Science.gov

Sample records for filamentous alpha-smooth muscle

  1. Osteogenic potential of alpha smooth muscle actin expressing muscle resident progenitor cells.

    PubMed

    Matthews, Brya G; Torreggiani, Elena; Roeder, Emilie; Matic, Igor; Grcevic, Danka; Kalajzic, Ivo

    2016-03-01

    Heterotopic ossification (HO) is a pathological process where bone forms in connective tissues such as skeletal muscle. Previous studies have suggested that muscle-resident non-myogenic mesenchymal progenitors are the likely source of osteoblasts and chondrocytes in HO. However, the previously identified markers of muscle-resident osteoprogenitors label up to half the osteoblasts within heterotopic lesions, suggesting other cell populations are involved. We have identified alpha smooth muscle actin (αSMA) as a marker of osteoprogenitor cells in bone and periodontium, and of osteo-chondro progenitors in the periosteum during fracture healing. We therefore utilized a lineage tracing approach to evaluate whether αSMACreERT2 identifies osteoprogenitors in the muscle. We show that in the muscle, αSMACreERT2 labels both perivascular cells, and satellite cells. αSMACre-labeled cells undergo osteogenic differentiation in vitro and form osteoblasts and chondrocytes in BMP2-induced HO in vivo. In contrast, Pax7CreERT2-labeled muscle satellite cells were restricted to myogenic differentiation in vitro, and rarely contributed to HO in vivo. Our data indicate that αSMACreERT2 labels a large proportion of osteoprogenitors in skeletal muscle, and therefore represents another marker of muscle-resident cells with osteogenic potential under HO-inducing stimulus. In contrast, muscle satellite cells make minimal contribution to bone formation in vivo. PMID:26721734

  2. Alpha-Smooth Muscle Actin Expression Upregulates Fibroblast Contractile Activity

    PubMed Central

    Hinz, Boris; Celetta, Giuseppe; Tomasek, James J.; Gabbiani, Giulio; Chaponnier, Christine

    2001-01-01

    To evaluate whether α-smooth muscle actin (α-SMA) plays a role in fibroblast contractility, we first compared the contractile activity of rat subcutaneous fibroblasts (SCFs), expressing low levels of α-SMA, with that of lung fibroblasts (LFs), expressing high levels of α-SMA, with the use of silicone substrates of different stiffness degrees. On medium stiffness substrates the percentage of cells producing wrinkles was similar to that of α-SMA–positive cells in each fibroblast population. On high stiffness substrates, wrinkle production was limited to a subpopulation of LFs very positive for α-SMA. In a second approach, we measured the isotonic contraction of SCF- and LF-populated attached collagen lattices. SCFs exhibited 41% diameter reduction compared with 63% by LFs. TGFβ1 increased α-SMA expression and lattice contraction by SCFs to the levels of LFs; TGFβ-antagonizing agents reduced α-SMA expression and lattice contraction by LFs to the level of SCFs. Finally, 3T3 fibroblasts transiently or permanently transfected with α-SMA cDNA exhibited a significantly higher lattice contraction compared with wild-type 3T3 fibroblasts or to fibroblasts transfected with α-cardiac and β- or γ-cytoplasmic actin. This took place in the absence of any change in smooth muscle or nonmuscle myosin heavy-chain expression. Our results indicate that an increased α-SMA expression is sufficient to enhance fibroblast contractile activity. PMID:11553712

  3. Cell, matrix changes and alpha-smooth muscle actin expression in repair of the canine meniscus.

    PubMed

    Kambic, H E; Futani, H; McDevitt, C A

    2000-01-01

    Processes in the repair of a crevice in the knee joint meniscus were investigated in 10 dogs. Two 2-mm cylindrical plugs from each medial meniscus were removed, rendered acellular by freezing and thawing, and then reinserted into the meniscus. Dogs were euthanized at intervals of 3-52 weeks after surgery. The crevice between the plug and meniscus at 3 weeks after surgery was filled with a tissue containing alpha-smooth muscle actin-positive cells. One year after surgery, the plug had remodeled and was populated with spindle-shaped and fibrochondrocyte-like cells. The plug had an appearance intermediate between that of hyaline and fibrocartilage at this time, with a seamless integration in sites between the remodeled plug and the surrounding meniscus. alpha-smooth muscle actin-positive cells were concentrated at the interface of the remodeled plug and adjacent meniscus and at the surface of the plug. Therefore, remodeling of both the plug and meniscal tissue and the participation of alpha-smooth muscle actin-positive cells appear essential for integration of the plug into the adjacent meniscal tissue. Cells in the superficial zone of the meniscus seem to be active in the repair process. A change in both the phenotype of the cells and the quality of the matrix toward a more hyaline state appears to be an integral part of the remodeling process in the meniscus. PMID:11208183

  4. Cardiac myofibroblasts express alpha smooth muscle actin during right ventricular pressure overload in the rabbit.

    PubMed Central

    Leslie, K. O.; Taatjes, D. J.; Schwarz, J.; vonTurkovich, M.; Low, R. B.

    1991-01-01

    A number of changes occur in contractile proteins and mechanical performance of the heart within 2 weeks of right ventricular pressure overload in 8- to 12-week-old rabbits. These changes are accompanied by increases in collagen concentration and the ratio of type I to type III collagen. The purpose of the present study was to evaluate the evolution of these connective tissue changes morphologically and to characterize the interstitial cells that might be responsible. The myocardium is infiltrated by mononuclear inflammatory cells 2 days after banding, accompanied by focal myocyte necrosis. By 7 days, the inflammatory infiltrates subside and the damaged myocytes seen at 2 days are replaced by new collagen and a population of spindle-shaped cells, with ultrastructural features of myofibroblasts. A significant proportion of these cells contain alpha smooth muscle actin by immunohistochemical analysis. At 14 days, there is a large increase in stainable collagen with complex remodeling and reduplication of the collagen fiber network of the interstitium. Alpha smooth muscle actin-containing myofibroblasts persist, but their immunoreactivity appears reduced compared with day 7. The authors hypothesize that the interstitial fibroblasts that acquire smooth-muscle-like features in this model play a critical role in the heart's response to severe and sudden mechanical stress and are at least partly responsible for the changes in connective tissue that occur as a result of pressure overload in this model. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:1853934

  5. Alpha smooth muscle actin in the cycling ovary - an immunohistochemical study.

    PubMed

    Hirschberg, Ruth M; Plendl, Johanna; Kaessmeyer, Sabine

    2012-01-01

    In the ovary with its cyclically developing and regressing functional bodies and the associated intense neovascularisation and remodelling, alpha-smooth muscle actin (SMA) immunolocalisation has been frequently used as a marker to establish vessel hierarchy, in angiogenesis studies, or in studies characterising ovarian neoplasms in various species. The present study aims at detection of alpha-SMA-immunolocalisation within all structural components of the cycling bovine ovary in order to complement the hitherto available data. 27 ovaries, mainly of dairy cows ranging from 23 to 118 months of age and displaying all major stages of follicle and corpora lutea development, were collected at the abattoir and subjected to routine HE and trichrome staining as well as alpha-SMA immunohistochemistry. For this purpose, the specimens were pooled to form groups of the respective stage of corpus luteum development. The ovarian stroma displayed a notable alpha-SMA-reactivity, particularly surrounding the functional bodies. The study revealed specialised vascular modifications such as multi-directionally arranged vascular smooth muscle layers, vascular sphincters and distinct epitheloid modifications of the media in ovarian arteries. Alpha-SMA-reactivity of the microcirculation within corpora lutea of various stages allowed inferences on respective angiogenic properties. The findings were discussed focussing on functional interpretations. PMID:22538540

  6. Significance of alpha smooth muscle actin expression in traumatic painful neuromas: a pilot study in rats

    PubMed Central

    Weng, Weidong; Zhao, Bin; Lin, Dingshen; Gao, Weiyang; Li, Zhijie; Yan, Hede

    2016-01-01

    Treatment of painful neuromas remains a challenge and the mechanism of neuroma-associated pain is not yet fully understood. In this study, we aimed to observe the expression of alpha smooth muscle actin (α-SMA) in traumatic neuromas and to investigate its possible roles in the cause of neuropathic pain in a rat model. The rat sciatic nerve was used and the experiment was divided into two parts. In part I, our results showed significantly higher levels of α-SMA and the pain marker c-fos in the autotomy group than in the no-autotomy group. In part II, the expression of α-SMA in neuromas was down- and up-regulated using SB-431542 and GW9662, respectively. A significant correlation between autotomy scores and the expression level of α-SMA was found (R = 0.957; p < 0.001) and the expression level of α-SMA was positively related to the autotomy scores (R2 = 0.915, p < 0.001). We concluded that the expression of α-SMA plays certain roles in the neuroma-associated pain, either as a direct cause of pain or as an indirect marker of existence of local mechanical stimuli. Our findings may provide new insights into the development of new treatment modalities for the management of intractable painful neuromas. PMID:27021914

  7. The interstitial expression of alpha-smooth muscle actin in glomerulonephritis is associated with renal function

    PubMed Central

    Novakovic, Zana Saratlija; Durdov, Merica Glavina; Puljak, Livia; Saraga, Marijan; Ljutic, Dragan; Filipovic, Tomislav; Pastar, Zvonimir; Bendic, Antonia; Vukojevic, Katarina

    2012-01-01

    Summary Background In a healthy kidney, contractile protein alpha-smooth muscle actin (ASMA) is immunohistochemically strongly expressed only in the blood vessels, while in pathological conditions it can be visualized in glomerular mesangial cells and interstitial myofibroblasts. The aim of this study was to explore the possible correlation between expression of ASMA in glomerulonephritis (GN) and indicators of renal function. Material/Methods We analyzed expression of ASMA in percutaneous renal biopsy of 142 adult and pediatric patients with GN and its correlation with blood pressure, serum creatinine, creatinine clearance and 24-hour urine protein at the time of biopsy. Immunoexpression of ASMA was analyzed quantitatively using computer-assisted morphometric analysis. Relative surface of ASMA expression in all glomeruli and interstitium was calculated for each patient. Results In adults and children, greater expression of ASMA in interstitium was associated with higher serum creatinine and reduced creatinine clearance. Conversely, greater ASMA expression in glomeruli was associated with normal or decreased serum creatinine in adults and increased creatinine clearance in children. In children, correlation was found between high blood pressure and ASMA expression in interstitium. Conclusions We confirmed that interstitial expression of ASMA is associated with reduced renal function at time of biopsy. The connection of ASMA expression in glomeruli with lower serum creatinine and normal or increased creatinine clearance suggests a favorable role of this phenotypic change in glomerular filtration rate; further investigation is needed. PMID:22460095

  8. Use of an alpha-smooth muscle actin (SMAA) GFP reporter to identify an osteoprogenitor population

    PubMed Central

    Kalajzic, Zana; Li, Haitao; Wang, Li-Ping; Jiang, Xi; Lamothe, Katie; Adams, Douglas J.; Aguila, Hector L.; Rowe, David W.; Kalajzic, Ivo

    2008-01-01

    Identification of a reliable marker of skeletal precursor cells within calcified and soft tissues remains a major challenge for the field. To address this, we used a transgenic model in which osteoblasts can be eliminated by pharmacological treatment. Following osteoblast ablation a dramatic increase in a population of α-smooth muscle actin (α-SMA) positive cells was observed. During early recovery phase from ablation we have detected cells with the simultaneous expression of SMAA and a preosteoblastic 3.6GFP marker, indicating the potential for transition of α-SMA+ cells towards osteoprogenitor lineage. Utilizing α-SMAGFP transgene, α-SMAGFP+ positive cells were detected in the microvasculature and in the osteoprogenitor population within bone marrow stromal cells. Osteogenic and adipogenic induction stimulated expression of bone and fat markers in the α-SMAGFP+ population derived from bone marrow or adipose tissue. In adipose tissue, α-SMA+ cells were localized within the smooth muscle cell layer and in pericytes. After in vitro expansion, α-SMA+/CD45−/Sca1+ progenitors were highly enriched. Following cell sorting and transplantation of expanded pericyte/myofibroblast populations, donor-derived differentiated osteoblasts and new bone formation was detected. Our results show that cells with a pericyte/myofibroblast phenotype have the potential to differentiate into functional osteoblasts. PMID:18571490

  9. Coronary Injury Score Correlates with Proliferating Cells and Alpha-Smooth Muscle Actin Expression in Stented Porcine Coronary Arteries

    PubMed Central

    Swier, Vicki J.; Tang, Lin; Krueger, Kristopher D.; Radwan, Mohamed M.; Del Core, Michael G.; Agrawal, Devendra K.

    2015-01-01

    Neointimal formation and cell proliferation resulting into in-stent restenosis is a major pathophysiological event following the deployment of stents in the coronary arteries. In this study, we assessed the degree of injury, based on damage to internal elastic lamina, media, external elastic lamina, and adventitia following the intravascular stenting, and its relationship with the degree of smooth muscle cell proliferation. We examined the smooth muscle cell proliferation and their phenotype at different levels of stent injury in the coronary arteries of domestic swine fed a normal swine diet. Five weeks after stent implantation, swine with and without stents were euthanized and coronaries were excised. Arteries were embedded in methyl methacrylate and sections were stained with H&E, trichrome, and Movat’s pentachrome. The expression of Ki67, α-smooth muscle actin (SMA), vimentin, and HMGB1 was evaluated by immunofluorescence. There was a positive correlation between percent area stenosis and injury score. The distribution of SMA and vimentin was correlated with the degree of arterial injury such that arteries that had an injury score >2 did not have immunoreactivity to SMA in the neointimal cells near the stent struts, but these neointimal cells were positive for vimentin, suggesting a change in the smooth muscle cell phenotype. The Ki67 and HMGB1 immunoreactivity was highly correlated with the fragmentation of the IEL and injury in the tunica media. Thus, the extent of coronary arterial injury during interventional procedure will dictate the degree of neointimal hyperplasia, in-stent restenosis, and smooth muscle cell phenotype. PMID:26382957

  10. CCAAT/enhancer-binding protein beta isoforms and the regulation of alpha-smooth muscle actin gene expression by IL-1 beta.

    PubMed

    Hu, Biao; Wu, Zhe; Jin, Hong; Hashimoto, Naozumi; Liu, Tianju; Phan, Sem H

    2004-10-01

    The role of IL-1beta in inflammation is amply documented, but its ability to inhibit myofibroblast differentiation and, in particular, the suppression of alpha-smooth muscle actin (alpha-SMA) gene expression is less well understood. Because IL-1beta can induce C/EBPbeta expression, the role of C/EBPbeta isoforms in IL-1beta regulation of alpha-SMA gene expression was investigated in rat lung myofibroblasts. The results showed that IL-1beta inhibited alpha-SMA expression in a dose-dependent manner, which was associated with stimulation of the expression of both C/EBPbeta isoforms, liver-enriched activating protein (LAP) and liver-enriched inhibitory protein (LIP). However, a greater increase in LIP relative to LAP expression resulted in a reduced LAP/LIP ratio after IL-1beta treatment. Transfection with an LAP-expressing plasmid stimulated, whereas an LIP-expressing plasmid inhibited, alpha-SMA expression. Cells from C/EBPbeta-deficient mice had reduced levels of alpha-SMA expression and promoter activity, which failed to respond to IL-1beta treatment. Sequence analysis identified the presence of a C/EBPbeta consensus binding sequence in the alpha-SMA promoter, which, when mutated, resulted in diminished promoter activity and abolished its responsiveness to IL-1beta treatment. EMSA revealed binding of C/EBPbeta to this C/EBPbeta consensus binding sequence from the alpha-SMA promoter. Finally, IL-1beta enhanced the expression of eukaryotic initiation factor 4E, a stimulator of LIP expression, which may account for a mechanism by which IL-1beta could alter the LAP/LIP ratio. These data taken together suggest that C/EBPbeta isoforms regulate alpha-SMA gene expression, and that its inhibition by IL-1beta was due to preferential stimulation of LIP expression. PMID:15383601

  11. A stable explant culture of HER2/neu invasive carcinoma supported by alpha-Smooth Muscle Actin expressing stromal cells to evaluate therapeutic agents

    PubMed Central

    Piechocki, Marie P

    2008-01-01

    Background To gain a better understanding of the effects of therapeutic agents on the tumor microenvironment in invasive cancers, we developed a co-culture model from an invasive lobular carcinoma. Tumor cells expressing HER2/neu organize in nests surrounded by alpha-Smooth Muscle Actin (α-SMA) expressing tumor stroma to resemble the morphology of an invading tumor. This co-culture, Mammary Adenocarcinoma Model (MAM-1) maintains a 1:1 ratio of HER2/neu positive tumor cells to α-SMA-reactive stromal cells and renews this configuration for over 20 passages in vitro. Methods We characterized the cellular elements of the MAM-1 model by microarray analysis, and immunocytochemistry. We developed flow cytometric assays to evaluate the relative responses of the tumor and stroma to the tyrosine kinase inhibitor, Iressa. Results The MAM-1 gene expression profile contains clusters that represent the ErbB-2 breast cancer signature and stroma-specific clusters associated with invasive breast cancers. The stability of this model and the ability to antigenically label the tumor and stromal fractions allowed us to determine the specificity of Iressa, a receptor tyrosine kinase inhibitor, for targeting the tumor cell population. Treatment resulted in a selective dose-dependent reduction in phospho-pMEK1/2 and pp44/42MAPK in tumor cells. Within 24 h the tumor cell fraction was reduced 1.9-fold while the stromal cell fraction increased >3-fold, consistent with specific reductions in phospho-pp44/42 MAPK, MEK1/2 and PCNA in tumor cells and reciprocal increases in the stromal cells. Erosion of the tumor cell nests and augmented growth of the stromal cells resembled a fibrotic response. Conclusion This model demonstrates the specificity of Iressa for HER2/neu expressing tumor cells versus the tumor associated myofibroblasts and is appropriate for delineating effects of therapy on signal transduction in the breast tumor microenvironment and improving strategies that can dually or

  12. An invertebrate smooth muscle with striated muscle myosin filaments

    PubMed Central

    Sulbarán, Guidenn; Alamo, Lorenzo; Pinto, Antonio; Márquez, Gustavo; Méndez, Franklin; Padrón, Raúl; Craig, Roger

    2015-01-01

    Muscle tissues are classically divided into two major types, depending on the presence or absence of striations. In striated muscles, the actin filaments are anchored at Z-lines and the myosin and actin filaments are in register, whereas in smooth muscles, the actin filaments are attached to dense bodies and the myosin and actin filaments are out of register. The structure of the filaments in smooth muscles is also different from that in striated muscles. Here we have studied the structure of myosin filaments from the smooth muscles of the human parasite Schistosoma mansoni. We find, surprisingly, that they are indistinguishable from those in an arthropod striated muscle. This structural similarity is supported by sequence comparison between the schistosome myosin II heavy chain and known striated muscle myosins. In contrast, the actin filaments of schistosomes are similar to those of smooth muscles, lacking troponin-dependent regulation. We conclude that schistosome muscles are hybrids, containing striated muscle-like myosin filaments and smooth muscle-like actin filaments in a smooth muscle architecture. This surprising finding has broad significance for understanding how muscles are built and how they evolved, and challenges the paradigm that smooth and striated muscles always have distinctly different components. PMID:26443857

  13. Activation of protease-activated receptors (PARs)-1 and -2 promotes alpha-smooth muscle actin expression and release of cytokines from human lung fibroblasts

    PubMed Central

    Asokananthan, Nithiananthan; Lan, Rommel S; Graham, Peter T; Bakker, Anthony J; Tokanović, Ana; Stewart, Geoffrey A

    2015-01-01

    Previous studies have shown that protease-activated receptors (PARs) play an important role in various physiological processes. In the present investigation, we determined the expression of PARs on human lung fibroblasts (HLF-1) and whether they were involved in cellular differentiation and pro-inflammatory cytokine and prostaglandin (PGE2) secretion. PAR-1, PAR-2, PAR-3, and PAR-4 were detected in fibroblasts using RT-PCR, immunocytochemistry, and flow cytometry. Increased expression of PAR-4, but not other PARs, was observed in fibroblasts stimulated with phorbol myristate acetate. The archetypical activators of PARs, namely, thrombin and trypsin, as well as PAR-1 and PAR-2 agonist peptides, stimulated transient increases in intracellular Ca2+, and promoted increased α-smooth muscle actin expression. The proteolytic and peptidic PAR activators also stimulated the release of IL-6 and IL-8, as well as PGE2, with a rank order of potency of PAR-1 > PAR-2. The combined stimulation of PAR-1 and PAR-2 resulted in an additive release of both IL-6 and IL-8. In contrast, PAR-3 and PAR-4 agonist peptides, as well as all the PAR control peptides examined, were inactive. These results suggest an important role for PARs associated with fibroblasts in the modulation of inflammation and remodeling in the airway. PMID:25663523

  14. The invertebrate myosin filament: subfilament arrangement of the solid filaments of insect flight muscles.

    PubMed Central

    Beinbrech, G; Ashton, F T; Pepe, F A

    1992-01-01

    Transverse sections (approximately 140 nm thick) of solid myosin filaments of the flight muscles of the fleshfly, Phormia terrae-novae, the honey bee, Apis mellifica, and the waterbug, Lethocerus uhleri, were photographed in a JEM model 200A electron microscope at 200 kV. The images were digitized and computer processed by rotational filtering. In each of these filaments it was found that the symmetry of the core and the wall was not the same. The power spectra of the images showed sixfold symmetry for the wall and threefold symmetry for the core of the filaments. The images of the filaments in each muscle were superimposed according to the sixfold center of the wall. These averaged images for all three muscles showed six pairs of subunits in the wall similar to those found in the wall of tubular filaments. From serial sections of the fleshfly filaments, we conclude that the subunits in the wall of the filaments represent subfilaments essentially parallel to the long axis of the filament. In each muscle there are additional subunits in the core, closely related to the subunits in the wall. Evaluation of serial sections through fleshfly filaments suggests that the relationship of the three subunits observed in the core to those in the wall varies along the length of the filaments. In waterbug filaments there are three dense and three less dense subunits for a total of six all closely related to the wall. Bee filaments have three subunits related to the wall and three subunits located eccentrically in the core of the filaments. The presence of core subunits can be related to the paramyosin content of the filaments. Images FIGURE 1 FIGURE 3 FIGURE 4 FIGURE 5 FIGURE 7 FIGURE 9 FIGURE 12 PMID:1617135

  15. Filamentous structures in skeletal muscle: anchors for the subsarcolemmal space.

    PubMed

    Khairani, Astrid Feinisa; Tajika, Yuki; Takahashi, Maiko; Ueno, Hitoshi; Murakami, Tohru; Soenggono, Arifin; Yorifuji, Hiroshi

    2015-03-01

    In skeletal muscle fibers, intermediate filaments and actin filaments provide structural support to the myofibrils and the sarcolemma. For many years, it was poorly understood from ultrastructural observations that how these filamentous structures were kept anchored. The present study was conducted to determine the architecture of filamentous anchoring structures in the subsarcolemmal space and the intermyofibrils. The diaphragms (Dp) of adult wild type and mdx mice (mdx is a model for Duchenne muscular dystrophy) were subjected to tension applied perpendicular to the long axis of the muscle fibers, with or without treatment with 1% Triton X-100 or 0.03% saponin. These experiments were conducted to confirm the presence and integrity of the filamentous anchoring structures. Transmission electron microscopy revealed that these structures provide firm transverse connections between the sarcolemma and peripheral myofibrils. Most of the filamentous structures appeared to be inserted into subsarcolemmal densities, forming anchoring connections between the sarcolemma and peripheral myofibrils. In some cases, actin filaments were found to run longitudinally in the subsarcolemmal space to connect to the sarcolemma or in some cases to connect to the intermyofibrils as elongated thin filaments. These filamentous anchoring structures were less common in the mdx Dp. Our data suggest that the transverse and longitudinal filamentous structures form an anchoring system in the subsarcolemmal space and the intermyofibrils. PMID:24519712

  16. The Kinetics Underlying the Velocity of Smooth Muscle Myosin Filament Sliding on Actin Filaments in Vitro*

    PubMed Central

    Haldeman, Brian D.; Brizendine, Richard K.; Facemyer, Kevin C.; Baker, Josh E.; Cremo, Christine R.

    2014-01-01

    Actin-myosin interactions are well studied using soluble myosin fragments, but little is known about effects of myosin filament structure on mechanochemistry. We stabilized unphosphorylated smooth muscle myosin (SMM) and phosphorylated smooth muscle myosin (pSMM) filaments against ATP-induced depolymerization using a cross-linker and attached fluorescent rhodamine (XL-Rh-SMM). Electron micrographs showed that these side polar filaments are very similar to unmodified filaments. They are ∼0.63 μm long and contain ∼176 molecules. Rate constants for ATP-induced dissociation and ADP release from acto-myosin for filaments and S1 heads were similar. Actin-activated ATPases of SMM and XL-Rh-SMM were similarly regulated. XL-Rh-pSMM filaments moved processively on F-actin that was bound to a PEG brush surface. ATP dependence of filament velocities was similar to that for solution ATPases at high [actin], suggesting that both processes are limited by the same kinetic step (weak to strong transition) and therefore are attachment-limited. This differs from actin sliding over myosin monomers, which is primarily detachment-limited. Fitting filament data to an attachment-limited model showed that approximately half of the heads are available to move the filament, consistent with a side polar structure. We suggest the low stiffness subfragment 2 (S2) domain remains unhindered during filament motion in our assay. Actin-bound negatively displaced heads will impart minimal drag force because of S2 buckling. Given the ADP release rate, the velocity, and the length of S2, these heads will detach from actin before slack is taken up into a backwardly displaced high stiffness position. This mechanism explains the lack of detachment-limited kinetics at physiological [ATP]. These findings address how nonlinear elasticity in assemblies of motors leads to efficient collective force generation. PMID:24907276

  17. The kinetics underlying the velocity of smooth muscle myosin filament sliding on actin filaments in vitro.

    PubMed

    Haldeman, Brian D; Brizendine, Richard K; Facemyer, Kevin C; Baker, Josh E; Cremo, Christine R

    2014-07-25

    Actin-myosin interactions are well studied using soluble myosin fragments, but little is known about effects of myosin filament structure on mechanochemistry. We stabilized unphosphorylated smooth muscle myosin (SMM) and phosphorylated smooth muscle myosin (pSMM) filaments against ATP-induced depolymerization using a cross-linker and attached fluorescent rhodamine (XL-Rh-SMM). Electron micrographs showed that these side polar filaments are very similar to unmodified filaments. They are ~0.63 μm long and contain ~176 molecules. Rate constants for ATP-induced dissociation and ADP release from acto-myosin for filaments and S1 heads were similar. Actin-activated ATPases of SMM and XL-Rh-SMM were similarly regulated. XL-Rh-pSMM filaments moved processively on F-actin that was bound to a PEG brush surface. ATP dependence of filament velocities was similar to that for solution ATPases at high [actin], suggesting that both processes are limited by the same kinetic step (weak to strong transition) and therefore are attachment- limited. This differs from actin sliding over myosin monomers, which is primarily detachment-limited. Fitting filament data to an attachment-limited model showed that approximately half of the heads are available to move the filament, consistent with a side polar structure. We suggest the low stiffness subfragment 2 (S2) domain remains unhindered during filament motion in our assay. Actin-bound negatively displaced heads will impart minimal drag force because of S2 buckling. Given the ADP release rate, the velocity, and the length of S2, these heads will detach from actin before slack is taken up into a backwardly displaced high stiffness position. This mechanism explains the lack of detachment- limited kinetics at physiological [ATP]. These findings address how nonlinear elasticity in assemblies of motors leads to efficient collective force generation. PMID:24907276

  18. Calcium ion-regulated thin filaments from vascular smooth muscle.

    PubMed Central

    Marston, S B; Trevett, R M; Walters, M

    1980-01-01

    Myosin and actin competition tests indicated the presence of both thin-filament and myosin-linked Ca2+-regulatory systems in pig aorta and turkey gizzard smooth-muscle actomyosin. A thin-filament preparation was obtained from pig aortas. The thin filaments had no significant ATPase activity [1.1 +/- 2.6 nmol/mg per min (mean +/- S.D.)], but they activated skeletal-muscle myosin ATPase up to 25-fold [500 nmol/mg of myosin per min (mean +/- S.D.)] in the presence of 10(-4) M free Ca2+. At 10(-8) M-Ca2+ the thin filaments activated myosin ATPase activity only one-third as much. Thin-filament activation of myosin ATPase activity increased markedly in the range 10(-6)-10(-5) M-Ca2+ and was half maximal at 2.7 x 10(-6) M (pCa2+ 5.6). The skeletal myosin-aorta-thin-filament mixture gave a biphasic ATPase-rate-versus-ATP-concentration curve at 10(-8) M-Ca2+ similar to the curve obtained with skeletal-muscle thin filaments. Thin filaments bound up to 9.5 mumol of Ca2+/g in the presence of MgATP2-. In the range 0.06-27 microM-Ca2+ binding was hyperbolic with an estimated binding constant of (0.56 +/- 0.07) x 10(6) M-1 (mean +/- S.D.) and maximum binding of 8.0 +/- 0.8 mumol/g (mean +/- S.D.). Significantly less Ca2+ bound in the absence of ATP. The thin filaments contained actin, tropomyosin and several other unidentified proteins. 6 M-Urea/polyacrylamide-gel electrophoresis at pH 8.3 showed proteins that behaved like troponin I and troponin C. This was confirmed by forming interspecific complexes between radioactive skeletal-muscle troponin I and troponin C and the aorta thin-filament proteins. The thin filaments contained at least 1.4 mumol of a troponin C-like protein/g and at least 1.1 mumol of a troponin I-like protein/g. PMID:6446898

  19. Changes of smooth muscle contractile filaments in small bowel atresia

    PubMed Central

    Gfroerer, Stefan; Fiegel, Henning; Ramachandran, Priya; Rolle, Udo; Metzger, Roman

    2012-01-01

    AIM: To investigate morphological changes of intestinal smooth muscle contractile fibres in small bowel atresia patients. METHODS: Resected small bowel specimens from small bowel atresia patients (n = 12) were divided into three sections (proximal, atretic and distal). Standard histology hematoxylin-eosin staining and enzyme immunohistochemistry was performed to visualize smooth muscle contractile markers α-smooth muscle actin (SMA) and desmin using conventional paraffin sections of the proximal and distal bowel. Small bowel from age-matched patients (n = 2) undergoing Meckel’s diverticulum resection served as controls. RESULTS: The smooth muscle coat in the proximal bowel of small bowel atresia patients was thickened compared with control tissue, but the distal bowel was unchanged. Expression of smooth muscle contractile fibres SMA and desmin within the proximal bowel was slightly reduced compared with the distal bowel and control tissue. There were no major differences in the architecture of the smooth muscle within the proximal bowel and the distal bowel. The proximal and distal bowel in small bowel atresia patients revealed only minimal differences regarding smooth muscle morphology and the presence of smooth muscle contractile filament markers. CONCLUSION: Changes in smooth muscle contractile filaments do not appear to play a major role in postoperative motility disorders in small bowel atresia. PMID:22791945

  20. Cofilin-2 controls actin filament length in muscle sarcomeres

    PubMed Central

    Kremneva, Elena; Makkonen, Maarit H.; Skwarek-Maruszewska, Aneta; Gateva, Gergana; Michelot, Alphee; Dominguez, Roberto; Lappalainen, Pekka

    2014-01-01

    SUMMARY ADF/cofilins drive cytoskeletal dynamics by promoting the disassembly of ‘aged’ ADP-actin filaments. Mammals express several ADF/cofilin isoforms, but their specific biochemical activities and cellular functions have not been studied in detail. Here we demonstrate that the muscle-specific isoform cofilin-2 promotes actin filament disassembly in sarcomeres to control the precise length of thin filaments in the contractile apparatus. In contrast to other isoforms, cofilin-2 efficiently binds and disassembles both ADP- and ATP/ADP-Pi-actin filaments. We mapped surface-exposed cofilin-2-specific residues required for ATP-actin binding and propose that these residues function as an ‘actin nucleotide-state sensor’ among ADF/cofilins. The results suggest that cofilin-2 evolved specific biochemical and cellular properties allowing it to control actin dynamics in sarcomeres, where filament pointed ends may contain a mixture of ADP- and ATP/ADP-Pi-actin subunits. Our findings also offer a rationale for why cofilin-2 mutations in humans lead to myopathies. PMID:25373779

  1. Invertebrate muscles: thin and thick filament structure; molecular basis of contraction and its regulation, catch and asynchronous muscle

    PubMed Central

    Hooper, Scott L.; Hobbs, Kevin H.; Thuma, Jeffrey B.

    2008-01-01

    This is the second in a series of canonical reviews on invertebrate muscle. We cover here thin and thick filament structure, the molecular basis of force generation and its regulation, and two special properties of some invertebrate muscle, catch and asynchronous muscle. Invertebrate thin filaments resemble vertebrate thin filaments, although helix structure and tropomyosin arrangement show small differences. Invertebrate thick filaments, alternatively, are very different from vertebrate striated thick filaments and show great variation within invertebrates. Part of this diversity stems from variation in paramyosin content, which is greatly increased in very large diameter invertebrate thick filaments. Other of it arises from relatively small changes in filament backbone structure, which results in filaments with grossly similar myosin head placements (rotating crowns of heads every 14.5 nm) but large changes in detail (distances between heads in azimuthal registration varying from three to thousands of crowns). The lever arm basis of force generation is common to both vetebrates and invertebrates, and in some invertebrates this process is understood on the near atomic level. Invertebrate actomyosin is both thin (tropomyosin:troponin) and thick (primarily via direct Ca++ binding to myosin) filament regulated, and most invertebrate muscles are dually regulated. These mechanisms are well understood on the molecular level, but the behavioral utility of dual regulation is less so. The phosphorylation state of the thick filament associated giant protein, twitchin, has been recently shown to be the molecular basis of catch. The molecular basis of the stretch activation underlying asynchronous muscle activity, however, remains unresolved. PMID:18616971

  2. Force generation by skeletal muscle is controlled by mechanosensing in myosin filaments.

    PubMed

    Linari, Marco; Brunello, Elisabetta; Reconditi, Massimo; Fusi, Luca; Caremani, Marco; Narayanan, Theyencheri; Piazzesi, Gabriella; Lombardi, Vincenzo; Irving, Malcolm

    2015-12-10

    Contraction of both skeletal muscle and the heart is thought to be controlled by a calcium-dependent structural change in the actin-containing thin filaments, which permits the binding of myosin motors from the neighbouring thick filaments to drive filament sliding. Here we show by synchrotron small-angle X-ray diffraction of frog (Rana temporaria) single skeletal muscle cells that, although the well-known thin-filament mechanism is sufficient for regulation of muscle shortening against low load, force generation against high load requires a second permissive step linked to a change in the structure of the thick filament. The resting (switched 'OFF') structure of the thick filament is characterized by helical tracks of myosin motors on the filament surface and a short backbone periodicity. This OFF structure is almost completely preserved during low-load shortening, which is driven by a small fraction of constitutively active (switched 'ON') myosin motors outside thick-filament control. At higher load, these motors generate sufficient thick-filament stress to trigger the transition to its long-periodicity ON structure, unlocking the major population of motors required for high-load contraction. This concept of the thick filament as a regulatory mechanosensor provides a novel explanation for the dynamic and energetic properties of skeletal muscle. A similar mechanism probably operates in the heart. PMID:26560032

  3. Filament lattice of frog striated muscle. Radial forces, lattice stability, and filament compression in the A-band of relaxed and rigor muscle.

    PubMed Central

    Millman, B M; Irving, T C

    1988-01-01

    Repulsive pressure in the A-band filament lattice of relaxed frog skeletal muscle has been measured as a function of interfilament spacing using an osmotic shrinking technique. Much improved chemical skinning was obtained when the muscles were equilibrated in the presence of EGTA before skinning. The lattice shrank with increasing external osmotic pressure. At any specific pressure, the lattice spacing in relaxed muscle was smaller than that of muscle in rigor, except at low pressures where the reverse was found. The lattice spacing was the same in the two states at a spacing close to that found in vivo. The data were consistent with an electrostatic repulsion over most of the pressure range. For relaxed muscle, the data lay close to electrostatic pressure curves for a thick filament charge diameter of approximately 26 nm, suggesting that charges stabilizing the lattice are situated about midway along the thick filament projections (HMM-S1). At low pressures, observed spacings were larger than calculated, consistent with the idea that thick filament projections move away from the filament backbone. Under all conditions studied, relaxed and rigor, at short and very long sarcomere lengths, the filament lattice could be modeled by assuming a repulsive electrostatic pressure, a weak attractive pressure, and a radial stiffness of the thick filaments (projections) that differed between relaxed and rigor conditions. Each thick filament projection could be compressed by approximately 5 or 2.6 nm requiring a force of 1.3 or 80 pN for relaxed and rigor conditions respectively. PMID:3264728

  4. Myosin filament polymerization and depolymerization in a model of partial length adaptation in airway smooth muscle.

    PubMed

    Ijpma, Gijs; Al-Jumaily, Ahmed M; Cairns, Simeon P; Sieck, Gary C

    2011-09-01

    Length adaptation in airway smooth muscle (ASM) is attributed to reorganization of the cytoskeleton, and in particular the contractile elements. However, a constantly changing lung volume with tidal breathing (hence changing ASM length) is likely to restrict full adaptation of ASM for force generation. There is likely to be continuous length adaptation of ASM between states of incomplete or partial length adaption. We propose a new model that assimilates findings on myosin filament polymerization/depolymerization, partial length adaptation, isometric force, and shortening velocity to describe this continuous length adaptation process. In this model, the ASM adapts to an optimal force-generating capacity in a repeating cycle of events. Initially the myosin filament, shortened by prior length changes, associates with two longer actin filaments. The actin filaments are located adjacent to the myosin filaments, such that all myosin heads overlap with actin to permit maximal cross-bridge cycling. Since in this model the actin filaments are usually longer than myosin filaments, the excess length of the actin filament is located randomly with respect to the myosin filament. Once activated, the myosin filament elongates by polymerization along the actin filaments, with the growth limited by the overlap of the actin filaments. During relaxation, the myosin filaments dissociate from the actin filaments, and then the cycle repeats. This process causes a gradual adaptation of force and instantaneous adaptation of shortening velocity. Good agreement is found between model simulations and the experimental data depicting the relationship between force development, myosin filament density, or shortening velocity and length. PMID:21659490

  5. A technique for simultaneous measurement of force and overlap between single muscle filaments of myosin and actin.

    PubMed

    Kalganov, Albert; Novinger, Rowan; Rassier, Dilson E

    2010-12-17

    In this study, we show a method for direct measurements of force and simultaneous visualization of isolated muscle filaments. Single actin filaments isolated from chicken skeletal muscle and single thick filaments isolated from Mussels were imaged using fluorescence and dark field microscopy, respectively. Force generated by the filaments was measured using micro-fabricated cantilevers. Force values were in the range observed previously with myosin filaments and molecules. The results suggest that the technique can be used to investigate many issues of interest and debate in the field of muscle biophysics. PMID:21081114

  6. The Intriguing Dual Lattices of the Myosin Filaments in Vertebrate Striated Muscles: Evolution and Advantage

    PubMed Central

    Luther, Pradeep K.; Squire, John M.

    2014-01-01

    Myosin filaments in vertebrate striated muscle have a long roughly cylindrical backbone with cross-bridge projections on the surfaces of both halves except for a short central bare zone. In the middle of this central region the filaments are cross-linked by the M-band which holds them in a well-defined hexagonal lattice in the muscle A-band. During muscular contraction the M-band-defined rotation of the myosin filaments around their long axes influences the interactions that the cross-bridges can make with the neighbouring actin filaments. We can visualise this filament rotation by electron microscopy of thin cross-sections in the bare-region immediately adjacent to the M-band where the filament profiles are distinctly triangular. In the muscles of teleost fishes, the thick filament triangular profiles have a single orientation giving what we call the simple lattice. In other vertebrates, for example all the tetrapods, the thick filaments have one of two orientations where the triangles point in opposite directions (they are rotated by 60° or 180°) according to set rules. Such a distribution cannot be developed in an ordered fashion across a large 2D lattice, but there are small domains of superlattice such that the next-nearest neighbouring thick filaments often have the same orientation. We believe that this difference in the lattice forms can lead to different contractile behaviours. Here we provide a historical review, and when appropriate cite recent work related to the emergence of the simple and superlattice forms by examining the muscles of several species ranging back to primitive vertebrates and we discuss the functional differences that the two lattice forms may have. PMID:25478994

  7. The contributions of filaments and cross-bridges to sarcomere compliance in skeletal muscle

    PubMed Central

    Brunello, Elisabetta; Caremani, Marco; Melli, Luca; Linari, Marco; Fernandez-Martinez, Manuel; Narayanan, Theyencheri; Irving, Malcolm; Piazzesi, Gabriella; Lombardi, Vincenzo; Reconditi, Massimo

    2014-01-01

    Force generation in the muscle sarcomere is driven by the head domain of the myosin molecule extending from the thick filament to form cross-bridges with the actin-containing thin filament. Following attachment, a structural working stroke in the head pulls the thin filament towards the centre of the sarcomere, producing, under unloaded conditions, a filament sliding of ∼11 nm. The mechanism of force generation by the myosin head depends on the relationship between cross-bridge force and movement, which is determined by compliances of the cross-bridge (Ccb) and filaments. By measuring the force dependence of the spacing of the high-order myosin- and actin-based X-ray reflections from sartorius muscles of Rana esculenta we find a combined filament compliance (Cf) of 13.1 ± 1.2 nm MPa−1, close to recent estimates from single fibre mechanics (12.8 ± 0.5 nm MPa−1). Ccb calculated using these estimates is 0.37 ± 0.12 nm pN−1, a value fully accounted for by the compliance of the myosin head domain, 0.38 ± 0.06 nm pN−1, obtained from the intensity changes of the 14.5 nm myosin-based X-ray reflection in response to 3 kHz oscillations imposed on single muscle fibres in rigor. Thus, a significant contribution to Ccb from the myosin tail that joins the head to the thick filament is excluded. The low Ccb value indicates that the myosin head generates isometric force by a small sub-step of the 11 nm stroke that drives filament sliding at low load. The implications of these results for the mechanism of force generation by myosins have general relevance for cardiac and non-muscle myosins as well as for skeletal muscle. PMID:25015916

  8. Disproportionate loss of thin filaments in human soleus muscle after 17-day bed rest

    NASA Technical Reports Server (NTRS)

    Riley, D. A.; Bain, J. L.; Thompson, J. L.; Fitts, R. H.; Widrick, J. J.; Trappe, S. W.; Trappe, T. A.; Costill, D. L.

    1998-01-01

    Previously we reported that, after 17-day bed rest unloading of 8 humans, soleus slow fibers atrophied and exhibited increased velocity of shortening without fast myosin expression. The present ultrastructural study examined fibers from the same muscle biopsies to determine whether decreased myofilament packing density accounted for the observed speeding. Quantitation was by computer-assisted morphometry of electron micrographs. Filament densities were normalized for sarcomere length, because density depends directly on length. Thick filament density was unchanged by bed rest. Thin filaments/microm2 decreased 16-23%. Glycogen filled the I band sites vacated by filaments. The percentage decrease in thin filaments (Y) correlated significantly (P < 0.05) with the percentage increase in velocity (X), (Y = 0.1X + 20%, R2 = 0.62). An interpretation is that fewer filaments increases thick to thin filament spacing and causes earlier cross-bridge detachment and faster cycling. Increased velocity helps maintain power (force x velocity) as atrophy lowers force. Atrophic muscles may be prone to sarcomere reloading damage because force/microm2 was near normal, and force per thin filament increased an estimated 30%.

  9. Nebulin-deficient mice exhibit shorter thin filament lengths and reduced contractile function in skeletal muscle

    PubMed Central

    Bang, Marie-Louise; Li, Xiaodong; Littlefield, Ryan; Bremner, Shannon; Thor, Andrea; Knowlton, Kirk U.; Lieber, Richard L.; Chen, Ju

    2006-01-01

    Nebulin is a giant modular sarcomeric protein that has been proposed to play critical roles in myofibrillogenesis, thin filament length regulation, and muscle contraction. To investigate the functional role of nebulin in vivo, we generated nebulin-deficient mice by using a Cre knock-in strategy. Lineage studies utilizing this mouse model demonstrated that nebulin is expressed uniformly in all skeletal muscles. Nebulin-deficient mice die within 8–11 d after birth, with symptoms including decreased milk intake and muscle weakness. Although myofibrillogenesis had occurred, skeletal muscle thin filament lengths were up to 25% shorter compared with wild type, and thin filaments were uniform in length both within and between muscle types. Ultrastructural studies also demonstrated a critical role for nebulin in the maintenance of sarcomeric structure in skeletal muscle. The functional importance of nebulin in skeletal muscle function was revealed by isometric contractility assays, which demonstrated a dramatic reduction in force production in nebulin-deficient skeletal muscle. PMID:16769824

  10. A network of 2-4 nm filaments found in sea urchin smooth muscle. Protein constituents and in situ localization.

    PubMed

    Pureur, R P; Coffe, G; Soyer-Gobillard, M O; de Billy, F; Pudles, J

    1986-01-01

    In this report the coisolation of two proteins from sea urchin smooth muscle of apparent molecular weights (Mr) 54 and 56 kD respectively, as determined on SDS-PAGE, is described. Like the intermediate filament proteins, these two proteins are insoluble in high ionic strength buffer solution. On two-dimensional gel electrophoresis and by immunological methods it is shown that these proteins are not related (by these criteria) to rat smooth muscle desmin (54 kD) or vimentin (56 kD). Furthermore, in conditions where both desmin and vimentin assemble in vitro into 10 nm filaments, the sea urchin smooth muscle proteins do not assemble into filaments. Ultrastructural studies on the sea urchin smooth muscle cell show that the thin and thick filaments organization resembles that described in the vertebrate smooth muscle. However, instead of 10 nm filaments, a network of filaments, 2-4 nm in diameter, is revealed, upon removal of the thin and thick filaments by 0.6 M KCl treatment. By indirect immunofluorescence microscopy, and in particular by immunocytochemical electron microscopy studies on the sea urchin smooth muscle cell, it is shown that the antibodies raised against both 54 and 56 kD proteins appear to specifically label these 2-4 nm filaments. These findings indicate that both the 54 and 56 kD proteins might be constituents of this category of filaments. The possible significance of this new cytoskeletal element, that we have named echinonematin filaments, is discussed. PMID:3509996

  11. Thin filament diversity and physiological properties of fast and slow fiber types in astronaut leg muscles

    NASA Technical Reports Server (NTRS)

    Riley, Danny A.; Bain, James L W.; Thompson, Joyce L.; Fitts, Robert H.; Widrick, Jeffrey J.; Trappe, Scott W.; Trappe, Todd A.; Costill, David L.

    2002-01-01

    Slow type I fibers in soleus and fast white (IIa/IIx, IIx), fast red (IIa), and slow red (I) fibers in gastrocnemius were examined electron microscopically and physiologically from pre- and postflight biopsies of four astronauts from the 17-day, Life and Microgravity Sciences Spacelab Shuttle Transport System-78 mission. At 2.5-microm sarcomere length, thick filament density is approximately 1,012 filaments/microm(2) in all fiber types and unchanged by spaceflight. In preflight aldehyde-fixed biopsies, gastrocnemius fibers possess higher percentages (approximately 23%) of short thin filaments than soleus (9%). In type I fibers, spaceflight increases short, thin filament content from 9 to 24% in soleus and from 26 to 31% in gastrocnemius. Thick and thin filament spacing is wider at short sarcomere lengths. The Z-band lattice is also expanded, except for soleus type I fibers with presumably stiffer Z bands. Thin filament packing density correlates directly with specific tension for gastrocnemius fibers but not soleus. Thin filament density is inversely related to shortening velocity in all fibers. Thin filament structural variation contributes to the functional diversity of normal and spaceflight-unloaded muscles.

  12. Zebrafish Cardiac Muscle Thick Filaments: Isolation Technique and Three-Dimensional Structure

    PubMed Central

    González-Solá, Maryví; AL-Khayat, Hind A.; Behra, Martine; Kensler, Robert W.

    2014-01-01

    To understand how mutations in thick filament proteins such as cardiac myosin binding protein-C or titin, cause familial hypertrophic cardiomyopathies, it is important to determine the structure of the cardiac thick filament. Techniques for the genetic manipulation of the zebrafish are well established and it has become a major model for the study of the cardiovascular system. Our goal is to develop zebrafish as an alternative system to the mammalian heart model for the study of the structure of the cardiac thick filaments and the proteins that form it. We have successfully isolated thick filaments from zebrafish cardiac muscle, using a procedure similar to those for mammalian heart, and analyzed their structure by negative-staining and electron microscopy. The isolated filaments appear well ordered with the characteristic 42.9 nm quasi-helical repeat of the myosin heads expected from x-ray diffraction. We have performed single particle image analysis on the collected electron microscopy images for the C-zone region of these filaments and obtained a three-dimensional reconstruction at 3.5 nm resolution. This reconstruction reveals structure similar to the mammalian thick filament, and demonstrates that zebrafish may provide a useful model for the study of the changes in the cardiac thick filament associated with disease processes. PMID:24739166

  13. Three-dimensional organization of troponin on cardiac muscle thin filaments in the relaxed state.

    PubMed

    Yang, Shixin; Barbu-Tudoran, Lucian; Orzechowski, Marek; Craig, Roger; Trinick, John; White, Howard; Lehman, William

    2014-02-18

    Muscle contraction is regulated by troponin-tropomyosin, which blocks and unblocks myosin binding sites on actin. To elucidate this regulatory mechanism, the three-dimensional organization of troponin and tropomyosin on the thin filament must be determined. Although tropomyosin is well defined in electron microscopy helical reconstructions of thin filaments, troponin density is mostly lost. Here, we determined troponin organization on native relaxed cardiac muscle thin filaments by applying single particle reconstruction procedures to negatively stained specimens. Multiple reference models led to the same final structure, indicating absence of model bias in the procedure. The new reconstructions clearly showed F-actin, tropomyosin, and troponin densities. At the 25 Å resolution achieved, troponin was considerably better defined than in previous reconstructions. The troponin density closely resembled the shape of troponin crystallographic structures, facilitating detailed interpretation of the electron microscopy density map. The orientation of troponin-T and the troponin core domain established troponin polarity. Density attributable to the troponin-I mobile regulatory domain was positioned where it could hold tropomyosin in its blocking position on actin, thus suggesting the underlying structural basis of thin filament regulation. Our previous understanding of thin filament regulation had been limited to known movements of tropomyosin that sterically block and unblock myosin binding sites on actin. We now show how troponin, the Ca(2+) sensor, may control these movements, ultimately determining whether muscle contracts or relaxes. PMID:24559988

  14. Myosin molecule packing within the vertebrate skeletal muscle thick filaments. A complete bipolar model.

    PubMed

    Skubiszak, Ludmila; Kowalczyk, Leszek

    2002-01-01

    Computer modelling related to the real dimensions of both the whole filament and the myosin molecule subfragments has revealed two alternative modes for myosin molecule packing which lead to the head disposition similar to that observed by EM on the surface of the cross-bridge zone of the relaxed vertebrate skeletal muscle thick filaments. One of the modes has been known for three decades and is usually incorporated into the so-called three-stranded model. The new mode differs from the former one in two aspects: (1) myosin heads are grouped into asymmetrical cross-bridge crowns instead of symmetrical ones; (2) not the whole myosin tail, but only a 43-nm C-terminus of each of them is straightened and near-parallel to the filament axis, the rest of the tail is twisted. Concurrent exploration of these alternative modes has revealed their influence on the filament features. The parameter values for the filament models as well as for the building units depicting the myosin molecule subfragments are verified by experimental data found in the literature. On the basis of the new mode for myosin molecule packing a complete bipolar structure of the thick filament is created. PMID:12545190

  15. A method for 3D-reconstruction of a muscle thick filament using the tilt series images of a single filament electron tomogram.

    PubMed

    Márquez, G; Pinto, A; Alamo, L; Baumann, B; Ye, F; Winkler, H; Taylor, K; Padrón, R

    2014-05-01

    Myosin interacting-heads (MIH) motifs are visualized in 3D-reconstructions of thick filaments from striated muscle. These reconstructions are calculated by averaging methods using images from electron micrographs of grids prepared using numerous filament preparations. Here we propose an alternative method to calculate the 3D-reconstruction of a single thick filament using only a tilt series images recorded by electron tomography. Relaxed thick filaments, prepared from tarantula leg muscle homogenates, were negatively stained. Single-axis tilt series of single isolated thick filaments were obtained with the electron microscope at a low electron dose, and recorded on a CCD camera by electron tomography. An IHRSR 3D-recontruction was calculated from the tilt series images of a single thick filament. The reconstruction was enhanced by including in the search stage dual tilt image segments while only single tilt along the filament axis is usually used, as well as applying a band pass filter just before the back projection. The reconstruction from a single filament has a 40 Å resolution and clearly shows the presence of MIH motifs. In contrast, the electron tomogram 3D-reconstruction of the same thick filament - calculated without any image averaging and/or imposition of helical symmetry - only reveals MIH motifs infrequently. This is - to our knowledge - the first application of the IHRSR method to calculate a 3D reconstruction from tilt series images. This single filament IHRSR reconstruction method (SF-IHRSR) should provide a new tool to assess structural differences between well-ordered thick (or thin) filaments in a grid by recording separately their electron tomograms. PMID:24727133

  16. Muscle intermediate filaments and their links to membranes and membranous organelles

    SciTech Connect

    Capetanaki, Yassemi . E-mail: ycapetanaki@bioacademy.gr; Bloch, Robert J.; Kouloumenta, Asimina; Mavroidis, Manolis; Psarras, Stelios

    2007-06-10

    Intermediate filaments (IFs) play a key role in the integration of structure and function of striated muscle, primarily by mediating mechanochemical links between the contractile apparatus and mitochondria, myonuclei, the sarcolemma and potentially the vesicle trafficking apparatus. Linkage of all these membranous structures to the contractile apparatus, mainly through the Z-disks, supports the integration and coordination of growth and energy demands of the working myocyte, not only with force transmission, but also with de novo gene expression, energy production and efficient protein and lipid trafficking and targeting. Desmin, the most abundant and intensively studied muscle intermediate filament protein, is linked to proper costamere organization, myoblast and stem cell fusion and differentiation, nuclear shape and positioning, as well as mitochondrial shape, structure, positioning and function. Similar links have been established for lysosomes and lysosome-related organelles, consistent with the presence of widespread links between IFs and membranous structures and the regulation of their fusion, morphology and stabilization necessary for cell survival.

  17. The vertebrate skeletal muscle thick filaments are not three-stranded. Reinterpretation of some experimental data.

    PubMed

    Skubiszak, Ludmila; Kowalczyk, Leszek

    2002-01-01

    Computer simulation of mass distribution within the model and Fourier transforms of images depicting mass distribution are explored for verification of two alternative modes of the myosin molecule arrangement within the vertebrate skeletal muscle thick filaments. The model well depicting the complete bipolar structure of the thick filament and revealing a true threefold-rotational symmetry is a tube covered by two helices with a pitch of 2 x 43 nm due to arrangement of the myosin tails along a helical path and grouping of all myosin heads in the crowns rotated by 240 degrees and each containing three cross-bridges separated by 0 degrees, 120 degrees, and 180 degrees. The cross-bridge crown parameters are verified by EM images as well as by optical and low-angle X-ray diffraction patterns found in the literature. The myosin tail arrangement, at which the C-terminus of about 43-nm length is near-parallel to the filament axis and the rest of the tail is quite strongly twisted around, is verified by the high-angle X-ray diffraction patterns. A consequence of the new packing is a new way of movement of the myosin cross-bridges, namely, not by bending in the hinge domains, but by unwrapping from the thick filament surface towards the thin filaments along a helical path. PMID:12545191

  18. Severe muscle disease-causing desmin mutations interfere with in vitro filament assembly at distinct stages

    PubMed Central

    Bär, Harald; Mücke, Norbert; Kostareva, Anna; Sjöberg, Gunnar; Aebi, Ueli; Herrmann, Harald

    2005-01-01

    Desmin is the major intermediate filament (IF) protein of muscle. Recently, mutations of the desmin gene have been reported to cause familial or sporadic forms of human skeletal, as well as cardiac, myopathy, termed desmin-related myopathy (DRM). The impact of any of these mutations on filament assembly and integration into the cytoskeletal network of myocytes is currently not understood, despite the fact that all cause the same histopathological defect, i.e., desmin aggregation. To gain more insight into the molecular basis of this process, we investigated how mutations within the α-helical rod domain of desmin affect both the assembly of the recombinant protein in vitro as well as the filament-forming capacity in cDNA-transfected cells. Whereas 6 of 14 mutants assemble into seemingly normal IFs in the test tube, the other mutants interfere with the assembly process at distinct stages, i.e., tetramer formation, unit-length filament (ULF) formation, filament elongation, and IF maturation. Correspondingly, the mutants with in vitro assembly defects yield dot-like aggregates in transfected cells, whereas the mutants that form IFs constitute a seemingly normal IF cytoskeleton in the cellular context. At present, it is entirely unclear why the latter mutant proteins also lead to aggregate formation in myocytes. Hence, these findings may be a starting point to dissect the contribution of the individual subdomains for desmin pathology and, eventually, the development of therapeutic interventions. PMID:16217025

  19. Regulation of structure and function of sarcomeric actin filaments in striated muscle of the nematode Caenorhabditis elegans

    PubMed Central

    Ono, Shoichiro

    2014-01-01

    The nematode Caenorhabditis elegans has been used as a valuable system to study structure and function of striated muscle. The body wall muscle of C. elegans is obliquely striated muscle with highly organized sarcomeric assembly of actin, myosin, and other accessary proteins. Genetic and molecular biological studies in C. elegans have identified a number of genes encoding structural and regulatory components for the muscle contractile apparatuses, and many of them have counterparts in mammalian cardiac and skeletal muscles or striated muscles in other invertebrates. Applicability of genetics, cell biology, and biochemistry has made C. elegans an excellent system to study mechanisms of muscle contractility and assembly and maintenance of myofibrils. This review focuses on the regulatory mechanisms of structure and function of actin filaments in the C. elegans body wall muscle. Sarcomeric actin filaments in C. elegans muscle are associated with the troponin-tropomyosin system that regulates the actin-myosin interaction. Proteins that bind to the side and ends of actin filaments support ordered assembly of thin filaments. Furthermore, regulators of actin dynamics play important roles in initial assembly, growth, and maintenance of sarcomeres. The knowledge acquired in C. elegans can serve as bases to understand the basic mechanisms of muscle structure and function. PMID:25125169

  20. Length adaptation of smooth muscle contractile filaments in response to sustained activation.

    PubMed

    Stålhand, Jonas; Holzapfel, Gerhard A

    2016-05-21

    Airway and bladder smooth muscles are known to undergo length adaptation under sustained contraction. This adaptation process entails a remodelling of the intracellular actin and myosin filaments which shifts the peak of the active force-length curve towards the current length. Smooth muscles are therefore able to generate the maximum force over a wide range of lengths. In contrast, length adaptation of vascular smooth muscle has attracted very little attention and only a handful of studies have been reported. Although their results are conflicting on the existence of a length adaptation process in vascular smooth muscle, it seems that, at least, peripheral arteries and arterioles undergo such adaptation. This is of interest since peripheral vessels are responsible for pressure regulation, and a length adaptation will affect the function of the cardiovascular system. It has, e.g., been suggested that the inward remodelling of resistance vessels associated with hypertension disorders may be related to smooth muscle adaptation. In this study we develop a continuum mechanical model for vascular smooth muscle length adaptation by assuming that the muscle cells remodel the actomyosin network such that the peak of the active stress-stretch curve is shifted towards the operating point. The model is specialised to hamster cheek pouch arterioles and the simulated response to stepwise length changes under contraction. The results show that the model is able to recover the salient features of length adaptation reported in the literature. PMID:26925813

  1. Ubiquitylation by Trim32 causes coupled loss of desmin, Z-bands, and thin filaments in muscle atrophy.

    PubMed

    Cohen, Shenhav; Zhai, Bo; Gygi, Steven P; Goldberg, Alfred L

    2012-08-20

    During muscle atrophy, myofibrillar proteins are degraded in an ordered process in which MuRF1 catalyzes ubiquitylation of thick filament components (Cohen et al. 2009. J. Cell Biol. http://dx.doi.org/10.1083/jcb.200901052). Here, we show that another ubiquitin ligase, Trim32, ubiquitylates thin filament (actin, tropomyosin, troponins) and Z-band (α-actinin) components and promotes their degradation. Down-regulation of Trim32 during fasting reduced fiber atrophy and the rapid loss of thin filaments. Desmin filaments were proposed to maintain the integrity of thin filaments. Accordingly, we find that the rapid destruction of thin filament proteins upon fasting was accompanied by increased phosphorylation of desmin filaments, which promoted desmin ubiquitylation by Trim32 and degradation. Reducing Trim32 levels prevented the loss of both desmin and thin filament proteins. Furthermore, overexpression of an inhibitor of desmin polymerization induced disassembly of desmin filaments and destruction of thin filament components. Thus, during fasting, desmin phosphorylation increases and enhances Trim32-mediated degradation of the desmin cytoskeleton, which appears to facilitate the breakdown of Z-bands and thin filaments. PMID:22908310

  2. A new look at thin filament regulation in vertebrate skeletal muscle.

    PubMed

    Squire, J M; Morris, E P

    1998-07-01

    It is 30 years since Ebashi and colleagues showed that Ca2+ ions directly affect regulation of the myosin-actin interaction in muscle through the action of tropomyosin and troponin on muscle thin filaments. It is more than 20 years since the idea was put forward that tropomyosin might act, at least in part, by changing its position on actin, thus uncovering or modifying the myosin binding site on actin when troponin molecules take up Ca2+. Since that time, a great deal of evidence for and against this steric blocking mechanism has been published: a structure for actin filaments at close to atomic resolution has been proposed, and the whole regulation story has become both more complicated and more subtle. Here we review structural and biochemical aspects of regulation in vertebrate skeletal muscle. We show that some basic ideas of the steric blocking mechanism remain valid. We also show that additional factors, such as troponin movements and structural changes within the actin monomers themselves, may be crucial. A number of the resulting regulation scenarios need to be distinguished. PMID:9657517

  3. Isoforms of α-Actinin from Cardiac, Smooth, and Skeletal Muscle Form Polar Arrays of Actin Filaments

    PubMed Central

    Taylor, Kenneth A.; Taylor, Dianne W.; Schachat, Fred

    2000-01-01

    We have used a positively charged lipid monolayer to form two-dimensional bundles of F-actin cross-linked by α-actinin to investigate the relative orientation of the actin filaments within them. This method prevents growth of the bundles perpendicular to the monolayer plane, thereby facilitating interpretation of the electron micrographs. Using α-actinin isoforms isolated from the three types of vertebrate muscle, i.e., cardiac, skeletal, and smooth, we have observed almost exclusively cross-linking between polar arrays of filaments, i.e., actin filaments with their plus ends oriented in the same direction. One type of bundle can be classified as an Archimedian spiral consisting of a single actin filament that spirals inward as the filament grows and the bundle is formed. These spirals have a consistent hand and grow to a limiting internal diameter of 0.4–0.7 μm, where the filaments appear to break and spiral formation ceases. These results, using isoforms usually characterized as cross-linkers of bipolar actin filament bundles, suggest that α-actinin is capable of cross-linking actin filaments in any orientation. Formation of specifically bipolar or polar filament arrays cross-linked by α-actinin may require additional factors that either determine the filament orientation or restrict the cross-linking capabilities of α-actinin. PMID:10791977

  4. Drebrin-like protein DBN-1 is a sarcomere component that stabilizes actin filaments during muscle contraction.

    PubMed

    Butkevich, Eugenia; Bodensiek, Kai; Fakhri, Nikta; von Roden, Kerstin; Schaap, Iwan A T; Majoul, Irina; Schmidt, Christoph F; Klopfenstein, Dieter R

    2015-01-01

    Actin filament organization and stability in the sarcomeres of muscle cells are critical for force generation. Here we identify and functionally characterize a Caenorhabditis elegans drebrin-like protein DBN-1 as a novel constituent of the muscle contraction machinery. In vitro, DBN-1 exhibits actin filament binding and bundling activity. In vivo, DBN-1 is expressed in body wall muscles of C. elegans. During the muscle contraction cycle, DBN-1 alternates location between myosin- and actin-rich regions of the sarcomere. In contracted muscle, DBN-1 is accumulated at I-bands where it likely regulates proper spacing of α-actinin and tropomyosin and protects actin filaments from the interaction with ADF/cofilin. DBN-1 loss of function results in the partial depolymerization of F-actin during muscle contraction. Taken together, our data show that DBN-1 organizes the muscle contractile apparatus maintaining the spatial relationship between actin-binding proteins such as α-actinin, tropomyosin and ADF/cofilin and possibly strengthening actin filaments by bundling. PMID:26146072

  5. Skeletal muscle intermediate filaments form a stress-transmitting and stress-signaling network.

    PubMed

    Palmisano, Michelle G; Bremner, Shannon N; Hornberger, Troy A; Meyer, Gretchen A; Domenighetti, Andrea A; Shah, Sameer B; Kiss, Balázs; Kellermayer, Miklos; Ryan, Allen F; Lieber, Richard L

    2015-01-15

    A fundamental requirement of cells is their ability to transduce and interpret their mechanical environment. This ability contributes to regulation of growth, differentiation and adaptation in many cell types. The intermediate filament (IF) system not only provides passive structural support to the cell, but recent evidence points to IF involvement in active biological processes such as signaling, mechanotransduction and gene regulation. However, the mechanisms that underlie these processes are not well known. Skeletal muscle cells provide a convenient system to understand IF function because the major muscle-specific IF, desmin, is expressed in high abundance and is highly organized. Here, we show that desmin plays both structural and regulatory roles in muscle cells by demonstrating that desmin is required for the maintenance of myofibrillar alignment, nuclear deformation, stress production and JNK-mediated stress sensing. Finite element modeling of the muscle IF system suggests that desmin immediately below the sarcolemma is the most functionally significant. This demonstration of biomechanical integration by the desmin IF system suggests that it plays an active biological role in muscle in addition to its accepted structural role. PMID:25413344

  6. Skeletal muscle intermediate filaments form a stress-transmitting and stress-signaling network

    PubMed Central

    Palmisano, Michelle G.; Bremner, Shannon N.; Hornberger, Troy A.; Meyer, Gretchen A.; Domenighetti, Andrea A.; Shah, Sameer B.; Kiss, Balázs; Kellermayer, Miklos; Ryan, Allen F.; Lieber, Richard L.

    2015-01-01

    ABSTRACT A fundamental requirement of cells is their ability to transduce and interpret their mechanical environment. This ability contributes to regulation of growth, differentiation and adaptation in many cell types. The intermediate filament (IF) system not only provides passive structural support to the cell, but recent evidence points to IF involvement in active biological processes such as signaling, mechanotransduction and gene regulation. However, the mechanisms that underlie these processes are not well known. Skeletal muscle cells provide a convenient system to understand IF function because the major muscle-specific IF, desmin, is expressed in high abundance and is highly organized. Here, we show that desmin plays both structural and regulatory roles in muscle cells by demonstrating that desmin is required for the maintenance of myofibrillar alignment, nuclear deformation, stress production and JNK-mediated stress sensing. Finite element modeling of the muscle IF system suggests that desmin immediately below the sarcolemma is the most functionally significant. This demonstration of biomechanical integration by the desmin IF system suggests that it plays an active biological role in muscle in addition to its accepted structural role. PMID:25413344

  7. Yeast actin filaments display ATP-dependent sliding movement over surfaces coated with rabbit muscle myosin.

    PubMed Central

    Kron, S J; Drubin, D G; Botstein, D; Spudich, J A

    1992-01-01

    The yeast Saccharomyces cerevisiae has been used to study the function of components of the actin cytoskeleton in vivo, mainly because it is easy to derive and characterize mutations affecting these proteins. In contrast, biochemical studies have generally used proteins derived from higher eukaryotes. We have devised a simple procedure to prepare, in high yield, homogeneous native actin from wild-type and act1 mutant yeast. Using intensified video fluorescence microscopy, we found that actin filaments polymerized from these preparations exhibit ATP-dependent sliding movement over surfaces coated with rabbit skeletal muscle myosin. The rates of sliding movement of the wild-type and mutant yeast actins were each about half that of rabbit skeletal muscle actin under similar conditions. We conclude that over the large evolutionary distance between yeast and mammals there has been significant conservation of actin function, specifically the ability to be moved by interaction with myosin. Images PMID:1533933

  8. Desmin: molecular interactions and putative functions of the muscle intermediate filament protein.

    PubMed

    Costa, M L; Escaleira, R; Cataldo, A; Oliveira, F; Mermelstein, C S

    2004-12-01

    Desmin is the intermediate filament (IF) protein occurring exclusively in muscle and endothelial cells. There are other IF proteins in muscle such as nestin, peripherin, and vimentin, besides the ubiquitous lamins, but they are not unique to muscle. Desmin was purified in 1977, the desmin gene was characterized in 1989, and knock-out animals were generated in 1996. Several isoforms have been described. Desmin IFs are present throughout smooth, cardiac and skeletal muscle cells, but can be more concentrated in some particular structures, such as dense bodies, around the nuclei, around the Z-line or in costameres. Desmin is up-regulated in muscle-derived cellular adaptations, including conductive fibers in the heart, electric organs, some myopathies, and experimental treatments with drugs that induce muscle degeneration, like phorbol esters. Many molecules have been reported to associate with desmin, such as other IF proteins (including members of the membrane dystroglycan complex), nebulin, the actin and tubulin binding protein plectin, the molecular motor dynein, the gene regulatory protein MyoD, DNA, the chaperone alphaB-crystallin, and proteases such as calpain and caspase. Desmin has an important medical role, since it is used as a marker of tumors' origin. More recently, several myopathies have been described, with accumulation of desmin deposits. Yet, after almost 30 years since its identification, the function of desmin is still unclear. Suggested functions include myofibrillogenesis, mechanical support for the muscle, mitochondrial localization, gene expression regulation, and intracellular signaling. This review focuses on the biochemical interactions of desmin, with a discussion of its putative functions. PMID:15558188

  9. Thick-to-Thin Filament Surface Distance Modulates Cross-Bridge Kinetics in Drosophila Flight Muscle

    SciTech Connect

    Tanner, Bertrand C.W.; Farman, Gerrie P.; Irving, Thomas C.; Maughan, David W.; Palmer, Bradley M.; Miller, Mark S.

    2012-09-19

    The demembranated (skinned) muscle fiber preparation is widely used to investigate muscle contraction because the intracellular ionic conditions can be precisely controlled. However, plasma membrane removal results in a loss of osmotic regulation, causing abnormal hydration of the myofilament lattice and its proteins. We investigated the structural and functional consequences of varied myofilament lattice spacing and protein hydration on cross-bridge rates of force development and detachment in Drosophila melanogaster indirect flight muscle, using x-ray diffraction to compare the lattice spacing of dissected, osmotically compressed skinned fibers to native muscle fibers in living flies. Osmolytes of different sizes and exclusion properties (Dextran T-500 and T-10) were used to differentially alter lattice spacing and protein hydration. At in vivo lattice spacing, cross-bridge attachment time (t{sub on}) increased with higher osmotic pressures, consistent with a reduced cross-bridge detachment rate as myofilament protein hydration decreased. In contrast, in the swollen lattice, t{sub on} decreased with higher osmotic pressures. These divergent responses were reconciled using a structural model that predicts t{sub on} varies inversely with thick-to-thin filament surface distance, suggesting that cross-bridge rates of force development and detachment are modulated more by myofilament lattice geometry than protein hydration. Generalizing these findings, our results suggest that cross-bridge cycling rates slow as thick-to-thin filament surface distance decreases with sarcomere lengthening, and likewise, cross-bridge cycling rates increase during sarcomere shortening. Together, these structural changes may provide a mechanism for altering cross-bridge performance throughout a contraction-relaxation cycle.

  10. STEM Analysis of Caenorhabditis elegans muscle thick filaments: evidence for microdifferentiated substructures

    NASA Technical Reports Server (NTRS)

    Muller, S. A.; Haner, M.; Ortiz, I.; Aebi, U.; Epstein, H. F.

    2001-01-01

    In the thick filaments of body muscle in Caenorhabditis elegans, myosin A and myosin B isoforms and a subpopulation of paramyosin, a homologue of myosin heavy chain rods, are organized about a tubular core. As determined by scanning transmission electron microscopy, the thick filaments show a continuous decrease in mass-per-length (MPL) from their central zones to their polar regions. This is consistent with previously reported morphological studies and suggests that both their content and structural organization are microdifferentiated as a function of position. The cores are composed of a second distinct subpopulation of paramyosin in association with the alpha, beta, and gamma-filagenins. MPL measurements suggest that cores are formed from seven subfilaments containing four strands of paramyosin molecules, rather than the two originally proposed. The periodic locations of the filagenins within different regions and the presence of a central zone where myosin A is located, implies that the cores are also microdifferentiated with respect to molecular content and structure. This differentiation may result from a novel "induced strain" assembly mechanism based upon the interaction of the filagenins, paramyosin and myosin A. The cores may then serve as "differentiated templates" for the assembly of myosin B and paramyosin in the tapering, microdifferentiated polar regions of the thick filaments.

  11. Passive tension in cardiac muscle: contribution of collagen, titin, microtubules, and intermediate filaments.

    PubMed Central

    Granzier, H L; Irving, T C

    1995-01-01

    The passive tension-sarcomere length relation of rat cardiac muscle was investigated by studying passive (or not activated) single myocytes and trabeculae. The contribution of collagen, titin, microtubules, and intermediate filaments to tension and stiffness was investigated by measuring (1) the effects of KCl/KI extraction on both trabeculae and single myocytes, (2) the effect of trypsin digestion on single myocytes, and (3) the effect of colchicine on single myocytes. It was found that over the working range of sarcomeres in the heart (lengths approximately 1.9-2.2 microns), collagen and titin are the most important contributors to passive tension with titin dominating at the shorter end of the working range and collagen at longer lengths. Microtubules made a modest contribution to passive tension in some cells, but on average their contribution was not significant. Finally, intermediate filaments contributed about 10% to passive tension of trabeculae at sarcomere lengths from approximately 1.9 to 2.1 microns, and their contribution dropped to only a few percent at longer lengths. At physiological sarcomere lengths of the heart, cardiac titin developed much higher tensions (> 20-fold) than did skeletal muscle titin at comparable lengths. This might be related to the finding that cardiac titin has a molecular mass of 2.5 MDa, 0.3-0.5 MDa smaller than titin of mammalian skeletal muscle, which is predicted to result in a much shorter extensible titin segment in the I-band of cardiac muscle. Passive stress plotted versus the strain of the extensible titin segment showed that the stress-strain relationships are similar in cardiac and skeletal muscle. The difference in passive stress between cardiac and skeletal muscle at the sarcomere level predominantly resulted from much higher strains of the I-segment of cardiac titin at a given sarcomere length. By expressing a smaller titin isoform, without changing the properties of the molecule itself, cardiac muscle is able to

  12. Myosin light chain phosphorylation enhances contraction of heart muscle via structural changes in both thick and thin filaments

    PubMed Central

    Kampourakis, Thomas; Sun, Yin-Biao; Irving, Malcolm

    2016-01-01

    Contraction of heart muscle is triggered by calcium binding to the actin-containing thin filaments but modulated by structural changes in the myosin-containing thick filaments. We used phosphorylation of the myosin regulatory light chain (cRLC) by the cardiac isoform of its specific kinase to elucidate mechanisms of thick filament-mediated contractile regulation in demembranated trabeculae from the rat right ventricle. cRLC phosphorylation enhanced active force and its calcium sensitivity and altered thick filament structure as reported by bifunctional rhodamine probes on the cRLC: the myosin head domains became more perpendicular to the filament axis. The effects of cRLC phosphorylation on thick filament structure and its calcium sensitivity were mimicked by increasing sarcomere length or by deleting the N terminus of the cRLC. Changes in thick filament structure were highly cooperative with respect to either calcium concentration or extent of cRLC phosphorylation. Probes on unphosphorylated myosin heads reported similar structural changes when neighboring heads were phosphorylated, directly demonstrating signaling between myosin heads. Moreover probes on troponin showed that calcium sensitization by cRLC phosphorylation is mediated by the thin filament, revealing a signaling pathway between thick and thin filaments that is still present when active force is blocked by Blebbistatin. These results show that coordinated and cooperative structural changes in the thick and thin filaments are fundamental to the physiological regulation of contractility in the heart. This integrated dual-filament concept of contractile regulation may aid understanding of functional effects of mutations in the protein components of both filaments associated with heart disease. PMID:27162358

  13. Myosin light chain phosphorylation enhances contraction of heart muscle via structural changes in both thick and thin filaments.

    PubMed

    Kampourakis, Thomas; Sun, Yin-Biao; Irving, Malcolm

    2016-05-24

    Contraction of heart muscle is triggered by calcium binding to the actin-containing thin filaments but modulated by structural changes in the myosin-containing thick filaments. We used phosphorylation of the myosin regulatory light chain (cRLC) by the cardiac isoform of its specific kinase to elucidate mechanisms of thick filament-mediated contractile regulation in demembranated trabeculae from the rat right ventricle. cRLC phosphorylation enhanced active force and its calcium sensitivity and altered thick filament structure as reported by bifunctional rhodamine probes on the cRLC: the myosin head domains became more perpendicular to the filament axis. The effects of cRLC phosphorylation on thick filament structure and its calcium sensitivity were mimicked by increasing sarcomere length or by deleting the N terminus of the cRLC. Changes in thick filament structure were highly cooperative with respect to either calcium concentration or extent of cRLC phosphorylation. Probes on unphosphorylated myosin heads reported similar structural changes when neighboring heads were phosphorylated, directly demonstrating signaling between myosin heads. Moreover probes on troponin showed that calcium sensitization by cRLC phosphorylation is mediated by the thin filament, revealing a signaling pathway between thick and thin filaments that is still present when active force is blocked by Blebbistatin. These results show that coordinated and cooperative structural changes in the thick and thin filaments are fundamental to the physiological regulation of contractility in the heart. This integrated dual-filament concept of contractile regulation may aid understanding of functional effects of mutations in the protein components of both filaments associated with heart disease. PMID:27162358

  14. The myosin interacting-heads motif is present in the relaxed thick filament of the striated muscle of scorpion.

    PubMed

    Pinto, Antonio; Sánchez, Fredi; Alamo, Lorenzo; Padrón, Raúl

    2012-12-01

    Electron microscopy (EM) studies of 2D crystals of smooth muscle myosin molecules have shown that in the inactive state the two heads of a myosin molecule interact asymmetrically forming a myosin interacting-heads motif. This suggested that inactivation of the two heads occurs by blocking of the actin-binding site of one (free head) and the ATP hydrolysis site of the other (blocked head). This motif has been found by EM of isolated negatively stained myosin molecules of unregulated (vertebrate skeletal and cardiac muscle) and regulated (invertebrate striated and vertebrate smooth muscle) myosins, and nonmuscle myosin. The same motif has also been found in 3D-reconstructions of frozen-hydrated (tarantula, Limulus, scallop) and negatively stained (scallop, vertebrate cardiac) isolated thick filaments. We are carrying out studies of isolated thick filaments from other species to assess how general this myosin interacting-heads motif is. Here, using EM, we have visualized isolated, negatively stained thick filaments from scorpion striated muscle. We modified the iterative helical real space reconstruction (IHRSR) method to include filament tilt, and band-pass filtered the aligned segments before averaging, achieving a 3.3 nm resolution 3D-reconstruction. This reconstruction revealed the presence of the myosin interacting-heads motif (adding to evidence that is widely spread), together with 12 subfilaments in the filament backbone. This demonstrates that conventional negative staining and imaging can be used to detect the presence of the myosin interacting-heads motif in helically ordered thick filaments from different species and muscle types, thus avoiding the use of less accessible cryo-EM and low electron-dose procedures. PMID:22982253

  15. Force--sarcomere-length relation and filament length in rat extensor digitorum muscle.

    PubMed

    ter Keurs, H E; Luff, A R; Luff, S E

    1984-01-01

    Relations between sarcomere length (SL) and force (F) were studied in ten fiber bundles (six to twenty fibers) from rat extensor digitorum muscles. A bundle (60 micron by 200-300 microns) was mounted in a glass covered perfusion chamber containing modified Krebs Henseleit buffer at 25 degrees C, oxygenated with 95% O2, 5% CO2 and pancuronium bromide (8 mg/1). F ( Disa 51E 01 transducer) and SL (laser diffraction and light microscopy) were measured; the latter could be controlled by a servomotor system. 200-500 ms tetanic stimulus trains were applied via platinum electrodes parallel to the muscle with 20% above maximal intensity, 160 Hz frequency and 1 ms duration of pulses. Tetani were at 2 min intervals. F attained a steady value 100 ms after the start of the tetanus at 2.0-2.5 microns SL and 350 ms at 3.5 microns SL. Active force, measured during tetani in which sarcomere length was held constant, was maximal between SL = 2.15 microns and 2.65 microns and declined in linear fashion with SL to zero at SL = 3.90 microns. Active force at SL = 2.00 microns was 95% of maximal force. Passive force was manifest above SL = 3.10 microns and was 10% of maximal force at 3.80 microns. Eight similar bundles were processed conventionally for electron microscopy (Philips EM 201A ) while SL was measured during the processing steps. Measurements were made from micrographs of longitudinal sections. SL measured from the micrographs were consistent with the observed shrinkage (5%). Actin periodicity was 41.5 +/- 0.19 nm; twenty-seven periods per actin filament were found. Filament lengths were corrected for an assumed actin periodicity of 39 nm. Actin length was 1.13 +/- 0.013 micron; myosin length was 1.53 +/- 0.015 micron. Bare zone was 0.17 micron +/- 0.01 micron. These filament lengths would give optimum overlap at SL between 2.26 and 2.43 microns and a linear decrease to zero with increasing SL from 2.43 microns to 3.79 microns. Actual force was consistently higher than

  16. CF2 represses Actin 88F gene expression and maintains filament balance during indirect flight muscle development in Drosophila.

    PubMed

    Gajewski, Kathleen M; Schulz, Robert A

    2010-01-01

    The zinc finger protein CF2 is a characterized activator of muscle structural genes in the body wall muscles of the Drosophila larva. To investigate the function of CF2 in the indirect flight muscle (IFM), we examined the phenotypes of flies bearing five homozygous viable mutations. The gross structure of the IFM was not affected, but the stronger hypomorphic alleles caused an increase of up to 1.5X in the diameter of the myofibrils. This size increase did not cause any disruption of the hexameric arrangement of thick and thin filaments. RT-PCR analysis revealed an increase in the transcription of several structural genes. Ectopic overexpression of CF2 in the developing IFM disrupts muscle formation. While our results indicate a role for CF2 as a direct negative regulator of the thin filament protein gene Actin 88F (Act88F), effects on levels of transcripts of myosin heavy chain (mhc) appear to be indirect. This role is in direct contrast to that described in the larval muscles, where CF2 activates structural gene expression. The variation in myofibril phenotypes of CF2 mutants suggest the CF2 may have separate functions in fine-tuning expression of structural genes to insure proper filament stoichiometry, and monitoring and/or controlling the final myofibril size. PMID:20520827

  17. Pleomorphic rhabdomyosarcoma showing smooth-muscle and fibrohistiocytic differentiation: a single case report.

    PubMed

    Eyden, Brian

    2010-02-01

    Rhabdomyosarcoma has traditionally been subclassified into alveolar, embryonal, and pleomorphic variants. Less commonly, spindle-cell, neuroendocrine, sclerosing, and lipid-rich or clear-cell subtypes are seen. The author recently encountered a myogenic sarcoma, with all the common markers of rhabdomyosarcoma, but expressing the unusual features of alpha-smooth-muscle actin and abundant rough endoplasmic reticulum (rER). This myogenic sarcoma, therefore, exhibited four lines of differentiation, and is documented here. The patient was a 65-year-old man with an inguinal soft tissue mass. Following surgical excision, the patient was given radiotherapy and was well without disease after 6 years. The tumor was positive for vimentin, desmin, alpha-smooth-muscle actin, alpha-sarcomeric actin, myogenin, MyoD1, and CD68. Cytoplasm was dominated by abundant rER intermingled with lipid droplets and lysosomes. Cell surfaces exhibited microvillous processes and focal adhesions, but no lamina. Subplasmalemmal smooth-muscle-type myofilaments with focal densities and rare sarcomeric filaments were seen. The low level of expression of some markers was interpreted as consistent with a poorly differentiated tumor. Given the four lines of differentiation--striated muscle, smooth muscle, fibroblastic, and histiocytic--a name reflecting its phenotype would be pleomorphic rhabdomyosarcoma showing smooth-muscle and fibrohistiocytic differentiation. PMID:20070153

  18. Mechanisms of leiomodin 2-mediated regulation of actin filament in muscle cells

    PubMed Central

    Chen, Xiaorui; Ni, Fengyun; Kondrashkina, Elena; Ma, Jianpeng; Wang, Qinghua

    2015-01-01

    Leiomodin (Lmod) is a class of potent tandem-G-actin–binding nucleators in muscle cells. Lmod mutations, deletion, or instability are linked to lethal nemaline myopathy. However, the lack of high-resolution structures of Lmod nucleators in action severely hampered our understanding of their essential cellular functions. Here we report the crystal structure of the actin–Lmod2162–495 nucleus. The structure contains two actin subunits connected by one Lmod2162–495 molecule in a non–filament-like conformation. Complementary functional studies suggest that the binding of Lmod2 stimulates ATP hydrolysis and accelerates actin nucleation and polymerization. The high level of conservation among Lmod proteins in sequence and functions suggests that the mechanistic insights of human Lmod2 uncovered here may aid in a molecular understanding of other Lmod proteins. Furthermore, our structural and mechanistic studies unraveled a previously unrecognized level of regulation in mammalian signal transduction mediated by certain tandem-G-actin–binding nucleators. PMID:26417072

  19. Modulation of myosin filament activation by telokin in smooth muscle liberation of myosin kinase and phosphatase from supramolecular complexes.

    PubMed

    Sobieszek, Apolinary; Andruchov, Oleg Y; Grabarek, Zenon; Kulikova, Natalia; Liebetrau, Claudia; Matusovsky, Oleg S

    2005-01-01

    result from dissociation of its catalytic subunit from a MLCK/MLCP complex bound to the filamentous myosin. Analogous desensitizing effects of telokin were also demonstrated for the contraction and relaxation cycle of Triton-skinned fibers from guinea pig Teania coli. Taken together, our results indicate that telokin acted as an effective modulator or chaperone of the myosin filament and a scheme for its action in smooth muscle was proposed. PMID:15617808

  20. Twisted tubulofilaments of inclusion body myositis muscle resemble paired helical filaments of Alzheimer brain and contain hyperphosphorylated tau.

    PubMed Central

    Askanas, V.; Engel, W. K.; Bilak, M.; Alvarez, R. B.; Selkoe, D. J.

    1994-01-01

    We immunostained muscle biopsies of 8 patients with sporadic inclusion body myositis (S-IBM), 7 patients with autosomal recessive hereditary inclusion body myopathy (H-IBM) (both diseases being characterized by similar muscle fiber vacuoles containing inclusions), and 11 normal and disease controls. We used the following well-characterized antibodies against tau protein: Tau-1, Alz-50, and anti-paired helical filament (PHF) antiserum. By light microscopy, in all S-IBM muscle biopsies virtually all vacuoles immunoreactive for ubiquitin and beta-amyloid protein also contained inclusions immunoreactive with Alz-50 and anti-PHF antiserum. With tau-1 antibody, strong immunoreactivity in the vacuoles was obtained only after dephosphorylation of muscle sections. By electronmicroscopy, all three antibodies immunodecorated exclusively cytoplasmic twisted tubulofilaments (TTFs). In H-IBM, virtually all ubiquitin and beta-amyloid-positive muscle fiber vacuoles contained inclusions immunoreactive with anti-PHF antiserum, but in only 40% of those fibers were the inclusions immunoreactive with Alz-50. In six H-IBM patients there were no tau-1 immunoreactive inclusions in any of their vacuolated muscle fibers; in one patient, 24% of the vacuolated fibers had tau-1 immunoreactivity. By demonstrating that hyperphosphorylated tau, which is characteristic of Alzheimer brain PHFs, is a component of S-IBM-muscle TTFs (which are also ultrastructurally similar to PHFs), our study: 1) provides the first demonstration of abnormally accumulated tau in nonneural tissue and 2) suggests that the cytopathogenesis in Alzheimer brain and S-IBM muscle may share some similar mechanisms. Whether the difference in tau immunoreactivity between S-IBM and most of the H-IBM patients reflects a difference in genetically determined transcriptional or posttranslational modifications of tau protein or other factors remains to be determined. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:8291607

  1. Loss of Sarcomere-associated Formins Disrupts Z-line Organization, but does not Prevent Thin Filament Assembly in Caenorhabditis elegans Muscle

    PubMed Central

    Mi-Mi, Lei; Pruyne, David

    2015-01-01

    Members of the formin family of actin filament nucleation factors have been implicated in sarcomere formation, but precisely how these proteins affect sarcomere structure remains poorly understood. Of six formins in the simple nematode Caenorhabditis elegans, only FHOD-1 and CYK-1 contribute to sarcomere assembly in the worm's obliquely striated body-wall muscles. We analyze here the ultrastructure of body-wall muscle sarcomeres in worms with putative null fhod-1 and cyk-1 gene mutations. Contrary to a simple model that formins nucleate actin for thin filament assembly, formin mutant sarcomeres contain thin filaments. Rather, formin mutant sarcomeres are narrower and have deformed thin filament-anchoring Z-line structures. Thus, formins affect multiple aspects of sarcomere structure. PMID:26161293

  2. Velocities of unloaded muscle filaments are not limited by drag forces imposed by myosin cross-bridges

    PubMed Central

    Brizendine, Richard K.; Alcala, Diego B.; Carter, Michael S.; Haldeman, Brian D.; Facemyer, Kevin C.; Baker, Josh E.; Cremo, Christine R.

    2015-01-01

    It is not known which kinetic step in the acto-myosin ATPase cycle limits contraction speed in unloaded muscles (V0). Huxley’s 1957 model [Huxley AF (1957) Prog Biophys Biophys Chem 7:255–318] predicts that V0 is limited by the rate that myosin detaches from actin. However, this does not explain why, as observed by Bárány [Bárány M (1967) J Gen Physiol 50(6, Suppl):197–218], V0 is linearly correlated with the maximal actin-activated ATPase rate (vmax), which is limited by the rate that myosin attaches strongly to actin. We have observed smooth muscle myosin filaments of different length and head number (N) moving over surface-attached F-actin in vitro. Fitting filament velocities (V) vs. N to a detachment-limited model using the myosin step size d = 8 nm gave an ADP release rate 8.5-fold faster and ton (myosin’s attached time) and r (duty ratio) ∼10-fold lower than previously reported. In contrast, these data were accurately fit to an attachment-limited model, V = N·v·d, over the range of N found in all muscle types. At nonphysiologically high N, V = L/ton rather than d/ton, where L is related to the length of myosin’s subfragment 2. The attachment-limited model also fit well to the [ATP] dependence of V for myosin-rod cofilaments at three fixed N. Previously published V0 vs. vmax values for 24 different muscles were accurately fit to the attachment-limited model using widely accepted values for r and N, giving d = 11.1 nm. Therefore, in contrast with Huxley’s model, we conclude that V0 is limited by the actin–myosin attachment rate. PMID:26294254

  3. Caenorhabditis elegans unc-82 encodes a serine/threonine kinase important for myosin filament organization in muscle during growth.

    PubMed

    Hoppe, Pamela E; Chau, Johnnie; Flanagan, Kelly A; Reedy, April R; Schriefer, Lawrence A

    2010-01-01

    Mutations in the unc-82 locus of Caenorhabditis elegans were previously identified by screening for disrupted muscle cytoskeleton in otherwise apparently normal mutagenized animals. Here we demonstrate that the locus encodes a serine/threonine kinase orthologous to human ARK5/SNARK (NUAK1/NUAK2) and related to the PAR-1 and SNF1/AMP-Activated kinase (AMPK) families. The predicted 1600-amino-acid polypeptide contains an N-terminal catalytic domain and noncomplex repetitive sequence in the remainder of the molecule. Phenotypic analyses indicate that unc-82 is required for maintaining the organization of myosin filaments and internal components of the M-line during cell-shape changes. Mutants exhibit normal patterning of cytoskeletal elements during early embryogenesis. Defects in localization of thick filament and M-line components arise during embryonic elongation and become progressively more severe as development proceeds. The phenotype is independent of contractile activity, consistent with unc-82 mutations preventing proper cytoskeletal reorganization during growth, rather than undermining structural integrity of the M-line. This is the first report establishing a role for the UNC-82/ARK5/SNARK kinases in normal development. We propose that activation of UNC-82 kinase during cell elongation regulates thick filament attachment or growth, perhaps through phosphorylation of myosin and paramyosin. We speculate that regulation of myosin is an ancestral characteristic of kinases in this region of the kinome. PMID:19901071

  4. Cooperative cross-bridge activation of thin filaments contributes to the Frank-Starling mechanism in cardiac muscle.

    PubMed

    Smith, L; Tainter, C; Regnier, M; Martyn, D A

    2009-05-01

    Myosin cross-bridges play an important role in the regulation of thin-filament activation in cardiac muscle. To test the hypothesis that sarcomere length (SL) modulation of thin-filament activation by strong-binding cross-bridges underlies the Frank-Starling mechanism, we inhibited force and strong cross-bridge binding to intermediate levels with sodium vanadate (Vi). Force and stiffness varied proportionately with [Ca(2+)] and [Vi]. Increasing [Vi] (decreased force) reduced the pCa(50) of force-[Ca(2+)] relations at 2.3 and 2.0 microm SL, with little effect on slope (n(H)). When maximum force was inhibited to approximately 40%, the effects of SL on force were diminished at lower [Ca(2+)], whereas at higher [Ca(2+)] (pCa < 5.6) the relative influence of SL on force increased. In contrast, force inhibition to approximately 20% significantly reduced the sensitivity of force-[Ca(2+)] relations to changes in both SL and myofilament lattice spacing. Strong cross-bridge binding cooperatively induced changes in cardiac troponin C structure, as measured by dichroism of 5' iodoacetamido-tetramethylrhodamine-labeled cardiac troponin C. This apparent cooperativity was reduced at shorter SL. These data emphasize that SL and/or myofilament lattice spacing modulation of the cross-bridge component of cardiac thin-filament activation contributes to the Frank-Starling mechanism. PMID:19413974

  5. Dynamic light-scattering evidence for the flexibility of native muscle thin filaments.

    PubMed

    Newman, J; Carlson, F D

    1980-01-01

    We have obtained clear evidence for the flexibility of native scallop adductor thin filaments by studying the temperature and ionic strength dependence of the average decay constants obtained from intensity fluctuation spectroscopic (IFS) measurements. The low-angle (10-25 degrees ), average decay constants obtained from time autocorrelation functions of scattered light were independent of concentration (0.08-1.3 mg/ml), scaled with the ratio of temperature to solvent viscosity, T/eta, over a range of 4-45 degrees C, and yielded a value for the translational diffusion coefficient of D(T) (5 degrees C) = (1.24 +/- 0.06) x 10(-8) cm(2)/s. From this value and the Broersma relation for rigid rods, we find an average filament length of 1.06 +/- 0.06 mum. Quantitative sodium dodecyl sulfate polyacrylamide gel electrophoresis showed that at high temperatures (> 35 degrees C) or in 0.6 M NaCl, tropomyosin completely dissociates from native thin filaments. Decay constants from high-angle (60-150 degrees C) IFS temperature dependence measurements do not scale with T/eta and hence do not show the temperature dependence expected for rigid rods. The differences are not due to any change in length distribution of filaments with temperature or to the free tropomyosin in solution, but are attributed to nonrigid motions of the filaments. Similar experiments on samples in high- and low-salt solvents gave results consistent with this interpretation. PMID:6894870

  6. Non-muscle myosin-II-B filament regulation of paracellular resistance in cervical epithelial cells is associated with modulation of the cortical acto-myosin

    PubMed Central

    Li, Xin; Gorodeski, George

    2007-01-01

    Objective To understand myosin regulation of epithelial permeability. Methods Experimental study, using human cervical epithelial cells CaSki. Endpoints were paracellular permeability (determined in terms of transepithelial electrical resistance); non-muscle myosin-II-B (NMM-II-B) cellular localization; NMM-II-B phosphorylation status; NMM-II-B – actin interaction (determined in-vitro by the immunoprecipitation-immunoreactivity method); and NMM-II-B filamentation (determined in-vitro using purified NMM-II-B filaments in terms of filaments disassembly / assembly ratios. Results Treatment of cells with the ROCK inhibitor Y-27632 or with the phosphatase inhibitor okadaic acid decreased the Resistance of the Lateral Intercellular Space (RLIS), and increased phosphorylation of non-muscle myosin-II-B (NMM-II-B) on threonine and serine residues. Y-27632 induced disorganization of the cortical acto-myosin and decreased co-immunoprecipitation of actin with NMM-II-B. Homodimerization assays using NMM-II-B filaments from cells treated with Y-27632 or okadaic acid revealed decreased filamentation compared to control cells. However, okadaic acid blocked Y-27632 decreased filamentation. Treatment with DRB, CK2 inhibitor, induced opposing effects to those of Y-27632 and okadaic acid. Treatment with DRB did not involve modulation of actin depolymerization, suggesting that NMM-II-B regulation of the RLIS was independent of actin polymerization status. Exposure of NMM-II-B filaments to CK2 increased filamentation, regardless of prior treatments in-vivo with Y-27632, okadaic acid, or DRB. Conclusions The results suggest that NMM-II-B filaments are in steady-state equilibrium of phosphorylation-dephosphorylation mediated by CK2 and by ROCK-regulated myosin heavy chain phosphatase, respectively. Increased phosphorylation would tend to inhibit assembly of NMM-II-B filaments and lead to decreased actin-myosin interaction, which would tend to decrease the RLIS and increase the

  7. Hand-Held Model of a Sarcomere to Illustrate the Sliding Filament Mechanism in Muscle Contraction

    ERIC Educational Resources Information Center

    Jittivadhna, Karnyupha; Ruenwongsa, Pintip; Panijpan, Bhinyo

    2009-01-01

    From our teaching of the contractile unit of the striated muscle, we have found limitations in using textbook illustrations of sarcomere structure and its related dynamic molecular physiological details. A hand-held model of a striated muscle sarcomere made from common items has thus been made by us to enhance students' understanding of the…

  8. Passive tension and stiffness of vertebrate skeletal and insect flight muscles: the contribution of weak cross-bridges and elastic filaments.

    PubMed Central

    Granzier, H L; Wang, K

    1993-01-01

    Tension and dynamic stiffness of passive rabbit psoas, rabbit semitendinosus, and waterbug indirect flight muscles were investigated to study the contribution of weak-binding cross-bridges and elastic filaments (titin and minititin) to the passive mechanical behavior of these muscles. Experimentally, a functional dissection of the relative contribution of actomyosin cross-bridges and titin and minititin was achieved by 1) comparing mechanically skinned muscle fibers before and after selective removal of actin filaments with a noncalcium-requiring gelsolin fragment (FX-45), and 2) studying passive tension and stiffness as a function of sarcomere length, ionic strength, temperature, and the inhibitory effect of a carboxyl-terminal fragment of smooth muscle caldesmon. Our data show that weak bridges exist in both rabbit skeletal muscle and insect flight muscle at physiological ionic strength and room temperature. In rabbit psoas fibers, weak bridge stiffness appears to vary with both thin-thick filament overlap and with the magnitude of passive tension. Plots of passive tension versus passive stiffness are multiphasic and strikingly similar for these three muscles of distinct sarcomere proportions and elastic proteins. The tension-stiffness plot appears to be a powerful tool in discerning changes in the mechanical behavior of the elastic filaments. The stress-strain and stiffness-strain curves of all three muscles can be merged into one, by normalizing strain rate and strain amplitude of the extensible segment of titin and minititin, further supporting the segmental extension model of resting tension development. Images FIGURE 1 FIGURE 2 FIGURE 3 FIGURE 4 PMID:8298040

  9. Three-dimensional structure of the M-region (bare zone) of vertebrate striated muscle myosin filaments by single-particle analysis.

    PubMed

    Al-Khayat, Hind A; Kensler, Robert W; Morris, Edward P; Squire, John M

    2010-11-12

    The rods of anti-parallel myosin molecules overlap at the centre of bipolar myosin filaments to produce an M-region (bare zone) that is free of myosin heads. Beyond the M-region edges, myosin molecules aggregate in a parallel fashion to yield the bridge regions of the myosin filaments. Adjacent myosin filaments in striated muscle A-bands are cross-linked by the M-band. Vertebrate striated muscle myosin filaments have a 3-fold rotational symmetry around their long axes. In addition, at the centre of the M-region, there are three 2-fold axes perpendicular to the filament long axis, giving the whole filament dihedral 32-point group symmetry. Here we describe the three-dimensional structure obtained by a single-particle analysis of the M-region of myosin filaments from goldfish skeletal muscle under relaxing conditions and as viewed in negative stain. This is the first single-particle reconstruction of isolated M-regions. The resulting three-dimensional reconstruction reveals details to about 55 Å resolution of the density distribution in the five main nonmyosin densities in the M-band (M6', M4', M1, M4 and M6) and in the myosin head crowns (P1, P2 and P3) at the M-region edges. The outermost crowns in the reconstruction were identified specifically by their close similarity to the corresponding crown levels in our previously published bridge region reconstructions. The packing of myosin molecules into the M-region structure is discussed, and some unidentified densities are highlighted. PMID:20851129

  10. Disorder profile of nebulin encodes a vernierlike position sensor for the sliding thin and thick filaments of the skeletal muscle sarcomere

    NASA Astrophysics Data System (ADS)

    Wu, Ming-Chya; Forbes, Jeffrey G.; Wang, Kuan

    2016-06-01

    Nebulin is an about 1 μ m long intrinsically disordered scaffold for the thin filaments of skeletal muscle sarcomere. It is a multifunctional elastic protein that wraps around actin filament, stabilizes thin filaments, and regulates Ca-dependent actomyosin interactions. This study investigates whether the disorder profile of nebulin might encode guidelines for thin and thick filament interactions in the sarcomere of the skeletal muscle. The question was addressed computationally by analyzing the predicted disorder profile of human nebulin (6669 residues, ˜200 actin-binding repeats) by pondr and the periodicity of the A-band stripes (reflecting the locations of myosin-associated proteins) in the electron micrographs of the sarcomere. Using the detrended fluctuation analysis, a scale factor for the A-band stripe image data with respect to the nebulin disorder profile was determined to make the thin and thick filaments aligned to have maximum correlation. The empirical mode decomposition method was then applied to identify hidden periodicities in both the nebulin disorder profile and the rescaled A-band data. The decomposition reveals three characteristic length scales (45 nm, 100 nm, and 200 nm) that are relevant for correlational analysis. The dynamical cross-correlation analyses with moving windows at various sarcomere lengths depict a vernierlike design for both periodicities, thus enabling nebulin to sense position and fine tune sarcomere overlap. This shows that the disorder profile of scaffolding proteins may encode a guideline for cellular architecture.

  11. The role of tropomyosin isoforms and phosphorylation in force generation in thin-filament reconstituted bovine cardiac muscle fibres

    PubMed Central

    Lu, Xiaoying; Heeley, David H.; Smillie, Lawrence B.

    2011-01-01

    The thin filament extraction and reconstitution protocol was used to investigate the functional roles of tropomyosin (Tm) isoforms and phosphorylation in bovine myocardium. The thin filament was extracted by gelsolin, reconstituted with G-actin, and further reconstituted with cardiac troponin together with one of three Tm varieties: phosphorylated αTm (αTm.P), dephosphorylated αTm (αTm.deP), and dephosphorylated βTm (βTm.deP). The effects of Ca, phosphate, MgATP and MgADP concentrations were examined in the reconstituted fibres at pH 7.0 and 25°C. Our data show that Ca2+ sensitivity (pCa50: half saturation point) was increased by 0.19 ± 0.07 units when βTm.deP was used instead of αTm.deP (P < 0.05), and by 0.27 ± 0.06 units when phosphorylated αTm was used (P < 0.005). The cooperativity (Hill factor) decreased (but insignificantly) from 3.2 ± 0.3 (5) to 2.8 ± 0.2 (7) with phosphorylation. The cooperativity decreased significantly from 3.2 ± 0.3 (5) to 2.1 ± 0.2 (9) with isoform change from αTm.deP to βTm.deP. There was no significant difference in isometric tension or stiffness between αTm.P, αTm.deP, and βTm.deP muscle fibres at saturating [Ca2+] or after rigor induction. Based on the six-state cross-bridge model, sinusoidal analysis indicated that the equilibrium constants of elementary steps differed up to 1.7x between αTm.deP and βTm.deP, and up to 2.0x between αTm.deP and αTm.P. The rate constants differed up to 1.5x between αTm.deP and βTm.deP, and up to 2.4x between αTm.deP and αTm.P. We conclude that tension and stiffness per cross-bridge are not significantly different among the three muscle models. PMID:20559861

  12. Changes in keratins and alpha-smooth muscle actin during three-dimensional reconstitution of eccrine sweat glands.

    PubMed

    Li, Haihong; Li, Xuexue; Zhang, Bingna; Zhang, Mingjun; Chen, Wenlong; Tang, Shijie; Fu, Xiaobing

    2016-07-01

    We have examined the changes of keratins and alpha-SMA at various time points in order to investigate the development and differentiation of eccrine sweat gland cells during the course of three-dimensional (3D) reconstitution. Mixtures of eccrine sweat gland cells and Matrigel were injected subcutaneously into the inguinal regions of nude mice. At 1, 2, 4, 6, 8, 14, 21, 28, 35, and 42 days post-implantation, Matrigel plugs were removed and immunostained. We found that during 3D reconstitution, keratin and alpha-SMA expression changed in a time-dependent manner. At day 1, all cells stained positively for keratin isoforms K5, K14, and K15, with the staining intensity of K15 being weak and K5 and K14 being strong, but none of the cells displayed K7, K8, or alpha-SMA. As time progressed, spheroid-like structures formed with the inner layer acquiring K7 and K8, but losing K5 and K14 expression, and the outer layer acquiring alpha-SMA expression, but losing K15 expression. K8 expression was first noted at day 14, and K7 and alpha-SMA at day 21. The loss of K15 expression was first noted at day 14, K14 at day 21, and K5 at day 28. At 28, 35, and 42 days, the spheroid-like structures could be distinguished, by immunohistochemistry, as having secretory coil-like and coiled duct-like structures. We conclude that the changes in expression of keratins and alpha-SMA in 3D-reconstituted eccrine sweat glands are similar to those of native eccrine sweat glands, indicating that the 3D reconstitution of sweat glands provides an excellent model for studying the development, cytodifferentiation, and regulation of eccrine sweat glands. PMID:26837225

  13. Structural changes of the regulatory proteins bound to the thin filaments in skeletal muscle contraction by X-ray fiber diffraction

    SciTech Connect

    Sugimoto, Yasunobu Takezawa, Yasunori; Matsuo, Tatsuhito; Ueno, Yutaka; Minakata, Shiho; Tanaka, Hidehiro; Wakabayashi, Katsuzo

    2008-04-25

    In order to clarify the structural changes related to the regulation mechanism in skeletal muscle contraction, the intensity changes of thin filament-based reflections were investigated by X-ray fiber diffraction. The time course and extent of intensity changes of the first to third order troponin (TN)-associated meridional reflections with a basic repeat of 38.4 nm were different for each of these reflections. The intensity of the first and second thin filament layer lines changed in a reciprocal manner both during initial activation and during the force generation process. The axial spacings of the TN-meridional reflections decreased by {approx}0.1% upon activation relative to the relaxing state and increased by {approx}0.24% in the force generation state, in line with that of the 2.7-nm reflection. Ca{sup 2+}-binding to TN triggered the shortening and a change in the helical symmetry of the thin filaments. Modeling of the structural changes using the intensities of the thin filament-based reflections suggested that the conformation of the globular core domain of TN altered upon activation, undergoing additional conformational changes at the tension plateau. The tail domain of TN moved together with tropomyosin during contraction. The results indicate that the structural changes of regulatory proteins bound to the actin filaments occur in two steps, the first in response to the Ca{sup 2+}-binding and the second induced by actomyosin interaction.

  14. Calcium-dependence of Donnan potentials in glycerinated rabbit psoas muscle in rigor, at and beyond filament overlap; a role for titin in the contractile process.

    PubMed

    Coomber, S J; Bartels, E M; Elliott, G F

    2011-07-01

    In glycerinated rabbit psoas muscle, Donnan potential measurements demonstrated that the net electric charge on the actin-myosin matrix undergoes a sharp switch-like transition at pCa(50) = 6.8. The potentials are 2 mV less negative at the lower pCa(2+) (P < 0.001). If ATP is present, the muscle contracts and breaks the microelectrode. Therefore the rigor state was studied. There is no reason to suppose a priori that a similar voltage switch does not occur during contraction, however. Calcium dependence is still apparent in muscles stretched beyond overlap (sarcomere length>3.8 μm) and is also seen in the gap filaments between the A- and I-band ends; further stretching abolishes the dependence. These experiments strongly suggest that calcium dependence is controlled initially by the titin component, and that this control is lost when titin filaments break. We suppose that that effect is mediated by the titin kinase in the M-line region and may involve the extensible PEVK region of titin. There is great interest in the electric charge on proteins in muscle within the structural system. We suggest how changes in these charges may control the calcium activation process. We also suggest some simple experimental approaches that could clarify these effects. PMID:21663965

  15. The Contributions of the Amino and Carboxy Terminal Domains of Flightin to the Biomechanical Properties of Drosophila Flight Muscle Thick Filaments.

    PubMed

    Gasek, Nathan S; Nyland, Lori R; Vigoreaux, Jim O

    2016-01-01

    Flightin is a myosin binding protein present in Pancrustacea. In Drosophila, flightin is expressed in the indirect flight muscles (IFM), where it is required for the flexural rigidity, structural integrity, and length determination of thick filaments. Comparison of flightin sequences from multiple Drosophila species revealed a tripartite organization indicative of three functional domains subject to different evolutionary constraints. We use atomic force microscopy to investigate the functional roles of the N-terminal domain and the C-terminal domain that show different patterns of sequence conservation. Thick filaments containing a C-terminal domain truncated flightin (fln(ΔC44)) are significantly shorter (2.68 ± 0.06 μm; p < 0.005) than thick filaments containing a full length flightin (fln⁺; 3.21 ± 0.05 μm) and thick filaments containing an N-terminal domain truncated flightin (fln(ΔN62); 3.21 ± 0.06 μm). Persistence length was significantly reduced in fln(ΔN62) (418 ± 72 μm; p < 0.005) compared to fln⁺ (1386 ± 196μm) and fln(ΔC44)(1128 ± 193 μm). Statistical polymer chain analysis revealed that the C-terminal domain fulfills a secondary role in thick filament bending propensity. Our results indicate that the flightin amino and carboxy terminal domains make distinct contributions to thick filament biomechanics. We propose these distinct roles arise from the interplay between natural selection and sexual selection given IFM's dual role in flight and courtship behaviors. PMID:27128952

  16. The Contributions of the Amino and Carboxy Terminal Domains of Flightin to the Biomechanical Properties of Drosophila Flight Muscle Thick Filaments

    PubMed Central

    Gasek, Nathan S.; Nyland, Lori R.; Vigoreaux, Jim O.

    2016-01-01

    Flightin is a myosin binding protein present in Pancrustacea. In Drosophila, flightin is expressed in the indirect flight muscles (IFM), where it is required for the flexural rigidity, structural integrity, and length determination of thick filaments. Comparison of flightin sequences from multiple Drosophila species revealed a tripartite organization indicative of three functional domains subject to different evolutionary constraints. We use atomic force microscopy to investigate the functional roles of the N-terminal domain and the C-terminal domain that show different patterns of sequence conservation. Thick filaments containing a C-terminal domain truncated flightin (flnΔC44) are significantly shorter (2.68 ± 0.06 μm; p < 0.005) than thick filaments containing a full length flightin (fln+; 3.21 ± 0.05 μm) and thick filaments containing an N-terminal domain truncated flightin (flnΔN62; 3.21 ± 0.06 μm). Persistence length was significantly reduced in flnΔN62 (418 ± 72 μm; p < 0.005) compared to fln+ (1386 ± 196μm) and flnΔC44(1128 ± 193 μm). Statistical polymer chain analysis revealed that the C-terminal domain fulfills a secondary role in thick filament bending propensity. Our results indicate that the flightin amino and carboxy terminal domains make distinct contributions to thick filament biomechanics. We propose these distinct roles arise from the interplay between natural selection and sexual selection given IFM’s dual role in flight and courtship behaviors. PMID:27128952

  17. Role of Active Contraction and Tropomodulins in Regulating Actin Filament Length and Sarcomere Structure in Developing Zebrafish Skeletal Muscle

    PubMed Central

    Mazelet, Lise; Parker, Matthew O.; Li, Mei; Arner, Anders; Ashworth, Rachel

    2016-01-01

    Whilst it is recognized that contraction plays an important part in maintaining the structure and function of mature skeletal muscle, its role during development remains undefined. In this study the role of movement in skeletal muscle maturation was investigated in intact zebrafish embryos using a combination of genetic and pharmacological approaches. An immotile mutant line (cacnb1ts25) which lacks functional voltage-gated calcium channels (dihydropyridine receptors) in the muscle and pharmacological immobilization of embryos with a reversible anesthetic (Tricaine), allowed the study of paralysis (in mutants and anesthetized fish) and recovery of movement (reversal of anesthetic treatment). The effect of paralysis in early embryos (aged between 17 and 24 hours post-fertilization, hpf) on skeletal muscle structure at both myofibrillar and myofilament level was determined using both immunostaining with confocal microscopy and small angle X-ray diffraction. The consequences of paralysis and subsequent recovery on the localization of the actin capping proteins Tropomodulin 1 & 4 (Tmod) in fish aged from 17 hpf until 42 hpf was also assessed. The functional consequences of early paralysis were investigated by examining the mechanical properties of the larval muscle. The length-force relationship, active and passive tension, was measured in immotile, recovered and control skeletal muscle at 5 and 7 day post-fertilization (dpf). Recovery of muscle function was also assessed by examining swimming patterns in recovered and control fish. Inhibition of the initial embryonic movements (up to 24 hpf) resulted in an increase in myofibril length and a decrease in width followed by almost complete recovery in both moving and paralyzed fish by 42 hpf. In conclusion, myofibril organization is regulated by a dual mechanism involving movement-dependent and movement-independent processes. The initial contractile event itself drives the localization of Tmod1 to its sarcomeric position

  18. Role of Active Contraction and Tropomodulins in Regulating Actin Filament Length and Sarcomere Structure in Developing Zebrafish Skeletal Muscle.

    PubMed

    Mazelet, Lise; Parker, Matthew O; Li, Mei; Arner, Anders; Ashworth, Rachel

    2016-01-01

    Whilst it is recognized that contraction plays an important part in maintaining the structure and function of mature skeletal muscle, its role during development remains undefined. In this study the role of movement in skeletal muscle maturation was investigated in intact zebrafish embryos using a combination of genetic and pharmacological approaches. An immotile mutant line (cacnb1 (ts25) ) which lacks functional voltage-gated calcium channels (dihydropyridine receptors) in the muscle and pharmacological immobilization of embryos with a reversible anesthetic (Tricaine), allowed the study of paralysis (in mutants and anesthetized fish) and recovery of movement (reversal of anesthetic treatment). The effect of paralysis in early embryos (aged between 17 and 24 hours post-fertilization, hpf) on skeletal muscle structure at both myofibrillar and myofilament level was determined using both immunostaining with confocal microscopy and small angle X-ray diffraction. The consequences of paralysis and subsequent recovery on the localization of the actin capping proteins Tropomodulin 1 & 4 (Tmod) in fish aged from 17 hpf until 42 hpf was also assessed. The functional consequences of early paralysis were investigated by examining the mechanical properties of the larval muscle. The length-force relationship, active and passive tension, was measured in immotile, recovered and control skeletal muscle at 5 and 7 day post-fertilization (dpf). Recovery of muscle function was also assessed by examining swimming patterns in recovered and control fish. Inhibition of the initial embryonic movements (up to 24 hpf) resulted in an increase in myofibril length and a decrease in width followed by almost complete recovery in both moving and paralyzed fish by 42 hpf. In conclusion, myofibril organization is regulated by a dual mechanism involving movement-dependent and movement-independent processes. The initial contractile event itself drives the localization of Tmod1 to its sarcomeric

  19. Mutation-Specific Effects on Thin Filament Length in Thin Filament Myopathy

    PubMed Central

    de Winter, Josine M.; Joureau, Barbara; Lee, Eun-Jeong; Kiss, Balázs; Yuen, Michaela; Gupta, Vandana A.; Pappas, Christopher T.; Gregorio, Carol C.; Stienen, Ger J. M.; Edvardson, Simon; Wallgren-Pettersson, Carina; Lehtokari, Vilma-Lotta; Pelin, Katarina; Malfatti, Edoardo; Romero, Norma B.; van Engelen, Baziel G.; Voermans, Nicol C.; Donkervoort, Sandra; Bönnemann, C. G.; Clarke, Nigel F.; Beggs, Alan H.; Granzier, Henk; Ottenheijm, Coen A. C.

    2016-01-01

    Objective Thin filament myopathies are among the most common nondystrophic congenital muscular disorders, and are caused by mutations in genes encoding proteins that are associated with the skeletal muscle thin filament. Mechanisms underlying muscle weakness are poorly understood, but might involve the length of the thin filament, an important determinant of force generation. Methods We investigated the sarcomere length-dependence of force, a functional assay that provides insights into the contractile strength of muscle fibers as well as the length of the thin filaments, in muscle fibers from 51 patients with thin filament myopathy caused by mutations in NEB, ACTA1, TPM2, TPM3, TNNT1, KBTBD13, KLHL40, and KLHL41. Results Lower force generation was observed in muscle fibers from patients of all genotypes. In a subset of patients who harbor mutations in NEB and ACTA1, the lower force was associated with downward shifted force–sarcomere length relations, indicative of shorter thin filaments. Confocal microscopy confirmed shorter thin filaments in muscle fibers of these patients. A conditional Neb knockout mouse model, which recapitulates thin filament myopathy, revealed a compensatory mechanism; the lower force generation that was associated with shorter thin filaments was compensated for by increasing the number of sarcomeres in series. This allowed muscle fibers to operate at a shorter sarcomere length and maintain optimal thin–thick filament overlap. Interpretation These findings might provide a novel direction for the development of therapeutic strategies for thin filament myopathy patients with shortened thin filament lengths. PMID:27074222

  20. Overexpression of smooth muscle myosin heavy chain leads to activation of the unfolded protein response and autophagic turnover of thick filament-associated proteins in vascular smooth muscle cells.

    PubMed

    Kwartler, Callie S; Chen, Jiyuan; Thakur, Dhananjay; Li, Shumin; Baskin, Kedryn; Wang, Shanzhi; Wang, Zhao V; Walker, Lori; Hill, Joseph A; Epstein, Henry F; Taegtmeyer, Heinrich; Milewicz, Dianna M

    2014-05-16

    Duplications spanning nine genes at the genomic locus 16p13.1 predispose individuals to acute aortic dissections. The most likely candidate gene in this region leading to the predisposition for dissection is MYH11, which encodes smooth muscle myosin heavy chain (SM-MHC). The effects of increased expression of MYH11 on smooth muscle cell (SMC) phenotypes were explored using mouse aortic SMCs with transgenic overexpression of one isoform of SM-MHC. We found that these cells show increased expression of Myh11 and myosin filament-associated contractile genes at the message level when compared with control SMCs, but not at the protein level due to increased protein degradation. Increased expression of Myh11 resulted in endoplasmic reticulum (ER) stress in SMCs, which led to a paradoxical decrease of protein levels through increased autophagic degradation. An additional consequence of ER stress in SMCs was increased intracellular calcium ion concentration, resulting in increased contractile signaling and contraction. The increased signals for contraction further promote transcription of contractile genes, leading to a feedback loop of metabolic abnormalities in these SMCs. We suggest that overexpression of MYH11 can lead to increased ER stress and autophagy, findings that may be globally implicated in disease processes associated with genomic duplications. PMID:24711452

  1. Filament disappearances

    NASA Technical Reports Server (NTRS)

    Wagner, William J.

    1986-01-01

    The phenomenon of the sudden filament disappearance (Disparition Brusque) is a familiar one to observers at H alpha telescopes. Nevertherless, the importance in Disparition Brusques (DB) continues to grow for several reasons which are cited in the discussion. It is reported that there seems to be more interest on building and maintain filaments than in destroying them. As a consequence, this sub-group is smaller than most of the others. All the same, progress in this area of filament disapperences seems steady and assured. The importance and interest in DBs is discussed and future directions are indicated.

  2. Helical filaments

    NASA Astrophysics Data System (ADS)

    Barbieri, Nicholas; Hosseinimakarem, Zahra; Lim, Khan; Durand, Magali; Baudelet, Matthieu; Johnson, Eric; Richardson, Martin

    2014-06-01

    The shaping of laser-induced filamenting plasma channels into helical structures by guiding the process with a non-diffracting beam is demonstrated. This was achieved using a Bessel beam superposition to control the phase of an ultrafast laser beam possessing intensities sufficient to induce Kerr effect driven non-linear self-focusing. Several experimental methods were used to characterize the resulting beams and confirm the observed structures are laser air filaments.

  3. Kinetics of thin filament activation probed by fluorescence of N-((2-(Iodoacetoxy)ethyl)-N-methyl)amino-7-nitrobenz-2-oxa-1, 3-diazole-labeled troponin I incorporated into skinned fibers of rabbit psoas muscle: implications for regulation of muscle contraction

    PubMed Central

    Brenner, B; Chalovich, JM

    1999-01-01

    Making use of troponin with fluorescently labeled troponin I subunit (N-((2-(iodoacetoxy)ethyl)-N-methyl)amino-7-nitrobenz-2-oxa-1, 3-diazole-troponin I, IANBD-TnI) that had previously been described in solution studies as a probe for thin filament activation (. Proc. Natl. Acad. Sci. 77:7209-7213), we present a new approach that allows the kinetics of thin filament activation to be studied in skinned muscle fibers. After the exchange of native troponin for fluorescently labeled troponin, the fluorescence intensity is sensitive to both changes in calcium concentration and actin attachment of cross-bridges in their strong binding states (. Biophys. J. 77:000-000). Imposing rapid changes in the fraction of strongly attached cross-bridges, e.g., by switching from isometric contraction to high-speed shortening, causes changes in thin filament activation at fixed Ca(2+) concentrations that can be followed by recording fluorescence intensity. Upon changing to high-speed shortening we observed small (<20%) changes in fluorescence that became faster at higher Ca(2+) concentrations. At all Ca(2+) concentrations, these changes are more than 10-fold faster than force redevelopment subsequent to the period of unloaded shortening. We interpret this as an indication that equilibration among different states of the thin filament is rapid and becomes faster as Ca(2+) is raised. Fast equilibration suggests that the rate constant of force redevelopment is not limited by changes in the activation level of thin filaments induced by the isotonic contraction before force redevelopment. Instead, our modeling shows that, in agreement with our previous proposal for the regulation of muscle contraction, a rapid and Ca(2+)-dependent equilibration among different states of the thin filament can fully account for the Ca(2+) dependence of force redevelopment and the fluorescence changes described in this study. PMID:10545369

  4. Effects of phosphate and ADP on shortening velocity during maximal and submaximal calcium activation of the thin filament in skeletal muscle fibers.

    PubMed Central

    Metzger, J M

    1996-01-01

    The effects of added phosphate and MgADP on unloaded shortening velocity during maximal and submaximal Ca2+ activation of the thin filament were examined in skinned single skeletal fibers from rabbit psoas muscle. During maximal Ca2+ activation, added phosphate (10-30 mM) had no effect on unloaded shortening velocity as determined by the slack-test technique. In fibers activated at submaximal concentrations of Ca2+ in the absence of added phosphate, plots of slack length versus duration of unloaded shortening were biphasic, consisting of an initial high velocity phase of shortening and a subsequent low velocity phase of shortening. Interestingly, in the presence of added phosphate, biphasic slack-test plots were no longer apparent. This result was obtained in control fibers over a range of submaximal Ca2+ concentrations and in maximally Ca2+ activated fibers, which were first treated to partially extract troponin C. Thus, under conditions that favor the appearance of biphasic shortening (i.e., low [Ca2+], troponin C extraction), added phosphate eliminated the low velocity component. In contrast, in fibers activated in the presence of 5 mM added MgADP, biphasic slack-test plots were apparent even during maximal Ca2+ activation. The basis of biphasic shortening is not known but it may be due to the formation of axially compressed cross-bridges that become strained to bear a tension that opposes the relative sliding of the myofilaments. The present findings could be explained if added phosphate and MgADP bind to cross-bridges in a strain-dependent manner. In this case, the results suggest that phosphate inhibits the formation of cross-bridges that bear a compressive strain. Added MgADP, on the other hand, may be expected to detain cross-bridges in strong binding states, thus promoting an increase in the population of cross-bridges bearing a compressive strain. Alterations in the population of strained cross-bridges by added phosphate and MgADP would alter the internal

  5. Intermediate Filaments: A Historical Perspective

    PubMed Central

    Oshima, Robert G.

    2007-01-01

    Intracellular protein filaments intermediate in size between actin microfilaments and microtubules are composed of a surprising variety of tissue specific proteins commonly interconnected with other filamentous systems for mechanical stability and decorated by a variety of proteins that provide specialized functions. The sequence conservation of the coiled-coil, alpha-helical structure responsible for polymerization into individual 10 nm filaments defines the classification of intermediate filament proteins into a large gene family. Individual filaments further assemble into bundles and branched cytoskeletons visible in the light microscope. However, it is the diversity of the variable terminal domains that likely contributes most to different functions. The search for the functions of intermediate filament proteins has led to discoveries of roles in diseases of the skin, heart, muscle, liver, brain, adipose tissues and even premature aging. The diversity of uses of intermediate filaments as structural elements and scaffolds for organizing the distribution of decorating molecules contrasts with other cytoskeletal elements. This review is an attempt to provide some recollection of how such a diverse field emerged and changed over about 30 years. PMID:17493611

  6. Filament winding

    NASA Astrophysics Data System (ADS)

    Shibley, A. M.

    The major aspects of filament winding are discussed, emphasizing basic reinforcement and matrix materials, winding procedures, process controls, and cured composite properties. Fiberglass (E-glass and S-glass strengths are 500,000 and 665,000 psi respectively) and polyester resins are the principal reinforcement constituent materials. Graphite and aramid reinforcements are being used more frequently, primarily for the more critical pressure vessels. Matrix systems are most commonly based on epoxy as it has superior mechanical properties, fatigue behavior, and heat resistance as compard with polyesters. A fiberglass overwrap of PVC pipe is an anticipated development in on-site winding and combination winding, and the compression molding of filament wound lay-ups will be investigated. The fabrication of weight-sensitive structural components may be achieved by using such moldings.

  7. Isoform composition and gene expression of thick and thin filament proteins in striated muscles of mice after 30-day space flight.

    PubMed

    Ulanova, Anna; Gritsyna, Yulia; Vikhlyantsev, Ivan; Salmov, Nikolay; Bobylev, Alexander; Abdusalamova, Zarema; Rogachevsky, Vadim; Shenkman, Boris; Podlubnaya, Zoya

    2015-01-01

    Changes in isoform composition, gene expression of titin and nebulin, and isoform composition of myosin heavy chains as well as changes in titin phosphorylation level in skeletal (m. gastrocnemius, m. tibialis anterior, and m. psoas) and cardiac muscles of mice were studied after a 30-day-long space flight onboard the Russian spacecraft "BION-M" number 1. A muscle fibre-type shift from slow-to-fast and a decrease in the content of titin and nebulin in the skeletal muscles of animals from "Flight" group was found. Using Pro-Q Diamond staining, an ~3-fold increase in the phosphorylation level of titin in m. gastrocnemius of mice from the "Flight" group was detected. The content of titin and its phosphorylation level in the cardiac muscle of mice from "Flight" and "Control" groups did not differ; nevertheless an increase (2.2 times) in titin gene expression in the myocardium of flight animals was found. The observed changes are discussed in the context of their role in the contractile activity of striated muscles of mice under conditions of weightlessness. PMID:25664316

  8. Isoform Composition and Gene Expression of Thick and Thin Filament Proteins in Striated Muscles of Mice after 30-Day Space Flight

    PubMed Central

    Ulanova, Anna; Gritsyna, Yulia; Vikhlyantsev, Ivan; Salmov, Nikolay; Bobylev, Alexander; Abdusalamova, Zarema; Rogachevsky, Vadim; Shenkman, Boris; Podlubnaya, Zoya

    2015-01-01

    Changes in isoform composition, gene expression of titin and nebulin, and isoform composition of myosin heavy chains as well as changes in titin phosphorylation level in skeletal (m. gastrocnemius, m. tibialis anterior, and m. psoas) and cardiac muscles of mice were studied after a 30-day-long space flight onboard the Russian spacecraft “BION-M” number 1. A muscle fibre-type shift from slow-to-fast and a decrease in the content of titin and nebulin in the skeletal muscles of animals from “Flight” group was found. Using Pro-Q Diamond staining, an ~3-fold increase in the phosphorylation level of titin in m. gastrocnemius of mice from the “Flight” group was detected. The content of titin and its phosphorylation level in the cardiac muscle of mice from “Flight” and “Control” groups did not differ; nevertheless an increase (2.2 times) in titin gene expression in the myocardium of flight animals was found. The observed changes are discussed in the context of their role in the contractile activity of striated muscles of mice under conditions of weightlessness. PMID:25664316

  9. Filamentous Fungi.

    PubMed

    Powers-Fletcher, Margaret V; Kendall, Brian A; Griffin, Allen T; Hanson, Kimberly E

    2016-06-01

    Filamentous mycoses are often associated with significant morbidity and mortality. Prompt diagnosis and aggressive treatment are essential for good clinical outcomes in immunocompromised patients. The host immune response plays an essential role in determining the course of exposure to potential fungal pathogens. Depending on the effectiveness of immune response and the burden of organism exposure, fungi can either be cleared or infection can occur and progress to a potentially fatal invasive disease. Nonspecific cellular immunity (i.e., neutrophils, natural killer [NK] cells, and macrophages) combined with T-cell responses are the main immunologic mechanisms of protection. The most common potential mold pathogens include certain hyaline hyphomycetes, endemic fungi, the Mucorales, and some dematiaceous fungi. Laboratory diagnostics aimed at detecting and differentiating these organisms are crucial to helping clinicians make informed decisions about treatment. The purpose of this chapter is to provide an overview of the medically important fungal pathogens, as well as to discuss the patient characteristics, antifungal-therapy considerations, and laboratory tests used in current clinical practice for the immunocompromised host. PMID:27337469

  10. Myosin filament 3D structure in mammalian cardiac muscle☆

    PubMed Central

    AL-Khayat, Hind A.; Morris, Edward P.; Kensler, Robert W.; Squire, John M.

    2008-01-01

    A number of cardiac myopathies (e.g. familial hypertrophic cardiomyopathy and dilated cardiomyopathy) are linked to mutations in cardiac muscle myosin filament proteins, including myosin and myosin binding protein C (MyBP-C). To understand the myopathies it is necessary to know the normal 3D structure of these filaments. We have carried out 3D single particle analysis of electron micrograph images of negatively stained isolated myosin filaments from rabbit cardiac muscle. Single filament images were aligned and divided into segments about 2 × 430 Å long, each of which was treated as an independent ‘particle’. The resulting 40 Å resolution 3D reconstruction showed both axial and azimuthal (no radial) myosin head perturbations within the 430 Å repeat, with successive crown rotations of approximately 60°, 60° and 0°, rather than the regular 40° for an unperturbed helix. However, it is shown that the projecting density peaks appear to start at low radius from origins closer to those expected for an unperturbed helical filament, and that the azimuthal perturbation especially increases with radius. The head arrangements in rabbit cardiac myosin filaments are very similar to those in fish skeletal muscle myosin filaments, suggesting a possible general structural theme for myosin filaments in all vertebrate striated muscles (skeletal and cardiac). PMID:18472277

  11. The cardiac-restricted protein ADP-ribosylhydrolase-like 1 is essential for heart chamber outgrowth and acts on muscle actin filament assembly.

    PubMed

    Smith, Stuart J; Towers, Norma; Saldanha, José W; Shang, Catherine A; Mahmood, S Radma; Taylor, William R; Mohun, Timothy J

    2016-08-15

    Adprhl1, a member of the ADP-ribosylhydrolase protein family, is expressed exclusively in the developing heart of all vertebrates. In the amphibian Xenopus laevis, distribution of its mRNA is biased towards actively growing chamber myocardium. Morpholino oligonucleotide-mediated knockdown of all Adprhl1 variants inhibits striated myofibril assembly and prevents outgrowth of the ventricle. The resulting ventricles retain normal electrical conduction and express markers of chamber muscle differentiation but are functionally inert. Using a cardiac-specific Gal4 binary expression system, we show that the abundance of Adprhl1 protein in tadpole hearts is tightly controlled through a negative regulatory mechanism targeting the 5'-coding sequence of Xenopus adprhl1. Over-expression of full length (40kDa) Adprhl1 variants modified to escape such repression, also disrupts cardiac myofibrillogenesis. Disarrayed myofibrils persist that show extensive branching, with sarcomere division occurring at the actin-Z-disc boundary. Ultimately, Adprhl1-positive cells contain thin actin threads, connected to numerous circular branch points. Recombinant Adprhl1 can localize to stripes adjacent to the Z-disc, suggesting a direct role for Adprhl1 in modifying Z-disc and actin dynamics as heart chambers grow. Modelling the structure of Adprhl1 suggests this cardiac-specific protein is a pseudoenzyme, lacking key residues necessary for ADP-ribosylhydrolase catalytic activity. PMID:27217161

  12. Filaments from L5

    NASA Technical Reports Server (NTRS)

    Sterling, Alphonse C.

    2011-01-01

    We've been investigating filament eruptions in recent years. Why do eruptions occur? Basic mechanism is magnetic, and can often include coronal mass ejections (CMEs), flares, and filament eruptions. Use filament eruptions as markers of the more-general eruption. From our studies, we can identify directions for future work to help predict when eruptions might occur.

  13. Special issue on filamentation

    NASA Astrophysics Data System (ADS)

    Li, Ruxin; Milchberg, Howard; Mysyrowicz, André

    2014-05-01

    Journal of Physics B: Atomic, Molecular and Optical Physics is delighted to announce a forthcoming special issue on filamentation, to appear in the spring of 2015, and invites you to submit a paper. This special issue will attempt to give an overview of the present status of this field in order to create synergies and foster future developments. The issue is open to papers on the following issues: Theoretical advances on filamentation. Self-focusing and collapse. Filamentation in various media. Pulse self-compression and ultrafast processes in filaments. Molecular alignment and rotation. Filamentation tailoring. Interaction between filaments. Filament weather and pollution control. Filament induced condensation and precipitation. Terahertz science with filaments. Lasing in filaments. Filament induced molecular excitation and reaction. Electric discharge and plasma. Cross-disciplinary applications. Novel concepts related to these topics are particularly welcome. Please submit your article by 1 October 2014 (expected web publication: spring 2015) using our website http://mc04.manuscriptcentral.com/jphysb-iop. Submissions received after this date will be considered for the journal, but may not be included in the special issue. The issue will be edited by Ruxin Li, Howard Milchberg and André Mysyrowicz.

  14. Nebulin binding impedes mutant desmin filament assembly

    PubMed Central

    Baker, Laura K.; Gillis, David C.; Sharma, Sarika; Ambrus, Andy; Herrmann, Harald; Conover, Gloria M.

    2013-01-01

    Desmin intermediate filaments (DIFs) form an intricate meshwork that organizes myofibers within striated muscle cells. The mechanisms that regulate the association of desmin to sarcomeres and their role in desminopathy are incompletely understood. Here we compare the effect nebulin binding has on the assembly kinetics of desmin and three desminopathy-causing mutant desmin variants carrying mutations in the head, rod, or tail domains of desmin (S46F, E245D, and T453I). These mutants were chosen because the mutated residues are located within the nebulin-binding regions of desmin. We discovered that, although nebulin M160–164 bound to both desmin tetrameric complexes and mature filaments, all three mutants exhibited significantly delayed filament assembly kinetics when bound to nebulin. Correspondingly, all three mutants displayed enhanced binding affinities and capacities for nebulin relative to wild-type desmin. Electron micrographs showed that nebulin associates with elongated normal and mutant DIFs assembled in vitro. Moreover, we measured significantly delayed dynamics for the mutant desmin E245D relative to wild-type desmin in fluorescence recovery after photobleaching in live-cell imaging experiments. We propose a mechanism by which mutant desmin slows desmin remodeling in myocytes by retaining nebulin near the Z-discs. On the basis of these data, we suggest that for some filament-forming desmin mutants, the molecular etiology of desminopathy results from subtle deficiencies in their association with nebulin, a major actin-binding filament protein of striated muscle. PMID:23615443

  15. Externally refuelled optical filaments

    NASA Astrophysics Data System (ADS)

    Scheller, Maik; Mills, Matthew S.; Miri, Mohammad-Ali; Cheng, Weibo; Moloney, Jerome V.; Kolesik, Miroslav; Polynkin, Pavel; Christodoulides, Demetrios N.

    2014-04-01

    Plasma channels produced in air through femtosecond laser filamentation hold great promise for a number of applications, including remote sensing, attosecond physics and spectroscopy, channelling microwaves and lightning protection. In such settings, extended filaments are desirable, yet their longitudinal span is limited by dissipative processes. Although various techniques aiming to prolong this process have been explored, the substantial extension of optical filaments remains a challenge. Here, we experimentally demonstrate that the natural range of a plasma column can be enhanced by at least an order of magnitude when the filament is prudently accompanied by an auxiliary beam. In this arrangement, the secondary low-intensity `dressing' beam propagates linearly and acts as a distributed energy reservoir, continuously refuelling the optical filament. Our approach offers an efficient and viable route towards the generation of extended light strings in air without inducing premature wave collapse or an undesirable beam break-up into multiple filaments.

  16. A nebulin ruler does not dictate thin filament lengths.

    PubMed

    Castillo, Angelica; Nowak, Roberta; Littlefield, Kimberly P; Fowler, Velia M; Littlefield, Ryan S

    2009-03-01

    To generate force, striated muscle requires overlap between uniform-length actin and myosin filaments. The hypothesis that a nebulin ruler mechanism specifies thin filament lengths by targeting where tropomodulin (Tmod) caps the slow-growing, pointed end has not been rigorously tested. Using fluorescent microscopy and quantitative image analysis, we found that nebulin extended 1.01-1.03 mum from the Z-line, but Tmod localized 1.13-1.31 mum from the Z-line, in seven different rabbit skeletal muscles. Because nebulin does not extend to the thin filament pointed ends, it can neither target Tmod capping nor specify thin filament lengths. We found instead a strong correspondence between thin filament lengths and titin isoform sizes for each muscle. Our results suggest the existence of a mechanism whereby nebulin specifies the minimum thin filament length and sarcomere length regulates and coordinates pointed-end dynamics to maintain the relative overlap of the thin and thick filaments during myofibril assembly. PMID:19254544

  17. A Nebulin Ruler Does Not Dictate Thin Filament Lengths

    PubMed Central

    Castillo, Angelica; Nowak, Roberta; Littlefield, Kimberly P.; Fowler, Velia M.; Littlefield, Ryan S.

    2009-01-01

    To generate force, striated muscle requires overlap between uniform-length actin and myosin filaments. The hypothesis that a nebulin ruler mechanism specifies thin filament lengths by targeting where tropomodulin (Tmod) caps the slow-growing, pointed end has not been rigorously tested. Using fluorescent microscopy and quantitative image analysis, we found that nebulin extended 1.01–1.03 μm from the Z-line, but Tmod localized 1.13–1.31 μm from the Z-line, in seven different rabbit skeletal muscles. Because nebulin does not extend to the thin filament pointed ends, it can neither target Tmod capping nor specify thin filament lengths. We found instead a strong correspondence between thin filament lengths and titin isoform sizes for each muscle. Our results suggest the existence of a mechanism whereby nebulin specifies the minimum thin filament length and sarcomere length regulates and coordinates pointed-end dynamics to maintain the relative overlap of the thin and thick filaments during myofibril assembly. PMID:19254544

  18. Tungsten filament fire

    NASA Astrophysics Data System (ADS)

    Ruiz, Michael J.; Perkins, James

    2016-05-01

    We safely remove the outer glass bulb from an incandescent lamp and burn up the tungsten filament after the glass is removed. This demonstration dramatically illustrates the necessity of a vacuum or inert gas for the environment surrounding the tungsten filament inside the bulb. Our approach has added historical importance since the incandescent light bulb is being replaced by compact fluorescent and LED lamps.

  19. [Muscle fiber atrophy].

    PubMed

    Nonaka, Ikuya

    2012-01-01

    Muscle fibers have been classified into two major forms of red (slow twitch) and white (fast twitch) muscles. The red muscle utilizes lipid as energy source through mitochondrial metabolism and function to sustain the position against gravity (sometimes called as antigravity muscle). Under microgravity the red muscle is selectively involved. In our unloading study by hindlimb suspension experiment on rats, the one of the representative red muscle of soleus muscle underwent rapid atrophy; they reduced their weights about 50% after 2 week-unloading. In addition, myofibrils were occasionally markedly disorganized with selective thin filament loss. Mitochondria in the degenerated area were decreased in number. The white muscle fibers in the soleus muscle had mostly transformed to the red ones. It took about 1 month to recover morphologically. The satellite cell playing a major role in muscle regeneration was not activated. There still remained unsolved what are the mechanosensors to keep muscle function under normal gravity. Dr Nikawa's group proposed that one of ubiquitin ligases, Cbl-b is activated under microgravity and induces muscle fiber degeneration. There might be many factors to induce muscle atrophy and degeneration under microgravity. Further study is necessary to explore the pathomechanism of muscle atrophy in disused and under immobility conditions. PMID:23196603

  20. Capillary muscle

    PubMed Central

    Cohen, Caroline; Mouterde, Timothée; Quéré, David; Clanet, Christophe

    2015-01-01

    The contraction of a muscle generates a force that decreases when increasing the contraction velocity. This “hyperbolic” force–velocity relationship has been known since the seminal work of A. V. Hill in 1938 [Hill AV (1938) Proc R Soc Lond B Biol Sci 126(843):136–195]. Hill’s heuristic equation is still used, and the sliding-filament theory for the sarcomere [Huxley H, Hanson J (1954) Nature 173(4412):973–976; Huxley AF, Niedergerke R (1954) Nature 173(4412):971–973] suggested how its different parameters can be related to the molecular origin of the force generator [Huxley AF (1957) Prog Biophys Biophys Chem 7:255–318; Deshcherevskiĭ VI (1968) Biofizika 13(5):928–935]. Here, we develop a capillary analog of the sarcomere obeying Hill’s equation and discuss its analogy with muscles. PMID:25944938

  1. Capillary muscle.

    PubMed

    Cohen, Caroline; Mouterde, Timothée; Quéré, David; Clanet, Christophe

    2015-05-19

    The contraction of a muscle generates a force that decreases when increasing the contraction velocity. This "hyperbolic" force-velocity relationship has been known since the seminal work of A. V. Hill in 1938 [Hill AV (1938) Proc R Soc Lond B Biol Sci 126(843):136-195]. Hill's heuristic equation is still used, and the sliding-filament theory for the sarcomere [Huxley H, Hanson J (1954) Nature 173(4412):973-976; Huxley AF, Niedergerke R (1954) Nature 173(4412):971-973] suggested how its different parameters can be related to the molecular origin of the force generator [Huxley AF (1957) Prog Biophys Biophys Chem 7:255-318; Deshcherevskiĭ VI (1968) Biofizika 13(5):928-935]. Here, we develop a capillary analog of the sarcomere obeying Hill's equation and discuss its analogy with muscles. PMID:25944938

  2. Sympathetic Solar Filament Eruptions

    NASA Astrophysics Data System (ADS)

    Wang, Rui; Liu, Ying D.; Zimovets, Ivan; Hu, Huidong; Dai, Xinghua; Yang, Zhongwei

    2016-08-01

    The 2015 March 15 coronal mass ejection as one of the two that together drove the largest geomagnetic storm of solar cycle 24 so far was associated with sympathetic filament eruptions. We investigate the relations between the different filaments involved in the eruption. A surge-like small-scale filament motion is confirmed as the trigger that initiated the erupting filament with multi-wavelength observations and using a forced magnetic field extrapolation method. When the erupting filament moved to an open magnetic field region, it experienced an obvious acceleration process and was accompanied by a C-class flare and the rise of another larger filament that eventually failed to erupt. We measure the decay index of the background magnetic field, which presents a critical height of 118 Mm. Combining with a potential field source surface extrapolation method, we analyze the distributions of the large-scale magnetic field, which indicates that the open magnetic field region may provide a favorable condition for F2 rapid acceleration and have some relation with the largest solar storm. The comparison between the successful and failed filament eruptions suggests that the confining magnetic field plays an important role in the preconditions for an eruption.

  3. Tilt Angles of Quiescent Filaments and Filaments of Active Regions

    NASA Astrophysics Data System (ADS)

    Tlatov, A. G.; Kuzanyan, K. M.; Vasil'yeva, V. V.

    2016-04-01

    We carry out study of tilt angles of solar filaments using the data from the two observatories: Meudon Observatory and Kislovodsk Mountain Astronomical Station for the century-long period 1919-2014. We developed special software for digitization of the filaments structures on Hα synoptic maps. The filaments were vectorized in semi-automatic mode. The tilt angles of filaments with respect to the equator (τ) were analyzed. Approximately 2/3 of the filaments have positive angles τ >0, which is defined as when the eastern end of the filaments are closer to the poles than the western ones. We have separated tilts for the filaments which are close to the active region structures and those of quiescent filaments. We found that long quiescent filaments mainly have negative tilts. The filaments which are close to active regions mainly have positive tilt angles.

  4. Snake Filament Eruption

    NASA Video Gallery

    A very long solar filament that had been snaking around the Sun erupted on Dec. 6, 2010 with a flourish. NASA's Solar Dynamics Observatory (SDO) caught the action in dramatic detail in extreme ultr...

  5. Bending Flexibility of Actin Filaments during Motor-Induced Sliding

    PubMed Central

    Vikhorev, Petr G.; Vikhoreva, Natalia N.; Månsson, Alf

    2008-01-01

    Muscle contraction and other forms of cell motility occur as a result of cyclic interactions between myosin molecules and actin filaments. Force generation is generally attributed to ATP-driven structural changes in myosin, whereas a passive role is ascribed to actin. However, some results challenge this view, predicting structural changes in actin during motor activity, e.g., when the actin filaments slide on a myosin-coated surface in vitro. Here, we analyzed statistical properties of the sliding filament paths, allowing us to detect changes of this type. It is interesting to note that evidence for substantial structural changes that led to increased bending flexibility of the filaments was found in phalloidin-stabilized, but not in phalloidin-free, actin filaments. The results are in accordance with the idea that a high-flexibility structural state of actin is a prerequisite for force production, but not the idea that a low-to-high flexibility transition of the actin filament should be an important component of the force-generating step per se. Finally, our data challenge the general view that phalloidin-stabilized filaments behave as native actin filaments in their interaction with myosin. This has important implications, since phalloidin stabilization is a routine procedure in most studies of actomyosin function. PMID:18835897

  6. Leiomodin and tropomodulin in smooth muscle

    NASA Technical Reports Server (NTRS)

    Conley, C. A.

    2001-01-01

    Evidence is accumulating to suggest that actin filament remodeling is critical for smooth muscle contraction, which implicates actin filament ends as important sites for regulation of contraction. Tropomodulin (Tmod) and smooth muscle leiomodin (SM-Lmod) have been found in many tissues containing smooth muscle by protein immunoblot and immunofluorescence microscopy. Both proteins cofractionate with tropomyosin in the Triton-insoluble cytoskeleton of rabbit stomach smooth muscle and are solubilized by high salt. SM-Lmod binds muscle tropomyosin, a biochemical activity characteristic of Tmod proteins. SM-Lmod staining is present along the length of actin filaments in rat intestinal smooth muscle, while Tmod stains in a punctate pattern distinct from that of actin filaments or the dense body marker alpha-actinin. After smooth muscle is hypercontracted by treatment with 10 mM Ca(2+), both SM-Lmod and Tmod are found near alpha-actinin at the periphery of actin-rich contraction bands. These data suggest that SM-Lmod is a novel component of the smooth muscle actin cytoskeleton and, furthermore, that the pointed ends of actin filaments in smooth muscle may be capped by Tmod in localized clusters.

  7. The Actin and Myosin Filaments of Human and Bovine Blood Platelets

    PubMed Central

    Zucker-Franklin, Dorothea; Grusky, George

    1972-01-01

    The contractility of platelets has been attributed to an actomyosin-like protein which has been well defined on a physicochemical basis. Moreover, platelets contain ±80 A filaments which resemble actin filaments in smooth muscle. Studies were undertaken on human and bovine platelets to better define the morphologic structures which may subserve this contractile function. In order to identify actin, the ability of the filaments to react with heavy meromyosin (HMM) was tested. Accordingly, platelets were glycerinated and treated with HMM. In addition, platelet actin was extracted, reacted with HMM, and examined by negative staining. In both instances typical arrowhead structures with clearly defined polarity and a periodicity of ±360 A formed. As is the case with purified muscle actin, the complexes were dissociable with Mg-ATP. The formation of myosin-like filaments was observed when osmotically shocked platelets were incubated with MgCl2 and excess ATP. These “thick” filaments measured 250-300 A in width, tapered at both ends and often occurred in clumps. They resembled aggregates of thick filaments described in contracted smooth muscle. Extraction of platelets by methods suitable for the demonstration of myosin showed filaments with an average length of 0.3 μ, a smooth shaft, and frayed or bulbous ends. These appeared identical to those seen in synthetically prepared myosin of striated muscle. It is suggested that the filaments described here represent the actin and myosin of platelets. Images PMID:4333023

  8. Phenotypic heterogeneity influences the behavior of rat aortic smooth muscle cells in collagen lattice

    SciTech Connect

    Orlandi, Augusto . E-mail: orlandi@uniroma2.it; Ferlosio, Amedeo; Gabbiani, Giulio; Spagnoli, Luigi Giusto; Ehrlich, Paul H.

    2005-12-10

    Phenotypic modulation of vascular smooth muscle cells (SMCs) in atherosclerosis and restenosis involves responses to the surrounding microenvironment. SMCs obtained by enzymatic digestion from tunica media of newborn, young adult (YA) and old rats and from the thickened intima (TI) and underlying media of young adult rat aortas 15 days after ballooning were entrapped in floating populated collagen lattice (PCL). TI-SMCs elongated but were poor at PCL contraction and remodeling and expressed less {alpha}2 integrin compared to other SMCs that appeared more dendritic. During early phases of PCL contraction, SMCs showed a marked decrease in the expression of {alpha}-smooth muscle actin and myosin. SMCs other than TI-SMCs required 7 days to re-express {alpha}-smooth muscle actin and myosin. Only TI-SMCs in PCL were able to divide in 48 h, with a greater proportion in S and G2-M cell cycle phases compared to other SMCs. Anti-{alpha}2 integrin antibody markedly inhibited contraction but not proliferation in YA-SMC-PLCs; anti-{alpha}1 and anti-{alpha}2 integrin antibodies induced a similar slight inhibition in TI-SMC-PCLs. Finally, TI-SMCs rapidly migrated from PCL on plastic reacquiring their epithelioid phenotype. Heterogeneity in proliferation and cytoskeleton as well the capacity to remodel the extracellular matrix are maintained, when SMCs are suspended in PCLs.

  9. Developmental changes in expression of contractile and cytoskeletal proteins in human aortic smooth muscle.

    PubMed

    Glukhova, M A; Frid, M G; Koteliansky, V E

    1990-08-01

    To describe phenotypic changes of human aortic smooth muscle cells (SMCs), proportion of smooth muscle and nonmuscle variants of actin, myosin heavy chains (MHCs), vinculin, and caldesmon, during prenatal and several months of postnatal development was determined. In aortic SMCs from 9-10-week-old fetus, both nonmuscle and smooth muscle-specific variants of all four proteins were present, however, the nonmuscle forms were more abundant. During development, a shift towards the expression of muscle-specific variants was observed, although the time course of changes in protein variant content was not similar for all the proteins studied. By the 24th week of gestation, fractional content of alpha-smooth muscle actin and smooth muscle MHCs was rather close to that in the mature SMCs, and comprised approximately 80 and 90%, respectively, of the levels characteristic of SMCs from adult aortic media. On the contrary, fractional ratio of meta-vinculin and 150-kDa caldesmon was still rather low in the aorta from the 24-week-old fetus, did not increase in a 2-month-old child aorta, and did not reach the level characteristic of mature SMCs even in the 6-month-old child aorta. Thus changes in alpha-smooth muscle actin and smooth muscle MHC fractional content occur mainly during the prenatal period of development, before the 24th week of gestation; while meta-vinculin and the 150-kDa caldesmon proportion increases mainly in the postnatal period, during several months after birth. In the "Discussion," phenotypes of SMCs from developing aorta were compared to those from different layers of the adult aortic wall. PMID:2376586

  10. Evolution of filament barbs.

    NASA Astrophysics Data System (ADS)

    Liu, R.; Xu, Y.; Wang, H.

    We present a selected few cases in which the sense of chirality of filament barbs changed within periods as short as hours. We investigate in detail a quiescent filament on 2003 September 10 and 11. Of its four barbs displaying such changes, only one overlays a small polarity inversion line inside the EUV filament channel (EFC). No magnetic elements with magnitude above the noise level were detected at the endpoints of all barbs. In particular, a pair of barbs first approached toward, and then departed from, each other in Halpha , with the barb endpoints migrating as far as ˜ 10 arcsec. We conclude that the evolution of the barbs was driven by flux emergence and cancellation of small bipolar units at the EFC border.

  11. Aerogel-supported filament

    DOEpatents

    Wuest, C.R.; Tillotson, T.M.; Johnson, C.V. III

    1995-05-16

    The present invention is a thin filament embedded in a low density aerogel for use in radiation detection instruments and incandescent lamps. The aerogel provides a supportive matrix that is thermally and electrically nonconductive, mechanically strong, highly porous, gas-permeable, and transparent to ionizing radiation over short distances. A low density, open-cell aerogel is cast around a fine filament or wire, which allows the wire to be positioned with little or no tension and keeps the wire in place in the event of breakage. The aerogel support reduces the stresses on the wire caused by vibrational, gravitational, electrical, and mechanical forces. 6 Figs.

  12. Aerogel-supported filament

    DOEpatents

    Wuest, Craig R.; Tillotson, Thomas M.; Johnson, III, Coleman V.

    1995-01-01

    The present invention is a thin filament embedded in a low density aerogel for use in radiation detection instruments and incandescent lamps. The aerogel provides a supportive matrix that is thermally and electrically nonconductive, mechanically strong, highly porous, gas-permeable, and transparent to ionizing radiation over short distances. A low density, open-cell aerogel is cast around a fine filament or wire, which allows the wire to be positioned with little or no tension and keeps the wire in place in the event of breakage. The aerogel support reduces the stresses on the wire caused by vibrational, gravitational, electrical, and mechanical forces.

  13. Lens tilting effect on filamentation and filament-induced fluorescence

    NASA Astrophysics Data System (ADS)

    Kamali, Y.; Sun, Q.; Daigle, J.-F.; Azarm, A.; Bernhardt, J.; Chin, S. L.

    2009-03-01

    In filament-induced fluorescence spectroscopy, we experimentally found that if the lens used for the creation and localization of filament is tilted, the signal to noise ratio of spectral measurement increases. Further study shows that with lens tilting, astigmatism occurs and the filament is split into shorter parts. In turn the shortening of filament reduces the generation of white light which is the major 'noise' source of the spectra.

  14. Branching of keratin intermediate filaments.

    PubMed

    Nafeey, Soufi; Martin, Ines; Felder, Tatiana; Walther, Paul; Felder, Edward

    2016-06-01

    Keratin intermediate filaments (IFs) are crucial to maintain mechanical stability in epithelial cells. Since little is known about the network architecture that provides this stiffness and especially about branching properties of filaments, we addressed this question with different electron microscopic (EM) methods. Using EM tomography of high pressure frozen keratinocytes, we investigated the course of several filaments in a branching of a filament bundle. Moreover we found several putative bifurcations in individual filaments. To verify our observation we also visualized the keratin network in detergent extracted keratinocytes with scanning EM. Here bifurcations of individual filaments could unambiguously be identified additionally to bundle branchings. Interestingly, identical filament bifurcations were also found in purified keratin 8/18 filaments expressed in Escherichia coli which were reassembled in vitro. This excludes that an accessory protein contributes to the branch formation. Measurements of the filament cross sectional areas showed various ratios between the three bifurcation arms. This demonstrates that intermediate filament furcation is very different from actin furcation where an entire new filament is attached to an existing filament. Instead, the architecture of intermediate filament bifurcations is less predetermined and hence consistent with the general concept of IF formation. PMID:27039023

  15. Magnetically driven filament probe.

    PubMed

    Schmid, A; Herrmann, A; Rohde, V; Maraschek, M; Müller, H W

    2007-05-01

    A radially movable probe has been developed for studies of filamentary transport in ASDEX Upgrade during edge localized modes (ELMs) by means of Langmuir tips and magnetic pickup coils. The probe is permanently installed at the low field side in the ASDEX Upgrade vacuum vessel and is not subject to limitations in probe size, as, for example, probes on a shared manipulator are. The probe is moved by a magnetic drive, which allows for easy installation in the vessel, and has moderate machine requirements, as it will only require an electric feedthrough and an external power supply. The drive gives a linear motion with a radial range of 5 cm within 50 ms, where range and velocity can be largely scaled according to experimental requirements. The probe has been installed in the outer midplane of the ASDEX Upgrade vessel, where ELM filaments are expected to have their maximum amplitude. Filaments are coherent substructures within an ELM, carrying a fraction of the ELM released energy towards the wall. The new probe allows to measure the structure of these filaments, in particular, parameters such as filament rotation (by time delay measurements) and size (by peak width analysis). Activating the drive moves the probe from a safe position behind the limiter to a position in front of the limiters, i.e., exposes the Langmuir pins to the scrape-off layer plasma. PMID:17552815

  16. Imaging the bipolarity of myosin filaments with Interferometric Second Harmonic Generation microscopy

    PubMed Central

    Rivard, Maxime; Couture, Charles-André; Miri, Amir K.; Laliberté, Mathieu; Bertrand-Grenier, Antony; Mongeau, Luc; Légaré, François

    2013-01-01

    We report that combining interferometry with Second Harmonic Generation (SHG) microscopy provides valuable information about the relative orientation of noncentrosymmetric structures composing tissues. This is confirmed through the imaging of rat medial gastrocnemius muscle. The inteferometric Second Harmonic Generation (ISHG) images reveal that each side of the myosin filaments composing the A band of the sarcomere generates π phase shifted SHG signal which implies that the myosin proteins at each end of the filaments are oriented in opposite directions. This highlights the bipolar structural organization of the myosin filaments and shows that muscles can be considered as a periodically poled biological structure. PMID:24156065

  17. Your Muscles

    MedlinePlus

    ... Homework? Here's Help White House Lunch Recipes Your Muscles KidsHealth > For Kids > Your Muscles Print A A ... and skeletal (say: SKEL-uh-tul) muscle. Smooth Muscles Smooth muscles — sometimes also called involuntary muscles — are ...

  18. Muscle contraction as a polymer-gel phase transition

    NASA Astrophysics Data System (ADS)

    Pollack, Gerald H.

    1999-05-01

    In this paper I argue that the mechanism of muscle contraction is similar to the mechanism of contraction in most artificial muscles. Artificial muscles typically contract by a phase- transition. Muscle is thought to contract by a sliding- filament mechanism in which one set of filaments is driven past another by the action of cyclically rotating cross- bridges -- much like the mechanism of rowing. However, the evidence is equally consistent with a mechanism in which the filaments themselves contract, much like the collapse of polymers during a phase-transition. Muscle contains three principal polymer types, organized neatly within a framework. There is evidence that all three can contract. It appears that the relative contributions of each filament are designed to confer strength, speed and versatility on this natural machine. The principles of natural contraction may be useful in establishing optimal design principles for artificial muscles.

  19. Thin Filament Structure and the Steric Blocking Model.

    PubMed

    Lehman, William

    2016-04-01

    By interacting with the troponin-tropomyosin complex on myofibrillar thin filaments, Ca2+ and myosin govern the regulatory switching processes influencing contractile activity of mammalian cardiac and skeletal muscles. A possible explanation of the roles played by Ca2+ and myosin emerged in the early 1970s when a compelling "steric model" began to gain traction as a likely mechanism accounting for muscle regulation. In its most simple form, the model holds that, under the control of Ca2+ binding to troponin and myosin binding to actin, tropomyosin strands running along thin filaments either block myosin-binding sites on actin when muscles are relaxed or move away from them when muscles are activated. Evidence for the steric model was initially based on interpretation of subtle changes observed in X-ray fiber diffraction patterns of intact skeletal muscle preparations. Over the past 25 years, electron microscopy coupled with three-dimensional reconstruction directly resolved thin filament organization under many experimental conditions and at increasingly higher resolution. At low-Ca2+, tropomyosin was shown to occupy a "blocked-state" position on the filament, and switched-on in a two-step process, involving first a movement of tropomyosin away from the majority of the myosin-binding site as Ca2+ binds to troponin and then a further movement to fully expose the site when small numbers of myosin heads bind to actin. In this contribution, basic information on Ca2+-regulation of muscle contraction is provided. A description is then given relating the voyage of discovery taken to arrive at the present understanding of the steric regulatory model. PMID:27065174

  20. Solid friction between soft filaments.

    PubMed

    Ward, Andrew; Hilitski, Feodor; Schwenger, Walter; Welch, David; Lau, A W C; Vitelli, Vincenzo; Mahadevan, L; Dogic, Zvonimir

    2015-06-01

    Any macroscopic deformation of a filamentous bundle is necessarily accompanied by local sliding and/or stretching of the constituent filaments. Yet the nature of the sliding friction between two aligned filaments interacting through multiple contacts remains largely unexplored. Here, by directly measuring the sliding forces between two bundled F-actin filaments, we show that these frictional forces are unexpectedly large, scale logarithmically with sliding velocity as in solid-like friction, and exhibit complex dependence on the filaments' overlap length. We also show that a reduction of the frictional force by orders of magnitude, associated with a transition from solid-like friction to Stokes's drag, can be induced by coating F-actin with polymeric brushes. Furthermore, we observe similar transitions in filamentous microtubules and bacterial flagella. Our findings demonstrate how altering a filament's elasticity, structure and interactions can be used to engineer interfilament friction and thus tune the properties of fibrous composite materials. PMID:25730393

  1. Mechanical Properties of Respiratory Muscles

    PubMed Central

    Sieck, Gary C.; Ferreira, Leonardo F.; Reid, Michael B.; Mantilla, Carlos B.

    2014-01-01

    Striated respiratory muscles are necessary for lung ventilation and to maintain the patency of the upper airway. The basic structural and functional properties of respiratory muscles are similar to those of other striated muscles (both skeletal and cardiac). The sarcomere is the fundamental organizational unit of striated muscles and sarcomeric proteins underlie the passive and active mechanical properties of muscle fibers. In this respect, the functional categorization of different fiber types provides a conceptual framework to understand the physiological properties of respiratory muscles. Within the sarcomere, the interaction between the thick and thin filaments at the level of cross-bridges provides the elementary unit of force generation and contraction. Key to an understanding of the unique functional differences across muscle fiber types are differences in cross-bridge recruitment and cycling that relate to the expression of different myosin heavy chain isoforms in the thick filament. The active mechanical properties of muscle fibers are characterized by the relationship between myoplasmic Ca2+ and cross-bridge recruitment, force generation and sarcomere length (also cross-bridge recruitment), external load and shortening velocity (cross-bridge cycling rate), and cross-bridge cycling rate and ATP consumption. Passive mechanical properties are also important reflecting viscoelastic elements within sarcomeres as well as the extracellular matrix. Conditions that affect respiratory muscle performance may have a range of underlying pathophysiological causes, but their manifestations will depend on their impact on these basic elemental structures. PMID:24265238

  2. Regulating the contraction of insect flight muscle.

    PubMed

    Bullard, Belinda; Pastore, Annalisa

    2011-12-01

    The rapid movement of the wings in small insects is powered by the indirect flight muscles. These muscles are capable of contracting at up to 1,000 Hz because they are activated mechanically by stretching. The mechanism is so efficient that it is also used in larger insects like the waterbug, Lethocerus. The oscillatory activity of the muscles occurs a low concentration of Ca(2+), which stays constant as the muscles contract and relax. Activation by stretch requires particular isoforms of tropomyosin and the troponin complex on the thin filament. We compare the tropomyosin and troponin of Lethocerus and Drosophila with that of vertebrates. The characteristics of the flight muscle regulatory proteins suggest ways in which stretch-activation works. There is evidence for bridges between troponin on thin filaments and myosin crossbridges on the thick filaments. Recent X-ray fibre diffraction results suggest that a pull on the bridges activates the thin filament by shifting tropomyosin from a blocking position on actin. The troponin bridges are likely to contain extended sequences of tropomyosin or troponin I (TnI). Flight muscle has two isoforms of TnC with different Ca(2+)-binding properties: F1 TnC is needed for stretch-activation and F2 TnC for isometric contractions. In this review, we describe the structural changes in both isoforms on binding Ca(2+) and TnI, and discuss how the steric model of muscle regulation can apply to insect flight muscle. PMID:22105701

  3. CVD-produced boron filaments

    NASA Technical Reports Server (NTRS)

    Wawner, F. E.; Debolt, H. E.; Suplinskas, R. D.

    1980-01-01

    A technique for producing boron filaments with an average tensile strength of 6.89 GPa has been developed which involves longitudinal splitting of the filament and core (substrate) removal by etching. Splitting is accomplished by a pinch wheel device which continuously splits filaments in lengths of 3.0 m by applying a force to the side of the filament to create a crack which is then propagated along the axis by a gentle sliding action. To facilitate the splitting, a single 10 mil tungsten substrate is used instead of the usual 0.5 mil substrate. A solution of hot 30% hydrogen peroxide is used to remove the core without attacking the boron. An alternative technique is to alter the residual stress by heavily etching the filament. Average strengths in the 4.83-5.52 GPa range have been obtained by etching an 8 mil filament to 4 mil.

  4. Filament wound structure and method

    DOEpatents

    Dritt, William S.; Gerth, Howard L.; Knight, Jr., Charles E.; Pardue, Robert M.

    1977-01-01

    The present invention relates to a filament wound spherical structure comprising a plurality of filament band sets disposed about the surface of a mandrel with each band of each set formed of a continuous filament circumferentially wound about the mandrel a selected number of circuits and with each circuit of filament being wound parallel to and contiguous with an immediate previously wound circuit. Each filament band in each band set is wound at the same helix angle from the axis of revolution of the mandrel and all of the bands of each set are uniformly distributed about the mandrel circumference. The pole-to-equator wall thickness taper associated with each band set, as several contiguous band sets are wound about the mandrel starting at the poles, is accumulative as the band sets are nested to provide a complete filament wound sphere of essentially uniform thickness.

  5. VEGF induces stress fiber formation in fibroblasts isolated from dystrophic muscle.

    PubMed

    Gutpell, Kelly M; Hoffman, Lisa M

    2015-12-01

    Treatment with vascular endothelial growth factor (VEGF) to reduce ischemia and enhance both endogenous muscle repair and regenerative cell therapy in Duchenne muscular dystrophy (DMD) has been widely proposed in recent years. However, the interaction between angiogenesis and fibrosis, a hallmark feature of DMD, remains unclear. To date, it has not been determined whether VEGF exerts a pro-fibrotic effect on DMD-derived fibroblasts, which may contribute to further disease progression. Thus, the purpose of this study was to investigate the effect of exogenous VEGF on fibroblast cultures established from a murine model of DMD. Primary fibroblast cultures were established from gastrocnemius and diaphragm muscles of 10 week-old mdx/utrn+/- mice. Quantitative polymerase chain reaction (qPCR) was employed to assess changes in transcript expression of alpha-smooth muscle actin (Acta2), type-1 collagen (Col1a1), connective tissue growth factor (Ctgf/ccn2) and fibronectin (Fn1). Immunofluorescence and Western blot analysis was further employed to visualize changes in protein expression of alpha-smooth muscle actin (α-SMA), CTGF/CCN2 and fibronectin. mRNA levels of Col1a1, Ctgf/ccn2, and FN did not increase following treatment with VEGF in fibroblasts derived from either diaphragm or gastrocnemius muscles. Acta2 expression increased significantly in diaphragm-derived fibroblasts following treatment with VEGF. Morphological assessment revealed increased stress fiber formation in VEGF-treated fibroblasts compared to the untreated control fibroblasts. The findings from this study suggest that further investigation into the effect of VEGF on fibroblast function is required prior to the utilization of the growth factor as a treatment for DMD. PMID:26219981

  6. Magnetic vortex filament flows

    SciTech Connect

    Barros, Manuel; Cabrerizo, Jose L.; Fernandez, Manuel; Romero, Alfonso

    2007-08-15

    We exhibit a variational approach to study the magnetic flow associated with a Killing magnetic field in dimension 3. In this context, the solutions of the Lorentz force equation are viewed as Kirchhoff elastic rods and conversely. This provides an amazing connection between two apparently unrelated physical models and, in particular, it ties the classical elastic theory with the Hall effect. Then, these magnetic flows can be regarded as vortex filament flows within the localized induction approximation. The Hasimoto transformation can be used to see the magnetic trajectories as solutions of the cubic nonlinear Schroedinger equation showing the solitonic nature of those.

  7. Predicting Solar Filament Eruptions with HEK Filament Metadata

    NASA Astrophysics Data System (ADS)

    Aggarwal, A.; Reeves, K.; Schanche, N.

    2015-12-01

    Solar filaments are cool, dark channels of partially-ionized plasma that lie above the chromosphere. Their structure follows the neutral line between local regions of opposite magnetic polarity. Previous research (e.g. Schmieder et al. 2013) has shown a positive correlation (80%) between the occurrence of filament eruptions and coronal mass ejections (CME's). If certain filament properties, such as length, chirality, and tilt, indicate a tendency towards filament eruptions, one may be able to further predict an oncoming CME. Towards this end, we present a novel algorithm based on spatiotemporal analysis that systematically correlates filament eruptions documented in the Heliophysics Event Knowledgebase (HEK) with HEK filaments that have been grouped together using a tracking algorithm developed at Georgia State University (e.g. Kempton et al. 2014). We also find filament tracks that are not correlated with eruptions to form a null data set in a similar fashion. Finally, we compare the metadata from erupting and non-erupting filament tracks to discover which filament properties may present signs of an eruption onset. Through statistical methods such as the two-sample Kolmogorov-Smirnov test and Random Forest Classifier, we find that a filament that is increasing in length or changing in tilt with respect to the equator may be a useful gauge to predict a filament eruption. However, the average values of length and tilt for both datasets follow similar distributions, leading us to conclude that these parameters do not indicate an eruption event. This work is supported by the NSF-REU solar physics program at SAO, grant number AGS-1263241, and NSF DIBBS grant number ACI-1443061.

  8. Gravitational infall onto molecular filaments

    SciTech Connect

    Heitsch, Fabian

    2013-06-01

    Two aspects of filamentary molecular cloud evolution are addressed: (1) exploring analytically the role of the environment for the evolution of filaments demonstrates that considering them in isolation (i.e., just addressing the fragmentation stability) will result in unphysical conclusions about the filament's properties. Accretion can also explain the observed decorrelation between FWHM and peak column density. (2) Free-fall accretion onto finite filaments can lead to the characteristic 'fans' of infrared-dark clouds around star-forming regions. The fans may form due to tidal forces mostly arising at the ends of the filaments, consistent with numerical models and earlier analytical studies.

  9. Chaperonin filaments: The archael cytoskeleton

    SciTech Connect

    Trent, J.D.; Kagawa, H.K.; Yaoi, Takuro; Olle, E.; Zaluzec, N.J.

    1997-08-01

    Chaperonins are multi-subunit double-ring complexed composed of 60-kDa proteins that are believed to mediate protein folding in vivo. The chaperonins in the hyperthermophilic archaeon Sulfolobus shibatae are composed of the organism`s two most abundant proteins, which represent 4% of its total protein and have an intracellular concentration of {ge} 3.0 mg/ml. At concentrations of 1.0 mg/ml, purified chaperonin proteins aggregate to form ordered filaments. Filament formation, which requires Mg{sup ++} and nucleotide binding (not hydrolysis), occurs at physiological temperatures under conditions suggesting filaments may exist in vivo. If the estimated 4,600 chaperonins per cell, formed filaments in vivo, they could create a matrix of filaments that would span the diameter of an average S. shibatae cell 100 times. Direct observations of unfixed, minimally treated cells by intermediate voltage electron microscopy (300 kV) revealed an intracellular network of filaments that resembles chaperonin filaments produced in vitro. The hypothesis that the intracellular network contains chaperonins is supported by immunogold analyses. The authors propose that chaperonin activity may be regulated in vivo by filament formation and that chaperonin filaments may serve a cytoskeleton-like function in archaea and perhaps in other prokaryotes.

  10. Solar Filament Extraction and Characterizing

    NASA Astrophysics Data System (ADS)

    Yuan, Yuan; Shih, F. Y.; Jing, J.; Wang, H.

    2010-05-01

    This paper presents a new method to extract and characterize solar filaments from H-alpha full-disk images produced by Big Bear Solar Observatory. A cascading Hough Transform method is designed to identify solar disk center location and radius. Solar disks are segmented from the background, and unbalanced illumination on the surface of solar disks is removed using polynomial surface fitting. And then a localized adaptive thresholding is employed to extract solar filament candidates. After the removal of small solar filament candidates, the remaining larger candidates are used as the seeds of region growing. The procedure of region growing not only connects broken filaments but also generate complete shape for each filament. Mathematical morphology thinning is adopted to produce the skeleton of each filament, and graph theory is used to prune branches and barbs to get the main skeleton. The length and the location of the main skeleton is characterized. The proposed method can help scientists and researches study the evolution of solar filament, for instance, to detect solar filament eruption. The presented method has already been used by Space Weather Research Lab of New Jersey Institute of Technology (http://swrl.njit.edu) to generate the solar filament online catalog using H-alpha full-disk images of Global H-alpha Network (http://swrl.njit.edu/ghn_web/).

  11. Differential assembly of alpha- and gamma-filagenins into thick filaments in Caenorhabditis elegans

    NASA Technical Reports Server (NTRS)

    Liu, F.; Ortiz, I.; Hutagalung, A.; Bauer, C. C.; Cook, R. G.; Epstein, H. F.

    2000-01-01

    Muscle thick filaments are highly organized supramolecular assemblies of myosin and associated proteins with lengths, diameters and flexural rigidities characteristic of their source. The cores of body wall muscle thick filaments of the nematode Caenorhabditis elegans are tubular structures of paramyosin sub-filaments coupled by filagenins and have been proposed to serve as templates for the assembly of native thick filaments. We have characterized alpha- and gamma-filagenins, two novel proteins of the cores with calculated molecular masses of 30,043 and 19,601 and isoelectric points of 10.52 and 11.49, respectively. Western blot and immunoelectron microscopy using affinity-purified antibodies confirmed that the two proteins are core components. Immunoelectron microscopy of the cores revealed that they assemble with different periodicities. Immunofluorescence microscopy showed that alpha-filagenin is localized in the medial regions of the A-bands of body wall muscle cells whereas gamma-filagenin is localized in the flanking regions, and that alpha-filagenin is expressed in 1.5-twofold embryos while gamma-filagenin becomes detectable only in late vermiform embryos. The expression of both proteins continues throughout later stages of development. C. elegans body wall muscle thick filaments of these developmental stages have distinct lengths. Our results suggest that the differential assembly of alpha- and gamma-filagenins into thick filaments of distinct lengths may be developmentally regulated.

  12. Skelemin, a cytoskeletal M-disc periphery protein, contains motifs of adhesion/recognition and intermediate filament proteins.

    PubMed

    Price, M G; Gomer, R H

    1993-10-15

    In striated muscle, myofibrils are anchored to an interconnecting cytoskeleton of desmin intermediate filaments. Skelemin (195 kDa) may be a link between myofibrils and the intermediate filament cytoskeleton. Skelemin partitions with desmin to the insoluble cytoskeleton, and increases the thickness of reconstituted intermediate filaments. Concentrated at the M-disc periphery, skelemin may also contact myosin filaments. We used immunoscreening to isolate a mouse muscle cDNA which encodes a protein with a calculated molecular mass of 185 kDa. Anti-skelemin antibodies bound to the protein products of each of three nonoverlapping regions of the open reading frame. Antibodies directed against the protein products of each one-third of the cDNA react with a 195-kDa muscle protein and stain the M-disc indistinguishably from the original anti-skelemin antibodies, suggesting that the cDNA encodes skelemin. A single skelemin mRNA is detected in muscle but not non-muscle tissues, consistent with immunostaining results. Skelemin is a member of a family of myosin-associated proteins containing fibronectin type III and immunoglobulin superfamily C2 motifs. Skelemin is unique in this family in having intermediate filament core-like motifs, one near each terminus. We hypothesize that skelemin could interact with myosin or myosin-associated proteins through its fibronectin and/or immunoglobulin motifs, and with intermediate filaments through intermediate filament-like motifs. PMID:8408035

  13. Protein machines and self assembly in muscle organization

    NASA Technical Reports Server (NTRS)

    Barral, J. M.; Epstein, H. F.

    1999-01-01

    The remarkable order of striated muscle is the result of a complex series of protein interactions at different levels of organization. Within muscle, the thick filament and its major protein myosin are classical examples of functioning protein machines. Our understanding of the structure and assembly of thick filaments and their organization into the regular arrays of the A-band has recently been enhanced by the application of biochemical, genetic, and structural approaches. Detailed studies of the thick filament backbone have shown that the myosins are organized into a tubular structure. Additional protein machines and specific myosin rod sequences have been identified that play significant roles in thick filament structure, assembly, and organization. These include intrinsic filament components, cross-linking molecules of the M-band and constituents of the membrane-cytoskeleton system. Muscle organization is directed by the multistep actions of protein machines that take advantage of well-established self-assembly relationships. Copyright 1999 John Wiley & Sons, Inc.

  14. Solid friction between soft filaments

    NASA Astrophysics Data System (ADS)

    Ward, Andrew; Hilitski, Feodor; Schwenger, Walter; Welch, David; Lau, A. W. C.; Vitelli, Vincenzo; Mahadevan, L.; Dogic, Zvonimir

    2015-06-01

    Any macroscopic deformation of a filamentous bundle is necessarily accompanied by local sliding and/or stretching of the constituent filaments. Yet the nature of the sliding friction between two aligned filaments interacting through multiple contacts remains largely unexplored. Here, by directly measuring the sliding forces between two bundled F-actin filaments, we show that these frictional forces are unexpectedly large, scale logarithmically with sliding velocity as in solid-like friction, and exhibit complex dependence on the filaments’ overlap length. We also show that a reduction of the frictional force by orders of magnitude, associated with a transition from solid-like friction to Stokes’s drag, can be induced by coating F-actin with polymeric brushes. Furthermore, we observe similar transitions in filamentous microtubules and bacterial flagella. Our findings demonstrate how altering a filament’s elasticity, structure and interactions can be used to engineer interfilament friction and thus tune the properties of fibrous composite materials.

  15. Kinetics and thermodynamics of phalloidin binding to actin filaments from three divergent species.

    PubMed

    De La Cruz, E M; Pollard, T D

    1996-11-12

    We compared the kinetics and thermodynamics of rhodamine phalloidin binding to actin purified from rabbit skeletal muscle, Acanthamoeba castellanii, and Saccharomyces cerevisiae in 50 mM KCl, 1 mM MgCl2, and pH 7.0 buffer at 22 degrees C. Filaments of S. cerevisiae actin bind rhodamine phalloidin more weakly than Acanthamoeba and rabbit skeletal muscle actin filaments due to a more rapid dissociation rate in spite of a significantly faster association rate constant. The higher dissociation rate constant and lower binding affinity of rhodamine phalloidin for S. cerevisiae actin filaments provide a quantitative explanation for the inefficient staining of yeast actin filaments, compared with that of rabbit skeletal muscle actin filaments [Kron et al. (1992) Proc. Natl. Acad. Sci. U.S.A. 89, 4466-4470]. The temperature dependence of the rate constants was interpreted according to transition state theory. There is a small enthalpic difference (delta H++) between the ground states and the transition state. Consequently, the free energy of activation (delta G++) for association and dissociation of rhodamine phalloidin is dominated by entropic changes (delta S++). At equilibrium, rhodamine phalloidin binding generates a positive entropy change (delta S0). The rates of rhodamine phalloidin binding are independent of the pH, ionic strength, and filament length. Rhodamine covalently bound decreases the association rate and affinity of phalloidin for actin. The association rate constant is low for both phalloidin and rhodamine phalloidin because the filaments must undergo conformational changes (i.e. "breathe") to expose the phalloidin binding site [De La Cruz, E. M., & Pollard, T. D. (1994) Biochemistry 33, 14387-14392]. Raising the solvent microviscosity, but not the macroviscosity, dampens these conformational fluctuations, and phalloidin binding kinetics are inhibited. Yeast actin filaments bind rhodamine phalloidin more rapidly, suggesting that perhaps they are more

  16. Leiomodin-3 dysfunction results in thin filament disorganization and nemaline myopathy.

    PubMed

    Yuen, Michaela; Sandaradura, Sarah A; Dowling, James J; Kostyukova, Alla S; Moroz, Natalia; Quinlan, Kate G; Lehtokari, Vilma-Lotta; Ravenscroft, Gianina; Todd, Emily J; Ceyhan-Birsoy, Ozge; Gokhin, David S; Maluenda, Jérome; Lek, Monkol; Nolent, Flora; Pappas, Christopher T; Novak, Stefanie M; D'Amico, Adele; Malfatti, Edoardo; Thomas, Brett P; Gabriel, Stacey B; Gupta, Namrata; Daly, Mark J; Ilkovski, Biljana; Houweling, Peter J; Davidson, Ann E; Swanson, Lindsay C; Brownstein, Catherine A; Gupta, Vandana A; Medne, Livija; Shannon, Patrick; Martin, Nicole; Bick, David P; Flisberg, Anders; Holmberg, Eva; Van den Bergh, Peter; Lapunzina, Pablo; Waddell, Leigh B; Sloboda, Darcée D; Bertini, Enrico; Chitayat, David; Telfer, William R; Laquerrière, Annie; Gregorio, Carol C; Ottenheijm, Coen A C; Bönnemann, Carsten G; Pelin, Katarina; Beggs, Alan H; Hayashi, Yukiko K; Romero, Norma B; Laing, Nigel G; Nishino, Ichizo; Wallgren-Pettersson, Carina; Melki, Judith; Fowler, Velia M; MacArthur, Daniel G; North, Kathryn N; Clarke, Nigel F

    2014-11-01

    Nemaline myopathy (NM) is a genetic muscle disorder characterized by muscle dysfunction and electron-dense protein accumulations (nemaline bodies) in myofibers. Pathogenic mutations have been described in 9 genes to date, but the genetic basis remains unknown in many cases. Here, using an approach that combined whole-exome sequencing (WES) and Sanger sequencing, we identified homozygous or compound heterozygous variants in LMOD3 in 21 patients from 14 families with severe, usually lethal, NM. LMOD3 encodes leiomodin-3 (LMOD3), a 65-kDa protein expressed in skeletal and cardiac muscle. LMOD3 was expressed from early stages of muscle differentiation; localized to actin thin filaments, with enrichment near the pointed ends; and had strong actin filament-nucleating activity. Loss of LMOD3 in patient muscle resulted in shortening and disorganization of thin filaments. Knockdown of lmod3 in zebrafish replicated NM-associated functional and pathological phenotypes. Together, these findings indicate that mutations in the gene encoding LMOD3 underlie congenital myopathy and demonstrate that LMOD3 is essential for the organization of sarcomeric thin filaments in skeletal muscle. PMID:25250574

  17. Leiomodin-3 dysfunction results in thin filament disorganization and nemaline myopathy

    PubMed Central

    Yuen, Michaela; Sandaradura, Sarah A.; Dowling, James J.; Kostyukova, Alla S.; Moroz, Natalia; Quinlan, Kate G.; Lehtokari, Vilma-Lotta; Ravenscroft, Gianina; Todd, Emily J.; Ceyhan-Birsoy, Ozge; Gokhin, David S.; Maluenda, Jérome; Lek, Monkol; Nolent, Flora; Pappas, Christopher T.; Novak, Stefanie M.; D’Amico, Adele; Malfatti, Edoardo; Thomas, Brett P.; Gabriel, Stacey B.; Gupta, Namrata; Daly, Mark J.; Ilkovski, Biljana; Houweling, Peter J.; Davidson, Ann E.; Swanson, Lindsay C.; Brownstein, Catherine A.; Gupta, Vandana A.; Medne, Livija; Shannon, Patrick; Martin, Nicole; Bick, David P.; Flisberg, Anders; Holmberg, Eva; Van den Bergh, Peter; Lapunzina, Pablo; Waddell, Leigh B.; Sloboda, Darcée D.; Bertini, Enrico; Chitayat, David; Telfer, William R.; Laquerrière, Annie; Gregorio, Carol C.; Ottenheijm, Coen A.C.; Bönnemann, Carsten G.; Pelin, Katarina; Beggs, Alan H.; Hayashi, Yukiko K.; Romero, Norma B.; Laing, Nigel G.; Nishino, Ichizo; Wallgren-Pettersson, Carina; Melki, Judith; Fowler, Velia M.; MacArthur, Daniel G.; North, Kathryn N.; Clarke, Nigel F.

    2014-01-01

    Nemaline myopathy (NM) is a genetic muscle disorder characterized by muscle dysfunction and electron-dense protein accumulations (nemaline bodies) in myofibers. Pathogenic mutations have been described in 9 genes to date, but the genetic basis remains unknown in many cases. Here, using an approach that combined whole-exome sequencing (WES) and Sanger sequencing, we identified homozygous or compound heterozygous variants in LMOD3 in 21 patients from 14 families with severe, usually lethal, NM. LMOD3 encodes leiomodin-3 (LMOD3), a 65-kDa protein expressed in skeletal and cardiac muscle. LMOD3 was expressed from early stages of muscle differentiation; localized to actin thin filaments, with enrichment near the pointed ends; and had strong actin filament-nucleating activity. Loss of LMOD3 in patient muscle resulted in shortening and disorganization of thin filaments. Knockdown of lmod3 in zebrafish replicated NM-associated functional and pathological phenotypes. Together, these findings indicate that mutations in the gene encoding LMOD3 underlie congenital myopathy and demonstrate that LMOD3 is essential for the organization of sarcomeric thin filaments in skeletal muscle. PMID:25250574

  18. Muscle atrophy

    MedlinePlus

    Muscle wasting; Wasting; Atrophy of the muscles ... There are two types of muscle atrophy. Disuse atrophy occurs from a lack of physical activity. In most people, muscle atrophy is caused by not using the ...

  19. Muscle Disorders

    MedlinePlus

    Your muscles help you move and help your body work. Different types of muscles have different jobs. There are many problems that can affect muscles. Muscle disorders can cause weakness, pain or even ...

  20. Muscle atrophy

    MedlinePlus

    Muscle wasting; Wasting; Atrophy of the muscles ... There are two types of muscle atrophy: disuse and neurogenic. Disuse atrophy is caused by not using the muscles enough . This type of atrophy can often be ...

  1. Muscle Cramps

    MedlinePlus

    Muscle cramps are sudden, involuntary contractions or spasms in one or more of your muscles. They often occur after exercise or at night, ... to several minutes. It is a very common muscle problem. Muscle cramps can be caused by nerves ...

  2. Muscle contraction and polymer-gel phase transitions

    NASA Astrophysics Data System (ADS)

    Pollack, Gerald H.

    2000-06-01

    Artificial muscles typically contrast by a phase-transition. Muscle is thought to contract by a different mechanism - a filament-sliding mechanism in which one set of filaments is driven past another by the action of cyclically rotating cross-bridges. The concept is much like the mechanism of rowing. The evidence, however, is equally consistent with a mechanism in which the filaments themselves contract, much like the condensation of polymers during a phase-transition. Muscle contains three principal polymer types organized neatly into a characteristic framework All three polymers can shorten. The contributions of each filament may be designed to confer versatility, as well as sped and strength, on this biological machine. The principles of natural contraction may be useful in establishing optimal design principles for artificial muscles.

  3. Perturbation growth in accreting filaments

    NASA Astrophysics Data System (ADS)

    Clarke, S. D.; Whitworth, A. P.; Hubber, D. A.

    2016-05-01

    We use smoothed particle hydrodynamic simulations to investigate the growth of perturbations in infinitely long filaments as they form and grow by accretion. The growth of these perturbations leads to filament fragmentation and the formation of cores. Most previous work on this subject has been confined to the growth and fragmentation of equilibrium filaments and has found that there exists a preferential fragmentation length-scale which is roughly four times the filament's diameter. Our results show a more complicated dispersion relation with a series of peaks linking perturbation wavelength and growth rate. These are due to gravo-acoustic oscillations along the longitudinal axis during the sub-critical phase of growth. The positions of the peaks in growth rate have a strong dependence on both the mass accretion rate onto the filament and the temperature of the gas. When seeded with a multiwavelength density power spectrum, there exists a clear preferred core separation equal to the largest peak in the dispersion relation. Our results allow one to estimate a minimum age for a filament which is breaking up into regularly spaced fragments, as well as an average accretion rate. We apply the model to observations of filaments in Taurus by Tafalla & Hacar and find accretion rates consistent with those estimated by Palmeirim et al.

  4. Filament identification through mathematical morphology

    NASA Astrophysics Data System (ADS)

    Koch, Eric W.; Rosolowsky, Erik W.

    2015-10-01

    We present a new algorithm for detecting filamentary structure FILFINDER. The algorithm uses the techniques of mathematical morphology for filament identification, presenting a complementary approach to current algorithms which use matched filtering or critical manifolds. Unlike other methods, FILFINDER identifies filaments over a wide dynamic range in brightness. We apply the new algorithm to far-infrared imaging data of dust emission released by the Herschel Gould Belt Survey team. Our preliminary analysis characterizes both filaments and fainter striations. We find a typical filament width of 0.09 pc across the sample, but the brightness varies from cloud to cloud. Several regions show a bimodal filament brightness distribution, with the bright mode (filaments) being an order of magnitude brighter than the faint mode (striations). Using the Rolling Hough Transform, we characterize the orientations of the striations in the data, finding preferred directions that agree with magnetic field direction where data are available. There is a suggestive but noisy correlation between typical filament brightness and literature values of the star formation rates for clouds in the Gould Belt.

  5. Thick Filament Length and Isoform Composition Determine Self-Organized Contractile Units in Actomyosin Bundles

    PubMed Central

    Thoresen, Todd; Lenz, Martin; Gardel, Margaret L.

    2013-01-01

    Diverse myosin II isoforms regulate contractility of actomyosin bundles in disparate physiological processes by variations in both motor mechanochemistry and the extent to which motors are clustered into thick filaments. Although the role of mechanochemistry is well appreciated, the extent to which thick filament length regulates actomyosin contractility is unknown. Here, we study the contractility of minimal actomyosin bundles formed in vitro by mixtures of F-actin and thick filaments of nonmuscle, smooth, and skeletal muscle myosin isoforms with varied length. Diverse myosin II isoforms guide the self-organization of distinct contractile units within in vitro bundles with shortening rates similar to those of in vivo myofibrils and stress fibers. The tendency to form contractile units increases with the thick filament length, resulting in a bundle shortening rate proportional to the length of constituent myosin thick filament. We develop a model that describes our data, providing a framework in which to understand how diverse myosin II isoforms regulate the contractile behaviors of disordered actomyosin bundles found in muscle and nonmuscle cells. These experiments provide insight into physiological processes that use dynamic regulation of thick filament length, such as smooth muscle contraction. PMID:23442916

  6. Metabolic regulation via enzyme filamentation

    PubMed Central

    Aughey, Gabriel N.; Liu, Ji-Long

    2016-01-01

    Abstract Determining the mechanisms of enzymatic regulation is central to the study of cellular metabolism. Regulation of enzyme activity via polymerization-mediated strategies has been shown to be widespread, and plays a vital role in mediating cellular homeostasis. In this review, we begin with an overview of the filamentation of CTP synthase, which forms filamentous structures termed cytoophidia. We then highlight other important examples of the phenomenon. Moreover, we discuss recent data relating to the regulation of enzyme activity by compartmentalization into cytoophidia. Finally, we hypothesize potential roles for enzyme filament formation in the regulation of metabolism, development and disease. PMID:27098510

  7. Mechanical coordination in motor ensembles revealed using engineered artificial myosin filaments.

    PubMed

    Hariadi, R F; Sommese, R F; Adhikari, A S; Taylor, R E; Sutton, S; Spudich, J A; Sivaramakrishnan, S

    2015-08-01

    The sarcomere of muscle is composed of tens of thousands of myosin motors that self-assemble into thick filaments and interact with surrounding actin-based thin filaments in a dense, near-crystalline hexagonal lattice. Together, these actin-myosin interactions enable large-scale movement and force generation, two primary attributes of muscle. Research on isolated fibres has provided considerable insight into the collective properties of muscle, but how actin-myosin interactions are coordinated in an ensemble remains poorly understood. Here, we show that artificial myosin filaments, engineered using a DNA nanotube scaffold, provide precise control over motor number, type and spacing. Using both dimeric myosin V- and myosin VI-labelled nanotubes, we find that neither myosin density nor spacing has a significant effect on the gliding speed of actin filaments. This observation supports a simple model of myosin ensembles as energy reservoirs that buffer individual stochastic events to bring about smooth, continuous motion. Furthermore, gliding speed increases with cross-bridge compliance, but is limited by Brownian effects. As a first step to reconstituting muscle motility, we demonstrate human β-cardiac myosin-driven gliding of actin filaments on DNA nanotubes. PMID:26149240

  8. Mechanical coordination in motor ensembles revealed using engineered artificial myosin filaments

    NASA Astrophysics Data System (ADS)

    Hariadi, R. F.; Sommese, R. F.; Adhikari, A. S.; Taylor, R. E.; Sutton, S.; Spudich, J. A.; Sivaramakrishnan, S.

    2015-08-01

    The sarcomere of muscle is composed of tens of thousands of myosin motors that self-assemble into thick filaments and interact with surrounding actin-based thin filaments in a dense, near-crystalline hexagonal lattice. Together, these actin-myosin interactions enable large-scale movement and force generation, two primary attributes of muscle. Research on isolated fibres has provided considerable insight into the collective properties of muscle, but how actin-myosin interactions are coordinated in an ensemble remains poorly understood. Here, we show that artificial myosin filaments, engineered using a DNA nanotube scaffold, provide precise control over motor number, type and spacing. Using both dimeric myosin V- and myosin VI-labelled nanotubes, we find that neither myosin density nor spacing has a significant effect on the gliding speed of actin filaments. This observation supports a simple model of myosin ensembles as energy reservoirs that buffer individual stochastic events to bring about smooth, continuous motion. Furthermore, gliding speed increases with cross-bridge compliance, but is limited by Brownian effects. As a first step to reconstituting muscle motility, we demonstrate human β-cardiac myosin-driven gliding of actin filaments on DNA nanotubes.

  9. Centromeres of filamentous fungi

    PubMed Central

    Smith, Kristina M.; Galazka, Jonathan M.; Phatale, Pallavi A.; Connolly, Lanelle R.; Freitag, Michael

    2012-01-01

    How centromeres are assembled and maintained remains one of the fundamental questions in cell biology. Over the past 20 years the idea of centromeres as precise genetic loci has been replaced by the realization that it is predominantly the protein complement that defines centromere localization and function. Thus, placement and maintenance of centromeres are excellent examples of epigenetic phenomena in the strict sense. In contrast, the highly derived “point centromeres” of the budding yeast Saccharomyces cerevisiae and its close relatives are counterexamples for this general principle of centromere maintenance. While we have learned much in the past decade, it remains unclear if mechanisms for epigenetic centromere placement and maintenance are shared amongst various groups of organisms. For that reason it seems prudent to examine species from many different phylogenetic groups with the aim to extract comparative information that will yield a more complete picture of cell division in all eukaryotes. This review addresses what has been learned by studying the centromeres of filamentous fungi, a large, heterogeneous group of organisms that includes important plant, animal and human pathogens, saprobes and symbionts that fulfill essential roles in the biosphere, as well as a growing number of taxa that have become indispensable for industrial use. PMID:22752455

  10. Centromeres of filamentous fungi.

    PubMed

    Smith, Kristina M; Galazka, Jonathan M; Phatale, Pallavi A; Connolly, Lanelle R; Freitag, Michael

    2012-07-01

    How centromeres are assembled and maintained remains one of the fundamental questions in cell biology. Over the past 20 years, the idea of centromeres as precise genetic loci has been replaced by the realization that it is predominantly the protein complement that defines centromere localization and function. Thus, placement and maintenance of centromeres are excellent examples of epigenetic phenomena in the strict sense. In contrast, the highly derived "point centromeres" of the budding yeast Saccharomyces cerevisiae and its close relatives are counter-examples for this general principle of centromere maintenance. While we have learned much in the past decade, it remains unclear if mechanisms for epigenetic centromere placement and maintenance are shared among various groups of organisms. For that reason, it seems prudent to examine species from many different phylogenetic groups with the aim to extract comparative information that will yield a more complete picture of cell division in all eukaryotes. This review addresses what has been learned by studying the centromeres of filamentous fungi, a large, heterogeneous group of organisms that includes important plant, animal and human pathogens, saprobes, and symbionts that fulfill essential roles in the biosphere, as well as a growing number of taxa that have become indispensable for industrial use. PMID:22752455

  11. Electron emitting filaments for electron discharge devices

    DOEpatents

    Leung, Ka-Ngo; Pincosy, Philip A.; Ehlers, Kenneth W.

    1988-01-01

    Electrons are copiously emitted by a device comprising a loop-shaped filament made of lanthanum hexaboride. The filament is directly heated by an electrical current produced along the filament by a power supply connected to the terminal legs of the filament. To produce a filament, a diamond saw or the like is used to cut a slice from a bar made of lanthanum hexaboride. The diamond saw is then used to cut the slice into the shape of a loop which may be generally rectangular, U-shaped, hairpin-shaped, zigzag-shaped, or generally circular. The filaments provide high electron emission at a relatively low operating temperature, such as 1600.degree. C. To achieve uniform heating, the filament is formed with a cross section which is tapered between the opposite ends of the filament to compensate for non-uniform current distribution along the filament due to the emission of electrons from the filament.

  12. Electron emitting filaments for electron discharge devices

    DOEpatents

    Leung, K.N.; Pincosy, P.A.; Ehlers, K.W.

    1983-06-10

    Electrons are copiously emitted by a device comprising a loop-shaped filament made of lanthanum hexaboride. The filament is directly heated by an electrical current produced along the filament by a power supply connected to the terminal legs of the filament. To produce a filament, a diamond saw or the like is used to cut a slice from a bar made of lanthanum hexaboride. The diamond saw is then used to cut the slice into the shape of a loop which may be generally rectangular, U-shaped, hairpin-shaped, zigzag-shaped, or generally circular. The filaments provide high electron emission at a relatively low operating temperature, such as 1600/sup 0/C. To achieve uniform heating, the filament is formed with a cross section which is tapered between the opposite ends of the filament to compensate for nonuniform current distribution along the filament due to the emission of electrons from the filament.

  13. Three-dimensional Reconstruction of Tarantula Myosin Filaments Suggests How Phosphorylation May Regulate Myosin Activity

    PubMed Central

    Alamo, Lorenzo; Wriggers, Willy; Pinto, Antonio; Bártoli, Fulvia; Salazar, Leiría; Zhao, Fa-Qing; Craig, Roger; Padrón, Raúl

    2008-01-01

    Summary Muscle contraction involves the interaction of the myosin heads of the thick filaments with actin subunits of the thin filaments. Relaxation occurs when this interaction is blocked by molecular switches on these filaments. In many muscles, myosin-linked regulation involves phosphorylation of the myosin regulatory light chains (RLC). Electron microscopy of vertebrate smooth muscle myosin molecules (regulated by phosphorylation) has provided insight into the relaxed structure, revealing that myosin is switched off by intramolecular interactions between its two heads, the free-head and the blocked head. Three-dimensional reconstruction of frozen-hydrated specimens reveals that this asymmetric head interaction is also present in native thick filaments of tarantula striated muscle. Our goal here has been to elucidate the structural features of the tarantula filament involved in phosphorylation-based regulation. A new reconstruction reveals intra- and intermolecular myosin interactions in addition to those seen previously. To help interpret the interactions, we sequenced the tarantula RLC, and fitted to the reconstruction an atomic model of the myosin head that included the predicted RLC atomic structure and an S2 crystal structure. The fitting suggests an intramolecular interaction between the cardiomyopathy loop of the free-head and its own S2 and two intermolecular interactions—between the cardio-loop of the free head and the ELC of the blocked head, and between the Leu-305 - Gln-327 “interaction loop” (loop I) of the free-head and the N-terminal fragment of the RLC of the blocked-head. These interactions, added to those previously described, would help to switch off the thick filament. Molecular dynamics simulations suggest how phosphorylation could increase the helical content of the RLC N-terminus, weakening these interactions, thus releasing both heads and activating the thick filament. PMID:18951904

  14. Transplantation of a tissue-engineered human vascularized cardiac muscle.

    PubMed

    Lesman, Ayelet; Habib, Manhal; Caspi, Oren; Gepstein, Amira; Arbel, Gil; Levenberg, Shulamit; Gepstein, Lior

    2010-01-01

    Myocardial regeneration strategies have been hampered by the lack of sources for human cardiomyocytes (CMs) and by the significant donor cell loss following transplantation. We assessed the ability of a three-dimensional tissue-engineered human vascularized cardiac muscle to engraft in the in vivo rat heart and to promote functional vascularization. Human embryonic stem cell-derived CMs alone or with human endothelial cells (human umbilical vein endothelial cells) and embryonic fibroblasts (triculture constructs) were seeded onto biodegradable porous scaffolds. The resulting tissue constructs were transplanted to the in vivo rat heart and formed cardiac tissue grafts. Immunostaining studies for human-specific CD31 and alpha-smooth muscle actin demonstrated the formation of both donor (human) and host (rat)-derived vasculature within the engrafted triculture tissue constructs. Intraventricular injection of fluorescent microspheres or lectin resulted in their incorporation by human-derived vessels, confirming their functional integration with host coronary vasculature. Finally, the number of blood vessels was significantly greater in the triculture tissue constructs (60.3 +/- 8/mm(3), p < 0.05) when compared with scaffolds containing only CMs (39.0 +/- 14.4/mm(3)). In conclusion, a tissue-engineered human vascularized cardiac muscle can be established ex vivo and transplanted in vivo to form stable grafts. By utilizing a multicellular preparation we were able to increase biograft vascularization and to show that the preexisting human vessels can become functional and contribute to tissue perfusion. PMID:19642856

  15. Skeletal muscle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There are approximately 650-850 muscles in the human body these include skeletal (striated), smooth and cardiac muscle. The approximation is based on what some anatomists consider separate muscle or muscle systems. Muscles are classified based on their anatomy (striated vs. smooth) and if they are v...

  16. Cardiac thin filament regulation and the Frank-Starling mechanism.

    PubMed

    Kobirumaki-Shimozawa, Fuyu; Inoue, Takahiro; Shintani, Seine A; Oyama, Kotaro; Terui, Takako; Minamisawa, Susumu; Ishiwata, Shin'ichi; Fukuda, Norio

    2014-07-01

    The heart has an intrinsic ability to increase systolic force in response to a rise in ventricular filling (the Frank-Starling law of the heart). It is widely accepted that the length dependence of myocardial activation underlies the Frank-Starling law of the heart. Recent advances in muscle physiology have enabled the identification of the factors involved in length-dependent activation, viz., titin (connectin)-based interfilament lattice spacing reduction and thin filament "on-off" regulation, with the former triggering length-dependent activation and the latter determining the number of myosin molecules recruited to thin filaments. Patients with a failing heart have demonstrated reduced exercise tolerance at least in part via depression of the Frank-Starling mechanism. Recent studies revealed that various mutations occur in the thin filament regulatory proteins, such as troponin, in the ventricular muscle of failing hearts, which consequently alter the Frank-Starling mechanism. In this article, we review the molecular mechanisms of length-dependent activation, and the influence of troponin mutations on the phenomenon. PMID:24788476

  17. Isolation, Electron Microscopy and 3D Reconstruction of Invertebrate Muscle Myofilaments

    PubMed Central

    Craig, Roger

    2011-01-01

    Understanding the molecular mechanism of muscle contraction and its regulation has been greatly influenced and aided by studies of myofilament structure in invertebrate muscles. Invertebrates are easily obtained and cover a broad spectrum of species and functional specializations. The thick (myosin-containing) filaments from some invertebrates are especially stable and simple in structure and thus much more amenable to structural analysis than those of vertebrates. Comparative studies of invertebrate filaments by electron microscopy and image processing have provided important generalizations of muscle molecular structure and function. This article reviews methods for preparing thick and thin filaments from invertebrate muscle, for imaging filaments by electron microscopy, and for determining their three dimensional structure by image processing. It also highlights some of the key insights into filament function that have come from these studies. PMID:22155190

  18. Muscle Deoxygenation Causes Muscle Fatigue

    NASA Technical Reports Server (NTRS)

    Murthy, G.; Hargens, A. R.; Lehman, S.; Rempel, D.

    1999-01-01

    Muscle fatigue is a common musculoskeletal disorder in the work place, and may be a harbinger for more disabling cumulative trauma disorders. Although the cause of fatigue is multifactorial, reduced blood flow and muscle oxygenation may be the primary factor in causing muscle fatigue during low intensity muscle exertion. Muscle fatigue is defined as a reduction in muscle force production, and also occurs among astronauts who are subjected to postural constraints while performing lengthy, repetitive tasks. The objectives of this research are to: 1) develop an objective tool to study the role of decreased muscle oxygenation on muscle force production, and 2) to evaluate muscle fatigue during prolonged glovebox work.

  19. Solid friction between soft filaments

    PubMed Central

    Ward, Andrew; Hilitski, Feodor; Schwenger, Walter; Welch, David; Lau, A.W. C.; Vitelli, Vincenzo; Mahadevan, L.; Dogic, Zvonimir

    2015-01-01

    Any macroscopic deformation of a filamentous bundle is necessarily accompanied by local sliding and/or stretching of the constituent filaments1,2. Yet the nature of the sliding friction between two aligned filaments interacting through multiple contacts remains largely unexplored. Here, by directly measuring the sliding forces between two bundled F-actin filaments, we show that these frictional forces are unexpectedly large, scale logarithmically with sliding velocity as in solid-like friction, and exhibit complex dependence on the filaments’ overlap length. We also show that a reduction of the frictional force by orders of magnitude, associated with a transition from solid-like friction to Stokes’s drag, can be induced by coating F-actin with polymeric brushes. Furthermore, we observe similar transitions in filamentous microtubules and bacterial flagella. Our findings demonstrate how altering a filament’s elasticity, structure and interactions can be used to engineer interfilament friction and thus tune the properties of fibrous composite materials. PMID:25730393

  20. Boolean gates on actin filaments

    NASA Astrophysics Data System (ADS)

    Siccardi, Stefano; Tuszynski, Jack A.; Adamatzky, Andrew

    2016-01-01

    Actin is a globular protein which forms long polar filaments in the eukaryotic cytoskeleton. Actin networks play a key role in cell mechanics and cell motility. They have also been implicated in information transmission and processing, memory and learning in neuronal cells. The actin filaments have been shown to support propagation of voltage pulses. Here we apply a coupled nonlinear transmission line model of actin filaments to study interactions between voltage pulses. To represent digital information we assign a logical TRUTH value to the presence of a voltage pulse in a given location of the actin filament, and FALSE to the pulse's absence, so that information flows along the filament with pulse transmission. When two pulses, representing Boolean values of input variables, interact, then they can facilitate or inhibit further propagation of each other. We explore this phenomenon to construct Boolean logical gates and a one-bit half-adder with interacting voltage pulses. We discuss implications of these findings on cellular process and technological applications.

  1. Droplets engulfing on a filament

    NASA Astrophysics Data System (ADS)

    Wu, Xiang-Fa; Yu, Meng; Zhou, Zhengping; Bedarkar, Amol; Zhao, Youhao

    2014-03-01

    Two immiscible droplets wetting on a filament may assume engulfing, partial-engulfing, or non-engulfing morphology that depends on the wetting behavior and geometries of the resulting droplet-on-filament system. This paper studies the wetting behavior of two immiscible droplets contacting and sitting symmetrically on a straight filament. A set of ordinary differential equations (ODEs) is formulated for determining the wetting morphology of the droplet-on-filament system. In the limiting case of engulfing or non-engulfing, the morphology of the droplet-on-filament system is determined in explicit form. In the case of partial-engulfing, surface finite element method is further employed for determining the wetting morphology, surface energy, and internal pressures of droplets of the system. Numerical scaling study is performed to explore their dependencies upon the wetting properties and geometries of the system. The study can be applicable for analysis and design of textiles with tailorable wetting properties and development of novel multifunctional fibrous materials for environmental protection such as oil-spill sorption, etc.

  2. Buckling of Branched Cytoskeletal Filaments

    NASA Astrophysics Data System (ADS)

    Quint, D. A.; Schwarz, J. M.

    2011-03-01

    In vitro experiments of growing dendritic actin networks demonstrate reversible stress-softening at high loads, above some critical load. The transition to the stress-softening regime has been attributed to the elastic buckling of individual actin filaments. To estimate the critical load above which softening should occur, we extend the elastic theory of buckling of individual filaments embedded in a network to include the buckling of branched filaments, a signature trait of growing dendritic actin networks. Under certain assumptions, there will be approximately a seven-fold increase in the classical critical bucking load, when compared to the unbranched filament, which is entirely due to the presence of a branch. Moreover, we go beyond the classical buckling regime to investigate the effect of entropic fluctuations. The result of compressing the filament in this case leads to an increase in these fluctuations and eventually the harmonic approximation breaks down signifying the onset of the buckling transition. We compute corrections to the classical critical buckling load near this breakdown.

  3. Muscle aches

    MedlinePlus

    ... common cause of muscle aches and pain is fibromyalgia , a condition that causes tenderness in your muscles ... imbalance, such as too little potassium or calcium Fibromyalgia Infections, including the flu, Lyme disease , malaria , muscle ...

  4. Muscle disorder

    MedlinePlus

    Myopathic changes; Myopathy; Muscle problem ... Blood tests sometimes show abnormally high muscle enzymes. If a muscle disorder might also affect other family members, genetic testing may be done. When someone has symptoms and signs ...

  5. Muscle disorder

    MedlinePlus

    Blood tests sometimes show abnormally high muscle enzymes. If a muscle disorder might also affect other family members, genetic testing may be done. When someone has symptoms and signs of a muscle disorder, tests such as an electromyogram , ...

  6. Graphite filament wound pressure vessels

    NASA Technical Reports Server (NTRS)

    Feldman, A.; Damico, J. J.

    1972-01-01

    Filament wound NOL rings, 4-inch and 8-inch diameter closed-end vessels involving three epoxy resin systems and three graphite fibers were tested to develop property data and fabrication technology for filament wound graphite/epoxy pressure vessels. Vessels were subjected to single-cycle burst tests at room temperature. Manufacturing parameters were established for tooling, winding, and curing that resulted in the development of a pressure/vessel performance factor (pressure x volume/weight) or more than 900,000 in. for an oblate spheroid specimen.

  7. Coiling of a viscous filament

    NASA Astrophysics Data System (ADS)

    Samuel, A. D. T.; Ryu, W. S.; Mahadevan, L.

    1997-11-01

    A classic demonstration of fluid buckling is a daily occurence at the breakfast table, where a continuous stream of viscous fluid (honey) is often poured onto a flat surface (toast) from a sufficient height. The thin fluid filament quickly settles into a steady state; near the surface it bends into a helical shape while simultaneously rotating about the vertical and is laid out in a regular coil. This behavior is reminiscent of the coiling of a falling flexible rope. We derive a simple scaling law that predicts the coiling frequency in terms of the filament radius and the flow rate. We also verify this scaling law with the results of experiments.

  8. Nonequilibrium transport in superconducting filaments

    NASA Technical Reports Server (NTRS)

    Arutyunov, K. YU.; Danilova, N. P.; Nikolaeva, A. A.

    1995-01-01

    The step-like current-voltage characteristics of highly homogeneous single-crystalline tin and indium thin filaments has been measured. The length of the samples L approximately 1 cm was much greater than the nonequilibrium quasiparticle relaxation length Lambda. It was found that the activation of a successive i-th voltage step occurs at current significantly greater than the one derived with the assumption that the phase slip centers are weakly interacting on a scale L much greater than Lambda. The observation of 'subharmonic' fine structure on the voltage-current characteristics of tin filaments confirms the hypothesis of the long-range phase slip centers interaction.

  9. Knockout of Lmod2 results in shorter thin filaments followed by dilated cardiomyopathy and juvenile lethality

    PubMed Central

    Pappas, Christopher T.; Mayfield, Rachel M.; Henderson, Christine; Jamilpour, Nima; Cover, Cathleen; Hernandez, Zachary; Hutchinson, Kirk R.; Chu, Miensheng; Nam, Ki-Hwan; Valdez, Jose M.; Wong, Pak Kin; Granzier, Henk L.; Gregorio, Carol C.

    2015-01-01

    Leiomodin 2 (Lmod2) is an actin-binding protein that has been implicated in the regulation of striated muscle thin filament assembly; its physiological function has yet to be studied. We found that knockout of Lmod2 in mice results in abnormally short thin filaments in the heart. We also discovered that Lmod2 functions to elongate thin filaments by promoting actin assembly and dynamics at thin filament pointed ends. Lmod2-KO mice die as juveniles with hearts displaying contractile dysfunction and ventricular chamber enlargement consistent with dilated cardiomyopathy. Lmod2-null cardiomyocytes produce less contractile force than wild type when plated on micropillar arrays. Introduction of GFP-Lmod2 via adeno-associated viral transduction elongates thin filaments and rescues structural and functional defects observed in Lmod2-KO mice, extending their lifespan to adulthood. Thus, to our knowledge, Lmod2 is the first identified mammalian protein that functions to elongate actin filaments in the heart; it is essential for cardiac thin filaments to reach a mature length and is required for efficient contractile force and proper heart function during development. PMID:26487682

  10. Sphincter Contractility After Muscle-Derived Stem Cells Autograft into the Cryoinjured Anal Sphincters of Rats

    PubMed Central

    Kang, Sung-Bum; Lee, Haet Nim; Lee, Ji Young; Park, Jun-Seok; Lee, Hye Seung

    2008-01-01

    Purpose This study was designed to determine whether the injection of muscle-derived stem cells into the anal sphincter can improve functional properties in a fecal incontinence rat model. Methods Cryoinjured rats were utilized as a fecal incontinence model. The gastrocnemius muscles of normal three-week-old female Sprague-Dawley rats were used for the purification of the muscle-derived stem cells. The experimental group was divided into three subgroups: normal control; cryoinjured; and muscle-derived stem cells (3 × 106 cells) injection group of cryoinjured rats. All groups were subsequently employed in contractility experiments using muscle strips from the anal sphincter, one week after preparation. Results Contractility in the cryoinjured group was significantly lower than in the control after treatment with acetylcholine and KCl. In the muscle-derived stem cells injection group, contraction amplitude was higher than in the cryoinjured group but not significantly (20.5 ± 21.3 vs. 17.3 ± 3.4 g per gram tissue, with acetylcholine (10−4 mol/l); 31 ± 14.2 vs. 18.4 ± 7.9 g per gram tissue, with KCl (10−4 mol/l)). PKH-26-labeled transplanted cells were detected in all of the grafted sphincters. Differentiated muscle masses stained positively for alpha smooth muscle actin and myosin heavy chain at the muscle-derived stem cells injection sites. Conclusions This is the first study reporting that autologous muscle-derived stem cell grafts may be a tool for improving anal sphincter function. PMID:18536965

  11. Role of Intermediate Filaments in Vesicular Traffic

    PubMed Central

    Margiotta, Azzurra; Bucci, Cecilia

    2016-01-01

    Intermediate filaments are an important component of the cellular cytoskeleton. The first established role attributed to intermediate filaments was the mechanical support to cells. However, it is now clear that intermediate filaments have many different roles affecting a variety of other biological functions, such as the organization of microtubules and microfilaments, the regulation of nuclear structure and activity, the control of cell cycle and the regulation of signal transduction pathways. Furthermore, a number of intermediate filament proteins have been involved in the acquisition of tumorigenic properties. Over the last years, a strong involvement of intermediate filament proteins in the regulation of several aspects of intracellular trafficking has strongly emerged. Here, we review the functions of intermediate filaments proteins focusing mainly on the recent knowledge gained from the discovery that intermediate filaments associate with key proteins of the vesicular membrane transport machinery. In particular, we analyze the current understanding of the contribution of intermediate filaments to the endocytic pathway. PMID:27120621

  12. Role of Intermediate Filaments in Vesicular Traffic.

    PubMed

    Margiotta, Azzurra; Bucci, Cecilia

    2016-01-01

    Intermediate filaments are an important component of the cellular cytoskeleton. The first established role attributed to intermediate filaments was the mechanical support to cells. However, it is now clear that intermediate filaments have many different roles affecting a variety of other biological functions, such as the organization of microtubules and microfilaments, the regulation of nuclear structure and activity, the control of cell cycle and the regulation of signal transduction pathways. Furthermore, a number of intermediate filament proteins have been involved in the acquisition of tumorigenic properties. Over the last years, a strong involvement of intermediate filament proteins in the regulation of several aspects of intracellular trafficking has strongly emerged. Here, we review the functions of intermediate filaments proteins focusing mainly on the recent knowledge gained from the discovery that intermediate filaments associate with key proteins of the vesicular membrane transport machinery. In particular, we analyze the current understanding of the contribution of intermediate filaments to the endocytic pathway. PMID:27120621

  13. SDO Sees a Dark Filament Circle

    NASA Video Gallery

    A dark, almost circular filament broke away from the sun in a gauzy, feathery swirl, on Nov. 15, 2015, in this video from NASA’s Solar Dynamics Observatory. This filament eruption was followed by a...

  14. SDO Watches Giant Filament on the Sun

    NASA Video Gallery

    A snaking, extended filament of solar material currently lies on the front of the sun-- some 1 million miles across from end to end. Filaments are clouds of solar material suspended above the sun b...

  15. A simple method for measuring the relative force exerted by myosin on actin filaments in the in vitro motility assay: evidence that tropomyosin and troponin increase force in single thin filaments.

    PubMed Central

    Bing, W; Knott, A; Marston, S B

    2000-01-01

    We have studied the effect of an internal load on the movement of actin filaments over a bed of heavy meromyosin (HMM) in the in vitro motility assay. Immobilized alpha-actinin can bind to actin filaments reversibly and ultimately stop the filaments from moving. Above a critical concentration of alpha-actinin, thin filament velocity rapidly diminished to zero. The fraction of thin motile filaments decreased linearly to zero with increasing alpha-actinin concentration. The concentration of alpha-actinin needed to stop all filaments from moving (0.8 microg/ml with actin) was very consistent both within and between experiments. In the present study we have defined the 'index of retardation' as the concentration of alpha-actinin needed to stop all filament movement, and we propose that this index is a measure of the isometric force exerted by HMM on actin filaments. When we measured the effect of immobilized alpha-actinin on motility in the presence of 10 mM P(i) we found that the index of retardation was 0.62+/-0.07 (n=3) times that in the absence of P(i). This observation is in agreement with the reduction of isometric tension in chemically-skinned muscle due to P(i). In a series of comparative experiments we observed that tropomyosin and troponin increase the index of retardation and that the degree of increase depends upon the tropomyosin isoform studied. The index of retardation of actin is increased 1.8-fold by skeletal-muscle tropomyosin, and 3-fold by both cardiac-muscle and smooth-muscle tropomyosin. In the presence of troponin the index of retardation is 2.9-3.4-fold greater than that of actin with all tropomyosin isoforms. PMID:10970781

  16. The length-tension curve in muscle depends on lattice spacing

    SciTech Connect

    Williams, C. D.; Salcedo, M. K.; Irving, T. C.; Regnier, M.; Daniel, T. L.

    2013-07-10

    Classic interpretations of the striated muscle length–tension curve focus on how force varies with overlap of thin (actin) and thick (myosin) filaments. New models of sarcomere geometry and experiments with skinned synchronous insect flight muscle suggest that changes in the radial distance between the actin and myosin filaments, the filament lattice spacing, are responsible for between 20% and 50% of the change in force seen between sarcomere lengths of 1.4 and 3.4 µm. Thus, lattice spacing is a significant force regulator, increasing the slope of muscle's force–length dependence.

  17. The length–tension curve in muscle depends on lattice spacing

    PubMed Central

    Williams, C. David; Salcedo, Mary K.; Irving, Thomas C.; Regnier, Michael; Daniel, Thomas L.

    2013-01-01

    Classic interpretations of the striated muscle length–tension curve focus on how force varies with overlap of thin (actin) and thick (myosin) filaments. New models of sarcomere geometry and experiments with skinned synchronous insect flight muscle suggest that changes in the radial distance between the actin and myosin filaments, the filament lattice spacing, are responsible for between 20% and 50% of the change in force seen between sarcomere lengths of 1.4 and 3.4 µm. Thus, lattice spacing is a significant force regulator, increasing the slope of muscle's force–length dependence. PMID:23843386

  18. The length-tension curve in muscle depends on lattice spacing.

    PubMed

    Williams, C David; Salcedo, Mary K; Irving, Thomas C; Regnier, Michael; Daniel, Thomas L

    2013-09-01

    Classic interpretations of the striated muscle length-tension curve focus on how force varies with overlap of thin (actin) and thick (myosin) filaments. New models of sarcomere geometry and experiments with skinned synchronous insect flight muscle suggest that changes in the radial distance between the actin and myosin filaments, the filament lattice spacing, are responsible for between 20% and 50% of the change in force seen between sarcomere lengths of 1.4 and 3.4 µm. Thus, lattice spacing is a significant force regulator, increasing the slope of muscle's force-length dependence. PMID:23843386

  19. METHOD OF MAKING TUNGSTEN FILAMENTS

    DOEpatents

    Frazer, J.W.

    1962-12-18

    A method of making tungsten filaments is described in which the tungsten is completely free of isotope impurities in the range of masses 234 to 245 for use in mass spectrometers. The filament comprises a tantalum core generally less than 1 mil in diameter having a coating of potassium-free tantalum-diffused tungsten molecularly bonded thereto. In the preferred process of manufacture a short, thin tantalum filament is first mounted between terminal posts mounted in insulated relation through a backing plate. The tungsten is most conveniently vapor plated onto the tantalum by a tungsten carbonyl vapor decomposition method having a critical step because of the tendency of the tantalum to volatilize at the temperature of operntion of the filament. The preferred recipe comprises volatilizing tantalum by resistance henting until the current drops by about 40%, cutting the voltage back to build up the tungsten, and then gradually building the temperature back up to balance the rate of tungsten deposition with the rate of tantalum volatilization. (AEC)

  20. Diamond film by hot filament CVD method

    NASA Technical Reports Server (NTRS)

    Hirose, Y.

    1988-01-01

    Diamond synthesis by the hot filament CVD method is discussed. A hot filament decomposes gas mixtures and oxygen containing organic compounds such as alcohols. which are carbon sources. The resulting thin films, growth mechanisms, and characteristics and problems associated with the hot filament CVD method are analyzed and evaluated.

  1. Single turnovers of fluorescent ATP bound to bipolar myosin filament during actin filaments sliding

    PubMed Central

    Maruta, Takahiro; Kobatake, Takahiro; Okubo, Hiroyuki; Chaen, Shigeru

    2013-01-01

    The nucleotide turnover rates of bipolar myosin thick filament along which actin filament slides were measured by the displacement of prebound fluorescent ATP analog 2′(3′)-O-[N-[2-[(Cy3)]amindo]ethyl] carbamoyl]-adenosine 5′ triphosphate (Cy3-EDA-ATP) upon flash photolysis of caged ATP. The fluorescence of the thick filament where actin filament slides decayed with two exponential processes. The slower rate constant was the same as that without actin filament. Along bipolar myosin thick filament, actin filaments slide at a fast speed towards the central bare zone (forward), but more slowly away from the bare zone (backward). The displacement rate constant of fluorescent ATP from the myosin filament where actin filament moved forward was 5.0 s−1, whereas the rate constant where the actin filament slid backward was 1.7 s−1. These findings suggest that the slow ADP release rate is responsible for the slow backward sliding movement.

  2. Smooth muscle and skeletal muscle myosins produce similar unitary forces and displacements in the laser trap.

    PubMed Central

    Guilford, W H; Dupuis, D E; Kennedy, G; Wu, J; Patlak, J B; Warshaw, D M

    1997-01-01

    Purified smooth muscle myosin in the in vitro motility assay propels actin filaments at 1/10 the velocity, yet produces 3-4 times more force than skeletal muscle myosin. At the level of a single myosin molecule, these differences in force and actin filament velocity may be reflected in the size and duration of single motion and force-generating events, or in the kinetics of the cross-bridge cycle. Specifically, an increase in either unitary force or duty cycle may explain the enhanced force-generating capacity of smooth muscle myosin. Similarly, an increase in attached time or decrease in unitary displacement may explain the reduced actin filament velocity of smooth muscle myosin. To discriminate between these possibilities, we used a laser trap to measure unitary forces and displacements from single smooth and skeletal muscle myosin molecules. We analyzed our data using mean-variance analysis, which does not rely on scoring individual events by eye, and emphasizes periods in the data with constant properties. Both myosins demonstrated multiple but similar event populations with discrete peaks at approximately +11 and -11 nm in displacement, and 1.5 and 3.5 pN in force. Mean attached times for smooth muscle myosin were longer than for skeletal-muscle myosin. These results explain much of the difference in actin filament velocity between these myosins, and suggest that an increased duty cycle is responsible for the enhanced force-generating capacity of smooth over skeletal-muscle myosin. Images FIGURE 3 FIGURE 4 FIGURE 5 FIGURE 6 FIGURE 7 FIGURE 8 PMID:9138552

  3. Galaxy pairs align with Galactic filaments

    NASA Astrophysics Data System (ADS)

    Tempel, E.; Tamm, A.

    2015-04-01

    Context. Gravitational collapse theory and numerical simulations suggest that the velocity field within large-scale galaxy filaments is dominated by motions along the filaments. Aims: Our aim is to check whether observational data reveal any preferred orientation of galaxy pairs with respect to the underlying filaments as a result of the expectedly anisotropic velocity field. Methods: We use galaxy pairs and galaxy filaments identified from Sloan Digital Sky Survey data. For filament extraction, we use the Bisous model that is based on the marked point process technique. During the filament detection, we use the centre point of each pair instead of the positions of galaxies to avoid a built-in influence of pair orientation on the filament construction. For pairs lying within filaments (3012 cases), we calculate the angle between the line connecting the galaxies of each pair and their host filaments. To avoid redshift-space distortions, the angle is measured in the plane of the sky. Results: The alignment analysis shows that the orientation of galaxy pairs correlates strongly with their host filaments. The alignment signal is stronger for loose pairs, with at least 25% excess of aligned pairs compared to a random distribution. The alignment of galaxy pairs and filaments measured from the observational data is in good agreement with the alignment in the Millennium simulation and thus provides support to the ΛCDM formalism.

  4. Microwave processing of ceramic oxide filaments

    SciTech Connect

    Vogt, G.J.; Katz, J.D.

    1995-05-01

    The objective of the microwave filament processing project is to develop microwave techniques at 2.45 GHZ to manufacture continuous ceramic oxide filaments. Microwave processing uses the volumetric absorption of microwave power in oxide filament tows to drive off process solvents, to burn out organic binders, and to sinter the dried fibers to produce flexible, high-strength ceramic filaments. The technical goal is to advance filament processing technology by microwave heating more rapidly with less energy and at a lower cost than conventional processing, but with the same quality as conventional processing. The manufacturing goal is to collaborate with the 3M Company, a US manufacturer of ceramic oxide filaments, to evaluate the technology using a prototype filament system and to transfer the microwave technology to the 3M Company.

  5. The stability of viscous liquid filaments

    NASA Astrophysics Data System (ADS)

    Driessen, Theo; Jeurissen, Roger; Wijshoff, Herman; Lohse, Detlef

    2012-11-01

    The stability of liquid filaments is relevant both in industrial applications, such as inkjet printing and atomization, and in nature, where the stability of filaments has a large influence on the final drop size distribution of rain droplets and waterfalls. The liquid filament may either stably collapse into a single droplet, or break up into multiple droplets. Which scenario is realized depends on the viscosity and the aspect ratio of the filament. Here we study the collapse of an axisymmetric liquid filament is analytically and with a numerical model. We find that a long, high viscous filament can only break up due to the Rayleigh-Plateau instability, whereas a low viscous filament can break up due to end-pinching. The theory shows quantitative agreement with recent experimental findings by Castréjon-Pita et al., PRL 108, 074506 (2012).

  6. Partial Slingshot Reconnection between Two Filaments

    NASA Astrophysics Data System (ADS)

    Jiang, Yunchun; Hong, Junchao; Yang, Jiayan; Bi, Yi; Zheng, Ruisheng; Yang, Bo; Li, Haidong; Yang, Dan

    2013-02-01

    We present a rare observation of an interaction between two filaments around AR 11358 and AR 11361 on 2011 December 3 that is strongly suggestive of the occurrence of slingshot reconnection. A small elbow-shaped active-region filament (F12) underwent a failed eruption that brought it into contact with a nearby larger, thicker filament (F34). Accompanied by the appearance of complicated internal structures below the erupting F12, its two legs separated away from each other and then connected into F34. This process led the filaments to change their connectivity to form two newly linked filaments, and one of them showed a clear inverse γ-shape. However, the alteration in the filament connectivity was imperfect since F34 is discernible after the eruption. These observations can be interpreted as a partial slingshot reconnection between two filaments that had unequal axial magnetic flux.

  7. PARTIAL SLINGSHOT RECONNECTION BETWEEN TWO FILAMENTS

    SciTech Connect

    Jiang, Yunchun; Hong, Junchao; Yang, Jiayan; Bi, Yi; Zheng, Ruisheng; Yang, Bo; Li, Haidong; Yang, Dan

    2013-02-10

    We present a rare observation of an interaction between two filaments around AR 11358 and AR 11361 on 2011 December 3 that is strongly suggestive of the occurrence of slingshot reconnection. A small elbow-shaped active-region filament (F12) underwent a failed eruption that brought it into contact with a nearby larger, thicker filament (F34). Accompanied by the appearance of complicated internal structures below the erupting F12, its two legs separated away from each other and then connected into F34. This process led the filaments to change their connectivity to form two newly linked filaments, and one of them showed a clear inverse {gamma}-shape. However, the alteration in the filament connectivity was imperfect since F34 is discernible after the eruption. These observations can be interpreted as a partial slingshot reconnection between two filaments that had unequal axial magnetic flux.

  8. Filamentation as primitive growth mode?

    PubMed

    Bigan, Erwan; Steyaert, Jean-Marc; Douady, Stéphane

    2015-12-01

    Osmotic pressure influences cellular shape. In a growing cell, chemical reactions and dilution induce changes in osmolarity, which in turn influence the cellular shape. Using a protocell model relying upon random conservative chemical reaction networks with arbitrary stoichiometry, we find that when the membrane is so flexible that its shape adjusts itself quasi-instantaneously to balance the osmotic pressure, the protocell either grows filamentous or fails to grow. This behavior is consistent with a mathematical proof. This suggests that filamentation may be a primitive growth mode resulting from the simple physical property of balanced osmotic pressure. We also find that growth is favored if some chemical species are only present inside the protocell, but not in the outside growth medium. Such an insulation requires specific chemical schemes. Modern evolved cells such as E. coli meet these requirements through active transport mechanisms such as the phosphotransferase system. PMID:26718101

  9. Filamentation as primitive growth mode?

    NASA Astrophysics Data System (ADS)

    Bigan, Erwan; Steyaert, Jean-Marc; Douady, Stéphane

    2015-12-01

    Osmotic pressure influences cellular shape. In a growing cell, chemical reactions and dilution induce changes in osmolarity, which in turn influence the cellular shape. Using a protocell model relying upon random conservative chemical reaction networks with arbitrary stoichiometry, we find that when the membrane is so flexible that its shape adjusts itself quasi-instantaneously to balance the osmotic pressure, the protocell either grows filamentous or fails to grow. This behavior is consistent with a mathematical proof. This suggests that filamentation may be a primitive growth mode resulting from the simple physical property of balanced osmotic pressure. We also find that growth is favored if some chemical species are only present inside the protocell, but not in the outside growth medium. Such an insulation requires specific chemical schemes. Modern evolved cells such as E. coli meet these requirements through active transport mechanisms such as the phosphotransferase system.

  10. Intermediate Filaments in Caenorhabditis elegans.

    PubMed

    Zuela, Noam; Gruenbaum, Yosef

    2016-01-01

    More than 70 different genes in humans and 12 different genes in Caenorhabditis elegans encode the superfamily of intermediate filament (IF) proteins. In C. elegans, similar to humans, these proteins are expressed in a cell- and tissue-specific manner, can assemble into heteropolymers and into 5-10nm wide filaments that account for the principal structural elements at the nuclear periphery, nucleoplasm, and cytoplasm. At least 5 of the 11 cytoplasmic IFs, as well as the nuclear IF, lamin, are essential. In this chapter, we will include a short review of our current knowledge of both cytoplasmic and nuclear IFs in C. elegans and will describe techniques used for their analyses. PMID:26795488

  11. Filament wound rocket motor chambers

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The design, analysis, fabrication and testing of a Kevlar-49/HBRF-55A filament wound chamber is reported. The chamber was fabricated and successfully tested to 80% of the design burst pressure. Results of the data reduction and analysis from the hydrotest indicate that the chamber design and fabrication techniques used for the chamber were adequate and the chamber should perform adequately in a static test.

  12. Mechanics of vimentin intermediate filaments

    NASA Technical Reports Server (NTRS)

    Wang, Ning; Stamenovic, Dimitrijie

    2002-01-01

    It is increasingly evident that the cytoskeleton of living cells plays important roles in mechanical and biological functions of the cells. Here we focus on the contribution of intermediate filaments (IFs) to the mechanical behaviors of living cells. Vimentin, a major structural component of IFs in many cell types, is shown to play an important role in vital mechanical and biological functions such as cell contractility, migration, stiffness, stiffening, and proliferation.

  13. Sequential myosin phosphorylation activates tarantula thick filament via a disorder-order transition.

    PubMed

    Espinoza-Fonseca, L Michel; Alamo, Lorenzo; Pinto, Antonio; Thomas, David D; Padrón, Raúl

    2015-08-01

    Phosphorylation of myosin regulatory light chain (RLC) N-terminal extension (NTE) activates myosin in thick filaments. RLC phosphorylation plays a primary regulatory role in smooth muscles and a secondary (modulatory) role in striated muscles, which is regulated by Ca(2+)via TnC/TM on the thin filament. Tarantula striated muscle exhibits both regulatory systems: one switches on/off contraction through thin filament regulation, and another through PKC constitutively Ser35 phosphorylated swaying free heads in the thick filaments that produces quick force on twitches regulated from 0 to 50% and modulation is accomplished recruiting additional force-potentiating free and blocked heads via Ca(2+)4-CaM-MLCK Ser45 phosphorylation. We have used microsecond molecular dynamics (MD) simulations of tarantula RLC NTE to understand the structural basis for phosphorylation-based regulation in tarantula thick filament activation. Trajectory analysis revealed that an inter-domain salt bridge network (R39/E58,E61) facilitates the formation of a stable helix-coil-helix (HCH) motif formed by helices P and A in the unphosphorylated NTE of both myosin heads. Phosphorylation of the blocked head on Ser45 does not induce any substantial structural changes. However, phosphorylation of the free head on Ser35 disrupts this salt bridge network and induces a partial extension of helix P along RLC helix A. While not directly participating in the HCH folding, phosphorylation of Ser35 unlocks a compact structure and allows the NTE to spontaneously undergo coil-helix transitions. The modest structural change induced by the subsequent Ser45 diphosphorylation monophosphorylated Ser35 free head facilitates full helix P extension into a single structurally stable α-helix through a network of intra-domain salt bridges (pS35/R38,R39,R42). We conclude that tarantula thick filament activation is controlled by sequential Ser35-Ser45 phosphorylation via a conserved disorder-to-order transition. PMID

  14. Sequential Myosin Phosphorylation Activates Tarantula Thick Filament via a Disorder-Order Transition

    PubMed Central

    Espinoza-Fonseca, L. Michel; Alamo, Lorenzo; Pinto, Antonio; Thomas, David D.; Padrón, Raúl

    2015-01-01

    Phosphorylation of myosin regulatory light chain (RLC) N-terminal extension (NTE) activates myosin in thick filaments. RLC phosphorylation plays a primary regulatory role in smooth muscle and a secondary (modulatory) role in striated muscle, which is regulated by Ca2+ via TnC/TM on the thin filament. Tarantula striated muscle exhibits both regulatory systems: one switches on/off contraction through thin filament regulation, and another through PKC constitutively Ser35 phosphorylated swaying free heads in the thick filaments that produces quick force on twitches regulated from 0 to 50% and modulation is accomplished recruiting additional force-potentiating free and blocked heads via Ca2+4-CaM-MLCK Ser45 phosphorylation. We have used microsecond molecular dynamics (MD) simulations of tarantula RLC NTE to understand the structural basis for phosphorylation-based regulation in tarantula thick filament activation. Trajectories analysis revealed that an inter-domain salt bridges network (R39/E58,E61) facilitates formation of a stable helix-coil-helix (HCH) motif made up by helices P and A in the unphosphorylated NTE of both myosin heads. Phosphorylation of blocked head on Ser45 does not induce any substantial structural change. However, phosphorylation of free head on Ser35 disrupts this salt bridge network and induces a partial extension of helix P along RLC helix A. While not directly participating in the HCH inter-domain folding, phosphorylation of Ser35 unlocks compact structure and allows the NTE to spontaneously undergo coil-helix transitions. The modest structural change induced by subsequent Ser45 diphosphorylation monophosphorylated Ser35 free head, facilitates full helix P extension into a single structurally stable α-helix through a network of intra-domain salt bridges (pS35/R38,R39,R42). We conclude that tarantula thick filament activation is controlled by sequential Ser35-Ser45 phosphorylation via a conserved disorder-to-order transition. PMID:26038232

  15. Lighting the universe with filaments.

    PubMed

    Gao, Liang; Theuns, Tom

    2007-09-14

    The first stars in the universe form when chemically pristine gas heats as it falls into dark-matter potential wells, cools radiatively because of the formation of molecular hydrogen, and becomes self-gravitating. Using supercomputer simulations, we demonstrated that the stars' properties depend critically on the currently unknown nature of the dark matter. If the dark-matter particles have intrinsic velocities that wipe out small-scale structure, then the first stars form in filaments with lengths on the order of the free-streaming scale, which can be approximately 10(20) meters (approximately 3 kiloparsecs, corresponding to a baryonic mass of approximately 10(7) solar masses) for realistic "warm dark matter" candidates. Fragmentation of the filaments forms stars with a range of masses, which may explain the observed peculiar element abundance pattern of extremely metal-poor stars, whereas coalescence of fragments and stars during the filament's ultimate collapse may seed the supermassive black holes that lurk in the centers of most massive galaxies. PMID:17872439

  16. Muscle biopsy

    MedlinePlus

    ... that affect the muscles (such as trichinosis or toxoplasmosis ) Muscle disorders such as muscular dystrophy or congenital ... nodosa Polymyalgia rheumatica Polymyositis - adult Thyrotoxic periodic paralysis Toxoplasmosis Trichinosis Update Date 9/8/2014 Updated by: ...

  17. Muscle Disorders

    MedlinePlus

    ... cause weakness, pain or even paralysis. Causes of muscle disorders include Injury or overuse, such as sprains or strains, cramps or tendinitis A genetic disorder, such as muscular dystrophy Some ... muscles Infections Certain medicines Sometimes the cause is not ...

  18. Z-line formins promote contractile lattice growth and maintenance in striated muscles of C. elegans

    PubMed Central

    Mi-Mi, Lei; Votra, SarahBeth; Kemphues, Kenneth; Bretscher, Anthony

    2012-01-01

    Muscle contraction depends on interactions between actin and myosin filaments organized into sarcomeres, but the mechanism by which actin filaments incorporate into sarcomeres remains unclear. We have found that, during larval development in Caenorhabditis elegans, two members of the actin-assembling formin family, CYK-1 and FHOD-1, are present in striated body wall muscles near or on sarcomere Z lines, where barbed ends of actin filaments are anchored. Depletion of either formin during this period stunted growth of the striated contractile lattice, whereas their simultaneous reduction profoundly diminished lattice size and number of striations per muscle cell. CYK-1 persisted at Z lines in adulthood, and its near complete depletion from adults triggered phenotypes ranging from partial loss of Z line–associated filamentous actin to collapse of the contractile lattice. These results are, to our knowledge, the first genetic evidence implicating sarcomere-associated formins in the in vivo organization of the muscle cytoskeleton. PMID:22753896

  19. Using Fluorescent Myosin to Directly Visualize Cooperative Activation of Thin Filaments*♦

    PubMed Central

    Desai, Rama; Geeves, Michael A.; Kad, Neil M.

    2015-01-01

    Contraction of striated muscle is tightly regulated by the release and sequestration of calcium within myocytes. At the molecular level, calcium modulates myosin's access to the thin filament. Once bound, myosin is hypothesized to potentiate the binding of further myosins. Here, we directly image single molecules of myosin binding to and activating thin filaments. Using this approach, the cooperative binding of myosin along thin filaments has been quantified. We have found that two myosin heads are required to laterally activate a regulatory unit of thin filament. The regulatory unit is found to be capable of accommodating 11 additional myosins. Three thin filament activation states possessing differential myosin binding capacities are also visible. To describe this system, we have formulated a simple chemical kinetic model of cooperative activation that holds across a wide range of solution conditions. The stochastic nature of activation is strongly highlighted by data obtained in sub-optimal activation conditions where the generation of activation waves and their catastrophic collapse can be observed. This suggests that the thin filament has the potential to be turned fully on or off in a binary fashion. PMID:25429108

  20. Analysis of flexural rigidity of actin filaments propelled by surface adsorbed myosin motors.

    PubMed

    Bengtsson, Elina; Persson, Malin; Månsson, Alf

    2013-11-01

    Actin filaments are central components of the cytoskeleton and the contractile machinery of muscle. The filaments are known to exist in a range of conformational states presumably with different flexural rigidity and thereby different persistence lengths. Our results analyze the approaches proposed previously to measure the persistence length from the statistics of the winding paths of actin filaments that are propelled by surface-adsorbed myosin motor fragments in the in vitro motility assay. Our results suggest that the persistence length of heavy meromyosin propelled actin filaments can be estimated with high accuracy and reproducibility using this approach provided that: (1) the in vitro motility assay experiments are designed to prevent bias in filament sliding directions, (2) at least 200 independent filament paths are studied, (3) the ratio between the sliding distance between measurements and the camera pixel-size is between 4 and 12, (4) the sliding distances between measurements is less than 50% of the expected persistence length, and (5) an appropriate cut-off value is chosen to exclude abrupt large angular changes in sliding direction that are complications, e.g., due to the presence of rigor heads. If the above precautions are taken the described method should be a useful routine part of in vitro motility assays thus expanding the amount of information to be gained from these. PMID:24039103

  1. Using fluorescent myosin to directly visualize cooperative activation of thin filaments.

    PubMed

    Desai, Rama; Geeves, Michael A; Kad, Neil M

    2015-01-23

    Contraction of striated muscle is tightly regulated by the release and sequestration of calcium within myocytes. At the molecular level, calcium modulates myosin's access to the thin filament. Once bound, myosin is hypothesized to potentiate the binding of further myosins. Here, we directly image single molecules of myosin binding to and activating thin filaments. Using this approach, the cooperative binding of myosin along thin filaments has been quantified. We have found that two myosin heads are required to laterally activate a regulatory unit of thin filament. The regulatory unit is found to be capable of accommodating 11 additional myosins. Three thin filament activation states possessing differential myosin binding capacities are also visible. To describe this system, we have formulated a simple chemical kinetic model of cooperative activation that holds across a wide range of solution conditions. The stochastic nature of activation is strongly highlighted by data obtained in sub-optimal activation conditions where the generation of activation waves and their catastrophic collapse can be observed. This suggests that the thin filament has the potential to be turned fully on or off in a binary fashion. PMID:25429108

  2. Modeling Muscles

    ERIC Educational Resources Information Center

    Goodwyn, Lauren; Salm, Sarah

    2007-01-01

    Teaching the anatomy of the muscle system to high school students can be challenging. Students often learn about muscle anatomy by memorizing information from textbooks or by observing plastic, inflexible models. Although these mediums help students learn about muscle placement, the mediums do not facilitate understanding regarding integration of…

  3. Mechanical properties of branched actin filaments

    NASA Astrophysics Data System (ADS)

    Razbin, Mohammadhosein; Falcke, Martin; Benetatos, Panayotis; Zippelius, Annette

    2015-07-01

    Cells moving on a two dimensional substrate generate motion by polymerizing actin filament networks inside a flat membrane protrusion. New filaments are generated by branching off existing ones, giving rise to branched network structures. We investigate the force-extension relation of branched filaments, grafted on an elastic structure at one end and pushing with the free ends against the leading edge cell membrane. Single filaments are modeled as worm-like chains, whose thermal bending fluctuations are restricted by the leading edge cell membrane, resulting in an effective force. Branching can increase the stiffness considerably; however the effect depends on branch point position and filament orientation, being most pronounced for intermediate tilt angles and intermediate branch point positions. We describe filament networks without cross-linkers to focus on the effect of branching. We use randomly positioned branch points, as generated in the process of treadmilling, and orientation distributions as measured in lamellipodia. These networks reproduce both the weak and strong force response of lamellipodia as measured in force-velocity experiments. We compare properties of branched and unbranched networks. The ratio of the network average of the force per branched filament to the average force per unbranched filament depends on the orientation distribution of the filaments. The ratio exhibits compression dependence and may go up to about 4.5 in networks with a narrow orientation distribution. With orientation distributions measured in lamellipodia, it is about two and essentially independent from network compression, graft elasticity and filament persistence length.

  4. Filamentation of Metabolic Enzymes in Saccharomyces cerevisiae.

    PubMed

    Shen, Qing-Ji; Kassim, Hakimi; Huang, Yong; Li, Hui; Zhang, Jing; Li, Guang; Wang, Peng-Ye; Yan, Jun; Ye, Fangfu; Liu, Ji-Long

    2016-06-20

    Compartmentation via filamentation has recently emerged as a novel mechanism for metabolic regulation. In order to identify filament-forming metabolic enzymes systematically, we performed a genome-wide screening of all strains available from an open reading frame-GFP collection in Saccharomyces cerevisiae. We discovered nine novel filament-forming proteins and also confirmed those identified previously. From the 4159 strains, we found 23 proteins, mostly metabolic enzymes, which are capable of forming filaments in vivo. In silico protein-protein interaction analysis suggests that these filament-forming proteins can be clustered into several groups, including translational initiation machinery and glucose and nitrogen metabolic pathways. Using glutamine-utilising enzymes as examples, we found that the culture conditions affect the occurrence and length of the metabolic filaments. Furthermore, we found that two CTP synthases (Ura7p and Ura8p) and two asparagine synthetases (Asn1p and Asn2p) form filaments both in the cytoplasm and in the nucleus. Live imaging analyses suggest that metabolic filaments undergo sub-diffusion. Taken together, our genome-wide screening identifies additional filament-forming proteins in S. cerevisiae and suggests that filamentation of metabolic enzymes is more general than currently appreciated. PMID:27312010

  5. Actin filament curvature biases branching direction

    NASA Astrophysics Data System (ADS)

    Wang, Evan; Risca, Viviana; Chaudhuri, Ovijit; Chia, Jia-Jun; Geissler, Phillip; Fletcher, Daniel

    2012-02-01

    Actin filaments are key components of the cellular machinery, vital for a wide range of processes ranging from cell motility to endocytosis. Actin filaments can branch, and essential in this process is a protein complex known as the Arp2/3 complex, which nucleate new ``daughter'' filaments from pre-existing ``mother'' filaments by attaching itself to the mother filament. Though much progress has been made in understanding the Arp2/3-actin junction, some very interesting questions remain. In particular, F-actin is a dynamic polymer that undergoes a wide range of fluctuations. Prior studies of the Arp2/3-actin junction provides a very static notion of Arp2/3 binding. The question we ask is how differently does the Arp2/3 complex interact with a straight filament compared to a bent filament? In this study, we used Monte Carlo simulations of a surface-tethered worm-like chain to explore possible mechanisms underlying the experimental observation that there exists preferential branch formation by the Arp2/3 complex on the convex face of a curved filament. We show that a fluctuation gating model in which Arp2/3 binding to the actin filament is dependent upon a rare high-local-curvature shape fluctuation of the filament is consistent with the experimental data.

  6. Mechanical properties of branched actin filaments.

    PubMed

    Razbin, Mohammadhosein; Falcke, Martin; Benetatos, Panayotis; Zippelius, Annette

    2015-07-01

    Cells moving on a two dimensional substrate generate motion by polymerizing actin filament networks inside a flat membrane protrusion. New filaments are generated by branching off existing ones, giving rise to branched network structures. We investigate the force-extension relation of branched filaments, grafted on an elastic structure at one end and pushing with the free ends against the leading edge cell membrane. Single filaments are modeled as worm-like chains, whose thermal bending fluctuations are restricted by the leading edge cell membrane, resulting in an effective force. Branching can increase the stiffness considerably; however the effect depends on branch point position and filament orientation, being most pronounced for intermediate tilt angles and intermediate branch point positions. We describe filament networks without cross-linkers to focus on the effect of branching. We use randomly positioned branch points, as generated in the process of treadmilling, and orientation distributions as measured in lamellipodia. These networks reproduce both the weak and strong force response of lamellipodia as measured in force-velocity experiments. We compare properties of branched and unbranched networks. The ratio of the network average of the force per branched filament to the average force per unbranched filament depends on the orientation distribution of the filaments. The ratio exhibits compression dependence and may go up to about 4.5 in networks with a narrow orientation distribution. With orientation distributions measured in lamellipodia, it is about two and essentially independent from network compression, graft elasticity and filament persistence length. PMID:26040560

  7. Averaged implicit hydrodynamic model of semiflexible filaments.

    PubMed

    Chandran, Preethi L; Mofrad, Mohammad R K

    2010-03-01

    We introduce a method to incorporate hydrodynamic interaction in a model of semiflexible filament dynamics. Hydrodynamic screening and other hydrodynamic interaction effects lead to nonuniform drag along even a rigid filament, and cause bending fluctuations in semiflexible filaments, in addition to the nonuniform Brownian forces. We develop our hydrodynamics model from a string-of-beads idealization of filaments, and capture hydrodynamic interaction by Stokes superposition of the solvent flow around beads. However, instead of the commonly used first-order Stokes superposition, we do an equivalent of infinite-order superposition by solving for the true relative velocity or hydrodynamic velocity of the beads implicitly. We also avoid the computational cost of the string-of-beads idealization by assuming a single normal, parallel and angular hydrodynamic velocity over sections of beads, excluding the beads at the filament ends. We do not include the end beads in the averaging and solve for them separately instead, in order to better resolve the drag profiles along the filament. A large part of the hydrodynamic drag is typically concentrated at the filament ends. The averaged implicit hydrodynamics methods can be easily incorporated into a string-of-rods idealization of semiflexible filaments that was developed earlier by the authors. The earlier model was used to solve the Brownian dynamics of semiflexible filaments, but without hydrodynamic interactions incorporated. We validate our current model at each stage of development, and reproduce experimental observations on the mean-squared displacement of fluctuating actin filaments . We also show how hydrodynamic interaction confines a fluctuating actin filament between two stationary lateral filaments. Finally, preliminary examinations suggest that a large part of the observed velocity in the interior segments of a fluctuating filament can be attributed to induced solvent flow or hydrodynamic screening. PMID:20365783

  8. A penny-shaped crack in a filament reinforced matrix. 1: The filament model

    NASA Technical Reports Server (NTRS)

    Erdogan, F.; Pacella, A. H.

    1973-01-01

    The electrostatic problem of a penny-shaped crack in an elastic matrix which reinforced by filaments or fibers perpendicular to the plane of the crack was studied. The elastic filament model was developed for application to evaluation studies of the stress intensity factor along the periphery of the crack, the stresses in the filaments or fibers, and the interface shear between the matrix and the filaments or fibers. The requirements expected of the model are a sufficiently accurate representation of the filament and applicability to the interaction problems involving a cracked elastic continuum with multi-filament reinforcements. The technique for developing the model and numerical examples of it are shown.

  9. Diagnosis of femtosecond plasma filament by channeling microwaves along the filament

    NASA Astrophysics Data System (ADS)

    Alshershby, Mostafa; Ren, Yu; Qin, Jiang; Hao, Zuoqiang; Lin, Jingquan

    2013-05-01

    We introduce a simple, fast, and non-intrusive experimental method to obtain the basic parameters of femtosecond laser-generated plasma filament. The method is based on the channeling of microwaves along both a plasma filament and a well-defined conducting wire. By comparing the detected microwaves that propagate along the plasma filament and a copper wire with known conductivity and spatial dimension, the basic parameters of the plasma filament can be easily obtained. As a result of the possibility of channeling microwave radiation along the plasma filament, we were then able to obtain the plasma density distribution along the filament length.

  10. Diagnosis of femtosecond plasma filament by channeling microwaves along the filament

    SciTech Connect

    Alshershby, Mostafa; Ren, Yu; Qin, Jiang; Hao, Zuoqiang; Lin, Jingquan

    2013-05-20

    We introduce a simple, fast, and non-intrusive experimental method to obtain the basic parameters of femtosecond laser-generated plasma filament. The method is based on the channeling of microwaves along both a plasma filament and a well-defined conducting wire. By comparing the detected microwaves that propagate along the plasma filament and a copper wire with known conductivity and spatial dimension, the basic parameters of the plasma filament can be easily obtained. As a result of the possibility of channeling microwave radiation along the plasma filament, we were then able to obtain the plasma density distribution along the filament length.

  11. Arginylation of myosin heavy chain regulates skeletal muscle strength

    PubMed Central

    Cornachione, Anabelle S.; Leite, Felipe S.; Wang, Junling; Leu, Nicolae A.; Kalganov, Albert; Volgin, Denys; Han, Xuemei; Xu, Tao; Cheng, Yu-Shu; Yates, John R. R.; Rassier, Dilson E.; Kashina, Anna

    2014-01-01

    Protein arginylation is a post-translational modification with an emerging global role in the regulation of actin cytoskeleton. To test the role of arginylation in the skeletal muscle, we generated a mouse model with Ate1 knockout driven by skeletal muscle-specific creatine kinase (Ckmm) promoter. Such Ckmm-Ate1 mice were viable and outwardly normal, however their skeletal muscle strength was significantly reduced compared to the control. Mass spectrometry of the isolated skeletal myofibrils showed a limited set of proteins arginylated on specific sites, including myosin heavy chain. Atomic force microscopy measurements of the contractile strength in individual myofibrils and isolated myosin filaments from these mice showed a significant reduction of contractile forces, which, in the case of the myosin filaments could be fully rescued by re-arginylation with purified Ate1. Our results demonstrate that arginylation regulates force production in the muscle and exerts a direct effect on muscle strength through arginylation of myosin. PMID:25017061

  12. The specificity of the interaction between αB-crystallin and desmin filaments and its impact on filament aggregation and cell viability

    PubMed Central

    Elliott, Jayne L.; Der Perng, Ming; Prescott, Alan R.; Jansen, Karin A.; Koenderink, Gijsje H.; Quinlan, Roy A.

    2013-01-01

    CRYAB (αB-crystallin) is expressed in many tissues and yet the R120G mutation in CRYAB causes tissue-specific pathologies, namely cardiomyopathy and cataract. Here, we present evidence to demonstrate that there is a specific functional interaction of CRYAB with desmin intermediate filaments that predisposes myocytes to disease caused by the R120G mutation. We use a variety of biochemical and biophysical techniques to show that plant, animal and ascidian small heat-shock proteins (sHSPs) can interact with intermediate filaments. Nevertheless, the mutation R120G in CRYAB does specifically change that interaction when compared with equivalent substitutions in HSP27 (R140G) and into the Caenorhabditis elegans HSP16.2 (R95G). By transient transfection, we show that R120G CRYAB specifically promotes intermediate filament aggregation in MCF7 cells. The transient transfection of R120G CRYAB alone has no significant effect upon cell viability, although bundling of the endogenous intermediate filament network occurs and the mitochondria are concentrated into the perinuclear region. The combination of R120G CRYAB co-transfected with wild-type desmin, however, causes a significant reduction in cell viability. Therefore, we suggest that while there is an innate ability of sHSPs to interact with and to bind to intermediate filaments, it is the specific combination of desmin and CRYAB that compromises cell viability and this is potentially the key to the muscle pathology caused by the R120G CRYAB. PMID:23530264

  13. Femtosecond Laser Filamentation for Atmospheric Sensing

    PubMed Central

    Xu, Huai Liang; Chin, See Leang

    2011-01-01

    Powerful femtosecond laser pulses propagating in transparent materials result in the formation of self-guided structures called filaments. Such filamentation in air can be controlled to occur at a distance as far as a few kilometers, making it ideally suited for remote sensing of pollutants in the atmosphere. On the one hand, the high intensity inside the filaments can induce the fragmentation of all matters in the path of filaments, resulting in the emission of characteristic fluorescence spectra (fingerprints) from the excited fragments, which can be used for the identification of various substances including chemical and biological species. On the other hand, along with the femtosecond laser filamentation, white-light supercontinuum emission in the infrared to UV range is generated, which can be used as an ideal light source for absorption Lidar. In this paper, we present an overview of recent progress concerning remote sensing of the atmosphere using femtosecond laser filamentation. PMID:22346566

  14. The nonlinear evolution of magnetized solar filaments

    NASA Technical Reports Server (NTRS)

    Sparks, L.; Van Hoven, G.; Schnack, D. D.

    1990-01-01

    Thermal instability driven by optically thin radiation is believed to initiate the formation of plasma filaments in the solar corona. The fact that filaments are observed generally to separate regions of opposite, line-of-sight, magnetic polarity in the underlying photosphere suggests that filament formation requires the presence of a highly sheared, local magnetic field. Two-dimensional, nonlinear, magnetohydrodynamic simulations of the local genesis and growth of solar filaments in a force-free, sheared, magnetic field were performed, and the evolution of generic perturbations possessing broad spatial profiles was traced. It was found that simulations of the evolution of initial random-noise perturbations produce filamentary plasma structures that exhibit densities and temperatures characteristic of observed solar filaments. Furthermore, in each of these simulations, the filament axis lies at a finite angle with respect to the local magnetic field, consistent with solar observations.

  15. Evolution of Barb Angle and Filament Eruption

    NASA Astrophysics Data System (ADS)

    Su, J. T.; Liu, Y.; Zhang, H. Q.; Kurokawa, H.; Yurchyshyn, V.; Shibata, K.; Bao, X. M.; Wang, G. P.; Li, C.

    2005-09-01

    Hα observations of a quiescent U-shaped filament were obtained at Big Bear Solar Observatory and at Hida Observatory with the Flare Monitoring Telescope. The filament was located in the southern hemisphere on 1998 November 4. We study the evolution of the angle of a barb with respect to the axis of the filament and find the evolution can be divided into two phases: a rise from the acute phase to the obtuse phase and a fall. Thus, this indicates that the chirality of this barb changes with time. Moreover, in the process of evolution, we find that interconnection of the part of the filament bearing the barb with the whole filament became either weakened or strengthened. We impute the final eruption of the filament to the chirality evolution of the barb.

  16. Motion, decay and merging of vortex filaments

    NASA Technical Reports Server (NTRS)

    Liu, C. H.; Ting, L.

    1988-01-01

    The asymptotic solutions of Navier-Stokes equations for vortex filaments of finite strength with small effective vortical cores are summarized. Emphases are placed on the physical meaning and the practical limit to the applicability of the asymptotic solution. Finite-difference solutions of Navier-Stokes equations for the merging of the filament(s) are described. It is focused on the development of the approximate boundary conditions for the computational domain.

  17. Remote electrical arc suppression by laser filamentation.

    PubMed

    Schubert, Elise; Mongin, Denis; Kasparian, Jérôme; Wolf, Jean-Pierre

    2015-11-01

    We investigate the interaction of narrow plasma channels formed in the filamentation of ultrashort laser pulses, with a DC high voltage. The laser filaments prevent electrical arcs by triggering corona that neutralize the high-voltage electrodes. This phenomenon, that relies on the electric field modulation and free electron release around the filament, opens new prospects to lightning and over-voltage mitigation. PMID:26561133

  18. How bio-filaments twist membranes.

    PubMed

    Fierling, Julien; Johner, Albert; Kulić, Igor M; Mohrbach, Hervé; Müller, Martin Michael

    2016-06-29

    We study the deformations of a fluid membrane imposed by adhering stiff bio-filaments due to the torques they apply. In the limit of small deformations, we derive a general expression for the energy and the deformation field of the membrane. This expression is specialised to different important cases including closed and helical bio-filaments. In particular, we analyse interface-mediated interactions and membrane wrapping when the filaments apply a local torque distribution on a tubular membrane. PMID:27291854

  19. Self-Organization of Treadmilling Filaments

    NASA Astrophysics Data System (ADS)

    Doubrovinski, K.; Kruse, K.

    2007-11-01

    The cytoskeleton is an active network of polar filaments. The activity can lead to the polymerization of filaments at one end and depolymerization at the other. This phenomenon is called treadmilling and is essential for many cellular processes, in particular, the crawling of cells on a substrate. We develop a microscopic theoretical framework for describing systems of treadmilling filaments. We show that such systems can self-organize into structures observed in cell fragments, in particular, asters and moving spots.

  20. Methods for modeling cytoskeletal and DNA filaments

    NASA Astrophysics Data System (ADS)

    Andrews, Steven S.

    2014-02-01

    This review summarizes the models that researchers use to represent the conformations and dynamics of cytoskeletal and DNA filaments. It focuses on models that address individual filaments in continuous space. Conformation models include the freely jointed, Gaussian, angle-biased chain (ABC), and wormlike chain (WLC) models, of which the first three bend at discrete joints and the last bends continuously. Predictions from the WLC model generally agree well with experiment. Dynamics models include the Rouse, Zimm, stiff rod, dynamic WLC, and reptation models, of which the first four apply to isolated filaments and the last to entangled filaments. Experiments show that the dynamic WLC and reptation models are most accurate. They also show that biological filaments typically experience strong hydrodynamic coupling and/or constrained motion. Computer simulation methods that address filament dynamics typically compute filament segment velocities from local forces using the Langevin equation and then integrate these velocities with explicit or implicit methods; the former are more versatile and the latter are more efficient. Much remains to be discovered in biological filament modeling. In particular, filament dynamics in living cells are not well understood, and current computational methods are too slow and not sufficiently versatile. Although primarily a review, this paper also presents new statistical calculations for the ABC and WLC models. Additionally, it corrects several discrepancies in the literature about bending and torsional persistence length definitions, and their relations to flexural and torsional rigidities.

  1. Actively Contracting Bundles of Polar Filaments

    NASA Astrophysics Data System (ADS)

    Kruse, K.; Jülicher, F.

    2000-08-01

    We introduce a phenomenological model to study the properties of bundles of polar filaments which interact via active elements. The stability of the homogeneous state, the attractors of the dynamics in the unstable regime, and the tensile stress generated in the bundle are discussed. We find that the interaction of parallel filaments can induce unstable behavior and is responsible for active contraction and tension in the bundle. The interaction between antiparallel filaments leads to filament sorting. Our model could apply to simple contractile structures in cells such as stress fibers.

  2. Recent observations of the formation of filaments

    NASA Astrophysics Data System (ADS)

    Martin, Sara F.

    1986-12-01

    Two examples of the formation of small filaments in H alpha are described and illustrated. In both cases, the formation is seen to be the spontaneous appearance of strands of absorbing mass that evolve from no previous structure. The initial development of the filaments appears to consist of the accumulation of these absorptive strands along approximately parallel paths in a channel between large-scale, opposite polarity magnetic fields on either side of the filaments. The strands exhibit continuous changes in shape and degree of absorption which can be due to successive condensations resulting in new strands, mass motions within the strands, and outflow of the mass from the strands. For at least several hours before the formation of both filaments, small-scale fragments of opposite polarity, line-of-sight magnetic flux adjacent to or immediately below the filaments, and at the ends of the filaments, were cancelling. This type of magnetic flux disappearance continued during the development of the filaments and is commonly observed in association with established filaments. Cancellation is interpreted as an important evolutionary change in the magnetic field that can lead to configurations suitable for the formation of filaments.

  3. Measurement of birefringence inside a filament

    SciTech Connect

    Yuan Shuai; Wang, Tie-Jun; Chin, See Leang; Kosareva, Olga; Panov, Nikolay; Makarov, Vladimir; Zeng Heping

    2011-07-15

    We quantified the ultrafast birefringence induced in the filament in an atomic gas by measuring the filament-induced polarization rotation of a probe pulse. Based on the dephasing of the probe's orthogonal polarization components in argon, the experiment was done at 1 atm by copropagating a linearly polarized 400-nm probe pulse with an 800-nm pump pulse which generated the filament. The probe's elliptical polarization states were shown under various initial pump-probe polarization schemes. These states were verified by comparing the filament-induced probe polarization rotation angle and the ellipticity of the probe polarization.

  4. Chaperonin filaments: The archaeal cytoskeleton?

    PubMed Central

    Trent, Jonathan D.; Kagawa, Hiromi K.; Yaoi, Takuro; Olle, Eric; Zaluzec, Nestor J.

    1997-01-01

    Chaperonins are high molecular mass double-ring structures composed of 60-kDa protein subunits. In the hyperthermophilic archaeon Sulfolobus shibatae the two chaperonin proteins represent ≈4% of its total protein and have a combined intracellular concentration of >30 mg/ml. At concentrations ≥ 0.5 mg/ml purified chaperonins form filaments in the presence of Mg2+ and nucleotides. Filament formation requires nucleotide binding (not hydrolysis), and occurs at physiological temperatures in biologically relevant buffers, including a buffer made from cell extracts. These observations suggest that chaperonin filaments may exist in vivo and the estimated 4600 chaperonins per cell suggest that such filaments could form an extensive cytostructure. We observed filamentous structures in unfixed, uranyl-acetate-stained S. shibatae cells, which resemble the chaperonin filaments in size and appearance. ImmunoGold (Janssen) labeling using chaperonin antibodies indicated that many chaperonins are associated with insoluble cellular structures and these structures appear to be filamentous in some areas, although they could not be uranyl-acetate-stained. The existence of chaperonin filaments in vivo suggests a mechanism whereby their protein-folding activities can be regulated. More generally, the filaments themselves may play a cytoskeletal role in Archaea. PMID:9144246

  5. Observations of an active region filament

    NASA Astrophysics Data System (ADS)

    Zong, W. G.; Tang, Y. H.; Fang, C.; Xu, A. A.

    An active region filament was well observed on September 4, 2002 with THEMIS at the Teide observatory and SOHO/MDI. The full Stokes parameters of the filament were obtained in Hα and FeI 6302 Å lines. Using the data, we have studied the fine structure of the filament and obtained the parameters at the barb endpoints, including intensity, velocity and longitudinal magnetic field. Our results indicate: (a) the Doppler velocities are quiet different at barb endpoints; (b) the longitudinal magnetic fields at the barb endpoints are very weak; (c) there is a strong magnetic field structure under the filament spine.

  6. Probing the Physical Structures of Dense Filaments

    NASA Astrophysics Data System (ADS)

    Li, Di

    2015-08-01

    Filament is a common feature in cosmological structures of various scales, ranging from dark matter cosmic web, galaxy clusters, inter-galactic gas flows, to Galactic ISM clouds. Even within cold dense molecular cores, filaments have been detected. Theories and simulations with (or without) different combination of physical principles, including gravity, thermal balance, turbulence, and magnetic field, can reproduce intriguing images of filaments. The ubiquity of filaments and the similarity in simulated ones make physical parameters, beyond dust column density, a necessity for understanding filament evolution. I report three projects attempting to measure physical parameters of filaments. We derive the volume density of a dense Taurus filament based on several cyanoacetylene transitions observed by GBT and ART. We measure the gas temperature of the OMC 2-3 filament based on combined GBT+VLA ammonia images. We also measured the sub-millimeter polarization vectors along OMC3. These filaments were found to be likely a cylinder-type structure, without dynamic heating, and likely accreting mass along the magnetic field lines.

  7. Comparative decline of the protein profiles of nebulin in response to denervation in skeletal muscle.

    PubMed

    Wei, Jih-Hua; Chang, Nen-Chung; Chen, Sy-Ping; Geraldine, Pitchairaj; Jayakumar, Thanasekaran; Fong, Tsorng-Harn

    2015-10-01

    The sliding filament model of the sarcomere was developed more than half a century ago. This model, consisting only of thin and thick filaments, has been efficacious in elucidating many, but not all, features of skeletal muscle. Work during the 1980s revealed the existence of two additional filaments: the giant filamentous proteins titin and nebulin. Nebulin, a giant myofibrillar protein, acts as a protein ruler to maintain the lattice arrays of thin filaments and plays a role in signal transduction and contractile regulation. However, the change of nebulin and its effect on thin filaments in denervation-induced atrophic muscle remains unclear. The purpose of this study is to examine the content and pattern of nebulin, myosin heavy chain (MHC), actin, and titin in innervated and denervated tibialis anterior (TA) muscles of rats using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), densitometry and electron microscopic (EM) analyses. The results revealed that denervation induced muscle atrophy is accompanied by decreased nebulin content in a time-dependent manner. For instant, the levels of nebulin in denervated muscles were markedly (P < 0.05) decreased, about 24.6% and 40.2% in comparison with innervated muscle after denervation of 28 and 56 days, respectively. The nebulin/MHC, nebulin/actin, and nebulin/titin ratios were decreased, suggesting a concomitant reduction of nebulin in denervated muscle. Moreover, a western blotting assay proved that nebulin declined faster than titin on 28 and 56 days of denervated muscle. In addition, EM study revealed that the disturbed arrangements of myofilaments and a disorganized contractile apparatus were also observed in denervated muscle. Overall, the present study provides evidence that nebulin is more sensitive to the effect of denervation than MHC, actin, and titin. Nebulin decline indeed resulted in disintegrate of thin filaments and shortening of sarcomeres. PMID:26325472

  8. Mechanism of intermediate filament recognition by plakin repeat domains revealed by envoplakin targeting of vimentin

    PubMed Central

    Fogl, Claudia; Mohammed, Fiyaz; Al-Jassar, Caezar; Jeeves, Mark; Knowles, Timothy J.; Rodriguez-Zamora, Penelope; White, Scott A.; Odintsova, Elena; Overduin, Michael; Chidgey, Martyn

    2016-01-01

    Plakin proteins form critical connections between cell junctions and the cytoskeleton; their disruption within epithelial and cardiac muscle cells cause skin-blistering diseases and cardiomyopathies. Envoplakin has a single plakin repeat domain (PRD) which recognizes intermediate filaments through an unresolved mechanism. Herein we report the crystal structure of envoplakin's complete PRD fold, revealing binding determinants within its electropositive binding groove. Four of its five internal repeats recognize negatively charged patches within vimentin via five basic determinants that are identified by nuclear magnetic resonance spectroscopy. Mutations of the Lys1901 or Arg1914 binding determinants delocalize heterodimeric envoplakin from intracellular vimentin and keratin filaments in cultured cells. Recognition of vimentin is abolished when its residues Asp112 or Asp119 are mutated. The latter slot intermediate filament rods into basic PRD domain grooves through electrosteric complementarity in a widely applicable mechanism. Together this reveals how plakin family members form dynamic linkages with cytoskeletal frameworks. PMID:26935805

  9. Mechanism of intermediate filament recognition by plakin repeat domains revealed by envoplakin targeting of vimentin

    NASA Astrophysics Data System (ADS)

    Fogl, Claudia; Mohammed, Fiyaz; Al-Jassar, Caezar; Jeeves, Mark; Knowles, Timothy J.; Rodriguez-Zamora, Penelope; White, Scott A.; Odintsova, Elena; Overduin, Michael; Chidgey, Martyn

    2016-03-01

    Plakin proteins form critical connections between cell junctions and the cytoskeleton; their disruption within epithelial and cardiac muscle cells cause skin-blistering diseases and cardiomyopathies. Envoplakin has a single plakin repeat domain (PRD) which recognizes intermediate filaments through an unresolved mechanism. Herein we report the crystal structure of envoplakin's complete PRD fold, revealing binding determinants within its electropositive binding groove. Four of its five internal repeats recognize negatively charged patches within vimentin via five basic determinants that are identified by nuclear magnetic resonance spectroscopy. Mutations of the Lys1901 or Arg1914 binding determinants delocalize heterodimeric envoplakin from intracellular vimentin and keratin filaments in cultured cells. Recognition of vimentin is abolished when its residues Asp112 or Asp119 are mutated. The latter slot intermediate filament rods into basic PRD domain grooves through electrosteric complementarity in a widely applicable mechanism. Together this reveals how plakin family members form dynamic linkages with cytoskeletal frameworks.

  10. Force-Induced Dynamical Properties of Multiple Cytoskeletal Filaments Are Distinct from that of Single Filaments

    PubMed Central

    Das, Dipjyoti; Das, Dibyendu; Padinhateeri, Ranjith

    2014-01-01

    How cytoskeletal filaments collectively undergo growth and shrinkage is an intriguing question. Collective properties of multiple bio-filaments (actin or microtubules) undergoing hydrolysis have not been studied extensively earlier within simple theoretical frameworks. In this paper, we study the collective dynamical properties of multiple filaments under force, and demonstrate the distinct properties of a multi-filament system in comparison to a single filament. Comparing stochastic simulation results with recent experimental data, we show that multi-filament collective catastrophes are slower than catastrophes of single filaments. Our study also shows further distinctions as follows: (i) force-dependence of the cap-size distribution of multiple filaments are quantitatively different from that of single filaments, (ii) the diffusion constant associated with the system length fluctuations is distinct for multiple filaments, and (iii) switching dynamics of multiple filaments between capped and uncapped states and the fluctuations therein are also distinct. We build a unified picture by establishing interconnections among all these collective phenomena. Additionally, we show that the collapse times during catastrophes can be sharp indicators of collective stall forces exceeding the additive contributions of single filaments. PMID:25531397

  11. Microcyle conidiation in filamentous fungi.

    PubMed

    Jung, Boknam; Kim, Soyeon; Lee, Jungkwan

    2014-03-01

    The typical life cycle of filamentous fungi commonly involves asexual sporulation after vegetative growth in response to environmental factors. The production of asexual spores is critical in the life cycle of most filamentous fungi. Normally, conidia are produced from vegetative hyphae (termed mycelia). However, fungal species subjected to stress conditions exhibit an extremely simplified asexual life cycle, in which the conidia that germinate directly generate further conidia, without forming mycelia. This phenomenon has been termed as microcycle conidiation, and to date has been reported in more than 100 fungal species. In this review, first, we present the morphological properties of fungi during microcycle conidiation, and divide microcycle conidiation into four simple categories, even though fungal species exhibit a wide variety of morphological differences during microcycle conidiogenesis. Second, we describe the factors that influence microcycle conidiation in various fungal species, and present recent genetic studies that have identified the genes responsible for this process. Finally, we discuss the biological meaning and application of microcycle conidiation. PMID:24808726

  12. Filamentation with nonlinear Bessel vortices.

    PubMed

    Jukna, V; Milián, C; Xie, C; Itina, T; Dudley, J; Courvoisier, F; Couairon, A

    2014-10-20

    We present a new type of ring-shaped filaments featured by stationary nonlinear high-order Bessel solutions to the laser beam propagation equation. Two different regimes are identified by direct numerical simulations of the nonlinear propagation of axicon focused Gaussian beams carrying helicity in a Kerr medium with multiphoton absorption: the stable nonlinear propagation regime corresponds to a slow beam reshaping into one of the stationary nonlinear high-order Bessel solutions, called nonlinear Bessel vortices. The region of existence of nonlinear Bessel vortices is found semi-analytically. The influence of the Kerr nonlinearity and nonlinear losses on the beam shape is presented. Direct numerical simulations highlight the role of attractors played by nonlinear Bessel vortices in the stable propagation regime. Large input powers or small cone angles lead to the unstable propagation regime where nonlinear Bessel vortices break up into an helical multiple filament pattern or a more irregular structure. Nonlinear Bessel vortices are shown to be sufficiently intense to generate a ring-shaped filamentary ionized channel in the medium which is foreseen as opening the way to novel applications in laser material processing of transparent dielectrics. PMID:25401574

  13. Microcyle Conidiation in Filamentous Fungi

    PubMed Central

    Jung, Boknam; Kim, Soyeon

    2014-01-01

    The typical life cycle of filamentous fungi commonly involves asexual sporulation after vegetative growth in response to environmental factors. The production of asexual spores is critical in the life cycle of most filamentous fungi. Normally, conidia are produced from vegetative hyphae (termed mycelia). However, fungal species subjected to stress conditions exhibit an extremely simplified asexual life cycle, in which the conidia that germinate directly generate further conidia, without forming mycelia. This phenomenon has been termed as microcycle conidiation, and to date has been reported in more than 100 fungal species. In this review, first, we present the morphological properties of fungi during microcycle conidiation, and divide microcycle conidiation into four simple categories, even though fungal species exhibit a wide variety of morphological differences during microcycle conidiogenesis. Second, we describe the factors that influence microcycle conidiation in various fungal species, and present recent genetic studies that have identified the genes responsible for this process. Finally, we discuss the biological meaning and application of microcycle conidiation. PMID:24808726

  14. A Statistical Study of Solar Filament Eruptions

    NASA Astrophysics Data System (ADS)

    Schanche, Nicole; Aggarwal, Ashna; Reeves, Kathy; Kempton, Dustin James; Angryk, Rafal

    2016-05-01

    Solar filaments are cool, dark channels of partially-ionized plasma that lie above the chromosphere. Their structure follows the neutral line between local regions of opposite magnetic polarity. Previous research (e.g. Schmieder et al. 2013, McCauley et al. 2015) has shown a positive correlation (70-80%) between the occurrence of filament eruptions and coronal mass ejections (CME’s). In this study, we attempt to use properties of the filament in order to predict whether or not a given filament will erupt. This prediction would help to better predict the occurrence of an oncoming CME. To track the evolution of a filament over time, a spatio-temporal algorithm that groups separate filament instances from the Heliophysics Event Knowledgebase (HEK) into filament tracks was developed. Filament features from the HEK metadata, such as length, chirality, and tilt are then combined with other physical features, such as the overlying decay index for two sets of filaments tracks - those that erupt and those that remain bound. Using statistical methods such as the Kolmogrov-Smirnov test and a Random Forest Classifier, we determine the effectiveness of the combined features in prediction. We conclude that there is significant overlap between the properties of filaments that erupt and those that do not, leading to predictions only ~5-10% above chance. However, the changes in features, such as a change in the filament's length over time, were determined to have the highest predictive power. We discuss the possible physical connections with the change in these features."This project has been supported by funding from the Division of Advanced Cyberinfrastructure within the Directorate for Computer and Information Science and Engineering, the Division of Astronomical Sciences within the Directorate for Mathematical and Physical Sciences, and the Division of Atmospheric and Geospace Sciences within the Directorate for Geosciences, under NSF award #1443061.”

  15. Cryo-EM structures of the actin:tropomyosin filament reveal the mechanism for the transition from C- to M-state.

    PubMed

    Sousa, Duncan R; Stagg, Scott M; Stroupe, M Elizabeth

    2013-11-15

    Tropomyosin (Tm) is a key factor in the molecular mechanisms that regulate the binding of myosin motors to actin filaments (F-Actins) in most eukaryotic cells. This regulation is achieved by the azimuthal repositioning of Tm along the actin (Ac):Tm:troponin (Tn) thin filament to block or expose myosin binding sites on Ac. In striated muscle, including involuntary cardiac muscle, Tm regulates muscle contraction by coupling Ca(2+) binding to Tn with myosin binding to the thin filament. In smooth muscle, the switch is the posttranslational modification of the myosin. Depending on the activation state of Tn and the binding state of myosin, Tm can occupy the blocked, closed, or open position on Ac. Using native cryogenic 3DEM (three-dimensional electron microscopy), we have directly resolved and visualized cardiac and gizzard muscle Tm on filamentous Ac in the position that corresponds to the closed state. From the 8-Å-resolution structure of the reconstituted Ac:Tm filament formed with gizzard-derived Tm, we discuss two possible mechanisms for the transition from closed to open state and describe the role Tm plays in blocking myosin tight binding in the closed-state position. PMID:24021812

  16. Growth of filaments and saturation of the filamentation instability

    SciTech Connect

    Gedalin, M.; Medvedev, M.; Spitkovsky, A.; Krasnoselskikh, V.; Vaivads, A.; Perri, S.

    2010-03-15

    The filamentation instability of counterstreaming beams is a nonresonant hydrodynamic-type instability whose growth rate is a smooth function of the wavelength (scale). As a result, perturbations with all unstable wavelengths develop, and the growth saturates due to the saturation of available current. For a given scale, the magnetic field at saturation is proportional to the scale. As a result, the instability develops in a nearly linear regime, where the unstable modes stop growing as soon as the saturation of the corresponding wavelength is reached. At each moment there exists a dominant scale of the magnetic field which is the scale that reached saturation at this particular time. The smaller scales do not disappear and can be easily distinguished in the current structure. The overall growth of the instability stops when the loss of the streaming ion energy because of deceleration is comparable to the initial ion energy.

  17. Fast skeletal muscle troponin T increases the cooperativity of transgenic mouse cardiac muscle contraction

    PubMed Central

    Huang, Qi-Quan; Brozovich, Frank V; Jin, Jian-Ping

    1999-01-01

    To investigate the functional significance of different troponin T (TnT) isoforms in the Ca2+ activation of muscle contraction, transgenic mice have been constructed with a chicken fast skeletal muscle TnT transgene driven by a cardiac α-myosin heavy chain gene promoter. Cardiac muscle-specific expression of the fast skeletal muscle TnT has been obtained with significant myofibril incorporation. Expression of the endogenous cardiac muscle thin filament regulatory proteins, such as troponin I and tropomyosin, was not altered in the transgenic mouse heart, providing an authentic system for the functional characterization of TnT isoforms. Cardiac muscle contractility was analysed for the force vs. Ca2+ relationship in skinned ventricular trabeculae of transgenic mice in comparison with wild-type litter-mates. The results showed unchanged pCa50 values (5.1 ± 0.04 and 5.1 ± 0.1, respectively) but significantly steeper slopes (the Hill coefficient was 2.0 ± 0.2 vs. 1.0 ± 0.2, P < 0.05). The results demonstrate that the structural and functional variation of different TnT isoforms may contribute to the difference in responsiveness and overall cooperativity of the thin filament-based Ca2+ regulation between cardiac and skeletal muscles. PMID:10517814

  18. Myopathy-inducing mutation H40Y in ACTA1 hampers actin filament structure and function.

    PubMed

    Chan, Chun; Fan, Jun; Messer, Andrew E; Marston, Steve B; Iwamoto, Hiroyuki; Ochala, Julien

    2016-08-01

    In humans, more than 200 missense mutations have been identified in the ACTA1 gene. The exact molecular mechanisms by which, these particular mutations become toxic and lead to muscle weakness and myopathies remain obscure. To address this, here, we performed a molecular dynamics simulation, and we used a broad range of biophysical assays to determine how the lethal and myopathy-related H40Y amino acid substitution in actin affects the structure, stability, and function of this protein. Interestingly, our results showed that H40Y severely disrupts the DNase I-binding-loop structure and actin filaments. In addition, we observed that normal and mutant actin monomers are likely to form distinctive homopolymers, with mutant filaments being very stiff, and not supporting proper myosin binding. These phenomena underlie the toxicity of H40Y and may be considered as important triggering factors for the contractile dysfunction, muscle weakness and disease phenotype seen in patients. PMID:27112274

  19. Scanning For Hotspots In Lamp Filaments

    NASA Technical Reports Server (NTRS)

    Powers, Charles E.; Van Sant, Tim; Leidecker, Henning

    1993-01-01

    Scanning photometer designed for use in investigation of failures of incandescent lamp filaments. Maps brightness as function of position along each filament to identify bright (hot) spots, occurring at notches and signifying incipient breaks or rewelds. Also used to measure nonuniformity in outputs of such linear devices as light-emitting diodes, and to measure diffraction patterns of lenses.

  20. Scaling laws for laser-induced filamentation

    NASA Astrophysics Data System (ADS)

    Zhokhov, P. A.; Zheltikov, A. M.

    2014-04-01

    Despite all the complexity of the underlying nonlinear physics, the filamentation of ultrashort optical field wave forms is shown to obey a set of physically transparent scaling laws. This scaling is applicable within a remarkably broad range of laser powers, pulse widths, gas pressures, and propagation paths, suggesting specific recipes for the power scaling of filamentation-based pulse compression.

  1. Process for making silver metal filaments

    SciTech Connect

    Bamberger, C.E.

    1998-04-01

    This invention relates to a process for making filaments of metal compounds and more particularly to a process for making silver metal filaments. The United States Government has rights to this invention pursuant to Contract No. DE-AC05-8421400 with Lockheed Martin Energy Systems, Inc. awarded by the US Department of Energy.

  2. One Half Million Mile Solar Filament

    NASA Video Gallery

    NASA’s Solar Dynamics Observatory (SDO) captures a very long, whip-like solar filament extending over half a million miles in a long arc above the sun’s surface. Filaments are cooler clouds of ...

  3. A First Approach to Filament Dynamics

    ERIC Educational Resources Information Center

    Silva, P. E. S.; de Abreu, F. Vistulo; Simoes, R.; Dias, R. G.

    2010-01-01

    Modelling elastic filament dynamics is a topic of high interest due to the wide range of applications. However, it has reached a high level of complexity in the literature, making it unaccessible to a beginner. In this paper we explain the main steps involved in the computational modelling of the dynamics of an elastic filament. We first derive…

  4. How cofilin severs an actin filament.

    PubMed

    De La Cruz, Enrique M

    2009-05-15

    The actin regulatory protein, cofilin, promotes actin assembly dynamics by severing filaments and increasing the number of ends from which subunits add and dissociate. Recent studies provide biophysical descriptions of cooperative filament interactions in energetic, mechanical and structural terms. A one-dimensional Ising model with nearest-neighbor interactions permits thermodynamic analysis of cooperative binding and indicates that one or a few cofilin molecules can sever a filament. Binding and cooperative interactions are entropically driven. A significant fraction of the binding free energy results from the linked dissociation of filament-associated ions (polyelectrolyte effect), which modulate filament structure, stability and mechanics. The remaining binding free energy and essentially all of the cooperative free energy arise from the enhanced conformational dynamics of the cofilactin complex. Filament mechanics are modulated by cofilin such that cofilin-saturated filaments are approximately 10- to 20-fold more compliant in bending and twisting than bare filaments. Cofilin activity is well described by models in which discontinuities in topology, mechanics and conformational dynamics generate stress concentration and promote fracture at junctions of bare and decorated segments, analogous to the grain boundary fracture of crystalline materials and the thermally driven formation of shear transformation zones in colloidal glass. PMID:20700473

  5. Filament-induced laser machining (FILM)

    NASA Astrophysics Data System (ADS)

    Kiselev, D.; Woeste, L.; Wolf, J.-P.

    2010-09-01

    Laser filamentation provides high intensity plasma strings of micrometric diameters and lengths of tens of centimeters. We demonstrate that these filaments can be used for remotely drilling and cutting metals and biological materials such as flesh and bones. Since no tight focusing is needed, complex 3D shapes can be machined without any adjustment of the laser while processing.

  6. Lamp automatically switches to new filament on burnout

    NASA Technical Reports Server (NTRS)

    Ingle, W. B.

    1966-01-01

    Lamp with primary and secondary filaments has a means for automatic switching to the secondary filament at primary filament burnout. Lamp failures and resultant expenses during oscillograph printing are appreciably reduced.

  7. Hydrodynamics of pairs of interacting cytoskeletal filaments

    NASA Astrophysics Data System (ADS)

    Shinar, Tamar; Shelley, Michael

    2011-11-01

    Pairwise filament interactions underlie the dynamics of complex cytoskeletal networks in cells. These networks in turn play a crucial role in many cellular processes such as formation of the mitotic spindle and cell cleavage in cytokinesis. We model interactions of pairs of filaments immersed in a viscous, fluidic environment. The filaments are modeled using a slender body approximation, capturing their indirect interactions mediated by the immersing fluid. Direct filament interactions via molecular motors complexes induce alignment and parallel or anti-parallel sliding. The motor proteins are modeled as simple spring-like structures that walk directionally toward one end of the filament. We examine the resulting stresses in the fluid to better understand how the microscopic interactions lead to bulk behavior of cytoskeletal networks.

  8. A new paradigm for solar filament eruptions

    NASA Astrophysics Data System (ADS)

    Rust, David M.

    2001-11-01

    This article discusses the formation, magnetic structure, and eruption of solar filaments in terms of two contrasting paradigms. The standard paradigm is that filaments are formed by condensation of plasma on coronal magnetic fields that are twisted or dimpled as a result of photospheric motions. According to this paradigm, filaments erupt when photospheric motions shear the fields, increasing their energy and decreasing their stability. According to a new paradigm, subsurface motions generate toroidal magnetic flux ropes, and after these flux ropes emerge to form active regions, the most twisted parts migrate into the corona to form filaments. Filaments become unstable and are ejected after a sufficient accumulation of twist (i.e., magnetic helicity). Various proposed mechanisms for producing the needed helicity are reviewed, and several observational tests are proposed to differentiate among the possible mechanisms.

  9. Cell crawling on filamentous tracks

    NASA Astrophysics Data System (ADS)

    Lopez, Jorge; Schwarz, Jennifer; Das, Moumita

    2014-03-01

    Recent experiments suggest that the migration of some cells in three dimensions has strong resemblance to one-dimensional migration. Motivated by this observation, we simulate a one-dimensional model cell made of beads and springs that moves on a tense semiflexible filamentous track. Physical parameters, such as the spring constants and friction coefficients, are calculated using effective theories. We investigate the mechanical feedback between the model cell and this track, as mediated by the active myosin-driven contractility and the catch/slip bond behavior of the focal adhesions, as the model cell crawls. We then compare our calculations of cell speed and the amount of deformation in the track with experiments.

  10. Kinetics of filamentous phage assembly

    NASA Astrophysics Data System (ADS)

    Ploss, Martin; Kuhn, Andreas

    2010-12-01

    Filamentous phages release their progeny particles by a secretory process without lysing the bacterial cell. By this process about 6 viral particles per min are secreted from each cell. We show here that when the major coat protein (gp8) is provided from a plasmid we observe a phage progeny production rate depending on the induction of gp8 by IPTG. We also show that a transfection of Escherichia coli lacking F-pili is observed using a mutant of M13 that carries an ampicillin resistance gene, and phage particles are secreted in the absence of an F-plasmid. Extruding phage was visualized by atomic force microscopy (AFM) and by transmission electron microscopy (TEM) using gold-labeled antibodies to the major coat protein.