Science.gov

Sample records for filled high-density polyethylene

  1. Determination of Thermal Properties and Morphology of Eucalyptus Wood Residue Filled High Density Polyethylene Composites

    PubMed Central

    Mengeloglu, Fatih; Kabakci, Ayse

    2008-01-01

    Thermal behaviors of eucalyptus wood residue (EWR) filled recycled high density polyethylene (HDPE) composites have been measured applying the thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). Morphology of the materials was also studied using scanning electron microscope (SEM). Addition of the EWR into the recycled HDPE matrix reduced the starting of degradation temperature. EWR filled recycled HDPE had two main decomposition peaks, one for EWR around 350 °C and one for recycled HDPE around 460 °C. Addition of EWR did not affect the melting temperature of the recycled HDPE. Morphological study showed that addition of coupling agent improved the compatibility between wood residue and recycled HDPE. PMID:19325736

  2. Photothermal Characterization of Nanocomposites Based on High Density Polyethylene (HDPE) Filled with Expanded Graphite

    NASA Astrophysics Data System (ADS)

    Chirtoc, M.; Horny, N.; Henry, J.-F.; Turgut, A.; Kökey, I.; Tavman, I.; Omastová, M.

    2012-11-01

    The effective thermophysical and optical properties of high density polyethylene (HDPE) filled with 50 μm and 5 μm particle sizes of expanded graphite (EG50, EG5) are characterized. The methods used were front- and back-detection modulated photothermal radiometry (FD-, BD-PTR) and BD-flash IR thermography. Results were interpreted according to one-dimensional heat diffusion models. The absolute thermal diffusivity was determined at low frequency from FD- and BD-PTR spectra, while the volumetric heat capacity, the thermal effusivity, and the optical absorption coefficient were determined from broad-band FD-PTR spectra. The directly obtained diffusivity values compare well with those calculated from the heat capacity and thermal effusivity, and with BD-flash results. The errors caused by the finite absorption coefficient of diluted samples are also evaluated and corrected for. A particle-size effect with the opposite influence on thermal and optical properties has been observed. Heat transport parameters of HDPE/EG composites are significantly enhanced (factor of 3 to 4 in thermal diffusivity) at low particle charge before reaching saturation above a 0.10 particle volume fraction. These features are explained in the framework of effective medium models by strongly non-spherical EG particles.

  3. Kinetics of Moisture Absorption for Alkali Extracted Steam-Exploded Fiber Filled High-Density Polyethylene Composites

    NASA Astrophysics Data System (ADS)

    Taib, R. M.; Ramarad, S.; Ishak, Z. A. M.; Rozman, H. D.

    2010-03-01

    Acacia mangium wood fiber derived from steam-explosion and fiber fractionation treatment was used as fillers for high-density polyethylene (HDPE). The alkali extracted steam-exploded fibers (AEF) obtained were acetylated to produce acetylated fibers (AAEF) having three different weight percent gain (WPG). Composites of AEF or AAEF and HDPE were prepared via 2-roll mill, compression molded and cut into dumbbell specimens. All samples were immersed in water at room temperature for 30 days. The process of absorption of water by all composites followed the kinetics and mechanisms described by the Fick's theory. Diffusion coefficient (D) values increased with filler loading but decreased with increasing WPG of the AAEF fiber. Further decrease was observed when maleated polyethylene (MAPE) was added to the composite system. This was due to improved fiber-matrix adhesion that restricts movement of water molecules from further penetrate inside the composite structures.

  4. Kinetics of Moisture Absorption for Alkali Extracted Steam-Exploded Fiber Filled High-Density Polyethylene Composites

    SciTech Connect

    Taib, R. M.; Ramarad, S.; Ishak, Z. A. M.; Rozman, H. D.

    2010-03-11

    Acacia mangium wood fiber derived from steam-explosion and fiber fractionation treatment was used as fillers for high-density polyethylene (HDPE). The alkali extracted steam-exploded fibers (AEF) obtained were acetylated to produce acetylated fibers (AAEF) having three different weight percent gain (WPG). Composites of AEF or AAEF and HDPE were prepared via 2-roll mill, compression molded and cut into dumbbell specimens. All samples were immersed in water at room temperature for 30 days. The process of absorption of water by all composites followed the kinetics and mechanisms described by the Fick's theory. Diffusion coefficient (D) values increased with filler loading but decreased with increasing WPG of the AAEF fiber. Further decrease was observed when maleated polyethylene (MAPE) was added to the composite system. This was due to improved fiber-matrix adhesion that restricts movement of water molecules from further penetrate inside the composite structures.

  5. Vacuum Outgassing of High Density Polyethylene

    SciTech Connect

    Dinh, L N; Sze, J; Schildbach, M A; Chinn, S C; Maxwell, R S; Raboin, P; McLean II, W

    2008-08-11

    A combination of thermogravimetric analysis (TGA) and temperature programmed decomposition (TPD) was employed to identify the outgassing species, the total amount of outgassing, and the outgassing kinetics of high density polyethylene (HDPE) in a vacuum environment. The isoconversional kinetic analysis was then used to analyze the outgassing kinetics and to predict the long-term outgassing of HDPE in vacuum applications at ambient temperature. H{sub 2}O and C{sub n}H{sub x} with n as high as 9 and x centering around 2n are the major outgassing species from solid HDPE, but the quantities evolved can be significantly reduced by vacuum baking at 368 K for a few hours prior to device assembly.

  6. THz-Spectroscopy on High Density Polyethylene with Different Crystallinity

    NASA Astrophysics Data System (ADS)

    Sommer, Stefan; Raidt, Thomas; Fischer, Bernd M.; Katzenberg, Frank; Tiller, Jörg C.; Koch, Martin

    2016-02-01

    The different crystallinity states of high density polyethylene (PE-HD) are investigated using THz time-domain spectroscopy by exploiting the complex permittivity at a frequency range from 0.5 up to 3.5 THz. We found that samples with different crystallinity can be distinguished by comparing the material specific refractive index ( n) or rather the linked complex part of the permittivity (∈ ' '). Correlating the calorimetrically determined degrees of crystallinity with the absolute values of the refractive index and the specific absorption peak at 2.18 THz, respectively, suggests in both cases a linear correlation.

  7. Catalytic degradation of high density polyethylene using zeolites.

    PubMed

    Zaggout, F R; al Mughari, A R; Garforth, A

    2001-01-01

    Plastic wastes, which cause a serious environmental problem in urban areas, can serve as sources of energy. Catalytic treatment of High Density Polyethylene (HDPE) has shown that the degradation of HDPE resulted in the production of a stream of gaseous hydrocarbons varied in the range C1-C8. The degradation was carried out using diluted forms of zeolites ZSM-5, USY and Mordenite (MORD) using a fluidized bed reactor (FBR). Effect of coke formation on the activity of the catalysts was screened by thermogravimetric (TGA). ZSM-5 showed a significant resistance to deactivation because of the nature of its small pore size compared with USY and MORD. PMID:11382018

  8. Scoping study. High density polyethylene (HDPE) in salstone service

    SciTech Connect

    Phifer, Mark A.

    2005-02-18

    An evaluation of the use of high density polyethylene (HDPE) geomembranes in Saltstone service has been conducted due to the potential benefits that could be derived from such usage. HDPE is one of the simplest hydrocarbon polymers and one of the most common polymers utilized in the production of geomembranes, which means that its costs are relatively low. Additionally, HDPE geomembranes have an extremely low permeability and an extremely low water vapor diffusional flux, which means that it is a good barrier to contaminant transport. The primary consideration in association with HDPE geomembranes in Saltstone service is the potential impact of Saltstone on the degradation of the HDPE geomembranes. Therefore, the evaluation documented herein has primarily focused upon the potential HDPE degradation in Saltstone service.

  9. Analyzing and improving viscoelastic properties of high density polyethylene

    NASA Astrophysics Data System (ADS)

    Ahmed, Reaj Uddin

    2011-12-01

    High Density Polyethylene (HDPE) is closely packed, less branched polyethylene having higher mechanical properties, chemical resistance, and heat resistance than Low Density Polyentylene (LDPE). Better properties and cost effectiveness make it an important raw material over LDPE in packaging industries. Stacked containers made of HDPE experience static loading and deformation strain during their storage period in a warehouse. As HDPE is a viscoelastic material, dimensional stability of stacked HDPE containers depends on time dependent properties such as creep and stress relaxation. Now, light weighting is a driving force in packaging industries, which results in lower production costs but performance of the product becomes a challenge. Proper understanding of the viscoelastic properties of HDPE, with relevant FE simulation can facilitate improved designs. This research involves understanding and improving viscoelastic properties, creep behavior, and stress relaxation of HDPE. Different approaches were carried out to meet the objectives. Organic filler CaCO3 was added to HDPE at increasing weight fractions and corresponding property changes were investigated. Annealing heat treatments were also carried out for potential property improvements. The effect of ageing was also investigated on both annealed and non annealed HDPE. The related performance of different water bottles against squeeze pressure was also characterized. Both approaches, incorporation of CaCO3 and annealing, showed improvements in the properties of HDPE over neat HDPE. This research aids finding the optimum solution for improving viscoelastic properties, stress relaxation, and creep behavior of HDPE in manufacturing.

  10. The electrical properties of schungite-containing compositions based on polypropylene and high-density polyethylene

    NASA Astrophysics Data System (ADS)

    Rozhkov, S. S.; Kedrina, N. F.; Timofeeva, V. A.; Chmutin, I. A.; Ryvkina, N. G.; Solov'eva, A. B.

    2007-11-01

    Variations in the dc and ac conductivities of schungite-containing compositions based on polypropylene-high-density polyethylene (PP-PE) blends were studied depending on the composition of the polymeric blend, the volume concentration of the filler, and the order of the introduction of the composition components during the preparation of compositions. It was shown that the conductivities of the compositions could depend on the order of the introduction of the components. The structure of initial and schungite-containing PP-PE blends of different compositions was studied by atomic-force microscopy. It was shown that the structure of the compositions depended on the composition of the initial PP-PE blends and the order of the introduction of the components into schungite-filled PP-PE compositions.

  11. Measurements and predictions of outgassing from high density polyethylene (HDPE), PBX9502, and certain silicones by the isoconversional analysis

    SciTech Connect

    Dinh, L N; Glascoe, E A; Schildbach, M A; Chinn, S C; Maxwell, R S; McLean II, W

    2009-07-06

    The techniques of mass spectrometry and temperature programmed decomposition were used to measure outgassing kinetics from high density polyethylene, insensitive high explosive PBX 9502, and silica-filled polysiloxane TR55 and S5370. The isoconversional thermal analysis method was then employed to extract outgassing kinetics and to make kinetic predictions for long term outgassing at lower temperatures. The accuracy, advantages and disadvantages of the isoconversional analysis in terms of kinetic prediction for these materials and some others will be discussed.

  12. Mechanical and thermal properties of high density polyethylene – dried distillers grains with solubles composites

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dried Distillers Grain with Solubles (DDGS) is evaluated as a bio-based fiber reinforcement. Injection molded composites of high density polyethylene (HDPE), 25% by weight of DDGS, and either 5% of 0% by weight of maleated polyethylene (MAPE) were produced by twin screw compounding and injection mo...

  13. Properties of high density polyethylene – Paulownia wood flour composites via injection molding

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Paulownia wood (PW) flour is evaluated as a bio-based fiber reinforcement. Composites of high density polyethylene (HDPE), 25% by weight of PW, and either 0% or 5% by weight of maleated polyethylene (MAPE) were produced by twin screw compounding followed by injection molding. Molded test composite...

  14. An investigation on chloroprene-compatibilized acrylonitrile butadiene rubber/high density polyethylene blends

    PubMed Central

    Ahmed, Khalil

    2014-01-01

    Blends of acrylonitrile butadiene rubber/high density polyethylene (NBR/HDPE) compatibilized by Chloroprene rubber (CR) were prepared. A fixed quantity of industrial waste such as marble waste (MW, 40 phr) was also included. The effect of the blend ratio and CR on cure characteristics, mechanical and swelling properties of MW-filled NBR/HDPE blends was investigated. The results showed that the MW-filled NBR/HDPE blends revealed an increase in tensile strength, tear, modulus, hardness and cross-link density for increasing weight ratio of HDPE. The minimum torque (ML) and maximum torque (MH) of blends increased with increasing weight ratio of HDPE while scorch time (ts2) cure time (tc90), compression set and abrasion loss of blends decreased with increasing weight ratio of HDPE. The blends also showed a continuous reduction in elongation at break as well as swelling coefficient with increasing HDPE amount in blends. MW filled blends based on CR provided the most encouraging balance values of overall properties. PMID:26644917

  15. An investigation on chloroprene-compatibilized acrylonitrile butadiene rubber/high density polyethylene blends.

    PubMed

    Ahmed, Khalil

    2015-11-01

    Blends of acrylonitrile butadiene rubber/high density polyethylene (NBR/HDPE) compatibilized by Chloroprene rubber (CR) were prepared. A fixed quantity of industrial waste such as marble waste (MW, 40 phr) was also included. The effect of the blend ratio and CR on cure characteristics, mechanical and swelling properties of MW-filled NBR/HDPE blends was investigated. The results showed that the MW-filled NBR/HDPE blends revealed an increase in tensile strength, tear, modulus, hardness and cross-link density for increasing weight ratio of HDPE. The minimum torque (M L) and maximum torque (M H) of blends increased with increasing weight ratio of HDPE while scorch time (ts2) cure time (tc90), compression set and abrasion loss of blends decreased with increasing weight ratio of HDPE. The blends also showed a continuous reduction in elongation at break as well as swelling coefficient with increasing HDPE amount in blends. MW filled blends based on CR provided the most encouraging balance values of overall properties. PMID:26644917

  16. The application and progress of high-density porous polyethylene in the repair of orbital wall defect.

    PubMed

    Qian, Zhuyun; Fan, Xianqun

    2014-07-01

    High-density porous polyethylene is a type of polymeric biomaterial. When used to efficiently fill the extensive orbital volume and correct enophthalmos caused by orbital wall defect, it has a significant advantage of biocompatibility, which results in a low rate of postoperative exposure and infection. The major disadvantage of this material is its radiolucency. However, with the development of imaging techniques, it is now possible to use multidetector computed tomography to directly contour the implant and describe its position. The use of tissue engineering involving high-density porous polyethylene will further improve its biocompatibility. At the same time, composite materials will play an important role in the repair of orbital wall defect. PMID:24911609

  17. Mechanical properties of high density polyethylene--pennycress press cake composites

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pennycress press cake (PPC) is evaluated as a bio-based fiber reinforcement. PPC is a by-product of crop seed oil extraction. Composites with a high density polyethylene (HDPE) matrix are created by twin screw compounding of 25% by weight of PPC and either 0% or 5% by weight of maleated polyethyle...

  18. Catalytic and thermal depolymerization of low value post-consumer high density polyethylene plastic

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The feasibility of catalytic and non-catalytic pyrolytic conversion of low value post-consumer high density polyethylene (HDPE) plastic into crude oil and subsequent distillation was explored. Translation of optimized conditions for catalytic and non-catalytic pyrolysis from TGA to a bench-scale sys...

  19. 77 FR 13387 - Pipeline Safety: Notice to Operators of Driscopipe® 8000 High Density Polyethylene Pipe of the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-06

    ... 8000 High Density Polyethylene Pipe of the Potential for Material Degradation AGENCY: Pipeline and.... SUMMARY: PHMSA is issuing this advisory bulletin to alert operators using Driscopipe 8000 High Density... authorities. II. Advisory Bulletin (ADB-2012-03) To: Operators using Driscopipe 8000 High Density...

  20. The yield and post-yield behavior of high-density polyethylene

    NASA Technical Reports Server (NTRS)

    Semeliss, M. A.; Wong, R.; Tuttle, M. E.

    1990-01-01

    An experimental and analytical evaluation was made of the yield and post-yield behavior of high-density polyethylene, a semi-crystalline thermoplastic. Polyethylene was selected for study because it is very inexpensive and readily available in the form of thin-walled tubes. Thin-walled tubular specimens were subjected to axial loads and internal pressures, such that the specimens were subjected to a known biaxial loading. A constant octahederal shear stress rate was imposed during all tests. The measured yield and post-yield behavior was compared with predictions based on both isotropic and anisotropic models. Of particular interest was whether inelastic behavior was sensitive to the hydrostatic stress level. The major achievements and conclusions reached are discussed.

  1. Wood plastic composites based on microfibrillar blends of high density polyethylene/poly(ethylene terephthalate).

    PubMed

    Lei, Yong; Wu, Qinglin

    2010-05-01

    High-melting-temperature poly(ethylene terephthalate) (PET) was successfully introduced into wood plastic composites through a two-step reactive extrusion technology. Wood flour was added into pre-prepared PET/high density polyethylene (HDPE) microfibrillar blends (MFBs) in the second extrusion at the temperature for processing HDPE. Addition of 25% in situ formed PET microfibers obviously increased the mechanical properties of HDPE, and more significant enhancement by the in situ formed recycled PET microfibers was observed for the recycled HDPE. Adding 2% E-GMA improved the compatibility between matrix and microfibers in MFBs, resulting further enhanced mechanical properties. The subsequent addition of 40% wood flour did not influence the size and morphology of PET microfibers, and improved the comprehensive mechanical properties of MFBs. The wood flour increased the crystallinity level of HDPE in the compatibilized MFB in which PET phase did not crystallize. The storage modulus of MFB was greatly improved by wood flour. PMID:20100654

  2. Statistical modeling of crack growth and reliability assessment of high-density polyethylene

    SciTech Connect

    Qureshi, F.S.; Sheikh, A.K.; Khan, Z.; Ahmad, M.

    1999-06-01

    In this work, a statistical evaluation of the crack-growth process in high-density polyethylene (HDPE) was carried out. The specimens were compression molded from virgin, molding-grade HDPE. Edge-notched specimens for replicate fatigue testing were prepared from compression-molded sheets. Fatigue test results were then analyzed, and it is shown that if the crack-growth process can be characterized as a random process following a power-law-type behavior, then the time to reach a critical crack length will be distributed according to an inverted lognormal model.

  3. Solving a product safety problem using a recycled high density polyethylene container

    NASA Technical Reports Server (NTRS)

    Liu, Ping; Waskom, T. L.

    1993-01-01

    The objectives are to introduce basic problem-solving techniques for product safety including problem identification, definition, solution criteria, test process and design, and data analysis. The students are given a recycled milk jug made of high density polyethylene (HDPE) by blow molding. The objectives are to design and perform proper material test(s) so they can evaluate the product safety if the milk jug is used in a certain way which is specified in the description of the procedure for this investigation.

  4. High-density polyethylene pipe: A new material for pass-by passive integrated transponder antennas

    USGS Publications Warehouse

    Kazyak, David C.; Zydlewski, Joseph

    2012-01-01

    Pass-by passive integrated transponder (PIT) antennas are widely used to study the movements of fish in streams. At many sites, stream conditions make it difficult to maintain antennas and obtain a continuous record of movement. We constructed pass-by PIT antennas by using high-density polyethylene (HDPE) and found them to be robust to high flows and winter ice flows. Costs for HDPE antennas were similar to those of traditional polyvinyl chloride (PVC) antennas, although construction was somewhat more complicated. At sites where PVC antennas are frequently damaged, HDPE is a durable and economical alternative for PIT antenna construction.

  5. Large area neutron detector based on Li6 ionization chamber with integrated body-moderator of high density polyethylene

    SciTech Connect

    Ianakiev, Kiril D.; Swinhoe, Martyn T.; Chung, Kiwhan; Makela, Mark F.

    2009-06-30

    A detector was developed and funded by DHS to be a lower cost alternative to 3He detectors. A 6Li foil-lined ionization chamber was prepared with fill gas at one atmosphere and pulse mode operation. The high-density polyethylene (HOPE) body serves also as a neutron moderator. All electrodes, including high voltage bias supply, are hermetically sealed within the plastic slabs.

  6. Effect of ultraviolet radiation in the photo-oxidation of High Density Polyethylene and Biodegradable Polyethylene films

    NASA Astrophysics Data System (ADS)

    Martínez-Romo, A.; González Mota, R.; Bernal, J. J. Soto; Frausto Reyes, C.; Rosales Candelas, I.

    2015-01-01

    One of the most widely used plastics in the world is the High density polyethylene (HDPE), it is a stable material due to its carbon-carbon bonds, causing their slow degradation; which is why we are looking for alternative ways to accelerate the degradation process of this polymer. An alternative is the addition of oxidized groups in its molecular structure, which results in the development of polymers susceptible to biodegradation (PE-BIO). In this paper, HDPE and PE-BIO films were exposed to UV-B radiation (320-280 nm) at different exposure times, 0-60 days. The effects of UV radiation in samples of HDPE and PE-BIO were characterized using infrared spectroscopy with attenuated total reflectance (ATR). The results show that the exposed materials undergo changes in their molecular structure, due to the infrared bands formed which corresponds to the photo-oxidation of HDPE and PE films when submitted to UV-B radiation.

  7. High-density carbon ablator ignition path with low-density gas-filled rugby hohlraum

    SciTech Connect

    Amendt, Peter; Ho, Darwin D.; Jones, Ogden S.

    2015-04-15

    A recent low gas-fill density (0.6 mg/cc {sup 4}He) cylindrical hohlraum experiment on the National Ignition Facility has shown high laser-coupling efficiency (>96%), reduced phenomenological laser drive corrections, and improved high-density carbon capsule implosion symmetry [Jones et al., Bull. Am. Phys. Soc. 59(15), 66 (2014)]. In this Letter, an ignition design using a large rugby-shaped hohlraum [Amendt et al., Phys. Plasmas 21, 112703 (2014)] for high energetics efficiency and symmetry control with the same low gas-fill density (0.6 mg/cc {sup 4}He) is developed as a potentially robust platform for demonstrating thermonuclear burn. The companion high-density carbon capsule for this hohlraum design is driven by an adiabat-shaped [Betti et al., Phys. Plasmas 9, 2277 (2002)] 4-shock drive profile for robust high gain (>10) 1-D ignition performance and large margin to 2-D perturbation growth.

  8. High-density carbon ablator ignition path with low-density gas-filled rugby hohlraum

    NASA Astrophysics Data System (ADS)

    Amendt, Peter; Ho, Darwin D.; Jones, Ogden S.

    2015-04-01

    A recent low gas-fill density (0.6 mg/cc 4He) cylindrical hohlraum experiment on the National Ignition Facility has shown high laser-coupling efficiency (>96%), reduced phenomenological laser drive corrections, and improved high-density carbon capsule implosion symmetry [Jones et al., Bull. Am. Phys. Soc. 59(15), 66 (2014)]. In this Letter, an ignition design using a large rugby-shaped hohlraum [Amendt et al., Phys. Plasmas 21, 112703 (2014)] for high energetics efficiency and symmetry control with the same low gas-fill density (0.6 mg/cc 4He) is developed as a potentially robust platform for demonstrating thermonuclear burn. The companion high-density carbon capsule for this hohlraum design is driven by an adiabat-shaped [Betti et al., Phys. Plasmas 9, 2277 (2002)] 4-shock drive profile for robust high gain (>10) 1-D ignition performance and large margin to 2-D perturbation growth.

  9. Strain-rate/temperature behavior of high density polyethylene in compression

    NASA Technical Reports Server (NTRS)

    Clements, L. L.; Sherby, O. D.

    1978-01-01

    The compressive strain rate/temperature behavior of highly linear, high density polyethylene was analyzed in terms of the predictive relations developed for metals and other crystalline materials. For strains of 5 percent and above, the relationship between applied strain rate, dotted epsilon, and resulting flow stress, sigma, was found to be: dotted epsilon exp times (Q sub f/RT) = k'(sigma/sigma sub c) to the nth power; the left-hand side is the activation-energy-compensated strain rate, where Q sub f is activation energy for flow, R is gas constant, and T is temperature; k is a constant, n is temperature-independent stress exponent, and sigma/sigma sub c is structure-compensated stress. A master curve resulted from a logarithmic plot of activation-energy-compensated strain rate versus structure-compensated stress.

  10. A multivariate analysis of the effects of multiple extrusion cycles on high density polyethylene bottle resin

    SciTech Connect

    Zahavich, A.

    1995-10-01

    The recycling of post consumer (PCR) high density polyethylene (HDPE) blow molding resins has increased dramatically over the past 5 years. The focus of research for this product has been on specific performance and processing properties such as tensile or melt strength. Little work has been done on studying the entire range of properties as a whole, particularly in the area of multiple extrusions. This paper describes a designed experiment study where multivariate statistical techniques were used to compare 2 HDPE and 2 HDPE PCR materials, in terms of changes in a number of properties with exposure to multiple extrusions. Virgin homopolymer and copolymer resins and PCR, mixed color bottle and natural, were passed through 4 extrusion cycles. Viscosity, swell, melt strength, crystallinity, polydispersity and ESCR properties were studied using principal component analysis.

  11. Interfacial thermal resistance between high-density polyethylene (HDPE) and sapphire

    NASA Astrophysics Data System (ADS)

    Zheng, Kun; Zhu, Jie; Ma, Yong-Mei; Tang, Da-Wei; Wang, Fo-Song

    2014-10-01

    To improve the thermal conductivity of polymeric composites, the numerous interfacial thermal resistance (ITR) inside is usually considered as a bottle neck, but the direct measurement of the ITR is hardly reported. In this paper, a sandwich structure which consists of transducer/high density polyethylene (HDPE)/sapphire is prepared to study the interface characteristics. Then, the ITRs between HDPE and sapphire of two samples with different HDPE thickness values are measured by time-domain thermoreflectance (TDTR) method and the results are ~ 2 × 10-7 m2·K·W-1. Furthermore, a model is used to evaluate the importance of ITR for the thermal conductivity of composites. The model's analysis indicates that reducing the ITR is an effective way of improving the thermal conductivity of composites. These results will provide valuable guidance for the design and manufacture of polymer-based thermally conductive materials.

  12. Reaction between Steel-Making Slag and Carbonaceous Materials While Mixing with High Density Polyethylene

    NASA Astrophysics Data System (ADS)

    Hong, Lan; Sahajwalla, Veena

    2016-01-01

    Since the beginning of the extensive applications in numerous high temperature processes such as iron- and steel-making, coke-making etc. partly in the place of coke, the investigation into the reaction mechanism of waste plastics has become increasingly necessary. In this paper a fundamental study on the behavior of a typical component of waste plastics, high density polyethylene (HDPE), in a mixture with coke at a 1:1 ratio in mass base was conducted during the reaction with iron oxide in steel-making slag at 1823 K and was compared with coke and graphite. The reaction mechanism of carbonaceous materials was analyzed based on the contents of CO and CO2 in the off-gas monitored by an infrared (IR) gas analyzer. It is clear from the results that the reaction of HDPE and coke mixture with steel-making slag approached equilibrium of the Boudouard reaction more quickly and closely than coke or graphite.

  13. Gasification of biomass/high density polyethylene mixtures in a downdraft gasifier.

    PubMed

    García-Bacaicoa, P; Mastral, J F; Ceamanos, J; Berrueco, C; Serrano, S

    2008-09-01

    In this work, an experimental study of the thermal decomposition of mixtures of wood particles and high density polyethylene in different atmospheres has been carried out in a downdraft gasifier with a nominal processing capacity of 50 kg/h. The main objective was to study the feasibility of the operation of the gasification plant using mixtures and to investigate the characteristics of the gas obtained. In order to do so, experiments with biomass only and with mixtures with up to 15% HDPE have been carried out. The main components of the gas generated are N(2) (50%), H(2) (14%), CO (9-22%) and CO(2) (7-17%) and its relatively high calorific value was adequate for using it in an internal combustion engine generator consisting of a modified diesel engine coupled with a 25 kV A alternator. PMID:18083026

  14. Load effect on an SMS fiber structure embedded in a high-density polyethylene

    NASA Astrophysics Data System (ADS)

    Puspita, Ika; Rahmah, Fitri; Hatta, Agus M.; Koentjoro, Sekartedjo

    2015-01-01

    In this paper, a load effect on a singlemode-multimode-singlemode (SMS) fiber structure embedded in a high-density polyethylene (HDPE) was investigated numerically and experimentally. It was modelled that the applied load induces a longitudinal strain on the HDPE and accordingly affects the SMS fiber structure's parameters. It was calculated the output power of the SMS fiber structure using a graded index multimode fiber (MMF) due to the applied strain from 0 to 4000 N. The experimental result shows that for the MMF length of 105 mm, the output power has monotonically increasing for an applied load range from 1700 to 4000 N with a sensitivity of 1.18 x 10-3 dBm/N. This configuration of SMS fiber structure embedded in the HDPE is potential for a load sensor.

  15. Product distribution modelling in the thermal pyrolysis of high density polyethylene.

    PubMed

    Elordi, G; Lopez, G; Olazar, M; Aguado, R; Bilbao, J

    2007-06-18

    The thermal fast pyrolysis of high density polyethylene (HDPE) has been carried out in a conical spouted bed reactor in the 450-715 degrees C range, and individual products have been monitored with the aim of obtaining kinetic data for the design and simulation of this process at large scale. Kinetic schemes have been proposed in order to explain both the results obtained in the laboratory plant and those obtained in the literature by other authors operating at laboratory and larger scale. Discrimination has been carried out based on the contribution of the variance of model parameters (stepwise regression) to the total variance explained by the model. The models based on that of Westerhout et al. [R.W.J. Westerhout, J. Waanders, W.P.M. Van Swaaij, Recycling of polyethene and polypropene in a novel bench-scale rotating cone reactor by high-temperature pyrolysis. Ind. Eng. Chem. Res. 37 (6) (1998) 2293-2300] do not adequately predict the experimental results, especially those corresponding to aromatics and char, which is probably due to the very short residence times attained in the conical spouted bed and, consequently, to the lower yields of aromatics and char. The model of best fit is the one where polyethylene degrades to give gas, liquid (oil) and wax fractions. Furthermore, the latter undergoes secondary reactions to give liquid and aromatics, which in turn produce more char. PMID:17337118

  16. In-situ Production of High Density Polyethylene and Other Useful Materials on Mars

    NASA Technical Reports Server (NTRS)

    Flynn, Michael

    2005-01-01

    This paper describes a revolutionary materials structure and power storage concept based on the in-situ production of abiotic carbon 4 compounds. One of the largest single mass penalties required to support the human exploration of Mars is the surface habitat. This proposal will use physical chemical technologies to produce high density polyethylene (HDPE) inflatable structures and construction materials from Mars atmospheric CO2. The formation of polyethylene from Mars CO2 is based on the use of the Sabatier and modified Fischer Tropsch reactions. The proposed system will fully integrate with existing in-situ propellant production concepts. The technology will also be capable of supplementing human caloric requirements, providing solid and liquid fuels for energy storage, and providing significant reduction in mission risk. The NASA Mars Reference Mission Definition Team estimated that a conventional Mars surface habitat structure would weigh 10 tonnes. It is estimated that this technology could reduce this mass by 80%. This reduction in mass will significantly contribute to the reduction in total mission cost need to make a Mars mission a reality. In addition the potential reduction of risk provided by the ability to produce C4 and potentially higher carbon based materials in-situ on Mars is significant. Food, fuel, and shelter are only three of many requirements that would be impacted by this research.

  17. Friction and wear of hydroxyapatite reinforced high density polyethylene against the stainless steel counterface.

    PubMed

    Wang, M; Chandrasekaran, M; Bonfield, W

    2002-06-01

    Hydroxyapatite (HA) reinforced high density polyethylene (HDPE) was invented as a biomaterial for skeletal applications. In this investigation, tribological properties (e.g. wear rate and coefficient of friction) of unfilled HDPE and HA/HDPE composites were evaluated against the duplex stainless steel in dry and lubricated conditions, with distilled water or aqueous solutions of proteins (egg albumen or glucose) being lubricants. Wear tests were conducted in a custom-built test rig for HDPE and HA/HDPE containing up to 40 vol % of HA. It was found that HA/HDPE composites had lower coefficients of friction than unfilled HDPE under certain conditions. HA/HDPE also exhibited less severe fatigue failure marks than HDPE. The degradation and fatigue failure of HDPE due to the presence of proteins were severe for low speed wear testing (100 rpm) as compared to high speed wear testing (200 rpm). This was due possibly to the high shear rate at the contact which could remove any degraded film instantaneously at high sliding speed, while with a low sliding speed the build-up of a degraded layer of protein could occur. The degraded protein layer would stay at the contact for a longer time and mechanical activation would induce adverse reactions, weakening the surface layer of HDPE. Both egg albumen and glucose were found to be corrosive to steel and adversely reactive for HDPE and HA/HDPE composites. The wear modes observed were similar to that of ultra-high molecular weight polyethylene. Specimens tested with egg albumen also displayed higher wear rates, which was again attributed to corrosion accelerated wear. PMID:15348592

  18. Preparation and properties of banana fiber-reinforced composites based on high density polyethylene (HDPE)/Nylon-6 blends.

    PubMed

    Liu, H; Wu, Q; Zhang, Q

    2009-12-01

    Banana fiber (BaF)-filled composites based on high density polyethylene (HDPE)/Nylon-6 blends were prepared via a two-step extrusion method. Maleic anhydride grafted styrene/ethylene-butylene/styrene triblock polymer (SEBS-g-MA) and maleic anhydride grafted polyethylene (PE-g-MA) were used to enhance impact performance and interfacial bonding between BaF and the resins. Mechanical, crystallization/melting, thermal stability, water absorption, and morphological properties of the composites were investigated. In the presence of SEBS-g-MA, better strengths and moduli were found for HDPE/Nylon-6 based composites compared with corresponding HDPE based composites. At a fixed weight ratio of PE-g-MA to BaF, an increase of BaF loading up to 48.2 wt.% led to a continuous improvement in moduli and flexural strength of final composites, while impact toughness was lowered gradually. Predicted tensile modulus by the Hones-Paul model for three-dimensional random fiber orientation agreed well with experimental data at the BaF loading of 29.3 wt.%. However, the randomly-oriented fiber models underestimated experimental data at higher fiber levels. It was found that the presence of SEBS-g-MA had a positive influence on reinforcing effect of the Nylon-6 component in the composites. Thermal analysis results showed that fractionated crystallization of the Nylon-6 component in the composites was induced by the addition of both SEBS-g-MA and PE-g-MA. Thermal stability of both composite systems differed slightly, except an additional decomposition peak related to the minor Nylon-6 for the composites from the HDPE/Nylon-6 blends. In the presence of SEBS-g-MA, the addition of Nylon-6 and increased BaF loading level led to an increase in the water absorption value of the composites. PMID:19574041

  19. The use of high-density porous polyethylene as a custom-made nasal spreader graft.

    PubMed

    Gürlek, Ali; Celik, Mehmet; Fariz, Alpay; Ersöz-Oztürk, Ayşe; Eren, Ahmet T; Tenekeci, Göktekin

    2006-01-01

    The concept and technique of using high-density porous polyethylene (HDPP), a nonresorbable synthetic material, for nasal spreader grafts, are presented. This material is thought to be particularly useful in revision (secondary or tertiary) rhinoplasty, in which internal valve collapse frequently is confronted and septal cartilage often is unavailable because it has been harvested for spreader or other grafts. Sold as a thin plain sheet (0.85 x 38 x 50 mm) that can be cut to an appropriate size for spreader grafts, HDPP is a ready-to-use material commercially available on the market. Because HDPP permits ingrowths of fibrous tissue inside and around, it is a nonabsorbable material that stabilizes the upper lateral cartilages in their new position and maintains the appropriate internal valve angle. The authors used this material for 15 patients undergoing secondary (n = 12) and tertiary (n = 3) rhinoplasty because of valvular collapse. During the mean follow-up period of 16 months (range, 8-30 months), neither complication nor recurrence of airway obstruction occurred. PMID:16411156

  20. Separation of bimodal high density polyethylene using multidimensional high temperature liquid chromatography.

    PubMed

    Prabhu, K N; Brüll, R; Macko, T; Remerie, K; Tacx, J; Garg, P; Ginzburg, A

    2015-11-01

    High-temperature two-dimensional liquid chromatography (HT 2D-LC) using HT-HPLC as first dimension and HT-SEC as second dimension holds enormous potential to investigate the distribution according to molar mass and chemical composition of bimodal high density polyethylene (BiHDPE), as it avoids drawbacks of crystallization-based techniques. In this study, we have stepwise optimized the chromatographic parameters of 1D, comprising gradient slope and temperature, using model homo- and copolymers of ethylene with the aim to minimize the impact of molar mass on the compositional separation. Then the HT-HPLC was hyphenated to HT-SEC and optimum conditions for the volume of the sample transfer loop were probed with regard to the resolution of BiHDPE into the individual constituents HDPE and LLDPE. A particular important aspect was the use of infrared (IR) detection, and the demands it puts on the chromatographic aspects: We have shown that IR detection can be successfully applied in HT 2D-LC of BiHDPE, which is broadly distributed with regard to short chain branching and molar mass, only when the separation in 2D is optimized with regard to chromatographic resolution. As final result a bimodality is evident in the contour and the 3D surface plots as well as in both HPLC and SEC projections generated from HT 2D-LC. PMID:26435312

  1. Current Activities Assessing Butt Fusion Joint Integrity in High Density Polyethylene Piping

    SciTech Connect

    Crawford, Susan L.; Cinson, Anthony D.; Doctor, Steven R.; Denslow, Kayte M.

    2012-09-01

    The Pacific Northwest National Laboratory (PNNL) in Richland, Washington, conducted initial studies to evaluate the effectiveness of nondestructive examinations (NDE) coupled with mechanical testing for assessing butt fusion joint integrity in high density polyethylene (HDPE) pipe. The work provided insightful information to the United States Nuclear Regulatory Commission (NRC) on the effectiveness of volumetric inspection techniques for detecting lack of fusion (LOF) conditions in the fusion joints. HDPE has been installed on a limited basis in American Society of Mechanical Engineers (ASME) Class 3, buried piping systems at several operating U.S. nuclear power plants and has been proposed for use in new construction. A comparison was made between the results from ultrasonic and microwave nondestructive examinations and the results from mechanical destructive evaluations, specifically the high-speed tensile test and the side-bend test, for determining joint integrity. The data comparison revealed that none of the NDE techniques detected all of the lack-of-fusion conditions that were revealed by the destructive tests. Follow-on work has recently been initiated at PNNL to accurately characterize the NDE responses from machined flaws of varying size and location in PE 4710 materials as well as the LOF condition. This effort is directed at quantifying the ability of volumetric NDE techniques to detect flaws in relation to the critical flaw size associated with joint integrity. A status of these latest investigations is presented.

  2. Modeling benzene permeation through drinking water high density polyethylene (HDPE) pipes.

    PubMed

    Mao, Feng; Ong, Say Kee; Gaunt, James A

    2015-09-01

    Organic compounds such as benzene, toluene, ethyl benzene and o-, m-, and p-xylene from contaminated soil and groundwater may permeate through thermoplastic pipes which are used for the conveyance of drinking water in water distribution systems. In this study, permeation parameters of benzene in 25 mm (1 inch) standard inside dimension ratio (SIDR) 9 high density polyethylene (HDPE) pipes were estimated by fitting the measured data to a permeation model based on a combination of equilibrium partitioning and Fick's diffusion. For bulk concentrations between 6.0 and 67.5 mg/L in soil pore water, the concentration-dependent diffusion coefficients of benzene were found to range from 2.0×10(-9) to 2.8×10(-9) cm2/s while the solubility coefficient was determined to be 23.7. The simulated permeation curves of benzene for SIDR 9 and SIDR 7 series of HDPE pipes indicated that small diameter pipes were more vulnerable to permeation of benzene than large diameter pipes, and the breakthrough of benzene into the HDPE pipe was retarded and the corresponding permeation flux decreased with an increase of the pipe thickness. HDPE pipes exposed to an instantaneous plume exhibited distinguishable permeation characteristics from those exposed to a continuous source with a constant input. The properties of aquifer such as dispersion coefficients (DL) also influenced the permeation behavior of benzene through HDPE pipes. PMID:26322761

  3. Catalytic degradation of high-density polyethylene over different zeolitic structures

    SciTech Connect

    Manos, G.; Garforth, A.; Dwyer, J.

    2000-05-01

    The catalytic degradation of high-density polyethylene to hydrocarbons was studied over different zeolites. The product range was typically between C{sub 3} and C{sub 15} hydrocarbons. Distinctive patterns of product distribution were found with different zeolitic structures. Over large-pore ultrastable Y, Y, and {beta} zeolites, alkanes were the main products with less alkenes and aromatics and only very small amounts of cycloalkanes and cycloalkenes. Medium-pore mordenite and ZSM-5 gave significantly more olefins. In the medium-pore zeolites secondary bimolecular reactions were sterically hindered, resulting in higher amounts of alkenes as primary products. The hydrocarbons formed with medium-pore zeolites were lighter than those formed with large-pore zeolites. The following order was found regarding the carbon number distribution: (lighter products) ZSM-5 < mordenite < {beta} < Y < US-Y (heavier products). A similar order was found regarding the bond saturation: (more alkenes) ZSM-5 < mordenite < {beta} < Y < US-Y (more alkanes). Dependent upon the chosen zeolite, a variety of products was obtained with high values as fuel, confirming catalytic degradation of polymers as a promising method of waste plastic recycling.

  4. PORTSMOUTH ON-SITE DISPOSAL CELL HIGH DENSITY POLYETHYLENE GEOMEMBRANE LONGEVITY

    SciTech Connect

    Phifer, M.

    2012-01-31

    It is anticipated that high density polyethylene (HDPE) geomembranes will be utilized within the liner and closure cap of the proposed On-Site Disposal Cell (OSDC) at the Portsmouth Gaseous Diffusion Plant. The likely longevity (i.e. service life) of HDPE geomembranes in OSDC service is evaluated within the following sections of this report: (1) Section 2.0 provides an overview of HDPE geomembranes, (2) Section 3.0 outlines potential HDPE geomembranes degradation mechanisms, (3) Section 4.0 evaluates the applicability of HDPE geomembrane degradation mechanisms to the Portsmouth OSDC, (4) Section 5.0 provides a discussion of the current state of knowledge relative to the longevity (service life) of HDPE geomembranes, including the relation of this knowledge to the Portsmouth OSDC, and (5) Section 6.0 provides summary and conclusions relative to the anticipated service life of HDPE geomembranes in OSDC service. Based upon this evaluation it is anticipated that the service life of HDPE geomembranes in OSDC service would be significantly greater than the 200 year service life assumed for the OSDC closure cap and liner HDPE geomembranes. That is, a 200 year OSDC HDPE geomembrane service life is considered a conservative assumption.

  5. Shape stabilised phase change materials (SSPCMs): High density polyethylene and hydrocarbon waxes

    SciTech Connect

    Mu, Mulan E-mail: m.basheer@qub.ac.uk; Basheer, P. A. M. E-mail: m.basheer@qub.ac.uk; Bai, Yun; McNally, Tony

    2014-05-15

    Shape stabilised phase change materials (SSPCMs) based on high density polyethylene (HDPE) with high (HPW, T{sub m}=56-58 °C) and low (L-PW, T{sub m}=18-23 °C) melting point waxes were prepared by melt-mixing in a twin-screw extruder and their potential in latent heat thermal energy storage (LHTES) applications for housing assessed. The structure and morphology of these blends were investigated by scanning electron microscopy (SEM). Both H-PW and L-PW were uniformly distributed throughout the HDPE matrix. The melting point and latent heat of the SSPCMs were determined by differential scanning calorimetry (DSC). The results demonstrated that both H-PW and L-PW have a plasticisation effect on the HDPE matrix. The tensile and flexural properties of the samples were measured at room temperature (RT, 20±2 °C) and 70 °C, respectively. All mechanical properties of HDPE/H-PW and HDPE/L-PW blends decreased from RT to 70 °C. In all instances at RT, modulus and stress, irrespective of the mode of deformation was greater for the HDPE/H-PW blends. However, at 70 °C, there was no significant difference in mechanical properties between the HDPE/H-PW and HDPE/L-PW blends.

  6. Dielectric, thermal and mechanical properties of zirconium silicate reinforced high density polyethylene composites for antenna applications.

    PubMed

    Varghese, Jobin; Nair, Dinesh Raghavan; Mohanan, Pezholil; Sebastian, Mailadil Thomas

    2015-06-14

    A low cost and low dielectric loss zirconium silicate (ZrSiO4) reinforced HDPE (high-density polyethylene) composite has been developed for antenna applications. The 0-3 type composite is prepared by dispersing ZrSiO4 fillers for various volume fractions (0.1 to 0.5) in the HDPE matrix by the melt mixing process. The composite shows good microwave dielectric properties with a relative permittivity of 5.6 and a dielectric loss of 0.003 at 5 GHz at the maximum filler loading of 0.5 volume fraction. The composite exhibits low water absorption, excellent thermal and mechanical properties. It shows a water absorption of 0.03 wt%, a coefficient of thermal expansion of 70 ppm per °C and a room temperature thermal conductivity of 2.4 W mK(-1). The composite shows a tensile strength of 22 MPa and a microhardness of 13.9 kg mm(-2) for the filler loading of 0.5 volume fraction. The HDPE-ZrSiO4 composites show good dielectric, thermal and mechanical properties suitable for microwave soft substrate applications. A microstrip patch antenna is designed and fabricated using the HDPE-0.5 volume fraction ZrSiO4 substrate and the antenna parameters are investigated. PMID:25981704

  7. Impact of using high-density polyethylene geomembrane layer as landfill intermediate cover on landfill gas extraction.

    PubMed

    Chen, Zezhi; Gong, Huijuan; Zhang, Mengqun; Wu, Weili; Liu, Yu; Feng, Jin

    2011-05-01

    Clay is widely used as a traditional cover material for landfills. As clay becomes increasingly costly and scarce, and it also reduces the storage capacity of landfills, alternative materials with low hydraulic conductivity are employed. In developing countries such as China, landfill gas (LFG) is usually extracted for utilization during filling stage, therefore, the intermediate covering system is an important part in a landfill. In this study, a field test of LFG extraction was implemented under the condition of using high-density polyethylene (HDPE) geomembrane layer as the only intermediate cover on the landfill. Results showed that after welding the HDPE geomembranes together to form a whole airtight layer upon a larger area of landfill, the gas flow in the general pipe increased 25% comparing with the design that the HDPE geomembranes were not welded together, which means that the gas extraction ability improved. However as the heat isolation capacity of the HDPE geomembrane layer is low, the gas generation ability of a shallow landfill is likely to be weakened in cold weather. Although using HDPE geomembrane layer as intermediate cover is acceptable in practice, the management and maintenance of it needs to be investigated in order to guarantee its effective operation for a long term. PMID:21232931

  8. Effect of cooling rate on the properties of high density polyethylene/multi-walled carbon nanotube composites

    SciTech Connect

    Xiang, Dong; Harkin-Jones, Eileen; Linton, David

    2015-05-22

    High density polyethylene (HDPE)/multi-walled carbon nanotube (MWCNT) nanocomposites were prepared by melt mixing using twin-screw extrusion. The extruded pellets were compression moulded at 200°C for 5min followed by cooling at different cooling rates (20°C/min and 300°C/min respectively) to produce sheets for characterization. Scanning electron microscopy (SEM) shows that the MWCNTs are uniformly dispersed in the HDPE. At 4 wt% addition of MWCNTs composite modulus increased by over 110% compared with the unfilled HDPE (regardless of the cooling rate). The yield strength of both unfilled and filled HDPE decreased after rapid cooling by about 10% due to a lower crystallinity and imperfect crystallites. The electrical percolation threshold of composites, irrespective of the cooling rate, is between a MWCNT concentration of 1∼2 wt%. Interestingly, the electrical resistivity of the rapidly cooled composite with 2 wt% MWCNTs is lower than that of the slowly cooled composites with the same MWCNT loading. This may be due to the lower crystallinity and smaller crystallites facilitating the formation of conductive pathways. This result may have significant implications for both process control and the tailoring of electrical conductivity in the manufacture of conductive HDPE/MWCNT nanocomposites.

  9. Porous high-density polyethylene in functional rhinoplasty: Excellent long-term aesthetic results and safety

    PubMed Central

    Kim, Young Hyo; Jang, Tae Young

    2014-01-01

    BACKGROUND: Experience with the use of porous high-density polyethylene (PHDPE) for reconstruction of the nasal framework has been limited. OBJECTIVE: To confirm the safety and utility of PHDPE by analyzing aesthetic outcomes and assessing the frequency of complication related to PHDPE in a large, population-based, long-term follow-up study. METHODS: A total of 151 patients who had undergone septoplasty and/or functional rhinoplasty using PHDPE were enrolled. PHDPE sheets were used for diverse purposes such as septal extension graft, spreader graft, columellar strut or dorsal augmentation graft. After a long-term follow-up period (mean [± SD] 39.5±27.8 months; range six to 101 months), postoperative aesthetic outcome was evaluated objectively (by independent surgeons) and subjectively (patient self-report). Complications related to PHDPE were estimated through review of medical records. RESULTS: The most common use of the PHDPE graft was for septal extension (n=80 [42.6%]) and spreader graft (n=58 [30.9%]). Results of aesthetic evaluation by surgeons were excellent in 61 cases (40.4%), good in 54 (35.8%) and fair in 34 (22.5%). According to patient self-report, 100 were ‘satisfied’ (66.2%) and 36 rated their new profile as ‘better than the preoperative profile’ (23.8%). Complications were reported in six cases (4.0% [five cases of extrusion and one case of infection]). All complications were resolved after the surgical removal of PHDPE sheets under local anesthesia. CONCLUSION: The present study demonstrated that PHDPE could be used in functional primary rhinoplasty with excellent long-term aesthetic results and safety. PMID:25152641

  10. Perfluorinated carboxylic acids in directly fluorinated high-density polyethylene material.

    PubMed

    Rand, Amy A; Mabury, Scott A

    2011-10-01

    Perfluorinated carboxylic acids (PFCAs) are ubiquitous in the environment and have been detected in human blood worldwide. One potential route is direct exposure to PFCAs through contact with polymers that have been fluorinated through a process referred to as direct fluorination. PFCAs are hypothesized to be reaction byproducts of direct fluorination when trace amounts of oxygen are present. The objective of this research was to investigate whether PFCAs could be measured in directly fluorinated high-density polyethylene (HDPE) bottles. PFCAs were quantified using Soxhlet extraction with methanol, followed by LC-MS/MS analysis. Total concentrations of PFCAs ranged from 8.5 ± 0.53 to 113 ± 2.5 ng/bottle (1 L), with the short-chain PFCAs, perfluoropropanoic, perfluorobutanoic, perfluoropentanoic, and perfluorohexanoic acids, being the dominant congeners observed. Relative PFCA concentrations varied depending on fluorination level. Structural isomers were detected using (19)F NMR and are hypothesized to have formed during the fluorination process; NMR data revealed the linear isomer typically comprised 55% of the examined sample. Internally branched, isopropyl branched, and t-butyl PFCA isomers of varying chain length were also identified. Electrochemical fluorination was previously thought to be the only source of branched PFCA isomers. The observation here of branched isomers suggests direct fluorination may be an additional source of exposure to these chemicals. The purpose of this study was to measure PFCAs in directly fluorinated material, serving as a previously unidentified source contributing to the environmental load of PFCAs, with potential for human exposure. PMID:21688793

  11. Synthesis of manganese stearate for high density polyethylene (HDPE) and its biodegradation

    NASA Astrophysics Data System (ADS)

    Aras, Neny Rasnyanti M.; Arcana, I. Made

    2015-09-01

    An oxidant additive is one type of additive used for oxo-biodegradable polymers. This additive was prepared by reaction multivalent transition metals and fatty acids to accelerate the degradation process of polymers by providing a thermal treatment or irradiation with light. This study focused on the synthesis of manganese stearate as an additive for application in High Density Polyethylene (HDPE), and the influence of manganese stearate on the characteristics of HDPE including their biodegradability. Manganese stearate was synthesized by the reaction of stearic acid with sodium hydroxide, and sodium stearate formed was reacted with manganese chloride tetrahydrate to form manganese stearate with a melting point of 100-110 °C. Based on the FTIR spectrum showed absorption peak at wave number around 1560 cm-1 which is an asymmetric vibration of CO functional group that binds to the manganese. The films of oxo-biodegradable polymer were prepared by blending HDPE and manganese stearate additives at various concentrations with using the polymer melting method, followed heating at a temperature of 50°C and 70°C for 10 days. The characterizations of the oxo-biodegradable polymers were carried out by analysis the functional groups (FTIR and ATR),thermal properties (TGA), surface properties (SEM), as well as analysis of the biodegradability (the biodegradation test by using activated sludge, % weight loss). Based on COi indicate that the additive of manganese stearate is active in oxidizing polymer by heating treatment. Results of biodegradation by microorganisms from activated sludge showed that the percentage weight loss of polymers increase with the increasing incubation time and the concentration of manganese stearate in HDPE. Biodegradability of HDPE with the addition of manganese stearate and followed by heating at a higher temperature was better observed. The highest percentage weight loss was obtained at the polymer with concentration of 0.2% manganese stearate

  12. Synthesis of manganese stearate for high density polyethylene (HDPE) and its biodegradation

    SciTech Connect

    Aras, Neny Rasnyanti M. Arcana, I Made

    2015-09-30

    An oxidant additive is one type of additive used for oxo-biodegradable polymers. This additive was prepared by reaction multivalent transition metals and fatty acids to accelerate the degradation process of polymers by providing a thermal treatment or irradiation with light. This study focused on the synthesis of manganese stearate as an additive for application in High Density Polyethylene (HDPE), and the influence of manganese stearate on the characteristics of HDPE including their biodegradability. Manganese stearate was synthesized by the reaction of stearic acid with sodium hydroxide, and sodium stearate formed was reacted with manganese chloride tetrahydrate to form manganese stearate with a melting point of 100-110 °C. Based on the FTIR spectrum showed absorption peak at wave number around 1560 cm{sup −1} which is an asymmetric vibration of CO functional group that binds to the manganese. The films of oxo-biodegradable polymer were prepared by blending HDPE and manganese stearate additives at various concentrations with using the polymer melting method, followed heating at a temperature of 50°C and 70°C for 10 days. The characterizations of the oxo-biodegradable polymers were carried out by analysis the functional groups (FTIR and ATR),thermal properties (TGA), surface properties (SEM), as well as analysis of the biodegradability (the biodegradation test by using activated sludge, % weight loss). Based on COi indicate that the additive of manganese stearate is active in oxidizing polymer by heating treatment. Results of biodegradation by microorganisms from activated sludge showed that the percentage weight loss of polymers increase with the increasing incubation time and the concentration of manganese stearate in HDPE. Biodegradability of HDPE with the addition of manganese stearate and followed by heating at a higher temperature was better observed. The highest percentage weight loss was obtained at the polymer with concentration of 0.2% manganese

  13. Wear of the high-density polyethylene socket in total hip arthroplasty and its role in endosteal cavitation.

    PubMed

    Wroblewski, B M

    1997-01-01

    High-density polyethylene (HDP) has been used in clinical practice in total hip replacement since its introduction by Charnley in November 1962. Fears are being expressed that this may be the weakest link and the ultimate cause of failure of the arthroplasty. Long-term clinical experience suggests that loosening may be the primary cause while the presence of HDP wear particles is secondary. Healing of endosteal cavities can take place in the presence of HDP wear particles. PMID:9141896

  14. Degradation of lindane and hexachlorobenzene in supercritical carbon dioxide using palladium nanoparticles stabilized in microcellular high-density polyethylene.

    PubMed

    Wu, Bei-Zen; Chen, GuanYu; Yak, HwaKwang; Liao, Weisheng; Chiu, KongHwa; Peng, Shie-Ming

    2016-06-01

    Palladium nanoparticles stabilized in microcellular high-density polyethylene prepared through supercritical foaming, supercritical impregnation, and H2 reduction are used for the hydrodechlorination of lindane and hexachlorobenzene in supercritical carbon dioxide below 100 °C. Both lindane and hexachlorobenzene can be almost 100% transformed to cyclohexane in 1 h. Reaction intermediates, such as lower chlorinated products or benzene, are not observed or exist in trace amount indicating that most of them may undergo reactions without leaving the metal surface. PMID:26994428

  15. Shear-horizontal surface acoustic wave phononic device with high density filling material for ultra-low power sensing applications

    SciTech Connect

    Richardson, M.; Bhethanabotla, V. R.; Sankaranarayanan, S. K. R. S.

    2014-06-23

    Finite element simulations of a phononic shear-horizontal surface acoustic wave (SAW) sensor based on ST 90°-X Quartz reveal a dramatic reduction in power consumption. The phononic sensor is realized by artificially structuring the delay path to form an acoustic meta-material comprised of a periodic microcavity array incorporating high-density materials such as tantalum or tungsten. Constructive interference of the scattered and secondary reflected waves at every microcavity interface leads to acoustic energy confinement in the high-density regions translating into reduced power loss. Tantalum filled cavities show the best performance while tungsten inclusions create a phononic bandgap. Based on our simulation results, SAW devices with tantalum filled microcavities were fabricated and shown to significantly decrease insertion loss. Our findings offer encouraging prospects for designing low power, highly sensitive portable biosensors.

  16. A Major Intermediate Component in Drawn High-Density Polyethylene Identified by Solid-State NMR

    NASA Astrophysics Data System (ADS)

    Mowery, Daniel; Schmidt-Rohr, Klaus

    2001-03-01

    In a commercial polyethylene (HDPE) highly drawn at 295 K, a distinct morphological component intermediate to the crystalline and the almost isotropic amorphous phases has been identified by solid-state nuclear magnetic resonance (NMR). This intermediate component accounts for nearly 25% of the material bulk, exceeding the amorphous fraction at the highest draw ratios. In the neat isotropic material examined for reference, the NMR-derived composition shows excellent agreement with other techniques. 13C NMR isotropic chemical shifts of the intermediate component, whose signal was selected using an “inverse T1,C filter”, prove chains of nearly all-trans conformations; the line width indicates significant disorder. Reduction of dipolar couplings and the chemical-shift anisotropy show fast rotations of 30 50 deg. amplitude around the chain axes. The degree of orientation of the chain axes is high. Spin diffusion experiments suggest that the intermediate component consists mostly of extended chain bundles closely associated with the amorphous phase (tie-molecule bundles ?).

  17. Atomic force microscopic study of the structure of high-density polyethylene deformed in liquid medium by crazing mechanism.

    PubMed

    Bagrov, D V; Yarysheva, A Y; Rukhlya, E G; Yarysheva, L M; Volynskii, A L; Bakeev, N F

    2014-02-01

    A procedure has been developed for the direct atomic force microscopic (AFM) examination of the native structure of high-density polyethylene (HDPE) deformed in an adsorption-active liquid medium (AALM) by the crazing mechanism. The AFM investigation has been carried out in the presence of a liquid medium under conditions preventing deformed films from shrinkage. Deformation of HDPE in AALM has been shown to proceed through the delocalized crazing mechanism and result in the development of a fibrillar-porous structure. The structural parameters of the crazed polymer have been determined. The obtained AFM images demonstrate a nanosized nonuniformity of the deformation and enable one to observe the structural rearrangements that take place in the deformed polymer after removal of the liquid medium and stress relaxation. A structural similarity has been revealed between HDPE deformed in the AALM and hard elastic polymers. PMID:24283329

  18. Solidification behavior of high-density polyethylene (HDPE) during injection molding: Correlation between crystallization kinetics and thermal gradient field

    NASA Astrophysics Data System (ADS)

    Yang, Bin; Deng, Yan-Li; Li, Gui-Jing; Miao, Ji-Bin; Xia, Ru; Qian, Jia-Sheng; Chen, Peng; Liu, Jing-Wang

    2015-07-01

    This work mainly investigated the effect of thermal field on the crystallization kinetics of high-density polyethylene (HDPE) during injection molding (IM) process. The thickness X = 0.4 was found to be a crucial location heavily influenced by thermal conduction. The temperature decay tended to be stable, with limited variation of the crystallization rate when X > 0.4. It was observed that the crystallization rate was in good proportion to the cooling rate (ϕ). Our experimental finding showed that the consequence of relative crystallinity (χ) was in agreement with that of the secondary temperature difference (STD). This study is practically significant to the further investigation on the relationship among “processing-structure-property” of polymeric materials.

  19. Thermal, tensile and rheological properties of high density polyethylene (HDPE) processed and irradiated by gamma-ray in different atmospheres

    SciTech Connect

    Ferreto, H. F. R. E-mail: ana-feitoza@yahoo.com.br; Oliveira, A. C. F. E-mail: ana-feitoza@yahoo.com.br; Parra, D. F. E-mail: ablugao@ipen.br; Lugão, A. B. E-mail: ablugao@ipen.br; Gaia, R.

    2014-05-15

    The aim of this paper is to investigate structural changes of high density polyethylene (HDPE) modified by ionizing radiation (gamma rays) in different atmospheres. The gamma radiation process for modification of commercial polymers is a widely applied technique to promote new physical-chemical and mechanical properties. Gamma irradiation originates free radicals which can induce chain scission or recombination, providing its annihilation, branching or crosslinking. This polymer was irradiated with gamma source of {sup 60}Co at doses of 5, 10, 20, 50 or 100 kGy at a dose rate of 5 kGy/h. The changes in molecular structure of HDPE, after gamma irradiations were evaluated using thermogravimetric analysis (TGA) and tensile machine and oscillatory rheology. The results showed the variations of the properties depending on the dose at each atmosphere.

  20. Thermal and mechanical properties of e-beam irradiated butt-fusion joint in high-density polyethylene pipes

    NASA Astrophysics Data System (ADS)

    Vijayan, Vipin; Pokharel, Pashupati; Kang, Min Kwan; Choi, Sunwoong

    2016-05-01

    The effects of electron beam irradiation on the thermal and mechanical properties of a butt-fusion joint in high density polyethylene (HDPE) pipes were investigated. Differential scanning calorimetry, X-ray diffraction, and Fourier transform infra-red spectroscopy of welded samples revealed the changes of crystallinity due to the cross linking effect of electron beam irradiation. The suppression of the degree of crystallinity with increasing the irradiation dose from 0 kGy to 500 kGy indicated that the e-beam radiation induced cross-links among the polymer chains at the weld zone. The cross-link junction at the joint of HDPE pipe prevented chain folding and reorganization leading to the formation of imperfect crystallites with smaller size and also less in content. Tensile test of the welded samples with different dose of e-beam irradiation showed the increased values of the yield stress and Young's modulus as a function of irradiation dose. On the other hand, the elongation at break diminished clearly with increasing the irradiation doses.

  1. Influence of γ-ray modified MWCNTs on the structural and thermal properties of high-density polyethylene

    NASA Astrophysics Data System (ADS)

    Ghafoor, Bilal; Mehmood, Malik Sajjad; Shahid, Umair; Baluch, Mansoor A.; Yasin, Tariq

    2016-08-01

    This study aims to investigate the influence of adding 100 kGy γ-irradiated multi wall carbon nano tubes (MWCNTs) on the structural and thermal properties of high-density polyethylene (HDPE). The effects of further γ-irradiation in the presence of γ-MWCNTs on aforementioned properties have also been investigated. FTIR spectroscopic measurements of HDPE and HDPE/γ-MWCNTs composites reveal that modification of MWCNTs with ≤100 kGy of γ-dose reduces its efficiency as free radical quencher. This behavior is found to increase further with the increase in the concentration of γ-MWCNTs. Wide angle X-ray diffraction (WAXD) data shows a decrease in percent crystallinity and shifting of crystalline peaks toward lower values of 2θ angles. This behavior is mainly attributed to the oxidation induced due to residual free radicals. Thermal analysis reveals that addition of γ-MWCNTs decreases the thermal stability as far as onset thermal degradation temperature, percent crystallinity, and melting temperature of UHMWPE/γ-MWCNTs. In addition to this, gel content measurements show that insoluble percentage of UHMWPE is higher with the incorporation γ-MWCNTs and further irradiation. The gel contents are found to improve up to 29% and 60%, respectively with the incorporation of γ-MWCNTs and further irradiation.

  2. Oxygen-sensitive phosphorescent nanomaterials produced from high-density polyethylene films by local solvent-crazing.

    PubMed

    Toncelli, Claudio; Arzhakova, Olga V; Dolgova, Alla; Volynskii, Aleksandr L; Bakeev, Nikolai F; Kerry, Joe P; Papkovsky, Dmitri B

    2014-02-01

    Discrete solid-state phosphorescent oxygen sensors produced by local solvent-crazing of high density polyethylene films are described. The simple spotting of dye solution followed by tensile drawing of the polymer substrate provides uniform nanostructures with good spatial control, effective encapsulation of dye molecules, and quenchability by O2. The dye-polymer composite sensors prepared using toluene as a solvent and stabilized by annealing at high temperature, show moderate optical signals, near-optimal sensitivity to O2 (RSD at 21 KPa 1.9%), and reproducible phosphorescence lifetime readings. Calibration experiments performed over 0-25 kPa O2 and 10-30 °C temperatures ranges reveal linear Stern-Volmer plots and temperature dependences and minimal effect of humidity on sensor calibration. The high degree of lateral and in-depth homogeneity of these O2-sensitive materials was confirmed by high-resolution atomic force and wide-field optical microscopy, including 2D and 3D phosphorescence lifetime imaging. PMID:24422456

  3. Achromobacter xylosoxidans as a new microorganism strain colonizing high-density polyethylene as a key step to its biodegradation.

    PubMed

    Kowalczyk, Anna; Chyc, Marek; Ryszka, Przemysław; Latowski, Dariusz

    2016-06-01

    This study presents results of research on isolation new bacteria strain Achromobacter xylosoxidans able to effect on the structure of high-density polyethylene (HDPE), polymer resistant to degradation in environment. New strain of A. xylosoxidans PE-1 was isolated from the soil and identified by analysis of the 16S ribosome subunit coding sequences. The substance to be degraded was HDPE in the form of thin foil films. The foil samples were analyzed with Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR) as well as scanning electron microscope (SEM), and the results revealed degradation of chemical structure of HDPE. About 9 % loss of weight was also detected as a result of A. xylosoxidans PE-1 effect on HDPE foil. On the basis of comparative spectral analysis of the raw material before the bacteria treatment and the spectrum from a spectra database, it was assumed that the HDPE was the only source of carbon and energy for the microorganisms. No fillers or other additives used in the plastic processing were observed in HDPE before experiments. This is the first communication showing that A. xylosoxidans is able to modify chemical structure of HDPE, what was observed both on FTIR, in mass reduction of HDPE and SEM analysis. We also observed quite good growth of the bacteria also when the HDPE was the sole carbon source in the medium. These results prove that A. xylosoxidans is an organism worth applying in future HDPE biodegradation studies. PMID:27072033

  4. Parameterization of an interfacial force field for accurate representation of peptide adsorption free energy on high-density polyethylene

    PubMed Central

    Abramyan, Tigran M.; Snyder, James A.; Yancey, Jeremy A.; Thyparambil, Aby A.; Wei, Yang; Stuart, Steven J.; Latour, Robert A.

    2015-01-01

    Interfacial force field (IFF) parameters for use with the CHARMM force field have been developed for interactions between peptides and high-density polyethylene (HDPE). Parameterization of the IFF was performed to achieve agreement between experimental and calculated adsorption free energies of small TGTG–X–GTGT host–guest peptides (T = threonine, G = glycine, and X = variable amino-acid residue) on HDPE, with ±0.5 kcal/mol agreement. This IFF parameter set consists of tuned nonbonded parameters (i.e., partial charges and Lennard–Jones parameters) for use with an in-house-modified CHARMM molecular dynamic program that enables the use of an independent set of force field parameters to control molecular behavior at a solid–liquid interface. The R correlation coefficient between the simulated and experimental peptide adsorption free energies increased from 0.00 for the standard CHARMM force field parameters to 0.88 for the tuned IFF parameters. Subsequent studies are planned to apply the tuned IFF parameter set for the simulation of protein adsorption behavior on an HDPE surface for comparison with experimental values of adsorbed protein orientation and conformation. PMID:25818122

  5. Enhanced diesel fuel fraction from waste high-density polyethylene and heavy gas oil pyrolysis using factorial design methodology.

    PubMed

    Joppert, Ney; da Silva, Alexsandro Araujo; da Costa Marques, Mônica Regina

    2015-02-01

    Factorial Design Methodology (FDM) was developed to enhance diesel fuel fraction (C9-C23) from waste high-density polyethylene (HDPE) and Heavy Gas Oil (HGO) through co-pyrolysis. FDM was used for optimization of the following reaction parameters: temperature, catalyst and HDPE amounts. The HGO amount was constant (2.00 g) in all experiments. The model optimum conditions were determined to be temperature of 550 °C, HDPE = 0.20 g and no FCC catalyst. Under such conditions, 94% of pyrolytic oil was recovered, of which diesel fuel fraction was 93% (87% diesel fuel fraction yield), no residue was produced and 6% of noncondensable gaseous/volatile fraction was obtained. Seeking to reduce the cost due to high process temperatures, the impact of using higher catalyst content (25%) with a lower temperature (500 °C) was investigated. Under these conditions, 88% of pyrolytic oil was recovered (diesel fuel fraction yield was also 87%) as well as 12% of the noncondensable gaseous/volatile fraction. No waste was produced in these conditions, being an environmentally friendly approach for recycling the waste plastic. This paper demonstrated the usefulness of using FDM to predict and to optimize diesel fuel fraction yield with a great reduction in the number of experiments. PMID:25532672

  6. Novel cholesterol feeding strategy enables a high-density cultivation of cholesterol-dependent NS0 cells in linear low-density polyethylene-based disposable bioreactors.

    PubMed

    Tao, Yiwen; Yusuf-Makagiansar, Helena; Shih, Jennifer; Ryll, Thomas; Sinacore, Marty

    2012-08-01

    We have developed a perfusion-based high cell density (HD) cell banking and inoculum expansion procedure for a cholesterol-dependent NS0 myeloma cell line using linear low-density polyethylene-based disposable bioreactors. Challenges associated with cholesterol-polymer interactions, which suppress cholesterol-dependent NS0 myeloma cell growth, were overcome using a novel cholesterol feeding protocol that included a combination of two cholesterol formulations: an ethanol-based formulation and an aqueous formulation. Using a cholesterol feed optimized for HD cell culture in a disposable bioreactor perfusion system, cell densities of >25 × 10(6) viable cells/ml at ≥ 90 % cell viability were achieved. Vials of high density cell banks were created by filling 90-100 × 10(6) viable cells/ml in 5 ml cryotube vials. Implementation of the HD cell banks enabled a significant reduction in the number of step operations in the inoculum expansion phase in a large-scale manufacturing setting. PMID:22481299

  7. High density polyethylene (HDPE)/poly(ethylene terephthalate) (PET) polymer blend studies related to recycling co-mingled plastics

    NASA Astrophysics Data System (ADS)

    Tsai, Pang-Yen

    Polymer blends of virgin high density polyethylene (HDPE) and poly(ethylene terephthalate) (PET) were studied as an attempt to relate the microstructure to the mechanical properties of the blends. The virgin blends were prepared by extrusion and then injection molded into specimens for characterization. Two of the virgin blends were tested for possible compatibilization using a styrene-ethylene-butylene-styrene (SEBS) block copolymer. In addition, six blends of post-consumer resins (PCRs) of HDPE and PET were included in this work for comparison. The moduli of the virgin blends showed positive deviation from those expected from the rule of mixtures. The synergism of the composite moduli can be explained partly by a Poisson's effect. Yield strengths of the blends molded at low injection chamber temperatures (200sp°, 230sp°, and 250sp°C) followed the rule of mixtures well, because PET filaments found in the composites had very high length to diameter ratios. When the injection chamber temperature was above the PET melting point (˜254sp°C), PET filaments were found to break down into particles, and the yield strengths of the blends coincided with the values expected from the inverse rule of mixtures. Impact strengths of the virgin blends were much less than that of a HDPE homopolymer due to poor interfacial bonding between HDPE and PET. Compatibilization appeared to be advantageous since it dramatically improved the impact strength of the virgin blends. SEM micrographs of impact fractured surfaces revealed that the improved adhesion from compatibilization and the presence of numerous uniaxially aligned PET filaments in the HDPE substrate can account for the significant increases in fracture resistance of the compatibilized blends. Mechanical performance of the PCRs was inferior to that of the virgin blends. Aside from polymer degradation and contamination due to repeated processing and handling, absence of PET filaments and interfacial bonding could be

  8. Effect of admixed high-density polyethylene (HDPE) spheres on contraction stress and properties of experimental composites.

    PubMed

    Ferracane, J L; Ferracane, L L; Braga, R R

    2003-07-15

    Additives that provide stress relief may be incorporated into dental composites to reduce contraction stress (CS). This study attempted to test the hypothesis that conventional fillers could be replaced by high-density polyethylene (HDPE) spheres in hybrid and nanofill composites to reduce CS, but with minimal effect on mechanical properties. Nanofill and hybrid composites were made from a Bis-GMA/TEGDMA resin having either all silica nanofiller or 75 wt.% strontium glass + 5 wt.% silica and replacing some of the nanofiller or the glass with 0%, 5% (hybrid only), 10% or 20 wt.% HDPE. The surface of the HDPE was either left untreated or had a reactive gas surface treatment (RGST). Contraction stress (CS) was monitored for 10 min in a tensilometer (n = 5) after light curing for 60 s at 390 mW/cm(2). Other specimens (n = 5) were light cured 40 s from two sides in a light-curing unit and aged 1 d in water before testing fracture toughness (K(Ic)), flexure strength (FS), and modulus (E). Results were analyzed by ANOVA with Tukey's multiple comparison test at p < 0.05. There was no difference between composites with RGST and untreated HDPE except for FS-10% HDPE hybrid (RGST higher). An increased level of HDPE reduced contraction stress for both types of composites. Flexure strength, modulus (hybrid only), and fracture toughness were also reduced as the concentration of HDPE increased. SEM showed evidence for HDPE debonding and plastic deformation during fracture of the hybrid composites. In conclusion, the addition of HDPE spheres reduces contraction stress in composites, either through stress relief or a reduction in elastic modulus. PMID:12808590

  9. Methyl bromide emission from fields partially covered with a high-density polyethylene and a virtually impermeable film

    SciTech Connect

    Wang, D.; Yates, S.R.

    1998-09-01

    Recent field studies in the interior valley of southern California have indicated that 56--73% of methyl bromide (MeBr) used in soil fumigation is lost to atmospheric emission when the fields are covered completely with a high-density polyethylene (HDPE) film. The emission can be reduced to less than 5% when a virtually impermeable film or Hytibar is used to cover the fields. This study was conducted to determine MeBr emission from bedded field plots where only the beds were covered with a HDPE or a virtually impermeable plastic film. The results provide an assessment on MeBr emission from field beds partially covered with the HDPE film and the suitability of using a virtually impermeable film for emission reduction. Methyl bromide gas was applied to replicated field beds covered with either a HDPE or the Hytibar film. The films were removed 6 days after MeBr application. Replicated soil cores were taken from different locations of the field beds, 20 days after MeBr application, for the determination of soil bromide ion concentrations. The total amount of MeBr degraded from each plot was calculated from the measured bromide ion concentrations, and the potential emission was determined as the difference between the amount of applied and that of degraded. Results indicated that the potential emission from this bedded system was about 95% for the HDPE treatment and 90% for the Hytibar-covered plots. Regardless of the small improvement with the virtually impermeable film, the experiment clearly indicates that partially covering the field with either a HDPE or a virtually impermeable film would result in unacceptably high emission losses.

  10. From macroplastic to microplastic: Degradation of high-density polyethylene, polypropylene, and polystyrene in a salt marsh habitat.

    PubMed

    Weinstein, John E; Crocker, Brittany K; Gray, Austin D

    2016-07-01

    As part of the degradation process, it is believed that most plastic debris becomes brittle over time, fragmenting into progressively smaller particles. The smallest of these particles, known as microplastics, have been receiving increased attention because of the hazards they present to wildlife. To understand the process of plastic degradation in an intertidal salt marsh habitat, strips (15.2 cm × 2.5 cm) of high-density polyethylene, polypropylene, and extruded polystyrene were field-deployed in June 2014 and monitored for biological succession, weight, surface area, ultraviolet (UV) transmittance, and fragmentation. Subsets of strips were collected after 4 wk, 8 wk, 16 wk, and 32 wk. After 4 wk, biofilm had developed on all 3 polymers with evidence of grazing periwinkles (Littoraria irrorata). The accreting biofilm resulted in an increased weight of the polypropylene and polystyrene strips at 32 wk by 33.5% and 167.0%, respectively, with a concomitant decrease in UV transmittance by approximately 99%. Beginning at 8 wk, microplastic fragments and fibers were produced from strips of all 3 polymers, and scanning electron microscopy revealed surface erosion of the strips characterized by extensive cracking and pitting. The results suggest that the degradation of plastic debris proceeds relatively quickly in salt marshes and that surface delamination is the primary mechanism by which microplastic particles are produced in the early stages of degradation. Environ Toxicol Chem 2016;35:1632-1640. © 2016 SETAC. PMID:26992845

  11. Investigation of pulsed light for terminal sterilization of WFI filled blow/fill/seal polyethylene containers.

    PubMed

    Dunn, J; Burgess, D; Leo, F

    1997-01-01

    A study was performed to assess the ability of pulsed light to sterilize water for injection in blow/fill/seal polyethylene containers. Pulsed light uses intense, short duration flashes of broad spectrum white light to produce high levels of microbial kill. In a first phase of testing, containers of 0.5, 5, 15, and 120 mL nominal volume were inoculated with Bacillus pumilus endospores, Bacillus subtilus variety niger strain globigii endospores, Bacillus stearothermophilus endospores, and Aspergillus niger conidiospores. Approximately 10(6) colony forming units of each test spore were individually inoculated into 22 replicate containers of each sample volume. Two of these containers served as inoculation recovery controls, and 10 were treated using each of two pulsed light exposure methods: single-sided treatment, or treatment within a reflective cavity. Both treatments employed flashes of intense broad spectrum pulsed light delivered at one flash per second. Cavity treatment used 10 flashes to treat each container within a reflective cavity containing a single lamp. Cavity treatment yielded no recoverable survivors for any of the challenge spores from the contents of any of the 160 total samples. Single-sided treatment used 20 approximately 1-J/cm2 flashes from a single lamp-reflector projecting onto one side of the container. Single-sided treatment yielded no recoverable survivors from the contents of the containers for any of the bacterial endospores tested, but Aspergillus niger survival was detected in 4 of the 40 single-side treated samples. A second phase of tests examined the pulsed light inactivation of Bacillus pumilus spores for a range of inoculation levels. High levels of Bacillus pumilus spore kill were obtained using only a few cavity flashes. The results show that pulsed light can provide high levels of microbial lethality and possesses potential for use as a terminal sterilization method for water for injection in filled, sealed polyethylene

  12. Investigation of the structure of cold-drawn high-density polyethylene using solid-state NMR

    NASA Astrophysics Data System (ADS)

    Mowery, Daniel Michael

    In this dissertation, the cold-drawing response of a commercial high-density polyethylene (HDPE) resin has been studied using solid-state nuclear magnetic resonance (NMR) spectroscopy and variety of other complementary techniques. Melt-crystallized, isotropic samples of the HDPE have been drawn to various extensions at ambient temperature (21°C) and at a relatively slow strain rate (0.0013 s-1). Using solid-state NMR, the first unambiguous evidence for a major morphological component intermediate to the crystalline and amorphous domains in the cold-drawn HDPE microstructure has been found. Employing an 'inverse 13 C T1 filter' and other filtering techniques, signals from the various components have been selected and compared. The intermediate component comprises chains of all-trans conformation but with significant disorder in packing. The chains show fast, intermediate-amplitude motions about their axes and are generally aligned with the draw direction, but with a greater distribution of orientation angles relative to crystalline phase. A quantitative 13C NMR procedure has been utilized in the analysis of morphological component composition during cold drawing. In the undeformed material, the NMR-derived composition shows excellent agreement with other common techniques. The mass fraction of the intermediate component has been measured by NMR to be as high as 35% in the cold-drawn HDPE, greater than the contributions from the amorphous domains and monoclinic crystals. The intermediate component content dramatically increases by 240% just after necking, along with a doubling in the monoclinic crystals. At the same time, decreases of about 25% in the total crystalline and amorphous phases occur. A general re-ordering in the microstructure takes place during neck propagation and strain hardening. The total crystallinity rises by about 8%, with a corresponding decrease in the monoclinic crystals (50%) and amorphous material (30%). Based on 1H spin diffusion data, a

  13. Particle Filled Polyethylene Composites Used in the Technology of Rotational Moulding

    NASA Astrophysics Data System (ADS)

    Bútora, Peter; Náplava, Antonín; Ridzoň, Martin; Bílik, Jozef; Tittel, Viktor

    2011-01-01

    The submitted article discusses rotational moulding technology and filled plastics. For testing, linear low density polyethylene filled with talc was used. The materials tested varied way of mixing the filler into the polymer. For the prepared samples were evaluated by tensile, elongation, melt flow index, density, Shore hardness and Vicat softening temperature. Experiments showed that, in principle, it is possible to produce rotational moulding technology filled thermoplastics.

  14. Morphological Considerations in TTF-TCNQ filled Polyethylene Composites

    NASA Astrophysics Data System (ADS)

    Genetti, W. B.; Lamirand, R.; Grady, B. P.

    1998-03-01

    Composites of LDPE filled with the charge transfer complex tetrathiafulvalene-tetracyanoquinodimethane (TTF-TCNQ) were produced by solution casting. Wide angle x-ray scattering and stress relaxation were used to show the effect of filler addition and uniaxial stretching on the PE crystallite orientation. Even without stretching, the films were slightly oriented, but the direction of orientation changed with TTF-TCNQ concentration. The composites with low filler loading were slightly oriented perpendicular to the casting direction, where as the highly loaded composites were oriented slightly parallel to the casting surface. This shift occurred abruptly at the end of the critical region. Orientation in the stretched films increased with increasing draw ratio. However, the increase in orientation resulting from uniaxial stretching decreased with increasing concentration. One explanation for this behavior is that the addition of TTF-TCNQ to the polymer causes a decrease in the relaxation time. This observation was consistent with a drop in initial relaxation times calculated from stress relaxation experiments.

  15. Characterization of solidified radioactive waste and container due to the incorporation of high density polyethylene granules and powder in mortar matrices

    SciTech Connect

    Peric, A.D.

    1999-07-01

    Powder and granules of the high density polyethylene (PEHD) were used to prepare mortar based matrices for immobilization of radioactive waste materials containing {sup 137}Cs, as well as containers for solidified radioactive waste form. Seven types of matrices, differ due to the percentage of granules and filler material added, were investigated. PEHD powder and granules were added to mortar matrix preparations with the objective of improving physico-chemical characteristics of the radwaste-mortar matrix mixtures, in particular the leach-rate of the immobilized radionuclide, as well as mechanical characteristics either of mortar matrix and container. In this paper, only mechanical strength aspect of the investigated mortar and concrete container formulations, is presented. The equivalent diameter of the PEHD granules used was 2.0 mm. PEHD granules were used to replace 100 volume percent of stone granules, sifted size of 2.0 mm, normally used in the matrix preparation, in order to decrease the porosity and density of the mortar matrix and to avoid segregation of the stone particles at the bottom of the immobilized radioactive waste cylindrical form. PEHD powder, particle size of 250 micrometer, was added as filler to the mortar formulation, replacing 5, 8 and 10 wt% of the total cement weight in matrix formulation and 15 and 18 wt% of the total cement weight in container formulation. Cured samples were investigated on mechanical strength, using 150 MPa hydraulic press, in order to determine influence of added polyethylene granules and powder on samples resistance to mechanical forces that solidified waste materials and concrete containers may experience at the disposal site. Results of performed investigations have shown that samples prepared with polyethylene granules, replacing 100 wt% of the stone granules, have almost twice as much mechanical strength than samples prepared with stone aggregate. Samples prepared with PEHD granules and powder have mechanical

  16. Enhancement of mechanical strength of TiO{sub 2}/high-density polyethylene composites for bone repair with silane-coupling treatment

    SciTech Connect

    Hashimoto, Masami . E-mail: masami@jfcc.or.jp; Takadama, Hiroaki . E-mail: takadama@jfcc.or.jp; Mizuno, Mineo . E-mail: mizuno@jfcc.or.jp; Kokubo, Tadashi . E-mail: kokubo@isc.chubu.ac.jp

    2006-03-09

    Mechanical properties of composites made up of high-density polyethylene (HDPE) and silanated TiO{sub 2} particles for use as a bone-repairing material were investigated in comparison with those of the composites of HDPE with unsilanized TiO{sub 2} particles. The interfacial morphology and interaction between silanated TiO{sub 2} and HDPE were analyzed by means of Fourier transform infrared (FT-IR) spectroscopy and scanning electron microscopy (SEM). The absorption in spectral bands related to the carboxyl bond in the silane-coupling agent, the vinyl group in the HDPE, and the formation of the ether bond was studied in order to assess the influence of the silane-coupling agent. The SEM micrograph showed that the 'bridging effect' between HDPE and TiO{sub 2} was brought about by the silane-coupling agent. The use of the silane-coupling agent and the increase of the hot-pressing pressure for shaping the composites facilitated the penetration of polymer into cavities between individual TiO{sub 2} particles, which increased the density of the composite. Therefore, mechanical properties such as bending yield strength and Young's modulus increased from 49 MPa and 7.5 GPa to 65 MPa and 10 GPa, respectively, after the silane-coupling treatment and increase in the hot-pressing pressure.

  17. Efficacy of alphacypermethrin-treated high density polyethylene mesh applied to jet stalls housing horses against Culicoides biting midges in South Africa.

    PubMed

    Page, P C; Labuschagne, K; Venter, G J; Schoeman, J P; Guthrie, A J

    2015-05-30

    The efficacy of alphacypermethrin-treated high density polyethylene (HDPE) mesh applied to jet stalls against Culicoides biting midges (Diptera: Ceratopogonidae) was determined by mechanical aspiration of midges from horses and using Onderstepoort 220 V downdraught black light traps in four blocks of a 3 × 2 randomised design under South African field conditions. The alphacypermethrin-treated HDPE mesh applied to the stall significantly (P = 0.008) reduced the number of Culicoides midges, predominantly Culicoides (Avaritia) imicola Kieffer, mechanically aspirated from horses housed in the stall. The mesh reduced the Culicoides midge attack rate in the treated stall compared to the untreated stall and a sentinel horse by 6 times and 14 times, respectively. The number of Culicoides midges and C. imicola collected in light traps from the untreated and alphacypermethrin HDPE mesh-treated stalls did not differ significantly (P = 0.82). Alphacypermethrin-treated HDPE mesh could be used to reduce exposure of horses in jet stalls to Culicoides midges, specifically C. imicola, and the risk of midge-borne Orbivirus transmission. PMID:25794942

  18. Heat shrinkable behavior, physico-mechanical and structure properties of electron beam cross-linked blends of high-density polyethylene with acrylonitrile-butadiene rubber

    NASA Astrophysics Data System (ADS)

    Reinholds, Ingars; Kalkis, Valdis; Merijs-Meri, Remo; Zicans, Janis; Grigalovica, Agnese

    2016-03-01

    In this study, heat-shrinkable composites of electron beam irradiated high-density polyethylene (HDPE) composites with acrylonitrile-butadiene rubber (NBR) were investigated. HDPE/NBR blends at a ratio of components 100/0, 90/10, 80/20, 50/50 and 20/80 wt% were prepared using a two-roll mill. The compression molded films were irradiated high-energy (5 MeV) accelerated electrons up to irradiation absorbed doses of 100-300 kGy. The effect of electron beam induced cross-linking was evaluated by the changes of mechanical properties, gel content and by the differences of thermal properties, detected by differential scanning calorimetry. The thermo-shrinkage forces were determined as the kinetics of thermorelaxation and the residual shrinkage stresses of previously oriented (stretched up to 100% at above melting temperature of HDPE and followed by cooling to room temperature) specimens of irradiated HDPE/NBR blends under isometric heating-cooling mode. The compatibility between the both components was enhanced due to the formation of cross-linked sites at amorphous interphase. The results showed increase of mechanical stiffness of composites with increase of irradiation dose. The values of gel fraction compared to thermorelaxation stresses increased with the growth of irradiation dose level, as a result of formation cross-linked sites in amorphous PP/NBR interphase.

  19. Heat transfer performance of a phase-change thermal energy storage water heater using cross-linked high density polyethylene pellets

    SciTech Connect

    Jotshi, C.K.; Klausner, J.F.; Goswami, D.Y.; Hsieh, C.K.; Santhosh, M.K.; Colacino, F.

    1996-12-31

    The objective of this investigation was to develop an efficient water heater that stores thermal energy in a mixture of cross-linked high density polyethylene (HDPE) pellets and propylene glycol. Properties of cross-linked HDPE, such as melting and crystallization temperatures, heat of fusion and crystallization, and volume change were measured in the laboratory. The heat transfer coefficient for the mixture was also measured in a laboratory test. A prototype model of a storage water heater using a mixture of cross-linked HDPE pellets and propylene glycol was designed and fabricated. A copper finned heat transfer coil was used to extract the heat from the storage tank by passing water through it. The heat transfer efficiency (heat extracted by water/heat stored) was measured to be about 70%. To increase the efficiency, the storage unit was modified. In the modified unit, the length of the heat transfer coil was increased and coil spacing optimized. With the modification, the heat transfer efficiency was measured to be about 90%. In addition, a variable heat flux heating element, having high heat flux at the bottom and low heat flux at top, was used to reduce thermal stratification of the propylene glycol/HDPE pellet mixture.

  20. Method for assessing lead, cadmium, mercury and arsenic in high-density polyethylene packaging and study of the migration into yoghurt and simulant.

    PubMed

    Kiyataka, Paulo Henrique M; Dantas, Sílvia T; Pallone, Juliana Azevedo Lima

    2014-01-01

    The purpose of this paper was to assess the concentration of lead (Pb), cadmium (Cd), mercury (Hg) and arsenic (As) in high-density polyethylene (HDPE) packaging intended for contact with yoghurt and the migration of these elements using the food itself and 3% acetic acid as a food simulant in accordance to ANVISA, the Brazilian Health Surveillance Agency. In order to perform this study, it was necessary to develop and validate a method by inductively coupled plasma optical emission spectroscopy (ICP-OES) analysis. For method validation, the parameters linearity, limits of detection (LODs) and quantification (LOQs), accuracy and precision were determined. Fifteen commercial samples of yoghurt, marketed in Campinas - São Paulo (Brazil), were used for the analysis. The packaging and yoghurt were digested in high-pressure ashing equipment (HPA) and the migration of the elements into simulant were determined directly in the solution. The validated method proved adequate and the results obtained showed that all the packaging had levels of Hg and Cd below the LOQ, corresponding to 1.0 and 1.5 μg l(-1), respectively. The highest levels of As and Pb were 0.87 and 462.3 mg kg(-1), respectively. The migration of these elements to the yoghurt after 45 days of contact at 4ºC was below the LOQ for all the samples assessed. The results of specific migration into 3% acetic acid simulant showed the concentrations of Cd, Hg and As below 5, 5 and 10 µg kg(-1), respectively, which are the maximum limits set by ANVISA. However, for three samples the packaging lid showed migration of Pb into simulant ranging from 30.6 to 40.2 μg kg(-1), exceeding the limit set by ANVISA of 10 μg kg(-1). PMID:24444394

  1. Post-consumer contamination in high-density polyethylene (HDPE) milk bottles and the design of a bottle-to-bottle recycling process.

    PubMed

    Welle, F

    2005-10-01

    Six hundred conventional recycled HDPE flake samples, which were recollected and sorted in the UK, were screened for post-consumer contamination levels. Each analysed sample consisted of 40-50 individual flakes so that the amount of analysed individual containers was in the range 24,000-30,000 post-consumer milk bottles. Predominant contaminants in hot-washed flake samples were unsaturated oligomers, which can be also be found in virgin high-density polyethylene (HDPE) pellet samples used for milk bottle production. In addition, the flavour compound limonene, the degradation product of antioxidant additives di-tert-butylphenol and low amounts of saturated oligomers were found in higher concentrations in the post-consumer samples in comparison with virgin HDPE. However, the overall concentrations in post-consumer recycled samples were similar to or lower than concentration ranges in comparison with virgin HDPE. Contamination with other HDPE untypical compounds was rare and was in most cases related to non-milk bottles, which are <2.1% of the input material of the recycling process. The maximum concentration found in one sample of 1 g was estimated as 130 mg kg(-1), which corresponds to a contamination of 5200-6500 mg kg(-1) in the individual bottle. The recycling process investigated was based on an efficient sorting process, a hot-washing of the ground bottles, and a further deep-cleaning of the flakes with high temperatures and vacuum. Based on the fact that the contamination levels of post-consumer flake samples are similar to virgin HDPE and on the high cleaning efficiency of the super-clean recycling process especially for highly volatile compounds, the recycling process investigated is suitable for recycled post-consumer HDPE bottles for direct food-contact applications. However, hand-picking after automatically sorting is recommended to decrease the amount of non-milk bottles. The conclusions for suitability are valid, provided that the migration testing of

  2. Criticality Evaluation of Plutonium-239 Moderated by High-Density Polyethylene in Stainless Steel and Aluminum Containers Suitable for Non-Exclusive Use Transport

    SciTech Connect

    Watson, T T

    2007-08-10

    Research is conducted at the Joint Actinide Shock Physics Experimental Facility (JASPER) on the effects of high pressure and temperature environments on plutonium-239, in support of the stockpile stewardship program. Once an experiment has been completed, it is necessary to transport the end products for interim storage or final disposition. Federal shipping regulations for nonexclusive use transportation require that no more than 180 grams of fissile material are present in at least 360 kilograms of contiguous non-fissile material. To evaluate the conservatism of these regulatory requirements, a worst-case scenario of 180g {sup 239}Pu and a more realistic scenario of 100g {sup 239}Pu were modeled using one of Lawrence Livermore National Laboratory's Monte Carlo transport codes known as COG 10. The geometry consisted of {sup 239}Pu spheres homogeneously mixed with high-density polyethylene surrounded by a cube of either stainless steel 304 or aluminum. An optimized geometry for both cube materials and hydrogen-to-fissile isotope (H/X) ratio were determined for a single unit. Infinite and finite 3D arrays of these optimized units were then simulated to determine if the systems would exceed criticality. Completion of these simulations showed that the optimal H/X ratio for the most reactive units ranged from 800 to 1600. A single unit of either cube type for either scenario would not reach criticality. An infinite array was determined to reach criticality only for the 180g case. The offsetting of spheres in their respective cubes was also considered and showed a considerable decrease in the number of close-packed units needed to reach criticality. These results call into question the current regulations for fissile material transport, which under certain circumstances may not be sufficient in preventing the development of a critical system. However, a conservative, theoretical approach was taken in all assumptions and such idealized configurations may not be likely to

  3. Radiation grafting of acrylamide onto starch-filled low density polyethylene

    NASA Astrophysics Data System (ADS)

    Bagheri, Rouhallah; Naimian, Franak; Sheikh, Nassrin

    1997-04-01

    Acrylamide (AAm) was grafted on the surface of starch-filled low density polyethylene (SLDPE) and low density polyethylene (LDPE) films by the mutual irradiation technique at doses from 0.75 to 5 kGy. The effect of dose, solvents and dihydroxybenzoquinone on the degree of grafting was studied by Fourier transform infrared spectroscopy and the weight measurement method of extracted films at a constant monomer concentration (10% w/w). An ultraviolet spectrophotometer was also used to elucidate the results of the above methods. Grafting on SLDPE and LDPE samples reaches a maximum followed by a slight decrease with increasing dose. A higher degree of grafting was obtained on SLDPE samples compared with that on LDPE. An induction period was observed in the case of the samples prepared in tetrahdyrfuran (THF) as the solvent compared with those in chloroform. Addition of benzene to chloroform and THF (50% v/v) accelerates the rate of AAm grafting on the samples. Dihydroxybenzoquinone inhibits the grafting reactions of the samples especially in the THF solutions. The water uptake measurement of the samples correlates with the degree of grafting.

  4. Development of optimum process for electron beam cross-linking of high density polyethylene thermal energy storage pellets, process scale-up and production of application qualities of material

    NASA Technical Reports Server (NTRS)

    Salyer, I. O.

    1980-01-01

    The electron irradiation conditions required to prepare thermally from stable high density polyethylene (HDPE) were defined. The conditions were defined by evaluating the heat of fusion and the melting temperature of several HDPE specimens. The performance tests conducted on the specimens, including the thermal cycling tests in the thermal energy storage unit are described. The electron beam irradiation tests performed on the specimens, in which the total radiation dose received by the pellets, the electron beam current, the accelerating potential, and the atmospheres were varied, are discussed.

  5. Mechanical and electrical properties of low density polyethylene filled with carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Sabet, Maziyar; Soleimani, Hassan

    2014-08-01

    Carbon nanotubes (CNTs) reveal outstanding electrical and mechanical properties in addition to nanometer scale diameter and high aspect ratio, consequently, making it an ideal reinforcing agent for high strength polymer composites. Low density polyethylene (LDPE)/CNT composites were prepared via melt compounding. Mechanical and electrical properties of (LDPE)/CNT composites with different CNT contents were studied in this research.

  6. Catalytic degradation of high-density polyethylene on an ultrastable-Y zeolite. Nature of initial polymer reactions, pattern of formation of gas and liquid products, and temperature effects

    SciTech Connect

    Manos, G.; Garforth, A.; Dwyer, J.

    2000-05-01

    The catalytic degradation of high-density polyethylene (hdPE) over ultrastable Y zeolite in a semibatch reactor was studied at different heating rates and reaction temperatures. Catalytic degradation of the polymer occurred at much lower temperatures than pure thermal degradation. When gel permeation chromatography was used to determine the molar mass distribution, it was found that solid state reactions occur only in the presence of a catalyst. These reactions change the polymer structure well before the formation of significant amounts of volatile products. The pattern of formation of gaseous and liquid products was studied and found to follow the temperature increase. After the system reached its final temperature, the reaction rate of formation of volatile products decreased rapidly. The product range was typically between C{sub 3} and C{sub 15}. Isobutane and isopentane were the main gaseous products. The liquid product fraction was alkane-rich, as alkenes rapidly undergo bimolecular hydrogen transfer reactions to give alkanes as secondary products.

  7. Chitosan filled recycled low density polyethylene composite: Melt flow behaviour and thermal degradation properties

    NASA Astrophysics Data System (ADS)

    Lim, B. Y.; Voon, C. H.; Salmah, H.; Nordin, H.

    2016-07-01

    An environmentally friendly composite was fabricated from chitosan and recycled low density polyethylene (rLDPE) with the means of melt mixing at 180 °C. The composites were prepared in different loading (10, 20, 30 and 40 php) of chitosan. Due to the incompatibility between filler and matrix, a coupling agent, Ultraplus TP01, was added into the composites. The melt flow index (MFI) values of rLDPE/chitosan composites decreased with chitosan loading but increased with rise of temperature. With the presence of Ultraplus TP01, MFI values of composites were decreased. The thermal stability of rLDPE/chitosan was reduced with increase of chitosan loading but increased with addition of Ultraplus TP01. It was believed that Ultraplus TP01 had provided better interfacial bonding between chitosan and rLDPE, thus enhanced the thermal stability of rLDPE/chitosan composites.

  8. Mechanical properties of low-density polyethylene filled by graphite nanoplatelets.

    PubMed

    Carotenuto, G; De Nicola, S; Palomba, M; Pullini, D; Horsewell, A; Hansen, T W; Nicolais, L

    2012-12-01

    The mechanical properties of GNP/LDPE nanocomposites (graphite nanoplatelets/low density polyethylene) have been investigated, in order to establish the effect of nanoscale reinforcement within the polymer matrix. Results show that the presence of the filler does not involve a change in the microscopic structure of the polymer. However, on a macroscopic scale, GNPs limit the mobility of the polymer chains, resulting in an increase in stiffness for the final composite. Orientation of GNPs within the LDPE matrix is also an important issue that affects mechanical properties and it has been evaluated by testing nanocomposites made by different manufacturing techniques (compression moulding and blown extrusion). The comparison between the experimental data and the Halpin-Tsai model shows that the orientation of GNPs due to the extrusion process leads to values of tensile modulus higher than that obtained with the randomly oriented disposition resulting from the compression moulding technique. PMID:23128320

  9. Spatially revolved high density electroencephalography

    NASA Astrophysics Data System (ADS)

    Wu, Jerry; Szu, Harold; Chen, Yuechen; Guo, Ran; Gu, Xixi

    2015-05-01

    Electroencephalography (EEG) measures voltage fluctuations resulting from ionic current flows within the neurons of the brain. In practice, EEG refers to the recording of the brain's spontaneous electrical activity over a short period of time, several tens of minutes, as recorded from multiple electrodes placed on the scalp. In order to improve the resolution and the distortion cause by the hair and scalp, large array magnetoencephalography (MEG) systems are introduced. The major challenge is to systematically compare the accuracy of epileptic source localization with high electrode density to that obtained with sparser electrode setups. In this report, we demonstrate a two dimension (2D) image Fast Fourier Transform (FFT) analysis along with utilization of Peano (space-filling) curve to further reduce the hardware requirement for high density EEG and improve the accuracy and performance of the high density EEG analysis. The brain-computer interfaces (BCIs) in this work is enhanced by A field-programmable gate array (FPGA) board with optimized two dimension (2D) image Fast Fourier Transform (FFT) analysis.

  10. High density laser-driven target

    DOEpatents

    Lindl, John D.

    1981-01-01

    A high density target for implosion by laser energy composed of a central quantity of fuel surrounded by a high-Z pusher shell with a low-Z ablator-pusher shell spaced therefrom forming a region filled with low-density material.

  11. Scale effects in tribological properties of solid-lubricating composites made of ultra-high molecular weight polyethylene filled with calcium stearate particles

    NASA Astrophysics Data System (ADS)

    Lurie, S. A.; Volkov-Bogorodskiy, D. B.; Knyzeva, A. G.; Panin, S. V.; Kornienko, L. A.

    2016-04-01

    Friction properties being influenced by scale effects are simulated in the paper by the example of polymer composite material made from Ultra High-Molecular Weight Polyethylenes (UHMWPE) filled by calcium stearate (C36H70CaO4). Of interest are the composites whose mechanical properties and tribotechnical characteristics do not depend monotonically on filler (inclusions) weight fraction. In order to describe the influence of scale effects onto frictional properties the model based on Reiss averaging (model of "weak phase") is employed. It is also suggested that when gradient elasticity theory is applicable the formal analogy between effective friction coefficient for surface heterogeneous structures and effective mechanical properties (compliances) for heterogeneous material can take place. Theoretical dependence to describe nonmonotonic change of effective friction coefficient versus filler concentration was obtained for the polymer composites under study. The suggested expressions might be useful for the sake of properties prognosis of antifriction polymeric materilas.

  12. High density pixel array

    NASA Technical Reports Server (NTRS)

    Wiener-Avnear, Eliezer (Inventor); McFall, James Earl (Inventor)

    2004-01-01

    A pixel array device is fabricated by a laser micro-milling method under strict process control conditions. The device has an array of pixels bonded together with an adhesive filling the grooves between adjacent pixels. The array is fabricated by moving a substrate relative to a laser beam of predetermined intensity at a controlled, constant velocity along a predetermined path defining a set of grooves between adjacent pixels so that a predetermined laser flux per unit area is applied to the material, and repeating the movement for a plurality of passes of the laser beam until the grooves are ablated to a desired depth. The substrate is of an ultrasonic transducer material in one example for fabrication of a 2D ultrasonic phase array transducer. A substrate of phosphor material is used to fabricate an X-ray focal plane array detector.

  13. High density modular avionics packaging

    NASA Astrophysics Data System (ADS)

    Poradish, F.

    Requirements and design configurations for high density modular avionics packaging are examined, with particular attention given to new hardware trends, the design of high-density standard modules (HDSM's), and HDSM requirements. The discussion of the HDSM's covers thermal management, system testability, power supply, and performance specifications. The general design of an integrated HDSM demonstration system currently under construction is briefly described, and some test data are presented.

  14. The characterization of high-density polyethylene/organoclay nanocomposites

    NASA Astrophysics Data System (ADS)

    Rodrigues, Tathiane Cordeiro; Tavares, Maria Inês Bruno; Soares, Igor Lopes; Moreira, Ana M.

    2009-01-01

    Polymeric nanocomposites, which are hybrids of polymers and modified inorganic clay with organic surfactants, are extremely attractive in both science and industry. These materials present improvements in such polymer properties as modulus, heat capacity, thermal stability, flame resistance, and so on. Research has been conducted in recent decades to obtain high-quality materials that can be used in applications like food packing, car components, and combustible cells. Polymeric nanocomposites present many advantages in relation to composites due to the quantity of filler added to the polymer and also to the improved properties. In a composite, the quantity of filler must be as high as possible (i.e., over 30%). In the polymeric nanocomposite the quantity of filler varies from 1% to 5% because of the nanosize of the particles. These nanoparticles often have a large surface area that results in improved polymer-matrix properties.

  15. Laminated thermoplastic composite material from recycled high density polyethylene

    NASA Technical Reports Server (NTRS)

    Liu, Ping; Waskom, Tommy L.

    1994-01-01

    The design of a materials-science, educational experiment is presented. The student should understand the fundamentals of polymer processing and mechanical property testing of materials. The ability to use American Society for Testing and Materials (ASTM) standards is also necessary for designing material test specimens and testing procedures. The objectives of the experiment are (1) to understand the concept of laminated composite materials, processing, testing, and quality assurance of thermoplastic composites and (2) to observe an application example of recycled plastics.

  16. Photoionization and High Density Gas

    NASA Technical Reports Server (NTRS)

    Kallman, T.; Bautista, M.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    We present results of calculations using the XSTAR version 2 computer code. This code is loosely based on the XSTAR v.1 code which has been available for public use for some time. However it represents an improvement and update in several major respects, including atomic data, code structure, user interface, and improved physical description of ionization/excitation. In particular, it now is applicable to high density situations in which significant excited atomic level populations are likely to occur. We describe the computational techniques and assumptions, and present sample runs with particular emphasis on high density situations.

  17. High Density Methane Storage in Nanoporous Carbon

    NASA Astrophysics Data System (ADS)

    Rash, Tyler; Dohnke, Elmar; Soo, Yuchoong; Maland, Brett; Doynov, Plamen; Lin, Yuyi; Pfeifer, Peter; Mriglobal Collaboration; All-Craft Team

    2014-03-01

    Development of low-pressure, high-capacity adsorbent based storage technology for natural gas (NG) as fuel for advanced transportation (flat-panel tank for NG vehicles) is necessary in order to address the temperature, pressure, weight, and volume constraints present in conventional storage methods (CNG & LNG.) Subcritical nitrogen adsorption experiments show that our nanoporous carbon hosts extended narrow channels which generate a high surface area and strong Van der Waals forces capable of increasing the density of NG into a high-density fluid. This improvement in storage density over compressed natural gas without an adsorbent occurs at ambient temperature and pressures ranging from 0-260 bar (3600 psi.) The temperature, pressure, and storage capacity of a 40 L flat-panel adsorbed NG tank filled with 20 kg of nanoporous carbon will be featured.

  18. High-density digital recording

    NASA Technical Reports Server (NTRS)

    Kalil, F. (Editor); Buschman, A. (Editor)

    1985-01-01

    The problems associated with high-density digital recording (HDDR) are discussed. Five independent users of HDDR systems and their problems, solutions, and insights are provided as guidance for other users of HDDR systems. Various pulse code modulation coding techniques are reviewed. An introduction to error detection and correction head optimization theory and perpendicular recording are provided. Competitive tape recorder manufacturers apply all of the above theories and techniques and present their offerings. The methodology used by the HDDR Users Subcommittee of THIC to evaluate parallel HDDR systems is presented.

  19. Preparation of hydroxylated polyethylene surfaces.

    PubMed

    Zand, A; Walter, N; Bahu, M; Ketterer, S; Sanders, M; Sikorski, Y; Cunningham, R; Beholz, L

    2008-01-01

    The surfaces of high-density or ultra-high-molecular-weight polyethylenes were hydroxylated using a two-step process. The wetting and wear properties of the untreated (virgin) and surface hydroxylated polyethylenes were compared. The introduction of hydroxyl groups provided an increase in surface hydrophilicity resulting in reduced wear. Hydrophilicity was analyzed by optical analysis of water contact angle. Wear was determined by weight loss under conditions of a reciprocating pin-on-plate apparatus with the panels immersed in water or calf serum. These results suggest that hydroxylation of polyethylene friction-bearing orthopedic surfaces may lead to a longer joint life. PMID:18318959

  20. High density harp for SSCL linac

    SciTech Connect

    Fritsche, C.T.; Krogh, M.L.; Crist, C.E.

    1993-05-01

    AlliedSignal Inc., Kansas City Division, and the Superconducting Super Collider Laboratory (SSCL) are collaboratively developing a high density harp for the SSCL linac. This harp is designed using hybrid microcircuit (HMC) technology to obtain a higher wire density than previously available. The developed harp contains one hundred twenty-eight 33-micron-diameter carbon wires on 0.38-mm centers. The harp features an onboard broken wire detection circuit. Carbon wire preparation and attachment processes were developed. High density surface mount connectors were located. The status of high density harp development will be presented along with planned future activities.

  1. Rheological properties of polyolefin composites highly filled with calcium carbonate

    NASA Astrophysics Data System (ADS)

    Nobile, Maria Rossella; Fierro, Annalisa; Jakubowska, Paulina; Sterzynski, Tomasz

    2016-05-01

    In this paper the rheological properties of highly filled polyolefin composites (HFPCs) have been investigated. Calcium carbonate (CaCO3), with stearic acid modified surface, was used as filler. Ternary compounds have been obtained by the inclusion of a CaCO3/polypropylene master batch into the high density polyethylene matrix. The highly filled polyolefin composites with CaCO3 content in the range between 40 and 64 wt% have been prepared in the molten state using a single-screw extruder, the temperature of the extrusion die was set at 230°C. The melt rheological properties of the HFPCs have been extensively investigated both in oscillatory and steady shear flow.

  2. High Density Fuel Development for Research Reactors

    SciTech Connect

    Daniel Wachs; Dennis Keiser; Mitchell Meyer; Douglas Burkes; Curtis Clark; Glenn Moore; Jan-Fong Jue; Totju Totev; Gerard Hofman; Tom Wiencek; Yeon So Kim; Jim Snelgrove

    2007-09-01

    An international effort to develop, qualify, and license high and very high density fuels has been underway for several years within the framework of multi-national RERTR programs. The current development status is the result of significant contributions from many laboratories, specifically CNEA in Argentina, AECL in Canada, CEA in France, TUM in Germany, KAERI in Korea, VNIIM, RDIPE, IPPE, NCCP and RIARR in Russia, INL, ANL and Y-12 in USA. These programs are mainly engaged with UMo dispersion fuels with densities from 6 to 8 gU/cm3 (high density fuel) and UMo monolithic fuel with density as high as 16 gU/cm3 (very high density fuel). This paper, mainly focused on the French & US programs, gives the status of high density UMo fuel development and perspectives on their qualification.

  3. High density load bearing insulation peg

    DOEpatents

    Nowobilski, J.J.; Owens, W.J.

    1985-01-29

    A high density peg is disclosed which can support a large load and exhibits excellent thermal resistance produced by a method wherein the peg is made in compliance with specified conditions of time, temperature and pressure. 4 figs.

  4. High density load bearing insulation peg

    DOEpatents

    Nowobilski, Jeffert J.; Owens, William J.

    1985-01-01

    A high density peg which can support a large load and exhibits excellent thermal resistance produced by a method wherein the peg is made in compliance with specified conditions of time, temperature and pressure.

  5. Profiles in garbage: Polyethylene terephthalate

    SciTech Connect

    Miller, C.

    1997-11-01

    Polyethylene terephthalate (PET) is a plastic resin used primarily to make bottles. Soft drinks -- along with salad dressing, fruit juices, peanut butter, and other household and consumer products -- use PET bottles. PET also is used for film, sheeting for cups and food trays, oven-safe trays, and other uses. PET is a relatively new packaging resin, first commercialized in the early 1970s. Because it is an ``engineered`` resin, PET is more expensive than commodity resins such as high-density polyethylene (HDPE) and, for the same reason, it is usually the highest valued plastic recyclable.

  6. Reliability of PWB Microvias for High Density Package Assembly

    NASA Technical Reports Server (NTRS)

    Ghaffarian, Reza

    2008-01-01

    High density PWB (printed wiring board) with microvia technology is required for implementation of high density and high I/O area array packages (AAP). COTS (commercial off-the-shelf) AAP packaging technologies in high reliability versions with 1.27 mm pitch are now being considered for use in a number of NASA systems including Space Shuttle and Mars Rovers. NASA functional system designs are requiring more and more dense AAP packages and board space, which makes board microvia technology very attractive for effectively routing a large number of package inputs/outputs. However, the reliability of the fine feature microvias including via in pads is unknown for space applications. Understanding process and QA (quality assurance) indicators for reliability are important for low risk insertion of these newly available packages and PWBs. This paper presents literature search as well as test results for a high density board subjected to various thermal cycle and reflow profiles representative of tin-lead and lead-free solder reflow. Microvias sizes ranged from two to six mil with and without filling. Daisy chain microvias monitored during the test and PWBs were cross-sectioned to determine failure and locations. Optical and SEM photographs as well as resistance changes during cycling and Tg/Td (glass transition/decomposition temperature) characterisations are presented.

  7. High Density Digital Data Storage System

    NASA Technical Reports Server (NTRS)

    Wright, Kenneth D., II; Gray, David L.; Rowland, Wayne D.

    1991-01-01

    The High Density Digital Data Storage System was designed to provide a cost effective means for storing real-time data from the field-deployable digital acoustic measurement system. However, the high density data storage system is a standalone system that could provide a storage solution for many other real time data acquisition applications. The storage system has inputs for up to 20 channels of 16-bit digital data. The high density tape recorders presently being used in the storage system are capable of storing over 5 gigabytes of data at overall transfer rates of 500 kilobytes per second. However, through the use of data compression techniques the system storage capacity and transfer rate can be doubled. Two tape recorders have been incorporated into the storage system to produce a backup tape of data in real-time. An analog output is provided for each data channel as a means of monitoring the data as it is being recorded.

  8. Aerodynamic Focusing Of High-Density Aerosols

    SciTech Connect

    Ruiz, D. E.; Fisch, Nathaniel

    2014-02-24

    High-density micron-sized particle aerosols might form the basis for a number of applications in which a material target with a particular shape might be quickly ionized to form a cylindrical or sheet shaped plasma. A simple experimental device was built in order to study the properties of high-density aerosol focusing for 1 m silica spheres. Preliminary results recover previous findings on aerodynamic focusing at low densities. At higher densities, it is demonstrated that the focusing properties change in a way which is consistent with a density dependent Stokes number.

  9. TECHNICAL GUIDANCE DOCUMENT: THE FABRICATION OF POLYETHYLENE FML FIELD SEAMS

    EPA Science Inventory

    This technical guidance document is meant to augment the numerous construction quality control and construction assurance (CQC and CQA) guidelines that are presently available for high density polyethylene (HDPE) liner installation and inspection.

  10. High density carbon dispersion fuels program

    NASA Technical Reports Server (NTRS)

    Salvesen, R. H.; Lavid, M.

    1980-01-01

    High density carbon dispersion fuels were studied. Promising results were obtained which indicate stable carbon loaded fuels with a minimum of 180,000 Btu per gallon can be made and successfully burned in prototype turbine combustors components. Tests were completed which provide insights to obtaining a better understanding of what types of carbon can be successfully formulated and combusted.

  11. High Density Diffusion-Free Nanowell Arrays

    PubMed Central

    Takulapalli, Bharath R; Qiu, Ji; Magee, D. Mitchell; Kahn, Peter; Brunner, Al; Barker, Kristi; Means, Steven; Miersch, Shane; Bian, Xiaofang; Mendoza, Alex; Festa, Fernanda; Syal, Karan; Park, Jin; LaBaer, Joshua; Wiktor, Peter

    2012-01-01

    Proteomics aspires to elucidate the functions of all proteins. Protein microarrays provide an important step by enabling high-throughput studies of displayed proteins. However, many functional assays of proteins include untethered intermediates or products, which could frustrate the use of planar arrays at very high densities because of diffusion to neighboring features. The nucleic acid programmable protein array (NAPPA), is a robust, in situ synthesis method for producing functional proteins just-in-time, which includes steps with diffusible intermediates. We determined that diffusion of expressed proteins led to cross-binding at neighboring spots at very high densities with reduced inter-spot spacing. To address this limitation, we have developed an innovative platform using photolithographically-etched discrete silicon nanowells and used NAPPA as a test case. This arrested protein diffusion and cross-binding. We present confined high density protein expression and display, as well as functional protein-protein interactions, in 8,000 nanowell arrays. This is the highest density of individual proteins in nano-vessels demonstrated on a single slide. We further present proof of principle results on ultra-high density protein arrays capable of up to 24,000 nanowells on a single slide. PMID:22742968

  12. Supernovae and high density nuclear matter

    SciTech Connect

    Kahana, S.

    1986-01-01

    The role of the nuclear equation of state (EOS) in producing prompt supernova explosions is examined. Results of calculations of Baron, Cooperstein, and Kahana incorporating general relativity and a new high density EOS are presented, and the relevance of these calculations to laboratory experiments with heavy ions considered. 31 refs., 6 figs., 2 tabs.

  13. A model for the filling of cold cavities with solidifying, semi-crystalline polymers

    SciTech Connect

    Papathanasiou, T D; Guell, D C

    1992-01-01

    A model for the filling stage of injection molding that includes wall solidification and crystallisation was used to investigate the interaction between solidification and pressure drop during the filling of a rectangular plate with high-density polyethylene. We find that wall solidification affects the pressure drop in a complex way, reflecting the interplay between reduction in the area available for flow and thermal insulation of the still-molten polymer. Development of crystallinity on the surface of the part is also modelled under conditions of uniform and spatially varying cooling. Results indicate that nonuniform cooling can results in complex crystallinity distributions which are determined by thermal history of solidified polymer, duration of filling stage and by exact dependence of crystallisation kinetics on temperature.

  14. The high density Z-pinch

    NASA Astrophysics Data System (ADS)

    McCall, G. H.

    During the past few years techniques have been developed for producing pinches in solid deuterium. The conditions which exist in these plasmas are different from those produced earlier. The pinch is formed from a fiber of solid deuterium rather than from a low density gas, and the current is driven by a low impedance, high voltage pulse generator. Because of the high initial density, it is not necessary to compress the pinch to reach thermonuclear conditions, and the confinement time required for energy production is much shorter than for a gas. Results, which have been verified by experiments performed at higher current were quite surprising and encouraging. The pinch appeared to be stable for a time much longer than the Alfven radial transit time. It is argued that the pinch is not strictly stable, but it does not appear to disassemble in a catastrophic fashion. It appears that there may be a distinction between stability and confinement in the high density pinch. In the discussion below the status of the high density Z-pinch experiments at laboratories around the world is presented, and some of the calculational and experimental results described. Remarks are confined to recent work on the high density pinch.

  15. High density diffusion-free nanowell arrays.

    PubMed

    Takulapalli, Bharath R; Qiu, Ji; Magee, D Mitchell; Kahn, Peter; Brunner, Al; Barker, Kristi; Means, Steven; Miersch, Shane; Bian, Xiaofang; Mendoza, Alex; Festa, Fernanda; Syal, Karan; Park, Jin G; LaBaer, Joshua; Wiktor, Peter

    2012-08-01

    Proteomics aspires to elucidate the functions of all proteins. Protein microarrays provide an important step by enabling high-throughput studies of displayed proteins. However, many functional assays of proteins include untethered intermediates or products, which could frustrate the use of planar arrays at very high densities because of diffusion to neighboring features. The nucleic acid programmable protein array (NAPPA) is a robust in situ synthesis method for producing functional proteins just-in-time, which includes steps with diffusible intermediates. We determined that diffusion of expressed proteins led to cross-binding at neighboring spots at very high densities with reduced interspot spacing. To address this limitation, we have developed an innovative platform using photolithographically etched discrete silicon nanowells and used NAPPA as a test case. This arrested protein diffusion and cross-binding. We present confined high density protein expression and display, as well as functional protein-protein interactions, in 8000 nanowell arrays. This is the highest density of individual proteins in nanovessels demonstrated on a single slide. We further present proof of principle results on ultrahigh density protein arrays capable of up to 24000 nanowells on a single slide. PMID:22742968

  16. SECURING CONTAINERIZED HAZARDOUS WASTES WITH POLYETHYLENE RESIN AND FIBERGLASS ENCAPSULATES

    EPA Science Inventory

    This study investigates the fabrication and use of polyethylene resin and fiberglass to encapsulate and secure containerized hazardous wastes. Laboratory-scale encapsulates of composite structure were made from powdered, high-density polyethylene (HDPE) and epoxy-resin-wetted fib...

  17. The yield behavior of polyethylene tubes subjected to biaxial loadings

    NASA Technical Reports Server (NTRS)

    Semeliss, M.; Wong, R.; Tuttle, M.

    1990-01-01

    High-density polyethylene is subjected to biaxial states of stress to examine the yield behavior of the semicrystalline thermoplastic under constant octahedral shear-stress rates. Combinations of internal pressures and axial loads are applied to thin-walled tubes of polyethylene, and the strain response in the axial and hoop directions are measured. The polyethylene specimens are found to be anisotropic, and the experimental measurements are compared to yield criteria that are applicable to isotropic and anisotropic materials.

  18. Study On Temperature Distribution In T Fittings - Polyethylene Natural Gas Pipes Assemblies

    NASA Astrophysics Data System (ADS)

    Avrigean, Eugen

    2015-09-01

    The present paper intends to approach theoretically and experimentally an important topic concerning the operational safety of the polyethylene pipes used in natural gas distribution. We discuss the influence of temperature in the high density polyethylene elbows during welding to the polyethylene pipes.

  19. STRESS CRACK TESTING OF POLYETHYLENE GEOMEMBRANES

    EPA Science Inventory

    The sensitivity of high density polyethylene (HDPE) geomembranes to stress cracking is evaluated under accelerated conditions at a constant stress. he test specimens are according to ASTM D-1822, and are of the dumbbell shape with a constant length in the central section. he acce...

  20. Method of high-density foil fabrication

    DOEpatents

    Blue, Craig A.; Sikka, Vinod K.; Ohriner, Evan K.

    2003-12-16

    A method for preparing flat foils having a high density includes the steps of mixing a powdered material with a binder to form a green sheet. The green sheet is exposed to a high intensity radiative source adapted to emit radiation of wavelengths corresponding to an absorption spectrum of the powdered material. The surface of the green sheet is heated while a lower sub-surface temperature is maintained. An apparatus for preparing a foil from a green sheet using a radiation source is also disclosed.

  1. High density circuit technology, part 1

    NASA Technical Reports Server (NTRS)

    Wade, T. E.

    1982-01-01

    The metal (or dielectric) lift-off processes used in the semiconductor industry to fabricate high density very large scale integration (VLSI) systems were reviewed. The lift-off process consists of depositing the light-sensitive material onto the wafer and patterning first in such a manner as to form a stencil for the interconnection material. Then the interconnection layer is deposited and unwanted areas are lifted off by removing the underlying stencil. Several of these lift-off techniques were examined experimentally. The use of an auxiliary layer of polyimide to form a lift-off stencil offers considerable promise.

  2. High-Density Digital Data Storage System

    NASA Technical Reports Server (NTRS)

    Wright, Kenneth D.; Gray, David L.

    1995-01-01

    High-density digital data storage system designed for cost-effective storage of large amounts of information acquired during experiments. System accepts up to 20 channels of 16-bit digital data with overall transfer rates of 500 kilobytes per second. Data recorded on 8-millimeter magnetic tape in cartridges, each capable of holding up to five gigabytes of data. Each cartridge mounted on one of two tape drives. Operator chooses to use either or both of drives. One drive used for primary storage of data while other can be used to make a duplicate record of data. Alternatively, other drive serves as backup data-storage drive when primary one fails.

  3. Two-color QCD at high density

    NASA Astrophysics Data System (ADS)

    Boz, Tamer; Giudice, Pietro; Hands, Simon; Skullerud, Jon-Ivar; Williams, Anthony G.

    2016-01-01

    QCD at high chemical potential has interesting properties such as deconfinement of quarks. Two-color QCD, which enables numerical simulations on the lattice, constitutes a laboratory to study QCD at high chemical potential. Among the interesting properties of two-color QCD at high density is the diquark condensation, for which we present recent results obtained on a finer lattice compared to previous studies. The quark propagator in two-color QCD at non-zero chemical potential is referred to as the Gor'kov propagator. We express the Gor'kov propagator in terms of form factors and present recent lattice simulation results.

  4. Regulation of high density lipoprotein levels

    SciTech Connect

    Krauss, R.M.

    1982-03-01

    An increasing awareness of the physiologic and pathologic importance of serum high density lipoproteins (HDL) has led to a large number of observations regarding factors which influence their concentrations. HDL consists of a heterogeneous collection of macromolecules with diverse physical properties and chemical constituents. While laboratory techniques have made it possible to measure HDL and their individual components, there are as yet large gaps in our knowledge of the biochemical mechanisms and clinical significance of changes in these laboratory parameters. In this review, current concepts of the structure and metabolism of HDL will be briefly summarized, and the factors influencing their levels in humans will be surveyed. 313 references.

  5. Some novel phenomena at high density

    NASA Astrophysics Data System (ADS)

    Berkowitz, Evan Scott

    Astrophysical environments probe matter in ways impossible on Earth. In particular, matter in compact objects are extraordinarily dense. In this thesis we discuss two phenomena that may occur at high density. First, we study toroidal topological solitons called vortons, which can occur in the kaon-condensed color-flavor-locked phase of high-density quark matter, a candidate phase for the core of some neutron stars. We show that vortons have a large radius compared to their thickness if their electrical charge is on the order of 104 times the fundamental charge. We show that shielding of electric fields by electrons dramatically reduces the size of a vorton. Second, we study an unusual phase of degenerate electrons and nonrelativistic Bose-condensed helium nuclei that may exist in helium white dwarfs. We show that this phase supports a previously-unknown gapless mode, known as the half-sound, that radically alters the material's specific heat, and can annihilate into neutrinos. We provide evidence that this neutrino radiation is negligible compared to the star's surface photoemission.

  6. Fluid hydrogen at high density - Pressure dissociation

    NASA Technical Reports Server (NTRS)

    Saumon, Didier; Chabrier, Gilles

    1991-01-01

    A model for the Helmholtz free energy of fluid hydrogen at high density and high temperature is developed. This model aims at describing both pressure and temperature dissociation and ionization and bears directly on equations of state of partially ionized plasmas, as encountered in astrophysical situations and high-pressure experiments. This paper focuses on a mixture of hydrogen atoms and molecules and is devoted to the study of the phenomenon of pressure dissociation at finite temperatures. In the present model, the strong interactions are described with realistic potentials and are computed with a modified Weeks-Chandler-Andersen fluid perturbation theory that reproduces Monte Carlo simulations to better than 3 percent. Theoretical Hugoniot curves derived from the model are in excellent agreement with experimental data.

  7. High-Density, Scintillating, Fluoride Glass Calorimeters

    NASA Astrophysics Data System (ADS)

    Akgun, Ugur; Xie, Qiuchen

    2014-03-01

    The unprecedented radiation levels in current Large Hadron Collider runs, and plans to even increase the luminosity creates a need for new detector technologies to be investigated. Here, we propose to use high density, scintillating, fluoride glasses as active media in calorimeters. CHG3 is a special example of this glass family, which has been developed specifically for hadron collider experiments, and is known for fast response time, in addition to high light yield. In this presentation, the results from a computational study on the performances of the two different designs of CHG3 glass calorimeters are reported. First design reads the signal directly from the edge of the glass plate; the second design utilizes wavelength-shifting fibers to carry the signal out of the glass plate. Each simulation model is a sampling calorimeter with 20 alternating layers of glass and iron absorber. By changing the absorber thickness we tested hadronic as well as electromagnetic capabilities of the calorimeter models.

  8. Cortical high-density counterstream architectures.

    PubMed

    Markov, Nikola T; Ercsey-Ravasz, Mária; Van Essen, David C; Knoblauch, Kenneth; Toroczkai, Zoltán; Kennedy, Henry

    2013-11-01

    Small-world networks provide an appealing description of cortical architecture owing to their capacity for integration and segregation combined with an economy of connectivity. Previous reports of low-density interareal graphs and apparent small-world properties are challenged by data that reveal high-density cortical graphs in which economy of connections is achieved by weight heterogeneity and distance-weight correlations. These properties define a model that predicts many binary and weighted features of the cortical network including a core-periphery, a typical feature of self-organizing information processing systems. Feedback and feedforward pathways between areas exhibit a dual counterstream organization, and their integration into local circuits constrains cortical computation. Here, we propose a bow-tie representation of interareal architecture derived from the hierarchical laminar weights of pathways between the high-efficiency dense core and periphery. PMID:24179228

  9. Ground state of high-density matter

    NASA Technical Reports Server (NTRS)

    Copeland, ED; Kolb, Edward W.; Lee, Kimyeong

    1988-01-01

    It is shown that if an upper bound to the false vacuum energy of the electroweak Higgs potential is satisfied, the true ground state of high-density matter is not nuclear matter, or even strange-quark matter, but rather a non-topological soliton where the electroweak symmetry is exact and the fermions are massless. This possibility is examined in the standard SU(3) sub C tensor product SU(2) sub L tensor product U(1) sub Y model. The bound to the false vacuum energy is satisfied only for a narrow range of the Higgs boson masses in the minimal electroweak model (within about 10 eV of its minimum allowed value of 6.6 GeV) and a somewhat wider range for electroweak models with a non-minimal Higgs sector.

  10. Ultra-high density diffraction grating

    DOEpatents

    Padmore, Howard A.; Voronov, Dmytro L.; Cambie, Rossana; Yashchuk, Valeriy V.; Gullikson, Eric M.

    2012-12-11

    A diffraction grating structure having ultra-high density of grooves comprises an echellette substrate having periodically repeating recessed features, and a multi-layer stack of materials disposed on the echellette substrate. The surface of the diffraction grating is planarized, such that layers of the multi-layer stack form a plurality of lines disposed on the planarized surface of the structure in a periodical fashion, wherein lines having a first property alternate with lines having a dissimilar property on the surface of the substrate. For example, in one embodiment, lines comprising high-Z and low-Z materials alternate on the planarized surface providing a structure that is suitable as a diffraction grating for EUV and soft X-rays. In some embodiments, line density of between about 10,000 lines/mm to about 100,000 lines/mm is provided.

  11. Manufacture of high-density ceramic sinters

    NASA Technical Reports Server (NTRS)

    Hibata, Y.

    1986-01-01

    High density ceramic sinters are manufactured by coating premolded or presintered porous ceramics with a sealing material of high SiO2 porous glass or nitride glass and then sintering by hot isostatic pressing. The ceramics have excellent abrasion and corrosion resistances. Thus LC-10 (Si3N2 powder) and Y2O3-Al2O3 type sintering were mixed and molded to give a premolded porous ceramic (porosity 37%, relative bulk density 63%). The ceramic was dipped in a slurry containing high SiO2 porous glass and an alcohol solution of cellulose acetate and dried. The coated ceramic was treated in a nitrogen atmosphere and then sintered by hot isostatic pressing to give a dense ceramic sinter.

  12. High-density fiber optic biosensor arrays

    NASA Astrophysics Data System (ADS)

    Epstein, Jason R.; Walt, David R.

    2002-02-01

    Novel approaches are required to coordinate the immense amounts of information derived from diverse genomes. This concept has influenced the expanded role of high-throughput DNA detection and analysis in the biological sciences. A high-density fiber optic DNA biosensor was developed consisting of oligonucleotide-functionalized, 3.1 mm diameter microspheres deposited into the etched wells on the distal face of a 500 micrometers imaging fiber bundle. Imaging fiber bundles containing thousands of optical fibers, each associated with a unique oligonucleotide probe sequence, were the foundation for an optically connected, individually addressable DNA detection platform. Different oligonucleotide-functionalized microspheres were combined in a stock solution, and randomly dispersed into the etched wells. Microsphere positions were registered from optical dyes incorporated onto the microspheres. The distribution process provided an inherent redundancy that increases the signal-to-noise ratio as the square root of the number of sensors examined. The representative amount of each probe-type in the array was dependent on their initial stock solution concentration, and as other sequences of interest arise, new microsphere elements can be added to arrays without altering the existing detection capabilities. The oligonucleotide probe sequences hybridize to fluorescently-labeled, complementary DNA target solutions. Fiber optic DNA microarray research has included DNA-protein interaction profiles, microbial strain differentiation, non-labeled target interrogation with molecular beacons, and single cell-based assays. This biosensor array is proficient in DNA detection linked to specific disease states, single nucleotide polymorphism (SNP's) discrimination, and gene expression analysis. This array platform permits multiple detection formats, provides smaller feature sizes, and enables sensor design flexibility. High-density fiber optic microarray biosensors provide a fast

  13. High density plasma etching of magnetic devices

    NASA Astrophysics Data System (ADS)

    Jung, Kee Bum

    Magnetic materials such as NiFe (permalloy) or NiFeCo are widely used in the data storage industry. Techniques for submicron patterning are required to develop next generation magnetic devices. The relative chemical inertness of most magnetic materials means they are hard to etch using conventional RIE (Reactive Ion Etching). Therefore ion milling has generally been used across the industry, but this has limitations for magnetic structures with submicron dimensions. In this dissertation, we suggest high density plasmas such as ECR (Electron Cyclotron Resonance) and ICP (Inductively Coupled Plasma) for the etching of magnetic materials (NiFe, NiFeCo, CoFeB, CoSm, CoZr) and other related materials (TaN, CrSi, FeMn), which are employed for magnetic devices like magnetoresistive random access memories (MRAM), magnetic read/write heads, magnetic sensors and microactuators. This research examined the fundamental etch mechanisms occurring in high density plasma processing of magnetic materials by measuring etch rate, surface morphology and surface stoichiometry. However, one concern with using Cl2-based plasma chemistry is the effect of residual chlorine or chlorinated etch residues remaining on the sidewalls of etched features, leading to a degradation of the magnetic properties. To avoid this problem, we employed two different processing methods. The first one is applying several different cleaning procedures, including de-ionized water rinsing or in-situ exposure to H2, O2 or SF6 plasmas. Very stable magnetic properties were achieved over a period of ˜6 months except O2 plasma treated structures, with no evidence of corrosion, provided chlorinated etch residues were removed by post-etch cleaning. The second method is using non-corrosive gas chemistries such as CO/NH3 or CO2/NH3. There is a small chemical contribution to the etch mechanism (i.e. formation of metal carbonyls) as determined by a comparison with Ar and N2 physical sputtering. The discharge should be NH3

  14. Waste product profile: Polyethylene terephthalate

    SciTech Connect

    Miller, C.

    1996-02-01

    Polyethylene terephthalate (PET) is a plastic resin used primarily to make bottles. Soft drinks are the primary product packaged in PET. Salad dressing, peanut butter, and other household and consumer products also use PET bottles. PET is also used for film, sheeting for cups and food trays, ovenable trays, and other uses. PET is a relatively new packaging resin, first commercialized in the early `70s. Because it is an ``engineered`` resin, it is more expensive than commodity resins such as high-density polyethylene (HDPE). The primary market for recycled PET is the fiber industry, which uses PET for carpet fiber, sweaters and other clothing, and for other uses. Recycled PET can also be used for food and beverage containers. Export markets, particularly Asian countries, are becoming increasingly important.

  15. Dark High Density Dipolar Liquid of Excitons.

    PubMed

    Cohen, Kobi; Shilo, Yehiel; West, Ken; Pfeiffer, Loren; Rapaport, Ronen

    2016-06-01

    The possible phases and the nanoscale particle correlations of two-dimensional interacting dipolar particles is a long-sought problem in many-body physics. Here we observe a spontaneous condensation of trapped two-dimensional dipolar excitons with internal spin degrees of freedom from an interacting gas into a high density, closely packed liquid state made mostly of dark dipoles. Another phase transition, into a bright, highly repulsive plasma, is observed at even higher excitation powers. The dark liquid state is formed below a critical temperature Tc ≈ 4.8 K, and it is manifested by a clear spontaneous spatial condensation to a smaller and denser cloud, suggesting an attractive part to the interaction which goes beyond the purely repulsive dipole-dipole forces. Contributions from quantum mechanical fluctuations are expected to be significant in this strongly correlated, long living dark liquid. This is a new example of a two-dimensional atomic-like interacting dipolar liquid, but where the coupling of light to its internal spin degrees of freedom plays a crucial role in the dynamical formation and the nature of resulting condensed dark ground state. PMID:27183418

  16. Regulation of high-density lipoprotein metabolism.

    PubMed

    Rye, Kerry-Anne; Barter, Philip J

    2014-01-01

    There is compelling evidence from human population studies that plasma levels of high-density lipoprotein (HDL) cholesterol correlate inversely with cardiovascular risk. Identification of this relationship has stimulated research designed to understand how HDL metabolism is regulated. The ultimate goal of these studies has been to develop HDL-raising therapies that have the potential to decrease the morbidity and mortality associated with atherosclerotic cardiovascular disease. However, the situation has turned out to be much more complex than originally envisaged. This is partly because the HDL fraction consists of multiple subpopulations of particles that vary in terms of shape, size, composition, and surface charge, as well as in their potential cardioprotective properties. This heterogeneity is a consequence of the continual remodeling and interconversion of HDL subpopulations by multiple plasma factors. Evidence that the remodeling of HDLs may impact on their cardioprotective properties is beginning to emerge. This serves to highlight the importance of understanding not only how the remodeling and interconversion of HDL subpopulations is regulated but also how these processes are affected by agents that increase HDL levels. This review provides an overview of what is currently understood about HDL metabolism and how the subpopulation distribution of these lipoproteins is regulated. PMID:24385508

  17. Abnormal high density lipoproteins in cerebrotendinous xanthomatosis

    SciTech Connect

    Shore, V.; Salen, G.; Cheng, F.W.; Forte, T.; Shefer, S.; Tint, G.S.

    1981-11-01

    The plasma lipoprotein profiles and high density lipoproteins (HDL) were characterized in patients with the genetic disease cerebrotendinous xanthomatosis (CTX). The mean HDL-cholesterol concentration in the CTX plasmas was 14.5 +/- 3.2 mg/dl, about one-third the normal value. The low HDL-cholesterol reflects a low concentration and an abnormal lipid composition of the plasma HDL. Relative to normal HDL, the cholesteryl esters are low, free cholesterol and phospholipids essentially normal, and triglycerides increased. The ratio of apoprotein (apo) to total cholesterol in the HDL of CTX was two to three times greater than normal. In the CTX HDL, the ratio of apoAI to apoAII was high, the proportion of apoC low, and a normally minor form of apoAI increased relative to other forms. The HDL in electron micrographs appeared normal morphologically and in particle size. The adnormalities in lipoprotein distribution profiles and composition of the plasma HDL result from metabolic defects that are not understood but may be linked to the genetic defect in bile acid synthesis in CTX. As a consequence, it is probable that the normal functions of the HDL, possibly including modulation of LDL-cholesterol uptake and the removal of excess cholesterol from peripheral tissues, are perturbed significantly in this disease.

  18. High-density electroencephalography developmental neurophysiological trajectories.

    PubMed

    Dan, Bernard; Pelc, Karine; Cebolla, Ana M; Cheron, Guy

    2015-04-01

    Efforts to document early changes in the developing brain have resulted in the construction of increasingly accurate structural images based on magnetic resonance imaging (MRI) in newborn infants. Tractography diagrams obtained through diffusion tensor imaging have focused on white matter microstructure, with particular emphasis on neuronal connectivity at the level of fibre tract systems. Electroencephalography (EEG) provides a complementary approach with more direct access to brain electrical activity. Its temporal resolution is excellent, and its spatial resolution can be enhanced to physiologically relevant levels, through the combination of high-density recordings (e.g. by using 64 channels in newborn infants) and mathematical models (e.g. inverse modelling computation), to identify generators of different oscillation bands and synchrony patterns. The integration of functional and structural topography of the neonatal brain provides insights into typical brain organization, and the deviations seen in particular contexts, for example the effect of hypoxic-ischaemic insult in terms of damage, eventual reorganization, and functional changes. Endophenotypes can then be used for pathophysiological reasoning, management planning, and outcome measurements, and allow a longitudinal approach to individual developmental trajectories. PMID:25800492

  19. 14 CFR 93.123 - High density traffic airports.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false High density traffic airports. 93.123... (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES SPECIAL AIR TRAFFIC RULES High Density Traffic Airports § 93.123 High density traffic airports. (a) Each of the following airports is designated as a...

  20. 14 CFR 93.123 - High density traffic airports.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false High density traffic airports. 93.123... (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES SPECIAL AIR TRAFFIC RULES High Density Traffic Airports § 93.123 High density traffic airports. (a) Each of the following airports is designated as a...

  1. 14 CFR 93.123 - High density traffic airports.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false High density traffic airports. 93.123... (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES SPECIAL AIR TRAFFIC RULES High Density Traffic Airports § 93.123 High density traffic airports. (a) Each of the following airports is designated as a...

  2. 14 CFR 93.123 - High density traffic airports.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false High density traffic airports. 93.123... (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES SPECIAL AIR TRAFFIC RULES High Density Traffic Airports § 93.123 High density traffic airports. (a) Each of the following airports is designated as a...

  3. 14 CFR 93.123 - High density traffic airports.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false High density traffic airports. 93.123... (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES SPECIAL AIR TRAFFIC RULES High Density Traffic Airports § 93.123 High density traffic airports. (a) Each of the following airports is designated as a...

  4. Polyethylene Glycol 3350

    MedlinePlus

    Polyethylene glycol 3350 is used to treat occasional constipation. Polyethylene glycol 3350 is in a class of medications ... Polyethylene glycol 3350 comes as a powder to be mixed with a liquid and taken by mouth. ...

  5. Natural fibre high-density polyethylene and lead oxide composites for radiation shielding

    NASA Astrophysics Data System (ADS)

    El-Sayed Abdo, A.; Ali, M. A. M.; Ismail, M. R.

    2003-03-01

    Study has been made of the radiation shielding provided by recycled agricultural fibre and industrial plastic wastes produced as composite materials. Fast neutron and gamma-ray spectra behind composites of fibre-plastic ( ρ = 1.373 g cm -3) and fibre-plastic-lead ( ρ = 2.756 g cm -3) have been measured using a collimated reactor beam and neutron-gamma spectrometer with a stilbene scintillator. The pulse shape discriminating technique based on the zero-cross-over method was used to discriminate between neutron and gamma-ray pulses. Slow neutron fluxes have been measured using a collimated reactor beam and BF 3 counter, leading to determination of the macroscopic cross-section ( Σ). The removal cross-sections ( ΣR) of fast neutrons have been determined from measured results and elemental composition of the composites. For gamma-rays, total linear attenuation coefficients ( μ) and total mass attenuation coefficients ( μ/ ρ) have been determined from use of the XCOM code and measured results. Reasonable agreement was found between measured and calculated results.

  6. High-density plasma deposition manufacturing productivity improvement

    NASA Astrophysics Data System (ADS)

    Olmer, Leonard J.; Hudson, Chris P.

    1999-09-01

    High Density Plasma (HDP) deposition provides a means to deposit high quality dielectrics meeting submicron gap fill requirements. But, compared to traditional PECVD processing, HDP is relatively expensive due to the higher capital cost of the equipment. In order to keep processing costs low, it became necessary to maximize the wafer throughput of HDP processing without degrading the film properties. The approach taken was to optimize the post deposition microwave in-situ clean efficiency. A regression model, based on actual data, indicated that number of wafers processed before a chamber clean was the dominant factor. Furthermore, a design change in the ceramic hardware, surrounding the electrostatic chuck, provided thermal isolation resulting in an enhanced clean rate of the chamber process kit. An infra-red detector located in the chamber exhaust line provided a means to endpoint the clean and in-film particle data confirmed the infra-red results. The combination of increased chamber clean frequency, optimized clean time and improved process.

  7. Itinerary of high density lipoproteins in endothelial cells.

    PubMed

    Perisa, Damir; Rohrer, Lucia; Kaech, Andres; von Eckardstein, Arnold

    2016-02-01

    High density lipoprotein (HDL) and its main protein component apolipoprotein A-I (ApoA-I) have multiple anti-atherogenic functions. Some of them are exerted within the vessel wall, so that HDL needs to pass the endothelial barrier. To elucidate their itinerary through endothelial cells (ECs), we labelled ApoA-I and HDL either fluorescently or with 1.4 nm nanogold and investigated their cellular localization by using immunofluorescent microscopy (IFM) and electron microscopy (EM). HDL as well as ApoA-I is taken up by ECs into the same route of intracellular trafficking. Time kinetics and pulse chase experiments revealed that HDL is trafficked through different vesicles. HDL partially co-localized with LDL, albumin, and transferrin. HDL did not co-localize with clathrin and caveolin-1. Fluorescent HDL was recovered at small proportions in early endosomes and endosome to trans-golgi network vesicles but not at all in recycling endosomes, in late endosomes or lysosomes. EM identified HDL mainly in large filled vesicles which however upon IFM did not colocalize with markers of multivesicular bodies or autophagosomes. The uptake or cellular distribution of HDL was altered upon pharmacological interference with cytochalasine D, colchicine and dynasore. Blockage of fluid phase uptake with Amiloride or EIPA did not reduce the uptake of HDL. Neither did we observe any co-localization of HDL with dextran as the marker of fluid phase uptake. In conclusion, HDL and ApoA-I are internalized and trafficked by endothelial cells through a non-classical endocytic route. PMID:26577406

  8. Electric field directed assembly of high-density microbead arrays†

    PubMed Central

    Barbee, Kristopher D.; Hsiao, Alexander P.; Heller, Michael J.; Huang, Xiaohua

    2010-01-01

    We report a method for rapid, electric field directed assembly of high-density protein-conjugated microbead arrays. Photolithography is used to fabricate an array of micron to sub-micron-scale wells in an epoxy-based photoresist on a silicon wafer coated with a thin gold film, which serves as the primary electrode. A thin gasket is used to form a microfluidic chamber between the wafer and a glass coverslip coated with indium-tin oxide, which serves as the counter electrode. Streptavidin-conjugated microbeads suspended in a low conductance buffer are introduced into the chamber and directed into the wells via electrophoresis by applying a series of low voltage electrical pulses across the electrodes. Hundreds of millions of microbeads can be permanently assembled on these arrays in as little as 30 seconds and the process can be monitored in real time using epifluorescence microscopy. The binding of the microbeads to the gold film is robust and occurs through electrochemically induced gold-protein interactions, which allows excess beads to be washed away or recycled. The well and bead sizes are chosen such that only one bead can be captured in each well. Filling efficiencies greater than 99.9% have been demonstrated across wafer-scale arrays with densities as high as 69 million beads per cm2. Potential applications for this technology include the assembly of DNA arrays for high-throughput genome sequencing and antibody arrays for proteomic studies. Following array assembly, this device may also be used to enhance the concentration-dependent processes of various assays through the accelerated transport of molecules using electric fields. PMID:19865735

  9. Relation between the High Density Phase and the Very-High Density Phase of Amorphous Solid Water

    NASA Astrophysics Data System (ADS)

    Giovambattista, Nicolas; Stanley, H. Eugene; Sciortino, Francesco

    2005-03-01

    It has been suggested that high-density amorphous (HDA) ice is a structurally arrested form of high-density liquid (HDL) water, while low-density amorphous ice is a structurally arrested form of low-density liquid (LDL) water. Recent experiments and simulations have been interpreted to support the possibility of a second distinct high-density structural state, named very high-density amorphous (VHDA) ice, questioning the LDL-HDL hypothesis. We test this interpretation using extensive computer simulations and find that VHDA is a more stable form of HDA and that, in fact, VHDA should be considered as the amorphous ice of the quenched HDL.

  10. Phenomenology of high density disruptions in the TFTR tokamak

    SciTech Connect

    Fredrickson, E.D.; McGuire, K.; Bell, M.; Bush, C.E.; Cavallo, A.; Budny, R.; Janos, A.; Mansfield, D.; Nagayama, Y.; Park, H.; Schivell, J.; Taylor, G.; Zarnstorff, M.C. . Plasma Physics Lab.); Drake, J.; Kleva, R. )

    1992-01-01

    Recent studies on TFTR of high density disruptions have made significant advances in closing the gap between theoretical models of disruptions and the experimental data. For the first time, an (m,n) = (1,1) cold bubble'' precursor to the high density disruptions has been experimentally observed. The precursor resembles the vacuum bubble'' model of disruptions first proposed by Kadomtsev and Pogutse.

  11. Phenomenology of high density disruptions in the TFTR tokamak

    SciTech Connect

    Fredrickson, E.D.; McGuire, K.; Bell, M.; Bush, C.E.; Cavallo, A.; Budny, R.; Janos, A.; Mansfield, D.; Nagayama, Y.; Park, H.; Schivell, J.; Taylor, G.; Zarnstorff, M.C.; Drake, J.; Kleva, R.

    1992-01-01

    Recent studies on TFTR of high density disruptions have made significant advances in closing the gap between theoretical models of disruptions and the experimental data. For the first time, an (m,n) = (1,1) ``cold bubble`` precursor to the high density disruptions has been experimentally observed. The precursor resembles the ``vacuum bubble`` model of disruptions first proposed by Kadomtsev and Pogutse.

  12. Small-Scale Production of High-Density Dry Ice: A Variant Combination of Two Classic Demonstrations

    ERIC Educational Resources Information Center

    Flowers, Paul A.

    2009-01-01

    Easily recoverable, thumb-sized pieces of high-density dry ice are conveniently produced by deposition of carbon dioxide within a test tube submerged in liquid nitrogen. A carbon dioxide-filled balloon sealed over the mouth of the test tube serves as a gas reservoir, and further permits a dramatic demonstration of both the gas-to-solid phase…

  13. Superradiance of High Density Frenkel Excitons at Room Temperature

    NASA Astrophysics Data System (ADS)

    Wang, H. Z.; Zheng, X. G.; Zhao, F. L.; Gao, Z. L.; Yu, Z. X.

    1995-05-01

    Superradiance of high density Frenkel excitons in an R-phycoerythrin single crystal is observed at room temperature for the first time. No fluorescence is observed except the emission at the sharp exciton band when the superradiance of excitons occurs, and the higher the pump density, the sharper the emission bandwidth. A redshift and a blueshift are observed at the rise time and the fall time of the emission pulse, respectively. The experimental results also imply deformed-boson properties of high density Frenkel excitons.

  14. High density semiconductor nanodots by direct laser fabrication

    NASA Astrophysics Data System (ADS)

    Haghizadeh, Anahita; Yang, Haeyeon

    2016-03-01

    We report a direct method of fabricating high density nanodots on the GaAs(001) surfaces using laser irradiations on the surface. Surface images indicate that the large clumps are not accompanied with the formation of nanodots even though its density is higher than the critical density above which detrimental large clumps begin to show up in the conventional Stranski-Krastanov growth technique. Atomic force microscopy is used to image the GaAs(001) surfaces that are irradiated by high power laser pulses interferentially. The analysis suggests that high density quantum dots be fabricated directly on semiconductor surfaces.

  15. High-density carbon ablator experiments on the National Ignition Facilitya)

    NASA Astrophysics Data System (ADS)

    MacKinnon, A. J.; Meezan, N. B.; Ross, J. S.; Le Pape, S.; Berzak Hopkins, L.; Divol, L.; Ho, D.; Milovich, J.; Pak, A.; Ralph, J.; Döppner, T.; Patel, P. K.; Thomas, C.; Tommasini, R.; Haan, S.; MacPhee, A. G.; McNaney, J.; Caggiano, J.; Hatarik, R.; Bionta, R.; Ma, T.; Spears, B.; Rygg, J. R.; Benedetti, L. R.; Town, R. P. J.; Bradley, D. K.; Dewald, E. L.; Fittinghoff, D.; Jones, O. S.; Robey, H. R.; Moody, J. D.; Khan, S.; Callahan, D. A.; Hamza, A.; Biener, J.; Celliers, P. M.; Braun, D. G.; Erskine, D. J.; Prisbrey, S. T.; Wallace, R. J.; Kozioziemski, B.; Dylla-Spears, R.; Sater, J.; Collins, G.; Storm, E.; Hsing, W.; Landen, O.; Atherton, J. L.; Lindl, J. D.; Edwards, M. J.; Frenje, J. A.; Gatu-Johnson, M.; Li, C. K.; Petrasso, R.; Rinderknecht, H.; Rosenberg, M.; Séguin, F. H.; Zylstra, A.; Knauer, J. P.; Grim, G.; Guler, N.; Merrill, F.; Olson, R.; Kyrala, G. A.; Kilkenny, J. D.; Nikroo, A.; Moreno, K.; Hoover, D. E.; Wild, C.; Werner, E.

    2014-05-01

    High Density Carbon (HDC) is a leading candidate as an ablator material for Inertial Confinement Fusion (ICF) capsules in x-ray (indirect) drive implosions. HDC has a higher density (3.5 g/cc) than plastic (CH, 1 g/cc), which results in a thinner ablator with a larger inner radius for a given capsule scale. This leads to higher x-ray absorption and shorter laser pulses compared to equivalent CH designs. This paper will describe a series of experiments carried out to examine the feasibility of using HDC as an ablator using both gas filled hohlraums and lower density, near vacuum hohlraums. These experiments have shown that deuterium (DD) and deuterium-tritium gas filled HDC capsules driven by a hohlraum filled with 1.2 mg/cc He gas, produce neutron yields a factor of 2× higher than equivalent CH implosions, representing better than 50% Yield-over-Clean (YoC). In a near vacuum hohlraum (He = 0.03 mg/cc) with 98% laser-to-hohlraum coupling, such a DD gas-filled capsule performed near 1D expectations. A cryogenic layered implosion version was consistent with a fuel velocity = 410 ± 20 km/s with no observed ablator mixing into the hot spot.

  16. High-density carbon ablator experiments on the National Ignition Facility

    SciTech Connect

    MacKinnon, A. J. Meezan, N. B.; Ross, J. S.; Le Pape, S.; Berzak Hopkins, L.; Divol, L.; Ho, D.; Milovich, J.; Pak, A.; Ralph, J.; Döppner, T.; Patel, P. K.; Thomas, C.; Tommasini, R.; Haan, S.; MacPhee, A. G.; McNaney, J.; Caggiano, J.; Hatarik, R.; Bionta, R.; and others

    2014-05-15

    High Density Carbon (HDC) is a leading candidate as an ablator material for Inertial Confinement Fusion (ICF) capsules in x-ray (indirect) drive implosions. HDC has a higher density (3.5 g/cc) than plastic (CH, 1 g/cc), which results in a thinner ablator with a larger inner radius for a given capsule scale. This leads to higher x-ray absorption and shorter laser pulses compared to equivalent CH designs. This paper will describe a series of experiments carried out to examine the feasibility of using HDC as an ablator using both gas filled hohlraums and lower density, near vacuum hohlraums. These experiments have shown that deuterium (DD) and deuterium-tritium gas filled HDC capsules driven by a hohlraum filled with 1.2 mg/cc He gas, produce neutron yields a factor of 2× higher than equivalent CH implosions, representing better than 50% Yield-over-Clean (YoC). In a near vacuum hohlraum (He = 0.03 mg/cc) with 98% laser-to-hohlraum coupling, such a DD gas-filled capsule performed near 1D expectations. A cryogenic layered implosion version was consistent with a fuel velocity = 410 ± 20 km/s with no observed ablator mixing into the hot spot.

  17. High-density carbon ablator experiments on the National Ignition Facilitya)

    SciTech Connect

    MacKinnon, A. J.; Meezan, N. B.; Ross, J. S.; Le Pape, S.; Berzak Hopkins, L.; Divol, L.; Ho, D.; Milovich, J.; Pak, A.; Ralph, J.; Döppner, T.; Patel, P. K.; Thomas, C.; Tommasini, R.; Haan, S.; MacPhee, A. G.; McNaney, J.; Caggiano, J.; Hatarik, R.; Bionta, R.; Ma, T.; Spears, B.; Rygg, J. R.; Benedetti, L. R.; Town, R. P. J.; Bradley, D. K.; Dewald, E. L.; Fittinghoff, D.; Jones, O. S.; Robey, H. R.; Moody, J. D.; Khan, S.; Callahan, D. A.; Hamza, A.; Biener, J.; Celliers, P. M.; Braun, D. G.; Erskine, D. J.; Prisbrey, S. T.; Wallace, R. J.; Kozioziemski, B.; Dylla-Spears, R.; Sater, J.; Collins, G.; Storm, E.; Hsing, W.; Landen, O.; Atherton, J. L.; Lindl, J. D.; Edwards, M. J.; Frenje, J. A.; Gatu-Johnson, M.; Li, C. K.; Petrasso, R.; Rinderknecht, H.; Rosenberg, M.; Séguin, F. H.; Zylstra, A.; Knauer, J. P.; Grim, G.; Guler, N.; Merrill, F.; Olson, R.; Kyrala, G. A.; Kilkenny, J. D.; Nikroo, A.; Moreno, K.; Hoover, D. E.; Wild, C.; Werner, E.

    2014-05-01

    High Density Carbon (HDC) is a leading candidate as an ablator material for Inertial Confinement Fusion (ICF) capsules in x-ray (indirect) drive implosions. HDC has a higher density (3.5 g/cc) than plastic (CH, 1 g/cc), which results in a thinner ablator with a larger inner radius for a given capsule scale. This leads to higher x-ray absorption and shorter laser pulses compared to equivalent CH designs. This paper will describe a series of experiments carried out to examine the feasibility of using HDC as an ablator using both gas filled hohlraums and lower density, near vacuum hohlraums. These experiments have shown that deuterium (DD) and deuterium-tritium gas filled HDC capsules driven by a hohlraum filled with 1.2 mg/cc He gas, produce neutron yields a factor of 2× higher than equivalent CH implosions, representing better than 50% Yield-over-Clean (YoC). In a near vacuum hohlraum (He = 0.03 mg/cc) with 98% laser-to-hohlraum coupling, such a DD gas-filled capsule performed near 1D expectations. A cryogenic layered implosion version was consistent with a fuel velocity = 410 ± 20 km/s with no observed ablator mixing into the hot spot.

  18. Genomic imputation and evaluation using 342 high density Holstein genotypes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genomic evaluations for 73,749 Holsteins were computed using 636,967 of the 777,000 markers on the Illumina high density (HD) chip. Observed data included 342 animals with HD genotypes, 54,676 animals with 42,503 marker (50K) genotypes, 17,371 animals with 2,614 marker (3K) genotypes, and 1,360 nong...

  19. Genomic imputation and evaluation using high density Holstein genotypes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genomic evaluations for 161,341 Holsteins were computed using 311,725 of the 777,962 markers on the Illumina high-density (HD) chip. Initial edits with 1,741 HD genotypes from 5 breeds revealed that 636,967 markers were usable but that half were redundant. Usable Holstein genotypes included 1,510 an...

  20. High density packaging and interconnect of massively parallel image processors

    NASA Technical Reports Server (NTRS)

    Carson, John C.; Indin, Ronald J.

    1991-01-01

    This paper presents conceptual designs for high density packaging of parallel processing systems. The systems fall into two categories: global memory systems where many processors are packaged into a stack, and distributed memory systems where a single processor and many memory chips are packaged into a stack. Thermal behavior and performance are discussed.

  1. High density constraint on the entropy instability. [with nonisothermal effect

    NASA Technical Reports Server (NTRS)

    Hudson, M. K.; Kennel, C. F.

    1974-01-01

    The entropy instability squared is a nonisothermal effect which is eliminated by parallel ion pressure at high densities (k sub z lambda sub e 1/2 sq root of m/M), reducing previous growth rate estimates and the range of unstable parameters.

  2. High Density Polymer-Based Integrated Electgrode Array

    DOEpatents

    Maghribi, Mariam N.; Krulevitch, Peter A.; Davidson, James Courtney; Hamilton, Julie K.

    2006-04-25

    A high density polymer-based integrated electrode apparatus that comprises a central electrode body and a multiplicity of arms extending from the electrode body. The central electrode body and the multiplicity of arms are comprised of a silicone material with metal features in said silicone material that comprise electronic circuits.

  3. Probabilistic Fatigue Life Analysis of High Density Electronics Packaging

    NASA Technical Reports Server (NTRS)

    Moore, N. R.; Kolawa, E. A.; Sutharshana, S.; Newlin, L. E.; Creager, M.

    1996-01-01

    The fatigue of thin film metal interconnections in high density electronics packaging subjected to thermal cycling has been evaluated using a probabilistic fracture mechanics methodology. This probabilistic methodology includes characterization of thin film stress using an experimentally calibrated finite element model and simulation of flaw growth in the thin films using a stochastic crack growth model.

  4. High-density, homogeneous endospore monolayer deposition on test surfaces.

    PubMed

    Noell, Aaron C; Greenwood, Arin R; Lee, Christine M; Ponce, Adrian

    2013-09-01

    Bacillus subtilis spores were deposited in high-density single layers on metal, glass, and polymer substrates using vacuum filtration followed by a wetted filter transfer step. Quantitative analysis of spore transfer was performed using culture-based and germinability assays, and spore distributions were observed with electron microscopy. PMID:23719028

  5. A Novel Anti-Inflammatory Effect for High Density Lipoprotein

    PubMed Central

    Cameron, Scott J.; Morrell, Craig N.; Bao, Clare; Swaim, AnneMarie F.; Rodriguez, Annabelle; Lowenstein, Charles J.

    2015-01-01

    High density lipoprotein has anti-inflammatory effects in addition to mediating reverse cholesterol transport. While many of the chronic anti-inflammatory effects of high density lipoprotein (HDL) are attributed to changes in cell adhesion molecules, little is known about acute signal transduction events elicited by HDL in endothelial cells. We now show that high density lipoprotein decreases endothelial cell exocytosis, the first step in leukocyte trafficking. ApoA-I, a major apolipoprotein of HDL, mediates inhibition of endothelial cell exocytosis by interacting with endothelial scavenger receptor-BI which triggers an intracellular protective signaling cascade involving protein kinase C (PKC). Other apolipoproteins within the HDL particle have only modest effects upon endothelial exocytosis. Using a human primary culture of endothelial cells and murine apo-AI knockout mice, we show that apo-AI prevents endothelial cell exocytosis which limits leukocyte recruitment. These data suggest that high density lipoprotein may inhibit diseases associated with vascular inflammation in part by blocking endothelial exocytosis. PMID:26680360

  6. A Novel Anti-Inflammatory Effect for High Density Lipoprotein.

    PubMed

    Cameron, Scott J; Morrell, Craig N; Bao, Clare; Swaim, AnneMarie F; Rodriguez, Annabelle; Lowenstein, Charles J

    2015-01-01

    High density lipoprotein has anti-inflammatory effects in addition to mediating reverse cholesterol transport. While many of the chronic anti-inflammatory effects of high density lipoprotein (HDL) are attributed to changes in cell adhesion molecules, little is known about acute signal transduction events elicited by HDL in endothelial cells. We now show that high density lipoprotein decreases endothelial cell exocytosis, the first step in leukocyte trafficking. ApoA-I, a major apolipoprotein of HDL, mediates inhibition of endothelial cell exocytosis by interacting with endothelial scavenger receptor-BI which triggers an intracellular protective signaling cascade involving protein kinase C (PKC). Other apolipoproteins within the HDL particle have only modest effects upon endothelial exocytosis. Using a human primary culture of endothelial cells and murine apo-AI knockout mice, we show that apo-AI prevents endothelial cell exocytosis which limits leukocyte recruitment. These data suggest that high density lipoprotein may inhibit diseases associated with vascular inflammation in part by blocking endothelial exocytosis. PMID:26680360

  7. Crater Fill

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Context image for PIA03082 Crater Fill

    This VIS image shows part of the floor of an unnamed crater located between the Hellas and Argyre Basins. At some point in time the entire floor of the crater was filled by material. That material is now being eroded away to form the depressions seen in the center and bottom of the image.

    Image information: VIS instrument. Latitude 46.6S, Longitude 5.0E. 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  8. Polyethylene Glycol 3350

    MedlinePlus

    Polyethylene glycol 3350 comes as a powder to be mixed with a liquid and taken by mouth. It is usually taken once a day as needed for up to ... to produce a bowel movement.To use the powder, follow these steps: If you are using polyethylene ...

  9. Performance of high-density-carbon (HDC) ablator implosion experiments on the National Ignition Facility (NIF)

    NASA Astrophysics Data System (ADS)

    MacKinnon, Andy

    2013-10-01

    A series of experiments on the National Ignition Facility (NIF) have been performed to measure high-density carbon (HDC) ablator performance for indirect drive inertial confinement fusion (ICF). HDC is a very promising ablator material; being 3x denser than plastic, it absorbs more hohlraum x-rays, leading to higher implosion efficiency. For the HDC experiments the NIF laser generated shaped laser pulses with peak power up to 410 TW and total energy of 1.3 MJ. Pulse shapes were designed to drive 2, 3 or 4 shocks in cryogenic layered implosions. The 2-shock pulse, with a designed fuel adiabat of ~3 is 6-7ns in duration, allowing use of near vacuum hohlraums, which greatly increases the coupling efficiency due to low backscatter losses. Excellent results were obtained for 2,3 and 4 shock pulses. In particular a deuterium-tritium gas filled HDC capsule driven by a 4-shock pulse in a gas-filled hohlraum produced a neutron yield of 1.6 × 1015, a record for a non-cryogenically layered capsule driven by a gas-filled hohlraum. The first 2-shock experiment used a vacuum hohlraum to drive a DD gas filled HDC capsule with a 6.5 ns, laser pulse. This hohlraum was 40% more efficient than the gas-filled counterpart used for 3 and 4 shock experiments, producing near 1D performance at 11 x convergence ratio, peak radiation temperature of 317 eV, 98% laser-hohlraum coupling, and DD neutron yield of 2.2e13, a record for a laser driven DD implosion. The HDC campaigns will be presented, including options for pushing towards the alpha dominated regime. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  10. Macrophage phagocytosis of polyethylene particulate in vitro.

    PubMed

    Voronov, I; Santerre, J P; Hinek, A; Callahan, J W; Sandhu, J; Boynton, E L

    1998-01-01

    In this study, an in vitro model has been developed to examine the interactions of macrophages with ultrahigh molecular-weight polyethylene (UHMWPE) and high-density polyethylene (HDPE) particles. Polyethylene particles are the major constituent of the material debris formed as a result of orthopedic implant wear. However, the study of polyethylene particle interactions with cells has been limited. UHMWPE (18-20 microns) and HDPE (4-10 microns) were suspended in soluble collagen type I and subsequently solidified on glass coverslips. The particle chemistry was characterized by Fourier transform infra-red spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS). Mouse cell line macrophages (IC-21) were established on the collagen-particle substrata and maintained for up to 24 h. The response of the cells to the particles was examined by light and transmission electron microscopy (LM and TEM), as well as by scanning electron microscopy (SEM), and compared to cells on control collagen surfaces without particles. Histological analysis of the samples revealed that the macrophages surrounded larger particles (18-20 microns) and the cells appeared to be attached to the surface of the particles, and the smaller particles (4-10 microns) had been phagocytosed within 2 h. Inflammatory cytokines (TNF-alpha, IL-1 alpha, IL-1 beta, and IL-6), lysosomal enzymes (beta-galactosidase and hexosaminidase), and prostaglandin E2 were released into the medium, and IL-1 alpha, IL-1 beta, PGE2, beta-galactosidase, and hexosaminidase levels were significantly increased over collagen control values. The results demonstrate active phagochemotaxis by macrophages for wear particulates and validate this model as a means of studying the specific in vitro interactions of polyethylene with cells. PMID:9429095

  11. High-density FRC formation studies on FRX-L.

    SciTech Connect

    Taccetti, J. M.; Intrator, Thomas; Zhang, S.; Wurden, G. A.; Begay, D. W.; Mignardot, E. R.; Waganaar, W. J.; Siemon, R. E.; Tuszewski, M. G.; Sanchez, P. G.; Degnan, J. H.; Sommars, W.

    2002-01-01

    FRX-L (Field Reversed configuration experiment - Liner) is a magnetized-target injector for magnetized target fusion (MTF) experiments. It was designed with the goal of producing high-density n-1017 cm3 field reversed configurations (FRCs) and translating them into an aluminum liner (1-mm thick, 10-cm diameter cylindrical shell) for further compression to fusion conditions. Although operation at these high densities leads to shorter FRC lifetimes, our application requires thlat the plasma live only long enough to be translated and compressed, or on the order of 10-20 ps. Careful study of FRC formation in situ will be done in the present experiment to differentiate between effects introduced in future experiments by translation, trapping, and compression of the FRC. We present current results on the optimization of the FRC formation process on RX-L and compare the results with those from past experiments.

  12. Advanced short haul aircraft for high density markets

    NASA Technical Reports Server (NTRS)

    Galloway, T. L.

    1977-01-01

    The short haul (less than 500 miles) passenger enplanements represent about 50% of the total domestic enplanements. These can be distinguished by the annual passenger flow for a given city pair and classified into low, medium and high densiy markets. NASA studies have investigated various advanced short haul aircraft concepts that have potential application in these three market areas. Although advanced operational techniques impact all market densities, advanced vehicle design concepts such as RTOL, STOL and VTOL have the largest impact in the high density markets. This paper summarizes the results of NASA sponsored high density short haul air transportation systems studies and briefly reviews NASA sponsored advanced VTOL conceptual aircraft design studies. Trends in vehicle characteristics and operational requirements will be indicated in addition to economic suitability and impact on the community.

  13. Noise reduction in muon tomography for detecting high density objects

    NASA Astrophysics Data System (ADS)

    Benettoni, M.; Bettella, G.; Bonomi, G.; Calvagno, G.; Calvini, P.; Checchia, P.; Cortelazzo, G.; Cossutta, L.; Donzella, A.; Furlan, M.; Gonella, F.; Pegoraro, M.; Rigoni Garola, A.; Ronchese, P.; Squarcia, S.; Subieta, M.; Vanini, S.; Viesti, G.; Zanuttigh, P.; Zenoni, A.; Zumerle, G.

    2013-12-01

    The muon tomography technique, based on multiple Coulomb scattering of cosmic ray muons, has been proposed as a tool to detect the presence of high density objects inside closed volumes. In this paper a new and innovative method is presented to handle the density fluctuations (noise) of reconstructed images, a well known problem of this technique. The effectiveness of our method is evaluated using experimental data obtained with a muon tomography prototype located at the Legnaro National Laboratories (LNL) of the Istituto Nazionale di Fisica Nucleare (INFN). The results reported in this paper, obtained with real cosmic ray data, show that with appropriate image filtering and muon momentum classification, the muon tomography technique can detect high density materials, such as lead, albeit surrounded by light or medium density material, in short times. A comparison with algorithms published in literature is also presented.

  14. Advanced short haul systems in high density markets

    NASA Technical Reports Server (NTRS)

    Galloway, T. L.

    1975-01-01

    The design requirements, performance, economics, and noise aspects of STOL and VTOL conceptual aircraft developed for short haul air transportation are reviewed, along with the characteristics of areas of high-density annual passenger flow in which the aircraft are intended to operate. It is shown that aircraft of 100 to 200 passenger capacity provide the best return on investment in high density markets. The various STOL propulsive lift concepts have the same general trends with field length; their wing loadings are 20 to 30 pounds per square foot higher than the nonpropulsive lift concepts. A comparison of the aircraft under consideration shows that no one aircraft concept will be optimum for all future operational environments.

  15. High Density Experiments in the HL-1M Tokamak

    NASA Astrophysics Data System (ADS)

    Yan, Long-wen; Yao, Liang-hua; Zhou, Yan; Liu, Yong; Wang, En-yao; HL-1M Team

    2000-10-01

    The plasma performance of high density has been investigated in the HL-1M Tokamak. Different density limits are given for three fueling methods i.e. gas puffing, pellet injection and molecular beam injection (MBI). The maximum Murakami constant is CM = 3.4 × 1019 m-2T-1 for Ohmic discharge. A maximum line-averaged density of 8.2 × 1019 m-3 has been achieved for Ohmic discharge at qa = 4.4. A 1.4 times of the Greenwald limit is obtained at Ip = 120 kA. The rising rates and peak factors of density are discussed. The plasma confinement of high density is analyzed, including the behavior of density limit disruption.

  16. Laterally stacked glass substrates with high density electrical feedthroughs

    NASA Astrophysics Data System (ADS)

    Tanaka, Shuji; Fujimoto, Satoshi; Ito, Osamu; Choe, Seong-Hun; Esashi, Masayoshi

    2007-03-01

    This paper reports a novel method to produce high density feedthrough glass wafers with sufficient thickness for the packaging and interconnection of high density array micro electromechanical systems (MEMS). Pyrex glass wafers with thin film metal lines on the surface are stacked and bonded with each other using phenyl methyl siloxane-based adhesive. The stacked glass wafer block is then sliced using a wire saw as the slicing surfaces cross the adhesive bonding interfaces vertically. Prototyped feedthrough glass wafers were subjected to anodic bonding to a silicon wafer with diaphragms. The anodic bonding was successful, but hermetic sealing was not achieved. The bending of the bonded sample can be reduced by annealing the sample at 400 °C in a vacuum before anodic bonding.

  17. New pitfalls of high-density postmortem computed tomography.

    PubMed

    Kanazawa, Ayumi; Hyodoh, Hideki; Watanabe, Satoshi; Fukuda, Marika; Baba, Miho; Okazaki, Shunichiro; Mizuo, Keisuke; Hayashi, Etsuko; Inoue, Hiromasa

    2014-09-01

    An 80-year-old female was transferred to the hospital due to a traffic accident. Multiple cranial bone fractures with intracranial hemorrhage and intracranial air were detected. Despite treatment, the patient died after 6h. Twenty-one hours after the patient died, her whole body was scanned by postmortem CT, and a region of high density was detected within the left putamen. The autopsy revealed a cerebral contusion and multiple skull base fractures. Moreover, superabsorbent polymers (SAPs) were found within the left lateral ventricle and adjacent to the putamen, which appeared as a high-density lesion on postmortem CT at the left putamen, where the SAPs were compacted. Both ante- and postmortem conditions should be considered to prevent misdiagnoses based only on postmortem CT. PMID:24916862

  18. PREPARATION OF HIGH-DENSITY THORIUM OXIDE SPHERES

    DOEpatents

    McNees, R.A. Jr.; Taylor, A.J.

    1963-12-31

    A method of preparing high-density thorium oxide spheres for use in pellet beds in nuclear reactors is presented. Sinterable thorium oxide is first converted to free-flowing granules by means such as compression into a compact and comminution of the compact. The granules are then compressed into cubes having a density of 5.0 to 5.3 grams per cubic centimeter. The cubes are tumbled to form spheres by attrition, and the spheres are then fired at 1250 to 1350 deg C. The fired spheres are then polished and fired at a temperature above 1650 deg C to obtain high density. Spherical pellets produced by this method are highly resistant to mechanical attrition hy water. (AEC)

  19. Fluid hydrogen at high density - The plasma phase transition

    NASA Technical Reports Server (NTRS)

    Saumon, D.; Chabrier, G.

    1989-01-01

    A new model equation of state is applied, based on realistic interparticle potentials and a self-consistent treatment of the internal levels, to fluid hydrogen at high density. This model shows a strong connection between molecular dissociation and pressure ionization. The possibility of a first-order plasma phase transition is considered, and for which both the evolution in temperature and the critical point is given.

  20. High-Density Amorphous Ice, the Frost on Interstellar Grains

    NASA Technical Reports Server (NTRS)

    Jenniskens, P.; Blake, D. F.; Wilson, M. A.; Pohorille, A.

    1995-01-01

    Most water ice in the universe is in a form which does not occur naturally on Earth and of which only minimal amounts have been made in the laboratory. We have encountered this 'high-density amorphous ice' in electron diffraction experiments of low-temperature (T less than 30 K) vapor-deposited water and have subsequently modeled its structure using molecular dynamics simulations. The characteristic feature of high-density amorphous ice is the presence of 'interstitial' oxygen pair distances between 3 and 4 A. However, we find that the structure is best described as a collapsed lattice of the more familiar low-density amorphous form. These distortions are frozen in at temperatures below 38 K because, we propose, it requires the breaking of one hydrogen bond, on average, per molecule to relieve the strain and to restructure the lattice to that of low-density amorphous ice. Several features of astrophysical ice analogs studied in laboratory experiments are readily explained by the structural transition from high-density amorphous ice into low-density amorphous ice. Changes in the shape of the 3.07 gm water band, trapping efficiency of CO, CO loss, changes in the CO band structure, and the recombination of radicals induced by low-temperature UV photolysis all covary with structural changes that occur in the ice during this amorphous to amorphous transition. While the 3.07 micrometers ice band in various astronomical environments can be modeled with spectra of simple mixtures of amorphous and crystalline forms, the contribution of the high-density amorphous form nearly always dominates.

  1. Next generation high density self assembling functional protein arrays

    PubMed Central

    Ramachandran, Niroshan; Raphael, Jacob V.; Hainsworth, Eugenie; Demirkan, Gokhan; Fuentes, Manuel G.; Rolfs, Andreas; Hu, Yanhui; LaBaer, Joshua

    2009-01-01

    We report a high-density self assembling protein microarray that displays thousands of proteins, produced and captured in situ from immobilized cDNA templates. Over 1500 unique cDNAs were tested with > 90% success with nearly all proteins displaying yields within 2 fold of the mean, minimal sample variation and good day to day reproducibility. The displayed proteins revealed selective protein interactions. This method will enable various experimental approaches to study protein function in high throughput. PMID:18469824

  2. Near-vacuum hohlraums for driving fusion implosions with high density carbon ablatorsa)

    NASA Astrophysics Data System (ADS)

    Berzak Hopkins, L. F.; Le Pape, S.; Divol, L.; Meezan, N. B.; Mackinnon, A. J.; Ho, D. D.; Jones, O. S.; Khan, S.; Milovich, J. L.; Ross, J. S.; Amendt, P.; Casey, D.; Celliers, P. M.; Pak, A.; Peterson, J. L.; Ralph, J.; Rygg, J. R.

    2015-05-01

    Recent experiments at the National Ignition Facility [M. J. Edwards et al., Phys. Plasmas 20, 070501 (2013)] have explored driving high-density carbon ablators with near-vacuum hohlraums, which use a minimal amount of helium gas fill. These hohlraums show improved efficiency relative to conventional gas-filled hohlraums in terms of minimal backscatter, minimal generation of suprathermal electrons, and increased hohlraum-capsule coupling. Given these advantages, near-vacuum hohlraums are a promising choice for pursuing high neutron yield implosions. Long pulse symmetry control, though, remains a challenge, as the hohlraum volume fills with material. Two mitigation methodologies have been explored, dynamic beam phasing and increased case-to-capsule ratio (larger hohlraum size relative to capsule). Unexpectedly, experiments have demonstrated that the inner laser beam propagation is better than predicted by nominal simulations, and an enhanced beam propagation model is required to match measured hot spot symmetry. Ongoing work is focused on developing a physical model which captures this enhanced propagation and on utilizing the enhanced propagation to drive longer laser pulses than originally predicted in order to reach alpha-heating dominated neutron yields.

  3. Gas-solid flow characteristics in high-density CFB

    NASA Astrophysics Data System (ADS)

    Wang, Xue-yao; Fan, Bao-guo; Wang, Sheng-dian; Xu, Xiang; Xiao, Yun-han

    2012-08-01

    The gas-solid flow characteristics in the riser of a high density CFB of square (0.27 m×0.27 m×10.4 m) or circular ( ϕ 0.187m×10.4 m) cross section, using Geldart B particles (quartz sand), was investigated experimentally. The influence of riser structure on the hydrodynamic behaviors of a high-density circulating fluidized bed was investigated. The solid circulation rate was up to 321 kg/(m2s) with the circular cross-section under the operating conditions of the main bed air velocity 12.1 m/s and loosen wind and back-feed wind flow 25.1 m3/h. Different operating conditions on realizing high density circulation was analyzed, while both solids circulation rate and particle holdup depended highly on operating conditions. The circulating gas-solid flow was accompanied by an evidently-dense character in the riser's bottom zone and became fully developed in the middle and upper zones.

  4. Density limits investigation and high density operation in EAST tokamak

    NASA Astrophysics Data System (ADS)

    Zheng, Xingwei; Li, Jiangang; Hu, Jiansheng; Liu, Haiqing; Jie, Yinxian; Wang, Shouxin; Li, Jiahong; Duan, Yanming; Li, Miaohui; Li, Yongchun; Zhang, Ling; Ye, Yang; Yang, Qingquan; Zhang, Tao; Cheng, Yingjie; Xu, Jichan; Wang, Liang; Xu, Liqing; Zhao, Hailin; Wang, Fudi; Lin, Shiyao; Wu, Bin; Lyu, Bo; Xu, Guosheng; Gao, Xiang; Shi, Tonghui; He, Kaiyang; Lan, Heng; Chu, Nan; Cao, Bin; Sun, Zhen; Zuo, Guizhong; Ren, Jun; Zhuang, Huidong; Li, Changzheng; Yuan, Xiaolin; Yu, Yaowei; Wang, Houyin; Chen, Yue; Wu, Jinhua; EAST Team

    2016-05-01

    Increasing the density in a tokamak is limited by the so-called density limit, which is generally performed as an appearance of disruption causing loss of plasma confinement, or a degradation of high confinement mode which could further lead to a H  →  L transition. The L-mode and H-mode density limit has been investigated in EAST tokamak. Experimental results suggest that density limits could be triggered by either edge cooling or excessive central radiation. The L-mode density limit disruption is generally triggered by edge cooling, which leads to the current profile shrinkage and then destabilizes a 2/1 tearing mode, ultimately resulting in a disruption. The L-mode density limit scaling agrees well with the Greenwald limit in EAST. The observed H-mode density limit in EAST is an operational-space limit with a value of 0.8∼ 0.9{{n}\\text{GW}} . High density H-mode heated by neutral beam injection (NBI) and lower hybrid current drive (LHCD) are analyzed, respectively. The constancy of the edge density gradients in H-mode indicates a critical limit caused perhaps by e.g. ballooning induced transport. The maximum density is accessed at the H  →  L transition which is generally caused by the excessive core radiation due to high Z impurities (Fe, Cu). Operating at a high density (>2.8× {{10}19} {{\\text{m}}-3} ) is favorable for suppressing the beam shine through NBI. High density H-mode up to 5.3× {{10}19}{{\\text{m}}-3}~≤ft(∼ 0.8{{n}\\text{GW}}\\right) could be sustained by 2 MW 4.6 GHz LHCD alone, and its current drive efficiency is studied. Statistics show that good control of impurities and recycling facilitate high density operation. With careful control of these factors, high density up to 0.93{{n}\\text{GW}} stable H-mode operation was carried out heated by 1.7 MW LHCD and 1.9 MW ion cyclotron resonance heating with supersonic molecular beam injection fueling.

  5. Characterization of the high density plasma etching process of CCTO thin films for the fabrication of very high density capacitors

    NASA Astrophysics Data System (ADS)

    Altamore, C.; Tringali, C.; Sparta', N.; Di Marco, S.; Grasso, A.; Ravesi, S.

    2010-02-01

    In this work the feasibility of CCTO (Calcium Copper Titanate) patterning by etching process is demonstrated and fully characterized in a hard to etch materials etcher. CCTO sintered in powder shows a giant relative dielectric constant (105) measured at 1 MHz at room temperature. This feature is furthermore coupled with stability from 101 Hz to 106 Hz in a wide temperature range (100K - 600K). In principle, this property can allow to fabricate very high capacitance density condenser. Due to its perovskite multi-component structure, CCTO can be considered a hard to etch material. For high density capacitor fabrication, CCTO anisotropic etching is requested by using high density plasma. The behavior of etched CCTO was studied in a HRe- (High Density Reflected electron) plasma etcher using Cl2/Ar chemistry. The relationship between the etch rate and the Cl2/Ar ratio was also studied. The effects of RF MHz, KHz Power and pressure variation, the impact of HBr addiction to the Cl2/Ar chemistry on the CCTO etch rate and on its selectivity to Pt and photo resist was investigated.

  6. High-density carbon capsule experiments on the national ignition facility

    NASA Astrophysics Data System (ADS)

    Ross, J. S.; Ho, D.; Milovich, J.; Döppner, T.; McNaney, J.; MacPhee, A. G.; Hamza, A.; Biener, J.; Robey, H. F.; Dewald, E. L.; Tommasini, R.; Divol, L.; Le Pape, S.; Hopkins, L. Berzak; Celliers, P. M.; Landen, O.; Meezan, N. B.; Mackinnon, A. J.

    2015-02-01

    Indirect-drive implosions with a high-density carbon (HDC) capsule were conducted on the National Ignition Facility (NIF) to test HDC properties as an ablator material for inertial confinement fusion. A series of five experiments were completed with 76 -μ m -thick HDC capsules using a four-shock laser pulse optimized for HDC. The pulse delivered a total energy of 1.3 MJ with a peak power of 360 TW. The experiment demonstrated good laser to target coupling (˜90 % ) and excellent nuclear performance. A deuterium and tritium gas-filled HDC capsule implosion produced a neutron yield of 1.6 ×1015±3 ×1013 , a yield over simulated in one dimension of 70 % .

  7. High-Density Carbon Ablator Experiments on the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Ross, James; Macphee, Andrew; McNaney, James; Doeppner, Tilo; Pak, Art; Rygg, Ryan; Benedetti, Robin; Town, Richard; Bradley, David; Dewald, Edward; Tommasini, Ricardo; Milovich, Jose; Berzak-Hopkins, Laura; Moody, John; Callahan, Debbi; Hamza, Alex; Biener, Juergen; Ho, Darwin; Storm, Eric; Kilkenny, Joe; Landen, Otto; Lindl, John; Edwards, John; Meezan, Nathan; Mackinno, Andrew

    2013-10-01

    A series of experiments on the National Ignition Facility (NIF) have been preformed to measure high-density carbon (HDC) ablator performance for indirect drive inertial confinement fusion (ICF). The NIF laser was used to generate a shaped laser pulse with a peak power of 360 TW and a total energy of 1.3 MJ. The total neutron yield, ion temperature, neutron bang time and x-ray bang time were measured and compared to simulations. A deuterium-tritium filled HDC capsule recently produced a neutron yield of 1.6 × 1015, the current record for laser driven ICF. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and supported by LDRD-11-ERD-075.

  8. High-density support matrices: Key to the deep borehole disposal of spent nuclear fuel

    NASA Astrophysics Data System (ADS)

    Gibb, F. G. F.; McTaggart, N. A.; Travis, K. P.; Burley, D.; Hesketh, K. W.

    2008-03-01

    Deep (4-5 km) boreholes are emerging as a safe, secure, environmentally sound and potentially cost-effective option for disposal of high-level radioactive wastes, including plutonium. One reason this option has not been widely accepted for spent fuel is because stacking the containers in a borehole could create load stresses threatening their integrity with potential for releasing highly mobile radionuclides like 129I before the borehole is filled and sealed. This problem can be overcome by using novel high-density support matrices deployed as fine metal shot along with the containers. Temperature distributions in and around the disposal are modelled to show how decay heat from the fuel can melt the shot within weeks of disposal to give a dense liquid in which the containers are almost weightless. Finally, within a few decades, this liquid will cool and solidify, entombing the waste containers in a base metal sarcophagus sealed into the host rock.

  9. High-density carbon capsule experiments on the national ignition facility.

    PubMed

    Ross, J S; Ho, D; Milovich, J; Döppner, T; McNaney, J; MacPhee, A G; Hamza, A; Biener, J; Robey, H F; Dewald, E L; Tommasini, R; Divol, L; Le Pape, S; Berzak Hopkins, L; Celliers, P M; Landen, O; Meezan, N B; Mackinnon, A J

    2015-02-01

    Indirect-drive implosions with a high-density carbon (HDC) capsule were conducted on the National Ignition Facility (NIF) to test HDC properties as an ablator material for inertial confinement fusion. A series of five experiments were completed with 76-μm-thick HDC capsules using a four-shock laser pulse optimized for HDC. The pulse delivered a total energy of 1.3 MJ with a peak power of 360 TW. The experiment demonstrated good laser to target coupling (∼90%) and excellent nuclear performance. A deuterium and tritium gas-filled HDC capsule implosion produced a neutron yield of 1.6×10^{15}±3×10(13), a yield over simulated in one dimension of 70%. PMID:25768451

  10. Extensional Flow Induced Crystallization of Polyethylene

    NASA Astrophysics Data System (ADS)

    Nicholson, David; Locker, C. Rebecca; Tsou, Andy; Rutledge, Gregory

    2014-03-01

    The majority of manufactured polyethylene is used in films mostly through the blown film fabrication process where extensional flow induced crystallization is a critical component in affecting the development of crystalline morphology and amorphous topology. In order to optimize the blown film performance, it is critical to understand the mechanism of extensional flow induced crystallization of polyethylene. Model high density polyethylene with a Mn of 20,000 g/mol and a PDI (polydispersity) of 2 and lower were synthesized by organometallic catalysts. Extensional flow induced crystallization of these materials was measured using the SER (Sentmanat Extensional Rheometer) either at a given rate with varying temperatures or vice versa. A continuum model was applied to analyze the flow induced crystallization data. All samples after extensional flow were quenched in ice water and the resulting morphology was characterized using SAXS and WAXS. The extensional rate was found to be effective in modifying morphology whereas the temperature was not; neither temperature nor strain rate affected the final film crystallinity. With an increase in extensional rate, crystallites became thinner and narrower with potentially higher connectivity which could lead to higher toughness.

  11. Grafting functional antioxidants on highly crosslinked polyethylene

    NASA Astrophysics Data System (ADS)

    Al-Malaika, S.; Riasat, S.; Lewucha, C.

    2016-05-01

    The problem of interference of antioxidants, such as hindered phenols, with peroxide-initiated crosslinking of polyethylene was addressed through the use of functional (reactive) graftable antioxidants (g-AO). Reactive derivatives of hindered phenol and hindered amine antioxidants were synthesised, characterised and used to investigate their grafting reactions in high density polyethylene; both non-crosslinked (PE) and highly peroxide-crosslinked (PEXa). Assessment of the extent of in-situ grafting of the antioxidants, their retention after exhaustive solvent extraction in PE and PEXa, and the stabilising performance of the grafted antioxidants (g-AO) in the polymer were examined and benchmarked against conventionally stabilised crosslinked & non-crosslinked polyethylene. It was shown that the functional antioxidants graft to a high extent in PEXa, and that the level of interference of the g-AOs with the polymer crosslinking process was minimal compared to that of conventional antioxidants which bear the same antioxidant function. The much higher level of retention of the g-AOs in PEXa after exhaustive solvent extraction, compared to that of the corresponding conventional antioxidants, accounts for their superior long-term thermal stabilising performance under severe extractive conditions.

  12. Near-vacuum hohlraums for driving fusion implosions with high density carbon ablators

    NASA Astrophysics Data System (ADS)

    Berzak Hopkins, Laura

    2014-10-01

    Achieving ignition requires reaching fast implosion velocities, which highlights the need for a highly efficient hohlraum to drive indirect-drive inertial confinement fusion implosions. Gas-filled hohlraums are typically utilized due to the pulse length (15-20 ns) needed to drive plastic (CH) capsules. With the recent use of 3× denser high-density carbon (HDC) capsules, ignition pulses can be less than 10 ns in duration, providing the opportunity to utilize near-vacuum hohlraums (NVH) to drive ignition-relevant implosions on the National Ignition Facility (NIF) with minimal laser-plasma instabilities which complicate standard gas-filled hohlraums. Initial NVH implosions on the NIF have demonstrated coupling efficiency significantly higher than observed in gas-filled hohlraums - backscatter losses less than 2% and virtually no suprathermal electron generation. A major design challenge for the NVH is symmetry control. Without tamping gas, the hohlraum wall quickly expands filling the volume with gold plasma. However, results to-date indicate that the inner-cone beams propagate freely to the hohlraum wall for at least 6.5 ns. With minimal predicted cross-beam power transfer, this propagation enables symmetry control via dynamic beam phasing - time-dependent direct adjustment of the inner- and outer-cone laser pulses. A series of experiments with an HDC ablator and NVH culminated in a 6 ns, 1.2 MJ cryogenic DT layered implosion yielding 1.8 × 1015 neutrons--significantly higher yield than any CH implosion at comparable energy. This implosion reached an ignition-relevant velocity -350 km/s - with no observed ablator mix in the hot spot. Recent experiments have explored two-shock designs in a larger, 6.72 mm hohlraum, and upcoming experiments will incrementally extend the pulse duration toward a 9 ns long, three-shock ignition design. Prepared by LLNL under Contract DE-AC52-07NA27344.

  13. Enhanced Configurational Entropy in High-Density Nanoconfined Bilayer Ice.

    PubMed

    Corsetti, Fabiano; Zubeltzu, Jon; Artacho, Emilio

    2016-02-26

    A novel kind of crystal order in high-density nanoconfined bilayer ice is proposed from molecular dynamics and density-functional theory simulations. A first-order transition is observed between a low-temperature proton-ordered solid and a high-temperature proton-disordered solid. The latter is shown to possess crystalline order for the oxygen positions, arranged on a close-packed triangular lattice with AA stacking. Uniquely among the ice phases, the triangular bilayer is characterized by two levels of disorder (for the bonding network and for the protons) which results in a configurational entropy twice that of bulk ice. PMID:26967426

  14. Extended length microchannels for high density high throughput electrophoresis systems

    DOEpatents

    Davidson, James C.; Balch, Joseph W.

    2000-01-01

    High throughput electrophoresis systems which provide extended well-to-read distances on smaller substrates, thus compacting the overall systems. The electrophoresis systems utilize a high density array of microchannels for electrophoresis analysis with extended read lengths. The microchannel geometry can be used individually or in conjunction to increase the effective length of a separation channel while minimally impacting the packing density of channels. One embodiment uses sinusoidal microchannels, while another embodiment uses plural microchannels interconnected by a via. The extended channel systems can be applied to virtually any type of channel confined chromatography.

  15. High density electronic circuit and process for making

    DOEpatents

    Morgan, William P.

    1999-01-01

    High density circuits with posts that protrude beyond one surface of a substrate to provide easy mounting of devices such as integrated circuits. The posts also provide stress relief to accommodate differential thermal expansion. The process allows high interconnect density with fewer alignment restrictions and less wasted circuit area than previous processes. The resulting substrates can be test platforms for die testing and for multi-chip module substrate testing. The test platform can contain active components and emulate realistic operational conditions, replacing shorts/opens net testing.

  16. High density electronic circuit and process for making

    DOEpatents

    Morgan, W.P.

    1999-06-29

    High density circuits with posts that protrude beyond one surface of a substrate to provide easy mounting of devices such as integrated circuits are disclosed. The posts also provide stress relief to accommodate differential thermal expansion. The process allows high interconnect density with fewer alignment restrictions and less wasted circuit area than previous processes. The resulting substrates can be test platforms for die testing and for multi-chip module substrate testing. The test platform can contain active components and emulate realistic operational conditions, replacing shorts/opens net testing. 8 figs.

  17. High Density Thermal Energy Storage with Supercritical Fluids

    NASA Technical Reports Server (NTRS)

    Ganapathi, Gani B.; Wirz, Richard

    2012-01-01

    A novel approach to storing thermal energy with supercritical fluids is being investigated, which if successful, promises to transform the way thermal energy is captured and utilized. The use of supercritical fluids allows cost-affordable high-density storage with a combination of latent heat and sensible heat in the two-phase as well as the supercritical state. This technology will enhance penetration of several thermal power generation applications and high temperature water for commercial use if the overall cost of the technology can be demonstrated to be lower than the current state-of-the-art molten salt using sodium nitrate and potassium nitrate eutectic mixtures.

  18. Enhanced Configurational Entropy in High-Density Nanoconfined Bilayer Ice

    NASA Astrophysics Data System (ADS)

    Corsetti, Fabiano; Zubeltzu, Jon; Artacho, Emilio

    2016-02-01

    A novel kind of crystal order in high-density nanoconfined bilayer ice is proposed from molecular dynamics and density-functional theory simulations. A first-order transition is observed between a low-temperature proton-ordered solid and a high-temperature proton-disordered solid. The latter is shown to possess crystalline order for the oxygen positions, arranged on a close-packed triangular lattice with A A stacking. Uniquely among the ice phases, the triangular bilayer is characterized by two levels of disorder (for the bonding network and for the protons) which results in a configurational entropy twice that of bulk ice.

  19. Probing topological relations between high-density and low-density regions of 2MASS with hexagon cells

    SciTech Connect

    Wu, Yongfeng; Xiao, Weike

    2014-02-01

    We introduced a new two-dimensional (2D) hexagon technique for probing the topological structure of the universe in which we mapped regions of the sky with high and low galaxy densities onto a 2D lattice of hexagonal unit cells. We defined filled cells as corresponding to high-density regions and empty cells as corresponding to low-density regions. The numbers of filled cells and empty cells were kept the same by controlling the size of the cells. By analyzing the six sides of each hexagon, we could obtain and compare the statistical topological properties of high-density and low-density regions of the universe in order to have a better understanding of the evolution of the universe. We applied this hexagonal method to Two Micron All Sky Survey data and discovered significant topological differences between the high-density and low-density regions. Both regions had significant (>5σ) topological shifts from both the binomial distribution and the random distribution.

  20. An evaluation of serum high density lipoproteins-phospholipids.

    PubMed

    Ide, H; Tsuji, M; Shimada, M; Kondo, T; Fujiya, S; Asanuma, Y; Agishi, Y

    1988-07-01

    Phospholipids in high density lipoproteins (HDL) is being used as a negative risk indicator of atherosclerosis. Phospholipids in HDL may not demonstrate the actual level of HDL-phospholipids when determined by the precipitation or ultracentrifugal methods, because HDL fractions contain very high density lipoproteins (VHDL) and albumin. In the present study, the true level of phospholipids in HDL was estimated using high performance liquid chromatography (HPLC), and it was compared with the level of phospholipids in HDL determined by the precipitation method. Sera from 18 healthy subjects were used as materials. In the HPLC method, the HDL fraction was extracted making sure that it contained no free albumin, which is albumin not bound to phospholipids. The HDL fraction was separated into subfractions. It was found that phospholipids in the VHDL fraction make a 20.2 +/- 7.3% (mean +/- S.D.) part of the total HDL-phospholipids. A large part of the VHDL fraction was constituted of albumin-bound phospholipids. A significant correlation was observed between HDL-phospholipids determined by the precipitation method, which contain albumin, and the actual HDL fraction phospholipids determined by HPLC, which do not contain VHDL (r = 0.903, p less than 0.01). These results suggest that HDL-phospholipids values determined by the precipitation method give useful clinical data. PMID:3176021

  1. Multiplexed, High Density Electrophysiology with Nanofabricated Neural Probes

    PubMed Central

    Du, Jiangang; Blanche, Timothy J.; Harrison, Reid R.; Lester, Henry A.; Masmanidis, Sotiris C.

    2011-01-01

    Extracellular electrode arrays can reveal the neuronal network correlates of behavior with single-cell, single-spike, and sub-millisecond resolution. However, implantable electrodes are inherently invasive, and efforts to scale up the number and density of recording sites must compromise on device size in order to connect the electrodes. Here, we report on silicon-based neural probes employing nanofabricated, high-density electrical leads. Furthermore, we address the challenge of reading out multichannel data with an application-specific integrated circuit (ASIC) performing signal amplification, band-pass filtering, and multiplexing functions. We demonstrate high spatial resolution extracellular measurements with a fully integrated, low noise 64-channel system weighing just 330 mg. The on-chip multiplexers make possible recordings with substantially fewer external wires than the number of input channels. By combining nanofabricated probes with ASICs we have implemented a system for performing large-scale, high-density electrophysiology in small, freely behaving animals that is both minimally invasive and highly scalable. PMID:22022568

  2. Dispersion Interactions in High-Density Molecular Crystals

    NASA Astrophysics Data System (ADS)

    Csernica, Peter; Maitra, Rahul; Distasio, Robert

    Dispersion interactions are ubiquitous quantum mechanical phenomena arising from correlated electron density fluctuations in molecules and materials. As a key component of non-bonded interactions, dispersion forces play a critical role in determining the structure and stability of molecular crystals. Due to the relative intermolecular separation in high-density molecular crystals, an accurate description of these non-bonded interactions requires the inclusion of terms beyond the asymptotic induced-dipole-induced-dipole (C6 /R6) contribution. In this work, we have developed a first principles based approach within the framework of Density Functional Theory (i.e., that only depends on the charge density n (r)) for capturing the higher-order induced multipolar contributions to the correlation energy. As a first application of this method, we have investigated the structure and stability of the high-density ice molecular crystal polymorphs at the ice VI--ice VII--ice VIII triple point (278K, 2.1GPa) using ab-initio molecular dynamics in the isobaric-isothermal (NpT) ensemble.

  3. Operating condition limitations of high density QCW arrays

    NASA Astrophysics Data System (ADS)

    Junghans, Jeremy; Levy, Joseph; Feeler, Ryan

    2012-03-01

    Northrop Grumman Cutting Edge Optronics (NGCEO) has developed a laser diode array package with minimal bar-tobar spacing. These High Density Stack (HDS) packages allow for a power density increase on the order of ~ 2.5x when compared to industry-standard arrays. Power densities as high as 15 kW/cm2 can be achieved when operated at 200 W/bar. This work provides a detailed description of the duty factor, pulse width and power limitations of high density arrays. The absence of the interposing heatsinks requires that all of the heat generated by the interior bars must travel through the adjacent bars to the electrical contacts. This results in limitations to the allowable operating envelope of the HDS arrays. Thermal effects such as wavelength shifts across large HDS arrays are discussed. An overview of recent HDS design and manufacturing improvements is also presented. These improvements result in reliable operation at higher power densities and increased duty factors. A comparison of the effect of bar geometry on HDS performance is provided. Test data from arrays featuring these improvements based on both full 1 cm wide diode bars as well as 3 mm wide mini-bars is also presented.

  4. System design for OFDM systems with high-density constellations

    NASA Astrophysics Data System (ADS)

    Gu, Jian

    2001-10-01

    This paper addresses issues in designing OFDM systems with high-density constellations. To achieve high data throughput, many high-speed OFDM systems such as HiperLAN2 and IEEE 802.11a use high-density constellations such as 64QAM to reach up to 54Mbits/s over a 20 MHz frequency bandwidth. Compared with low-density constellation modulations, OFDM systems using M-QAM (M>=64) are very sensitive to analog circuits/components variations causing so-called I-Q imbalances. Moreover, for the purpose of high integration level and low cost, simple front-end radio/analog architectures such as direct conversion and low-IF are desirable but such architectures are even more sensitive to circuitry and component variation. We have developed a patent-pending technology called IQ-Balancing, which removes the adverse effect of I-Q imbalance and enables OFDM systems to have high tolerance to circuitry and component variations. With IQ-Balancing technology, direct conversion and low-IF architectures become very attractive for high-speed OFDM systems. Exploring further with IQ- balancing technology leads to a simple implementation of software Defined Radio (SDR).

  5. Sparse deconvolution of high-density super-resolution images

    PubMed Central

    Hugelier, Siewert; de Rooi, Johan J.; Bernex, Romain; Duwé, Sam; Devos, Olivier; Sliwa, Michel; Dedecker, Peter; Eilers, Paul H. C.; Ruckebusch, Cyril

    2016-01-01

    In wide-field super-resolution microscopy, investigating the nanoscale structure of cellular processes, and resolving fast dynamics and morphological changes in cells requires algorithms capable of working with a high-density of emissive fluorophores. Current deconvolution algorithms estimate fluorophore density by using representations of the signal that promote sparsity of the super-resolution images via an L1-norm penalty. This penalty imposes a restriction on the sum of absolute values of the estimates of emitter brightness. By implementing an L0-norm penalty – on the number of fluorophores rather than on their overall brightness – we present a penalized regression approach that can work at high-density and allows fast super-resolution imaging. We validated our approach on simulated images with densities up to 15 emitters per μm-2 and investigated total internal reflection fluorescence (TIRF) data of mitochondria in a HEK293-T cell labeled with DAKAP-Dronpa. We demonstrated super-resolution imaging of the dynamics with a resolution down to 55 nm and a 0.5 s time sampling. PMID:26912448

  6. Effects of High-Density Impacts on Shielding Capability

    NASA Technical Reports Server (NTRS)

    Christiansen, Eric L.; Lear, Dana M.

    2014-01-01

    Spacecraft are shielded from micrometeoroids and orbital debris (MMOD) impacts to meet requirements for crew safety and/or mission success. In the past, orbital debris particles have been considered to be composed entirely of aluminum (medium-density material) for the purposes of MMOD shielding design and verification. Meteoroids have been considered to be low-density porous materials, with an average density of 1 g/cu cm. Recently, NASA released a new orbital debris environment model, referred to as ORDEM 3.0, that indicates orbital debris contains a substantial fraction of high-density material for which steel is used in MMOD risk assessments [Ref.1]. Similarly, an update to the meteoroid environment model is also under consideration to include a high-density component of that environment. This paper provides results of hypervelocity impact tests and hydrocode simulations on typical spacecraft MMOD shields using steel projectiles. It was found that previous ballistic limit equations (BLEs) that define the protection capability of the MMOD shields did not predict the results from the steel impact tests and hydrocode simulations (typically, the predictions from these equations were too optimistic). The ballistic limit equations required updates to more accurately represent shield protection capability from the range of densities in the orbital debris environment. Ballistic limit equations were derived from the results of the work and are provided in the paper.

  7. Loop formation of microtubules during gliding at high density

    NASA Astrophysics Data System (ADS)

    Liu, Lynn; Tüzel, Erkan; Ross, Jennifer L.

    2011-09-01

    The microtubule cytoskeleton, including the associated proteins, forms a complex network essential to multiple cellular processes. Microtubule-associated motor proteins, such as kinesin-1, travel on microtubules to transport membrane bound vesicles across the crowded cell. Other motors, such as cytoplasmic dynein and kinesin-5, are used to organize the cytoskeleton during mitosis. In order to understand the self-organization processes of motors on microtubules, we performed filament-gliding assays with kinesin-1 motors bound to the cover glass with a high density of microtubules on the surface. To observe microtubule organization, 3% of the microtubules were fluorescently labeled to serve as tracers. We find that microtubules in these assays are not confined to two dimensions and can cross one other. This causes microtubules to align locally with a relatively short correlation length. At high density, this local alignment is enough to create 'intersections' of perpendicularly oriented groups of microtubules. These intersections create vortices that cause microtubules to form loops. We characterize the radius of curvature and time duration of the loops. These different behaviors give insight into how crowded conditions, such as those in the cell, might affect motor behavior and cytoskeleton organization.

  8. Change in composition of high density lipoprotein during gemfibrozil therapy.

    PubMed

    Sorisky, A; Ooi, T C; Simo, I E; Meuffels, M; Hindmarsh, J T; Nair, R

    1987-10-01

    We investigated the high density lipoprotein cholesterol (HDL-C) response in 20 middle-aged males during a 12-week course of gemfibrozil. Three aspects of the increase in HDL-C (25%) were studied and our observations are as follows: (1) subfraction analysis showed that HDL3-C rose earlier and to a larger extent (28%) than HDL2-C (15%), (2) analysis of variance group--time interaction effect and correlation studies of HDL-C and total triglycerides suggest the increase in HDL-C was due to a direct effect of gemfibrozil on HDL metabolism, and (3) HDL-C was the only one of 4 HDL components to increase. Apoprotein A-I (apo A-I) and HDL-phospholipid (HDL-PL) did not change, and HDL-triglyceride (HDL-TG) decreased. This pattern is consistent with a change in composition of HDL, i.e. cholesterol enrichment and triglyceride depletion. PMID:3118893

  9. On the high-density expansion for Euclidean random matrices

    NASA Astrophysics Data System (ADS)

    Grigera, T. S.; Martin-Mayor, V.; Parisi, G.; Urbani, P.; Verrocchio, P.

    2011-02-01

    Diagrammatic techniques to compute perturbatively the spectral properties of Euclidean random matrices (ERM) in the high-density regime are introduced and discussed in detail. Such techniques are developed in two alternative and very different formulations of the mathematical problem and are shown to give identical results up to second order in the perturbative expansion. One method, based on writing the so-called resolvent function as a Taylor series, allows us to group the diagrams into a small number of topological classes, providing a simple way to determine the infrared (small momenta) behaviour of the theory up to third order, which is of interest for the comparison with experiments. The other method, which reformulates the problem as a field theory, can instead be used to study the infrared behaviour at any perturbative order.

  10. Single-Readout High-Density Memristor Crossbar.

    PubMed

    Zidan, M A; Omran, H; Naous, R; Sultan, A; Fahmy, H A H; Lu, W D; Salama, K N

    2016-01-01

    High-density memristor-crossbar architecture is a very promising technology for future computing systems. The simplicity of the gateless-crossbar structure is both its principal advantage and the source of undesired sneak-paths of current. This parasitic current could consume an enormous amount of energy and ruin the readout process. We introduce new adaptive-threshold readout techniques that utilize the locality and hierarchy properties of the computer-memory system to address the sneak-paths problem. The proposed methods require a single memory access per pixel for an array readout. Besides, the memristive crossbar consumes an order of magnitude less power than state-of-the-art readout techniques. PMID:26738564

  11. High-density Au nanorod optical field-emitter arrays.

    PubMed

    Hobbs, R G; Yang, Y; Keathley, P D; Swanwick, M E; Velásquez-Garcíia, L F; Kärtner, F X; Graves, W S; Berggren, K K

    2014-11-21

    We demonstrate the design, fabrication, characterization, and operation of high-density arrays of Au nanorod electron emitters, fabricated by high-resolution electron beam lithography, and excited by ultrafast femtosecond near-infrared radiation. Electron emission characteristic of multiphoton absorption has been observed at low laser fluence, as indicated by the power-law scaling of emission current with applied optical power. The onset of space-charge-limited current and strong optical field emission has been investigated so as to determine the mechanism of electron emission at high incident laser fluence. Laser-induced structural damage has been observed at applied optical fields above 5 GV m(-1), and energy spectra of emitted electrons have been measured using an electron time-of-flight spectrometer. PMID:25354583

  12. Ultracold molecular Rydberg physics in a high density environment

    NASA Astrophysics Data System (ADS)

    Eiles, Matthew T.; Pérez-Ríos, Jesús; Robicheaux, F.; Greene, Chris H.

    2016-06-01

    Sufficiently high densities in Bose–Einstein condensates provide favorable conditions for the production of ultralong-range polyatomic molecules consisting of one Rydberg atom and a number of neutral ground state atoms. The chemical binding properties and electronic wave functions of these exotic molecules are investigated analytically via hybridized diatomic states. The effects of the molecular geometry on the system’s properties are studied through comparisons of the adiabatic potential curves and electronic structures for both symmetric and randomly configured molecular geometries. General properties of these molecules with increasing numbers of constituent atoms and in different geometries are presented. These polyatomic states have spectral signatures that lead to non-Lorentzian line-profiles.

  13. High Density Memory Based on Quantum Device Technology

    NASA Technical Reports Server (NTRS)

    vanderWagt, Paul; Frazier, Gary; Tang, Hao

    1995-01-01

    We explore the feasibility of ultra-high density memory based on quantum devices. Starting from overall constraints on chip area, power consumption, access speed, and noise margin, we deduce boundaries on single cell parameters such as required operating voltage and standby current. Next, the possible role of quantum devices is examined. Since the most mature quantum device, the resonant tunneling diode (RTD) can easily be integrated vertically, it naturally leads to the issue of 3D integrated memory. We propose a novel method of addressing vertically integrated bistable two-terminal devices, such as resonant tunneling diodes (RTD) and Esaki diodes, that avoids individual physical contacts. The new concept has been demonstrated experimentally in memory cells of field effect transistors (FET's) and stacked RTD's.

  14. Methods and systems for rapid prototyping of high density circuits

    DOEpatents

    Palmer, Jeremy A.; Davis, Donald W.; Chavez, Bart D.; Gallegos, Phillip L.; Wicker, Ryan B.; Medina, Francisco R.

    2008-09-02

    A preferred embodiment provides, for example, a system and method of integrating fluid media dispensing technology such as direct-write (DW) technologies with rapid prototyping (RP) technologies such as stereolithography (SL) to provide increased micro-fabrication and micro-stereolithography. A preferred embodiment of the present invention also provides, for example, a system and method for Rapid Prototyping High Density Circuit (RPHDC) manufacturing of solderless connectors and pilot devices with terminal geometries that are compatible with DW mechanisms and reduce contact resistance where the electrical system is encapsulated within structural members and manual electrical connections are eliminated in favor of automated DW traces. A preferred embodiment further provides, for example, a method of rapid prototyping comprising: fabricating a part layer using stereolithography and depositing thermally curable media onto the part layer using a fluid dispensing apparatus.

  15. Measurements of uranium mass confined in high density plasmas

    NASA Technical Reports Server (NTRS)

    Stoeffler, R. C.

    1976-01-01

    An X-ray absorption method for measuring the amount of uranium confined in high density, rf-heated uranium plasmas is described. A comparison of measured absorption of 8 keV X-rays with absorption calculated using Beer Law indicated that the method could be used to measure uranium densities from 3 times 10 to the 16th power atoms/cu cm to 5 times 10 to the 18th power atoms/cu cm. Tests were conducted to measure the density of uranium in an rf-heated argon plasma with UF6 infection and with the power to maintain the discharge supplied by a 1.2 MW rf induction heater facility. The uranium density was measured as the flow rate through the test chamber was varied. A maximum uranium density of 3.85 times 10 to the 17th power atoms/cu cm was measured.

  16. High-density percutaneous chronic connector for neural prosthetics

    SciTech Connect

    Shah, Kedar G.; Bennett, William J.; Pannu, Satinderpall S.

    2015-09-22

    A high density percutaneous chronic connector, having first and second connector structures each having an array of magnets surrounding a mounting cavity. A first electrical feedthrough array is seated in the mounting cavity of the first connector structure and a second electrical feedthrough array is seated in the mounting cavity of the second connector structure, with a feedthrough interconnect matrix positioned between a top side of the first electrical feedthrough array and a bottom side of the second electrical feedthrough array to electrically connect the first electrical feedthrough array to the second electrical feedthrough array. The two arrays of magnets are arranged to attract in a first angular position which connects the first and second connector structures together and electrically connects the percutaneously connected device to the external electronics, and to repel in a second angular position to facilitate removal of the second connector structure from the first connector structure.

  17. High density propellant for single stage to orbit vehicles

    NASA Technical Reports Server (NTRS)

    Notardonato, J. J.; Masters, P. A.

    1976-01-01

    Mixed mode propulsion concepts are studied for advanced, single stage earth orbital transportation systems (SSTO) for use in the post-1990 time period. These propulsion concepts are based on the sequential and/or parallel use of high density impulse and high specific impulse propellants in a single stage to increase vehicle performance and reduce dry weight. Specifically, the mixed mode concept utilizes two propulsion systems with two different fuels (mode 1 and mode 2) with liquid oxygen as a common oxidizer. Mode 1 engines would burn a high bulk density fuel for lift-off and early ascent to minimize performance penalties associated with carrying fuel tankage to orbit. Mode 2 engines will complete orbital injection utilizing liquid hydrogen as the fuel.

  18. Single-Readout High-Density Memristor Crossbar

    PubMed Central

    Zidan, M. A.; Omran, H.; Naous, R.; Sultan, A.; Fahmy, H. A. H.; Lu, W. D.; Salama, K. N.

    2016-01-01

    High-density memristor-crossbar architecture is a very promising technology for future computing systems. The simplicity of the gateless-crossbar structure is both its principal advantage and the source of undesired sneak-paths of current. This parasitic current could consume an enormous amount of energy and ruin the readout process. We introduce new adaptive-threshold readout techniques that utilize the locality and hierarchy properties of the computer-memory system to address the sneak-paths problem. The proposed methods require a single memory access per pixel for an array readout. Besides, the memristive crossbar consumes an order of magnitude less power than state-of-the-art readout techniques. PMID:26738564

  19. High-density Au nanorod optical field-emitter arrays

    NASA Astrophysics Data System (ADS)

    Hobbs, R. G.; Yang, Y.; Keathley, P. D.; Swanwick, M. E.; Velásquez-García, L. F.; Kärtner, F. X.; Graves, W. S.; Berggren, K. K.

    2014-11-01

    We demonstrate the design, fabrication, characterization, and operation of high-density arrays of Au nanorod electron emitters, fabricated by high-resolution electron beam lithography, and excited by ultrafast femtosecond near-infrared radiation. Electron emission characteristic of multiphoton absorption has been observed at low laser fluence, as indicated by the power-law scaling of emission current with applied optical power. The onset of space-charge-limited current and strong optical field emission has been investigated so as to determine the mechanism of electron emission at high incident laser fluence. Laser-induced structural damage has been observed at applied optical fields above 5 GV m-1, and energy spectra of emitted electrons have been measured using an electron time-of-flight spectrometer.

  20. Neural network based feed-forward high density associative memory

    NASA Technical Reports Server (NTRS)

    Daud, T.; Moopenn, A.; Lamb, J. L.; Ramesham, R.; Thakoor, A. P.

    1987-01-01

    A novel thin film approach to neural-network-based high-density associative memory is described. The information is stored locally in a memory matrix of passive, nonvolatile, binary connection elements with a potential to achieve a storage density of 10 to the 9th bits/sq cm. Microswitches based on memory switching in thin film hydrogenated amorphous silicon, and alternatively in manganese oxide, have been used as programmable read-only memory elements. Low-energy switching has been ascertained in both these materials. Fabrication and testing of memory matrix is described. High-speed associative recall approaching 10 to the 7th bits/sec and high storage capacity in such a connection matrix memory system is also described.

  1. Single-Readout High-Density Memristor Crossbar

    NASA Astrophysics Data System (ADS)

    Zidan, M. A.; Omran, H.; Naous, R.; Sultan, A.; Fahmy, H. A. H.; Lu, W. D.; Salama, K. N.

    2016-01-01

    High-density memristor-crossbar architecture is a very promising technology for future computing systems. The simplicity of the gateless-crossbar structure is both its principal advantage and the source of undesired sneak-paths of current. This parasitic current could consume an enormous amount of energy and ruin the readout process. We introduce new adaptive-threshold readout techniques that utilize the locality and hierarchy properties of the computer-memory system to address the sneak-paths problem. The proposed methods require a single memory access per pixel for an array readout. Besides, the memristive crossbar consumes an order of magnitude less power than state-of-the-art readout techniques.

  2. High-density lipoprotein prevents organ damage in endotoxemia.

    PubMed

    Lee, Ru-Ping; Lin, Nien-Tsung; Chao, Yann-Fen Chiou; Lin, Chia-Chin; Harn, Horng-Jyh; Chen, Hsing-I

    2007-06-01

    High-density lipoprotein (HDL) may decrease organ injury in sepsis. This study was designed using an animal model to mimic people who had a high HDL level and to test HDL effects on preventing organ damage in endotoxemia. Endotoxemia was induced by an infusion of lipopolysac-charide (LPS) after HDL or LDL administration. Levels of blood biochemical substances, nitrate/nitrite, and TNF-alpha in sera were measured. Pathological examinations were performed 72 hours after LPS infusion. HDL decreased the endotoxin-induced elevation of AST, ALT, BUN, creatinine, LDH, CPK, nitrate/nitrite, and TNF-alpha. On histological examination, neutrophil infiltration was lower in the HDL group. HDL had a significant effect in preventing endotoxin-induced organ damage. PMID:17514720

  3. High Density Electroencephalography in Sleep Research: Potential, Problems, Future Perspective

    PubMed Central

    Lustenberger, Caroline; Huber, Reto

    2012-01-01

    High density EEG (hdEEG) during sleep combines the superior temporal resolution of EEG recordings with high spatial resolution. Thus, this method allows a topographical analysis of sleep EEG activity and thereby fosters the shift from a global view of sleep to a local one. HdEEG allowed to investigate sleep rhythms in terms of their characteristic behavior (e.g., the traveling of slow waves) and in terms of their relationship to cortical functioning (e.g., consciousness and cognitive abilities). Moreover, recent studies successfully demonstrated that hdEEG can be used to study brain functioning in neurological and neuro-developmental disorders, and to evaluate therapeutic approaches. This review highlights the potential, the problems, and future perspective of hdEEG in sleep research. PMID:22593753

  4. High density operation for reactor-relevant power exhaust

    NASA Astrophysics Data System (ADS)

    Wischmeier, M.

    2015-08-01

    With increasing size of a tokamak device and associated fusion power gain an increasing power flux density towards the divertor needs to be handled. A solution for handling this power flux is crucial for a safe and economic operation. Using purely geometric arguments in an ITER-like divertor this power flux can be reduced by approximately a factor 100. Based on a conservative extrapolation of current technology for an integrated engineering approach to remove power deposited on plasma facing components a further reduction of the power flux density via volumetric processes in the plasma by up to a factor of 50 is required. Our current ability to interpret existing power exhaust scenarios using numerical transport codes is analyzed and an operational scenario as a potential solution for ITER like divertors under high density and highly radiating reactor-relevant conditions is presented. Alternative concepts for risk mitigation as well as strategies for moving forward are outlined.

  5. Biominetic High Density Lipoproteins for the Delivery of Therapeutic Oligonucleotides

    NASA Astrophysics Data System (ADS)

    Tripathy, Sushant

    Advances in nanotechnology have brought about novel inorganic and hybrid nanoparticles with unique physico-chemical properties that make them suitable for a broad range of applications---from nano-circuitry to drug delivery. A significant part of those advancements have led to ground-breaking discoveries that have changed the approaches to formulation of therapeutics against diseases, such as cancer. Now-a-days the focus does not lie solely on finding a candidate small-molecule therapeutic with minimal adverse effects, but researchers are looking up to nanoparticles to improve biodistribution and biocompatibility profile of clinically proven therapeutics. The plethora of conjugation chemistries offered by currently extant inorganic nanoparticles have, in recent years, led to great leaps in the field of biomimicry---a modality that promises high biocompatibility. Further, in the pursuit of highly specific therapeutic molecules, researchers have turned to silencing oligonucleotides and some have already brought together the strengths of nanoparticles and silencing oligonucleotides in search of an efficacious therapy for cancer with minimal adverse effects. This dissertation work focuses on such a biomimetic platform---a gold nanoparticle based high density lipoprotein biomimetic (HDL NP), for the delivery of therapeutic oligonucleotides. The first chapter of this body of work introduces the molecular target of the silencing oligonucleotides---VEGFR2, and its role in the progression of solid tumor cancers. The background information also covers important aspects of natural high density lipoproteins (HDL), especially their innate capacity to bind and deliver exogenous and endogenous silencing oligonucleotides to tissues that express their high affinity receptor SRB1. We subsequently describe the synthesis of the biomimetic HDL NP and its oligonucleotide conjugates, and establish their biocompatibility. Further on, experimental data demonstrate the efficacy of silencing

  6. The glass transition in high-density amorphous ice

    PubMed Central

    Loerting, Thomas; Fuentes-Landete, Violeta; Handle, Philip H.; Seidl, Markus; Amann-Winkel, Katrin; Gainaru, Catalin; Böhmer, Roland

    2015-01-01

    There has been a long controversy regarding the glass transition in low-density amorphous ice (LDA). The central question is whether or not it transforms to an ultraviscous liquid state above 136 K at ambient pressure prior to crystallization. Currently, the most widespread interpretation of the experimental findings is in terms of a transformation to a superstrong liquid above 136 K. In the last decade some work has also been devoted to the study of the glass transition in high-density amorphous ice (HDA) which is in the focus of the present review. At ambient pressure HDA is metastable against both ice I and LDA, whereas at > 0.2 GPa HDA is no longer metastable against LDA, but merely against high-pressure forms of crystalline ice. The first experimental observation interpreted as the glass transition of HDA was made using in situ methods by Mishima, who reported a glass transition temperature Tg of 160 K at 0.40 GPa. Soon thereafter Andersson and Inaba reported a much lower glass transition temperature of 122 K at 1.0 GPa. Based on the pressure dependence of HDA's Tg measured in Innsbruck, we suggest that they were in fact probing the distinct glass transition of very high-density amorphous ice (VHDA). Very recently the glass transition in HDA was also observed at ambient pressure at 116 K. That is, LDA and HDA show two distinct glass transitions, clearly separated by about 20 K at ambient pressure. In summary, this suggests that three glass transition lines can be defined in the p–T plane for LDA, HDA, and VHDA. PMID:25641986

  7. High-density lipoprotein that supports Ureaplasma urealyticum growth.

    PubMed Central

    Sayed, I A; Sweat, F W

    1982-01-01

    A high-density lipoprotein with growth-promoting activity for Ureaplasma urealyticum was purified in high yield from equine serum by ammonium sulfate fractionation and molecular filtration. Fractions enriched in growth-promoting activity represented 5% of the total serum protein, and 30 micrograms of the purified protein per ml gave an activity equivalent to that from 100 micrograms of whole serum per ml. The serum was totally replaced by purified lipoprotein when tested in a soy peptone-yeast dialysate or when added to a chemically defined synthetic medium. Polyacrylamide gel electrophoresis indicated that one major protein with growth-promoting activity is present. A total of 10 proteins were distinguished by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, with 75% of the total contributed by two proteins with molecular weights of 160,000 and 170,000. A total of 90% of the lipoprotein was an alpha-protein with a mobility of 0.67 in two-dimensional immunoelectrophoresis (albumin = 1.0). The active component was further characterized as high-density lipoprotein by density ultracentrifugation. Two components with S = 6.4 and S = 15.8 were distinguished by velocity sedimentation. The lipid was removed from lipoprotein during its precipitation with acetone. The growth-promoting activity of delipidized protein was dependent upon the addition of exogenous cholesterol, and [14C]cholesterol was transferred to urea-plasmic cells in cultures containing the delipidized protein. A major portion of the [14C]cholesterol remained associated with the protein during filtration on Sepharose 4B columns. Images PMID:7201468

  8. Propofol Anesthesia and Sleep: A High-Density EEG Study

    PubMed Central

    Murphy, Michael; Bruno, Marie-Aurelie; Riedner, Brady A.; Boveroux, Pierre; Noirhomme, Quentin; Landsness, Eric C.; Brichant, Jean-Francois; Phillips, Christophe; Massimini, Marcello; Laureys, Steven; Tononi, Giulio; Boly, Melanie

    2011-01-01

    Study Objectives: The electrophysiological correlates of anesthetic sedation remain poorly understood. We used high-density electroencephalography (hd-EEG) and source modeling to investigate the cortical processes underlying propofol anesthesia and compare them to sleep. Design: 256-channel EEG recordings in humans during propofol anesthesia. Setting: Hospital operating room. Patients or Participants: 8 healthy subjects (4 males) Interventions: N/A Measurements and Results: Initially, propofol induced increases in EEG power from 12–25 Hz. Loss of consciousness (LOC) was accompanied by the appearance of EEG slow waves that resembled the slow waves of NREM sleep. We compared slow waves in propofol to slow waves recorded during natural sleep and found that both populations of waves share similar cortical origins and preferentially propagate along the mesial components of the default network. However, propofol slow waves were spatially blurred compared to sleep slow waves and failed to effectively entrain spindle activity. Propofol also caused an increase in gamma (25–40 Hz) power that persisted throughout LOC. Source modeling analysis showed that this increase in gamma power originated from the anterior and posterior cingulate cortices. During LOC, we found increased gamma functional connectivity between these regions compared to the wakefulness. Conclusions: Propofol anesthesia is a sleep-like state and slow waves are associated with diminished consciousness even in the presence of high gamma activity. Citation: Murphy M; Bruno MA; Riedner BA; Boveroux P; Noirhomme Q; Landsness EC; Brichant JF; Phillips C; Massimini M; Laureys S; Tononi G; Boly M. Propofol anesthesia and sleep: a high-density EEG study. SLEEP 2011;34(3):283-291. PMID:21358845

  9. X-ray lasers and high-density plasma

    SciTech Connect

    1995-03-01

    The improved reliability, high brightness, and short wavelength of x-ray lasers make them ideally suited for studying large, high-density plasmas of interest to the laser-fusion research community. We have been developing the neonlike yttrium x-ray laser as a probe, together with the necessary multilayer mirrors and beam splitters, to image plasmas produced at the Nova laser facility and to measure electron density. With its short-wavelength (15.5-nm) light, we can use the yttrium x-ray laser to probe plasma densities up to 10{sup 23} cm{sup {minus}3}. At the highest magnification (30?), the spatial resolution of our imaging system is better than 1 {mu}m. Using the technique of moire deflectometry, we have measured density gradients of plasmas. Using the technique of interferometry, we have probed 3-mm-long plasmas with electron densities up to 3? 10{sup 21} cm{sup {minus}3}. Temporal blurring of plasma images remains the main limitation of our approach. Thus, we are continuing to improve our theoretical and experimental understanding of laboratory x-ray lasers. We are currently working on techniques to reduce the blurring of images by shortening the x-ray laser pulse to durations approaching about 20 ps. In the future, this important research tool can be applied to study high-density plasmas produced at the proposed National Ignition Facility. Other important applications of the x-ray laser include biological imaging of whole, live cells and other structures at resolutions superior to those obtainable by conventional optical microscopy.

  10. Method for casting polyethylene pipe

    NASA Technical Reports Server (NTRS)

    Elam, R. M., Jr.

    1973-01-01

    Short lengths of 7-cm ID polyethylene pipe are cast in a mold which has a core made of room-temperature-vulcanizable (RTV) silicone. Core expands during casting and shrinks on cooling to allow for contraction of the polyethylene.

  11. Sensory stability of ultra-high temperature milk in polyethylene bottle.

    PubMed

    Petrus, R R; Walter, E H M; Faria, J A F; Abreu, L F

    2009-01-01

    The objective of this study was to evaluate the sensory stability of ultra-high temperature (UHT) milk subjected to different heat treatments and stored at room temperature in white high density polyethylene bottles (HDPE) pigmented with titanium dioxide. Two lots of 300 units each were processed, respectively, at 135 and 141 degrees C/10 s using indirect heating and subsequently aseptically filled in an ISO class 7 clean room. These experimental lots were evaluated for appearance, aroma, flavor, and overall appreciation and compared to samples of commercial UHT milk purchased from local commercial stores. The time-temperature combinations investigated did not affect either the acceptability or the shelf life of the milk. Despite the limited light barrier properties of HDPE bottles, the product contained in the package tested exhibited good stability, with a shelf life ranging from 4 to 11 wk. Within this time period, the acceptability of the experimental lots was similar to that of the commercial products. The results achieved in this study contribute to turn the low-cost UHT system investigated into a technically viable option for small-size dairy processing plants. PMID:19200121

  12. Thermal analysis of polyethylene + X% carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Lozovyi, Fedir; Ivanenko, Kateryna; Nedilko, Sergii; Revo, Sergiy; Hamamda, Smail

    2016-02-01

    The aim of this research is to study the influence of the multi-walled carbon nanotubes (MWCNTs) on the thermomechanical and structural properties of high-density polyethylene. Several, complementary experimental techniques were used, namely, dilatometry, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), Raman spectroscopy, and infrared (IR) spectroscopy. Dilatometry data showed that nanocomposites exhibit anisotropic behavior, and intensity of the anisotropy depends on the MWCNT concentration. The shapes of the dilatometric curves of the nanocomposites under study differ significantly for the radial and longitudinal directions of the samples. DSC results show that MWCNTs weekly influence calorimetry data, while Raman spectra show that the I D/ I G ratio decreases when MWCNT concentration increases. The IR spectra demonstrate improvement of the crystallinity of the samples as the content in MWCNTs rises.

  13. Method for shaping polyethylene tubing

    NASA Technical Reports Server (NTRS)

    Kramer, R. C.

    1981-01-01

    Method forms polyethylene plastic tubing into configurations previously only possible with metal tubing. By using polyethylene in place of copper or stain less steel tubing inlow pressure systems, fabrication costs are significantly reduced. Polyethylene tubing can be used whenever low pressure tubing is needed in oil operations, aircraft and space applications, powerplants, and testing laboratories.

  14. High-density lipoprotein endocytosis in endothelial cells

    PubMed Central

    Fruhwürth, Stefanie; Pavelka, Margit; Bittman, Robert; Kovacs, Werner J; Walter, Katharina M; Röhrl, Clemens; Stangl, Herbert

    2013-01-01

    AIM: To describe the way stations of high-density lipoprotein (HDL) uptake and its lipid exchange in endothelial cells in vitro and in vivo. METHODS: A combination of fluorescence microscopy using novel fluorescent cholesterol surrogates and electron microscopy was used to analyze HDL endocytosis in great detail in primary human endothelial cells. Further, HDL uptake was quantified using radio-labeled HDL particles. To validate the in vitro findings mice were injected with fluorescently labeled HDL and particle uptake in the liver was analyzed using fluorescence microscopy. RESULTS: HDL uptake occurred via clathrin-coated pits, tubular endosomes and multivesicular bodies in human umbilical vein endothelial cells. During uptake and resecretion, HDL-derived cholesterol was exchanged at a faster rate than cholesteryl oleate, resembling the HDL particle pathway seen in hepatic cells. In addition, lysosomes were not involved in this process and thus HDL degradation was not detectable. In vivo, we found HDL mainly localized in mouse hepatic endothelial cells. HDL was not detected in parenchymal liver cells, indicating that lipid transfer from HDL to hepatocytes occurs primarily via scavenger receptor, class B, type I mediated selective uptake without concomitant HDL endocytosis. CONCLUSION: HDL endocytosis occurs via clathrin-coated pits, tubular endosomes and multivesicular bodies in human endothelial cells. Mouse endothelial cells showed a similar HDL uptake pattern in vivo indicating that the endothelium is one major site of HDL endocytosis and transcytosis. PMID:24340136

  15. Evolutionary sequence comparisons using high-density oligonucleotide arrays.

    PubMed

    Hacia, J G; Makalowski, W; Edgemon, K; Erdos, M R; Robbins, C M; Fodor, S P; Brody, L C; Collins, F S

    1998-02-01

    We explored the utility of high-density oligonucleotide arrays (DNA chips) for obtaining sequence information from homologous genes in closely related species. Orthologues of the human BRCA1 exon 11, all approximately 3.4 kb in length and ranging from 98.2% to 83.5% nucleotide identity, were subjected to hybridization-based and conventional dideoxysequencing analysis. Retrospective guidelines for identifying high-fidelity hybridization-based sequence calls were formulated based upon dideoxysequencing results. Prospective application of these rules yielded base-calling with at least 98.8% accuracy over orthologous sequence tracts shown to have approximately 99% identity. For higher primate sequences with greater than 97% nucleotide identity, base-calling was made with at least 99.91% accuracy covering a minimum of 97% of the sequence. Using a second-tier confirmatory hybridization chip strategy, shown in several cases to confirm the identity of predicted sequence changes, the complete sequence of the chimpanzee, gorilla and orangutan orthologues should be deducible solely through hybridization-based methodologies. Analysis of less highly conserved orthologues can still identify conserved nucleotide tracts of at least 15 nucleotides and can provide useful information for designing primers. DNA-chip based assays can be a valuable new technology for obtaining high-throughput cost-effective sequence information from related genomes. PMID:9462745

  16. [Residual risk: The roles of triglycerides and high density lipoproteins].

    PubMed

    Grammer, Tanja; Kleber, Marcus; Silbernagel, Günther; Scharnagl, Hubert; März, Winfried

    2016-06-01

    In clinical trials, the reduction of LDL-cholesterol (LDL-C) with statins reduces the incidence rate of cardiovascular events by approximately one third. This means, that a sizeable "residual risk" remains. Besides high lipoprotein (a), disorders in the metabolism of triglyceride-rich lipoproteins and high density liproteins have been implicated as effectors of the residual risk. Both lipoprotein parameters correlate inversely with each other. Therefore, the etiological contributions of triglycerides and / or of HDL for developing cardiovascular disease can hardly be estimated from either observational studies or from intervention studies. The largely disappointing results of intervention studies with inhibitors of the cholesteryl ester transfer protein and in particular the available set of genetically-epidemiological studies suggest that in the last decade, the importance of HDL cholesterol has been overvalued, while the importance of triglycerides has been underestimated. High triglycerides not always atherogenic, but only if they are associated with the accumulation relatively cholesterol-enriched, incompletely catabolized remnants of chylomicrons and very low density lipoproteins (familial type III hyperlipidemia, metabolic syndrome, diabetes mellitus). The normalization of the concentration of triglycerides and remnants by inhibiting the expression of apolipoprotein C3 is hence a new, promising therapeutic target. PMID:27305303

  17. Acrolein Impairs the Cholesterol Transport Functions of High Density Lipoproteins

    PubMed Central

    Chadwick, Alexandra C.; Holme, Rebecca L.; Chen, Yiliang; Thomas, Michael J.; Sorci-Thomas, Mary G.; Silverstein, Roy L.; Pritchard, Kirkwood A.; Sahoo, Daisy

    2015-01-01

    High density lipoproteins (HDL) are considered athero-protective, primarily due to their role in reverse cholesterol transport, where they transport cholesterol from peripheral tissues to the liver for excretion. The current study was designed to determine the impact of HDL modification by acrolein, a highly reactive aldehyde found in high abundance in cigarette smoke, on the cholesterol transport functions of HDL. HDL was chemically-modified with acrolein and immunoblot and mass spectrometry analyses confirmed apolipoprotein crosslinking, as well as acrolein adducts on apolipoproteins A-I and A-II. The ability of acrolein-modified HDL (acro-HDL) to serve as an acceptor of free cholesterol (FC) from COS-7 cells transiently expressing SR-BI was significantly decreased. Further, in contrast to native HDL, acro-HDL promotes higher neutral lipid accumulation in murine macrophages as judged by Oil Red O staining. The ability of acro-HDL to mediate efficient selective uptake of HDL-cholesteryl esters (CE) into SR-BI-expressing cells was reduced compared to native HDL. Together, the findings from our studies suggest that acrolein modification of HDL produces a dysfunctional particle that may ultimately promote atherogenesis by impairing functions that are critical in the reverse cholesterol transport pathway. PMID:25849485

  18. In vivo protection against endotoxin by plasma high density lipoprotein.

    PubMed Central

    Levine, D M; Parker, T S; Donnelly, T M; Walsh, A; Rubin, A L

    1993-01-01

    Overwhelming bacterial infection is accompanied by fever, hypotension, disseminated intravascular coagulation, and multiple organ failure leading to death in 30-80% of cases. These classical symptoms of septic shock are caused by potent cytokines that are produced in response to endotoxin released from Gram-negative bacteria. Treatments with antibodies and receptor antagonists to block endotoxin or cytokine mediators have given mixed results in clinical trials. High density lipoprotein (HDL) is a natural component of plasma that is known to neutralize endotoxin in vitro. We report here that raising the plasma HDL concentration protects mice against endotoxin in vivo. Transgenic mice with 2-fold-elevated plasma HDL levels had more endotoxin bound to HDL, lower plasma cytokine levels, and improved survival rates compared with low-HDL mice. Intravenous infusion of HDL also protected mice, but only when given as reconstituted HDL prepared from phospholipid and either HDL apoprotein or an 18-amino acid peptide synthesized to mimic the structure of apolipoprotein A-I of HDL. Intact plasma HDL was mildly toxic, and HDL apoprotein was ineffective. The effectiveness of the reconstituted peptide renders very unlikely any significant contribution to protection by trace proteins in apo-HDL. These data suggest a simple leaflet insertion model for binding and neutralization of lipopolysaccharide by phospholipid on the surface of HDL. Plasma HDL may normally act to protect against endotoxin; this protection may be augmented by administration of reconstituted HDL or reconstituted peptides. Images Fig. 1 Fig. 2 Fig. 3 PMID:8265667

  19. Structural stability and functional remodeling of high-density lipoproteins.

    PubMed

    Gursky, Olga

    2015-09-14

    Lipoproteins are protein-lipid nanoparticles that transport lipids in circulation and are central in atherosclerosis and other disorders of lipid metabolism. Apolipoproteins form flexible structural scaffolds and important functional ligands on the particle surface and direct lipoprotein metabolism. Lipoproteins undergo multiple rounds of metabolic remodeling that is crucial to lipid transport. Important aspects of this remodeling, including apolipoprotein dissociation and particle fusion, are mimicked in thermal or chemical denaturation and are modulated by free energy barriers. Here we review the biophysical studies that revealed the kinetic mechanism of lipoprotein stabilization and unraveled its structural basis. The main focus is on high-density lipoprotein (HDL). An inverse correlation between stability and functions of various HDLs in cholesterol transport suggests the functional role of structural disorder. A mechanism for the conformational adaptation of the major HDL proteins, apoA-I and apoA-II, to the increasing lipid load is proposed. Together, these studies help understand why HDL forms discrete subclasses separated by kinetic barriers, which have distinct composition, conformation and functional properties. Understanding these properties may help improve HDL quality and develop novel therapies for cardiovascular disease. PMID:25749369

  20. High-density lipoprotein: a novel target for antirestenosis therapy.

    PubMed

    Yin, Kai; Agrawal, Devendra K

    2014-12-01

    Restenosis is an integral pathological process central to the recurrent vessel narrowing after interventional procedures. Although the mechanisms for restenosis are diverse in different pathological conditions, endothelial dysfunction, inflammation, vascular smooth muscle cell (SMC) proliferation, and myofibroblasts transition have been thought to play crucial role in the development of restenosis. Indeed, there is an inverse relationship between high-density lipoprotein (HDL) levels and risk for coronary heart disease (CHD). However, relatively studies on the direct assessment of HDL effect on restenosis are limited. In addition to involvement in the cholesterol reverse transport, many vascular protective effects of HDL, including protection of endothelium, antiinflammation, antithrombus actions, inhibition of SMC proliferation, and regulation by adventitial effects may contribute to the inhibition of restenosis, though the exact relationships between HDL and restenosis remain to be elucidated. This review summarizes the vascular protective effects of HDL, emphasizing the potential role of HDL in intimal hyperplasia and vascular remodeling, which may provide novel prophylactic and therapeutic strategies for antirestenosis. PMID:25043950

  1. High-Density Lipoprotein, Lecithin: Cholesterol Acyltransferase, and Atherosclerosis

    PubMed Central

    Ossoli, Alice; Pavanello, Chiara

    2016-01-01

    Epidemiological data clearly show the existence of a strong inverse correlation between plasma high-density lipoprotein cholesterol (HDL-C) concentrations and the incidence of coronary heart disease. This relation is explained by a number of atheroprotective properties of HDL, first of all the ability to promote macrophage cholesterol transport. HDL are highly heterogeneous and are continuously remodeled in plasma thanks to the action of a number of proteins and enzymes. Among them, lecithin:cholesterol acyltransferase (LCAT) plays a crucial role, being the only enzyme able to esterify cholesterol within lipoproteins. LCAT is synthetized by the liver and it has been thought to play a major role in reverse cholesterol transport and in atheroprotection. However, data from animal studies, as well as human studies, have shown contradictory results. Increased LCAT concentrations are associated with increased HDL-C levels but not necessarily with atheroprotection. On the other side, decreased LCAT concentration and activity are associated with decreased HDL-C levels but not with increased atherosclerosis. These contradictory results confirm that HDL-C levels per se do not represent the functionality of the HDL system. PMID:27302716

  2. High-Density Lipoprotein, Lecithin: Cholesterol Acyltransferase, and Atherosclerosis.

    PubMed

    Ossoli, Alice; Pavanello, Chiara; Calabresi, Laura

    2016-06-01

    Epidemiological data clearly show the existence of a strong inverse correlation between plasma high-density lipoprotein cholesterol (HDL-C) concentrations and the incidence of coronary heart disease. This relation is explained by a number of atheroprotective properties of HDL, first of all the ability to promote macrophage cholesterol transport. HDL are highly heterogeneous and are continuously remodeled in plasma thanks to the action of a number of proteins and enzymes. Among them, lecithin:cholesterol acyltransferase (LCAT) plays a crucial role, being the only enzyme able to esterify cholesterol within lipoproteins. LCAT is synthetized by the liver and it has been thought to play a major role in reverse cholesterol transport and in atheroprotection. However, data from animal studies, as well as human studies, have shown contradictory results. Increased LCAT concentrations are associated with increased HDL-C levels but not necessarily with atheroprotection. On the other side, decreased LCAT concentration and activity are associated with decreased HDL-C levels but not with increased atherosclerosis. These contradictory results confirm that HDL-C levels per se do not represent the functionality of the HDL system. PMID:27302716

  3. Irradiation testing of high density uranium alloy dispersion fuels

    SciTech Connect

    Hayes, S.L.; Trybus, C.L.; Meyer, M.K.

    1997-10-01

    Two irradiation test vehicles have been designed, fabricated, and inserted into the Advanced Test Reactor in Idaho. Irradiation of these experiments began in August 1997. These irradiation tests were designed to obtain irradiation performance information on a variety of potential new, high-density dispersion fuels. Each of the two irradiation vehicles contains 32 microplates. Each microplate is aluminum clad, having an aluminum matrix phase and containing one of the following compositions as the fuel phase: U-10Mo, U-8Mo, U-6Mo, U-4Mo, U-9Nb-3Zr, U-6Nb-4Zr, U-5Nb-3Zr, U-6Mo-1Pt, U-6Mo-0.6Ru, U-10Mo-0.05Sn, U{sub 2}Mo, or U{sub 3}Si{sub 2}. These experiments will be discharged at peak fuel burnups of 40% and 80%. Of particular interest is the fission gas retention/swelling characteristics of these new fuel alloys. This paper presents the design of the irradiation vehicles and the irradiation conditions.

  4. Enhanced configurational entropy in high-density nanoconfined bilayer ice

    NASA Astrophysics Data System (ADS)

    Corsetti, Fabiano; Zubeltzu, Jon; Artacho, Emilio

    Understanding the structural tendencies of nanoconfined water is of great interest for nanoscience and biology, where nano/micro-sized objects may be separated by very few layers of water. We present a study of water confined to a 2D geometry by a featureless, chemically neutral potential, in order to characterize its intrinsic behaviour. We use molecular dynamics simulations with the TIP4P/2005 potential, combined with density-functional theory calculations with a non-local van der Waals density functional and an ab initio random structure search procedure. We propose a novel kind of crystal order in high-density nanoconfined bilayer ice. A first-order transition is observed between a low-temperature proton-ordered solid and a high-temperature proton-disordered solid. The latter is shown to possess crystalline order for the oxygen positions, arranged on a close-packed triangular lattice with AA stacking. Uniquely amongst the ice phases, the triangular bilayer is characterized by two levels of disorder (for the bonding network and for the protons) which results in a configurational entropy twice that of bulk ice.

  5. High-density pulsed laser diode arrays for SSL pumping

    NASA Astrophysics Data System (ADS)

    Feeler, Ryan; Stephens, Edward

    2010-04-01

    Northrop Grumman Cutting Edge Optronics has developed a new laser diode array package with minimal bar-to-bar spacing. These High Density Stack (HDS) packages allow for a power density increase on the order of ~ 2.5x when compared to industry-standard arrays. This work contains an overview of the manufacturing process, as well as representative data for 5-, 10-, and 20-bar arrays. Near-field and power vs. current data is presented in each case. Power densities approaching 15 kW/cm2 are presented. In addition, power and wavelength are presented as a function of pulse width in order to determine the acceptable operational parameters for this type of array. In the low repetition rate Nd:YAG pumping regime, all devices are shown to operate with relatively low junction temperatures. A discussion of future work is also presented, with a focus on extending the HDS architecture to reliable operation at 300W per bar. This will enable power densities of approximately 25 kW/cm2.

  6. A Concept for Robust, High Density Terminal Air Traffic Operations

    NASA Technical Reports Server (NTRS)

    Isaacson, Douglas R.; Robinson, John E.; Swenson, Harry N.; Denery, Dallas G.

    2010-01-01

    This paper describes a concept for future high-density, terminal air traffic operations that has been developed by interpreting the Joint Planning and Development Office s vision for the Next Generation (NextGen) Air Transportation System and coupling it with emergent NASA and other technologies and procedures during the NextGen timeframe. The concept described in this paper includes five core capabilities: 1) Extended Terminal Area Routing, 2) Precision Scheduling Along Routes, 3) Merging and Spacing, 4) Tactical Separation, and 5) Off-Nominal Recovery. Gradual changes are introduced to the National Airspace System (NAS) by phased enhancements to the core capabilities in the form of increased levels of automation and decision support as well as targeted task delegation. NASA will be evaluating these conceptual technological enhancements in a series of human-in-the-loop simulations and will accelerate development of the most promising capabilities in cooperation with the FAA through the Efficient Flows Into Congested Airspace Research Transition Team.

  7. Micro-RNAs and High-Density Lipoprotein Metabolism.

    PubMed

    Canfrán-Duque, Alberto; Lin, Chin-Sheng; Goedeke, Leigh; Suárez, Yajaira; Fernández-Hernando, Carlos

    2016-06-01

    Improved prevention and treatment of cardiovascular diseases is one of the challenges in Western societies, where ischemic heart disease and stroke are the leading cause of death. Early epidemiological studies have shown an inverse correlation between circulating high-density lipoprotein-cholesterol (HDL-C) and cardiovascular diseases. The cardioprotective effect of HDL is because of its ability to remove cholesterol from plaques in the artery wall to the liver for excretion by a process known as reverse cholesterol transport. Numerous studies have reported the role that micro-RNAs (miRNA) play in the regulation of the different steps in reverse cholesterol transport, including HDL biogenesis, cholesterol efflux, and cholesterol uptake in the liver and bile acid synthesis and secretion. Because of their ability to control different aspects of HDL metabolism and function, miRNAs have emerged as potential therapeutic targets to combat cardiovascular diseases. In this review, we summarize the recent advances in the miRNA-mediated control of HDL metabolism. We also discuss how HDL particles serve as carriers of miRNAs and the potential use of HDL-containing miRNAs as cardiovascular diseases biomarkers. PMID:27079881

  8. High-Density Superconducting Cables for Advanced ACTPol

    NASA Astrophysics Data System (ADS)

    Pappas, C. G.; Austermann, J.; Beall, J. A.; Duff, S. M.; Gallardo, P. A.; Grace, E.; Henderson, S. W.; Ho, S. P.; Koopman, B. J.; Li, D.; McMahon, J.; Nati, F.; Niemack, M. D.; Niraula, P.; Salatino, M.; Schillaci, A.; Schmitt, B. L.; Simon, S. M.; Staggs, S. T.; Stevens, J. R.; Vavagiakis, E. M.; Ward, J. T.; Wollack, E. J.

    2016-01-01

    Advanced ACTPol (AdvACT) is an upcoming Atacama Cosmology Telescope (ACT) receiver upgrade, scheduled to deploy in 2016, that will allow measurement of the cosmic microwave background polarization and temperature to the highest precision yet with ACT. The AdvACT increase in sensitivity is partly provided by an increase in the number of transition-edge sensors (TESes) per array by up to a factor of two over the current ACTPol receiver detector arrays. The high-density AdvACT TES arrays require 70 \\upmu m pitch superconducting flexible cables (flex) to connect the detector wafer to the first-stage readout electronics. Here, we present the flex fabrication process and test results. For the flex wiring layer, we use a 400-nm-thick sputtered aluminum film. In the center of the cable, the wiring is supported by a polyimide substrate, which smoothly transitions to a bare (uncoated with polyimide) silicon substrate at the ends of the cable for a robust wedge wire-bonding interface. Tests on the first batch of flex made for the first AdvACT array show that the flex will meet the requirements for AdvACT, with a superconducting critical current above 1 mA at 500 mK, resilience to mechanical and cryogenic stress, and a room temperature yield of 97 %.

  9. Mixed Nitrogen-Methane Solids at High Density

    NASA Astrophysics Data System (ADS)

    Desgreniers, Serge

    Mixing different molecular species may yield weakly bound compounds or van der Waals solids upon the application of high pressure. Van der Waals solids differ in physical properties from solids formed by pure molecular species at comparable thermodynamic conditions. In this contribution, we present results of the formation of binary methane-nitrogen compounds at high density. Methane and nitrogen, with similar potentials and molecular size, are expected to be partly miscible in the condensed state. Using single crystal and powder X-ray diffraction with synchrotron radiation and vibrational spectroscopy, the pressure-concentration phase diagram for this system has been explored from 1 to 16 GPa, at room temperature. The existence of van der Waals solid phases for samples with concentrations above 10% (methane per volume) is demonstrated. For example, at 7.6 GPa and at room temperature, whereas pure nitrogen and methane exist in cubic and in rhombohedral structures, respectively, our study indicates that a methane-nitrogen sample with 60% nitrogen by volume exhibits, under the same conditions, a novel phase with a tetragonal symmetry. Other novel structures in methane-nitrogen samples with different concentrations under varying pressure conditions have also been observed and will be discussed.

  10. Atomistic Simulation of High-Density Uranium Fuels

    DOE PAGESBeta

    Garcés, Jorge Eduardo; Bozzolo, Guillermo

    2011-01-01

    We apply an atomistic modeling approach to deal with interfacial phenomena in high-density uranium fuels. The effects of Si, as additive to Al or as U-Mo-particles coating, on the behavior of the Al/U-Mo interface is modeled by using the Bozzolo-Ferrante-Smith (BFS) method for alloys. The basic experimental features characterizing the real system are identified, via simulations and atom-by-atom analysis. These include (1) the trend indicating formation of interfacial compounds, (2) much reduced diffusion of Al into U-Mo solid solution due to the high Si concentration, (3) Si depletion in the Al matrix, (4) an unexpected interaction between Mo and Simore » which inhibits Si diffusion to deeper layers in the U-Mo solid solution, and (5) the minimum amount of Si needed to perform as an effective diffusion barrier. Simulation results related to alternatives to Si dispersed in the Al matrix, such as the use of C coating of U-Mo particles or Zr instead of the Al matrix, are also shown. Recent experimental results confirmed early theoretical proposals, along the lines of the results reported in this work, showing that atomistic computational modeling could become a valuable tool to aid the experimental work in the development of nuclear fuels.« less