Science.gov

Sample records for filamentous fungus gibberella

  1. Functional Analysis of the Polyketide Synthase Genes in the Filamentous Fungus Gibberella zeae (Anamorph Fusarium graminearum)

    PubMed Central

    Gaffoor, Iffa; Brown, Daren W.; Plattner, Ron; Proctor, Robert H.; Qi, Weihong; Trail, Frances

    2005-01-01

    Polyketides are a class of secondary metabolites that exhibit a vast diversity of form and function. In fungi, these compounds are produced by large, multidomain enzymes classified as type I polyketide synthases (PKSs). In this study we identified and functionally disrupted 15 PKS genes from the genome of the filamentous fungus Gibberella zeae. Five of these genes are responsible for producing the mycotoxins zearalenone, aurofusarin, and fusarin C and the black perithecial pigment. A comprehensive expression analysis of the 15 genes revealed diverse expression patterns during grain colonization, plant colonization, sexual development, and mycelial growth. Expression of one of the PKS genes was not detected under any of 18 conditions tested. This is the first study to genetically characterize a complete set of PKS genes from a single organism. PMID:16278459

  2. Development of a Conditional Gene Expression System Using a Zearalenone-Inducible Promoter for the Ascomycete Fungus Gibberella zeae▿

    PubMed Central

    Lee, Jungkwan; Son, Hokyoung; Lee, Seunghoon; Park, Ae Ran; Lee, Yin-Won

    2010-01-01

    The ascomycete fungus Gibberella zeae is an important plant pathogen that causes fusarium head blight on small grains. Molecular studies of this fungus have been performed extensively to uncover the biological mechanisms related to pathogenicity, toxin production, and sexual reproduction. Molecular methods, such as targeted gene deletion, gene overexpression, and gene fusion to green fluorescent protein (GFP), are relatively easy to perform with this fungus; however, conditional expression systems have not been developed. The purpose of this study was to identify a promoter that could be induced by zearalenone (ZEA) for the development of a conditional expression system in G. zeae. Through microarray analysis, we isolated one zearalenone response gene (ZEAR) whose expression was increased more than 50 times after ZEA treatment. Northern blot analysis showed that the ZEAR transcript dramatically increased after 1 h of ZEA treatment. To determine the utility of the ZEAR promoter, called Pzear, in a conditional expression system, we transformed a Pzear::GFP fusion construct into G. zeae. Our data showed a ZEA concentration-dependent increase in GFP expression. We also replaced the promoter of G. zeae metE (GzmetE), an essential gene for methionine biosynthesis, with the Pzear promoter. The growth of the Pzear-GzmetE mutant on minimal medium was dependent on the ZEA concentration supplemented in the medium and showed that GzMetE expression was induced by ZEA. This study is the first report of an inducible promoter in G. zeae. Our system will be useful for the characterization of essential gene functions in this fungus through differential and ZEA-dependent gene expression. In addition, the Pzear promoter may be applicable as a biosensor for the detection of ZEA contamination in agricultural products. PMID:20348311

  3. Directed Evolution of a Filamentous Fungus for Thermotolerance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Filamentous fungi represent the most widely used eukaryotic biocatalysts in industrial and chemical applications. Metarhizium anisopliae is a broad-host-range entomopathogenic fungus currently under intensive investigation as a biologically based alternative to chemical pesticides. One of the most p...

  4. Gibberella moniliformis AH13 with antitumor activity, an endophytic fungus strain producing triolein isolated from Adlay (Coix lacryma-jobi: poaceae).

    PubMed

    Jia, Min; Ming, Qian-Liang; Zhang, Qiao-Yan; Chen, Yu; Cheng, Nuo; Wu, Wen-wen; Han, Ting; Qin, Lu-Ping

    2014-09-01

    In this study, the isolation of an endophytic fungus from the leaves of the medicinal herb adlay (Coix lacryma-jobi L. var. ma-yuen Stapf) is reported for the first time. The fungus produced Triolein (trioleoylglycerol), a major constituent of triacylglycerols (TAGs) of adlay, in rice medium under shake-flask and bench-scale fermentation conditions. The fungus was identified as Gibberella moniliformis (Fusarium verticillioides) by its morphology and authenticated by ITS analysis (ITS1 and ITS2 regions and the intervening 5.8S rDNA region). Triolein was identified by HPLC-ELSD coupled with APCI-MS and confirmed through comparison with authentic standard. The concentration of triolein produced by G. moniliformis AH13 reached 2.536 ± 0.006 mg/g dry weight of mycelium. Moreover, the EtOAc extract of G. moniliformis AH13 showed strong antitumor activity against four types of tumor cells (A549, HCT116, MDA-MB-231, and SW1990). These results suggest that G. moniliformis AH13 in adlay has significant scientific and industrial potential to meet the pharmaceutical demands and sustainable energy requirements for TAGs in a cost-effective, easily accessible, and reproducible way and is also a potential novel source of natural antitumor bioactive agents. PMID:24810291

  5. Engineering a filamentous fungus for L-rhamnose extraction.

    PubMed

    Kuivanen, Joosu; Richard, Peter

    2016-03-01

    L-Rhamnose is a high value rare sugar that is used as such or after chemical conversions. It is enriched in several biomass fractions such as the pectic polysaccharides rhamnogalacturonan I and II and in naringin, hesperidin, rutin, quercitrin and ulvan. We engineered the filamentous fungus Aspergillus niger to not consume L-rhamnose, while it is still able to produce the enzymes for the hydrolysis of L-rhamnose rich biomass. As a result we present a strain that can be used for the extraction of L-rhamnose in a consolidated process. In the process the biomass is hydrolysed to the monomeric sugars which are consumed by the fungus leaving the L-rhamnose. PMID:27033543

  6. Microalgae harvesting via co-culture with filamentous fungus

    NASA Astrophysics Data System (ADS)

    Gultom, Sarman Oktovianus

    Microalgae harvesting is a labor- and energy-intensive process. For instance, classical harvesting technologies such as chemical addition and mechanical separation are economically prohibiting for biofuel production. Newer approaches to harvest microalgae have been developed in order to decrease costs. Among these new methods, fungal co-pelletization seems to be a promising technology. By co-culturing filamentous fungi with microalgae, it is possible to form pellets, which can easily be separated. In this study, different parameters for the cultivation of filamentous fungus (Aspergillus niger) and microalgae (Chlorella vulgaris) to efficiently form cell pellets were evaluated under heterotrophic and phototrophic conditions, including organic carbon source (glucose, glycerol and sodium acetate) concentration, pH, initial concentration of fungal spores, initial concentration of microalgal cells, concentration of ionic strength (Calcium and Magnesium) and concentration of salinity (NaCl). In addition, zeta-potential measurements were carried out in order to get a better understanding of the mechanism of attraction. It was found that 2 g/L of glucose, a fungus to microalgae ratio of 1:300, and uncontrolled pH (around 7) are the best culturing conditions for co-pelletization. Under these conditions, it was possible to achieve a high harvesting performance (>90%). In addition, it was observed that most pellets formed in the co-culture were spherical with an average diameter of 3.5 mm and in concentrations of about 5 pellets per mL of culture media. Under phototrophic conditions, co-pelletization required the addition of glucose as organic carbon source to sustain the growth of fungi and to allow the harvesting of microalgae. Zeta-potential measurements indicated that (i) both microalgae and fungi have low zeta-potential values regardless of the pH on the bulk (i.e. <-10 mV) (ii) fungi can have a positive electric charge at low pH (ie. pH=3). These values suggest that it

  7. Fitness-associated sexual reproduction in a filamentous fungus.

    PubMed

    Schoustra, Sijmen; Rundle, Howard D; Dali, Rola; Kassen, Rees

    2010-08-10

    Sex is a long-standing evolutionary enigma. Although the majority of eukaryotes reproduce sexually at least sometimes [1-3], the evolution of sex from an asexual ancestor has been difficult to explain because it requires sexually reproducing lineages to overcome the manifold costs of sex, including the destruction of favorable gene combinations created by selection [4, 5]. Conditions for the evolution of sex are much broader if individuals can reproduce either sexually or asexually (i.e., facultative sex) and allocate disproportionately more resources to sex when their fitness is low (fitness-associated-sex or FAS [6-10]). Although facultatively sexual organisms have been shown to engage in more sex when stressed [11], direct evidence for FAS is lacking. We provide evidence using 53 genotypes of the filamentous fungus Aspergillus nidulans in a reciprocal transplant experiment across three environments. Different genotypes achieved highest fitness in different environments and genotypes invested relatively more in sex in environments in which their fitness was lower, showing that allocation to sexual reproduction is a function of how well-adapted a genotype is to its environment. FAS in A. nidulans is unlikely to have evolved as a strategy to resist or avoid stress because asexual spores are more dispersive and equally resistant [12, 13]. PMID:20598542

  8. Npc1 is involved in sterol trafficking in the filamentous fungus Fusarium graminearum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ortholog of the human gene NPC1 was identified in the plant pathogenic, filamentous fungus Fusarium graminearum by shared amino acid sequence, protein domain structure and cellular localization of the mature fungal protein. The Fusarium Npc1 gene shares 34% amino acid sequence identity and 51% s...

  9. Lactose enhances cellulase production by the filamentous fungus Acremonium cellulolyticus.

    PubMed

    Fang, Xu; Yano, Shinichi; Inoue, Hiroyuki; Sawayama, Shigeki

    2008-08-01

    Acremonium cellulolyticus is a fungus that produces cellulase and has been exploited by enzyme industry. To promote cellulase production by A. cellulolyticus strain C-1, we evaluated the effects of the saccharides: Solka Floc (cellulose), soluble soybean polysaccharide (SSPS), pullulan, lactose, trehalose, sophorose, cellobiose, galactose, sorbose, lactobionic acid, and mixtures as carbon sources for cellulase production. Solka Floc with SSPS enhanced cellulase production. Lactose as the sole carbon source induced cellulase synthesis in this fungus, and the synergistic effects between lactose and Solka Floc was observed. Various enzyme activities and the protein composition of crude enzyme produced by cultures with or without addition of lactose were analyzed. The results showed that lactose addition greatly improves the production of various proteins with cellulase activity by A. cellulolyticus. To our knowledge, this is the first report on production of cellulases by lactose in the A. cellulolyticus. PMID:18804052

  10. Deciphering the molecular mechanisms behind cellulase production in Trichoderma reesei, the hyper-cellulolytic filamentous fungus.

    PubMed

    Shida, Yosuke; Furukawa, Takanori; Ogasawara, Wataru

    2016-09-01

    The filamentous fungus Trichoderma reesei is a potent cellulase producer and the best-studied cellulolytic fungus. A lot of investigations not only on glycoside hydrolases produced by T. reesei, but also on the machinery controlling gene expression of these enzyme have made this fungus a model organism for cellulolytic fungi. We have investigated the T. reesei strain including mutants developed in Japan in detail to understand the molecular mechanisms that control the cellulase gene expression, the biochemical and morphological aspects that could favor this phenotype, and have attempted to generate novel strains that may be appropriate for industrial use. Subsequently, we developed recombinant strains by combination of these insights and the heterologous-efficient saccharifing enzymes. Resulting enzyme preparations were highly effective for saccharification of various biomass. In this review, we present some of the salient findings from the recent biochemical, morphological, and molecular analyses of this remarkable cellulase hyper-producing fungus. PMID:27075508

  11. Conidial germination in the filamentous fungus Fusarium graminearum.

    PubMed

    Seong, Kye-Yong; Zhao, Xinhua; Xu, Jin-Rong; Güldener, Ulrich; Kistler, H Corby

    2008-04-01

    The ascomycetous fungus Fusarium graminearum is an important plant pathogen causing Fusarium head blight disease of wheat and barley. To understand early developmental stages of this organism, we followed the germination of macroconidia microscopically to understand the timing of key events. These events, recorded after suspension of spores in liquid germination medium, included spore swelling at 2h, germination tube emergence and elongation from conidia at 8h and hyphal branching at 24h. To understand changes in gene expression during these developmental changes, RNA was isolated from spores and used to interrogate the F. graminearum Affymetrix GeneChip. RNAs corresponding to 5813 genes were detected in fresh spores and 5146, 5249 and 5993, respectively, in spores incubated in germination medium after 2, 8 or 24h (P<0.001). Gene expression data were used to predict the cellular and physiological state of each developmental stage for known processes. Predictions were confirmed microscopically for several previously unreported developmental events such as manifestation of peroxisomes in fresh spores and nuclear division resulting in binuclear cells within macroconidia prior to spore germination. Knowledge of stage-specific gene expression and changes in gene expression levels between developmental stages are an important first step to understanding the molecular mechanisms responsible for spore germination and development. PMID:17950638

  12. Defining individual size in the model filamentous fungus Neurospora crassa.

    PubMed

    Ma, Linda; Song, Boya; Curran, Thomas; Phong, Nhu; Dressaire, Emilie; Roper, Marcus

    2016-03-16

    It is challenging to apply the tenets of individuality to filamentous fungi: a fungal mycelium can contain millions of genetically diverse but totipotent nuclei, each capable of founding new mycelia. Moreover, a single mycelium can potentially stretch over kilometres, and it is unlikely that its distant parts share resources or have the same fitness. Here, we directly measure how a single mycelium of the model ascomycete Neurospora crassa is patterned into reproductive units (RUs), meaning subpopulations of nuclei that propagate together as spores, and function as reproductive individuals. The density of RUs is sensitive to the geometry of growth; we detected 50-fold smaller RUs when mycelia had expanding frontiers than when they were constrained to grow in one direction only. RUs fragmented further when the mycelial network was perturbed. In mycelia with expanding frontiers, RU composition was strongly influenced by the distribution of genotypes early in development. Our results provide a concept of fungal individuality that is directly connected to reproductive potential, and therefore to theories of how fungal individuals adapt and evolve over time. Our data show that the size of reproductive individuals is a dynamic and environment-dependent property, even within apparently totally connected fungal mycelia. PMID:26962146

  13. Manipulating filamentous fungus chemical phenotypes by growth on nutritional arrays.

    PubMed

    Tormo, José R; Asensio, Francisco J; Bills, Gerald F

    2012-01-01

    Methods for manipulating and fermenting microorganisms in multi-well plates offer unlimited possibilities for high-throughput parallel experimentation. Furthermore, bar-coded data tracking and downstream processing with modern liquid handling equipment reduce handling errors and are able to format microbial products for autosampler-equipped analytical instruments, e.g., HPLCs, mass spectrometers, and plate readers. An integrated system for high-throughput culturing of filamentous fungi replicating strains across many fermentation parameters, called nutritional arrays, was developed. It takes advantage of this equipment while addressing the age-old dilemma of how to manipulate fungal phenotypes to express a more complete spectrum of their secondary metabolites. Growth of any given strain in a well-designed nutritional array increases the chances of detecting a biologically active metabolite while reducing the manpower and materials needed for preparing individual fermentations and extracts. Fungi fermented in nutritional arrays are directly processed in a semi-automated fashion and the extracts prepared for bioassays and analytical chemistry. The necessary equipment, custom tools, and protocols to grow fungi in nutritional arrays are described along with examples of bioactive secondary metabolites discovered using this system. PMID:23065608

  14. Efficient genome editing in filamentous fungus Trichoderma reesei using the CRISPR/Cas9 system

    PubMed Central

    Liu, Rui; Chen, Ling; Jiang, Yanping; Zhou, Zhihua; Zou, Gen

    2015-01-01

    Filamentous fungi have wide applications in biotechnology. The CRISPR/Cas9 system is a powerful genome-editing method that facilitates genetic alterations of genomes in a variety of organisms. However, a genome-editing approach has not been reported in filamentous fungi. Here, we demonstrated the establishment of a CRISPR/Cas9 system in the filamentous fungus Trichoderma reesei by specific codon optimization and in vitro RNA transcription. It was shown that the CRISPR/Cas9 system was controllable and conditional through inducible Cas9 expression. This system generated site-specific mutations in target genes through efficient homologous recombination, even using short homology arms. This system also provided an applicable and promising approach to targeting multiple genes simultaneously. Our results illustrate that the CRISPR/Cas9 system is a powerful genome-manipulating tool for T. reesei and most likely for other filamentous fungal species, which may accelerate studies on functional genomics and strain improvement in these filamentous fungi.

  15. Nickel oxide nanoparticles film produced by dead biomass of filamentous fungus

    NASA Astrophysics Data System (ADS)

    Salvadori, Marcia Regina; Nascimento, Cláudio Augusto Oller; Corrêa, Benedito

    2014-09-01

    The synthesis of nickel oxide nanoparticles in film form using dead biomass of the filamentous fungus Aspergillus aculeatus as reducing agent represents an environmentally friendly nanotechnological innovation. The optimal conditions and the capacity of dead biomass to uptake and produce nanoparticles were evaluated by analyzing the biosorption of nickel by the fungus. The structural characteristics of the film-forming nickel oxide nanoparticles were analyzed by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and atomic force microscopy (AFM). These techniques showed that the nickel oxide nanoparticles had a size of about 5.89 nm and were involved in a protein matrix which probably permitted their organization in film form. The production and uptake of nickel oxide nanoparticles organized in film form by dead fungal biomass bring us closer to sustainable strategies for the biosynthesis of metal oxide nanoparticles.

  16. Isolation and Characterization of a Novel Facultative Anaerobic Filamentous Fungus from Japanese Rice Field Soil

    PubMed Central

    Tonouchi, Akio

    2009-01-01

    A novel filamentous fungus strain designated RB-1 was isolated into pure culture from Japanese rice field soil through an anaerobic role tube technique. The strain is a mitosporic fungus that grows in both aerobic and strict anaerobic conditions using various mono-, di-, tri-, and polysaccharides with acetate and ethanol productions. The amount of acetate produced was higher than that of ethanol in both aerobic and anaerobic cultures. The characteristic verrucose or punctuate conidia of RB-1 closely resembled those of some strains of the genus Thermomyces, a thermophilic or mesophilic anamorphic ascomycete. However, based on phylogenetic analysis with the small subunit (SSU) and large subunit (LSU) rDNA sequences, RB-1 was characterized as a member of the class Lecanoromycetes of the phylum Ascomycota. Currently, RB-1 is designated as an anamorphic ascomycete and is phylogenetically considered an incertae sedis within the class Lecanoromycetes. PMID:20148171

  17. Nickel oxide nanoparticles film produced by dead biomass of filamentous fungus

    PubMed Central

    Salvadori, Marcia Regina; Nascimento, Cláudio Augusto Oller; Corrêa, Benedito

    2014-01-01

    The synthesis of nickel oxide nanoparticles in film form using dead biomass of the filamentous fungus Aspergillus aculeatus as reducing agent represents an environmentally friendly nanotechnological innovation. The optimal conditions and the capacity of dead biomass to uptake and produce nanoparticles were evaluated by analyzing the biosorption of nickel by the fungus. The structural characteristics of the film-forming nickel oxide nanoparticles were analyzed by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and atomic force microscopy (AFM). These techniques showed that the nickel oxide nanoparticles had a size of about 5.89 nm and were involved in a protein matrix which probably permitted their organization in film form. The production and uptake of nickel oxide nanoparticles organized in film form by dead fungal biomass bring us closer to sustainable strategies for the biosynthesis of metal oxide nanoparticles. PMID:25228324

  18. Improvement of tolerance to lead by filamentous fungus Pleurotus ostreatus HAU-2 and its oxidative responses.

    PubMed

    Zhang, Shimin; Zhang, Xiaolin; Chang, Cheng; Yuan, Zhiyong; Wang, Ting; Zhao, Yong; Yang, Xitian; Zhang, Yuting; La, Guixiao; Wu, Kun; Zhang, Zhiming; Li, Xuanzhen

    2016-05-01

    Wastewater contaminated with heavy metals is a world-wide concern. One biological treatment strategy includes filamentous fungi capable of extracellular adsorption and intracellular bioaccumulation. Here we report that an acclimated strain of filamentous fungus Pleurotus ostreatus HAU-2 can withstand Pb up to 1500 mg L(-1) Pb, conditions in which the wildtype strain cannot grow. The acclimated strain grew in liquid culture under 500 mg L(-1) Pb without significant abnormity in biomass and morphology, and was able to remove significant amounts of heavy metals with rate of 99.1% at 200 mg L(-1) and 63.3% at 1500 mg L(-1). Intracellular bioaccumulation as well as extracellular adsorption both contributed the Pb reduction. Pb induced levels of H2O2, and its concentration reached 72.9-100.9 μmol g(-1) under 200-1000 mg L(-1) Pb. A relatively higher malonaldehyde (MDA) concentration (8.06-7.59 nmol g(-1)) was also observed at 500-1500 mg L(-1) Pb, indicating that Pb exposure resulted in oxidative damage. The fungal cells also defended against the attack of reactive oxygen species by producing antioxidants. Of the three antioxidant enzymes superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT), CAT was the most responsive and the maximal enzyme activity was 15.8 U mg(-1) protein. Additionally, glutathione (GSH) might also play a role (3.16-3.21 mg g(-1) protein) in detoxification under relatively low Pb concentration (100-200 mg L(-1)). Our findings suggested that filamentous fungus could be selected for increased tolerance to heavy metals and that CAT and GSH might be important components of this tolerance. PMID:26891354

  19. Metabolism and Cometabolism of Cyclic Ethers by a Filamentous Fungus, a Graphium sp.▿

    PubMed Central

    Skinner, Kristin; Cuiffetti, Lynda; Hyman, Michael

    2009-01-01

    The filamentous fungus Graphium sp. (ATCC 58400) grows on gaseous n-alkanes and diethyl ether. n-Alkane-grown mycelia of this strain also cometabolically oxidize the gasoline oxygenate methyl tert-butyl ether (MTBE). In this study, we characterized the ability of this fungus to metabolize and cometabolize a range of cyclic ethers, including tetrahydrofuran (THF) and 1,4-dioxane (14D). This strain grew on THF and other cyclic ethers, including tetrahydropyran and hexamethylene oxide. However, more vigorous growth was consistently observed on the lactones and terminal diols potentially derived from these ethers. Unlike the case in all previous studies of microbial THF oxidation, a metabolite, γ-butyrolactone, was observed during growth of this fungus on THF. Growth on THF was inhibited by the same n-alkenes and n-alkynes that inhibit growth of this fungus on n-alkanes, while growth on γ-butyrolactone or succinate was unaffected by these inhibitors. Propane and THF also behaved as mutually competitive substrates, and propane-grown mycelia immediately oxidized THF, without a lag phase. Mycelia grown on propane or THF exhibited comparable high levels of hemiacetal-oxidizing activity that generated methyl formate from mixtures of formaldehyde and methanol. Collectively, these observations suggest that THF and n-alkanes may initially be oxidized by the same monooxygenase and that further transformation of THF-derived metabolites involves the activity of one or more alcohol dehydrogenases. Both propane- and THF-grown mycelia also slowly cometabolically oxidized 14D, although unlike THF oxidation, this reaction was not sustainable. Specific rates of THF, 14D, and MTBE degradation were very similar in THF- and propane-grown mycelia. PMID:19581469

  20. Global Analysis of Predicted G Protein−Coupled Receptor Genes in the Filamentous Fungus, Neurospora crassa

    PubMed Central

    Cabrera, Ilva E.; Pacentine, Itallia V.; Lim, Andrew; Guerrero, Nayeli; Krystofova, Svetlana; Li, Liande; Michkov, Alexander V.; Servin, Jacqueline A.; Ahrendt, Steven R.; Carrillo, Alexander J.; Davidson, Liza M.; Barsoum, Andrew H.; Cao, Jackie; Castillo, Ronald; Chen, Wan-Ching; Dinkchian, Alex; Kim, Stephanie; Kitada, Sho M.; Lai, Taffani H.; Mach, Ashley; Malekyan, Cristin; Moua, Toua R.; Torres, Carlos Rojas; Yamamoto, Alaina; Borkovich, Katherine A.

    2015-01-01

    G protein−coupled receptors (GPCRs) regulate facets of growth, development, and environmental sensing in eukaryotes, including filamentous fungi. The largest predicted GPCR class in these organisms is the Pth11-related, with members similar to a protein required for disease in the plant pathogen Magnaporthe oryzae. However, the Pth11-related class has not been functionally studied in any filamentous fungal species. Here, we analyze phenotypes in available mutants for 36 GPCR genes, including 20 Pth11-related, in the model filamentous fungus Neurospora crassa. We also investigate patterns of gene expression for all 43 predicted GPCR genes in available datasets. A total of 17 mutants (47%) possessed at least one growth or developmental phenotype. We identified 18 mutants (56%) with chemical sensitivity or nutritional phenotypes (11 uniquely), bringing the total number of mutants with at least one defect to 28 (78%), including 15 mutants (75%) in the Pth11-related class. Gene expression trends for GPCR genes correlated with the phenotypes observed for many mutants and also suggested overlapping functions for several groups of co-transcribed genes. Several members of the Pth11-related class have phenotypes and/or are differentially expressed on cellulose, suggesting a possible role for this gene family in plant cell wall sensing or utilization. PMID:26464358

  1. Using a model filamentous fungus to unravel mechanisms of lignocellulose deconstruction.

    PubMed

    Znameroski, Elizabeth A; Glass, N Louise

    2013-01-01

    Filamentous fungi are the main source of enzymes used to degrade lignocellulose to fermentable sugars for the production of biofuels. While the most commonly used organism for the production of cellulases in an industrial setting is Trichoderma reesei (Hypocrea jecorina), recent work in the model filamentous fungus Neurospora crassa has shown that the variety of molecular, genetic and biochemical techniques developed for this organism can expedite analyses of the complexities involved in the utilization of lignocellulose as a source of carbon. These include elucidating regulatory networks associated with plant cell wall deconstruction, the identification of signaling molecules necessary for induction of the expression of genes encoding lignocellulolytic enzymes and the characterization of new cellulolytic enzymatic activities. In particular, the availability of a full genome deletion strain set for N. crassa has expedited high throughput screening for mutants that display a cellulolytic phenotype. This review summarizes the key findings of several recent studies using N. crassa to further understanding the mechanisms of plant cell wall deconstruction by filamentous fungi. PMID:23339486

  2. Identification and functional analysis of endogenous nitric oxide in a filamentous fungus

    PubMed Central

    Pengkit, Anchalee; Jeon, Seong Sil; Son, Soo Ji; Shin, Jae Ho; Baik, Ku Yeon; Choi, Eun Ha; Park, Gyungsoon

    2016-01-01

    In spite of its prevalence in animals and plants, endogenous nitric oxide (NO) has been rarely reported in fungi. We present here our observations on production of intracellular NO and its possible roles during development of Neurospora crassa, a model filamentous fungus. Intracellular NO was detected in hypha 8–16 hours after incubation in Vogel’s minimal liquid media and conidiophores during conidiation using a fluorescent indicator (DAF-FM diacetate). Treatment with cPTIO, an NO scavenger, significantly reduced fluorescence levels and hindered hyphal growth in liquid media and conidiation, whereas exogenous NO enhanced hyphal extension on VM agar media and conidia formation. NO scavenging also dramatically diminished transcription of con-10 and con-13, genes preferentially expressed during conidiation. Our results suggest that intracellular NO is generated in young hypha growing in submerged culture and during conidia development and regulate mycelial development and conidia formation. PMID:27425220

  3. Quinoline biodegradation by filamentous fungus Cunninghamella elegans and adaptive modifications of the fungal membrane composition.

    PubMed

    Felczak, Aleksandra; Bernat, Przemysław; Różalska, Sylwia; Lisowska, Katarzyna

    2016-05-01

    Quinoline, which belongs to N-heterocyclic compounds, occurs naturally in the environment and is used in numerous industrial processes. The structures of various chemicals, such as dyes and medicines, are based on this compound. Due to that fact, quinoline and its derivatives are widely distributed in environment and can exert toxic effects on organisms from different trophic levels. The ability of the filamentous fungus Cunninghamella elegans IM 1785/21Gp to degrade quinoline and modulate the membrane composition in response to the pollutant was studied. C. elegans IM 1785/21Gp removes quinoline with high efficiency and transforms the pollutant into two novel hydroxylated derivatives, 2-hydroxyquinoline and 3-hydroxyquinoline. Moreover, due to the disruption in the membrane stability by quinoline, C. elegans IM 1785/21Gp modulates the fatty acid composition and phospholipid profile. PMID:26810790

  4. Malachite green decolorization by the filamentous fungus Myrothecium roridum--Mechanistic study and process optimization.

    PubMed

    Jasińska, Anna; Paraszkiewicz, Katarzyna; Sip, Anna; Długoński, Jerzy

    2015-10-01

    The filamentous fungus Myrothecium roridum isolated from a dye-contaminated area was investigated in terms of its use for the treatment of Malachite green (MG). The mechanisms involved in this process were established. Peroxidases and cytochrome P-450 do not mediate MG elimination. The laccase of M. roridum IM 6482 was found to be responsible for the decolorization of 8-11% of MG. Thermostable low-molecular-weight factors (LMWF) resistant to sodium azide were found to be largely involved in dye decomposition. In addition, MG decolorization by M. roridum IM 6482 occurred in a non-toxic manner. Data from antimicrobial tests showed that MG toxicity decreased after decolorization. To optimize the MG decolorization process, the effects of operational parameters (such as the medium pH and composition, process temperature and culture agitation) were examined. The results demonstrate that M. roridum IM 6482 may be used effectively as an alternative to traditional decolorization agents. PMID:26185924

  5. Cadmium induces cadmium-tolerant gene expression in the filamentous fungus Trichoderma harzianum.

    PubMed

    Cacciola, Santa O; Puglisi, Ivana; Faedda, Roberto; Sanzaro, Vincenzo; Pane, Antonella; Lo Piero, Angela R; Evoli, Maria; Petrone, Goffredo

    2015-11-01

    The filamentous fungus Trichoderma harzianum, strain IMI 393899, was able to grow in the presence of the heavy metals cadmium and mercury. The main objective of this research was to study the molecular mechanisms underlying the tolerance of the fungus T. harzianum to cadmium. The suppression subtractive hybridization (SSH) method was used for the characterization of the genes of T. harzianum implicated in cadmium tolerance compared with those expressed in the response to the stress induced by mercury. Finally, the effects of cadmium exposure were also validated by measuring the expression levels of the putative genes coding for a glucose transporter, a plasma membrane ATPase, a Cd(2+)/Zn(2+) transporter protein and a two-component system sensor histidine kinase YcbA, by real-time-PCR. By using the aforementioned SSH strategy, it was possible to identify 108 differentially expressed genes of the strain IMI 393899 of T. harzianum grown in a mineral substrate with the addition of cadmium. The expressed sequence tags identified by SSH technique were encoding different genes that may be involved in different biological processes, including those associated to primary and secondary metabolism, intracellular transport, transcription factors, cell defence, signal transduction, DNA metabolism, cell growth and protein synthesis. Finally, the results show that in the mechanism of tolerance to cadmium a possible signal transduction pathway could activate a Cd(2+)/Zn(2+) transporter protein and/or a plasma membrane ATPase that could be involved in the compartmentalization of cadmium inside the cell. PMID:26349455

  6. Regulation of cellulase gene expression in the filamentous fungus Trichoderma reesei.

    PubMed Central

    Ilmén, M; Saloheimo, A; Onnela, M L; Penttilä, M E

    1997-01-01

    Basic features of regulation of expression of the genes encoding the cellulases of the filamentous fungus Trichoderma reesei QM9414, the genes cbh1 and cbh2 encoding cellobiohydrolases and the genes egl1, egl2 and egl5 encoding endoglucanases, were studied at the mRNA level. The cellulase genes were coordinately expressed under all conditions studied, with the steady-state mRNA levels of cbh1 being the highest. Solka floc cellulose and the disaccharide sophorose induced expression to almost the same level. Moderate expression was observed when cellobiose or lactose was used as the carbon source. It was found that glycerol and sorbitol do not promote expression but, unlike glucose, do not inhibit it either, because the addition of 1 to 2 mM sophorose to glycerol or sorbitol cultures provokes high cellulase expression levels. These carbon sources thus provide a useful means to study cellulase regulation without significantly affecting the growth of the fungus. RNA slot blot experiments showed that no expression could be observed on glucose-containing medium and that high glucose levels abolish the inducing effect of sophorose. The results clearly show that distinct and clear-cut mechanisms of induction and glucose repression regulate cellulase expression in an actively growing fungus. However, derepression of cellulase expression occurs without apparent addition of an inducer once glucose has been depleted from the medium. This expression seems not to arise simply from starvation, since the lack of carbon or nitrogen as such is not sufficient to trigger significant expression. PMID:9097427

  7. Periodic selection in longterm continuous-flow cultures of the filamentous fungus Fusarium graminearum.

    PubMed

    Wiebe, M G; Robson, G D; Cunliffe, B; Oliver, S G; Trinci, A P

    1993-11-01

    By monitoring increases and decreases in the proportion of cycloheximide-resistant macroconidia, periodic selection was observed in populations of the filamentous fungus Fusarium graminearum, grown in glucose-limited chemostat cultures. The results indicated that periodic selection of advantageous mutants of F. graminearum occurred at intervals of about 124 h at both high (D = 0.19 h-1, approximately 34 generations) and low (D = 0.06 h-1, approximately 11 generations) dilution rates. Several 'adaptive' peaks (each indicating the appearance of an advantageous mutation) were observed before morphological (highly branched) mutants appeared in the populations; these mutants have previously been observed to have a selective advantage over the parental strain. At intervals, macroconidia harvested from the chemostat were used to inoculate plates of non-antibiotic-containing agar medium, and it was possible to monitor periodic selection in the original chemostat culture using second generation macroconidia harvested from these cultures. The proportion of cycloheximide-, potassium chlorate-, and p-fluoro-DL-phenylalanine-resistant macroconidia in these second generation macroconidia changed in a pattern similar to that observed when monitoring the proportion of cycloheximide-resistant macroconidia in the first generation population harvested directly from the chemostat. The experiments demonstrated that populations of filamentous fungi are heterogeneous and that much of this heterogeneity may already be present at the end of batch growth, i.e., before the onset of continuous cultivation. PMID:8277261

  8. Non-specific association between filamentous bacteria and fungus-growing ants.

    PubMed

    Kost, Christian; Lakatos, Tanja; Böttcher, Ingo; Arendholz, Wolf-Rüdiger; Redenbach, Matthias; Wirth, Rainer

    2007-10-01

    Fungus-growing ants and their fungal cultivar form a highly evolved mutualism that is negatively affected by the specialized parasitic fungus Escovopsis. Filamentous Pseudonocardia bacteria occurring on the cuticle of attine ants have been proposed to form a mutualistic interaction with these ants in which they are vertically transmitted (i.e. from parent to offspring colonies). Given a strictly vertical transmission of Pseudonocardia, the evolutionary theory predicts a reduced genetic variability of symbionts among ant lineages. The aim of this study was to verify whether actinomycetes, which occur on Acromyrmex octospinosus leaf-cutting ants, meet this expectation by comparing their genotypic variability with restriction fragment length polymorphisms. Multiple actinomycete strains could be isolated from both individual ant workers and colonies (one to seven strains per colony). The colony specificity of actinomycete communities was high: Only 15% of all strains were isolated from more than one colony, and just 5% were present in both populations investigated. Partial sequencing of 16S ribosomal deoxyribonucleic acid of two of the isolated strains assigned both of them to the genus Streptomyces. Actinomycetes could also be isolated from workers of the two non-attine ant species Myrmica rugulosa and Lasius flavus. Sixty-two percent of the strains derived from attine ants and 80% of the strains isolated from non-attine ants inhibited the growth of Escovopsis. Our data suggest that the association between attine ants and their actinomycete symbionts is less specific then previously thought. Soil-dwelling actinomycetes may have been dynamically recruited from the environment (horizontal transmission), probably reflecting an adaptation to a diverse community of microbial pathogens. PMID:17541536

  9. Field tests of the role of fumonisins in the Zea mays–Gibberella moniliformis interaction

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Zea mays often is colonized with the fungus Gibberella moniliformis, which produces fumonisin toxins. The role of fumonisins in ear colonization was studied by field inoculations of a fumonisin B1 (FB1)-insensitive maize backcross line. The FB1-insensitive maize backcross line was not more resistant...

  10. Genetically shaping morphology of the filamentous fungus Aspergillus glaucus for production of antitumor polyketide aspergiolide A

    PubMed Central

    2014-01-01

    Background For filamentous fungi, the basic growth unit of hyphae usually makes it sensitive to shear stress which is generated from mechanical force and dynamic fluid in bioreactor, and it severely decreases microbial productions. The conventional strategies against shear-sensitive conundrum in fungal fermentation usually focus on adapting agitation, impeller type and bioreactor configuration, which brings high cost and tough work in industry. This study aims to genetically shape shear resistant morphology of shear-sensitive filamentous fungus Aspergillus glaucus to make it adapt to bioreactor so as to establish an efficient fermentation process. Results Hyphal morphology shaping by modifying polarized growth genes of A. glaucus was applied to reduce its shear-sensitivity and enhance aspergiolide A production. Degenerate PCR and genome walking were used to obtain polarized growth genes AgkipA and AgteaR, followed by construction of gene-deficient mutants by homologous integration of double crossover. Deletion of both genes caused meandering hyphae, for which, ΔAgkipA led to small but intense curves comparing with ΔAgteaR by morphology analysis. The germination of a second germ tube from conidiospore of the mutants became random while colony growth and development almost maintained the same. Morphology of ΔAgkipA and ΔAgteaR mutants turned to be compact pellet and loose clump in liquid culture, respectively. The curved hyphae of both mutants showed no remarkably resistant to glass bead grinding comparing with the wild type strain. However, they generated greatly different broth rheology which further caused growth and metabolism variations in bioreactor fermentations. By forming pellets, the ΔAgkipA mutant created a tank environment with low-viscosity, low shear stress and high dissolved oxygen tension, leading to high production of aspergiolide A (121.7 ± 2.3 mg/L), which was 82.2% higher than the wild type. Conclusions A new strategy for shaping fungal

  11. The Stringency of Start Codon Selection in the Filamentous Fungus Neurospora crassa*

    PubMed Central

    Wei, Jiajie; Zhang, Ying; Ivanov, Ivaylo P.; Sachs, Matthew S.

    2013-01-01

    In eukaryotic cells initiation may occur from near-cognate codons that differ from AUG by a single nucleotide. The stringency of start codon selection impacts the efficiency of initiation at near-cognate codons and the efficiency of initiation at AUG codons in different contexts. We used a codon-optimized firefly luciferase reporter initiated with AUG or each of the nine near-cognate codons in preferred context to examine the stringency of start codon selection in the model filamentous fungus Neurospora crassa. In vivo results indicated that the hierarchy of initiation at start codons in N. crassa (AUG ≫ CUG > GUG > ACG > AUA ≈ UUG > AUU > AUC) is similar to that in human cells. Similar results were obtained by translating mRNAs in a homologous N. crassa in vitro translation system or in rabbit reticulocyte lysate. We next examined the efficiency of initiation at AUG, CUG, and UUG codons in different contexts in vitro. The preferred context was more important for efficient initiation from near-cognate codons than from AUG. These studies demonstrated that near-cognate codons are used for initiation in N. crassa. Such events could provide additional coding capacity or have regulatory functions. Analyses of the 5′-leader regions in the N. crassa transcriptome revealed examples of highly conserved near-cognate codons in preferred contexts that could extend the N termini of the predicted polypeptides. PMID:23396971

  12. The filamentous fungus Ashbya gossypii as a competitive industrial inosine producer.

    PubMed

    Ledesma-Amaro, Rodrigo; Buey, Rubén M; Revuelta, José Luis

    2016-09-01

    Inosine is a nucleoside with growing biotechnological interest due to its recently attributed beneficial health effects and as a convenient precursor of the umami flavor. At present, most of the industrial inosine production relies on bacterial fermentations. In this work, we have metabolically engineered the filamentous fungus Ashbya gossypii to obtain strains able to excrete high amounts of inosine to the culture medium. We report that the disruption of only two key genes of the purine biosynthetic pathway efficiently redirect the metabolic flux, increasing 200-fold the excretion of inosine with respect to the wild type, up to 2.2 g/L. These results allow us to propose A. gossypii as a convenient candidate for large-scale nucleoside production, especially in view of the several advantages that Ashbya has with respect to the bacterial systems used at present for the industrial production of this food additive. Biotechnol. Bioeng. 2016;113: 2060-2063. © 2016 Wiley Periodicals, Inc. PMID:26927228

  13. Engineering the filamentous fungus Neurospora crassa for lipid production from lignocellulosic biomass.

    PubMed

    Roche, Christine M; Glass, N Louise; Blanch, Harvey W; Clark, Douglas S

    2014-06-01

    Microbially produced triacylglycerol (TAG) is a potential feedstock for the production of biodiesel, but its commercialization will require high yields from low-cost renewable feedstocks such as lignocellulose. The present study employs a multi-gene approach to increasing TAG biosynthesis in the filamentous fungus Neurospora crassa. We demonstrate the redirection of carbon flux from glycogen biosynthesis towards fatty acid biosynthesis in a glycogen synthase deletion strain (Δgsy-1). Furthermore, combining Δgsy-1 with an enhanced TAG biosynthetic strain (acyl-Coenzyme A synthase; Δacs-3) of N. crassa yielded a twofold increase in total fatty acid accumulation over the control strain. The cellulose degrading potential of this double deletion strain was improved by deleting of the carbon catabolite regulation transcription factor (Δcre-1) to create the triple deletion strain Δacs-3 Δcre-1; Δgsy-1. This strain exhibited early and increased cellulase expression, as well as fourfold increased total fatty acid accumulation over the control on inhibitor-free model cellulose medium. The Δcre-1 mutation, however, was not beneficial for total fatty acid accumulation from pretreated lignocellulose. Conversion of dilute-acid pretreated Miscanthus to TAG was maximum in the constructed strain Δacs-3; Δgsy-1, which accumulated 2.3-fold more total fatty acid than the wild-type control strain, corresponding to a total fatty acid yield of 37.9 mg/g dry untreated Miscanthus. PMID:24700367

  14. RNAi silencing of a cytochrome P450 monooxygenase disrupts the ability of a filamentous fungus, Graphium sp. to grow on short-chain gaseous alkanes and ethers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Graphium sp. (ATCC 58400), a filamentous fungus, is one of the few eukaryotes that grows on short-chain alkanes and ethers. In this study, we investigated the genetic underpinnings that enable this fungus to catalyze the first step in the alkane and ether oxidation pathway. A gene, CYP52L1, was iden...

  15. The phenotype of a phospholipase C (plc-1) mutant in a filamentous fungus, Neurospora crassa.

    PubMed

    Lew, Roger R; Giblon, Rachel E; Lorenti, Miranda S H

    2015-09-01

    In the filamentous fungus Neurospora crassa, phospholipase C may play a role in hyphal extension at the growing tips as part of a growth-sensing mechanism that activates calcium release from internal stores to mediate continued expansion of the hyphal tip. One candidate for a tip-localized phospholipase C is PLC-1. We characterized morphology and growth characteristics of a knockout mutant (KO plc-1) and a RIP mutated strain (RIP plc-1) (missense mutations and a nonsense mutation render the gene product non-functional). Growth and hyphal cytology of wildtype and KO plc-1 were similar, but the RIP plc-1 mutant grew slower and exhibited abnormal membrane structures at the hyphal tip, imaged using the fluorescence dye FM4-64. To test for causes of the slower growth of the RIP plc-1 mutant, we examined its physiological poise compared to wildtype and the KO plc-1 mutant. The electrical properties of all three strains and the electrogenic contribution of the plasma membrane H(+)-ATPase (identified by cyanide inhibition) were the same. Responses to high osmolarity were also similar. However, the RIP plc-1 mutant had a significantly lower turgor, a possible cause of its slower growth. While growth of all three strains was inhibited by the phospholipase C inhibitor 3-nitrocoumarin, the RIP plc-1 mutant did not exhibit hyphal bursting after addition of the inhibitor, observed in both wildtype and the KO plc-1 mutant. Although the plc-1 gene is not obligatory for tip growth, the phenotype of the RIP plc-1 mutant - abnormal tip cytology, lower turgor and resistance to inhibitor-induced hyphal bursting - suggest it does play a role in tip growth. The expression of a dysfunctional plc-1 gene may cause a shift to alternative mechanism(s) of growth sensing in hyphal extension. PMID:26212074

  16. Aspergillus tubingensis: a major filamentous fungus found in the airways of patients with lung disease.

    PubMed

    Gautier, Magali; Normand, Anne-Cécile; L'Ollivier, Coralie; Cassagne, Carole; Reynaud-Gaubert, Martine; Dubus, Jean-Christophe; Brégeon, Fabienne; Hendrickx, Marijke; Gomez, Carine; Ranque, Stéphane; Piarroux, Renaud

    2016-07-01

    The black Aspergillus group comprises A. niger and 18 other species, which are morphologically indistinguishable. Among this species subset, A. tubingensis, described in less than 30 human cases before 2014, is primarily isolated from ear, nose, and throat samples. Recently, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry has emerged as a powerful technique to identify microbes in diagnostic settings. We applied this method to identify 1,720 filamentous fungi routinely isolated from clinical samples our laboratory over a two-year study period. Accordingly, we found 85 isolates of A. niger, 58 of A. tubingensis, and six other black Aspergillus (4 A. carbonarius and 2 A. japonicus). A. tubingensis was the fifth most frequent mold isolated in our mycology laboratory, primarily isolated from respiratory samples (40/58 isolates). In this study, we mainly aimed to describe the clinical pattern of Aspergillus tubingensisWe analyzed the clinical features of the patients in whom A. tubingensis had been isolated from 40 respiratory samples. Thirty patients suffered from cystic fibrosis, chronic obstructive pulmonary disease or other types of chronic respiratory failure. Strikingly, 20 patients were experiencing respiratory acute exacerbation at the time the sample was collected. Antifungal susceptibility testing of 36 A. tubingensis isolates showed lower amphotericin B MICs (P < 10(-4)) and higher itraconazole and voriconazole MICs (P < 10(-4) and P = .0331, respectively) compared with 36 A. niger isolates. Further studies are required to better establish the role that this fungus plays in human diseases, especially in the context of cystic fibrosis and chronic pulmonary diseases. PMID:26773134

  17. Beta-carbonic anhydrases play a role in fruiting body development and ascospore germination in the filamentous fungus Sordaria macrospora.

    PubMed

    Elleuche, Skander; Pöggeler, Stefanie

    2009-01-01

    Carbon dioxide (CO(2)) is among the most important gases for all organisms. Its reversible interconversion to bicarbonate (HCO(3) (-)) reaches equilibrium spontaneously, but slowly, and can be accelerated by a ubiquitous group of enzymes called carbonic anhydrases (CAs). These enzymes are grouped by their distinct structural features into alpha-, beta-, gamma-, delta- and zeta-classes. While physiological functions of mammalian, prokaryotic, plant and algal CAs have been extensively studied over the past years, the role of beta-CAs in yeasts and the human pathogen Cryptococcus neoformans has been elucidated only recently, and the function of CAs in multicellular filamentous ascomycetes is mostly unknown. To assess the role of CAs in the development of filamentous ascomycetes, the function of three genes, cas1, cas2 and cas3 (carbonic anhydrase of Sordaria) encoding beta-class carbonic anhydrases was characterized in the filamentous ascomycetous fungus Sordaria macrospora. Fluorescence microscopy was used to determine the localization of GFP- and DsRED-tagged CAs. While CAS1 and CAS3 are cytoplasmic enzymes, CAS2 is localized to the mitochondria. To assess the function of the three isoenzymes, we generated knock-out strains for all three cas genes (Deltacas1, Deltacas2, and Deltacas3) as well as all combinations of double mutants. No effect on vegetative growth, fruiting-body and ascospore development was seen in the single mutant strains lacking cas1 or cas3, while single mutant Deltacas2 was affected in vegetative growth, fruiting-body development and ascospore germination, and the double mutant strain Deltacas1/2 was completely sterile. Defects caused by the lack of cas2 could be partially complemented by elevated CO(2) levels or overexpression of cas1, cas3, or a non-mitochondrial cas2 variant. The results suggest that CAs are required for sexual reproduction in filamentous ascomycetes and that the multiplicity of isoforms results in redundancy of specific and

  18. Report membrane transport of lactic acid in the filamentous fungus Rhizopus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The fungus Rhizopus is frequently used for fermentative production of lactic acid, but little is known about the mechanisms or proteins for transporting this carboxylic acid. Since transport of the lactate anion across the plasma membrane is critical to prevent acidification of the cytoplasm, we ev...

  19. Structure of Importin-α from a Filamentous Fungus in Complex with a Classical Nuclear Localization Signal

    PubMed Central

    Dreyer, Thiago R.; Freitas, Fernanda Z.; Bertolini, Maria Célia; Fontes, Marcos R. M.

    2015-01-01

    Neurospora crassa is a filamentous fungus that has been extensively studied as a model organism for eukaryotic biology, providing fundamental insights into cellular processes such as cell signaling, growth and differentiation. To advance in the study of this multicellular organism, an understanding of the specific mechanisms for protein transport into the cell nucleus is essential. Importin-α (Imp-α) is the receptor for cargo proteins that contain specific nuclear localization signals (NLSs) that play a key role in the classical nuclear import pathway. Structures of Imp-α from different organisms (yeast, rice, mouse, and human) have been determined, revealing that this receptor possesses a conserved structural scaffold. However, recent studies have demonstrated that the Impα mechanism of action may vary significantly for different organisms or for different isoforms from the same organism. Therefore, structural, functional, and biophysical characterization of different Impα proteins is necessary to understand the selectivity of nuclear transport. Here, we determined the first crystal structure of an Impα from a filamentous fungus which is also the highest resolution Impα structure already solved to date (1.75 Å). In addition, we performed calorimetric analysis to determine the affinity and thermodynamic parameters of the interaction between Imp-α and the classical SV40 NLS peptide. The comparison of these data with previous studies on Impα proteins led us to demonstrate that N. crassa Imp-α possess specific features that are distinct from mammalian Imp-α but exhibit important similarities to rice Imp-α, particularly at the minor NLS binding site. PMID:26091498

  20. Evaluation of the degradation of acetaminophen by the filamentous fungus Scedosporium dehoogii using carbon-based modified electrodes.

    PubMed

    Mbokou, Serge Foukmeniok; Pontié, Maxime; Razafimandimby, Bienvenue; Bouchara, Jean-Philippe; Njanja, Evangéline; Tonle Kenfack, Ignas

    2016-08-01

    The nonpathogenic filamentous fungus Scedosporium dehoogii was used for the first time to study the electrochemical biodegradation of acetaminophen (APAP). A carbon fiber microelectrode (CFME) modified by nickel tetrasulfonated phthalocyanine (p-NiTSPc) and a carbon paste electrode (CPE) modified with coffee husks (CH) were prepared to follow the kinetics of APAP biodegradation. The electrochemical response of APAP at both electrodes was studied by cyclic voltammetry and square wave voltammetry. p-NiTSPc-CFME was suitable to measure high concentrations of APAP, whereas CH-CPE gave rise to high current densities but was subject to the passivation phenomenon. p-NiTSPc-CFME was then successfully applied as a sensor to describe the kinetics of APAP biodegradation: this was found to be of first order with a kinetics constant of 0.11 day(-1) (at 25 °C) and a half-life of 6.30 days. APAP biodegradation by the fungus did not lead to the formation of p-aminophenol (PAP) and hydroquinone (HQ) that are carcinogenic, mutagenic, and reprotoxic (CMR). Graphical Abstract The kinetics of APAP biodegradation, followed by a poly-nickel tetrasulfonated phtalocyanine modified carbon fiber microelectrode. PMID:27349916

  1. Hydrophilins in the filamentous fungus Neosartorya fischeri (Aspergillus fischeri) have protective activity against several types of microbial water stress.

    PubMed

    van Leeuwen, M R; Wyatt, T T; van Doorn, T M; Lugones, L G; Wösten, H A B; Dijksterhuis, J

    2016-02-01

    Hydrophilins are proteins that occur in all domains of life and protect cells and organisms against drought and other stresses. They include most of the late embryogenesis abundant (LEA) proteins and the heat shock protein (HSP) Hsp12. Here, the role of a predicted LEA-like protein (LeamA) and two Hsp12 proteins (Hsp12A and Hsp12B) of Neosartorya fischeri was studied. This filamentous fungus forms ascospores that belong to the most stress-resistant eukaryotic cells described to date. Heterologous expression of LeamA, Hsp12A and Hsp12B resulted in increased tolerance against salt and osmotic stress in Escherichia coli. These proteins were also shown to protect lactate dehydrogenase against dry heat and freeze-thaw cycles in vitro. Deletion of leamA caused diminished viability of sexual ascospores after drought and heat. This is the first report on functionality of Hsp12 and putative LeamA proteins derived from filamentous fungi, and their possible role in N. fischeri ascospore resistance against desiccation, high temperature and osmotic stress is discussed. PMID:26487515

  2. The unconventional secretion of PepN is independent of a functional autophagy machinery in the filamentous fungus Aspergillus niger.

    PubMed

    Burggraaf, Anne-Marie; Punt, Peter J; Ram, Arthur F J

    2016-08-01

    During unconventional protein secretion (UPS), proteins do not pass through the classical endoplasmic reticulum (ER)-Golgi-dependent pathway, but are transported to the cell membrane via alternative routes. One type of UPS is dependent on several autophagy-related (Atg) proteins in yeast and mammalian cells, but mechanisms for unconventional secretion are largely unknown for filamentous fungi. In this study, we investigated whether the autophagy machinery is used for UPS in the filamentous fungus Aspergillus niger An aspartic protease, which we called PepN, was identified as being likely to be secreted unconventionally, as this protein is highly abundant in culture filtrates during carbon starvation while it lacks a conventional N-terminal secretion sequence. We analysed the presence of PepN in the culture filtrates of carbon starved wild-type, atg1 and atg8 deletion mutant strains by Western blot analysis and by secretome analysis using nanoLC-ESI-MS/MS (wild-type and atg8 deletion mutant). Besides the presence of carbohydrate-active enzymes and other types of proteases, PepN was abundantly found in culture filtrates of both wild-type and atg deletion strains, indicating that the secretion of PepN is independent of the autophagy machinery in A. niger and hence most likely occurs via a different mechanism. PMID:27284019

  3. Localization of RHO-4 Indicates Differential Regulation of Conidial versus Vegetative Septation in the Filamentous Fungus Neurospora crassa▿ †

    PubMed Central

    Rasmussen, Carolyn G.; Glass, N. Louise

    2007-01-01

    rho-4 mutants of the filamentous fungus Neurospora crassa lack septa and asexual spores (conidia) and grow slowly. In this report, localization of green fluorescent protein-tagged RHO-4 is used to elucidate the differences in factors controlling RHO-4 localization during vegetative growth versus asexual development. RHO-4 forms a ring at incipient vegetative septation sites that constricts with the formation of the septum toward the septal pore; RHO-4 persists around the septal pore after septum completion. During the formation of conidia, RHO-4 localizes to the primary septum but subsequently is relocalized to the cytoplasm after the placement of the secondary septum. Cytoplasmic localization and inactivation of RHO-4 are mediated by a direct physical interaction with RDI-1, a RHO guanosine nucleotide dissociation inhibitor. Inappropriate activation of the cyclic AMP-dependent protein kinase A pathway during vegetative growth causes mislocalization of RHO-4 away from septa to the cytoplasm, a process which was dependent upon RDI-1. An adenylate cyclase cr-1 mutant partially suppresses the aconidial defect of rho-4 mutants but only rarely suppresses the vegetative septation defect, indicating that conidial septation is negatively regulated by CR-1. These data highlight the differences in the regulation of septation during conidiation versus vegetative septation in filamentous fungi. PMID:17496127

  4. AoRim15 is involved in conidial stress tolerance, conidiation and sclerotia formation in the filamentous fungus Aspergillus oryzae.

    PubMed

    Nakamura, Hidetoshi; Kikuma, Takashi; Jin, Feng Jie; Maruyama, Jun-Ichi; Kitamoto, Katsuhiko

    2016-04-01

    The serine-threonine kinase Rim15p is a master regulator of stress signaling and is required for stress tolerance and sexual sporulation in the yeast Saccharomyces cerevisiae. However, in filamentous fungi that reproduce asexually via conidiation, the physiological function of Rim15p homologs has not been extensively analyzed. Here, we functionally characterized the protein homolog of Rim15p in the filamentous fungus Aspergillus oryzae, by deleting and overexpressing the corresponding Aorim15 gene and examining the role of this protein in stress tolerance and development. Deletion of Aorim15 resulted in an increase in the sensitivity of conidia to oxidative and heat stresses, whereas conidia of the Aorim15 overexpressing strain were more resistant to these stresses. These results indicated that AoRim15 functions in stress tolerance, similar to S. cerevisiae Rim15p. Phenotypic analysis revealed that conidiation was markedly reduced by overexpression of Aorim15 in A. oryzae, and was completely abolished in the deletion strain. In addition, the formation of sclerotia, which is another type of developmental structure in filamentous fungi, was decreased by the deletion of Aorim15, whereas Aorim15 overexpression increased the number of sclerotia. These results indicated that AoRim15 is a positive regulator of sclerotia formation and that overexpression of AoRim15 shifts the developmental balance from conidiation towards sclerotia formation. Collectively, we demonstrated that AoRim15 is involved in the stress tolerance of conidia and differentially regulates between the two developmental fates of conidiation and sclerotia formation. PMID:26467693

  5. De novo genome sequence assembly of a filamentous fungus using Sanger, 454 and Illumina sequence data

    PubMed Central

    DiGuistini, Scott; Liao, Nancy Y; Platt, Darren; Robertson, Gordon; Seidel, Michael; Chan, Simon K; Docking, T Roderick; Birol, Inanc; Holt, Robert A; Hirst, Martin; Mardis, Elaine; Marra, Marco A; Hamelin, Richard C; Bohlmann, Jörg; Breuil, Colette; Jones, Steven JM

    2009-01-01

    Sequencing-by-synthesis technologies can reduce the cost of generating de novo genome assemblies. We report a method for assembling draft genome sequences of eukaryotic organisms that integrates sequence information from different sources, and demonstrate its effectiveness by assembling an approximately 32.5 Mb draft genome sequence for the forest pathogen Grosmannia clavigera, an ascomycete fungus. We also developed a method for assessing draft assemblies using Illumina paired end read data and demonstrate how we are using it to guide future sequence finishing. Our results demonstrate that eukaryotic genome sequences can be accurately assembled by combining Illumina, 454 and Sanger sequence data. PMID:19747388

  6. Genomic adaptations of the halophilic Dead Sea filamentous fungus Eurotium rubrum.

    PubMed

    Kis-Papo, Tamar; Weig, Alfons R; Riley, Robert; Peršoh, Derek; Salamov, Asaf; Sun, Hui; Lipzen, Anna; Wasser, Solomon P; Rambold, Gerhard; Grigoriev, Igor V; Nevo, Eviatar

    2014-01-01

    The Dead Sea is one of the most hypersaline habitats on Earth. The fungus Eurotium rubrum (Eurotiomycetes) is among the few species able to survive there. Here we highlight its adaptive strategies, based on genome analysis and transcriptome profiling. The 26.2 Mb genome of E. rubrum shows, for example, gains in gene families related to stress response and losses with regard to transport processes. Transcriptome analyses under different salt growth conditions revealed, among other things differentially expressed genes encoding ion and metabolite transporters. Our findings suggest that long-term adaptation to salinity requires cellular and metabolic responses that differ from short-term osmotic stress signalling. The transcriptional response indicates that halophilic E. rubrum actively counteracts the salinity stress. Many of its genes encode for proteins with a significantly higher proportion of acidic amino acid residues. This trait is characteristic of the halophilic prokaryotes as well, supporting the theory of convergent evolution under extreme hypersaline stress. PMID:24811710

  7. Dynamics of Actin Cables in Polarized Growth of the Filamentous Fungus Aspergillus nidulans

    PubMed Central

    Bergs, Anna; Ishitsuka, Yuji; Evangelinos, Minoas; Nienhaus, G. U.; Takeshita, Norio

    2016-01-01

    Highly polarized growth of filamentous fungi requires a continuous supply of proteins and lipids to the hyphal tip. This transport is managed by vesicle trafficking via the actin and microtubule cytoskeletons and their associated motor proteins. Particularly, actin cables originating from the hyphal tip are essential for hyphal growth. Although, specific marker proteins have been developed to visualize actin cables in filamentous fungi, the exact organization and dynamics of actin cables has remained elusive. Here, we observed actin cables using tropomyosin (TpmA) and Lifeact fused to fluorescent proteins in living Aspergillus nidulans hyphae and studied the dynamics and regulation. GFP tagged TpmA visualized dynamic actin cables formed from the hyphal tip with cycles of elongation and shrinkage. The elongation and shrinkage rates of actin cables were similar and approximately 0.6 μm/s. Comparison of actin markers revealed that high concentrations of Lifeact reduced actin dynamics. Simultaneous visualization of actin cables and microtubules suggests temporally and spatially coordinated polymerization and depolymerization between the two cytoskeletons. Our results provide new insights into the molecular mechanism of ordered polarized growth regulated by actin cables and microtubules. PMID:27242709

  8. Functional Analysis of Sterol Transporter Orthologues in the Filamentous Fungus Aspergillus nidulans

    PubMed Central

    Bühler, Nicole; Hagiwara, Daisuke

    2015-01-01

    Polarized growth in filamentous fungi needs a continuous supply of proteins and lipids to the growing hyphal tip. One of the important membrane compounds in fungi is ergosterol. At the apical plasma membrane ergosterol accumulations, which are called sterol-rich plasma membrane domains (SRDs). The exact roles and formation mechanism of the SRDs remained unclear, although the importance has been recognized for hyphal growth. Transport of ergosterol to hyphal tips is thought to be important for the organization of the SRDs. Oxysterol binding proteins, which are conserved from yeast to human, are involved in nonvesicular sterol transport. In Saccharomyces cerevisiae seven oxysterol-binding protein homologues (OSH1 to -7) play a role in ergosterol distribution between closely located membranes independent of vesicle transport. We found five homologous genes (oshA to oshE) in the filamentous fungi Aspergillus nidulans. The functions of OshA-E were characterized by gene deletion and subcellular localization. Each gene-deletion strain showed characteristic phenotypes and different sensitivities to ergosterol-associated drugs. Green fluorescent protein-tagged Osh proteins showed specific localization in the late Golgi compartments, puncta associated with the endoplasmic reticulum, or diffusely in the cytoplasm. The genes expression and regulation were investigated in a medically important species Aspergillus fumigatus, as well as A. nidulans. Our results suggest that each Osh protein plays a role in ergosterol distribution at distinct sites and contributes to proper fungal growth. PMID:26116213

  9. Dynamics of Actin Cables in Polarized Growth of the Filamentous Fungus Aspergillus nidulans.

    PubMed

    Bergs, Anna; Ishitsuka, Yuji; Evangelinos, Minoas; Nienhaus, G U; Takeshita, Norio

    2016-01-01

    Highly polarized growth of filamentous fungi requires a continuous supply of proteins and lipids to the hyphal tip. This transport is managed by vesicle trafficking via the actin and microtubule cytoskeletons and their associated motor proteins. Particularly, actin cables originating from the hyphal tip are essential for hyphal growth. Although, specific marker proteins have been developed to visualize actin cables in filamentous fungi, the exact organization and dynamics of actin cables has remained elusive. Here, we observed actin cables using tropomyosin (TpmA) and Lifeact fused to fluorescent proteins in living Aspergillus nidulans hyphae and studied the dynamics and regulation. GFP tagged TpmA visualized dynamic actin cables formed from the hyphal tip with cycles of elongation and shrinkage. The elongation and shrinkage rates of actin cables were similar and approximately 0.6 μm/s. Comparison of actin markers revealed that high concentrations of Lifeact reduced actin dynamics. Simultaneous visualization of actin cables and microtubules suggests temporally and spatially coordinated polymerization and depolymerization between the two cytoskeletons. Our results provide new insights into the molecular mechanism of ordered polarized growth regulated by actin cables and microtubules. PMID:27242709

  10. Purification, characterization and enzymatic degradation of YCP, a polysaccharide from marine filamentous fungus Phoma herbarum YS4108.

    PubMed

    Yang, X B; Gao, X D; Han, F; Xu, B S; Song, Y C; Tan, R X

    2005-08-01

    YCP, a mitogenic polysaccharide with its molecular weight (MW) of 2.4 x 10(3) kDa, was isolated from the mycelium of the marine filamentous fungus Phoma herbarum YS4108 by a combination of ion-exchange chromatography on DEAE-32 and gel permeation over Sephacryl S-400. The detailed compositional, spectroscopic and methylation analyses of the polysaccharide demonstrated that its backbone possessed most likely a linear alpha-(1 --> 4) bonded glucopyranoside main chain co-bearing through side alpha-(1 --> 6)-linkage. The alpha-(1 --> 4) bondage of the glucopyranoside building blocks in YCP was confirmed by the observation that it could be hydrolyzed by the alpha-amylase produced by Bacillus licheniformis. A reliable concentration monitoring experimentation highlighted that the reducing sugars released continuously from YCP during its incubation with the enzyme, and the MW of the main resulting fragment weighed 0.8 x 10(4) Da with approximately 10% of YCP converted to maltose, maltotriose and glucose after a 120-min enzymatic degradation. Finally, YCP was found to be able to increase phagocytic activity of mice in vitro and in vivo, indicating that it may be looked up as a potent immunomodulator that could activate macrophages. PMID:15885873

  11. Multivariate Phenotypic Divergence Due to the Fixation of Beneficial Mutations in Experimentally Evolved Lineages of a Filamentous Fungus

    PubMed Central

    Dali, Rola; Rundle, Howard D.; Kassen, Rees

    2012-01-01

    The potential for evolutionary change is limited by the availability of genetic variation. Mutations are the ultimate source of new alleles, yet there have been few experimental investigations of the role of novel mutations in multivariate phenotypic evolution. Here, we evaluated the degree of multivariate phenotypic divergence observed in a long-term evolution experiment whereby replicate lineages of the filamentous fungus Aspergillus nidulans were derived from a single genotype and allowed to fix novel (beneficial) mutations while maintained at two different population sizes. We asked three fundamental questions regarding phenotypic divergence following approximately 800 generations of adaptation: (1) whether divergence was limited by mutational supply, (2) whether divergence proceeded in relatively many (few) multivariate directions, and (3) to what degree phenotypic divergence scaled with changes in fitness (i.e. adaptation). We found no evidence that mutational supply limited phenotypic divergence. Divergence also occurred in all possible phenotypic directions, implying that pleiotropy was either weak or sufficiently variable among new mutations so as not to constrain the direction of multivariate evolution. The degree of total phenotypic divergence from the common ancestor was positively correlated with the extent of adaptation. These results are discussed in the context of the evolution of complex phenotypes through the input of adaptive mutations. PMID:23185601

  12. Purification and characterization of an extracellular (1 --> 6)-beta-glucanase from the filamentous fungus Acremonium persicinum.

    PubMed Central

    Pitson, S M; Seviour, R J; McDougall, B M; Stone, B A; Sadek, M

    1996-01-01

    An endo-(1 --> 6)-beta-glucanase has been isolated from the culture filtrates of the filamentous fungus Acremonium persicinum and purified by (NH4)2SO4 precipitation followed by anion-exchange and gel-filtration chromatography. SDS/PAGE of the purified enzyme gave a single band with an apparent molecular mass of 42.7 kDa. The enzyme is a non-glycosylated, monomeric protein with a pI of 4.9 and pH optimum of 5.0. It hydrolysed (1 --> 6)-beta-glucans (pustulan and lutean), initially yielding a series of (1 --> 6)-beta-linked oligoglucosides, consistent with endo-hydrolytic action. Final hydrolysis products from these substrates were gentiobiose and gentiotriose, with all products released as beta-anomers, indicating that the enzyme acts with retention of configuration. The purified enzyme also hydrolysed Eisenia bicyclis laminarin, liberating glucose, gentiobiose, and a range of larger oligoglucosides, through the apparent bydrolysis of (1 --> 6)-beta- and some (1 --> 3)-beta-linkages in this substrate. K(m) values for pustulan, lutean and laminarin were 1.28, 1.38, and 1.67 mg/ml respectively. The enzyme was inhibited by N-acetylimidazole, N-bromosuccinimide, dicyclohexylcarbodi-imide, Woodward's Reagent K, 2-hydroxy-5-nitrobenzyl bromide, KMnO4 and some metal ions, whereas D-glucono-1,5-lactone and EDTA had no effect. PMID:8670160

  13. Presence and regulation of the alpha-ketoglutarate dehydrogenase multienzyme complex in the filamentous fungus Aspergillus niger.

    PubMed Central

    Meixner-Monori, B; Kubicek, C P; Habison, A; Kubicek-Pranz, E M; Röhr, M

    1985-01-01

    alpha-Ketoglutarate dehydrogenase has been demonstrated for the first time in cell extracts from the filamentous fungus Aspergillus niger. A minimum protein concentration of 5 mg/ml is necessary for detecting enzyme activity, but a maximum of ca. 0.060 mumol/min per mg of protein is observed only when the protein concentration is above 9 mg/ml. alpha-Ketoglutarate can partly stabilize the enzyme against dilution in the assay system. Neither bovine serum albumin nor a variety of substrates or effectors of the enzyme could stabilize the enzyme against inactivation by dilution. A kinetic analysis of the enzyme revealed Michaelis-Menten kinetics with respect to alpha-ketoglutarate, coenzyme A, and NAD. Thiamine PPi was required for maximal activity. NADH, oxaloacetate, succinate, and cis-aconitate were found to inhibit the enzyme; AMP was without effect. Monovalent cations including NH4+ were inhibitory at high concentrations (greater than 20 mM). The highest enzyme activity was found in rapidly growing mycelia (glucose-NH4+ or glucose-peptone medium). We discuss the possibility that citric acid accumulation is caused by oxaloacetate and NADH inhibition of the alpha-ketoglutarate dehydrogenase of A. niger. PMID:3968029

  14. Identification of residues important for substrate uptake in a glucose transporter from the filamentous fungus Trichoderma reesei

    PubMed Central

    Zhang, Weixin; Cao, Yanli; Gong, Jing; Bao, Xiaoming; Chen, Guanjun; Liu, Weifeng

    2015-01-01

    The glucose transporter is an important player in cell metabolism that mediates the intracellular uptake of glucose. Here, we characterized the glucose transporter Stp1 from the filamentous fungus Trichoderma reesei. The individual substitution of several conserved residues for Ala in Stp1 corresponding to those interacting with D-glucose in the xylose/H+ symporter XylE inflicted contrasting effects on its ability to support the growth of an hxt-null yeast on glucose. The targeted change of Phe 50, proximal to the substrate-binding site, was also found to exert a profound effect on the activity of Stp1. In contrast with the charged residues, the substitution of Phe 50 with either the hydrophilic residues Asn and Gln or the small residues Gly and Ala significantly enhanced the transport of glucose and its fluorescent analogue, 2-NBDG. On the other hand, a variant with the three substitutions I115F, F199I and P214L displayed remarkably improved activity on glucose and 2-NBDG transport. Further analysis indicated that the combined mutations of Ile 115 and Pro 214, positioned on the lateral surface of the Stp1 N-domain, fully accounted for the enhanced transport activity. These results provide insight into the structural basis for glucose uptake in fungal sugar transporters. PMID:26345619

  15. conF and conJ contribute to conidia germination and stress response in the filamentous fungus Aspergillus nidulans.

    PubMed

    Suzuki, Satoshi; Sarikaya Bayram, Özlem; Bayram, Özgür; Braus, Gerhard H

    2013-07-01

    Light induces various responses in fungi including formation of asexual and sexual reproductive structures. The formation of conidia in the filamentous fungus Aspergillus nidulans is regulated by red and blue light receptors. Expression of conidia associated con genes, which are widely spread in the fungal kingdom, increases upon exposure to light. We have characterized the light-inducible conF and conJ genes of A. nidulans which are homologs of con-6 and con-10 of Neurospora crassa. con genes are expressed during conidia formation in asexual development. Five minutes light exposure are sufficient to induce conF or conJ expression in vegetative mycelia. Similar to N. crassa there were no significant phenotypes of single con mutations. A double conF and conJ deletion resulted in significantly increased cellular amounts of glycerol or erythritol. This leads to a delayed germination phenotype combined with increased resistance against desiccation. These defects were rescued by complementation of the double mutant strain with either conF or conJ. This suggests that fungal con genes exhibit redundant functions in controlling conidia germination and adjusting cellular levels of substances which protect conidia against dryness. PMID:23644150

  16. Affinity-based in situ product removal coupled with co-immobilization of oily substrate and filamentous fungus.

    PubMed

    Dukler, A; Freeman, A

    1998-01-01

    In situ product removal (ISPR) involves actions taken for the fast removal of a product from the producing cell. ISPR is implemented to improve yield and productivity via minimization of product inhibition, minimization of product losses due to degradation or evaporation, and reduction of the number of subsequent downstream processing steps. Here we describe the implementation of affinity-based, specific ISPR as a crucial component of an integrative approach to problems associated with the biocatalytic production of a product exhibiting poor water solubility from an oily, water-insoluble precursor. Our integrative ISPR-based approach consists of co-immobilization of the oily substrate emulsion and the biocatalyst within bilayered alginate beads. A particulate-specific adsorbent, exhibiting high binding capacity of the product, is suspended in the reaction medium with periodical replacements. According to this approach, ISPR implementation is expected to shift the equilibration of product distribution between the co-immobilized oily substrate and the outer medium via specific product immobilization onto the added adsorbent. The product may subsequently be readily recovered via single-step final purification. This integrative approach was successfully demonstrated by the affinity-based ISPR of gamma-decalactone (4-decanolide). gamma-Decalactone was produced from castor oil via its beta-oxidation by the filamentous fungus Tyromyces sambuceus, co-immobilized with emulsified substrate within bilayered alginate beads. Product immobilization onto medium-suspended epichlorohydrin-crosslinked beta-cyclodextrin resulted in higher yield and easy pure product recovery. PMID:10076845

  17. Gibberella Ear Rot of Maize (Zea mays) in Nepal: Distribution of the Mycotoxins Nivalenol and Deoxynivalenol in Naturally and Experimentally Infected Maize

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The fungus Fusarium graminearum (sexual stage Gibberella zeae) causes ear rot of maize (Zea mays) and contamination with the 8-ketotrichothecenes nivalenol (NIV) or 4-deoxynivalenol (DON), depending on diversity of the fungal population for the 4-oxygenase gene (TRI13). To determine the importance ...

  18. Presence and Functionality of Mating Type Genes in the Supposedly Asexual Filamentous Fungus Aspergillus oryzae

    PubMed Central

    Wada, Ryuta; Maruyama, Jun-ichi; Yamaguchi, Haruka; Yamamoto, Nanase; Wagu, Yutaka; Paoletti, Mathieu; Archer, David B.; Dyer, Paul S.

    2012-01-01

    The potential for sexual reproduction in Aspergillus oryzae was assessed by investigating the presence and functionality of MAT genes. Previous genome studies had identified a MAT1-1 gene in the reference strain RIB40. We now report the existence of a complementary MAT1-2 gene and the sequencing of an idiomorphic region from A. oryzae strain AO6. This allowed the development of a PCR diagnostic assay, which detected isolates of the MAT1-1 and MAT1-2 genotypes among 180 strains assayed, including industrial tane-koji isolates. Strains used for sake and miso production showed a near-1:1 ratio of the MAT1-1 and MAT1-2 mating types, whereas strains used for soy sauce production showed a significant bias toward the MAT1-2 mating type. MAT1-1 and MAT1-2 isogenic strains were then created by genetic manipulation of the resident idiomorph, and gene expression was compared by DNA microarray and quantitative real-time PCR (qRT-PCR) methodologies under conditions in which MAT genes were expressed. Thirty-three genes were found to be upregulated more than 10-fold in either the MAT1-1 host strain or the MAT1-2 gene replacement strain relative to each other, showing that both the MAT1-1 and MAT1-2 genes functionally regulate gene expression in A. oryzae in a mating type-dependent manner, the first such report for a supposedly asexual fungus. MAT1-1 expression specifically upregulated an α-pheromone precursor gene, but the functions of most of the genes affected were unknown. The results are consistent with a heterothallic breeding system in A. oryzae, and prospects for the discovery of a sexual cycle are discussed. PMID:22327593

  19. Sequences of stilboflavin C: towards the peptaibiome of the filamentous fungus Stilbella (= Trichoderma) flavipes.

    PubMed

    Degenkolb, Thomas; Götze, Lutz; von Döhren, Hans; Vilcinskas, Andreas; Brückner, Hans

    2016-08-01

    Filamentous fungi of the genus Stilbella are recognized as an abundant source of naturally occurring α-aminoisobutyric acid-containing peptides. The culture broth of Stilbella (Trichoderma) flavipes CBS 146.81 yielded a mixture of peptides named stilboflavins (SF), and these were isolated and separated by preparative TLC into groups named SF-A, SF-B, and SF-C. Although all three of these groups resolved as single spots on thin-layer chromatograms, HPLC analysis revealed that each of the groups represents very microheterogeneous mixtures of closely related peptides. Here, we report on the sequence analysis of SF-C peptides, formerly isolated by preparative TLC. HPLC coupled to QqTOF-ESI-HRMS provided the sequences of 10 16-residue peptides and five 19-residue peptides, all of which were N-terminally acetylated. In contrast to the previously described SF-A and SF-B peptaibols, SF-C peptaibols contain Ser-Alaol or Ser-Leuol, which are rarely found as C-termini, and repetitive Leu-Aib-Gly sequences, which have not been detected in peptaibols before. Taking the previously determined sequences of SF-A and SF-B into account, the entirety of peptides produced by S. flavipes (the 'peptaibiome') approaches or exceeds 100 non-ribosomally biosynthesized peptaibiotics. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd. PMID:27443977

  20. Regulation of the acuF Gene, Encoding Phosphoenolpyruvate Carboxykinase in the Filamentous Fungus Aspergillus nidulans

    PubMed Central

    Hynes, Michael J.; Draht, Oliver W.; Davis, Meryl A.

    2002-01-01

    Phosphoenolpyruvate carboxykinase (PEPCK) is a key enzyme required for gluconeogenesis when microorganisms grow on carbon sources metabolized via the tricarboxylic acid (TCA) cycle. Aspergillus nidulans acuF mutants isolated by their inability to use acetate as a carbon source specifically lack PEPCK. The acuF gene has been cloned and shown to encode a protein with high similarity to PEPCK from bacteria, plants, and fungi. The regulation of acuF expression has been studied by Northern blotting and by the construction of lacZ fusion reporters. Induction by acetate is abolished in mutants unable to metabolize acetate via the TCA cycle, and induction by amino acids metabolized via 2-oxoglutarate is lost in mutants unable to form 2-oxoglutarate. Induction by acetate and proline is not additive, consistent with a single mechanism of induction. Malate and succinate result in induction, and it is proposed that PEPCK is controlled by a novel mechanism of induction by a TCA cycle intermediate or derivative, thereby allowing gluconeogenesis to occur during growth on any carbon source metabolized via the TCA cycle. It has been shown that the facB gene, which mediates acetate induction of enzymes specifically required for acetate utilization, is not directly involved in PEPCK induction. This is in contrast to Saccharomyces cerevisiae, where Cat8p and Sip4p, homologs of FacB, regulate PEPCK as well as the expression of other genes necessary for growth on nonfermentable carbon sources in response to the carbon source present. This difference in the control of gluconeogenesis reflects the ability of A. nidulans and other filamentous fungi to use a wide variety of carbon sources in comparison with S. cerevisiae. The acuF gene was also found to be subject to activation by the CCAAT binding protein AnCF, a protein homologous to the S. cerevisiae Hap complex and the mammalian NFY complex. PMID:11741859

  1. Molecular and functional characterization of a Rho GDP dissociation inhibitor in the filamentous fungus Tuber borchii

    PubMed Central

    Menotta, Michele; Amicucci, Antonella; Basili, Giorgio; Polidori, Emanuela; Stocchi, Vilberto; Rivero, Francisco

    2008-01-01

    Background Small GTPases of the Rho family function as tightly regulated molecular switches that govern important cellular functions in eukaryotes. Several families of regulatory proteins control their activation cycle and subcellular localization. Members of the guanine nucleotide dissociation inhibitor (GDI) family sequester Rho GTPases from the plasma membrane and keep them in an inactive form. Results We report on the characterization the RhoGDI homolog of Tuber borchii Vittad., an ascomycetous ectomycorrhizal fungus. The Tbgdi gene is present in two copies in the T. borchii genome. The predicted amino acid sequence shows high similarity to other known RhoGDIs. Real time PCR analyses revealed an increased expression of Tbgdi during the phase preparative to the symbiosis instauration, in particular after stimulation with root exudates extracts, that correlates with expression of Tbcdc42. In a translocation assay TbRhoGDI was able to solubilize TbCdc42 from membranes. Surprisingly, TbRhoGDI appeared not to interact with S. cerevisiae Cdc42, precluding the use of yeast as a surrogate model for functional studies. To study the role of TbRhoGDI we performed complementation experiments using a RhoGDI null strain of Dictyostelium discoideum, a model organism where the roles of Rho signaling pathways are well established. For comparison, complementation with mammalian RhoGDI1 and LyGDI was also studied in the null strain. Although interacting with Rac1 isoforms, TbRhoGDI was not able to revert the defects of the D. discoideum RhoGDI null strain, but displayed an additional negative effect on the cAMP-stimulated actin polymerization response. Conclusion T. borchii expresses a functional RhoGDI homolog that appears as an important modulator of cytoskeleton reorganization during polarized apical growth that antecedes symbiosis instauration. The specificity of TbRhoGDI actions was underscored by its inability to elicit a growth defect in S. cerevisiae or to compensate the

  2. Metabolism of Diethyl Ether and Cometabolism of Methyl tert-Butyl Ether by a Filamentous Fungus, a Graphium sp

    PubMed Central

    Hardison, L. K.; Curry, S. S.; Ciuffetti, L. M.; Hyman, M. R.

    1997-01-01

    In this study, evidence for two novel metabolic processes catalyzed by a filamentous fungus, Graphium sp. strain ATCC 58400, is presented. First, our results indicate that this Graphium sp. can utilize the widely used solvent diethyl ether (DEE) as the sole source of carbon and energy for growth. The kinetics of biomass accumulation and DEE consumption closely followed each other, and the molar growth yield on DEE was indistinguishable from that with n-butane. n-Butane-grown mycelia also immediately oxidized DEE without the extracellular accumulation of organic oxidation products. This suggests a common pathway for the oxidation of both compounds. Acetylene, ethylene, and other unsaturated gaseous hydrocarbons completely inhibited the growth of this Graphium sp. on DEE and DEE oxidation by n-butane-grown mycelia. Second, our results indicate that gaseous n-alkane-grown Graphium mycelia can cometabolically degrade the gasoline oxygenate methyl tert-butyl ether (MTBE). The degradation of MTBE was also completely inhibited by acetylene, ethylene, and other unsaturated hydrocarbons and was strongly influenced by n-butane. Two products of MTBE degradation, tert-butyl formate (TBF) and tert-butyl alcohol (TBA), were detected. The kinetics of product formation suggest that TBF production temporally precedes TBA accumulation and that TBF is hydrolyzed both biotically and abiotically to yield TBA. Extracellular accumulation of TBA accounted for only a maximum of 25% of the total MTBE consumed. Our results suggest that both DEE oxidation and MTBE oxidation are initiated by cytochrome P-450-catalyzed reactions which lead to scission of the ether bonds in these compounds. Our findings also suggest a potential role for gaseous n-alkane-oxidizing fungi in the remediation of MTBE contamination. PMID:16535667

  3. Production and characterization of a secreted, C-terminally processed tyrosinase from the filamentous fungus Trichoderma reesei.

    PubMed

    Selinheimo, Emilia; Saloheimo, Markku; Ahola, Elina; Westerholm-Parvinen, Ann; Kalkkinen, Nisse; Buchert, Johanna; Kruus, Kristiina

    2006-09-01

    A homology search of the genome database of the filamentous fungus Trichoderma reesei identified a new T. reesei tyrosinase gene tyr2, encoding a protein with a putative signal sequence. The gene was overexpressed in the native host under the strong cbh1 promoter, and the tyrosinase enzyme was secreted into the culture supernatant. This is the first report on a secreted fungal tyrosinase. Expression of TYR2 in T. reesei resulted in good yields, corresponding to approximately 0.3 and 1 g.L(-1) tyrosinase in shake flask cultures and laboratory-scale batch fermentation, respectively. T. reesei TYR2 was purified with a three-step purification procedure, consisting of desalting by gel filtration, cation exchange chromatography and size exclusion chromatography. The purified TYR2 protein had a significantly lower molecular mass (43.2 kDa) than that calculated from the putative amino acid sequence (61.151 kDa). According to N-terminal and C-terminal structural analyses by fragmentation, chromatography, MS and peptide sequencing, the mature protein is processed from the C-terminus by a cleavage of a peptide fragment of about 20 kDa. The T. reesei TYR2 polypeptide chain was found to be glycosylated at its only potential N-glycosylation site, with a glycan consisting of two N-acetylglucosamines and five mannoses. Also, low amounts of shorter glycan forms were detected at this site. T. reesei TYR2 showed the highest activity and stability within a neutral and alkaline pH range, having an optimum at pH 9. T. reesei tyrosinase retained its activity well at 30 degrees C, whereas at higher temperatures the enzyme started to lose its activity relatively quickly. T. reesei TYR2 was active on both l-tyrosine and l-dopa, and it showed broad substrate specificity. PMID:16939623

  4. Degradation of slime extracellular polymeric substances and inhibited sludge flocs destruction contribute to sludge dewaterability enhancement during fungal treatment of sludge using filamentous fungus Mucor sp. GY-1.

    PubMed

    Wang, Zhenyu; Zheng, Guanyu; Zhou, Lixiang

    2015-09-01

    Mechanisms responsible for the sludge dewaterability enhanced by filamentous fungi during fungal treatment of sludge were investigated in the present study. The filamentous fungus Mucor sp. GY-1, isolated from waste activated sludge, enhanced sludge dewaterability by 82.1% to achieve the lowest value of normalized sludge specific resistance to filtration (SRF), 8.18 × 10(10) m · L/kg · g-TSS. During the fungal treatment of sludge, 57.8% of slime extracellular polymeric substances (EPS) and 51.1% of polysaccharide in slime EPS were degraded, respectively, by Mucor sp. GY-1, contributing to the improvement of sludge dewaterability. Slime EPS is much more available for Mucor sp. GY-1 than either LB-EPS or TB-EPS that bound with microbial cells. In addition, filamentous fungus Mucor sp. GY-1 entrapped small sludge particles and inhibited the destruction of sludge flocs larger than 100 μm, thus enhancing sludge dewaterability, during fungal treatment of sludge using Mucor sp. GY-1. PMID:26086084

  5. Harvesting of Chlorella sorokiniana by co-culture with the filamentous fungus Isaria fumosorosea: A potential sustainable feedstock for hydrothermal gasification.

    PubMed

    Mackay, Stephen; Gomes, Eduardo; Holliger, Christof; Bauer, Rolene; Schwitzguébel, Jean-Paul

    2015-06-01

    Despite recent advances in down-stream processing, production of microalgae remains substantially limited because of economical reasons. Harvesting and dewatering are the most energy-intensive processing steps in their production and contribute 20-30% of total operational cost. Bio-flocculation of microalgae by co-cultivation with filamentous fungi relies on the development of large structures that facilitate cost effective harvesting. A yet unknown filamentous fungus was isolated as a contaminant from a microalgal culture and identified as Isaria fumosorosea. Blastospores production was optimized in minimal medium and the development of pellets, possibly lichens, was followed when co-cultured with Chlorella sorokiniana under strict autotrophic conditions. Stable pellets (1-2mm) formed rapidly at pH 7-8, clearing the medium of free algal cells. Biomass was harvested with large inexpensive filters, generating wet slurry suitable for hydrothermal gasification. Nutrient rich brine from the aqueous phase of hydrothermal gasification supported growth of the fungus and may increase the process sustainability. PMID:25795450

  6. Evidence for birth-and-death evolution of a secondary metabolite biosynthetic gene cluster and its relocation within and between genomes of the filamentous fungus Fusarium

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In fungi, genes required for synthesis of secondary metabolites are often clustered. The fumonisin biosynthetic (FUM) gene cluster is required for synthesis of a family of toxic secondary metabolites, fumonisins, produced by some fungi of the Gibberella fujikuroi species complex (GFSC). Among GFSC s...

  7. Three-dimensional image analysis of plugging at the septal pore by Woronin body during hypotonic shock inducing hyphal tip bursting in the filamentous fungus Aspergillus oryzae

    SciTech Connect

    Maruyama, Jun-ichi; Juvvadi, Praveen Rao; Ishi, Kazutomo; Kitamoto, Katsuhiko . E-mail: akitamo@mail.ecc.u-tokyo.ac.jp

    2005-06-17

    We observed that the filamentous fungus, Aspergillus oryzae, grown on agar media burst out cytoplasmic constituents from the hyphal tip soon after flooding with water. Woronin body is a specialized organelle known to plug the septal pore adjacent to the lysed compartment to prevent extensive loss of cytoplasm. A. oryzae Aohex1 gene homologous to Neurospora crassa HEX1 gene encoding a major protein in Woronin body was expressed as a fusion with DsRed2, resulting in visualization of Woronin body. Confocal microscopy and three-dimensional reconstruction of images visualized the septal pore as a dark region surrounded by green fluorescence of EGFP-fused secretory protein, RNase T1, on the septum. Dual fluorescent labeling revealed the plugging of the septal pores adjacent to the lysed apical compartments by Woronin bodies during hypotonic shock. Disruption of Aohex1 gene caused disappearance of Woronin bodies and the defect to prevent extensive loss of cytoplasm during hypotonic shock.

  8. Evidence that a Secondary Metabolic Biosynthetic Gene Cluster has Grown by Gene Relocation During Evolution of the Filamentous Fungus Fusarium

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Trichothecenes are terpene-derived secondary metabolites produced by multiple genera of filamentous fungi, including many plant pathogenic species of Fusarium. These metabolites are of medical and agricultural interest because they are toxic to animals and plants and can contribute to pathogenesis ...

  9. Modulating Endoplasmic Reticulum-Golgi Cargo Receptors for Improving Secretion of Carrier-Fused Heterologous Proteins in the Filamentous Fungus Aspergillus oryzae

    PubMed Central

    Hoang, Huy-Dung; Maruyama, Jun-ichi

    2014-01-01

    Filamentous fungi are excellent hosts for industrial protein production due to their superior secretory capacity; however, the yield of heterologous eukaryotic proteins is generally lower than that of fungal or endogenous proteins. Although activating protein folding machinery in the endoplasmic reticulum (ER) improves the yield, the importance of intracellular transport machinery for heterologous protein secretion is poorly understood. Here, using Aspergillus oryzae as a model filamentous fungus, we studied the involvement of two putative lectin-like cargo receptors, A. oryzae Vip36 (AoVip36) and AoEmp47, in the secretion of heterologous proteins expressed in fusion with the endogenous enzyme α-amylase as the carrier. Fluorescence microscopy revealed that mDsRed-tagged AoVip36 localized in the Golgi compartment, whereas AoEmp47 showed localization in both the ER and the Golgi compartment. Deletion of AoVip36 and AoEmp47 improved heterologous protein secretion, but only AoVip36 deletion had a negative effect on the secretion of α-amylase. Analysis of ER-enriched cell fractions revealed that AoVip36 and AoEmp47 were involved in the retention of heterologous proteins in the ER. However, the overexpression of each cargo receptor had a different effect on heterologous protein secretion: AoVip36 enhanced the secretion, whereas AoEmp47 promoted the intracellular retention. Taken together, our data suggest that AoVip36 and AoEmp47 hinder the secretion of heterologous proteins by promoting their retention in the ER but that AoVip36 also promotes the secretion of heterologous proteins. Moreover, we found that genetic deletion of these putative ER-Golgi cargo receptors significantly improves heterologous protein production. The present study is the first to propose that ER-Golgi transport is a bottleneck for heterologous protein production in filamentous fungi. PMID:25362068

  10. Visualization of the endocytic pathway in the filamentous fungus Aspergillus oryzae using an EGFP-fused plasma membrane protein

    SciTech Connect

    Higuchi, Yujiro; Nakahama, Tomoyuki; Shoji, Jun-ya; Arioka, Manabu; Kitamoto, Katsuhiko . E-mail: akitamo@mail.ecc.u-tokyo.ac.jp

    2006-02-17

    Endocytosis is an important process for cellular activities. However, in filamentous fungi, the existence of endocytosis has been so far elusive. In this study, we used AoUapC-EGFP, the fusion protein of a putative uric acid-xanthine permease with enhanced green fluorescent protein (EGFP) in Aspergillus oryzae, to examine whether the endocytic process occurs or not. Upon the addition of ammonium into the medium the fusion protein was internalized from the plasma membrane. The internalization of AoUapC-EGFP was completely blocked by sodium azide, cold, and cytochalasin A treatments, suggesting that the internalization possesses the general features of endocytosis. These results demonstrate the occurrence of endocytosis in filamentous fungi. Moreover, we discovered that the endosomal compartments appeared upon the induction of endocytosis and moved in a microtubule-dependent manner.

  11. GIP2, a Putative Transcription Factor That Regulates the Aurofusarin Biosynthetic Gene Cluster in Gibberella zeae

    PubMed Central

    Kim, Jung-Eun; Jin, Jianming; Kim, Hun; Kim, Jin-Cheol; Yun, Sung-Hwan; Lee, Yin-Won

    2006-01-01

    Gibberella zeae (anamorph: Fusarium graminearum) is an important pathogen of maize, wheat, and rice. Colonies of G. zeae produce yellow-to-tan mycelia with the white-to-carmine red margins. In this study, we focused on nine putative open reading frames (ORFs) closely linked to PKS12 and GIP1, which are required for aurofusarin biosynthesis in G. zeae. Among them is an ORF designated GIP2 (for Gibberella zeae pigment gene 2), which encodes a putative protein of 398 amino acids that carries a Zn(II)2Cys6 binuclear cluster DNA-binding domain commonly found in transcription factors of yeasts and filamentous fungi. Targeted gene deletion and complementation analyses confirmed that GIP2 is required for aurofusarin biosynthesis. Expression of GIP2 in carrot medium correlated with aurofusarin production by G. zeae and was restricted to vegetative mycelia. Inactivation of the 10 contiguous genes in the ΔGIP2 strain delineates an aurofusarin biosynthetic gene cluster. Overexpression of GIP2 in both the ΔGIP2 and the wild-type strains increases aurofusarin production and reduces mycelial growth. Thus, GIP2 is a putative positive regulator of the aurofusarin biosynthetic gene cluster, and aurofusarin production is negatively correlated with vegetative growth by G. zeae. PMID:16461721

  12. Glutamine Involvement in Nitrogen Control of Gibberellic Acid Production in Gibberella fujikuroi

    PubMed Central

    Muñoz, Gastón A.; Agosin, Eduardo

    1993-01-01

    When the fungus Gibberella fujikuroi ATCC 12616 was grown in fermentor cultures, both intracellular kaurene biosynthetic activities and extracellular GA3 accumulation reached high levels when exogenous nitrogen was depleted in the culture. Similar patterns were exhibited by several nonrelated enzymatic activities, such as formamidase and urease, suggesting that all are subject to nitrogen regulation. The behavior of the enzymes involved in nitrogen assimilation (glutamine synthetase, glutamate dehydrogenase, and glutamate synthase) during fungal growth in different nitrogen sources suggests that glutamine is the final product of nitrogen assimilation in G. fujikuroi. When ammonium or glutamine was added to hormone-producing cultures, extracellular GA3 did not accumulate. However, when the conversion of ammonium into glutamine was inhibited by L-methionine-DL-sulfoximine, only glutamine maintained this effect. These results suggest that glutamine may well be the metabolite effector in nitrogen repression of GA3 synthesis, as well as in other nonrelated enzymatic activities in G. fujikuroi. PMID:16349128

  13. Massive Changes in Genome Architecture Accompany the Transition to Self-Fertility in the filamentous Fungus Neurospora tetrasperma

    SciTech Connect

    Ellison, Christoper; Stajich, Jason; Jacobson, David; Nativ, Donald; Lapidus, Alla; Foster, Brian; Aerts, Andrea; Riley, Robert; Lindquist, Erika; Grigoriev, Igor; Taylor, John

    2011-05-16

    A large region of suppressed recombination surrounds the sex-determining locus of the self-fertile fungus Neurospora tetrasperma. This region encompasses nearly one-fifth of the N. tetrasperma genome and suppression of recombination is necessary for self-fertility. The similarity of the N. tetrasperma mating chromosome to plant and animal sex chromosomes and its recent origin (5 MYA), combined with a long history of genetic and cytological research, make this fungus an ideal model for studying the evolutionary consequences of suppressed recombination. Here we compare genome sequences from two N. tetrasperma strains of opposite mating type to determine whether structural rearrangements are associated with the nonrecombining region and to examine the effect of suppressed recombination for the evolution of the genes within it. We find a series of three inversions encompassing the majority of the region of suppressed recombination and provide evidence for two different types of rearrangement mechanisms: the recently proposed mechanism of inversion via staggered single-strand breaks as well as ectopic recombination between transposable elements. In addition, we show that the N. tetrasperma mat a mating-type region appears to be accumulating deleterious substitutions at a faster rate than the other mating type (mat A) and thus may be in the early stages of degeneration.

  14. A novel single-stranded RNA virus isolated from a phytopathogenic filamentous fungus, Rosellinia necatrix, with similarity to hypo-like viruses

    PubMed Central

    Zhang, Rui; Liu, Shengxue; Chiba, Sotaro; Kondo, Hideki; Kanematsu, Satoko; Suzuki, Nobuhiro

    2014-01-01

    Here we report a biological and molecular characterization of a novel positive-sense RNA virus isolated from a field isolate (NW10) of a filamentous phytopathogenic fungus, the white root rot fungus that is designated as Rosellinia necatrix fusarivirus 1 (RnFV1). A recently developed technology using zinc ions allowed us to transfer RnFV1 to two mycelially incompatible Rosellinia necatrix strains. A biological comparison of the virus-free and -recipient isogenic fungal strains suggested that RnFV1 infects latently and thus has no potential as a virocontrol agent. The virus has an undivided positive-sense RNA genome of 6286 nucleotides excluding a poly (A) tail. The genome possesses two non-overlapping open reading frames (ORFs): a large ORF1 that encodes polypeptides with RNA replication functions and a smaller ORF2 that encodes polypeptides of unknown function. A lack of coat protein genes was suggested by the failure of virus particles from infected mycelia. No evidence was obtained by Northern analysis or classical 5′-RACE for the presence of subgenomic RNA for the downstream ORF. Sequence similarities were found in amino-acid sequence between RnFV1 putative proteins and counterparts of a previously reported mycovirus, Fusarium graminearum virus 1 (FgV1). Interestingly, several related sequences were detected by BLAST searches of independent transcriptome assembly databases one of which probably represents an entire virus genome. Phylogenetic analysis based on the conserved RNA-dependent RNA polymerase showed that RnFV1, FgV1, and these similar sequences are grouped in a cluster distinct from distantly related hypoviruses. It is proposed that a new taxonomic family termed Fusariviridae be created to include RnFV1 and FgV1. PMID:25101066

  15. Multiple effects of a commercial Roundup® formulation on the soil filamentous fungus Aspergillus nidulans at low doses: evidence of an unexpected impact on energetic metabolism.

    PubMed

    Nicolas, Valérie; Oestreicher, Nathalie; Vélot, Christian

    2016-07-01

    Soil microorganisms are highly exposed to glyphosate-based herbicides (GBH), especially to Roundup® which is widely used worldwide. However, studies on the effects of GBH formulations on specific non-rhizosphere soil microbial species are scarce. We evaluated the toxicity of a commercial formulation of Roundup® (R450), containing 450 g/L of glyphosate (GLY), on the soil filamentous fungus Aspergillus nidulans, an experimental model microorganism. The median lethal dose (LD50) on solid media was between 90 and 112 mg/L GLY (among adjuvants, which are also included in the Roundup® formulation), which corresponds to a dilution percentage about 100 times lower than that used in agriculture. The LOAEL and NOAEL (lowest- and no-observed-adverse-effect levels) associated to morphology and growth were 33.75 and 31.5 mg/L GLY among adjuvants, respectively. The formulation R450 proved to be much more active than technical GLY. At the LD50 and lower concentrations, R450 impaired growth, cellular polarity, endocytosis, and mitochondria (average number, total volume and metabolism). In contrast with the depletion of mitochondrial activities reported in animal studies, R450 caused a stimulation of mitochondrial enzyme activities, thus revealing a different mode of action of Roundup® on energetic metabolism. These mitochondrial disruptions were also evident at a low dose corresponding to the NOAEL for macroscopic parameters, indicating that these mitochondrial biomarkers are more sensitive than those for growth and morphological ones. Altogether, our data indicate that GBH toxic effects on soil filamentous fungi, and thus potential impairment of soil ecosystems, may occur at doses far below recommended agricultural application rate. PMID:27068896

  16. Promoter and signal sequence from filamentous fungus can drive recombinant protein production in the yeast Kluyveromyces lactis.

    PubMed

    Madhavan, Aravind; Sukumaran, Rajeev K

    2014-08-01

    Cross-recognition of promoters from filamentous fungi in yeast can have important consequences towards developing fungal expression systems, especially for the rapid evaluation of their efficacy. A truncated 510bp inducible Trichoderma reesei cellobiohydrolase I (cbh1) promoter was tested for the expression of green fluorescent protein (GFP) in Kluyveromyces lactis after disrupting its native β-galactosidase (lac4) promoter. The efficiency of the CBH1 secretion signal was also evaluated by fusing it to the lac4 promoter of the yeast, which significantly increased the secretion of recombinant protein in K. lactis compared to the native α-mating factor secretion signal. The fungal promoter is demonstrated to have potential to drive heterologous protein production in K. lactis; and the small sized T. reesei cbh1 secretion signal can mediate the protein secretion in K. lactis with high efficiency. PMID:24661814

  17. Evidence that a secondary metabolic biosynthetic gene cluster has grown by gene relocation during evolution of the filamentous fungus Fusarium.

    PubMed

    Proctor, Robert H; McCormick, Susan P; Alexander, Nancy J; Desjardins, Anne E

    2009-12-01

    Trichothecenes are terpene-derived secondary metabolites produced by multiple genera of filamentous fungi, including many plant pathogenic species of Fusarium. These metabolites are of interest because they are toxic to animals and plants and can contribute to pathogenesis of Fusarium on some crop species. Fusarium graminearum and F. sporotrichioides have trichothecene biosynthetic genes (TRI) at three loci: a 12-gene TRI cluster and two smaller TRI loci that consist of one or two genes. Here, comparisons of additional Fusarium species have provided evidence that TRI loci have a complex evolutionary history that has included loss, non-functionalization and rearrangement of genes as well as trans-species polymorphism. The results also indicate that the TRI cluster has expanded in some species by relocation of two genes into it from the smaller loci. Thus, evolutionary forces have driven consolidation of TRI genes into fewer loci in some fusaria but have maintained three distinct TRI loci in others. PMID:19843228

  18. Isolation of a novel cold-active family 11 Xylanase from the filamentous fungus Bispora antennata and deletion of its N-terminal amino acids on thermostability.

    PubMed

    Liu, Qiong; Wang, Yaru; Luo, Huiying; Wang, Liwen; Shi, Pengjun; Huang, Huoqing; Yang, Peilong; Yao, Bin

    2015-01-01

    In the present study, we first reported a cold-active xylanase of glycosyl hydrolase family 11, Xyn11, from the filamentous fungus Bispora antennata. The coding gene (xyn11) was cloned and successfully expressed in Pichia pastoris. Deduced Xyn11 exhibited the highest identity of 65 % with a family 11 endo-β-1,4-xylanase from Alternaria sp. HB186. Recombinant Xyn11 exhibited maximal activity at 35 °C and remained 21 % of the activity at 0 °C. Sequence alignment showed that the N-terminal sequence of Xyn11 is distinct from those of thermophilic xylanases of family 11. To determine its effect on enzyme properties, the Xyn11 mutant without the N-terminal sequence, t-Xyn11, was then constructed, expressed in P. pastoris, and compared with Xyn11. Both enzymes showed optimal activities at 35 °C and pH 5.5 and were stable at pH 2.0-12.0. Compared with truncated mutant t-Xyn11, Xyn11 retained more activity after 20-min incubation at 40 °C (Xyn11:28 % vs. t-Xyn11:4 %) and degraded xylan substrates more completely. Thus, a new factor affecting the thermostability of cold-active xylanase of family 11 was identified. PMID:25351632

  19. Effects of carbon source on expression of alcohol oxidase activity and on morphologic pattern of YR-1 Strain, a filamentous fungus isolated from petroleum-contaminated soils.

    PubMed

    Robelo, Carmen Rodríguez; Novoa, Vanesa Zazueta; Zazueta-Sandoval, Roberto

    2004-01-01

    Soluble alcohol oxidase (AO) activity was detected in the supernatant fraction of a high-speed centrifugation procedure after ballistic cellular homo-genization to break the mycelium from a filamentous fungus strain named YR-1, isolated from petroleum-contaminated soils. AO activity from aerobically grown mycelium was detected in growth media containing different carbon sources, including alcohols and hydrocarbons but not in glucose. In previous work, zymogram analysis conducted with crude extracts from aerobic mycelium of YR-1 strain indicated the existence of two AO enzymes originally named AO-1 and AO-2. In the present study, we were able to separate the AO-1 band into two bands depending on culture conditions, carbon source, and polyacrylamide gel electrophoresis (PAGE) separation conditions; the enzyme activity pattern in zymograms from cell-free extracts exhibited three different bands after native PAGE. New nomenclature was used for upper bands AO-1 and AO-2 and lower band AO-3, respectively. The expression of AO activity was studied in the absence of glucose in the culture media and in the presence of hydrocarbons or petroleum as sole carbon source, suggesting that AO expression could be subjected to two regulatory possibilities: carbon catabolite regulation by glucose and induction by hydrocarbons. The possibility of catabolic inhibition of AO by glucose in the active enzyme was also tested, and the results confirm that this kind of regulatory mechanism is not present in AO activity. PMID:15054203

  20. Uncovering the Genome-Wide Transcriptional Responses of the Filamentous Fungus Aspergillus niger to Lignocellulose Using RNA Sequencing

    PubMed Central

    Gaddipati, Sanyasi; Kokolski, Matthew; Malla, Sunir; Blythe, Martin J.; Ibbett, Roger; Campbell, Maria; Liddell, Susan; Aboobaker, Aziz; Tucker, Gregory A.; Archer, David B.

    2012-01-01

    A key challenge in the production of second generation biofuels is the conversion of lignocellulosic substrates into fermentable sugars. Enzymes, particularly those from fungi, are a central part of this process, and many have been isolated and characterised. However, relatively little is known of how fungi respond to lignocellulose and produce the enzymes necessary for dis-assembly of plant biomass. We studied the physiological response of the fungus Aspergillus niger when exposed to wheat straw as a model lignocellulosic substrate. Using RNA sequencing we showed that, 24 hours after exposure to straw, gene expression of known and presumptive plant cell wall–degrading enzymes represents a huge investment for the cells (about 20% of the total mRNA). Our results also uncovered new esterases and surface interacting proteins that might form part of the fungal arsenal of enzymes for the degradation of plant biomass. Using transcription factor deletion mutants (xlnR and creA) to study the response to both lignocellulosic substrates and low carbon source concentrations, we showed that a subset of genes coding for degradative enzymes is induced by starvation. Our data support a model whereby this subset of enzymes plays a scouting role under starvation conditions, testing for available complex polysaccharides and liberating inducing sugars, that triggers the subsequent induction of the majority of hydrolases. We also showed that antisense transcripts are abundant and that their expression can be regulated by growth conditions. PMID:22912594

  1. Involvement of a caleosin in lipid storage, spore dispersal, and virulence in the entomopathogenic filamentous fungus, Beauveria bassiana.

    PubMed

    Fan, Yanhua; Ortiz-Urquiza, Almudena; Garrett, Timothy; Pei, Yan; Keyhani, Nemat O

    2015-11-01

    Eukaryotic cells store lipids in membrane-encased droplets. The entomopathogenic fungus, Beauveria bassiana, initiates infection via attachment of its spores to the epicuticle or waxy layer of target insects, degrading and assimilating host surface hydrocarbons, carbohydrates and proteins. Caleosins are components of the proteinaceous coat of lipid droplets and a single B. bassiana caleosin homologue, Bbcal1, was identified and characterized. The BbCal1 sequence contained an EF-hand Ca(2+) binding domain and potential hydrophobic stretches similar to those found in plant caleosins, along with a proline knot motif defined by only two proline residues. Targeted gene inactivation of Bbcal1 did not appear to affect spore germination, growth on lipid substrates or stress response, but changes in lipid, vacuole and endoplasmic reticulum/multilamellar vesicle-like structures, and altered cellular lipid profiles were seen in conidia grown on a variety of substrates including potato dextrose agar, olive oil, glyceride trioleate, oleic acid and the alkane, C16 . The ΔBbcal1 mutant produced more compact assemblages of conidia, displayed a reduced and delayed spore dispersal phenotype, and showed decreased virulence in insect bioassays using the greater wax moth, Galleria mellonella. Our data indicate novel functions for caleosins in fungal virulence, spore development and the trafficking and/or turnover of lipid-related structures. PMID:26235819

  2. Long-Distance Translocation of Protein during Morphogenesis of the Fruiting Body in the Filamentous Fungus, Agaricus bisporus

    PubMed Central

    Woolston, Benjamin M.; Schlagnhaufer, Carl; Wilkinson, Jack; Larsen, Jeffrey; Shi, Zhixin; Mayer, Kimberly M.; Walters, Donald S.; Curtis, Wayne R.; Romaine, C. Peter

    2011-01-01

    Commercial cultivation of the mushroom fungus, Agaricus bisporus, utilizes a substrate consisting of a lower layer of compost and upper layer of peat. Typically, the two layers are seeded with individual mycelial inoculants representing a single genotype of A. bisporus. Studies aimed at examining the potential of this fungal species as a heterologous protein expression system have revealed unexpected contributions of the mycelial inoculants in the morphogenesis of the fruiting body. These contributions were elucidated using a dual-inoculant method whereby the two layers were differientially inoculated with transgenic β-glucuronidase (GUS) and wild-type (WT) lines. Surprisingly, use of a transgenic GUS line in the lower substrate and a WT line in the upper substrate yielded fruiting bodies expressing GUS activity while lacking the GUS transgene. Results of PCR and RT-PCR analyses for the GUS transgene and RNA transcript, respectively, suggested translocation of the GUS protein from the transgenic mycelium colonizing the lower layer into the fruiting body that developed exclusively from WT mycelium colonizing the upper layer. Effective translocation of the GUS protein depended on the use of a transgenic line in the lower layer in which the GUS gene was controlled by a vegetative mycelium-active promoter (laccase 2 and β-actin), rather than a fruiting body-active promoter (hydrophobin A). GUS-expressing fruiting bodies lacking the GUS gene had a bonafide WT genotype, confirmed by the absence of stably inherited GUS and hygromycin phosphotransferase selectable marker activities in their derived basidiospores and mycelial tissue cultures. Differientially inoculating the two substrate layers with individual lines carrying the GUS gene controlled by different tissue-preferred promoters resulted in up to a ∼3.5-fold increase in GUS activity over that obtained with a single inoculant. Our findings support the existence of a previously undescribed phenomenon of long

  3. Aggregation of endosomal-vacuolar compartments in the Aovps24-deleted strain in the filamentous fungus Aspergillus oryzae

    SciTech Connect

    Tatsumi, Akinori; Shoji, Jun-ya; Kikuma, Takashi; Arioka, Manabu; Kitamoto, Katsuhiko

    2007-10-19

    Previously, we found that deletion of Aovps24, an ortholog of Saccharomyces cerevisiae VPS24, that encodes an ESCRT (endosomal sorting complex required for transport)-III component required for late endosomal function results in fragmented and aggregated vacuoles. Although defective late endosomal function is likely responsible for this phenotype, critical lack of our knowledge on late endosomes in filamentous fungi prevented us from further characterization. In this study, we identified late endosomes of Aspergillus oryzae, by expressing a series of fusion proteins of fluorescent proteins with orthologs of late endosomal proteins. Using these fusion proteins as markers, we observed late endosomes in the wild type strain and the Aovps24 disruptant and demonstrated that late endosomes are aberrantly aggregated in the Aovps24 disruptant. Moreover, we revealed that the aggregated late endosomes have features of vacuoles as well. As deletion of another ESCRT-III component-encoding gene, Aovps2, resulted in similar phenotypes to that in the Aovps24 disruptant, phenotypes of the Aovps24 disruptant are probably due to defective late endosomal function.

  4. Distinct enzymatic and cellular characteristics of two secretory phospholipases A2 in the filamentous fungus Aspergillus oryzae

    PubMed Central

    Nakahama, Tomoyuki; Nakanishi, Yoshito; Viscomi, Arturo R.; Takaya, Kohei; Kitamoto, Katsuhiko; Ottonello, Simone; Arioka, Manabu

    2014-01-01

    Summary Microbial secretory phospholipases A2 (sPLA2s) are among the last discovered and least known members of this functionally diverse family of enzymes. We analyzed here two sPLA2s, named sPlaA and sPlaB, of the filamentous ascomycete Aspergillus oryzae. sPlaA and sPlaB consist of 222 and 160 amino acids, respectively, and share the conserved Cys and catalytic His-Asp residues typical of microbial sPLA2s. Two sPLA2s differ in pH optimum, Ca2+ requirement and expression profile. The splaA mRNA was strongly upregulated in response to carbon starvation, oxidative stress and during conidiation, while splaB was constitutively expressed at low levels and was weakly upregulated by heat shock. Experiments with sPLA2-overexpressing strains demonstrated that two enzymes produce subtly different phospholipid composition variations and also differ in their subcellular localization: sPlaA is most abundant in hyphal tips and secreted to the medium, whereas sPlaB predominantly localizes to the ER-like intracellular compartment. Both sPLA2-overexpressing strains were defective in conidiation, which was more pronounced for sPlaB overexpressors. Although no major morphological abnormality was detected in either ΔsplaA or ΔsplaB mutants, hyphal growth of ΔsplaB, but not that of ΔsplaA, displayed increased sensitivity to H2O2 treatment. These data indicate that two A. oryzae sPLA2 enzymes display distinct, presumably non-redundant, physiological functions. PMID:20045482

  5. Alignment Between Genetic and Physical Maps of Gibberella zeae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We previously published a genetic map of Gibberella zeae (Fusarium graminearum) based on a cross between Kansas strain Z-3639 (lineage 7) and Japanese strain R-5470 (lineage 6). In this study, that genetic map was aligned with the third assembly of the genomic sequence of G. zeae strain PH-1 (linea...

  6. Transcriptional Autoregulation and Inhibition of mRNA Translation of Amino Acid Regulator Gene cpcA of Filamentous Fungus Aspergillus nidulans

    PubMed Central

    Hoffmann, Bernd; Valerius, Oliver; Andermann, Meike; Braus, Gerhard H.

    2001-01-01

    The CPCA protein of the filamentous fungus Aspergillus nidulans is a member of the c-Jun-like transcriptional activator family. It acts as central transcription factor of the cross-pathway regulatory network of amino acid biosynthesis and is functionally exchangeable for the general control transcriptional activator Gcn4p of Saccharomyces cerevisiae. In contrast to GCN4, expression of cpcA is strongly regulated by two equally important mechanisms with additive effects that lead to a fivefold increased CPCA protein amount under amino acid starvation conditions. One component of cpcA regulation involves a transcriptional autoregulatory mechanism via a CPCA recognition element (CPRE) in the cpcA promoter that causes a sevenfold increased cpcA mRNA level when cells are starved for amino acids. Point mutations in the CPRE cause a constitutively low mRNA level of cpcA and a halved protein level when amino acids are limited. Moreover, two upstream open reading frames (uORFs) in the 5′ region of the cpcA mRNA are important for a translational regulatory mechanism. Destruction of both short uORFs results in a sixfold increased CPCA protein level under nonstarvation conditions and a 10-fold increase under starvation conditions. Mutations in both the CPRE and uORF regulatory elements lead to an intermediate effect, with a low cpcA mRNA level but a threefold increased CPCA protein level independent of amino acid availability. These data argue for a combined regulation of cpcA that includes a translational regulation like that of yeast GCN4 as well as a transcriptional regulation like that of the mammalian jun and fos genes. PMID:11553722

  7. Interaction between TATA-Binding Protein (TBP) and Multiprotein Bridging Factor-1 (MBF1) from the Filamentous Insect Pathogenic Fungus Beauveria bassiana

    PubMed Central

    Song, Chi; Ortiz-Urquiza, Almudena; Ying, Sheng-Hua; Zhang, Jin-Xia; Keyhani, Nemat O.

    2015-01-01

    TATA-binding protein (TBP) is a ubiquitous component of eukaryotic transcription factors that acts to nucleate assembly and position pre-initiation complexes. Multiprotein bridging factor 1 (MBF1) is thought to interconnect TBP with gene specific transcriptional activators, modulating transcriptional networks in response to specific signal and developmental programs. The insect pathogen, Beauveria bassiana, is a cosmopolitan fungus found in most ecosystems where it acts as an important regulator of insect populations and can form intimate associations with certain plants. In order to gain a better understanding of the function of MBF1 in filamentous fungi, its interaction with TBP was demonstrated. The MBF1 and TBP homologs in B. bassiana were cloned and purified from a heterologous E. coli expression system. Whereas purified BbTBP was shown to be able to bind oligonucleotide sequences containing the TATA-motif (Kd ≈ 1.3 nM) including sequences derived from the promoters of the B. bassiana chitinase and protease genes. In contrast, BbMBF1 was unable to bind to these same target sequences. However, the formation of a ternary complex between BbMBF1, BbTBP, and a TATA-containing target DNA sequence was seen in agarose gel electrophoretic mobility shift assays (EMSA). These data indicate that BbMBF1 forms direct interactions with BbTBP, and that the complex is capable of binding to DNA sequences containing TATA-motifs, confirming that BbTBP can link BbMBF1 to target sequences as part of the RNA transcriptional machinery in fungi. PMID:26466369

  8. Interaction between TATA-Binding Protein (TBP) and Multiprotein Bridging Factor-1 (MBF1) from the Filamentous Insect Pathogenic Fungus Beauveria bassiana.

    PubMed

    Song, Chi; Ortiz-Urquiza, Almudena; Ying, Sheng-Hua; Zhang, Jin-Xia; Keyhani, Nemat O

    2015-01-01

    TATA-binding protein (TBP) is a ubiquitous component of eukaryotic transcription factors that acts to nucleate assembly and position pre-initiation complexes. Multiprotein bridging factor 1 (MBF1) is thought to interconnect TBP with gene specific transcriptional activators, modulating transcriptional networks in response to specific signal and developmental programs. The insect pathogen, Beauveria bassiana, is a cosmopolitan fungus found in most ecosystems where it acts as an important regulator of insect populations and can form intimate associations with certain plants. In order to gain a better understanding of the function of MBF1 in filamentous fungi, its interaction with TBP was demonstrated. The MBF1 and TBP homologs in B. bassiana were cloned and purified from a heterologous E. coli expression system. Whereas purified BbTBP was shown to be able to bind oligonucleotide sequences containing the TATA-motif (Kd ≈ 1.3 nM) including sequences derived from the promoters of the B. bassiana chitinase and protease genes. In contrast, BbMBF1 was unable to bind to these same target sequences. However, the formation of a ternary complex between BbMBF1, BbTBP, and a TATA-containing target DNA sequence was seen in agarose gel electrophoretic mobility shift assays (EMSA). These data indicate that BbMBF1 forms direct interactions with BbTBP, and that the complex is capable of binding to DNA sequences containing TATA-motifs, confirming that BbTBP can link BbMBF1 to target sequences as part of the RNA transcriptional machinery in fungi. PMID:26466369

  9. Enzymatic modification of stevioside by cell-free extract of Gibberella fujikuroi.

    PubMed

    de Oliveira, Brás H; Packer, Janaina F; Chimelli, Márcio; de Jesus, Daniel A

    2007-08-01

    Stevioside is a natural sweetener obtained from the leaves of Stevia rebaudiana. It is a glycoside of steviol and other glycosides of the same aglycone are also found in the plant. Stevioside is usually the major component in commercial products, but it is not the one with the best organoleptic properties. It has a bitter aftertaste and, for this reason, attempts have been made in order to modify its molecule. In this work, the commercial and purified stevioside were modified by hydrolytic enzymes from Gibberella fujikuroi. A screening was carried out on six strains of the fungus in order to select the most active. The production of the enzymes by the fungi was induced by its culture in a medium containing stevioside as the sole carbon source and the enzymatic extract was then used in the experiments. The products obtained were analyzed by HPLC-UV and HPLC-MS/MS. The results showed a significant increase in the concentration of rebaudioside A in the final product, which has better organoleptic properties than stevioside. PMID:17624458

  10. Functional Analyses of Two Acetyl Coenzyme A Synthetases in the Ascomycete Gibberella zeae ▿ †

    PubMed Central

    Lee, Seunghoon; Son, Hokyoung; Lee, Jungkwan; Min, Kyunghun; Choi, Gyung Ja; Kim, Jin-Cheol; Lee, Yin-Won

    2011-01-01

    Acetyl coenzyme A (acetyl-CoA) is a crucial metabolite for energy metabolism and biosynthetic pathways and is produced in various cellular compartments with spatial and temporal precision. Our previous study on ATP citrate lyase (ACL) in Gibberella zeae revealed that ACL-dependent acetyl-CoA production is important for histone acetylation, especially in sexual development, but is not involved in lipid synthesis. In this study, we deleted additional acetyl-CoA synthetic genes, the acetyl-CoA synthetases (ACS genes ACS1 and ACS2), to identify alternative acetyl-CoA production mechanisms for ACL. The ACS1 deletion resulted in a defect in sexual development that was mainly due to a reduction in 1-palmitoyl-2-oleoyl-3-linoleoyl-rac-glycerol production, which is required for perithecium development and maturation. Another ACS coding gene, ACS2, has accessorial functions for ACS1 and has compensatory functions for ACL as a nuclear acetyl-CoA producer. This study showed that acetate is readily generated during the entire life cycle of G. zeae and has a pivotal role in fungal metabolism. Because ACSs are components of the pyruvate-acetaldehyde-acetate pathway, this fermentation process might have crucial roles in various physiological processes for filamentous fungi. PMID:21666077

  11. Draft Genome Sequence of the Deep-Sea Ascomycetous Filamentous Fungus Cadophora malorum Mo12 from the Mid-Atlantic Ridge Reveals Its Biotechnological Potential

    PubMed Central

    Rédou, Vanessa; Kumar, Abhishek; Hainaut, Matthieu; Henrissat, Bernard; Record, Eric; Barbier, Georges

    2016-01-01

    Cadophora malorum Mo12 was isolated from the Rainbow hydrothermal site on the Mid-Atlantic Ridge. We present the draft genome sequence of this filamentous fungal strain, which has high biotechnological potentials as revealed by the presence of genes encoding biotechnologically important enzymes and genes involved in the synthesis of secondary metabolites. PMID:27389260

  12. Draft Genome Sequence of the Deep-Sea Ascomycetous Filamentous Fungus Cadophora malorum Mo12 from the Mid-Atlantic Ridge Reveals Its Biotechnological Potential.

    PubMed

    Rédou, Vanessa; Kumar, Abhishek; Hainaut, Matthieu; Henrissat, Bernard; Record, Eric; Barbier, Georges; Burgaud, Gaëtan

    2016-01-01

    Cadophora malorum Mo12 was isolated from the Rainbow hydrothermal site on the Mid-Atlantic Ridge. We present the draft genome sequence of this filamentous fungal strain, which has high biotechnological potentials as revealed by the presence of genes encoding biotechnologically important enzymes and genes involved in the synthesis of secondary metabolites. PMID:27389260

  13. Biotransformation of 6-dehydroprogesterone with Aspergillus niger and Gibberella fujikuroi.

    PubMed

    Ahmad, Malik Shoaib; Zafar, Salman; Yousuf, Sammar; Wahab, Atia-Tul-; Rahman, Atta-Ur-; Choudhary, M Iqbal

    2016-08-01

    Microbial transformation of 6-dehydroprogesterone (1) with Aspergillus niger yielded three new metabolites, including 6β-chloro-7α,11α-dihydroxypregna-4-ene-3,20-dione (2), 7α-chloro-6β,11α-dihydroxypregna-4-ene-3,20-dione (3), and 6α,7α-epoxy-11α-hydroxypregna-4-ene-3,20-dione (4), and two known metabolites; 6α,7α-epoxypregna-4-ene-3,20-dione (5), and 11α-hydroxypregna-4,6-diene-3,20-dione (6). Compounds 2, and 3 contain chlorohydrin moiety at C-6, and C-7, respectively. The biotransformation of 1 with Gibberella fujikuroi yielded a known compound, 11α,17β-dihydroxyandrosta-4,6-dien-3-one (7). PMID:27133903

  14. Physiological and Morphological Modifications in Immobilized Gibberella fujikuroi Mycelia

    PubMed Central

    Saucedo, José Edmundo Nava; Barbotin, Jean-Noël; Thomas, Daniel

    1989-01-01

    Constraints created by immobilization conditions modified the physiological behavior and morphological characteristics of Gibberella fujikuroi mycelia in comparison with their development in free-cell conditions. G. fujikuroi mycelia were immobilized in different support matrices (polyurethane, carrageenan, and alginate) and showed a variety of reactions in response to the different microenvironmental factors encountered during and after immobilization. The best support with respect to gibberellic acid yield and biocatalyst stability was found to be an alginate with a high degree of polymerization. The most visible effects of immobilization included changes in growth development, morphological appearance, metabolite production, mycelial pigmentation, mycelial viability under starvation conditions, and induction of resting forms when previously immobilized mycelia were subcultured. Images PMID:16348017

  15. The P450–1 gene of Gibberella fujikuroi encodes a multifunctional enzyme in gibberellin biosynthesis

    PubMed Central

    Rojas, María Cecilia; Hedden, Peter; Gaskin, Paul; Tudzynski, Bettina

    2001-01-01

    Recent studies have shown that the genes of the gibberellin (GA) biosynthesis pathway in the fungus Gibberella fujikuroi are organized in a cluster of at least seven genes. P450–1 is one of four cytochrome P450 monooxygenase genes in this cluster. Disruption of the P450–1 gene in the GA-producing wild-type strain IMI 58289 led to total loss of GA production. Analysis of the P450–1-disrupted mutants indicated that GA biosynthesis was blocked immediately after ent-kaurenoic acid. The function of the P450–1 gene product was investigated further by inserting the gene into mutants of G. fujikuroi that lack the entire GA gene cluster; the gene was highly expressed under GA production conditions in the absence of the other GA-biosynthesis genes. Cultures of transformants containing P450–1 converted ent-[14C]kaurenoic acid efficiently into [14C]GA14, indicating that P450–1 catalyzes four sequential steps in the GA-biosynthetic pathway: 7β-hydroxylation, contraction of ring B by oxidation at C-6, 3β-hydroxylation, and oxidation at C-7. The GA precursors ent-7α-hydroxy[14C]kaurenoic acid, [14C]GA12-aldehyde, and [14C]GA12 were also converted to [14C]GA14. In addition, there is an indication that P450–1 may also be involved in the formation of the kaurenolides and fujenoic acids, which are by-products of GA biosynthesis in G. fujikuroi. Thus, P450–1 displays remarkable multifunctionality and may be responsible for the formation of 12 products. PMID:11320210

  16. The transcription factor Ste12 mediates the regulatory role of the Tmk1 MAP kinase in mycoparasitism and vegetative hyphal fusion in the filamentous fungus Trichoderma atroviride.

    PubMed

    Gruber, Sabine; Zeilinger, Susanne

    2014-01-01

    Mycoparasitic species of the fungal genus Trichoderma are potent antagonists able to combat plant pathogenic fungi by direct parasitism. An essential step in this mycoparasitic fungus-fungus interaction is the detection of the fungal host followed by activation of molecular weapons in the mycoparasite by host-derived signals. The Trichoderma atroviride MAP kinase Tmk1, a homolog of yeast Fus3/Kss1, plays an essential role in regulating the mycoparasitic host attack, aerial hyphae formation and conidiation. However, the transcription factors acting downstream of Tmk1 are hitherto unknown. Here we analyzed the functions of the T. atroviride Ste12 transcription factor whose orthologue in yeast is targeted by the Fus3 and Kss1 MAP kinases. Deletion of the ste12 gene in T. atroviride not only resulted in reduced mycoparasitic overgrowth and lysis of host fungi but also led to loss of hyphal avoidance in the colony periphery and a severe reduction in conidial anastomosis tube formation and vegetative hyphal fusion events. The transcription of several orthologues of Neurospora crassa hyphal fusion genes was reduced upon ste12 deletion; however, the Δste12 mutant showed enhanced expression of mycoparasitism-relevant chitinolytic and proteolytic enzymes and of the cell wall integrity MAP kinase Tmk2. Based on the comparative analyses of Δste12 and Δtmk1 mutants, an essential role of the Ste12 transcriptional regulator in mediating outcomes of the Tmk1 MAPK pathway such as regulation of the mycoparasitic activity, hyphal fusion and carbon source-dependent vegetative growth is suggested. Aerial hyphae formation and conidiation, in contrast, were found to be independent of Ste12. PMID:25356841

  17. The Transcription Factor Ste12 Mediates the Regulatory Role of the Tmk1 MAP Kinase in Mycoparasitism and Vegetative Hyphal Fusion in the Filamentous Fungus Trichoderma atroviride

    PubMed Central

    Gruber, Sabine; Zeilinger, Susanne

    2014-01-01

    Mycoparasitic species of the fungal genus Trichoderma are potent antagonists able to combat plant pathogenic fungi by direct parasitism. An essential step in this mycoparasitic fungus-fungus interaction is the detection of the fungal host followed by activation of molecular weapons in the mycoparasite by host-derived signals. The Trichoderma atroviride MAP kinase Tmk1, a homolog of yeast Fus3/Kss1, plays an essential role in regulating the mycoparasitic host attack, aerial hyphae formation and conidiation. However, the transcription factors acting downstream of Tmk1 are hitherto unknown. Here we analyzed the functions of the T. atroviride Ste12 transcription factor whose orthologue in yeast is targeted by the Fus3 and Kss1 MAP kinases. Deletion of the ste12 gene in T. atroviride not only resulted in reduced mycoparasitic overgrowth and lysis of host fungi but also led to loss of hyphal avoidance in the colony periphery and a severe reduction in conidial anastomosis tube formation and vegetative hyphal fusion events. The transcription of several orthologues of Neurospora crassa hyphal fusion genes was reduced upon ste12 deletion; however, the Δste12 mutant showed enhanced expression of mycoparasitism-relevant chitinolytic and proteolytic enzymes and of the cell wall integrity MAP kinase Tmk2. Based on the comparative analyses of Δste12 and Δtmk1 mutants, an essential role of the Ste12 transcriptional regulator in mediating outcomes of the Tmk1 MAPK pathway such as regulation of the mycoparasitic activity, hyphal fusion and carbon source-dependent vegetative growth is suggested. Aerial hyphae formation and conidiation, in contrast, were found to be independent of Ste12. PMID:25356841

  18. Recent advances in genes involved in secondary metabolite synthesis, hyphal development, energy metabolism and pathogenicity in Fusarium graminearum (teleomorph Gibberella zeae).

    PubMed

    Geng, Zongyi; Zhu, Wei; Su, Hao; Zhao, Yong; Zhang, Ke-Qin; Yang, Jinkui

    2014-01-01

    The ascomycete fungus, Fusarium graminearum (teleomorph Gibberella zeae), is the most common causal agent of Fusarium head blight (FHB), a devastating disease for cereal crops worldwide. F. graminearum produces ascospores (sexual spores) and conidia (asexual spores), which can serve as disease inocula of FHB. Meanwhile, Fusarium-infected grains are often contaminated with mycotoxins such as trichothecenes (TRIs), fumonisins, and zearalenones, among which TRIs are related to the pathogenicity of F. graminearum, and these toxins are hazardous to humans and livestock. In recent years, with the complete genome sequencing of F. graminearum, an increasing number of functional genes involved in the production of secondary metabolites, hyphal differentiation, sexual and asexual reproduction, virulence and pathogenicity have been identified from F. graminearum. In this review, the secondary metabolite synthesis, hyphal development and pathogenicity related genes in F. graminearum were thoroughly summarized, and the genes associated with secondary metabolites, sexual reproduction, energy metabolism, and pathogenicity were highlighted. PMID:24389085

  19. A genetic map of Gibberella zeae (Fusarium graminearum).

    PubMed Central

    Jurgenson, J E; Bowden, R L; Zeller, K A; Leslie, J F; Alexander, N J; Plattner, R D

    2002-01-01

    We constructed a genetic linkage map of Gibberella zeae (Fusarium graminearum) by crossing complementary nitrate-nonutilizing (nit) mutants of G. zeae strains R-5470 (from Japan) and Z-3639 (from Kansas). We selected 99 nitrate-utilizing (recombinant) progeny and analyzed them for amplified fragment length polymorphisms (AFLPs). We used 34 pairs of two-base selective AFLP primers and identified 1048 polymorphic markers that mapped to 468 unique loci on nine linkage groups. The total map length is approximately 1300 cM with an average interval of 2.8 map units between loci. Three of the nine linkage groups contain regions in which there are high levels of segregation distortion. Selection for the nitrate-utilizing recombinant progeny can explain two of the three skewed regions. Two linkage groups have recombination patterns that are consistent with the presence of intercalary inversions. Loci governing trichothecene toxin amount and type (deoxynivalenol or nivalenol) map on linkage groups IV and I, respectively. The locus governing the type of trichothecene produced (nivalenol or deoxynivalenol) cosegregated with the TRI5 gene (which encodes trichodiene synthase) and probably maps in the trichothecene gene cluster. This linkage map will be useful in population genetic studies, in map-based cloning, for QTL (quantitative trait loci) analysis, for ordering genomic libraries, and for genomic comparisons of related species. PMID:11973300

  20. Characterization and Solubilization of Kaurenoic Acid Hydroxylase from Gibberella fujikuroi.

    PubMed Central

    Jennings, J. C.; Coolbaugh, R. C.; Nakata, D. A.; West, C. A.

    1993-01-01

    A key step in gibberellin biosynthesis is the conversion of ent-kaurenoic acid to ent-7[alpha]-hydroxykaurenoic acid, mediated by the enzyme kaurenoic acid hydroxylase. A cell-free system obtained from Gibberella fujikuroi (Saw.) Wr. was used to characterize kaurenoic acid hydroxylase activity. Microsomal preparations from disrupted fungal cells, in the presence of O2 and NADPH, converted [17-14C]ent-kaurenoic acid to oxidation products that were separated by high-performance liquid chromatography and identified as ent-7[alpha]-hydroxykaurenoic acid and gibberellin A14 by combined gas chromatography-mass spectrometry. Flavin adenine dinucleotide and the chloride salts of several monovalent cations stimulated the conversion of ent-kaurenoic acid to these products, whereas CO and a number of known inhibitors of cytochrome P-450-dependent reactions, including paclobutrazol, tetcyclacis, BAS 111.W, flurprimidol, triarimol, metyrapone, and 1-phenylimida-zole, significantly reduced kaurenoic acid hydroxylase activity. Kaurenoic acid hydroxylase was solubilized from fungal microsomes by treatment with 1 M KCl. The properties of the enzyme noted above suggest that kaurenoic acid hydroxylase from G. fujikuroi is a cytochrome P-450-dependent monooxygenase. PMID:12231743

  1. Genetic analysis of fumonisin production and virulence of Gibberella fujikuroi mating population A (Fusarium moniliforme) on maize (Zea mays) seedlings.

    PubMed Central

    Desjardins, A E; Plattner, R D; Nelsen, T C; Leslie, J F

    1995-01-01

    The phytopathogenic fungus Gibberella fujikuroi mating population A (anamorph, Fusarium moniliforme) produces fumonisins, which are toxic to a wide range of plant and animal species. Previous studies of field strains have identified a genetic locus, designated fum1, that can determine whether fumonisins are produced. To test the relationship between fumonisin production and virulence on maize seedlings, a cross between a fum1+ field strain that had a high degree of virulence and a fum1- field strain that had a low degree of virulence was made, and ascospore progeny were scored for these traits. Although a range of virulence levels was recovered among the progeny, high levels of virulence were associated with production of fumonisins, and highly virulent, fumonisin-nonproducing progeny were not obtained. A survey of field strains did identify a rare fumonisin-nonproducing strain that was quite high in virulence. Also, the addition of purified fumonisin B1 to virulence assays did not replicate all of the seedling blight symptoms obtained with autoclaved culture material containing fumonisin. These results support the hypothesis that fumonisin plays a role in virulence but also indicate that fumonisin production is not necessary or sufficient for virulence on maize seedlings. PMID:7887628

  2. Apical sterol-rich membranes are essential for localizing cell end markers that determine growth directionality in the filamentous fungus Aspergillus nidulans.

    PubMed

    Takeshita, Norio; Higashitsuji, Yuhei; Konzack, Sven; Fischer, Reinhard

    2008-01-01

    In filamentous fungi, hyphal extension depends on the continuous delivery of vesicles to the growing tip. Here, we describe the identification of two cell end marker proteins, TeaA and TeaR, in Aspergillus nidulans, corresponding to Tea1 and Mod5 in Schizosaccharomyces pombe. Deletion of teaA or teaR caused zig-zag-growing and meandering hyphae, respectively. The Kelch-repeat protein TeaA, the putatively prenylated TeaR protein, and the formin SepA were highly concentrated in the Spitzenkörper, a vesicle transit station at the tip, and localized along the tip membrane. TeaA localization at tips depended on microtubules, and TeaA was required for microtuble convergence in the hyphal apex. The CENP-E family kinesin KipA was necessary for proper localization of TeaA and TeaR, but not for their transportation. TeaA and TeaR localization were interdependent. TeaA interacted in vivo with TeaR, and TeaA colocalized with SepA. Sterol-rich membrane domains localized at the tip in teaA and teaR mutants like in wild type, and filipin treatment caused mislocalization of both proteins. This suggests that sterol-rich membrane domains determine cell end factor destinations and thereby polarized growth. PMID:18003978

  3. Adapting High-Resolution Respirometry to Glucose-Limited Steady State Mycelium of the Filamentous Fungus Penicillium ochrochloron: Method Development and Standardisation.

    PubMed

    Schinagl, Christoph W; Vrabl, Pamela; Burgstaller, Wolfgang

    2016-01-01

    Fungal electron transport systems (ETS) are branched, involving alternative NADH dehydrogenases and an alternative terminal oxidase. These alternative respiratory enzymes were reported to play a role in pathogenesis, production of antibiotics and excretion of organic acids. The activity of these alternative respiratory enzymes strongly depends on environmental conditions. Functional analysis of fungal ETS under highly standardised conditions for cultivation, sample processing and respirometric assay are still lacking. We developed a highly standardised protocol to explore in vivo the ETS-and in particular the alternative oxidase-in Penicillium ochrochloron. This included cultivation in glucose-limited chemostat (to achieve a defined and reproducible physiological state), direct transfer without any manipulation of a broth sample to the respirometer (to maintain the physiological state in the respirometer as close as possible to that in the chemostat), and high-resolution respirometry (small sample volume and high measuring accuracy). This protocol was aimed at avoiding any changes in the physiological phenotype due to the high phenotypic plasticity of filamentous fungi. A stable oxygen consumption (< 5% change in 20 minutes) was only possible with glucose limited chemostat mycelium and a direct transfer of a broth sample into the respirometer. Steady state respiration was 29% below its maximum respiratory capacity. Additionally to a rotenone-sensitive complex I and most probably a functioning complex III, the ETS of P. ochrochloron also contained a cyanide-sensitive terminal oxidase (complex IV). Activity of alternative oxidase was present constitutively. The degree of inhibition strongly depended on the sequence of inhibitor addition. This suggested, as postulated for plants, that the alternative terminal oxidase was in dynamic equilibrium with complex IV-independent of the rate of electron flux. This means that the onset of activity does not depend on a complete

  4. Adapting High-Resolution Respirometry to Glucose-Limited Steady State Mycelium of the Filamentous Fungus Penicillium ochrochloron: Method Development and Standardisation

    PubMed Central

    Schinagl, Christoph W.; Vrabl, Pamela; Burgstaller, Wolfgang

    2016-01-01

    Fungal electron transport systems (ETS) are branched, involving alternative NADH dehydrogenases and an alternative terminal oxidase. These alternative respiratory enzymes were reported to play a role in pathogenesis, production of antibiotics and excretion of organic acids. The activity of these alternative respiratory enzymes strongly depends on environmental conditions. Functional analysis of fungal ETS under highly standardised conditions for cultivation, sample processing and respirometric assay are still lacking. We developed a highly standardised protocol to explore in vivo the ETS—and in particular the alternative oxidase—in Penicillium ochrochloron. This included cultivation in glucose-limited chemostat (to achieve a defined and reproducible physiological state), direct transfer without any manipulation of a broth sample to the respirometer (to maintain the physiological state in the respirometer as close as possible to that in the chemostat), and high-resolution respirometry (small sample volume and high measuring accuracy). This protocol was aimed at avoiding any changes in the physiological phenotype due to the high phenotypic plasticity of filamentous fungi. A stable oxygen consumption (< 5% change in 20 minutes) was only possible with glucose limited chemostat mycelium and a direct transfer of a broth sample into the respirometer. Steady state respiration was 29% below its maximum respiratory capacity. Additionally to a rotenone-sensitive complex I and most probably a functioning complex III, the ETS of P. ochrochloron also contained a cyanide-sensitive terminal oxidase (complex IV). Activity of alternative oxidase was present constitutively. The degree of inhibition strongly depended on the sequence of inhibitor addition. This suggested, as postulated for plants, that the alternative terminal oxidase was in dynamic equilibrium with complex IV—independent of the rate of electron flux. This means that the onset of activity does not depend on a

  5. Transcriptional comparison of the filamentous fungus Neurospora crassa growing on three major monosaccharides D-glucose, D-xylose and L-arabinose

    PubMed Central

    2014-01-01

    Background D-glucose, D-xylose and L-arabinose are the three major monosaccharides in plant cell walls. Complete utilization of all three sugars is still a bottleneck for second-generation cellulolytic bioethanol production, especially for L-arabinose. However, little is known about gene expression profiles during L-arabinose utilization in fungi and a comparison of the genome-wide fungal response to these three major monosaccharides has not yet been reported. Results Using next-generation sequencing technology, we have analyzed the transcriptome of N. crassa grown on L-arabinose versus D-xylose, with D-glucose as the reference. We found that the gene expression profiles on L-arabinose were dramatically different from those on D-xylose. It appears that L-arabinose can rewire the fungal cell metabolic pathway widely and provoke the expression of many kinds of sugar transporters, hemicellulase genes and transcription factors. In contrast, many fewer genes, mainly related to the pentose metabolic pathway, were upregulated on D-xylose. The rewired metabolic response to L-arabinose was significantly different and wider than that under no carbon conditions, although the carbon starvation response was initiated on L-arabinose. Three novel sugar transporters were identified and characterized for their substrates here, including one glucose transporter GLT-1 (NCU01633) and two novel pentose transporters, XAT-1 (NCU01132), XYT-1 (NCU05627). One transcription factor associated with the regulation of hemicellulase genes, HCR-1 (NCU05064) was also characterized in the present study. Conclusions We conducted the first transcriptome analysis of Neurospora crassa grown on L-arabinose and performed a comparative analysis with cells grown on D-xylose and D-glucose, which deepens the understanding of the utilization of L-arabinose and D-xylose in filamentous fungi. The dataset generated by this research will be useful for mining target genes for D-xylose and L-arabinose utilization

  6. Spatial Patterns of Trichothecene Genotypes of Gibberella zeae in Wheat Fields

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Gibberella zeae (Fusarium graminearum sensu stricto) is the principal causal agent of Fusarium head blight (FHB) of wheat and barley in the USA. Grain infected with G. zeae often contains the trichothecene mycotoxins deoxynivalenol (DON) and nivalenol (NIV), threatening the health of humans and...

  7. CO-EXPRESSION OF FIFTEEN CONTIGUOUS GENES DELINEATES A FUMONISIN BIOSYNTHETIC GENE CLUSTER IN GIBBERELLA MONILIFORMIS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fumonisins are mycotoxins produced by the maize pathogen Gibberella moniliformis (anamorph Fusarium verticillioides) and have been associated with cancer in experimental rodents. In this study, we determined the nucleotide sequence of a 75-kb region of G. moniliformis DNA and identified 18 heretofo...

  8. Trichothecene genotypes of gibberella zeae from winter wheat fields in the Eastern United States

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium head blight (FHB), caused by Gibberella zeae (Fusarium graminearum), is a devastating disease of wheat and barley worldwide. Grain infected with G. zeae may be contaminated with the trichothecene mycotoxins deoxynivalenol (DON) and nivalenol (NIV). Strains of G. zeae that produce DON may a...

  9. Variation and Transgression of Aggressiveness Among Two Gibberella Zeae Crosses Developed from Highly Aggressive Parental Isolates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Gibberella zeae (anamorph: Fusarium graminearum) is the most common cause of Fusarium head blight (FHB) of wheat (Triticum aestivum) worldwide. Aggressiveness is the most important fungal trait affecting disease severity and stability of host resistance. Objectives were to analyze in two field exper...

  10. Inductive effect produced by a mixture of carbon source in the production of gibberellic acid by Gibberella fujikuroi.

    PubMed

    Rios-Iribe, Erika Y; Flores-Cotera, Luis B; Chávira, Mario M González; González-Alatorre, Guillermo; Escamilla-Silva, Eleazar M

    2011-06-01

    Gibberellic acid has been known since 1954 but its effect on rice still remains very important in the agricultural world. Gibberellic acid (GA3) is the main secondary metabolite produced by the Gibberella fujikuroi fungus. This hormone is of great importance in agriculture and the brewing industry, due to its fast and strong effects at low concentrations (μg) on the processes of growth stimulation, flowering, stem elongation, and germination of seeds, among others. Plant promoters of growth production such as the gibberellins, especially the GA3 are a priority in obtaining better harvests in the agricultural area and by extension, improving the food industry. Three routes to obtaining GA3 have been reported: extraction from plants, chemical synthesis and microbial fermentation. The latter being the most common method used to produce GA3. In this investigation, glucose-corn oil mixture was used as a carbon source on the basis of 40 g of carbon in a 7 L stirred tank bioreactor. A pH of 3.5, 29°C, 600 min(-1) agitation and 1 vvm aeration were maintained and controlled with a biocontroller connected to the bioreactor, throughout the entire culture time. The carbon source mixture affected the fermentation time as well as the production of the GAs. The production of 380 mg GA3L(-1) after 288 h of fermentation was obtained when the glucose-corn oil mixture was employed contrasting the 136 mg GA3L(-1) at 264 h of culture when only glucose was used. PMID:25187149

  11. GzSNF1 is required for normal sexual and asexual development in the ascomycete Gibberella zeae.

    PubMed

    Lee, Seung-Ho; Lee, Jungkwan; Lee, Seunghoon; Park, Eun-Hee; Kim, Ki-Woo; Kim, Myoung-Dong; Yun, Sung-Hwan; Lee, Yin-Won

    2009-01-01

    The sucrose nonfermenting 1 (SNF1) protein kinase of yeast plays a central role in the transcription of glucose-repressible genes in response to glucose starvation. In this study, we deleted an ortholog of SNF1 from Gibberella zeae to characterize its functions by using a gene replacement strategy. The mycelial growth of deletion mutants (DeltaGzSNF1) was reduced by 21 to 74% on diverse carbon sources. The virulence of DeltaGzSNF1 mutants on barley decreased, and the expression of genes encoding cell-wall-degrading enzymes was reduced. The most distinct phenotypic changes were in sexual and asexual development. DeltaGzSNF1 mutants produced 30% fewer perithecia, which matured more slowly, and asci that contained one to eight abnormally shaped ascospores. Mutants in which only the GzSNF1 catalytic domain was deleted had the same phenotype changes as the DeltaGzSNF1 strains, but the phenotype was less extreme in the mutants with the regulatory domain deleted. In outcrosses between the DeltaGzSNF1 mutants, each perithecium contained approximately 70% of the abnormal ascospores, and approximately 50% of the asci showed unexpected segregation patterns in a single locus tested. The asexual spores of the DeltaGzSNF1 mutants were shorter and had fewer septa than those of the wild-type strain. The germination and nucleation of both ascospores and conidia were delayed in DeltaGzSNF1 mutants in comparison with those of the wild-type strain. GzSNF1 expression and localization depended on the developmental stage of the fungus. These results suggest that GzSNF1 is critical for normal sexual and asexual development in addition to virulence and the utilization of alternative carbon sources. PMID:19028993

  12. A major QTL for resistance to Gibberella stalk rot in maize.

    PubMed

    Yang, Qin; Yin, Guangming; Guo, Yanling; Zhang, Dongfeng; Chen, Shaojiang; Xu, Mingliang

    2010-08-01

    Fusarium graminearum Schwabe, the conidial form of Gibberella zeae, is the causal fungal pathogen responsible for Gibberella stalk rot of maize. Using a BC(1)F(1) backcross mapping population derived from a cross between '1145' (donor parent, completely resistant) and 'Y331' (recurrent parent, highly susceptible), two quantitative trait loci (QTLs), qRfg1 and qRfg2, conferring resistance to Gibberella stalk rot have been detected. The major QTL qRfg1 was further confirmed in the double haploid, F(2), BC(2)F(1), and BC(3)F(1) populations. Within a qRfg1 confidence interval, single/low-copy bacterial artificial chromosome sequences, anchored expressed sequence tags, and insertion/deletion polymorphisms, were exploited to develop 59 markers to saturate the qRfg1 region. A step by step narrowing-down strategy was adopted to pursue fine mapping of the qRfg1 locus. Recombinants within the qRfg1 region, screened from each backcross generation, were backcrossed to 'Y331' to produce the next backcross progenies. These progenies were individually genotyped and evaluated for resistance to Gibberella stalk rot. Significant (or no significant) difference in resistance reactions between homozygous and heterozygous genotypes in backcross progeny suggested presence (or absence) of qRfg1 in '1145' donor fragments. The phenotypes were compared to sizes of donor fragments among recombinants to delimit the qRfg1 region. Sequential fine mapping of BC(4)F(1) to BC(6)F(1) generations enabled us to progressively refine the qRfg1 locus to a ~500-kb interval flanked by the markers SSR334 and SSR58. Meanwhile, resistance of qRfg1 to Gibberella stalk rot was also investigated in BC(3)F(1) to BC(6)F(1) generations. Once introgressed into the 'Y331' genome, the qRfg1 locus could steadily enhance the frequency of resistant plants by 32-43%. Hence, the qRfg1 locus was capable of improving maize resistance to Gibberella stalk rot. PMID:20401458

  13. Draft Genome Sequence of the Cellulolytic Fungus Chaetomium globosum

    PubMed Central

    Ma, Li-Jun; Grabherr, Manfred; Birren, Bruce W.

    2015-01-01

    Chaetomium globosum is a filamentous fungus typically isolated from cellulosic substrates. This species also causes superficial infections of humans and, more rarely, can cause cerebral infections. Here, we report the genome sequence of C. globosum isolate CBS 148.51, which will facilitate the study and comparative analysis of this fungus. PMID:25720678

  14. Fungus Amongus

    ERIC Educational Resources Information Center

    Wakeley, Deidra

    2005-01-01

    This role-playing simulation is designed to help teach middle level students about the typical lifecycle of a fungus. In this interactive simulation, students assume the roles of fungi, spores, living and dead organisms, bacteria, and rain. As they move around a playing field collecting food and water chips, they discover how the organisms…

  15. Mitochondrial Carnitine-Dependent Acetyl Coenzyme A Transport Is Required for Normal Sexual and Asexual Development of the Ascomycete Gibberella zeae

    PubMed Central

    Son, Hokyoung; Min, Kyunghun; Lee, Jungkwan; Choi, Gyung Ja; Kim, Jin-Cheol

    2012-01-01

    Fungi have evolved efficient metabolic mechanisms for the exact temporal (developmental stages) and spatial (organelles) production of acetyl coenzyme A (acetyl-CoA). We previously demonstrated mechanistic roles of several acetyl-CoA synthetic enzymes, namely, ATP citrate lyase and acetyl-CoA synthetases (ACSs), in the plant-pathogenic fungus Gibberella zeae. In this study, we characterized two carnitine acetyltransferases (CATs; CAT1 and CAT2) to obtain a better understanding of the metabolic processes occurring in G. zeae. We found that CAT1 functioned as an alternative source of acetyl-CoA required for lipid accumulation in an ACS1 deletion mutant. Moreover, deletion of CAT1 and/or CAT2 resulted in various defects, including changes to vegetative growth, asexual/sexual development, trichothecene production, and virulence. Although CAT1 is associated primarily with peroxisomal CAT function, mislocalization experiments showed that the role of CAT1 in acetyl-CoA transport between the mitochondria and cytosol is important for sexual and asexual development in G. zeae. Taking these data together, we concluded that G. zeae CATs are responsible for facilitating the exchange of acetyl-CoA across intracellular membranes, particularly between the mitochondria and the cytosol, during various developmental stages. PMID:22798392

  16. Filament disappearances

    NASA Technical Reports Server (NTRS)

    Wagner, William J.

    1986-01-01

    The phenomenon of the sudden filament disappearance (Disparition Brusque) is a familiar one to observers at H alpha telescopes. Nevertherless, the importance in Disparition Brusques (DB) continues to grow for several reasons which are cited in the discussion. It is reported that there seems to be more interest on building and maintain filaments than in destroying them. As a consequence, this sub-group is smaller than most of the others. All the same, progress in this area of filament disapperences seems steady and assured. The importance and interest in DBs is discussed and future directions are indicated.

  17. Chemotaxonomy of Gibberella zeae with special reference to production of trichothecenes and zearalenone.

    PubMed Central

    Ichinoe, M; Kurata, H; Sugiura, Y; Ueno, Y

    1983-01-01

    By adopting a single-spore isolation technique, 113 isolates of Gibberella zeae, the perfect stage of Fusarium graminearum, were isolated from rice stubbles in barley and wheat fields and tested for production of trichothecenes and zearalenone on rice grains. Of the isolates, 93% produced the trichothecenes, and they could be subdivided into two chemotaxonomic groups: nivalenol and fusarenon-X producers and deoxynivalenol and 3-acetyldeoxynivalenol producers. No cross production of these two types of trichothecenes was observed in these isolates. Zearalenone was detected in 68% of the isolates, but no clear relationship could be observed regarding its position with respect to the two chemotaxonomic groups. PMID:6229218

  18. Helical filaments

    NASA Astrophysics Data System (ADS)

    Barbieri, Nicholas; Hosseinimakarem, Zahra; Lim, Khan; Durand, Magali; Baudelet, Matthieu; Johnson, Eric; Richardson, Martin

    2014-06-01

    The shaping of laser-induced filamenting plasma channels into helical structures by guiding the process with a non-diffracting beam is demonstrated. This was achieved using a Bessel beam superposition to control the phase of an ultrafast laser beam possessing intensities sufficient to induce Kerr effect driven non-linear self-focusing. Several experimental methods were used to characterize the resulting beams and confirm the observed structures are laser air filaments.

  19. Proteomic comparison of Gibberella moniliformis in limited-nitrogen (fumonisin-inducing) and excess-nitrogen (fumonisin-repressing) conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The maize pathogen Gibberella moniliformis produces fumonisins, a group of mycotoxins associated with several disorders in animals and humans including cancer. The current focus of our research is to understand the regulatory mechanisms involved in fumonisin biosynthesis. In this study, we employed ...

  20. Evidence for recombination and segregation of virulence to pine in a hybrid cross between Gibberella circinata and G subglutinans

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two species associated with the Gibberella fujikuroi species complex, G. circinata (the cause of pitch canker in pines), and G. subglutinans (avirulent on pine), were found to have limited interfertility in hybrid crosses. MAT idiomorphs, polymorphisms in the histone H3 gene, vegetative compatibili...

  1. Plump Kernels with High Deoxynivalenol Linked to Late Gibberella zeae Infection and Marginal Disease Conditions in Winter Wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    While deoxynivalenol (DON) concentrations in mature wheat grain are usually correlated with symptoms produced by Gibberella zeae infection, there have been numerous observations of unacceptably high DON in asymptomatic crops, which can lead to lower-than-expected milling reductions in DON. We condu...

  2. Media for identification of Gibberella zeae and production of F-2-(Zearalenone).

    PubMed Central

    Bacon, C W; Robbins, J D; Porter, J K

    1977-01-01

    Media are described for the isolaton of Fusarium graminearum in the perithecial state, Gibberella zeae, and for the production of F-2 (zearalenone) by Fusarium species. On soil extract-corn meal agar isolated medium, G. Zeae produced perithecia in 9 to 14 days under a 12-h photoperiod. Species of Fusarium were screened for F-2 production on a liquid medium. From strains that produced F-2, the yields, from stationary cultures of G. zeae and F. culmorum after 12 days of incubation, ranged from 22 to 86 mg/liter. Three strains produced no F-2. Glumatic acid, starch, yeast extract,and the proper ratio of medium volume-to-flask volume were necessary for F-2 synthesis. Images PMID:15512

  3. Characterization of Two Polyketide Synthase Genes Involved in Zearalenone Biosynthesis in Gibberella zeae

    PubMed Central

    Gaffoor, Iffa; Trail, Frances

    2006-01-01

    Zearalenone, a mycotoxin produced by several Fusarium spp., is most commonly found as a contaminant in stored grain and has chronic estrogenic effects on mammals. Zearalenone is a polyketide derived from the sequential condensation of multiple acetate units by a polyketide synthase (PKS), but the genetics of its biosynthesis are not understood. We cloned two genes, designated ZEA1 and ZEA2, which encode polyketide synthases that participate in the biosynthesis of zearalenone by Gibberella zeae (anamorph Fusarium graminearum). Disruption of either gene resulted in the loss of zearalenone production under inducing conditions. ZEA1 and ZEA2 are transcribed divergently from a common promoter region. Quantitative PCR analysis of both PKS genes and six flanking genes supports the view that the two polyketide synthases make up the core biosynthetic unit for zearalenone biosynthesis. An appreciation of the genetics of zearalenone biosynthesis is needed to understand how zearalenone is synthesized under field conditions that result in the contamination of grain. PMID:16517624

  4. Filament winding

    NASA Astrophysics Data System (ADS)

    Shibley, A. M.

    The major aspects of filament winding are discussed, emphasizing basic reinforcement and matrix materials, winding procedures, process controls, and cured composite properties. Fiberglass (E-glass and S-glass strengths are 500,000 and 665,000 psi respectively) and polyester resins are the principal reinforcement constituent materials. Graphite and aramid reinforcements are being used more frequently, primarily for the more critical pressure vessels. Matrix systems are most commonly based on epoxy as it has superior mechanical properties, fatigue behavior, and heat resistance as compard with polyesters. A fiberglass overwrap of PVC pipe is an anticipated development in on-site winding and combination winding, and the compression molding of filament wound lay-ups will be investigated. The fabrication of weight-sensitive structural components may be achieved by using such moldings.

  5. Enhancing aspergiolide A production from a shear-sensitive and easy-foaming marine-derived filamentous fungus Aspergillus glaucus by oxygen carrier addition and impeller combination in a bioreactor.

    PubMed

    Cai, Menghao; Zhou, Xiangshan; Lu, Jian; Fan, Weimin; Niu, Chuanpeng; Zhou, Jiushun; Sun, Xueqian; Kang, Li; Zhang, Yuanxing

    2011-02-01

    Production enhancement of a novel antitumor compound aspergiolide A from shear-sensitive and easy-foaming marine-derived fungus Aspergillus glaucus HB1-19 in a 5-l stirred bioreactor was investigated. Two types of impellers, i.e., six-flat-blade disc turbine impeller (DT) and three-sector-blade pitched blade turbine impeller (PB) were used in this work. In cultures with fermentation medium, the combination of upper PB and lower DT led to the maximum dry biomass (13.8 g/l) and aspergiolide A production (19.3 mg/l). However, two PBs brought the highest aspergiolide A yield coefficient (1.9 mg/g dry biomass) despite it produced the lowest dry biomass (5.3 g/l). By contrast, two DTs and the upper DT and lower PB showed insignificant results. Feeding 0.35% (v/v) n-dodecane in cultures with upper PB and lower DT further improved aspergiolide A production by 31.0%, i.e., 25.3 mg/l, which is also 322% higher than that in the ordinary cultures with two DTs. PMID:21074418

  6. Filamentous Fungi.

    PubMed

    Powers-Fletcher, Margaret V; Kendall, Brian A; Griffin, Allen T; Hanson, Kimberly E

    2016-06-01

    Filamentous mycoses are often associated with significant morbidity and mortality. Prompt diagnosis and aggressive treatment are essential for good clinical outcomes in immunocompromised patients. The host immune response plays an essential role in determining the course of exposure to potential fungal pathogens. Depending on the effectiveness of immune response and the burden of organism exposure, fungi can either be cleared or infection can occur and progress to a potentially fatal invasive disease. Nonspecific cellular immunity (i.e., neutrophils, natural killer [NK] cells, and macrophages) combined with T-cell responses are the main immunologic mechanisms of protection. The most common potential mold pathogens include certain hyaline hyphomycetes, endemic fungi, the Mucorales, and some dematiaceous fungi. Laboratory diagnostics aimed at detecting and differentiating these organisms are crucial to helping clinicians make informed decisions about treatment. The purpose of this chapter is to provide an overview of the medically important fungal pathogens, as well as to discuss the patient characteristics, antifungal-therapy considerations, and laboratory tests used in current clinical practice for the immunocompromised host. PMID:27337469

  7. Virulence of Gibberella zeae on Wheat following Independent Disruptions of Trichothecene Biosynthetic Genes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The plant-fungal interaction that occurs when Fusarium graminearum invades small grains such as wheat and barley is complicated and involves many interactions between the invading fungus and the plant host. Although trichothecene toxins are not required for the initial infection of wheat, they are ...

  8. RNA interference Pathways in Filamentous Fungi

    PubMed Central

    Liu, Yi

    2015-01-01

    RNA interference is a conserved eukaryotic homology-dependent post-transcriptional gene silencing mechanism. The filamentous fungus Neurospora crassa is one of the first organisms used for RNAi studies. Quelling and Meiotic Silencing by Unpaired DNA (MSUD) are two RNAi related phenomena discovered in Neurospora and their characterizations have contributed significantly to our understanding of RNAi mechanisms in eukaryotes. More recently, a type of DNA damage-induced small RNA, microRNA-like small RNAs and Dicer-independent small silencing RNAs have been discovered in Neurospora crassa which can regulate gene expression. In addition, there are at least six different pathways responsible for the production of these small RNAs, indicating that this fungus is an important model system to study small RNA function and biogenesis. The RNAi studies in other filamentous fungi such as Cryphonectria paracitica and Aspergillus provide evidences that RNAi plays an important role in antiviral defense and RNAi mechanism is widely conserved in filamentous fungi, and RNAi has been commonly used as an efficient tool for studying the gene function. The discovery of the endogenous small RNAs from M. circinelloides further indicates the richness and complex of the RNAi field in eukaryotes. PMID:20680389

  9. Fine-mapping of qRfg2, a QTL for resistance to Gibberella stalk rot in maize.

    PubMed

    Zhang, Dongfeng; Liu, Yongjie; Guo, Yanling; Yang, Qin; Ye, Jianrong; Chen, Shaojiang; Xu, Mingliang

    2012-02-01

    Stalk rot is one of the most devastating diseases in maize worldwide. In our previous study, two QTLs, a major qRfg1 and a minor qRfg2, were identified in the resistant inbred line '1145' to confer resistance to Gibberella stalk rot. In the present study, we report on fine-mapping of the minor qRfg2 that is located on chromosome 1 and account for ~8.9% of the total phenotypic variation. A total of 22 markers were developed in the qRfg2 region to resolve recombinants. The progeny-test mapping strategy was developed to accurately determine the phenotypes of all recombinants for fine-mapping of the qRfg2 locus. This fine-mapping process was performed from BC(4)F(1) to BC(8)F(1) generations to narrow down the qRfg2 locus into ~300 kb, flanked by the markers SSRZ319 and CAPSZ459. A predicted gene in the mapped region, coding for an auxin-regulated protein, is believed to be a candidate for qRfg2. The qRfg2 locus could steadily increase the resistance percentage by ~12% across different backcross generations, suggesting its usefulness in enhancing maize resistance against Gibberella stalk rot. PMID:22048640

  10. Filaments from L5

    NASA Technical Reports Server (NTRS)

    Sterling, Alphonse C.

    2011-01-01

    We've been investigating filament eruptions in recent years. Why do eruptions occur? Basic mechanism is magnetic, and can often include coronal mass ejections (CMEs), flares, and filament eruptions. Use filament eruptions as markers of the more-general eruption. From our studies, we can identify directions for future work to help predict when eruptions might occur.

  11. Genomic Islands in Pathogenic Filamentous Fungus Aspergillus fumigatus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We present the genome sequences of a new clinical isolate, CEA10, of an important human pathogen, Aspergillus fumigatus, and two closely related, but rarely pathogenic species, Neosartorya fischeri NRRL181 and Aspergillus clavatus NRRL1. Comparative genomic analysis of CEA10 with the recently sequen...

  12. Metabolism of Valine by the Filamentous Fungus Arthrobotrys conoides1

    PubMed Central

    Gupta, Rishab K.; Pramer, David

    1970-01-01

    Uptake of valine by Arthrobotrys conoides was an active process and was independent of its incorporation into cellular protein. Chemical fractionation of cells supplied with 14C-l-valine for different time intervals revealed that the amino acid initially entered a pool of metabolic intermediates and was extractable with cold trichloroacetic acid. After a 4-min interval, some intracellular valine was incorporated into cell proteins, but most underwent metabolic transformation to a variety of products that included carboxylic acids and other amino acids. Carbon derived from valine was not localized in the lipid or nucleic acid fraction of cells, but some was completely oxidized and recovered as metabolic 14CO2. Autoradiograms of paper and thin-layer chromatograms of acid hydrolysates of cellular protein identified the following amino acids as having originated from valine: glutamate, aspartate, alanine, and leucine. Similar analysis of cold trichloroacetic acid extracts established that 14C supplied as l-valine had been transformed also to α-ketoisovalerate, isobutyrate, propionate, succinate, malate, oxalacetate, pyruvate, and α-ketoglutarate. Pathways for transformation of the carbon skeleton of valine to various metabolic products are proposed. Images PMID:5463679

  13. Genomic Islands in the Pathogenic Filamentous Fungus Aspergillus fumigatus

    PubMed Central

    Fedorova, Natalie D.; Khaldi, Nora; Joardar, Vinita S.; Maiti, Rama; Amedeo, Paolo; Anderson, Michael J.; Crabtree, Jonathan; Silva, Joana C.; Badger, Jonathan H.; Albarraq, Ahmed; Angiuoli, Sam; Bussey, Howard; Bowyer, Paul; Cotty, Peter J.; Dyer, Paul S.; Egan, Amy; Galens, Kevin; Fraser-Liggett, Claire M.; Haas, Brian J.; Inman, Jason M.; Kent, Richard; Lemieux, Sebastien; Malavazi, Iran; Orvis, Joshua; Roemer, Terry; Ronning, Catherine M.; Sundaram, Jaideep P.; Sutton, Granger; Turner, Geoff; Venter, J. Craig; White, Owen R.; Whitty, Brett R.; Youngman, Phil; Wolfe, Kenneth H.; Goldman, Gustavo H.; Wortman, Jennifer R.; Jiang, Bo; Denning, David W.; Nierman, William C.

    2008-01-01

    We present the genome sequences of a new clinical isolate of the important human pathogen, Aspergillus fumigatus, A1163, and two closely related but rarely pathogenic species, Neosartorya fischeri NRRL181 and Aspergillus clavatus NRRL1. Comparative genomic analysis of A1163 with the recently sequenced A. fumigatus isolate Af293 has identified core, variable and up to 2% unique genes in each genome. While the core genes are 99.8% identical at the nucleotide level, identity for variable genes can be as low 40%. The most divergent loci appear to contain heterokaryon incompatibility (het) genes associated with fungal programmed cell death such as developmental regulator rosA. Cross-species comparison has revealed that 8.5%, 13.5% and 12.6%, respectively, of A. fumigatus, N. fischeri and A. clavatus genes are species-specific. These genes are significantly smaller in size than core genes, contain fewer exons and exhibit a subtelomeric bias. Most of them cluster together in 13 chromosomal islands, which are enriched for pseudogenes, transposons and other repetitive elements. At least 20% of A. fumigatus-specific genes appear to be functional and involved in carbohydrate and chitin catabolism, transport, detoxification, secondary metabolism and other functions that may facilitate the adaptation to heterogeneous environments such as soil or a mammalian host. Contrary to what was suggested previously, their origin cannot be attributed to horizontal gene transfer (HGT), but instead is likely to involve duplication, diversification and differential gene loss (DDL). The role of duplication in the origin of lineage-specific genes is further underlined by the discovery of genomic islands that seem to function as designated “gene dumps” and, perhaps, simultaneously, as “gene factories”. PMID:18404212

  14. Genomic sequence for the aflatoxigenic filamentous fungus Aspergillus nomius

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The genome of the A. nomius type strain was sequenced using a personal genome machine. Annotation of the genes was undertaken, followed by gene ontology and an investigation into the number of secondary metabolite clusters. Comparative studies with other Aspergillus species involved shared/unique ge...

  15. Special issue on filamentation

    NASA Astrophysics Data System (ADS)

    Li, Ruxin; Milchberg, Howard; Mysyrowicz, André

    2014-05-01

    Journal of Physics B: Atomic, Molecular and Optical Physics is delighted to announce a forthcoming special issue on filamentation, to appear in the spring of 2015, and invites you to submit a paper. This special issue will attempt to give an overview of the present status of this field in order to create synergies and foster future developments. The issue is open to papers on the following issues: Theoretical advances on filamentation. Self-focusing and collapse. Filamentation in various media. Pulse self-compression and ultrafast processes in filaments. Molecular alignment and rotation. Filamentation tailoring. Interaction between filaments. Filament weather and pollution control. Filament induced condensation and precipitation. Terahertz science with filaments. Lasing in filaments. Filament induced molecular excitation and reaction. Electric discharge and plasma. Cross-disciplinary applications. Novel concepts related to these topics are particularly welcome. Please submit your article by 1 October 2014 (expected web publication: spring 2015) using our website http://mc04.manuscriptcentral.com/jphysb-iop. Submissions received after this date will be considered for the journal, but may not be included in the special issue. The issue will be edited by Ruxin Li, Howard Milchberg and André Mysyrowicz.

  16. [Extracellular proteinases of filamentous fungi as potential markers of phytopathogenesis].

    PubMed

    Dunaevskiĭ, Ia E; Gruban', T N; Beliakova, G A; Belozerskiĭ, M A

    2006-01-01

    The presence of proteins in the culture liquid of filamentous fungi under study was found to induce the secretion of proteinases. The inhibitory analysis of the major extracellular proteinases of the saprotrophic fungus Trichoderma harzianum and the phytopathogenic fungus Alternaria alternata showed that they both belong to the group of serine proteinases. The substrate specificity of these proteinases and their sensitivity to inhibitors suggest that the enzyme of T. harzianum is a subtilisin-like proteinase and the enzyme of A. alternata is a trypsin-like proteinase. This difference between the proteinases may reflect the physiological difference between their producers (saprotroph and phytopathogen). PMID:17205798

  17. Biotransformation of Malachite Green by the Fungus Cunninghamella elegans

    PubMed Central

    Cha, Chang-Jun; Doerge, Daniel R.; Cerniglia, Carl E.

    2001-01-01

    The filamentous fungus Cunninghamella elegans ATCC 36112 metabolized the triphenylmethane dye malachite green with a first-order rate constant of 0.029 μmol h−1 (mg of cells)−1. Malachite green was enzymatically reduced to leucomalachite green and also converted to N-demethylated and N-oxidized metabolites, including primary and secondary arylamines. Inhibition studies suggested that the cytochrome P450 system mediated both the reduction and the N-demethylation reactions. PMID:11526047

  18. Evidence for recombination and segregation of virulence to pine in a hybrid cross between Gibberella circinata and G. subglutinans.

    PubMed

    Friel, Christopher J; Desjardins, Anne E; Kirkpatrick, Sharon C; Gordon, Thomas R

    2007-07-01

    Two species associated with the Gibberella fujikuroi species complex, G. circinata (the cause of pitch canker in pines) and G. subglutinans (avirulent on pine), were found to have limited interfertility in hybrid crosses. MAT idiomorphs, polymorphisms in the histone H3 gene, vegetative compatibility, and virulence phenotypes were used to verify recombination. The MAT idiomorphs appeared to be assorting independently, but the histone H3 haplotype was disproportionately represented by that of the G. subglutinans parent. Ninety-eight percent (45/46) of the progeny tested were vegetatively incompatible with both parents. All F(1) progeny were avirulent to pine, but a wide range of virulence was restored through a backcross to the virulent parent (G. circinata). Attempts at hybrid crosses using other isolate combinations were rarely successful (1/26). This limited interfertility supports retention of G. circinata and G. subglutinans as separate species, but offers opportunities to characterize the inheritance of virulence to pine. PMID:17681226

  19. Villosiclava virens infects specifically rice and barley stamen filaments due to the unique host cell walls.

    PubMed

    Yong, Ming-Li; Fan, Lin-Lin; Li, Dan-Yang; Liu, Yi-Jia; Cheng, Fang-Min; Xu, Ying; Wang, Zheng-Yi; Hu, Dong-Wei

    2016-09-01

    Rice false smut, caused by the fungal pathogen Villosiclava virens, is one of the most important rice diseases in the world. Previous studies reported that the pathogen has less number of cell wall-degraded genes and attacks dominantly rice stamen filaments and extends intercellularly. To reveal why the fungus infects plant stamen filaments, inoculation test on barley was carried out with the similar protocol to rice. The experimental results showed that the fungus could penetrate quickly into barley stamen filaments and extends both intracellularly and intercellularly, usually resulting in severe damage of the stamen filament tissues. It also attacked young barley lodicules and grew intercellularly by chance. The light microscopic observations found that the epidermal and cortex cells in barley stamen filaments arranged loosely with very thick cell walls and large cell gaps. Cellulose microfibrils in barley stamen filament cell walls arranged very sparsely so that the cell walls looked like transparent. The cell walls were very soft and flexible, and often folded. However, V. virens extended dominantly in the noncellulose regions and seemed never to degrade microfibrils in barley and rice cell walls. This suggested that the unique structures of rice and barley stamen filaments should be fit for their function of elongation in anthesis, and also endow with the susceptibility to the fungus, V. virens. PMID:27357263

  20. Externally refuelled optical filaments

    NASA Astrophysics Data System (ADS)

    Scheller, Maik; Mills, Matthew S.; Miri, Mohammad-Ali; Cheng, Weibo; Moloney, Jerome V.; Kolesik, Miroslav; Polynkin, Pavel; Christodoulides, Demetrios N.

    2014-04-01

    Plasma channels produced in air through femtosecond laser filamentation hold great promise for a number of applications, including remote sensing, attosecond physics and spectroscopy, channelling microwaves and lightning protection. In such settings, extended filaments are desirable, yet their longitudinal span is limited by dissipative processes. Although various techniques aiming to prolong this process have been explored, the substantial extension of optical filaments remains a challenge. Here, we experimentally demonstrate that the natural range of a plasma column can be enhanced by at least an order of magnitude when the filament is prudently accompanied by an auxiliary beam. In this arrangement, the secondary low-intensity `dressing' beam propagates linearly and acts as a distributed energy reservoir, continuously refuelling the optical filament. Our approach offers an efficient and viable route towards the generation of extended light strings in air without inducing premature wave collapse or an undesirable beam break-up into multiple filaments.

  1. Formation of filamentous aerobic granules: role of pH and mechanism.

    PubMed

    Wan, Chunli; Yang, Xue; Lee, Duu-Jong; Zhang, Qinlan; Li, Jieni; Liu, Xiang

    2014-10-01

    Filamentous overgrowth in aerobic granular sludge processes can cause reactor failure. In this work, aerobic granules were cultivated in five identical sequencing batch reactors with acetate or glucose as the carbon source with various values of influent pH (4.5-8). Microscopic observations revealed that acidic pH, rather than the species of carbon source, epistatically controls the aerobic granules with filamentous structure. An acidic pH shifted the structure of the microbial community in the granules, such that the fungus Geotrichum fragrans was the predominant filamentous microorganism therein. The acidic pH reduced the intracellular cyclic diguanylate (c-di-GMP) content for increasing the motility of the bacteria to washout and increase the growth rate of G. fragrans on glucose or acetate, together causing overgrowth of the fungus. Maintaining the suspension under alkaline condition is proposed as an effective way to suppress filamentous overgrowth and maintain granule stability. PMID:24928656

  2. Tungsten filament fire

    NASA Astrophysics Data System (ADS)

    Ruiz, Michael J.; Perkins, James

    2016-05-01

    We safely remove the outer glass bulb from an incandescent lamp and burn up the tungsten filament after the glass is removed. This demonstration dramatically illustrates the necessity of a vacuum or inert gas for the environment surrounding the tungsten filament inside the bulb. Our approach has added historical importance since the incandescent light bulb is being replaced by compact fluorescent and LED lamps.

  3. Functional analysis of the kinome of the wheat scab fungus Fusarium graminearum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As in many other eukaryotes, protein kinases play major regulatory roles in filamentous fungi. Although the genomes of numerous plant pathogenic fungi have been sequenced, systematic characterization of their kinomes has not been reported. The wheat scab fungus Fusarium graminearum has 116 putative ...

  4. Sympathetic Solar Filament Eruptions

    NASA Astrophysics Data System (ADS)

    Wang, Rui; Liu, Ying D.; Zimovets, Ivan; Hu, Huidong; Dai, Xinghua; Yang, Zhongwei

    2016-08-01

    The 2015 March 15 coronal mass ejection as one of the two that together drove the largest geomagnetic storm of solar cycle 24 so far was associated with sympathetic filament eruptions. We investigate the relations between the different filaments involved in the eruption. A surge-like small-scale filament motion is confirmed as the trigger that initiated the erupting filament with multi-wavelength observations and using a forced magnetic field extrapolation method. When the erupting filament moved to an open magnetic field region, it experienced an obvious acceleration process and was accompanied by a C-class flare and the rise of another larger filament that eventually failed to erupt. We measure the decay index of the background magnetic field, which presents a critical height of 118 Mm. Combining with a potential field source surface extrapolation method, we analyze the distributions of the large-scale magnetic field, which indicates that the open magnetic field region may provide a favorable condition for F2 rapid acceleration and have some relation with the largest solar storm. The comparison between the successful and failed filament eruptions suggests that the confining magnetic field plays an important role in the preconditions for an eruption.

  5. Tilt Angles of Quiescent Filaments and Filaments of Active Regions

    NASA Astrophysics Data System (ADS)

    Tlatov, A. G.; Kuzanyan, K. M.; Vasil'yeva, V. V.

    2016-04-01

    We carry out study of tilt angles of solar filaments using the data from the two observatories: Meudon Observatory and Kislovodsk Mountain Astronomical Station for the century-long period 1919-2014. We developed special software for digitization of the filaments structures on Hα synoptic maps. The filaments were vectorized in semi-automatic mode. The tilt angles of filaments with respect to the equator (τ) were analyzed. Approximately 2/3 of the filaments have positive angles τ >0, which is defined as when the eastern end of the filaments are closer to the poles than the western ones. We have separated tilts for the filaments which are close to the active region structures and those of quiescent filaments. We found that long quiescent filaments mainly have negative tilts. The filaments which are close to active regions mainly have positive tilt angles.

  6. Production of Fumonisin B(inf1) and Moniliformin by Gibberella fujikuroi from Rice from Various Geographic Areas

    PubMed Central

    Desjardins, A. E.; Plattner, R. D.; Nelson, P. E.

    1997-01-01

    Gibberella fujikuroi strains isolated from rice in the United States, Asia, and other geographic areas were tested for sexual fertility with members of mating population D and for production of fumonisin B(inf1) and moniliformin in culture. Of the 59 field strains tested, 32 (54%) were able to cross with tester strains of mating population D, but only a few ascospores were produced in most of these crosses. Thirty-four strains produced more than 10 (mu)g of fumonisin B(inf1) per g, but only three strains produced more than 1000 (mu)g/g. Twenty-five strains produced more than 100 (mu)g of moniliformin per g, and 15 produced more than 1,000 (mu)g/g. Seven field strains produced both fumonisin B(inf1) and moniliformin, but none of these strains produced a high level of fumonisin B(inf1) (>1,000 (mu)g/g). However, a genetic cross between a strain that produced fumonisin B(inf1) but no moniliformin and a strain that produced moniliformin but no fumonisin B(inf1) yielded progeny that produced high levels of both toxins. Strains of G. fujikuroi isolated from rice infected with bakanae disease are similar to strains of mating population D isolated from maize in their ability to produce both fumonisins and moniliformin. This finding suggests a potential for contamination of rice with both fumonisins and moniliformin. PMID:16535599

  7. Molecular Identification of Fusarium Species in Gibberella fujikuroi Species Complex from Rice, Sugarcane and Maize from Peninsular Malaysia

    PubMed Central

    Hsuan, Heng Mei; Salleh, Baharuddin; Zakaria, Latiffah

    2011-01-01

    The objective of this study was to identify Fusarium species in the Gibberella fujikuroi species complex from rice, sugarcane and maize as most of the Fusarium species in the species complex are found on the three crops. Isolates used were collected from the field and obtained from culture collection. The Fusarium isolates were initially sorted based on morphology and identifications confirmed based on the DNA sequence of the translation elongation factor 1-α (TEF-1α) gene. Based on the closest match of BLAST analysis, five species were recovered, namely, F. sacchari, F. fujikuroi, F. proliferatum, F. andiyazi and F. verticillioides. This is the first report regarding F. andiyazi from rice in Malaysia and Southeast Asia. The phylogenetic tree generated by using the neighbor joining method showed that isolates from the same species were grouped in the same clade. The present study indicated that Fusarium species in the G. fujikuroi species complex are widespread in rice, sugarcane and maize in Peninsular Malaysia. The findings also suggest that the use of morphological characters for identification of Fusarium species in the G. fujikuroi species complex from the three crops will lead to incorrect species designation. PMID:22072914

  8. Snake Filament Eruption

    NASA Video Gallery

    A very long solar filament that had been snaking around the Sun erupted on Dec. 6, 2010 with a flourish. NASA's Solar Dynamics Observatory (SDO) caught the action in dramatic detail in extreme ultr...

  9. Actinomycetes inhibit filamentous fungi from the cuticle of Acromyrmex leafcutter ants.

    PubMed

    Dângelo, Rômulo Augusto Cotta; de Souza, Danival José; Mendes, Thais Demarchi; Couceiro, Joel da Cruz; Lucia, Terezinha Maria Castro Della

    2016-03-01

    Actinomycetes bacteria associated with leafcutter ants produce secondary metabolites with antimicrobial properties against Escovopsis, a fungus specialized in attacking the gardens of fungus-growing ants, which denies the ants their food source. Because previous studies have used fungi isolated from fungus gardens but not from ant integument, the aims of the present study were to isolate actinomycetes associated with the cuticle of the Acromyrmex spp. and to quantify their inhibition abilities against the filamentous fungal species carried by these ants. The results demonstrated that actinomycetes had varied strain-dependent effects on several filamentous fungal species in addition to antagonistic activity against Escovopsis. The strain isolated from Acromyrmex balzani was identified as a Streptomyces species, whereas the remaining isolates were identified as different strains belonging to the genus Pseudonocardia. These findings corroborate the hypothesis that actinomycetes do not act specifically against Escovopsis mycoparasites and may have the ability to inhibit other species of pathogenic fungi. PMID:26805489

  10. Evolution of filament barbs.

    NASA Astrophysics Data System (ADS)

    Liu, R.; Xu, Y.; Wang, H.

    We present a selected few cases in which the sense of chirality of filament barbs changed within periods as short as hours. We investigate in detail a quiescent filament on 2003 September 10 and 11. Of its four barbs displaying such changes, only one overlays a small polarity inversion line inside the EUV filament channel (EFC). No magnetic elements with magnitude above the noise level were detected at the endpoints of all barbs. In particular, a pair of barbs first approached toward, and then departed from, each other in Halpha , with the barb endpoints migrating as far as ˜ 10 arcsec. We conclude that the evolution of the barbs was driven by flux emergence and cancellation of small bipolar units at the EFC border.

  11. Genome-Wide Macrosynteny among Fusarium Species in the Gibberella fujikuroi Complex Revealed by Amplified Fragment Length Polymorphisms

    PubMed Central

    De Vos, Lieschen; Steenkamp, Emma T.; Martin, Simon H.; Santana, Quentin C.; Fourie, Gerda; van der Merwe, Nicolaas A.; Wingfield, Michael J.; Wingfield, Brenda D.

    2014-01-01

    The Gibberella fujikuroi complex includes many Fusarium species that cause significant losses in yield and quality of agricultural and forestry crops. Due to their economic importance, whole-genome sequence information has rapidly become available for species including Fusarium circinatum, Fusarium fujikuroi and Fusarium verticillioides, each of which represent one of the three main clades known in this complex. However, no previous studies have explored the genomic commonalities and differences among these fungi. In this study, a previously completed genetic linkage map for an interspecific cross between Fusarium temperatum and F. circinatum, together with genomic sequence data, was utilized to consider the level of synteny between the three Fusarium genomes. Regions that are homologous amongst the Fusarium genomes examined were identified using in silico and pyrosequenced amplified fragment length polymorphism (AFLP) fragment analyses. Homology was determined using BLAST analysis of the sequences, with 777 homologous regions aligned to F. fujikuroi and F. verticillioides. This also made it possible to assign the linkage groups from the interspecific cross to their corresponding chromosomes in F. verticillioides and F. fujikuroi, as well as to assign two previously unmapped supercontigs of F. verticillioides to probable chromosomal locations. We further found evidence of a reciprocal translocation between the distal ends of chromosome 8 and 11, which apparently originated before the divergence of F. circinatum and F. temperatum. Overall, a remarkable level of macrosynteny was observed among the three Fusarium genomes, when comparing AFLP fragments. This study not only demonstrates how in silico AFLPs can aid in the integration of a genetic linkage map to the physical genome, but it also highlights the benefits of using this tool to study genomic synteny and architecture. PMID:25486277

  12. Aerogel-supported filament

    DOEpatents

    Wuest, C.R.; Tillotson, T.M.; Johnson, C.V. III

    1995-05-16

    The present invention is a thin filament embedded in a low density aerogel for use in radiation detection instruments and incandescent lamps. The aerogel provides a supportive matrix that is thermally and electrically nonconductive, mechanically strong, highly porous, gas-permeable, and transparent to ionizing radiation over short distances. A low density, open-cell aerogel is cast around a fine filament or wire, which allows the wire to be positioned with little or no tension and keeps the wire in place in the event of breakage. The aerogel support reduces the stresses on the wire caused by vibrational, gravitational, electrical, and mechanical forces. 6 Figs.

  13. Aerogel-supported filament

    DOEpatents

    Wuest, Craig R.; Tillotson, Thomas M.; Johnson, III, Coleman V.

    1995-01-01

    The present invention is a thin filament embedded in a low density aerogel for use in radiation detection instruments and incandescent lamps. The aerogel provides a supportive matrix that is thermally and electrically nonconductive, mechanically strong, highly porous, gas-permeable, and transparent to ionizing radiation over short distances. A low density, open-cell aerogel is cast around a fine filament or wire, which allows the wire to be positioned with little or no tension and keeps the wire in place in the event of breakage. The aerogel support reduces the stresses on the wire caused by vibrational, gravitational, electrical, and mechanical forces.

  14. Lens tilting effect on filamentation and filament-induced fluorescence

    NASA Astrophysics Data System (ADS)

    Kamali, Y.; Sun, Q.; Daigle, J.-F.; Azarm, A.; Bernhardt, J.; Chin, S. L.

    2009-03-01

    In filament-induced fluorescence spectroscopy, we experimentally found that if the lens used for the creation and localization of filament is tilted, the signal to noise ratio of spectral measurement increases. Further study shows that with lens tilting, astigmatism occurs and the filament is split into shorter parts. In turn the shortening of filament reduces the generation of white light which is the major 'noise' source of the spectra.

  15. Branching of keratin intermediate filaments.

    PubMed

    Nafeey, Soufi; Martin, Ines; Felder, Tatiana; Walther, Paul; Felder, Edward

    2016-06-01

    Keratin intermediate filaments (IFs) are crucial to maintain mechanical stability in epithelial cells. Since little is known about the network architecture that provides this stiffness and especially about branching properties of filaments, we addressed this question with different electron microscopic (EM) methods. Using EM tomography of high pressure frozen keratinocytes, we investigated the course of several filaments in a branching of a filament bundle. Moreover we found several putative bifurcations in individual filaments. To verify our observation we also visualized the keratin network in detergent extracted keratinocytes with scanning EM. Here bifurcations of individual filaments could unambiguously be identified additionally to bundle branchings. Interestingly, identical filament bifurcations were also found in purified keratin 8/18 filaments expressed in Escherichia coli which were reassembled in vitro. This excludes that an accessory protein contributes to the branch formation. Measurements of the filament cross sectional areas showed various ratios between the three bifurcation arms. This demonstrates that intermediate filament furcation is very different from actin furcation where an entire new filament is attached to an existing filament. Instead, the architecture of intermediate filament bifurcations is less predetermined and hence consistent with the general concept of IF formation. PMID:27039023

  16. Magnetically driven filament probe.

    PubMed

    Schmid, A; Herrmann, A; Rohde, V; Maraschek, M; Müller, H W

    2007-05-01

    A radially movable probe has been developed for studies of filamentary transport in ASDEX Upgrade during edge localized modes (ELMs) by means of Langmuir tips and magnetic pickup coils. The probe is permanently installed at the low field side in the ASDEX Upgrade vacuum vessel and is not subject to limitations in probe size, as, for example, probes on a shared manipulator are. The probe is moved by a magnetic drive, which allows for easy installation in the vessel, and has moderate machine requirements, as it will only require an electric feedthrough and an external power supply. The drive gives a linear motion with a radial range of 5 cm within 50 ms, where range and velocity can be largely scaled according to experimental requirements. The probe has been installed in the outer midplane of the ASDEX Upgrade vessel, where ELM filaments are expected to have their maximum amplitude. Filaments are coherent substructures within an ELM, carrying a fraction of the ELM released energy towards the wall. The new probe allows to measure the structure of these filaments, in particular, parameters such as filament rotation (by time delay measurements) and size (by peak width analysis). Activating the drive moves the probe from a safe position behind the limiter to a position in front of the limiters, i.e., exposes the Langmuir pins to the scrape-off layer plasma. PMID:17552815

  17. Dense fouling in acid transfer pipelines by an acidophilic rubber degrading fungus.

    PubMed

    Joshi, M Hiren; Balamurugan, P; Venugopalan, V P; Rao, T S

    2011-07-01

    An unique case of dense fouling by an acidophilic, hard rubber (polymerized rubber) degrading fungus in the acid transfer pipelines of a boron enrichment plant located at Kalpakkam, India is reported. In spite of a highly adverse environment for survival (pH 1.5, no dissolved nutrients), the fungus thrived and clogged the pipeline used for transferring 0.1N hydrochloric acid (HCl). Detailed investigations were carried out to isolate and identify the fungus and examine the nutrient source for such profuse growth inside the system. Microscopic observation showed the presence of a thick filamentous fungal biomass. Molecular characterization by 18S rRNA gene sequencing showed 98% similarity of the isolate with the acidophilic fungus Bispora sp. In laboratory studies the fungus showed luxuriant growth (specific growth rate of 13 mg day⁻¹) when scrapings of the hard rubber were used as the sole source of carbon. Scanning electron microscopy revealed extensive incursion of the fungus into the hard rubber matrix. In the laboratory, fungal growth was completely inhibited by the antifungal agent sodium omadine. The study illustrates an interesting example of biofouling under extreme conditions and demonstrates that organisms can physiologically adapt to grow under unfavourable conditions, provided that a nutrient source is available and competition is low. The use of this fungal strain in biodegradation and in development of environmentally compatible processes for disposal of rubber wastes is envisaged. PMID:21722066

  18. Solid friction between soft filaments.

    PubMed

    Ward, Andrew; Hilitski, Feodor; Schwenger, Walter; Welch, David; Lau, A W C; Vitelli, Vincenzo; Mahadevan, L; Dogic, Zvonimir

    2015-06-01

    Any macroscopic deformation of a filamentous bundle is necessarily accompanied by local sliding and/or stretching of the constituent filaments. Yet the nature of the sliding friction between two aligned filaments interacting through multiple contacts remains largely unexplored. Here, by directly measuring the sliding forces between two bundled F-actin filaments, we show that these frictional forces are unexpectedly large, scale logarithmically with sliding velocity as in solid-like friction, and exhibit complex dependence on the filaments' overlap length. We also show that a reduction of the frictional force by orders of magnitude, associated with a transition from solid-like friction to Stokes's drag, can be induced by coating F-actin with polymeric brushes. Furthermore, we observe similar transitions in filamentous microtubules and bacterial flagella. Our findings demonstrate how altering a filament's elasticity, structure and interactions can be used to engineer interfilament friction and thus tune the properties of fibrous composite materials. PMID:25730393

  19. Assessment of the core cryparin promoter from Cryphonectria parasitica for heterologous expression in filamentous fungi.

    PubMed

    Kwon, Bo-Ra; Kim, Myoung-Ju; Park, Jin-A; Chung, Hea-Jong; Kim, Jung-Mi; Park, Seung-Moon; Yun, Sung-Hwan; Yang, Moon-Sik; Kim, Dae-Hyuk

    2009-05-01

    Cryparin is an abundant cell-wall-associated hydrophobin of Cryphonectria parasitica. Although cryparin is encoded as a single copy gene, it is the most abundant protein produced by this fungus when grown in liquid culture. Studies to characterize the transcriptional regulatory element(s) found that the fragment between nt -188 and the start codon was the minimal but sufficient promoter element for expression of the cryparin gene. To explore the possibility of using this small fragment as a minimal core promoter, three different chimeric reporter genes were constructed using a bacterial hygromycin B resistance gene (hph), an inducible laccase of C. parasitica, and glucose oxidase of Aspergillus niger to examine the promoter properties of the fragment. When using C. parasitica as an expression host, the 188-bp fragment functioned as a promoter for the expression of all three reporter genes. Moreover, a high level of expression was further confirmed by measuring the relative amount of transcripts of hph and an internal control gene, glyceraldehyde-3-phosphate dehydrogenase, using quantitative real-time polymerase chain reaction. The 188-bp fragment also showed promoter activity in other fungi, Gibberella zeae, A. niger, and Aspergillus nidulans, which suggests that this fragment can be applied as a strong core promoter for heterologous gene expression in various fungi. PMID:19238380

  20. CVD-produced boron filaments

    NASA Technical Reports Server (NTRS)

    Wawner, F. E.; Debolt, H. E.; Suplinskas, R. D.

    1980-01-01

    A technique for producing boron filaments with an average tensile strength of 6.89 GPa has been developed which involves longitudinal splitting of the filament and core (substrate) removal by etching. Splitting is accomplished by a pinch wheel device which continuously splits filaments in lengths of 3.0 m by applying a force to the side of the filament to create a crack which is then propagated along the axis by a gentle sliding action. To facilitate the splitting, a single 10 mil tungsten substrate is used instead of the usual 0.5 mil substrate. A solution of hot 30% hydrogen peroxide is used to remove the core without attacking the boron. An alternative technique is to alter the residual stress by heavily etching the filament. Average strengths in the 4.83-5.52 GPa range have been obtained by etching an 8 mil filament to 4 mil.

  1. Filament wound structure and method

    DOEpatents

    Dritt, William S.; Gerth, Howard L.; Knight, Jr., Charles E.; Pardue, Robert M.

    1977-01-01

    The present invention relates to a filament wound spherical structure comprising a plurality of filament band sets disposed about the surface of a mandrel with each band of each set formed of a continuous filament circumferentially wound about the mandrel a selected number of circuits and with each circuit of filament being wound parallel to and contiguous with an immediate previously wound circuit. Each filament band in each band set is wound at the same helix angle from the axis of revolution of the mandrel and all of the bands of each set are uniformly distributed about the mandrel circumference. The pole-to-equator wall thickness taper associated with each band set, as several contiguous band sets are wound about the mandrel starting at the poles, is accumulative as the band sets are nested to provide a complete filament wound sphere of essentially uniform thickness.

  2. Mycelial pellet formation by edible ascomycete filamentous fungi, Neurospora intermedia.

    PubMed

    Nair, Ramkumar B; Lennartsson, Patrik R; Taherzadeh, Mohammad J

    2016-12-01

    Pellet formation of filamentous fungi in submerged culture is an imperative topic of fermentation research. In this study, we report for the first time the growth of filamentous ascomycete fungus, Neurospora intermedia in its mycelial pellet form. In submerged culture, the growth morphology of the fungus was successfully manipulated into growing as pellets by modifying various cultivation conditions. Factors such as pH (2.0-10.0), agitation rate (100-150 rpm), carbon source (glucose, arabinose, sucrose, and galactose), the presence of additive agents (glycerol and calcium chloride) and trace metals were investigated for their effect on the pellet formation. Of the various factors screened, uniform pellets were formed only at pH range 3.0-4.0, signifying it as the most influential factor for N. intermedia pellet formation. The average pellet size ranged from 2.38 ± 0.12 to 2.86 ± 0.38 mm. The pellet formation remained unaffected by the inoculum type used and its size showed an inverse correlation with the agitation rate of the culture. Efficient glucose utilization was observed with fungal pellets, as opposed to the freely suspended mycelium, proving its viability for fast-fermentation processes. Scale up of the pelletization process was also carried out in bench-scale airlift and bubble column reactors (4.5 L). PMID:27103628

  3. Magnetic vortex filament flows

    SciTech Connect

    Barros, Manuel; Cabrerizo, Jose L.; Fernandez, Manuel; Romero, Alfonso

    2007-08-15

    We exhibit a variational approach to study the magnetic flow associated with a Killing magnetic field in dimension 3. In this context, the solutions of the Lorentz force equation are viewed as Kirchhoff elastic rods and conversely. This provides an amazing connection between two apparently unrelated physical models and, in particular, it ties the classical elastic theory with the Hall effect. Then, these magnetic flows can be regarded as vortex filament flows within the localized induction approximation. The Hasimoto transformation can be used to see the magnetic trajectories as solutions of the cubic nonlinear Schroedinger equation showing the solitonic nature of those.

  4. Predicting Solar Filament Eruptions with HEK Filament Metadata

    NASA Astrophysics Data System (ADS)

    Aggarwal, A.; Reeves, K.; Schanche, N.

    2015-12-01

    Solar filaments are cool, dark channels of partially-ionized plasma that lie above the chromosphere. Their structure follows the neutral line between local regions of opposite magnetic polarity. Previous research (e.g. Schmieder et al. 2013) has shown a positive correlation (80%) between the occurrence of filament eruptions and coronal mass ejections (CME's). If certain filament properties, such as length, chirality, and tilt, indicate a tendency towards filament eruptions, one may be able to further predict an oncoming CME. Towards this end, we present a novel algorithm based on spatiotemporal analysis that systematically correlates filament eruptions documented in the Heliophysics Event Knowledgebase (HEK) with HEK filaments that have been grouped together using a tracking algorithm developed at Georgia State University (e.g. Kempton et al. 2014). We also find filament tracks that are not correlated with eruptions to form a null data set in a similar fashion. Finally, we compare the metadata from erupting and non-erupting filament tracks to discover which filament properties may present signs of an eruption onset. Through statistical methods such as the two-sample Kolmogorov-Smirnov test and Random Forest Classifier, we find that a filament that is increasing in length or changing in tilt with respect to the equator may be a useful gauge to predict a filament eruption. However, the average values of length and tilt for both datasets follow similar distributions, leading us to conclude that these parameters do not indicate an eruption event. This work is supported by the NSF-REU solar physics program at SAO, grant number AGS-1263241, and NSF DIBBS grant number ACI-1443061.

  5. Gravitational infall onto molecular filaments

    SciTech Connect

    Heitsch, Fabian

    2013-06-01

    Two aspects of filamentary molecular cloud evolution are addressed: (1) exploring analytically the role of the environment for the evolution of filaments demonstrates that considering them in isolation (i.e., just addressing the fragmentation stability) will result in unphysical conclusions about the filament's properties. Accretion can also explain the observed decorrelation between FWHM and peak column density. (2) Free-fall accretion onto finite filaments can lead to the characteristic 'fans' of infrared-dark clouds around star-forming regions. The fans may form due to tidal forces mostly arising at the ends of the filaments, consistent with numerical models and earlier analytical studies.

  6. Chaperonin filaments: The archael cytoskeleton

    SciTech Connect

    Trent, J.D.; Kagawa, H.K.; Yaoi, Takuro; Olle, E.; Zaluzec, N.J.

    1997-08-01

    Chaperonins are multi-subunit double-ring complexed composed of 60-kDa proteins that are believed to mediate protein folding in vivo. The chaperonins in the hyperthermophilic archaeon Sulfolobus shibatae are composed of the organism`s two most abundant proteins, which represent 4% of its total protein and have an intracellular concentration of {ge} 3.0 mg/ml. At concentrations of 1.0 mg/ml, purified chaperonin proteins aggregate to form ordered filaments. Filament formation, which requires Mg{sup ++} and nucleotide binding (not hydrolysis), occurs at physiological temperatures under conditions suggesting filaments may exist in vivo. If the estimated 4,600 chaperonins per cell, formed filaments in vivo, they could create a matrix of filaments that would span the diameter of an average S. shibatae cell 100 times. Direct observations of unfixed, minimally treated cells by intermediate voltage electron microscopy (300 kV) revealed an intracellular network of filaments that resembles chaperonin filaments produced in vitro. The hypothesis that the intracellular network contains chaperonins is supported by immunogold analyses. The authors propose that chaperonin activity may be regulated in vivo by filament formation and that chaperonin filaments may serve a cytoskeleton-like function in archaea and perhaps in other prokaryotes.

  7. Solar Filament Extraction and Characterizing

    NASA Astrophysics Data System (ADS)

    Yuan, Yuan; Shih, F. Y.; Jing, J.; Wang, H.

    2010-05-01

    This paper presents a new method to extract and characterize solar filaments from H-alpha full-disk images produced by Big Bear Solar Observatory. A cascading Hough Transform method is designed to identify solar disk center location and radius. Solar disks are segmented from the background, and unbalanced illumination on the surface of solar disks is removed using polynomial surface fitting. And then a localized adaptive thresholding is employed to extract solar filament candidates. After the removal of small solar filament candidates, the remaining larger candidates are used as the seeds of region growing. The procedure of region growing not only connects broken filaments but also generate complete shape for each filament. Mathematical morphology thinning is adopted to produce the skeleton of each filament, and graph theory is used to prune branches and barbs to get the main skeleton. The length and the location of the main skeleton is characterized. The proposed method can help scientists and researches study the evolution of solar filament, for instance, to detect solar filament eruption. The presented method has already been used by Space Weather Research Lab of New Jersey Institute of Technology (http://swrl.njit.edu) to generate the solar filament online catalog using H-alpha full-disk images of Global H-alpha Network (http://swrl.njit.edu/ghn_web/).

  8. Solid friction between soft filaments

    NASA Astrophysics Data System (ADS)

    Ward, Andrew; Hilitski, Feodor; Schwenger, Walter; Welch, David; Lau, A. W. C.; Vitelli, Vincenzo; Mahadevan, L.; Dogic, Zvonimir

    2015-06-01

    Any macroscopic deformation of a filamentous bundle is necessarily accompanied by local sliding and/or stretching of the constituent filaments. Yet the nature of the sliding friction between two aligned filaments interacting through multiple contacts remains largely unexplored. Here, by directly measuring the sliding forces between two bundled F-actin filaments, we show that these frictional forces are unexpectedly large, scale logarithmically with sliding velocity as in solid-like friction, and exhibit complex dependence on the filaments’ overlap length. We also show that a reduction of the frictional force by orders of magnitude, associated with a transition from solid-like friction to Stokes’s drag, can be induced by coating F-actin with polymeric brushes. Furthermore, we observe similar transitions in filamentous microtubules and bacterial flagella. Our findings demonstrate how altering a filament’s elasticity, structure and interactions can be used to engineer interfilament friction and thus tune the properties of fibrous composite materials.

  9. The Transcription Factor FgStuA Influences Spore Development, Pathogenicity and Secondary Metabolism in the Plant Pathogenic Fungus Fusarium graminearum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The filamentous fungus Fusarium graminearum causes extensive losses on cereals world-wide and contaminates harvested grain with mycotoxins, whose levels in the food supply are strictly regulated. We deleted the FgStuA gene in Fusarium graminearum and demonstrate its involvement in several different ...

  10. Perturbation growth in accreting filaments

    NASA Astrophysics Data System (ADS)

    Clarke, S. D.; Whitworth, A. P.; Hubber, D. A.

    2016-05-01

    We use smoothed particle hydrodynamic simulations to investigate the growth of perturbations in infinitely long filaments as they form and grow by accretion. The growth of these perturbations leads to filament fragmentation and the formation of cores. Most previous work on this subject has been confined to the growth and fragmentation of equilibrium filaments and has found that there exists a preferential fragmentation length-scale which is roughly four times the filament's diameter. Our results show a more complicated dispersion relation with a series of peaks linking perturbation wavelength and growth rate. These are due to gravo-acoustic oscillations along the longitudinal axis during the sub-critical phase of growth. The positions of the peaks in growth rate have a strong dependence on both the mass accretion rate onto the filament and the temperature of the gas. When seeded with a multiwavelength density power spectrum, there exists a clear preferred core separation equal to the largest peak in the dispersion relation. Our results allow one to estimate a minimum age for a filament which is breaking up into regularly spaced fragments, as well as an average accretion rate. We apply the model to observations of filaments in Taurus by Tafalla & Hacar and find accretion rates consistent with those estimated by Palmeirim et al.

  11. Intermediate Filaments: A Historical Perspective

    PubMed Central

    Oshima, Robert G.

    2007-01-01

    Intracellular protein filaments intermediate in size between actin microfilaments and microtubules are composed of a surprising variety of tissue specific proteins commonly interconnected with other filamentous systems for mechanical stability and decorated by a variety of proteins that provide specialized functions. The sequence conservation of the coiled-coil, alpha-helical structure responsible for polymerization into individual 10 nm filaments defines the classification of intermediate filament proteins into a large gene family. Individual filaments further assemble into bundles and branched cytoskeletons visible in the light microscope. However, it is the diversity of the variable terminal domains that likely contributes most to different functions. The search for the functions of intermediate filament proteins has led to discoveries of roles in diseases of the skin, heart, muscle, liver, brain, adipose tissues and even premature aging. The diversity of uses of intermediate filaments as structural elements and scaffolds for organizing the distribution of decorating molecules contrasts with other cytoskeletal elements. This review is an attempt to provide some recollection of how such a diverse field emerged and changed over about 30 years. PMID:17493611

  12. Filament identification through mathematical morphology

    NASA Astrophysics Data System (ADS)

    Koch, Eric W.; Rosolowsky, Erik W.

    2015-10-01

    We present a new algorithm for detecting filamentary structure FILFINDER. The algorithm uses the techniques of mathematical morphology for filament identification, presenting a complementary approach to current algorithms which use matched filtering or critical manifolds. Unlike other methods, FILFINDER identifies filaments over a wide dynamic range in brightness. We apply the new algorithm to far-infrared imaging data of dust emission released by the Herschel Gould Belt Survey team. Our preliminary analysis characterizes both filaments and fainter striations. We find a typical filament width of 0.09 pc across the sample, but the brightness varies from cloud to cloud. Several regions show a bimodal filament brightness distribution, with the bright mode (filaments) being an order of magnitude brighter than the faint mode (striations). Using the Rolling Hough Transform, we characterize the orientations of the striations in the data, finding preferred directions that agree with magnetic field direction where data are available. There is a suggestive but noisy correlation between typical filament brightness and literature values of the star formation rates for clouds in the Gould Belt.

  13. Orchestration of Morphogenesis in Filamentous Fungi: Conserved Roles for Ras Signaling Networks

    PubMed Central

    Fortwendel, Jarrod R.

    2015-01-01

    Filamentous fungi undergo complex developmental programs including conidial germination, polarized morphogenesis, and differentiation of sexual and asexual structures. For many fungi, the coordinated completion of development is required for pathogenicity, as specialized morphological structures must be produced by the invading fungus. Ras proteins are highly conserved GTPase signal transducers and function as major regulators of growth and development in eukaryotes. Filamentous fungi typically express two Ras homologues, comprising distinct groups of Ras1-like and Ras2-like proteins based on sequence homology. Recent evidence suggests shared roles for both Ras1 and Ras2 homologues, but also supports the existence of unique functions in the areas of stress response and virulence. This review focuses on the roles played by both Ras protein groups during growth, development, and pathogenicity of a diverse array of filamentous fungi. PMID:26257821

  14. Metabolic regulation via enzyme filamentation

    PubMed Central

    Aughey, Gabriel N.; Liu, Ji-Long

    2016-01-01

    Abstract Determining the mechanisms of enzymatic regulation is central to the study of cellular metabolism. Regulation of enzyme activity via polymerization-mediated strategies has been shown to be widespread, and plays a vital role in mediating cellular homeostasis. In this review, we begin with an overview of the filamentation of CTP synthase, which forms filamentous structures termed cytoophidia. We then highlight other important examples of the phenomenon. Moreover, we discuss recent data relating to the regulation of enzyme activity by compartmentalization into cytoophidia. Finally, we hypothesize potential roles for enzyme filament formation in the regulation of metabolism, development and disease. PMID:27098510

  15. Centromeres of filamentous fungi

    PubMed Central

    Smith, Kristina M.; Galazka, Jonathan M.; Phatale, Pallavi A.; Connolly, Lanelle R.; Freitag, Michael

    2012-01-01

    How centromeres are assembled and maintained remains one of the fundamental questions in cell biology. Over the past 20 years the idea of centromeres as precise genetic loci has been replaced by the realization that it is predominantly the protein complement that defines centromere localization and function. Thus, placement and maintenance of centromeres are excellent examples of epigenetic phenomena in the strict sense. In contrast, the highly derived “point centromeres” of the budding yeast Saccharomyces cerevisiae and its close relatives are counterexamples for this general principle of centromere maintenance. While we have learned much in the past decade, it remains unclear if mechanisms for epigenetic centromere placement and maintenance are shared amongst various groups of organisms. For that reason it seems prudent to examine species from many different phylogenetic groups with the aim to extract comparative information that will yield a more complete picture of cell division in all eukaryotes. This review addresses what has been learned by studying the centromeres of filamentous fungi, a large, heterogeneous group of organisms that includes important plant, animal and human pathogens, saprobes and symbionts that fulfill essential roles in the biosphere, as well as a growing number of taxa that have become indispensable for industrial use. PMID:22752455

  16. Centromeres of filamentous fungi.

    PubMed

    Smith, Kristina M; Galazka, Jonathan M; Phatale, Pallavi A; Connolly, Lanelle R; Freitag, Michael

    2012-07-01

    How centromeres are assembled and maintained remains one of the fundamental questions in cell biology. Over the past 20 years, the idea of centromeres as precise genetic loci has been replaced by the realization that it is predominantly the protein complement that defines centromere localization and function. Thus, placement and maintenance of centromeres are excellent examples of epigenetic phenomena in the strict sense. In contrast, the highly derived "point centromeres" of the budding yeast Saccharomyces cerevisiae and its close relatives are counter-examples for this general principle of centromere maintenance. While we have learned much in the past decade, it remains unclear if mechanisms for epigenetic centromere placement and maintenance are shared among various groups of organisms. For that reason, it seems prudent to examine species from many different phylogenetic groups with the aim to extract comparative information that will yield a more complete picture of cell division in all eukaryotes. This review addresses what has been learned by studying the centromeres of filamentous fungi, a large, heterogeneous group of organisms that includes important plant, animal and human pathogens, saprobes, and symbionts that fulfill essential roles in the biosphere, as well as a growing number of taxa that have become indispensable for industrial use. PMID:22752455

  17. Mobile elements and mitochondrial genome expansion in the soil fungus and potato pathogen Rhizoctonia solani AG-3.

    PubMed

    Losada, Liliana; Pakala, Suman B; Fedorova, Natalie D; Joardar, Vinita; Shabalina, Svetlana A; Hostetler, Jessica; Pakala, Suchitra M; Zafar, Nikhat; Thomas, Elizabeth; Rodriguez-Carres, Marianela; Dean, Ralph; Vilgalys, Rytas; Nierman, William C; Cubeta, Marc A

    2014-03-01

    The soil fungus Rhizoctonia solani is an economically important pathogen of agricultural and forestry crops. Here, we present the complete sequence and analysis of the mitochondrial genome of R. solani, field isolate Rhs1AP. The genome (235 849 bp) is the largest mitochondrial genome of a filamentous fungus sequenced to date and exhibits a rich accumulation of introns, novel repeat sequences, homing endonuclease genes, and hypothetical genes. Stable secondary structures exhibited by repeat sequences suggest that they comprise functional, possibly catalytic RNA elements. RNA-Seq expression profiling confirmed that the majority of homing endonuclease genes and hypothetical genes are transcriptionally active. Comparative analysis suggests that the mitochondrial genome of R. solani is an example of a dynamic history of expansion in filamentous fungi. PMID:24461055

  18. Electron emitting filaments for electron discharge devices

    DOEpatents

    Leung, Ka-Ngo; Pincosy, Philip A.; Ehlers, Kenneth W.

    1988-01-01

    Electrons are copiously emitted by a device comprising a loop-shaped filament made of lanthanum hexaboride. The filament is directly heated by an electrical current produced along the filament by a power supply connected to the terminal legs of the filament. To produce a filament, a diamond saw or the like is used to cut a slice from a bar made of lanthanum hexaboride. The diamond saw is then used to cut the slice into the shape of a loop which may be generally rectangular, U-shaped, hairpin-shaped, zigzag-shaped, or generally circular. The filaments provide high electron emission at a relatively low operating temperature, such as 1600.degree. C. To achieve uniform heating, the filament is formed with a cross section which is tapered between the opposite ends of the filament to compensate for non-uniform current distribution along the filament due to the emission of electrons from the filament.

  19. Electron emitting filaments for electron discharge devices

    DOEpatents

    Leung, K.N.; Pincosy, P.A.; Ehlers, K.W.

    1983-06-10

    Electrons are copiously emitted by a device comprising a loop-shaped filament made of lanthanum hexaboride. The filament is directly heated by an electrical current produced along the filament by a power supply connected to the terminal legs of the filament. To produce a filament, a diamond saw or the like is used to cut a slice from a bar made of lanthanum hexaboride. The diamond saw is then used to cut the slice into the shape of a loop which may be generally rectangular, U-shaped, hairpin-shaped, zigzag-shaped, or generally circular. The filaments provide high electron emission at a relatively low operating temperature, such as 1600/sup 0/C. To achieve uniform heating, the filament is formed with a cross section which is tapered between the opposite ends of the filament to compensate for nonuniform current distribution along the filament due to the emission of electrons from the filament.

  20. Duckling toxicity and the production of fumonisin and moniliformin by isolates in the A and E mating populations of Gibberella fujikuroi (Fusarium moniliforme).

    PubMed Central

    Leslie, J F; Marasas, W F; Shephard, G S; Sydenham, E W; Stockenström, S; Thiel, P G

    1996-01-01

    Two biological species of Gibberella fujikuroi (A and F mating populations) share the Fusarium moniliforme anamorph. Twenty strains of each of these biological species were tested for the ability to produce fumonisins B1, B2, and B3 and moniliformin and for toxicity to 1-day-old ducklings. Most of the members of the A mating population (19 of 20 strains) produced more than 60 micrograms of total fumonisins per g, whereas only 3 of 20 members of the F mating population produced more than trace levels of these toxins and none produced more than 40 micrograms of total fumonisins per g. In addition, only 3 of 20 members of the A mating population produced more than 1 microgram of moniliformin per g (and none produced more than 175 micrograms/g), while all 20 strains of the F mating population produced more than 85 micrograms of this toxin per g and 1 strain produced 10,345 micrograms/g. The duckling toxicity profiles of the strains of the two mating populations were similar, however, and the level of either toxin by itself was not strongly correlated with duckling toxicity. On the basis of our data we think that it is likely that the members of both of these mating populations produce additional toxins that have yet to be chemically identified. These toxins may act singly or synergistically with other compounds to induce the observed duckling toxicity. PMID:8919779

  1. AbaA Regulates Conidiogenesis in the Ascomycete Fungus Fusarium graminearum

    PubMed Central

    Son, Hokyoung; Kim, Myung-Gu; Min, Kyunghun; Seo, Young-Su; Lim, Jae Yun; Choi, Gyung Ja; Kim, Jin-Cheol; Chae, Suhn-Kee; Lee, Yin-Won

    2013-01-01

    Fusarium graminearum (teleomorph Gibberella zeae) is a prominent pathogen that infects major cereal crops such as wheat, barley, and maize. Both sexual (ascospores) and asexual (conidia) spores are produced in F. graminearum. Since conidia are responsible for secondary infection in disease development, our objective of the present study was to reveal the molecular mechanisms underlying conidiogenesis in F. graminearum based on the framework previously described in Aspergillus nidulans. In this study, we firstly identified and functionally characterized the ortholog of AbaA, which is involved in differentiation from vegetative hyphae to conidia and known to be absent in F. graminearum. Deletion of abaA did not affect vegetative growth, sexual development, or virulence, but conidium production was completely abolished and thin hyphae grew from abnormally shaped phialides in abaA deletion mutants. Overexpression of abaA resulted in pleiotropic defects such as impaired sexual and asexual development, retarded conidium germination, and reduced trichothecene production. AbaA localized to the nuclei of phialides and terminal cells of mature conidia. Successful interspecies complementation using A. nidulans AbaA and the conserved AbaA-WetA pathway demonstrated that the molecular mechanisms responsible for AbaA activity are conserved in F. graminearum as they are in A. nidulans. Results from RNA-sequencing analysis suggest that AbaA plays a pivotal role in conidiation by regulating cell cycle pathways and other conidiation-related genes. Thus, the conserved roles of the AbaA ortholog in both A. nidulans and F. graminearum give new insight into the genetics of conidiation in filamentous fungi. PMID:24039821

  2. Solid friction between soft filaments

    PubMed Central

    Ward, Andrew; Hilitski, Feodor; Schwenger, Walter; Welch, David; Lau, A.W. C.; Vitelli, Vincenzo; Mahadevan, L.; Dogic, Zvonimir

    2015-01-01

    Any macroscopic deformation of a filamentous bundle is necessarily accompanied by local sliding and/or stretching of the constituent filaments1,2. Yet the nature of the sliding friction between two aligned filaments interacting through multiple contacts remains largely unexplored. Here, by directly measuring the sliding forces between two bundled F-actin filaments, we show that these frictional forces are unexpectedly large, scale logarithmically with sliding velocity as in solid-like friction, and exhibit complex dependence on the filaments’ overlap length. We also show that a reduction of the frictional force by orders of magnitude, associated with a transition from solid-like friction to Stokes’s drag, can be induced by coating F-actin with polymeric brushes. Furthermore, we observe similar transitions in filamentous microtubules and bacterial flagella. Our findings demonstrate how altering a filament’s elasticity, structure and interactions can be used to engineer interfilament friction and thus tune the properties of fibrous composite materials. PMID:25730393

  3. Boolean gates on actin filaments

    NASA Astrophysics Data System (ADS)

    Siccardi, Stefano; Tuszynski, Jack A.; Adamatzky, Andrew

    2016-01-01

    Actin is a globular protein which forms long polar filaments in the eukaryotic cytoskeleton. Actin networks play a key role in cell mechanics and cell motility. They have also been implicated in information transmission and processing, memory and learning in neuronal cells. The actin filaments have been shown to support propagation of voltage pulses. Here we apply a coupled nonlinear transmission line model of actin filaments to study interactions between voltage pulses. To represent digital information we assign a logical TRUTH value to the presence of a voltage pulse in a given location of the actin filament, and FALSE to the pulse's absence, so that information flows along the filament with pulse transmission. When two pulses, representing Boolean values of input variables, interact, then they can facilitate or inhibit further propagation of each other. We explore this phenomenon to construct Boolean logical gates and a one-bit half-adder with interacting voltage pulses. We discuss implications of these findings on cellular process and technological applications.

  4. Droplets engulfing on a filament

    NASA Astrophysics Data System (ADS)

    Wu, Xiang-Fa; Yu, Meng; Zhou, Zhengping; Bedarkar, Amol; Zhao, Youhao

    2014-03-01

    Two immiscible droplets wetting on a filament may assume engulfing, partial-engulfing, or non-engulfing morphology that depends on the wetting behavior and geometries of the resulting droplet-on-filament system. This paper studies the wetting behavior of two immiscible droplets contacting and sitting symmetrically on a straight filament. A set of ordinary differential equations (ODEs) is formulated for determining the wetting morphology of the droplet-on-filament system. In the limiting case of engulfing or non-engulfing, the morphology of the droplet-on-filament system is determined in explicit form. In the case of partial-engulfing, surface finite element method is further employed for determining the wetting morphology, surface energy, and internal pressures of droplets of the system. Numerical scaling study is performed to explore their dependencies upon the wetting properties and geometries of the system. The study can be applicable for analysis and design of textiles with tailorable wetting properties and development of novel multifunctional fibrous materials for environmental protection such as oil-spill sorption, etc.

  5. Buckling of Branched Cytoskeletal Filaments

    NASA Astrophysics Data System (ADS)

    Quint, D. A.; Schwarz, J. M.

    2011-03-01

    In vitro experiments of growing dendritic actin networks demonstrate reversible stress-softening at high loads, above some critical load. The transition to the stress-softening regime has been attributed to the elastic buckling of individual actin filaments. To estimate the critical load above which softening should occur, we extend the elastic theory of buckling of individual filaments embedded in a network to include the buckling of branched filaments, a signature trait of growing dendritic actin networks. Under certain assumptions, there will be approximately a seven-fold increase in the classical critical bucking load, when compared to the unbranched filament, which is entirely due to the presence of a branch. Moreover, we go beyond the classical buckling regime to investigate the effect of entropic fluctuations. The result of compressing the filament in this case leads to an increase in these fluctuations and eventually the harmonic approximation breaks down signifying the onset of the buckling transition. We compute corrections to the classical critical buckling load near this breakdown.

  6. Diverse Nitrogen Sources in Seminal Fluid Act in Synergy To Induce Filamentous Growth of Candida albicans

    PubMed Central

    Alvarez, Francisco J.; Ryman, Kicki; Hooijmaijers, Cornelis; Bulone, Vincent

    2015-01-01

    The pathogenic fungus Candida albicans is the leading cause of vulvovaginal candidiasis (VVC). VVC represents a major quality-of-life issue for women during their reproductive years, a stage of life where the vaginal epithelium is subject to periodic hormonally induced changes associated with menstruation and concomitant exposure to serum as well as potential intermittent contact with seminal fluid. Seminal fluid potently triggers Candida albicans to switch from yeastlike to filamentous modes of growth, a developmental response tightly linked to virulence. Conversely, vaginal fluid inhibits filamentation. Here, we used artificial formulations of seminal and vaginal fluids that faithfully mimic genuine fluids to assess the contribution of individual components within these fluids to filamentation. The high levels of albumin, amino acids, and N-acetylglucosamine in seminal fluid act synergistically as potent inducers of filamentous growth, even at atmospheric levels of CO2 and reduced temperatures (30°C). Using a simplified in vitro model that mimics the natural introduction of seminal fluid into the vulvovaginal environment, a pulse of artificial seminal fluid (ASF) was found to exert an enduring potential to overcome the inhibitory efficacy of artificial vaginal fluid (AVF) on filamentation. These findings suggest that a transient but substantial change in the nutrient levels within the vulvovaginal environment during unprotected coitus can induce resident C. albicans cells to engage developmental programs associated with virulent growth. PMID:25662979

  7. Methods for transforming and expression screening of filamentous fungal cells with a DNA library

    SciTech Connect

    Teter, Sarah; Lamsa, Michael; Cherry, Joel; Ward, Connie

    2015-06-02

    The present invention relates to methods for expression screening of filamentous fungal transformants, comprising: (a) isolating single colony transformants of a DNA library introduced into E. coli; (b) preparing DNA from each of the single colony E. coli transformants; (c) introducing a sample of each of the DNA preparations of step (b) into separate suspensions of protoplasts of a filamentous fungus to obtain transformants thereof, wherein each transformant contains one or more copies of an individual polynucleotide from the DNA library; (d) growing the individual filamentous fungal transformants of step (c) on selective growth medium, thereby permitting growth of the filamentous fungal transformants, while suppressing growth of untransformed filamentous fungi; and (e) measuring activity or a property of each polypeptide encoded by the individual polynucleotides. The present invention also relates to isolated polynucleotides encoding polypeptides of interest obtained by such methods, to nucleic acid constructs, expression vectors, and recombinant host cells comprising the isolated polynucleotides, and to methods of producing the polypeptides encoded by the isolated polynucleotides.

  8. Cloning and Characterization of Filamentous Fungal S-Nitrosoglutathione Reductase from Aspergillus nidulans.

    PubMed

    Zhou, Yao; Zhou, Shengmin; Yu, Haijun; Li, Jingyi; Xia, Yang; Li, Baoyi; Wang, Xiaoli; Wang, Ping

    2016-05-28

    S-Nitrosoglutathione reductase (GSNOR) metabolizes S-nitrosoglutathione (GSNO) and has been shown to play important roles in regulating cellular signaling and formulating host defense by modulating intracellular nitric oxide levels. The enzyme has been found in bacterial, yeast, mushroom, plant, and mammalian cells. However, to date, there is still no evidence of its occurrence in filamentous fungi. In this study, we cloned and investigated a GSNOR-like enzyme from the filamentous fungus Aspergillus nidulans. The enzyme occurred in native form as a homodimer and exhibited low thermal stability. GSNO was an ideal substrate for the enzyme. The apparent Km and kcat values were 0.55 mM and 34,100 min(-1), respectively. Substrate binding sites and catalytic center amino acid residues based on those from known GSNORs were conserved in this enzyme, and the corresponding roles were verified using site-directed mutagenesis. Therefore, we demonstrated the presence of GSNOR in a filamentous fungus for the first time. PMID:26869606

  9. Graphite filament wound pressure vessels

    NASA Technical Reports Server (NTRS)

    Feldman, A.; Damico, J. J.

    1972-01-01

    Filament wound NOL rings, 4-inch and 8-inch diameter closed-end vessels involving three epoxy resin systems and three graphite fibers were tested to develop property data and fabrication technology for filament wound graphite/epoxy pressure vessels. Vessels were subjected to single-cycle burst tests at room temperature. Manufacturing parameters were established for tooling, winding, and curing that resulted in the development of a pressure/vessel performance factor (pressure x volume/weight) or more than 900,000 in. for an oblate spheroid specimen.

  10. Coiling of a viscous filament

    NASA Astrophysics Data System (ADS)

    Samuel, A. D. T.; Ryu, W. S.; Mahadevan, L.

    1997-11-01

    A classic demonstration of fluid buckling is a daily occurence at the breakfast table, where a continuous stream of viscous fluid (honey) is often poured onto a flat surface (toast) from a sufficient height. The thin fluid filament quickly settles into a steady state; near the surface it bends into a helical shape while simultaneously rotating about the vertical and is laid out in a regular coil. This behavior is reminiscent of the coiling of a falling flexible rope. We derive a simple scaling law that predicts the coiling frequency in terms of the filament radius and the flow rate. We also verify this scaling law with the results of experiments.

  11. Nonequilibrium transport in superconducting filaments

    NASA Technical Reports Server (NTRS)

    Arutyunov, K. YU.; Danilova, N. P.; Nikolaeva, A. A.

    1995-01-01

    The step-like current-voltage characteristics of highly homogeneous single-crystalline tin and indium thin filaments has been measured. The length of the samples L approximately 1 cm was much greater than the nonequilibrium quasiparticle relaxation length Lambda. It was found that the activation of a successive i-th voltage step occurs at current significantly greater than the one derived with the assumption that the phase slip centers are weakly interacting on a scale L much greater than Lambda. The observation of 'subharmonic' fine structure on the voltage-current characteristics of tin filaments confirms the hypothesis of the long-range phase slip centers interaction.

  12. [Cutaneous mold fungus granuloma from Ulocladium chartarum].

    PubMed

    Altmeyer, P; Schon, K

    1981-01-01

    Cutaneous granulomas due to the mold fungus Ulocladium chartarum (Preuss) are described in a 58 year old woman. This fungus is usually harmless for mammalian. It is thought that a consisting immunosuppression (Brill-Symmer's disease, therapy with corticosteroids) was a priming condition for the infection. The route of infection in this patient described is unknown. PMID:7194869

  13. Role of Intermediate Filaments in Vesicular Traffic

    PubMed Central

    Margiotta, Azzurra; Bucci, Cecilia

    2016-01-01

    Intermediate filaments are an important component of the cellular cytoskeleton. The first established role attributed to intermediate filaments was the mechanical support to cells. However, it is now clear that intermediate filaments have many different roles affecting a variety of other biological functions, such as the organization of microtubules and microfilaments, the regulation of nuclear structure and activity, the control of cell cycle and the regulation of signal transduction pathways. Furthermore, a number of intermediate filament proteins have been involved in the acquisition of tumorigenic properties. Over the last years, a strong involvement of intermediate filament proteins in the regulation of several aspects of intracellular trafficking has strongly emerged. Here, we review the functions of intermediate filaments proteins focusing mainly on the recent knowledge gained from the discovery that intermediate filaments associate with key proteins of the vesicular membrane transport machinery. In particular, we analyze the current understanding of the contribution of intermediate filaments to the endocytic pathway. PMID:27120621

  14. Role of Intermediate Filaments in Vesicular Traffic.

    PubMed

    Margiotta, Azzurra; Bucci, Cecilia

    2016-01-01

    Intermediate filaments are an important component of the cellular cytoskeleton. The first established role attributed to intermediate filaments was the mechanical support to cells. However, it is now clear that intermediate filaments have many different roles affecting a variety of other biological functions, such as the organization of microtubules and microfilaments, the regulation of nuclear structure and activity, the control of cell cycle and the regulation of signal transduction pathways. Furthermore, a number of intermediate filament proteins have been involved in the acquisition of tumorigenic properties. Over the last years, a strong involvement of intermediate filament proteins in the regulation of several aspects of intracellular trafficking has strongly emerged. Here, we review the functions of intermediate filaments proteins focusing mainly on the recent knowledge gained from the discovery that intermediate filaments associate with key proteins of the vesicular membrane transport machinery. In particular, we analyze the current understanding of the contribution of intermediate filaments to the endocytic pathway. PMID:27120621

  15. SDO Sees a Dark Filament Circle

    NASA Video Gallery

    A dark, almost circular filament broke away from the sun in a gauzy, feathery swirl, on Nov. 15, 2015, in this video from NASA’s Solar Dynamics Observatory. This filament eruption was followed by a...

  16. SDO Watches Giant Filament on the Sun

    NASA Video Gallery

    A snaking, extended filament of solar material currently lies on the front of the sun-- some 1 million miles across from end to end. Filaments are clouds of solar material suspended above the sun b...

  17. METHOD OF MAKING TUNGSTEN FILAMENTS

    DOEpatents

    Frazer, J.W.

    1962-12-18

    A method of making tungsten filaments is described in which the tungsten is completely free of isotope impurities in the range of masses 234 to 245 for use in mass spectrometers. The filament comprises a tantalum core generally less than 1 mil in diameter having a coating of potassium-free tantalum-diffused tungsten molecularly bonded thereto. In the preferred process of manufacture a short, thin tantalum filament is first mounted between terminal posts mounted in insulated relation through a backing plate. The tungsten is most conveniently vapor plated onto the tantalum by a tungsten carbonyl vapor decomposition method having a critical step because of the tendency of the tantalum to volatilize at the temperature of operntion of the filament. The preferred recipe comprises volatilizing tantalum by resistance henting until the current drops by about 40%, cutting the voltage back to build up the tungsten, and then gradually building the temperature back up to balance the rate of tungsten deposition with the rate of tantalum volatilization. (AEC)

  18. Deletions in the Gibberellin Biosynthesis Gene Cluster of Gibberella fujikuroi by Restriction Enzyme-Mediated Integration and Conventional Transformation-Mediated Mutagenesis

    PubMed Central

    Linnemannstöns, Pia; Voß, Thorsten; Hedden, Peter; Gaskin, Paul; Tudzynski, Bettina

    1999-01-01

    We induced mutants of Gibberella fujikuroi deficient in gibberellin (GA) biosynthesis by transformation-mediated mutagenesis with the vector pAN7-1. We recovered 24 GA-defective mutants in one of nine transformation experiments performed without the addition of a restriction enzyme. Each mutant had a similar Southern blot pattern, suggesting the integration of the vector into the same site. The addition of a restriction enzyme by restriction enzyme-mediated integration (REMI) significantly increased the transformation rate and the rate of single-copy integration events. Of 1,600 REMI transformants, two produced no GAs. Both mutants had multiple copies of the vector pAN7-1 and one had a Southern blot pattern similar to those of the 24 conventionally transformed GA-deficient mutants. Biochemical analysis of the two REMI mutants confirmed that they cannot produce ent-kaurene, the first specific intermediate of the GA pathway. Feeding the radioactively labelled precursors ent-kaurene and GA12-aldehyde followed by high-performance liquid chromatography and gas chromatography-mass spectrometry analysis showed that neither of these intermediates was converted to GAs in the mutants. Southern blot analysis and pulsed-field gel electrophoresis of the transformants using the bifunctional ent-copalyl diphosphate/ent-kaurene synthase gene (cps/ks) and the flanking regions as probes revealed a large deletion in the GA-deficient REMI transformants and in the GA-deficient transformants obtained by conventional insertional transformation. We conclude that transformation procedures with and without the addition of restriction enzymes can lead to insertion-mediated mutations and to deletions and chromosome translocations. PMID:10347043

  19. Programmed cell cycle arrest is required for infection of corn plants by the fungus Ustilago maydis.

    PubMed

    Castanheira, Sónia; Mielnichuk, Natalia; Pérez-Martín, José

    2014-12-01

    Ustilago maydis is a plant pathogen that requires a specific structure called infective filament to penetrate the plant tissue. Although able to grow, this filament is cell cycle arrested on the plant surface. This cell cycle arrest is released once the filament penetrates the plant tissue. The reasons and mechanisms for this cell cycle arrest are unknown. Here, we have tried to address these questions. We reached three conclusions from our studies. First, the observed cell cycle arrest is the result of the cooperation of at least two distinct mechanisms: one involving the activation of the DNA damage response (DDR) cascade; and the other relying on the transcriptional downregulation of Hsl1, a kinase that modulates the G2/M transition. Second, a sustained cell cycle arrest during the infective filament step is necessary for the virulence in U. maydis, as a strain unable to arrest the cell cycle was severely impaired in its ability to infect corn plants. Third, production of the appressorium, a structure required for plant penetration, is incompatible with an active cell cycle. The inability to infect plants by strains defective in cell cycle arrest seems to be caused by their failure to induce the appressorium formation process. In summary, our findings uncover genetic circuits to arrest the cell cycle during the growth of this fungus on the plant surface, thus allowing the penetration into plant tissue. PMID:25411209

  20. Diamond film by hot filament CVD method

    NASA Technical Reports Server (NTRS)

    Hirose, Y.

    1988-01-01

    Diamond synthesis by the hot filament CVD method is discussed. A hot filament decomposes gas mixtures and oxygen containing organic compounds such as alcohols. which are carbon sources. The resulting thin films, growth mechanisms, and characteristics and problems associated with the hot filament CVD method are analyzed and evaluated.

  1. Single turnovers of fluorescent ATP bound to bipolar myosin filament during actin filaments sliding

    PubMed Central

    Maruta, Takahiro; Kobatake, Takahiro; Okubo, Hiroyuki; Chaen, Shigeru

    2013-01-01

    The nucleotide turnover rates of bipolar myosin thick filament along which actin filament slides were measured by the displacement of prebound fluorescent ATP analog 2′(3′)-O-[N-[2-[(Cy3)]amindo]ethyl] carbamoyl]-adenosine 5′ triphosphate (Cy3-EDA-ATP) upon flash photolysis of caged ATP. The fluorescence of the thick filament where actin filament slides decayed with two exponential processes. The slower rate constant was the same as that without actin filament. Along bipolar myosin thick filament, actin filaments slide at a fast speed towards the central bare zone (forward), but more slowly away from the bare zone (backward). The displacement rate constant of fluorescent ATP from the myosin filament where actin filament moved forward was 5.0 s−1, whereas the rate constant where the actin filament slid backward was 1.7 s−1. These findings suggest that the slow ADP release rate is responsible for the slow backward sliding movement.

  2. Galaxy pairs align with Galactic filaments

    NASA Astrophysics Data System (ADS)

    Tempel, E.; Tamm, A.

    2015-04-01

    Context. Gravitational collapse theory and numerical simulations suggest that the velocity field within large-scale galaxy filaments is dominated by motions along the filaments. Aims: Our aim is to check whether observational data reveal any preferred orientation of galaxy pairs with respect to the underlying filaments as a result of the expectedly anisotropic velocity field. Methods: We use galaxy pairs and galaxy filaments identified from Sloan Digital Sky Survey data. For filament extraction, we use the Bisous model that is based on the marked point process technique. During the filament detection, we use the centre point of each pair instead of the positions of galaxies to avoid a built-in influence of pair orientation on the filament construction. For pairs lying within filaments (3012 cases), we calculate the angle between the line connecting the galaxies of each pair and their host filaments. To avoid redshift-space distortions, the angle is measured in the plane of the sky. Results: The alignment analysis shows that the orientation of galaxy pairs correlates strongly with their host filaments. The alignment signal is stronger for loose pairs, with at least 25% excess of aligned pairs compared to a random distribution. The alignment of galaxy pairs and filaments measured from the observational data is in good agreement with the alignment in the Millennium simulation and thus provides support to the ΛCDM formalism.

  3. Microwave processing of ceramic oxide filaments

    SciTech Connect

    Vogt, G.J.; Katz, J.D.

    1995-05-01

    The objective of the microwave filament processing project is to develop microwave techniques at 2.45 GHZ to manufacture continuous ceramic oxide filaments. Microwave processing uses the volumetric absorption of microwave power in oxide filament tows to drive off process solvents, to burn out organic binders, and to sinter the dried fibers to produce flexible, high-strength ceramic filaments. The technical goal is to advance filament processing technology by microwave heating more rapidly with less energy and at a lower cost than conventional processing, but with the same quality as conventional processing. The manufacturing goal is to collaborate with the 3M Company, a US manufacturer of ceramic oxide filaments, to evaluate the technology using a prototype filament system and to transfer the microwave technology to the 3M Company.

  4. The stability of viscous liquid filaments

    NASA Astrophysics Data System (ADS)

    Driessen, Theo; Jeurissen, Roger; Wijshoff, Herman; Lohse, Detlef

    2012-11-01

    The stability of liquid filaments is relevant both in industrial applications, such as inkjet printing and atomization, and in nature, where the stability of filaments has a large influence on the final drop size distribution of rain droplets and waterfalls. The liquid filament may either stably collapse into a single droplet, or break up into multiple droplets. Which scenario is realized depends on the viscosity and the aspect ratio of the filament. Here we study the collapse of an axisymmetric liquid filament is analytically and with a numerical model. We find that a long, high viscous filament can only break up due to the Rayleigh-Plateau instability, whereas a low viscous filament can break up due to end-pinching. The theory shows quantitative agreement with recent experimental findings by Castréjon-Pita et al., PRL 108, 074506 (2012).

  5. Partial Slingshot Reconnection between Two Filaments

    NASA Astrophysics Data System (ADS)

    Jiang, Yunchun; Hong, Junchao; Yang, Jiayan; Bi, Yi; Zheng, Ruisheng; Yang, Bo; Li, Haidong; Yang, Dan

    2013-02-01

    We present a rare observation of an interaction between two filaments around AR 11358 and AR 11361 on 2011 December 3 that is strongly suggestive of the occurrence of slingshot reconnection. A small elbow-shaped active-region filament (F12) underwent a failed eruption that brought it into contact with a nearby larger, thicker filament (F34). Accompanied by the appearance of complicated internal structures below the erupting F12, its two legs separated away from each other and then connected into F34. This process led the filaments to change their connectivity to form two newly linked filaments, and one of them showed a clear inverse γ-shape. However, the alteration in the filament connectivity was imperfect since F34 is discernible after the eruption. These observations can be interpreted as a partial slingshot reconnection between two filaments that had unequal axial magnetic flux.

  6. PARTIAL SLINGSHOT RECONNECTION BETWEEN TWO FILAMENTS

    SciTech Connect

    Jiang, Yunchun; Hong, Junchao; Yang, Jiayan; Bi, Yi; Zheng, Ruisheng; Yang, Bo; Li, Haidong; Yang, Dan

    2013-02-10

    We present a rare observation of an interaction between two filaments around AR 11358 and AR 11361 on 2011 December 3 that is strongly suggestive of the occurrence of slingshot reconnection. A small elbow-shaped active-region filament (F12) underwent a failed eruption that brought it into contact with a nearby larger, thicker filament (F34). Accompanied by the appearance of complicated internal structures below the erupting F12, its two legs separated away from each other and then connected into F34. This process led the filaments to change their connectivity to form two newly linked filaments, and one of them showed a clear inverse {gamma}-shape. However, the alteration in the filament connectivity was imperfect since F34 is discernible after the eruption. These observations can be interpreted as a partial slingshot reconnection between two filaments that had unequal axial magnetic flux.

  7. Human granulocyte colony stimulating factor (G-CSF) produced in the filamentous fungus Aspergillus niger.

    PubMed

    Kraševec, Nada; Milunović, Tatjana; Lasnik, Marija Anžur; Lukančič, Irena; Komel, Radovan; Porekar, Vladka Gaberc

    2014-01-01

    For the first time, a fungal production system is described for expression and secretion of the medically important human protein G-CSF, in Aspergillus niger. A reliable strategy was chosen with in-frame fusion of G-CSF behind a KEX2 cleavage site downstream of the coding region of the highly secreted homologous glucoamylase. This provided secretion levels of 5-10 mg/l culture medium of correctly processed G-CSF, although the majority of the protein (>90%) was biologically inactive. Following denaturation/ concentration and chromatographic separation/ renaturation, the G-CSF proliferation activity increased considerably, and analytical immobilised metal affinity chromatography confirmed the monomeric and correctly folded protein. These data suggest that this human secretory protein secreted into the medium of A. niger was not correctly folded, and that it escaped the endoplasmic reticulum folding control systems. This is compared to the folding of G-CSF produced in bacteria and yeast. PMID:25551710

  8. Structural features of sugars that trigger or support conidial germination in the filamentous fungus Aspergillus niger.

    PubMed

    Hayer, Kimran; Stratford, Malcolm; Archer, David B

    2013-11-01

    The asexual spores (conidia) of Aspergillus niger germinate to produce hyphae under appropriate conditions. Germination is initiated by conidial swelling and mobilization of internal carbon and energy stores, followed by polarization and emergence of a hyphal germ tube. The effects of different pyranose sugars, all analogues of d-glucose, on the germination of A. niger conidia were explored, and we define germination as the transition from a dormant conidium into a germling. Within germination, we distinguish two distinct stages, the initial swelling of the conidium and subsequent polarized growth. The stage of conidial swelling requires a germination trigger, which we define as a compound that is sensed by the conidium and which leads to catabolism of d-trehalose and isotropic growth. Sugars that triggered germination and outgrowth included d-glucose, d-mannose, and d-xylose. Sugars that triggered germination but did not support subsequent outgrowth included d-tagatose, d-lyxose, and 2-deoxy-d-glucose. Nontriggering sugars included d-galactose, l-glucose, and d-arabinose. Certain nontriggering sugars, including d-galactose, supported outgrowth if added in the presence of a complementary triggering sugar. This division of functions indicates that sugars are involved in two separate events in germination, triggering and subsequent outgrowth, and the structural features of sugars that support each, both, or none of these events are discussed. We also present data on the uptake of sugars during the germination process and discuss possible mechanisms of triggering in the absence of apparent sugar uptake during the initial swelling of conidia. PMID:23995938

  9. An aspartic proteinase gene family in the filamentous fungus Botrytis cinerea contains members with novel features.

    PubMed

    ten Have, Arjen; Dekkers, Ester; Kay, John; Phylip, Lowri H; van Kan, Jan A L

    2004-07-01

    Botrytis cinerea, an important fungal plant pathogen, secretes aspartic proteinase (AP) activity in axenic cultures. No cysteine, serine or metalloproteinase activity could be detected. Proteinase activity was higher in culture medium containing BSA or wheat germ extract, as compared to minimal medium. A proportion of the enzyme activity remained in the extracellular glucan sheath. AP was also the only type of proteinase activity in fluid obtained from B. cinerea-infected tissue of apple, pepper, tomato and zucchini. Five B. cinerea genes encoding an AP were cloned and denoted Bcap1-5. Features of the encoded proteins are discussed. BcAP1, especially, has novel characteristics. A phylogenetic analysis was performed comprising sequences originating from different kingdoms. BcAP1 and BcAP5 did not cluster in a bootstrap-supported clade. BcAP2 clusters with vacuolar APs. BcAP3 and BcAP4 cluster with secreted APs in a clade that also contains glycosylphosphatidylinositol-anchored proteinases from Saccharomyces cerevisiae and Candida albicans. All five Bcap genes are expressed in liquid cultures. Transcript levels of Bcap1, Bcap2, Bcap3 and Bcap4 are subject to glucose and peptone repression. Transcripts from all five Bcap genes were detected in infected plant tissue, indicating that at least part of the AP activity in planta originates from the pathogen. PMID:15256589

  10. Enhanced Production of Bovine Chymosin by Autophagy Deficiency in the Filamentous Fungus Aspergillus oryzae

    PubMed Central

    Maruyama, Jun-ichi; Kitamoto, Katsuhiko

    2013-01-01

    Aspergillus oryzae has been utilized as a host for heterologous protein production because of its high protein secretory capacity and food-safety properties. However, A. oryzae often produces lower-than-expected yields of target heterologous proteins due to various underlying mechanisms, including degradation processes such as autophagy, which may be a significant bottleneck for protein production. In the present study, we examined the production of heterologous protein in several autophagy (Aoatg) gene disruptants of A. oryzae. We transformed A. oryzae gene disruptants of Aoatg1, Aoatg13, Aoatg4, Aoatg8, or Aoatg15, with a bovine chymosin (CHY) expression construct and found that the production levels of CHY increased up to three fold compared to the control strain. Notably, however, conidia formation by the Aoatg gene disruptants was significantly reduced. As large amounts of conidia are necessary for inoculating large-scale cultures, we also constructed Aoatg gene-conditional expression strains in which the promoter region of the Aoatg gene was replaced with the thiamine-controllable thiA promoter. Conidiation by the resultant transformants was clearly enhanced in the absence of thiamine, while autophagy remained repressed in the presence of thiamine. Moreover, these transformants displayed increased CHY productivity, which was comparable to that of the Aoatg gene disruptants. Consequently, we succeeded in the construction of A. oryzae strains capable of producing high levels of CHY due to defects in autophagy. Our finding suggests that the conditional regulation of autophagy is an effective method for increasing heterologous protein production in A. oryzae. PMID:23658635

  11. Mycosphaerella graminicola sequencing heads towards the first finished genome of a filamentous plant pathogenic fungus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mycosphaerella is one of the largest genera of plant pathogenic fungi with more than 1,000 named species, a few of which cause disease in humans and other vertebrates. The genomes of M. graminicola and M. fijiensis, two of the most economically important pathogens of wheat and banana, respectively, ...

  12. Filamentation as primitive growth mode?

    PubMed

    Bigan, Erwan; Steyaert, Jean-Marc; Douady, Stéphane

    2015-12-01

    Osmotic pressure influences cellular shape. In a growing cell, chemical reactions and dilution induce changes in osmolarity, which in turn influence the cellular shape. Using a protocell model relying upon random conservative chemical reaction networks with arbitrary stoichiometry, we find that when the membrane is so flexible that its shape adjusts itself quasi-instantaneously to balance the osmotic pressure, the protocell either grows filamentous or fails to grow. This behavior is consistent with a mathematical proof. This suggests that filamentation may be a primitive growth mode resulting from the simple physical property of balanced osmotic pressure. We also find that growth is favored if some chemical species are only present inside the protocell, but not in the outside growth medium. Such an insulation requires specific chemical schemes. Modern evolved cells such as E. coli meet these requirements through active transport mechanisms such as the phosphotransferase system. PMID:26718101

  13. Filamentation as primitive growth mode?

    NASA Astrophysics Data System (ADS)

    Bigan, Erwan; Steyaert, Jean-Marc; Douady, Stéphane

    2015-12-01

    Osmotic pressure influences cellular shape. In a growing cell, chemical reactions and dilution induce changes in osmolarity, which in turn influence the cellular shape. Using a protocell model relying upon random conservative chemical reaction networks with arbitrary stoichiometry, we find that when the membrane is so flexible that its shape adjusts itself quasi-instantaneously to balance the osmotic pressure, the protocell either grows filamentous or fails to grow. This behavior is consistent with a mathematical proof. This suggests that filamentation may be a primitive growth mode resulting from the simple physical property of balanced osmotic pressure. We also find that growth is favored if some chemical species are only present inside the protocell, but not in the outside growth medium. Such an insulation requires specific chemical schemes. Modern evolved cells such as E. coli meet these requirements through active transport mechanisms such as the phosphotransferase system.

  14. Intermediate Filaments in Caenorhabditis elegans.

    PubMed

    Zuela, Noam; Gruenbaum, Yosef

    2016-01-01

    More than 70 different genes in humans and 12 different genes in Caenorhabditis elegans encode the superfamily of intermediate filament (IF) proteins. In C. elegans, similar to humans, these proteins are expressed in a cell- and tissue-specific manner, can assemble into heteropolymers and into 5-10nm wide filaments that account for the principal structural elements at the nuclear periphery, nucleoplasm, and cytoplasm. At least 5 of the 11 cytoplasmic IFs, as well as the nuclear IF, lamin, are essential. In this chapter, we will include a short review of our current knowledge of both cytoplasmic and nuclear IFs in C. elegans and will describe techniques used for their analyses. PMID:26795488

  15. A nutrient-regulated, dual localization phospholipase A2 in the symbiotic fungus Tuber borchii

    PubMed Central

    Soragni, Elisabetta; Bolchi, Angelo; Balestrini, Raffaella; Gambaretto, Claudio; Percudani, Riccardo; Bonfante, Paola; Ottonello, Simone

    2001-01-01

    Important morphogenetic transitions in fungi are triggered by starvation-induced changes in the expression of structural surface proteins. Here, we report that nutrient deprivation causes a strong and reversible up-regulation of TbSP1, a surface-associated, Ca2+-dependent phospholipase from the mycorrhizal fungus Tuber borchii. TbSP1 is the first phospholipase A2 to be described in fungi and identifies a novel class of phospholipid-hydrolyzing enzymes. The TbSP1 phospholipase, which is synthesized initially as a pre-protein, is processed efficiently and secreted during the mycelial phase. The mature protein, however, also localizes to the inner cell wall layer, close to the plasma membrane, in both free-living and symbiosis-engaged hyphae. It thus appears that a dual localization phospholipase A2 is involved in the adaptation of a symbiotic fungus to conditions of persistent nutritional limitation. Moreover, the fact that TbSP1-related sequences are present in Streptomyces and Neurospora, and not in wholly sequenced non-filamentous microorganisms, points to a general role for TbSP1 phospholipases A2 in the organization of multicellular filamentous structures in bacteria and fungi. PMID:11566873

  16. Metabolites from Aspergillus fumigatus, an endophytic fungus associated with Melia azedarach, and their antifungal, antifeedant, and toxic activities.

    PubMed

    Li, Xiao-Jun; Zhang, Qiang; Zhang, An-Ling; Gao, Jin-Ming

    2012-04-01

    Thirty-nine fungal metabolites 1-39, including two new alkaloids, 12β-hydroxy-13α-methoxyverruculogen TR-2 (6) and 3-hydroxyfumiquinazoline A (16), were isolated from the fermentation broth of Aspergillus fumigatus LN-4, an endophytic fungus isolated from the stem bark of Melia azedarach. Their structures were elucidated on the basis of detailed spectroscopic analysis (mass spectrometry and one- and two-dimensional NMR experiments) and by comparison of their NMR data with those reported in the literature. These isolated compounds were evaluated for in vitro antifungal activities against some phytopathogenic fungi, toxicity against brine shrimps, and antifeedant activities against armyworm larvae (Mythimna separata Walker). Among them, sixteen compounds showed potent antifungal activities against phytopathogenic fungi (Botrytis cinerea, Alternaria solani, Alternaria alternata, Colletotrichum gloeosporioides, Fusarium solani, Fusarium oxysporum f. sp. niveum, Fusarium oxysporum f. sp. vasinfectum, and Gibberella saubinettii), and four of them, 12β-hydroxy-13α-methoxyverruculogen TR-2 (6), fumitremorgin B (7), verruculogen (8), and helvolic acid (39), exhibited antifungal activities with MIC values of 6.25-50 μg/mL, which were comparable to the two positive controls carbendazim and hymexazol. In addition, of eighteen that exerted moderate lethality toward brine shrimps, compounds 7 and 8 both showed significant toxicities with median lethal concentration (LC(50)) values of 13.6 and 15.8 μg/mL, respectively. Furthermore, among nine metabolites that were found to possess antifeedant activity against armyworm larvae, compounds 7 and 8 gave the best activity with antifeedant indexes (AFI) of 50.0% and 55.0%, respectively. Structure-activity relationships of the metabolites were also discussed. PMID:22409377

  17. Filament wound rocket motor chambers

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The design, analysis, fabrication and testing of a Kevlar-49/HBRF-55A filament wound chamber is reported. The chamber was fabricated and successfully tested to 80% of the design burst pressure. Results of the data reduction and analysis from the hydrotest indicate that the chamber design and fabrication techniques used for the chamber were adequate and the chamber should perform adequately in a static test.

  18. Mechanics of vimentin intermediate filaments

    NASA Technical Reports Server (NTRS)

    Wang, Ning; Stamenovic, Dimitrijie

    2002-01-01

    It is increasingly evident that the cytoskeleton of living cells plays important roles in mechanical and biological functions of the cells. Here we focus on the contribution of intermediate filaments (IFs) to the mechanical behaviors of living cells. Vimentin, a major structural component of IFs in many cell types, is shown to play an important role in vital mechanical and biological functions such as cell contractility, migration, stiffness, stiffening, and proliferation.

  19. Lighting the universe with filaments.

    PubMed

    Gao, Liang; Theuns, Tom

    2007-09-14

    The first stars in the universe form when chemically pristine gas heats as it falls into dark-matter potential wells, cools radiatively because of the formation of molecular hydrogen, and becomes self-gravitating. Using supercomputer simulations, we demonstrated that the stars' properties depend critically on the currently unknown nature of the dark matter. If the dark-matter particles have intrinsic velocities that wipe out small-scale structure, then the first stars form in filaments with lengths on the order of the free-streaming scale, which can be approximately 10(20) meters (approximately 3 kiloparsecs, corresponding to a baryonic mass of approximately 10(7) solar masses) for realistic "warm dark matter" candidates. Fragmentation of the filaments forms stars with a range of masses, which may explain the observed peculiar element abundance pattern of extremely metal-poor stars, whereas coalescence of fragments and stars during the filament's ultimate collapse may seed the supermassive black holes that lurk in the centers of most massive galaxies. PMID:17872439

  20. Accumulation and chemical states of radiocesium by fungus Saccharomyces cerevisiae

    NASA Astrophysics Data System (ADS)

    Ohnuki, Toshihiko; Sakamoto, Fuminori; Kozai, Naofumi; Yamasaki, Shinya; Yu, Qianqian

    2014-05-01

    After accident of Fukushima Daiichi Nuclear Power Plant, the fall-out radiocesium was deposited on the ground. Filamentous fungus is known to accumulate radiocesium in environment, even though many minerals are involved in soil. These facts suggest that fungus affect the migration behavior of radiocesium in the environment. However, accumulation mechanism of radiocesium by fungus is not understood. In the present study, accumulation and chemical states change of Cs by unicellular fungus of Saccharomyces cerevisiae have been studied to elucidate the role of microorganisms in the migration of radiocesium in the environment. Two different experimental conditions were employed; one is the accumulation experiments of radiocesium by S. cerevisiae from the agar medium containing 137Cs and a mineral of zeolite, vermiculite, smectite, mica, or illite. The other is the experiments using stable cesium to examine the chemical states change of Cs. In the former experiment, the cells were grown on membrane filter of 0.45 μm installed on the agar medium. After the grown cells were weighed, radioactivity in the cells was measured by an autoradiography technique. The mineral weight contents were changed from 0.1% to 1% of the medium. In the latter experiment, the cells were grown in the medium containing stable Cs between 1 mM and 10mM. The Cs accumulated cells were analyzed by SEM-EDS and EXAFS. The adsorption experiments of cesium by the cells under resting condition were also conducted to test the effect of cells metabolic activity. Without mineral in the medium, cells of S. cerevisiae accumulated 1.5x103 Bq/g from the medium containing 137Cs of 2.6x102 Bq/g. When mineral was added in the medium, concentration of 137Cs in the cells decreased. The concentration of 137Cs in the cells from the medium containing different minerals were in the following order; smectite, illite, mica > vermiculite > zeolite. This order was nearly the same as the inverse of distribution coefficient of

  1. Transposition of the retrotransposon MAGGY in heterologous species of filamentous fungi.

    PubMed Central

    Nakayashiki, H; Kiyotomi, K; Tosa, Y; Mayama, S

    1999-01-01

    MAGGY is a gypsy-like LTR retrotransposon isolated from the blast fungus Pyricularia grisea (teleomorph, Magnaporthe grisea). We examined transposition of MAGGY in three P. grisea isolates (wheat, finger millet, and crabgrass pathogen), which did not originally possess a MAGGY element, and in two heterologous species of filamentous fungi, Colletotrichum lagenarium and P. zingiberi. Genomic Southern analysis of MAGGY transformants suggested that transposition of MAGGY occurred in all filamentous fungi tested. In contrast, no transposition was observed in any transformants with a modified MAGGY containing a 513-bp deletion in the reverse transcriptase domain. When a MAGGY derivative carrying an artificial intron was introduced into the wheat isolate of P. grisea and C. lagenarium, loss of the intron was observed. These results showed that MAGGY can undergo autonomous RNA-mediated transposition in heterologous filamentous fungi. The frequency of transposition differed among fungal species. MAGGY transposed actively in the wheat isolate of P. grisea and P. zingiberi, but transposition in C. lagenarium appeared to be rare. This is the first report that demonstrates active transposition of a fungal transposable element in heterologous hosts. Possible usage of MAGGY as a genetic tagging tool in filamentous fungi is discussed. PMID:10511549

  2. A CRISPR-Cas9 System for Genetic Engineering of Filamentous Fungi

    PubMed Central

    Nødvig, Christina S.; Nielsen, Jakob B.; Kogle, Martin E.; Mortensen, Uffe H.

    2015-01-01

    The number of fully sequenced fungal genomes is rapidly increasing. Since genetic tools are poorly developed for most filamentous fungi, it is currently difficult to employ genetic engineering for understanding the biology of these fungi and to fully exploit them industrially. For that reason there is a demand for developing versatile methods that can be used to genetically manipulate non-model filamentous fungi. To facilitate this, we have developed a CRISPR-Cas9 based system adapted for use in filamentous fungi. The system is simple and versatile, as RNA guided mutagenesis can be achieved by transforming a target fungus with a single plasmid. The system currently contains four CRISPR-Cas9 vectors, which are equipped with commonly used fungal markers allowing for selection in a broad range of fungi. Moreover, we have developed a script that allows identification of protospacers that target gene homologs in multiple species to facilitate introduction of common mutations in different filamentous fungi. With these tools we have performed RNA-guided mutagenesis in six species of which one has not previously been genetically engineered. Moreover, for a wild-type Aspergillus aculeatus strain, we have used our CRISPR Cas9 system to generate a strain that contains an AACU_pyrG marker and demonstrated that the resulting strain can be used for iterative gene targeting. PMID:26177455

  3. Production of Obionin A and Derivatives by the Sooty Blotch Fungus Microcyclospora malicola.

    PubMed

    Surup, Frank; Medjedović, Ajda; Schroers, Hans-Josef; Stadler, Marc

    2015-10-01

    A multitude of sooty blotch and flyspeck fungi, mainly belonging to the Ascomycetes order Capnodiales, causes dark blemishes and flyspeck-like spots on apples worldwide. Different sooty blotch and flyspeck fungi can coexist in the same orchard and even on a single fruit. Our preceding experiments revealed an activity of Microcyclospora malicola strain 1930 against the anthracnose fungus Colletotrichum fioriniae in dual culture assays. Extracts of M. malicola strain 1930 showed a broad bioactivity against filamentous fungus Mucor hiemalis and gram-positive bacterium Bacillus subtilis. A bioactivity-guided isolation led to the identification of obionin A (1) as the main active principle. In addition to 1, which was previously isolated from the marine fungus Leptosphaeria obiones, we isolated three derivatives. Metabolite 2 bears a keto function at C-6, besides the replacement of oxygen by nitrogen at position 10. Two more derivatives are adducts (3, 4) of acetone as work-up artifacts. Because obionin A (1) and its derivative 2 showed cytotoxic effects and antifungal activities, we propose a role of these secondary metabolites in the antagonism between M. malicola and other apple colonizing sooty blotch and flyspeck fungi, other epiphytes, or apple pathogens competing for the same ecological niche. PMID:25856439

  4. Mechanical properties of branched actin filaments

    NASA Astrophysics Data System (ADS)

    Razbin, Mohammadhosein; Falcke, Martin; Benetatos, Panayotis; Zippelius, Annette

    2015-07-01

    Cells moving on a two dimensional substrate generate motion by polymerizing actin filament networks inside a flat membrane protrusion. New filaments are generated by branching off existing ones, giving rise to branched network structures. We investigate the force-extension relation of branched filaments, grafted on an elastic structure at one end and pushing with the free ends against the leading edge cell membrane. Single filaments are modeled as worm-like chains, whose thermal bending fluctuations are restricted by the leading edge cell membrane, resulting in an effective force. Branching can increase the stiffness considerably; however the effect depends on branch point position and filament orientation, being most pronounced for intermediate tilt angles and intermediate branch point positions. We describe filament networks without cross-linkers to focus on the effect of branching. We use randomly positioned branch points, as generated in the process of treadmilling, and orientation distributions as measured in lamellipodia. These networks reproduce both the weak and strong force response of lamellipodia as measured in force-velocity experiments. We compare properties of branched and unbranched networks. The ratio of the network average of the force per branched filament to the average force per unbranched filament depends on the orientation distribution of the filaments. The ratio exhibits compression dependence and may go up to about 4.5 in networks with a narrow orientation distribution. With orientation distributions measured in lamellipodia, it is about two and essentially independent from network compression, graft elasticity and filament persistence length.

  5. Filamentation of Metabolic Enzymes in Saccharomyces cerevisiae.

    PubMed

    Shen, Qing-Ji; Kassim, Hakimi; Huang, Yong; Li, Hui; Zhang, Jing; Li, Guang; Wang, Peng-Ye; Yan, Jun; Ye, Fangfu; Liu, Ji-Long

    2016-06-20

    Compartmentation via filamentation has recently emerged as a novel mechanism for metabolic regulation. In order to identify filament-forming metabolic enzymes systematically, we performed a genome-wide screening of all strains available from an open reading frame-GFP collection in Saccharomyces cerevisiae. We discovered nine novel filament-forming proteins and also confirmed those identified previously. From the 4159 strains, we found 23 proteins, mostly metabolic enzymes, which are capable of forming filaments in vivo. In silico protein-protein interaction analysis suggests that these filament-forming proteins can be clustered into several groups, including translational initiation machinery and glucose and nitrogen metabolic pathways. Using glutamine-utilising enzymes as examples, we found that the culture conditions affect the occurrence and length of the metabolic filaments. Furthermore, we found that two CTP synthases (Ura7p and Ura8p) and two asparagine synthetases (Asn1p and Asn2p) form filaments both in the cytoplasm and in the nucleus. Live imaging analyses suggest that metabolic filaments undergo sub-diffusion. Taken together, our genome-wide screening identifies additional filament-forming proteins in S. cerevisiae and suggests that filamentation of metabolic enzymes is more general than currently appreciated. PMID:27312010

  6. Actin filament curvature biases branching direction

    NASA Astrophysics Data System (ADS)

    Wang, Evan; Risca, Viviana; Chaudhuri, Ovijit; Chia, Jia-Jun; Geissler, Phillip; Fletcher, Daniel

    2012-02-01

    Actin filaments are key components of the cellular machinery, vital for a wide range of processes ranging from cell motility to endocytosis. Actin filaments can branch, and essential in this process is a protein complex known as the Arp2/3 complex, which nucleate new ``daughter'' filaments from pre-existing ``mother'' filaments by attaching itself to the mother filament. Though much progress has been made in understanding the Arp2/3-actin junction, some very interesting questions remain. In particular, F-actin is a dynamic polymer that undergoes a wide range of fluctuations. Prior studies of the Arp2/3-actin junction provides a very static notion of Arp2/3 binding. The question we ask is how differently does the Arp2/3 complex interact with a straight filament compared to a bent filament? In this study, we used Monte Carlo simulations of a surface-tethered worm-like chain to explore possible mechanisms underlying the experimental observation that there exists preferential branch formation by the Arp2/3 complex on the convex face of a curved filament. We show that a fluctuation gating model in which Arp2/3 binding to the actin filament is dependent upon a rare high-local-curvature shape fluctuation of the filament is consistent with the experimental data.

  7. Mechanical properties of branched actin filaments.

    PubMed

    Razbin, Mohammadhosein; Falcke, Martin; Benetatos, Panayotis; Zippelius, Annette

    2015-07-01

    Cells moving on a two dimensional substrate generate motion by polymerizing actin filament networks inside a flat membrane protrusion. New filaments are generated by branching off existing ones, giving rise to branched network structures. We investigate the force-extension relation of branched filaments, grafted on an elastic structure at one end and pushing with the free ends against the leading edge cell membrane. Single filaments are modeled as worm-like chains, whose thermal bending fluctuations are restricted by the leading edge cell membrane, resulting in an effective force. Branching can increase the stiffness considerably; however the effect depends on branch point position and filament orientation, being most pronounced for intermediate tilt angles and intermediate branch point positions. We describe filament networks without cross-linkers to focus on the effect of branching. We use randomly positioned branch points, as generated in the process of treadmilling, and orientation distributions as measured in lamellipodia. These networks reproduce both the weak and strong force response of lamellipodia as measured in force-velocity experiments. We compare properties of branched and unbranched networks. The ratio of the network average of the force per branched filament to the average force per unbranched filament depends on the orientation distribution of the filaments. The ratio exhibits compression dependence and may go up to about 4.5 in networks with a narrow orientation distribution. With orientation distributions measured in lamellipodia, it is about two and essentially independent from network compression, graft elasticity and filament persistence length. PMID:26040560

  8. Averaged implicit hydrodynamic model of semiflexible filaments.

    PubMed

    Chandran, Preethi L; Mofrad, Mohammad R K

    2010-03-01

    We introduce a method to incorporate hydrodynamic interaction in a model of semiflexible filament dynamics. Hydrodynamic screening and other hydrodynamic interaction effects lead to nonuniform drag along even a rigid filament, and cause bending fluctuations in semiflexible filaments, in addition to the nonuniform Brownian forces. We develop our hydrodynamics model from a string-of-beads idealization of filaments, and capture hydrodynamic interaction by Stokes superposition of the solvent flow around beads. However, instead of the commonly used first-order Stokes superposition, we do an equivalent of infinite-order superposition by solving for the true relative velocity or hydrodynamic velocity of the beads implicitly. We also avoid the computational cost of the string-of-beads idealization by assuming a single normal, parallel and angular hydrodynamic velocity over sections of beads, excluding the beads at the filament ends. We do not include the end beads in the averaging and solve for them separately instead, in order to better resolve the drag profiles along the filament. A large part of the hydrodynamic drag is typically concentrated at the filament ends. The averaged implicit hydrodynamics methods can be easily incorporated into a string-of-rods idealization of semiflexible filaments that was developed earlier by the authors. The earlier model was used to solve the Brownian dynamics of semiflexible filaments, but without hydrodynamic interactions incorporated. We validate our current model at each stage of development, and reproduce experimental observations on the mean-squared displacement of fluctuating actin filaments . We also show how hydrodynamic interaction confines a fluctuating actin filament between two stationary lateral filaments. Finally, preliminary examinations suggest that a large part of the observed velocity in the interior segments of a fluctuating filament can be attributed to induced solvent flow or hydrodynamic screening. PMID:20365783

  9. A penny-shaped crack in a filament reinforced matrix. 1: The filament model

    NASA Technical Reports Server (NTRS)

    Erdogan, F.; Pacella, A. H.

    1973-01-01

    The electrostatic problem of a penny-shaped crack in an elastic matrix which reinforced by filaments or fibers perpendicular to the plane of the crack was studied. The elastic filament model was developed for application to evaluation studies of the stress intensity factor along the periphery of the crack, the stresses in the filaments or fibers, and the interface shear between the matrix and the filaments or fibers. The requirements expected of the model are a sufficiently accurate representation of the filament and applicability to the interaction problems involving a cracked elastic continuum with multi-filament reinforcements. The technique for developing the model and numerical examples of it are shown.

  10. Diagnosis of femtosecond plasma filament by channeling microwaves along the filament

    NASA Astrophysics Data System (ADS)

    Alshershby, Mostafa; Ren, Yu; Qin, Jiang; Hao, Zuoqiang; Lin, Jingquan

    2013-05-01

    We introduce a simple, fast, and non-intrusive experimental method to obtain the basic parameters of femtosecond laser-generated plasma filament. The method is based on the channeling of microwaves along both a plasma filament and a well-defined conducting wire. By comparing the detected microwaves that propagate along the plasma filament and a copper wire with known conductivity and spatial dimension, the basic parameters of the plasma filament can be easily obtained. As a result of the possibility of channeling microwave radiation along the plasma filament, we were then able to obtain the plasma density distribution along the filament length.

  11. Diagnosis of femtosecond plasma filament by channeling microwaves along the filament

    SciTech Connect

    Alshershby, Mostafa; Ren, Yu; Qin, Jiang; Hao, Zuoqiang; Lin, Jingquan

    2013-05-20

    We introduce a simple, fast, and non-intrusive experimental method to obtain the basic parameters of femtosecond laser-generated plasma filament. The method is based on the channeling of microwaves along both a plasma filament and a well-defined conducting wire. By comparing the detected microwaves that propagate along the plasma filament and a copper wire with known conductivity and spatial dimension, the basic parameters of the plasma filament can be easily obtained. As a result of the possibility of channeling microwave radiation along the plasma filament, we were then able to obtain the plasma density distribution along the filament length.

  12. Direct electrochemistry of nitrate reductase from the fungus Neurospora crassa.

    PubMed

    Kalimuthu, Palraj; Ringel, Phillip; Kruse, Tobias; Bernhardt, Paul V

    2016-09-01

    We report the first direct (unmediated) catalytic electrochemistry of a eukaryotic nitrate reductase (NR). NR from the filamentous fungus Neurospora crassa, is a member of the mononuclear molybdenum enzyme family and contains a Mo, heme and FAD cofactor which are involved in electron transfer from NAD(P)H to the (Mo) active site where reduction of nitrate to nitrite takes place. NR was adsorbed on an edge plane pyrolytic graphite (EPG) working electrode. Non-turnover redox responses were observed in the absence of nitrate from holo NR and three variants lacking the FAD, heme or Mo cofactor. The FAD response is due to dissociated cofactor in all cases. In the presence of nitrate, NR shows a pronounced cathodic catalytic wave with an apparent Michaelis constant (KM) of 39μM (pH7). The catalytic cathodic current increases with temperature from 5 to 35°C and an activation enthalpy of 26kJmol(-1) was determined. In spite of dissociation of the FAD cofactor, catalytically activity is maintained. PMID:27060250

  13. Femtosecond Laser Filamentation for Atmospheric Sensing

    PubMed Central

    Xu, Huai Liang; Chin, See Leang

    2011-01-01

    Powerful femtosecond laser pulses propagating in transparent materials result in the formation of self-guided structures called filaments. Such filamentation in air can be controlled to occur at a distance as far as a few kilometers, making it ideally suited for remote sensing of pollutants in the atmosphere. On the one hand, the high intensity inside the filaments can induce the fragmentation of all matters in the path of filaments, resulting in the emission of characteristic fluorescence spectra (fingerprints) from the excited fragments, which can be used for the identification of various substances including chemical and biological species. On the other hand, along with the femtosecond laser filamentation, white-light supercontinuum emission in the infrared to UV range is generated, which can be used as an ideal light source for absorption Lidar. In this paper, we present an overview of recent progress concerning remote sensing of the atmosphere using femtosecond laser filamentation. PMID:22346566

  14. The nonlinear evolution of magnetized solar filaments

    NASA Technical Reports Server (NTRS)

    Sparks, L.; Van Hoven, G.; Schnack, D. D.

    1990-01-01

    Thermal instability driven by optically thin radiation is believed to initiate the formation of plasma filaments in the solar corona. The fact that filaments are observed generally to separate regions of opposite, line-of-sight, magnetic polarity in the underlying photosphere suggests that filament formation requires the presence of a highly sheared, local magnetic field. Two-dimensional, nonlinear, magnetohydrodynamic simulations of the local genesis and growth of solar filaments in a force-free, sheared, magnetic field were performed, and the evolution of generic perturbations possessing broad spatial profiles was traced. It was found that simulations of the evolution of initial random-noise perturbations produce filamentary plasma structures that exhibit densities and temperatures characteristic of observed solar filaments. Furthermore, in each of these simulations, the filament axis lies at a finite angle with respect to the local magnetic field, consistent with solar observations.

  15. Evolution of Barb Angle and Filament Eruption

    NASA Astrophysics Data System (ADS)

    Su, J. T.; Liu, Y.; Zhang, H. Q.; Kurokawa, H.; Yurchyshyn, V.; Shibata, K.; Bao, X. M.; Wang, G. P.; Li, C.

    2005-09-01

    Hα observations of a quiescent U-shaped filament were obtained at Big Bear Solar Observatory and at Hida Observatory with the Flare Monitoring Telescope. The filament was located in the southern hemisphere on 1998 November 4. We study the evolution of the angle of a barb with respect to the axis of the filament and find the evolution can be divided into two phases: a rise from the acute phase to the obtuse phase and a fall. Thus, this indicates that the chirality of this barb changes with time. Moreover, in the process of evolution, we find that interconnection of the part of the filament bearing the barb with the whole filament became either weakened or strengthened. We impute the final eruption of the filament to the chirality evolution of the barb.

  16. Filamentous fungal endophthalmitis: results of combination therapy with intravitreal amphotericin B and voriconazole

    PubMed Central

    Mithal, Kopal; Pathengay, Avinash; Bawdekar, Abhishek; Jindal, Animesh; Vira, Divya; Relhan, Nidhi; Choudhury, Himadri; Gupta, Namrata; Gupta, Varun; Koday, Nagendra K; Flynn, Harry W

    2015-01-01

    Purpose To report outcomes of exogenous fungal endophthalmitis treated with combination of intravitreal antifungal agents. Design Retrospective, non-randomized, interventional, consecutive case series. Methods Twelve eyes of twelve consecutive cases of filamentous fungal endophthalmitis were treated with a combination of intravitreal amphotericin-B and intravitreal voriconazole (AmB-Vo Regime) along with pars plana vitrectomy at a single center. Clinical characteristics, microbiology results, treatment strategy, visual, and anatomical outcomes were analyzed. Results Ten cases out of the twelve were postoperative endophthalmitis of which nine were part of a post cataract surgery cluster. The remaining included endophthalmitis following keratitis post pterygium excision (1) and following open globe injury (2). The most common fungus was Aspergillus terreus, which was isolated in 8/12, followed by A. flavus in 2/12 and Fusarium solani in 1/12. The presenting visual acuity ranged from light perception (LP) to counting fingers. The visual acuity at final follow-up was 20/400 or better in 7/12 eyes (58.33%) and 20/60 in 2/12 eyes (range 20/60 to LP). All eyes with corneal involvement had final visual acuity 20/400 or worse. Globe salvage was achieved in all cases. Conclusion Combining intravitreal amphotericin-B and voriconazole could be a novel treatment strategy in the management of endophthalmitis caused by filamentous fungus. Eyes with corneal involvement had poor visual outcome either with or without therapeutic penetrating keratoplasty. PMID:25926714

  17. Motion, decay and merging of vortex filaments

    NASA Technical Reports Server (NTRS)

    Liu, C. H.; Ting, L.

    1988-01-01

    The asymptotic solutions of Navier-Stokes equations for vortex filaments of finite strength with small effective vortical cores are summarized. Emphases are placed on the physical meaning and the practical limit to the applicability of the asymptotic solution. Finite-difference solutions of Navier-Stokes equations for the merging of the filament(s) are described. It is focused on the development of the approximate boundary conditions for the computational domain.

  18. Remote electrical arc suppression by laser filamentation.

    PubMed

    Schubert, Elise; Mongin, Denis; Kasparian, Jérôme; Wolf, Jean-Pierre

    2015-11-01

    We investigate the interaction of narrow plasma channels formed in the filamentation of ultrashort laser pulses, with a DC high voltage. The laser filaments prevent electrical arcs by triggering corona that neutralize the high-voltage electrodes. This phenomenon, that relies on the electric field modulation and free electron release around the filament, opens new prospects to lightning and over-voltage mitigation. PMID:26561133

  19. How bio-filaments twist membranes.

    PubMed

    Fierling, Julien; Johner, Albert; Kulić, Igor M; Mohrbach, Hervé; Müller, Martin Michael

    2016-06-29

    We study the deformations of a fluid membrane imposed by adhering stiff bio-filaments due to the torques they apply. In the limit of small deformations, we derive a general expression for the energy and the deformation field of the membrane. This expression is specialised to different important cases including closed and helical bio-filaments. In particular, we analyse interface-mediated interactions and membrane wrapping when the filaments apply a local torque distribution on a tubular membrane. PMID:27291854

  20. Self-Organization of Treadmilling Filaments

    NASA Astrophysics Data System (ADS)

    Doubrovinski, K.; Kruse, K.

    2007-11-01

    The cytoskeleton is an active network of polar filaments. The activity can lead to the polymerization of filaments at one end and depolymerization at the other. This phenomenon is called treadmilling and is essential for many cellular processes, in particular, the crawling of cells on a substrate. We develop a microscopic theoretical framework for describing systems of treadmilling filaments. We show that such systems can self-organize into structures observed in cell fragments, in particular, asters and moving spots.

  1. Methods for modeling cytoskeletal and DNA filaments

    NASA Astrophysics Data System (ADS)

    Andrews, Steven S.

    2014-02-01

    This review summarizes the models that researchers use to represent the conformations and dynamics of cytoskeletal and DNA filaments. It focuses on models that address individual filaments in continuous space. Conformation models include the freely jointed, Gaussian, angle-biased chain (ABC), and wormlike chain (WLC) models, of which the first three bend at discrete joints and the last bends continuously. Predictions from the WLC model generally agree well with experiment. Dynamics models include the Rouse, Zimm, stiff rod, dynamic WLC, and reptation models, of which the first four apply to isolated filaments and the last to entangled filaments. Experiments show that the dynamic WLC and reptation models are most accurate. They also show that biological filaments typically experience strong hydrodynamic coupling and/or constrained motion. Computer simulation methods that address filament dynamics typically compute filament segment velocities from local forces using the Langevin equation and then integrate these velocities with explicit or implicit methods; the former are more versatile and the latter are more efficient. Much remains to be discovered in biological filament modeling. In particular, filament dynamics in living cells are not well understood, and current computational methods are too slow and not sufficiently versatile. Although primarily a review, this paper also presents new statistical calculations for the ABC and WLC models. Additionally, it corrects several discrepancies in the literature about bending and torsional persistence length definitions, and their relations to flexural and torsional rigidities.

  2. Actively Contracting Bundles of Polar Filaments

    NASA Astrophysics Data System (ADS)

    Kruse, K.; Jülicher, F.

    2000-08-01

    We introduce a phenomenological model to study the properties of bundles of polar filaments which interact via active elements. The stability of the homogeneous state, the attractors of the dynamics in the unstable regime, and the tensile stress generated in the bundle are discussed. We find that the interaction of parallel filaments can induce unstable behavior and is responsible for active contraction and tension in the bundle. The interaction between antiparallel filaments leads to filament sorting. Our model could apply to simple contractile structures in cells such as stress fibers.

  3. Recent observations of the formation of filaments

    NASA Astrophysics Data System (ADS)

    Martin, Sara F.

    1986-12-01

    Two examples of the formation of small filaments in H alpha are described and illustrated. In both cases, the formation is seen to be the spontaneous appearance of strands of absorbing mass that evolve from no previous structure. The initial development of the filaments appears to consist of the accumulation of these absorptive strands along approximately parallel paths in a channel between large-scale, opposite polarity magnetic fields on either side of the filaments. The strands exhibit continuous changes in shape and degree of absorption which can be due to successive condensations resulting in new strands, mass motions within the strands, and outflow of the mass from the strands. For at least several hours before the formation of both filaments, small-scale fragments of opposite polarity, line-of-sight magnetic flux adjacent to or immediately below the filaments, and at the ends of the filaments, were cancelling. This type of magnetic flux disappearance continued during the development of the filaments and is commonly observed in association with established filaments. Cancellation is interpreted as an important evolutionary change in the magnetic field that can lead to configurations suitable for the formation of filaments.

  4. Measurement of birefringence inside a filament

    SciTech Connect

    Yuan Shuai; Wang, Tie-Jun; Chin, See Leang; Kosareva, Olga; Panov, Nikolay; Makarov, Vladimir; Zeng Heping

    2011-07-15

    We quantified the ultrafast birefringence induced in the filament in an atomic gas by measuring the filament-induced polarization rotation of a probe pulse. Based on the dephasing of the probe's orthogonal polarization components in argon, the experiment was done at 1 atm by copropagating a linearly polarized 400-nm probe pulse with an 800-nm pump pulse which generated the filament. The probe's elliptical polarization states were shown under various initial pump-probe polarization schemes. These states were verified by comparing the filament-induced probe polarization rotation angle and the ellipticity of the probe polarization.

  5. Chaperonin filaments: The archaeal cytoskeleton?

    PubMed Central

    Trent, Jonathan D.; Kagawa, Hiromi K.; Yaoi, Takuro; Olle, Eric; Zaluzec, Nestor J.

    1997-01-01

    Chaperonins are high molecular mass double-ring structures composed of 60-kDa protein subunits. In the hyperthermophilic archaeon Sulfolobus shibatae the two chaperonin proteins represent ≈4% of its total protein and have a combined intracellular concentration of >30 mg/ml. At concentrations ≥ 0.5 mg/ml purified chaperonins form filaments in the presence of Mg2+ and nucleotides. Filament formation requires nucleotide binding (not hydrolysis), and occurs at physiological temperatures in biologically relevant buffers, including a buffer made from cell extracts. These observations suggest that chaperonin filaments may exist in vivo and the estimated 4600 chaperonins per cell suggest that such filaments could form an extensive cytostructure. We observed filamentous structures in unfixed, uranyl-acetate-stained S. shibatae cells, which resemble the chaperonin filaments in size and appearance. ImmunoGold (Janssen) labeling using chaperonin antibodies indicated that many chaperonins are associated with insoluble cellular structures and these structures appear to be filamentous in some areas, although they could not be uranyl-acetate-stained. The existence of chaperonin filaments in vivo suggests a mechanism whereby their protein-folding activities can be regulated. More generally, the filaments themselves may play a cytoskeletal role in Archaea. PMID:9144246

  6. Observations of an active region filament

    NASA Astrophysics Data System (ADS)

    Zong, W. G.; Tang, Y. H.; Fang, C.; Xu, A. A.

    An active region filament was well observed on September 4, 2002 with THEMIS at the Teide observatory and SOHO/MDI. The full Stokes parameters of the filament were obtained in Hα and FeI 6302 Å lines. Using the data, we have studied the fine structure of the filament and obtained the parameters at the barb endpoints, including intensity, velocity and longitudinal magnetic field. Our results indicate: (a) the Doppler velocities are quiet different at barb endpoints; (b) the longitudinal magnetic fields at the barb endpoints are very weak; (c) there is a strong magnetic field structure under the filament spine.

  7. Probing the Physical Structures of Dense Filaments

    NASA Astrophysics Data System (ADS)

    Li, Di

    2015-08-01

    Filament is a common feature in cosmological structures of various scales, ranging from dark matter cosmic web, galaxy clusters, inter-galactic gas flows, to Galactic ISM clouds. Even within cold dense molecular cores, filaments have been detected. Theories and simulations with (or without) different combination of physical principles, including gravity, thermal balance, turbulence, and magnetic field, can reproduce intriguing images of filaments. The ubiquity of filaments and the similarity in simulated ones make physical parameters, beyond dust column density, a necessity for understanding filament evolution. I report three projects attempting to measure physical parameters of filaments. We derive the volume density of a dense Taurus filament based on several cyanoacetylene transitions observed by GBT and ART. We measure the gas temperature of the OMC 2-3 filament based on combined GBT+VLA ammonia images. We also measured the sub-millimeter polarization vectors along OMC3. These filaments were found to be likely a cylinder-type structure, without dynamic heating, and likely accreting mass along the magnetic field lines.

  8. Fungus-insect gall of Phlebopus portentosus.

    PubMed

    Zhang, Chun-Xia; He, Ming-Xia; Cao, Yang; Liu, Jing; Gao, Feng; Wang, Wen-Bing; Ji, Kai-Ping; Shao, Shi-Cheng; Wang, Yun

    2015-01-01

    Phlebopus portentosus is a popular edible wild mushroom found in the tropical Yunnan, China, and northern Thailand. In its natural habitats, a gall often has been found on some plant roots, around which fungal fruiting bodies are produced. The galls are different from common insect galls in that their cavity walls are not made from plant tissue but rather from the hyphae of P. portentosus. Therefore we have termed this phenomenon "fungus-insect gall". Thus far six root mealy bug species in the family Pseudococcidae that form fungus-insect galls with P. portentosus have been identified: Formicococcus polysperes, Geococcus satellitum, Planococcus minor, Pseudococcus cryptus, Paraputo banzigeri and Rastrococcus invadens. Fungus-insect galls were found on the roots of more than 21 plant species, including Delonix regia, Citrus maxima, Coffea arabica and Artocarpus heterophyllus. Greenhouse inoculation trials showed that fungus-insect galls were found on the roots of A. heterophyllus 1 mo after inoculation. The galls were subglobose to globose, fulvous when young and became dark brown at maturation. Each gall harbored one or more mealy bugs and had a chimney-like vent for ventilation and access to the gall. The cavity wall had three layers. Various shaped mealy bug wax deposits were found inside the wall. Fungal hyphae invaded the epidermis of plant roots and sometimes even the cortical cells during the late stage of gall development. The identity of the fungus inside the cavity was confirmed by molecular methods. PMID:25344264

  9. Force-Induced Dynamical Properties of Multiple Cytoskeletal Filaments Are Distinct from that of Single Filaments

    PubMed Central

    Das, Dipjyoti; Das, Dibyendu; Padinhateeri, Ranjith

    2014-01-01

    How cytoskeletal filaments collectively undergo growth and shrinkage is an intriguing question. Collective properties of multiple bio-filaments (actin or microtubules) undergoing hydrolysis have not been studied extensively earlier within simple theoretical frameworks. In this paper, we study the collective dynamical properties of multiple filaments under force, and demonstrate the distinct properties of a multi-filament system in comparison to a single filament. Comparing stochastic simulation results with recent experimental data, we show that multi-filament collective catastrophes are slower than catastrophes of single filaments. Our study also shows further distinctions as follows: (i) force-dependence of the cap-size distribution of multiple filaments are quantitatively different from that of single filaments, (ii) the diffusion constant associated with the system length fluctuations is distinct for multiple filaments, and (iii) switching dynamics of multiple filaments between capped and uncapped states and the fluctuations therein are also distinct. We build a unified picture by establishing interconnections among all these collective phenomena. Additionally, we show that the collapse times during catastrophes can be sharp indicators of collective stall forces exceeding the additive contributions of single filaments. PMID:25531397

  10. Mutation-Specific Effects on Thin Filament Length in Thin Filament Myopathy

    PubMed Central

    de Winter, Josine M.; Joureau, Barbara; Lee, Eun-Jeong; Kiss, Balázs; Yuen, Michaela; Gupta, Vandana A.; Pappas, Christopher T.; Gregorio, Carol C.; Stienen, Ger J. M.; Edvardson, Simon; Wallgren-Pettersson, Carina; Lehtokari, Vilma-Lotta; Pelin, Katarina; Malfatti, Edoardo; Romero, Norma B.; van Engelen, Baziel G.; Voermans, Nicol C.; Donkervoort, Sandra; Bönnemann, C. G.; Clarke, Nigel F.; Beggs, Alan H.; Granzier, Henk; Ottenheijm, Coen A. C.

    2016-01-01

    Objective Thin filament myopathies are among the most common nondystrophic congenital muscular disorders, and are caused by mutations in genes encoding proteins that are associated with the skeletal muscle thin filament. Mechanisms underlying muscle weakness are poorly understood, but might involve the length of the thin filament, an important determinant of force generation. Methods We investigated the sarcomere length-dependence of force, a functional assay that provides insights into the contractile strength of muscle fibers as well as the length of the thin filaments, in muscle fibers from 51 patients with thin filament myopathy caused by mutations in NEB, ACTA1, TPM2, TPM3, TNNT1, KBTBD13, KLHL40, and KLHL41. Results Lower force generation was observed in muscle fibers from patients of all genotypes. In a subset of patients who harbor mutations in NEB and ACTA1, the lower force was associated with downward shifted force–sarcomere length relations, indicative of shorter thin filaments. Confocal microscopy confirmed shorter thin filaments in muscle fibers of these patients. A conditional Neb knockout mouse model, which recapitulates thin filament myopathy, revealed a compensatory mechanism; the lower force generation that was associated with shorter thin filaments was compensated for by increasing the number of sarcomeres in series. This allowed muscle fibers to operate at a shorter sarcomere length and maintain optimal thin–thick filament overlap. Interpretation These findings might provide a novel direction for the development of therapeutic strategies for thin filament myopathy patients with shortened thin filament lengths. PMID:27074222