect

    L.P. Ku and A.H. Boozer

    2010-09-10

    Characteristics of modular coils for quasi-axisymmetric stellarators that are related to the plasma aspect ratio, number of field periods and rotational transform have been examined systematically. It is observed that, for a given plasma aspect ratio, the coil complexity tends to increase with the increased number of field periods. For a given number of field periods, the toroidal excursion of coil winding is reduced as the plasma aspect ratio is increased. It is also clear that the larger the coil-plasma separation is, the more complex the coils become. It is further demonstrated that it is possible to use other types of coils to complement modular coils to improve both the physics and the modular coil characteristics.

  13. Particle confinement in EBT reactors with noncircular mirror coils

    SciTech Connect

    Owen, L.W.; Uckan, N.A.

    1983-01-01

    Methods of improving single particle confinement in the vacuum magnetic field of an ELMO Bumpy Torus (EBT) reactor have heretofore focused on enhancement of the effective magnetic aspect ratio through the addition of relatively low current supplementary coils to the basic EBT configuration of toroidally linked circular mirror coils. This method of aspect ratio enhancement is reviewed and compared to the use of noncircular, D-shaped mirror coils. A critical parameter in this evaluation is the required radial thickness delta of the blanket-shield assembly in the coil throat. Results indicate that D-coils represent an attractive alternative to the supplementary coil configurations if future neutronics calculations show that delta coils. D-coils are shown to be extremely effective in symmetrizing mod-B in the midplane, thereby giving good trapped particle confinement, hot electron ring centering, and reactor volume utilization.

  14. Noise properties of a NMR transceiver coil array.

    PubMed

    Pinkerton, Robert G; Barberi, Enzo A; Menon, Ravi S

    2004-11-01

    The use of multiple radiofrequency (RF) surface coil elements has applications in both fast parallel imaging and conventional imaging techniques. Through implementation of a simple magnetic decoupling network, 50 Omega matching can be achieved in both the transmitter and receiver chains, enabling the use of conventional RF power amplifiers and preamplifiers for transceive applications. Unlike phased array coil arrangements using low impedance preamplifiers for decoupling, the noise correlation between 50 Omega coils decoupled with discrete components has not been characterized. We have measured the dependence of coil quality factor (Q-factor) and noise correlation on coil separation and shown these quantities to be consistent with theoretical arguments, at least at 4 T (170 MHz). Our results suggest that a coil system for transmission and reception of NMR signals with 50 Omega coils can be built to take advantage of all the benefits of conventional array coils and with the added advantages of using conventional amplifiers. PMID:15504694

  15. Coiled-Coil Irregularities and Instabilities in Group A Streptococcus M1 Are Required for Virulence

    SciTech Connect

    McNamara, Case; Zinkernagel, Annelies S.; Macheboeuf, Pauline; Cunningham, Madeleine W.; Nizet, Victor; Ghosh, Partho

    2008-07-21

    Antigenically variable M proteins are major virulence factors and immunogens of the human pathogen group A Streptococcus (GAS). Here, we report the -3 angstrom resolution structure of a GAS M1 fragment containing the regions responsible for eliciting type-specific, protective immunity and for binding fibrinogen, which promotes M1 proinflammatory and antiphagocytic functions. The structure revealed substantial irregularities and instabilities throughout the coiled coil of the M1 fragment. Similar structural irregularities occur in myosin and tropomyosin, explaining the patterns of cross-reactivity seen in autoimmune sequelae of GAS infection. Sequence idealization of a large segment of the M1 coiled coil enhanced stability but diminished fibrinogen binding, proinflammatory effects, and antibody cross-reactivity, whereas it left protective immunogenicity undiminished. Idealized M proteins appear to have promise as vaccine immunogens.

  16. Comparison of an Electromagnetic Energy Harvester Performance using Wound Coil Wire and PCB Coil

    NASA Astrophysics Data System (ADS)

    Resali, MSM; Salleh, H.

    2016-03-01

    This paper presents the performance of two types of electromagnetic energy harvester, one using manually wound coil wire (EH-EC) and the other one using printed circuit board (PCB) coil (EH-EP). The objective of the study is to measure the corresponding output voltage and power by varying the number of coils and the position of the magnet. The experiment was conducted at a fix 50 Hz of frequency and at 0.25g of acceleration. The EH-EP was found to be more effective than the 350 turns of the wound coil wire, with maximum power of 26 μW. Overall, the performance of the EH-EC showed better result with maximum power of 125 μW for 1050 turns when compared to the EH-EP.

  17. Short peptide tag for covalent protein labeling based on coiled coils.

    PubMed

    Wang, Jianpeng; Yu, Yongsheng; Xia, Jiang

    2014-01-15

    To label proteins covalently, one faces a trade-off between labeling a protein specifically and using a small tag. Often one must compromise one parameter for the other or use additional components, such as an enzyme, to satisfy both requirements. Here, we report a new reaction that covalently labels proteins by using engineered coiled-coil peptides. Harnessing the concept of "proximity-induced reactivity", the 21-amino-acid three-heptad peptides CCE/CCK were modified with a nucleophilic cysteine and an α-chloroacetyl group at selected positions. When pairs of coiled coils associated, an irreversible covalent bond spontaneously formed between the peptides. The specificity of the cross-linking reaction was characterized, the probes were improved by making them bivalent, and the system was used to label a protein in vitro and receptors on the surface of mammalian cells. PMID:24341800

  18. GBNV encoded movement protein (NSm) remodels ER network via C-terminal coiled coil domain

    SciTech Connect

    Singh, Pratibha; Savithri, H.S.

    2015-08-15

    Plant viruses exploit the host machinery for targeting the viral genome–movement protein complex to plasmodesmata (PD). The mechanism by which the non-structural protein m (NSm) of Groundnut bud necrosis virus (GBNV) is targeted to PD was investigated using Agrobacterium mediated transient expression of NSm and its fusion proteins in Nicotiana benthamiana. GFP:NSm formed punctuate structures that colocalized with mCherry:plasmodesmata localized protein 1a (PDLP 1a) confirming that GBNV NSm localizes to PD. Unlike in other movement proteins, the C-terminal coiled coil domain of GBNV NSm was shown to be involved in the localization of NSm to PD, as deletion of this domain resulted in the cytoplasmic localization of NSm. Treatment with Brefeldin A demonstrated the role of ER in targeting GFP NSm to PD. Furthermore, mCherry:NSm co-localized with ER–GFP (endoplasmic reticulum targeting peptide (HDEL peptide fused with GFP). Co-expression of NSm with ER–GFP showed that the ER-network was transformed into vesicles indicating that NSm interacts with ER and remodels it. Mutations in the conserved hydrophobic region of NSm (residues 130–138) did not abolish the formation of vesicles. Additionally, the conserved prolines at positions 140 and 142 were found to be essential for targeting the vesicles to the cell membrane. Further, systematic deletion of amino acid residues from N- and C-terminus demonstrated that N-terminal 203 amino acids are dispensable for the vesicle formation. On the other hand, the C-terminal coiled coil domain when expressed alone could also form vesicles. These results suggest that GBNV NSm remodels the ER network by forming vesicles via its interaction through the C-terminal coiled coil domain. Interestingly, NSm interacts with NP in vitro and coexpression of these two proteins in planta resulted in the relocalization of NP to PD and this relocalization was abolished when the N-terminal unfolded region of NSm was deleted. Thus, the NSm

  19. Data-Driven Prediction and Design of bZIP Coiled-Coil Interactions

    PubMed Central

    Potapov, Vladimir; Kaplan, Jenifer B.; Keating, Amy E.

    2015-01-01

    Selective dimerization of the basic-region leucine-zipper (bZIP) transcription factors presents a vivid example of how a high degree of interaction specificity can be achieved within a family of structurally similar proteins. The coiled-coil motif that mediates homo- or hetero-dimerization of the bZIP proteins has been intensively studied, and a variety of methods have been proposed to predict these interactions from sequence data. In this work, we used a large quantitative set of 4,549 bZIP coiled-coil interactions to develop a predictive model that exploits knowledge of structurally conserved residue-residue interactions in the coiled-coil motif. Our model, which expresses interaction energies as a sum of interpretable residue-pair and triplet terms, achieves a correlation with experimental binding free energies of R = 0.68 and significantly out-performs other scoring functions. To use our model in protein design applications, we devised a strategy in which synthetic peptides are built by assembling 7-residue native-protein heptad modules into new combinations. An integer linear program was used to find the optimal combination of heptads to bind selectively to a target human bZIP coiled coil, but not to target paralogs. Using this approach, we designed peptides to interact with the bZIP domains from human JUN, XBP1, ATF4 and ATF5. Testing more than 132 candidate protein complexes using a fluorescence resonance energy transfer assay confirmed the formation of tight and selective heterodimers between the designed peptides and their targets. This approach can be used to make inhibitors of native proteins, or to develop novel peptides for applications in synthetic biology or nanotechnology. PMID:25695764

  20. IMPROVED COILED-COIL DESIGN ENHANCES INTERACTION WITH BCR-ABL AND INDUCES APOPTOSIS

    PubMed Central

    Dixon, Andrew S.; Miller, Geoffrey D.; Bruno, Benjamin J.; Constance, Jonathan E.; Woessner, David W.; Fidler, Trevor P.; Robertson, James C.; Cheatham, Thomas E.; Lim, Carol S.

    2012-01-01

    The oncoprotein Bcr-Abl drives aberrant downstream activity through trans-autophosphorylation of homo-oligomers in chronic myelogenous leukemia (CML).1,2 The formation of Bcr-Abl oligomers is achieved through the coiled-coil domain at the N-terminus of Bcr.3, 4 We have previously reported a modified version of this coiled-coil domain, CCmut2, which exhibits disruption of Bcr-Abl oligomeric complexes and results in decreased proliferation of CML cells and induction of apoptosis.5 A major contributing factor to these enhanced capabilities is the destabilization of the CCmut2 homo-dimers, increasing the availability to interact with and inhibit Bcr-Abl. Here, we included an additional mutation (K39E) that could in turn further destabilize the mutant homo-dimer. Incorporation of this modification into CCmut2 (C38A, S41R, L45D, E48R, Q60E) generated what we termed CCmut3, and resulted in further improvements in the binding properties with the wild-type coiled-coil domain representative of Bcr-Abl. A separate construct containing one revert mutation, CCmut4, did not demonstrate improved oligomeric properties and indicated the importance of the L45D mutation. CCmut3 demonstrated improved oligomerization via a two-hybrid assay as well as through colocalization studies, in addition to showing similar biologic activity as CCmut2. The improved binding between CCmut3 and the Bcr-Abl coiled-coil may be used to redirect Bcr-Abl to alternative subcellular locations with interesting therapeutic implications. PMID:22136227

  1. Application of Coiled Coil Peptides in Liposomal Anticancer Drug Delivery Using a Zebrafish Xenograft Model.

    PubMed

    Yang, Jian; Shimada, Yasuhito; Olsthoorn, René C L; Snaar-Jagalska, B Ewa; Spaink, Herman P; Kros, Alexander

    2016-08-23

    The complementary coiled coil forming peptides E4 [(EIAALEK)4] and K4 [(KIAALKE)4] are known to trigger liposomal membrane fusion when tethered to lipid vesicles in the form of lipopeptides. In this study, we examined whether these coiled coil forming peptides can be used for drug delivery applications. First, we prepared E4 peptide modified liposomes containing the far-red fluorescent dye TO-PRO-3 iodide (E4-Lipo-TP3) and confirmed that E4-liposomes could deliver TP3 into HeLa cells expressing K4 peptide on the membrane (HeLa-K) under cell culture conditions in a selective manner. Next, we prepared doxorubicin-containing E4-liposomes (E4-Lipo-DOX) and confirmed that E4-liposomes could also deliver DOX into HeLa-K cells. Moreover, E4-Lipo-DOX showed enhanced cytotoxicity toward HeLa-K cells compared to free doxorubicin. To prove the suitability of E4/K4 coiled coil formation for in vivo drug delivery, we injected E4-Lipo-TP3 or E4-Lipo-DOX into zebrafish xenografts of HeLa-K. As a result, E4-liposomes delivered TP3 to the implanted HeLa-K cells, and E4-Lipo-DOX could suppress cancer proliferation in the xenograft when compared to nontargeted conditions (i.e., zebrafish xenograft with free DOX injection). These data demonstrate that coiled coil formation enables drug selectivity and efficacy in vivo. It is envisaged that these findings are a step forward toward biorthogonal targeting systems as a tool for clinical drug delivery. PMID:27504667

  2. Multiple-Coil, Pulse-Induction Metal Detector

    NASA Technical Reports Server (NTRS)

    Lesky, Edward S.; Reid, Alan M.; Bushong, Wilton E.; Dickey, Duane P.

    1988-01-01

    Multiple-head, pulse-induction metal detector scans area of 72 feet squared with combination of eight detector heads, each 3 ft. square. Head includes large primary coil inducing current in smaller secondary coils. Array of eight heads enables searcher to cover large area quickly. Pulses applied to primary coil, induced in secondary coils measured to determine whether metal present within range of detector head. Detector designed for recovery of Space Shuttle debris.

  3. Leveraging intrinsic chain anisotropy to align coil-coil block copolymers with magnetic fields

    NASA Astrophysics Data System (ADS)

    Rokhlenko, Yekaterina; Zhang, Kai; Gopinadhan, Manesh; Larson, Steve; Majewski, Pawel; Yager, Kevin; Gopalan, Padma; O'Hern, Corey; Osuji, Chinedum

    Magnetic field alignment of block copolymers (BCPs) has typically relied on the presence of liquid crystalline or crystalline assemblies to provide sufficient magnetic anisotropy to drive alignment. Recent experiments however show that alignment is also possible in simple coil-coil BCPs. In particular, alignment of lamellae was observed in poly(styrene-b-4-vinylpyridine) (PS-P4VP) on cooling across the order-disorder transition at field strengths as low as 1 T, with alignment improving markedly with increasing field strength and decreasing cooling rate. Here we discuss the intrinsic chain anisotropy which drives the observed alignment, and its display as a net microdomain anisotropy due to chain tethering at the block interface. We use in-situ X-ray scattering to study the phase behavior and temperature-, time-, and field- dependent dynamics of magnetic alignment in coil-coil BCPs, highlighting the important roles of chain anisotropy and grain size in alignment. For the right combination of field strength and grain size, we can leverage intrinsic chain anisotropy to magnetically direct self-assembly in other coil-coil systems, including cylinder-forming poly(styrene-b-dimethylsiloxane). Field alignment of PS-P4VP with PEO and other blends provides a route to form functional materials such as nanoporous films and ion conducting polymers.

  4. A coiled-coil interaction mediates cauliflower mosaic virus cell-to-cell movement

    PubMed Central

    Stavolone, Livia; Villani, Maria Elena; Leclerc, Denis; Hohn, Thomas

    2005-01-01

    The function of the virion-associated protein (VAP) of cauliflower mosaic virus (CaMV) has long been only poorly understood. VAP is associated with the virion but is dispensable for virus morphogenesis and replication. It mediates virus transmission by aphids through simultaneous interaction with both the aphid transmission factor and the virion. However, although insect transmission is not fundamental to CaMV survival, VAP is indispensable for spreading the virus infection within the host plant. We used a GST pull-down technique to demonstrate that VAP interacts with the viral movement protein through coiled-coil domains and surface plasmon resonance to measure the interaction kinetics. We mapped the movement protein coiled-coil to the C terminus of the protein and proved that it self-assembles as a trimer. Immunogold labeling/electron microscopy revealed that the VAP and viral movement protein colocalize on CaMV particles within plasmodesmata. These results highlight the multifunctional potential of the VAP protein conferred by its efficient coiled-coil interaction system and show a plant virus possessing a surface-exposed protein (VAP) mediating viral entry into host cells. PMID:15837934

  5. A coiled-coil interaction mediates cauliflower mosaic virus cell-to-cell movement

    NASA Astrophysics Data System (ADS)

    Stavolone, Livia; Villani, Maria Elena; Leclerc, Denis; Hohn, Thomas

    2005-04-01

    The function of the virion-associated protein (VAP) of cauliflower mosaic virus (CaMV) has long been only poorly understood. VAP is associated with the virion but is dispensable for virus morphogenesis and replication. It mediates virus transmission by aphids through simultaneous interaction with both the aphid transmission factor and the virion. However, although insect transmission is not fundamental to CaMV survival, VAP is indispensable for spreading the virus infection within the host plant. We used a GST pull-down technique to demonstrate that VAP interacts with the viral movement protein through coiled-coil domains and surface plasmon resonance to measure the interaction kinetics. We mapped the movement protein coiled-coil to the C terminus of the protein and proved that it self-assembles as a trimer. Immunogold labeling/electron microscopy revealed that the VAP and viral movement protein colocalize on CaMV particles within plasmodesmata. These results highlight the multifunctional potential of the VAP protein conferred by its efficient coiled-coil interaction system and show a plant virus possessing a surface-exposed protein (VAP) mediating viral entry into host cells. movement protein | virion-associated protein | Biacore

  6. New Retrievable Coil Anchors: Preliminary In Vivo Experiences in Swine

    SciTech Connect

    Konya, A. Wright, K.C.

    2005-04-15

    Purpose. To design and test retrievable coil anchors to improve the safety and efficacy of coil embolization. Methods. Fifty-two 0.038-inch homemade retrievable stainless steel coils were equipped with one of four different pre-shaped nitinol anchors and tested in 38 pigs. All coils with the anchor were completely retrieved and redeployed 3-18 times (median 7 times) prior to release. Types 1 and 2 anchored coils were acutely deployed in the external iliac arteries (n = 10 each), and chronically tested (1 week) in the common carotid arteries (n = 6 each). Larger type 1 (n = 4), type 3 (n = 6), and type 4 (n = 4) anchored coils were acutely deployed in the abdominal aorta. The largest type 1 anchors (n = 6) were acutely tested in the inferior vena cava. Results. All anchored coils were successfully retrieved and repositioned several times. All but two coils formed a compact plug and there was no coil migration except with two mechanically defective type 3 anchors. Conclusion. The use of retrievable anchors allowed the coils to be retrieved and repositioned, prevented coil migration, and enabled compact coil configuration.

  7. Open coil structure for bubble-memory-device packaging

    NASA Technical Reports Server (NTRS)

    Chen, T. T.; Ypma, J. E.

    1975-01-01

    Concept has several important advantages over close-wound system: memory and coil chips are separate and interchangeable; interconnections in coil level are eliminated by packing memory chip and electronics in single structure; and coil size can be adjusted to optimum value in terms of power dissipation and field uniformity.

  8. Embolization of Large Aneurysms with Long Wire Coils

    SciTech Connect

    Golzarian, Jafar; Dussaussois, Luc; Ait Said, Kamel; Abada, Hicham T.; Dereume, Jean P.; Struyven, Julien

    2002-01-15

    The authors report the experience of using long coils of 2 m length in the management of large aneurysms. Knowledge of the characteristics of these coils is of value for correct placement. These coils are safe and cost-effective for excluding large aneurysms.

  9. Cloning and expression analysis of mouse Cclp1, a new gene encoding a coiled-coil-like protein.

    PubMed

    Noben-Trauth, K; Naggert, J K; Nishina, P M

    1997-05-30

    Here we describe the nucleotide sequence and expression pattern of a novel gene termed Coiled-coil-like protein 1 (Cclp1). A 2646bp open reading frame encodes a 882 amino acid protein with a predicted coiled-coil domain at the amino terminus. Cclp1 is expressed in a variety of adult tissues and during different stages of embryogenesis. The broad expression pattern suggests a general cellular function of CCLP1. PMID:9199242

  10. Domain organization, folding and stability of bacteriophage T4 fibritin, a segmented coiled-coil protein.

    PubMed

    Boudko, Sergei P; Londer, Yuri Y; Letarov, Andrei V; Sernova, Natalia V; Engel, Juergen; Mesyanzhinov, Vadim V

    2002-02-01

    Fibritin is a segmented coiled-coil homotrimer of the 486-residue product of phage T4 gene wac. This protein attaches to a phage particle by the N-terminal region and forms fibrous whiskers of 530 A, which perform a chaperone function during virus assembly. The short C-terminal region has a beta-annulus-like structure. We engineered a set of fibritin deletion mutants sequentially truncated from the N-termini, and the mutants were studied by differential scanning calorimetry (DSC) and CD measurements. The analysis of DSC curves indicates that full-length fibritin exhibits three thermal-heat-absorption peaks centred at 321 K (Delta H=1390 kJ x mol trimer(-1)), at 336 K (Delta H=7600 kJ x mol trimer(-1)), and at 345 K (Delta H=515 kJ x mol trimer(-1)). These transitions were assigned to the N-terminal, segmented coiled-coil, and C-terminal functional domains, respectively. The coiled-coil region, containing 13 segments, melts co-operatively as a single domain with a mean enthalpy Delta Hres=21 kJ x mol residue(-1). The ratio of Delta HVH/Delta Hcal for the coiled-coil part of the 120-, 182-, 258- and 281-residue per monomer mutants, truncated from the N-termini, and for full-length fibritin are 0.91, 0.88, 0.42, 0.39, and 0.13, respectively. This gives an indication of the decrease of the 'all-or-none' character of the transition with increasing protein size. The deletion of the 12-residue-long loop in the 120-residue fibritin increases the thermal stability of the coiled-coil region. According to CD data, full-length fibritin and all the mutants truncated from the N-termini refold properly after heat denaturation. In contrast, fibritin XN, which is deleted for the C-terminal domain, forms aggregates inside the cell. The XN protein can be partially refolded by dilution from urea and does not refold after heat denaturation. These results confirm that the C-terminal domain is essential for correct fibritin assembly both in vivo and in vitro and acts as a foldon. PMID

  11. Subunit b-Dimer of the Escherichia coli ATP Synthase Can Form Left-Handed Coiled-Coils

    PubMed Central

    Wise, John G.; Vogel, Pia D.

    2008-01-01

    One remaining challenge to our understanding of the ATP synthase concerns the dimeric coiled-coil stator subunit b of bacterial synthases. The subunit b-dimer has been implicated in important protein interactions that appear necessary for energy conservation and that may be instrumental in energy conservation during rotary catalysis by the synthase. Understanding the stator structure and its interactions with the rest of the enzyme is crucial to the understanding of the overall catalytic mechanism. Controversy exists on whether subunit b adopts a classic left-handed or a presumed right-handed dimeric coiled-coil and whether or not staggered pairing between nonhomologous residues in the homodimer is required for intersubunit packing. In this study we generated molecular models of the Escherichia coli subunit b-dimer that were based on the well-established heptad-repeat packing exhibited by left-handed, dimeric coiled-coils by employing simulated annealing protocols with structural restraints collected from known structures. In addition, we attempted to create hypothetical right-handed coiled-coil models and left- and right-handed models with staggered packing in the coiled-coil domains. Our analyses suggest that the available structural and biochemical evidence for subunit b can be accommodated by classic left-handed, dimeric coiled-coil quaternary structures. PMID:18326648

  12. CCBuilder: an interactive web-based tool for building, designing and assessing coiled-coil protein assemblies

    PubMed Central

    Wood, Christopher W.; Bruning, Marc; Ibarra, Amaurys Á.; Bartlett, Gail J.; Thomson, Andrew R.; Sessions, Richard B.; Brady, R Leo; Woolfson, Derek N.

    2014-01-01

    Motivation: The ability to accurately model protein structures at the atomistic level underpins efforts to understand protein folding, to engineer natural proteins predictably and to design proteins de novo. Homology-based methods are well established and produce impressive results. However, these are limited to structures presented by and resolved for natural proteins. Addressing this problem more widely and deriving truly ab initio models requires mathematical descriptions for protein folds; the means to decorate these with natural, engineered or de novo sequences; and methods to score the resulting models. Results: We present CCBuilder, a web-based application that tackles the problem for a defined but large class of protein structure, the α-helical coiled coils. CCBuilder generates coiled-coil backbones, builds side chains onto these frameworks and provides a range of metrics to measure the quality of the models. Its straightforward graphical user interface provides broad functionality that allows users to build and assess models, in which helix geometry, coiled-coil architecture and topology and protein sequence can be varied rapidly. We demonstrate the utility of CCBuilder by assembling models for 653 coiled-coil structures from the PDB, which cover >96% of the known coiled-coil types, and by generating models for rarer and de novo coiled-coil structures. Availability and implementation: CCBuilder is freely available, without registration, at http://coiledcoils.chm.bris.ac.uk/app/cc_builder/ Contact: D.N.Woolfson@bristol.ac.uk or Chris.Wood@bristol.ac.uk PMID:25064570

  13. Radial and tangential winding coil probes for sextupole magnet measurements

    SciTech Connect

    Kim, S.H.

    1995-08-01

    Rotating coil probes of radial and tangential winding geometries for the measurements of the magnetic center, main field integral and multipole coefficients of sextupole magnets are describes. Two sets of coils are sufficient for a probe of radial winding geometry. For a tangential winding probe, however, typically several sets of coils are required to measure the above magnetic parameters. The tangential coil geometry in this note is described with three sets of coils. The main sextupole field coefficients are defined as b{sub 2} = 1.0cm{sup {minus}2} and a{sub 2} = 0 for the expression of the multipole field coefficients.

  14. SSC (Superconducting Super Collider) dipole coil production tooling

    SciTech Connect

    Carson, J.A.; Barczak, E.J.; Bossert, R.C.; Brandt, J.S.; Smith, G.A.

    1989-03-01

    Superconducting Super Collider dipole coils must be produced to high precision to ensure uniform prestress and even conductor distribution within the collared coil assembly. Tooling is being prepared at Fermilab for the production of high precision 1M and 16.6M SSC dipole coils suitable for mass production. The design and construction methods builds on the Tevatron tooling and production experience. Details of the design and construction methods and measured coil uniformity of 1M coils will be presented. 4 refs., 10 figs.

  15. Change in the coil distribution of electrodynamic suspension system

    NASA Technical Reports Server (NTRS)

    Tanaka, Hisashi

    1992-01-01

    At the Miyazaki Maglev Test Center, the initial test runs were completed using a system design that required the superconducting coils to be parallel with the ground levitation coils. Recently, the coil distribution was changed to a system such that the two types of coils were perpendicular to each other. Further system changes will lead to the construction of a side wall levitation system. It is hoped that the development will culminate in a system whereby a superconducting coil will maintain all the functions: levitation, propulsion, and guidance.

  16. Common Coil Magnet System for VLHC

    SciTech Connect

    Gupta, R.

    1999-02-12

    This paper introduces the common coil magnet system for the proposed very large hadron collider (VLHC). In this system, the high energy booster (HEB), the injector to VLHC, is integrated as the iron dominated low field aperture within the coldmass of the common coil magnet design introduced earlier. This 4-in-1 magnet concept for a 2-in-1 machine should provide a major cost reduction in building and operating VLHC. Moreover, the proposed design reduces the field quality problems associated with the large persistent currents in Nb{sub 3}Sn magnets. The paper also shows that the geometric field harmonics can be made small. In this preliminary magnetic design. the current dependence in harmonics is significant but not umnanageable.

  17. Magnetically Damped Furnace Bitter Magnet Coil 1

    NASA Technical Reports Server (NTRS)

    Bird, M. D.

    1997-01-01

    A magnet has been built by the National High Magnetic Field Laboratory for NASA on a cost reimbursement contract. The magnet is intended to demonstrate the technology and feasibility of building a magnet for space based crystal growth. A Bitter magnet (named after Francis Bitter, its inventor) was built consisting of four split coils electrically in series and hydraulically in parallel. The coils are housed in a steel vessel to reduce the fringe field and provide some on-axis field enhancement. The steel was nickel plated and Teflon coated to minimize interaction with the water cooling system. The magnet provides 0.14 T in a 184 mm bore with 3 kW of power.

  18. Choice of coils for a fusion reactor

    PubMed Central

    Alexander, Romeo; Garabedian, Paul R.

    2007-01-01

    In a fusion reactor a hot plasma of deuterium and tritium is confined by a strong magnetic field to produce helium ions and release energetic neutrons. The 3D geometry of a stellarator provides configurations for such a device that reduce net toroidal current that might lead to disruptions. We construct smooth coils generating an external magnetic field designed to prevent the plasma from deteriorating. PMID:17640879

  19. Acute lung injury following refrigeration coil deicing.

    PubMed

    McKeown, Nathanael J; Burton, Brent T

    2012-03-01

    We report a case of a worker who developed ALI requiring mechanical ventilatory support after attempting to melt ice condensate by applying the flame of an oxy-acetylene torch to refrigeration coils charged with a halocarbon refrigerant in a closed environment. A discussion of possible etiologies are discussed, including phosgene, carbonyl fluoride, and nitrogen oxides. Primary prevention with adequate respiratory protection is recommended whenever deicing is performed in a closed space environment. PMID:22372791

  20. Choice of coils for a fusion reactor.

    PubMed

    Alexander, Romeo; Garabedian, Paul R

    2007-07-24

    In a fusion reactor a hot plasma of deuterium and tritium is confined by a strong magnetic field to produce helium ions and release energetic neutrons. The 3D geometry of a stellarator provides configurations for such a device that reduce net toroidal current that might lead to disruptions. We construct smooth coils generating an external magnetic field designed to prevent the plasma from deteriorating. PMID:17640879

  1. Stress relaxation in SSC 50mm dipole coils

    SciTech Connect

    Rogers, D.; Markley, F.

    1992-04-01

    We are measuring the stress relaxation of SSC 50mm outer coils with the goal of predicting how much of the coil prestress will be lost while the coils are warehoused between manufacture and cooldown. We manufacture 3 inch (76.2mm) long segments of coil with the same materials and techniques that have been used for prototype coils. We are running four simultaneous tests in an attempt to separate the contributions of the different coil materials. Test one is a completely insulated coil section where the insulation is the all polyamide system being tested at Brookhaven; test two is a wire stack insulated only with the normal Kapton overwrap; test three is a stack of bare cable; and test four is a completely insulated normal coil section. All, except for the bare cable, include the ground insulation. The insulated coil sections are carefully dried before loading and testing in order to eliminate stress changes due to varying moisture content. The temperature dependence of the stress relaxation is being studied separately. Three companion papers presented at this conference will be: (1) Temperature dependence of the viscoelastic properties of SSC coil insulation'' (2) Measurement of the elastic modulus of Kapton perpendicular to the plane of the film at room and cryogenic temperatures'' (3) Theoretical methods for creep and stress relaxation studies of SSC coil.''

  2. FIRST 100 T NON-DESTRUCTIVE MAGNET OUTER COIL SET

    SciTech Connect

    J. BACON; A. BACA; ET AL

    1999-09-01

    The controlled power outer coil set of the first 100 T non-destructive (100 T ND) magnet is described. This magnet will be installed as part of the user facility research equipment at the National High Magnetic Field laboratory (NHMFL) Pulsed Field Facility at Los Alamos National Laboratory. The 100 T ND controlled power outer coil set consists of seven nested, mechanically independent externally reinforced coils. These coils, in combination, will produce a 47 T platform field in a 225-mm diameter bore. Using inertial energy storage a synchronous motor/generator provides ac power to a set of seven ac-dc converters rated at 64 MW/80 MVA each. These converters energize three independent coil circuits to create 170 MJ of field energy in the outer coil set at the platform field of 47 T. Each coil consists of a multi-layer winding of high strength conductor supported by an external high strength stainless steel shell. Coils with the highest magnetic loads will utilize a reinforcing shell fabricated from highly cold worked 301 stainless steel strip. The autofrettage conditioning method will be used to pre-stress the coils and thereby limit conductor and reinforcement strains to the elastic range. The purpose of pre-stressing the coils is to attain a design life of 10,000 full field pulses. The operation and conditioning of the coil set will be described along with special features of its design, magnetic and structural analyses and construction.

  3. Deep brain transcranial magnetic stimulation using variable "Halo coil" system

    NASA Astrophysics Data System (ADS)

    Meng, Y.; Hadimani, R. L.; Crowther, L. J.; Xu, Z.; Qu, J.; Jiles, D. C.

    2015-05-01

    Transcranial Magnetic Stimulation has the potential to treat various neurological disorders non-invasively and safely. The "Halo coil" configuration can stimulate deeper regions of the brain with lower surface to deep-brain field ratio compared to other coil configurations. The existing "Halo coil" configuration is fixed and is limited in varying the site of stimulation in the brain. We have developed a new system based on the current "Halo coil" design along with a graphical user interface system that enables the larger coil to rotate along the transverse plane. The new system can also enable vertical movement of larger coil. Thus, this adjustable "Halo coil" configuration can stimulate different regions of the brain by adjusting the position and orientation of the larger coil on the head. We have calculated magnetic and electric fields inside a MRI-derived heterogeneous head model for various positions and orientations of the coil. We have also investigated the mechanical and thermal stability of the adjustable "Halo coil" configuration for various positions and orientations of the coil to ensure safe operation of the system.

  4. Practical Feasibility and Packing Density of Endovascular Coiling Using Target® Nano™ Coils in Small Cerebral Aneurysms

    PubMed Central

    Jeong, Hae Woong

    2015-01-01

    Objective Based on the use of Nano™ coils, we retrospectively compared the proportion of the coils (≤ 1.5 mm) and packing density in two patient groups with small cerebral aneurysms (< 4 mm diameter) who were treated with or without Nano™ coils. Materials and Methods Between January 2012 and November 2013, in 548 cerebral aneurysms treated by endovascular coiling, 143 patients with 148 small cerebral aneurysms underwent endovascular coiling. After March 2013, coiling with Nano™ coils was performed on 45 small cerebral aneurysms (30.4%). Results There were no significant differences in the size and locations of the cerebral aneurysms, the age of the patients, and the procedural modalities between the two groups. The proportion of the coil (≤ 1.5 mm) of the group treated with Nano™ coils (53.6%) was higher than the proportion of the coil (≤ 1.5 mm) of the group treated without Nano™ coils (14.7%) with statistical significance (p < 0.001). The packing density of the group treated with Nano™ coils (31.3 ± 9.69%) was higher than the packing density of the group treated without Nano™ coils (29.49 ± 7.84%), although the difference was not significant. Procedural complications developed in 3 lesions (2 thromboembolisms and 1 carotid dissection) (2.0%). Treatment-related transient neurological deficits due to thromboembolism developed in 1 lesion, which had not been treated with Nano™ coils. There was no treatment-related permanent morbidity or mortality in either of the groups. Conclusion In our series, the small cerebral aneurysms treated with Nano™ coils showed more packing density with no additive procedural risk or difficulty. PMID:27064999

  5. Endovascular Coil Trapping of a Ruptured Dissecting Aneurysm of the Vertebral Artery Using Detachable Coils and Micro-Tornado® Coils

    PubMed Central

    2013-01-01

    We experienced a patient with a ruptured dissecting aneurysm of the vertebral artery who was treated by trapping of the lesion using Guglielmi detachable coils (GDCs) with micro-tornado® coils (MTCs). An 80-year-old male was transferred with a ruptured left vertebral artery dissecting aneurysm (VADA). The dissected portion of the vertebral artery was effectively trapped using GDCs and MTCs. The MTCs used for neurointervention were comprised of various types of coils and we successfully placed them into the parent artery of the dissected segment. The author suggests that this case demonstrates the usefulness of endovascular coil trapping of VADAs using MTCs in achievement of embolization. PMID:23844353

  6. Endovascular coil trapping of a ruptured dissecting aneurysm of the vertebral artery using detachable coils and micro-tornado® coils.

    PubMed

    Kim, Myeong-Soo

    2013-06-01

    We experienced a patient with a ruptured dissecting aneurysm of the vertebral artery who was treated by trapping of the lesion using Guglielmi detachable coils (GDCs) with micro-tornado® coils (MTCs). An 80-year-old male was transferred with a ruptured left vertebral artery dissecting aneurysm (VADA). The dissected portion of the vertebral artery was effectively trapped using GDCs and MTCs. The MTCs used for neurointervention were comprised of various types of coils and we successfully placed them into the parent artery of the dissected segment. The author suggests that this case demonstrates the usefulness of endovascular coil trapping of VADAs using MTCs in achievement of embolization. PMID:23844353

  7. In situ calibration of rotating sensor coils for magnet testing

    SciTech Connect

    Arpaia, P.; Golluccio, G.; Buzio, M.; Walckiers, L.

    2012-01-15

    An in situ procedure for calibrating equivalent magnetic area and rotation radius of rotating coils is proposed for testing accelerator magnets shorter than the measuring coil. The procedure exploits measurements of magnetic field and mechanical displacement inside a reference quadrupole magnet. In a quadrupole field, an offset between the magnet and coil rotation axes gives rise to a dipole component in the field series expansion. The measurements of the focusing strength, the displacement, and the resulting dipole term allow the equivalent area and radius of the coil to be determined analytically. The procedure improves the accuracy of coils with large geometrical irregularities in the winding. This is essential for short magnets where the coil dimensions constrain the measurement accuracy. Experimental results on different coils measuring small-aperture permanent magnets are shown.

  8. Application & testing of high temperature materials for solenoid coils

    SciTech Connect

    Sanchez, R.O.; Archer, W.E.; Zich, J.L.

    1997-08-01

    Sandia National Laboratories has designed and proven-in two new Solenoid coils for a highly-reliable electromechanical switch. Mil-Spec Magnetics Inc., Walnut CA manufactured the coils. The new design utilizes two new materials: Liquid Crystal Polymer (Vectra C130) for the bobbin and Thermal Barrier Silicone (VI-SIL V-658) for the encapsulant. The use of these two new materials solved most of the manufacturing problems inherent in the old Sandia design. The coils are easier to precision wind and more robust for handling, testing, and storage. The coils have some unique weapon related safety requirements. The most severe of these requirements is the 400{degrees}C, 1600 V test. The coils must not, and did not, produce any outgassing products to affect the voltage breakdown between contacts in the switch at these temperatures and voltages. Actual coils in switches were tested under these conditions. This paper covers the prove-in of this new coil design.

  9. Mechanical resonances of helically coiled carbon nanowires.

    PubMed

    Saini, D; Behlow, H; Podila, R; Dickel, D; Pillai, B; Skove, M J; Serkiz, S M; Rao, A M

    2014-01-01

    Despite their wide spread applications, the mechanical behavior of helically coiled structures has evaded an accurate understanding at any length scale (nano to macro) mainly due to their geometrical complexity. The advent of helically coiled micro/nanoscale structures in nano-robotics, nano-inductors, and impact protection coatings has necessitated the development of new methodologies for determining their shear and tensile properties. Accordingly, we developed a synergistic protocol which (i) integrates analytical, numerical (i.e., finite element using COMSOL) and experimental (harmonic detection of resonance; HDR) methods to obtain an empirically validated closed form expression for the shear modulus and resonance frequency of a singly clamped helically coiled carbon nanowire (HCNW), and (ii) circumvents the need for solving 12th order differential equations. From the experimental standpoint, a visual detection of resonances (using in situ scanning electron microscopy) combined with HDR revealed intriguing non-planar resonance modes at much lower driving forces relative to those needed for linear carbon nanotube cantilevers. Interestingly, despite the presence of mechanical and geometrical nonlinearities in the HCNW resonance behavior the ratio of the first two transverse modes f₂/f₁ was found to be similar to the ratio predicted by the Euler-Bernoulli theorem for linear cantilevers. PMID:24986377

  10. Single coil bistable, bidirectional micromechanical actuator

    DOEpatents

    Tabat, Ned; Guckel, Henry

    1998-09-15

    Micromechanical actuators capable of bidirectional and bistable operation can be formed on substrates using lithographic processing techniques. Bistable operation of the microactuator is obtained using a single coil and a magnetic core with a gap. A plunger having two magnetic heads is supported for back and forth linear movement with respect to the gap in the magnetic core, and is spring biased to a neutral position in which the two heads are on each side of the gap in the core. The single electrical coil is coupled to the core and is provided with electrical current to attract one of the heads toward the core by reluctance action to drive the plunger to a limit of travel in one direction. The current is then cut off and the plunger returns by spring action toward the gap, whereafter the current is reapplied to the coil to attract the other head of the plunger by reluctance action to drive the plunger to its other limit of travel. This process can be repeated at a time when switching of the actuator is required.