Science.gov

Sample records for filament winding machine

  1. Filament winding

    NASA Astrophysics Data System (ADS)

    Shibley, A. M.

    The major aspects of filament winding are discussed, emphasizing basic reinforcement and matrix materials, winding procedures, process controls, and cured composite properties. Fiberglass (E-glass and S-glass strengths are 500,000 and 665,000 psi respectively) and polyester resins are the principal reinforcement constituent materials. Graphite and aramid reinforcements are being used more frequently, primarily for the more critical pressure vessels. Matrix systems are most commonly based on epoxy as it has superior mechanical properties, fatigue behavior, and heat resistance as compard with polyesters. A fiberglass overwrap of PVC pipe is an anticipated development in on-site winding and combination winding, and the compression molding of filament wound lay-ups will be investigated. The fabrication of weight-sensitive structural components may be achieved by using such moldings.

  2. Filament-induced laser machining (FILM)

    NASA Astrophysics Data System (ADS)

    Kiselev, D.; Woeste, L.; Wolf, J.-P.

    2010-09-01

    Laser filamentation provides high intensity plasma strings of micrometric diameters and lengths of tens of centimeters. We demonstrate that these filaments can be used for remotely drilling and cutting metals and biological materials such as flesh and bones. Since no tight focusing is needed, complex 3D shapes can be machined without any adjustment of the laser while processing.

  3. Filament winding cylinders. I - Process model

    NASA Technical Reports Server (NTRS)

    Lee, Soo-Yong; Springer, George S.

    1990-01-01

    A model was developed which describes the filament winding process of composite cylinders. The model relates the significant process variables such as winding speed, fiber tension, and applied temperature to the thermal, chemical and mechanical behavior of the composite cylinder and the mandrel. Based on the model, a user friendly code was written which can be used to calculate (1) the temperature in the cylinder and the mandrel, (2) the degree of cure and viscosity in the cylinder, (3) the fiber tensions and fiber positions, (4) the stresses and strains in the cylinder and in the mandrel, and (5) the void diameters in the cylinder.

  4. Inter-machine scalings of plasma filament electromagnetic features

    NASA Astrophysics Data System (ADS)

    Spolaore, M.; Vianello, N.; Agostini, M.; Cavazzana, R.; de Masi, G.; Martines, E.; Momo, B.; Scaggion, A.; Scarin, P.; Spagnolo, S.; Spizzo, G.; Zuin, M.; Furno, I.; Avino, F.; Fasoli, A.; Theiler, C.; Carralero, D.; Alonso, J. A.; Hidalgo, C.

    2012-10-01

    Electromagnetic features of turbulent filaments, emerging from turbulent background, have been studied in four different magnetic configurations: the stellarator TJ-II, the Reversed Field Pinch RFX-mod, a device that can be operated also as a ohmic tokamak, and the Simple Magnetized Torus TORPEX. In all cases, direct measurements of both field-aligned current density and vorticity were performed inside the filament. The inter-machine comparison revealed a clear dependence of the filament vorticity upon the local time-averaged ExB flow shear. Furthermore, a wide range of local beta was explored allowing concluding that this parameter plays a fundamental role in the appearance of filament electromagnetic features.

  5. Filamentation instability of magnetosonic waves in the solar wind environment

    NASA Astrophysics Data System (ADS)

    Kuo, S. P.; Lee, M. C.

    1989-10-01

    Intense magnetosonic waves, originally propagating at the right angle with the interplanetary magnetic field, can excite a purely growing mode along the interplanetary magnetic field together with two symmetric magnetosonic sidebands propagating obliquely across the magnetic field. This instability process leads to the filamentation of the magnetosonic pump waves. These two excited magnetosonic sideband modes propagate together perpendicularly across the magnetic field and, meanwhile, form a standing wave pattern along the magnetic field. The thresholds of this filamentation instability can be exceeded in the solar wind environment. It is predicted that the density fluctuations produced by the filamentation instability along the interplanetary magnetic field have wavelengths greater than, at least, a few earth radii. The polarization of the obliquely propagating magnetosonic waves excited by the filamentation instability is determined by the characteristics of the magnetosonic pump waves and the environmental plasmas.

  6. Filament winding cylinders. III - Selection of the process variables

    NASA Technical Reports Server (NTRS)

    Lee, Soo-Yong; Springer, George S.

    1990-01-01

    By using the Lee-Springer filament winding model temperatures, degrees of cure, viscosities, stresses, strains, fiber tensions, fiber motions, and void diameters were calculated in graphite-epoxy composite cylinders during the winding and subsequent curing. The results demonstrate the type of information which can be generated by the model. It is shown, in reference to these results, how the model, and the corresponding WINDTHICK code, can be used to select the appropriate process variables.

  7. Intraseasonal variability in the summer South China Sea: Wind jet, cold filament, and recirculations

    E-print Network

    Xie, Shang-Ping

    Intraseasonal variability in the summer South China Sea: Wind jet, cold filament of ocean-atmospheric response, including a wind jet and cold filament in the South China Sea (SCS). We variability in summer. Our analysis shows that the development of the wind jet and cold filament

  8. Filament winding S-glass/polyimide resin composite processing studies

    NASA Technical Reports Server (NTRS)

    Vaughan, R. W.; Jones, R. J.

    1974-01-01

    The work performed in selecting a TRW A-type polyimide resin that would be suitable for fabrication of filament wound reinforced plastic structures is described. Several different formulations were evaluated after which the P105AC formulation was selected as the most promising. Procedures then were developed for preparing P105AC/S-glass roving prepreg and for fabricating filament wound structural composites. Composites were fabricated and then tested in order to obtain tensile and shear strength information. Small, closed-end cylindrical pressure vessels then were fabricated using a stainless steel liner and end fittings with a P105AC/S-glass polar wound overwrap. These pressure vessels were cured in an air circulating oven without augmented pressure. It is concluded that the P105AC resin system is suitable for filament winding; that low void content, high strength composites are obtained by the filament winding process; and that augmented pressure is not required to effect the fabrication of filament wound P105AC composites.

  9. Composite Pressure Vessel Variability in Geometry and Filament Winding Model

    NASA Technical Reports Server (NTRS)

    Green, Steven J.; Greene, Nathanael J.

    2012-01-01

    Composite pressure vessels (CPVs) are used in a variety of applications ranging from carbon dioxide canisters for paintball guns to life support and pressurant storage on the International Space Station. With widespread use, it is important to be able to evaluate the effect of variability on structural performance. Data analysis was completed on CPVs to determine the amount of variation that occurs among the same type of CPV, and a filament winding routine was developed to facilitate study of the effect of manufacturing variation on structural response.

  10. Filament winding cylinders. II - Validation of the process model

    NASA Technical Reports Server (NTRS)

    Calius, Emilio P.; Lee, Soo-Yong; Springer, George S.

    1990-01-01

    Analytical and experimental studies were performed to validate the model developed by Lee and Springer for simulating the manufacturing process of filament wound composite cylinders. First, results calculated by the Lee-Springer model were compared to results of the Calius-Springer thin cylinder model. Second, temperatures and strains calculated by the Lee-Springer model were compared to data. The data used in these comparisons were generated during the course of this investigation with cylinders made of Hercules IM-6G/HBRF-55 and Fiberite T-300/976 graphite-epoxy tows. Good agreement was found between the calculated and measured stresses and strains, indicating that the model is a useful representation of the winding and curing processes.

  11. Multi-winding homopolar electric machine

    SciTech Connect

    Van Neste, Charles W

    2012-10-16

    A multi-winding homopolar electric machine and method for converting between mechanical energy and electrical energy. The electric machine includes a shaft defining an axis of rotation, first and second magnets, a shielding portion, and a conductor. First and second magnets are coaxial with the shaft and include a charged pole surface and an oppositely charged pole surface, the charged pole surfaces facing one another to form a repulsive field therebetween. The shield portion extends between the magnets to confine at least a portion of the repulsive field to between the first and second magnets. The conductor extends between first and second end contacts and is toroidally coiled about the first and second magnets and the shield portion to develop a voltage across the first and second end contacts in response to rotation of the electric machine about the axis of rotation.

  12. Filament to mandrel gap analysis: Resulting gap from filament winding over a cone-cylinder transition mandrel (reference NMTP NO. 93838)

    SciTech Connect

    Geraghty, P.

    1993-10-27

    The composites industry employs a method of high speed continuous reinforcement lay-down called filament winding. This is a process where resin impregnated tows, bundles of filament, are wound over a rotating mandrel. The tows, hereafter referred to as filament, are laid down over the rotating mandrel at a prescribed wind angle. Consider a cylindrical filament winding mandrel with conical features such that the filament is tangent to both the cylinder and the cone simultaneously. A gap is formed between the points of tangency. The gap distance measured along a line normal to the filament and intersecting the mandrel`s axis of rotation. The maximum distance occurs between the filament and a point on the intersection of the cylinder and the cone. The problems this paper addresses are: given a cylindrical filament winding mandrel with conical features, what is the gap size for a given wind angle; conversely what is the wind angle for a given gap size; and what does the geometry need to be in the mandrel transition area between the cylinder cone such that the filament remains in contact with the mandrel at all times?

  13. Filamentation and layering of an idealized tracer by observed winds in the lower stratosphere

    NASA Astrophysics Data System (ADS)

    Orsolini, Y.; Simon, P.; Cariolle, D.

    1995-04-01

    The isentropic transport of a passive tracer on synoptic time scales in the winter lower stratosphere is modelled with the use of a high-resolution transport model, which is forced by winds derived from global meteorological analyses. The study has focused on a meteorological situation which occured in late January 1992. Repeated poleward intrusions of mid-latitude air are shown to lead to the filamentation of a tracer distribution, which was initially compact and located inside the polar vortex. The effect of wind resolution on the filamentation process is examined. By performing isentropic advection on many closely spaced independent levels, the vertical structure of these filaments can be studied.

  14. Machine Leaning-Based Investigation of the Associations between CMEs and Filaments

    NASA Astrophysics Data System (ADS)

    Al-Omari, M.; Qahwaji, R.; Colak, T.; Ipson, S.

    2010-04-01

    In this work we study the association between eruptive filaments/prominences and coronal mass ejections (CMEs) using machine learning-based algorithms that analyse the solar data available between January 1996 and December 2001. The support vector machine (SVM) learning algorithm is used for the purpose of knowledge extraction from the association results. The aim is to identify patterns of associations that can be represented using SVM learning rules for the subsequent use in near real-time and reliable CME prediction systems. Timing and location data in the US National Geophysical Data Center (NGDC) filament catalogue and the Solar and Heliospheric Observatory/ Large Angle and Spectrometric Coronagraph (SOHO/LASCO) CME catalogue are processed to associate filaments with CMEs. In the previous studies, which classified CMEs into gradual and impulsive CMEs, the associations were refined based on the CME speed and acceleration. Then the associated pairs were refined manually to increase the accuracy of the training dataset. In the current study, a data-mining system is created to process and associate filament and CME data, which are arranged in numerical training vectors. Then the data are fed to SVMs to extract the embedded knowledge and provide the learning rules that can have the potential, in the future, to provide automated predictions of CMEs. The features representing the event time (average of the start and end times), duration, type, and extent of the filaments are extracted from all the associated and not-associated filaments and converted to a numerical format that is suitable for SVM use. Several validation and verification methods are used on the extracted dataset to determine if CMEs can be predicted solely and efficiently based on the associated filaments. More than 14 000 experiments are carried out to optimise the SVM and determine the input features that provide the best performance.

  15. Fields of Opportunity: Wind Machines Return to the Plains

    ERIC Educational Resources Information Center

    Sowers, Jacob

    2006-01-01

    The last two decades have seen a rebirth of wind machines on the rural landscape. In ironic fashion the wind's kinetic energy has grown in significance through its ability to generate commercial amounts of electricity, the commodity that a few generations earlier hastened the demise of the old Great Plains windmill. Yet the reemergence of wind

  16. Electrical machines with superconducting windings. Part 3: Homopolar dc machines

    NASA Astrophysics Data System (ADS)

    Kullman, D.; Henninger, P.

    1981-01-01

    The losses in rotating liquid metal contacts and the problems in including liquid metals were theoretically and experimentally studied. These machines are shown realiable. For electric ship propulsion, they are a more efficient method of power transmission than mechanical gearboxes. However, weight reduction as compared to mechanical gearboxes can hardly be achieved with machines fully shielded by magnetic iron.

  17. High pressure gas storage capacities. Example of a solution using filament windings

    NASA Technical Reports Server (NTRS)

    Phan, A.; Lamalle, J.

    1981-01-01

    The use of epoxy resin fiber glass and economic factors affecting the choice of materials for gas storage are discussed. The physical nature of the filament windings are described together with the results obtained. It is demonstrated that a substantial reduction in mass and an enhanced level of safety can be assured at a competitive cost by storing gases in this way.

  18. Permanent magnet machine with windings having strand transposition

    DOEpatents

    Qu, Ronghai (Clifton Park, NY); Jansen, Patrick Lee (Scotia, NY)

    2009-04-21

    This document discusses, among other things, a stator with transposition between the windings or coils. The coils are free from transposition to increase the fill factor of the stator slots. The transposition at the end connections between an inner coil and an outer coil provide transposition to reduce circulating current loss. The increased fill factor reduces further current losses. Such a stator is used in a dual rotor, permanent magnet machine, for example, in a compressor pump, wind turbine gearbox, wind turbine rotor.

  19. Liquid oxygen-compatible filament-winding matrix resin

    NASA Technical Reports Server (NTRS)

    Harrison, E. S.

    1973-01-01

    Polyurethanes derived from hydroxy terminated polyperfluoro propylene oxide prepolymers were evaluated as matrix resins for filament wound composites which would be exposed to liquid (and 100% gaseous) oxygen environments. A number of structural modifications were brought about by variations in prepolymer molecular weight, and alternative curing agents which allowed retention of the oxygen compatibility. Although satisfactory performance was achieved at sub-ambient temperatures, the derived composites suffered considerable property loss at ambient or slightly elevated temperatures. To attain overall effectiveness of the composite system, upgrading of the polymer thermomechanical properties must first be achieved.

  20. Filament formation in wind-cloud interactions. I. Spherical clouds in uniform magnetic fields

    E-print Network

    Banda-Barragán, Wladimir; Federrath, Christoph; Crocker, Roland; Bicknell, Geoffrey

    2015-01-01

    Filamentary structures are ubiquitous in the interstellar medium, yet their formation, internal structure, and longevity have not been studied in detail. We report the results from a comprehensive numerical study that investigates the characteristics, formation, and evolution of filaments arising from magnetohydrodynamic interactions between supersonic winds and dense clouds. Here we improve on previous simulations by utilising sharper density contrasts and higher numerical resolutions. By following multiple density tracers, we find that material in the envelopes of the clouds is removed and deposited downstream to form filamentary tails, while the cores of the clouds serve as footpoints and late-stage outer layers of these tails. Aspect ratios >12, subsonic velocity dispersions ~0.1-0.3 of the wind sound speed, and magnetic field amplifications ~100 are found to be characteristic of these filaments. We also report the effects of different magnetic field strengths and orientations. The magnetic field strength...

  1. Filament formation in wind-cloud interactions - I. Spherical clouds in uniform magnetic fields

    NASA Astrophysics Data System (ADS)

    Banda-Barragán, W. E.; Parkin, E. R.; Federrath, C.; Crocker, R. M.; Bicknell, G. V.

    2016-01-01

    Filamentary structures are ubiquitous in the interstellar medium, yet their formation, internal structure, and longevity have not been studied in detail. We report the results from a comprehensive numerical study that investigates the characteristics, formation, and evolution of filaments arising from magnetohydrodynamic interactions between supersonic winds and dense clouds. Here, we improve on previous simulations by utilizing sharper density contrasts and higher numerical resolutions. By following multiple density tracers, we find that material in the envelopes of the clouds is removed and deposited downstream to form filamentary tails, while the cores of the clouds serve as footpoints and late-stage outer layers of these tails. Aspect ratios ?12, subsonic velocity dispersions ˜0.1-0.3 of the wind sound speed, and magnetic field amplifications ˜100 are found to be characteristic of these filaments. We also report the effects of different magnetic field strengths and orientations. The magnetic field strength regulates vorticity production: sinuous filamentary towers arise in non-magnetic environments, while strong magnetic fields inhibit small-scale perturbations at boundary layers making tails less turbulent. Magnetic field components aligned with the direction of the flow favour the formation of pressure-confined flux ropes inside the tails, whilst transverse components tend to form current sheets. Softening the equation of state to nearly isothermal leads to suppression of dynamical instabilities and further collimation of the tail. Towards the final stages of the evolution, we find that small cloudlets and distorted filaments survive the break-up of the clouds and become entrained in the winds, reaching velocities ˜0.1 of the wind speed.

  2. Fabrication of low cost composite tooling for filament winding large structures

    NASA Astrophysics Data System (ADS)

    Miller, Timothy S.; Fortin, Christopher J.

    A TQM/concurrent engineering approach has been used to create a low cost filament-winding mandrel for large launch-vehicle structure fabrication. The process involves the fabrication of a low cost/low temperature master model, followed by the building of the mandrel and its backup structure within the master. Mandrels fabricated by these means are able to maintain full vacuum integrity and dimensional stability throughout high-temperature cure cycles; the reduced thermal mass of the mandrel results in part-cure cycles that are shorter than those associated with conventional mandrel materials.

  3. Multivariate analysis and prediction of wind turbine response to varying wind field characteristics based on machine learning

    E-print Network

    Stanford University

    Multivariate analysis and prediction of wind turbine response to varying wind field characteristics characteristics have a significant impact on the structural response and the lifespan of wind turbines. This paper presents a machine learning approach towards analyzing and predicting the response of wind turbine

  4. Formation and evolution of magnetised filaments in wind-swept turbulent clumps

    NASA Astrophysics Data System (ADS)

    Banda-Barragan, Wladimir Eduardo; Federrath, Christoph; Crocker, Roland M.; Bicknell, Geoffrey Vincent; Parkin, Elliot Ross

    2015-08-01

    Using high-resolution three-dimensional simulations, we examine the formation and evolution of filamentary structures arising from magnetohydrodynamic interactions between supersonic winds and turbulent clumps in the interstellar medium. Previous numerical studies assumed homogenous density profiles, null velocity fields, and uniformly distributed magnetic fields as the initial conditions for interstellar clumps. Here, we have, for the first time, incorporated fractal clumps with log-normal density distributions, random velocity fields and turbulent magnetic fields (superimposed on top of a uniform background field). Disruptive processes, instigated by dynamical instabilities and akin to those observed in simulations with uniform media, lead to stripping of clump material and the subsequent formation of filamentary tails. The evolution of filaments in uniform and turbulent models is, however, radically different as evidenced by comparisons of global quantities in both scenarios. We show, for example, that turbulent clumps produce tails with higher velocity dispersions, increased gas mixing, greater kinetic energy, and lower plasma beta than their uniform counterparts. We attribute the observed differences to: 1) the turbulence-driven enhanced growth of dynamical instabilities (e.g. Kelvin-Helmholtz and Rayleigh-Taylor instabilities) at fluid interfaces, and 2) the localised amplification of magnetic fields caused by the stretching of field lines trapped in the numerous surface deformations of fractal clumps. We briefly discuss the implications of this work to the physics of the optical filaments observed in the starburst galaxy M82.

  5. Short-term wind speed predictions with machine learning techniques

    NASA Astrophysics Data System (ADS)

    Ghorbani, M. A.; Khatibi, R.; FazeliFard, M. H.; Naghipour, L.; Makarynskyy, O.

    2015-09-01

    Hourly wind speed forecasting is presented by a modeling study with possible applications to practical problems including farming wind energy, aircraft safety and airport operations. Modeling techniques employed in this paper for such short-term predictions are based on the machine learning techniques of artificial neural networks (ANNs) and genetic expression programming (GEP). Recorded values of wind speed were used, which comprised 8 years of collected data at the Kersey site, Colorado, USA. The January data over the first 7 years (2005-2011) were used for model training; and the January data for 2012 were used for model testing. A number of model structures were investigated for the validation of the robustness of these two techniques. The prediction results were compared with those of a multiple linear regression (MLR) method and with the Persistence method developed for the data. The model performances were evaluated using the correlation coefficient, root mean square error, Nash-Sutcliffe efficiency coefficient and Akaike information criterion. The results indicate that forecasting wind speed is feasible using past records of wind speed alone, but the maximum lead time for the data was found to be 14 h. The results show that different techniques would lead to different results, where the choice between them is not easy. Thus, decision making has to be informed of these modeling results and decisions should be arrived at on the basis of an understanding of inherent uncertainties. The results show that both GEP and ANN are equally credible selections and even MLR should not be dismissed, as it has its uses.

  6. Mars vertical axis wind machines: The design of a tornado vortex machine for use on Mars

    NASA Astrophysics Data System (ADS)

    Carlin, Daun; Dyhr, Amy; Kelly, Jon; Schmirler, J. Eric; Carlin, Mike; Hong, Won E.; Mahoney, Kamin; Ralston, Michael

    1994-06-01

    Ever since Viking 1 and 2 landed on the surface of Mars in the summer of 1976, man has yearned to go back. But before man steps foot upon the surface of Mars, unmanned missions such as the Martian Soft Lander and Martian Subsurface Penetrator will precede him. Alternative renewable power sources must be developed to supply the next generation of surface exploratory spacecraft, since RTG's, solar cells, and long-life batteries all have their significant drawbacks. One such alternative is to take advantage of the unique Martian atmospheric conditions by designing a small scale, Martian wind power generator, capable of surviving impact and fulfilling the long term (2-5 years), low-level power requirements (1-2 Watts) of an unmanned surface probe. After investigation of several wind machines, a tornado vortex generator was chosen based upon its capability of theoretically augmenting and increasing the available power that may be extracted from average Martian wind speeds of approximately 7.5 m/s. The Martian Tornado Vortex Wind Generator stands 1 meter high and has a diameter of 0.5 m. Martian winds enter the base and shroud of the Tornado Vortex Generator at 7.5 m/s and are increased to an exit velocity of 13.657 m/s due to the vortex that is created. This results in a rapid pressure drop of 4.56 kg/s(exp 2) m across the vortex core which aids in producing a net power output of 1.1765 Watts. The report contains the necessary analysis and requirements needed to feasibly operate a low-level powered, unmanned, Martian surface probe.

  7. Mars vertical axis wind machines: The design of a tornado vortex machine for use on Mars

    NASA Technical Reports Server (NTRS)

    Carlin, Daun; Dyhr, Amy; Kelly, Jon; Schmirler, J. Eric; Carlin, Mike; Hong, Won E.; Mahoney, Kamin

    1994-01-01

    Ever since Viking 1 and 2 landed on the surface of Mars in the summer of 1976, man has yearned to go back. But before man steps foot upon the surface of Mars, unmanned missions such as the Martian Soft Lander and Martian Subsurface Penetrator will precede him. Alternative renewable power sources must be developed to supply the next generation of surface exploratory spacecraft, since RTG's, solar cells, and long-life batteries all have their significant drawbacks. One such alternative is to take advantage of the unique Martian atmospheric conditions by designing a small scale, Martian wind power generator, capable of surviving impact and fulfilling the long term (2-5 years), low-level power requirements (1-2 Watts) of an unmanned surface probe. After investigation of several wind machines, a tornado vortex generator was chosen based upon its capability of theoretically augmenting and increasing the available power that may be extracted from average Martian wind speeds of approximately 7.5 m/s. The Martian Tornado Vortex Wind Generator stands 1 meter high and has a diameter of 0.5 m. Martian winds enter the base and shroud of the Tornado Vortex Generator at 7.5 m/s and are increased to an exit velocity of 13.657 m/s due to the vortex that is created. This results in a rapid pressure drop of 4.56 kg/s(exp 2) m across the vortex core which aids in producing a net power output of 1.1765 Watts. The report contains the necessary analysis and requirements needed to feasibly operate a low-level powered, unmanned, Martian surface probe.

  8. Fabrication of pulsed magnets with a linear-type coil-winding machine

    NASA Astrophysics Data System (ADS)

    Suzuki, O.; Sakamoto, K.; Imanaka, Y.; Kido, G.

    2001-01-01

    We developed a linear-type coil-winding machine for the fabrication of pulsed magnets. This machine is compact and makes the process of winding a wire easier. The wire is led to a coil shaft through a pair of timing-belts. Kapton tape and Zylon fiber are wrapped on the wire by interlocking with the drive part of the timing-belts. A test magnet fabricated with the linear-type coil-winding machine generates magnetic fields above 63 T.

  9. Broken Bar Detection in Synchronous Machines Based Wind Energy Conversion System 

    E-print Network

    Rahimian, Mina Mashhadi

    2012-10-19

    Electrical machines are subject to different types of failures. Early detection of the incipient faults and fast maintenance may prevent costly consequences. Fault diagnosis of wind turbine is especially important because ...

  10. Technological and economical analysis of salient pole and permanent magnet synchronous machines designed for wind turbines

    NASA Astrophysics Data System (ADS)

    Gündo?du, Tayfun; Kömürgöz, Güven

    2012-08-01

    Chinese export restrictions already reduced the planning reliability for investments in permanent magnet wind turbines. Today the production of permanent magnets consumes the largest proportion of rare earth elements, with 40% of the rare earth-based magnets used for generators and other electrical machines. The cost and availability of NdFeB magnets will likely determine the production rate of permanent magnet generators. The high volatility of rare earth metals makes it very difficult to quote a price. Prices may also vary from supplier to supplier to an extent of up to 50% for the same size, shape and quantity with a minor difference in quality. The paper presents the analysis and the comparison of salient pole with field winding and of peripheral winding synchronous electrical machines, presenting important advantages. A neodymium alloy magnet rotor structure has been considered and compared to the salient rotor case. The Salient Pole Synchronous Machine and the Permanent Magnet Synchronous Machine were designed so that the plate values remain constant. The Eddy current effect on the windings is taken into account during the design, and the efficiency, output power and the air-gap flux density obtained after the simulation were compared. The analysis results clearly indicate that Salient Pole Synchronous Machine designs would be attractive to wind power companies. Furthermore, the importance of the design of electrical machines and the determination of criteria are emphasized. This paper will be a helpful resource in terms of examination and comparison of the basic structure and magnetic features of the Salient Pole Synchronous Machine and Permanent Magnet Synchronous Machine. Furthermore, an economic analysis of the designed machines was conducted.

  11. Research on Potential of Advanced Technology for Housing. A Building System Based on Filament Winding and New Developments in Water and Waste Management.

    ERIC Educational Resources Information Center

    Michigan Univ., Ann Arbor.

    The University of Michigan and Aerojet Corporation report their development of a new building system which will offer the consumer a higher quality product at lower cost. To achieve this goal, the University-Aerojet proposal suggested filament winding (a process derived from the aerospace program for the manufacture of reinforced plastic…

  12. Short Circuit Analysis of Induction Machines Wind Power Application

    SciTech Connect

    Starke, Michael R; Smith, Travis M; Howard, Dustin; Harley, Ronald

    2012-01-01

    he short circuit behavior of Type I (fixed speed) wind turbine-generators is analyzed in this paper to aid in the protection coordination of wind plants of this type. A simple network consisting of one wind turbine-generator is analyzed for two network faults: a three phase short circuit and a phase A to ground fault. Electromagnetic transient simulations and sequence network calculations are compared for the two fault scenarios. It is found that traditional sequence network calculations give accurate results for the short circuit currents in the balanced fault case, but are inaccurate for the un-faulted phases in the unbalanced fault case. The time-current behavior of the fundamental frequency component of the short circuit currents for both fault cases are described, and found to differ significantly in the unbalanced and balanced fault cases

  13. A Mars 1 Watt vortex wind energy machine

    NASA Technical Reports Server (NTRS)

    Ralston, Michael; Crowley, Christopher; Thomson, Ronald; Gwynne, Owen

    1992-01-01

    A Martian wind power generator capable of surviving impact and fulfilling the long-term (2-5 yr) low-level power requirements (1-2 W) of an unmanned surface probe is presented. Attention is given to a tornado vortex generator that was chosen on the basis of its capability to theoretically augment the available power that may be extracted for average Martian wind speeds of about 7.5 m/s. The generator offers comparable mass-to-power ratios with solar power sources.

  14. A Mars 1 Watt vortex wind energy machine

    NASA Astrophysics Data System (ADS)

    Ralston, Michael; Crowley, Christopher; Thomson, Ronald; Gwynne, Owen

    A Martian wind power generator capable of surviving impact and fulfilling the long-term (2-5 yr) low-level power requirements (1-2 W) of an unmanned surface probe is presented. Attention is given to a tornado vortex generator that was chosen on the basis of its capability to theoretically augment the available power that may be extracted for average Martian wind speeds of about 7.5 m/s. The generator offers comparable mass-to-power ratios with solar power sources.

  15. System for maintaining the alignment of mandrels in filament winding operations

    DOEpatents

    Robinson, Samuel C. (Clinton, TN); Dodge, William G. (Oak Ridge, TN); Pollard, Roy E. (Powell, TN)

    1984-01-01

    The present invention is directed to a system for sensing and correcting the alignment of a mandrel being wound with filamentary material with respect to the filamentary material winding mechanism. A positioned reference pin attached to the mandrel is positioned in a beam of collimated light emanating from a laser so as to bisect the light beam and create a shadow therebetween. A pair of photocells are positioned to receive the bisected light beam with the shadow uniformly located between the photocells when the pin is in a selected position. The mandrel is supported in the selected position for the winding of a filamentary material by a position adjustable roller mechanism which is coupled by a screw drive to a reversible motor. Changes in the pin position such as caused by winding growth are sensed by the photocells to provide the displacement of the roller mechanism in the direction necessary to return the mandrel to the selected position.

  16. System for maintaining the alignment of mandrels in filament winding operations

    DOEpatents

    Robinson, S.C.; Dodge, W.G.; Pollard, R.E.

    1983-10-12

    The present invention is directed to a system for sensing and correcting the alignment of a mandrel being wound with filamentary material with respect to the filamentary material winding mechanism. A positioned reference pin attached to the mandrel is positioned in a beam of collimated light emanating from a laser so as to bisect the light beam and create a shadow therebetween. A pair of photocells are positioned to receive the bisected light beam with the shadow uniformly located between the photocells when the pin is in a selected position. The mandrel is supported in the selected position for the winding of a filamentary material by a position adjustable roller mechanism which is coupled by a screw drive to a reversible motor. Changes in the pin position such as caused by winding growth are sensed by the photocells to provide the displacement of the roller mechanism in the direction necessary to return the mandrel to the selected position.

  17. Application of extreme learning machine for estimation of wind speed distribution

    NASA Astrophysics Data System (ADS)

    Shamshirband, Shahaboddin; Mohammadi, Kasra; Tong, Chong Wen; Petkovi?, Dalibor; Porcu, Emilio; Mostafaeipour, Ali; Ch, Sudheer; Sedaghat, Ahmad

    2015-06-01

    The knowledge of the probabilistic wind speed distribution is of particular significance in reliable evaluation of the wind energy potential and effective adoption of site specific wind turbines. Among all proposed probability density functions, the two-parameter Weibull function has been extensively endorsed and utilized to model wind speeds and express wind speed distribution in various locations. In this research work, extreme learning machine (ELM) is employed to compute the shape (k) and scale (c) factors of Weibull distribution function. The developed ELM model is trained and tested based upon two widely successful methods used to estimate k and c parameters. The efficiency and accuracy of ELM is compared against support vector machine, artificial neural network and genetic programming for estimating the same Weibull parameters. The survey results reveal that applying ELM approach is eventuated in attaining further precision for estimation of both Weibull parameters compared to other methods evaluated. Mean absolute percentage error, mean absolute bias error and root mean square error for k are 8.4600 %, 0.1783 and 0.2371, while for c are 0.2143 %, 0.0118 and 0.0192 m/s, respectively. In conclusion, it is conclusively found that application of ELM is particularly promising as an alternative method to estimate Weibull k and c factors.

  18. Eddy-current formulation for constructing transmission-line models for machine windings

    NASA Astrophysics Data System (ADS)

    de Gersem, H.; Henze, O.; Weiland, T.; Binder, A.

    2010-03-01

    In this paper, an eddy-current formulation is used to determine the transmission-line parameters of a machine winding. It is shown that this formulation covers a broader frequency range than the commonly used low-frequency magnetostatic and high-frequency magnetodynamic approximations. The eddy-current formulation, however, suffers from large computation times and may lead to severe inaccuracies if the finite-element mesh does not resolve the skin depth, a modelling concern that does not exist for the traditional formulations. The three finite-element models are compared according to the accuracy of the resulting transmission-line model applied to the winding of a permanent-magnet synchronous machine. This article has been submitted as part of “NUMELEC 2008 - 6e Conférence Européenne sur les Méthodes Numériques en Électromagnétisme”, 8-10 December 2008, LiègeThis work has been carried out in the collaborative research group (Forschergruppe 575) “High-frequency parasitic effects in inverter-fed electrical drives” funded by the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG).

  19. Failure assessment of aluminum liner based filament-wound hybrid riser subjected to internal hydrostatic pressure

    NASA Astrophysics Data System (ADS)

    Dikshit, Vishwesh; Seng, Ong Lin; Maheshwari, Muneesh; Asundi, A.

    2015-03-01

    The present study describes the burst behavior of aluminum liner based prototype filament-wound hybrid riser under internal hydrostatic pressure. The main objective of present study is to developed an internal pressure test rig set-up for filament-wound hybrid riser and investigate the failure modes of filament-wound hybrid riser under internal hydrostatic burst pressure loading. The prototype filament-wound hybrid riser used for burst test consists of an internal aluminum liner and outer composite layer. The carbon-epoxy composites as part of the filament-wound hybrid risers were manufactured with [±55o] lay-up pattern with total composite layer thickness of 1.6 mm using a CNC filament-winding machine. The burst test was monitored by video camera which helps to analyze the failure mechanism of the fractured filament-wound hybrid riser. The Fiber Bragg Grating (FBG) sensor was used to monitor and record the strain changes during burst test of prototype filament-wound hybrid riser. This study shows good improvements in burst strength of filament-wound hybrid riser compared to the monolithic metallic riser. Since, strain measurement using FBG sensors has been testified as a reliable method, we aim to further understand in detail using this technique.

  20. Heat production in the windings of the stators of electric machines under stationary condition

    NASA Astrophysics Data System (ADS)

    Alebouyeh Samami, Behzad; Pieper, Martin; Breitbach, Gerd; Hodapp, Josef

    2014-12-01

    In electric machines due to high currents and resistive losses (joule heating) heat is produced. To avoid damages by overheating the design of effective cooling systems is required. Therefore the knowledge of heat sources and heat transfer processes is necessary. The purpose of this paper is to illustrate a good and effective calculation method for the temperature analysis based on homogenization techniques. These methods have been applied for the stator windings in a slot of an electric machine consisting of copper wires and resin. The key quantity here is an effective thermal conductivity, which characterizes the heterogeneous wire resin-arrangement inside the stator slot. To illustrate the applicability of the method, the analysis of a simplified, homogenized model is compared with the detailed analysis of temperature behavior inside a slot of an electric machine according to the heat generation. We considered here only the stationary situation. The achieved numerical results are accurate and show that the applied homogenization technique works in practice. Finally the results of simulations for the two cases, the original model of the slot and the homogenized model chosen for the slot (unit cell), are compared to experimental results.

  1. Induction machine

    DOEpatents

    Owen, Whitney H. (Ogden, UT)

    1980-01-01

    A polyphase rotary induction machine for use as a motor or generator utilizing a single rotor assembly having two series connected sets of rotor windings, a first stator winding disposed around the first rotor winding and means for controlling the current induced in one set of the rotor windings compared to the current induced in the other set of the rotor windings. The rotor windings may be wound rotor windings or squirrel cage windings.

  2. A magnetically levitated synchronous permanent magnet planar motor with concentric structure winding used for lithography machine

    NASA Astrophysics Data System (ADS)

    Zhang, Lu; Kou, Baoquan; Xing, Feng; Jin, Yinxi; Zhang, Hailin; Zhu, Jianguo

    2015-05-01

    A novel magnetically levitated synchronous permanent magnet planar motor (MLSPMPM) with concentric structure winding, which can be used in lithography machine, is proposed in this paper. Topology and principle of the new MLSPMPM are introduced. The scalar magnetic potential is used to solve the magnetic system, and the differential equations are solved by the separation of variables method according to the boundary conditions. Characteristics, such as flux density, electromagnetic force, and back-EMF of the MLSPMPM, are obtained analytically. All of the results are validated by the finite element method. A prototype of the MLSPMPM is manufactured. Based on the prototype motor, some experiments are carried out. The measured results are used to showcase the validity of the analytical analysis.

  3. Tests of Wing Machine-Gun and Cannon Installations in the NACA Full-Scale Wind Tunnel, Special Report

    NASA Technical Reports Server (NTRS)

    Czarnecki, K. R.; Guryansky, Eugene R.

    1941-01-01

    At the request of the Bureau of Aeronautics, an investigation was conducted in the full-scale wind tunnel of wing installations of .50-caliber machine guns and 20-millimeter cannons. The tests were made to determine the effect of various gun installations on the maximum lift and the high-speed drag of the airplane.

  4. Modified vector control algorithm for increasing partial-load efficiency of fractional-slot concentrated-winding surface PM machines

    SciTech Connect

    El-Refaie, Ayman M; Jahns, Thomas M; Reddy, Patel; McKeever, John W

    2006-01-01

    This paper presents a modified vector control algorithm for a fractional-slot concentrated-winding surface PM machine that has been developed to maximize the machine's partial-load efficiency over a wide range of operating conditions. By increasing the amplitude of the negative d-axis current, the resulting increase in the stator copper losses can be more than offset by the reduction in the iron core losses achieved by lowering the stator d-axis flux amplitude. The effectiveness of this technique has been demonstrated using both analytical models and finite element analysis (FEA) for a 55 kW (peak) surface PM machine design developed for a demanding set of traction drive performance requirements. For this example, the modified control strategy increases the partial-load efficiency at 20% of rated torque by >6% at 2000 rpm compared to the maximum torque/amp algorithm, making the machine much more attractive for its intended application

  5. Modified vector control algorithm for increasing partial-load efficiency of fractional-slot concentrated-winding surface PM machines

    SciTech Connect

    El-Refaie, Ayman M; Jahns, Thomas M; Reddy, Patel; McKeever, John W

    2008-01-01

    This paper presents a modified vector control algorithm for a fractional-slot concentrated-winding surface permanent magnet (SPM) machine that has been developed to maximize the machine's partial-load efficiency over a wide range of operating conditions. By increasing the amplitude of the negative d-axis current, the resulting increase in the stator copper losses can be more than offset by the reduction in the iron core losses achieved by lowering the stator d-axis flux amplitude. The effectiveness of this technique has been demonstrated using both analytical models and finite element analysis for a 55-kW (peak) SPM machine design developed for a demanding set of traction drive performance requirements. For this example, the modified control strategy increases the partial-load efficiency at 20% of rated torque by > 6% at 2000 r/min compared to the maximum torque/ampere algorithm, making the machine much more attractive for its intended application.

  6. Effects of Aerospace Contaminants on EPIKOTE(TM) 862 / EPIKURE(TM)-W Filament Winding Resin System: An Experimental Study

    NASA Astrophysics Data System (ADS)

    Moffet, Mitchell Lee

    This thesis presents the findings of extensive experiments to determine the effects of various common aerospace chemicals on EPIKOTE(TM) 862 (resin) and EPIKURE(TM) W (curing agent), a resin system utilized in filament wound carbon fiber reinforced polymer (CRP) structures. Test specimens of the neat resin system were fabricated and exposed for up to 6 months at room temperature to 11 fluids representing typical aerospace chemicals found on the flight line, and to 74°C tap water. Post exposure the samples were tested in torsion using a rheometer, which performed strain sweeps and frequency sweeps on all the samples. In addition, a subset of the samples received a temperatures sweep. The rheology test parameters represented the nominal stress levels CRP structures would expect to see in operation. In addition to the rheological tests, dimensional and mass measurements were made of the samples both pre and post exposure to study the physical changes due to the chemical interactions. Based on the results, a common detergent, MEK on structures manufactured with the 862W resin system should be prevented or severely limited. It had a significant impact on the performance of the resin system within 3 months, with no visible indications of the degradation. The resins system had good chemical resistance to all the other chemicals used in this study including hot water.

  7. 380 kW synchronous machine with HTS rotor windings--development at Siemens and first test results

    NASA Astrophysics Data System (ADS)

    Nick, W.; Nerowski, G.; Neumüller, H.-W.; Frank, M.; van Hasselt, P.; Frauenhofer, J.; Steinmeyer, F.

    2002-08-01

    Applying HTS conductors in the rotor of synchronous machines allows the design of future motors or generators that are lighter, more compact and feature an improved coefficient of performance. To address these goals a project collaboration was installed within Siemens, including Automation & Drives, Large Drives as a leading supplier of electrical machines, Corporate Technology as a competence center for superconducting technology, and other partners. The main task of the project was to demonstrate the feasibility of basic concepts. The rotor was built from racetrack coils of Bi-2223 HTS tape conductor, these were assembled on a core and fixed by a bandage of glass-fibre composite. Rotor coil cooling is performed by thermal conduction, one end of the motor shaft is hollow to give access for the cooling system. Two cooling systems were designed and operated successfully: firstly an open circuit using cold gaseous helium from a storage vessel, but also a closed circuit system based on a cryogenerator. To take advantage of the increased rotor induction levels the stator winding was designed as an air gap winding. This was manufactured and fitted in a standard motor housing. After assembling of the whole system in a test facility with a DC machine load experiments have been started to prove the validity of our design, including operation with both cooling systems and driving the stator from the grid as well as by a power inverter.

  8. Magnetically driven filament probe

    SciTech Connect

    Schmid, A.; Herrmann, A.; Rohde, V.; Maraschek, M.; Mueller, H. W.

    2007-05-15

    A radially movable probe has been developed for studies of filamentary transport in ASDEX Upgrade during edge localized modes (ELMs) by means of Langmuir tips and magnetic pickup coils. The probe is permanently installed at the low field side in the ASDEX Upgrade vacuum vessel and is not subject to limitations in probe size, as, for example, probes on a shared manipulator are. The probe is moved by a magnetic drive, which allows for easy installation in the vessel, and has moderate machine requirements, as it will only require an electric feedthrough and an external power supply. The drive gives a linear motion with a radial range of 5 cm within 50 ms, where range and velocity can be largely scaled according to experimental requirements. The probe has been installed in the outer midplane of the ASDEX Upgrade vessel, where ELM filaments are expected to have their maximum amplitude. Filaments are coherent substructures within an ELM, carrying a fraction of the ELM released energy towards the wall. The new probe allows to measure the structure of these filaments, in particular, parameters such as filament rotation (by time delay measurements) and size (by peak width analysis). Activating the drive moves the probe from a safe position behind the limiter to a position in front of the limiters, i.e., exposes the Langmuir pins to the scrape-off layer plasma.

  9. Understanding Power Electronics and Electrical Machines in Multidisciplinary Wind Energy Conversion System Courses

    ERIC Educational Resources Information Center

    Duran, M. J.; Barrero, F.; Pozo-Ruz, A.; Guzman, F.; Fernandez, J.; Guzman, H.

    2013-01-01

    Wind energy conversion systems (WECS) nowadays offer an extremely wide range of topologies, including various different types of electrical generators and power converters. Wind energy is also an application of great interest to students and with a huge potential for engineering employment. Making WECS the main center of interest when teaching…

  10. Wind Energy Program: Top 10 Program Accomplishments

    SciTech Connect

    2009-01-18

    Brochure on the top accomplishments of the Wind Energy Program, including the development of large wind machines, small machines for the residential market, wind tunnel testing, computer codes for modeling wind systems, high definition wind maps, and successful collaborations.

  11. Final Report on Control Algorithm to Improve the Partial-Load Efficiency of Surface PM Machines with Fractional-Slot Concentrated Windings

    SciTech Connect

    McKeever, John W; Reddy, Patel; Jahns, Thomas M

    2007-05-01

    Surface permanent magnet (SPM) synchronous machines using fractional-slot concentrated windings are being investigated as candidates for high-performance traction machines for automotive electric propulsion systems. It has been shown analytically and experimentally that such designs can achieve very wide constant-power speed ratios (CPSR) [1,2]. This work has shown that machines of this type are capable of achieving very low cogging torque amplitudes as well as significantly increasing the machine power density [3-5] compared to SPM machines using conventional distributed windings. High efficiency can be achieved in this class of SPM machine by making special efforts to suppress the eddy-current losses in the magnets [6-8], accompanied by efforts to minimize the iron losses in the rotor and stator cores. Considerable attention has traditionally been devoted to maximizing the full-load efficiency of traction machines at their rated operating points and along their maximum-power vs. speed envelopes for higher speeds [9,10]. For example, on-line control approaches have been presented for maximizing the full-load efficiency of PM synchronous machines, including the use of negative d-axis stator current to reduce the core losses [11,12]. However, another important performance specification for electric traction applications is the machine's efficiency at partial loads. Partial-load efficiency is particularly important if the target traction application requires long periods of cruising operation at light loads that are significantly lower than the maximum drive capabilities. While the design of the machine itself is clearly important, investigation has shown that this is a case where the choice of the control algorithm plays a critical role in determining the maximum partial-load efficiency that the machine actually achieves in the traction drive system. There is no evidence that this important topic has been addressed for this type of SPM machine by any other authors. This topic takes on even greater significance for fractional-slot concentrated-winding SPM machine designs. In particular, maximizing the torque/power density of this class of SPM machines typically leads to machine designs with high numbers of poles. The resulting high electrical frequencies can easily result in high stator core losses unless special care is taken during the machine design process. The purpose of this report is to discuss a modified vector control algorithm for a fractional-slot concentrated winding SPM machine that has been developed to maximize the machine's partial-load efficiency over a wide range of operating conditions. For purposes of this discussion, a 55 kW (peak) SPM machine designed to meet requirements established in the US FreedomCar program [13] is used as the basis for demonstrating the proposed technique. A combination of closed-form analysis [14] and finite element analysis (FEA) is used during this investigation.

  12. FINAL REPORT ON CONTROL ALGORITHM TO IMPROVE THE PARTIAL-LOAD EFFICIENCY OFSURFACE PM MACHINES WITH FRACTIONAL-SLOT CONCENTRATED WINDINGS

    SciTech Connect

    Reddy, P.B.; Jahns, T.M.

    2007-04-30

    Surface permanent magnet (SPM) synchronous machines using fractional-slot concentrated windings are being investigated as candidates for high-performance traction machines for automotive electric propulsion systems. It has been shown analytically and experimentally that such designs can achieve very wide constant-power speed ratios (CPSR) [1,2]. This work has shown that machines of this type are capable of achieving very low cogging torque amplitudes as well as significantly increasing the machine power density [3-5] compared to SPM machines using conventional distributed windings. High efficiency can be achieved in this class of SPM machine by making special efforts to suppress the eddy-current losses in the magnets [6-8], accompanied by efforts to minimize the iron losses in the rotor and stator cores. Considerable attention has traditionally been devoted to maximizing the full-load efficiency of traction machines at their rated operating points and along their maximum-power vs. speed envelopes for higher speeds [9,10]. For example, on-line control approaches have been presented for maximizing the full-load efficiency of PM synchronous machines, including the use of negative d-axis stator current to reduce the core losses [11,12]. However, another important performance specification for electric traction applications is the machine's efficiency at partial loads. Partial-load efficiency is particularly important if the target traction application requires long periods of cruising operation at light loads that are significantly lower than the maximum drive capabilities. While the design of the machine itself is clearly important, investigation has shown that this is a case where the choice of the control algorithm plays a critical role in determining the maximum partial-load efficiency that the machine actually achieves in the traction drive system. There is no evidence that this important topic has been addressed for this type of SPM machine by any other authors. This topic takes on even greater significance for fractional-slot concentrated-winding SPM machine designs. In particular, maximizing the torque/power density of this class of SPM machines typically leads to machine designs with high numbers of poles. The resulting high electrical frequencies can easily result in high stator core losses unless special care is taken during the machine design process. The purpose of this report is to discuss a modified vector control algorithm for a fractional-slot concentrated winding SPM machine that has been developed to maximize the machine's partial-load efficiency over a wide range of operating conditions. For purposes of this discussion, a 55 kW (peak) SPM machine designed to meet requirements established in the US FreedomCar program [13] is used as the basis for demonstrating the proposed technique. A combination of closed-form analysis [14] and finite element analysis (FEA) is used during this investigation.

  13. Analysis of strong nocturnal shears for wind machine design. Final report

    SciTech Connect

    Mahrt, L.; Heald, R.C.

    1980-11-01

    Wind shear data at wind turbine heights from several sites is reviewed and new data is documented in terms of total and component shear. A variety of atmospheric scenarios may combine to give large persistent shear. Among these, strong boundary layer stability is foremost. It occurs with strong nocturnal surface cooling, in low level frontal and subsidence inversions, and in thunderstorm outflows. Strong shears resulting from surface radiation inversions are particularly evident over the High Plains where dry air and high altitude combine to result in strong radiational cooling. Terrain is also an important influence on shear but it is not well understood and is very site specific.

  14. FUZZY LOGIC BASED INTELLIGENT CONTROL OF A VARIABLE SPEED CAGE MACHINE WIND GENERATION SYSTEM

    EPA Science Inventory

    The report gives results of a demonstration of the successful application of fuzzy logic to enhance the performance and control of a variable-speed wind generation system. A squirrel cage induction generator feeds the power to either a double-sided pulse-width modulation converte...

  15. FUZZY LOGIC BASED INTELLIGENT CONTROL OF A VARIABLE SPEED CAGE MACHINE WIND GENERATION SYSTEM

    EPA Science Inventory

    The paper describes a variable-speed wind generation system where fuzzy logic principles are used to optimize efficiency and enhance performance control. A squirrel cage induction generator feeds the power to a double-sided pulse width modulated converter system which either pump...

  16. Analytical Modeling of a Novel Transverse Flux Machine for Direct Drive Wind Turbine Applications: Preprint

    SciTech Connect

    Hasan, IIftekhar; Husain, Tausif; Uddin, Md Wasi; Sozer, Yilmaz; Husain; Iqbal; Muljadi, Eduard

    2015-08-24

    This paper presents a nonlinear analytical model of a novel double-sided flux concentrating Transverse Flux Machine (TFM) based on the Magnetic Equivalent Circuit (MEC) model. The analytical model uses a series-parallel combination of flux tubes to predict the flux paths through different parts of the machine including air gaps, permanent magnets, stator, and rotor. The two-dimensional MEC model approximates the complex three-dimensional flux paths of the TFM and includes the effects of magnetic saturation. The model is capable of adapting to any geometry that makes it a good alternative for evaluating prospective designs of TFM compared to finite element solvers that are numerically intensive and require more computation time. A single-phase, 1-kW, 400-rpm machine is analytically modeled, and its resulting flux distribution, no-load EMF, and torque are verified with finite element analysis. The results are found to be in agreement, with less than 5% error, while reducing the computation time by 25 times.

  17. Graphite filament wound pressure vessels

    NASA Technical Reports Server (NTRS)

    Feldman, A.; Damico, J. J.

    1972-01-01

    Filament wound NOL rings, 4-inch and 8-inch diameter closed-end vessels involving three epoxy resin systems and three graphite fibers were tested to develop property data and fabrication technology for filament wound graphite/epoxy pressure vessels. Vessels were subjected to single-cycle burst tests at room temperature. Manufacturing parameters were established for tooling, winding, and curing that resulted in the development of a pressure/vessel performance factor (pressure x volume/weight) or more than 900,000 in. for an oblate spheroid specimen.

  18. Detection of stator winding faults in induction machines using flux and vibration analysis

    NASA Astrophysics Data System (ADS)

    Lamim Filho, P. C. M.; Pederiva, R.; Brito, J. N.

    2014-01-01

    This work aims at presenting the detection and diagnosis of electrical faults in the stator winding of three-phase induction motors using magnetic flux and vibration analysis techniques. A relationship was established between the main electrical faults (inter-turn short circuits and unbalanced voltage supplies) and the signals of magnetic flux and vibration, in order to identify the characteristic frequencies of those faults. The experimental results showed the efficiency of the conjugation of these techniques for detection, diagnosis and monitoring tasks. The results were undoubtedly impressive and can be adapted and used in real predictive maintenance programs in industries.

  19. Electronic filaments

    E-print Network

    C. P. Kouropoulos

    2007-12-15

    In the one-dimensional world of a flux line beyond Bce, paired evanescent low momentum 0-Landau electron states condense into magnetized bosons of vanishing momentum. I use the results of Rojas et al. within a Coulomb potential and show that magnetic intensities and electron densities sufficient to initiate condensation can be achieved in the shockwaves of cathode hot spots; from unipolar pulses on the surface of a discontinuous micro conductor or cathode tip as a discharge suddenly self-interrupts. Above Bc_e, there are charged electronic vector states that are superconducting and ferromagnetic. Assuming the magnetization of the vacuum within the flux quantized to be free extends the range of stable states. The thinnest filaments have the Compton radius for the effective boson mass. When perturbed,they evolve towards a decaying state with vanishing density at Bc or further condense into composites of higher mass, charge and critical field. Open, almost neutral filament systems with one quantum of flux and several microns in length would be metastable in the Earth's magnetic field and terminated by magnetic monopoles.

  20. Characteristic analysis and comparison of axial flux machines according to magnetization pattern for 500 W-class wind power generator application

    NASA Astrophysics Data System (ADS)

    Park, Yu-Seop; Jang, Seok-Myeong; Ko, Kyoung-Jin; Choi, Jang-Young; Sung, So-Young

    2012-04-01

    This paper presents the electromagnetic characteristic analysis of axial flux machines applied to 500(W) class wind power generators. For the dramatic analysis time reduction, analytical method is applied, and comparative analysis is performed according to magnetization patterns of permanent magnets. Due to their structural features, quasi 3-dimensional analysis is employed, and correction function is introduced to consider the flux leakage of the machines. The analysis results are compared with the results by finite element method and experiment to validate the suggested method performed in this paper showing high reliability.

  1. Mars vertical axis wind machines. The design of a Darreus and a Giromill for use on Mars

    NASA Astrophysics Data System (ADS)

    Brach, David; Dube, John; Kelly, Jon; Peterson, Joanna; Bollig, John; Gohr, Lisa; Mahoney, Kamin; Polidori, Dave

    1992-05-01

    This report contains the design of both a Darrieus and a Giromill for use on Mars. The report has been organized so that the interested reader may read only about one machine without having to read the entire report. Where components for the two machines differ greatly, separate sections have been allotted for each machine. Each section is complete; therefore, no relevant information is missed by reading only the section for the machine of interest. Also, when components for both machines are similar, both machines have been combined into one section. This is done so that the reader interested in both machines need not read the same information twice.

  2. Mars vertical axis wind machines. The design of a Darreus and a Giromill for use on Mars

    NASA Technical Reports Server (NTRS)

    Brach, David; Dube, John; Kelly, Jon; Peterson, Joanna; Bollig, John; Gohr, Lisa; Mahoney, Kamin; Polidori, Dave

    1992-01-01

    This report contains the design of both a Darrieus and a Giromill for use on Mars. The report has been organized so that the interested reader may read only about one machine without having to read the entire report. Where components for the two machines differ greatly, separate sections have been allotted for each machine. Each section is complete; therefore, no relevant information is missed by reading only the section for the machine of interest. Also, when components for both machines are similar, both machines have been combined into one section. This is done so that the reader interested in both machines need not read the same information twice.

  3. Dynamic supercoiling bifurcations of growing elastic filaments

    E-print Network

    Charles W. Wolgemuth; Raymond E. Goldstein; Thomas R. Powers

    2003-12-21

    Certain bacteria form filamentous colonies when the cells fail to separate after dividing. In Bacillus subtilis, Bacillus thermus, and cyanobacteria, the filaments can wrap into complex supercoiled structures as the cells grow. The structures may be solenoids or plectonemes, with or without branches in the latter case. Any microscopic theory of these morphological instabilities must address the nature of pattern selection in the presence of growth, for growth renders the problem nonautonomous and the bifurcations dynamic. To gain insight into these phenomena, we formulate a general theory for growing elastic filaments with bending and twisting resistance in a viscous medium, and study an illustrative model problem: a growing filament with preferred twist, closed into a loop. Growth depletes the twist, inducing a twist strain. The closure of the loop prevents the filament from unwinding back to the preferred twist; instead, twist relaxation is accomplished by the formation of supercoils. Growth also produces viscous stresses on the filament which even in the absence of twist produce buckling instabilities. Our linear stability analysis and numerical studies reveal two dynamic regimes. For small intrinsic twist the instability is akin to Euler buckling, leading to solenoidal structures, while for large twist it is like the classic writhing of a twisted filament, producing plectonemic windings. This model may apply to situations in which supercoils form only, or more readily, when axial rotation of filaments is blocked. Applications to specific biological systems are proposed.

  4. Endocytosis in filamentous fungi 

    E-print Network

    Kalkman, Edward R I C

    2007-01-01

    Endocytosis is little understood in filamentous fungi. For some time it has been controversial as to whether endocytosis occurs in filamentous fungi. A comparative genomics analysis between Saccharomyces cerevisiae and ...

  5. Filament Eruption Onset

    NASA Technical Reports Server (NTRS)

    Sterling, Alphonse C.; Moore, Ronald L.

    2011-01-01

    We have been investigating filament eruptions in recent years. Use filament eruptions as markers of the coronal field evolution. Data from SoHO, Yohkoh, TRACE, Hinode, and other sources. We and others have observed: (1)Filaments often show slow rise, followed by fast rise, (2) Brightenings, preflares, microflares during slow rise (3) Magnetic evolution in hours prior to eruption onset. We investigated What do Hinode and SDO show for filament eruptions?

  6. Filaments from L5

    NASA Technical Reports Server (NTRS)

    Sterling, Alphonse C.

    2011-01-01

    We've been investigating filament eruptions in recent years. Why do eruptions occur? Basic mechanism is magnetic, and can often include coronal mass ejections (CMEs), flares, and filament eruptions. Use filament eruptions as markers of the more-general eruption. From our studies, we can identify directions for future work to help predict when eruptions might occur.

  7. Machine Learning Srihari Decision Trees

    E-print Network

    Machine Learning Srihari 1 Decision Trees Sargur Srihari srihari@cedar.buffalo.edu #12;Machine the unobserved examples · Inductive bias is a preference for small trees over large trees #12;Machine Learning #12;Machine Learning Srihari 4 Learning Data Day Outlook Temp Humidity Wind PlayTennis D1 Sunny Hot

  8. Covert connection of filaments

    NASA Astrophysics Data System (ADS)

    Filippov, B.

    2015-10-01

    We analyse the relationship between two near filaments, which do not show any connection in H? images but reveal close magnetic connectivity during filament activations in extreme ultraviolet (EUV) observations. A twisted flux rope, which connects a half of one filament with another filament, becomes visible during several activations but seems to exist all the time of the filaments presence on the disc. Solar Dynamic Observatory (SDO) and Solar Terrestrial Relations Observatory (STEREO) observed the region with the filaments from two points of view separated by the angle of about 120°. On 2012 July 27, SDO observed the filament activation on disc, while for the STEREO B position the filaments were visible at the limb. Nearly identical interaction episode was observed on 2012 August 04 by STEREO A on disc and by SDO at the limb. This good opportunity allows us to disentangle the 3D shape of the connecting flux rope and in particular to determine with high reliability the helicity sign of the flux rope, which looks ambiguous in preliminary inspections of on-disc EUV images only. The complex magnetic structure of the region consists of three braided flux ropes in the vicinity of the coronal null point. Using observations of the flux-rope fine structure and plasma motions within it from two points of view, we determine the negative sign of helicity of the flux rope, which corresponds to dextral chirality of the filaments. The observations, despite the tangled fine structure in some EUV images, support flux-rope filament models. They give more evidence for the one-to-one relationship between the filament chirality and the flux-rope helicity.

  9. Structural design criteria for filament-wound composite shells

    NASA Technical Reports Server (NTRS)

    Hahn, H. T.; Jensen, D. W.; Claus, S. J.; Pai, S. P.; Hipp, P. A.

    1994-01-01

    Advanced composite cylinders, manufactured by filament winding, provide a cost effective solution to many present structural applications; however, the compressive performance of filament-wound cylinders is lower than comparable shells fabricated from unidirectional tape. The objective of this study was to determine the cause of this reduction in thin filament-wound cylinders by relating the manufacturing procedures to the quality of the cylinder and to its compressive performance. The experiments on cylinder buckling were complemented by eigenvalue buckling analysis using a detailed geometric model in a finite element analysis. The applicability of classical buckling analyses was also investigated as a design tool.

  10. Preliminary study on the applicability of semi-geodesic winding in the design and manufacturing of composite towers

    NASA Astrophysics Data System (ADS)

    Kayran, A.; ?brahimo?lu, C. S.

    2014-12-01

    During last twenty years, wind turbine manufacturers took the path of building larger machines to generate more electricity. However, the bigger the size became, the more material was required to support the loads, leading to great weight increases. Larger turbines and higher hub heights also resulted in larger tower base diameters which are limited considering their logistics. In many countries, the limit for transports with special permits maximizes the diameter to 4.5 metres. Considering this fact, the wind turbine market dominated by welded steel shell towers is looking for new structural solutions for their future turbines. Although, composite materials are not used as the structural material in the towers of today's turbines, the demand for larger wind turbines forces engineers to seek for alternative material systems with high specific strength and stiffness ratios to be used in towers. Inspired by the applicability of filament winding in tower production, in the present article we investigated the effect of semi-geodesic winding on the winding angle, thickness, stiffness coefficients and vibration characteristics of filament wound composite conical shells of revolution which simulate wind turbine towers at the structural level. Present study showed that the preset friction applied during semi-geodesic winding is an important design parameter which can be controlled to obtain gradually increasing thickness from tower top to the base of the tower, and favourably alter the dynamic characteristics of the composite towers.

  11. Wind at Work.

    ERIC Educational Resources Information Center

    Adams, Stephen

    1998-01-01

    Describes a project in which students create wind machines to harness the wind's power and do mechanical work. Demonstrates kinetic and potential energy conversions and makes work and power calculations meaningful. Students conduct hands-on investigations with their machines. (DDR)

  12. Complex Flare Dynamics Initiated by a Filament-Filament Interaction

    NASA Astrophysics Data System (ADS)

    Zhu, Chunming; Liu, Rui; Alexander, David; Sun, Xudong; McAteer, R. T. James

    2015-11-01

    We report on an eruption involving a relatively rare filament–filament interaction on 2013 June 21, observed by SDO and STEREO-B. The two filaments were separated in height with a “double-decker” configuration. The eruption of the lower filament began simultaneously with a descent of the upper filament, resulting in a convergence and direct interaction of the two filaments. The interaction was accompanied by the heating of surrounding plasma and an apparent crossing of a loop-like structure through the upper filament. The subsequent coalescence of the filaments drove a bright front ahead of the erupting structures. The whole process was associated with a C3.0 flare followed immediately by an M2.9 flare. Shrinking loops and descending dark voids were observed during the M2.9 flare at different locations above a C-shaped flare arcade as part of the energy release, giving us unique insight into the flare dynamics.

  13. Alfven wave filamentation

    NASA Astrophysics Data System (ADS)

    Champeaux, Stephanie; Passot, Thierry; Sulem, Pierre-Louis

    1999-11-01

    Alfven wave filamentation is an important instability as it can lead to wave collapse and thus to the formation of small scales. The filamentation instability is considered in the framework of envelope formalism for quasi-monochromatic wave of small (but finite) amplitude. When the wave is strongly dispersive, the nonlinear dynamics of Alfven waves propagating along an ambient magnetic field is described at the level of the wave-envelope by a scalar Nonlinear Schrodinger (NLS) equation with possible coupling to low-frequency magnetosonic waves which in some instances affect the development of the instability. When the dispersion is decreased, the circular polarization of the wave is no longer enforced on the scales of the modulation and the NLS equation generalizes to an anisotropic vector NLS equation. The transverse collapse (or filamentation) then leads to formation of thin layers of intense gradients. The amount of dissipated energy when damping processes are retained, is estimated in these two regimes.

  14. Aerogel-supported filament

    DOEpatents

    Wuest, C.R.; Tillotson, T.M.; Johnson, C.V. III

    1995-05-16

    The present invention is a thin filament embedded in a low density aerogel for use in radiation detection instruments and incandescent lamps. The aerogel provides a supportive matrix that is thermally and electrically nonconductive, mechanically strong, highly porous, gas-permeable, and transparent to ionizing radiation over short distances. A low density, open-cell aerogel is cast around a fine filament or wire, which allows the wire to be positioned with little or no tension and keeps the wire in place in the event of breakage. The aerogel support reduces the stresses on the wire caused by vibrational, gravitational, electrical, and mechanical forces. 6 Figs.

  15. Aerogel-supported filament

    DOEpatents

    Wuest, Craig R. (Danville, CA); Tillotson, Thomas M. (Tracy, CA); Johnson, III, Coleman V. (Dallas, TX)

    1995-01-01

    The present invention is a thin filament embedded in a low density aerogel for use in radiation detection instruments and incandescent lamps. The aerogel provides a supportive matrix that is thermally and electrically nonconductive, mechanically strong, highly porous, gas-permeable, and transparent to ionizing radiation over short distances. A low density, open-cell aerogel is cast around a fine filament or wire, which allows the wire to be positioned with little or no tension and keeps the wire in place in the event of breakage. The aerogel support reduces the stresses on the wire caused by vibrational, gravitational, electrical, and mechanical forces.

  16. Solid friction between soft filaments

    NASA Astrophysics Data System (ADS)

    Ward, Andrew; Hilitski, Feodor; Schwenger, Walter; Welch, David; Lau, A. W. C.; Vitelli, Vincenzo; Mahadevan, L.; Dogic, Zvonimir

    2015-06-01

    Any macroscopic deformation of a filamentous bundle is necessarily accompanied by local sliding and/or stretching of the constituent filaments. Yet the nature of the sliding friction between two aligned filaments interacting through multiple contacts remains largely unexplored. Here, by directly measuring the sliding forces between two bundled F-actin filaments, we show that these frictional forces are unexpectedly large, scale logarithmically with sliding velocity as in solid-like friction, and exhibit complex dependence on the filaments’ overlap length. We also show that a reduction of the frictional force by orders of magnitude, associated with a transition from solid-like friction to Stokes’s drag, can be induced by coating F-actin with polymeric brushes. Furthermore, we observe similar transitions in filamentous microtubules and bacterial flagella. Our findings demonstrate how altering a filament’s elasticity, structure and interactions can be used to engineer interfilament friction and thus tune the properties of fibrous composite materials.

  17. Hygrothermomechanical evaluation of transverse filament tape epoxy/polyester fiberglass composites

    NASA Technical Reports Server (NTRS)

    Lark, R. F.; Chamis, C. C.

    1984-01-01

    Transverse filament tape (TFT) fiberglass/epoxy and TFT polyester composites intended for low cost wind turbine blade fabrication have been subjected to static and cyclic load behavior tests whose results are presently evaluated on the basis of an integrated hygrothermomechanical response theory. Laminate testing employed simulated filament winding procedures. The results obtained show that the predicted hygrothermomechanical environmental effects on TFT composites are in good agreement with measured data for various properties, including fatigue at different R-ratio values.

  18. Breakup of Liquid Filaments

    E-print Network

    Castrejon-Pita, Alfonso A.; Castrejon-Pita, J. R.; Hutchings, I. M.

    2012-01-01

    Charles Babbage Road, Cambridge, CB3 0FS, U.K. Whether a thin filament of liquid separates into two or more droplets or eventually condenses lengthwise to form a single larger drop depends on the liquid’s density, viscosity and surface tension...

  19. Filamentation instability of helicons

    NASA Astrophysics Data System (ADS)

    Shukla, P. K.

    1980-09-01

    Nonlinear interaction of a large amplitude ducted helicon (whistler wave) with slow plasma motion is considered. The low-frequency response accounts for a finite ion gyroradius effect to the usual MHD Alfvén waves. It is found that this coupling leads to a filamentation instability which grows at a rate faster than those reported earlier.

  20. STATIONARY FIELD-ALIGNED FILAMENT: MODEL BASED ON CLUSTER OBSERVATIONS

    E-print Network

    Alexandrova, Olga

    Introduction The solar wind plasma, after crossing the Earth bow-shock becomes strongly anisotropic is the asymptotic state of the filament in the ambient plasma. The present paper will focus on the identification 2, we summarise the observed features of the magnetic fluctuations, we discuss some possible

  1. Wind Power Now!

    ERIC Educational Resources Information Center

    Inglis, David Rittenhouse

    1975-01-01

    The government promotes and heavily subsidizes research in nuclear power plants. Federal development of wind power is slow in comparison even though much research with large wind-electric machines has already been conducted. Unless wind power programs are accelerated it will not become a major energy alternative to nuclear power. (MR)

  2. Power from the Wind

    ERIC Educational Resources Information Center

    Roman, Harry T.

    2004-01-01

    Wind energy is the fastest-growing renewable energy source in the world. Over the last 20 years, the wind industry has done a very good job of engineering machines, improving materials, and economies of production, and making this energy source a reality. Like all renewable energy forms, wind energy's successful application is site specific. Also,…

  3. Protein machines and self assembly in muscle organization

    NASA Technical Reports Server (NTRS)

    Barral, J. M.; Epstein, H. F.

    1999-01-01

    The remarkable order of striated muscle is the result of a complex series of protein interactions at different levels of organization. Within muscle, the thick filament and its major protein myosin are classical examples of functioning protein machines. Our understanding of the structure and assembly of thick filaments and their organization into the regular arrays of the A-band has recently been enhanced by the application of biochemical, genetic, and structural approaches. Detailed studies of the thick filament backbone have shown that the myosins are organized into a tubular structure. Additional protein machines and specific myosin rod sequences have been identified that play significant roles in thick filament structure, assembly, and organization. These include intrinsic filament components, cross-linking molecules of the M-band and constituents of the membrane-cytoskeleton system. Muscle organization is directed by the multistep actions of protein machines that take advantage of well-established self-assembly relationships. Copyright 1999 John Wiley & Sons, Inc.

  4. Solid friction between soft filaments.

    PubMed

    Ward, Andrew; Hilitski, Feodor; Schwenger, Walter; Welch, David; Lau, A W C; Vitelli, Vincenzo; Mahadevan, L; Dogic, Zvonimir

    2015-06-01

    Any macroscopic deformation of a filamentous bundle is necessarily accompanied by local sliding and/or stretching of the constituent filaments. Yet the nature of the sliding friction between two aligned filaments interacting through multiple contacts remains largely unexplored. Here, by directly measuring the sliding forces between two bundled F-actin filaments, we show that these frictional forces are unexpectedly large, scale logarithmically with sliding velocity as in solid-like friction, and exhibit complex dependence on the filaments' overlap length. We also show that a reduction of the frictional force by orders of magnitude, associated with a transition from solid-like friction to Stokes's drag, can be induced by coating F-actin with polymeric brushes. Furthermore, we observe similar transitions in filamentous microtubules and bacterial flagella. Our findings demonstrate how altering a filament's elasticity, structure and interactions can be used to engineer interfilament friction and thus tune the properties of fibrous composite materials. PMID:25730393

  5. Solid friction between soft filaments

    E-print Network

    Andrew Ward; Feodor Hilitski; Walter Schwenger; David Welch; A. W. C. Lau; Vincenzo Vitelli; L. Mahadevan; Zvonimir Dogic

    2015-03-04

    Any macroscopic deformation of a filamentous bundle is necessarily accompanied by local sliding and/or stretching of the constituent filaments. Yet the nature of the sliding friction between two aligned filaments interacting through multiple contacts remains largely unexplored. Here, by directly measuring the sliding forces between two bundled F-actin filaments, we show that these frictional forces are unexpectedly large, scale logarithmically with sliding velocity as in solid-like friction, and exhibit complex dependence on the filaments' overlap length. We also show that a reduction of the frictional force by orders of magnitude, associated with a transition from solid-like friction to Stokes' drag, can be induced by coating F-actin with polymeric brushes. Furthermore, we observe similar transitions in filamentous microtubules and bacterial flagella. Our findings demonstrate how altering a filament's elasticity, structure and interactions can be used to engineer interfilament friction and thus tune the properties of fibrous composite materials.

  6. Filament heater current modulation for increased filament lifetime

    SciTech Connect

    Paul, J.D.; Williams, H.E. III

    1996-06-01

    The surface conversion H-minus ion source employs two 60 mil tungsten filaments which are approximately 17 centimeters in length. These filaments are heated to approximately 2,800 degrees centigrade by 95--100 amperes of DC heater current. The arc is struck at a 120 hertz rate, for 800 microseconds and is generally run at 30 amperes peak current. Although sputtering is considered a contributing factor in the demise of the filament, evaporation is of greater concern. If the peak arc current can be maintained with less average heater current, the filament evaporation rate for this arc current will diminish. In the vacuum of an ion source, the authors expect the filaments to retain much of their heat throughout a 1 millisecond (12% duty) loss of heater current. A circuit to eliminate 100 ampere heater currents from filaments during the arc pulse was developed. The magnetic field due to the 100 ampere current tends to hold electrons to the filament, decreasing the arc current. By eliminating this magnetic field, the arc should be more efficient, allowing the filaments to run at a lower average heater current. This should extend the filament lifetime. The circuit development and preliminary filament results are discussed.

  7. Interplanetary shocks preceded by solar filament eruptions

    NASA Technical Reports Server (NTRS)

    Cane, H. V.; Kahler, S. W.; Sheeley, N. R., Jr.

    1986-01-01

    The solar and interplanetary characteristics of six interplanetary shock and energetic particle events associated with the eruptions of solar filaments lying outside active regions are discussed. The events are characterized by the familiar double-ribbon H-alpha brightenings observed with large flares, but only very weak soft X-ray and microwave bursts. Both impulsive phases and metric type II bursts are absent in all six events. The energetic particles observed near the earth appear to be accelerated predominantly in the interplanetary shocks. The interplanetary shock speeds are lower and the longitudinal extents considerably less than those of flare-associated shocks. Three of the events were associated with unusual enhancements of singly-ionized helium in the solar wind following the shocks. These enhancements appear to be direct detections of the cool filament material expelled from the corona. It is suggested that these events are part of a spectrum of solar eruptive events which include both weaker events and the large flares. Despite their unimpressive and unreported solar signatures, the quiescent filament eruptions can result in substantial space and geophysical disturbances.

  8. Wind energy utilization: A bibliography

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Bibliography cites documents published to and including 1974 with abstracts and references, and is indexed by topic, author, organization, title, and keywords. Topics include: Wind Energy Potential and Economic Feasibility, Utilization, Wind Power Plants and Generators, Wind Machines, Wind Data and Properties, Energy Storage, and related topics.

  9. Complex Flare Dynamics Initiated by a Filament-Filament Interaction

    NASA Astrophysics Data System (ADS)

    Zhu, Chunming; Liu, Rui; Alexander, David; Sun, Xudong; McAteer, James

    2015-04-01

    We report on a filament eruption that led to a relatively rare filament-filament interaction event. The filaments were located at different heights above the same segment of a circular polarity inversion line (PIL) around a condensed leading sunspot. The onset of the eruption of the lower of the two filaments was accompanied by a simultaneous descent of the upper filament resulting in a convergence and direct interaction of the two filaments. The interaction led to the subsequent merger of the filaments into a single magnetically complex structure that erupted to create a large solar flare and an array of complex dynamical activity. A hard X-ray coronal source and an associated enhancement of hot plasma are observed at the interface between the two interacting filaments. These phenomena are related to the production of a small C flare and the subsequent development of a much stronger M flare. Magnetic loop shrinkage and descending dark voids were observed at different locations as part of the large flare energy release giving us a unique insight into these dynamic flare phenomena.

  10. Filaments in the TGBA phase

    E-print Network

    Lubor Lejcek; Vladimira Novotna; Milada Glogarova

    2015-08-28

    A model of filaments of the TGBA phase arising from the homeotropic smectic A phase and nucleating on the sample surface is proposed. The model is based on the concept of finite blocks of parallel smectic layers forming a helical structure. The blocks are surrounded by dislocation loops. The model describes the filament structure near the sample surface and explains the observed inclination of the filament axis with respect to the easy direction of the molecular anchoring on the surface. The model is based on the observations of filament textures of the TGBA phase in a new chiral liquid crystalline compound, but can be applied for forming of TGBA filaments in any compound. The compression modulus of the compound has been estimated using such parameters as anchoring energy, estimated from the field necessary to transform the structure into the homeotropic smectic A, and the observed filament width.

  11. Production of Filaments by Surges

    NASA Astrophysics Data System (ADS)

    Liu, Yu; Kurokawa, Hiroki; Shibata, Kazunari

    2005-09-01

    We have recently developed a new method for automatic detection of solar surges and other dark dynamic features. For the first time we find that some filaments can be quickly formed by trapping the cold material supplied by surges originating from the chromosphere. Two clear examples are presented in this Letter, showing the special process for new filament formation by surge injection. The data used here were taken from Hida Observatory and the Global H? Network operated by Big Bear Solar Observatory. Both the filaments existed on the solar surface for not less than 20 hr, with an average length about 200", and had obvious helical structures and barbs. The surge material was injected from one terminal along the main axis of the filaments or the filament channels. We conclude that there are two necessary conditions for new filament formation by surges at one location: (1) an ``empty'' filament channel, or magnetic trap, and (2) enough mass supplied by surge activity. In most other surge-filament events, apart from our two examples, the surges are observed moving toward and acting on a preexisting nearby filament. The close relationship between surge activity and filament formation and maintenance suggests that there should be a direct link between the filament axial fields and the large-scale background fields along which the surge material can be driven into the filament channel. On the other hand, it also supports the idea that the frequent injection of flow from below is an important way to convey mass and energy into the corona through magnetic reconnections driven by successive emerging flux and converging flow.

  12. Chaperonin filaments: The archael cytoskeleton

    SciTech Connect

    Trent, J.D.; Kagawa, H.K.; Yaoi, Takuro; Olle, E.; Zaluzec, N.J.

    1997-08-01

    Chaperonins are multi-subunit double-ring complexed composed of 60-kDa proteins that are believed to mediate protein folding in vivo. The chaperonins in the hyperthermophilic archaeon Sulfolobus shibatae are composed of the organism`s two most abundant proteins, which represent 4% of its total protein and have an intracellular concentration of {ge} 3.0 mg/ml. At concentrations of 1.0 mg/ml, purified chaperonin proteins aggregate to form ordered filaments. Filament formation, which requires Mg{sup ++} and nucleotide binding (not hydrolysis), occurs at physiological temperatures under conditions suggesting filaments may exist in vivo. If the estimated 4,600 chaperonins per cell, formed filaments in vivo, they could create a matrix of filaments that would span the diameter of an average S. shibatae cell 100 times. Direct observations of unfixed, minimally treated cells by intermediate voltage electron microscopy (300 kV) revealed an intracellular network of filaments that resembles chaperonin filaments produced in vitro. The hypothesis that the intracellular network contains chaperonins is supported by immunogold analyses. The authors propose that chaperonin activity may be regulated in vivo by filament formation and that chaperonin filaments may serve a cytoskeleton-like function in archaea and perhaps in other prokaryotes.

  13. Gravitational Infall onto Molecular Filaments

    NASA Astrophysics Data System (ADS)

    Heitsch, Fabian

    2013-06-01

    Two aspects of filamentary molecular cloud evolution are addressed: (1) exploring analytically the role of the environment for the evolution of filaments demonstrates that considering them in isolation (i.e., just addressing the fragmentation stability) will result in unphysical conclusions about the filament's properties. Accretion can also explain the observed decorrelation between FWHM and peak column density. (2) Free-fall accretion onto finite filaments can lead to the characteristic "fans" of infrared-dark clouds around star-forming regions. The fans may form due to tidal forces mostly arising at the ends of the filaments, consistent with numerical models and earlier analytical studies.

  14. The Bearingless Electrical Machine

    NASA Technical Reports Server (NTRS)

    Bichsel, J.

    1992-01-01

    Electromagnetic bearings allow the suspension of solids. For rotary applications, the most important physical effect is the force of a magnetic circuit to a high permeable armature, called the MAXWELL force. Contrary to the commonly used MAXWELL bearings, the bearingless electrical machine will take advantage of the reaction force of a conductor carrying a current in a magnetic field. This kind of force, called Lorentz force, generates the torque in direct current, asynchronous and synchronous machines. The magnetic field, which already exists in electrical machines and helps to build up the torque, can also be used for the suspension of the rotor. Besides the normal winding of the stator, a special winding was added, which generates forces for levitation. So a radial bearing, which is integrated directly in the active part of the machine, and the motor use the laminated core simultaneously. The winding was constructed for the levitating forces in a special way so that commercially available standard ac inverters for drives can be used. Besides wholly magnetic suspended machines, there is a wide range of applications for normal drives with ball bearings. Resonances of the rotor, especially critical speeds, can be damped actively.

  15. Filamentation instability of large-amplitude Alfven waves

    NASA Astrophysics Data System (ADS)

    Kuo, S. P.; Whang, M. H.; Lee, M. C.

    1988-09-01

    An instability that leads to the filamentation of large-amplitude Alfven waves and gives rise to purely growing density and magnetic field fluctuations is studied. The dispersion relation of the instability is derived, from which the threshold conditions and the growth rates of the instability are analyzed quantitatively for applications to the solar wind plasma. Their dependence on the filamentation spectrum, the plasma beta, and the pump frequency and intensity was examined for both right-hand and left-hand circularly polarized Alfven waves. The excitation of filamentation instability for certain cases of interest is discussed and compared with that of the parametric decay and modulation instability. The relevance of the proposed instability to some observations is discussed.

  16. Quantification of Processing Effects on Filament Wound Pressure Vessels

    NASA Technical Reports Server (NTRS)

    Aiello, Robert A.; Chamis, Christos C.

    1999-01-01

    A computational simulation procedure is described which is designed specifically for the modeling and analysis of filament wound pressure vessels. Cylindrical vessels with spherical or elliptical end caps can be generated automatically. End caps other than spherical or elliptical may be modeled by varying circular sections along the x-axis according to the C C! end cap shape. The finite element model generated is composed of plate type quadrilateral shell elements on the entire vessel surface. This computational procedure can also be sued to generate grid, connectivity and material cards (bulk data) for component parts of a larger model. These bulk data are assigned to a user designated file for finite element structural/stress analysis of composite pressure vessels. The procedure accommodates filament would pressure vessels of all types of shells-of-revolution. It has provisions to readily evaluate initial stresses due to pretension in the winding filaments and residual stresses due to cure temperature.

  17. Quantification of Processing Effects on Filament Wound Pressure Vessels. Revision

    NASA Technical Reports Server (NTRS)

    Aiello, Robert A.; Chamis, Christos C.

    2002-01-01

    A computational simulation procedure is described which is designed specifically for the modeling and analysis of filament wound pressure vessels. Cylindrical vessels with spherical or elliptical end caps can be generated automatically. End caps other than spherical or elliptical may be modeled by varying circular sections along the x-axis according to the end cap shape. The finite element model generated is composed of plate type quadrilateral shell elements on the entire vessel surface. This computational procedure can also be used to generate grid, connectivity and material cards (bulk data) for component parts of a larger model. These bulk data are assigned to a user designated file for finite element structural/stress analysis of composite pressure vessels. The procedure accommodates filament wound pressure vessels of all types of shells-of -revolution. It has provisions to readily evaluate initial stresses due to pretension in the winding filaments and residual stresses due to cure temperature.

  18. Filament Eruptions, Jets, and Space Weather

    NASA Technical Reports Server (NTRS)

    Moore, Ronald; Sterling, Alphonse; Robe, Nick; Falconer, David; Cirtain, Jonathan

    2013-01-01

    Previously, from chromospheric H alpha and coronal X-ray movies of the Sun's polar coronal holes, it was found that nearly all coronal jets (greater than 90%) are one or the other of two roughly equally common different kinds, different in how they erupt: standard jets and blowout jets (Yamauchi et al 2004, Apl, 605, 5ll: Moore et all 2010, Apj, 720, 757). Here, from inspection of SDO/AIA He II 304 A movies of 54 polar x-ray jets observed in Hinode/XRT movies, we report, as Moore et al (2010) anticipated, that (1) most standard x-ray jets (greater than 80%) show no ejected plasma that is cool enough (T is less than or approximately 10(exp 5K) to be seen in the He II 304 A movies; (2) nearly all blownout X-ray jets (greater than 90%) show obvious ejection of such cool plasma; (3) whereas when cool plasma is ejected in standard X-ray jets, it shows no lateral expansion, the cool plasma ejected in blowout X-ray jets shows strong lateral expansion; and (4) in many blowout X-ray jets, the cool plasma ejection displays the erupting-magnetic-rope form of clasic filament eruptions and is thereby seen to be a miniature filament eruption. The XRT movies also showed most blowout X-ray jets to be larger and brighter, and hence to apparently have more energy, than most standard X-ray jets. These observations (1) confirm the dichotomy of coronal jets, (2) agree with the Shibata model for standard jets, and (3) support the conclusion of Moore et al (2010) that in blowout jets the magnetic-arch base of the jet erupts in the manner of the much larger magnetic arcades in which the core field, the field rooted along the arcade's polarity inversion line, is sheared and twisted (sigmoid), often carries a cool-plasma filament, and erupts to blowout the arcade, producing a CME. From Hinode/SOT Ca II movies of the polar limb, Sterling et al (2010, ApJ, 714, L1) found that chromospheric Type-II spicules show a dichotomy of eruption dynamics similar to that found here for the cool-plasma component of coronal X-ray jets. This favors the idea that Type-II spicules are miniature counterparts of coronal X-ray jets. In Moore et al (2011, ApJ, 731, L18), we pointed out that if Type-II spicules are magnetic eruptions that work like coronal X-ray jets, they carry an area-averaged mechanical energy flux of approximately 7x10)(exp 5) erg cm(exp -2) s(exp-1) into the corona in the form of MHD waves and jet outflow, enough to power the heating of the global corona and solar wind. On this basis, from our observations of mini-filament eruptions in blowout X-ray jets, we infer that magnetic explosions of the type that have erupting filaments in them are the main engines of both (1) the steady solar wind and (2) the CMEs that produce the most severe space weather by blasting out through the corona and solar wind, making solar energetic particle storms, and bashing the Earth's magnetosphere. We conclude that in focusing on prominences and filament eruptions, Einar had his eye on the main bet for understanding what powers all space weather, both the extreme and the normal.

  19. Analytical expressions for maximum wind turbine average power in a Rayleigh wind regime

    SciTech Connect

    Carlin, P.W.

    1996-12-01

    Average or expectation values for annual power of a wind turbine in a Rayleigh wind regime are calculated and plotted as a function of cut-out wind speed. This wind speed is expressed in multiples of the annual average wind speed at the turbine installation site. To provide a common basis for comparison of all real and imagined turbines, the Rayleigh-Betz wind machine is postulated. This machine is an ideal wind machine operating with the ideal Betz power coefficient of 0.593 in a Rayleigh probability wind regime. All other average annual powers are expressed in fractions of that power. Cases considered include: (1) an ideal machine with finite power and finite cutout speed, (2) real machines operating in variable speed mode at their maximum power coefficient, and (3) real machines operating at constant speed.

  20. Solid friction between soft filaments

    PubMed Central

    Ward, Andrew; Hilitski, Feodor; Schwenger, Walter; Welch, David; Lau, A.W. C.; Vitelli, Vincenzo; Mahadevan, L.; Dogic, Zvonimir

    2015-01-01

    Any macroscopic deformation of a filamentous bundle is necessarily accompanied by local sliding and/or stretching of the constituent filaments1,2. Yet the nature of the sliding friction between two aligned filaments interacting through multiple contacts remains largely unexplored. Here, by directly measuring the sliding forces between two bundled F-actin filaments, we show that these frictional forces are unexpectedly large, scale logarithmically with sliding velocity as in solid-like friction, and exhibit complex dependence on the filaments’ overlap length. We also show that a reduction of the frictional force by orders of magnitude, associated with a transition from solid-like friction to Stokes’s drag, can be induced by coating F-actin with polymeric brushes. Furthermore, we observe similar transitions in filamentous microtubules and bacterial flagella. Our findings demonstrate how altering a filament’s elasticity, structure and interactions can be used to engineer interfilament friction and thus tune the properties of fibrous composite materials. PMID:25730393

  1. Surface manipulation of protein filaments

    NASA Astrophysics Data System (ADS)

    Kreplak, Laurent; Staple, Douglas; Loparic, Marko; Kreuzer, Hans-Juergen

    2009-03-01

    Within mammalian tissues, cells move by actively remodeling a dense network of collagen fibrils. In order to study this situation, we analyze the force response of two types of filamentous protein structures, desmin intermediate filaments 12 nm in diameter and collagen fibrils 80 nm in diameter. Both types of filaments were adsorbed at a solid-liquid interface and locally moved with an AFM tip at constant velocity against surface friction in the interfacial plane. In the case of collagen fibrils, that have an extensibility below 30% extension, we observed that microns long fibrils could be moved by the tip and deformed into shapes that could not be explain by the linear elastic theory for a stiff rod. In the case of desmin filaments that can be stretched up to 3.5 times there length, we observed local stretching of the filaments and discreet steps in the torsional force measured with the cantilever. In order to describe both types of filaments' behaviors, we described the protein filaments as a chain of beads of mass m linked together by a mass-less polymer linker. By solving the Newtonian equations of motions for the coupled beads in the presence of a point load and a viscous drag due to the surface-filament interactions we were able to reproduced our experimental data and extract information on friction.

  2. Capillary Force between Flexible Filaments.

    PubMed

    Soleimani, Majid; Hill, Reghan J; van de Ven, Theo G M

    2015-08-01

    Liquid droplets bridging filaments are ubiquitous in nature and technology. Although the liquid-surface shape and the capillary force and torque have been studied extensively, the effect of filament flexibility is poorly understood. Here, we show that elastic deformation (at large values of the elasto-capillary number) can significantly affect the liquid-surface shape and capillary force. The equilibrium state of parallel filaments is calculated using analytical approximations and numerical solutions for the fluid interface. The results compare well, and the numerical solution is then applied to crossing filaments. In the investigated range of parameters, the capillary force increases rapidly when the filaments touch. The force decreases continuously when decreasing the liquid volume for parallel hydrophilic filaments but produces a maximum for crossed filaments. The liquid volume at the maximum force is reported when changing the filament flexibility, crossing angle, and contact angle. These results may be beneficial in applications where the strength and structure of wet fibrous materials are important, such as in paper formation and when welding flexible components. PMID:26158380

  3. Purification of native myosin filaments from muscle.

    PubMed Central

    Hidalgo, C; Padrón, R; Horowitz, R; Zhao, F Q; Craig, R

    2001-01-01

    Analysis of the structure and function of native thick (myosin-containing) filaments of muscle has been hampered in the past by the difficulty of obtaining a pure preparation. We have developed a simple method for purifying native myosin filaments from muscle filament suspensions. The method involves severing thin (actin-containing) filaments into short segments using a Ca(2+)-insensitive fragment of gelsolin, followed by differential centrifugation to purify the thick filaments. By gel electrophoresis, the purified thick filaments show myosin heavy and light chains together with nonmyosin thick filament components. Contamination with actin is below 3.5%. Electron microscopy demonstrates intact thick filaments, with helical cross-bridge order preserved, and essentially complete removal of thin filaments. The method has been developed for striated muscles but can also be used in a modified form to remove contaminating thin filaments from native smooth muscle myofibrils. Such preparations should be useful for thick filament structural and biochemical studies. PMID:11606293

  4. Wind Energy Systems.

    ERIC Educational Resources Information Center

    Conservation and Renewable Energy Inquiry and Referral Service (DOE), Silver Spring, MD.

    During the 1920s and 1930s, millions of wind energy systems were used on farms and other locations far from utility lines. However, with passage of the Rural Electrification Act in 1939, cheap electricity was brought to rural areas. After that, the use of wind machines dramatically declined. Recently, the rapid rise in fuel prices has led to a…

  5. Filament identification through mathematical morphology

    NASA Astrophysics Data System (ADS)

    Koch, Eric W.; Rosolowsky, Erik W.

    2015-10-01

    We present a new algorithm for detecting filamentary structure FILFINDER. The algorithm uses the techniques of mathematical morphology for filament identification, presenting a complementary approach to current algorithms which use matched filtering or critical manifolds. Unlike other methods, FILFINDER identifies filaments over a wide dynamic range in brightness. We apply the new algorithm to far-infrared imaging data of dust emission released by the Herschel Gould Belt Survey team. Our preliminary analysis characterizes both filaments and fainter striations. We find a typical filament width of 0.09 pc across the sample, but the brightness varies from cloud to cloud. Several regions show a bimodal filament brightness distribution, with the bright mode (filaments) being an order of magnitude brighter than the faint mode (striations). Using the Rolling Hough Transform, we characterize the orientations of the striations in the data, finding preferred directions that agree with magnetic field direction where data are available. There is a suggestive but noisy correlation between typical filament brightness and literature values of the star formation rates for clouds in the Gould Belt.

  6. Quiet-Region Filament Eruptions

    NASA Technical Reports Server (NTRS)

    Choudhary, Debi Prasad; Moore, Ronald L.

    2004-01-01

    We report characteristics of quiescent filament eruptions that did not produce coronal mass ejections (CMEs). It is known that there is a dichotomy of quiescent filament eruptions: those that produce CMEs and those that do not. We examined the quiescent filament eruptions, each of which was located far from disk center (greater than or equal to 0.7 R(sub Sun)) in diffuse remnant magnetic fields of decayed active regions, was well observed in Ha observations and Fe XII, and had good coronagraph coverage. We present the similarity and differences of two classes of filament eruptions. From their lack of CME production and the appearance of their eruptive motion in Fe XII movies, we conclude that the non-CME-producing filament eruptions are confined eruptions like the confined filament eruptions in active regions. We take the similarity of the confined and eruptive quiescent filament eruptions with their active-region counterparts to favor runaway tether-cutting connection for unleashing the magnetic explosion in all these eruptions.

  7. Microtubule and Intermediate Filament Patterns around the

    E-print Network

    Vorobjev, Ivan

    4 Microtubule and Intermediate Filament Patterns around the Centrosome in Interphase Cells I. B of the Centrosome III. Centrosome and Intermediate Filaments A. Intermediate Filament Foci in the Centrosome B. Effect of Ultracentrifugation of Living Cells on Their Intermediate Filament System: Identification

  8. Filament-Based Smoke vorgelegt von

    E-print Network

    Weissmann, Steffen

    Filament-Based Smoke vorgelegt von Diplom-Mathematiker Steffen Weißmann Neuburg an der Donau Von filaments. Based on a Hamiltonian system for the dynamics of smooth vortex filaments, we develop to use coarse polygonal vortex filaments, while preserving the qualitative behavior of the smooth system

  9. Predicting Noise From Wind Turbines

    NASA Technical Reports Server (NTRS)

    Grosveld, Ferdinand W.

    1990-01-01

    Computer program WINDY predicts broadband noise spectra of horizontal-axis wind-turbine generators. Enables adequate assessment of impact of broadband wind-turbine noise. Effects of turbulence, trailing-edge wakes, and bluntness taken into account. Program has practical application in design and siting of wind-turbine machines acceptable to community. Written in GW-Basic.

  10. MACHINE CONTEST MACHINE VOLUME WORKSHEET

    E-print Network

    Giles, C. Lee

    MACHINE CONTEST® MACHINE VOLUME WORKSHEET Note: Each square is 1' x 1' (0.3 m x 0.3 m) (Official the footprint of your machine NOTE: If any part of the machine falls within a square, you must count the entire: _______________ (choose one: ft2 or m2 ) STEP 3: Measure the height of your machine. NOTE: The maximum height is 8' (2.4 m

  11. EE 444.3 (3L) Electric Machines II

    E-print Network

    Saskatchewan, University of

    saturation, synchronous machine capability curves, effect of salient poles, wind power generation (induction Characteristics, Synchronous Generator Transient Analysis. Synchronous Machine Transient Reactances and Time generators, doubly fed induction generators basics, simulation models, design of control systems

  12. Electron emitting filaments for electron discharge devices

    DOEpatents

    Leung, K.N.; Pincosy, P.A.; Ehlers, K.W.

    1983-06-10

    Electrons are copiously emitted by a device comprising a loop-shaped filament made of lanthanum hexaboride. The filament is directly heated by an electrical current produced along the filament by a power supply connected to the terminal legs of the filament. To produce a filament, a diamond saw or the like is used to cut a slice from a bar made of lanthanum hexaboride. The diamond saw is then used to cut the slice into the shape of a loop which may be generally rectangular, U-shaped, hairpin-shaped, zigzag-shaped, or generally circular. The filaments provide high electron emission at a relatively low operating temperature, such as 1600/sup 0/C. To achieve uniform heating, the filament is formed with a cross section which is tapered between the opposite ends of the filament to compensate for nonuniform current distribution along the filament due to the emission of electrons from the filament.

  13. Electron emitting filaments for electron discharge devices

    DOEpatents

    Leung, Ka-Ngo (Hercules, CA); Pincosy, Philip A. (Oakland, CA); Ehlers, Kenneth W. (Alamo, CA)

    1988-01-01

    Electrons are copiously emitted by a device comprising a loop-shaped filament made of lanthanum hexaboride. The filament is directly heated by an electrical current produced along the filament by a power supply connected to the terminal legs of the filament. To produce a filament, a diamond saw or the like is used to cut a slice from a bar made of lanthanum hexaboride. The diamond saw is then used to cut the slice into the shape of a loop which may be generally rectangular, U-shaped, hairpin-shaped, zigzag-shaped, or generally circular. The filaments provide high electron emission at a relatively low operating temperature, such as 1600.degree. C. To achieve uniform heating, the filament is formed with a cross section which is tapered between the opposite ends of the filament to compensate for non-uniform current distribution along the filament due to the emission of electrons from the filament.

  14. Plasticity of Intermediate Filament Subunits

    E-print Network

    Kirmse, Robert

    Intermediate filaments (IFs) assembled in vitro from recombinantly expressed proteins have a diameter of 8–12 nm and can reach several micrometers in length. IFs assemble from a soluble pool of subunits, tetramers in the ...

  15. Galaxy filaments as pearl necklaces

    E-print Network

    Tempel, E; Saar, E; Bussov, M; Pelt, J

    2014-01-01

    Context. Galaxies in the Universe form chains (filaments) that connect groups and clusters of galaxies. The filamentary network includes nearly half of the galaxies and is visually the most striking feature in cosmological maps. Aims. We study the distribution of galaxies along such a filamentary network, trying to find specific patterns. Methods. Our galaxy filaments are defined using the Bisous process. We use the two-point correlation function and the Rayleigh Z-squared statistic to study how the galaxies are distributed along the filaments. Results. We show that galaxies and galaxy groups are not uniformly distributed along filaments, but tend to form a regular pattern. The characteristic length of the pattern is 7 Mpc/h. A slightly smaller characteristic length 4 Mpc/h can also be found, using the Z-squared statistic. Conclusions. One can say that galaxy filaments in the Universe are like pearl necklaces, where the pearls are galaxy groups distributed more or less regularly along the filaments. We propos...

  16. Vertical-axis wind-turbine program

    SciTech Connect

    Braasch, R.H.

    1981-01-01

    During the interval since the Fourth Biennial Wind Energy Conference, the vertical axis wind turbine program has experienced significant progress. The purpose of this paper is to review that progress in aerodynamics research, structural dynamics research, and machine development.

  17. Fatigue testing of low-cost fiberglass composite wind turbine blade materials

    NASA Technical Reports Server (NTRS)

    Hofer, K. E.; Bennett, L. C.

    1981-01-01

    The static and fatigue behavior of transverse filament tape (TFT) fiberglass/epoxy and TFT/polyester composites was established by the testing of specimens cut from panels fabricated by a filament winding process used for the construction of large experimental wind turbine blades.

  18. The effect of L mode filaments on divertor heat flux profiles as measured by infrared thermography on MAST

    NASA Astrophysics Data System (ADS)

    Thornton, A. J.; Fishpool, G.; Kirk, A.; the MAST Team; the EUROfusion MST1 Team

    2015-11-01

    Filamentary transport across the scrape off layer is a key issue for the design and operation of future devices, such as ITER, DEMO and MAST-U, as it sets the power loadings to the divertor and first wall of the machine. Analysis has been performed on L mode filaments in MAST in order to gain an understanding of the spatial structure and attempt to reconcile the different scales of the filament width and the power fall off length ({?q} ). The L mode filament heat flux arriving at the divertor has been measured using high spatial resolution (1.5?mm) infrared (IR) thermography. The filaments form discrete spiral patterns at the divertor which can be seen as bands of increased heat flux in the IR measurements. Analysis of the width and spacing of these bands at the divertor has allowed the toroidal mode number of the filaments to be determined (7?slant n?slant 22 ). The size of the filaments at the midplane has been determined using the target filament radial width and the magnetic field geometry. The filament width perpendicular to the magnetic field at the midplane has been found to be between 3 and 5?cm. Direct calculation of the filament width from midplane visible imaging gives a range of 4-6?cm which agrees well with the IR data.

  19. Wind energy conversion system

    DOEpatents

    Longrigg, Paul (Golden, CO)

    1987-01-01

    The wind energy conversion system includes a wind machine having a propeller connected to a generator of electric power, the propeller rotating the generator in response to force of an incident wind. The generator converts the power of the wind to electric power for use by an electric load. Circuitry for varying the duty factor of the generator output power is connected between the generator and the load to thereby alter a loading of the generator and the propeller by the electric load. Wind speed is sensed electro-optically to provide data of wind speed upwind of the propeller, to thereby permit tip speed ratio circuitry to operate the power control circuitry and thereby optimize the tip speed ratio by varying the loading of the propeller. Accordingly, the efficiency of the wind energy conversion system is maximized.

  20. Boolean gates on actin filaments

    NASA Astrophysics Data System (ADS)

    Siccardi, Stefano; Tuszynski, Jack A.; Adamatzky, Andrew

    2016-01-01

    Actin is a globular protein which forms long polar filaments in the eukaryotic cytoskeleton. Actin networks play a key role in cell mechanics and cell motility. They have also been implicated in information transmission and processing, memory and learning in neuronal cells. The actin filaments have been shown to support propagation of voltage pulses. Here we apply a coupled nonlinear transmission line model of actin filaments to study interactions between voltage pulses. To represent digital information we assign a logical TRUTH value to the presence of a voltage pulse in a given location of the actin filament, and FALSE to the pulse's absence, so that information flows along the filament with pulse transmission. When two pulses, representing Boolean values of input variables, interact, then they can facilitate or inhibit further propagation of each other. We explore this phenomenon to construct Boolean logical gates and a one-bit half-adder with interacting voltage pulses. We discuss implications of these findings on cellular process and technological applications.

  1. Development of Nylon Based FDM Filament for Rapid Tooling Application

    NASA Astrophysics Data System (ADS)

    Singh, R.; Singh, S.

    2014-04-01

    There has been critical need for development of cost effective nylon based wire to be used as feed stock filament for fused deposition modelling (FDM) machine. But hitherto, very less work has been reported for development of alternate solution of acrylonitrile butadiene styrene (ABS) based wire which is presently used in most of FDM machines. The present research work is focused on development of nylon based wire as an alternative of ABS wire (which is to be used as feedstock filament on FDM) without changing any hardware or software of machine. For the present study aluminium oxide (Al2O3) as additive in different proportion has been used with nylon fibre. Single screw extruder was used for wire preparation and wire thus produced was tested on FDM. Mechanical properties i.e. tensile strength and percentage elongation of finally developed wire have been optimized by Taguchi L9 technique. The work represented major development in reducing cost and time in rapid tooling applications.

  2. Nonequilibrium transport in superconducting filaments

    NASA Technical Reports Server (NTRS)

    Arutyunov, K. YU.; Danilova, N. P.; Nikolaeva, A. A.

    1995-01-01

    The step-like current-voltage characteristics of highly homogeneous single-crystalline tin and indium thin filaments has been measured. The length of the samples L approximately 1 cm was much greater than the nonequilibrium quasiparticle relaxation length Lambda. It was found that the activation of a successive i-th voltage step occurs at current significantly greater than the one derived with the assumption that the phase slip centers are weakly interacting on a scale L much greater than Lambda. The observation of 'subharmonic' fine structure on the voltage-current characteristics of tin filaments confirms the hypothesis of the long-range phase slip centers interaction.

  3. Studies on the dynamics of limited filaments

    E-print Network

    Bonde, Jeffrey David

    2010-01-01

    A study on the dynamics of filaments in the presence of a diagnostic, conductive limiter is presented. Plasma filaments are coherent structures present in many fusion devices and transport a significant amount of particles ...

  4. Driven Transport on open filaments with inter-filament switching processes

    E-print Network

    Subhadip Ghosh; Ignacio Pagonabarraga; Sudipto Muhuri

    2015-07-12

    We study a two filament driven lattice gas model with oppositely directed species of particles moving on two parallel filaments with filament switching processes and particle inflow and outflow at filament ends. The filament switching process is {\\it correlated} such that particles switch filaments with finite probability only when oppositely directed particles meet on the same filament. This model mimics some of the coarse grained features observed in context of microtubule (MT) based intracellular transport, wherein cellular cargo loaded and off-loaded at filament ends are transported on multiple parallel microtubule (MT) filaments and can switch between the parallel microtubule filaments. We focus on a regime where the filaments are weakly coupled, such that filament switching rates scale inversely as the length of the filament. We find that the interplay (off)loading processes at the boundaries and the filament switching process leads to some distinctive features of the system. These features includes occurrence of variety of phases in the system with inhomogeneous density profiles including localized density shocks, density difference across the filaments and bidirectional current flows in the system. We analyze the system by developing a mean field (MF) theory and comparing the results obtained from the MF theory with the Monte Carlo (MC) simulations of the dynamics of the system. We find that the steady state density and current profiles of particles and the phase diagram obtained within the MF picture matches quite well with MC simulation results. These findings maybe useful for studying multi-filament intracellular transport.

  5. : Helmholtz machine estimation .

    E-print Network

    : Helmholtz machine density estimation . . : . . . (supervised learning) , (active learning) (query learning) [1, 3]. . (unsupervised learning), . , [5]. . Helmholtz machine , . Helmholtz machine : Helmholtz machine [2] . Helmholtz machine (generative network) (recognition network) . , , . Helmholtz machine (self

  6. The Fluid Foil: The Seventh Simple Machine

    ERIC Educational Resources Information Center

    Mitts, Charles R.

    2012-01-01

    A simple machine does one of two things: create a mechanical advantage (lever) or change the direction of an applied force (pulley). Fluid foils are unique among simple machines because they not only change the direction of an applied force (wheel and axle); they convert fluid energy into mechanical energy (wind and Kaplan turbines) or vice versa,…

  7. Helical waves on a vortex filament

    NASA Astrophysics Data System (ADS)

    Dmitriyev, Valery P.

    2005-06-01

    A vortex filament in a perfect fluid is an excellent system, similar to an elastic string, elastic membrane, diffusion tube, and conducting rod, for presenting the equations of mathematical physics. A small amplitude helical wave spreading along an unstretchable vortex filament is shown to obey the linear Schrödinger equation. Taking into account elastic properties of the filament leads to the Klein-Gordon equation.

  8. Remote electrical arc suppression by laser filamentation

    NASA Astrophysics Data System (ADS)

    Schubert, Elise; Mongin, Denis; Kasparian, Jérôme; Wolf, Jean-Pierre

    2015-11-01

    We investigate the interaction of narrow plasma channels formed in the filamentation of ultrashort laser pulses, with a DC high voltage. The laser filaments prevent electrical arcs by triggering corona that neutralize the high-voltage electrodes. This phenomenon, due to the electric field modulation and free electron release around the filament, opens new prospects to lightning and over-voltage mitigation.

  9. STATISTICAL STUDIES OF FILAMENT DISAPPEARANCES AND CMES

    E-print Network

    STATISTICAL STUDIES OF FILAMENT DISAPPEARANCES AND CMES G. Yang and H. Wang 1 1Big Bear Solar Observatory, 40386 North Shore Lane, Big Bear City, CA 92314, USA ABSTRACT A statistical study of filament full disk images observed between January 1997 and June 1999 is searched for filament and prominence

  10. Actin Filament Segmentation Using Dynamic Programming

    E-print Network

    Huang, Xiaolei

    Actin Filament Segmentation Using Dynamic Programming Hongsheng Li, Tian Shen, and Xiaolei Huang for actin filament segmen- tation in 2D TIRFM image sequences. This problem is difficult because actin filaments dynamically change shapes during their growth, and the TIRFM images are usually noisy. We ask

  11. Automated Filament Finding and Selection from Cryo

    E-print Network

    Illinois at Urbana-Champaign, University of

    Automated Filament Finding and Selection from Cryo Electron Micrographs Y. Zhu, B. Carragher, and C N Mathews Urbana, IL 61801 techreports@itg.uiuc.edu http://www.itg.uiuc.edu #12;AUTOMATED FILAMENT and selecting filamentous structures from images of this kind. Images are acquired in defocus pairs; a near

  12. The motion of a falling liquid filament Diane Hendersona)

    E-print Network

    Smolka, Linda B.

    The motion of a falling liquid filament Diane Hendersona) William G. Pritchard Fluid Mechanics liquid filament until the filament pinches off. For many fluids, this pinch-off occurs first near the end of the filament, where the filament joins to the liquid drop. For other fluids, the filament pinches off at one

  13. Brownian microhydrodynamics of active filaments.

    PubMed

    Laskar, Abhrajit; Adhikari, R

    2015-11-25

    Slender bodies capable of spontaneous motion in the absence of external actuation in an otherwise quiescent fluid are common in biological, physical and technological contexts. The interplay between the spontaneous fluid flow, Brownian motion, and the elasticity of the body presents a challenging fluid-structure interaction problem. Here, we model this problem by approximating the slender body as an elastic filament that can impose non-equilibrium velocities or stresses at the fluid-structure interface. We derive equations of motion for such an active filament by enforcing momentum conservation in the fluid-structure interaction and assuming slow viscous flow in the fluid. The fluid-structure interaction is obtained, to any desired degree of accuracy, through the solution of an integral equation. A simplified form of the equations of motion, which allows for efficient numerical solutions, is obtained by applying the Kirkwood-Riseman superposition approximation to the integral equation. We use this form of equation of motion to study dynamical steady states in free and hinged minimally active filaments. Our model provides the foundation to study collective phenomena in momentum-conserving, Brownian, active filament suspensions. PMID:26497658

  14. Brownian microhydrodynamics of active filaments

    E-print Network

    Abhrajit Laskar; R. Adhikari

    2015-08-12

    Slender bodies capable of spontaneous motion in the absence of external actuation in an otherwise quiescent fluid are common in biological, physical and technological contexts. The interplay between the spontaneous fluid flow, Brownian motion, and the elasticity of the body presents a challenging fluid-structure interaction problem. Here, we model this problem by approximating the slender body as an elastic filament that can impose non-equilibrium velocities or stresses at the fluid-structure interface. We derive equations of motion for such an active filament by enforcing momentum conservation in the fluid-structure interaction and assuming slow viscous flow in the fluid. The fluid-structure interaction is obtained, to any desired degree of accuracy, through the solution of an integral equation. A simplified form of the equations of motion, that allows for efficient numerical solutions, is obtained by applying the Kirkwood-Riseman superposition approximation to the integral equation. We use this form of the equation of motion to study dynamical steady states in free and hinged minimally active filaments. Our model provides the foundation to study collective phenomena in momentum-conserving, Brownian, active filament suspensions.

  15. Compressor Case Made With Filaments Wound With V-CAP Resin

    NASA Technical Reports Server (NTRS)

    Vannucci, Raymond; Sutter, James; Humphrey, W. Donald; Ayorinde, A. John; Eaton, Jeremy; Westerman, Ted; Allred, Ron

    1996-01-01

    Laminated cylindrical composite-material compressor case fabricated in process that includes winding of filaments wetted with matrix resins. Prototype of light-weight composite compressor cases required to withstand internal temperatures as high as 700 degrees F. Candidates for replacing titanium compressor cases in high-temperature turbines. Weights and costs reduced.

  16. Electric machine

    DOEpatents

    El-Refaie, Ayman Mohamed Fawzi (Niskayuna, NY); Reddy, Patel Bhageerath (Madison, WI)

    2012-07-17

    An interior permanent magnet electric machine is disclosed. The interior permanent magnet electric machine comprises a rotor comprising a plurality of radially placed magnets each having a proximal end and a distal end, wherein each magnet comprises a plurality of magnetic segments and at least one magnetic segment towards the distal end comprises a high resistivity magnetic material.

  17. Wind Fins: Novel Lower-Cost Wind Power System

    SciTech Connect

    David C. Morris; Dr. Will D. Swearingen

    2007-10-08

    This project evaluated the technical feasibility of converting energy from the wind with a novel “wind fin” approach. This patent-pending technology has three major components: (1) a mast, (2) a vertical, hinged wind structure or fin, and (3) a power takeoff system. The wing structure responds to the wind with an oscillating motion, generating power. The overall project goal was to determine the basic technical feasibility of the wind fin technology. Specific objectives were the following: (1) to determine the wind energy-conversion performance of the wind fin and the degree to which its performance could be enhanced through basic design improvements; (2) to determine how best to design the wind fin system to survive extreme winds; (3) to determine the cost-effectiveness of the best wind fin designs compared to state-of-the-art wind turbines; and (4) to develop conclusions about the overall technical feasibility of the wind fin system. Project work involved extensive computer modeling, wind-tunnel testing with small models, and testing of bench-scale models in a wind tunnel and outdoors in the wind. This project determined that the wind fin approach is technically feasible and likely to be commercially viable. Project results suggest that this new technology has the potential to harvest wind energy at approximately half the system cost of wind turbines in the 10kW range. Overall, the project demonstrated that the wind fin technology has the potential to increase the economic viability of small wind-power generation. In addition, it has the potential to eliminate lethality to birds and bats, overcome public objections to the aesthetics of wind-power machines, and significantly expand wind-power’s contribution to the national energy supply.

  18. Active dynamics of filaments in motility assays

    NASA Astrophysics Data System (ADS)

    Kierfeld, J.; Frentzel, K.; Kraikivski, P.; Lipowsky, R.

    2008-04-01

    We study the active dynamics of single and interacting cytoskeletal filaments in motility assays, in which immobilized motor proteins bind the filaments to a surface and actively pull them along this surface. We present a model which couples the overdamped dynamics of filaments, the active dynamics of motor heads, and the elasticity of motor stalks and which can be used for Langevin dynamics simulations. Single filaments perform a persistent random walk, which we characterize by several simulation results. For interacting filaments with a repulsive interaction of filaments, the motor-driven dynamics of filaments leads to a non-equilibrium phase transition which generalizes the isotropic-nematic phase transition of the corresponding equilibrium system, the hard-rod fluid. Langevin dynamics simulations and analytical theory show that the motor activity enhances the tendency for nematic ordering.

  19. Partial Slingshot Reconnection between Two Filaments

    NASA Astrophysics Data System (ADS)

    Jiang, Yunchun; Hong, Junchao; Yang, Jiayan; Bi, Yi; Zheng, Ruisheng; Yang, Bo; Li, Haidong; Yang, Dan

    2013-02-01

    We present a rare observation of an interaction between two filaments around AR 11358 and AR 11361 on 2011 December 3 that is strongly suggestive of the occurrence of slingshot reconnection. A small elbow-shaped active-region filament (F12) underwent a failed eruption that brought it into contact with a nearby larger, thicker filament (F34). Accompanied by the appearance of complicated internal structures below the erupting F12, its two legs separated away from each other and then connected into F34. This process led the filaments to change their connectivity to form two newly linked filaments, and one of them showed a clear inverse ?-shape. However, the alteration in the filament connectivity was imperfect since F34 is discernible after the eruption. These observations can be interpreted as a partial slingshot reconnection between two filaments that had unequal axial magnetic flux.

  20. The stability of viscous liquid filaments

    NASA Astrophysics Data System (ADS)

    Driessen, Theo; Jeurissen, Roger; Wijshoff, Herman; Lohse, Detlef

    2012-11-01

    The stability of liquid filaments is relevant both in industrial applications, such as inkjet printing and atomization, and in nature, where the stability of filaments has a large influence on the final drop size distribution of rain droplets and waterfalls. The liquid filament may either stably collapse into a single droplet, or break up into multiple droplets. Which scenario is realized depends on the viscosity and the aspect ratio of the filament. Here we study the collapse of an axisymmetric liquid filament is analytically and with a numerical model. We find that a long, high viscous filament can only break up due to the Rayleigh-Plateau instability, whereas a low viscous filament can break up due to end-pinching. The theory shows quantitative agreement with recent experimental findings by Castréjon-Pita et al., PRL 108, 074506 (2012).

  1. The state of wind energy development overseas

    SciTech Connect

    Divone, L.V.

    1983-06-01

    A brief ''grand tour'' of current wind machine development overseas is given. The International Energy Agency Agreement on Wind Energy R and D of 1978 and the IEA for Cooperation on Large Scale wind energy systems are outlined. Several examples of small machines in Denmark and Sweden are shown. The high technology approach of Germany features the 100 meter diameter Growian I, the largest windmill yet built, in Bremerhaven, on the North Sea. Development in the UK and Canada are also touched upon.

  2. Are the satellite-observed narrow, streaky chlorophyll filaments locally intensified by the submesoscale processes?

    NASA Astrophysics Data System (ADS)

    Shulman, Igor; Penta, Bradley; Richman, James; Jacobs, Gregg; Anderson, Stephanie; Sakalaukus, Peter

    2015-05-01

    Based on observations and modeling studies we have evaluated the impact of submesoscale processes on the development and intensification of offshore narrow (5-10km wide) phytoplankton filaments during summer time in the Monterey Bay, CA. We have demonstrated that, submesoscale processes (surface frontogenesis and nonlinear Ekman transport) lead to the development of very productive phytoplankton patches along the edges between the cold jet and warm anticyclonic eddy. Our results illustrate that during persistent upwelling favorable winds, submesoscale processes can modulate the development and intensification of offshore narrow (5-10km wide) phytoplankton filaments. These processes can incubate the phytoplankton population offshore (as for example, bioluminescent dinoflagellates during August 2003). These offshore phytoplankton filaments can migrate onshore during relaxed winds following the upwelling, and be an additional source of phytoplankton bloom development in and around Monterey Bay. Therefore, the discussed offshore phytoplankton filaments may be a factor in the Bay ecosystem health, as for example, in the development of such events as harmful algae blooms (HABs). All these emphasize the importance of further observational and modeling studies of these submesoscale processes which impact the development and intensification of offshore phytoplankton filaments.

  3. Current filaments in magnetized plasmas

    NASA Astrophysics Data System (ADS)

    Vianello, N.; Spolaore, M.; Martines, E.; Agostini, M.; Cavazzana, R.; Scarin, P.; Zuin, M.; Naulin, V.; Rasmussen, J. J.; Schrittwieser, R.; Ionita, C.; Müller, H. W.; Rohde, V.; Furno, I.; Theiler, C.

    2010-11-01

    We present direct experimental evidence of the presence of filamentary current structures in turbulent magnetized plasmas. Experiments have been performed in different devices. In the the reversed field pinch RFX-mod device, small scales turbulent intermittent structures, have been interpreted as Drift-Kinetic Alfén vortices, resulting from the non-linear coupling of drift and Kinetic Alfvén waves, with a bipolar current filaments associated to a vorticity perturbation. In thee ASDEX Upgrade tokamak evidences of monopolar current filaments travelling in the SOL, have been observed in correspondance with type-I ELMs. An evaluation of the current carried by individual ELMs is presented. Finally preliminary direct measurements of the 2D structure of the blob-induced parallel current using magnetic probes, as obtain in the simple magnetized plasma TORPEX, will be presented.

  4. UNUSUAL FILAMENTS INSIDE THE UMBRA

    SciTech Connect

    Kleint, L.

    2013-06-10

    We analyze several unusual filamentary structures which appeared in the umbra of one of the sunspots in AR 11302. They do not resemble typical light bridges in morphology or in evolution. We analyze data from SDO/HMI to investigate their temporal evolution, Hinode/SP for photospheric inversions, IBIS for chromospheric imaging, and SDO/AIA for the overlying corona. Photospheric inversions reveal a horizontal, inverse Evershed flow along these structures, which we call umbral filaments. Chromospheric images show brightenings and energy dissipation, while coronal images indicate that bright coronal loops seem to end in these umbral filaments. These rapidly evolving features do not seem to be common, and are possibly related to the high flare-productivity of the active region. Their analysis could help to understand the complex evolution of active regions.

  5. Mechanics of vimentin intermediate filaments

    NASA Technical Reports Server (NTRS)

    Wang, Ning; Stamenovic, Dimitrijie

    2002-01-01

    It is increasingly evident that the cytoskeleton of living cells plays important roles in mechanical and biological functions of the cells. Here we focus on the contribution of intermediate filaments (IFs) to the mechanical behaviors of living cells. Vimentin, a major structural component of IFs in many cell types, is shown to play an important role in vital mechanical and biological functions such as cell contractility, migration, stiffness, stiffening, and proliferation.

  6. Filament wound rocket motor chambers

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The design, analysis, fabrication and testing of a Kevlar-49/HBRF-55A filament wound chamber is reported. The chamber was fabricated and successfully tested to 80% of the design burst pressure. Results of the data reduction and analysis from the hydrotest indicate that the chamber design and fabrication techniques used for the chamber were adequate and the chamber should perform adequately in a static test.

  7. Filament formation and evolution in buoyant coastal waters: Observation and modelling

    NASA Astrophysics Data System (ADS)

    Iermano, Ilaria; Liguori, Giovanni; Iudicone, Daniele; Buongiorno Nardelli, Bruno; Colella, Simone; Zingone, Adriana; Saggiomo, Vincenzo; Ribera d'Alcalà, Maurizio

    2012-11-01

    This paper presents a detailed analysis of the formation and subsequent evolution of filament-like structures observed in a relatively small area of the mid-Tyrrhenian Sea (Mediterranean Sea). The filament dynamics and potential impact on the cross-shelf exchange budget are investigated based on a combined use of remote sensing imagery, in situ data and numerical modelling. The complexity of these phenomena is shown by focusing on four distinct events that led to cross-shelf transport, each representative of a different dynamic process and a distinct expected impact on the coastal area. A systematic analysis of available observations for the years 1998-2006 underlines the role of the interplay of atmospheric freshwater fluxes, river loads and wind stress variations, which may create favourable conditions for the convergence of shelf waters (particularly at coastal capes) and the subsequent formation of short-lived filaments along the coast. The response of the buoyant coastal waters to periods of wind reversal and fluctuating freshwater discharge rates is examined through idealised Regional Ocean Modeling System (ROMS) simulations. The filaments observed in remote sensing imagery were well reproduced by the numerical exercise, where the filaments appear as organised submesoscale structures that possess high relative vorticity and develop at the river mouths or adjacent capes. In both scenarios, the filaments appear largely determined by (i) the presence of a buoyancy anomaly, (ii) the angle between the wind pulse direction and the coast and (iii) irregularities in the coastal profile. The ensemble of results suggests that the occurrence of such transient, intense structures may contribute considerably to the biological variability and cross-shelf exchange in coastal areas with similar traits.

  8. Mechanical properties of branched actin filaments.

    PubMed

    Razbin, Mohammadhosein; Falcke, Martin; Benetatos, Panayotis; Zippelius, Annette

    2015-07-01

    Cells moving on a two dimensional substrate generate motion by polymerizing actin filament networks inside a flat membrane protrusion. New filaments are generated by branching off existing ones, giving rise to branched network structures. We investigate the force-extension relation of branched filaments, grafted on an elastic structure at one end and pushing with the free ends against the leading edge cell membrane. Single filaments are modeled as worm-like chains, whose thermal bending fluctuations are restricted by the leading edge cell membrane, resulting in an effective force. Branching can increase the stiffness considerably; however the effect depends on branch point position and filament orientation, being most pronounced for intermediate tilt angles and intermediate branch point positions. We describe filament networks without cross-linkers to focus on the effect of branching. We use randomly positioned branch points, as generated in the process of treadmilling, and orientation distributions as measured in lamellipodia. These networks reproduce both the weak and strong force response of lamellipodia as measured in force-velocity experiments. We compare properties of branched and unbranched networks. The ratio of the network average of the force per branched filament to the average force per unbranched filament depends on the orientation distribution of the filaments. The ratio exhibits compression dependence and may go up to about 4.5 in networks with a narrow orientation distribution. With orientation distributions measured in lamellipodia, it is about two and essentially independent from network compression, graft elasticity and filament persistence length. PMID:26040560

  9. Mechanical properties of branched actin filaments

    E-print Network

    Mohammadhosein Razbin; Martin Falcke; Panayotis Benetatos; Annette Zippelius

    2015-06-26

    Cells moving on a two dimensional substrate generate motion by polymerizing actin filament networks inside a flat membrane protrusion. New filaments are generated by branching off existing ones, giving rise to branched network structures. We investigate the force-extension relation of branched filaments, grafted on an elastic structure at one end and pushing with the free ends against the leading edge cell membrane. Single filaments are modeled as worm-like chains, whose thermal bending fluctuations are restricted by the leading edge cell membrane, resulting in an effective force. Branching can increase the stiffness considerably; however the effect depends on branch point position and filament orientation, being most pronounced for intermediate tilt angles and intermediate branch point positions. We describe filament networks without cross-linkers to focus on the effect of branching. We use randomly positioned branch points, as generated in the process of treadmilling, and orientation distributions as measured in lamellipodia. These networks reproduce both the weak and strong force response of lamellipodia as measured in force-velocity experiments. We compare properties of branched and unbranched networks. The ratio of the network average of the force per branched filament to the average force per unbranched filament depends on the orientation distribution of the filaments. The ratio exhibits compression dependence and may go up to about 4.5 in networks with a narrow orientation distribution. With orientation distributions measured in lamellipodia, it is about two and essentially independent from network compression, graft elasticity and filament persistence length.

  10. Mechanical properties of branched actin filaments

    NASA Astrophysics Data System (ADS)

    Razbin, Mohammadhosein; Falcke, Martin; Benetatos, Panayotis; Zippelius, Annette

    2015-07-01

    Cells moving on a two dimensional substrate generate motion by polymerizing actin filament networks inside a flat membrane protrusion. New filaments are generated by branching off existing ones, giving rise to branched network structures. We investigate the force-extension relation of branched filaments, grafted on an elastic structure at one end and pushing with the free ends against the leading edge cell membrane. Single filaments are modeled as worm-like chains, whose thermal bending fluctuations are restricted by the leading edge cell membrane, resulting in an effective force. Branching can increase the stiffness considerably; however the effect depends on branch point position and filament orientation, being most pronounced for intermediate tilt angles and intermediate branch point positions. We describe filament networks without cross-linkers to focus on the effect of branching. We use randomly positioned branch points, as generated in the process of treadmilling, and orientation distributions as measured in lamellipodia. These networks reproduce both the weak and strong force response of lamellipodia as measured in force-velocity experiments. We compare properties of branched and unbranched networks. The ratio of the network average of the force per branched filament to the average force per unbranched filament depends on the orientation distribution of the filaments. The ratio exhibits compression dependence and may go up to about 4.5 in networks with a narrow orientation distribution. With orientation distributions measured in lamellipodia, it is about two and essentially independent from network compression, graft elasticity and filament persistence length.

  11. Machine therapy

    E-print Network

    Dobson, Kelly E. (Kelly Elizabeth), 1970-

    2007-01-01

    Machine Therapy is a new practice combining art, design, psychoanalysis, and engineering work in ways that access and reveal the vital, though often unnoticed, relevance of people's interactions and relationships with ...

  12. Response of a flexible filament in a flowing soap film subject to a forced vibration

    NASA Astrophysics Data System (ADS)

    Jia, Laibing; Xiao, Qing; Wu, Haijun; Wu, Yanfeng; Yin, Xiezhen

    2015-01-01

    The interactions between flexible plates and fluids are important physical phenomena. A flag in wind is one of the most simplified and classical models for studying the problem. In this paper, we investigated the response of a flag in flow with an externally forced vibration by using flexible filaments and soap film. Experiments show that for a filament that is either in oscillation or stationary, the external forced vibration leads to its oscillation. A synchronization phenomenon occurs in the experiments. A small perturbation leads to a large response of flapping amplitude in response. The insight provided here is helpful to the applications in the flow control, energy harvesting, and bionic propulsion areas.

  13. Filaments in the Lupus molecular clouds

    NASA Astrophysics Data System (ADS)

    Benedettini, M.; Schisano, E.; Pezzuto, S.; Elia, D.; André, P.; Könyves, V.; Schneider, N.; Tremblin, P.; Arzoumanian, D.; di Giorgio, A. M.; Di Francesco, J.; Hill, T.; Molinari, S.; Motte, F.; Nguyen-Luong, Q.; Palmeirim, P.; Rivera-Ingraham, A.; Roy, A.; Rygl, K. L. J.; Spinoglio, L.; Ward-Thompson, D.; White, G. J.

    2015-10-01

    We have studied the filaments extracted from the column density maps of the nearby Lupus 1, 3, and 4 molecular clouds, derived from photometric maps observed with the Herschel satellite. Filaments in the Lupus clouds have quite low column densities, with a median value of ˜1.5 × 1021 cm-2 and most have masses per unit length lower than the maximum critical value for radial gravitational collapse. Indeed, no evidence of filament contraction has been seen in the gas kinematics. We find that some filaments, that on average are thermally subcritical, contain dense cores that may eventually form stars. This is an indication that in the low column density regime, the critical condition for the formation of stars may be reached only locally and this condition is not a global property of the filament. Finally, in Lupus we find multiple observational evidences of the key role that the magnetic field plays in forming filaments, and determining their confinement and dynamical evolution.

  14. Femtosecond Laser Filamentation for Atmospheric Sensing

    PubMed Central

    Xu, Huai Liang; Chin, See Leang

    2011-01-01

    Powerful femtosecond laser pulses propagating in transparent materials result in the formation of self-guided structures called filaments. Such filamentation in air can be controlled to occur at a distance as far as a few kilometers, making it ideally suited for remote sensing of pollutants in the atmosphere. On the one hand, the high intensity inside the filaments can induce the fragmentation of all matters in the path of filaments, resulting in the emission of characteristic fluorescence spectra (fingerprints) from the excited fragments, which can be used for the identification of various substances including chemical and biological species. On the other hand, along with the femtosecond laser filamentation, white-light supercontinuum emission in the infrared to UV range is generated, which can be used as an ideal light source for absorption Lidar. In this paper, we present an overview of recent progress concerning remote sensing of the atmosphere using femtosecond laser filamentation. PMID:22346566

  15. Motion, decay and merging of vortex filaments

    NASA Technical Reports Server (NTRS)

    Liu, C. H.; Ting, L.

    1988-01-01

    The asymptotic solutions of Navier-Stokes equations for vortex filaments of finite strength with small effective vortical cores are summarized. Emphases are placed on the physical meaning and the practical limit to the applicability of the asymptotic solution. Finite-difference solutions of Navier-Stokes equations for the merging of the filament(s) are described. It is focused on the development of the approximate boundary conditions for the computational domain.

  16. Remote electrical arc suppression by laser filamentation.

    PubMed

    Schubert, Elise; Mongin, Denis; Kasparian, Jérôme; Wolf, Jean-Pierre

    2015-11-01

    We investigate the interaction of narrow plasma channels formed in the filamentation of ultrashort laser pulses, with a DC high voltage. The laser filaments prevent electrical arcs by triggering corona that neutralize the high-voltage electrodes. This phenomenon, that relies on the electric field modulation and free electron release around the filament, opens new prospects to lightning and over-voltage mitigation. PMID:26561133

  17. Filament Estimation and Uncertainty Measures Yen-Chi Chen

    E-print Network

    Filament Estimation and Uncertainty Measures Yen-Chi Chen Larry Wasserman Christopher Genovese Mellon University April 21, 2014 1 / 39 #12;Outline Introduction to Filaments Filament Estimation Uncertainty Measures Future Work 2 / 39 #12;Introduction Outline Introduction to Filaments Filament Estimation

  18. The Geography of Wind Energy: Problem Solving Activities.

    ERIC Educational Resources Information Center

    Lahart, David E.; Allen, Rodney F.

    1985-01-01

    Today there are many attempts to use wind machines to confront the increasing costs of electricity. Described are activities to help secondary students understand wind energy, its distribution, applications, and limitations. (RM)

  19. Methods for modeling cytoskeletal and DNA filaments.

    PubMed

    Andrews, Steven S

    2014-02-01

    This review summarizes the models that researchers use to represent the conformations and dynamics of cytoskeletal and DNA filaments. It focuses on models that address individual filaments in continuous space. Conformation models include the freely jointed, Gaussian, angle-biased chain (ABC), and wormlike chain (WLC) models, of which the first three bend at discrete joints and the last bends continuously. Predictions from the WLC model generally agree well with experiment. Dynamics models include the Rouse, Zimm, stiff rod, dynamic WLC, and reptation models, of which the first four apply to isolated filaments and the last to entangled filaments. Experiments show that the dynamic WLC and reptation models are most accurate. They also show that biological filaments typically experience strong hydrodynamic coupling and/or constrained motion. Computer simulation methods that address filament dynamics typically compute filament segment velocities from local forces using the Langevin equation and then integrate these velocities with explicit or implicit methods; the former are more versatile and the latter are more efficient. Much remains to be discovered in biological filament modeling. In particular, filament dynamics in living cells are not well understood, and current computational methods are too slow and not sufficiently versatile. Although primarily a review, this paper also presents new statistical calculations for the ABC and WLC models. Additionally, it corrects several discrepancies in the literature about bending and torsional persistence length definitions, and their relations to flexural and torsional rigidities. PMID:24476634

  20. Flux emergence event underneath a filament

    NASA Astrophysics Data System (ADS)

    Palacios, J.; Cerrato, Y.; Cid, C.; Guerrero, A.; Saiz, E.

    2015-10-01

    Flux emergence phenomena are relevant at different temporal and spatial scales. We have studied a flux emergence region underneath a filament. This filament elevated itself smoothly, and the associated CME reached the Earth. In this study we investigate the size and the amount of flux in the emergence event. The flux emergence site appeared just beneath a filament. The emergence acquired a size of 24 Mm in half a day. The unsigned magnetic flux density from LOS-magnetograms was around 1 kG at its maximum. The transverse field as well as the filament eruption were also analysed.

  1. Actively Contracting Bundles of Polar Filaments

    NASA Astrophysics Data System (ADS)

    Kruse, K.; Jülicher, F.

    2000-08-01

    We introduce a phenomenological model to study the properties of bundles of polar filaments which interact via active elements. The stability of the homogeneous state, the attractors of the dynamics in the unstable regime, and the tensile stress generated in the bundle are discussed. We find that the interaction of parallel filaments can induce unstable behavior and is responsible for active contraction and tension in the bundle. The interaction between antiparallel filaments leads to filament sorting. Our model could apply to simple contractile structures in cells such as stress fibers.

  2. Methods for modeling cytoskeletal and DNA filaments

    NASA Astrophysics Data System (ADS)

    Andrews, Steven S.

    2014-02-01

    This review summarizes the models that researchers use to represent the conformations and dynamics of cytoskeletal and DNA filaments. It focuses on models that address individual filaments in continuous space. Conformation models include the freely jointed, Gaussian, angle-biased chain (ABC), and wormlike chain (WLC) models, of which the first three bend at discrete joints and the last bends continuously. Predictions from the WLC model generally agree well with experiment. Dynamics models include the Rouse, Zimm, stiff rod, dynamic WLC, and reptation models, of which the first four apply to isolated filaments and the last to entangled filaments. Experiments show that the dynamic WLC and reptation models are most accurate. They also show that biological filaments typically experience strong hydrodynamic coupling and/or constrained motion. Computer simulation methods that address filament dynamics typically compute filament segment velocities from local forces using the Langevin equation and then integrate these velocities with explicit or implicit methods; the former are more versatile and the latter are more efficient. Much remains to be discovered in biological filament modeling. In particular, filament dynamics in living cells are not well understood, and current computational methods are too slow and not sufficiently versatile. Although primarily a review, this paper also presents new statistical calculations for the ABC and WLC models. Additionally, it corrects several discrepancies in the literature about bending and torsional persistence length definitions, and their relations to flexural and torsional rigidities.

  3. Probing the Physical Structures of Dense Filaments

    NASA Astrophysics Data System (ADS)

    Li, Di

    2015-08-01

    Filament is a common feature in cosmological structures of various scales, ranging from dark matter cosmic web, galaxy clusters, inter-galactic gas flows, to Galactic ISM clouds. Even within cold dense molecular cores, filaments have been detected. Theories and simulations with (or without) different combination of physical principles, including gravity, thermal balance, turbulence, and magnetic field, can reproduce intriguing images of filaments. The ubiquity of filaments and the similarity in simulated ones make physical parameters, beyond dust column density, a necessity for understanding filament evolution. I report three projects attempting to measure physical parameters of filaments. We derive the volume density of a dense Taurus filament based on several cyanoacetylene transitions observed by GBT and ART. We measure the gas temperature of the OMC 2-3 filament based on combined GBT+VLA ammonia images. We also measured the sub-millimeter polarization vectors along OMC3. These filaments were found to be likely a cylinder-type structure, without dynamic heating, and likely accreting mass along the magnetic field lines.

  4. Analysis of electromechanical interactions in a flywheel system with a doubly fed induction machine

    E-print Network

    Ran, Li

    This paper analyzes the electromechanical inter-action in a flywheel system with a doubly fed induction machine, used for wind farm power smoothing or grid frequency response control. The grid-connected electrical machine ...

  5. Workout Machine

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The Orbotron is a tri-axle exercise machine patterned after a NASA training simulator for astronaut orientation in the microgravity of space. It has three orbiting rings corresponding to roll, pitch and yaw. The user is in the middle of the inner ring with the stomach remaining in the center of all axes, eliminating dizziness. Human power starts the rings spinning, unlike the NASA air-powered system. Marketed by Fantasy Factory (formerly Orbotron, Inc.), the machine can improve aerobic capacity, strength and endurance in five to seven minute workouts.

  6. Machine LearningMachine Learning Stephen Scott

    E-print Network

    Scott, Stephen D.

    Machine LearningMachine Learning Stephen Scott Associate Professor Dept. of Computer Science;1/21/2004 Stephen Scott, Univ. of Nebraska 2 What is Machine Learning?What is Machine Learning? Building machines;1/21/2004 Stephen Scott, Univ. of Nebraska 3 What is Learning?What is Learning? Many different answers, depending

  7. Random machines and Human mind Random machines

    E-print Network

    Perronnin, Florence

    Random machines and Human mind Random machines How algorithms emulate randomness Jean-Marc Vincent1;Random machines and Human mind Outline of the lecture 1 Random machines Why generate random numbers ? Random machines Pseudo-random generators 2 and Human mind Randomness detection Generate randomness 2 / 36

  8. Quantitative Characterization of Filament Dynamics by Single-Molecule Lifetime

    E-print Network

    Needleman, Daniel

    CHAPTER 29 Quantitative Characterization of Filament Dynamics by Single-Molecule Lifetime University, Cambridge, Massachusetts 02138 Abstract I. Introduction to Cytoskeletal Filament Dynamics II III. Theoretical Foundations A. Equivalence to the First-Passage Time Problem B. Models of Filament

  9. Filamentation with nonlinear Bessel vortices.

    PubMed

    Jukna, V; Milián, C; Xie, C; Itina, T; Dudley, J; Courvoisier, F; Couairon, A

    2014-10-20

    We present a new type of ring-shaped filaments featured by stationary nonlinear high-order Bessel solutions to the laser beam propagation equation. Two different regimes are identified by direct numerical simulations of the nonlinear propagation of axicon focused Gaussian beams carrying helicity in a Kerr medium with multiphoton absorption: the stable nonlinear propagation regime corresponds to a slow beam reshaping into one of the stationary nonlinear high-order Bessel solutions, called nonlinear Bessel vortices. The region of existence of nonlinear Bessel vortices is found semi-analytically. The influence of the Kerr nonlinearity and nonlinear losses on the beam shape is presented. Direct numerical simulations highlight the role of attractors played by nonlinear Bessel vortices in the stable propagation regime. Large input powers or small cone angles lead to the unstable propagation regime where nonlinear Bessel vortices break up into an helical multiple filament pattern or a more irregular structure. Nonlinear Bessel vortices are shown to be sufficiently intense to generate a ring-shaped filamentary ionized channel in the medium which is foreseen as opening the way to novel applications in laser material processing of transparent dielectrics. PMID:25401574

  10. Comparison of hand laid-up tape and filament wound composite cylinders and panels with and without impact damage

    NASA Technical Reports Server (NTRS)

    Jegley, Dawn C.; Lopez, Osvaldo F.

    1991-01-01

    Experimentally determined axial compressive failure loads, strains and failure modes of composite flat panels and cylinders are presented. A comparison of two types of filament wound flat graphite-epoxy panels indicates that the winding pattern can influence structural response. A comparison of hand laid-up tape and filament wound composite cylinders indicates that fabrication method may not significantly influence the failure mode or average failure strain of thick-walled (radius-to-thickness ratio less than 15) graphite-epoxy cylinders. The interaction of manufacturing-induced features (fiber cross-overs) and low-speed impact damage for graphite-epoxy specimens is also presented. Filament would flat panels with many fiber cross-overs exhibited lower failure strains than filament wound panels without fiber cross-overs for all impact speeds examined. Graphite-thermoplastic cylinders exhibited a significantly different failure mode from the graphite-epoxy cylinders.

  11. A First Approach to Filament Dynamics

    ERIC Educational Resources Information Center

    Silva, P. E. S.; de Abreu, F. Vistulo; Simoes, R.; Dias, R. G.

    2010-01-01

    Modelling elastic filament dynamics is a topic of high interest due to the wide range of applications. However, it has reached a high level of complexity in the literature, making it unaccessible to a beginner. In this paper we explain the main steps involved in the computational modelling of the dynamics of an elastic filament. We first derive…

  12. Scanning For Hotspots In Lamp Filaments

    NASA Technical Reports Server (NTRS)

    Powers, Charles E.; Van Sant, Tim; Leidecker, Henning

    1993-01-01

    Scanning photometer designed for use in investigation of failures of incandescent lamp filaments. Maps brightness as function of position along each filament to identify bright (hot) spots, occurring at notches and signifying incipient breaks or rewelds. Also used to measure nonuniformity in outputs of such linear devices as light-emitting diodes, and to measure diffraction patterns of lenses.

  13. Wacky Machines

    ERIC Educational Resources Information Center

    Fendrich, Jean

    2002-01-01

    Collectors everywhere know that local antique shops and flea markets are treasure troves just waiting to be plundered. Science teachers might take a hint from these hobbyists, for the next community yard sale might be a repository of old, quirky items that are just the things to get students thinking about simple machines. By introducing some…

  14. Growth of filaments and saturation of the filamentation instability

    SciTech Connect

    Gedalin, M.; Medvedev, M.; Spitkovsky, A.; Krasnoselskikh, V.; Vaivads, A.; Perri, S.

    2010-03-15

    The filamentation instability of counterstreaming beams is a nonresonant hydrodynamic-type instability whose growth rate is a smooth function of the wavelength (scale). As a result, perturbations with all unstable wavelengths develop, and the growth saturates due to the saturation of available current. For a given scale, the magnetic field at saturation is proportional to the scale. As a result, the instability develops in a nearly linear regime, where the unstable modes stop growing as soon as the saturation of the corresponding wavelength is reached. At each moment there exists a dominant scale of the magnetic field which is the scale that reached saturation at this particular time. The smaller scales do not disappear and can be easily distinguished in the current structure. The overall growth of the instability stops when the loss of the streaming ion energy because of deceleration is comparable to the initial ion energy.

  15. Unwinding motion of a twisted active region filament

    SciTech Connect

    Yan, X. L.; Xue, Z. K.; Kong, D. F.; Liu, J. H.; Xu, C. L.

    2014-12-10

    To better understand the structures of active region filaments and the eruption process, we study an active region filament eruption in active region NOAA 11082 in detail on 2010 June 22. Before the filament eruption, the opposite unidirectional material flows appeared in succession along the spine of the filament. The rising of the filament triggered two B-class flares at the upper part of the filament. As the bright material was injected into the filament from the sites of the flares, the filament exhibited a rapid uplift accompanying the counterclockwise rotation of the filament body. From the expansion of the filament, we can see that the filament consisted of twisted magnetic field lines. The total twist of the filament is at least 5? obtained by using a time slice method. According to the morphology change during the filament eruption, it is found that the active region filament was a twisted flux rope and its unwinding motion was like a solar tornado. We also find that there was a continuous magnetic helicity injection before and during the filament eruption. It is confirmed that magnetic helicity can be transferred from the photosphere to the filament. Using the extrapolated potential fields, the average decay index of the background magnetic fields over the filament is 0.91. Consequently, these findings imply that the mechanism of solar filament eruption could be due to the kink instability and magnetic helicity accumulation.

  16. Unwinding Motion of a Twisted Active Region Filament

    NASA Astrophysics Data System (ADS)

    Yan, X. L.; Xue, Z. K.; Liu, J. H.; Kong, D. F.; Xu, C. L.

    2014-12-01

    To better understand the structures of active region filaments and the eruption process, we study an active region filament eruption in active region NOAA 11082 in detail on 2010 June 22. Before the filament eruption, the opposite unidirectional material flows appeared in succession along the spine of the filament. The rising of the filament triggered two B-class flares at the upper part of the filament. As the bright material was injected into the filament from the sites of the flares, the filament exhibited a rapid uplift accompanying the counterclockwise rotation of the filament body. From the expansion of the filament, we can see that the filament consisted of twisted magnetic field lines. The total twist of the filament is at least 5? obtained by using a time slice method. According to the morphology change during the filament eruption, it is found that the active region filament was a twisted flux rope and its unwinding motion was like a solar tornado. We also find that there was a continuous magnetic helicity injection before and during the filament eruption. It is confirmed that magnetic helicity can be transferred from the photosphere to the filament. Using the extrapolated potential fields, the average decay index of the background magnetic fields over the filament is 0.91. Consequently, these findings imply that the mechanism of solar filament eruption could be due to the kink instability and magnetic helicity accumulation.

  17. Non-Gaussian statistics of multiple filamentation.

    PubMed

    Lushnikov, Pavel M; Vladimirova, Natalia

    2010-06-15

    We consider the statistics of light amplitude fluctuations for the propagation of a laser beam subjected to multiple filamentation in an amplified Kerr media, with both linear and nonlinear dissipation. Dissipation arrests the catastrophic collapse of filaments, causing their disintegration into almost linear waves. These waves form a nearly Gaussian random field that seeds new filaments. For small amplitudes the probability density function (PDF) of light amplitude is close to Gaussian, while for large amplitudes the PDF has a long powerlike tail that corresponds to strong non-Gaussian fluctuations, i.e., intermittency of strong optical turbulence. This tail is determined by the universal form of near singular filaments and the PDF for the maximum amplitudes of the filaments. PMID:20548354

  18. Quantifying protein diffusion and capture on filaments

    E-print Network

    Emanuel Reithmann; Louis Reese; Erwin Frey

    2015-03-03

    The functional relevance of regulating proteins is often limited to specific binding sites such as the ends of microtubules or actin-filaments. A localization of proteins on these functional sites is of great importance. We present a quantitative theory for a diffusion and capture process, where proteins diffuse on a filament and stop diffusing when reaching the filament's end. It is found that end-association after one-dimensional diffusion is the main source for tip-localization of such proteins. As a consequence, diffusion and capture is highly efficient in enhancing the reaction velocity of enzymatic reactions, where proteins and filament ends are to each other as enzyme and substrate. We show that the reaction velocity can effectively be described within a Michaelis-Menten framework. Together one-dimensional diffusion and capture beats the (three-dimensional) Smoluchowski diffusion limit for the rate of protein association to filament ends.

  19. Filament Activation in Response to Magnetic Flux Emergence and Cancellation in Filament Channels

    NASA Astrophysics Data System (ADS)

    Li, Ting; Zhang, Jun; Ji, Haisheng

    2015-06-01

    We conducted a comparative analysis of two filaments that showed a quite different activation in response to the flux emergence within the filament channels. The observations from the Solar Dynamics Observatory (SDO) and Global Oscillation Network Group (GONG) were made to analyze the two filaments on 2013 August 17 - 20 (SOL2013-08-17) and September 29 (SOL2013-09-29). The first event showed that the main body of the filament was separated into two parts when an active region (AR) emerged with a maximum magnetic flux of about 6.4×1021 Mx underlying the filament. The close neighborhood and common direction of the bright threads in the filament and the open AR fan loops suggest a similar magnetic connectivity of these two flux systems. The equilibrium of the filament was not destroyed three days after the start of the emergence of the AR. To our knowledge, similar observations have never been reported before. In the second event, the emerging flux occurred nearby a barb of the filament with a maximum magnetic flux of 4.2×1020 Mx, about one order of magnitude lower than that of the first event. Two patches of parasitic polarity in the vicinity of the barb merged, then cancelled with nearby network fields. About 20 hours after the onset of the emergence, the filament erupted. Our findings imply that the location of emerging flux within the filament channel is probably crucial to filament evolution. If the flux emergence appears nearby the barbs, it is highly likely that the emerging flux and the filament magnetic fields will cancel, which may lead to the eruption of the filament. The comparison of the two events shows that the emergence of a small AR may still not be enough to disrupt the stability of a filament system, and the actual eruption only occurs after the flux cancellation sets in.

  20. Origin of Enigmatic Galactic-center Filaments Revealed

    NASA Astrophysics Data System (ADS)

    2004-06-01

    Twenty years ago, astronomers discovered a number of enigmatic radio-emitting filaments concentrated near the center of the Milky Way Galaxy. These features initially defied explanation, but a new study of radio images of the Galactic center may point to their possible source. By combining data from the National Science Foundation's Very Large Array (VLA) and Robert C. Byrd Green Bank Telescope (GBT) astronomer Farhad Yusef-Zadeh of Northwestern University has found evidence that at least some of the filaments spring from the concentrated star-formation regions that populate the Galactic center. Galatic Center Combined VLA and GBT image (green) of the Galactic center, with red inset of GBT data only (red). Bright region on right is location of supermassive black hole. Linear filaments are visible above this area. CREDIT: NRAO/AUI/NSF Yusef-Zadeh, et.al. (Click on Image for Larger Version) Yusef-Zadeh presented his findings at the Denver, Colorado, meeting of the American Astronomical Society. William Cotton of the National Radio Astronomy Observatory (NRAO) in Charlottesville, Virginia, and William Hewitt of Northwestern University also contributed to this research. "Astronomers have long puzzled over the cause of these striking features," said Yusef-Zadeh, "and the turbulent nature of the Galactic center has made detailed analysis difficult. With new multi-wavelength radio images of the Galactic center, however, we can finally see a link between areas of starburst activity and these long-linear filaments." The filaments, which range from 10 to 100 light-years in length and are perhaps little more than 1 to 3 light-years across, occur only in a very narrow area, within approximately two degrees of the Galactic center (which translates to approximately 900 light-years across). Early theories about the origin of these filaments suggested that they were somehow related to the Milky Way’s own magnetic field. This was due to the fact that the first filaments detected were oriented perpendicular to the plane of the Galaxy, which would have aligned them with the Galaxy’s own magnetic field. "The problem with this hypothesis is that more recent images have revealed a population of weaker filaments oriented randomly in relation to the plane of the Galaxy," said Yusef-Zadeh. "This makes it difficult to explain the origin of the filaments by an organized Galactic magnetic field." In March and June of 2004, a team of astronomers using the GBT made images of the Galactic center at various wavelengths. The purpose of these surveys was to help identify radio features produced by hot gas (thermal emission) and those produced in magnetic fields (non-thermal emission). In general, thermal features radiate more strongly at shorter wavelengths and non-thermal at longer wavelengths. By comparing the GBT images with earlier VLA data taken of the same region, Yusef-Zadeh determined that a number of the non-thermal filaments seemed to connect to concentrated areas of thermal emission, which identify pockets of star formation. Galatic Center Combined radio image from the Very Large Array and Green Bank Telescope. The linear filaments near the top are some of the nonthermal radio filaments (NRFs) studied by the researchers. Other features, such as supernova remnants (SNRs) and the area surrounding our Galaxy's supermassive black hole (Sgr A) are shown. CREDIT: NRAO/AUI/NSF Yusef-Zadeh, et.al. (Click on Image for Larger Version) "What this showed us is that two seemingly disparate processes, thermal and non-thermal radio emission, can be created by the very same phenomenon," said Yusef-Zadeh. "In this case, that phenomenon is pockets of starburst activity." Yusef-Zadeh notes that the exact mechanism for how the areas of starburst generate the magnetic fields is still being investigated. "There are many ideas about the mechanism that generates these filaments," added Yusef-Zadeh, "but one possibility is that they are produced by the collision of winds blown off from indi

  1. Wind Turbine Acoustics

    NASA Technical Reports Server (NTRS)

    Hubbard, Harvey H.; Shepherd, Kevin P.

    2009-01-01

    Wind turbine generators, ranging in size from a few kilowatts to several megawatts, are producing electricity both singly and in wind power stations that encompass hundreds of machines. Many installations are in uninhabited areas far from established residences, and therefore there are no apparent environmental impacts in terms of noise. There is, however, the potential for situations in which the radiated noise can be heard by residents of adjacent neighborhoods, particularly those neighborhoods with low ambient noise levels. A widely publicized incident of this nature occurred with the operation of the experimental Mod-1 2-MW wind turbine, which is described in detail elsewhere. Pioneering studies which were conducted at the Mod-1 site on the causes and remedies of noise from wind turbines form the foundation of much of the technology described in this chapter.

  2. Machine Learning

    NASA Astrophysics Data System (ADS)

    Hoffmann, Achim; Mahidadia, Ashesh

    The purpose of this chapter is to present fundamental ideas and techniques of machine learning suitable for the field of this book, i.e., for automated scientific discovery. The chapter focuses on those symbolic machine learning methods, which produce results that are suitable to be interpreted and understood by humans. This is particularly important in the context of automated scientific discovery as the scientific theories to be produced by machines are usually meant to be interpreted by humans. This chapter contains some of the most influential ideas and concepts in machine learning research to give the reader a basic insight into the field. After the introduction in Sect. 1, general ideas of how learning problems can be framed are given in Sect. 2. The section provides useful perspectives to better understand what learning algorithms actually do. Section 3 presents the Version space model which is an early learning algorithm as well as a conceptual framework, that provides important insight into the general mechanisms behind most learning algorithms. In section 4, a family of learning algorithms, the AQ family for learning classification rules is presented. The AQ family belongs to the early approaches in machine learning. The next, Sect. 5 presents the basic principles of decision tree learners. Decision tree learners belong to the most influential class of inductive learning algorithms today. Finally, a more recent group of learning systems are presented in Sect. 6, which learn relational concepts within the framework of logic programming. This is a particularly interesting group of learning systems since the framework allows also to incorporate background knowledge which may assist in generalisation. Section 7 discusses Association Rules - a technique that comes from the related field of Data mining. Section 8 presents the basic idea of the Naive Bayesian Classifier. While this is a very popular learning technique, the learning result is not well suited for human comprehension as it is essentially a large collection of probability values. In Sect. 9, we present a generic method for improving accuracy of a given learner by generatingmultiple classifiers using variations of the training data. While this works well in most cases, the resulting classifiers have significantly increased complexity and, hence, tend to destroy the human readability of the learning result that a single learner may produce. Section 10 contains a summary, mentions briefly other techniques not discussed in this chapter and presents outlook on the potential of machine learning in the future.

  3. Ultrasonic analysis of Kevlar-epoxy filament wound spherical test specimens

    SciTech Connect

    Brosey, W.D.

    1984-12-06

    Increased use of composite materials in enclosed geometries such as cylindrical, spherical, or conical shapes has led to the desire to transfer and further develop the most promising nondestructive evaluation (NDE) techniques used on nonenclosed geometries to enclosed geometries. Known defects were placed within spherical Kevlar-epoxy filament wound test specimens to determine the extent to which they could be detected. These defects included Teflon shim-simulated delaminations, macrosphere-simulated voids, dry-band sets, variable tension, Kevlar 29 fiber, and an alternate high void content winding pattern. Ultrasonic C-scan analysis of Kevlar-epoxy filament wound spheres was performed to determine detectability of normal winding patterns and implanted flaw conditions in the composite using this technique. Ultrasonic waveform analysis was performed in both the time and frequency domains to determine the detectability and locatability of structural flaws within the composite.

  4. Intercluster filaments in a ?CDM Universe

    NASA Astrophysics Data System (ADS)

    Colberg, Jörg M.; Krughoff, K. Simon; Connolly, Andrew J.

    2005-05-01

    The large-scale structure (LSS) in the Universe comprises a complicated filamentary network of matter. We study this network using a high-resolution simulation of structure formation in a ? Cold Dark Matter cosmology. We investigate the distribution of matter between neighbouring large haloes whose masses are comparable to massive clusters of galaxies. We identify a total of 228 filaments between neighbouring clusters. Roughly half of the filaments are either warped or lie off the cluster-cluster axis. We find that straight filaments, on the average, are shorter than warped ones. Close cluster pairs with separation of 5 h-1 Mpc or less are always connected by a filament. At separations between 15 and 20 h-1 Mpc, about a third of cluster pairs are connected by a filament. On average, more-massive clusters are connected to more filaments than less-massive ones. This finding indicates that the most-massive clusters form at the intersections of the filamentary backbone of LSS. For straight filaments, we compute mass profiles. Radial profiles show a fairly well-defined radius, rs, beyond which the profiles follow an r-2 power law fairly closely. For the majority of filaments, rs lies between 1.5 and 2.0 h-1 Mpc. The enclosed overdensity inside rs varies from a few times up to 25 times the mean density, independent of the length of the filament. Along the filaments' axes, material is not distributed uniformly. Towards the clusters, the density rises, indicating the presence of the cluster infall regions. Filaments have been suggested to cause possible alignments between neighbouring clusters. Looking at the nearest neighbour for each cluster, we find that, up to a separation of about 15 h-1 Mpc, there is a filament present that could account for alignment. In addition, we also find some sheet-like connections between clusters. In roughly a fifth of all cluster-cluster connections where we could not identify a filament or sheet, projection effects lead to filamentary structures in the projected mass distribution.

  5. Automatic Detect and Trace of Solar Filaments

    NASA Astrophysics Data System (ADS)

    Fang, Cheng; Chen, P. F.; Tang, Yu-hua; Hao, Qi; Guo, Yang

    We developed a series of methods to automatically detect and trace solar filaments in solar H? images. The programs are able to not only recognize filaments and determine their properties, such as the position, the area and other relevant parameters, but also to trace the daily evolution of the filaments. For solar full disk H? images, the method consists of three parts: first, preprocessing is applied to correct the original images; second, the Canny edge-detection method is used to detect the filaments; third, filament properties are recognized through the morphological operators. For each H? filament and its barb features, we introduced the unweighted undirected graph concept and adopted Dijkstra shortest-path algorithm to recognize the filament spine; then, using polarity inversion line shift method for measuring the polarities in both sides of the filament to determine the filament axis chirality; finally, employing connected components labeling method to identify the barbs and calculating the angle between each barb and spine to indicate the barb chirality. Our algorithms are applied to the observations from varied observatories, including the Optical & Near Infrared Solar Eruption Tracer (ONSET) in Nanjing University, Mauna Loa Solar Observatory (MLSO) and Big Bear Solar Observatory (BBSO). The programs are demonstrated to be effective and efficient. We used our method to automatically process and analyze 3470 images obtained by MLSO from January 1998 to December 2009, and a butterfly diagram of filaments is obtained. It shows that the latitudinal migration of solar filaments has three trends in the Solar Cycle 23: The drift velocity was fast from 1998 to the solar maximum; after the solar maximum, it became relatively slow and after 2006, the migration became divergent, signifying the solar minimum. About 60% filaments with the latitudes larger than 50 degree migrate towards the Polar Regions with relatively high velocities, and the latitudinal migrating speeds in the northern and the southern hemispheres do not differ significantly in the Solar Cycle 23. We also processed a number of relatively high-resolution H? images obtained by BBSO. It is found that in some cases, the filament axis has single chirality and the associated magnetic field also has single helicity, while its barbs in different parts of it have opposite barb chirality.

  6. Particles trajectories in magnetic filaments

    E-print Network

    Bret, Antoine

    2015-01-01

    The motion of a particle in a spatially harmonic magnetic field is a basic problem involved, for example, in the mechanism of formation of a collisionless shock. In such settings, it is generally reasoned that particles entering a Weibel generated turbulence are trapped inside it, provided their Larmor radius in the peak field is smaller than the field coherence length. The goal of this work is to put this heuristic conclusion on firm ground by studying, both analytically and numerically, such motion. A toy model is analyzed, consisting of a relativistic particle entering a region of space occupied by a spatially harmonic field. The particle penetrates the magnetic structure in a direction aligned with the magnetic filaments. Although the conclusions are not trivial, the main result is confirmed.

  7. Particles trajectories in magnetic filaments

    NASA Astrophysics Data System (ADS)

    Bret, A.

    2015-07-01

    The motion of a particle in a spatially harmonic magnetic field is a basic problem involved, for example, in the mechanism of formation of a collisionless shock. In such settings, it is generally reasoned that particles entering a Weibel generated turbulence are trapped inside it, provided their Larmor radius in the peak field is smaller than the field coherence length. The goal of this work is to put this heuristic conclusion on firm ground by studying, both analytically and numerically, such motion. A toy model is analyzed, consisting of a relativistic particle entering a region of space occupied by a spatially harmonic field. The particle penetrates the magnetic structure in a direction aligned with the magnetic filaments. Although the conclusions are not trivial, the main result is confirmed.

  8. Apparatus for cooling an electric machine

    DOEpatents

    Palafox, Pepe; Gerstler, William Dwight; Shen, Xiaochun; El-Refaie, Ayman Mohamed Fawzi; Lokhandwalla, Murtuza; Salasoo, Lembit

    2013-07-16

    Provided is an apparatus, for example, for use with a rotating electric machine, that includes a housing. The housing can include a housing main portion and a housing end portion. The housing main portion can be configured to be disposed proximal to a body portion of a stator section of an electric machine. The housing main portion can define a main fluid channel that is configured to conduct fluid therethrough. The housing end portion can receive fluid from said main fluid channel and direct fluid into contact with a winding end portion of a conductive winding of the stator section.

  9. Conductive Anodic Filament (CAF) Formation

    NASA Astrophysics Data System (ADS)

    Caputo, Antonio

    Conductive anodic filament (CAF) is a failure mode in printed wiring boards (PWBs) which occurs under high humidity and high voltage gradient conditions. The filament, a copper salt, grows from anode to cathode along the epoxy-glass interface. Ready and Turbini (2000) identified this copper salt as the Cu 2(OH)3Cl, atacamite compound. This work has investigated the influence of polyethylene glycol (PEG) and polyethylene propylene glycol (PEPG) fluxing agents on the chemical nature of CAF. For coupons processed with PEPG flux, with and without chloride, a copper-chloride containing compound was formed in the polymer matrix. This compound was characterized using x-ray photoelectron spectroscopy (XPS) as CuCl and an electrochemical mechanism for the formation of the chloride-containing CAF has been proposed. For PEG flux, with and without chloride, it has been shown that CAF only formed, but no copper containing compound formed in the matrix. It appears for PEG fluxed coupons, a PEG-Cu-Cl complex forms, binds the available Cu and acts as a barrier to the formation of CuCl in the polymer matrix. Meeker and Lu Valle (1995) have previously proposed that CAF failure is best represented by two competing reactions -- the formation of a copper chloride corrosion compound (now identified as Cu2(OH)3Cl) and the formation of innocuous trapped chlorine compounds. Since no evidence of any trapped chloride compounds has been found, we propose that the formation of CAF is best represented by a single non-reversible reaction. For coupons processed with a high bromide-containing flux, bromide containing CAF was created and characterized using transmission electron microscopy (TEM) to be Cu2(OH)3Br. In addition, a copper-containing compound was formed in the polymer matrix and characterized using XPS as CuBr. An electrochemical mechanism for the formation of bromide-containing CAF has been proposed based on the XPS data.

  10. Fullerene Machines

    NASA Technical Reports Server (NTRS)

    Globus, Al; Saini, Subhash (Technical Monitor)

    1998-01-01

    Fullerenes possess remarkable properties and many investigators have examined the mechanical, electronic and other characteristics of carbon SP2 systems in some detail. In addition, C-60 can be functionalized with many classes of molecular fragments and we may expect the caps of carbon nanotubes to have a similar chemistry. Finally, carbon nanotubes have been attached to t he end of scanning probe microscope (Spill) tips. Spills can be manipulated with sub-angstrom accuracy. Together, these investigations suggest that complex molecular machines made of fullerenes may someday be created and manipulated with very high accuracy. We have studied some such systems computationally (primarily functionalized carbon nanotube gears and computer components). If such machines can be combined appropriately, a class of materials may be created that can sense their environment, calculate a response, and act. The implications of such hypothetical materials are substantial.

  11. Fullerene Machines

    NASA Technical Reports Server (NTRS)

    Globus, Al; Saini, Subhash

    1998-01-01

    Recent computational efforts at NASA Ames Research Center and computation and experiment elsewhere suggest that a nanotechnology of machine phase functionalized fullerenes may be synthetically accessible and of great interest. We have computationally demonstrated that molecular gears fashioned from (14,0) single-walled carbon nanotubes and benzyne teeth should operate well at 50-100 gigahertz. Preliminary results suggest that these gears can be cooled by a helium atmosphere and a laser motor can power fullerene gears if a positive and negative charge have been added to form a dipole. In addition, we have unproven concepts based on experimental and computational evidence for support structures, computer control, a system architecture, a variety of components, and manufacture. Combining fullerene machines with the remarkable mechanical properties of carbon nanotubes, there is some reason to believe that a focused effort to develop fullerene nanotechnology could yield materials with tremendous properties.

  12. Force-induced dynamical properties of multiple cytoskeletal filaments are distinct from that of single filaments

    E-print Network

    Dipjyoti Das; Dibyendu Das; Ranjith Padinhateeri

    2014-03-30

    How cytoskeletal filaments collectively undergo growth and shrinkage is an intriguing question. Collective properties of multiple bio-filaments (actin or microtubules) undergoing hydrolysis, have not been studied extensively earlier, within simple theoretical frameworks. In this paper, we show that collective properties of multiple filaments under force are very distinct from the properties of a single filament under similar conditions -- these distinctions manifest as follows: (i) the collapse time during collective catastrophe for a multifilament system is much larger than that of a single filament with the same average length, (ii) force-dependence of the cap-size distribution of multiple filaments are quantitatively different from that of single filament, (iii) the diffusion constant associated with the system length fluctuations is distinct for multiple filaments, (iv) switching dynamics of multiple filaments between capped and uncapped states and the fluctuations therein are also distinct. We build a unified picture by establishing interconnections among all these collective phenomena. Additionally, we show that the collapse times during catastrophes can be sharp indicators of collective stall forces exceeding the additive contributions of single filaments.

  13. Extensible Wind Towers

    NASA Astrophysics Data System (ADS)

    Sinagra, Marco; Tucciarelli, Tullio

    The diffusion of wind energy generators is restricted by their strong landscape impact. The PERIMA project is about the development of an extensible wind tower able to support a wind machine for several hundred kW at its optimal working height, up to more than 50 m. The wind tower has a telescopic structure, made by several tubes located inside each other with their axis in vertical direction. The lifting force is given by a jack-up system confined inside a shaft, drilled below the ground level. In the retracted tower configuration, at rest, tower tubes are hidden in the foundation of the telescopic structure, located below the ground surface, and the wind machine is the only emerging part of the system. The lifting system is based on a couple of oleodynamic cylinders that jack-up a central tube connected to the top of the tower by a spring, with a diameter smaller than the minimum tower diameter and with a length a bit greater than the length of the extended telescopic structure. The central tube works as plunger and lifts all telescopic elements. The constraint between the telescopic elements is ensured by special parts, which are kept in traction by the force of the spring and provide the resisting moment. The most evident benefit of the proposed system is attained with the use of a two-blade propeller, which can be kept horizontal in the retracted tower configuration.

  14. On the Fatigue Analysis of Wind Turbines

    SciTech Connect

    Sutherland, Herbert J.

    1999-06-01

    Modern wind turbines are fatigue critical machines that are typically used to produce electrical power from the wind. Operational experiences with these large rotating machines indicated that their components (primarily blades and blade joints) were failing at unexpectedly high rates, which led the wind turbine community to develop fatigue analysis capabilities for wind turbines. Our ability to analyze the fatigue behavior of wind turbine components has matured to the point that the prediction of service lifetime is becoming an essential part of the design process. In this review paper, I summarize the technology and describe the ''best practices'' for the fatigue analysis of a wind turbine component. The paper focuses on U.S. technology, but cites European references that provide important insights into the fatigue analysis of wind turbines.

  15. Filamentation of Campylobacter in broth cultures

    PubMed Central

    Ghaffar, Nacheervan M.; Connerton, Phillippa L.; Connerton, Ian F.

    2015-01-01

    The transition from rod to filamentous cell morphology has been identified as a response to stressful conditions in many bacterial species and has been ascribed to confer certain survival advantages. Filamentation of Campylobacter jejuni was demonstrated to occur spontaneously on entry in to stationary phase distinguishing it from many other bacteria where a reduction in size is more common. The aim of this study was to investigate the cues that give rise to filamentation of C. jejuni and C. coli and gain insights into the process. Using minimal medium, augmentation of filamentation occurred and it was observed that this morphological change was wide spread amongst C. jejuni strains tested but was not universal in C. coli strains. Filamentation did not appear to be due to release of diffusible molecules, toxic metabolites, or be in response to oxidative stress in the medium. Separated filaments exhibited greater intracellular ATP contents (2.66 to 17.4 fg) than spiral forms (0.99 to 1.7 fg) and showed enhanced survival in water at 4 and 37°C compared to spiral cells. These observations support the conclusion that the filaments are adapted to survive extra-intestinal environments. Differences in cell morphology and physiology need to be considered in the context of the design of experimental studies and the methods adopted for the isolation of campylobacters from food, clinical, and environmental sources. PMID:26175723

  16. Polymeric filament thinning and breakup in microchannels

    E-print Network

    P. E. Arratia; J. P. Gollub; D. J. Durian

    2007-12-17

    The effects of elasticity on filament thinning and breakup are investigated in microchannel cross flow. When a viscous solution is stretched by an external immiscible fluid, a low 100 ppm polymer concentration strongly affects the breakup process, compared to the Newtonian case. Qualitatively, polymeric filaments show much slower evolution, and their morphology features multiple connected drops. Measurements of filament thickness show two main temporal regimes: flow- and capillary-driven. At early times both polymeric and Newtonian fluids are flow-driven, and filament thinning is exponential. At later times, Newtonian filament thinning crosses over to a capillary-driven regime, in which the decay is algebraic. By contrast, the polymeric fluid first crosses over to a second type of flow-driven behavior, in which viscoelastic stresses inside the filament become important and the decay is again exponential. Finally, the polymeric filament becomes capillary-driven at late times with algebraic decay. We show that the exponential flow thinning behavior allows a novel measurement of the extensional viscosities of both Newtonian and polymeric fluids.

  17. Core filaments of the nuclear matrix

    PubMed Central

    1990-01-01

    The nuclear matrix is concealed by a much larger mass of chromatin, which can be removed selectively by digesting nuclei with DNase I followed by elution of chromatin with 0.25 M ammonium sulfate. This mild procedure removes chromatin almost completely and preserves nuclear matrix morphology. The complete nuclear matrix consists of a nuclear lamina with an interior matrix composed of thick, polymorphic fibers and large masses that resemble remnant nucleoli. Further extraction of the nuclear matrices of HeLa or MCF-7 cells with 2 M sodium chloride uncovered a network of core filaments. A few dark masses remained enmeshed in the filament network and may be remnants of the nuclear matrix thick fibers and nucleoli. The highly branched core filaments had diameters of 9 and 13 nm measured relative to the intermediate filaments. They may serve as the core structure around which the matrix is constructed. The core filaments retained 70% of nuclear RNA. This RNA consisted both of ribosomal RNA precursors and of very high molecular weight hnRNA with a modal size of 20 kb. Treatment with RNase A removed the core filaments. When 2 M sodium chloride was used directly to remove chromatin after DNase I digestion without a preceding 0.25 M ammonium sulfate extraction, the core filaments were not revealed. Instead, the nuclear interior was filled with amorphous masses that may cover the filaments. This reflected a requirement for a stepwise increase in ionic strength because gradual addition of sodium chloride to a final concentration of 2 M without an 0.25 M ammonium sulfate extraction uncovered core filaments. PMID:2307700

  18. Optical Filaments and Gas Dynamics in Air

    NASA Astrophysics Data System (ADS)

    Yeak, Jeremy

    Until now, the propagation dynamics of intense ultrashort laser pulses leading to optical filamentation in air has only been investigated in the frame of a dynamic balance between linear diffraction, Kerr self-focusing and plasma defocusing. This has led to the development of different theories surrounding the generation and persistence of optical filaments propagating over many Rayleigh lengths in air. These theories include wave-guiding model, moving focus model, dynamic spatial replenishment model and conical wave model. However, these models fail to capture the gas dynamics that arise from optical filaments interacting with air. In this work, we demonstrate that initial conditions are critical to the formation of optical filaments through the use of an aerodynamic window. Filament characteristics in air, such as spectral broadening, electrical conductivity and fluorescence, are measured and presented. Using these as diagnostic tools, we also show that the optical filamentation of ultrashort laser pulses can be enhanced at high repetition rates because of the thermal response of air, resulting from the interaction of each laser pulse with the modified atmospheric density distribution left behind by the preceding pulse. This is explained by the sudden deposition of energy by a filament in the air which generates a cylindrical shock wave, leaving behind a column of rarefied air. This low-density region persists for an extended period and can materially affect the propagation dynamics of an ensuing pulse that follows before the low-density region has relaxed sufficiently to ambient conditions. By further increasing the repetition rate, the onset of ionization is shifted downstream and the spectral continuum displays a stronger broadening on both sides of the original pulse spectrum. This gas dynamic interaction regime of filamentation can be utilized to enhance the length and spectral width of filaments for remote sensing and long range laser-induced high voltage discharges.

  19. Filaments in simulations of molecular cloud formation

    SciTech Connect

    Gómez, Gilberto C.; Vázquez-Semadeni, Enrique

    2014-08-20

    We report on the filaments that develop self-consistently in a new numerical simulation of cloud formation by colliding flows. As in previous studies, the forming cloud begins to undergo gravitational collapse because it rapidly acquires a mass much larger than the average Jeans mass. Thus, the collapse soon becomes nearly pressureless, proceeding along its shortest dimension first. This naturally produces filaments in the cloud and clumps within the filaments. The filaments are not in equilibrium at any time, but instead are long-lived flow features through which the gas flows from the cloud to the clumps. The filaments are long-lived because they accrete from their environment while simultaneously accreting onto the clumps within them; they are essentially the locus where the flow changes from accreting in two dimensions to accreting in one dimension. Moreover, the clumps also exhibit a hierarchical nature: the gas in a filament flows onto a main, central clump but other, smaller-scale clumps form along the infalling gas. Correspondingly, the velocity along the filament exhibits a hierarchy of jumps at the locations of the clumps. Two prominent filaments in the simulation have lengths ?15 pc and masses ?600 M {sub ?} above density n ? 10{sup 3} cm{sup –3} (?2 × 10{sup 3} M {sub ?} at n > 50 cm{sup –3}). The density profile exhibits a central flattened core of size ?0.3 pc and an envelope that decays as r {sup –2.5} in reasonable agreement with observations. Accretion onto the filament reaches a maximum linear density rate of ?30 M {sub ?} Myr{sup –1} pc{sup –1}.

  20. THERMAL AND CHEMICAL EVOLUTION OF COLLAPSING FILAMENTS

    SciTech Connect

    Gray, William J.; Scannapieco, Evan

    2013-05-10

    Intergalactic filaments form the foundation of the cosmic web that connect galaxies together, and provide an important reservoir of gas for galaxy growth and accretion. Here we present very high resolution two-dimensional simulations of the thermal and chemical evolution of such filaments, making use of a 32 species chemistry network that tracks the evolution of key molecules formed from hydrogen, oxygen, and carbon. We study the evolution of filaments over a wide range of parameters including the initial density, initial temperature, strength of the dissociating UV background, and metallicity. In low-redshift, Z Almost-Equal-To 0.1 Z{sub Sun} filaments, the evolution is determined completely by the initial cooling time. If this is sufficiently short, the center of the filament always collapses to form a dense, cold core containing a substantial fraction of molecules. In high-redshift, Z = 10{sup -3} Z{sub Sun} filaments, the collapse proceeds much more slowly. This is mostly due to the lower initial temperatures, which lead to a much more modest increase in density before the atomic cooling limit is reached, making subsequent molecular cooling much less efficient. Finally, we study how the gravitational potential from a nearby dwarf galaxy affects the collapse of the filament and compare this to NGC 5253, a nearby starbursting dwarf galaxy thought to be fueled by the accretion of filament gas. In contrast to our fiducial case, a substantial density peak forms at the center of the potential. This peak evolves faster than the rest of the filament due to the increased rate at which chemical species form and cooling occurs. We find that we achieve similar accretion rates as NGC 5253 but our two-dimensional simulations do not recover the formation of the giant molecular clouds that are seen in radio observations.

  1. DOE/NASA Lewis large wind turbine program

    NASA Technical Reports Server (NTRS)

    Thomas, R. L.

    1982-01-01

    An overview of the large wind turbine activities managed by NASA is given. These activities include resuls from the first and second generation field machines (Mod-0A, -1, and -2), the status of the Department of Interior WTS-4 machine for which NASA is responsible for technical management, and the design phase of the third generation wind turbines (Mod-5).

  2. WIND ENERGY RESEARCH AT UNIVERSITY AND FEDERAL LEVELS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Modern wind energy research began not long after the 1973 oil embargo. The Federal government established programs for large machines, small machines, wind resources, and applications in rural and remote areas. The research for the applications in rural and remote areas was conducted by the USDA-Ag...

  3. Performance analysis of synchronous machines under dynamic eccentricity 

    E-print Network

    Al-Nuaim, Nabil Abdulaziz

    1996-01-01

    The performance of salient pole synchronous machines under eccentric rotors is studied. Relationships between stator and rotor current induced harmonics and dynamic eccentricity are investigated. The winding function theory has been modified...

  4. Hybrid Wound Filaments for Greater Resistance to Impacts

    NASA Technical Reports Server (NTRS)

    DeLay, Thomas K.; Patterson, James E.; Olson, Michael A.

    2008-01-01

    A hybrid material containing wound filaments made of a hybrid of high-strength carbon fibers and poly(phenylene benzobisoxazole) [PBO] fibers is discussed. This hybrid material is chosen in an effort to increase the ability of the pressure vessel to resist damage by low-speed impacts (e.g., dropping of tools on the vessel or bumping of the vessel against hard objects during installation and use) without significantly increasing the weight of the vessel. While the basic concept of hybridizing fibers in filament-wound structures is not new, the use of hybridization to increase resistance to impacts is an innovation, and can be expected to be of interest in the composite-pressure-vessel industry. The precise types and the proportions of the high-strength carbon fibers and the PBO fibers in the hybrid are chosen, along with the filament-winding pattern, to maximize the advantageous effects and minimize the disadvantageous effects of each material. In particular, one seeks to (1) take advantage of the ability of the carbon fibers to resist stress rupture while minimizing their contribution to vulnerability of the vessel to impact damage and (2) take advantage of the toughness of the PBO fibers while minimizing their contribution to vulnerability of the vessel to stress rupture. Experiments on prototype vessels fabricated according to this concept have shown promising results. At the time of reporting the information for this article, research toward understanding and optimizing the performances of PBO fibers so as to minimize their contribution to vulnerability of the pressure vessel to stress rupture had yet to be performed.

  5. Cross-shelf variability in the Iberian Peninsula Upwelling System: Impact of a mesoscale filament

    NASA Astrophysics Data System (ADS)

    Rossi, Vincent; Garçon, Véronique; Tassel, Joëlle; Romagnan, Jean-Baptiste; Stemmann, Lars; Jourdin, Frédéric; Morin, Pascal; Morel, Yves

    2013-05-01

    Based on a multidisciplinary survey in the Iberian upwelling during late summer 2007, this paper analysed comparatively the cross-shore variability and offshore transport across the upwelling front and within a mesoscale filament. Along the East-West (EW) sections, transient upwelling pulses bring regularly cold, fresh and nutrient-enriched waters to the surface, triggering intense biological responses. Offshore advection by wind-forced Ekman drift of the successive fronts, interrupted by relaxation periods, drive the variability of the planktonic communities. While the near-shore areas are dominated by relatively small phytoplankton controlled by mesozooplankton grazing, large cells of diatoms appear after a short decay. Although microphytoplankton dominates largely the shelf communities, the species composition varies during the offshore drift with the apparition of dinoflagellates and the gradual development of large zooplankton individuals. The oligotrophic ecosystem characterised by small organisms and low biomass (˜80km offshore) contrasts strongly with the transitional area and the coastal upwelling. The low density waters within the filament and the existence of a pair of opposite rotating eddies at its base and tip promote its generation and rapid seaward extension. The intensified offshore advection of coastal enriched waters considerably increases the area favouring a productive ecosystem (until ˜160km off the coast). Cross-shelf variability of bio-physical variables is observed in the filament as along EW sections, although a subsequent homogenisation within the mesoscale structure erases the sharp fronts. Off the shelf within the filament, the chlorophyll a is distinctly organised as a shallow subsurface maximum dominated by nano-phytoplankton. The relative physical isolation of a dynamical food-web in the filament is also promoting nutrient remineralisation under the structure. Finally, we estimate that mesoscale filaments, although being less extended meridionally than the upwelling front itself (˜40% of the length of the front) are responsible for a greater offshore transport of chlorophyll (˜60% of total cross-shelf exchanges) over the Iberian system. Despite the favourable wind pulses advecting westward the successive upwelling fronts, self-propelled filaments provide permanent offshore transport, even under wind relaxation period, thus playing a major role in cross-shelf exchanges.

  6. Can We Determine the Filament Chirality by the Filament Footpoint Location or the Barb-bearing?

    E-print Network

    Hao, Q; Fang, C; Chen, P F; Cao, W

    2015-01-01

    We attempt to propose a method for automatically detecting the solar filament chirality and barb bearing. We first introduce the unweighted undirected graph concept and adopt the Dijkstra shortest-path algorithm to recognize the filament spine. Then, we use the polarity inversion line (PIL) shift method for measuring the polarities on both sides of the filament, and employ the connected components labeling method to identify the barbs and calculate the angle between each barb and the spine to determine the bearing of the barbs, i.e., left or right. We test the automatic detection method with H-alpha filtergrams from the Big Bear Solar Observatory (BBSO) H-alpha archive and magnetograms observed with the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO). Four filaments are automatically detected and illustrated to show the results. The barbs in different parts of a filament may have opposite bearings. The filaments in the southern hemisphere (northern hemisphere) mainly have ...

  7. High-Strength Undiffused Brushless (HSUB) Machine

    SciTech Connect

    Hsu, John S; Lee, Seong T; Tolbert, Leon M

    2008-01-01

    This paper introduces a new high-strength undiffused brushless machine that transfers the stationary excitation magnetomotive force to the rotor without any brushes. For a conventional permanent magnet (PM) machine, the air-gap flux density cannot be enhanced effectively but can be weakened. In the new machine, both the stationary excitation coil and the PM in the rotor produce an enhanced air-gap flux. The PM in the rotor prevents magnetic-flux diffusion between the poles and guides the reluctance flux path. The pole flux density in the air gap can be much higher than what the PM alone can produce. A high-strength machine is thus obtained. The air-gap flux density can be weakened through the stationary excitation winding. This type of machine is particularly suitable for electric and hybrid-electric vehicle applications. Patents of this new technology are either granted or pending.

  8. DIMACS Technical Report 200337 Perfect interval filament graphs

    E-print Network

    DIMACS Technical Report 2003­37 Perfect interval filament graphs by Fanica GAVRIL 1 DIMACS, Rutgers are disjoint, their curves do not intersect; FI={ f i | iÎI} is a family of interval filaments and its intersection graph is an interval filament graph. The interval filament graphs contain the polygon

  9. One Nanometer Resolution Electrical Probe via Atomic Metal Filament Formation

    E-print Network

    Cui, Yi

    One Nanometer Resolution Electrical Probe via Atomic Metal Filament Formation Seung Sae Hong, Judy an atomic-size metallic filament on a commercial C-AFM tip. We demonstrate 1 nm lateral resolution in C-AFM using the metal filament tip. The filament tip is mechanically robust and electrically stable

  10. Actin Filament Segmentation using Spatiotemporal Active-Surface and

    E-print Network

    Huang, Xiaolei

    Actin Filament Segmentation using Spatiotemporal Active-Surface and Active-Contour Models Hongsheng a novel algorithm for actin filament segmen- tation in a 2D TIRFM image sequence. We treat the 2D time of a filament on all slices simultaneously. In order to locate the two ends of the filament on the over

  11. Primary ELM filament structure in the National Spherical Torus Experiment

    E-print Network

    Princeton Plasma Physics Laboratory

    Primary ELM filament structure in the National Spherical Torus Experiment R. J. Maqueda,1 R. Maingi modes give rise to plasma filaments that burst radially outward during the non-linear phase to study the evolution and characteristics of the post-ELM filaments. These edge filaments, which are well

  12. Hydrodynamic interactions between two semiflexible inextensible filaments in Stokes flow

    NASA Astrophysics Data System (ADS)

    Young, Y.-N.

    2009-04-01

    Hydrodynamic interactions between two semiflexible inextensible filaments are shown to have a significant impact on filament buckling and their subsequent motion in Stokesian fluids. In linear shear flow, hydrodynamic interactions lead to filament shear dispersion that depends on the filament aspect ratio and the initial filament separation. In linear extensional flow, hydrodynamic interactions lead to complex filament dynamics around the stagnation point. These results suggest that hydrodynamic interactions need to be taken into account to determine the self-diffusion of non-Brownian semiflexible filaments in a cellular flow [Y.-N. Young and M. J. Shelley, Phys. Rev. Lett. 99, 058303 (2007)].

  13. A construction technique for wind tunnel models

    NASA Technical Reports Server (NTRS)

    Lawing, P. L.; Sandefur, P. G., Jr.; Wood, W. H.

    1981-01-01

    High strength, good surface finish, and corrosion resistance are imparted to miniature wind tunnel models by machining pressure channels as integral part of model. Pattern for pressure channels is scribed, machined, or photoetched before channels are drilled. Mating surfaces for channels are flashed and then diffusion brazed together.

  14. Snake Filament Eruption - Duration: 5 seconds.

    NASA Video Gallery

    A very long solar filament that had been snaking around the Sun erupted on Dec. 6, 2010 with a flourish. NASA's Solar Dynamics Observatory (SDO) caught the action in dramatic detail in extreme ultr...

  15. Discontinuous unbinding transitions of filament bundles.

    PubMed

    Kierfeld, Jan; Kühne, Torsten; Lipowsky, Reinhard

    2005-07-15

    Bundles of semiflexible polymers such as actin filaments are studied theoretically. The bundle formation is governed by attractive filament interactions mediated by cross-linking sticker molecules. Using a combination of analytical arguments and Monte Carlo simulations, it is shown that the formation of bundles of parallel filaments requires a threshold concentration of linkers which becomes independent of the filament number for large bundles. The unbinding of bundles happens in a single, discontinuous transition. We discuss the behavior of the bundle thickness at and below the transition. In the bound phase, large bundles tend to segregate into sub-bundles due to slow kinetics. Our results are in qualitative agreement with experiments on F-actin in the presence of the cross-linking protein alpha-actinin. PMID:16090774

  16. Femtosecond filament array generated in air

    NASA Astrophysics Data System (ADS)

    Camino, Acner; Xi, Tingting; Hao, Zuoqiang; Lin, Jingquan

    2015-10-01

    Patterning multiple filamentation of femtosecond pulses in air is studied using a microlens array for modulation of the spatial profile and a single lens for power concentration. We generate a stable array of filaments containing a maximum of five hotspots per mm2 from a modest 68-GW input power. The evolution of the pattern along the axis of propagation as well as the means to control the inter-filament spacing is discussed. It is also shown in numerical simulations that besides the filamentation in the proximities of the focus, there is a region of early ionization around the central hotspots in the beam profile and a revival afterwards, caused by the spatial distribution of the laser energy.

  17. Physical properties of cytoplasmic intermediate filaments.

    PubMed

    Block, Johanna; Schroeder, Viktor; Pawelzyk, Paul; Willenbacher, Norbert; Köster, Sarah

    2015-11-01

    Intermediate filaments (IFs) constitute a sophisticated filament system in the cytoplasm of eukaryotes. They form bundles and networks with adapted viscoelastic properties and are strongly interconnected with the other filament types, microfilaments and microtubules. IFs are cell type specific and apart from biochemical functions, they act as mechanical entities to provide stability and resilience to cells and tissues. We review the physical properties of these abundant structural proteins including both in vitro studies and cell experiments. IFs are hierarchical structures and their physical properties seem to a large part be encoded in the very specific architecture of the biopolymers. Thus, we begin our review by presenting the assembly mechanism, followed by the mechanical properties of individual filaments, network and structure formation due to electrostatic interactions, and eventually the mechanics of in vitro and cellular networks. This article is part of a Special Issue entitled: Mechanobiology. PMID:25975455

  18. Structure and dynamics of the actin filament.

    PubMed

    Pfaendtner, Jim; Lyman, Edward; Pollard, Thomas D; Voth, Gregory A

    2010-02-19

    We used all-atom molecular dynamics simulations to investigate the structure and properties of the actin filament, starting with either the recent Oda model or the older Holmes model. Simulations of monomeric and polymerized actin show that polymerization changes the nucleotide-binding cleft, bringing together the Q137 side chain and bound ATP in a way that may enhance the ATP hydrolysis rate in the filament. Simulations with different bound nucleotides and conformations of the DNase I binding loop show that the persistence length of the filament depends only on loop conformation. Computational modeling reveals how bound phalloidin stiffens actin filaments and inhibits the release of gamma-phosphate from ADP-P(i) actin. PMID:19931282

  19. Pressure effects on the femtosecond laser filamentation

    NASA Astrophysics Data System (ADS)

    Qi, Xiexing; Ma, Cunliang; Lin, Wenbin

    2016-01-01

    We investigate the pressure effects on the propagation of the laser pulse with wavelength of 800 nm by numerical simulations. We consider the effects on the on-axis intensity, the beam radius and the energy of the filament, as well as the on-axis density of plasma. Numerical results show that when the pressures increase, the length, radius and energy of the light filament become shorter, narrower and lower, respectively. Moreover, we find that the length and the radius of filament are approximately inversely proportional to the pressure and the square root of pressure, respectively, and the pulse with shorter duration is easier to be affected by the pressure. We also obtain the conclusion that the plasma is not necessary to generate the filament in gases in various pressures, as stated by Béjot et al. [1] for the case of standard atmosphere pressure.

  20. TEMPO machine

    SciTech Connect

    Rohwein, G.J.; Lancaster, K.T.; Lawson, R.N.

    1986-06-01

    TEMPO is a transformer powered megavolt pulse generator with an output pulse of 100 ns duration. The machine was designed for burst mode operation at pulse repetition rates up to 10 Hz with minimum pulse-to-pulse voltage variations. To meet the requirement for pulse duration a nd a 20-..omega.. output impedance within reasonable size constraints, the pulse forming transmission line was designed as two parallel water-insulated, strip-type Blumleins. Stray capacitance and electric fields along the edges of the line elements were controlled by lining the tank with plastic sheet.

  1. Filament-wound, fiberglass cryogenic tank supports

    NASA Technical Reports Server (NTRS)

    Carter, J. S.; Timberlake, T. E.

    1971-01-01

    The design, fabrication, and testing of filament-wound, fiberglass cryogenic tank supports for a LH2 tank, a LF2/FLOX tank and a CH4 tank. These supports consist of filament-wound fiberglass tubes with titanium end fittings. These units were satisfactorily tested at cryogenic temperatures, thereby offering a design that can be reliably and economically produced in large or small quantities. The basic design concept is applicable to any situation where strong, lightweight axial load members are desired.

  2. Prediction of the far field noise from wind energy farms

    NASA Technical Reports Server (NTRS)

    Shepherd, K. P.; Hubbard, H. H.

    1986-01-01

    The basic physical factors involved in making predictions of wind turbine noise and an approach which allows for differences in the machines, the wind energy farm configurations and propagation conditions are reviewed. Example calculations to illustrate the sensitivity of the radiated noise to such variables as machine size, spacing and numbers, and such atmosphere variables as absorption and wind direction are presented. It is found that calculated far field distances to particular sound level contours are greater for lower values of atmospheric absorption, for a larger total number of machines, for additional rows of machines and for more powerful machines. At short and intermediate distances, higher sound pressure levels are calculated for closer machine spacings, for more powerful machines, for longer row lengths and for closer row spacings.

  3. Filaments in the Lupus molecular clouds

    E-print Network

    Benedettini, M; Pezzuto, S; Elia, D; André, P; Könyves, V; Schneider, N; Tremblin, P; Arzoumanian, D; di Giorgio, A M; Di Francesco, J; Hill, T; Molinari, S; Motte, F; Nguyen-Luong, Q; Palmeirim, P; Rivera-Ingraham, A; Roy, A; Rygl, K L J; Spinoglio, L; Ward-Thompson, D; White, G J

    2015-01-01

    We have studied the filaments extracted from the column density maps of the nearby Lupus 1, 3, and 4 molecular clouds, derived from photometric maps observed with the Herschel satellite. Filaments in the Lupus clouds have quite low column densities, with a median value of $\\sim$1.5$\\times$10$^{21}$ cm$^{-2}$ and most have masses per unit length lower than the maximum critical value for radial gravitational collapse. Indeed, no evidence of filament contraction has been seen in the gas kinematics. We find that some filaments, that on average are thermally subcritical, contain dense cores that may eventually form stars. This is an indication that in the low column density regime, the critical condition for the formation of stars may be reached only locally and this condition is not a global property of the filament. Finally, in Lupus we find multiple observational evidences of the key role that the magnetic field plays in forming filaments, and determining their confinement and dynamical evolution.

  4. Filament Eruption without Coronal Mass Ejection

    NASA Technical Reports Server (NTRS)

    Choudhary, Debi Prasad; Moore, Ronald L.

    2003-01-01

    We report characteristics of quiescent filament eruptions that did not produce coronal mass ejections (CMEs). We examined 12 quiescent filament eruptions, each of which was located far from disk center (greater than or equal to 0.7 R (sub sun)) in diffuse remnant magnetic fields of decayed active regions, was well observed in full-disk movies in H alpha and Fe XII, and had good coronagraph coverage. Of the 12 eruptions, 7 produced CMEs and 5 did not. Even though the two kinds of eruption were indistinguishable in their magnetic setting and in the eruptive motion of the filament in the H alpha movies, each of the CME-producing eruptions produced a two-ribbon flare in H alpha and a flare arcade in Fe XII, and each of the non-CME-producing eruptions did not. From this result, and the appearance of the eruptive motion in the Fe XII movies, we conclude that the non-CME-producing filament eruptions are confined eruptions like the confined filament eruptions in active regions. We take the similarity of the confined and eruptive quiescent filament eruptions with their active-region counterparts to favor runaway tether-cutting reconnection for unleashing the magnetic explosion in all these eruptions.

  5. Do filaments cross core "boundaries"?

    NASA Astrophysics Data System (ADS)

    Goodman, Alyssa A.; Chen, Hope; Pineda, Jaime E.; Offner, Stella

    2015-01-01

    Thanks to extensive observations of the Perseus star-forming region, and the Barnard 5 (B5) star-forming core within it, we can study filamentary structure at scales from tens of pc down to to hundredths of pc using a wide variety of gas and dust tracers. Recently, in compositing Herschel dust emission maps of Perseus with GBT and JVLA maps of ammonia in B5, we noticed that the large scale (>1 pc) filaments that lead to the B5 core appear to continue across the "coherent core" boundary, right down into the sub 0.1 pc scales traced by ammonia. We find this result very surprising, since it suggests that the "core" is not as distinct from its filamentary surroundings as we--and current conventional wisdom--would have predicted. Numerical simulations on 1-10 pc scales typically create "sink" particles on scales small enough to correspond to our JVLA measurements. The new B5 results presented here should inspire new simulations which offer enough dynamic range to trace the morphology of self-gravitating, non-isothermal turbulence continuously from 10 to 0.01 pc scales, in order to see how, why, and how long filamentary structure is maintained across these scales.

  6. Tunneling machine

    SciTech Connect

    Snyder, L.L.

    1980-02-19

    A diametrically compact tunneling machine for boring tunnels is disclosed. The machine includes a tubular support frame having a hollow piston mounted therein which is movable from a retracted position in the support frame to an extended position. A drive shaft is rotatably mounted in the hollow piston and carries a cutter head at one end. The hollow piston is restrained against rotational movement relative to the support frame and the drive shaft is constrained against longitudinal movement relative to the hollow piston. A plurality of radially extendible feet project from the support frame to the tunnel wall to grip the tunnel wall during a tunneling operation wherein the hollow piston is driven forwardly so that the cutter head works on the tunnel face. When the hollow piston is fully extended, a plurality of extendible support feet, which are fixed to the rearward and forward ends of the hollow piston, are extended, the radially extendible feet are retracted and the support frame is shifted forwardly by the piston so that a further tunneling operation may be initiated.

  7. Fiberglass composite blades for the 4 MW - WTS-4 wind turbine

    NASA Astrophysics Data System (ADS)

    Bussolari, R. J.

    The design and fabrication of composite blades for the WTS-4, a four-megawatt horizontal-axis wind turbine, is discussed. The blade consists of a two-cell, monolithic structure of filament-wound, fiberglass/epoxy composite. Filament winding is a low-cost process which can produce a blade with an aerodynamically efficient airfoil and planform with nonlinear twist to achieve high performance in terms of energy capture. Its retention provides a redundant attachment for long, durable life and safety. Advanced tooling concepts and as sophisticated computer control is used to achieve the unique filament-wound shape.

  8. Wind Simulation

    Energy Science and Technology Software Center (ESTSC)

    2008-12-31

    The Software consists of a spreadsheet written in Microsoft Excel that provides an hourly simulation of a wind energy system, which includes a calculation of wind turbine output as a power-curve fit of wind speed.

  9. Monitoring the integrity of filament-wound structures using built-in sensor networks

    NASA Astrophysics Data System (ADS)

    Lin, Mark; Kumar, Amrita; Qing, Xinlin; Beard, Shawn J.; Russell, Samuel S.; Walker, James L.; Delay, Thomas K.

    2003-08-01

    Monitoring the integrity of filament wound composite structures such as solid rocket motors and liquid fuel bottles is important in order to prevent catastrophic failures and to prolong the service life of these structures. To ensure the safety and reliability of rocket components, they require frequent inspection for structural damages that might have occurred during manufacturing, transportation, and storage. The timely and accurate detection, characterization and monitoring of structural cracking, delamination, debonding and other types of damage is a major concern in the operational environment. Utilization of a sensor network system integrated with the structure itself can greatly reduce this inspection burden through fast in-situ data collection and processing. Acellent Technologies, Inc. is currently developing integrated structural monitoring tools for continuous monitoring of composite and metal structures on aircraft and spacecraft. Acellent's integrated structural monitoring system consists of a flexible sensor/actuator network layer called the SMART Layer, supporting diagnostic hardware, and data processing/analysis software. Recently, Acellent has been working with NASA Marshall Space Flight Center to develop ways of embedding the SMART Layer inside filament wound composite bottles. SMART Layers were designed and manufactured for the filament wound bottles and embedded in them during the filament winding process. Acellent has been working on developing a complete structural health monitoring system for the filament wound bottles including data processing tools to interpret the changes in sensor signal caused by changes in the structural condition or material property. A prototype of a filament wound composite bottle with an embedded sensor network has been fabricated and preliminary data analysis tools have been developed.

  10. Filament eruption in association with rotational motion near the filament footpoints

    NASA Astrophysics Data System (ADS)

    Dhara, Sajal Kumar; Ravindra, B.; Banyal, Ravinder Kumar

    2014-01-01

    The active region magnetic field surrounding the filament plays an important role in filament formation, their evolution and disruption. We investigated a filament eruption that occurred in southern hemisphere of the Sun on July 08, 2011 using AIA and HMI data. The filament was located in a region close to the active region NOAA 11247 with its West-most footpoint anchored in the negative polarity plage region and the East-most in the positive polarity plage region. During observations, the magnetic flux was emerging in the active region and also in the plage regions. The flux emergence was stopped in West-most footpoint of the plage region about an hour before the filament eruption. A converging motion was also observed for many hours in the Western footpoint of the filament. The filament had left-handed twist and the net injected magnetic helicity was positive in both footpoints. Both sign of magnetic helicity were observed in the Western footpoint of the filament where the eruption has initiated. Further, an anti-clockwise rotational motion was observed in both the footpoints just after the onset of filament eruption which lasted for 6 min during the eruption process. The emerging flux, converging motion and injection of opposite magnetic helicity could be responsible for destabilizing of the Western footpoint of the filament leading to eruption. The torque imbalance between the expanded portion of the flux tube and the photosphere may have caused the rotation in the footpoint region which changed the trend in the injected magnetic helicity after the filament eruption.

  11. Course info Machine Learning

    E-print Network

    Shi, Qinfeng "Javen"

    Course info Machine Learning Real life problems Lecture 1: Machine Learning Problem Qinfeng (Javen) Shi 28 July 2014 Intro. to Stats. Machine Learning COMP SCI 4401/7401 Qinfeng (Javen) Shi Lecture 1: Machine Learning Problem #12;Course info Machine Learning Real life problems Table of Contents I 1 Course

  12. Roel Wieringa Machine Intelligence

    E-print Network

    Wieringa, Roel

    Roel Wieringa Machine Intelligence and Explication Rapport nr.IR-129 VRIJE UNIVERSITEITAMSTERDAM Facultei~ Wiskunde en Informatica, De Boelelaan 1081, 1081 HV Amsterdam #12;Machine Intelligence. Machines and explicitness 1.1 Systems, states, and processes 1.2 Machines, Turing machines, computers 1

  13. Basic Methods to Visualize Actin Filaments In Vitro Using Fluorescence Microscopy for Observation of Filament Severing and Bundling.

    PubMed

    Ono, Shoichiro

    2016-01-01

    Dynamics of actin filaments are regulated by a number of actin-binding proteins. To understand the function of an actin-binding protein, it is necessary to characterize effects of the protein on actin filament dynamics in vitro. This chapter describes basic microscopic methods to visualize fluorescently labeled actin filaments using commonly available fluorescence microscope settings. Direct microscopic observation of actin filaments provides strong evidence for severing or bundling of actin filaments. PMID:26498785

  14. Synchronous Machines 1.0 Introduction

    E-print Network

    McCalley, James D.

    to account for salient pole machines, 2.0 Synchronous Generator Construction The synchronous generator of energy (steam, water, wind) into mechanical energy, as illustrated in Fig. 1 [1]. Fig. 1 [1] PDF created shows the rotor from a 200 MW steam generator. This is a smooth rotor. PDF created with pdfFactory trial

  15. A wake detector for wind farm control

    NASA Astrophysics Data System (ADS)

    Bottasso, C. L.; Cacciola, S.; Schreiber, J.

    2015-06-01

    The paper describes an observer capable of detecting the impingement on a wind turbine rotor of the wake of an upstream machine. The observer estimates the local wind speed and turbulence intensity on the left and right parts of the rotor disk. The estimation is performed based on blade loads measured by strain gages or optical fibers, sensors which are becoming standard equipment on many modern machines. A lower wind speed and higher turbulence intensity on one part of the rotor, possibly in conjunction with other information, can then be used to infer the presence of a wake impinging on the disk. The wake state information is useful for wind plant control strategies, as for example wake deflection by active yawing. In addition, the local wind speed estimates may be used for a rough evaluation of the vertical wind shear.

  16. Socially guided machine learning

    E-print Network

    Thomaz, Andrea Lockerd

    2006-01-01

    Social interaction will be key to enabling robots and machines in general to learn new tasks from ordinary people (not experts in robotics or machine learning). Everyday people who need to teach their machines new things ...

  17. Drawing Machines NAEA 2013

    E-print Network

    is a powerful way to introduce kinetic concepts to an arts class: drawing machines drawing machines are kinetic sculptures that make drawings, typically drawing with a short history of drawing machines, leading up to examples of contemporary art

  18. Galaxy alignment as a probe of large-scale filaments

    NASA Astrophysics Data System (ADS)

    Rong, Yu; Liu, Yuan; Zhang, Shuang-Nan

    2016-01-01

    The orientations of the red galaxies in a filament are aligned with the orientation of the filament. We thus develop a location-alignment-method (LAM) of detecting filaments around clusters of galaxies, which uses both the alignments of red galaxies and their distributions in two-dimensional images. For the first time, the orientations of red galaxies are used as probes of filaments. We apply LAM to the environment of Coma cluster, and find four filaments (two filaments are located in sheets) in two selected regions, which are compared with the filaments detected with the method of Falco et al.. We find that LAM can effectively detect the filaments around a cluster, even with 3? confidence level, and clearly reveal the number and overall orientations of the detected filaments. LAM is independent of the redshifts of galaxies, and thus can be applied at relatively high redshifts and to the samples of red galaxies without the information of redshifts.

  19. Terahertz waves radiated from two noncollinear femtosecond plasma filaments

    NASA Astrophysics Data System (ADS)

    Du, Hai-Wei; Hoshina, Hiromichi; Otani, Chiko; Midorikawa, Katsumi

    2015-11-01

    Terahertz (THz) waves radiated from two noncollinear femtosecond plasma filaments with a crossing angle of 25° are investigated. The irradiated THz waves from the crossing filaments show a small THz pulse after the main THz pulse, which was not observed in those from single-filament scheme. Since the position of the small THz pulse changes with the time-delay of two filaments, this phenomenon can be explained by a model in which the small THz pulse is from the second filament. The denser plasma in the overlap region of the filaments changes the movement of space charges in the plasma, thereby changing the angular distribution of THz radiation. As a result, this schematic induces some THz wave from the second filament to propagate along the path of the THz wave from the first filament. Thus, this schematic alters the direction of the THz radiation from the filamentation, which can be used in THz wave remote sensing.

  20. Void galaxy properties depending on void filament straightness

    NASA Astrophysics Data System (ADS)

    Shim, Junsup; Lee, Jounghun; Hoyle, Fiona

    2015-08-01

    We investigate the properties of galaxies belonging to the filaments in cosmic void regions, using the void catalogue constructed by Pan et al. (2012) from the SDSS DR7. To identify galaxy filaments within a void, voids with 30 or more galaxies are selected as a sample. We identify 3172 filaments in 1055 voids by applying the filament finding algorithm utilizing minimal spanning tree (MST) which is an unique linear pattern into which connects all the galaxies in a void. We study the correlations between galaxy properties and the specific size of filament which quantifies the degree of the filament straightness. For example, the average magnitude and the magnitude of the faintest galaxy in filament decrease as the straightness of the filament increases. We also find that the correlations become stronger in rich filaments with many member galaxies than in poor ones. We discuss a physical explanation to our findings and their cosmological implications.

  1. Wind height distribution influence on offshore wind farm feasibility study

    NASA Astrophysics Data System (ADS)

    Benassai, Guido; Della Morte, Renata; Matarazzo, Antonio; Cozzolino, Luca

    2015-04-01

    The economic feasibility of offshore wind power utilization depends on the favourable wind conditions offshore as compared to sites on land. The higher wind speeds have to compensate the additional cost of offshore developments. However, not only the mean wind speed is different, but the whole flow regime, as can be seen in the vertical wind speed profile. The commonly used models to describe this profile have been developed mainly for land sites, so they have to be verified on the basis of field data. Monin-Obukhov theory is often used for the description of the wind speed profile at a different height with respect to a measurement height. Starting from the former, , the profile is predicted using two parameters, Obukhov length and sea surface roughness. For situations with near-neutral and stable atmospheric stratification and long (>30km) fetch, the wind speed increase with height is larger than what is predicted from Monin-Obukhov theory. It is also found that this deviation occurs at wind speeds important for wind power utilization, mainly at 5-9 ms-1. In the present study the influence of these aspects on the potential site productivity of an offshore wind farm were investigated, namely the deviation from the theory of Monin-Obukhov due to atmospheric stability and the influence of the fetch length on the Charnock model. Both these physical effects were discussed and examined in view of a feasibility study of a site for offshore wind farm in Southern Italy. Available data consisted of time histories of wind speeds and directions collected by National Tidegauge Network (Rete Mareografica Nazionale) at the height of 10m a.s.l. in ports. The theory of Monin-Obukhov was used to extrapolate the data to the height of the wind blades, while the Charnock model was used to extend the wind speed on the sea surface from the friction velocity on the ground. The models described were used to perform calculations for a feasibility study of an offshore wind farm in Southern Italy. The potential site productivity was established on the basis of the wind speed distribution function for different heights (site specific) and the power law of the wind turbine considered, as a function of the wind speed at the nacelle height (machine specific). The results of the optimization study for different sites and different wind turbines were compared with the power estimates of Italian Wind Atlas, which provided useful insights for further study.

  2. Hybrid-secondary uncluttered induction machine

    DOEpatents

    Hsu, John S. (Oak Ridge, TN)

    2001-01-01

    An uncluttered secondary induction machine (100) includes an uncluttered rotating transformer (66) which is mounted on the same shaft as the rotor (73) of the induction machine. Current in the rotor (73) is electrically connected to current in the rotor winding (67) of the transformer, which is not electrically connected to, but is magnetically coupled to, a stator secondary winding (40). The stator secondary winding (40) is alternately connected to an effective resistance (41), an AC source inverter (42) or a magnetic switch (43) to provide a cost effective slip-energy-controlled, adjustable speed, induction motor that operates over a wide speed range from below synchronous speed to above synchronous speed based on the AC line frequency fed to the stator.

  3. ?-Helical architecture of cytoskeletal bactofilin filaments revealed by solid-state NMR

    PubMed Central

    Vasa, Suresh; Lin, Lin; Shi, Chaowei; Habenstein, Birgit; Riedel, Dietmar; Kühn, Juliane; Thanbichler, Martin; Lange, Adam

    2015-01-01

    Bactofilins are a widespread class of bacterial filament-forming proteins, which serve as cytoskeletal scaffolds in various cellular pathways. They are characterized by a conserved architecture, featuring a central conserved domain (DUF583) that is flanked by variable terminal regions. Here, we present a detailed investigation of bactofilin filaments from Caulobacter crescentus by high-resolution solid-state NMR spectroscopy. De novo sequential resonance assignments were obtained for residues Ala39 to Phe137, spanning the conserved DUF583 domain. Analysis of the secondary chemical shifts shows that this core region adopts predominantly ?-sheet secondary structure. Mutational studies of conserved hydrophobic residues located in the identified ?-strand segments suggest that bactofilin folding and polymerization is mediated by an extensive and redundant network of hydrophobic interactions, consistent with the high intrinsic stability of bactofilin polymers. Transmission electron microscopy revealed a propensity of bactofilin to form filament bundles as well as sheet-like, 2D crystalline assemblies, which may represent the supramolecular arrangement of bactofilin in the native context. Based on the diffraction pattern of these 2D crystalline assemblies, scanning transmission electron microscopy measurements of the mass per length of BacA filaments, and the distribution of ?-strand segments identified by solid-state NMR, we propose that the DUF583 domain adopts a ?-helical architecture, in which 18 ?-strand segments are arranged in six consecutive windings of a ?-helix. PMID:25550503

  4. ?-Helical architecture of cytoskeletal bactofilin filaments revealed by solid-state NMR.

    PubMed

    Vasa, Suresh; Lin, Lin; Shi, Chaowei; Habenstein, Birgit; Riedel, Dietmar; Kühn, Juliane; Thanbichler, Martin; Lange, Adam

    2015-01-13

    Bactofilins are a widespread class of bacterial filament-forming proteins, which serve as cytoskeletal scaffolds in various cellular pathways. They are characterized by a conserved architecture, featuring a central conserved domain (DUF583) that is flanked by variable terminal regions. Here, we present a detailed investigation of bactofilin filaments from Caulobacter crescentus by high-resolution solid-state NMR spectroscopy. De novo sequential resonance assignments were obtained for residues Ala39 to Phe137, spanning the conserved DUF583 domain. Analysis of the secondary chemical shifts shows that this core region adopts predominantly ?-sheet secondary structure. Mutational studies of conserved hydrophobic residues located in the identified ?-strand segments suggest that bactofilin folding and polymerization is mediated by an extensive and redundant network of hydrophobic interactions, consistent with the high intrinsic stability of bactofilin polymers. Transmission electron microscopy revealed a propensity of bactofilin to form filament bundles as well as sheet-like, 2D crystalline assemblies, which may represent the supramolecular arrangement of bactofilin in the native context. Based on the diffraction pattern of these 2D crystalline assemblies, scanning transmission electron microscopy measurements of the mass per length of BacA filaments, and the distribution of ?-strand segments identified by solid-state NMR, we propose that the DUF583 domain adopts a ?-helical architecture, in which 18 ?-strand segments are arranged in six consecutive windings of a ?-helix. PMID:25550503

  5. Wind Power: A Turning Point. Worldwatch Paper 45.

    ERIC Educational Resources Information Center

    Flavin, Christopher

    Recent studies have shown wind power to be an eminently practical and potentially substantial source of electricity and direct mechanical power. Wind machines range from simple water-pumping devices made of wood and cloth to large electricity producing turbines with fiberglass blades nearly 300 feet long. Wind is in effect a form of solar…

  6. Modular Permanent Magnet Machine Based on Soft Magnetic *** Burgess-Norton Mfg.Co.

    E-print Network

    Lipo, Thomas

    2005-30 Modular Permanent Magnet Machine Based on Soft Magnetic Composite *** Burgess-Norton Mfg magnetic composite (SMC) material, electric machine design is no longer limited to the traditional iron system based on a novel multi phase modular permanent magnet machine is proposed. The concentric winding

  7. The Kinetics Underlying the Velocity of Smooth Muscle Myosin Filament Sliding on Actin Filaments in Vitro*

    PubMed Central

    Haldeman, Brian D.; Brizendine, Richard K.; Facemyer, Kevin C.; Baker, Josh E.; Cremo, Christine R.

    2014-01-01

    Actin-myosin interactions are well studied using soluble myosin fragments, but little is known about effects of myosin filament structure on mechanochemistry. We stabilized unphosphorylated smooth muscle myosin (SMM) and phosphorylated smooth muscle myosin (pSMM) filaments against ATP-induced depolymerization using a cross-linker and attached fluorescent rhodamine (XL-Rh-SMM). Electron micrographs showed that these side polar filaments are very similar to unmodified filaments. They are ?0.63 ?m long and contain ?176 molecules. Rate constants for ATP-induced dissociation and ADP release from acto-myosin for filaments and S1 heads were similar. Actin-activated ATPases of SMM and XL-Rh-SMM were similarly regulated. XL-Rh-pSMM filaments moved processively on F-actin that was bound to a PEG brush surface. ATP dependence of filament velocities was similar to that for solution ATPases at high [actin], suggesting that both processes are limited by the same kinetic step (weak to strong transition) and therefore are attachment-limited. This differs from actin sliding over myosin monomers, which is primarily detachment-limited. Fitting filament data to an attachment-limited model showed that approximately half of the heads are available to move the filament, consistent with a side polar structure. We suggest the low stiffness subfragment 2 (S2) domain remains unhindered during filament motion in our assay. Actin-bound negatively displaced heads will impart minimal drag force because of S2 buckling. Given the ADP release rate, the velocity, and the length of S2, these heads will detach from actin before slack is taken up into a backwardly displaced high stiffness position. This mechanism explains the lack of detachment-limited kinetics at physiological [ATP]. These findings address how nonlinear elasticity in assemblies of motors leads to efficient collective force generation. PMID:24907276

  8. Dual-rotor, radial-flux, toroidally-wound, permanent-magnet machine

    DOEpatents

    Qu, Ronghai; Lipo, Thomas A.

    2005-08-02

    The present invention provides a novel dual-rotor, radial-flux, toroidally-wound, permanent-magnet machine. The present invention improves electrical machine torque density and efficiency. At least one concentric surface-mounted permanent magnet dual-rotor is located inside and outside of a torus-shaped stator with back-to-back windings, respectively. The machine substantially improves machine efficiency by reducing the end windings and boosts the torque density by at least doubling the air gap and optimizing the machine aspect ratio.

  9. Membrane-induced bundling of actin filaments

    NASA Astrophysics Data System (ADS)

    Liu, Allen P.; Richmond, David L.; Maibaum, Lutz; Pronk, Sander; Geissler, Phillip L.; Fletcher, Daniel A.

    2008-10-01

    Dynamic interplay between the plasma membrane and underlying cytoskeleton is essential for cellular shape change. Spatial organization of actin filaments, the growth of which generates membrane deformations during motility, phagocytosis, endocytosis and cytokinesis, is mediated by specific protein-protein interactions that branch, crosslink and bundle filaments into networks that interact with the membrane. Although membrane curvature has been found to influence binding of proteins with curvature-sensitive domains, the direct effect of membrane elasticity on cytoskeletal network organization is not clear. Here, we show through in vitro reconstitution and elastic modelling that a lipid bilayer can drive the emergence of bundled actin filament protrusions from branched actin filament networks, thus playing a role normally attributed to actin-binding proteins. Formation of these filopodium-like protrusions with only a minimal set of purified proteins points to an active participation of the membrane in organizing actin filaments at the plasma membrane. In this way, elastic interactions between the membrane and cytoskeleton can cooperate with accessory proteins to drive cellular shape change.

  10. Interaction and merging of two sinistral filaments

    SciTech Connect

    Jiang, Yunchun; Yang, Jiayan; Liu, Yu; Li, Haidong; Wang, Haimin; Ji, Haisheng; Li, Jianping

    2014-09-20

    In this paper, we report the interaction and subsequent merging of two sinistral filaments (F1 and F2) occurring at the boundary of AR 9720 on 2001 December 6. The two filaments were close and nearly perpendicular to each other. The interaction occurred after F1 was erupted and the eruption was impeded by a more extended filament channel (FC) standing in the way, in which F2 was embedded. The erupted material ran into FC along its axis, causing F1 and F2 to merge into a single structure that subsequently underwent a large-amplitude to-and-fro motion. A significant plasma heating process was observed in the merging process, making the mixed material largely disappear from the H? passband, but appear in Extreme Ultraviolet Telescope 195 Å images for a while. These observations can serve as strong evidence of merging reconnection between the two colliding magnetic structures. A new sinistral filament was formed along FC after the cooling of the merged and heated material. No coronal mass ejection was observed to be associated with the event; though, the eruption was accompanied by a two-ribbon flare with a separation motion, indicating that the eruption had failed. This event shows that, in addition to overlying magnetic fields, such an interaction is an effective restraint to make a filament eruption fail in this way.

  11. Sympathetic Filament Eruptions Connected by Coronal Dimmings

    NASA Astrophysics Data System (ADS)

    Jiang, Yunchun; Yang, Jiayan; Hong, Junchao; Bi, Yi; Zheng, Ruisheng

    2011-09-01

    We present for the first time detailed observations of three successive, interdependent filament eruptions that occurred one by one within 5 hr from different locations beyond the range of a single active region. The first eruption was observed from an active region and was associated with a coronal mass ejection (CME), during which diffuse and complex coronal dimmings formed, largely extending to the two other filaments located in quiet-Sun regions. Then, both quiescent filaments consecutively underwent the second and third eruptions, while the nearby dimmings were persistent. Comparing the result of a derived coronal magnetic configuration, the magnetic connectivity between the dimmings suggested that they were caused by the joint effect of simple expansion of overlying loop systems forced by the first eruption, as well as by its erupting field interacting or reconnecting with the surrounding magnetic structures. Note that the dimming process in the first eruption indicated a weakening and partial removal of an overlying magnetic field constraint on the two other filaments, and thus one can physically connect these eruptions as sympathetic. It appears that the peculiar magnetic field configuration in our event was largely favorable to the occurrence of sympathetic filament eruptions. Because coronal dimmings are frequent and common phenomena in solar eruptions, especially in CME events, it is very likely that they represent a universal agent that can link consecutive eruptions nearby with sympathetic eruptions.

  12. Theory of a filament initiated nitrogen laser

    NASA Astrophysics Data System (ADS)

    Kartashov, Daniil; Ališauskas, Skirmantas; Pugžlys, Audrius; Shneider, Mikhail N.; Baltuška, Andrius

    2015-05-01

    We present the theoretical model for a single-pass, discharge-type standoff nitrogen laser initiated by a femtosecond filament in nitrogen gas. The model is based on the numerical solution of the kinetic equation for the electron energy distribution function self-consistently with balance equations for nitrogen species and laser equations. We identify the kinetic mechanisms responsible for a buildup of population inversion in the filament afterglow plasma and determine the dependence of population inversion density and the parameters of nitrogen lasing at a 337 nm wavelength corresponding to the transition between the C3?u (v = 0) excited and the X1?g (v = 0) ground electronic states in a nitrogen molecule on the polarization and wavelength of the driver laser pulse used to produce the filament. We show that population inversion is achieved on an ultrafast time scale of ?10 ps and decays within the time: <100 ps. We derive the low-signal gain 2.2 cm-1 for lasing from a circularly polarized 0.8 ?m near-IR filament and 0.16 cm-1 for a linearly polarized 4 ?m mid-IR filament. The results of the numerical simulations demonstrate good quantitative agreement with the experimental measurements.

  13. Filament Eruption without Coronal Mass Ejection

    NASA Technical Reports Server (NTRS)

    Choudhary, Debi Prasad; Moore, Ronald L.

    2003-01-01

    We report characteristics of quiescent filament eruptions that were not associated with coronal mass ejections (CMEs). We examined 12 quiescent filament eruptions, each of which was located far from disk center (20.7 R(sub sun)) in diffuse remnant magnetic fields of decayed active regions, was well observed in full-disk movies in Ha and Fe XI, and had good coronagraph coverage. Of the 12 events, 9 were associated with CMEs and 3 were not. Even though the two kinds of eruption were indistinguishable in their magnetic setting and in the eruptive motion of the filament in the Ha movies, each of the CME-producing eruptions produced a two-ribbon flare in Ha and a coronal arcade and/or two-ribbon flare in Fe XII, and each of the non-CME-producing eruptions did not. From this result, and the appearance of the eruptive motion in the Fe XII movies, we conclude that the non-CME-associated filament eruptions are confined eruptions like the confined filament eruptions in active regions.

  14. Kinematics of Filaments in Serpens and Perseus

    NASA Astrophysics Data System (ADS)

    Dhabal, Arnab; Mundy, Lee G.; Rizzo, Maxime; Storm, Shaye; Teuben, Peter J.; Chen, Che-Yu; Ostriker, Eve C.

    2016-01-01

    Following up on the CARMA Large Area Star Formation Survey (CLASSy), we observed specific filaments in the Serpens and Perseus clouds using H13CO+, H13CN, and HNC J=1-0 transitions at 7" angular resolution and 0.16 km/s spectral resolution. The isotopologues containing 13C are optically thin; hence they trace the high column density regions of dense gas (ncrit ~ 105 cm-3) better than their more abundant 12C counterparts which were observed previously (Lee et al. 2014). The HNC lines show significant self-absorption features from overlying lower density gas along many lines of sight. Many of the filaments showed velocity gradients perpendicular to the long axis of filaments in H13CO+ and H13CN emission, thereby supporting the model by Chen and Ostriker (2014) in which filaments form in the dense layer created by colliding turbulent cells. The signature velocity gradient occurs because the filaments are primarily accreting material in a 2-D flow within the dense layer.

  15. Erosion: Wind

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wind erosion refers to the detachment, transport and deposition of sediment by wind. It is a dynamic, physical process where loose, dry, bare soils are transported by strong winds. Wind erosion is a soil degrading process that affects over 500 million ha of land worldwide and creates between 500 an...

  16. Damage Model and Progressive Failure Analyses for Filament Wound Composite Laminates

    NASA Astrophysics Data System (ADS)

    Ribeiro, Marcelo Leite; Vandepitte, Dirk; Tita, Volnei

    2013-10-01

    Recent improvements in manufacturing processes and materials properties associated with excellent mechanical characteristics and low weight have made composite materials very attractive for application on civil aircraft structures. However, even new designs are still very conservative, because the composite failure phenomenon is very complex. Several failure criteria and theories have been developed to describe the damage process and how it evolves, but the solution of the problem is still open. Moreover, modern filament winding techniques have been used to produce a wide variety of structural shapes not only cylindrical parts, but also “flat” laminates. Therefore, this work presents the development of a damage model and its application to simulate the progressive failure of flat composite laminates made using a filament winding process. The damage model was implemented as a UMAT (User Material Subroutine), in ABAQUSTM Finite Element (FE) framework. Progressive failure analyses were carried out using FE simulation in order to simulate the failure of flat filament wound composite structures under different loading conditions. In addition, experimental tests were performed in order to identify parameters related to the material model, as well as to evaluate both the potential and the limitations of the model. The difference between numerical and the average experimental results in a four point bending set-up is only 1.6 % at maximum load amplitude. Another important issue is that the model parameters are not so complicated to be identified. This characteristic makes this model very attractive to be applied in an industrial environment.

  17. A Double-Sided Linear Primary Permanent Magnet Vernier Machine

    PubMed Central

    2015-01-01

    The purpose of this paper is to present a new double-sided linear primary permanent magnet (PM) vernier (DSLPPMV) machine, which can offer high thrust force, low detent force, and improved power factor. Both PMs and windings of the proposed machine are on the short translator, while the long stator is designed as a double-sided simple iron core with salient teeth so that it is very robust to transmit high thrust force. The key of this new machine is the introduction of double stator and the elimination of translator yoke, so that the inductance and the volume of the machine can be reduced. Hence, the proposed machine offers improved power factor and thrust force density. The electromagnetic performances of the proposed machine are analyzed including flux, no-load EMF, thrust force density, and inductance. Based on using the finite element analysis, the characteristics and performances of the proposed machine are assessed. PMID:25874250

  18. Design, evaluation, and fabrication of low-cost composite blades for intermediate-size wind turbines

    SciTech Connect

    Weingart, O.

    1981-09-01

    The low-cost composite blade program is described, involving design, evaluation and fabrication of a pair of low-cost composite rotor blades (LCCB) for the MOD-0A wind turbine. The objectives of the program were to identify low cost approaches to the design and fabrication of blades for a two-bladed 200 kW wind turbine and to assess the applicability of the techniques to larger and smaller blades. In Phase I of the program, several blade designs were developed to the point where reasonably accurate estimates could be made of the structural properties and costs of tooling and fabrication. The most cost-effective design was selected for detailed design in Phase II. Structural analysis of the selected design was performed, with assistance from NASA in some of the more specialized techniques (e.g. flutter analysis). Subelement and subscale specimens were fabricated in Phase I for testing. Blade tooling was designed and fabricated. Major items included a 60 ft D-spar mandrel and its supports, a 60 ft cure oven with a 200 kW heater, and a transverse filament tape (TFT) pre-impregnation station. Two complete blades and a partial blade for tool tryout were built. A 100 ft long ring-winder machine was designed and built.

  19. Machine musicianship

    NASA Astrophysics Data System (ADS)

    Rowe, Robert

    2002-05-01

    The training of musicians begins by teaching basic musical concepts, a collection of knowledge commonly known as musicianship. Computer programs designed to implement musical skills (e.g., to make sense of what they hear, perform music expressively, or compose convincing pieces) can similarly benefit from access to a fundamental level of musicianship. Recent research in music cognition, artificial intelligence, and music theory has produced a repertoire of techniques that can make the behavior of computer programs more musical. Many of these were presented in a recently published book/CD-ROM entitled Machine Musicianship. For use in interactive music systems, we are interested in those which are fast enough to run in real time and that need only make reference to the material as it appears in sequence. This talk will review several applications that are able to identify the tonal center of musical material during performance. Beyond this specific task, the design of real-time algorithmic listening through the concurrent operation of several connected analyzers is examined. The presentation includes discussion of a library of C++ objects that can be combined to perform interactive listening and a demonstration of their capability.

  20. Filamentous Bacteriophage Promote Biofilm Assembly and Function.

    PubMed

    Secor, Patrick R; Sweere, Johanna M; Michaels, Lia A; Malkovskiy, Andrey V; Lazzareschi, Daniel; Katznelson, Ethan; Rajadas, Jayakumar; Birnbaum, Michael E; Arrigoni, Allison; Braun, Kathleen R; Evanko, Stephen P; Stevens, David A; Kaminsky, Werner; Singh, Pradeep K; Parks, William C; Bollyky, Paul L

    2015-11-11

    Biofilms-communities of bacteria encased in a polymer-rich matrix-confer bacteria with the ability to persist in pathologic host contexts, such as the cystic fibrosis (CF) airways. How bacteria assemble polymers into biofilms is largely unknown. We find that the extracellular matrix produced by Pseudomonas aeruginosa self-assembles into a liquid crystal through entropic interactions between polymers and filamentous Pf bacteriophages, which are long, negatively charged filaments. This liquid crystalline structure enhances biofilm function by increasing adhesion and tolerance to desiccation and antibiotics. Pf bacteriophages are prevalent among P. aeruginosa clinical isolates and were detected in CF sputum. The addition of Pf bacteriophage to sputum polymers or serum was sufficient to drive their rapid assembly into viscous liquid crystals. Fd, a related bacteriophage of Escherichia coli, has similar biofilm-building capabilities. Targeting filamentous bacteriophage or the liquid crystalline organization of the biofilm matrix may represent antibacterial strategies. PMID:26567508

  1. Solar Magnetized "Tornadoes:" Relation to Filaments

    NASA Astrophysics Data System (ADS)

    Su, Yang; Wang, Tongjiang; Veronig, Astrid; Temmer, Manuela; Gan, Weiqun

    2012-09-01

    Solar magnetized "tornadoes," a phenomenon discovered in the solar atmosphere, appear as tornado-like structures in the corona but are rooted in the photosphere. Like other solar phenomena, solar tornadoes are a feature of magnetized plasma and therefore differ distinctly from terrestrial tornadoes. Here we report the first analysis of solar "tornadoes" (two papers which focused on different aspects of solar tornadoes were published in the Astrophysical Journal Letters and Nature, respectively, during the revision of this Letter). A detailed case study of two events indicates that they are rotating vertical magnetic structures probably driven by underlying vortex flows in the photosphere. They usually exist as a group and are related to filaments/prominences, another important solar phenomenon whose formation and eruption are still mysteries. Solar tornadoes may play a distinct role in the supply of mass and twists to filaments. These findings could lead to a new explanation of filament formation and eruption.

  2. Filament velocity scaling laws for warm ions

    SciTech Connect

    Manz, P.; Max-Planck-Institut für Plasmaphysik, EURATOM Assoziation, Boltzmannstr. 2, 85748 Garching ; Carralero, D.; Birkenmeier, G.; Müller, H. W.; Scott, B. D.; Müller, S. H.; Fuchert, G.; Stroth, U.; Physik-Department E28, Technische Universität München, James-Franck-Str. 1, 85748 Garching

    2013-10-15

    The dynamics of filaments or blobs in the scrape-off layer of magnetic fusion devices are studied by magnitude estimates of a comprehensive drift-interchange-Alfvén fluid model. The standard blob models are reproduced in the cold ion case. Even though usually neglected, in the scrape-off layer, the ion temperature can exceed the electron temperature by an order of magnitude. The ion pressure affects the dynamics of filaments amongst others by adding up to the interchange drive and the polarisation current. It is shown how both effects modify the scaling laws for filament velocity in dependence of its size. Simplifications for experimentally relevant limit regimes are given. These are the sheath dissipation, collisional, and electromagnetic regime.

  3. Recurrent filament eruptions and associated CMEs

    NASA Astrophysics Data System (ADS)

    Schmieder, Brigitte; Cremades, Hebe; Mandrini, Cristina; Démoulin, Pascal; Guo, Yang

    2014-01-01

    We investigate the violent events in the cluster of two active regions (ARs), NOAA numbers 11121 and 11123, observed on 11 November 2010 by the Solar Dynamics Observatory (SDO). Within one day the magnetic field intensity increased by 70% with the emergence of new groups of bipoles in AR 11123, where three filaments are seen along the complex inversion line. The destabilization of the filaments led to flares and CMEs. The CMEs around 08:24 UT and 17:00 UT are directly related to the partial eruption of one filament in the new AR, as shown by a topology computation and analysis. The other CMEs on this day are due to either other ARs or to the destabilization of the global magnetic configuration of the two ARs. This conclusion can be only reached by using the three eyes of SOHO, STEREO and SDO.

  4. SOLAR MAGNETIZED 'TORNADOES': RELATION TO FILAMENTS

    SciTech Connect

    Su Yang; Veronig, Astrid; Temmer, Manuela; Wang Tongjiang; Gan Weiqun

    2012-09-10

    Solar magnetized 'tornadoes', a phenomenon discovered in the solar atmosphere, appear as tornado-like structures in the corona but are rooted in the photosphere. Like other solar phenomena, solar tornadoes are a feature of magnetized plasma and therefore differ distinctly from terrestrial tornadoes. Here we report the first analysis of solar 'tornadoes' (two papers which focused on different aspects of solar tornadoes were published in the Astrophysical Journal Letters and Nature, respectively, during the revision of this Letter). A detailed case study of two events indicates that they are rotating vertical magnetic structures probably driven by underlying vortex flows in the photosphere. They usually exist as a group and are related to filaments/prominences, another important solar phenomenon whose formation and eruption are still mysteries. Solar tornadoes may play a distinct role in the supply of mass and twists to filaments. These findings could lead to a new explanation of filament formation and eruption.

  5. Filament Twist in F-Actin Bundles

    NASA Astrophysics Data System (ADS)

    Angelini, Tommy; Sanders, Lori; Wong, Gerard

    2003-03-01

    The twist state of F-actin can modify specific binding sites and influence the hierarchy of interactions in cytoskeletal regulation. F-actin in the cytoskeleton is often organized into bundles, using a wide variety of cationic molecules and actin-linking proteins. The native helical symmetry of uncondensed f-actin filaments is not necessarily the preferred symmetry of bundled filaments, which will depend on the particular bundling mechanism and the kind of condensing agent used. In order to explore the role of filament distortion in the process of bundle formation, we have carried out a series of synchrotron x-ray measurements on systems of bundled f-actin, using multivalent cations, cationic globular proteins, and actin binding proteins. Preliminary results will be presented. This work was supported by NSF DMR-0071761, DOE, DEFG02-91ER45439, the Beckman Young Investigator Program, and the Cystic Fibrosis Foundation.

  6. Ultrastructural studies on paramyosin core filaments from native thick filaments in catch muscles.

    PubMed

    Matsuno, A; Kannda, M; Okuda, M

    1996-08-01

    Catch muscles of molluscs usually have thick filaments of about 100 nm in diameter. The filament is constructed of a paramyosin core filament and an outer layer of myosin molecules. Myosin molecules are situated on the paramyosin core filament towards both ends, and they consequently have polarity towards both ends. According to our observations on the paramyosin core filaments from the native thick filaments, they bear regular cross-striations on their surfaces of about 14.5 nm periodicity when incubated in a KCl solution for a short time. The periodic pattern is supposed to be representative of peculiar arrangements of paramyosin molecules in the core, but the periodic pattern disappeared during incubation in a solution of high concentration KCl for a prolonged time, and a 'Bear-Selby net' pattern appeared substitutionally. These 'Bear-Selby net' patterns were conveniently divided into 3 types among 4 paramyosin core filaments from 4 'catch' muscles; the adductors of a pecten, an oyster and a clam, and the byssus retractor of a mussel. The 'Bear-Selby net' of an oyster resembled that of a pecten. Purified paramyosin crystals from the 4 muscles showed a common periodicity of about 72.5 nm. Electrophoresis with SDS of the 4 paramyosins on 6% polyacrylamide gels revealed molecular weights at 104 kD from a pecten, 105 kD from an oyster, 103 kD from a clam and 105 kD from a mussel. PMID:8760863

  7. Filamentary structures in dense plasma focus: Current filaments or vortex filaments?

    SciTech Connect

    Soto, Leopoldo Pavez, Cristian; Moreno, José; Castillo, Fermin; Veloso, Felipe; Auluck, S. K. H.

    2014-07-15

    Recent observations of an azimuthally distributed array of sub-millimeter size sources of fusion protons and correlation between extreme ultraviolet (XUV) images of filaments with neutron yield in PF-1000 plasma focus have re-kindled interest in their significance. These filaments have been described variously in literature as current filaments and vortex filaments, with very little experimental evidence in support of either nomenclature. This paper provides, for the first time, experimental observations of filaments on a table-top plasma focus device using three techniques: framing photography of visible self-luminosity from the plasma, schlieren photography, and interferometry. Quantitative evaluation of density profile of filaments from interferometry reveals that their radius closely agrees with the collision-less ion skin depth. This is a signature of relaxed state of a Hall fluid, which has significant mass flow with equipartition between kinetic and magnetic energy, supporting the “vortex filament” description. This interpretation is consistent with empirical evidence of an efficient energy concentration mechanism inferred from nuclear reaction yields.

  8. Polarized radio filaments outside the Galactic plane

    NASA Astrophysics Data System (ADS)

    Vidal, Matias; Dickinson, C.; Davies, R. D.; Leahy, J. P.

    2015-09-01

    We used data from the WMAP satellite at 23, 33 and 41 GHz to study the diffuse polarized emission over the entire sky. The emission originates mostly from filamentary structures with well-ordered magnetic fields. Some of these structures have been known for decades in radio continuum maps. Their origin is not clear and there are many filaments that are visible for the first time. We have identified and studied 11 filaments. The polarization fraction of some of them can be as high as 40 per cent, which is a signature of a well-ordered magnetic field. The polarization spectral indices, averaged over 18 regions in the sky is ? = -3.06 ± 0.02, consistent with synchrotron radiation. There are significant variations in ? over the sky (?? ? 0.2). We explore the link between the large-scale filaments and the local interstellar medium, using the model of an expanding shell in the solar vicinity. We compared observed polarization angles with the predictions from the model and found good agreement. This strongly suggests that many large-scale filaments and loops are nearby structures. This is important in the context of the Galactic magnetic field as these structures are normally included in global models, neglecting the fact that they might be local. We also studied the level of contamination added by the diffuse filaments to the CMB (cosmic microwave background) polarization power spectra. We conclude that, even though these filaments present low radio brightness, a careful removal will be necessary for future all-sky CMB polarization analysis.

  9. U. radio emission from quiescent filaments

    NASA Technical Reports Server (NTRS)

    Lang, Kenneth R.

    1989-01-01

    Full-disk Very Large Array (VLA) synthesis maps of the quiet Sun indicate that filaments can be seen in emission at 91.6 cm wavelength; they are detected in absorption at shorter microwave wavelengths. The 91.6 cm emission has a brightness temperature of T sub B = 3 x 10(exp 5) K. It is hotter, wider and longer than the underlying filament detected at H alpha wavelengths, but the similarity between the shape, position, elongation and orientation of the radio and optical features suggests their close association. The 91.6 cm emission is attributed to the thermal-bremsstrahlung of a hot transition sheath that envelopes the H alpha filament and acts as an interface between the cool, dense H alpha filament and the hotter, rarefied corona. The transition sheath is seen in emission because of the lower optical depth of the corona at 90 cm wavelength, and the width of this sheet is 10(exp 9) cm. A power law gradient in pressure provides a better match to the observations than a constant pressure model; definitive tests of theoretical models await simultaneous multi-wavelength studies of filaments at different observing angles. When the thermal bremsstrahlung is optically thin, the magnetic field strength in the transition sheath can be inferred from the observed circular polarization. Variable physical parameters of the sheath, such as width, electron density, and electron temperature, can explain controversial reports of the detection of, or the failure to detect, the meter-wavelength counterpart of H alpha filaments.

  10. Generation of stable overlaps between antiparallel filaments

    E-print Network

    Johann, D; Kruse, K

    2015-01-01

    During cell division, sister chromatids are segregated by the mitotic spindle, a bipolar assembly of interdigitating antiparallel polar filaments called microtubules. Establishing a stable overlap region is essential for maintenance of bipolarity, but the underlying mechanisms are poorly understood. Using a particle-based stochastic model, we find that the interplay of motors and passive cross linkers can robustly generate partial overlaps between antiparallel filaments. Our analysis shows that motors reduce the overlap in a length-dependent manner, whereas passive cross linkers increase it independently of the length. In addition to maintaining structural integrity, passive cross linkers can thus also have a dynamic role for size regulation.

  11. Generation of Stable Overlaps between Antiparallel Filaments

    NASA Astrophysics Data System (ADS)

    Johann, D.; Goswami, D.; Kruse, K.

    2015-09-01

    During cell division, sister chromatids are segregated by the mitotic spindle, a bipolar assembly of interdigitating antiparallel polar filaments called microtubules. Establishing a stable overlap region is essential for maintenance of bipolarity, but the underlying mechanisms are poorly understood. Using a particle-based stochastic model, we find that the interplay of motors and passive cross-linkers can robustly generate partial overlaps between antiparallel filaments. In this situation, motors reduce the overlap in a length-dependent manner, whereas passive cross-linkers increase it independently of the length. In addition to maintaining structural integrity, passive cross-linkers can thus also have a dynamic role for overlap size regulation.

  12. Nuclear flow in a filamentous fungus

    E-print Network

    Hickey, Patrick C; Read, Nick; Glass, N Louise; Roper, Marcus

    2012-01-01

    The syncytial cells of a filamentous fungus consist of a mass of growing, tube-like hyphae. Each extending tip is fed by a continuous flow of nuclei from the colony interior, pushed by a gradient in turgor pressure. The myco-fluidic flows of nuclei are complex and multidirectional, like traffic in a city. We map out the flows in a strain of the model filamentous fungus {\\it N. crassa} that has been transformed so that nuclei express either hH1-dsRed (a red fluorescent nuclear protein) or hH1-GFP (a green-fluorescent protein) and report our results in a fluid dynamics video.

  13. Infrared Radiation Filament And Metnod Of Manufacture

    DOEpatents

    Johnson, Edward A. (Bedford, MA)

    1998-11-17

    An improved IR radiation source is provided by the invention. A radiation filament has a textured surface produced by seeded ion bombardment of a metal foil which is cut to a serpentine shape and mounted in a windowed housing. Specific ion bombardment texturing techniques tune the surface to maximize emissions in the desired wavelength range and to limit emissions outside that narrow range, particularly at longer wavelengths. A combination of filament surface texture, thickness, material, shape and power circuit feedback control produce wavelength controlled and efficient radiation at much lower power requirements than devices of the prior art.

  14. Terahertz radiation from a laser plasma filament

    NASA Astrophysics Data System (ADS)

    Wu, H.-C.; Meyer-Ter-Vehn, J.; Ruhl, H.; Sheng, Z.-M.

    2011-03-01

    By the use of two-dimensional particle-in-cell simulations, we clarify the terahertz (THz) radiation mechanism from a plasma filament formed by an intense femtosecond laser pulse. The nonuniform plasma density of the filament leads to a net radiating current for THz radiation. This current is mainly located within the pulse and the first cycle of the wakefield. As the laser pulse propagates, a single-cycle and radially polarized THz pulse is constructively built up forward. The single-cycle shape is mainly due to radiation damping effect.

  15. Filamentation in laser microprocessing and microwelding

    NASA Astrophysics Data System (ADS)

    Watanabe, Wataru; Tamaki, Takayuki; Itoh, Kazuyoshi

    2007-06-01

    Focused femtosecond laser pulse inside the bulk transparent materials leads to filamentary propagation. The optical intensity in the filamentary volume can become high enough to induce permanent structural modifications. The induction of filamentary structural modifications is a versatile technique for the fabrication of three-dimensional photonic devices in transparent materials. In this paper, we present applications of filamentation in microprocessing by demonstrating the fabrication of waveguide devices and diffractive optical elements in transparent materials. Filamentation is applied to micro welding of transparent substrates.

  16. Generation of stable overlaps between antiparallel filaments

    E-print Network

    D. Johann; D. Goswami; K. Kruse

    2015-03-26

    During cell division, sister chromatids are segregated by the mitotic spindle, a bipolar assembly of interdigitating antiparallel polar filaments called microtubules. Establishing a stable overlap region is essential for maintenance of bipolarity, but the underlying mechanisms are poorly understood. Using a particle-based stochastic model, we find that the interplay of motors and passive cross linkers can robustly generate partial overlaps between antiparallel filaments. Our analysis shows that motors reduce the overlap in a length-dependent manner, whereas passive cross linkers increase it independently of the length. In addition to maintaining structural integrity, passive cross linkers can thus also have a dynamic role for size regulation.

  17. Structure of Flexible Filamentous Plant Viruses

    SciTech Connect

    Kendall, Amy; McDonald, Michele; Bian, Wen; Bowles, Timothy; Baumgarten, Sarah C.; Shi, Jian; Stewart, Phoebe L.; Bullitt, Esther; Gore, David; Irving, Thomas C.; Havens, Wendy M.; Ghabrial, Said A.; Wall, Joseph S.; Stubbs, Gerald

    2008-10-23

    Flexible filamentous viruses make up a large fraction of the known plant viruses, but in comparison with those of other viruses, very little is known about their structures. We have used fiber diffraction, cryo-electron microscopy, and scanning transmission electron microscopy to determine the symmetry of a potyvirus, soybean mosaic virus; to confirm the symmetry of a potexvirus, potato virus X; and to determine the low-resolution structures of both viruses. We conclude that these viruses and, by implication, most or all flexible filamentous plant viruses share a common coat protein fold and helical symmetry, with slightly less than 9 subunits per helical turn.

  18. Theory of swimming filaments in viscoelastic media

    E-print Network

    Henry C. Fu; Thomas R. Powers; Charles W. Wolgemuth

    2007-07-31

    Motivated by the swimming of sperm in the non-Newtonian fluids of the female mammalian reproductive tract, we examine the swimming of filaments in the nonlinear viscoelastic Upper Convected Maxwell model. We obtain the swimming velocity and hydrodynamic force exerted on an infinitely long cylinder with prescribed beating pattern. We use these results to examine the swimming of a simplified sliding-filament model for a sperm flagellum. Viscoelasticity tends to decrease swimming speed, and changes in the beating patterns due to viscoelasticity can reverse swimming direction.

  19. Variabilities detected by acoustic emission from filament-wound Aramid fiber/epoxy composite pressure vessels

    NASA Technical Reports Server (NTRS)

    Hamstad, M. A.

    1978-01-01

    Two hundred and fifty Aramid fiber/epoxy pressure vessels were filament-wound over spherical aluminum mandrels under controlled conditions typical for advanced filament-winding. A random set of 30 vessels was proof-tested to 74% of the expected burst pressure; acoustic emission data were obtained during the proof test. A specially designed fixture was used to permit in situ calibration of the acoustic emission system for each vessel by the fracture of a 4-mm length of pencil lead (0.3 mm in diameter) which was in contact with the vessel. Acoustic emission signatures obtained during testing showed larger than expected variabilities in the mechanical damage done during the proof tests. To date, identification of the cause of these variabilities has not been determined.

  20. Residual stress analysis in forming process of filament wound thick-walled CFRP pipes

    SciTech Connect

    Kondo, Toshimi; Sekine, Hideki; Nakano, Kunio

    1995-11-01

    Residual stress analysis for the cracking phenomenon of filament would thick-walled CFRP pipes, which frequently occurs in the forming process of curing and thermal cycling through the course of the wet filament winding, was made from both the experimental and theoretical points of view. A simple analytical model to study the cracking in the CFRP pipes was proposed. The pipes are multilayered and reinforced in the axial and circumferential directions alternatively by carbon fibers. Taking account of the anisotropy of mechanical and thermal properties including the shrinkage strain, which depend considerably on the temperature, the residual stresses in the CFRP pipes were elucidated in the forming process, particularly, in cooling of the cure process.

  1. Ultrasonic evaluation of mechanical properties of thick, multilayered, filament wound composites

    NASA Technical Reports Server (NTRS)

    Kautz, H. E.

    1985-01-01

    A preliminary investigation is conducted to define capabilities and limitations of ultrasonic and acousto-ultrasonic measurements related to mechanical properties of filament wound graphite/epoxy composite structures. The structures studied are segments of filament wound cylinders formed of multiple layers of hoop and helical windings. The segments consist of 24 to 35 layers and range from 3.02 to 3.34 cm in wall thickness. The resultant structures are anisotropic, heterogeneous, porous, and highly attenuating to ultrasonic frequencies greater than 1 MHz. The segments represent structures to be used for space shuttle booster cases. Ultrasonic velocity and acousto-ultrasonic stress wave factor measurement approaches are discussed. Correlations among velocity, density, and porosity, and between the acousto-ultrasonic stress wave factor and interlaminar shear strength are presented.

  2. Machine Shop Lathes.

    ERIC Educational Resources Information Center

    Dunn, James

    This guide, the second in a series of five machine shop curriculum manuals, was designed for use in machine shop courses in Oklahoma. The purpose of the manual is to equip students with basic knowledge and skills that will enable them to enter the machine trade at the machine-operator level. The curriculum is designed so that it can be used in…

  3. Applied machine vision

    SciTech Connect

    Not Available

    1984-01-01

    This book presents the papers given at a conference on robot vision. Topics considered at the conference included the link between fixed and flexible automation, general applications of machine vision, the development of a specification for a machine vision system, machine vision technology, machine vision non-contact gaging, and vision in electronics manufacturing.

  4. SDO Sees a Dark Filament Circle - Duration: 19 seconds.

    NASA Video Gallery

    A dark, almost circular filament broke away from the sun in a gauzy, feathery swirl, on Nov. 15, 2015, in this video from NASA’s Solar Dynamics Observatory. This filament eruption was followed by a...

  5. Dynamics of filament formation in a Kerr medium

    SciTech Connect

    Centurion, Martin; Pu Ye; Tsang, Mankei; Psaltis, Demetri

    2005-06-15

    We have studied the large-scale beam breakup and filamentation of femtosecond pulses in a Kerr medium. We have experimentally monitored the formation of stable light filaments, conical emission, and interactions between filaments. Three major stages lead to the formation of stable light filaments: First the beam breaks up into a pattern of connected lines (constellation), then filaments form on the constellations, and finally the filaments release a fraction of their energy through conical emission. We observed a phase transition to a faster filamentation rate at the onset of conical emission. We attribute this to the interaction of conical emissions with the constellation which creates additional filaments. Numerical simulations show good agreement with the experimental results.

  6. One Half Million Mile Solar Filament - Duration: 19 seconds.

    NASA Video Gallery

    NASAâ??s Solar Dynamics Observatory (SDO) captures a very long, whip-like solar filament extending over half a million miles in a long arc above the sunâ??s surface. Filaments are cooler clouds of ...

  7. SDO Watches Giant Filament on the Sun - Duration: 13 seconds.

    NASA Video Gallery

    A snaking, extended filament of solar material currently lies on the front of the sun-- some 1 million miles across from end to end. Filaments are clouds of solar material suspended above the sun b...

  8. Gravitational Infall onto Molecular Filaments. II. Externally Pressurized Cylinders

    NASA Astrophysics Data System (ADS)

    Heitsch, Fabian

    2013-10-01

    Two aspects of the evolution of externally pressurized, hydrostatic filaments are discussed. (1) The free-fall accretion of gas onto such a filament will lead to filament parameters (specifically, FWHM-column-density relations) inconsistent with the observations of Arzoumanian et al., except for two cases: for low-mass, isothermal filaments, agreement is found as in the analysis by Fischera & Martin. Magnetized cases, for which the field scales weakly with the density as Bvpropn 1/2, also reproduce observed parameters. (2) Realistically, the filaments will be embedded not only in gas of non-zero pressure, but also of non-zero density. Thus, the appearance of sheet-embedded filaments is explored. Generating a grid of filament models and comparing the resulting column density ratios and profile shapes with observations suggests that the three-dimensional filament profiles are intrinsically flatter than isothermal, beyond projection and evolution effects.

  9. Questions Concerning the Disconnection and Eruption of Filaments and CMEs

    NASA Technical Reports Server (NTRS)

    Kucera, Theresa

    2007-01-01

    Reviews examples of eruptions and failed eruptions of filaments and CMEs and review questions concerning the processes and mechanisms involved. Where and how does disconnection occur? What can we learn (if anything!) about CME eruptions by observing related filament eruptions?

  10. ATP Hydrolysis Stimulates Large Length Fluctuations in Single Actin Filaments

    E-print Network

    ATP Hydrolysis Stimulates Large Length Fluctuations in Single Actin Filaments Evgeny B. Stukalin Engineering, Rice University, Houston, Texas ABSTRACT Polymerization dynamics of single actin filaments is investigated theoretically using a stochastic model that takes into account the hydrolysis of ATP

  11. Shape analysis of filamentous Precambrian microfossils and modern cyanobacteria

    E-print Network

    Boal, David

    Shape analysis of filamentous Precambrian microfossils and modern cyanobacteria David Boal and Ray for the variation in direction of a sinuous curve, for both a suite of Precambrian filamentous microfossils and six

  12. Actin filament remodeling by actin depolymerization factor/cofilin.

    PubMed

    Pfaendtner, Jim; De La Cruz, Enrique M; Voth, Gregory A

    2010-04-20

    We investigate, using molecular dynamics, how the severing protein, actin depolymerization factor (ADF)/cofilin, modulates the structure, conformational dynamics, and mechanical properties of actin filaments. The actin and cofilactin filament bending stiffness and corresponding persistence lengths obtained from all-atom simulations are comparable to values obtained from analysis of thermal fluctuations in filament shape. Filament flexibility is strongly affected by the nucleotide-linked conformation of the actin subdomain 2 DNase-I binding loop and the filament radial mass density distribution. ADF/cofilin binding between subdomains 1 and 3 of a filament subunit triggers reorganization of subdomain 2 of the neighboring subunit such that the DNase-I binding loop (DB-loop) moves radially away from the filament. Repositioning of the neighboring subunit DB-loop significantly weakens subunit interactions along the long-pitch helix and lowers the filament bending rigidity. Lateral filament contacts between the hydrophobic loop and neighboring short-pitch helix monomers in native filaments are also compromised with cofilin binding. These works provide a molecular interpretation of biochemical solution studies documenting the disruption of filament subunit interactions and also reveal the molecular basis of actin filament allostery and its linkage to ADF/cofilin binding. PMID:20368459

  13. Calibration and Temperature Profile of a Tungsten Filament Lamp

    ERIC Educational Resources Information Center

    de Izarra, Charles; Gitton, Jean-Michel

    2010-01-01

    The goal of this work proposed for undergraduate students and teachers is the calibration of a tungsten filament lamp from electric measurements that are both simple and precise, allowing to determine the temperature of tungsten filament as a function of the current intensity. This calibration procedure was first applied to a conventional filament

  14. Electric events synchronized with laser filaments in thunderclouds.

    PubMed

    Kasparian, Jérôme; Ackermann, Roland; André, Yves-Bernard; Méchain, Grégoire; Méjean, Guillaume; Prade, Bernard; Rohwetter, Philipp; Salmon, Estelle; Stelmaszczyk, Kamil; Yu, Jin; Mysyrowicz, André; Sauerbrey, Roland; Wöste, Ludger; Wolf, Jean-Pierre

    2008-04-14

    We investigated the possibility to trigger real-scale lightning using ionized filaments generated by ultrashort laser pulses in the atmosphere. Under conditions of high electric field during two thunderstorms, we observed a statistically significant number of electric events synchronized with the laser pulses, at the location of the filaments. This observation suggests that corona discharges may have been triggered by filaments. PMID:18542684

  15. Solar filament material oscillations and drainage before eruption

    SciTech Connect

    Bi, Yi; Jiang, Yunchun; Yang, Jiayan; Hong, Junchao; Li, Haidong; Yang, Dan; Yang, Bo

    2014-08-01

    Both large-amplitude longitudinal (LAL) oscillations and material drainage in a solar filament are associated with the flow of material along the filament axis, often followed by an eruption. However, the relationship between these two motions and a subsequent eruption event is poorly understood. We analyze a filament eruption using EUV imaging data captured by the Atmospheric Imaging Array on board the Solar Dynamics Observatory and the H? images from the Global Oscillation Network Group. Hours before the eruption, the filament was activated, with one of its legs undergoing a slow rising motion. The asymmetric activation inclined the filament relative to the solar surface. After the active phase, LAL oscillations were observed in the inclined filament. The oscillation period increased slightly over time, which may suggest that the magnetic fields supporting the filament evolve to be flatter during the slow rising phase. After the oscillations, a significant amount of filament material was drained toward one filament endpoint, followed immediately by the violent eruption of the filament. The material drainage may further support the change in magnetic topology prior to the eruption. Moreover, we suggest that the filament material drainage could play a role in the transition from a slow to a fast rise of the erupting filament.

  16. Smoke Sheets and Vortex Filaments with Flexible Reconnection

    E-print Network

    ). Fluid motion is simulated using vortex filaments (center) and the smoke surface is tracked usingSmoke Sheets and Vortex Filaments with Flexible Reconnection Alfred Barnat CMU-CS-11-123 July 2011, Smoke, Vorticity, Vortex Filaments #12;Abstract Smoke is one of the core phenomena which fluid

  17. Rogue Waves on a Vortex Filament St Anne's College

    E-print Network

    Tarrès, Pierre

    of the local induction approximation (LIA) governing the motion of a thin vortex filament to those of nonlinear, LIA solutions for the motion of both classical and quantum vortex filament solutions are obtainedRogue Waves on a Vortex Filament Rehan Shah St Anne's College University of Oxford A dissertation

  18. THEMIS, BBSO, MDI AND TRACEOBSERVATIONS OF A FILAMENT ERUPTION

    E-print Network

    Yurchyshyn, Vasyl

    of the EUV filament channel seems to split into two parts. The bifurcation of the filament in the Hff line bifurcation. We interpret this event as occurring in two­steps: the first step, characterized channel and to the observed filament bifurcation; the second step, characterized by the eruption of part

  19. Interactions of semiflexible filaments and molecular motors Dmitry Karpeev,1

    E-print Network

    Tsimring, Lev S.

    Interactions of semiflexible filaments and molecular motors Dmitry Karpeev,1 Igor S. Aranson,2 Lev by a molecular motor. The filaments are modeled as flexible rods, and the results are applicable to microtubules-scale structures in multifilament systems. Simulations for soft filaments show that the action of the motor can

  20. Fast Filament Tracking Using Graphics Hardware Brain Networks Lab

    E-print Network

    Keyser, John

    Fast Filament Tracking Using Graphics Hardware Brain Networks Lab Texas A&M University TAMU, that are difficult to visualize. In this paper, we de- scribe a method for tracking filaments and show how data set, a large volume is processed allowing the filaments to be traced in a local frame positioned

  1. Learning Rotational Features for Filament Detection German Gonzalez

    E-print Network

    Fleuret, François

    Learning Rotational Features for Filament Detection Germ´an Gonz´alez CVLab, EPFL EPFL-I&C -Cv filament-like structures in noisy images rely on filters optimized for sig- nals of a particular shape fea- tures, we can outperform state-of-the-art filament detection techniques on many different kinds

  2. Charge-Current Filament Model in a Tokamak Brian Jurgelewicz*

    E-print Network

    California at Los Angles, University of

    Charge-Current Filament Model in a Tokamak Brian Jurgelewicz* Department of Physics, University of California at Los Angeles (Submitted 25 August 2003) I view the plasma as a collection of filaments to which examine in detail the case where the amount of charge each filament carries is infinitesimally small

  3. Multiple tail domain interactions stabilize nonmuscle myosin II bipolar filaments

    E-print Network

    Prehoda, Ken

    Multiple tail domain interactions stabilize nonmuscle myosin II bipolar filaments Derek Ricketson derives from its assembly into bipolar filaments. The coiled-coil tail domain of the myosin II heavy chain mediates filament assembly, although the mechanism is poorly understood. Tail domains contain

  4. A penny-shaped crack in a filament-reinforced matrix. I - The filament model. II - The crack problem

    NASA Technical Reports Server (NTRS)

    Erdogan, F.; Pacella, A. H.

    1974-01-01

    The study deals with the elastostatic problem of a penny-shaped crack in an elastic matrix which is reinforced by filaments or fibers perpendicular to the plane of the crack. An elastic filament model is first developed, followed by consideration of the application of the model to the penny-shaped crack problem in which the filaments of finite length are asymmetrically distributed around the crack. Since the primary interest is in the application of the results to studies relating to the fracture of fiber or filament-reinforced composites and reinforced concrete, the main emphasis of the study is on the evaluation of the stress intensity factor along the periphery of the crack, the stresses in the filaments or fibers, and the interface shear between the matrix and the filaments or fibers. Using the filament model developed, the elastostatic interaction problem between a penny-shaped crack and a slender inclusion or filament in an elastic matrix is formulated.

  5. SYNCHROTRON AGING IN FILAMENTED MAGNETIC FIELDS

    E-print Network

    Eilek, Jean

    SYNCHROTRON AGING IN FILAMENTED MAGNETIC FIELDS J. A. EILEK 1;2 , D. B. MELROSE 2 and M.A. WALKER 2 radio sources whose dynamical ages are known to be significantly greater than the ages inferred from; In addition, it is becoming increasingly clear that radio galaxies suffer from an ``aging problem

  6. Light bullets from a femtosecond filament

    NASA Astrophysics Data System (ADS)

    Chekalin, S. V.; Dokukina, A. E.; Dormidonov, A. E.; Kompanets, V. O.; Smetanina, E. O.; Kandidov, V. P.

    2015-05-01

    The scenario of the formation of light bullets in the presence of anomalous group velocity dispersion is presented within the same general scenario for condensed matter and humid air. The temporal and spectral parameters of light bullets during filamentation in fused silica and humid air are obtained. A light bullet (LB) is a short-lived formation in a femtosecond filament with a high spatiotemporal light field localization. The sequence formation of the quasi-periodical LB is obtained numerically and is confirmed experimentally by autocorrelation measurements of the LB’s duration. The estimation of the LB duration reaches few-cycle value. It is established that the generation of each LB is accompanied by the ejection of a supercontinuum (SC) in the visible spectrum and an isolated anti-Stokes wing is formed in the visible area of the SC as a result of destructive interference of broadband spectral components. It was found that the energy of a visible SC increases discretely according to the number of LBs in the filament. We demonstrated that the model of ionization in solid dielectric which is used in numerical simulation fundamentally affects the obtained scenario of LB formation. The possibility of the formation of LBs under the filamentation of middle-IR pulses in the atmosphere was shown with numerical simulation.

  7. Light sources based on semiconductor current filaments

    DOEpatents

    Zutavern, Fred J. (Albuquerque, NM); Loubriel, Guillermo M. (Albuquerque, NM); Buttram, Malcolm T. (Sandia Park, NM); Mar, Alan (Albuquerque, NM); Helgeson, Wesley D. (Albuquerque, NM); O'Malley, Martin W. (Edgewood, NM); Hjalmarson, Harold P. (Albuquerque, NM); Baca, Albert G. (Albuquerque, NM); Chow, Weng W. (Cedar Crest, NM); Vawter, G. Allen (Albuquerque, NM)

    2003-01-01

    The present invention provides a new type of semiconductor light source that can produce a high peak power output and is not injection, e-beam, or optically pumped. The present invention is capable of producing high quality coherent or incoherent optical emission. The present invention is based on current filaments, unlike conventional semiconductor lasers that are based on p-n junctions. The present invention provides a light source formed by an electron-hole plasma inside a current filament. The electron-hole plasma can be several hundred microns in diameter and several centimeters long. A current filament can be initiated optically or with an e-beam, but can be pumped electrically across a large insulating region. A current filament can be produced in high gain photoconductive semiconductor switches. The light source provided by the present invention has a potentially large volume and therefore a potentially large energy per pulse or peak power available from a single (coherent) semiconductor laser. Like other semiconductor lasers, these light sources will emit radiation at the wavelength near the bandgap energy (for GaAs 875 nm or near infra red). Immediate potential applications of the present invention include high energy, short pulse, compact, low cost lasers and other incoherent light sources.

  8. Hawking radiation from ultrashort laser pulse filaments

    E-print Network

    F. Belgiorno; S. L. Cacciatori; M. Clerici; V. Gorini; G. Ortenzi; L. Rizzi; E. Rubino; V. G. Sala; D. Faccio

    2010-09-23

    Event horizons of astrophysical black holes and gravitational analogues have been predicted to excite the quantum vacuum and give rise to the emission of quanta, known as Hawking radiation. We experimentally create such a gravitational analogue using ultrashort laser pulse filaments and our measurements demonstrate a spontaneous emission of photons that confirms theoretical predictions.

  9. SECONDARY METABOLIC GENE CLUSTERS IN FILAMENTOUS FUNGI

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Filamentous fungi produce a number of secondary metabolic compounds that have been shown to be both of great value (i.e. antibiotics and anti-hypercholesterolemics) and great harm (i.e. aflatoxins and trichothecenes). The genes responsible for producing the secondary metabolite are often clustered ...

  10. Conformational phases of membrane bound cytoskeletal filaments

    NASA Astrophysics Data System (ADS)

    Quint, David A.; Grason, Gregory; Gopinathan, Ajay

    2013-03-01

    Membrane bound cytoskeletal filaments found in living cells are employed to carry out many types of activities including cellular division, rigidity and transport. When these biopolymers are bound to a membrane surface they may take on highly non-trivial conformations as compared to when they are not bound. This leads to the natural question; What are the important interactions which drive these polymers to particular conformations when they are bound to a surface? Assuming that there are binding domains along the polymer which follow a periodic helical structure set by the natural monomeric handedness, these bound conformations must arise from the interplay of the intrinsic monomeric helicity and membrane binding. To probe this question, we study a continuous model of an elastic filament with intrinsic helicity and map out the conformational phases of this filament for various mechanical and structural parameters in our model, such as elastic stiffness and intrinsic twist of the filament. Our model allows us to gain insight into the possible mechanisms which drive real biopolymers such as actin and tubulin in eukaryotes and their prokaryotic cousins MreB and FtsZ to take on their functional conformations within living cells.

  11. The sawing machine is a machine SAWING MACHINES

    E-print Network

    Gellman, Andrew J.

    wheel and an idler wheel support and drive the blade. POWER HACKSAW MACHINES DESCRIPTION All power-524 Some machines feed by gravity, the saw frame having weights that can be shifted to give greater or less that contains the saw band idler wheel, the drive motor switch, the tension adjustment handwheel and mechanism

  12. Wind Turbine

    USGS Multimedia Gallery

    The species of bats that are most susceptible to wind turbines all roost in trees throughout the year, leading some scientists to speculate that they may be visually mistaking wind turbines for trees in which to roost....

  13. Wind turbine generator rotor blade concepts with low cost potential

    NASA Technical Reports Server (NTRS)

    Sullivan, T. L.; Cahill, T. P.; Griffee, D. G., Jr.; Gewehr, H. W.

    1977-01-01

    Four processed for producing blades are examined. Two use filament winding techniques and two involve filling a mold or form to produce all or part of a blade. The processes are described and a comparison is made of cost, material properties, design and free vibration characteristics. Conclusions are made regarding the feasibility of each process to produce low cost, structurally adequate blades.

  14. Hybrid Quantum Cloning Machine

    E-print Network

    Satyabrata Adhikari; A. K. Pati; Indranil Chakrabarty; B. S. Choudhury

    2007-06-14

    In this work, we introduce a special kind of quantum cloning machine called Hybrid quantum cloning machine. The introduced Hybrid quantum cloning machine or transformation is nothing but a combination of pre-existing quantum cloning transformations. In this sense it creates its own identity in the field of quantum cloners. Hybrid quantum cloning machine can be of two types: (i) State dependent and (ii) State independent or Universal. We study here the above two types of Hybrid quantum cloning machines. Later we will show that the state dependent hybrid quantum-cloning machine can be applied on only four input states. We will also find in this paper another asymmetric universal quantum cloning machine constructed from the combination of optimal universal B-H quantum cloning machine and universal anti-cloning machine. The fidelities of the two outputs are different and their values lie in the neighborhood of ${5/6} $

  15. Stability of spiral wave vortex filaments with phase twists

    NASA Astrophysics Data System (ADS)

    Nam, Keeyeol; Ott, Edward; Guzdar, Parvez N.; Gabbay, Michael

    1998-08-01

    In this paper we investigate the stability of a straight vortex filament with phase twist described by the three-dimensional complex Ginzburg-Landau equation (CGLE). The results of the linear stability analysis show that the straight filament is stable in a limited region of the two parameter space of the CGLE. The stable region is dependent on the phase twist imposed on the filament and shrinks in size as the phase twist is increased. It is also shown numerically that the nonlinear evolution of an unstable initial straight filament can lead to a helical filament.

  16. Complex dynamics of knotted filaments in shear flow

    NASA Astrophysics Data System (ADS)

    Matthews, R.; Louis, A. A.; Yeomans, J. M.

    2010-11-01

    Coarse-grained simulations are used to demonstrate that knotted filaments in shear flow at zero Reynolds number exhibit remarkably rich dynamic behaviour. For stiff filaments that are weakly deformed by the shear forces, the knotted filaments rotate like rigid objects in the flow. But away from this regime the interplay between shear forces and the flexibility of the filament leads to intricate regular and chaotic modes of motion that can be divided into distinct families. The set of accessible mode families depends to first order on a dimensionless number that relates the filament length, the elastic modulus, the friction per unit length and the shear rate.

  17. Galactic Winds in the Intergalactic Medium

    NASA Astrophysics Data System (ADS)

    Theuns, Tom; Viel, Matteo; Kay, Scott; Schaye, Joop; Carswell, Robert F.; Tzanavaris, Panayiotis

    2002-10-01

    We have performed hydrodynamical simulations to investigate the effects of galactic winds on the high-redshift (z=3) universe. Strong winds suppress the formation of low-mass galaxies significantly, and the metals carried by them produce C IV absorption lines with properties in reasonable agreement with observations. The winds have little effect on the statistics of the H I absorption lines, because the hot gas bubbles blown by the winds fill only a small fraction of the volume and because they tend to escape into the voids, thereby leaving the filaments that produce these lines intact. Based on observations made at the W. M. Keck Observatory, which is operated as a scientific partnership between the California Institute of Technology and the University of California; it was made possible by the generous support of the W. M. Keck Foundation.

  18. Stator for Rotating Electrical Machine Having Multiple Controlwindings

    SciTech Connect

    Shah, Manoj R.; Lewandowski, Chad R.

    1999-05-05

    A rotating electric machine is provided which includes multiple independent control windings for compensating for rotor imbalances and for levitating/centering the rotor. The multiple independent control windings are placed at different axial locations along the rotor to oppose forces created by imbalances at different axial locations along the rotor. The multiple control windings can also be used to levitate/center the rotor with a relatively small magnetic field per unit area since the rotor and/or the main power winding provides the biasfield.

  19. Transition from linear- to nonlinear-focusing regime in filamentation

    PubMed Central

    Lim, Khan; Durand, Magali; Baudelet, Matthieu; Richardson, Martin

    2014-01-01

    Laser filamentation in gases is often carried out in the laboratory with focusing optics to better stabilize the filament, whereas real-world applications of filaments frequently involve collimated or near-collimated beams. It is well documented that geometrical focusing can alter the properties of laser filaments and, consequently, a transition between a collimated and a strongly focused filament is expected. Nevertheless, this transition point has not been identified. Here, we propose an analytical method to determine the transition, and show that it corresponds to an actual shift in the balance of physical mechanisms governing filamentation. In high-NA conditions, filamentation is primarily governed by geometrical focusing and plasma effects, while the Kerr nonlinearity plays a more significant role as NA decreases. We find the transition between the two regimes to be relatively insensitive to the intrinsic laser parameters, and our analysis agrees well with a wide range of parameters found in published literature. PMID:25434678

  20. Transition from linear- to nonlinear-focusing regime in filamentation.

    PubMed

    Lim, Khan; Durand, Magali; Baudelet, Matthieu; Richardson, Martin

    2014-01-01

    Laser filamentation in gases is often carried out in the laboratory with focusing optics to better stabilize the filament, whereas real-world applications of filaments frequently involve collimated or near-collimated beams. It is well documented that geometrical focusing can alter the properties of laser filaments and, consequently, a transition between a collimated and a strongly focused filament is expected. Nevertheless, this transition point has not been identified. Here, we propose an analytical method to determine the transition, and show that it corresponds to an actual shift in the balance of physical mechanisms governing filamentation. In high-NA conditions, filamentation is primarily governed by geometrical focusing and plasma effects, while the Kerr nonlinearity plays a more significant role as NA decreases. We find the transition between the two regimes to be relatively insensitive to the intrinsic laser parameters, and our analysis agrees well with a wide range of parameters found in published literature. PMID:25434678

  1. Ultraminiature broadband light source with spiral shaped filament

    NASA Technical Reports Server (NTRS)

    Tuma, Margaret L. (Inventor); Collura, Joseph S. (Inventor); Helvajian, Henry (Inventor); Pocha, Michael D. (Inventor); Meyer, Glenn A. (Inventor); McConaghy, Charles F. (Inventor); Olsen, Barry L. (Inventor); Hansen, William W (Inventor)

    2012-01-01

    An ultraminiature light source using a double-spiral shaped tungsten filament includes end contact portions which are separated to allow for radial and length-wise unwinding of the spiral. The double-spiral filament is spaced relatively far apart at the end portions thereof so that contact between portions of the filament upon expansion is avoided. The light source is made by fabricating a double-spiral ultraminiature tungsten filament from tungsten foil and housing the filament in a ceramic package having a reflective bottom and a well wherein the filament is suspended. A vacuum furnace brazing process attaches the filament to contacts of the ceramic package. Finally, a cover with a transparent window is attached onto the top of the ceramic package by solder reflow in a second vacuum furnace process to form a complete hermetically sealed package.

  2. Motion of current filaments in avalanching PIN diodes

    NASA Astrophysics Data System (ADS)

    Xingrong, Ren; Changchun, Chai; Zhenyang, Ma; Yintang, Yang; Liping, Qiao; Chunlei, Shi; Lihua, Ren

    2013-04-01

    The motion of current filaments in avalanching PIN diodes has been investigated in this paper by 2D transient numerical simulations. The simulation results show that the filament can move along the length of the PIN diode back and forth when the self-heating effect is considered. The voltage waveform varies periodically due to the motion of the filament. The filament motion is driven by the temperature gradient in the filament due to the negative temperature dependence of the impact ionization rates. Contrary to the traditional understanding that current filamentation is a potential cause of thermal destruction, it is shown in this paper that the thermally-driven motion of current filaments leads to the homogenization of temperature in the diode and is expected to have a positive influence on the failure threshold of the PIN diode.

  3. Dynamics of a semiflexible polar filament in Stokes flow

    NASA Astrophysics Data System (ADS)

    Young, Y.-N.

    2010-07-01

    In this work, the dynamics and transport of a polarly driven filament is examined using a continuum slender-body model. Immersed in a viscous fluid, the filament gains polar propulsion from the motor proteins (anchored on the motility assay) while experiencing a viscous drag from the bottom wall. Results from the linear analysis on a straight polar filament illustrate the necessity of spatial inhomogeneity in the polar forcing for the buckling instability. The ensuing buckling leads to filament deformation, undulation, and change of its direction of motion in the numerical simulations. Repeated filament buckling in two types of motor protein concentration landscape results in diffusive transport of a polar filament on scales much larger than the mean-free path and the average duration between filament buckling events.

  4. Properties of Interstellar Filaments as Derived from Herschel Observations

    NASA Astrophysics Data System (ADS)

    Arzoumanian, Doris; André, Philippe; Peretto, Nicolas; Könyves, Vera

    We present a scenario for filament formation and evolution motivated by recent observational results of nearby molecular clouds. The analysis of more than 250 filaments observed in 7 regions by the Herschel Gould Belt Survey show that the filaments are characterized by a narrow distribution of central width sharply peaked at ˜ 0.1 pc. This typical filament width corresponds, within a factor of ˜ 2 to the sonic scale below which interstellar turbulence becomes subsonic in diffuse gas, which may suggest that the filaments form as a result of the dissipation of large-scale turbulence. The analysis of IRAM 30 m molecular line observations of a sample of these filaments show evidence of an increase in non-thermal velocity dispersion with column density which suggest an evolution of the supercritical filaments in mass per unit length while accreting surrounding material.

  5. Transition from linear- to nonlinear-focusing regime in filamentation

    NASA Astrophysics Data System (ADS)

    Lim, Khan; Durand, Magali; Baudelet, Matthieu; Richardson, Martin

    2014-12-01

    Laser filamentation in gases is often carried out in the laboratory with focusing optics to better stabilize the filament, whereas real-world applications of filaments frequently involve collimated or near-collimated beams. It is well documented that geometrical focusing can alter the properties of laser filaments and, consequently, a transition between a collimated and a strongly focused filament is expected. Nevertheless, this transition point has not been identified. Here, we propose an analytical method to determine the transition, and show that it corresponds to an actual shift in the balance of physical mechanisms governing filamentation. In high-NA conditions, filamentation is primarily governed by geometrical focusing and plasma effects, while the Kerr nonlinearity plays a more significant role as NA decreases. We find the transition between the two regimes to be relatively insensitive to the intrinsic laser parameters, and our analysis agrees well with a wide range of parameters found in published literature.

  6. Warpage prediction and elimination in filament-wound and fiber-placed composite shells

    NASA Astrophysics Data System (ADS)

    Meink, Troy Edward

    Filament winding and fiber placement are becoming common manufacturing processes throughout the aerospace industry for both launch vehicle and aircraft structures. The promise of significant weight reduction, compared to metallic structures, along with the advantages of automation, including reduced cost and increased quality control, make these attractive structural solutions. Recent demonstrations include: the Combined Experiments (CEP) sub-orbital demonstration flight, Boeing's Sea Launch orbital vehicle, and the Beach Starship. These vehicles employed filament winding or fiber placement manufacturing processes and substantiated large performance gains. However, as with many new technology development programs unforeseen complications often arise. In filament winding the tooling is generally in the form of a plug that has the composite fibers filament wound or fiber placed on the outer surface. Once the parts are released from the tooling they can demonstrate significant warpage. In many cases this warpage is large enough to make the part unusable. As the aerospace industry develops the need for larger composite structures with both the requirements of high performance and reduced manufacturing cost, understanding and controlling part warpage becomes an ever increasing necessity. This research has identified the residual stresses responsible for the large distortions. It will be shown that the stresses develop during manufacturing and result from cure consolidation. The magnitude is dependent on manufacturing parameters including cure pressure, winding tension, and material characteristics (i.e., pre-preg fiber volume fraction, resin viscosity, etc.). In this dissertation a systematic procedure, or methodology, is developed to eliminate the processing induced warpage. This is accomplished by first developing a through-thickness strain model based on fiber/resin cure consolidation and tooling thermal expansions. The strain model is then integrated with classical laminate theory and solutions for predicting and eliminating warpage obtained. The warpage elimination is accomplished by developing manufacturing tension control techniques that reduce and alter the residual stress profile to eliminate stress couples. The accuracy of the warpage prediction and elimination techniques are verified with experimental procedures. It was found that the predictions were accurate and the warpage could be reduced and eliminated in most cases.

  7. A new wind energy conversion system

    NASA Technical Reports Server (NTRS)

    Smetana, F. O.

    1975-01-01

    It is presupposed that vertical axis wind energy machines will be superior to horizontal axis machines on a power output/cost basis and the design of a new wind energy machine is presented. The design employs conical cones with sharp lips and smooth surfaces to promote maximum drag and minimize skin friction. The cones are mounted on a vertical axis in such a way as to assist torque development. Storing wind energy as compressed air is thought to be optimal and reasons are: (1) the efficiency of compression is fairly high compared to the conversion of mechanical energy to electrical energy in storage batteries; (2) the release of stored energy through an air motor has high efficiency; and (3) design, construction, and maintenance of an all-mechanical system is usually simpler than for a mechanical to electrical conversion system.

  8. Solar wind

    NASA Astrophysics Data System (ADS)

    Marsch, E.; Axford, W. I.; McKenzie, J. F.

    There are three major types of solar wind - the steady fast wind, the unsteady slow wind, and the variable transient wind. The fast streams are the normal modes of the solar wind. Their basic properties can be reproduced by multi-fluid models involving waves. After briefly reviewing the history of the subject and describing some of the modern theories of the fast wind, the boundary conditions and in-situ constraints are discussed which are imposed on the models, in particular by Ulysses at high latitudes. Some of the results are then presented from SOHO observations that have brought a wealth of new information on the state of the wind in the inner corona as well as the plasma source conditions prevailing in the transition region and solar chromosphere. Finally, problem areas are identified and future research perspectives are outlined.

  9. A Comparison Study of an Active Region Eruptive Filament and a Neighboring Non-Eruptive Filament

    NASA Astrophysics Data System (ADS)

    Wu, S. T.; Jiang, C.; Feng, X. S.; Hu, Q.

    2014-12-01

    We perform a comparison study of an eruptive filament in the core region of AR 11283 and a nearby non-eruptive filament. The coronal magnetic field supporting these two filaments is extrapolated using our data-driven CESE-MHD-NLFFF code (Jiang et al. 2013, Jiang etal. 2014), which presents two magnetic flux ropes (FRs) in the same extrapolation box. The eruptive FR contains a bald-patch separatrix surface (BPSS) spatially co-aligned very well with a pre-eruption EUV sigmoid, which is consistent with the BPSS model for the coronal sigmoids. The numerically reproduced magnetic dips of the FRs match observations of the filaments strikingly well, which supports strongly the FR-dip model for filaments. The FR that supports the AR eruptive filament is much smaller (with a length of 3 Mm) compared with the large-scale FR holding the quiescent filament (with a length of 30 Mm). But the AR eruptive FR contains most of the magnetic free energy in the extrapolation box and holds a much higher magnetic energy density than the quiescent FR, because it resides along the main polarity inversion line (PIL) around sunspots with strong magnetic shear. Both the FRs are weakly twisted and cannot trigger kink instability. The AR eruptive FR is unstable because its axis reaches above a critical height for torus instability (TI), at which the overlying closed arcades can no longer confine the FR stably. To the contrary, the quiescent FR is firmly held down by its overlying field, as its axis apex is far below the TI threshold height. (This work is partially supported by NSF AGS-1153323 and 1062050)

  10. Large Wind Turbine Design Characteristics and R and D Requirements

    NASA Technical Reports Server (NTRS)

    Lieblein, S. (editor)

    1979-01-01

    Detailed technical presentations on large wind turbine research and development activities sponsored by public and private organizations are presented. Both horizontal and vertical axis machines are considered with emphasis on their structural design.

  11. Superconducting generators for large off shore wind turbines 

    E-print Network

    Keysan, Ozan

    2014-06-30

    This thesis describes four novel superconducting machine concepts, in the pursuit of finding a suitable design for large offshore wind turbines. The designs should be reliable, modular and light-weight. The main novelty ...

  12. Hard Machinable Machining of Cobalt Super Alloys

    NASA Astrophysics Data System (ADS)

    ?ep, Robert; Janásek, Adam; Petr?, Jana; ?epová, Lenka; Sadílek, Marek; Kratochvíl, Ji?í

    2012-12-01

    The article deals with difficult-to-machine cobalt super alloys. The main aim is to test the basic properties of cobalt super alloys and propose suitable cutting materials and machining parameters under the designation 188 when machining. Although the development of technology in chipless machining such as moulding, precision casting and other manufacturing methods continues to advance, machining is still the leading choice for piece production, typical for energy and chemical engineering. Nowadays, super alloys are commonly used in turbine engines in regions that are subject to high temperatures, which require high strength, high temperature resistance, phase stability, as well as corrosion or oxidation resistance.

  13. Stirling machine operating experience

    NASA Technical Reports Server (NTRS)

    Ross, Brad; Dudenhoefer, James E.

    1991-01-01

    Numerous Stirling machines have been built and operated, but the operating experience of these machines is not well known. It is important to examine this operating experience in detail, because it largely substantiates the claim that Stirling machines are capable of reliable and lengthy lives. The amount of data that exists is impressive, considering that many of the machines that have been built are developmental machines intended to show proof of concept, and were not expected to operate for any lengthy period of time. Some Stirling machines (typically free-piston machines) achieve long life through non-contact bearings, while other Stirling machines (typically kinematic) have achieved long operating lives through regular seal and bearing replacements. In addition to engine and system testing, life testing of critical components is also considered.

  14. Online Catalog for Filament-Sigmoid Correlation

    NASA Astrophysics Data System (ADS)

    Merriot, Ivy; Pevtsov, A.; Martens, P.

    2007-05-01

    A new online catalog correlating H-alpha filaments with SXT sigmoids gives researchers, teachers and pre-college students the ability to access digital H-alpha images online that were previously available only at the physical location of the NSO at Sunspot, NM. This web-based catalog correlates SOHO's SXT sigmoids from 1993-1998 as described in a non-online catalog created by Zach Blehm under the direction of Richard Canfield, MSU-Bozeman, with H-alpha filament activity as described by Ivy Merriot under the direction of Alexei Pevtsov, NSO, and Petrus Martens, MSU-Bozeman. The H-alpha images were digitized from film archives of the Flare Patrol Telescope at Sunspot, NM. Use of the online catalog will be demonstrated at the poster site with critical comments encouraged.

  15. Experiments on the Propagation of Plasma Filaments

    SciTech Connect

    Katz, Noam; Egedal, Jan; Fox, Will; Le, Ari; Porkolab, Miklos

    2008-07-04

    We investigate experimentally the motion and structure of isolated plasma filaments propagating through neutral gas. Plasma filaments, or 'blobs,' arise from turbulent fluctuations in a range of plasmas. Our experimental geometry is toroidally symmetric, and the blobs expand to a larger major radius under the influence of a vertical electric field. The electric field, which is caused by {nabla}B and curvature drifts in a 1/R magnetic field, is limited by collisional damping on the neutral gas. The blob's electrostatic potential structure and the resulting ExB flow field give rise to a vortex pair and a mushroom shape, which are consistent with nonlinear plasma simulations. We observe experimentally this characteristic mushroom shape for the first time. We also find that the blob propagation velocity is inversely proportional to the neutral density and decreases with time as the blob cools.

  16. Trapped slender vortex filaments in statistical equilibrium

    E-print Network

    Timothy D. Andersen; Chjan C. Lim

    2007-02-08

    The statistical mechanics of nearly parallel vortex filaments confined in the unbounded plane by angular momentum, first studied by Lions and Majda (2000), is investigated using a mean-field approximation to interaction and a spherical constraint to develop an explicit formula for the mean square vortex position or length scale of the system, $R$, verified with Path Integral Monte Carlo simulations. We confirm that 3D filaments resist confinement in a different way than 2D point vortices and that this results in a profound shift at high-densities for the length scale of quasi-2D versus strictly-2D models of vorticity fields in which angular momentum is conserved. Our analytical results correspond well with those of the Monte Carlo simulations and show a 3D effects contributing significantly to determination of the length scale.

  17. Viscoelastic response of contractile filament bundles

    E-print Network

    Achim Besser; Julien Colombelli; Ernst H. K. Stelzer; Ulrich S. Schwarz

    2011-02-25

    The actin cytoskeleton of adherent tissue cells often condenses into filament bundles contracted by myosin motors, so-called stress fibers, which play a crucial role in the mechanical interaction of cells with their environment. Stress fibers are usually attached to their environment at the endpoints, but possibly also along their whole length. We introduce a theoretical model for such contractile filament bundles which combines passive viscoelasticity with active contractility. The model equations are solved analytically for two different types of boundary conditions. A free boundary corresponds to stress fiber contraction dynamics after laser surgery and results in good agreement with experimental data. Imposing cyclic varying boundary forces allows us to calculate the complex modulus of a single stress fiber.

  18. Three Dimension Filamentous Human Cardiac Tissue Model

    PubMed Central

    Ma, Zhen; Koo, Sangmo; Finnegan, Micaela A.; Loskill, Peter; Huebsch, Nathaniel; Marks, Natalie C.; Conklin, Bruce R.; Grigoropoulos, Costas P.; Healy, Kevin E.

    2013-01-01

    A human in vitro cardiac tissue model would be a significant advancement for understanding, studying, and developing new strategies for treating cardiac arrhythmias and related cardiovascular diseases. We developed an in vitro model of three-dimensional (3D) human cardiac tissue by populating synthetic filamentous matrices with cardiomyocytes derived from healthy wild-type volunteer (WT) and patient-specific long QT syndrome type 3 (LQT3) induced pluripotent stem cells (iPS-CMs) to mimic the condensed and aligned human ventricular myocardium. Using such a highly controllable cardiac model, we studied the contractility malfunctions associated with the electrophysiological consequences of LQT3 and their response to a panel of drugs. By varying the stiffness of filamentous matrices, LQT3 iPS-CMs exhibited different level of contractility abnormality and susceptibility to drug-induced cardiotoxicity. PMID:24268663

  19. Solar Magnetized "Tornadoes": Relation to Filaments

    E-print Network

    Su, Yang; Veronig, Astrid; Temmer, Manuela; Gan, Weiqun

    2012-01-01

    Solar magnetized "tornadoes", a phenomenon discovered in the solar atmosphere, appear as tornado-like structures in the corona but root in the photosphere. Like other solar phenomena, solar tornadoes are a feature of magnetized plasma and therefore differ distinctly from terrestrial tornadoes. Here we report the first analysis of solar "tornadoes" {Two papers which focused on different aspect of solar tornadoes were published in the Astrophysical Journal Letters (Li et al. 2012) and Nature (Wedemeyer-B\\"ohm et al. 2012), respectively, during the revision of this Letter.}. A detailed case study of two events indicates that they are rotating vertical magnetic structures probably driven by underlying vortex flows in the photosphere. They usually exist as a group and relate to filaments/prominences, another important solar phenomenon whose formation and eruption are still mysteries. Solar tornadoes may play a distinct role in the supply of mass and twists to filaments. These findings could lead to a new explanati...

  20. Cluster Substructure and Large Scales Filaments

    NASA Technical Reports Server (NTRS)

    Foreman, William

    1997-01-01

    New results from ASCA and ROSAT will be presented showing evidence for large scale structure from X-ray observations. The talk will present observations of the Coma cluster showing the interaction between an infalling group and the ambient cluster medium. For Abell 85, large scale structure is seen, consistent with the overall supercluster in which Abell 85 resides. Both X-ray temperature and X-ray surface brightness maps show evidence for merging along a supercluster filament. The filament orientation is well defined from optical observations of the overall galaxy distribution as well as the ellipticity of the central cD galaxy. The overall optical galaxy distribution shows a very complex region of sheets both behind and in front of A85. Finally, a progress report on a cluster survey using archival ROSAT PSPC and ROSAT HRI data will be presented.

  1. Helicity and Filament Channels? The Straight Twist!

    NASA Technical Reports Server (NTRS)

    Antiochos, Spiro K.

    2010-01-01

    One of the most important and most puzzling features of the coronal magnetic field is that it appears to have smooth magnetic structure with little evidence for non-potentiality except at special locations, photospheric polarity inversions lines where the non-potentiality is observed as a filament channel. This characteristic feature of the closed-field corona is highly unexpected given that photospheric motions continuously tangle its magnetic field. Although reconnection can eliminate some of the injected structure, it cannot destroy the helicity, which should build up to produce observable complexity. We propose that an inverse cascade process transports the injected helicity from the interior of closed flux regions to their boundaries, polarity inversion lines, creating filament channels. We describe how the helicity is injected and transported and calculate the relevant rates. We argue that one process, helicity transport, can explain both the observed lack and presence of structure in the coronal magnetic field.

  2. Ionic Wave Propagation along Actin Filaments

    PubMed Central

    Tuszy?ski, J. A.; Portet, S.; Dixon, J. M.; Luxford, C.; Cantiello, H. F.

    2004-01-01

    We investigate the conditions enabling actin filaments to act as electrical transmission lines for ion flows along their lengths. We propose a model in which each actin monomer is an electric element with a capacitive, inductive, and resistive property due to the molecular structure of the actin filament and viscosity of the solution. Based on Kirchhoff's laws taken in the continuum limit, a nonlinear partial differential equation is derived for the propagation of ionic waves. We solve this equation in two different regimes. In the first, the maximum propagation velocity wave is found in terms of Jacobi elliptic functions. In the general case, we analyze the equation in terms of Fisher-Kolmogoroff modes with both localized and extended wave characteristics. We propose a new signaling mechanism in the cell, especially in neurons. PMID:15041636

  3. Morphogenesis of filaments growing in flexible confinements

    NASA Astrophysics Data System (ADS)

    Vetter, R.; Wittel, F. K.; Herrmann, H. J.

    2014-07-01

    Space-saving design is a requirement that is encountered in biological systems and the development of modern technological devices alike. Many living organisms dynamically pack their polymer chains, filaments or membranes inside deformable vesicles or soft tissue-like cell walls, chorions and buds. Surprisingly little is known about morphogenesis due to growth in flexible confinements—perhaps owing to the daunting complexity lying in the nonlinear feedback between packed material and expandable cavity. Here we show by experiments and simulations how geometric and material properties lead to a plethora of morphologies when elastic filaments are growing far beyond the equilibrium size of a flexible thin sheet they are confined in. Depending on friction, sheet flexibility and thickness, we identify four distinct morphological phases emerging from bifurcation and present the corresponding phase diagram. Four order parameters quantifying the transitions between these phases are proposed.

  4. DOE large horizontal axis wind turbine development at NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Linscott, B. S.

    1982-01-01

    Large wind turbine activities managed by NASA Lewis are reviewed. These activities include results from the first and second generation field machines (Mod-OA, -1, and -2), the status of the Department of Interior WTS-4 machine for which NASA is responsible for technical management, and the design phase of the third generation wind turbines (Mod-5).

  5. Status of the vertical-axis wind-turbine program: 1983

    SciTech Connect

    Braasch, R.H.

    1983-01-01

    During the interval since the Fifth Biennial Wind Energy Conference, the vertical axis wind turbine program has experienced significant progress in establishing a research and development base for machine development. The purpose of the paper is to review that progress in aerodynamics research, structural dynamics research, data acquisition, and machine development.

  6. Impact damage in filament wound composite bottles

    NASA Technical Reports Server (NTRS)

    Highsmith, Alton L.

    1993-01-01

    Increasingly, composite materials are being used in advanced structural applications because of the significant weight savings they offer when compared to more traditional engineering materials. The higher cost of composites must be offset by the increased performance that results from reduced structural weight if these new materials are to be used effectively. At present, there is considerable interest in fabricating solid rocket motor cases out of composite materials, and capitalizing on the reduced structural weight to increase rocket performance. However, one of the difficulties that arises when composite materials are used is that composites can develop significant amounts of internal damage during low velocity impacts. Such low velocity impacts may be encountered in routine handling of a structural component like a rocket motor case. The ability to assess the reduction in structural integrity of composite motor cases that experience accidental impacts is essential if composite rocket motor cases are to be certified for manned flight. While experimental studies of the post-impact performance of filament wound composite motor cases haven been proven performed (2,3), scaling impact data from small specimens to full scale structures has proven difficult. If such a scaling methodology is to be achieved, an increased understanding of the damage processes which influence residual strength is required. The study described herein was part of an ongoing investigation of damage development and reduction of tensile strength in filament wound composites subjected to low velocity impacts. The present study, which focused on documenting the damage that develops in filament wound composites as a result of such impacts, included two distinct tasks. The first task was to experimentally assess impact damage in small, filament wound pressure bottles using x-ray radiography. The second task was to study the feasibility of using digital image processing techniques to assist in determining the 3-D distribution of damage from stereo x-ray pairs.

  7. Flexible Magnetic Filaments as Micromechanical Sensors

    NASA Astrophysics Data System (ADS)

    Goubault, C.; Jop, P.; Fermigier, M.; Baudry, J.; Bertrand, E.; Bibette, J.

    2003-12-01

    We propose a new micromechanical approach to probe bending rigidity at molecular scale. Long flexible filaments made of magnetic colloids and linkers are shown to adopt under magnetic field a hairpin configuration. Measuring the hairpin curvature as a function of the field intensity and the linker length from diffracted light allows us to deduce the linker bending rigidity ?. The technique is presented for two types of linkers: a spontaneously adsorbing polymer and a grafted biomolecular.

  8. Ambipolar filamentation of turbulent magnetic fields.

    NASA Astrophysics Data System (ADS)

    Tagger, M.; Falgarone, E.; Shukurov, A.

    1995-07-01

    We show that turbulence in a weakly ionized plasma can lead to a filamentation of magnetic flux tubes as it reaches the ambipolar scale, where the neutrals are imperfectly coupled to the ions. This results from an instability mechanism, forcing the neutrals outside of the more ionized regions and compressing the ions and the field in these regions. It might have important consequences in such astrophysical contexts as the solar atmosphere or the interstellar medium.

  9. Global evolution of random vortex filament equation

    E-print Network

    Z. Brze?niak; M. Gubinelli; M. Neklyudov

    2013-07-04

    We prove the existence of a global solution for the filament equation with inital condition given by a geometric rough path in the sense of Lyons (1998).Our work gives a positive answer to a question left open in recent publications: Berselli and Gubinelli (2007) showed the existence of global solution for a smooth initial condition while Bessaih, Gubinelli, Russo (2005) proved the existence of a local solution for a general initial condition given by a rough path.

  10. MACHINE PERCEPTION CZECH TECHNICAL

    E-print Network

    Kohli, Pushmeet

    CENTER FOR MACHINE PERCEPTION CZECH TECHNICAL UNIVERSITY RESEARCHREPORT ISSN1213-2365 Curvature for Machine Perception, K13133 FEE Czech Technical University 2 Microsoft Research Cambridge CTU­CMP­2011, Czech Technical University in Prague, No. 11, 2011 Published by Center for Machine Perception

  11. Talking Vending Machines

    E-print Network

    Hacker, Randi

    2011-02-02

    're in the central Tokyo Station and you're thirsty so you go to the, you know, vending machine to buy a drink. Only this is not your average vending machine. Uh uh. This vending machine has opinions on what beverage you want. Sensors built into large touch panels...

  12. DRILLING MACHINES GENERAL INFORMATION

    E-print Network

    Gellman, Andrew J.

    TC 9-524 Chapter 4 DRILLING MACHINES GENERAL INFORMATION PURPOSE This chapter contains basic information pertaining to drilling machines. A drilling machine comes in many shapes and sizes, from small hand-held power drills to bench mounted and finally floor-mounted models. They can perform operations

  13. Apprentice Machine Theory Outline.

    ERIC Educational Resources Information Center

    Connecticut State Dept. of Education, Hartford. Div. of Vocational-Technical Schools.

    This volume contains outlines for 16 courses in machine theory that are designed for machine tool apprentices. Addressed in the individual course outlines are the following topics: basic concepts; lathes; milling machines; drills, saws, and shapers; heat treatment and metallurgy; grinders; quality control; hydraulics and pneumatics;…

  14. The shape of strings to come: How topological defects twist, bend, and wrinkle filament bundles

    NASA Astrophysics Data System (ADS)

    Bruss, Isaac; Grason, Gregory

    2015-03-01

    Topological defects are crucial to the thermodynamics and structure of condensed matter systems. For instance, when incorporated into crystalline membranes like graphene, 5- and 7-fold disclinations produce conical- and saddle-like geometries respectively. A recently discovered mapping between the inter-filament spacing within a deformed bundle and the metric properties of curved surfaces, suggests previously unexplored parallels between the two, specifically in regards to how 2D patterning promotes 3D shape transitions. This discovery is poised to describe the structure of a host of filamentous materials-both biological and microfabricated-that exhibit distinctive shapes and packings. Motivated by the filamentous analogs to the conical and saddles shapes found in thin membranes, we investigate for the first time the interplay between defects in the cross section of a bundle and its global structure, using a combination of continuum elasticity theory and numerical simulation of cohesive bundles with a fixed packing topology. Focusing primarily on the instability response to disclinations, we predict a host of new equilibria structures, some of which are without direct parallel to the analogous membrane, including torsional wrinkling, radial kinking, and helical winding. Center for Hierarchical Manufacturing-CMMI 10-25020, NSF CAREER Award-DMR 09-55760, & UMass MRSEC.

  15. Hot filament CVD of boron nitride films

    DOEpatents

    Rye, Robert R. (Albuquerque, NM)

    1992-01-01

    Using a hot filament (.apprxeq.1400.degree. C.) to activate borazine (B.sub.3 N.sub.3 H.sub.6) molecules for subsequent reaction with a direct line-of-sight substrate, transparent boron ntiride films as thick as 25,000 angstroms are grown for a substrate temperature as low as 100.degree. C. The minimum temperature is determined by radiative heating from the adjacent hot filament. The low temperature BN films show no indication of crystallinity with X-ray diffraction (XRD). X-ray photoelectron spectra (XPS) show the films to have a B:N ratio of 0.97:1 with no other XPS detectable impurities above the 0.5% level. Both Raman and infrared (IR) spectroscopy are characteristic of h-BN with small amounts of hydrogen detected as N-H and B-H bands in the IR spectrum. An important feature of this method is the separation and localization of the thermal activation step at the hot filament from the surface reaction and film growth steps at the substrate surface. This allows both higher temperature thermal activation and lower temperature film growth.

  16. Filament Channel Formation Via Magnetic Helicity Condensation

    NASA Astrophysics Data System (ADS)

    Knizhnik, Kalman Joshua; Antiochos, Spiro K.; DeVore, C. Richard

    2015-04-01

    A major unexplained feature of the solar atmosphere is the accumulation of magnetic shear, in the form of filament channels, at photospheric polarity inversion lines (PILs). In addition to free energy, this shear also represents magnetic helicity, which is conserved under reconnection. In this work, we address the problem of filament channel formation and show how they acquire their shear and magnetic helicity. The results of 3D simulations using the Adaptively Refined Magnetohydrodynamics Solver (ARMS) are presented that support the model of filament channel formation by magnetic helicity condensation developed by Antiochos (2013). We consider the convective twisting of a quasi-potential flux system that is bounded by a PIL and contains a coronal hole (CH). The magnetic helicity injected by the small-scale photospheric motions is shown to inverse-cascade up to the largest allowable scales that defined the closed flux system: the PIL and the CH. This process produces field lines that are both sheared and smooth, and are sheared in opposite senses at the PIL and the CH. The accumulated helicity and shear flux are shown to be in excellent quantitative agreement with the helicity-condensation model. We present a detailed analysis of the simulations, including comparisons of our analytical and numerical results, and discuss their implications for observations. Our research was supported by NASA's Earth and Space Science Fellowship (K.J.K.) and Heliophysics Supporting Research (S.K.A. and C.R.D.) programs.

  17. Modelling the chemistry of star forming filaments

    E-print Network

    Seifried, D

    2015-01-01

    We present simulations of star forming filaments incorporating - to our knowledge - the largest chemical network used to date on-the-fly in a 3D-MHD simulation. The network contains 37 chemical species and about 300 selected reaction rates. For this we use the newly developed package KROME (Grassi et al. 2014). We combine the KROME package with an algorithm which allows us to calculate the column density and attenuation of the interstellar radiation field necessary to properly model heating and ionisation rates. Our results demonstrate the feasibility of using such a complex chemical network in 3D-MHD simulations on modern supercomputers. We perform simulations with different strengths of the interstellar radiation field and the cosmic ray ionisation rate. We find that towards the centre of the filaments there is gradual conversion of hydrogen from H^+ over H to H_2 as well as of C^+ over C to CO. Moreover, we find a decrease of the dust temperature towards the centre of the filaments in agreement with recent...

  18. Contraction dynamics of planar liquid filaments

    NASA Astrophysics Data System (ADS)

    Devlin, Nicole; Sambath, Krishnaraj; Harris, Michael; Basaran, Osman

    2012-11-01

    Thin liquid sheets are ubiquitous in nature and urban landscapes, e.g. waterfalls, and industry, e.g. in various atomizers where sheets of liquid emanate from a nozzle or off a solid surface. These liquid sheets contract due to surface tension and may or may not break into smaller fragments depending on physical properties and flow conditions. The cross-section of a liquid sheet in a plane perpendicular to the main flow direction is a planar or 2D filament. Here, we study the contraction dynamics of an idealized 2D filament of an incompressible Newtonian fluid the initial shape of which is a rectangle terminated by two identical semi-circles. The dynamics are analyzed by solving the full 2D Navier-Stokes system and a1D, slender-jet approximation to it by a numerical technique based on the Galerkin finite element method. Simulation results are summarized by means of a phase diagram in the space of Reynolds number and initial filament aspect ratio. The talk will conclude with a discussion of the different modes of contraction and a critique of the capabilities and limitations of the 1D model.

  19. Stochastic Optimization for Machine Learning

    E-print Network

    Powell, Warren B.

    Stochastic Optimization for Machine Learning ICML 2010, Haifa, Israel Tutorial by Nati Srebro Descent: formulation, analysis and use in machine learning · Learn about extensions and generalizations, and their Machine Learning counterparts Main Goal: Machine Learning is Stochastic Optimization #12;Outline

  20. Formation of cold clumps and filaments around superbubbles

    NASA Astrophysics Data System (ADS)

    Ntormousi, Evangelia; Dawson, Joanne; Del Sordo, Fabio; Hennebelle, Patrick

    2015-08-01

    The combined feedback of supernova explosions and stellar winds from associations of massive stars has a dramatic impact on their environment: Large amounts of energy coming from the ejecta create dense shocks around the associations, compressing the surrounding ISM and triggering the formation of molecular clouds and new stars. In this work we employ high-resolution, three-dimensional simulations of this process with the MHD code RAMSES to explore the effects of self-gravity and magnetic fields on the structure of the shells. Two superbubbles expand and collide in a turbulent diffuse medium. In the expansion phase rich dense structure appears on the surface of the shocks due to hydrodynamic and hydromagnetic instabilities. Although gravity seems to play a minor role in the formation and evolution of these dense clumps, magnetic fields completely alter both the expansion of the superbubble and the morphology of the dense gas, slowing the expansion down and causing the appearance of large-scale filaments. The collision does not help increase the amount of cold gas, but rather destroys a lot of the pre-existing dense structures. Finally, we compare clouds formed in these simulations with observations of a molecular cloud crushed between two superbubbles.

  1. Microwave processing of ceramic oxide filaments. Annual report, FY1997

    SciTech Connect

    Vogt, G.J.

    1998-12-31

    The objective of the microwave filament processing project is to develop microwave techniques to manufacture continuous ceramic oxide filaments. Microwave processing uses the volumetric absorption of microwave power in oxide filament tows to drive off process solvents, to burn out organic binders, and to sinter the dried fibers to produce flexible, high-strength ceramic filaments. The technical goal is to advance filament processing technology by microwave heating more rapidly with less energy and at a lower cost than conventional processing, but with the same quality as conventional processing. The manufacturing goal is to collaborate with the 3M Company, a US manufacturer of ceramic oxide filaments, to evaluate the technology using a prototype filament system and to transfer the microwave technology to the 3M Company. Continuous ceramic filaments are a principal component in many advanced high temperature materials like continuous fiber ceramic composites (CFCC) and woven ceramic textiles. The use of continuous ceramic filaments in CFCC radiant burners, gas turbines, waste incineration, and hot gas filters in U.S. industry and power generation is estimated to save at least 2.16 quad/yr by year 2010 with energy cost savings of at least $8.1 billion. By year 2010, continuous ceramic filaments and CFCC`s have the potential to abate pollution emissions by 917,000 tons annually of nitrous oxide and 118 million tons annually of carbon dioxide (DOE Report OR-2002, February, 1994).

  2. The Cape Ghir filament system in August 2009 (NW Africa)

    NASA Astrophysics Data System (ADS)

    Sangrà, Pablo; Troupin, Charles; Barreiro-González, Beatriz; Desmond Barton, Eric; Orbi, Abdellatif; Arístegui, Javier

    2015-06-01

    In the framework of the Canaries-Iberian marine ecosystem Exchanges (CAIBEX) experiment, an interdisciplinary high-resolution survey was conducted in the NW African region of Cape Ghir (30°38'N) during August 2009. The anatomy of a major filament is investigated on scales down to the submesoscale using in situ and remotely sensed data. The filament may be viewed as a system composed of three intimately connected structures: a small, shallow, and cold filament embedded within a larger, deeper, and cool filament and an intrathermocline anticyclonic eddy (ITE). The cold filament, which stretches 110 km offshore, is a shallow feature 60 m deep and 25 km wide, identified by minimal surface temperatures and rich in chlorophyll a. This structure comprises two asymmetrical submesoscale (˜18 km) fronts with jets flowing in opposite directions. The cold filament is embedded near the equatorward boundary of a much broader region of approximately 120 km width and 150 m depth that forms the cool filament and stretches at least 200 km offshore. This cool region, partly resulting from the influence of cold filament, is limited by two asymmetrical mesoscale (˜50 km) frontal boundaries. At the ITE, located north of the cold filament, we observe evidence of downwelling as indicated by a relatively high concentration of particles extending from the surface to more than 200 m depth. We hypothesize that this ITE may act as a sink of carbon and thus the filament system may serve dual roles of offshore carbon export and carbon sink.

  3. Microtubule-dependent transport and dynamics of vimentin intermediate filaments

    PubMed Central

    Hookway, Caroline; Ding, Liya; Davidson, Michael W.; Rappoport, Joshua Z.; Danuser, Gaudenz; Gelfand, Vladimir I.

    2015-01-01

    We studied two aspects of vimentin intermediate filament dynamics—transport of filaments and subunit exchange. We observed transport of long filaments in the periphery of cells using live-cell structured illumination microscopy. We studied filament transport elsewhere in cells using a photoconvertible-vimentin probe and total internal reflection microscopy. We found that filaments were rapidly transported along linear tracks in both anterograde and retrograde directions. Filament transport was microtubule dependent but independent of microtubule polymerization and/or an interaction with the plus end–binding protein APC. We also studied subunit exchange in filaments by long-term imaging after photoconversion. We found that converted vimentin remained in small clusters along the length of filaments rather than redistributing uniformly throughout the network, even in cells that divided after photoconversion. These data show that vimentin filaments do not depolymerize into individual subunits; they recompose by severing and reannealing. Together these results show that vimentin filaments are very dynamic and that their transport is required for network maintenance. PMID:25717187

  4. Tropomyosin - master regulator of actin filament function in the cytoskeleton.

    PubMed

    Gunning, Peter W; Hardeman, Edna C; Lappalainen, Pekka; Mulvihill, Daniel P

    2015-08-15

    Tropomyosin (Tpm) isoforms are the master regulators of the functions of individual actin filaments in fungi and metazoans. Tpms are coiled-coil parallel dimers that form a head-to-tail polymer along the length of actin filaments. Yeast only has two Tpm isoforms, whereas mammals have over 40. Each cytoskeletal actin filament contains a homopolymer of Tpm homodimers, resulting in a filament of uniform Tpm composition along its length. Evidence for this 'master regulator' role is based on four core sets of observation. First, spatially and functionally distinct actin filaments contain different Tpm isoforms, and recent data suggest that members of the formin family of actin filament nucleators can specify which Tpm isoform is added to the growing actin filament. Second, Tpms regulate whole-organism physiology in terms of morphogenesis, cell proliferation, vesicle trafficking, biomechanics, glucose metabolism and organ size in an isoform-specific manner. Third, Tpms achieve these functional outputs by regulating the interaction of actin filaments with myosin motors and actin-binding proteins in an isoform-specific manner. Last, the assembly of complex structures, such as stress fibers and podosomes involves the collaboration of multiple types of actin filament specified by their Tpm composition. This allows the cell to specify actin filament function in time and space by simply specifying their Tpm isoform composition. PMID:26240174

  5. Geometry of flexible filament cohesion: Better contact through twist?

    E-print Network

    Luis Cajamarca; Gregory M. Grason

    2014-11-03

    Cohesive interactions between filamentous molecules have broad implications for a range of biological and synthetic materials. While long-standing theoretical approaches have addressed the problem of inter-filament forces from the limit of infinitely rigid rods, the ability of flexible filaments to deform intra-filament shape in response to changes in inter-filament geometry has a profound affect on the nature of cohesive interactions. In this paper, we study two theoretical models of inter-filament cohesion in the opposite limit, in which filaments are sufficiently flexible to maintain cohesive contact along their contours, and address, in particular, the role played by helical-interfilament geometry in defining interactions. Specifically, we study models of featureless, tubular filaments interacting via 1) pair-wise Lennard-Jones (LJ) interactions between surface elements and 2) depletion-induced filament binding stabilized by electrostatic surface repulsion. Analysis of these models reveals a universal preference for cohesive filament interactions for non-zero helical skew, and further, that in the asymptotic limit of vanishing interaction range relative to filament diameter, the skew-dependence of cohesion approaches a geometrically defined limit described purely by the close-packing geometry of twisted tubular filaments. We further analyze non-universal features of the skew-dependence of cohesion at small-twist for both potentials, and argue that in the LJ model the pair-wise surface attraction generically destabilizes parallel filaments, while in the second model, pair-wise electrostatic repulsion in combination with non-pairwise additivity of depletion leads to a meta-stable parallel state.

  6. Stellar Winds Geoffrey V. Bicknell Stellar Winds

    E-print Network

    Bicknell, Geoff

    Stellar Winds © Geoffrey V. Bicknell Stellar Winds vw Star #12;Astrophysical Gas Dynamics: Stellar Winds 2/66 1 Characteristics of stellar winds Solar wind Velocity at earth's orbit: (1) Density: (2: Stellar Winds 3/66 Mass flux (spherically symmetric wind): (5) Other stars Red giants: O&B type stars

  7. Low cost composite materials for wind energy conversion systems

    NASA Astrophysics Data System (ADS)

    Weingart, O.

    1980-06-01

    A winding process utilizing a low-cost E-glass fabric called transverse-filament tape for low-cost production of wind turbine generators (WTG) is described. The process can be carried out continuously at high speed to produce large one-piece parts with tapered wall thicknesses on a tapered mandrel. It is being used to manufacture blades for the NASA/DOE 200-ft-diameter MOD-1 WTG and Rockwell/DOE 40-kW small wind energy conversion system (SWECS).

  8. Low cost composite materials for wind energy conversion systems

    NASA Technical Reports Server (NTRS)

    Weingart, O.

    1980-01-01

    A winding process utilizing a low-cost E-glass fabric called transverse-filament tape for low-cost production of wind turbine generators (WTG) is described. The process can be carried out continuously at high speed to produce large one-piece parts with tapered wall thicknesses on a tapered mandrel. It is being used to manufacture blades for the NASA/DOE 200-ft-diameter MOD-1 WTG and Rockwell/DOE 40-kW small wind energy conversion system (SWECS).

  9. Rheology and dynamics of active motor-filament mixtures

    NASA Astrophysics Data System (ADS)

    Marchetti, M. Cristina; Liverpool, Tanniemola B.

    2005-03-01

    We have developed a hydrodynamic description of both the isotropic and polarized phases of mixtures of polar filaments and molecular motors taking into account the fluctuations in both the motor and the filament densities. The various couplings in the hydrodynamic equations are related to microscopic parameters by comparing continuum equations written down on the basis of symmetry considerations to those obtained from a microscopic model of motor-filament interaction. Due to the anisotropy of filament diffusion, motors are capable of generating net filament motion relative to the solvent, resulting in filament convection along the direction of local alignment. The effect of this new term on traveling wave in the polarized phase is analyzed by numerical solutions of the nonlinear hydrodynamic equations. The equations are also used to study the linear rheology of active solutions (stress generated due to an imposed shear flow).

  10. Filamentation Instability of Counterpropagating Charged Particle Beams: Statistical Properties

    SciTech Connect

    Dieckmann, M. E.

    2008-10-15

    The filamentation instability (FI) driven by beams of counter-propagating electrons is examined with one-dimensional (1D) and two-dimensional (2D) particle-in-cell (PIC) simulations. The 1D simulation reveals the saturation mechanism of the FI. The magnetic pressure gradient displaces the electrons. The resulting electrostatic field inhibits together with the magnetic field a further growth of the filaments by suppressing the electron motion. The FI evolves into a stationary equilibrium in 1D, which shows a statistical distribution of the filament sizes that resembles a Gumbel distribution. The 2D PIC simulation allows the filaments to move around each other and filaments carrying currents of equal polarity can merge. The time-evolution of the characteristic size of the filaments in the 2D simulation is measured. It increases linearly with the time.

  11. A FILAMENT ERUPTION ON 2010 OCTOBER 21 FROM THREE VIEWPOINTS

    SciTech Connect

    Filippov, Boris

    2013-08-10

    A filament eruption on 2010 October 21 observed from three different viewpoints by the Solar Terrestrial Relations Observatory and the Solar Dynamic Observatory is analyzed by also invoking data from the Solar and Heliospheric Observatory and the Kanzelhoehe Solar Observatory. The position of the filament just before the eruption at the central meridian not far from the center of the solar disk was favorable for photospheric magnetic field measurements in the area below the filament. Because of this, we were able to calculate with high precision the distribution of the coronal potential magnetic field near the filament. We found that the filament began to erupt when it approached the height in the corona where the magnetic field decay index was greater than 1. We also determined that during the initial stage of the eruption the filament moved along the magnetic neutral surface.

  12. Grid Operation and Coordination with Wind -2 1.0 Introduction

    E-print Network

    McCalley, James D.

    can be shut down to avoid rotor overspeed in high wind conditions. A wind farm can go from near variability Clearly wind speed varies with time, so that the wind speed for turbine k at time t1, vk(t1), will generally differ from the wind speed for turbine k at time t2, vk(t2), where t2>t1. For fixed speed machines

  13. Harmonic control of multiple-stator induction machines for voltage regulation

    E-print Network

    Holloway, Jack Wade, 1980-

    2004-01-01

    Small, one to a few horsepower, three-phase induction machines with three sets of electrically-isolated, magnetically-coupled stator winding circuits are described. A voltage inverter is developed and used to drive one set ...

  14. Machine Vision and Applications manuscript No. (will be inserted by the editor)

    E-print Network

    Smart, William

    . Smart Measuring Optical Distortion in Aircraft Transparencies A Fully Automated System For Quantitative measuring the optical distortion in aircraft wind- shields and automatically classifying that distortion Optical distortion · Inspection · Machine vision 1 Introduction Modern aircraft transparencies (e

  15. Effects of optical smoothing techniques on filamentation in laser plasmas

    SciTech Connect

    Schmitt, A.J.

    1988-10-01

    The effect of the induced spatial incoherence (ISI) and the random phase screen (RPS) optical smoothing techniques on the filamentation instability in laser plasmas has been investigated numerically and analytically. A two-dimensional time-dependent laser--plasma propagation code, including both ponderomotive and thermal-conduction dominated filamentation, is used to simulate the laser--plasma interaction. The results of these simulations are compared to the predictions of a simple theory that describes the filamentation of both coherent light and spatially and temporally incoherent light. It is shown that filaments driven by the thermal mechanism tend to cluster together and produce greater large scale nonuniformities in the laser illumination than the ponderomotively driven filaments. The RPS optical smoothing technique is found to reduce filamentation only if fast focusing optics (f/numberapprox. <5) are used. The ISI smoothing method suppresses filamentation for fast or slow focusing optics, and requires only moderate laser bandwidth (..delta omega../..omega..approx. =0.1%). In general, the ISI smoothing method provides the best suppression of filamentation. Under common laboratory conditions, filamentation is pronounced at longer laser wavelengths (1.06 ..mu..m--0.53 ..mu..m), suggesting that current experiments may be dominated by filamentation effects. Optical smoothing methods can suppress, but not eradicate, filamentation effects at these wavelengths. The optical smoothing methods are most effective in short-wavelength (0.25 ..mu..m) laser-driven plasmas. At 0.25 ..mu..m laser wavelength, ISI is found to completely eliminate filamentation effects in both time-averaged and instantaneous intensity distributions.

  16. Stepwise Sliding of Single Actin and Myosin Filaments

    PubMed Central

    Liu, Xiumei; Pollack, Gerald H.

    2004-01-01

    Dynamics of sliding were explored in isolated actin and myosin filaments. Sliding occurs in steps. The steps are integer multiples of 2.7 nm, which is equal to the monomeric repeat along the actin filament. When filaments were forced to slide in the reverse direction, the size paradigm was the same. This size paradigm is parallel to that seen in the kinesin-microtubule system, where step size is an integer multiple of the tubulin repeat along the microtubule. PMID:14695277

  17. Forces at individual pseudopod-filament adhesive contacts

    NASA Astrophysics Data System (ADS)

    Paneru, Govind; Thapa, Prem S.; McBride, Sean P.; Moore-Nichols, David; Law, Bruce M.; Flanders, Bret N.

    2011-08-01

    On-chip cellular force sensors are fabricated from cantilever poly(3,4-ethylene dioxythiophene) filaments that visibly deflect under forces exerted at individual pseudopod-filament adhesive contacts. The shape of the deflected filaments and their ˜3 nN/?m spring constants are predicted by cantilever rod theory. Pulling forces exerted by Dictyostelium discoideum cells at these contacts are observed to reach ˜20 nN without breaking the contact.

  18. Large scale filaments associated with Milky Way spiral arms

    NASA Astrophysics Data System (ADS)

    Wang, Ke; Testi, Leonardo; Ginsburg, Adam; Walmsley, Malcolm; Molinari, Sergio; Schisano, Eugenio

    2015-08-01

    The ubiquity of filamentary structure at various scales through out the Galaxy has triggered a renewed interest in their formation, evolution, and role in star formation. The largest filaments can reach up to Galactic scale as part of the spiral arm structure. However, such large scale filaments are hard to identify systematically due to limitations in identifying methodology (i.e., as extinction features). We present a new approach to directly search for the largest, coldest, and densest filaments in the Galaxy, making use of sensitive Herschel Hi-GAL data complemented by spectral line cubes. We present a sample of the 9 most prominent Herschel filaments from a pilot search field. These filaments measure 37-99 pc long and 0.6-3.0 pc wide with masses (0.5-8.3)×104 Msun, and beam-averaged (28", or 0.4-0.7 pc) peak H2 column densities of (1.7-9.3)x1022 cm-2. The bulk of the filaments are relatively cold (17-21 K), while some local clumps have a dust temperature up to 25-47 K due to local star formation activities. All the filaments are located within <~60 pc from the Galactic mid-plane. Comparing the filaments to a recent spiral arm model incorporating the latest parallax measurements, we find that 7/9 of them reside within arms, but most are close to arm edges. These filaments are comparable in length to the Galactic scale height and therefore are not simply part of a grander turbulent cascade. These giant filaments, which often contain regularly spaced pc-scale clumps, are much larger than the filaments found in the Herschel Gould's Belt Survey, and they form the upper ends in the filamentary hierarchy. Full operational ALMA and NOEMA will be able to resolve and characterize similar filaments in nearby spiral galaxies, allowing us to compare the star formation in a uniform context of spiral arms.

  19. Tailoring femtosecond laser pulse filamentation using plasma photonic lattices

    SciTech Connect

    Suntsov, Sergiy; Abdollahpour, Daryoush; Panagiotopoulos, Paris; Papazoglou, Dimitrios G.; Tzortzakis, Stelios; Couairon, Arnaud

    2013-07-08

    We demonstrate experimentally that by using transient plasma photonic lattices, the attributes of intense femtosecond laser filaments, such as peak intensity and length, can be dynamically controlled. The extended plasma lattice structure is generated using two co-propagating non-diffracting intense Bessel beams in water. The use of such transient lattice structures to control the competition between linear and nonlinear effects involved in filamentation opens the way for extensive control of the filamentation process.

  20. Improving the electrochemical performance of carbon filaments by solvent cleansing

    SciTech Connect

    Shui, X.; Chung, D.D.L.; Frysz, C.A.

    1995-12-31

    Found inherent in the submicron-diameter vapor-grown carbon filament fabrication process was a tarry residue, which comprised polyaromatic hydrocarbons. Cyclic voltammetry conducted using carbon working electrodes and an iron cyanide electrolyte showed that the residue harmed the electrochemical performance. Removal of the residue from the filaments using a solvent resulted in increases in the electron transfer rate (to values as high as 0.2 cm/s) and reversibility of the iron cyanide redox species, increase in the packing density and decrease in the filament-filament contact electrical resistivity.

  1. Where Do Solar Filaments Form?: Consequences for Theoretical Models

    NASA Astrophysics Data System (ADS)

    Mackay, Duncan H.; Gaizauskas, Victor; Yeates, Anthony R.

    2008-03-01

    This paper examines the locations where large, stable solar filaments form relative to magnetic bipoles lying underneath them. The study extends the earlier work of F. Tang to include two additional classification categories for stable filaments and to consider their population during four distinct phases of the solar cycle. With this new classification scheme, results show that over 92% of filaments form in flux distributions that are nonbipolar in nature where the filament lies either fully (79%) or partially (13%) above a polarity inversion line (PIL) external to any single bipole. Filaments that form within a single bipole (traditionally called Type A) are not as common as previously thought. These results are a significant departure from those of F. Tang. Consistency with the earlier work is shown when our data are regrouped to conform to the two-category classification scheme for filaments adopted by F. Tang. We also demonstrate that only filaments that form along the external PIL lying between two bipoles (62% of the full sample, traditionally called Type B) show any form of solar cycle dependence, where their number significantly increases with magnetic activity over the solar cycle. Finally, current observations and theoretical models for the formation of filaments are discussed in the context of the present results. We conclude that key elements in the formation of the majority of filaments considered within this study must be the convergence of magnetic flux resulting in either flux cancellation or coronal reconnection.

  2. Hollow cylindrical plasma filament waveguide with discontinuous finite thickness cladding

    SciTech Connect

    Alshershby, Mostafa; Hao Zuoqiang; Lin Jingquan

    2013-01-15

    We have explored here a hollow cylindrical laser plasma multifilament waveguide with discontinuous finite thickness cladding, in which the separation between individual filaments is in the range of several millimeters and the waveguide cladding thickness is in the order of the microwave penetration depth. Such parameters give a closer representation of a realistic laser filament waveguide sustained by a long stable propagation of femtosecond (fs) laser pulses. We report how the waveguide losses depend on structural parameters like normalized plasma filament spacing, filament to filament distance or pitch, normal spatial frequency, and radius of the plasma filament. We found that for typical plasma parameters, the proposed waveguide can support guided modes of microwaves in extremely high frequency even with a cladding consisting of only one ring of plasma filaments. The loss of the microwave radiation is mainly caused by tunneling through the discontinuous finite cladding, i.e., confinement loss, and is weakly dependent on the plasma absorption. In addition, the analysis indicates that the propagation loss is fairly large compared with the loss of a plasma waveguide with a continuous infinite thickness cladding, while they are comparable when using a cladding contains more than one ring. Compared to free space propagation, this waveguide still presents a superior microwave transmission to some distance in the order of the filamentation length; thus, the laser plasma filaments waveguide may be a potential channel for transporting pulsed-modulated microwaves if ensuring a long and stable propagation of fs laser pulses.

  3. Plasma temperature clamping in filamentation laser induced breakdown spectroscopy.

    PubMed

    Harilal, S S; Yeak, J; Phillips, M C

    2015-10-19

    Ultrafast laser filament induced breakdown spectroscopy is a very promising method for remote material detection. We present characteristics of plasmas generated in a metal target by laser filaments in air. Our measurements show that the temperature of the ablation plasma is clamped along the filament channel due to intensity clamping in a filament. Nevertheless, significant changes in radiation intensity are noticeable, and this is essentially due to variation in the number density of emitting atoms. The present results also explain the near absence of ion emission but strong atomic neutral emission from plumes produced during fs LIBS in air. PMID:26480372

  4. An invertebrate smooth muscle with striated muscle myosin filaments.

    PubMed

    Sulbarán, Guidenn; Alamo, Lorenzo; Pinto, Antonio; Márquez, Gustavo; Méndez, Franklin; Padrón, Raúl; Craig, Roger

    2015-10-20

    Muscle tissues are classically divided into two major types, depending on the presence or absence of striations. In striated muscles, the actin filaments are anchored at Z-lines and the myosin and actin filaments are in register, whereas in smooth muscles, the actin filaments are attached to dense bodies and the myosin and actin filaments are out of register. The structure of the filaments in smooth muscles is also different from that in striated muscles. Here we have studied the structure of myosin filaments from the smooth muscles of the human parasite Schistosoma mansoni. We find, surprisingly, that they are indistinguishable from those in an arthropod striated muscle. This structural similarity is supported by sequence comparison between the schistosome myosin II heavy chain and known striated muscle myosins. In contrast, the actin filaments of schistosomes are similar to those of smooth muscles, lacking troponin-dependent regulation. We conclude that schistosome muscles are hybrids, containing striated muscle-like myosin filaments and smooth muscle-like actin filaments in a smooth muscle architecture. This surprising finding has broad significance for understanding how muscles are built and how they evolved, and challenges the paradigm that smooth and striated muscles always have distinctly different components. PMID:26443857

  5. Filament shape versus coronal potential magnetic field structure

    NASA Astrophysics Data System (ADS)

    Filippov, B.

    2016-01-01

    Solar filament shape in projection on disc depends on the structure of the coronal magnetic field. We calculate the position of polarity inversion lines (PILs) of coronal potential magnetic field at different heights above the photosphere, which compose the magnetic neutral surface, and compare with them the distribution of the filament material in H? chromospheric images. We found that the most of the filament material is enclosed between two PILs, one at a lower height close to the chromosphere and one at a higher level, which can be considered as a height of the filament spine. Observations of the same filament on the limb by the Solar Terrestrial Relations Observatory spacecraft confirm that the height of the spine is really very close to the value obtained from the PIL and filament border matching. Such matching can be used for filament height estimations in on-disc observations. Filament barbs are housed within protruding sections of the low-level PIL. On the base of simple model, we show that the similarity of the neutral surfaces in potential and non-potential fields with the same sub-photospheric sources is the reason for the found tendency for the filament material to gather near the potential-field neutral surface.

  6. C IV Doppler shifts observed in active region filaments

    NASA Technical Reports Server (NTRS)

    Klimchuk, J. A.

    1986-01-01

    The Doppler shift properties of 21 active region filaments were studied using C IV Dopplergram data. Most are associated with corridors of weak magnetic field that separate opposite polarity strong fields seen in photospheric magnetograms. A majority of the filaments are relatively blue shifted, although several lie very close to the dividing lines between blue and red shift. Only one filament in the samples is clearly red shifted. A new calibration procedure for Dopplergrams indicates that sizable zero point offsets are often required. The center-to-limb behavior of the resulting absolute Doppler shifts suggests that filament flows are usually quite small. It is possible that they vanish.

  7. Are the filaments real. [Large-scale distribution of galaxies

    SciTech Connect

    Bhavsar, S.P.; Ling, E.N.

    1988-08-01

    The extent to which two selection effects, visual bias and random accidents, enter into the perception of filaments in the CfA catalog is investigated. The minimal spanning tree (MST) algorithm is used to identify the filaments, and a data-permuting technique is used to determine their statistical significance. The suitability of the MST for this purpose is demonstrated. It is found that the filaments are not accidental alignments or illusions; they disappear when the small-amplitude correlations at large scale lengths are removed. This is the first objective, statistical evidence for the physical existence of the filaments. 29 references.

  8. Themis, BBSO, MDI and trace observations of a filament eruption

    NASA Astrophysics Data System (ADS)

    Contarino, L.; Romano, P.; Yurchyshyn, V. B.; Zuccarello, F.

    2003-09-01

    We describe a filament destabilization which occurred on 5 May 2001 in NOAA AR 9445, before a flare event. The analysis is based on H? data acquired by THEMIS operating in IPM mode, H? data and magnetograms obtained at the Big Bear Solar Observatory, MDI magnetograms and 171 Å images taken by TRACE. Observations at 171 Å show that ˜ 2.5 hours before the flare peak, the western part of the EUV filament channel seems to split into two parts. The bifurcation of the filament in the H? line is observed to take place ˜ 1.5 hours before the flare peak, while one thread of the filament erupts ˜10 min before the peak of the flare. Our analysis of longitudinal magnetograms shows the presence of a knot of positive flux inside a region of negative polarity, which coincides with the site of filament bifurcation. We interpret this event as occurring in two steps: the first step, characterized by the appearance of a new magnetic feature and the successive reconnection in the lower atmosphere between its field lines and the field lines of the old arcade sustaining the filament, leads to a new filament channel and to the observed filament bifurcation; the second step, characterized by the eruption of part of the filament lying on the old PIL, leads to a second reconnection, occurring higher in the corona.

  9. Advances in intense femtosecond laser filamentation in air

    NASA Astrophysics Data System (ADS)

    Chin, S. L.; Wang, T.-J.; Marceau, C.; Wu, J.; Liu, J. S.; Kosareva, O.; Panov, N.; Chen, Y. P.; Daigle, J.-F.; Yuan, S.; Azarm, A.; Liu, W. W.; Seideman, T.; Zeng, H. P.; Richardson, M.; Li, R.; Xu, Z. Z.

    2011-09-01

    This is a review of some recent development in femtosecond filamentation science with emphasis on our collective work. Previously reviewed work in the field will not be discussed. We thus start with a very brief description of the fundamental physics of single filamentation of powerful femtosecond laser pulses in air. Intensity clamping is emphasized. One consequence is that the peak intensity inside one or more filaments would not increase significantly even if one focuses the pulse at very high peak power even up to the peta-watt level. Another is that the clamped intensity is independent of pressure. One interesting outcome of the high intensity inside a filament is filament fusion which comes from the nonlinear change of index of refraction inside the filament leading to cross beam focusing. Because of the high intensity inside the filament, one can envisage nonlinear phenomena taking place inside a filament such as a new type of Raman red shift and the generation of very broad band supercontinuum into the infrared through four-wave-mixing. This is what we call by filamentation nonlinear optics. It includes also terahertz generation from inside the filament. The latter is discussed separately because of its special importance to those working in the field of safety and security in recent years. When the filamenting pulse is linearly polarized, the isotropic nature of air becomes birefringent both electronically (instantaneous) and through molecular wave packet rotation and revival (delayed). Such birefringence is discussed in detailed. Because, in principle, a filament can be projected to a long distance in air, applications to pollution measurement as well as other atmospheric science could be earned out. We call this filamentation atmospheric science. Thus, the following subjects are discussed briefly, namely, lightning control, rain making, remote measurement of electric field, microwave guidance and remote sensing of pollutants. A discussion on the higher order Kerr effect on the physics of filamentation is also given. This is a new hot subject of current debate. This review ends on giving our view of the prospect of progress of this field of filamentation in the future. We believe it hinges upon the development of the laser technology based upon the physical understanding of filamentation and on the reduction in price of the laser system.

  10. Galaxy alignment as a probe of large-scale filaments

    E-print Network

    Rong, Yu; Zhang, Shuang-Nan

    2015-01-01

    The orientations of the red galaxies in a filament are aligned with the orientation of the filament. We thus develop a location-alignment-method (LAM) of detecting filaments around clusters of galaxies, which uses both the alignments of red galaxies and their distributions in two-dimensional images. For the first time, the orientations of red galaxies are used as probes of filaments. We apply LAM to the environment of Coma cluster, and find four filaments (two filaments are located in sheets) in two selected regions, which are compared with the filaments detected with the method of \\cite{Falco14}. We find that LAM can effectively detect the filaments around a cluster, even with $3\\sigma$ confidence level, and clearly reveal the number and overall orientations of the detected filaments. LAM is independent of the redshifts of galaxies, and thus can be applied at relatively high redshifts and to the samples of red galaxies without the information of redshifts. We also find that the images of background galaxies ...

  11. Properties of cosmological filaments extracted from Eulerian simulations

    NASA Astrophysics Data System (ADS)

    Gheller, C.; Vazza, F.; Favre, J.; Brüggen, M.

    2015-10-01

    Using a new parallel algorithm implemented within the VisIt framework, we analysed large cosmological grid simulations to study the properties of baryons in filaments. The procedure allows us to build large catalogues with up to ˜3 × 104 filaments per simulated volume and to investigate the properties of cosmic filaments for very large volumes at high resolution (up to 3003 Mpc3 simulated with 20483 cells). We determined scaling relations for the mass, volume, length and temperature of filaments and compared them to those of galaxy clusters. The longest filaments have a total length of about 200 Mpc with a mass of several 1015 M?. We also investigated the effects of different gas physics. Radiative cooling significantly modifies the thermal properties of the warm-hot-intergalactic medium of filaments, mainly by lowering their mean temperature via line cooling. On the other hand, powerful feedback from active galactic nuclei in surrounding haloes can heat up the gas in filaments. The impact of shock-accelerated cosmic rays from diffusive shock acceleration on filaments is small and the ratio between cosmic ray and gas pressure within filaments is of the order of ˜10-20 per cent.

  12. Wind Tunnel 

    E-print Network

    Unknown

    2011-08-17

    Simulation of Cooling Effect of Wind Tower on Passively Ventilated Building John Seryak Kelly Kissock Project Engineer Associate Professor Department of Mechanical and Aerospace Engineering University of Dayton... Dayton, Ohio ABSTRACT Traditional buildings are cooled and ventilated by mechanically induced drafts. Natural ventilation aspires to cool and ventilate a building by natural means, such as cross ventilation or wind towers, without mechanical...

  13. Meteorology (Wind)

    Atmospheric Science Data Center

    2014-09-25

    ... is in each range (0-2, 3-6, 7-10, 11-14, 15-18, 19-25 m/s).   Wind Speed at 50 m at 3-hourly intervals (m/s)   ... be adjusted to heights from 10 to 300 meters using the Gipe power law. Wind speeds may be adjusted for different terrain by selecting from ...

  14. Electrical machines and assemblies including a yokeless stator with modular lamination stacks

    DOEpatents

    Qu, Ronghai; Jansen, Patrick Lee; Bagepalli, Bharat Sampathkumar; Carl, Jr., Ralph James; Gadre, Aniruddha Dattatraya; Lopez, Fulton Jose

    2010-04-06

    An electrical machine includes a rotor with an inner rotor portion and an outer rotor portion, and a double-sided yokeless stator. The yokeless stator includes modular lamination stacks and is configured for radial magnetic flux flow. The double-sided yokeless stator is concentrically disposed between the inner rotor portion and the outer rotor portion of the electrical machine. Examples of particularly useful embodiments for the electrical machine include wind turbine generators, ship propulsion motors, switch reluctance machines and double-sided synchronous machines.

  15. Wind Energy Conversion Systems. A Unit of Instruction.

    ERIC Educational Resources Information Center

    Greenwald, Martin

    The number of secondary schools, colleges, and universities offering courses in wind energy machine construction, repair, and installation, continues to increase. It is the purpose of this unit to include the study of wind energy conversion systems (WECS) as an integral part of related vocational and technical curriculum materials. The unit's…

  16. Wind energy.

    PubMed

    Leithead, W E

    2007-04-15

    From its rebirth in the early 1980s, the rate of development of wind energy has been dramatic. Today, other than hydropower, it is the most important of the renewable sources of power. The UK Government and the EU Commission have adopted targets for renewable energy generation of 10 and 12% of consumption, respectively. Much of this, by necessity, must be met by wind energy. The US Department of Energy has set a goal of 6% of electricity supply from wind energy by 2020. For this potential to be fully realized, several aspects, related to public acceptance, and technical issues, related to the expected increase in penetration on the electricity network and the current drive towards larger wind turbines, need to be resolved. Nevertheless, these challenges will be met and wind energy will, very likely, become increasingly important over the next two decades. An overview of the technology is presented. PMID:17272245

  17. On the Formation of Filament Channels

    NASA Astrophysics Data System (ADS)

    Wang, Y.-M.; Muglach, K.

    2007-09-01

    From the H? archive of the Big Bear Solar Observatory (BBSO) we have selected three examples showing fibril structures that change their orientation, over 1 or 2 days, from nearly perpendicular to nearly parallel to the polarity inversion line (PIL). In one case, the filament channel forms within a single decaying bipole; in the other two cases, it forms along the boundary between an active region and its surroundings. Comparing the H? filtergrams with magnetograms from the Michelson Doppler Imager (MDI), we find that the fibrils become aligned with the PIL as supergranular convection brings opposite-polarity magnetic flux together; shearing motions along the PIL, when present, act mainly to accelerate the rate of diffusive annihilation. We conclude that the reorientation of the fibrils is due to the cancellation and submergence of the transverse field component (B?), leaving behind the preexisting axial field component (B?). The latter may have been generated by photospheric differential rotation over longer timescales, or else was already present when the flux emerged. The filament channel forms slowly if B?/B? is initially small, as along the internal neutral line of a newly emerged bipole, but may appear within hours if this ratio is initially substantial, as where the dipole-like loops of an active region curve around its periphery. In all of our examples, filaments form within a day or so after the fibrils become aligned with the PIL, while barbs appear at a later stage, as flux elements continue to diffuse across the PIL and cancel with the majority-polarity flux on the other side.

  18. Femtosecond laser filamentation with a 4 J/60 fs Ti:Sapphire laser beam: Multiple filaments and intensity clamping

    NASA Astrophysics Data System (ADS)

    Ji, Z. G.; Liu, J. S.; Wang, Z. X.; Ju, J.; Lu, X. M.; Jiang, Y. H.; Leng, Y. X.; Liang, X. Y.; Liu, W.; Chin, S. L.; Li, R. X.; Xu, Z. Z.

    2010-04-01

    We used both the backscattered nitrogen fluorescence signal (BSF) and ICCD fluorescence side imaging methods to study the filament light intensity with a 4 J/60 fs Ti:sapphire laser beam. It has been concluded that even the laser power is increased by 100 times in our experiment the peak laser intensity in the filament only has a little change. We attribute this phenomenon to the result of intensity clamping and the competition of multiple filaments.

  19. Assembly of Simple Epithelial Keratin Filaments: Deciphering the Ion Dependence in Filament Organization.

    PubMed

    Hémonnot, Clément Y J; Mauermann, Monika; Herrmann, Harald; Köster, Sarah

    2015-10-12

    The intermediate filament proteins keratin K8 and K18 constitute an essential part of the cytoskeleton in simple epithelial cell layers, structurally enforcing their mechanical resistance. K8/K18 heterodimers form extended filaments and higher-order structures including bundles and networks that bind to cell junctions. We study the assembly of these proteins in the presence of monovalent or divalent ions by small-angle X-ray scattering. We find that both ion species cause an increase of the filament diameter when their concentration is increased; albeit, much higher values are needed for the monovalent compared to the divalent ions for the same effect. Bundling occurs also for monovalent ions and at comparatively low concentrations of divalent ions, very different from vimentin intermediate filaments, a fibroblast-specific cytoskeleton component. We explain these differences by variations in charge and hydrophobicity patterns of the proteins. These differences may reflect the respective physiological situation in stationary cell layers versus single migrating fibroblasts. PMID:26327161

  20. Finite element analyses of continuous filament ties for masonry applications:final report for the Arquin Corporation.

    SciTech Connect

    Quinones, Armando; Bibeau, Tiffany A.; Ho, Clifford Kuofei

    2006-06-01

    Finite-element analyses were performed to simulate the response of a hypothetical masonry shear wall with and without continuous filament ties to various lateral loads. The loads represented three different scenarios: (1) 100 mph wind, (2) explosive attack, and (3) an earthquake. In addition, a static loading analysis and cost comparison were performed to evaluate optimal materials and designs for the spacers affixed to the filaments. Results showed that polypropylene, ABS, and polyethylene (high density) were suitable materials for the spacers based on performance and cost, and the short T-spacer design was optimal based on its performance and functionality. Results of the shear-wall loading simulations revealed that simulated walls with the continuous filament ties yielded factors of safety that were at least ten times greater than those without the ties. In the explosive attack simulation (100 psi), the simulated wall without the ties failed (minimum factor of safety was less than one), but the simulated wall with the ties yielded a minimum factor of safety greater than one. Simulations of the walls subject to lateral loads caused by 100 mph winds (0.2 psi) and seismic events with a peak ground acceleration of 1 ''g'' (0.66 psi) yielded no failures with or without the ties. Simulations of wall displacement during the seismic scenarios showed that the wall with the ties resulted in a maximum displacement that was 20% less than the wall without the ties.

  1. Videos of light filamentation in air

    NASA Astrophysics Data System (ADS)

    Velten, Andreas; Schmitt-Sody, Andreas; Diels, Jean-Claude; Rostami, Shermineh; Rasoulof, Amin; Feng, Chengyong; Arissian, Ladan

    2015-05-01

    Light filaments are of interest for applications in remote sensing, communications, and the control of electronic discharges. Different plasma dynamics and emitted radiation have been observed according to the initial pulse characteristics and beam collimation. To help observing and understanding these observations, a new technique of creating a movie of the moving light pulse and the plasma emission in its wake is presented. Over 1,000 synchronized frames of a streak camera are combined to produce the 4D (2 D space, time in ps and wavelength) movie.

  2. Spatiotemporal rogue events in femtosecond filamentation

    SciTech Connect

    Majus, D.; Jukna, V.; Valiulis, G.; Dubietis, A.; Faccio, D.

    2011-02-15

    We present experimental and numerical investigations of optical extreme (rogue) event statistics recorded in the regime of femtosecond pulse filamentation in water. In the spectral domain, the extreme events manifest themselves as either large or small extremes of the spectral intensity, justified by right- or left-tailed statistical distributions, respectively. In the time domain, the observed extreme events are associated with pulse splitting and energy redistribution in space and therefore are exquisitely linked to three-dimensional, spatiotemporal dynamics and formation of the X waves.

  3. Vortex filament model and multifractal conjecture.

    PubMed

    Zybin, K P; Sirota, V A

    2012-05-01

    We develop a theory of turbulence based on the inviscid Navier-Stokes equation. We get a simple but exact stochastic solution (vortex filament model) which allows us to obtain a power law for velocity structure functions in the inertial range. Combining the model with the multifractal conjecture, we calculate the scaling exponents without using the extended self-similarity approach. The results obtained are shown to be in very good agreement with numerical simulations and experimental data. The role of more general stochastic solutions of the Navier-Stokes equation is discussed. PMID:23004872

  4. Quantum kinetic theory of the filamentation instability

    E-print Network

    A. Bret; F. Haas

    2011-05-10

    The quantum electromagnetic dielectric tensor for a multi species plasma is re-derived from the gauge invariant Wigner-Maxwell system and presented under a form very similar to the classical one. The resulting expression is then applied to a quantum kinetic theory of the electromagnetic filamentation instability. Comparison is made with the quantum fluid theory including a Bohm pressure term, and with the cold classical plasma result. A number of analytical expressions are derived for the cutoff wave vector, the largest growth rate and the most unstable wave vector.

  5. From filaments to oscillating starless cores

    NASA Astrophysics Data System (ADS)

    Keto, Eric; Burkert, Andreas

    2014-06-01

    Long-wavelength sonic oscillations are observed or inferred in many of the small, dark molecular clouds, the starless cores, that are the precursors to protostars. The oscillations provide significant internal energy and the time-scale for their dissipation may control the rate of star formation in starless cores. Despite their importance, their origin is unknown. We explore one hypothesis that the oscillations develop as a starless core forms from a filament. We model this process with a numerical hydrodynamic simulation and generate synthetic molecular line observations with a radiative transfer simulation. Comparison with actual observations shows general agreement suggesting that the proposed mechanism is viable.

  6. Plasma planar filament instability and Alfven waves

    E-print Network

    Garcia de Andrade

    2007-03-05

    Inhomogeneous plasmas filaments instabilities are investigated by using the techniques of classical differential geometry of curves where Frenet torsion and curvature describe completely the motion of curves. In our case the Frenet frame changes in time and also depends upon the other coordinates taking into account the inhomogeneity of the plasma. The exponential perturbation method so commonly used to describe cosmological perturbatons is applied to magnetohydrodynamic (MHD) plasma equations to find longitudinal modes describing Alfven waves propagation modes describing plasma waves in the medium. Stability is investigated in the imaginary axis of the spectra of complex frequencies ${\\omega}$ or $Im(\\omega)\

  7. Fault Tolerant State Machines

    NASA Technical Reports Server (NTRS)

    Burke, Gary R.; Taft, Stephanie

    2004-01-01

    State machines are commonly used to control sequential logic in FPGAs and ASKS. An errant state machine can cause considerable damage to the device it is controlling. For example in space applications, the FPGA might be controlling Pyros, which when fired at the wrong time will cause a mission failure. Even a well designed state machine can be subject to random errors us a result of SEUs from the radiation environment in space. There are various ways to encode the states of a state machine, and the type of encoding makes a large difference in the susceptibility of the state machine to radiation. In this paper we compare 4 methods of state machine encoding and find which method gives the best fault tolerance, as well as determining the resources needed for each method.

  8. Machine tool locator

    DOEpatents

    Hanlon, John A. (Los Alamos, NM); Gill, Timothy J. (Stanley, NM)

    2001-01-01

    Machine tools can be accurately measured and positioned on manufacturing machines within very small tolerances by use of an autocollimator on a 3-axis mount on a manufacturing machine and positioned so as to focus on a reference tooling ball or a machine tool, a digital camera connected to the viewing end of the autocollimator, and a marker and measure generator for receiving digital images from the camera, then displaying or measuring distances between the projection reticle and the reference reticle on the monitoring screen, and relating the distances to the actual position of the autocollimator relative to the reference tooling ball. The images and measurements are used to set the position of the machine tool and to measure the size and shape of the machine tool tip, and examine cutting edge wear. patent

  9. Quantum Learning Machine

    E-print Network

    Jeongho Bang; James Lim; M. S. Kim; Jinhyoung Lee

    2008-03-31

    We propose a novel notion of a quantum learning machine for automatically controlling quantum coherence and for developing quantum algorithms. A quantum learning machine can be trained to learn a certain task with no a priori knowledge on its algorithm. As an example, it is demonstrated that the quantum learning machine learns Deutsch's task and finds itself a quantum algorithm, that is different from but equivalent to the original one.

  10. Finite element analysis of filament-wound composite pressure vessel under internal pressure

    NASA Astrophysics Data System (ADS)

    Sulaiman, S.; Borazjani, S.; Tang, S. H.

    2013-12-01

    In this study, finite element analysis (FEA) of composite overwrapped pressure vessel (COPV), using commercial software ABAQUS 6.12 was performed. The study deals with the simulation of aluminum pressure vessel overwrapping by Carbon/Epoxy fiber reinforced polymer (CFRP). Finite element method (FEM) was utilized to investigate the effects of winding angle on filament-wound pressure vessel. Burst pressure, maximum shell displacement and the optimum winding angle of the composite vessel under pure internal pressure were determined. The Laminae were oriented asymmetrically for [00,00]s, [150,-150]s, [300,-300]s, [450,-450]s, [550,-550]s, [600,-600]s, [750,-750]s, [900,-900]s orientations. An exact elastic solution along with the Tsai-Wu, Tsai-Hill and maximum stress failure criteria were employed for analyzing data. Investigations exposed that the optimum winding angle happens at 550 winding angle. Results were compared with the experimental ones and there was a good agreement between them.

  11. Electronically commutated serial-parallel switching for motor windings

    DOEpatents

    Hsu, John S. (Oak Ridge, TN)

    2012-03-27

    A method and a circuit for controlling an ac machine comprises controlling a full bridge network of commutation switches which are connected between a multiphase voltage source and the phase windings to switch the phase windings between a parallel connection and a series connection while providing commutation discharge paths for electrical current resulting from inductance in the phase windings. This provides extra torque for starting a vehicle from lower battery current.

  12. Wind power plants in the weather conditions of Northern Finland

    NASA Astrophysics Data System (ADS)

    Bohmeke, Georg

    Lappland's fells and highlands feature a notable wind power potential due to special meteorological circumstances. The wind power plants for these sites must be equipped with special means against icing and low temperatures. Icing events monitored on a small test machine are described and compared with general load assumptions. Different means of ice detection and ice removal from rotor blades are presented. Low temperature and anti-icing requirements for wind power plant components and operation control are discussed.

  13. Debugging the virtual machine

    SciTech Connect

    Miller, P.; Pizzi, R.

    1994-09-02

    A computer program is really nothing more than a virtual machine built to perform a task. The program`s source code expresses abstract constructs using low level language features. When a virtual machine breaks, it can be very difficult to debug because typical debuggers provide only low level machine implementation in formation to the software engineer. We believe that the debugging task can be simplified by introducing aspects of the abstract design into the source code. We introduce OODIE, an object-oriented language extension that allows programmers to specify a virtual debugging environment which includes the design and abstract data types of the virtual machine.

  14. Chaotic Boltzmann machines

    PubMed Central

    Suzuki, Hideyuki; Imura, Jun-ichi; Horio, Yoshihiko; Aihara, Kazuyuki

    2013-01-01

    The chaotic Boltzmann machine proposed in this paper is a chaotic pseudo-billiard system that works as a Boltzmann machine. Chaotic Boltzmann machines are shown numerically to have computing abilities comparable to conventional (stochastic) Boltzmann machines. Since no randomness is required, efficient hardware implementation is expected. Moreover, the ferromagnetic phase transition of the Ising model is shown to be characterised by the largest Lyapunov exponent of the proposed system. In general, a method to relate probabilistic models to nonlinear dynamics by derandomising Gibbs sampling is presented. PMID:23558425

  15. Perspex machine II: visualization

    NASA Astrophysics Data System (ADS)

    Anderson, James A. D. W.

    2005-01-01

    We review the perspex machine and improve it by reducing its halting conditions to one condition. We also introduce a data structure, called the "access column," that can accelerate a wide class of perspex programs. We show how the perspex can be visualised as a tetrahedron, artificial neuron, computer program, and as a geometrical transformation. We discuss the temporal properties of the perspex machine, dissolve the famous time travel paradox, and present a hypothetical time machine. Finally, we discuss some mental properties and show how the perspex machine solves the mind-body problem and, specifically, how it provides one physical explanation for the occurrence of paradigm shifts.

  16. Perspex machine II: visualization

    NASA Astrophysics Data System (ADS)

    Anderson, James A. D. W.

    2004-12-01

    We review the perspex machine and improve it by reducing its halting conditions to one condition. We also introduce a data structure, called the "access column," that can accelerate a wide class of perspex programs. We show how the perspex can be visualised as a tetrahedron, artificial neuron, computer program, and as a geometrical transformation. We discuss the temporal properties of the perspex machine, dissolve the famous time travel paradox, and present a hypothetical time machine. Finally, we discuss some mental properties and show how the perspex machine solves the mind-body problem and, specifically, how it provides one physical explanation for the occurrence of paradigm shifts.

  17. An interlaboratory comparison of measurements from filament-stretching rheometers using common

    E-print Network

    An interlaboratory comparison of measurements from filament-stretching rheometers using common test development of a filament-stretching extensional rheometer at Monash University, similar rheometers have been filament stretching rheometers at similar Deborah numbers. Despite variations in instrument design

  18. Filament stretching and capillary breakup extensional rheometry measurements of viscoelastic wormlike

    E-print Network

    Rothstein, Jonathan

    Filament stretching and capillary breakup extensional rheometry measurements of viscoelastic August 2006; final revision received 20 February 2007 Synopsis A filament stretching extensional by a filament stretching rheometer, each of the wormlike micelle solutions demonstrate significant strain

  19. Observations of Upwelling Filaments in the Southern North-West African Upwelling System : a Joint Effect of the Bottom Topography and the Offshore Eddy Field?

    NASA Astrophysics Data System (ADS)

    Meunier, T.; Barton, E. D.; Torres, R.; Barreiro, B.

    2010-12-01

    The nature and dynamics of the long filaments forming in the southern edge of the West-African upwelling system are investigated using data from the SOLAS-ICON cruise, that took place in April-May 2009 offshore of Cap Blanc, between 19.5 and 22.5 °N and 17 and 19 °W. Two synoptic hydrographic surveys using a Moving Vessel Profiler were performed at a 15 days interval on two distinct upwelling filaments at different stages of development. The first survey showed the presence of a large anticyconic eddy North of the filament, also evident in the satellite imagery. Two transects were performed across the tip of the filament, showing a steep rising of the isohalines and the isotherms, with horizontal gradients of 3.10-2 psu km-1 and 10 -1 °C km-1. The density compensation of temperature and salinity in this part of the North West African upwelling system resulted in a weaker doming of the isopycnals across the filament. The second filament developed during a strong wind episode directly following a 2 days wind relaxation period. 8 cross sections were performed, all showing a steeper doming of the isohalines and isotherms than during the first survey, resulting in horizontal gradients of 8.10-2 psu km-1 and 5.10-1 °C km-1 near the surface. The hydrographic signature of the filament was evident as deep as 300 m. Satellite imagery showed the persistence between the two surveys of a shorter and colder filament West of Cap Blanc , rolling around a small anticyclonic eddy, in spite of the relaxation of the wind. The surveyed filaments both appeared to emerge from this struc ture. A process study using a simple two layer shallow water isopycnic numerical model (MICOM) and an idealized topography was carried out to elucidate the development and stationarity of the anticyclone and cold filament at the root of the longer structures. Potential vorticity anomalies generated by topographic effects were shown to play a major role in the filament formation, when interacting with the upwelling front. The presence of the Cabo Verde frontal zone in the vicinity of the upwelling system is assumed to be responsible for the different behavior in the evolution of the 2 surveyed filaments : previous studies (Spall, 1992; Onken and Klein, 1991; Joyce et al., 1998) showed that the Cabo Verde front was baroclinically unstable and thus an important source of eddy activity in the region. The variability in the evolution of the offshore extension of the observed filaments are believed to be related with this external mesoscale activity. As the topographic eddies can trigger permanent meanders on the upwelling front, the resulting structures can be stretched and evolve into more complex and variable patterns by the interaction with the external eddy field.

  20. Superconductivity for Large Scale Wind Turbines

    SciTech Connect

    R. Fair; W. Stautner; M. Douglass; R. Rajput-Ghoshal; M. Moscinski; P. Riley; D. Wagner; J. Kim; S. Hou; F. Lopez; K. Haran; J. Bray; T. Laskaris; J. Rochford; R. Duckworth

    2012-10-12

    A conceptual design has been completed for a 10MW superconducting direct drive wind turbine generator employing low temperature superconductors for the field winding. Key technology building blocks from the GE Wind and GE Healthcare businesses have been transferred across to the design of this concept machine. Wherever possible, conventional technology and production techniques have been used in order to support the case for commercialization of such a machine. Appendices A and B provide further details of the layout of the machine and the complete specification table for the concept design. Phase 1 of the program has allowed us to understand the trade-offs between the various sub-systems of such a generator and its integration with a wind turbine. A Failure Modes and Effects Analysis (FMEA) and a Technology Readiness Level (TRL) analysis have been completed resulting in the identification of high risk components within the design. The design has been analyzed from a commercial and economic point of view and Cost of Energy (COE) calculations have been carried out with the potential to reduce COE by up to 18% when compared with a permanent magnet direct drive 5MW baseline machine, resulting in a potential COE of 0.075 $/kWh. Finally, a top-level commercialization plan has been proposed to enable this technology to be transitioned to full volume production. The main body of this report will present the design processes employed and the main findings and conclusions.

  1. Can Wind Turbines be Bad for You? Alec N. Salt, Ph.D.

    E-print Network

    Salt, Alec N.

    Can Wind Turbines be Bad for You? Alec N. Salt, Ph.D. Department of Otolaryngology always been Industrial Machines. Some are beautiful and remind us of days gone by. #12;Modern wind farmsModern wind farms are equally industrialare equally industrial but not so quaintbut not so quaint (unless

  2. Civil&EnvironmentalEngineeringStructuresSeminar FullScale Structural Testing of Wind Turbine Blades

    E-print Network

    Civil&EnvironmentalEngineeringStructuresSeminar FullScale Structural Testing of Wind Turbine Blades Snell Noon Modern wind turbines are large structures with moving parts weighing many tons subjected effective renewable power generation over the lifetime of the machine. The blades of a wind turbine

  3. Apparatus For Laminating Segmented Core For Electric Machine

    DOEpatents

    Lawrence, Robert Anthony (Kokomo, IN); Stabel, Gerald R (Swartz Creek, MI)

    2003-06-17

    A segmented core for an electric machine includes segments stamped from coated electric steel. The segments each have a first end, a second end, and winding openings. A predetermined number of segments are placed end-to-end to form layers. The layers are stacked such that each of the layers is staggered from adjacent layers by a predetermined rotation angle. The winding openings of each of the layers are in vertical alignment with the winding openings of the adjacent layers. The stack of layers is secured to form the segmented core.

  4. Stellar Winds

    NASA Astrophysics Data System (ADS)

    Owocki, Stan

    A "stellar wind" is the continuous, supersonic outflow of matter from the surface layers of a star. Our sun has a solar wind, driven by the gas-pressure expansion of the hot (T > 106 K) solar corona. It can be studied through direct in situ measurement by interplanetary spacecraft; but analogous coronal winds in more distant solar-type stars are so tenuous and transparent that that they are difficult to detect directly. Many more luminous stars have winds that are dense enough to be opaque at certain wavelengths of the star's radiation, making it possible to study their wind outflows remotely through careful interpretation of the observed stellar spectra. Red giant stars show slow, dense winds that may be driven by the pressure from magnetohydrodyanmic waves. As stars with initial mass up to 8 M ? evolve toward the Asymptotic Giant Branch (AGB), a combination of stellar pulsations and radiative scattering off dust can culminate in "superwinds" that strip away the entire stellar envelope, leaving behind a hot white dwarf stellar core with less than the Chandrasekhar mass of ˜ ?? 1. 4M ?. The winds of hot, luminous, massive stars are driven by line-scattering of stellar radiation, but such massive stars can also exhibit superwind episodes, either as Red Supergiants or Luminous Blue Variable stars. The combined wind and superwind mass loss can strip the star's hydrogen envelope, leaving behind a Wolf-Rayet star composed of the products of earlier nuclear burning via the CNO cycle. In addition to such direct effects on a star's own evolution, stellar winds can be a substantial source of mass, momentum, and energy to the interstellar medium, blowing open large cavities or "bubbles" in this ISM, seeding it with nuclear processed material, and even helping trigger the formation of new stars, and influencing their eventual fate as white dwarves or core-collapse supernovae. This chapter reviews the properties of such stellar winds, with an emphasis on the various dynamical driving processes and what they imply for key wind parameters like the wind flow speed and mass loss rate.

  5. Solar filament eruptions and energetic particle events

    NASA Technical Reports Server (NTRS)

    Kahler, S. W.; Cliver, E. W.; Cane, H. V.; Mcguire, R. E.; Stone, R. G.

    1986-01-01

    The 1981 December 5 solar filament eruption that is associated with an energetic (E greater than 50 MeV) particle event observed at 1 AU. The eruption was photographed in H-alpha and was observed by the Solwind whitelight coronagraph on P78-1. It occurred well away from any solar active region and was not associated with an impulsive microwave burst, indicating that magnetic complexity and a detectable impulsive phase are not required for the production of a solar energetic particle (SEP) event. No metric type II or IV emission was observed, but an associated interplanetary type II burst was detected by the low-frequency radio experiment on ISEE 3. The December 5 and two other SEP events lacking evidence for low coronal shocks had unusually steep energy spectra (gamma greater than 3.5). In terms of shock acceleration, this suggests that shocks formed relatively high in the corona may produce steeper energy spectra than those formed at lower altitudes. It is noted that the filament itself maybe one source of the ions accelerated to high energies, since it is the only plausible coronal source of the He(+) ions observed in SEP events.

  6. Alfven wave filamentation and dispersive phase mixing

    SciTech Connect

    Sulem, P. L.; Passot, T.; Laveder, D.; Borgogno, D.

    2009-11-10

    The formation of three-dimensional magnetic structures from quasi-monochromatic left-hand polarized dispersive Alfven waves, under the effect of transverse collapse and/or the lensing effect of density channels aligned with the ambient magnetic field is discussed, both in the context of the usual Hall-MHD and using a fluid model retaining linear Landau damping and finite Larmor radius corrections. It is in particular shown that in a small-{beta} plasma (that is stable relatively to the filamentation instability in the absence of inhomogeneities), a moderate density enhancement leads the wave energy to concentrate into a filament whose transverse size is prescribed by the dimension of the channel, while for a strong density perturbation, this structure later on evolves to thin helical ribbons where the strong gradients permit dissipation processes to become efficient and heat the plasma. The outcome of this 'dispersive phase mixing' that leads to small-scale formation on relatively extended regions contrasts with the more localized oblique shocks formed in the absence of dispersion. Preliminary results on the effect of weak collisions that lead to an increase of the transverse ion temperature are also briefly mentioned.

  7. SMES for wind energy systems

    NASA Astrophysics Data System (ADS)

    Paul Antony, Anish

    Renewable energy sources are ubiquitous, wind energy in particular is one of the fastest growing forms of renewable energy, yet the stochastic nature of wind creates fluctuations that threaten the stability of the electrical grid. In addition to stability with increased wind energy, the need for additional load following capability is a major concern hindering increased wind energy penetration. Improvements in power electronics are required to increase wind energy penetration, but these improvements are hindered by a number of limitations. Changes in physical weather conditions, insufficient capacity of the transmission line and inaccurate wind forecasting greatly stymie their effect and ultimately lead to equipment damage. With this background, the overall goal of this research effort is to pitch a case for superconducting magnetic energy storage (SMES) by (1) optimally designing the SMES to be coupled with wind turbines thus reducing wind integration challenges and (2) to help influence decision makers in either increasing superconducting wire length/fill factor or improving superconducting splice technology thereby increasing the storage capacity of the SMES. Chapter 1 outlines the scope of this thesis by answering the following questions (1) why focus on wind energy? (2) What are the problems associated with increasing wind energy on the electric grid? (3) What are the current solutions related to wind integration challenges and (4) why SMES? Chapter 2, presents a detailed report on the study performed on categorizing the challenges associated with integrating wind energy into the electric grid. The conditions under which wind energy affected the electric grid are identified both in terms of voltage stability and excess wind generation. Chapter 3, details a comprehensive literature review on the different superconducting wires. A technology assessment of the five selected superconductors: [Niobium Titanium (NbTi), Niobium Tin (Nb3Sn), Bismuth strontium calcium copper oxide (BSCCO), Yttrium barium copper oxide (YBCO) and Magnesium diboride (MgB 2)] is carried out. The assessed attributes include superconducting transition temperature (Tc), critical current density (Jc ), the irreversibility field (H*) and the superconducting critical field (Hc). Chapter 4 presents the design of a solenoid shaped 1MJ MgB2 SMES. This SMES is used to mitigate the problem of momentary interruptions on a wind turbine. The total length of superconducting wire required for a 1MJ solenoid is calculated to be 21km. The maximum wire lengths currently available are 6km thus we hypothesize that either wire lengths have to be increased or work has to be done on MgB2 superconducting splice technology for multifilament wire. Another design consisting of 8 solenoids storing 120 kJ each is presented. The stress analysis on the proposed coil is performed using finite element analysis exhibiting the safety of the proposed design. Chapter 5 presents the design of a toroid shaped 20MJ MgB2 SMES. This is used to mitigate the problem of sustained interruptions on a wind turbine. The toroid coil is chosen since the magnetic field could be completely contained within the coil, thus reducing stray magnetic fields. A combination of genetic algorithm and nonlinear programming is used in determining the design. In Chapter 6, the different methods of operation of the SMES are examined. The Voltage Source Convertor (VSC) based SMES topology was chosen based on its ease of switching. The VSC switching strategy is based on a sinusoidal pulse width modulation technique. EMTDC/PSCAD software was used to demonstrate the efficacy of the VSC based SMES coupled to a wind turbine. The wind generator was modeled as an induction machine feeding into a load. The simulation results established that SMES connected to wind turbines improved output quality. Although the efficacy of SMES for wind energy has been stated previously in other work, this chapter specifically demonstrates through simulation results the utility of SMES in voltage sag mitigation for momentary interruptions

  8. Three-dimensional filamentation of light in laser plasmas

    SciTech Connect

    Schmitt, A.J. )

    1991-01-01

    The first calculations of time-dependent laser--plasma filamentation in three dimensions are reported. These calculations are done with a three-dimensional laser propagation code based on a previous two-dimensional code (Phys. Fluids {bold 31}, 3079 (1988)). The effect of incident beam structure, and in particular optical smoothing techniques, on the behavior of filamentation is studied. Both ponderomotive and thermal conduction dominated nonlinearities are considered, and calculations are done simulating both homogeneous nonabsorbing plasmas and inhomogeneous laboratory plasmas. Random phase screen (RPS) and induced spatial incoherence (ISI) optical smoothing techniques are investigated and compared to generic unsmoothed laser beams. Qualitative examples are presented and scaling studies are done and compared to a simple theoretical analysis. In typical laser--plasma interactions without optical smoothing, three-dimensional effects lead to greatly increased filament intensities, as expected. Peak filament intensities of order 100--500 times the average intensity are routinely observed (without optical smoothing), as compared to earlier two-dimensional calculations where peak intensities were of order 10--50 times average. In spite of this tendency to create stronger filaments, three-dimensional filamentation (when measured on a time-averaged basis) can be suppressed by using ISI smoothing. Under the same conditions, instantaneous ISI intensities can show considerable enhancement, although much less than the unsmoothed beams. RPS smoothing exhibits less filamentation suppression. Under laser-fusion reactor conditions, calculations indicate that ISI suppression can completely eliminate filamentation.

  9. Myosin filament 3D structure in mammalian cardiac muscle?

    PubMed Central

    AL-Khayat, Hind A.; Morris, Edward P.; Kensler, Robert W.; Squire, John M.

    2008-01-01

    A number of cardiac myopathies (e.g. familial hypertrophic cardiomyopathy and dilated cardiomyopathy) are linked to mutations in cardiac muscle myosin filament proteins, including myosin and myosin binding protein C (MyBP-C). To understand the myopathies it is necessary to know the normal 3D structure of these filaments. We have carried out 3D single particle analysis of electron micrograph images of negatively stained isolated myosin filaments from rabbit cardiac muscle. Single filament images were aligned and divided into segments about 2 × 430 Å long, each of which was treated as an independent ‘particle’. The resulting 40 Å resolution 3D reconstruction showed both axial and azimuthal (no radial) myosin head perturbations within the 430 Å repeat, with successive crown rotations of approximately 60°, 60° and 0°, rather than the regular 40° for an unperturbed helix. However, it is shown that the projecting density peaks appear to start at low radius from origins closer to those expected for an unperturbed helical filament, and that the azimuthal perturbation especially increases with radius. The head arrangements in rabbit cardiac myosin filaments are very similar to those in fish skeletal muscle myosin filaments, suggesting a possible general structural theme for myosin filaments in all vertebrate striated muscles (skeletal and cardiac). PMID:18472277

  10. Tauopathy With Paired Helical Filaments in an Aged Chimpanzee

    E-print Network

    Duong, Timothy Q.

    Tauopathy With Paired Helical Filaments in an Aged Chimpanzee REBECCA F. ROSEN,1 AARON S. FARBERG,1. PREUSS,1,2 AND LARY C. WALKER1,5* 1 Yerkes National Primate Research Center, Emory University, Atlanta filaments in an aged chimpanzee (Pan troglodytes). Pathologic forms of tau in neuronal somata, neuropil

  11. Method for simultaneously coating a plurality of filaments

    DOEpatents

    Miller, Paul A. (1004 Matia Ct. NE., Albuquerque, NM 87123); Pochan, Paul D. (3308 Morris St. NE., #11, Albuquerque, NM 87111); Siegal, Michael P. (9900 Spain NE., Apt. W-2123, Albuquerque, NM 87111); Dominguez, Frank (11341 Academy Ridge Rd. NE., Albuquerque, NM 87111)

    1995-01-01

    Methods and apparatuses for coating materials, and the products and compositions produced thereby. Substances, such as diamond or diamond-like carbon, are deposited onto materials, such as a filament or a plurality of filaments simultaneously, using one or more cylindrical, inductively coupled, resonator plasma reactors.

  12. DIPPED MAGNETIC FIELD CONFIGURATIONS ASSOCIATED WITH FILAMENTS AND BARBS

    E-print Network

    Priest, Eric

    DIPPED MAGNETIC FIELD CONFIGURATIONS ASSOCIATED WITH FILAMENTS AND BARBS D. H. MACKAY, A. W. It is assumed that the field configurations are suitable to represent filaments if they contain magnetic dips that dipped configurations exist only for large values of alpha (where, Ã? B = B). The dips always lie above

  13. Characterization of femtosecond laser filament-fringes in titanium

    NASA Astrophysics Data System (ADS)

    Ahsan, Md. Shamim; Dewanda, Fadia; Ahmed, Farid; Jun, Martin B. G.; Lee, Man Seop

    2013-03-01

    In this paper, we characterize the femtosecond laser filament-fringes in titanium. In order to fabricate regular arrays of filaments, we place either a pinhole or a beam shaper in the optical path of the femtosecond laser beam that originates linear diffraction of the laser beam. Soda-lime glass is used as Kerr medium to produce the filaments. As a consequence, the intensity distribution of the laser beam is modulated and fringe type of filament distributions is evident. The suitable control over the size of the diaphragms (pinhole or beam shaper) leads us to adjust the shape, orientation, and number of filaments in each irradiated spots in titanium sample. By properly adjusting the diameter of a pinhole that was placed in the optical path, we are successful in forming a single filament in titanium. By using these single filaments, we fabricated high aspect ratio periodic holes in the titanium surface by moving the translation stage in both horizontal and vertical directions. The period of the holes in the horizontal direction is controlled by varying the scanning speed, whereas the period in the vertical direction is controlled by varying the vertical scanning step. We strongly believe that, filamentation technology described in this paper will have applications in forming a variety of micro/nano-structures in various materials.

  14. A catalytic oligomeric motor that walks along a filament track

    NASA Astrophysics Data System (ADS)

    Huang, Mu-Jie; Kapral, Raymond

    2015-06-01

    Most biological motors in the cell execute chemically powered conformational changes as they walk on biopolymer filaments in order to carry out directed transport functions. Synthetic motors that operate in a similar manner are being studied since they have the potential to perform similar tasks in a variety of applications. In this paper, a synthetic nanomotor that moves along a filament track, without invoking motor conformational changes, is constructed and its properties are studied in detail. The motor is an oligomer comprising three linked beads with specific binding properties. The filament track is a stiff polymer chain, also described by a linear chain of linked coarse-grained molecular groups modeled as beads. Reactions on the filament that are catalyzed by a motor bead and use fuel in the environment, in conjunction within the binding affinities of the motor beads to the filament beads, lead to directed motion. The system operates out of equilibrium due to the state of the filament and supply of fuel. The motor, filament, and surrounding medium are all described at microscopic level that permits a full analysis of the motor motion. A stochastic model that captures the main trends seen in the simulations is also presented. The results of this study point to some of the key features that could be used to construct nanomotors that undergo biased walks powered by chemical reactions on filaments.

  15. An Observational Detection of the Bridge Effect of Void Filaments

    NASA Astrophysics Data System (ADS)

    Shim, Junsup; Lee, Jounghun; Hoyle, Fiona

    2015-12-01

    The bridge effect of void filaments is a phrase coined by Park & Lee to explain the correlations found in a numerical experiment between the luminosity of the void galaxies and the degree of straightness of their host filaments. Their numerical finding implies that a straight void filament provides a narrow channel for the efficient transportation of gas and matter particles from the surroundings into void galaxies. Analyzing the Sloan void catalog constructed by Pan et al., we identify the filamentary structures in void regions and determine the specific size of each void filament as a measure of its straightness. To avoid possible spurious signals caused by Malmquist bias, we consider only those void filaments whose redshifts are in the range 0?slant z?slant 0.02 and find a clear tendency that the void galaxies located in the straighter filaments are on average more luminous, which is in qualitative agreement with the numerical prediction. It is also shown that the strength of correlation increases with the number of member galaxies in the void filaments, which can be understood physically on the grounds that the more stretched filaments can connect the dense surroundings even to galaxies located deep in the central parts of the voids. This observational evidence may provide a key clue to the puzzling issue of why the void galaxies have higher specific star formation rates and bluer colors than their wall counterparts.

  16. Process for the production of superconductor containing filaments

    SciTech Connect

    Tuominen, Olli P.; Hoyt, Matthew B.; Mitchell, David F.; Morgan, Carol W.; Roberts, Clyde Gordon; Tyler, Robert A.

    2002-01-01

    Superconductor containing filaments having embedments of superconducting material surrounded by a rayon matrix are formed by preparing a liquid suspension which contains at least 10 weight percent superconducting material; forming a multicomponent filament having a core of the suspension and a viscose sheath which contains cellulose xanthate; and thereafter, regenerating cellulose from the cellulose xanthate to form a rayon matrix.

  17. Method for simultaneously coating a plurality of filaments

    DOEpatents

    Miller, P.A.; Pochan, P.D.; Siegal, M.P.; Dominguez, F.

    1995-07-11

    Methods and apparatuses are disclosed for coating materials, and the products and compositions produced thereby. Substances, such as diamond or diamond-like carbon, are deposited onto materials, such as a filament or a plurality of filaments simultaneously, using one or more cylindrical, inductively coupled, resonator plasma reactors. 3 figs.

  18. GALAXY SPIN ALIGNMENT IN FILAMENTS AND SHEETS: OBSERVATIONAL EVIDENCE

    SciTech Connect

    Tempel, Elmo; Libeskind, Noam I. E-mail: nlibeskind@aip.de

    2013-10-01

    The properties of galaxies are known to be affected by their environment. One important question is how their angular momentum reflects the surrounding cosmic web. We use the Sloan Digital Sky Survey to investigate the spin axes of spiral and elliptical galaxies relative to their surrounding filament/sheet orientations. To detect filaments, a marked point process with interactions (the {sup B}isous model{sup )} is used. Sheets are found by detecting 'flattened' filaments. The minor axes of ellipticals are found to be preferentially perpendicular to hosting filaments. A weak correlation is found with sheets. These findings are consistent with the notion that elliptical galaxies formed via mergers, which predominantly occurred along the filaments. The spin axis of spiral galaxies is found to align with the host filament, with no correlation between spiral spin and sheet normal. When examined as a function of distance from the filament axis, a much stronger correlation is found in the outer parts, suggesting that the alignment is driven by the laminar infall of gas from sheets to filaments. When compared with numerical simulations, our results suggest that the connection between dark matter halo and galaxy spin is not straightforward. Our results provide an important input to the understanding of how galaxies acquire their angular momentum.

  19. BIOCHEMICAL AND IMMUNOLOGICAL ANALYSIS OF RAPIDLY PURIFIED 10-nm FILAMENTS

    E-print Network

    Goldman, Robert D.

    derived from other sources including brain and smooth muscle. Partial disassembly of 10-rim fila- ments, 34). The 10-rim, or t00-,~ filament, as it is commonly referred to in smooth muscle and cultured in axonat transport (29). 10-nm filaments form an interconnecting network with dense bod- ies in chicken

  20. Biophysics of filament length regulation by molecular motors

    PubMed Central

    Kuan, Hui-Shun; Betterton, M. D.

    2013-01-01

    Regulating physical size is an essential problem that biological organisms must solve from the subcellular to the organismal scales, but it is not well understood what physical principles and mechanisms organisms use to sense and regulate their size. Any biophysical size-regulation scheme operates in a noisy environment and must be robust to other cellular dynamics and fluctuations. This work develops theory of filament length regulation inspired by recent experiments on kinesin-8 motor proteins, which move with directional bias on microtubule filaments and alter microtubule dynamics. Purified kinesin-8 motors can depolymerize chemically-stabilized microtubules. In the length-dependent depolymerization model, the rate of depolymerization tends to increase with filament length, because long filaments accumulate more motors at their tips and therefore shorten more quickly. When balanced with a constant filament growth rate, this mechanism can lead to a fixed polymer length. However, the mechanism by which kinesin-8 motors affect the length of dynamic microtubules in cells is less clear. We study the more biologically realistic problem of microtubule dynamic instability modulated by a motor-dependent increase in the filament catastrophe frequency. This leads to a significant decrease in the mean filament length and a narrowing of the filament length distribution. The results improve our understanding of the biophysics of length regulation in cells. PMID:23587993

  1. Unlined Reuseable Filament Wound Composite Cryogenic Tank Testing

    NASA Technical Reports Server (NTRS)

    Murphy, A. W.; Lake, R. E.; Wilkerson, C.

    1999-01-01

    An unlined reusable filament wound composite cryogenic tank was tested at the Marshall Space Flight Center using LH2 cryogen and pressurization to 320 psig. The tank was fabricated by Phillips Laboratory and Wilson Composite Group, Inc., using an EnTec five-axis filament winder and sand mandrels. The material used was IM7/977-2 (graphite/epoxy).

  2. Biophysics of filament length regulation by molecular motors

    E-print Network

    Hui-Shun Kuan; M. D. Betterton

    2013-02-13

    Regulating physical size is an essential problem that biological organisms must solve from the subcellular to the organismal scales, but it is not well understood what physical principles and mechanisms organisms use to sense and regulate their size. Any biophysical size-regulation scheme operates in a noisy environment and must be robust to other cellular dynamics and fluctuations. This work develops theory of filament length regulation inspired by recent experiments on kinesin-8 motor proteins, which move with directional bias on microtubule filaments and alter microtubule dynamics. Purified kinesin-8 motors can depolymerize chemically-stabilized microtubules. In the length-dependent depolymerization model, the rate of depolymerization tends to increase with filament length, because long filaments accumulate more motors at their tips and therefore shorten more quickly. When balanced with a constant filament growth rate, this mechanism can lead to a fixed polymer length. However, the mechanism by which kinesin-8 motors affect the length of dynamic microtubules in cells is less clear. We study the more biologically realistic problem of microtubule dynamic instability modulated by a motor-dependent increase in the filament catastrophe frequency. This leads to a significant decrease in the mean filament length and a narrowing of the filament length distribution. The results improve our understanding of the biophysics of length regulation in cells.

  3. Filament Shape Versus Coronal Potential Magnetic Field Structure

    E-print Network

    Filippov, Boris

    2015-01-01

    Solar filament shape in projection on disc depends on the structure of the coronal magnetic field. We calculate the position of polarity inversion lines (PILs) of coronal potential magnetic field at different heights above the photosphere, which compose the magnetic neutral surface, and compare with them the distribution of the filament material in H$\\alpha$ chromospheric images. We found that the most of the filament material is enclosed between two polarity inversion lines (PILs), one at a lower height close to the chromosphere and one at a higher level, which can be considered as a height of the filament spine. Observations of the same filament on the limb by the {\\it STEREO} spacecraft confirm that the height of the spine is really very close to the value obtained from the PIL and filament border matching. Such matching can be used for filament height estimations in on-disk observations. Filament barbs are housed within protruding sections of the low-level PIL. On the base of simple model, we show that th...

  4. Phytoplankton pigment patterns and wind forcing off central California

    NASA Technical Reports Server (NTRS)

    Abbott, Mark R.; Barksdale, Brett

    1991-01-01

    Mesoscale variability in phytoplankton pigment distributions of central California during the spring-summer upwelling season are studied via a 4-yr time series of high-resolution coastal zone color scanner imagery. Empirical orthogonal functions are used to decompose the time series of spatial images into its dominant modes of variability. The coupling between wind forcing of the upper ocean and phytoplankton distribution on mesoscales is investigated. Wind forcing, in particular the curl of the wind stress, was found to play an important role in the distribution of phytoplankton pigment in the California Current. The spring transition varies in timing and intensity from year to year but appears to be a recurrent feature associated with the rapid onset of the upwelling-favorable winds. Although the underlying dynamics may be dominated by processes other than forcing by wind stress curl, it appears that curl may force the variability of the filaments and hence the pigment patterns.

  5. Drum cutter mining machine

    SciTech Connect

    Oberste-beulmann, K.; Schupphaus, H.

    1980-02-19

    A drum cutter mining machine includes a machine frame with a winch having a drive wheel to engage a rack or chain which extends along the path of travel by the mining machine to propel the machine along a mine face. The mining machine is made up of discrete units which include a machine body and machine housings joined to opposite sides of the machine body. The winch is either coupled through a drive train with a feed drive motor or coupled to the drive motor for cutter drums. The machine housings each support a pivot shaft coupled by an arm to a drum cutter. One of these housings includes a removable end cover and a recess adapted to receive a support housing for a spur gear system used to transmit torque from a feed drive motor to a reduction gear system which is, in turn, coupled to the drive wheel of the winch. In one embodiment, a removable end cover on the machine housing provides access to the feed drive motor. The feed drive motor is arranged so that the rotational axis of its drive output shaft extends transversely to the stow side of the machine frame. In another embodiment, the reduction gear system is arranged at one side of the pivot shaft for the cutter drum while the drive motor therefor is arranged at the other side of the pivot shaft and coupled thereto through the spur gear system. In a further embodiment, the reduction gear system is disposed between the feed motor and the pivot shaft.

  6. 78 FR 29364 - Exelon Corporation, Exelon Wind 1, LLC, Exelon Wind 2, LLC, Exelon Wind 3, LLC, Exelon Wind 4...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-20

    ...-005, QF07-257-004] Exelon Corporation, Exelon Wind 1, LLC, Exelon Wind 2, LLC, Exelon Wind 3, LLC, Exelon Wind 4, LLC, Exelon Wind 5, LLC, Exelon Wind 6, LLC, Exelon Wind 7, LLC, Exelon Wind 8, LLC, Exelon Wind 9, LLC, Exelon Wind 10, LLC, Exelon Wind 11, LLC, High Plains Wind Power, LLC v. Xcel...

  7. BRITISH MOLDING MACHINE, PBQ AUTOMATIC COPE AND DRAG MOLDING MACHINE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    BRITISH MOLDING MACHINE, PBQ AUTOMATIC COPE AND DRAG MOLDING MACHINE MAKES BOTH MOLD HALVES INDIVIDUALLY WHICH ARE LATER ROTATED, ASSEMBLED, AND LOWERED TO POURING CONVEYORS BY ASSISTING MACHINES. - Southern Ductile Casting Company, Casting, 2217 Carolina Avenue, Bessemer, Jefferson County, AL

  8. 14. Interior, Machine Shop, Roundhouse Machine Shop Extension, Southern Pacific ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. Interior, Machine Shop, Roundhouse Machine Shop Extension, Southern Pacific Railroad Carlin Shops, view to north (90mm lens). - Southern Pacific Railroad, Carlin Shops, Roundhouse Machine Shop Extension, Foot of Sixth Street, Carlin, Elko County, NV

  9. Diamond machine tool face lapping machine

    DOEpatents

    Yetter, H.H.

    1985-05-06

    An apparatus for shaping, sharpening and polishing diamond-tipped single-point machine tools. The isolation of a rotating grinding wheel from its driving apparatus using an air bearing and causing the tool to be shaped, polished or sharpened to be moved across the surface of the grinding wheel so that it does not remain at one radius for more than a single rotation of the grinding wheel has been found to readily result in machine tools of a quality which can only be obtained by the most tedious and costly processing procedures, and previously unattainable by simple lapping techniques.

  10. Wind energy utilization: A bibliography with abstracts - Cumulative volume 1944/1974

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Bibliography, up to 1974 inclusive, of articles and books on utilization of wind power in energy generation. Worldwide literature is surveyed, and short abstracts are provided in many cases. The citations are grouped by subject: (1) general; (2) utilization; (3) wind power plants; (4) wind power generators (rural, synchronous, remote station); (5) wind machines (motors, pumps, turbines, windmills, home-built); (6) wind data and properties; (7) energy storage; and (8) related topics (control and regulation devices, wind measuring devices, blade design and rotors, wind tunnel simulation, aerodynamics). Gross-referencing is aided by indexes of authors, corporate sources, titles, and keywords.

  11. Femtosecond filament-laser ablation molecular isotopic spectrometry

    NASA Astrophysics Data System (ADS)

    Hou, Huaming; Chan, George C.-Y.; Mao, Xianglei; Zheng, Ronger; Zorba, Vassilia; Russo, Richard E.

    2015-11-01

    A new remote sensing technology for real-time isotopic analysis is introduced: Femtosecond Filament-Induced Laser Ablation Molecular Isotopic Spectrometry (F2-LAMIS). The technique combines femtosecond (fs) laser filamentation and ablation-based molecular isotopic spectroscopy, thereby enabling isotopic analysis of samples at a distance, in ambient air and at ambient pressure conditions. Isotopic analysis of zirconium (Zr) samples by F2-LAMIS is demonstrated, and the molecular and atomic emission intensity, and properties of the filament-induced plasma generated at different filament propagation distances were investigated. Spectral fitting of F2-LAMIS spectra enabled semi-quantitative isotopic analysis without the use of calibration standards, which was independent of the filament propagation distance for the studied range. This technology provides new capabilities for direct isotopic ratio measurements at remote distances.

  12. The extreme nonlinear optics of gases and femtosecond optical filamentation

    SciTech Connect

    Milchberg, H. M.; Chen, Y.-H.; Cheng, Y.-H.; Jhajj, N.; Palastro, J. P.; Rosenthal, E. W.; Varma, S.; Wahlstrand, J. K.; Zahedpour, S.

    2014-10-15

    Under certain conditions, powerful ultrashort laser pulses can form greatly extended, propagating filaments of concentrated high intensity in gases, leaving behind a very long trail of plasma. Such filaments can be much longer than the longitudinal scale over which a laser beam typically diverges by diffraction, with possible applications ranging from laser-guided electrical discharges to high power laser propagation in the atmosphere. Understanding in detail the microscopic processes leading to filamentation requires ultrafast measurements of the strong field nonlinear response of gas phase atoms and molecules, including absolute measurements of nonlinear laser-induced polarization and high field ionization. Such measurements enable the assessment of filamentation models and make possible the design of experiments pursuing applications. In this paper, we review filamentation in gases and some applications, and discuss results from diagnostics developed at Maryland for ultrafast measurements of laser-gas interactions.

  13. Filament formation as a scale-free process

    NASA Astrophysics Data System (ADS)

    Vazquez-Semadeni, Enrique

    2015-08-01

    I will discuss the formation of filaments in molecular clouds, and its potential similarity with filament formation in the cosmic web. First, I will recall the formation mechanism of giant molecular clouds (GMCs) and their likely state of global, hierarchical gravitational collapse, which amplifies any anisotropies of the initial configuration. I will then briefly recall the density and structure produced by this mechanism, emphasizing the fact that filaments are flow features, funneling material from the cloud to the star-forming cores, rather than static objects. I will conclude with a comparison of the physical processes operating in GMC filament formation to that operating on the formation of extragalactic filaments, to conclude with the question of the extent to which the two processes are comparable.

  14. Beam wandering of femtosecond laser filament in air.

    PubMed

    Yang, Jing; Zeng, Tao; Lin, Lie; Liu, Weiwei

    2015-10-01

    The spatial wandering of a femtosecond laser filament caused by the filament heating effect in air has been studied. An empirical formula has also been derived from the classical Karman turbulence model, which determines quantitatively the displacement of the beam center as a function of the propagation distance and the effective turbulence structure constant. After fitting the experimental data with this formula, the effective turbulence structure constant has been estimated for a single filament generated in laboratory environment. With this result, one may be able to estimate quantitatively the displacement of a filament over long distance propagation and interpret the practical performance of the experiments assisted by femtosecond laser filamentation, such as remote air lasing, pulse compression, high order harmonic generation (HHG), etc. PMID:26480079

  15. Colloquium: Geometry and optimal packing of twisted columns and filaments

    NASA Astrophysics Data System (ADS)

    Grason, Gregory M.

    2015-04-01

    This Colloquium presents recent progress in understanding constraints and consequences of close-packing geometry of filamentous or columnar materials possessing nontrivial textures, focusing, in particular, on the common motifs of twisted and toroidal structures. The mathematical framework is presented that relates spacing between linelike, filamentous elements to their backbone orientations, highlighting the explicit connection between the interfilament metric properties and the geometry of non-Euclidean surfaces. The consequences of the hidden connection between packing in twisted filament bundles and packing on positively curved surfaces, like the Thomson problem, are demonstrated for the defect-riddled ground states of physical models of twisted filament bundles. The connection between the "ideal" geometry of fibrations of curved three-dimensional space, including the Hopf fibration, and the non-Euclidean constraints of filament packing in twisted and toroidal bundles is presented, with a focus on the broader dependence of metric geometry on the simultaneous twisting and folding of multifilament bundles.

  16. Highly stabilized laser intensity during ultra-short laser filamentation

    NASA Astrophysics Data System (ADS)

    Xu, Shengqi; Zhang, Yizhu; Liu, Weiwei

    2008-12-01

    In this work, we investigate the stability of the nitrogen fluorescence signal emitted by a femtosecond laser filament as an example of a high order nonlinear optical process. It is found that the root-mean-square fluctuation of the fluorescence signal emitted from the filament is less than 1 %. The corresponding estimated laser intensity fluctuation is as low as 0.14%, which is at least one order of magnitude lower than the input laser pulse power fluctuation. Further numerical simulation has confirmed that the intensity clamping phenomenon is responsible for this observation. Since the intensity clamping is an intrinsic property of filamentation phenomenon, it is expected that any intensity sensitive optical interaction taking place inside filament could lead to highly stabilized outcome. This conclusion potentially affects various applications of ultra-short laser filamentation.

  17. Condensation of actin filaments pushing against a barrier

    E-print Network

    K. Tsekouras; D. Lacoste; K. Mallick; J. -F. Joanny

    2011-10-06

    We develop a model to describe the force generated by the polymerization of an array of parallel biofilaments. The filaments are assumed to be coupled only through mechanical contact with a movable barrier. We calculate the filament density distribution and the force-velocity relation with a mean-field approach combined with simulations. We identify two regimes: a non-condensed regime at low force in which filaments are spread out spatially, and a condensed regime at high force in which filaments accumulate near the barrier. We confirm a result previously known from other related studies, namely that the stall force is equal to N times the stall force of a single filament. In the model studied here, the approach to stalling is very slow, and the velocity is practically zero at forces significantly lower than the stall force.

  18. Machine Translation Project

    NASA Technical Reports Server (NTRS)

    Bajis, Katie

    1993-01-01

    The characteristics and capabilities of existing machine translation systems were examined and procurement recommendations were developed. Four systems, SYSTRAN, GLOBALINK, PC TRANSLATOR, and STYLUS, were determined to meet the NASA requirements for a machine translation system. Initially, four language pairs were selected for implementation. These are Russian-English, French-English, German-English, and Japanese-English.

  19. Friction-Testing Machine

    NASA Technical Reports Server (NTRS)

    Benz, F. J.; Dixon, D. S.; Shaw, R. C.

    1986-01-01

    Testing machine evaluates wear and ignition characteristics of materials in rubbing contact. Offers advantages over other laboratory methods of measuring wear because it simulates operating conditions under which material will actually be used. Machine used to determine wear characteristics, rank and select materials for service with such active oxidizers as oxygen, halogens, and oxides of nitrogen, measure wear characteristics, and determine coefficients of friction.

  20. Simple Machine Junk Cars

    ERIC Educational Resources Information Center

    Herald, Christine

    2010-01-01

    During the month of May, the author's eighth-grade physical science students study the six simple machines through hands-on activities, reading assignments, videos, and notes. At the end of the month, they can easily identify the six types of simple machine: inclined plane, wheel and axle, pulley, screw, wedge, and lever. To conclude this unit,…

  1. Simple Machines Made Simple.

    ERIC Educational Resources Information Center

    St. Andre, Ralph E.

    Simple machines have become a lost point of study in elementary schools as teachers continue to have more material to cover. This manual provides hands-on, cooperative learning activities for grades three through eight concerning the six simple machines: wheel and axle, inclined plane, screw, pulley, wedge, and lever. Most activities can be…

  2. Compound taper milling machine

    NASA Technical Reports Server (NTRS)

    Campbell, N. R.

    1969-01-01

    Simple, inexpensive milling machine tapers panels from a common apex to a uniform height at panel edge regardless of the panel perimeter configuration. The machine consists of an adjustable angled beam upon which the milling tool moves back and forth above a rotatable table upon which the workpiece is held.

  3. Technique for Machining Glass

    NASA Technical Reports Server (NTRS)

    Rice, S. H.

    1982-01-01

    Process for machining glass with conventional carbide tools requires a small quantity of a lubricant for aluminum applied to area of glass to be machined. A carbide tool is then placed against workpiece with light pressure. Tool is raised periodically to clear work of glass dust and particles. Additional lubricant is applied as it is displaced.

  4. Stirling machine operating experience

    SciTech Connect

    Ross, B.; Dudenhoefer, J.E.

    1994-09-01

    Numerous Stirling machines have been built and operated, but the operating experience of these machines is not well known. It is important to examine this operating experience in detail, because it largely substantiates the claim that stirling machines are capable of reliable and lengthy operating lives. The amount of data that exists is impressive, considering that many of the machines that have been built are developmental machines intended to show proof of concept, and are not expected to operate for lengthy periods of time. Some Stirling machines (typically free-piston machines) achieve long life through non-contact bearings, while other Stirling machines (typically kinematic) have achieved long operating lives through regular seal and bearing replacements. In addition to engine and system testing, life testing of critical components is also considered. The record in this paper is not complete, due to the reluctance of some organizations to release operational data and because several organizations were not contacted. The authors intend to repeat this assessment in three years, hoping for even greater participation.

  5. The Hooey Machine.

    ERIC Educational Resources Information Center

    Scarnati, James T.; Tice, Craig J.

    1992-01-01

    Describes how students can make and use Hooey Machines to learn how mechanical energy can be transferred from one object to another within a system. The Hooey Machine is made using a pencil, eight thumbtacks, one pushpin, tape, scissors, graph paper, and a plastic lid. (PR)

  6. Ultrasonic analysis of Kevlar-epoxy filament wound structures

    SciTech Connect

    Brosey, W.D.

    1985-07-16

    Composite structures are often desirable for their strength and weight characteristics. Since composites are not as well characterized mechanically as metallic or ceramic structures, much work has been performed at the Oak Ridge Y-12 Plant to obtain that characterization and to develop methods of determining the mechanical properties of a composite nondestructively. Most of the work to date has been performed on nonenclosed structures. One notable exception has been the holographic evaluation of spherical Kevlar-epoxy composite pressure vessels. Several promising nondestructive evaluation techniques have been used to locate flaws and predict the integrity of the composite. Several of these include thermography, Moire interferometry, ultrasonic stress wave factor, ultrasonic C-scan image enhancement, radiography, and nuclear magnetic resonance. As a first step in this transfer and development of NDE techniques, known defects were placed within spherical Kevlar-epoxy, filament-wound test specimens to determine the extent to which they could be detected. These defects included Teflon shim-simulated delaminations, macrosphere-simulated voids, dry-band sets, variable tension, Kevlar 29 fiber instead of the higher strength Kevlar 40 fiber, and an alternate high-void-content winding pattern. Ultrasonic waveform analysis was performed in both the time and frequency domains to determine the detectability and locatability of structural flaws within the composite. Preparation has been made at Virginia Polytechnic Institute and State University and at the University of Delaware, to examine the specimens using various NDE techniques. This work is a compilation of interim project reports in partial fulfillment of the contracts between Virginia Polytechnic Institute and State University, the University of Delaware, and Y-12 Plant.

  7. Ultrasonic analysis of Kevlar-epoxy filament wound structures

    NASA Astrophysics Data System (ADS)

    Brosey, W. D.

    1985-07-01

    Composite structures are often desirable for their strength and weight characteristics. Since composites are not as well characterized mechanically as metallic or ceramic structures, much work has been performed at the Oak Ridge Y-12 Plant to obtain that characterization and to develop methods of determining the mechanical properties of a composite nondestructively. Most of the work to date has been performed on nonenclosed structures. One notable exception has been the holographic evaluation of spherical Kevlar-epoxy composite pressure vessels. Several promising nondestructive evaluation techniques have been used to locate flaws and predict the integrity of the composite. Several of these include thermography, Moire interferometry, ultrasonic stress wave factor, ultrasonic C-scan image enhancement, radiography, and nuclear magnetic resonance. As a first step in this transfer and development of NDE techniques, known defects were placed within spherical Kevlar-epoxy, filament-wound test specimens to determine the extent to which they could be detected. These defects included Teflon shim-simulated delaminations, macrosphere-simulated voids, dry-band sets, variable tension, Kevlar 29 fiber instead of the higher strength Kevlar 40 fiber, and an alternate high-void-content winding pattern. Ultrasonic waveform analysis was performed in both the time and frequency domains to determine the detectability and locatability of structural flaws within the composite. Preparation has been made at Virginia Polytechnic Institute and State University and at the University of Delaware, to examine the specimens using various NDE techniques. This work is a compilation of interim project reports in partial fulfillment of the contracts between Virginia Polytechnic Institute and State University, the University of Delaware, and Y-12 Plant.

  8. Simulations of Interactions and Magnetic Reconnection Between Solar Filaments

    NASA Astrophysics Data System (ADS)

    DeVore, C. R.; Antiochos, S. K.; Aulanier, G.

    2002-05-01

    It has long been known that pairs of filaments near each other on the Sun's disk sometimes come into contact and interact. Under favorable conditions, the two structures apparently link up to form a single, larger filament. When conditions are unfavorable, on the other hand, the filaments appear to avoid each other and retain their distinct identities. Recent ground-based observational studies have shown that a key requirement for linkage to occur is that the two filaments possess the same chirality, or handedness. We have performed detailed numerical experiments of pairs of interacting filaments within the sheared-arcade model. In this model, the filament plasma resides in the magnetic hammock formed in a strongly sheared field held down by an overlying arcade. We considered four cases: like or unlike chirality of the two filaments, and like or unlike polarity of the vertical magnetic fields at their approaching ends. Only the case of like chirality and unlike polarity produces any significant reconfiguration. The magnetic structure is substantially modified, with reconnected field lines extending over the entire combined length of the filaments. Low, closed arcade fields form in the reconnection zone, forcing the newly linked filament fields above them to rise and form a magnetic 'aneurysm.' Our simple, bipolar configuration relaxes to a new equilibrium, consistent with those cases in which the linked structure is observed to persist stably after the interaction has passed. In the much more complex magnetic environment of the solar corona, on the other hand, newly linked filaments with such aneurysms sometimes are observed to erupt promptly and violently. The removal of the restraining arcade fields, by reconnection with the external field of the corona, is likely necessary for eruption to occur. This research was supported by NASA and ONR.

  9. Novel Transverse Flux Machine for Vehicle Traction Applications: Preprint

    SciTech Connect

    Wan, Z.; Ahmed, A.; Husain, I.; Muljadi, E.

    2015-04-02

    A novel transverse flux machine topology for electric vehicle traction applications using ferrite magnets is presented in this paper. The proposed transverse flux topology utilizes novel magnet arrangements in the rotor that are similar to the Halbach array to boost flux linkage; on the stator side, cores are alternately arranged around a pair of ring windings in each phase to make use of the entire rotor flux that eliminates end windings. Analytical design considerations and finite-element methods are used for an optimized design of a scooter in-wheel motor. Simulation results from finite element analysis (FEA) show that the motor achieved comparable torque density to conventional rare-earth permanent magnet (PM) machines. This machine is a viable candidate for direct-drive applications with low cost and high torque density.

  10. The NASA Lewis large wind turbine program

    NASA Technical Reports Server (NTRS)

    Thomas, R. L.; Baldwin, D. H.

    1981-01-01

    The program is directed toward development of the technology for safe, reliable, environmentally acceptable large wind turbines that have the potential to generate a significant amount of electricity at costs competitive with conventional electric generation systems. In addition, these large wind turbines must be fully compatible with electric utility operations and interface requirements. Advances are made by gaining a better understanding of the system design drivers, improvements in the analytical design tools, verification of design methods with operating field data, and the incorporation of new technology and innovative designs. An overview of the program activities is presented and includes results from the first and second generation field machines (Mod-OA, -1, and -2), the design phase of the third generation wind turbine (Mod-5) and the advanced technology projects. Also included is the status of the Department of Interior WTS-4 machine.

  11. The Mod-2 wind turbine development project

    NASA Technical Reports Server (NTRS)

    Linscott, B. S.; Dennett, J. T.; Gordon, L. H.

    1981-01-01

    A major phase of the Federal Wind Energy Program, the Mod-2 wind turbine, a second-generation machine developed by the Boeing Engineering and Construction Co. for the U.S. Department of Energy and the Lewis Research Center of the National Aeronautics and Space Administration, is described. The Mod-2 is a large (2.5-MW power rating) horizontal-axis wind turbine designed for the generation of electrical power on utility networks. Three machines were built and are located in a cluster at Goodnoe Hills, Washington. All technical aspects of the project are described: design approach, significant innovation features, the mechanical system, the electrical power system, the control system, and the safety system.

  12. Dictionary machine (for VLSI)

    SciTech Connect

    Ottmann, T.A.; Rosenberg, A.L.; Stockmeyer, L.J.

    1982-09-01

    The authors present the design of a dictionary machine that is suitable for VLSI implementation, and discusses how to realize this implementation efficiently. The machine supports the operations of search, insert, delete, and extractment on an arbitrary ordered set. Each of these operations takes time o(logn), where n is the number of entries present when the operation is performed. Moreover, arbitrary sequences of these instructions can be pipelined through the machine at a constant rate (i.e. independent of n and the capacity of the machine). The time o(logn) is an improvement over previous VLSI designs of dictionary machines which require time o(log n) per operation, where n is the maximum number of keys that can be stored. 10 references.

  13. On parallel machine scheduling 1

    E-print Network

    Magdeburg, Universität

    On parallel machine scheduling 1 machines with setup times. The setup has to be performed by a single server. The objective is to minimize even for the case of two identical parallel machines. This paper presents a pseudopolynomial

  14. Machine Learning ! ! ! ! !Srihari Neural Networks!

    E-print Network

    Machine Learning ! ! ! ! !Srihari 1 Neural Networks! #12;Machine Learning ! ! ! ! !Srihari 2 Two ! ! ! ! !Srihari 3 Neural Computation! Biological Motivation for Artificial Neural Networks #12;Machine Learning Groups Of Researchers in Neural Networks! 1. Study and model biological learning! · Network of neurons

  15. Machine tool evaluation and machining operation development

    SciTech Connect

    Morris, T.O.; Kegg, R.

    1997-03-15

    The purpose of this CRADA was to support Cincinnati Milacron`s needs in fabricating precision components, from difficult to machine materials, while maintaining and enhancing the precision manufacturing skills of the Oak Ridge Complex. Oak Ridge and Cincinnati Milacron personnel worked in a team relationship wherein each contributed equally to the success of the program. Process characterization, control technologies, machine tool capabilities, and environmental issues were the primary focus areas. In general, Oak Ridge contributed a wider range of expertise in machine tool testing and monitoring, and environmental testing on machining fluids to the defined tasks while Cincinnati Milacron personnel provided equipment, operations-specific knowledge and shop-floor services to each task. Cincinnati Milacron was very pleased with the results of all of the CRADA tasks. However, some of the environmental tasks were not carried through to a desired completion due to an expanding realization of need as the work progressed. This expansion of the desired goals then exceeded the time length of the CRADA. Discussions are underway on continuing these tasks under either a Work for Others agreement or some alternate funding.

  16. A universal filament width? The effect of ambipolar diffusion on the size distribution of dense filaments.

    NASA Astrophysics Data System (ADS)

    Ntormousi, Evangelia; Hennebelle, Patrick; André, Philippe

    2015-08-01

    The filamentary structure of molecular clouds and its potential link to star formation have been brought into focus by Herschel's high resolution observations of the local Interstellar Medium. An especially puzzling result from the same surveys is that local interstellar filaments have a preferred thickness of 0.1 pc, independent of their column density. What can be the origin of this apparently universal property?Filamentary structure is characteristic of MHD turbulence, appearing as a result of shear, magnetic tension and shocks. If the observed filaments are indeed the dissipative structures of interstellar turbulence, then ambipolar diffusion is the best candidate for setting a characteristic thickness by damping MHD waves. We test this hyporthesis with high-resolution, 3D MHD simulations performed with the AMR code RAMSES. To avoid confusion with grid effects, our simulations reach a physical resolution of 200 AU, resolving the observed 0.1 pc with about 100 cells.These simulations of both driven and decaying MHD turbulence show that the fluid assumes a different morphology when ambipolar diffusion is included in the models: ion-neutral friction acts on a characteristic scale to cut off the cascade, broadening the dense structures and flattening their mass spectra with respect to the corresponding ideal MHD situation. Altough the peak in the thickness distribution of filaments is not as dramatic in this series of simulations as in the observations, the comparison between ideal and non-ideal MHD points to ion-neutral friction as a very good candidate for setting a characteristic scale for interstellar filaments.

  17. Cryogenic glass-filament-wound tank evaluation

    NASA Technical Reports Server (NTRS)

    Morris, E. E.; Landes, R. E.

    1971-01-01

    High-pressure glass-filament-wound fluid storage vessels with thin aluminum liners were designed, fabricated, and tested at ambient and cryogenic temperatures which demonstrated the feasibility of producing such vessels as well as high performance and light weight. Significant developments and advancements were made in solving problems associated with the thin metal liners in the tanks, including liner bonding to the overwrap and high strain magnification at the vessel polar bosses. The vessels had very high burst strengths, and failed in cyclic fatigue tests by local liner fracture and leakage without structural failure of the composite tank wall. The weight of the tanks was only 40 to 55% of comparable 2219-T87 aluminum and Inconel 718 tanks.

  18. Models of Filament-Prominence Formation

    NASA Astrophysics Data System (ADS)

    Welsch, Brian T.

    Martens and Zwaan (ApJ v. 558 872) have proposed a prominence/ filament formation model in which differential rotation drives reconnection between two initially unconnected active regions to form helical field lines that support mass and are held down by overlying field. Using an MHD solver with adaptive refinement we simulated this process by imposing a shear flow meant to mimic differential rotation on two bipolar flux distributions meant to mimic distinct active regions. In some runs the flux systems are initially potential while in others they have been twisted by footpoint rotation to inject helicity prior to imposing the shear flow. The resulting structures are studied to understand the role of helicity in the formation of prominence-like structures.

  19. Current filaments in turbulent magnetized plasmas

    NASA Astrophysics Data System (ADS)

    Martines, E.; Vianello, N.; Sundkvist, D.; Spolaore, M.; Zuin, M.; Agostini, M.; Antoni, V.; Cavazzana, R.; Ionita, C.; Maraschek, M.; Mehlmann, F.; Müller, H. W.; Naulin, V.; Rasmussen, J. J.; Rohde, V.; Scarin, P.; Schrittwieser, R.; Serianni, G.; Spada, E.; RFX-mod Team; ASDEX Upgrade Team

    2009-12-01

    Direct measurements of current density perturbations associated with non-linear phenomena in magnetized plasmas can be carried out using in situ magnetic measurements. In this paper we report such measurements for three different kinds of phenomena. Current density fluctuations in the edge density gradient region of a fusion plasma confined in reversed field pinch configuration and in a density gradient region in the Earth magnetosphere are measured and compared, showing that in both environments they can be attributed to drift-Alfvén vortices. Current structures associated with reconnection events measured in a reversed field pinch plasma and in the magnetosheath are detected and compared. Evidence of current filaments occurring during ELMs in an H-mode tokamak plasma is displayed.

  20. Effects of external environments on the short beam shear strength of filament wound graphite/epoxy

    NASA Technical Reports Server (NTRS)

    Penn, B. G.; Clemons, J. M.

    1986-01-01

    Filament wound graphite/epoxy samples were immersed in seawater, deionized water, and toluene at room temperature and 80 deg C for 5, 15, and 43 days, and in methanol at room temperature for 15 and 43 days. The percent weight gains and short beam shear strengths were determined after environmental exposure. Samples immersed in deionized water and seawater had higher percent weight gains than those immersed in toluene at room temperature and 80 deg C. The percent weight gains for samples immersed in methanol at room temperature were comparable to those of deionized water and seawater immersed samples. A comparison of percent decreases in short beam shear strengths could not be made due to a large scatter in data. This may indicate defects in samples due to machining or variations in material properties due to processing.

  1. Towards Real-Time Detection and Tracking of Blob-Filaments in Fusion Plasma Big Data

    E-print Network

    Wu, Lingfei; Sim, Alex; Churchill, Michael; Choi, Jong Y; Stathopoulos, Andreas; Chang, Cs; Klasky, Scott

    2015-01-01

    Magnetic fusion could provide an inexhaustible, clean, and safe solution to the global energy needs. The success of magnetically-confined fusion reactors demands steady-state plasma confinement which is challenged by the blob-filaments driven by the edge turbulence. Real-time analysis can be used to monitor the progress of fusion experiments and prevent catastrophic events. However, terabytes of data are generated over short time periods in fusion experiments. Timely access to and analyzing this amount of data demands properly responding to extreme scale computing and big data challenges. In this paper, we apply outlier detection techniques to effectively tackle the fusion blob detection problem on extremely large parallel machines. We present a real-time region outlier detection algorithm to efficiently find blobs in fusion experiments and simulations. In addition, we propose an efficient scheme to track the movement of region outliers over time. We have implemented our algorithms with hybrid MPI/OpenMP and ...

  2. Development of a process for producing ribbon shaped filaments. [production of silicon carbide filaments

    NASA Technical Reports Server (NTRS)

    Debolt, H. E.; Krukonis, V. J.

    1973-01-01

    Silicon carbide (SiC) ribbon filaments were produced on a carbon ribbon substrate, about 1500 microns (60 mils) wide and 100 microns (4 mils) thick in lengths up to 2 meters (6 ft), and with tensile strengths up to 142 KN/cm sq (206 Ksi). During the course of the study, ribbon filaments of boron were also produced on the carbon ribbon substrate; the boron ribbon produced was extremely fragile. The tensile strength of the SiC ribbon was limited by large growths or flaws caused by anomalies at the substrate surface; these anomalies were either foreign dirt or substrate imperfections or both. Related work carried out on round 100 micron (4 mils) diameter SiC filaments on a 33 micron (1.3 mil) diameter, very smooth carbon monofilament substrate has shown that tensile strengths as high as 551 KN/cm sq (800 Ksi) are obtainable with the SiC-carbon round substrate combination, and indicates that if the ribbon substrate surface and ribbon deposition process can be improved similar strengths can be realizable. Cost analysis shows that 100 micron x 5-10 micron SiC ribbon can be very low cost reinforcement material.

  3. Rapid longitudinal migrations of the filament front off Namibia (SE Atlantic) during the past 70 kyr

    NASA Astrophysics Data System (ADS)

    Romero, O. E.; Crosta, X.; Kim, J.-H.; Pichevin, L.; Crespin, J.

    2015-02-01

    Although productivity variations in coastal upwelling areas are mostly attributed to changes in wind strength, productivity dynamics in the Benguela Upwelling System (BUS) is less straightforward due to its complex atmospheric and hydrographic settings. In view of these settings, past productivity variations in the BUS can be better investigated with downcore sediments representing different productivity regimes. In this study, two sediment cores retrieved at ca. 25°-26°S in the BUS and representing different productivity regimes were studied. By using micropaleontological, geochemical and temperature proxies measured on core MD96-2098, recovered at 2910 m water depth in the bathypelagic zone at 26°S off Namibia, variations of filament front location, productivity and temperature in the central BUS over the past 70 kyr were reconstructed. The comparison with newly-generated alkenone-based sea-surface temperature (SST) and previously obtained data at site GeoB3606-1 (~ 25°S; ca. 50 km shoreward from MD96-2098) allowed the recognition of four main phases: (1) upwelling front above the mid slope (70 kyr-44 kyr), (2) seaward displacement of the upwelling front beyond the mid slope (44 kyr-31 kyr), (3) main upwelling front over the hemipelagial (31 kyr-19 kyr), and (4) shoreward contraction of the upwelling filament, and decreased upwelling strength over most of the uppermost bathypelagic (19 kyr-6 kyr). The latitudinal migration of the Southern Hemisphere westerlies and the consequent contractions and expansions of the subpolar gyre played a significant role in millennial and submillennial variability of SST off Namibia. The strength of the southeasterly trade winds, rapid sea-level variations and the equatorward leakage of Antarctic silicate might have acted as amplifiers. Although late Quaternary variations of productivity and upwelling intensity in eastern boundary current systems are thought to be primarily linked to the variability in wind stress, this multi-parameter reconstruction shows that interplaying mechanisms defined the temporal variation pattern of the filament front migrations and the diatom production off Namibia during the past 70 kyr.

  4. Disc-geometry homopolar synchronous machine

    NASA Astrophysics Data System (ADS)

    Evans, P. D.; Eastham, J. F.

    1980-09-01

    Results of an experimental and theoretical investigation of a disc-geometry homopolar synchronous machine with field excitation on the primary side are presented. The unlaminated mild-steel rotor contains no windings and is brushless. The prototype machine produces approximately 7.5 kW of mechanical output at 3000 rev/min, with a product of power factor and efficiency greater than 0.7. The construction of the stator core is unusual and incorporates both laminated and unlaminated portions. The magnetic circuit is also arranged to minimize the axial force between the stator and rotor. A novel rotor design which achieves a reduced quadrature-axis reactance is shown experimentally to be superior to the conventional homopolar rotor.

  5. Machine Learning and Radiology

    PubMed Central

    Wang, Shijun; Summers, Ronald M.

    2012-01-01

    In this paper, we give a short introduction to machine learning and survey its applications in radiology. We focused on six categories of applications in radiology: medical image segmentation, registration, computer aided detection and diagnosis, brain function or activity analysis and neurological disease diagnosis from fMR images, content-based image retrieval systems for CT or MRI images, and text analysis of radiology reports using natural language processing (NLP) and natural language understanding (NLU). This survey shows that machine learning plays a key role in many radiology applications. Machine learning identifies complex patterns automatically and helps radiologists make intelligent decisions on radiology data such as conventional radiographs, CT, MRI, and PET images and radiology reports. In many applications, the performance of machine learning-based automatic detection and diagnosis systems has shown to be comparable to that of a well-trained and experienced radiologist. Technology development in machine learning and radiology will benefit from each other in the long run. Key contributions and common characteristics of machine learning techniques in radiology are discussed. We also discuss the problem of translating machine learning applications to the radiology clinical setting, including advantages and potential barriers. PMID:22465077

  6. The Basic Anaesthesia Machine

    PubMed Central

    Gurudatt, CL

    2013-01-01

    After WTG Morton's first public demonstration in 1846 of use of ether as an anaesthetic agent, for many years anaesthesiologists did not require a machine to deliver anaesthesia to the patients. After the introduction of oxygen and nitrous oxide in the form of compressed gases in cylinders, there was a necessity for mounting these cylinders on a metal frame. This stimulated many people to attempt to construct the anaesthesia machine. HEG Boyle in the year 1917 modified the Gwathmey's machine and this became popular as Boyle anaesthesia machine. Though a lot of changes have been made for the original Boyle machine still the basic structure remains the same. All the subsequent changes which have been brought are mainly to improve the safety of the patients. Knowing the details of the basic machine will make the trainee to understand the additional improvements. It is also important for every practicing anaesthesiologist to have a thorough knowledge of the basic anaesthesia machine for safe conduct of anaesthesia. PMID:24249876

  7. Stepwise length changes in single invertebrate thick filaments.

    PubMed

    Nagornyak, Ekaterina M; Blyakhman, Felix A; Pollack, Gerald H

    2005-11-01

    Previous experiments on thick filaments of the anterior byssus retractor muscle of Mytilus and the telson-levator muscle of Limulus polyphemus have shown large, reversible length changes up to 23% and 66% of initial length, respectively, within the physiological tension range. Using nanofabricated cantilevers and newly developed high-resolution detection methods, we investigated the dynamics of isolated Mytilus anterior byssus retractor muscle thick filaments. Single thick filaments were suspended between the tips of two microbeams oriented perpendicular to the filament axis: a deflectable cantilever and a stationary beam. Axial stress was applied by translating the base of the deflectable nanolever away from the stationary beam, which bent the nanolever. Tips of flexible nanolevers and stationary beam were imaged onto a photodiode array to track their positions. Filament shortening and lengthening traces, obtained immediately after the motor had imposed stress on the filament, showed steps and pauses. Step sizes were 2.7 nm and integer multiples thereof. Steps of this same size paradigm have been seen both during contraction of single sarcomeres and during active interaction between single isolated actin and myosin filaments, raising the question whether all of these phenomena might be related. PMID:16113114

  8. Localizing and Extracting Filament Distributions from Microscopy Images

    PubMed Central

    Basu, Saurav; Dahl, Kris Noel; Rohde, Gustavo Kunde

    2013-01-01

    Detailed quantitative measurements of biological filament networks represent a crucial step in understanding architecture and structure of cells and tissues, which in turn explain important biological events such as wound healing and cancer metastases. Confocal microscope images of biological specimens marked for different structural proteins constitute an important source for observing and measuring meaningful parameters of biological networks. Unfortunately, current efforts at quantitative estimation of architecture and orientation of biological filament networks from microscopy images are predominantly limited to visual estimation and indirect experimental inference. Here we describe a new method for localizing and extracting filament distributions from 2D confocal microscopy images. The method combines a filter-based detection of pixels likely to contain a filament with a constrained reverse diffusion-based approach for localizing the filaments centerlines. We show with qualitative and quantitative experiments, using both simulated and real data, that the new method can provide more accurate centerline estimates of filament in comparison to other approaches currently available. In addition, we show the algorithm is more robust with respect to variations in the initial filter-based filament detection step often used. We demonstrate the application of the method in extracting quantitative parameters from an experiment that seeks to quantify the effects of carbon nanotubes on actin cytoskeleton in live HeLa cells. We show that their presence can disrupt the overall actin cytoskeletal organization in such cells. PMID:23458491

  9. ERUPTION OF A SOLAR FILAMENT CONSISTING OF TWO THREADS

    SciTech Connect

    Bi Yi; Jiang Yunchun; Li Haidong; Hong Junchao; Zheng Ruisheng E-mail: jyc@ynao.ac.cn

    2012-10-10

    The trigger and driving mechanism for the eruption of a filament consisting of two dark threads was studied with unprecedented high cadence and resolution of He II 304 A observations made by the Atmospheric Imagining Assembly (AIA) on board the Solar Dynamics Observatory (SDO) and the observations made by the Solar Magnetic Activity Research Telescope and the Extreme Ultraviolet Imager (EUVI) telescope on board the Solar Terrestrial Relations Observatory Ahead (STEREO-A). The filament was located at the periphery of the active region NOAA 11228 and erupted on 2011 June 6. At the onset of the eruption, a turbulent filament thread was found to be heated and to elongate in stride over a second one. After it rose slowly, most interestingly, the elongating thread was driven to contact and interact with the second one, and it then erupted with its southern leg being wrapped by a newly formed thread produced by the magnetic reconnection between fields carried by the two threads. Combining the observations from STEREO-A/EUVI and SDO/AIA 304 A images, the three-dimensional shape of the axis of the filament was obtained and it was found that only the southern leg of the eruptive filament underwent rotation. We suggest that the eruption was triggered by the reconnection of the turbulent filament thread and the surrounding magnetic field, and that it was mainly driven by the kink instability of the southern leg of the eruptive filament that possessed a more twisted field introduced by the reconnection-produced thread.

  10. Stepwise Length Changes in Single Invertebrate Thick Filaments

    PubMed Central

    Nagornyak, Ekaterina M.; Blyakhman, Felix A.; Pollack, Gerald H.

    2005-01-01

    Previous experiments on thick filaments of the anterior byssus retractor muscle of Mytilus and the telson-levator muscle of Limulus polyphemus have shown large, reversible length changes up to 23% and 66% of initial length, respectively, within the physiological tension range. Using nanofabricated cantilevers and newly developed high-resolution detection methods, we investigated the dynamics of isolated Mytilus anterior byssus retractor muscle thick filaments. Single thick filaments were suspended between the tips of two microbeams oriented perpendicular to the filament axis: a deflectable cantilever and a stationary beam. Axial stress was applied by translating the base of the deflectable nanolever away from the stationary beam, which bent the nanolever. Tips of flexible nanolevers and stationary beam were imaged onto a photodiode array to track their positions. Filament shortening and lengthening traces, obtained immediately after the motor had imposed stress on the filament, showed steps and pauses. Step sizes were 2.7 nm and integer multiples thereof. Steps of this same size paradigm have been seen both during contraction of single sarcomeres and during active interaction between single isolated actin and myosin filaments, raising the question whether all of these phenomena might be related. PMID:16113114

  11. Effect of Tropomyosin on Formin-Bound Actin Filaments

    PubMed Central

    Ujfalusi, Zoltán; Vig, Andrea; Hild, Gábor; Nyitrai, Miklós

    2009-01-01

    Abstract Formins are conservative proteins with important roles in the regulation of the microfilament system in eukaryotic cells. Previous studies showed that the binding of formins to actin made the structure of actin filaments more flexible. Here, the effects of tropomyosin on formin-induced changes in actin filaments were investigated using fluorescence spectroscopic methods. The temperature dependence of the Förster-type resonance energy transfer showed that the formin-induced increase of flexibility of actin filaments was diminished by the binding of tropomyosin to actin. Fluorescence anisotropy decay measurements also revealed that the structure of flexible formin-bound actin filaments was stabilized by the binding of tropomyosin. The stabilizing effect reached its maximum when all binding sites on actin were occupied by tropomyosin. The effect of tropomyosin on actin filaments was independent of ionic strength, but became stronger as the magnesium concentration increased. Based on these observations, we propose that in cells there is a molecular mechanism in which tropomyosin binding to actin plays an important role in forming mechanically stable actin filaments, even in the case of formin-induced rapid filament assembly. PMID:18931257

  12. Plethora of transitions during breakup of liquid filaments

    PubMed Central

    Castrejón-Pita, José Rafael; Castrejón-Pita, Alfonso Arturo; Thete, Sumeet Suresh; Sambath, Krishnaraj; Hutchings, Ian M.; Hinch, John; Lister, John R.; Basaran, Osman A.

    2015-01-01

    Thinning and breakup of liquid filaments are central to dripping of leaky faucets, inkjet drop formation, and raindrop fragmentation. As the filament radius decreases, curvature and capillary pressure, both inversely proportional to radius, increase and fluid is expelled with increasing velocity from the neck. As the neck radius vanishes, the governing equations become singular and the filament breaks. In slightly viscous liquids, thinning initially occurs in an inertial regime where inertial and capillary forces balance. By contrast, in highly viscous liquids, initial thinning occurs in a viscous regime where viscous and capillary forces balance. As the filament thins, viscous forces in the former case and inertial forces in the latter become important, and theory shows that the filament approaches breakup in the final inertial–viscous regime where all three forces balance. However, previous simulations and experiments reveal that transition from an initial to the final regime either occurs at a value of filament radius well below that predicted by theory or is not observed. Here, we perform new simulations and experiments, and show that a thinning filament unexpectedly passes through a number of intermediate transient regimes, thereby delaying onset of the inertial–viscous regime. The new findings have practical implications regarding formation of undesirable satellite droplets and also raise the question as to whether similar dynamical transitions arise in other free-surface flows such as coalescence that also exhibit singularities. PMID:25825761

  13. Star-forming filaments in warm dark matter models

    NASA Astrophysics Data System (ADS)

    Gao, Liang; Theuns, Tom; Springel, Volker

    2015-06-01

    We performed a hydrodynamical cosmological simulation of the formation of a Milky Way-like galaxy in a warm dark matter (WDM) cosmology. Smooth and dense filaments, several comoving mega parsec long, form generically above z ˜ 2 in this model. Atomic line cooling allows gas in the centres of these filaments to cool to the base of the cooling function, resulting in a very striking pattern of extended Lyman-limit systems (LLSs). Observations of the correlation function of LLSs might hence provide useful limits on the nature of the dark matter. We argue that the self-shielding of filaments may lead to a thermal instability resulting in star formation. We implement a sub-grid model for this, and find that filaments rather than haloes dominate star formation until z ˜ 6, although this depends on how stars form in WDM. Reionization decreases the gas density in filaments, and the more usual star formation in haloes dominates below z ˜ 6, although star formation in filaments continues until z = 2. 15 per cent of the stars of the z = 0 galaxy formed in filaments. At higher redshift, these stars give galaxies a stringy appearance, which, if observed, might be a strong indication that the dark matter is warm.

  14. The effective resistance between twisted superconducting filaments in tapes

    NASA Astrophysics Data System (ADS)

    Takács, S.; Iwakuma, M.; Funaki, K.

    2001-05-01

    We consider two mechanisms, which influence the effective resistance between crossing strands on flat cables or filaments in twisted tapes. The one-layer classical Rutherford-type cable and the tapes with twisted BSCCO filaments in silver matrix are taken as analogous cases. The amount of the matrix between strands or filaments increases the effective conductance compared with the direct current paths (determined by the touching area of the filaments). The increase factor is about two and can easily be suppressed by other effects, like the contact resistance between the superconductor and the matrix. The second mechanism is due to the existence of induced voltage between any points of crossing filaments. This leads to an additional effective conductance, proportional to the square of the total number of filaments. Both effects are not very important for isotropic superconductors, but due to the strong anisotropy of critical parameters they can dominate for high temperature superconductors. The first one may partially compensate the influence of the usually weaker critical current density perpendicular to the tape. The contribution due to the second effect can explain the higher resistivity of the matrix in BSCCO tapes compared with pure silver. It seems that to obtain low AC coupling losses in BSCCO tapes, structures with small filament number are required.

  15. Geometry and Optimal Packing of Twisted Columns and Filaments

    E-print Network

    Gregory M. Grason

    2015-01-30

    This review presents recent progress in understanding constraints and consequences of close-packing geometry of filamentous or columnar materials possessing non-trivial textures, focusing in particular on the common motifs of twisted and toroidal structures. The mathematical framework is presented that relates spacing between line-like, filamentous elements to their backbone orientations, highlighting the explicit connection between the inter-filament {\\it metric} properties and the geometry of non-Euclidean surfaces. The consequences of the hidden connection between packing in twisted filament bundles and packing on positively curved surfaces, like the Thomson problem, are demonstrated for the defect-riddled ground states of physical models of twisted filament bundles. The connection between the "ideal" geometry of {\\it fibrations} of curved three-dimensional space, including the Hopf fibration, and the non-Euclidean constraints of filament packing in twisted and toroidal bundles is presented, with a focus on the broader dependence of metric geometry on the simultaneous twisting and folded of multi-filament bundles.

  16. Fragmentation and depolymerization of non-covalently bonded filaments

    E-print Network

    A. Zaccone; I. Terentjev; L. DiMichele; E. M. Terentjev

    2015-03-22

    Protein molecules often self-assemble by means of non-covalent physical bonds to form extended filaments, such as amyloids, F-actin, intermediate filaments, and many others. The kinetics of filament growth is limited by the disassembly rate, at which inter-protein bonds break due to the thermal motion. Existing models often assume that the thermal dissociation of subunits occurs uniformly along the filament, or even preferentially in the middle, while the well-known propensity of F-actin to depolymerize from one end is mediated by biochemical factors. Here, we show for a very general (and generic) model, using Brownian dynamics simulations and theory, that the breakup location along the filament is strongly controlled by the asymmetry of the binding force about the minimum, as well as by the bending stiffness of the filament. We provide the basic connection between the features of the interaction potential between subunits and the breakup topology. With central-force (that is, fully flexible) bonds, the breakup rate is always maximum in the middle of the chain, whereas for semiflexible or stiff filaments this rate is either a minimum in the middle or flat. The emerging framework provides a unifying understanding of biopolymer fragmentation and depolymerization and recovers earlier results in its different limits.

  17. A study of short wave instability on vortex filaments

    SciTech Connect

    Wang, Hong Yun

    1996-12-01

    The numerical stability and accuracy of the vortex method are studied. The effect of the ordinary differential equations (ODE) solver and of the time step on the numerical stability is analyzed. Various ODE solvers are compared and a best performer is chosen. A new constraint on the time step based on numerical stability is proposed and verified in numerical simulations. It is shown through numerical examples that empirical rules for selecting the spatial discretization obtained in simple test problems may not be extended to more general problems. The thin tube vortex filament method is applied to the problem of Widnall`s instability on vortex rings. Numerical results different from previous calculations are presented and the source of the discrepancies is explained. The long time behavior of the unstable mode on thin vortex rings is simulated and analyzed. The short wave instability on vortex filaments is investigated both theoretically and numerically. It is shown that the short wave instability always occurs on co-rotating vortex filaments of fixed core structure. Furthermore when they are close to each other, vortex filaments produce short wave unstable modes which lead to wild stretching and folding. However, when the inter-filament distance is large in comparison with the core size of the filaments, unstable modes are bounded by a small fraction of the core size and the vortex filaments do not create hairpins nor wild stretching. These findings may explain the smooth behavior of the superfluid vortices. The formation of hairpin structures on numerical vortex filaments is investigated. It is shown that the formation of hairpin structures is independent of the ODE solver, of the time step and of other numerical parameters. The hairpin structures are primarily caused by short wave instability on co-rotating vortex filaments.

  18. Large-scale filaments associated with Milky Way spiral arms

    NASA Astrophysics Data System (ADS)

    Wang, Ke; Testi, Leonardo; Ginsburg, Adam; Walmsley, C. Malcolm; Molinari, Sergio; Schisano, Eugenio

    2015-07-01

    The ubiquity of filamentary structure at various scales throughout the Galaxy has triggered a renewed interest in their formation, evolution, and role in star formation. The largest filaments can reach up to Galactic scale as part of the spiral arm structure. However, such large-scale filaments are hard to identify systematically due to limitations in identifying methodology (i.e. as extinction features). We present a new approach to directly search for the largest, coldest, and densest filaments in the Galaxy, making use of sensitive Herschel Hi-GAL (Herschel Infrared Galactic Plane Survey) data complemented by spectral line cubes. We present a sample of the nine most prominent Herschel filaments, including six identified from a pilot search field plus three from outside the field. These filaments measure 37-99 pc long and 0.6-3.0 pc wide with masses (0.5-8.3) × 104 M?, and beam-averaged (28 arcsec, or 0.4-0.7 pc) peak H2 column densities of (1.7-9.3)× 1022 cm- 2. The bulk of the filaments are relatively cold (17-21 K), while some local clumps have a dust temperature up to 25-47 K. All the filaments are located within ?60 pc from the Galactic mid-plane. Comparing the filaments to a recent spiral arm model incorporating the latest parallax measurements, we find that 7/9 of them reside within arms, but most are close to arm edges. These filaments are comparable in length to the Galactic scaleheight and therefore are not simply part of a grander turbulent cascade.

  19. MESSENGER Observations of Cusp Plasma Filaments at Mercury

    NASA Astrophysics Data System (ADS)

    Poh, Gangkai; Slavin, James; Jia, Xianzhe; DiBraccio, Gina; Raines, Jim; Imber, Suzanne; Gershman, Daniel; Anderson, Brian; Korth, Haje; McNutt, Ralph; Solomon, Sean

    2015-04-01

    The MESSENGER spacecraft, in orbit about Mercury, has documented highly localized, ~1-2-s-long reductions in the dayside magnetospheric magnetic field of the planet with amplitudes up to 90% of the ambient intensity. These magnetic field depressions which we have termed cusp filaments are observed from just poleward of the magnetospheric cusp to mid-latitudes, i.e., from ~55 to 85oN. Minimum variance analysis and superposed epoch analysis of the Magnetometer (MAG) data indicate that the filaments are simple two dimensional flux tubes. If the filaments move over the spacecraft at the polar convection speed, then these filaments have a mean diameter of ~230km, which is an order of magnitude larger than the gyro-radius of a 1 keV H+ ion, i.e., ~ 23 km. During these events, MESSENGER's Fast Imaging Plasma Spectrometer (FIPS) measured H+ ions with magnetosheath-like energies consistent with the view that the magnetic field depressions are diamagnetic and most probably the low-altitude extensions of flux transfer events (FTEs) that form at the magnetopause as a result of reconnection. Here we analyze 349 filaments identified in MESSENGER magnetic field and plasma data to determine the physical properties of these structures. MESSENGER observations during the spacecraft's final low-altitude campaign confirm that these cusp filaments extend down to very low altitudes. We calculate an average particle precipitation rate onto the surface from all of the filaments at any given time of ~ 2x1025 #s-1. This precipitation rate is comparable to published estimates of the total precipitation rate in the cusp proper. The existence of these cusp filaments has important implications for surface sputtering and our understanding of Mercury's northern cusp. Overall, the MAG and FIPS observations analyzed here appear consistent with an origin for cusp plasma filaments by the inflow of magnetosheath plasma associated with the localized magnetopause reconnection process that produces FTEs at higher altitudes.

  20. Principle and design of small-sized and high-definition x-ray machine

    NASA Astrophysics Data System (ADS)

    Zhao, Anqing

    2010-10-01

    The paper discusses the circuit design and working principles of VMOS PWM type 75KV10mA high frequency X-ray machine. The system mainly consists of silicon controlled rectifier, VMOS tube PWM type high-frequency and highvoltage inverter circuit, filament inverter circuit, high-voltage rectifier filter circuit and as X-ray tube. The working process can be carried out under the control of a single-chip microcomputer. Due to the small size and high resolution in imaging, the X-ray machine is mostly adopted for emergent medical diagnosis and specific circumstances where nondestructive tests are conducted.