Science.gov

Sample records for film gas sensor

  1. Titanium oxide thin film gas sensors

    NASA Astrophysics Data System (ADS)

    Komem, Y.; Ankonina, G.; Rothschild, A.; Im, J. S.; Chung, U.-J.

    2007-12-01

    Solid-state gas sensors based on metal-oxide thin films offer unique advantages such as compatibility with microfabrication processes and stability at high temperatures and under harsh conditions. At the same time, the sensitivity and selectivity of metal oxide sensors should be improved to compete with alternative technologies. This paper describes titanium oxide thin films for gas sensors. Titanium oxide is particularly attractive due to its high dielectric constant, which leads to extended gas-modulated space charge effects well into the filmresulting in high sensitivity, as well as for its compatibility with Si-based microprocessing technologies. The sensing properties of polycrystalline titanium oxide films (~70 nm thick) deposited having small grain size (tens of nanometers), are described. A unique technique, using laser-induced melting and solidification of the films, that enables controlling the grain size in thin films will be discussed as a method to study grain size effects on sensing properties of titanium oxide films.

  2. Nano-Hydroxyapatite Thick Film Gas Sensors

    NASA Astrophysics Data System (ADS)

    Khairnar, Rajendra S.; Mene, Ravindra U.; Munde, Shivaji G.; Mahabole, Megha P.

    2011-12-01

    In the present work pure and metal ions (Co and Fe) doped hydroxyapatite (HAp) thick films have been successfully utilized to improve the structural, morphological and gas sensing properties. Nanocrystalline HAp powder is synthesized by wet chemical precipitation route, and ion exchange process is employed for addition of Co and Fe ions in HAp matrix. Moreover, swift heavy ion irradiation (SHI) technique is used to modify the surface of pure and metal ion exchanged HAp with various ion fluence. The structural investigation of pure and metal ion exchanged HAp thick films are carried out using X-ray diffraction and the presence of functional group is observed by means FTIR spectroscopy. Furthermore, surface morphology is visualized by means of SEM and AFM analysis. CO gas sensing study is carried out for, pure and metal ions doped, HAp thick films with detail investigation on operating temperature, response/recovery time and gas uptake capacity. The surface modifications of sensor matrix by SHI enhance the gas response, response/recovery and gas uptake capacity. The significant observation is here to note that, addition of Co and Fe in HAp matrix and surface modification by SHI improves the sensing properties of HAp films drastically resulting in gas sensing at relatively lower temperatures.

  3. Nano-Hydroxyapatite Thick Film Gas Sensors

    SciTech Connect

    Khairnar, Rajendra S.; Mene, Ravindra U.; Munde, Shivaji G.; Mahabole, Megha P.

    2011-12-10

    In the present work pure and metal ions (Co and Fe) doped hydroxyapatite (HAp) thick films have been successfully utilized to improve the structural, morphological and gas sensing properties. Nanocrystalline HAp powder is synthesized by wet chemical precipitation route, and ion exchange process is employed for addition of Co and Fe ions in HAp matrix. Moreover, swift heavy ion irradiation (SHI) technique is used to modify the surface of pure and metal ion exchanged HAp with various ion fluence. The structural investigation of pure and metal ion exchanged HAp thick films are carried out using X-ray diffraction and the presence of functional group is observed by means FTIR spectroscopy. Furthermore, surface morphology is visualized by means of SEM and AFM analysis. CO gas sensing study is carried out for, pure and metal ions doped, HAp thick films with detail investigation on operating temperature, response/recovery time and gas uptake capacity. The surface modifications of sensor matrix by SHI enhance the gas response, response/recovery and gas uptake capacity. The significant observation is here to note that, addition of Co and Fe in HAp matrix and surface modification by SHI improves the sensing properties of HAp films drastically resulting in gas sensing at relatively lower temperatures.

  4. New fabrication of zinc oxide nanostructure thin film gas sensors

    NASA Astrophysics Data System (ADS)

    Hendi, A. A.; Alorainy, R. H.

    2014-02-01

    The copper doped zinc oxide thin films have been prepared by sol-gel spin coating method. The structural and morphology properties of the Cu doped films were characterized by X-ray diffraction and atomic force microscope. XRD studies confirm the chemical structure of the ZnO films. The optical spectra method were used to determined optical constants and dispersion energy parameters of Cu doped Zno thin films. The optical band gap of undoped ZnO was found to be 3.16 eV. The Eg values of the films were changed with Cu doping. The refractive index dispersion of Cu doped ZnO films obeys the single oscillator model. The dispersion energy and oscillator energy values of the ZnO films were changed with Cu doping. The Cu doped ZnO nanofiber-based NH3 gas sensors were fabricated. The sensor response of the sensors was from 464.98 to 484.61 when the concentration of NH3 is changed 6600-13,300 ppm. The obtained results indicate that the response of the ZnO film based ammonia gas sensors can be controlled by copper content.

  5. Anatase titanium dioxide thin film based carbon monoxide gas sensor

    NASA Astrophysics Data System (ADS)

    Al-Homoudi, Ibrahim Abdullah

    2005-11-01

    Gas sensors are finding increasing number of applications in home, industrial and automotive areas. Incomplete combustion in gas and coal fired electricity plants can generate harmful gases and pollutants. The purpose of the proposed research was to develop titanium dioxide (TiO2) thin film based materials for carbon monoxide (CO) gas sensing to detect a very low concentration (20--100 ppm) of CO gas. Anatase TiO2 thin films (100--1000 nm) have been developed using pulsed DC magnetron reactive sputtering technique on glass, Si(100) and sapphire substrates. Optimum deposition parameters were determined by studying the crystalline quality of the films using X-ray diffraction. The x-ray photo-emission (XPS) studies indicated a good stoichiometric TiO 2 surface with O to Ti ratio of 1.95 +/- 0.05. Film residual stress was measured using curvature measurements of the substrates before and after deposition of the films. The anatase TiO2 thin films on sapphire showed lower stress compared to glass and Si substrates. Raman spectroscopy measurements were further used to study the correlation between the residual stress and Raman shifts of characteristic peaks to obtain a calibration factor. Anatase TiO2 thin films showed n-type electrical conductivity indicating the presence of shallow electron donors caused by oxygen vacancies. The response of films was tested for 100 ppm of CO in 100 sccm of N2 gas flow as a function of temperature, film thickness, and the substrate. The films show the highest response at 200°C. The films grown on sapphire substrates show the highest response. The response is higher for a film with 1000 nm thickness than the 250 nm thickness film. The CO sensor was tested as a function of CO concentration and as well as under different environs: The films respond to very low concentration, 20--100 ppm, of CO gas, with good reversibility. The response and recovery time were from 2 min to 1 min as the concentration increased from 20 to 100 ppm. It can be completely regenerated by turn off the CO gas without exposing it to oxygen or air. The sensor showed sensitivity for CO with as high as 2000 PPM of O2 concentration. It has the same response in dry and in humid environments. Furthermore, the anatase TiO2 thin film with no doping showed to have higher response than the doped films with Cu or La at 300°C.

  6. Carbon-palladium films as gas sensors (hydrogen, ammonia, methane)

    NASA Astrophysics Data System (ADS)

    Rymarczyk, Joanna; Kamińska, Anna; Krawczyk, Sławomir

    2014-11-01

    In this paper we present the results of the resistances changes of carbon-palladium films under the influences of gas like hydrogen, ammonia and methane. Our research has shown that carbon-palladium films (C-Pd films) according to the form and the structure in which they appear, they can respond to a variety of gases. The C-Pd film obtained by Physical Vapor Deposition (PVD) method is sensitive to hydrogen and do not respond to the ammonia. Thermal modification of the C-Pd film in Chemical Vapor Deposition (CVD) process affects the morphology of the film, increases its resistance and it causes that this film begins to react to the ammonia. This change causes that this film stops responding on hydrogen. Film sensitive to methane was obtained by changing the technology conditions of the PVD process. The reaction of C-Pd film on the hydrogen and the ammonia is increase resistance, while film sensitive to methane reacts by decrease of initial resistance value. In both cases, the changes are reversible after cleaning by air atmosphere. Different varieties of C-Pd films can be used to build selective sensors for hydrogen, ammonia and methane.

  7. Sol-Gel Thin Films for Plasmonic Gas Sensors.

    PubMed

    Della Gaspera, Enrico; Martucci, Alessandro

    2015-01-01

    Plasmonic gas sensors are optical sensors that use localized surface plasmons or extended surface plasmons as transducing platform. Surface plasmons are very sensitive to dielectric variations of the environment or to electron exchange, and these effects have been exploited for the realization of sensitive gas sensors. In this paper, we review our research work of the last few years on the synthesis and the gas sensing properties of sol-gel based nanomaterials for plasmonic sensors. PMID:26184216

  8. Sol-Gel Thin Films for Plasmonic Gas Sensors

    PubMed Central

    Della Gaspera, Enrico; Martucci, Alessandro

    2015-01-01

    Plasmonic gas sensors are optical sensors that use localized surface plasmons or extended surface plasmons as transducing platform. Surface plasmons are very sensitive to dielectric variations of the environment or to electron exchange, and these effects have been exploited for the realization of sensitive gas sensors. In this paper, we review our research work of the last few years on the synthesis and the gas sensing properties of sol-gel based nanomaterials for plasmonic sensors. PMID:26184216

  9. Selective hydrogen gas sensor using CuFe2O4 nanoparticle based thin film

    NASA Astrophysics Data System (ADS)

    Haija, Mohammad Abu; Ayesh, Ahmad I.; Ahmed, Sadiqa; Katsiotis, Marios S.

    2016-04-01

    Hydrogen gas sensors based on CuFe2O4 nanoparticle thin films are presented in this work. Each gas sensor was prepared by depositing CuFe2O4 thin film on a glass substrate by dc sputtering inside a high vacuum chamber. Argon inert gas was used to sputter the material from a composite sputtering target. Interdigitated metal electrodes were deposited on top of the thin films by thermal evaporation and shadow masking. The produced sensors were tested against hydrogen, hydrogen sulfide, and ethylene gases where they were found to be selective for hydrogen. The sensitivity of the produced sensors was maximum for hydrogen gas at 50 °C. In addition, the produced sensors exhibit linear response signal for hydrogen gas with concentrations up to 5%. Those sensors have potential to be used for industrial applications because of their low power requirement, functionality at low temperatures, and low production cost.

  10. Gas sensor

    DOEpatents

    Schmid, Andreas K.; Mascaraque, Arantzazu; Santos, Benito; de la Figuera, Juan

    2014-09-09

    A gas sensor is described which incorporates a sensor stack comprising a first film layer of a ferromagnetic material, a spacer layer, and a second film layer of the ferromagnetic material. The first film layer is fabricated so that it exhibits a dependence of its magnetic anisotropy direction on the presence of a gas, That is, the orientation of the easy axis of magnetization will flip from out-of-plane to in-plane when the gas to be detected is present in sufficient concentration. By monitoring the change in resistance of the sensor stack when the orientation of the first layer's magnetization changes, and correlating that change with temperature one can determine both the identity and relative concentration of the detected gas. In one embodiment the stack sensor comprises a top ferromagnetic layer two mono layers thick of cobalt deposited upon a spacer layer of ruthenium, which in turn has a second layer of cobalt disposed on its other side, this second cobalt layer in contact with a programmable heater chip.

  11. Hydrogen gas sensor based on palladium and yttrium alloy ultrathin film.

    PubMed

    Yi, Liu; You-Ping, Chen; Han, Song; Gang, Zhang

    2012-12-01

    Compared with the other hydrogen sensors, optical fiber hydrogen sensors based on thin films exhibits inherent safety, small volume, immunity to electromagnetic interference, and distributed remote sensing capability, but slower response characteristics. To improve response and recovery rate of the sensors, a novel reflection-type optical fiber hydrogen gas sensor with a 10 nm palladium and yttrium alloy thin film is fabricated. The alloy thin film shows a good hydrogen sensing property for hydrogen-containing atmosphere and a complete restorability for dry air at room temperature. The variation in response value of the sensor linearly increases with increased natural logarithm of hydrogen concentration (ln[H(2)]). The shortest response time and recovery response time to 4% hydrogen are 6 and 8 s, respectively. The hydrogen sensors based on Pd(0.91)Y(0.09) alloy ultrathin film have potential applications in hydrogen detection and measurement. PMID:23278019

  12. Ammonia gas sensors based on poly (3-hexylthiophene)-molybdenum disulfide film transistors

    NASA Astrophysics Data System (ADS)

    Xie, Tao; Xie, Guangzhong; Su, Yuanjie; Hongfei, Du; Ye, Zongbiao; Jiang, Yadong

    2016-02-01

    In this work, in order to enhance the recovery performance of organic thin film transistors (OTFTs) ammonia (NH3) sensors, poly (3-hexylthiophene) (P3HT) and molybdenum disulfide (MoS2) were combined as sensitive materials. Different sensitive film structures as active layers of OTFTs, i.e., P3HT-MoS2 composite film, P3HT/MoS2 bilayer film and MoS2/P3HT bilayer film were fabricated by spray technology. OTFT gas sensors based on P3HT-MoS2 composite film showed a shorter recovery time than others when the ammonia concentration changed from 4 to 20 ppm. Specifically, x-ray diffraction (XRD), Raman and UV-visible absorption were employed to explore the interface properties between P3HT and single-layer MoS2. Through the complementary characterization, a mechanism based on charge transfer is proposed to explain the physical originality of these OTFT gas sensors: closer interlayer d-spacing and better π-π stacking of the P3HT chains in composite film have ensured a short recovery time of OTFT gas sensors. Moreover, sensing mechanisms of OTFTs were further studied by comparing the device performance in the presence of nitrogen or dry air as a carrier gas. This work not only strengthens the fundamental understanding of the sensing mechanism, but provides a promising approach to optimizing the OTFT gas sensors.

  13. Ammonia gas sensors based on poly (3-hexylthiophene)-molybdenum disulfide film transistors.

    PubMed

    Xie, Tao; Xie, Guangzhong; Su, Yuanjie; Hongfei, Du; Ye, Zongbiao; Jiang, Yadong

    2016-02-12

    In this work, in order to enhance the recovery performance of organic thin film transistors (OTFTs) ammonia (NH3) sensors, poly (3-hexylthiophene) (P3HT) and molybdenum disulfide (MoS2) were combined as sensitive materials. Different sensitive film structures as active layers of OTFTs, i.e., P3HT-MoS2 composite film, P3HT/MoS2 bilayer film and MoS2/P3HT bilayer film were fabricated by spray technology. OTFT gas sensors based on P3HT-MoS2 composite film showed a shorter recovery time than others when the ammonia concentration changed from 4 to 20 ppm. Specifically, x-ray diffraction (XRD), Raman and UV-visible absorption were employed to explore the interface properties between P3HT and single-layer MoS2. Through the complementary characterization, a mechanism based on charge transfer is proposed to explain the physical originality of these OTFT gas sensors: closer interlayer d-spacing and better π-π stacking of the P3HT chains in composite film have ensured a short recovery time of OTFT gas sensors. Moreover, sensing mechanisms of OTFTs were further studied by comparing the device performance in the presence of nitrogen or dry air as a carrier gas. This work not only strengthens the fundamental understanding of the sensing mechanism, but provides a promising approach to optimizing the OTFT gas sensors. PMID:26762711

  14. Nano-WO3 film modified macro-porous silicon (MPS) gas sensor

    NASA Astrophysics Data System (ADS)

    Peng, Sun; Ming, Hu; Mingda, Li; Shuangyun, Ma

    2012-05-01

    We prepared macro-porous silicon (MPS) by electrochemical corrosion in a double-tank cell on the surface of single-crystalline P-type silicon. Then, nano-WO3 films were deposited on MPS layers by DC facing target reactive magnetron sputtering. The morphologies of the MPS and WO3/MPS samples were investigated by using a field emission scanning electron microscope. The crystallization of WO3 and the valence of the W in the WO3/MPS sample were characterized by X-ray diffraction and X-ray photoelectron spectroscopy, respectively. The gas sensing properties of MPS and WO3/MPS gas sensors were thoroughly measured at room temperature. It can be concluded that: the WO3/MPS gas sensor shows the gas sensing properties of a P-type semiconductor gas sensor. The WO3/MPS gas sensor exhibits good recovery characteristics and repeatability to 1 ppm NO2. The addition of WO3 can enhance the sensitivity of MPS to NO2. The long-term stability of a WO3/MPS gas sensor is better than that of an MPS gas sensor. The sensitivity of the WO3/MPS gas sensor to NO2 is higher than that to NH3 and C2H5OH. The selectivity of the MPS to NO2 is modified by deposited nano-WO3 film.

  15. Planar Zeolite Film-Based Potentiometric Gas Sensors Manufactured by a Combined Thick-Film and Electroplating Technique

    PubMed Central

    Marr, Isabella; Reiß, Sebastian; Hagen, Gunter; Moos, Ralf

    2011-01-01

    Zeolites are promising materials in the field of gas sensors. In this technology-oriented paper, a planar setup for potentiometric hydrocarbon and hydrogen gas sensors using zeolites as ionic sodium conductors is presented, in which the Pt-loaded Na-ZSM-5 zeolite is applied using a thick-film technique between two interdigitated gold electrodes and one of them is selectively covered for the first time by an electroplated chromium oxide film. The influence of the sensor temperature, the type of hydrocarbons, the zeolite film thickness, and the chromium oxide film thickness is investigated. The influence of the zeolite on the sensor response is briefly discussed in the light of studies dealing with zeolites as selectivity-enhancing cover layers. PMID:22164042

  16. A sensitive film structure improvement of reduced graphene oxide based resistive gas sensors

    NASA Astrophysics Data System (ADS)

    Zhou, Yong; Xie, GuangZhong; Xie, Tao; Yuan, Huan; Tai, HuiLing; Jiang, YaDong; Chen, Zhi

    2014-07-01

    This study was focused on how to improve the gas sensing properties of resistive gas sensors based on reduced graphene oxide. Sol-airbrush technology was utilized to prepare reduced graphene oxide films using porous zinc oxide films as supporting materials mainly for carbon dioxide sensing applications. The proposed film structure improved the sensitivity and the response/recovery speed of the sensors compared to those of the conventional ones and alleviated the restrictions of sensors' performance to the film thickness. In addition, the fabrication technology is relatively simple and has potential for mass production in industry. The improvement in the sensitivity and the response/recovery speed is helpful for fast detection of toxic gases or vapors in environmental and industrial applications.

  17. Wide Bandgap Semiconductor Nanorod and Thin Film Gas Sensors

    PubMed Central

    Wang, Hung-Ta; Gila, Brent P.; Lin, Jenshan; Pearton, Stepehn J.

    2006-01-01

    In this review we discuss the advances in use of GaN and ZnO-based solid-state sensors for gas sensing applications. AlGaN/GaN high electron mobility transistors (HEMTs) show a strong dependence of source/drain current on the piezoelectric polarization -induced two dimensional electron gas (2DEG). Furthermore, spontaneous and piezoelectric polarization induced surface and interface charges can be used to develop very sensitive but robust sensors for the detection of gases. Pt-gated GaN Schottky diodes and Sc2O3/AlGaN/GaN metal-oxide semiconductor diodes also show large change in forward currents upon exposure to H2 containing ambients. Of particular interest are methods for detecting ethylene (C2H4), which offers problems because of its strong double bonds and hence the difficulty in dissociating it at modest temperatures. ZnO nanorods offer large surface area, are bio-safe and offer excellent gas sensing characteristics.

  18. Zinc oxide thin film/nanorods based lossy mode resonance hydrogen sulphide gas sensor

    NASA Astrophysics Data System (ADS)

    Usha, Sruthi P.; Mishra, Satyendra K.; Gupta, Banshi D.

    2015-09-01

    We report a fiber optic hydrogen sulfide gas sensor based on lossy mode resonance utilizing a coating of zinc oxide thin film along with nanorods over the unclad core of the fiber. The sensor is characterized in terms of peak absorbance wavelength determined from the recorded lossy mode resonance spectra for different concentrations of the hydrogen sulfide gas. To achieve the maximum sensitivity of the sensor, the growing period of the nanorods is optimized. It is found that the sensitivity of the sensor depends on the concentration of the gas. Further, the sensor is best suited for low concentrations (less than 60 ppm) of the gas. Experiments are also performed on the probe fabricated with zinc oxide nanorods grown over the unclad portion of the fiber. On comparison, it is found that the probe with layers of zinc oxide thin film and its nanorods is more sensitive than the probe that has layer of nanorods only. This is because of the large active surface area available in the probe fabricated with zinc oxide thin film and its nanorods. In addition, the probe with zinc oxide thin film and its nanorods is highly selective to hydrogen sulfide gas.

  19. Elaboration of ammonia gas sensors based on electrodeposited polypyrrole--cobalt phthalocyanine hybrid films.

    PubMed

    Patois, Tilia; Sanchez, Jean-Baptiste; Berger, Franck; Fievet, Patrick; Segut, Olivier; Moutarlier, Virginie; Bouvet, Marcel; Lakard, Boris

    2013-12-15

    The electrochemical incorporation of a sulfonated cobalt phthalocyanine (sCoPc) in conducting polypyrrole (PPy) was done, in the presence or absence of LiClO4, in order to use the resulting hybrid material for the sensing of ammonia. After electrochemical deposition, the morphological features and structural properties of polypyrrole/phthalocyanine hybrid films were investigated and compared to those of polypyrrole films. A gas sensor consisting in platinum microelectrodes arrays was fabricated using silicon microtechnologies, and the polypyrrole and polypyrrole/phthalocyanine films were electrochemically deposited on the platinum microelectrodes arrays of this gas sensor. When exposed to ammonia, polymer-based gas sensors exhibited a decrease in conductance due to the electron exchange between ammonia and sensitive polymer-based layer. The characteristics of the gas sensors (response time, response amplitude, reversibility) were studied for ammonia concentrations varying from 1 ppm to 100 ppm. Polypyrrole/phthalocyanine films exhibited a high sensitivity and low detection limit to ammonia as well as a fast and reproducible response at room temperature. The response to ammonia exposition of polypyrrole films was found to be strongly enhanced thanks to the incorporation of the phthalocyanine in the polypyrrole matrix. PMID:24209308

  20. Nanocrystalline SnO2:F Thin Films for Liquid Petroleum Gas Sensors

    PubMed Central

    Chaisitsak, Sutichai

    2011-01-01

    This paper reports the improvement in the sensing performance of nanocrystalline SnO2-based liquid petroleum gas (LPG) sensors by doping with fluorine (F). Un-doped and F-doped tin oxide films were prepared on glass substrates by the dip-coating technique using a layer-by-layer deposition cycle (alternating between dip-coating a thin layer followed by a drying in air after each new layer). The results showed that this technique is superior to the conventional technique for both improving the film thickness uniformity and film transparency. The effect of F concentration on the structural, surface morphological and LPG sensing properties of the SnO2 films was investigated. Atomic Force Microscopy (AFM) and X-ray diffraction pattern measurements showed that the obtained thin films are nanocrystalline SnO2 with nanoscale-textured surfaces. Gas sensing characteristics (sensor response and response/recovery time) of the SnO2:F sensors based on a planar interdigital structure were investigated at different operating temperatures and at different LPG concentrations. The addition of fluorine to SnO2 was found to be advantageous for efficient detection of LPG gases, e.g., F-doped sensors are more stable at a low operating temperature (300 °C) with higher sensor response and faster response/recovery time, compared to un-doped sensor materials. The sensors based on SnO2:F films could detect LPG even at a low level of 25% LEL, showing the possibility of using this transparent material for LPG leak detection. PMID:22164007

  1. High-temperature gas sensor using perovskite thin films on a suspended microheater

    NASA Astrophysics Data System (ADS)

    Grudin, O.; Marinescu, R.; Landsberger, L. M.; Kahrizi, M.; Frolov, G.; Cheeke, J. D. N.; Chehab, S.; Post, M.; Tunney, J.; Du, X.; Yang, D.; Segall, D.

    2002-05-01

    Suspended microstructures consisting of a thin oxide/nitride diaphragm with embedded polysilicon heaters were designed and fabricated using a standard complementary metal-oxide-semiconductor process and simple postprocessing. Thin films of gas sensitive materials based on the SrFeO2.5+x nonstoichiometric perovskite family were deposited onto the diaphragms by room-temperature pulsed excimer laser deposition. Successful chemical sensor functionality was demonstrated. With applied power up to 30 mW, estimated temperatures of the gas sensor film up to 900 °C were reached. When the device was exposed to volatile organic compounds (VOCs) such as acetone and methanol, a reversible ten to 100-fold increase in sensor film resistance was observed, with response times from less than 1 s to a few minutes. Sensor response sensitivity depended on applied power and on the nature of the VOC analyte. This sensor device has the potential for use in multiarray configurations such as in an electronic nose.

  2. Performance and Stress Analysis of Metal Oxide Films for CMOS-Integrated Gas Sensors

    PubMed Central

    Filipovic, Lado; Selberherr, Siegfried

    2015-01-01

    The integration of gas sensor components into smart phones, tablets and wrist watches will revolutionize the environmental health and safety industry by providing individuals the ability to detect harmful chemicals and pollutants in the environment using always-on hand-held or wearable devices. Metal oxide gas sensors rely on changes in their electrical conductance due to the interaction of the oxide with a surrounding gas. These sensors have been extensively studied in the hopes that they will provide full gas sensing functionality with CMOS integrability. The performance of several metal oxide materials, such as tin oxide (SnO2), zinc oxide (ZnO), indium oxide (In2O3) and indium-tin-oxide (ITO), are studied for the detection of various harmful or toxic cases. Due to the need for these films to be heated to temperatures between 250 °C and 550 °C during operation in order to increase their sensing functionality, a considerable degradation of the film can result. The stress generation during thin film deposition and the thermo-mechanical stress that arises during post-deposition cooling is analyzed through simulations. A tin oxide thin film is deposited using the efficient and economical spray pyrolysis technique, which involves three steps: the atomization of the precursor solution, the transport of the aerosol droplets towards the wafer and the decomposition of the precursor at or near the substrate resulting in film growth. The details of this technique and a simulation methodology are presented. The dependence of the deposition technique on the sensor performance is also discussed. PMID:25815445

  3. Performance and stress analysis of metal oxide films for CMOS-integrated gas sensors.

    PubMed

    Filipovic, Lado; Selberherr, Siegfried

    2015-01-01

    The integration of gas sensor components into smart phones, tablets and wrist watches will revolutionize the environmental health and safety industry by providing individuals the ability to detect harmful chemicals and pollutants in the environment using always-on hand-held or wearable devices. Metal oxide gas sensors rely on changes in their electrical conductance due to the interaction of the oxide with a surrounding gas. These sensors have been extensively studied in the hopes that they will provide full gas sensing functionality with CMOS integrability. The performance of several metal oxide materials, such as tin oxide (SnO2), zinc oxide (ZnO), indium oxide (In2O3) and indium-tin-oxide (ITO), are studied for the detection of various harmful or toxic cases. Due to the need for these films to be heated to temperatures between 250°C and 550°C during operation in order to increase their sensing functionality, a considerable degradation of the film can result. The stress generation during thin film deposition and the thermo-mechanical stress that arises during post-deposition cooling is analyzed through simulations. A tin oxide thin film is deposited using the efficient and economical spray pyrolysis technique, which involves three steps: the atomization of the precursor solution, the transport of the aerosol droplets towards the wafer and the decomposition of the precursor at or near the substrate resulting in film growth. The details of this technique and a simulation methodology are presented. The dependence of the deposition technique on the sensor performance is also discussed. PMID:25815445

  4. Organic hydrogen gas sensor with palladium-coated β-phase poly(vinylidene fluoride) thin films

    NASA Astrophysics Data System (ADS)

    Imai, Yuji; Kimura, Yasuo; Niwano, Michio

    2012-10-01

    We have proposed an organic hydrogen gas sensor in which palladium (Pd)-coated β-phase poly(vinylidene fluoride) (PVDF) films are utilized. Volume expansion of the Pd thin film caused by absorption of hydrogen gas is monitored by a piezoelectric thin film of PVDF attached to the Pd films. We have developed a simple method of synthesizing β-phase PVDF films from α-phase PVDF powder by using a wet process in which a mixture of acetone and hexamethylphosphoric triamide is used as the solvent for the PVDF powder. The sensor works by itself at room temperature without a power source.

  5. Nanostructured zinc oxide films synthesized by successive chemical solution deposition for gas sensor applications

    SciTech Connect

    Lupan, O. Chow, L.; Shishiyanu, S.; Monaico, E.; Shishiyanu, T.; Sontea, V.; Roldan Cuenya, B.; Naitabdi, A.; Park, S.; Schulte, A.

    2009-01-08

    Nanostructured ZnO thin films have been deposited using a successive chemical solution deposition method. The structural, morphological, electrical and sensing properties of the films were studied for different concentrations of Al-dopant and were analyzed as a function of rapid photothermal processing temperatures. The films were investigated by X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray photoelectron and micro-Raman spectroscopy. Electrical and gas sensitivity measurements were conducted as well. The average grain size is 240 and 224 A for undoped ZnO and Al-doped ZnO films, respectively. We demonstrate that rapid photothermal processing is an efficient method for improving the quality of nanostructured ZnO films. Nanostructured ZnO films doped with Al showed a higher sensitivity to carbon dioxide than undoped ZnO films. The correlations between material compositions, microstructures of the films and the properties of the gas sensors are discussed.

  6. Low-cost self-cleaning room temperature SnO2 thin film gas sensor on polymer nanostructures

    NASA Astrophysics Data System (ADS)

    Huo, Haibin; Yan, Fadong; Wang, Cong; Ren, Haizhou; Shen, Mengyan

    2010-04-01

    We have successfully fabricated SnO2 thin film CO gas sensors on nanospiked polyurethane (PU) polymer surfaces that are replicated with a low-cost soft nanolithography method from nanospiked silicon surfaces formed with femtosecond laser irradiations. The sensors show sensitive responses to the CO gas at room temperature because of the sharp structures of the nanospikes. This is much different from the sensors of SnO2 thin film coated on smooth surfaces that show no response to the CO gas at room temperature. To make the nanostructure sensor surface behave self-cleaning like lotus leaves, we deposited a silane monolayer on the surface of the sensors with the 1H,1H,2H,2H-perfluorooctyltrichlorosilane (PFOTS) which has low surface energy. The contact angle measurement conducted on the PFOTS monolayer-coated SnO2 gas sensors indicates that a super-hydrophobic surface formed on the nanospike sensor. The CO gas response sensitivity of the PFOTS-coated SnO2 sensors is almost the same to that of the as-fabricated SnO2 sensors without the PFOTS coating. Such a super-hydrophobic surface can protect the sensors exposed to moisture and heavy particulates, and can perform cleaning-in-place operations to prolong the lifetime of the sensors. These results show a great potential to fabricate thousands of identical gas sensors at low cost.

  7. Study on Operation Mechanisms of Semiconducting Thin-Film Gas Sensors by Hall-Effect Measurements

    NASA Astrophysics Data System (ADS)

    Uemura, Daizo; Hara, Kazuhiro

    Although Fe2O3-based thin-film gas sensors show considerable sensitivity to pollutant gases such as NOX or inflammable gases such as H2 and i-C4H10, the operation mechanism is not clear. In this study, the Hall effect of the sensing film is measured in an atmosphere containing NOX or an inflammable gas to clarify the sensing mechanism based on the change of the measured carrier density and Hall mobility in the presence of the gas. This study makes clear that the change of carrier concentration mainly determines the sensitivity while the change of Hall mobility does not contribute to the sensitivity. In addition the surface density of chemisorbed species is roughly estimated from the measurements. The Debye length is also estimated and discussed in relation with the sensing mechanism.

  8. Nanoparticle Thin Films for Gas Sensors Prepared by Matrix Assisted Pulsed Laser Evaporation

    PubMed Central

    Caricato, Anna Paola; Luches, Armando; Rella, Roberto

    2009-01-01

    The matrix assisted pulsed laser evaporation (MAPLE) technique has been used for the deposition of metal dioxide (TiO2, SnO2) nanoparticle thin films for gas sensor applications. For this purpose, colloidal metal dioxide nanoparticles were diluted in volatile solvents, the solution was frozen at the liquid nitrogen temperature and irradiated with a pulsed excimer laser. The dioxide nanoparticles were deposited on Si and Al2O3 substrates. A rather uniform distribution of TiO2 nanoparticles with an average size of about 10 nm and of SnO2 nanoparticles with an average size of about 3 nm was obtained, as demonstrated by high resolution scanning electron microscopy (SEM-FEG) inspections. Gas-sensing devices based on the resistive transduction mechanism were fabricated by depositing the nanoparticle thin films onto suitable rough alumina substrates equipped with interdigitated electrical contacts and heating elements. Electrical characterization measurements were carried out in controlled environment. The results of the gas-sensing tests towards low concentrations of ethanol and acetone vapors are reported. Typical gas sensor parameters (gas responses, response/recovery time, sensitivity, and low detection limit) towards ethanol and acetone are presented. PMID:22574039

  9. Hydrogen gas sensors using a thin Ta2O5 dielectric film

    NASA Astrophysics Data System (ADS)

    Kim, Seongjeen

    2014-12-01

    A capacitive-type hydrogen gas sensor with a MIS (metal-insulator-semiconductor) structure was investigated for high-temperature applications. In this work, a tantalum oxide (Ta2O5) layer of tens of nanometers in thickness formed by oxidizing tantalum film in rapid thermal processing (RTP) was exploited with the purpose of sensitivity improvement. Silicon carbide (SiC), which is good even at high temperatures over 500 °C, was used as the substrate. We fabricated sensors composed of Pd/Ta2O5/SiC, and the dependences of the capacitance response properties and the I-V characteristics on the hydrogen concentration were analyzed from the temperature range of room temperature to 500 °C. As a result, our hydrogen sensor showed promising performance with respect to the sensitivity and the adaptability at high temperature.

  10. Thin film temperature sensor

    NASA Astrophysics Data System (ADS)

    Grant, H. P.; Przybyszewski, J. S.

    1980-02-01

    Thin film surface temperature sensors were developed. The sensors were made of platinum-platinum/10 percent rhodium thermocouples with associated thin film-to-lead wire connections and sputtered on aluminum oxide coated simulated turbine blades for testing. Tests included exposure to vibration, low velocity hydrocarbon hot gas flow to 1250 K, and furnace calibrations. Thermal electromotive force was typically two percent below standard type S thermocouples. Mean time to failure was 42 hours at a hot gas flow temperature of 1250 K and an average of 15 cycles to room temperature. Failures were mainly due to separation of the platinum thin film from the aluminum oxide surface. Several techniques to improve the adhesion of the platinum are discussed.

  11. Thin film temperature sensor

    NASA Technical Reports Server (NTRS)

    Grant, H. P.; Przybyszewski, J. S.

    1980-01-01

    Thin film surface temperature sensors were developed. The sensors were made of platinum-platinum/10 percent rhodium thermocouples with associated thin film-to-lead wire connections and sputtered on aluminum oxide coated simulated turbine blades for testing. Tests included exposure to vibration, low velocity hydrocarbon hot gas flow to 1250 K, and furnace calibrations. Thermal electromotive force was typically two percent below standard type S thermocouples. Mean time to failure was 42 hours at a hot gas flow temperature of 1250 K and an average of 15 cycles to room temperature. Failures were mainly due to separation of the platinum thin film from the aluminum oxide surface. Several techniques to improve the adhesion of the platinum are discussed.

  12. Visual gas sensors based on dye thin films and resonant waveguide gratings

    NASA Astrophysics Data System (ADS)

    Davoine, L.; Schnieper, M.; Barranco, A.; Aparicio, F. J.

    2011-05-01

    A colorimetric sensor that provides a direct visual indication of chemical contamination was developed. The detection is based on the color change of the reflected light after exposure to a gas or a liquid. The sensor is a combination of a chemically sensitive dye layer and a subwavelength grating structure. To enhance the perception of color change, a reference area sealed under a non-contaminated atmosphere is used and placed next to the sensor. The color change is clearly visible by human eyes. The device is based on photonic resonant effects; the visible color is a direct reflection of some incoming light, therefore no additional supplies are needed. This makes it usable as a standalone disposable sensor. The dye thin film is deposited by Plasma enhanced chemical vapor deposition (PECVD) on top of the subwavelength structure. The latter is made by combining a replication process of a Sol-Gel material and a thin film deposition. Lowcost fabrication and compatibility with environments where electricity cannot be used make this device very attractive for applications in hospitals, industries, with explosives and in traffic.

  13. Micro-machined thin film hydrogen gas sensor, and method of making and using the same

    NASA Technical Reports Server (NTRS)

    DiMeo, Jr., Frank (Inventor); Bhandari, Gautam (Inventor)

    2001-01-01

    A hydrogen sensor including a thin film sensor element formed, e.g., by metalorganic chemical vapor deposition (MOCVD) or physical vapor deposition (PVD), on a microhotplate structure. The thin film sensor element includes a film of a hydrogen-interactive metal film that reversibly interacts with hydrogen to provide a correspondingly altered response characteristic, such as optical transmissivity, electrical conductance, electrical resistance, electrical capacitance, magnetoresistance, photoconductivity, etc., relative to the response characteristic of the film in the absence of hydrogen. The hydrogen-interactive metal film may be overcoated with a thin film hydrogen-permeable barrier layer to protect the hydrogen-interactive film from deleterious interaction with non-hydrogen species. The hydrogen sensor of the invention may be usefully employed for the detection of hydrogen in an environment susceptible to the incursion or generation of hydrogen and may be conveniently configured as a hand-held apparatus.

  14. Gas Sensor Test Chip

    NASA Technical Reports Server (NTRS)

    Buehler, M.; Ryan, M.

    1995-01-01

    A new test chip is being developed to characterize conducting polymers used in gas sensors. The chip, a seven-layer cofired alumina substrate with gold electrodes, contains 11 comb and U- bend test structures. These structures are designed to measure the sheet resistance, conduction anisotropy, and peripheral conduction of spin-coated films that are not subsequently patterned.

  15. Thin film hydrogen sensor

    DOEpatents

    Lauf, Robert J.; Hoffheins, Barbara S.; Fleming, Pamela H.

    1994-01-01

    A hydrogen sensor element comprises an essentially inert, electrically-insulating substrate having a thin-film metallization deposited thereon which forms at least two resistors on the substrate. The metallization comprises a layer of Pd or a Pd alloy for sensing hydrogen and an underlying intermediate metal layer for providing enhanced adhesion of the metallization to the substrate. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors, and at least one of the resistors is left uncovered. The difference in electrical resistances of the covered resistor and the uncovered resistor is related to hydrogen concentration in a gas to which the sensor element is exposed.

  16. Hydrogen gas sensor based on long-range surface plasmons in lossy palladium film placed on photonic crystal stack

    NASA Astrophysics Data System (ADS)

    Hamidi, S. M.; Ramezani, R.; Bananej, A.

    2016-03-01

    Nanostructured plasmonic H2 gas sensor has been designed and fabricated by palladium nanostructure onto one-dimensional photonic crystal. Our one dimensional photonic crystal has been designed and fabricated to have photonic band gap in visible spectrum and the palladium nanostructure has been designed and constructed as 11 nm thin film onto the above mentioned photonic crystal. All of fabrication processes have been done in vacuum chamber by the aid of electron gun and sputtering deposition methods. The ability of the devise as a Hydrogen gas sensor has been examined by recording the long range surface Plasmon resonance in different injection of H2 gas and our results show that this sensor head can be used to sense very little amount of H2 gas in ambient at room temperature. A reversible red shift of the reflectance deep of long range surface Plasmon resonance make this sensor as a good and useful device in medical, safety and energy related materials.

  17. Surface plasmon resonance-based fiber optic hydrogen sulphide gas sensor utilizing Cu-ZnO thin films.

    PubMed

    Tabassum, Rana; Mishra, Satyendra K; Gupta, Banshi D

    2013-07-28

    We report an experimental study on a surface plasmon resonance (SPR)-based fiber optic hydrogen sulphide gas sensor with a thin metal oxide (zinc oxide (ZnO)) layer as the additional layer. This zinc oxide layer is grown over the copper layer to support surface plasmons at the metal-dielectric interface at room temperature. The wavelength interrogation mode of operation has been used to characterize the sensor. The thin film of zinc oxide over the copper film was deposited on the unclad portion of the fiber by the thermal evaporation technique. Experiments were performed for the detection of concentrations of hydrogen sulphide gas varying from 0 to 100 ppm around the probe. The unpolarized light from a polychromatic source is launched from one end of the fiber and the corresponding SPR spectrum is recorded at the other end. The recorded SPR spectrum shows a shift in the resonance wavelength on a change in the hydrogen sulphide gas concentration, which is considered as a detectable signal for the characterization of the sensor. Further, the optimization of the performance of the sensor was achieved by varying the thickness of the zinc oxide film. The sensor possesses a very fast response time and high sensitivity. Since the sensor utilizes optical fibers it has additional advantages of remote sensing, online monitoring, light weight and low cost. PMID:23764905

  18. Reduced Graphene Oxide-Based Ordered Macroporous Films on a Curved Surface: General Fabrication and Application in Gas Sensors.

    PubMed

    Xu, Shipu; Sun, Fengqiang; Pan, Zizhao; Huang, Chaowei; Yang, Shumin; Long, Jinfeng; Chen, Ying

    2016-02-10

    A new general method for the fabrication of a reduced graphene oxide (rGO)-based ordered monolayer macroporous film composed of a layer of closely arranged pores is introduced. Assisted by the polystyrene microsphere monolayer colloid crystal by a simple solution-heated method, pure rGO, rGO-SnO2, rGO-Fe2O3, and rGO-NiO composite monolayer ordered porous films were examplarily constructed on the curved surface of a ceramic tube widely used in gas sensors. The rGO-oxide composite porous films could exhibit much better sensing performances than those of the corresponding pure oxide films and the composite films without the ordered porous structures in detecting ethanol gas. The enhancement mechanisms induced by distinctive rGO-oxide heterojunctions and porous structures as well as the effects of the rGO content and the pore-size on the sensitivity of the composite films were systematically analyzed and discussed. This study opens up a kind of construction method for an rGO-based composite film gas sensor with uniform surface structures and high performance. PMID:26829014

  19. Chemiresistive gas sensors employing solution-processed metal oxide quantum dot films

    SciTech Connect

    Liu, Huan Xu, Songman; Li, Min; Shao, Gang; Zhang, Wenkai; Wei, Wendian; He, Mingze; Song, Huaibing; Gao, Liang; Song, Haisheng; Tang, Jiang

    2014-10-20

    We report low-temperature chemiresistive gas sensors based on tin oxide colloidal quantum dots (CQDs), in which the benefits of CQDs such as extremely small crystal size, solution-processability, and tunable surface activity are exploited to enhance the gas-sensing effect. The sensor fabrication is simply employing spin-coating followed by a solid-state ligand exchange treatment at room temperature in air ambient. The optimal gas sensor exhibited rapid and significant decrease in resistance upon H{sub 2}S gas exposure when operated at 70 °C, and it was fully recoverable upon gas release. We observed a power law correlation between the sensor response and H{sub 2}S gas concentration, and the sensing mechanism was discussed using the completely depletion model with a flat band diagram.

  20. Chemiresistive gas sensors employing solution-processed metal oxide quantum dot films

    NASA Astrophysics Data System (ADS)

    Liu, Huan; Xu, Songman; Li, Min; Shao, Gang; Song, Huaibing; Zhang, Wenkai; Wei, Wendian; He, Mingze; Gao, Liang; Song, Haisheng; Tang, Jiang

    2014-10-01

    We report low-temperature chemiresistive gas sensors based on tin oxide colloidal quantum dots (CQDs), in which the benefits of CQDs such as extremely small crystal size, solution-processability, and tunable surface activity are exploited to enhance the gas-sensing effect. The sensor fabrication is simply employing spin-coating followed by a solid-state ligand exchange treatment at room temperature in air ambient. The optimal gas sensor exhibited rapid and significant decrease in resistance upon H2S gas exposure when operated at 70 °C, and it was fully recoverable upon gas release. We observed a power law correlation between the sensor response and H2S gas concentration, and the sensing mechanism was discussed using the completely depletion model with a flat band diagram.

  1. A new room temperature gas sensor based on pigment-sensitized TiO2 thin film for amines determination.

    PubMed

    Yanxiao, Li; Xiao-bo, Zou; Xiao-wei, Huang; Ji-yong, Shi; Jie-wen, Zhao; Holmes, Mel; Hao, Limin

    2015-05-15

    A new room temperature gas sensor was fabricated with pigment-sensitized TiO2 thin film as the sensing layer. Four natural pigments were extracted from spinach (Spinacia oleracea), red radish (Raphanus sativus L), winter jasmine (Jasminum nudiflorum), and black rice (Oryza sativa L. indica) by ethanol. Natural pigment-sensitized TiO2 sensor was prepared by immersing porous TiO2 films in an ethanol solution containing a natural pigment for 24h. The hybrid organic-inorganic formed films here were firstly exposed to atmospheres containing methylamine vapours with concentrations over the range 2-10 ppm at room temperature. The films sensitized by the pigments from black-rice showed an excellent gas-sensitivity to methylamine among the four natural pigments sensitized films due to the anthocyanins. The relative change resistance, S, of the films increased almost linearly with increasing concentrations of methylamine (r=0.931). At last, the black rice pigment sensitized TiO2 thin film was used to determine the biogenic amines generated by pork during storage. The developed films had good sensitivity to analogous gases such as putrscine, and cadaverine that will increase during storage. PMID:24934102

  2. Fiber optic ammonia gas sensor utilizing surface plasmon resonance of copper/bromocresol purple thin films

    NASA Astrophysics Data System (ADS)

    Mishra, Satyendra K.; Bhardwaj, Shivani; Gupta, Banshi D.

    2013-05-01

    We present an experimental study of fiber optic ammonia gas sensor based on the phenomena of surface plasmon resonance working on wavelength modulation scheme. The principle of the sensor is based on the change in dielectric constant of the bromocresol purple (BCP) in the presence of ammonia gas. The sensor works at room temperature. Two different kinds of coating configurations have been considered, namely copper + BCP and silver + BCP, on the unclad portion of the fiber. The experiments have been carried out at the low concentrations (1 ppm - 10 ppm) of ammonia gas around the probe. The sensor with copper and BCP layers has greater sensitivity than sensor with silver and BCP layers. The proposed sensor has small response and recovery times.

  3. SnO2/Pt Thin Film Laser Ablated Gas Sensor Array

    PubMed Central

    Shahrokh Abadi, Mohammad Hadi; Hamidon, Mohd Nizar; Shaari, Abdul Halim; Abdullah, Norhafizah; Wagiran, Rahman

    2011-01-01

    A gas sensor array was developed in a 10 × 10 mm2 space using Screen Printing and Pulse Laser Ablation Deposition (PLAD) techniques. Heater, electrode, and an insulator interlayer were printed using the screen printing method on an alumina substrate, while tin oxide and platinum films, as sensing and catalyst layers, were deposited on the electrode at room temperature using the PLAD method, respectively. To ablate SnO2 and Pt targets, depositions were achieved by using a 1,064 nm Nd-YAG laser, with a power of 0.7 J/s, at different deposition times of 2, 5 and 10 min, in an atmosphere containing 0.04 mbar (4 kPa) of O2. A range of spectroscopic diffraction and real space imaging techniques, SEM, EDX, XRD, and AFM were used in order to characterize the surface morphology, structure, and composition of the films. Measurement on the array shows sensitivity to some solvent and wood smoke can be achieved with short response and recovery times. PMID:22164041

  4. SnO2/Pt thin film laser ablated gas sensor array.

    PubMed

    Shahrokh Abadi, Mohammad Hadi; Hamidon, Mohd Nizar; Shaari, Abdul Halim; Abdullah, Norhafizah; Wagiran, Rahman

    2011-01-01

    A gas sensor array was developed in a 10 × 10 mm(2) space using Screen Printing and Pulse Laser Ablation Deposition (PLAD) techniques. Heater, electrode, and an insulator interlayer were printed using the screen printing method on an alumina substrate, while tin oxide and platinum films, as sensing and catalyst layers, were deposited on the electrode at room temperature using the PLAD method, respectively. To ablate SnO(2) and Pt targets, depositions were achieved by using a 1,064 nm Nd-YAG laser, with a power of 0.7 J/s, at different deposition times of 2, 5 and 10 min, in an atmosphere containing 0.04 mbar (4 kPa) of O(2). A range of spectroscopic diffraction and real space imaging techniques, SEM, EDX, XRD, and AFM were used in order to characterize the surface morphology, structure, and composition of the films. Measurement on the array shows sensitivity to some solvent and wood smoke can be achieved with short response and recovery times. PMID:22164041

  5. Low-Concentration NO2 Gas Sensor Based on HfO2 Thin Films Irradiated by Ultraviolet Light

    NASA Astrophysics Data System (ADS)

    Karaduman, Irmak; Barin, Özlem; Özer, Metin; Acar, Selim

    2016-04-01

    In this work, we investigate the gas-sensing properties of HfO2 thin films enhanced by ultraviolet (UV) light irradiation. The films were deposited on silicon substrate by atomic layer deposition (ALD) and annealed at 800°C. X-ray diffraction (XRD) and atomic force microscopy (AFM) were used for characterization of the samples, which revealed that the degree of crystallinity and electrical properties of the HfO2 thin films were affected by the annealing temperature. Different film thicknesses (20 nm and 10 nm) were used for gas-sensing measurements. The gas-sensing properties of the films were affected by the UV irradiation time, with improvements in sensor properties observed for samples with more than 30 min of irradiation. The maximum response was found for the 10-nm sensor annealed at 800°C. Moreover, a linear dependence on NO2 concentration was observed for the response, suggesting that the sensing layer is highly suitable for detecting NO2 gas concentrations as low as 1 ppm.

  6. Thin films for gas sensors in new application fields — MBRS studies and semiempirical calculations

    NASA Astrophysics Data System (ADS)

    Ochs, Th.; Geyer, W.; Krummel, Ch.; Fleischer, M.; Meixner, H.; Kohl, D.

    Reducing gases in air are detectable by a conductance increase of Ga2O3 films. In molecular beam relaxation spectroscopy (MBRS) Ga2O3 films are exposed to gas pulses of methane. The velocity constants of the desorption of the reaction products H2O and CO2 are observed. The desorption energies and the frequency factors are calculated (H2O: E a=0.2 eV, f a=2×103s-1; CO2: E a=1.0 eV, f a=100×103 s-1). Semiempirical Hartree-Fock calculations with the MNDO-PM3 method give information about the adsorption process. The energy gain of physisorption amounts to -0.27 eV. The HoF (Heat of Formation) of the chemisorbed CH3 group and the H atom is 4.05 eV lower in comparison to the value of the physisorbed methane. After the COlatt. group formation the energy gain is 7.33 eV. The binding energy of the formed COlatt. is calculated to 2.07 eV. The charge transfer is estimated using the mulliken charges. A reaction scheme for the catalytic oxidation of methane by lattice oxygen is proposed. The conductance increase of Ga2O3 on exposure to methane can be explained by the creation of oxygen vacancies and by the formation of absorbed hydrogen, both acting as surface donors. Ga2O3 layers with operating temperatures between 600 and 900 °C allow new applications for semiconductor gas sensors in harsh environments, e. g. the monitoring of combustion gases.

  7. Thin film hydrogen sensor

    DOEpatents

    Lauf, R.J.; Hoffheins, B.S.; Fleming, P.H.

    1994-11-22

    A hydrogen sensor element comprises an essentially inert, electrically-insulating substrate having a thin-film metallization deposited thereon which forms at least two resistors on the substrate. The metallization comprises a layer of Pd or a Pd alloy for sensing hydrogen and an underlying intermediate metal layer for providing enhanced adhesion of the metallization to the substrate. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors, and at least one of the resistors is left uncovered. The difference in electrical resistances of the covered resistor and the uncovered resistor is related to hydrogen concentration in a gas to which the sensor element is exposed. 6 figs.

  8. Preparation of NiO two-dimensional grainy films and their high-performance gas sensors for ammonia detection

    NASA Astrophysics Data System (ADS)

    Wang, Jian; Yang, Pan; Wei, Xiaowei; Zhou, Zhihua

    2015-03-01

    Semiconductor NiO two-dimensional grainy films on glass substrates are shown to be an ammonia-sensing devices with excellent comprehensive performance, such as the good stability, short response time, outstanding recovery performance, excellent sensitivity, and selectivity. The morphology and structure analysis of gas sensing materials indicated that the as-fabricated NiO films was uniform and highly ordered porous structure on substrates, which composed of small size particles with diameters ranging from 8 to 30 nm. The shells of these particles were ultrathin amorphous NiO plates, and the core of each particle was face-centered cubic single crystal structure. In the gas sensing performance tests, we found that the excellent electron transport and interconnection properties of sensing films improved the stability and recovery performance of sensors, and porous surface structure increased the specific surface area of sensing films leading to fast response and excellent sensitivity for sensors. Meanwhile, this sensors owned outstanding selectivity toward ammonia which could be because NiO-sensing films had higher binding affinity for the electron-donating ammonia.

  9. Preparation of NiO two-dimensional grainy films and their high-performance gas sensors for ammonia detection.

    PubMed

    Wang, Jian; Yang, Pan; Wei, Xiaowei; Zhou, Zhihua

    2015-01-01

    Semiconductor NiO two-dimensional grainy films on glass substrates are shown to be an ammonia-sensing devices with excellent comprehensive performance, such as the good stability, short response time, outstanding recovery performance, excellent sensitivity, and selectivity. The morphology and structure analysis of gas sensing materials indicated that the as-fabricated NiO films was uniform and highly ordered porous structure on substrates, which composed of small size particles with diameters ranging from 8 to 30 nm. The shells of these particles were ultrathin amorphous NiO plates, and the core of each particle was face-centered cubic single crystal structure. In the gas sensing performance tests, we found that the excellent electron transport and interconnection properties of sensing films improved the stability and recovery performance of sensors, and porous surface structure increased the specific surface area of sensing films leading to fast response and excellent sensitivity for sensors. Meanwhile, this sensors owned outstanding selectivity toward ammonia which could be because NiO-sensing films had higher binding affinity for the electron-donating ammonia. PMID:25852413

  10. High sensitive formaldehyde graphene gas sensor modified by atomic layer deposition zinc oxide films

    SciTech Connect

    Mu, Haichuan; Zhang, Zhiqiang; Wang, Keke; Xie, Haifen; Zhao, Xiaojing; Liu, Feng

    2014-07-21

    Zinc oxide (ZnO) thin films with various thicknesses were fabricated by Atomic Layer Deposition on Chemical Vapor Deposition grown graphene films and their response to formaldehyde has been investigated. It was found that 0.5 nm ZnO films modified graphene sensors showed high response to formaldehyde with the resistance change up to 52% at the concentration of 9 parts-per-million (ppm) at room temperature. Meanwhile, the detection limit could reach 180 parts-per-billion (ppb) and fast response of 36 s was also obtained. The high sensitivity could be attributed to the combining effect from the highly reactive, top mounted ZnO thin films, and high conductive graphene base network. The dependence of ZnO films surface morphology and its sensitivity on the ZnO films thickness was also investigated.

  11. VOC-Induced Flexing of Single and Multilayer Polyethylene Films As Gas Sensors.

    PubMed

    Alipour, Nazanin; Andersson, Richard L; Olsson, Richard T; Gedde, Ulf W; Hedenqvist, Mikael S

    2016-04-20

    The differential swelling and bending of multilayer polymeric films due to the dissimilar uptake of volatile organic compounds (VOCs; n-hexane, limonene) in the different layers was studied. Motions of thin polyethylene films triggered by the penetrant were investigated to learn more about how their deformation is related to VOC absorption. Single layers of metallocene or low-density polyethylene, and multilayers (2-288 layers) of these in alternating positions were considered. Single-, 24-, and 288-layer films displayed no motion when uniformly subjected to VOCs, but they could display simple curving modes when only one side of the film was wetted with a liquid VOC. Two-layer films displayed simple bending when uniformly subjected to VOCs due to the different swelling in the two layers, but when the VOC was applied to only one side of the film, more complex modes of motion as well as dynamic oscillations were observed (e.g., constant amplitude wagging at 2 Hz for ca. 50 s until all the VOC had evaporated). Diffusion modeling was used to study the transport behavior of VOCs inside the films and the different bending modes. Finally a prototype VOC sensor was developed, where the reproducible curving of the two-layer film was calibrated with n-hexane. The sensor is simple, cost-efficient, and nondestructive and requires no electricity. PMID:27023792

  12. Gas Sensor

    NASA Technical Reports Server (NTRS)

    1990-01-01

    High Technology Sensors, Inc.'s Model SS-250 carbon dioxide detector uses a patented semiconductor optical source that efficiently creates infrared radiation, which is focused through an airway on a detector. Carbon dioxide passing through the airway absorbs the radiation causing the detector to generate a signal. The small size and low power requirements of the SS-250 make it attractive for incorporation in a variety of medical instruments.

  13. ZnO:Al Thin Film Gas Sensor for Detection of Ethanol Vapor

    PubMed Central

    Chou, Shih Min; Teoh, Lay Gaik; Lai, Wei Hao; Su, Yen Hsun; Hon, Min Hsiung

    2006-01-01

    The ZnO:Al thin films were prepared by RF magnetron sputtering on Si substrate using Pt as interdigitated electrodes. The structure was characterized by XRD and SEM analyses, and the ethanol vapor gas sensing as well as electrical properties have been investigated and discussed. The gas sensing results show that the sensitivity for detecting 400 ppm ethanol vapor was ?20 at an operating temperature of 250C. The high sensitivity, fast recovery, and reliability suggest that ZnO:Al thin film prepared by RF magnetron sputtering can be used for ethanol vapor gas sensing.

  14. O2 plasma-functionalized SWCNTs and PEDOT/PSS composite film assembled by dielectrophoresis for ultrasensitive trimethylamine gas sensor.

    PubMed

    Guo, Xishan; Jian, Jinming; Lin, Liwei; Zhu, Hanyu; Zhu, Songming

    2013-09-21

    A novel gas sensor based on composite films of poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT/PSS) and single-walled carbon nanotubes (SWCNTs) was fabricated for the detection of fishy trimethylamine (TMA) vapor. The SWCNTs were functionalized by O2 plasma treatment to improve their solubility in the polymeric matrix, and alternative current dielectrophoresis was utilized for the first time to assemble the PEDOT/PSS-SWCNTs composite film to enhance the response to TMA molecules. The high resolution transmission electron microscopy (HR-TEM) images showed that the SWCNTs maintained their bulk structure after O2 plasma functionalization. The scanning electron microscopy (SEM) images of the composite film showed that the oxidized SWCNTs were orderly arranged and uniformly dispersed into the polymer by dielectrophoresis. Compositional analyses of SWCNTs by X-ray photoelectron spectroscopy (XPS) suggested that O2 plasma functionalization could remove amorphous carbon from the nanotube surface and introduce more hydrophilic oxygen-containing groups, leading to the improvement of SWCNTs solubility in the polymeric matrix. Gas sensitivities of the composite films largely relied on the treatment conditions. Compared to the raw or acid-treated SWCNTs-doped composite films, the film doped with SWCNTs modified by O2 plasma at 30 W for 3 min exhibited the most sensitive and stable response characteristics to ppb-level TMA gas. PMID:23862176

  15. Zinc-oxide nanorod/copper-oxide thin-film heterojunction for a nitrogen-monoxide gas sensor

    NASA Astrophysics Data System (ADS)

    Yoo, Hwansu; Kim, Hyojin; Kim, Dojin

    2014-11-01

    A novel p- n oxide heterojunction structure was fabricated by employing n-type zinc-oxide (ZnO) nanorods grown on an indium-tin-oxide-coated glass substrate by using the hydrothermal method and a p-type copper-oxide (CuO) thin film deposited onto the ZnO nanorod array by using the sputtering method. The crystallinities and microstructures of the heterojunction materials were examined by using X-ray diffraction and scanning electron microscopy. The observed current-voltage characteristics of the p - n oxide heterojunction showed a nonlinear diode-like rectifying behavior. The effects of an oxidizing or electron acceptor gas, such as nitrogen monoxide (NO), on the ZnO nanorod/CuO thin-film heterojunction were investigated to determine the potential applications of the fabricated material for use in gas sensors. The forward current of the p - n heterojunction was remarkably reduced when NO gas was introduced into dry air at temperatures from 100 to 250 °C. The NO gas response of the oxide heterojunction reached a maximum value at an operating temperature of 180 °C and linearly increased as the NO gas concentration was increased from 5 to 30 ppm. The sensitivity value was observed to be as high as 170% at 180 °C when biased at 2 V in the presence of 20-ppm NO. The ZnO nanorod/CuO thin-film heterojunction also exhibited a stable and repeatable response to NO gas. The experimental results suggest that the ZnO nanorod/CuO thin-film heterojunction structure may be a novel candidate for gas sensors.

  16. The influence of gold nanoparticles on the conductivity response of SnO2-based thin film gas sensors

    NASA Astrophysics Data System (ADS)

    Korotcenkov, G.; Brinzari, V.; Gulina, L. B.; Cho, B. K.

    2015-10-01

    The results presented in this study demonstrate that the successive ionic layer deposition (SILD) method for gold nanoparticle formation can be used for surface functionalization of SnO2 films to improve their gas sensing properties. As a result of successive treatments in HAuCl4·nH2O and NaBH4 solutions, gold nanoparticles can be formed on the surface of SnO2 crystallites. The size of the gold particles varies over the range of 1-50 nm depending on the number of SILD cycles. Gas sensing characteristics of the Au-modified SnO2 films are discussed as well. Unlike most studies focused on the development of CO sensors, the present research focuses on the specifics of the response of the SnO2:Au-based sensors to other gases, such as hydrogen and ozone. It is established that gold nanoparticles deposited on the SnO2 surface are active toward both reducing and oxidizing gases, and the effect of the SnO2 surface decoration by the gold nanoparticles on the gas sensing characteristics depends on the number of deposition cycles (i.e., the size of the gold particles). The sensitization to ozone and hydrogen suggests that the application of the surface modification by gold in the field of gas sensor design should not be limited by optimization of the CO sensor's parameters. Models showing the promotional role of Au additives are discussed, and a mechanism of sensitization in the SnO2:Au-based gas sensor is proposed.

  17. Investigation on the Hydrogen Gas Sensor Based on Exothermicity Reaction by Hydrogen Absorption into the Pd Film

    NASA Astrophysics Data System (ADS)

    Takashima, Noriaki; Kimura, Mitsuteru

    We have proposed a novel micro-calorimetric hydrogen sensor based on the temperature difference detection due to the exothermic reaction caused by hydrogen absorption in the palladium (Pd) thin film as a hydrogen absorbing material, and demonstrated using the prototype hydrogen sensor with a microheater and a pair of cantilever SOI thermocouples that this H2 sensor by this proposed mechanism is surely possible. We have ascertained that the sensor output voltage is increased as the H2 concentration is increased, that the exothermic reaction ceases after finish of the hydrogen absorption, the exothermic reaction by hydrogen absorption occurs even in pure N2 gas, that larger output voltage is observed for lower ambient temperature even under no oxygen gas, and that this hydrogen sensor does not respond to the CH4 gas. We have found that the detection of H2 concentration based on the exothermic reaction is preferred to carried out after heating the sensing region rather than during heating it especially in lower H2 concentration than about 5 vol.%, because we can use the null method to detect the extremely low H2 concentration.

  18. Spray-pyrolized nanostructured CuO thin films for H2S gas sensor

    NASA Astrophysics Data System (ADS)

    Bari, Ramesh H.; Patil, Sharad B.; Bari, Anil R.

    2013-03-01

    Nanostructured copper oxide (CuO) thin films were prepared by spray pyrolysis technique. X-ray diffraction was used to investigate the structural properties. Surface morphology was studied using scanning electron microscopy. Microstructure was studied using a transmission electron microscope, and energy-dispersive X-ray analysis was used to determine the elemental composition of prepared nanostructured CuO thin film. Gas-sensing performance was conducted using static gas-sensing system, at different operating temperatures in the range of 200°C to 400°C for the gas concentration of 100 ppm. The maximum sensitivity ( S = 872) to H2S was found at the temperature of 250°C. Quick response (2 s) and fast recovery (5 s) are the main features of this film.

  19. Qualitative and quantitative differentiation of gases using ZnO thin film gas sensors and pattern recognition analysis.

    PubMed

    Pati, Sumati; Maity, A; Banerji, P; Majumder, S B

    2014-04-01

    In the present work we have grown highly textured, ultra-thin, nano-crystalline zinc oxide thin films using a metal organic chemical vapor deposition technique and addressed their selectivity towards hydrogen, carbon dioxide and methane gas sensing. Structural and microstructural characteristics of the synthesized films were investigated utilizing X-ray diffraction and electron microscopy techniques respectively. Using a dynamic flow gas sensing measurement set up, the sensing characteristics of these films were investigated as a function of gas concentration (10-1660 ppm) and operating temperature (250-380 °C). ZnO thin film sensing elements were found to be sensitive to all of these gases. Thus at a sensor operating temperature of ~300 °C, the response% of the ZnO thin films were ~68, 59, and 52% for hydrogen, carbon monoxide and methane gases respectively. The data matrices extracted from first Fourier transform analyses (FFT) of the conductance transients were used as input parameters in a linear unsupervised principal component analysis (PCA) pattern recognition technique. We have demonstrated that FFT combined with PCA is an excellent tool for the differentiation of these reducing gases. PMID:24551870

  20. Gas sensor based on nano ZSM-5 zeolite films for the nerve agent simulant dimethylmethylphosphonate detection

    NASA Astrophysics Data System (ADS)

    Xie, Haifen; Ting, Yu; Sun, Xiaoxiang; Jia, Zhou; Huang, Yiping

    2004-12-01

    The piezoelectric sensor device coated with nanosize ZSM-5 zeolite films has beem fabricated. The Nerve agent simulant Dimethylmethylphosphonate has been tested with this piezoelectric sensor devices. The frequency shifts to time at 1 ppm, 5ppm and 20ppm DMMP are examined respectively. The minimum detection concentration of 1ppm DMMP has been obtained in the N2 at 293K. 1 ppm is lower than the EC50 concentration value (where EC50 is the airborne concentration sufficient to induce severe effects in 50% of those exposed for 30 min). The frequency sensitivity was found to be about 60HZ / ppm. The effect of acetone on the ZSM-5 zeolite film was also investigated for the selectivity test. Using principle component analysis (PCA), we can qualify and quantify these testing gases.

  1. SAW ethanol gas sensors based on cryptophane-A sensitive film

    NASA Astrophysics Data System (ADS)

    Sun, Ping; Jiang, Yadong; Xie, Guangzhong; Du, Xiaosong

    2010-10-01

    Surface acoustic wave (SAW) devices have been widely used for various chemical sensing applications because the sensor signal can be detected by simple and inexpensive electronics. The interactions between target analyte and the sensor surface cause changes in the mechanical, electrical, dielectric properties of the sensing coating deposited onto acoustic transducer. The changes in these properties will lead to changes in the velocity and amplitude of wave modes, which can be measured by frequency and insertion loss (IL) changes when the acoustic element is realized as a delay line or resonator. Among the different sensing coatings, the supermolecules are of considerable interest because the host molecules can be thought as original receptors allowing a specific recognition of guest molecules based on "key-lock" system. In this paper, SAW ethanol gas sensors that utilize the supermolecule of cryptophane-A as sensitive layer have been studied. We synthesized cryptophane-A from vanillyl alcohol using a double trimerisation method and deposited it on the SAW devices to fabricate cryptophane-A based SAW gas sensors. The SAW frequency and insertion loss (IL) were measured using a network analyzer. The frequency shift as the response of the cryptophane-A based SAW sensors to different concentration ethanol was measured at room temperature. It is found that the cryptophane-A based SAW sensor has high sensitivity and good reproductivity to ethanol. The frequency response increased linearly with the concentration of the ethanol.

  2. Effect of depletion layer width on electrical properties of semiconductive thin film gas sensor: a numerical study based on the gradient-distributed oxygen vacancy model

    NASA Astrophysics Data System (ADS)

    Liu, Jianqiao; Lu, Yiting; Cui, Xiao; Jin, Guohua; Zhai, Zhaoxia

    2016-03-01

    The effects of depletion layer width on the semiconductor gas sensors were investigated based on the gradient-distributed oxygen vacancy model, which provided numerical descriptions for the sensor properties. The potential barrier height, sensor resistance, and response to target gases were simulated to reveal their dependences on the depletion layer width. According to the simulation, it was possible to improve the sensor response by enlarging the width of depletion layer without changing the resistance of the gas sensor under the special circumstance. The different performances between resistance and response could provide a bright expectation that the design and fabrication of gas sensing devices could be economized. The simulation results were validated by the experimental performances of SnO2 thin film gas sensors, which were prepared by the sol-gel technique. The dependences of sensor properties on depletion layer width were observed to be in agreement with the simulations.

  3. Room Temperature ppb Level Chlorine Gas Sensor Based on Copper (II) 1, 4, 8, 11, 15, 18, 22, 25-octabutoxy-29 H, 31 H-phthalocyanine Films

    NASA Astrophysics Data System (ADS)

    Bedi, R. K.; Saini, Rajan; Mahajan, Aman

    2010-12-01

    Spin coating technique has been used to fabricate room temperature chlorine gas sensor based on copper (II) 1, 4, 8, 11, 15, 18, 22, 25-octabutoxy-29 H, 31 H-phthalocyanine (CuPc(OBu)8) films. Gas sensor shows a response of 185% to few parts per billion level of Cl2 gas with response time of 9.5 minutes at room temperature. The interactions between sensor and analytes followed first order kinetics with rate constant 0.01≤k≤0.02. The chemiresistive sensor showed very good stability at room temperature over a long period of time.

  4. Room Temperature ppb Level Chlorine Gas Sensor Based on Copper (II) 1, 4, 8, 11, 15, 18, 22, 25-octabutoxy-29 H, 31 H-phthalocyanine Films

    SciTech Connect

    Bedi, R. K.; Saini, Rajan; Mahajan, Aman

    2010-12-01

    Spin coating technique has been used to fabricate room temperature chlorine gas sensor based on copper (II) 1, 4, 8, 11, 15, 18, 22, 25-octabutoxy-29 H, 31 H-phthalocyanine (CuPc(OBu){sub 8}) films. Gas sensor shows a response of 185% to few parts per billion level of Cl{sub 2} gas with response time of 9.5 minutes at room temperature. The interactions between sensor and analytes followed first order kinetics with rate constant 0.01{<=}k{<=}0.02. The chemiresistive sensor showed very good stability at room temperature over a long period of time.

  5. Thick film hydrogen sensor

    SciTech Connect

    Hoffheins, B.S.; Lauf, R.J.

    1995-09-19

    A thick film hydrogen sensor element includes an essentially inert, electrically-insulating substrate having deposited thereon a thick film metallization forming at least two resistors. The metallization is a sintered composition of Pd and a sinterable binder such as glass frit. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors. 8 figs.

  6. Thick film hydrogen sensor

    DOEpatents

    Hoffheins, Barbara S. (Knoxville, TN); Lauf, Robert J. (Oak Ridge, TN)

    1995-01-01

    A thick film hydrogen sensor element includes an essentially inert, electrically-insulating substrate having deposited thereon a thick film metallization forming at least two resistors. The metallization is a sintered composition of Pd and a sinterable binder such as glass frit. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors.

  7. Plasmonic nanocomposite thin film enabled fiber optic sensors for simultaneous gas and temperature sensing at extreme temperatures

    NASA Astrophysics Data System (ADS)

    Ohodnicki, Paul R.; Buric, Michael P.; Brown, Thomas D.; Matranga, Christopher; Wang, Congjun; Baltrus, John; Andio, Mark

    2013-09-01

    Embedded sensors capable of operation in extreme environments including high temperatures, high pressures, and highly reducing, oxidizing and/or corrosive environments can make a significant impact on enhanced efficiencies and reduced greenhouse gas emissions of current and future fossil-based power generation systems. Relevant technologies can also be leveraged in a wide range of other applications with similar needs including nuclear power generation, industrial process monitoring and control, and aviation/aerospace. Here we describe a novel approach to embedded sensing under extreme temperature conditions by integration of Au-nanoparticle based plasmonic nanocomposite thin films with optical fibers in an evanescent wave absorption spectroscopy configuration. Such sensors can potentially enable simultaneous temperature and gas sensing at temperatures approaching 900-1000 °C in a manner compatible with embedded and distributed sensing approaches. The approach is demonstrated using the Au/SiO2 system deposited on silica-based optical fibers. Stability of optical fibers under relevant high temperature conditions and interactions with changing ambient gas atmospheres is an area requiring additional investigation and development but the simplicity of the sensor design makes it potentially cost-effective and may offer a potential for widespread deployment.Embedded sensors capable of operation in extreme environments including high temperatures, high pressures, and highly reducing, oxidizing and/or corrosive environments can make a significant impact on enhanced efficiencies and reduced greenhouse gas emissions of current and future fossil-based power generation systems. Relevant technologies can also be leveraged in a wide range of other applications with similar needs including nuclear power generation, industrial process monitoring and control, and aviation/aerospace. Here we describe a novel approach to embedded sensing under extreme temperature conditions by integration of Au-nanoparticle based plasmonic nanocomposite thin films with optical fibers in an evanescent wave absorption spectroscopy configuration. Such sensors can potentially enable simultaneous temperature and gas sensing at temperatures approaching 900-1000 °C in a manner compatible with embedded and distributed sensing approaches. The approach is demonstrated using the Au/SiO2 system deposited on silica-based optical fibers. Stability of optical fibers under relevant high temperature conditions and interactions with changing ambient gas atmospheres is an area requiring additional investigation and development but the simplicity of the sensor design makes it potentially cost-effective and may offer a potential for widespread deployment. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr02891g

  8. Fabrication of a gas sensor array with micro-wells for VOCs gas sensing based on polymer/carbon nanotube thin films

    NASA Astrophysics Data System (ADS)

    Xie, Guangzhong; Xie, Tao; Zhu, Tao; Jiang, Yadong; Tai, Huiling

    2014-08-01

    In this paper, gas sensor array with micro-well was designed and prepared by Micro Electro-Mechanical Systems (MEMS) technology. The micro-well and interdigital electrodes of sensor array were prepared using photolithography process, reactive ion etching (RIE) process, wet etching and conventional vacuum evaporation. In the manufacture process of the gas sensor array, KOH wet etching process was mainly discussed. The optimum etching processing parameters were as follows: 30 wt% KOH solution at 80 °C, a cooling back-flow device and a magnetic stirrer. The multi-walled carbon nanotubes (MWCNTs)-polyethyleneoxide (PEO) and MWNTs-Polyvinylpyrrolidone (PVP) composite films were utilized as sensitive layers to test gas-sensing properties. Response performances of MWCNTs- PEO and MWNTs-PVP composite films to toluene vapor and methanol vapor at room temperature were investigated. The results revealed that the sensor array showed a larger sensitivity to toluene vapor than to methanol vapor. In addition, the sensing mechanisms were studied as well.

  9. Plasmonic nanocomposite thin film enabled fiber optic sensors for simultaneous gas and temperature sensing at extreme temperatures.

    PubMed

    Ohodnicki, Paul R; Buric, Michael P; Brown, Thomas D; Matranga, Christopher; Wang, Congjun; Baltrus, John; Andio, Mark

    2013-10-01

    Embedded sensors capable of operation in extreme environments including high temperatures, high pressures, and highly reducing, oxidizing and/or corrosive environments can make a significant impact on enhanced efficiencies and reduced greenhouse gas emissions of current and future fossil-based power generation systems. Relevant technologies can also be leveraged in a wide range of other applications with similar needs including nuclear power generation, industrial process monitoring and control, and aviation/aerospace. Here we describe a novel approach to embedded sensing under extreme temperature conditions by integration of Au-nanoparticle based plasmonic nanocomposite thin films with optical fibers in an evanescent wave absorption spectroscopy configuration. Such sensors can potentially enable simultaneous temperature and gas sensing at temperatures approaching 900-1000 °C in a manner compatible with embedded and distributed sensing approaches. The approach is demonstrated using the Au/SiO2 system deposited on silica-based optical fibers. Stability of optical fibers under relevant high temperature conditions and interactions with changing ambient gas atmospheres is an area requiring additional investigation and development but the simplicity of the sensor design makes it potentially cost-effective and may offer a potential for widespread deployment. PMID:23948985

  10. Characterization of thin MoO3 films formed by RF and DC-magnetron reactive sputtering for gas sensor applications

    NASA Astrophysics Data System (ADS)

    Yordanov, R.; Boyadjiev, S.; Georgieva, V.; Vergov, L.

    2014-05-01

    The present work discusses a technology for deposition and characterization of thin molybdenum oxide (MoOx, MoO3) films studied for gas sensor applications. The samples were produced by reactive radio-frequency (RF) and direct current (DC) magnetron sputtering. The composition and microstructure of the films were studied by XPS, XRD and Raman spectroscopy, the morphology, using high resolution SEM. The research was focused on the sensing properties of the sputtered thin MoO3 films. Highly sensitive gas sensors were implemented by depositing films of various thicknesses on quartz resonators. Making use of the quartz crystal microbalance (QCM) method, these sensors were capable of detecting changes in the molecular range. Prototype QCM structures with thin MoO3 films were tested for sensitivity to NH3 and NO2. Even in as-deposited state and without heating the substrates, these films showed good sensitivity. Moreover, no additional thermal treatment is necessary, which makes the production of such QCM gas sensors simple and cost-effective, as it is fully compatible with the technology for producing the initial resonator. The films are sensitive at room temperature and can register concentrations as low as 50 ppm. The sorption is fully reversible, the films are stable and capable of long-term measurements.

  11. Fiber optic gas sensor

    NASA Technical Reports Server (NTRS)

    Chen, Peng (Inventor); Buric, Michael P. (Inventor); Swinehart, Philip R. (Inventor); Maklad, Mokhtar S. (Inventor)

    2010-01-01

    A gas sensor includes an in-fiber resonant wavelength device provided in a fiber core at a first location. The fiber propagates a sensing light and a power light. A layer of a material is attached to the fiber at the first location. The material is able to absorb the gas at a temperature dependent gas absorption rate. The power light is used to heat the material and increases the gas absorption rate, thereby increasing sensor performance, especially at low temperatures. Further, a method is described of flash heating the gas sensor to absorb more of the gas, allowing the sensor to cool, thereby locking in the gas content of the sensor material, and taking the difference between the starting and ending resonant wavelengths as an indication of the concentration of the gas in the ambient atmosphere.

  12. Thin film hydrogen sensor

    DOEpatents

    Cheng, Yang-Tse; Poli, Andrea A.; Meltser, Mark Alexander

    1999-01-01

    A thin film hydrogen sensor, includes: a substantially flat ceramic substrate with first and second planar sides and a first substrate end opposite a second substrate end; a thin film temperature responsive resistor on the first planar side of the substrate proximate to the first substrate end; a thin film hydrogen responsive metal resistor on the first planar side of the substrate proximate to the fist substrate end and proximate to the temperature responsive resistor; and a heater on the second planar side of the substrate proximate to the first end.

  13. Thin film hydrogen sensor

    DOEpatents

    Cheng, Y.T.; Poli, A.A.; Meltser, M.A.

    1999-03-23

    A thin film hydrogen sensor includes a substantially flat ceramic substrate with first and second planar sides and a first substrate end opposite a second substrate end; a thin film temperature responsive resistor on the first planar side of the substrate proximate to the first substrate end; a thin film hydrogen responsive metal resistor on the first planar side of the substrate proximate to the fist substrate end and proximate to the temperature responsive resistor; and a heater on the second planar side of the substrate proximate to the first end. 5 figs.

  14. Sol-gel TiO2 films as NO2 gas sensors

    NASA Astrophysics Data System (ADS)

    Georgieva, V.; Gadjanova, V.; Grechnikov, A.; Donkov, N.; Sendova-Vassileva, M.; Stefanov, P.; Kirilov, R.

    2014-05-01

    TiO2 films were prepared by a sol-gel technique with commercial TiO2 powder as a source material (P25 Degussa AG). After a special treatment, printing paste was prepared. The TiO2 layers were formed by means of drop-coating on Si-control wafers and on the Au-electrodes of quartz resonators. The surface morphology of the films was examined by scanning electron microscopy (SEM). Their structure was studied by Raman spectroscopy and the surface composition was determined by X-ray photoelectron spectroscopy (XPS). The layers had a grain-like surface morphology and consisted mainly of anatase TiO2 phase. The sensitivity of the TiO2 films to NO2 was assessed by the quartz crystal microbalance (QCM) technique. To this end, the films were deposited on both sides of a 16-MHz QCM. The sensing characteristic of the TiO2-QCM structure was investigated by measuring the resonant frequency shift (ΔF) of the QCM due to the mass loading caused by NO2 adsorption. The Sauerbrey equation was applied to establish the correlation between the QCM frequency changes measured after exposure to different NO2 concentrations and the mass-loading of the QCM. The experiments were carried out in a dynamic mode on a special laboratory setup with complete control of the process parameters. The TiO2 films were tested in the NO2 concentration interval from 10 ppm to 5000 ppm. It was found that a TiO2 loading of the QCM by 5.76 kHz corresponded to a system sensitive to NO2 concentrations above 250 ppm. On the basis of the frequency-time characteristics (FTCs) measured, AF at different NO2 concentrations was defined, the adsorption/desorption cycles were studied and the response and recovery times were estimated. The results obtained show that the process is reversible in the NO2 interval investigated. The results further suggested that TiO2 films prepared by a sol-gel method on a QCM can be used as a sensor element for NO2 detection.

  15. In situ synthesis of porous array films on a filament induced micro-gap electrode pair and their use as resistance-type gas sensors with enhanced performances

    NASA Astrophysics Data System (ADS)

    Xu, Zongke; Duan, Guotao; Zhang, Hongwen; Wang, Yingying; Xu, Lei; Cai, Weiping

    2015-08-01

    Resistance-type metal-oxide semiconductor gas sensors with high sensitivity and low detection limit have been explored for practical applications. They require both sensing films with high sensitivity to target gases and an appropriate structure of the electrode-equipped substrate to support the sensing films, which is still challenging. In this paper, a new gas sensor of metal-oxide porous array films on a micro-gap electrode pair is designed and implemented by taking ZnO as a model material. First, a micro-gap electrode pair was constructed by sputtering deposition on a filament template, which was used as the sensor's supporting substrate. Then, the sensing film, made up of ZnO porous periodic arrays, was in situ synthesized onto the supporting substrate by a solution-dipping colloidal lithography strategy. The results demonstrated the validity of the strategy, and the as-designed sensor shows a small device-resistance, an enhanced sensing performance with high resolution and an ultralow detection limit. This work provides an alternative method to promote the practical application of resistance-type gas sensors.Resistance-type metal-oxide semiconductor gas sensors with high sensitivity and low detection limit have been explored for practical applications. They require both sensing films with high sensitivity to target gases and an appropriate structure of the electrode-equipped substrate to support the sensing films, which is still challenging. In this paper, a new gas sensor of metal-oxide porous array films on a micro-gap electrode pair is designed and implemented by taking ZnO as a model material. First, a micro-gap electrode pair was constructed by sputtering deposition on a filament template, which was used as the sensor's supporting substrate. Then, the sensing film, made up of ZnO porous periodic arrays, was in situ synthesized onto the supporting substrate by a solution-dipping colloidal lithography strategy. The results demonstrated the validity of the strategy, and the as-designed sensor shows a small device-resistance, an enhanced sensing performance with high resolution and an ultralow detection limit. This work provides an alternative method to promote the practical application of resistance-type gas sensors. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr02099a

  16. Thin-film temperature sensors for gas turbine engines Problems and prospects

    NASA Astrophysics Data System (ADS)

    Budhani, R. C.; Prakash, S.; Bunshah, R. F.

    1986-12-01

    The erosion and corrosion of thermocouples used to measure the temperature in turbine engines are studied. Structural and metallurgical interactions and instabilities at thermocouple interfaces are analyzed. Consideration is given to the adhesion, dielectric quality, surface topography, and hardness of the thermal oxides; it is observed that the structural and thermoelectric stability of thin-film thermocouple elements depends on adhesion, surface topography, and dielectric strength. The electrical conductivity and impurity content of the oxide scale are evaluated. Methods for improving the adhesion of thermocouples on the alumina surfaces are described. Compositional inhomogeneities in the sensors and contamination of the thermocouple elements are examined. The fabrication of the thermocouples is discussed. It is noted that Al2O3 and Si3N4 are useful for developing stable thermocouple elements on the surface of the blades and vanes.

  17. Thin-film temperature sensors for gas turbine engines Problems and prospects

    NASA Technical Reports Server (NTRS)

    Budhani, R. C.; Prakash, S.; Bunshah, R. F.

    1986-01-01

    The erosion and corrosion of thermocouples used to measure the temperature in turbine engines are studied. Structural and metallurgical interactions and instabilities at thermocouple interfaces are analyzed. Consideration is given to the adhesion, dielectric quality, surface topography, and hardness of the thermal oxides; it is observed that the structural and thermoelectric stability of thin-film thermocouple elements depends on adhesion, surface topography, and dielectric strength. The electrical conductivity and impurity content of the oxide scale are evaluated. Methods for improving the adhesion of thermocouples on the alumina surfaces are described. Compositional inhomogeneities in the sensors and contamination of the thermocouple elements are examined. The fabrication of the thermocouples is discussed. It is noted that Al2O3 and Si3N4 are useful for developing stable thermocouple elements on the surface of the blades and vanes.

  18. The Evolution of High Temperature Gas Sensors.

    SciTech Connect

    Garzon, F. H.; Brosha, E. L.; Mukundan, R.

    2001-01-01

    Gas sensor technology based on high temperature solid electrolytes is maturing rapidly. Recent advances in metal oxide catalysis and thin film materials science has enabled the design of new electrochemical sensors. We have demonstrated prototype amperometric oxygen sensors, nernstian potentiometric oxygen sensors that operate in high sulfur environments, and hydrocarbon and carbon monoxide sensing mixed potentials sensors. Many of these devices exhibit part per million sensitivities, response times on the order of seconds and excellent long-term stability.

  19. Chemical Gated Field Effect Transistor by Hybrid Integration of One-Dimensional Silicon Nanowire and Two-Dimensional Tin Oxide Thin Film for Low Power Gas Sensor.

    PubMed

    Han, Jin-Woo; Rim, Taiuk; Baek, Chang-Ki; Meyyappan, M

    2015-09-30

    Gas sensors based on metal-oxide-semiconductor transistor with the polysilicon gate replaced by a gas sensitive thin film have been around for over 50 years. These are not suitable for the emerging mobile and wearable sensor platforms due to operating voltages and powers far exceeding the supply capability of batteries. Here we present a novel approach to decouple the chemically sensitive region from the conducting channel for reducing the drive voltage and increasing reliability. This chemically gated field effect transistor uses silicon nanowire for the current conduction channel with a tin oxide film on top of the nanowire serving as the gas sensitive medium. The potential change induced by the molecular adsorption and desorption allows the electrically floating tin oxide film to gate the silicon channel. As the device is designed to be normally off, the power is consumed only during the gas sensing event. This feature is attractive for the battery operated sensor and wearable electronics. In addition, the decoupling of the chemical reaction and the current conduction regions allows the gas sensitive material to be free from electrical stress, thus increasing reliability. The device shows excellent gas sensitivity to the tested analytes relative to conventional metal oxide transistors and resistive sensors. PMID:26381613

  20. Development of novel low-temperature selective hydrogen gas sensors made of palladium/oxide or nitride capped Magnesium-transition metal hydride films

    NASA Astrophysics Data System (ADS)

    Tang, Yu Ming

    Palladium capped Mg-based transition metal alloy film (Pd/Mg-TM) is a potentially useful hydrogen gas (H2) sensing material, which can operate at low temperature for detection of H2 leakage in an environment to ensure safe use and storage of the gas. The Pd layer catalytically dissociates hydrogen molecules, and the hydrogen atoms produced can enter (hydridation) or be detached (dehydridation) from the alloy layer. These processes are reversible, such that the film is switchable between a metal state and a hydride state, giving rise to substantial changes in its optical transmittance/reflectance and electrical resistivity. Unlike a conventional metal-oxide (MOx) H2 sensor, hydridation of an Mg-TM film is associated with relatively low enthalpy, and hence can perform at temperature much lower than the operation temperature of an MOx sensor (typically around 500°C or above). As such, an Mg-TM based sensor does not experience undesired annealing effect during operation, and hence is much more stable and durable. Furthermore, the detection selectivity of a Pd/Mg-TM film versus other reducing gases is superior to most conventional MOx-type hydrogen sensors. In this project, we systematically investigated the H2 sensing properties of Pd/Mg-TM films.

  1. A portable air-quality station based on thick film gas sensors for real time detection of traces of atmospheric pollutants

    NASA Astrophysics Data System (ADS)

    Fioravanti, A.; Bonanno, A.; Gherardi, S.; Carotta, M. C.; Skouloudis, A. N.

    2016-03-01

    Different functional materials, single or mixed nano-crystalline semiconductor oxides, were synthesized via appropriated wet-chemistry routes. The powders were used to fabricate metal oxide (MOX) thick film gas sensors. Portable monitoring stations based on the aforementioned sensors were prepared, including electronics for acquisition, processing and wireless transmission of the data. Results of long term trials in field, carried out locating few units closely to as many conventional fixed-site monitoring stations, have been reported. The comparison was performed between the temporal evolution of the conductivity changes of the sensors with the pollutants’ concentrations, as measured by the analytical instruments.

  2. Microfabricated Formaldehyde Gas Sensors

    PubMed Central

    Flueckiger, Jonas; Ko, Frank K.; Cheung, Karen C.

    2009-01-01

    Formaldehyde is a volatile organic compound that is widely used in textiles, paper, wood composites, and household materials. Formaldehyde will continuously outgas from manufactured wood products such as furniture, with adverse health effects resulting from prolonged low-level exposure. New, microfabricated sensors for formaldehyde have been developed to meet the need for portable, low-power gas detection. This paper reviews recent work including silicon microhotplates for metal oxide-based detection, enzyme-based electrochemical sensors, and nanowire-based sensors. This paper also investigates the promise of polymer-based sensors for low-temperature, low-power operation. PMID:22291561

  3. Calorimetric gas sensor

    DOEpatents

    Ricco, A.J.; Hughes, R.C.; Smith, J.H.; Moreno, D.J.; Manginell, R.P.; Senturia, S.D.; Huber, R.J.

    1998-11-10

    A combustible gas sensor is described that uses a resistively heated, noble metal-coated, micromachined polycrystalline Si filament to calorimetrically detect the presence and concentration of combustible gases. The filaments tested to date are 2 {micro}m thick {times} 10{micro}m wide {times} 100, 250, 500, or 1000 {micro}m-long polycrystalline Si; some are overcoated with a 0.25 {micro}m-thick protective CVD Si{sub 3}N{sub 4} layer. A thin catalytic Pt film was deposited by CVD from the precursor Pt(acac){sub 2} onto microfilaments resistively heated to approximately 500 C; Pt deposits only on the hot filament. Using a constant-resistance-mode feedback circuit, Pt-coated filaments operating at ca. 300 C (35 mW input power) respond linearly, in terms of the change in supply current required to maintain constant resistance (temperature), to H{sub 2} concentrations between 100 ppm and 1% in an 80/20 N{sub 2}/O{sub 2} mixture. Other catalytic materials can also be used. 11 figs.

  4. Calorimetric gas sensor

    DOEpatents

    Ricco, Antonio J.; Hughes, Robert C.; Smith, James H.; Moreno, Daniel J.; Manginell, Ronald P.; Senturia, Stephen D.; Huber, Robert J.

    1998-01-01

    A combustible gas sensor that uses a resistively heated, noble metal-coated, micromachined polycrystalline Si filament to calorimetrically detect the presence and concentration of combustible gases. The filaments tested to date are 2 .mu.m thick.times.10 .mu.m wide.times.100, 250, 500, or 1000 .mu.m-long polycrystalline Si; some are overcoated with a 0.25 .mu.m-thick protective CVD Si.sub.3 N.sub.4 layer. A thin catalytic Pt film was deposited by CVD from the precursor Pt(acac).sub.2 onto microfilaments resistively heated to approximately 500.degree. C.; Pt deposits only on the hot filament. Using a constant-resistance-mode feedback circuit, Pt-coated filaments operating at ca. 300.degree. C. (35 mW input power) respond linearly, in terms of the change in supply current required to maintain constant resistance (temperature), to H.sub.2 concentrations between 100 ppm and 1% in an 80/20 N.sub.2 /O.sub.2 mixture. Other catalytic materials can also be used.

  5. Graphene Squeeze-Film Pressure Sensors.

    PubMed

    Dolleman, Robin J; Davidovikj, Dejan; Cartamil-Bueno, Santiago J; van der Zant, Herre S J; Steeneken, Peter G

    2016-01-13

    The operating principle of squeeze-film pressure sensors is based on the pressure dependence of a membrane's resonance frequency, caused by the compression of the surrounding gas which changes the resonator stiffness. To realize such sensors, not only strong and flexible membranes are required, but also minimization of the membrane's mass is essential to maximize responsivity. Here, we demonstrate the use of a few-layer graphene membrane as a squeeze-film pressure sensor. A clear pressure dependence of the membrane's resonant frequency is observed, with a frequency shift of 4 MHz between 8 and 1000 mbar. The sensor shows a reproducible response and no hysteresis. The measured responsivity of the device is 9000 Hz/mbar, which is a factor 45 higher than state-of-the-art MEMS-based squeeze-film pressure sensors while using a 25 times smaller membrane area. PMID:26695136

  6. Thin film porous membranes for catalytic sensors

    SciTech Connect

    Hughes, R.C.; Boyle, T.J.; Gardner, T.J.

    1997-06-01

    This paper reports on new and surprising experimental data for catalytic film gas sensing resistors coated with nanoporous sol-gel films to impart selectivity and durability to the sensor structure. This work is the result of attempts to build selectivity and reactivity to the surface of a sensor by modifying it with a series of sol-gel layers. The initial sol-gel SiO{sub 2} layer applied to the sensor surprisingly showed enhanced O{sub 2} interaction with H{sub 2} and reduced susceptibility to poisons such as H{sub 2}S.

  7. Influence of film thickness on the properties of sprayed ZnO thin films for gas sensor applications

    NASA Astrophysics Data System (ADS)

    Mariappan, R.; Ponnuswamy, V.; Suresh, P.; Ashok, N.; Jayamurugan, P.; Chandra Bose, A.

    2014-07-01

    Transparent conducting ZnO films were prepared at substrate temperature 400 °C with different film thicknesses by nebulizer spray pyrolysis method on glass substrates. XRD studies reveal that the films are polycrystalline in nature having hexagonal crystal structure with preferred grain orientations along (0 0 2) and (1 0 1) directions. The crystallite size increases along (0 0 2) plane with the thickness increase and attains a maximum 109 nm for 913 nm film thickness. Analysis of structural parameters indicates that the films having thickness 913 nm are found to have minimum dislocation density and strain values. The HRSEM measurements show that the surface morphology of the films also changes with film thickness. EDAX estimates the average atomic percentage ratio of Zn and O in the ZnO films. Optical studies reveal the band gap energy decrease from 3.27 to 3.14 eV with increase of film thickness. Room temperature PL spectra show the near-band-edge emission and deep-level emission due to the presence of defects in the ZnO thin films. Impedance spectroscopy analysis indicates that grain boundary resistance decreases with the increasing ammonia concentration up to 500 ppm and the maximum sensitivity is found to be 1.7 for 500 ppm of ammonia.

  8. Gas Sensors Based on Electrospun Nanofibers

    PubMed Central

    Ding, Bin; Wang, Moran; Yu, Jianyong; Sun, Gang

    2009-01-01

    Nanofibers fabricated via electrospinning have specific surface approximately one to two orders of the magnitude larger than flat films, making them excellent candidates for potential applications in sensors. This review is an attempt to give an overview on gas sensors using electrospun nanofibers comprising polyelectrolytes, conducting polymer composites, and semiconductors based on various sensing techniques such as acoustic wave, resistive, photoelectric, and optical techniques. The results of sensing experiments indicate that the nanofiber-based sensors showed much higher sensitivity and quicker responses to target gases, compared with sensors based on flat films. PMID:22573976

  9. Thin film hydrogen sensor

    SciTech Connect

    Lauf, R.J.; Hoffheins, B.S.

    1991-01-01

    We have designed, constructed, and tested a miniature, solid-state hydrogen sensor intended for use wherever one needs to selectively detect the presence of gaseous hydrogen. A notable feature of this sensor is that is insensitive to the presence or absence of air inert gases, etc. The design is inherently simple, rugged, and stable, and can be manufactured by standard techniques. The concept of operation relies on the fact that when palladium metal is exposed to hydrogen gas it rapidly comes to equilibrium by absorbing hydrogen. Most hydrogen partial pressures of interest (10{sup {minus}3} to 1 psia) will be in equilibrium with the palladium/hydrogen solid solution ({alpha}-phase). The electrical resistivity of the solid solution will depend on its hydrogen concentration. A the same time, palladium will not be adversely affected by other species such as oxygen and water. 5 figs.

  10. Supersensitive graphene-based gas sensor

    NASA Astrophysics Data System (ADS)

    Lebedev, A. A.; Lebedev, S. P.; Novikov, S. N.; Davydov, V. Yu.; Smirnov, A. N.; Litvin, D. P.; Makarov, Yu. N.; Levitskii, V. S.

    2016-03-01

    Epitaxial graphene layers are produced with the aid of thermal destruction of the surface of a semi-insulating SiC substrate. Raman spectroscopy and atomic-force microscopy are employed in the study of the film homogeneity. A prototype of the gas sensor based on the films is fabricated. The device is sensitive to the NO2 molecules at a level of 5 ppb (five particles per billion). A possibility of the industrial application of the sensor is discussed.

  11. Sol-Gel derived Sb-doped SnO II/SiO II nano-composite thin films for gas sensors

    NASA Astrophysics Data System (ADS)

    Gu, Zhengtian; Liang, Peihui; Zhang, Weiqing

    2006-05-01

    Sb-doped SnO II/SiO II nano-composite thin films prepared by sol-gel dip-coating method have been studied. By using X-ray diffraction (XRD), atomic force microscopy (AFM) and Fourier transform infrared (FTIR) spectroscopy, detailed investigation on the structure and morphology of the films has shown the crystalline grain size of Sb-doped SnO II/SiO II thin films is about 34nm, with larger specific surface area and duty porosity, which is fit for gas-sensing materials. The adulteration of SiO II particles leads to the condensation of Sn-OH and the strengthening of gel network, and improve the adhesion of the films. In addition, the optical properties of the thin films were studied by UV-Vis spectra and p-polarized light reflectance angular spectrum. The results showthat the optical transmissivity of Sb-doped SnO II/SiO II thin films is higher, near 95% in visible spectrum range, the measured optical gap is found equal to 3.67eV, also the films take on smaller refractive index and extinction coefficient compared with those of the SnO II and Sb:SnO II films, which is compatible with the semiconductor substrate in the solar cell. Further, the gas-sensing test was made to three kinds of gas C 3H 8, C IIH 5OH and NH 3 in our novel high sensitive scheme for optical film sensors. The results indicate that Sb doping to SnO II films greatly improves the gas sensitivity to C IIH 5OH, and the gas sensitivity of Sb:SnO II/SiO II nano-composite thin films are higher than that of Sb:SnO II thin films. The detection sensitivity of this optical film sensor is available to 10 -1ppm provided that the resolution of reflectance ratio is 10 -2.

  12. Fabrication of highly sensitive and selective H₂ gas sensor based on SnO₂ thin film sensitized with microsized Pd islands.

    PubMed

    Nguyen, Van Toan; Nguyen, Viet Chien; Nguyen, Van Duy; Hoang, Si Hong; Hugo, Nguyen; Nguyen, Duc Hoa; Nguyen, Van Hieu

    2016-01-15

    Ultrasensitive and selective hydrogen gas sensor is vital component in safe use of hydrogen that requires a detection and alarm of leakage. Herein, we fabricated a H2 sensing devices by adopting a simple design of planar-type structure sensor in which the heater, electrode, and sensing layer were patterned on the front side of a silicon wafer. The SnO2 thin film-based sensors that were sensitized with microsized Pd islands were fabricated at a wafer-scale by using a sputtering system combined with micro-electronic techniques. The thicknesses of SnO2 thin film and microsized Pd islands were optimized to maximize the sensing performance of the devices. The optimized sensor could be used for monitoring hydrogen gas at low concentrations of 25-250 ppm, with a linear dependence to H2 concentration and a fast response and recovery time. The sensor also showed excellent selectivity for monitoring H2 among other gases, such as CO, NH3, and LPG, and satisfactory characteristics for ensuring safety in handling hydrogen. The hydrogen sensing characteristics of the sensors sensitized with Pt and Au islands were also studied to clarify the sensing mechanisms. PMID:26410272

  13. Hydrogen gas sensors based on electrostatically spray deposited nickel oxide thin film structures

    NASA Astrophysics Data System (ADS)

    Jamal, Raied K.; Aadim, Kadhim A.; Al-Zaidi, Qahtan G.; Taaban, Iman N.

    2015-09-01

    A simple, low-cost, and home-built electrostatic spray deposition (ESD) system with the stable cone-jet mode was used to deposit nickel oxide (NiO) thin films on glass substrates kept at temperature of 400 °C as the primary precursor solution of 0.1 M concentration hydrated nickel chloride was dissolved in isopropyl alcohol. Electrical measurements showed that these films were of n-type conductivity while their resistance response to hydrogen flow in air ambient was varied by 2.81% with the rise and recovery time of 48 s and 40 s, respectively.

  14. Preparation of Macroporous Eu-Doped Oxide Thick Films and Their Application to Gas Sensor Materials

    NASA Astrophysics Data System (ADS)

    Takakura, Yukari; Hyodo, Takeo; Shimizu, Yasuhiro; Egashira, Makoto

    Macroporous (mp-)SnO2 thick films doped with 5 mol% Eu and 0∼10 mol% Mg (Lmp-SnO2(mMg):Eu, L: the size of PMMA microsphere used: 400 or 800 (nm), m: Mg content) were fabricated by a modified sol-gel method that employs PMMA microspheres as a template and constituent metal chlorides as an oxide source. The photoluminescence (PL) intensity due to Eu3+ ions increased with increasing the Mg content in the thick films. These films were subjected to the PL response measurement to acetone, and their PL intensities decreased clearly upon exposure to acetone balanced with air. Among all the films tested, Lmp-SnO2(1Mg):Eu showed the highest ratio (I0/I) of PL intensity in air (I0) to that (I) in acetone, irrespective of the size of macropores, while the signal/noise (S/N) ratio was low. On the other hand, ΔI (= I0 - I) of Lmp-SnO2(mMg):Eu was the highest at m = 10 with a high S/N ratio.

  15. SiC-Based Gas Sensor Development

    NASA Technical Reports Server (NTRS)

    Hunter, G. W.; Neudeck, P. G.; Gray, M.; Androjna, D.; Chen, L.-Y.; Hoffman, R. W., Jr.; Liu, C. C.; Wu, Q. H.

    2000-01-01

    Silicon carbide based Schottky diode gas sensors are being developed for applications such as emission measurements and leak detection. The effects of the geometry of the tin oxide film in a Pd/SnO2/SiC structure will be discussed as well as improvements in packaging SiC-based sensors. It is concluded that there is considerable versatility in the formation of SiC-based Schottky diode gas sensing structures which will potentially allow the fabrication of a SiC-based gas sensor array for a variety of gases and temperatures.

  16. Metal oxide gas sensors on the nanoscale

    NASA Astrophysics Data System (ADS)

    Plecenik, A.; Haidry, A. A.; Plecenik, T.; Durina, P.; Truchly, M.; Mosko, M.; Grancic, B.; Gregor, M.; Roch, T.; Satrapinskyy, L.; Moskova, A.; Mikula, M.; Kus, P.

    2014-06-01

    Low cost, low power and highly sensitive gas sensors operating at room temperature are very important devices for controlled hydrogen gas production and storage. One of the disadvantages of chemosensors is their high operating temperature (usually 200 - 400 °C), which excludes such type of sensors from usage in explosive environment. In this report, a new concept of gas chemosensors operating at room temperature based on TiO2 thin films is discussed. Integration of such sensor is fully compatible with sub-100 nm semiconductor technology and could be transferred directly from labor to commercial sphere.

  17. Fabrication of SnO2-Reduced Graphite Oxide Monolayer-Ordered Porous Film Gas Sensor with Tunable Sensitivity through Ultra-Violet Light Irradiation

    PubMed Central

    Xu, Shipu; Sun, Fengqiang; Yang, Shumin; Pan, Zizhao; Long, Jinfeng; Gu, Fenglong

    2015-01-01

    A new graphene-based composite structure, monolayer-ordered macroporous film composed of a layer of orderly arranged macropores, was reported. As an example, SnO2-reduced graphite oxide monolayer-ordered macroporous film was fabricated on a ceramic tube substrate under the irradiation of ultra-violet light (UV), by taking the latex microsphere two-dimensional colloid crystal as a template. Graphite oxide sheets dispersed in SnSO4 aqueous solution exhibited excellent affinity with template microspheres and were in situ incorporated into the pore walls during UV-induced growth of SnO2. The growing and the as-formed SnO2, just like other photocatalytic semiconductor, could be excited to produce electrons and holes under UV irradiation. Electrons reduced GO and holes adsorbed corresponding negative ions, which changed the properties of the composite film. This film was directly used as gas-sensor and was able to display high sensitivity in detecting ethanol gas. More interestingly, on the basis of SnO2-induced photochemical behaviours, this sensor demonstrated tunable sensitivity when UV irradiation time was controlled during the fabrication process and post in water, respectively. This study provides efficient ways of conducting the in situ fabrication of a semiconductor-reduced graphite oxide film device with uniform surface structure and controllable properties. PMID:25758292

  18. Fabrication of SnO2-Reduced Graphite Oxide Monolayer-Ordered Porous Film Gas Sensor with Tunable Sensitivity through Ultra-Violet Light Irradiation

    NASA Astrophysics Data System (ADS)

    Xu, Shipu; Sun, Fengqiang; Yang, Shumin; Pan, Zizhao; Long, Jinfeng; Gu, Fenglong

    2015-03-01

    A new graphene-based composite structure, monolayer-ordered macroporous film composed of a layer of orderly arranged macropores, was reported. As an example, SnO2-reduced graphite oxide monolayer-ordered macroporous film was fabricated on a ceramic tube substrate under the irradiation of ultra-violet light (UV), by taking the latex microsphere two-dimensional colloid crystal as a template. Graphite oxide sheets dispersed in SnSO4 aqueous solution exhibited excellent affinity with template microspheres and were in situ incorporated into the pore walls during UV-induced growth of SnO2. The growing and the as-formed SnO2, just like other photocatalytic semiconductor, could be excited to produce electrons and holes under UV irradiation. Electrons reduced GO and holes adsorbed corresponding negative ions, which changed the properties of the composite film. This film was directly used as gas-sensor and was able to display high sensitivity in detecting ethanol gas. More interestingly, on the basis of SnO2-induced photochemical behaviours, this sensor demonstrated tunable sensitivity when UV irradiation time was controlled during the fabrication process and post in water, respectively. This study provides efficient ways of conducting the in situ fabrication of a semiconductor-reduced graphite oxide film device with uniform surface structure and controllable properties.

  19. Room-temperature NH3 gas sensors based on Ag-doped γ-Fe2O3/SiO2 composite films with sub-ppm detection ability.

    PubMed

    Tang, Yongliang; Li, Zhijie; Zu, Xiaotao; Ma, Jinyi; Wang, Lu; Yang, Jing; Du, Bo; Yu, Qingkai

    2015-11-15

    In this report, NH3 gas sensors based on Ag-doped γ-Fe2O3/SiO2 composite films are investigated. The composite films were prepared with a sol-gel process, and the films' electrical resistance responded to the change of NH3 concentration in the environment. The SEM and AFM investigations showed that the films had a porous structure, and the XRD investigation indicated that the size of Ag particles changed with the modification of Ag loading content. Through a comparative gas sensing study among the Ag-doped composite films, undoped composite film, γ-Fe2O3 film, and SiO2 film, the Ag-doped composite films were found to be much more sensitive than the sensors based on the undoped composite film and γ-Fe2O3 film at room temperature, indicating the significant influences of the SiO2 and Ag on the sensing property. Moreover, the sensor based on Ag-doped (4%) γ-Fe2O3/SiO2 composite film was able to detect the NH3 gas at ppb level. Conversely, the responses of the sensor to other test gases (C2H5OH, CO, H2, CH4 and H2S) were all markedly low, suggesting excellent selectivity. PMID:26057440

  20. Effects of Ti addiction in WO 3 thin film ammonia gas sensor prepared by dc reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Hu, Ming; Yong, Cholyun; Feng, Youcai; Lv, Yuqiang; Han, Lei; Liang, Jiran; Wang, Haopeng

    2006-11-01

    WO 3 sensing films (1500 Å) were deposited using dc reactive magnetron sputtering method on alumina substrate on which patterned interdigital Pt electrodes were previously formed. The additive Ti was sputtered with different thickness (100-500 Å) onto WO 3 thin films and then the films as-deposited were annealed at 400°C in air for 3h. The crystal structure and chemical composition of the films were characterized by XRD and XPS analysis. The effect of Ti addition on sensitive properties of WO 3 thin film to the NH 3 gas was then discussed. WO 3 thin films added Ti revealed excellent sensitivity and response characteristics in the presence of low concentration of NH 3 (5-400 ppm) gas in air at 200°C operating temperature. Especially,in case 300 Å thickness of additive Ti, WO 3 thin films have a promotional effect on the response speed to NH 3 and selectivity enhanced with respect to other gases (CO, C IIH 5OH, CH 4). The influence of different substrates, including alumina, silicon and glass, on sensitivity to NH 3 gas has also been investigated.

  1. Sensing Properties of Pd-Loaded Co3O4 Film for a ppb-Level NO Gas Sensor

    PubMed Central

    Akamatsu, Takafumi; Itoh, Toshio; Izu, Noriya; Shin, Woosuck; Sato, Kazuo

    2015-01-01

    We prepared 0.1 wt%–30 wt% Pd-loaded Co3O4 by a colloidal mixing method and investigated the sensing properties of a Pd-loaded Co3O4 sensor element, such as the sensor response, 90% response time, 90% recovery time, and signal-to-noise (S/N) ratio, toward low nitric oxide (NO) gas levels in the range from 50 to 200 parts per billion. The structural properties of the Pd-loaded Co3O4 powder were investigated using X-ray diffraction analysis and transmission electron microscopy. Pd in the powder existed as PdO. The sensor elements with 0.1 wt%–10 wt% Pd content have higher sensor properties than those without any Pd content. The response of the sensor element with a 30 wt% Pd content decreased markedly because of the aggregation and poor dispersibility of the PdO particles. High sensor response and S/N ratio toward the NO gas were achieved when a sensor element with 10 wt% Pd content was used. PMID:25853408

  2. Sensing properties of Pd-loaded Co3O4 film for a ppb-level NO gas sensor.

    PubMed

    Akamatsu, Takafumi; Itoh, Toshio; Izu, Noriya; Shin, Woosuck; Sato, Kazuo

    2015-01-01

    We prepared 0.1 wt%-30 wt% Pd-loaded Co3O4 by a colloidal mixing method and investigated the sensing properties of a Pd-loaded Co3O4 sensor element, such as the sensor response, 90% response time, 90% recovery time, and signal-to-noise (S/N) ratio, toward low nitric oxide (NO) gas levels in the range from 50 to 200 parts per billion. The structural properties of the Pd-loaded Co3O4 powder were investigated using X-ray diffraction analysis and transmission electron microscopy. Pd in the powder existed as PdO. The sensor elements with 0.1 wt%-10 wt% Pd content have higher sensor properties than those without any Pd content. The response of the sensor element with a 30 wt% Pd content decreased markedly because of the aggregation and poor dispersibility of the PdO particles. High sensor response and S/N ratio toward the NO gas were achieved when a sensor element with 10 wt% Pd content was used. PMID:25853408

  3. Preparation of Mesoporous and/or Macroporous SnO2-Based Powders and Their Gas-Sensing Properties as Thick Film Sensors

    PubMed Central

    Yuan, Luyang; Hyodo, Takeo; Shimizu, Yasuhiro; Egashira, Makoto

    2011-01-01

    Mesoporous and/or macroporous SnO2-based powders have been prepared and their gas-sensing properties as thick film sensors towards H2 and NO2 have been investigated. The mesopores and macropores of various SnO2-based powders were controlled by self-assembly of sodium bis(2-ethylhexyl)sulfosuccinate and polymethyl-methacrylate (PMMA) microspheres (ca. 800 nm in diameter), respectively. The introduction of mesopores and macropores into SnO2-based sensors increased their sensor resistance in air significantly. The additions of SiO2 and Sb2O5 into mesoporous and/or macroporous SnO2 were found to improve the sensing properties of the sensors. The addition of SiO2 into mesoporous and/or macroporous SnO2 was found to increase the sensor resistance in air, whereas doping of Sb2O5 into mesoporous and/or macroporous SnO2 was found to markedly reduce the sensor resistance in air, and to increase the response to 1,000 ppm H2 as well as 1 ppm NO2 in air. Among all the sensors tested, meso-macroporous SnO2 added with 1 wt% SiO2 and 5 wt% Sb2O5, which were prepared with the above two templates simultaneously, exhibited the largest H2 and NO2 responses. PMID:22319350

  4. Thin film oxygen partial pressure sensor

    NASA Technical Reports Server (NTRS)

    Wortman, J. J.; Harrison, J. W.; Honbarrier, H. L.; Yen, J.

    1972-01-01

    The development is described of a laboratory model oxygen partial pressure sensor using a sputtered zinc oxide thin film. The film is operated at about 400 C through the use of a miniature silicon bar. Because of the unique resistance versus temperature relation of the silicon bar, control of the operational temperature is achieved by controlling the resistance. A circuit for accomplishing this is described. The response of sputtered zinc oxide films of various thicknesses to oxygen, nitrogen, argon, carbon dioxide, and water vapor caused a change in the film resistance. Over a large range, film conductance varied approximately as the square root of the oxygen partial pressure. The presence of water vapor in the gas stream caused a shift in the film conductance at a given oxygen partial pressure. A theoretical model is presented to explain the characteristic features of the zinc oxide response to oxygen.

  5. Enhanced Sensitivity of Gas Sensor Based on Poly(3-hexylthiophene) Thin-Film Transistors for Disease Diagnosis and Environment Monitoring

    PubMed Central

    Cavallari, Marco R.; Izquierdo, José E. E.; Braga, Guilherme S.; Dirani, Ely A. T.; Pereira-da-Silva, Marcelo A.; Rodríguez, Estrella F. G.; Fonseca, Fernando J.

    2015-01-01

    Electronic devices based on organic thin-film transistors (OTFT) have the potential to supply the demand for portable and low-cost gadgets, mainly as sensors for in situ disease diagnosis and environment monitoring. For that reason, poly(3-hexylthiophene) (P3HT) as the active layer in the widely-used bottom-gate/bottom-contact OTFT structure was deposited over highly-doped silicon substrates covered with thermally-grown oxide to detect vapor-phase compounds. A ten-fold organochloride and ammonia sensitivity compared to bare sensors corroborated the application of this semiconducting polymer in sensors. Furthermore, P3HT TFTs presented approximately three-order higher normalized sensitivity than any chemical sensor addressed herein. The results demonstrate that while TFTs respond linearly at the lowest concentration values herein, chemical sensors present such an operating regime mostly above 2000 ppm. Simultaneous alteration of charge carrier mobility and threshold voltage is responsible for pushing the detection limit down to units of ppm of ammonia, as well as tens of ppm of alcohol or ketones. Nevertheless, P3HT transistors and chemical sensors could compose an electronic nose operated at room temperature for a wide range concentration evaluation (1–10,000 ppm) of gaseous analytes. Targeted analytes include not only biomarkers for diseases, such as uremia, cirrhosis, lung cancer and diabetes, but also gases for environment monitoring in food, cosmetic and microelectronics industries. PMID:25912354

  6. Enhanced Sensitivity of Gas Sensor Based on Poly(3-hexylthiophene) Thin-Film Transistors for Disease Diagnosis and Environment Monitoring.

    PubMed

    Cavallari, Marco R; Izquierdo, José E E; Braga, Guilherme S; Dirani, Ely A T; Pereira-da-Silva, Marcelo A; Rodríguez, Estrella F G; Fonseca, Fernando J

    2015-01-01

    Electronic devices based on organic thin-film transistors (OTFT) have the potential to supply the demand for portable and low-cost gadgets, mainly as sensors for in situ disease diagnosis and environment monitoring. For that reason, poly(3-hexylthiophene) (P3HT) as the active layer in the widely-used bottom-gate/bottom-contact OTFT structure was deposited over highly-doped silicon substrates covered with thermally-grown oxide to detect vapor-phase compounds. A ten-fold organochloride and ammonia sensitivity compared to bare sensors corroborated the application of this semiconducting polymer in sensors. Furthermore, P3HT TFTs presented approximately three-order higher normalized sensitivity than any chemical sensor addressed herein. The results demonstrate that while TFTs respond linearly at the lowest concentration values herein, chemical sensors present such an operating regime mostly above 2000 ppm. Simultaneous alteration of charge carrier mobility and threshold voltage is responsible for pushing the detection limit down to units of ppm of ammonia, as well as tens of ppm of alcohol or ketones. Nevertheless, P3HT transistors and chemical sensors could compose an electronic nose operated at room temperature for a wide range concentration evaluation (1-10,000 ppm) of gaseous analytes. Targeted analytes include not only biomarkers for diseases, such as uremia, cirrhosis, lung cancer and diabetes, but also gases for environment monitoring in food, cosmetic and microelectronics industries. PMID:25912354

  7. Polypyrrole based gas sensor for ammonia detection

    NASA Astrophysics Data System (ADS)

    Dunst, K. J.; Cysewska, K.; Kalinowski, P.; Jasiński, P.

    2016-01-01

    The nature of polypyrrole response to toxic gases does not allow using the sensor in a conventional way. The main aim of this study is to acquire the information about the concentration using different approaches: a linear approximation, a non-linear approximation and a tangent method. In this paper a two-steps procedure for sensor response measurements has been utilized. Polypyrrole films were electrochemically synthesized on the interdigitated electrodes. Gas sensing measurements of polypyrrole based sensor were carried out at room temperature. The influence of the flow rate on the sensing performance to NH3 were investigated. The preliminary studies of aging of the sensor were also explored.

  8. Thin-film sensors for space propulsion technology

    NASA Astrophysics Data System (ADS)

    Kim, W. S.; Englund, D. R.

    1985-05-01

    SSME components such as the turbine blades of the high pressure fuel turbopump are subjected to rapid and extreme thermal transients that contribute to blade cracking and subsequent failure. The objective was to develop thin film sensors for SSME components. The technology established for aircraft gas turbine engines was adopted to the materials and environment encountered in the SSME. Specific goals are to expand the existing thin film sensor technology, to continue developing improved sensor processing techniques, and to test the durability of aircraft gas turbine engine technology in the SSME environment. A thin film sensor laboratory is being installed in a refurbished clean room, and new sputtering and photoresist exposure equipment is being acquired. Existing thin film thermocouple technology in an SSME environment are being tested. Various coatings and their insulating films are being investigated for use in sensor development.

  9. Chemoresistive gas sensor

    DOEpatents

    Hirschfeld, T.B.

    1985-09-30

    A chemoresistive gas sensor is provided which has improved sensitivity. A layer of organic semiconductor is disposed between two electrodes which, in turn, are connected to a voltage source. High conductivity material is dispersed within the layer of organic semiconductor in the form of very small particles, or islands. The average interisland spacing is selected so that the predominant mode of current flow is by way of electron tunneling. Adsorption of gaseous contaminant onto the layer of organic semiconductor modulates the tunneling current in a quantitative manner.

  10. Chemoresistive gas sensor

    DOEpatents

    Hirschfeld, T.B.

    1987-06-23

    A chemoresistive gas sensor is provided which has improved sensitivity. A layer of organic semiconductor is disposed between two electrodes which, in turn, are connected to a voltage source. High conductivity material is dispersed within the layer of organic semiconductor in the form of very small particles, or islands. The average interisland spacing is selected so that the predominant mode of current flow is by way of electron funneling. Adsorption of gaseous contaminant onto the layer of organic semiconductor modulates the tunneling current in a quantitative manner. 2 figs.

  11. Chemoresistive gas sensor

    DOEpatents

    Hirschfeld, Tomas B.

    1987-01-01

    A chemoresistive gas sensor is provided which has improved sensitivity. A layer of organic semiconductor is disposed between two electrodes which, in turn, are connected to a voltage source. High conductivity material is dispersed within the layer of organic semiconductor in the form of very small particles, or islands. The average interisland spacing is selected so that the predominant mode of current flow is by way of electron funneling. Adsorption of gaseous contaminant onto the layer of organic semiconductor modulates the tunneling current in a quantitative manner.

  12. Improvement of H2S Sensing Properties of SnO2-Based Thick Film Gas Sensors Promoted with MoO3 and NiO

    PubMed Central

    Lee, Soo Chool; Kim, Seong Yeol; Hwang, Byung Wook; Jung, Suk Yong; Ragupathy, Dhanusuraman; Son, In Sung; Lee, Duk Dong; Kim, Jae Chang

    2013-01-01

    The effects of the SnO2 pore size and metal oxide promoters on the sensing properties of SnO2-based thick film gas sensors were investigated to improve the detection of very low H2S concentrations (<1 ppm). SnO2 sensors and SnO2-based thick-film gas sensors promoted with NiO, ZnO, MoO3, CuO or Fe2O3 were prepared, and their sensing properties were examined in a flow system. The SnO2 materials were prepared by calcining SnO2 at 600, 800, 1,000 and 1,200 °C to give materials identified as SnO2(600), SnO2(800), SnO2(1000), and SnO2(1200), respectively. The Sn(12)Mo5Ni3 sensor, which was prepared by physically mixing 5 wt% MoO3 (Mo5), 3 wt% NiO (Ni3) and SnO2(1200) with a large pore size of 312 nm, exhibited a high sensor response of approximately 75% for the detection of 1 ppm H2S at 350 °C with excellent recovery properties. Unlike the SnO2 sensors, its response was maintained during multiple cycles without deactivation. This was attributed to the promoter effect of MoO3. In particular, the Sn(12)Mo5Ni3 sensor developed in this study showed twice the response of the Sn(6)Mo5Ni3 sensor, which was prepared by SnO2(600) with the smaller pore size than SnO2(1200). The excellent sensor response and recovery properties of Sn(12)Mo5Ni3 are believed to be due to the combined promoter effects of MoO3 and NiO and the diffusion effect of H2S as a result of the large pore size of SnO2. PMID:23519347

  13. Improvement of H2S sensing properties of SnO2-based thick film gas sensors promoted with MoO3 and NiO.

    PubMed

    Lee, Soo Chool; Kim, Seong Yeol; Hwang, Byung Wook; Jung, Suk Yong; Ragupathy, Dhanusuraman; Son, In Sung; Lee, Duk Dong; Kim, Jae Chang

    2013-01-01

    The effects of the SnO2 pore size and metal oxide promoters on the sensing properties of SnO2-based thick film gas sensors were investigated to improve the detection of very low H2S concentrations (<1 ppm). SnO2 sensors and SnO2-based thick-film gas sensors promoted with NiO, ZnO, MoO3, CuO or Fe2O3 were prepared, and their sensing properties were examined in a flow system. The SnO2 materials were prepared by calcining SnO2 at 600, 800, 1,000 and 1,200 °C to give materials identified as SnO2(600), SnO2(800), SnO2(1000), and SnO2(1200), respectively. The Sn(12)Mo5Ni3 sensor, which was prepared by physically mixing 5 wt% MoO3 (Mo5), 3 wt% NiO (Ni3) and SnO2(1200) with a large pore size of 312 nm, exhibited a high sensor response of approximately 75% for the detection of 1 ppm H2S at 350 °C with excellent recovery properties. Unlike the SnO2 sensors, its response was maintained during multiple cycles without deactivation. This was attributed to the promoter effect of MoO3. In particular, the Sn(12)Mo5Ni3 sensor developed in this study showed twice the response of the Sn(6)Mo5Ni3 sensor, which was prepared by SnO2(600) with the smaller pore size than SnO2(1200). The excellent sensor response and recovery properties of Sn(12)Mo5Ni3 are believed to be due to the combined promoter effects of MoO3 and NiO and the diffusion effect of H2S as a result of the large pore size of SnO2. PMID:23519347

  14. Nanostructured SnO2 thick films for gas sensor application: analysis of structural and electronic properties

    NASA Astrophysics Data System (ADS)

    Miskovic, Goran; Aleksic, Obrad S.; Nikolic, Maria V.; Nicolics, Johann; Radosavljevic, Goran; Vasiljevic, Zorka Z.; Lukovic, Miloljub D.; Smetana, Walter

    2016-03-01

    This research is focused on structural and electrical characterisation of tin oxide (SnO2) applied as a thick film and investigation of its properties as gas sensitive material. Micron sized SnO2 powder was milled in an agate mill for six hours to fabricate SnO2 nanopowder, which was afterwards sieved by 325 mesh sieve and characterized by XRD and SEM. This powder was used as functional part in the production of thick film tin oxide paste containing a resin vehicle with 4 wt. % nanosize glass frits acting as permanent binder. The glass frits where additionally milled for twelve hours in the agate mills to nanosized powder and sieved by a 325 mesh sieve as well. The achieved thick film paste was screen printed on alumina and fired at 850oC peak temperature for 10 minutes in air. After the sintering process, thick film samples where characterized by X-ray powder diffraction (XRD) and scanning electron microscopy (SEM). The reflectivity was measured on the same samples by UV-VIS spectrophotometer: the band gap was determined from the slope of reflectance. After that a matrix of different interdigitated electrode structure of PdAg paste was printed and sintered using the mentioned sintering conditions. The tin oxide thick film was printed over the interdigitated electrodes as a top layer and sintered again under the same conditions. The total electrical resistance was measured as a function of the electrode spacing and temperature. A negative temperature coefficient (NTC) was identified and measured in the range from room temperature (27°C) to 180°C in a climate chamber. Finally the samples were placed into a gas reactor with NOx and CO gas and the resistance was measured in the same temperature range (27°C-200°C).

  15. Thin Film Sensors for Surface Measurements

    NASA Technical Reports Server (NTRS)

    Martin, Lisa C.; Wrbanek, John D.; Fralick, Gustave C.

    2001-01-01

    Advanced thin film sensors that can provide accurate surface temperature, strain, and heat flux measurements have been developed at NASA Glenn Research Center. These sensors provide minimally intrusive characterization of advanced propulsion materials and components in hostile, high-temperature environments as well as validation of propulsion system design codes. The sensors are designed for applications on different material systems and engine components for testing in engine simulation facilities. Thin film thermocouples and strain gauges for the measurement of surface temperature and strain have been demonstrated on metals, ceramics and advanced ceramic-based composites of various component configurations. Test environments have included both air-breathing and space propulsion-based engine and burner rig environments at surface temperatures up to 1100 C and under high gas flow and pressure conditions. The technologies developed for these sensors as well as for a thin film heat flux gauge have been integrated into a single multifunctional gauge for the simultaneous real-time measurement of surface temperature, strain, and heat flux. This is the first step toward the development of smart sensors with integrated signal conditioning and high temperature electronics that would have the capability to provide feedback to the operating system in real-time. A description of the fabrication process for the thin film sensors and multifunctional gauge will be provided. In addition, the material systems on which the sensors have been demonstrated, the test facilities and the results of the tests to-date will be described. Finally, the results will be provided of the current effort to demonstrate the capabilities of the multifunctional gauge.

  16. Bimodular high temperature planar oxygen gas sensor

    NASA Astrophysics Data System (ADS)

    Sun, Xiangcheng; Liu, Yixin; Gao, Haiyong; Gao, Puxian; Lei, Yu

    2014-08-01

    A bimodular planar O2 sensor was fabricated using NiO nanoparticles (NPs) thin film coated yttria-stabilized zirconia (YSZ) substrate. The thin film was prepared by radio frequency (r.f.) magnetron sputtering of NiO on YSZ substrate, followed by high temperature sintering. The surface morphology of NiO nanoparticles film was characterized by atomic force microscopy (AFM) and scanning electron microscopy (SEM). X-ray diffraction (XRD) patterns of NiO NPs thin film before and after high temperature O2 sensing demonstrated that the sensing material possesses a good chemical and structure stability. The oxygen detection experiments were performed at 500 °C, 600 °C and 800 °C using the as-prepared bimodular O2 sensor under both potentiometric and resistance modules. For the potentiometric module, a linear relationship between electromotive force (EMF) output of the sensor and the logarithm of O2 concentration was observed at each operating temperature, following the Nernst law. For the resistance module, the logarithm of electrical conductivity was proportional to the logarithm of oxygen concentration at each operating temperature, in good agreement with literature report. In addition, this bimodular sensor shows sensitive, reproducible and reversible response to oxygen under both sensing modules. Integration of two sensing modules into one sensor could greatly enrich the information output and would open a new venue in the development of high temperature gas sensors.

  17. Bimodular high temperature planar oxygen gas sensor.

    PubMed

    Sun, Xiangcheng; Liu, Yixin; Gao, Haiyong; Gao, Pu-Xian; Lei, Yu

    2014-01-01

    A bimodular planar O2 sensor was fabricated using NiO nanoparticles (NPs) thin film coated yttria-stabilized zirconia (YSZ) substrate. The thin film was prepared by radio frequency (r.f.) magnetron sputtering of NiO on YSZ substrate, followed by high temperature sintering. The surface morphology of NiO NPs film was characterized by atomic force microscope (AFM) and scanning electron microscope (SEM). X-ray diffraction (XRD) patterns of NiO NPs thin film before and after high temperature O2 sensing demonstrated that the sensing material possesses a good chemical and structure stability. The oxygen detection experiments were performed at 500, 600, and 800°C using the as-prepared bimodular O2 sensor under both potentiometric and resistance modules. For the potentiometric module, a linear relationship between electromotive force (EMF) output of the sensor and the logarithm of O2 concentration was observed at each operating temperature, following the Nernst law. For the resistance module, the logarithm of electrical conductivity was proportional to the logarithm of oxygen concentration at each operating temperature, in good agreement with literature report. In addition, this bimodular sensor shows sensitive, reproducible and reversible response to oxygen under both sensing modules. Integration of two sensing modules into one sensor could greatly enrich the information output and would open a new venue in the development of high temperature gas sensors. PMID:25191652

  18. Bimodular high temperature planar oxygen gas sensor

    PubMed Central

    Sun, Xiangcheng; Liu, Yixin; Gao, Haiyong; Gao, Pu-Xian; Lei, Yu

    2014-01-01

    A bimodular planar O2 sensor was fabricated using NiO nanoparticles (NPs) thin film coated yttria-stabilized zirconia (YSZ) substrate. The thin film was prepared by radio frequency (r.f.) magnetron sputtering of NiO on YSZ substrate, followed by high temperature sintering. The surface morphology of NiO NPs film was characterized by atomic force microscope (AFM) and scanning electron microscope (SEM). X-ray diffraction (XRD) patterns of NiO NPs thin film before and after high temperature O2 sensing demonstrated that the sensing material possesses a good chemical and structure stability. The oxygen detection experiments were performed at 500, 600, and 800°C using the as-prepared bimodular O2 sensor under both potentiometric and resistance modules. For the potentiometric module, a linear relationship between electromotive force (EMF) output of the sensor and the logarithm of O2 concentration was observed at each operating temperature, following the Nernst law. For the resistance module, the logarithm of electrical conductivity was proportional to the logarithm of oxygen concentration at each operating temperature, in good agreement with literature report. In addition, this bimodular sensor shows sensitive, reproducible and reversible response to oxygen under both sensing modules. Integration of two sensing modules into one sensor could greatly enrich the information output and would open a new venue in the development of high temperature gas sensors. PMID:25191652

  19. Porous Nickel Oxide Film Sensor for Formaldehyde

    NASA Astrophysics Data System (ADS)

    Cindemir, U.; Topalian, Z.; Österlund, L.; Granqvist, C. G.; Niklasson, G. A.

    2014-11-01

    Formaldehyde is a volatile organic compound and a harmful indoor pollutant contributing to the "sick building syndrome". We used advanced gas deposition to fabricate highly porous nickel oxide (NiO) thin films for formaldehyde sensing. The films were deposited on Al2O3 substrates with prefabricated comb-structured electrodes and a resistive heater at the opposite face. The morphology and structure of the films were investigated with scanning electron microscopy and X-ray diffraction. Porosity was determined by nitrogen adsorption isotherms with the Brunauer-Emmett-Teller method. Gas sensing measurements were performed to demonstrate the resistive response of the sensors with respect to different concentrations of formaldehyde at 150 °C.

  20. Sensing Characteristics of Flame-Spray-Made Pt/ZnO Thick Films as H(2) Gas Sensor.

    PubMed

    Tamaekong, Nittaya; Liewhiran, Chaikarn; Wisitsoraat, Anurat; Phanichphant, Sukon

    2009-01-01

    Hydrogen sensing of thick films of nanoparticles of pristine, 0.2, 1.0 and 2.0 atomic percentage of Pt concentration doped ZnO were investigated. ZnO nanoparticles doped with 0.2-2.0 at.% Pt were successfully produced in a single step by flame spray pyrolysis (FSP) technique using zinc naphthenate and platinum(II) acetylacetonate as precursors dissolved in xylene. The particle properties were analyzed by XRD, BET, SEM and TEM. Under the 5/5 (precursor/oxygen) flame condition, ZnO nanoparticles and nanorods were observed. The crystallite sizes of ZnO spheroidal and hexagonal particles were found to be ranging from 5 to 20 nm while ZnO nanorods were seen to be 5-20 nm wide and 20-40 nm long. ZnO nanoparticles paste composed of ethyl cellulose and terpineol as binder and solvent respectively was coated on Al(2)O(3) substrate interdigitated with gold electrodes to form thin films by spin coating technique. The thin film morphology was analyzed by SEM technique. The gas sensing properties toward hydrogen (H(2)) was found that the 0.2 at.% Pt/ZnO sensing film showed an optimum H(2) sensitivity of ?164 at hydrogen concentration in air of 1 volume% at 300 C and a low hydrogen detection limit of 50 ppm at 300 C operating temperature. PMID:22399971

  1. Multi-Gas Sensor

    NASA Technical Reports Server (NTRS)

    Sachse, Glenn W. (Inventor); Wang, Liang-Guo (Inventor); LeBel, Peter J. (Inventor); Steele, Tommy C. (Inventor); Rana, Mauro (Inventor)

    1999-01-01

    A multi-gas sensor is provided which modulates a polarized light beam over a broadband of wavelengths between two alternating orthogonal polarization components. The two orthogonal polarization components of the polarization modulated beam are directed along two distinct optical paths. At least one optical path contains one or more spectral discrimination element, with each spectral discrimination element having spectral absorption features of one or more gases of interest being measured. The two optical paths then intersect, and one orthogonal component of the intersected components is transmitted and the other orthogonal component is reflected. The combined polarization modulated beam is partitioned into one or more smaller spectral regions of interest where one or more gases of interest has an absorption band. The difference in intensity between the two orthogonal polarization components is then determined in each partitioned spectral region of interest as an indication of the spectral emission/absorption of the light beam by the gases of interest in the measurement path. The spectral emission/absorption is indicative of the concentration of the one or more gases of interest in the measurement path. More specifically, one embodiment of the present invention is a gas filter correlation radiometer which comprises a polarizer, a polarization modulator, a polarization beam splitter, a beam combiner, wavelength partitioning element, and detection element. The gases of interest are measured simultaneously and, further, can be measured independently or non-independently. Furthermore, optical or electronic element are provided to balance optical intensities between the two optical paths.

  2. Self-assembled SnO2 micro- and nanosphere-based gas sensor thick films from an alkoxide-derived high purity aqueous colloid precursor.

    PubMed

    Kelp, G; Tätte, T; Pikker, S; Mändar, H; Rozhin, A G; Rauwel, P; Vanetsev, A S; Gerst, A; Merisalu, M; Mäeorg, U; Natali, M; Persson, I; Kessler, V G

    2016-03-24

    Tin oxide is considered to be one of the most promising semiconductor oxide materials for use as a gas sensor. However, a simple route for the controllable build-up of nanostructured, sufficiently pure and hierarchical SnO2 structures for gas sensor applications is still a challenge. In the current work, an aqueous SnO2 nanoparticulate precursor sol, which is free of organic contaminants and sorbed ions and is fully stable over time, was prepared in a highly reproducible manner from an alkoxide Sn(OR)4 just by mixing it with a large excess of pure neutral water. The precursor is formed as a separate liquid phase. The structure and purity of the precursor is revealed using XRD, SAXS, EXAFS, HRTEM imaging, FTIR, and XRF analysis. An unconventional approach for the estimation of the particle size based on the quantification of the Sn-Sn contacts in the structure was developed using EXAFS spectroscopy and verified using HRTEM. To construct sensors with a hierarchical 3D structure, we employed an unusual emulsification technique not involving any additives or surfactants, using simply the extraction of the liquid phase, water, with the help of dry butanol under ambient conditions. The originally generated crystalline but yet highly reactive nanoparticles form relatively uniform spheres through self-assembly and solidify instantly. The spheres floating in butanol were left to deposit on the surface of quartz plates bearing sputtered gold electrodes, producing ready-for-use gas sensors in the form of ca. 50 μm thick sphere-based-films. The films were dried for 24 h and calcined at 300 °C in air before use. The gas sensitivity of the structures was tested in the temperature range of 150-400 °C. The materials showed a very quickly emerging and reversible (20-30 times) increase in electrical conductivity as a response to exposure to air containing 100 ppm of H2 or CO and short (10 s) recovery times when the gas flow was stopped. PMID:26960813

  3. A Rapid Process for Fabricating Gas Sensors

    PubMed Central

    Hsiao, Chun-Ching; Luo, Li-Siang

    2014-01-01

    Zinc oxide (ZnO) is a low-toxicity and environmentally-friendly material applied on devices, sensors or actuators for “green” usage. A porous ZnO film deposited by a rapid process of aerosol deposition (AD) was employed as the gas-sensitive material in a CO gas sensor to reduce both manufacturing cost and time, and to further extend the AD application for a large-scale production. The relative resistance change (ΔR/R) of the ZnO gas sensor was used for gas measurement. The fabricated ZnO gas sensors were measured with operating temperatures ranging from 110 °C to 180 °C, and CO concentrations ranging from 100 ppm to 1000 ppm. The sensitivity and the response time presented good performance at increasing operating temperatures and CO concentrations. AD was successfully for applied for making ZnO gas sensors with great potential for achieving high deposition rates at low deposition temperatures, large-scale production and low cost. PMID:25010696

  4. Comparison of Gas Sensors Based on Oxygen Plasma-Treated Carbon Nanotube Network Films with Different Semiconducting Contents

    NASA Astrophysics Data System (ADS)

    Ham, Seung Woo; Hong, Hyun Pyo; Kim, Jin Woong; Kim, Jong Hyun; Kim, Ki Bum; Park, Chan Won; Min, Nam Ki

    2015-05-01

    We report on the effect of oxygen plasma treatment on the performance of single-wall carbon nanotube (SWCNT) NH3 gas sensors with different semiconducting contents (66% and 90% semiconducting SWCNTs). The performance of chemical sensors based on SWCNT networks depends on the concentration of semiconducting SWCNTs (s-SWCNTs), whose conductance can be significantly modulated by the absorbed molecules and the surface functionalization. After oxygen plasma treatment, the 66% s-SWCNT sample showed an increase in sensitivity from 0.0275%/ppm to 0.1525%/ppm (5.5 times), while the 90% s-SWCNT device demonstrated an increase in sensitivity from 0.1184%/ppm to 1.5707%/ppm (13 times). These results correspond to improvements in sensitivity of 57 times and 10 times compared with pristine and plasma-treated 66% s-SWCNT samples, respectively. In addition, the plasma-treated sensors exhibited much faster response and recovery times than the pristine one. The large improvement in performance was explained by the presence of oxygen-containing functional groups and the sp2-sp3 structure change of SWCNTs, which changes the binding energy while increasing the uptake of polar molecules such as NH3.

  5. New Gas Polarographic Hydrogen Sensor

    NASA Technical Reports Server (NTRS)

    Dominguez, Jesus A.; Barile, Ron

    2004-01-01

    Polarography is the measurement of the current that flows in solution as a function of an applied voltage. The actual form of the observed polarographic current depends upon the manner in which the voltage is applied and on the characteristics of the working electrode. The new gas polarographic H2 sensor shows a current level increment with concentration of the gaseous H2 similar to those relating to metal ions in liquid electrolytes in well-known polarography. This phenomenon is caused by the fact that the diffusion of the gaseous H2 through a gas diffusion hole built in the sensor is a rate-determining step in the gaseous-hydrogen sensing mechanism. The diffusion hole artificially limits the diffusion of the gaseous H2 toward the electrode located at the sensor cavity. This gas polarographic H2 sensor. is actually an electrochemical-pumping cell since the gaseous H2 is in fact pumped via the electrochemical driving force generated between the electrodes. Gaseous H2 enters the diffusion hole and reaches the first electrode (anode) located in the sensor cavity to be transformed into an H+ ions or protons; H+ ions pass through the electrolyte and reach the second electrode (cathode) to be reformed to gaseous H2. Gas polarographic 02 sensors are commercially available; a gas polarographic 02 sensor was used to prove the feasibility of building a new gas polarographic H2 sensor.

  6. Flush Mounting Of Thin-Film Sensors

    NASA Technical Reports Server (NTRS)

    Moore, Thomas C., Sr.

    1992-01-01

    Technique developed for mounting thin-film sensors flush with surfaces like aerodynamic surfaces of aircraft, which often have compound curvatures. Sensor mounted in recess by use of vacuum pad and materials selected for specific application. Technique involves use of materials tailored to thermal properties of substrate in which sensor mounted. Together with customized materials, enables flush mounting of thin-film sensors in most situations in which recesses for sensors provided. Useful in both aircraft and automotive industries.

  7. Self-assembled SnO2 micro- and nanosphere-based gas sensor thick films from an alkoxide-derived high purity aqueous colloid precursor

    NASA Astrophysics Data System (ADS)

    Kelp, G.; Tätte, T.; Pikker, S.; Mändar, H.; Rozhin, A. G.; Rauwel, P.; Vanetsev, A. S.; Gerst, A.; Merisalu, M.; Mäeorg, U.; Natali, M.; Persson, I.; Kessler, V. G.

    2016-03-01

    Tin oxide is considered to be one of the most promising semiconductor oxide materials for use as a gas sensor. However, a simple route for the controllable build-up of nanostructured, sufficiently pure and hierarchical SnO2 structures for gas sensor applications is still a challenge. In the current work, an aqueous SnO2 nanoparticulate precursor sol, which is free of organic contaminants and sorbed ions and is fully stable over time, was prepared in a highly reproducible manner from an alkoxide Sn(OR)4 just by mixing it with a large excess of pure neutral water. The precursor is formed as a separate liquid phase. The structure and purity of the precursor is revealed using XRD, SAXS, EXAFS, HRTEM imaging, FTIR, and XRF analysis. An unconventional approach for the estimation of the particle size based on the quantification of the Sn-Sn contacts in the structure was developed using EXAFS spectroscopy and verified using HRTEM. To construct sensors with a hierarchical 3D structure, we employed an unusual emulsification technique not involving any additives or surfactants, using simply the extraction of the liquid phase, water, with the help of dry butanol under ambient conditions. The originally generated crystalline but yet highly reactive nanoparticles form relatively uniform spheres through self-assembly and solidify instantly. The spheres floating in butanol were left to deposit on the surface of quartz plates bearing sputtered gold electrodes, producing ready-for-use gas sensors in the form of ca. 50 μm thick sphere-based-films. The films were dried for 24 h and calcined at 300 °C in air before use. The gas sensitivity of the structures was tested in the temperature range of 150-400 °C. The materials showed a very quickly emerging and reversible (20-30 times) increase in electrical conductivity as a response to exposure to air containing 100 ppm of H2 or CO and short (10 s) recovery times when the gas flow was stopped.Tin oxide is considered to be one of the most promising semiconductor oxide materials for use as a gas sensor. However, a simple route for the controllable build-up of nanostructured, sufficiently pure and hierarchical SnO2 structures for gas sensor applications is still a challenge. In the current work, an aqueous SnO2 nanoparticulate precursor sol, which is free of organic contaminants and sorbed ions and is fully stable over time, was prepared in a highly reproducible manner from an alkoxide Sn(OR)4 just by mixing it with a large excess of pure neutral water. The precursor is formed as a separate liquid phase. The structure and purity of the precursor is revealed using XRD, SAXS, EXAFS, HRTEM imaging, FTIR, and XRF analysis. An unconventional approach for the estimation of the particle size based on the quantification of the Sn-Sn contacts in the structure was developed using EXAFS spectroscopy and verified using HRTEM. To construct sensors with a hierarchical 3D structure, we employed an unusual emulsification technique not involving any additives or surfactants, using simply the extraction of the liquid phase, water, with the help of dry butanol under ambient conditions. The originally generated crystalline but yet highly reactive nanoparticles form relatively uniform spheres through self-assembly and solidify instantly. The spheres floating in butanol were left to deposit on the surface of quartz plates bearing sputtered gold electrodes, producing ready-for-use gas sensors in the form of ca. 50 μm thick sphere-based-films. The films were dried for 24 h and calcined at 300 °C in air before use. The gas sensitivity of the structures was tested in the temperature range of 150-400 °C. The materials showed a very quickly emerging and reversible (20-30 times) increase in electrical conductivity as a response to exposure to air containing 100 ppm of H2 or CO and short (10 s) recovery times when the gas flow was stopped. Electronic supplementary information (ESI) available: IR spectrum of additives found in the residual butanol layer formed during precursor preparation. See DOI: 10.1039/c5nr07942j

  8. Indexing film with a fluidic sensor

    NASA Technical Reports Server (NTRS)

    Maciel, A., Jr.

    1972-01-01

    Fluidic sensor is used to measure passage of film without mechanical contact with counting device. Same sensor system may be used for different sizes of film. System has two fluidic sensors and operates on principle of electrically recording interruptions in air stream.

  9. Soap film gas flowmeter

    SciTech Connect

    Lalin, H.S.; Bermudez, J.E.; Fleming, W.T.

    1987-09-08

    A soap film gas flowmeter is described comprising: a flow tube having a hollow body with opposite open ends through which a soap film is propelled and a first closed chamber housing a soap solution. It also includes means for supporting the flow tube in a substantially vertical position with the open bottom end of the flow tube disposed in the first chamber above the soap solution; a second closed chamber into which the open top end of the flow tube extends and gas inlet means for introducing gas into the first chamber at a flow rate to be measured using the flowmeters. A gas exit means is included for discharging the gas introduced into the first chamber through the second chamber. Plus there are means for generating a single soap bubble from the soap solution substantially at the bottom end of the flow tube and a relatively large opening in the flowtube for providing an open passageway for inlet gas to pass through the flowtube when the bottom open end of the flowtube is covered by the soap solution.

  10. Sub-Nanoliter Spectroscopic Gas Sensor

    PubMed Central

    Alfeeli, Bassam; Pickrell, Gary; Wang, Anbo

    2006-01-01

    In this work, a new type of optical fiber based chemical sensor, the sub-nanoliter sample cell (SNSC) based gas sensor, is described and compared to existing sensors designs in the literature. This novel SNSC gas sensor is shown to have the capability of gas detection with a cell volume in the sub-nanoliter range. Experimental results for various configurations of the sensor design are presented which demonstrate the capabilities of the miniature gas sensor.

  11. Metal Oxide Gas Sensor Arrays: Geometrical Design and Selectivity

    NASA Astrophysics Data System (ADS)

    Röck, Frank; Barsan, Nicolae; Weimar, Udo

    2009-05-01

    Metal oxide gas sensors are commonly used in electronic noses. Their peculiarity, of altering the gas composition during the sensing process, is often not considered in planning the layout of the sensor chamber. However, for measurements with low flow rates (e.g. static headspace measurements) this effect can't be neglected. Results obtained with home made thick film sensors demonstrate the influence of consumption on the sensor signal. Depending on the sensor arrangement and the measurement conditions the selectivity of the whole system can be increased, respectively—for an inappropriate choice of the parameters—even decreased.

  12. Solid state gas sensor research in Germany - a status report.

    PubMed

    Moos, Ralf; Sahner, Kathy; Fleischer, Maximilian; Guth, Ulrich; Barsan, Nicolae; Weimar, Udo

    2009-01-01

    This status report overviews activities of the German gas sensor research community. It highlights recent progress in the field of potentiometric, amperometric, conductometric, impedimetric, and field effect-based gas sensors. It is shown that besides step-by-step improvements of conventional principles, e.g. by the application of novel materials, novel principles turned out to enable new markets. In the field of mixed potential gas sensors, novel materials allow for selective detection of combustion exhaust components. The same goal can be reached by using zeolites for impedimetric gas sensors. Operando spectroscopy is a powerful tool to learn about the mechanisms in n-type and in p-type conductometric sensors and to design knowledge-based improved sensor devices. Novel deposition methods are applied to gain direct access to the material morphology as well as to obtain dense thick metal oxide films without high temperature steps. Since conductometric and impedimetric sensors have the disadvantage that a current has to pass the gas sensitive film, film morphology, electrode materials, and geometrical issues affect the sensor signal. Therefore, one tries to measure directly the Fermi level position either by measuring the gas-dependent Seebeck coefficient at high temperatures or at room temperature by applying a modified miniaturized Kelvin probe method, where surface adsorption-based work function changes drive the drain-source current of a field effect transistor. PMID:22408529

  13. Exhaust gas sensors

    SciTech Connect

    Hiller, J.; Miree, T.J.

    1997-02-09

    The automotive industry needed a fast, reliable, under-the-hood method of determining nitrogen oxides in automobile exhaust. Several technologies were pursued concurrently. These sensing technologies were based on light absorption, electrochemical methods, and surface mass loading. The Y-12 plant was selected to study the methods based on light absorption. The first phase was defining the detailed technical objectives of the sensors--this was the role of the automobile companies. The second phase was to develop prototype sensors in the laboratories--the national laboratories. The final phase was testing of the prototype sensors by the automobile industries. This program was canceled a few months into what was to be a three-year effort.

  14. Multifunctional Nanowire/film Composites based Bi-modular Sensors for In-situ and Real-time High Temperature Gas Detection

    SciTech Connect

    Gao, Pu-Xian; Lei, Yu

    2013-06-01

    This final report to the Department of Energy/National Energy Technology Laboratory for DE-FE0000870 covers the period from 2009 to June, 2013 and summarizes the main research accomplishments, which can be divided in sensing materials innovation, bimodular sensor demonstration, and new understanding and discoveries. As a matter of fact, we have successfully completed all the project tasks in June 1, 2013, and presented the final project review presentation on the 9th of July, 2013. Specifically, the major accomplishments achieved in this project include: 1) Successful development of a new class of high temperature stable gas sensor nanomaterials based on composite nano-array strategy in a 3D or 2D fashion using metal oxides and perovskite nanostructures. 2) Successful demonstration of bimodular nanosensors using 2D nanofibrous film and 3D composite nanowire arrays using electrical resistance mode and electrochemical electromotive force mode. 3) Series of new discoveries and understandings based on the new composite nanostructure platform toward enhancing nanosensor performance in terms of stability, selectivity, sensitivity and mass flux sensing. In this report, we highlight some results toward these accomplishments.

  15. Process for manufacture of thick film hydrogen sensors

    DOEpatents

    Perdieu, Louisa H.

    2000-09-09

    A thick film process for producing hydrogen sensors capable of sensing down to a one percent concentration of hydrogen in carrier gasses such as argon, nitrogen, and air. The sensor is also suitable to detect hydrogen gas while immersed in transformer oil. The sensor includes a palladium resistance network thick film printed on a substrate, a portion of which network is coated with a protective hydrogen barrier. The process utilizes a sequence of printing of the requisite materials on a non-conductive substrate with firing temperatures at each step which are less than or equal to the temperature at the previous step.

  16. Gas Sensor Test Chip

    NASA Technical Reports Server (NTRS)

    Buehler, M. G.; Ryan, M. A.

    1996-01-01

    The use of organic polymers to detect gasses has been known for several years to be an effective means for gas detection via conductivity changes. These chemoresistors offer significant advantages over other gas detectors in that they operate near room temperature and thus can be used in compact, low-power applications.

  17. MAPLE activities and applications in gas sensors

    NASA Astrophysics Data System (ADS)

    Jelínek, Miroslav; Remsa, Jan; Kocourek, Tomáš; Kubešová, Barbara; Schůrek, Jakub; Myslík, Vladimír

    2011-11-01

    During the last decade, many groups have grown thin films of various organic materials by the cryogenic Matrix Assisted Pulsed Laser Evaporation (MAPLE) technique with a wide range of applications. This contribution is focused on the summary of our results with deposition and characterization of thin films of fibrinogen, pullulan derivates, azo-polyurethane, cryoglobulin, polyvinyl alcohol, and bovine serum albumin dissolved in physiological serum, dimethyl sulfoxide, sanguine plasma, phosphate buffer solution, H2O, ethylene glycol, and tert-butanol. MAPLE films were characterized using FTIR, AFM, Raman scattering, and SEM. For deposition, a special hardware was developed including a unique liquid nitrogen cooled target holder. Overview of MAPLE thin film applications is given. We studied SnAcAc, InAcAc, SnO2, porphyrins, and polypyrrole MAPLE fabricated films as small resistive gas sensors. Sensors were tested with ozone, nitrogen dioxide, hydrogen, and water vapor gases. In the last years, our focus was on the study of fibrinogen-based scaffolds for application in tissue engineering, wound healing, and also as a part of layers for medical devices.

  18. Integrated Mirco-Machined Hydrogen Gas Sensors

    SciTech Connect

    Frank DiMeoJr. Ing--shin Chen

    2005-12-15

    The widespread use of hydrogen as both an industrial process gas and an energy storage medium requires fast, selective detection of hydrogen gas. This report discusses the development of a new type of solid-state hydrogen gas sensor that couples novel metal hydride thin films with a MEMS (Micro-Electro-Mechanical System) structure known as a micro-hotplate. In this project, Micro-hotplate structures were overcoated with engineered multilayers that serve as the active hydrogen-sensing layer. The change in electrical resistance of these layers when exposed to hydrogen gas was the measured sensor output. This project focused on achieving the following objectives: (1) Demonstrating the capabilities of micro-machined H2 sensors; (2) Developing an understanding of their performance; (3) Critically evaluating the utility and viability of this technology for life safety and process monitoring applications. In order to efficiently achieve these objectives, the following four tasks were identified: (1) Sensor Design and Fabrication; (2) Short Term Response Testing; (3) Long Term Behavior Investigation; (4) Systems Development. Key findings in the project include: The demonstration of sub-second response times to hydrogen; measured sensitivity to hydrogen concentrations below 200 ppm; a dramatic improvement in the sensor fabrication process and increased understanding of the processing properties and performance relationships of the devices; the development of improved sensing multilayers; and the discovery of a novel strain based hydrogen detection mechanism. The results of this program suggest that this hydrogen sensor technology has exceptional potential to meet the stringent demands of life safety applications as hydrogen utilization and infrastructure becomes more prevalent.

  19. Electron Beam Crosslinked Au-nanoparticle Films for Sensor Array Patterning

    NASA Astrophysics Data System (ADS)

    Covington, Elizabeth; Kurdak, Cagliyan; Bohrer, Forest; Chang, Hungwei; Zellers, Edward T.

    2010-03-01

    We have fabricated chemiresistors, arranged in a 2x2 array with 4 μm spacing between the sensors, for use in a micro-gas chromatography (μ-GC) system. To discriminate between analytes, each sensor should be coated with a different thiol coated Au-nanoparticle film. Due to their close spacing, it is not possible to pattern the sensors with different films with traditional film coating methods. Electron beam exposure crosslinks the nanoparticles and renders the film insoluble, and it possible to selectively expose a single sensor in an array. After crosslinking, the remaining film can be rinsed away leaving one coated sensor. This process can be repeated for different films until all sensors in the array have a distinct coating. Using this technique we have made the smallest chemiresistor array with four different films to date. The sensors were characterized by four volatile organic compounds and exhibit different response patterns making them suitable for μ-GC applications.

  20. Plasma deposited polymers as gas sensitive films

    NASA Astrophysics Data System (ADS)

    Radeva, E.; Georgieva, V.; Lazarov, J.; Vergov, L.; Donkov, N.

    2012-03-01

    The possibility is presented of producing thin plasma polymers with desired properties by using nanofillers. Composite films are synthesized from a mixture of hexamethyldisiloxane (HMDSO) and detonation nanodiamond particles (DNDs). The chemical structure of the composite consists of DNDs distributed in the polymer matrix. The effect of DNDs on the humidity and ammonia sorptive properties of the polymers obtained is studied by measuring the mass changes as a result of gas sorption by using a quartz crystal microbalance (QCM). The results show that, in view of building a sensing element for measuring humidity, ammonia or other gases, it is possible to maximize the sensor sensitivity to a certain gas by using an appropriate concentration of DNDs in HMDSO. Thus, a high degree of sensor sensitivity, together with short response time and minimum hysteresis, can be achieved. Composites of plasma-polymerized HMDSO with DNDs can be used as gas sensitive layers for the development of quartz resonator sensors.

  1. Thin Hot-Film Sensors On Polyimide Film

    NASA Technical Reports Server (NTRS)

    Hopson, Purnell

    1993-01-01

    Array of closely spaced hot-film sensors with thickness well below critical reference height with regard to air-flow pattern nonintrusively detect laminar boundary-layer transitions with very high resolution. Method developed at NASA Langley Research Center to fabricate such sensors on polyimide films to detect boundary-layer transitions with resolution as high as 0.050 in. These films formed by combination of vacuum deposition and photolithography.

  2. Optical And Structural Properties Of Hydrogenated ZnO Thin Films And Their Application For NH3 Gas Sensors

    NASA Astrophysics Data System (ADS)

    Dimova-Malinovska, D.; Lazarova, V.; Angelov, O.; Nichev, H.

    2007-04-01

    Measurements of the optical and structural properties of ZnO thin films (ZnO:H) deposited by magnetron sputtering in an Ar+H2 atmosphere have been performed. The optical band gap, Eopt, and the Urbach band tail width were calculated. The influence of the substrate temperature on the resistivity, optical band gap and structural properties has been studied. A discussion of the influence of Ts on the properties is presented. The sensitivity of ZnO films to exposure to NH3 has been measured by the quartz crystal microbalance method.

  3. Nanoscaled tin dioxide films processed from organotin-based hybrid materials: an organometallic route toward metal oxide gas sensors.

    PubMed

    Renard, Laetitia; Babot, Odile; Saadaoui, Hassan; Fuess, Hartmut; Brötz, Joachim; Gurlo, Aleksander; Arveux, Emmanuel; Klein, Andreas; Toupance, Thierry

    2012-11-01

    Nanocrystalline tin dioxide (SnO(2)) ultra-thin films were obtained employing a straightforward solution-based route that involves the calcination of bridged polystannoxane films processed by the sol-gel process from bis(triprop-1-ynylstannyl)alkylene and -arylene precursors. These films have been thoroughly characterized by FTIR, contact angle measurements, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), atomic force (AFM) and scanning electron (SEM) microscopies. Annealing at a high temperature gave 30-35 nm thick cassiterite SnO(2) films with a mean crystallite size ranging from 4 to 7 nm depending on the nature of the organic linker in the distannylated compound used as a precursor. In the presence of H(2) and CO gases, these layers led to highly sensitive, reversible and reproducible responses. The sensing properties were discussed in regard to the crystallinity and porosity of the sensing body that can be tuned by the nature of the precursor employed. Organometallic chemistry combined with the sol-gel process therefore offers new possibilities toward metal oxide nanostructures for the reproducible and sensitive detection of combustible and toxic gases. PMID:23011110

  4. Combustion Sensors: Gas Turbine Applications

    NASA Technical Reports Server (NTRS)

    Human, Mel

    2002-01-01

    This report documents efforts to survey the current research directions in sensor technology for gas turbine systems. The work is driven by the current and future requirements on system performance and optimization. Accurate real time measurements of velocities, pressure, temperatures, and species concentrations will be required for objectives such as combustion instability attenuation, pollutant reduction, engine health management, exhaust profile control via active control, etc. Changing combustor conditions - engine aging, flow path slagging, or rapid maneuvering - will require adaptive responses; the effectiveness of such will be only as good as the dynamic information available for processing. All of these issues point toward the importance of continued sensor development. For adequate control of the combustion process, sensor data must include information about the above mentioned quantities along with equivalence ratios and radical concentrations, and also include both temporal and spatial velocity resolution. Ultimately these devices must transfer from the laboratory to field installations, and thus must become low weight and cost, reliable and maintainable. A primary conclusion from this study is that the optics-based sensor science will be the primary diagnostic in future gas turbine technologies.

  5. Vibration welding system with thin film sensor

    DOEpatents

    Cai, Wayne W; Abell, Jeffrey A; Li, Xiaochun; Choi, Hongseok; Zhao, Jingzhou

    2014-03-18

    A vibration welding system includes an anvil, a welding horn, a thin film sensor, and a process controller. The anvil and horn include working surfaces that contact a work piece during the welding process. The sensor measures a control value at the working surface. The measured control value is transmitted to the controller, which controls the system in part using the measured control value. The thin film sensor may include a plurality of thermopiles and thermocouples which collectively measure temperature and heat flux at the working surface. A method includes providing a welder device with a slot adjacent to a working surface of the welder device, inserting the thin film sensor into the slot, and using the sensor to measure a control value at the working surface. A process controller then controls the vibration welding system in part using the measured control value.

  6. Pd conductor for thick film hydrogen sensor

    SciTech Connect

    Felten, J.J.; Hoffheins, B.S.; Lauf, R.J.

    1996-12-31

    Cooperation between a materials developer and sensor designers has resulted in a palladium conductor used ro design and build a new hydrogen sensor that has superior performance characteristics and is also inexpensive to manufacture. Material characteristics give it faster response time and greater thermal/mechanical stability. The thick film palladium conductor paste, which can be fired at 850{degrees}C-950{degrees}C, has provided device designers a practical conductor paste with which to produce the improved sensor. The conductor uses a high surface area Pd powder combined with a binder glass that is chemically very inert, which combination produces a porous conductor that has good adhesion and chemical resistance. The current sensor design consists of three or four thick film Layers. Because of the flexibility of thick film techniques, the sensor element can be configured to any desired size and shape for specific instrument needs.

  7. Structure and Sensor Properties of Thin Ordered Solid Films

    PubMed Central

    Sołoducho, Jadwiga; Cabaj, Joanna; Świst, Agnieszka

    2009-01-01

    Miniaturized gas sensors and biosensors based on nanostructured sensing elements have attracted considerable interest because these nanostructured materials can be used to significantly improve sensor sensitivity and the response time. We report here on a generic, reversible sensing platform based on hybrid nanofilms. Thin ordered Langmuir-Blodgett (LB) films built of fluorene derivatives were used as effective gas sensors for both oxidative and reductive analytes. A novel immobilization method based on thin LB films as a matrix has been developed for construction of sensing protein layers. Biomolecules can often be incorporated into and immobilized on Langmuir-Blodgett films using adsorption methods or by covalent immobilization of proteins. The sensor sensitisation was achieved by an amphiphilic N-alkyl-bis(thiophene)arylenes admixed into the film. The interlaced derivative was expected to facilitate the electron transfer, thereby enhancing the sensor sensitivity. The results suggest that this may be very promising approach for exploring the interactions between proteins and high throughput detection of phenol derivatives in wastewater. PMID:22408477

  8. CO2 Selective Potentiometric Sensor in Thick-film Technology

    PubMed Central

    Sahner, Kathy; Schulz, Anne; Kita, Jaroslaw; Merkle, Rotraut; Maier, Joachim; Moos, Ralf

    2008-01-01

    A potentiometric sensor device based on screen-printed Nasicon films was investigated. In order to transfer the promising sensor concept of an open sodium titanate reference to thick film technology, “sodium-rich” and “sodium-poor” formulations were compared. While the “sodium-rich” composition was found to react with the ion conducting Nasicon during thermal treatment, the “sodium-poor” reference mixture was identified as an appropriate reference composition. Screen-printed sensor devices were prepared and tested with respect to CO2 response, reproducibility, and cross-interference of oxygen. Excellent agreement with the theory was observed. With the integration of a screen-printed heater, sensor elements were operated actively heated in a cold gas stream.

  9. Gas sampling system for matrix of semiconductor gas sensors

    NASA Astrophysics Data System (ADS)

    Jasinski, Grzegorz; Strzelczyk, Anna; Koscinski, Piotr

    2016-01-01

    Semiconductor gas sensors are popular commercial sensors applied in numerous gas detection systems. They are reliable, small, rugged and inexpensive. However, there are a few problem limiting the wider use of such sensors. Semiconductor gas sensor usually exhibits a low selectivity, low repeatability, drift of response, strong temperature and moisture influence on sensor properties. Sample flow rate is one of the parameters that influence sensors response what should be considered in the measurement system. This paper describes low cost module for controlling measured gas flow rate. The proposed equipment will be used as a component of electronic nose system employed for classifying and distinguishing different levels of contamination in air.

  10. Hydrogen Gas Sensors Based on Semiconductor Oxide Nanostructures

    PubMed Central

    Gu, Haoshuang; Wang, Zhao; Hu, Yongming

    2012-01-01

    Recently, the hydrogen gas sensing properties of semiconductor oxide (SMO) nanostructures have been widely investigated. In this article, we provide a comprehensive review of the research progress in the last five years concerning hydrogen gas sensors based on SMO thin film and one-dimensional (1D) nanostructures. The hydrogen sensing mechanism of SMO nanostructures and some critical issues are discussed. Doping, noble metal-decoration, heterojunctions and size reduction have been investigated and proved to be effective methods for improving the sensing performance of SMO thin films and 1D nanostructures. The effect on the hydrogen response of SMO thin films and 1D nanostructures of grain boundary and crystal orientation, as well as the sensor architecture, including electrode size and nanojunctions have also been studied. Finally, we also discuss some challenges for the future applications of SMO nanostructured hydrogen sensors. PMID:22778599

  11. Development of a hydrogen gas sensor using microfabrication technology

    NASA Technical Reports Server (NTRS)

    Liu, Chung-Chiun; Wu, Qinghai; Stuczynski, Matthew; Madzsar, George C.

    1992-01-01

    Microfabrication and micromachining technologies are used to produce a hydrogen gas sensor based on a palladium-silver film. The sensor uses a heater that is fabricated by diffusing p-type borones into the substrate, forming a resistance heater. A diode for temperature measurement is produced using p-type boron and n-type phosphor diffused into the substrate. A thickness of the palladium-silver film is approximately 300 arcsec. The hydrogen gas sensor employs the proven palladium-silver diode structure and is surrounded by a phosphor doped resistance heater which can be heated up to a temperature of 250 C. Experimental results show that the sensor is capable of operating over a wide range of hydrogen concentration levels between 0-95 percent without any hysteresis effects.

  12. Micro-sensor thin-film anemometer

    NASA Technical Reports Server (NTRS)

    Sheplak, Mark (Inventor); McGinley, Catherine B. (Inventor); Spina, Eric F. (Inventor); Stephens, Ralph M. (Inventor); Hopson, Jr., Purnell (Inventor); Cruz, Vincent B. (Inventor)

    1996-01-01

    A device for measuring turbulence in high-speed flows is provided which includes a micro-sensor thin-film probe. The probe is formed from a single crystal of aluminum oxide having a 14.degree. half-wedge shaped portion. The tip of the half-wedge is rounded and has a thin-film sensor attached along the stagnation line. The bottom surface of the half-wedge is tilted upward to relieve shock induced disturbances created by the curved tip of the half-wedge. The sensor is applied using a microphotolithography technique.

  13. Electrostatic thin film chemical and biological sensor

    DOEpatents

    Prelas, Mark A.; Ghosh, Tushar K.; Tompson, Jr., Robert V.; Viswanath, Dabir; Loyalka, Sudarshan K.

    2010-01-19

    A chemical and biological agent sensor includes an electrostatic thin film supported by a substrate. The film includes an electrostatic charged surface to attract predetermined biological and chemical agents of interest. A charge collector associated with said electrostatic thin film collects charge associated with surface defects in the electrostatic film induced by the predetermined biological and chemical agents of interest. A preferred sensing system includes a charge based deep level transient spectroscopy system to read out charges from the film and match responses to data sets regarding the agents of interest. A method for sensing biological and chemical agents includes providing a thin sensing film having a predetermined electrostatic charge. The film is exposed to an environment suspected of containing the biological and chemical agents. Quantum surface effects on the film are measured. Biological and/or chemical agents can be detected, identified and quantified based on the measured quantum surface effects.

  14. Ultrafast response sensor to formaldehyde gas based on metal oxide.

    PubMed

    Choi, N-J; Lee, H-K; Moon, S E; Kim, J; Yang, W S

    2014-08-01

    Thick film semiconductor gas sensors based on indium oxide were fabricated on Si substrate. The sensing materials on Si substrate were characterized using optical microscopy, X-ray diffraction (XRD) and scanning electron microscopy (SEM), and so on. They were very fine and uniform and we found out that particle sizes were about 20~30 nm through XRD analysis. Gas responses of fabricated sensors were measured in a chamber where gas flow was controlled by mass flow controller (MFC). Their resistance changes were monitored in real time by using data acquisition board and personal computer. Gas response characteristics were examined for formaldehyde (HCHO) gas which was known as the cause of sick building syndrome. Particularly, the sensors showed responses to formaldehyde gas at sub ppm (cf, standard of natural environment in building is about 80 ppb by ministry of environment in Korea), as a function of operating temperatures and gas concentrations. Also, we investigated sensitivity, repetition, selectivity, response speed and reproducibility of the sensors. The lowest detection limit is HCHO 25 ppb and sensitivity at 800 ppb is over 25% at 350 °C operating temperature. The response time (8 s) and recovery time (15 s) to HCHO gas at 200 ppb were very fast compared to other commercial products in flow type measurement condition. Repetition measurement was very good with ±3% in full measurement range. The fabricated metal oxide gas sensor showed good performance to HCHO gas and proved that it could be adaptable to indoor environment in building. PMID:25936006

  15. Surface morphology-dependent room-temperature LaFeO₃ nanostructure thin films as selective NO₂ gas sensor prepared by radio frequency magnetron sputtering.

    PubMed

    Thirumalairajan, S; Girija, K; Mastelaro, Valmor R; Ponpandian, N

    2014-08-27

    In the present work, perovskite LaFeO3 thin films with unique morphology were obtained on silicon substrate using radio frequency magnetron sputtering technique. The effect of thickness and temperature on the morphological and structural properties of LaFeO3 films was systematically studied. The X-ray diffraction pattern explored the highly oriented orthorhombic perovskite phase of the prepared thin films along [121]. Electron micrograph images exposed the network and nanocube surface morphology of LaFeO3 thin films with average sizes of ∼90 and 70 nm, respectively. The developed LaFeO3 thin films not only possess unique morphology, but also influence the gas-sensing performance toward NO2. Among the two morphologies, nanocubes exhibited high sensitivity, good selectivity, fast response-recovery time, and excellent repeatability for 1 ppm level of NO2 gas at room temperature. The response time for nanocubes was 24-11 s with a recovery duration of 35-15 s less than the network structure. The sensitivity toward NO2 detection was found to be in the range 29.60-157.89. The enhancement in gas-sensing properties is attributed to their porous structure, surface morphology, numerous surface active sites, and the oxygen vacancies. The gas-sensing measurements demonstrate that the LaFeO3 sensing material is an outstanding candidate for NO2 detection. PMID:25029197

  16. Gas Sensors Based on Conducting Polymers

    PubMed Central

    Bai, Hua; Shi, Gaoquan

    2007-01-01

    The gas sensors fabricated by using conducting polymers such as polyaniline (PAni), polypyrrole (PPy) and poly (3,4-ethylenedioxythiophene) (PEDOT) as the active layers have been reviewed. This review discusses the sensing mechanism and configurations of the sensors. The factors that affect the performances of the gas sensors are also addressed. The disadvantages of the sensors and a brief prospect in this research field are discussed at the end of the review.

  17. WO3 thin film based multiple sensor array for electronic nose application

    NASA Astrophysics Data System (ADS)

    Ramgir, Niranjan S.; Goyal, Deepak; Goyal, C. P.; Datta, N.; Kaur, M.; Debnath, A. K.; Aswal, D. K.; Gupta, S. K.

    2015-06-01

    Multiple sensor array comprising 16 x 2 sensing elements were realized using RF sputtered WO3 thin films. The sensor films were modified with a thin layer of sensitizers namely Au, Ni, Cu, Al, Pd, Ti, Pt. The resulting sensor array were tested for their response towards different gases namely H2S, NH3, NO and C2H5OH. The sensor response values measured from the response curves indicates that the sensor array generates a unique signature pattern (bar chart) for the gases. The sensor response values can be used to get both qualitative and quantitative information about the gas.

  18. WO{sub 3} thin film based multiple sensor array for electronic nose application

    SciTech Connect

    Ramgir, Niranjan S. E-mail: deepakcct1991@gmail.com; Goyal, C. P.; Datta, N.; Kaur, M.; Debnath, A. K.; Aswal, D. K.; Gupta, S. K.; Goyal, Deepak E-mail: deepakcct1991@gmail.com

    2015-06-24

    Multiple sensor array comprising 16 x 2 sensing elements were realized using RF sputtered WO{sub 3} thin films. The sensor films were modified with a thin layer of sensitizers namely Au, Ni, Cu, Al, Pd, Ti, Pt. The resulting sensor array were tested for their response towards different gases namely H{sub 2}S, NH{sub 3}, NO and C{sub 2}H{sub 5}OH. The sensor response values measured from the response curves indicates that the sensor array generates a unique signature pattern (bar chart) for the gases. The sensor response values can be used to get both qualitative and quantitative information about the gas.

  19. Gas sensor with attenuated drift characteristic

    DOEpatents

    Chen, Ing-Shin [Danbury, CT; Chen, Philip S. H. [Bethel, CT; Neuner, Jeffrey W. [Bethel, CT; Welch, James [Fairfield, CT; Hendrix, Bryan [Danbury, CT; Dimeo, Jr., Frank [Danbury, CT

    2008-05-13

    A sensor with an attenuated drift characteristic, including a layer structure in which a sensing layer has a layer of diffusional barrier material on at least one of its faces. The sensor may for example be constituted as a hydrogen gas sensor including a palladium/yttrium layer structure formed on a micro-hotplate base, with a chromium barrier layer between the yttrium layer and the micro-hotplate, and with a tantalum barrier layer between the yttrium layer and an overlying palladium protective layer. The gas sensor is useful for detection of a target gas in environments susceptible to generation or incursion of such gas, and achieves substantial (e.g., >90%) reduction of signal drift from the gas sensor in extended operation, relative to a corresponding gas sensor lacking the diffusional barrier structure of the invention

  20. Zeolite-based Impedimetric Gas Sensor Device in Low-cost Technology for Hydrocarbon Gas Detection

    PubMed Central

    Reiß, Sebastian; Hagen, Gunter; Moos, Ralf

    2008-01-01

    Due to increasing environmental concerns the need for inexpensive selective gas sensors is increasing. This work deals with transferring a novel zeolite-based impedimetric hydrocarbon gas sensor principle, which has been originally manufactured in a costly combination of photolithography, thin-film processes, and thick-film processes to a low-cost technology comprising only thick-film processes and one electroplating step. The sensing effect is based on a thin chromium oxide layer between the interdigital electrodes and a Pt-loaded ZSM-5 zeolite film. When hydrocarbons are present in the sensor ambient, the electrical sensor impedance increases strongly and selectively. In the present work, the chromium oxide film is electroplated on Au screen-printed interdigital electrodes and then oxidized to Cr2O3. The electrode area is covered with the screen-printed zeolite. The sensor device is self-heated utilizing a planar platinum heater on the backside. The best sensor performance is obtained at a frequency of 3 Hz at around 350 °C. The good selectivity of the original sensor setup could be confirmed, but a strong cross-sensitivity to ammonia occurs, which might prohibit its original intention for use in automotive exhausts.

  1. Nitrogen dioxide sensing properties of sprayed tungsten oxide thin film sensor: Effect of film thickness.

    PubMed

    Ganbavle, V V; Mohite, S V; Agawane, G L; Kim, J H; Rajpure, K Y

    2015-08-01

    We report a study on effect of film thickness on NO2 sensing properties of sprayed WO3 thin films. WO3 thin films varying in thicknesses are deposited onto the glass substrates by simple spray pyrolysis technique by varying the volume of spray solution.Thin film gas sensors are characterized by using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), atomic force microscopy (AFM) and photoluminescence (PL) techniques to study their physical properties. Film having thickness 745nm has shown highest gas response of 97% with 12 and 412s response and recovery times, respectively towards 100ppm NO2 concentration. Gas response of 20% is observed towards 10ppm NO2 at 200C operating temperature. Sensitivity of the optimal sensor is 0.83%/ppm when operating at 200C with 10ppm lower detection limit. The response of the sensor is reproducible and WO3 films are highly selective towards NO2 in presence of mist of various interfering gases viz. H2S, NH3, LPG, CO and SO2. PMID:25898119

  2. Thin-film fiber optic hydrogen and temperature sensor system

    DOEpatents

    Nave, Stanley E.

    1998-01-01

    The invention discloses a sensor probe device for monitoring of hydrogen gas concentrations and temperatures by the same sensor probe. The sensor probe is constructed using thin-film deposition methods for the placement of a multitude of layers of materials sensitive to hydrogen concentrations and temperature on the end of a light transparent lens located within the sensor probe. The end of the lens within the sensor probe contains a lens containing a layer of hydrogen permeable material which excludes other reactive gases, a layer of reflective metal material that forms a metal hydride upon absorbing hydrogen, and a layer of semi-conducting solid that is transparent above a temperature dependent minimum wavelength for temperature detection. The three layers of materials are located at the distal end of the lens located within the sensor probe. The lens focuses light generated by broad-band light generator and connected by fiber-optics to the sensor probe, onto a reflective metal material layer, which passes through the semi-conducting solid layer, onto two optical fibers located at the base of the sensor probe. The reflected light is transmitted over fiberoptic cables to a spectrometer and system controller. The absence of electrical signals and electrical wires in the sensor probe provides for an elimination of the potential for spark sources when monitoring in hydrogen rich environments, and provides a sensor free from electrical interferences.

  3. Thin-film fiber optic hydrogen and temperature sensor system

    DOEpatents

    Nave, S.E.

    1998-07-21

    The invention discloses a sensor probe device for monitoring of hydrogen gas concentrations and temperatures by the same sensor probe. The sensor probe is constructed using thin-film deposition methods for the placement of a multitude of layers of materials sensitive to hydrogen concentrations and temperature on the end of a light transparent lens located within the sensor probe. The end of the lens within the sensor probe contains a lens containing a layer of hydrogen permeable material which excludes other reactive gases, a layer of reflective metal material that forms a metal hydride upon absorbing hydrogen, and a layer of semi-conducting solid that is transparent above a temperature dependent minimum wavelength for temperature detection. The three layers of materials are located at the distal end of the lens located within the sensor probe. The lens focuses light generated by broad-band light generator and connected by fiber-optics to the sensor probe, onto a reflective metal material layer, which passes through the semi-conducting solid layer, onto two optical fibers located at the base of the sensor probe. The reflected light is transmitted over fiber optic cables to a spectrometer and system controller. The absence of electrical signals and electrical wires in the sensor probe provides for an elimination of the potential for spark sources when monitoring in hydrogen rich environments, and provides a sensor free from electrical interferences. 3 figs.

  4. Zinc oxide thin film acoustic sensor

    SciTech Connect

    Mohammed, Ali Jasim; Salih, Wafaa Mahdi; Hassan, Marwa Abdul Muhsien; Nusseif, Asmaa Deiaa; Kadhum, Haider Abdullah; Mansour, Hazim Louis

    2013-12-16

    This paper reports the implementation of (750 nm) thickness of Zinc Oxide (ZnO) thin film for the piezoelectric pressure sensors. The film was prepared and deposited employing the spray pyrolysis technique. XRD results show that the growth preferred orientation is the (002) plane. A polycrystalline thin film (close to mono crystallite like) was obtained. Depending on the Scanning Electron Microscopy photogram, the film homogeneity and thickness were shown. The resonance frequency measured (about 19 kHz) and the damping coefficient was calculated and its value was found to be about (2.5538), the thin film be haves as homogeneous for under and over damped. The thin film pressure sensing was approximately exponentially related with frequency, the thin film was observed to has a good response for mechanical stresses also it is a good material for the piezoelectric properties.

  5. Zinc oxide thin film acoustic sensor

    NASA Astrophysics Data System (ADS)

    Mohammed, Ali Jasim; Salih, Wafaa Mahdi; Hassan, Marwa Abdul Muhsien; Mansour, Hazim Louis; Nusseif, Asmaa Deiaa; Kadhum, Haider Abdullah

    2013-12-01

    This paper reports the implementation of (750 nm) thickness of Zinc Oxide (ZnO) thin film for the piezoelectric pressure sensors. The film was prepared and deposited employing the spray pyrolysis technique. XRD results show that the growth preferred orientation is the (002) plane. A polycrystalline thin film (close to mono crystallite like) was obtained. Depending on the Scanning Electron Microscopy photogram, the film homogeneity and thickness were shown. The resonance frequency measured (about 19 kHz) and the damping coefficient was calculated and its value was found to be about (2.5538), the thin film be haves as homogeneous for under and over damped. The thin film pressure sensing was approximately exponentially related with frequency, the thin film was observed to has a good response for mechanical stresses also it is a good material for the piezoelectric properties.

  6. Fabrication of Thin Film Heat Flux Sensors

    NASA Technical Reports Server (NTRS)

    Will, Herbert A.

    1992-01-01

    Prototype thin film heat flux sensors have been constructed and tested. The sensors can be applied to propulsion system materials and components. The sensors can provide steady state and fast transient heat flux information. Fabrication of the sensor does not require any matching of the mounting surface. Heat flux is proportional to the temperature difference across the upper and lower surfaces of an insulation material. The sensor consists of an array of thermocouples on the upper and lower surfaces of a thin insulating layer. The thermocouples for the sensor are connected in a thermopile arrangement. A 100 thermocouple pair heat flux sensor has been fabricated on silicon wafers. The sensor produced an output voltage of 200-400 microvolts when exposed to a hot air heat gun. A 20 element thermocouple pair heat flux sensor has been fabricated on aluminum oxide sheet. Thermocouples are Pt-Pt/Rh with silicon dioxide as the insulating material. This sensor produced an output of 28 microvolts when exposed to the radiation of a furnace operating at 1000 C. Work is also underway to put this type of heat flux sensor on metal surfaces.

  7. Thin-film temperature sensor

    NASA Technical Reports Server (NTRS)

    Maserjian, J.; Gatewood, J. R.

    1974-01-01

    Sensor measures rapid temperature changes in fluid streams. Sensor withstands contacts with various corrosive fluids, high fluid-flow rates, and turbulences caused by rapid changes in flow rates. Capacitor is part of resonant bridge circuit which produces ac voltage that is proportional to temperature.

  8. Thin film porous membranes based on sol-gel chemistry for catalytic sensors

    SciTech Connect

    Hughes, R.C.; Patel, S.V.; Jenkins, M.W.; Boyle, T.J.; Gardner, T.J.; Brinker, C.J.

    1998-05-01

    Nanoporous sol-gel based films are finding a wide variety of uses including gas separations and supports for heterogeneous catalysts. The films can be formed by spin or dip coating, followed by relatively low temperature annealing. The authors used several types of these films as coatings on the Pd alloy thin film sensors they had previously fabricated and studied. The sol-gel films have little effect on the sensing response to H{sub 2} alone. However, in the presence of other gases, the nanoporous film modifies the sensor behavior in several beneficial ways. (1) They have shown that the sol-gel coated sensors were only slightly poisoned by high concentrations of H{sub 2}S while uncoated sensors showed moderate to severe poisoning effects. (2) For a given partial pressure of H{sub 2}, the signal from the sensor is modified by the presence of O{sub 2} and other oxidizing gases.

  9. Polymeric thin film gas sensors

    NASA Astrophysics Data System (ADS)

    Misra, S. C. K.; Suri, Archana; Chandra, Subhas; Kumar, N.; Sethi, V. C.

    1999-11-01

    Polymers are the new and fast emerging materials with a growing scientific and technological interest. The material, though of recent origin, offers unique possibility of tailoring their properties to suit a large variety of applications. The properties and characteristics of intrinsically conducting polymers make them suitable materials for several applications. The detectors made with such organic polymers can help in quick and easy identification of the microbes.

  10. CO responses of sensors based on cerium oxide thick films prepared from clustered spherical nanoparticles.

    PubMed

    Izu, Noriya; Matsubara, Ichiro; Itoh, Toshio; Akamatsu, Takafumi; Shin, Woosuck

    2013-01-01

    Various types of CO sensors based on cerium oxide (ceria) have been reported recently. It has also been reported that the response speed of CO sensors fabricated from porous ceria thick films comprising nanoparticles is extremely high. However, the response value of such sensors is not suitably high. In this study, we investigated methods of improving the response values of CO sensors based on ceria and prepared gas sensors from core-shell ceria polymer hybrid nanoparticles. These hybrid nanoparticles have been reported to have a unique structure: The core consists of a cluster of ceria crystallites several nanometers in size. We compared the characteristics of the sensors based on thick films prepared from core-shell nanoparticles with those of sensors based on thick films prepared from conventionally used precipitated nanoparticles. The sensors prepared from the core-shell nanoparticles exhibited a resistance that was ten times greater than that of the sensors prepared from the precipitated nanoparticles. The response values of the gas sensors based on the core-shell nanoparticles also was higher than that of the sensors based on the precipitated nanoparticles. Finally, improvements in sensor response were also noticed after the addition of Au nanoparticles to the thick films used to fabricate the two types of sensors. PMID:23529123

  11. Formaldehyde Gas Sensors: A Review

    PubMed Central

    Chung, Po-Ren; Tzeng, Chun-Ta; Ke, Ming-Tsun; Lee, Chia-Yen

    2013-01-01

    Many methods based on spectrophotometric, fluorometric, piezoresistive, amperometric or conductive measurements have been proposed for detecting the concentration of formaldehyde in air. However, conventional formaldehyde measurement systems are bulky and expensive and require the services of highly-trained operators. Accordingly, the emergence of sophisticated technologies in recent years has prompted the development of many microscale gaseous formaldehyde detection systems. Besides their compact size, such devices have many other advantages over their macroscale counterparts, including a real-time response, a more straightforward operation, lower power consumption, and the potential for low-cost batch production. This paper commences by providing a high level overview of the formaldehyde gas sensing field and then describes some of the more significant real-time sensors presented in the literature over the past 10 years or so. PMID:23549368

  12. Advances in Thin Film Sensor Technologies for Engine Applications

    NASA Technical Reports Server (NTRS)

    Lei, Jih-Fen; Martin, Lisa C.; Will, Herbert A.

    1997-01-01

    Advanced thin film sensor techniques that can provide accurate surface strain and temperature measurements are being developed at NASA Lewis Research Center. These sensors are needed to provide minimally intrusive characterization of advanced materials (such as ceramics and composites) and structures (such as components for Space Shuttle Main Engine, High Speed Civil Transport, Advanced Subsonic Transports and General Aviation Aircraft) in hostile, high-temperature environments and for validation of design codes. This paper presents two advanced thin film sensor technologies: strain gauges and thermocouples. These sensors are sputter deposited directly onto the test articles and are only a few micrometers thick; the surface of the test article is not structurally altered and there is minimal disturbance of the gas flow over the surface. The strain gauges are palladium-13% chromium based and the thermocouples are platinum-13% rhodium vs. platinum. The fabrication techniques of these thin film sensors in a class 1000 cleanroom at the NASA Lewis Research Center are described. Their demonstration on a variety of engine materials, including superalloys, ceramics and advanced ceramic matrix composites, in several hostile, high-temperature test environments are discussed.

  13. Reducing the capacitance of piezoelectric film sensors.

    PubMed

    González, Martín G; Sorichetti, Patricio A; Santiago, Guillermo D

    2016-04-01

    We present a novel design for large area, wideband, polymer piezoelectric sensor with low capacitance. The large area allows better spatial resolution in applications such as photoacoustic tomography and the reduced capacitance eases the design of fast transimpedance amplifiers. The metalized piezoelectric polymer thin film is segmented into N sections, electrically connected in series. In this way, the total capacitance is reduced by a factor 1/N(2), whereas the mechanical response and the active area of the sensor are not modified. We show the construction details for a two-section sensor, together with the impedance spectroscopy and impulse response experimental results that validate the design. PMID:27131698

  14. Reducing the capacitance of piezoelectric film sensors

    NASA Astrophysics Data System (ADS)

    González, Martín G.; Sorichetti, Patricio A.; Santiago, Guillermo D.

    2016-04-01

    We present a novel design for large area, wideband, polymer piezoelectric sensor with low capacitance. The large area allows better spatial resolution in applications such as photoacoustic tomography and the reduced capacitance eases the design of fast transimpedance amplifiers. The metalized piezoelectric polymer thin film is segmented into N sections, electrically connected in series. In this way, the total capacitance is reduced by a factor 1/N2, whereas the mechanical response and the active area of the sensor are not modified. We show the construction details for a two-section sensor, together with the impedance spectroscopy and impulse response experimental results that validate the design.

  15. Platform for a Hydrocarbon Exhaust Gas Sensor Utilizing a Pumping Cell and a Conductometric Sensor

    PubMed Central

    Biskupski, Diana; Geupel, Andrea; Wiesner, Kerstin; Fleischer, Maximilian; Moos, Ralf

    2009-01-01

    Very often, high-temperature operated gas sensors are cross-sensitive to oxygen and/or they cannot be operated in oxygen-deficient (rich) atmospheres. For instance, some metal oxides like Ga2O3 or doped SrTiO3 are excellent materials for conductometric hydrocarbon detection in the rough atmosphere of automotive exhausts, but have to be operated preferably at a constant oxygen concentration. We propose a modular sensor platform that combines a conductometric two-sensor-setup with an electrochemical pumping cell made of YSZ to establish a constant oxygen concentration in the ambient of the conductometric sensor film. In this paper, the platform is introduced, the two-sensor-setup is integrated into this new design, and sensing performance is characterized. Such a platform can be used for other sensor principles as well. PMID:22423212

  16. Optical Temperature Sensor For Gas Turbines

    NASA Technical Reports Server (NTRS)

    Mossey, P. W.

    1987-01-01

    New design promises accuracy even in presence of contamination. Improved sensor developed to measure gas temperatures up to 1,700 degree C in gas-turbine engines. Sensor has conical shape for mechanical strengths and optical configuration insensitive to deposits of foreign matter on sides of cone.

  17. Electrospray-printed nanostructured graphene oxide gas sensors.

    PubMed

    Taylor, Anthony P; Velásquez-García, Luis F

    2015-12-18

    We report low-cost conductometric gas sensors that use an ultrathin film made of graphene oxide (GO) nanoflakes as transducing element. The devices were fabricated by lift-off metallization and near-room temperature, atmospheric pressure electrospray printing using a shadow mask. The sensors are sensitive to reactive gases at room temperature without requiring any post heat treatment, harsh chemical reduction, or doping with metal nanoparticles. The sensors' response to humidity at atmospheric pressure tracks that of a commercial sensor, and is linear with changes in humidity in the 10%-60% relative humidity range while consuming <6 μW. Devices with GO layers printed by different deposition recipes yielded nearly identical response characteristics, suggesting that intrinsic properties of the film control the sensing mechanism. The gas sensors successfully detected ammonia at concentrations down to 500 ppm (absolute partial pressure of ∼5 × 10(-4) T) at ∼1 T pressure, room temperature conditions. The sensor technology can be used in a great variety of applications including air conditioning and sensing of reactive gas species in vacuum lines and abatement systems. PMID:26579701

  18. Thin-film temperature sensor.

    NASA Technical Reports Server (NTRS)

    Maserjian, J.

    1972-01-01

    A new device has been developed for sensing small and rapid temperature changes accompanying biochemical reactions. The active element consists of an evaporated thin-film capacitor having a relatively strong temperature dependence. This dependence is derived from electron trapping effects in the thin amorphous dielectric film. A voltage output of at least 50 mV/deg can be obtained prior to amplification by using a resonant ac bridge circuit operating at 100 kHz. The corresponding noise output for a 10 kHz bandwidth can with an optimum circuit be as low as 4 microvolts. Therefore, the minimum detectable temperature change would be 80 microdegrees at 10 kHz. Rapid thermal response is assured by supporting the thin-film capacitor on a thin anodic tantalum oxide film suspended across an electrolytically etched window in a tantalum foil.

  19. Silicon Carbide Gas Sensors for Propulsion Emissions and Safety Applications

    NASA Technical Reports Server (NTRS)

    Hunter, G. W.; Xu, J.; Neudeck, P. G.; Lukco, D.; Trunek, A.; Spry, D.; Lampard, P.; Androjna, D.; Makel, D.; Ward, B.

    2007-01-01

    Silicon carbide (SiC) based gas sensors have the ability to meet the needs of a range of aerospace propulsion applications including emissions monitoring, leak detection, and hydrazine monitoring. These applications often require sensitive gas detection in a range of environments. An effective sensing approach to meet the needs of these applications is a Schottky diode based on a SiC semiconductor. The primary advantage of using SiC as a semiconductor is its inherent stability and capability to operate at a wide range of temperatures. The complete SiC Schottky diode gas sensing structure includes both the SiC semiconductor and gas sensitive thin film metal layers; reliable operation of the SiC-based gas sensing structure requires good control of the interface between these gas sensitive layers and the SiC. This paper reports on the development of SiC gas sensors. The focus is on two efforts to better control the SiC gas sensitive Schottky diode interface. First, the use of palladium oxide (PdOx) as a barrier layer between the metal and SiC is discussed. Second, the use of atomically flat SiC to provide an improved SiC semiconductor surface for gas sensor element deposition is explored. The use of SiC gas sensors in a multi-parameter detection system is briefly discussed. It is concluded that SiC gas sensors have potential in a range of propulsion system applications, but tailoring of the sensor for each application is necessary.

  20. Temperature Modulation of a Catalytic Gas Sensor

    PubMed Central

    Brauns, Eike; Morsbach, Eva; Kunz, Sebastian; Baeumer, Marcus; Lang, Walter

    2014-01-01

    The use of catalytic gas sensors usually offers low selectivity, only based on their different sensitivities for various gases due to their different heats of reaction. Furthermore, the identification of the gas present is not possible, which leads to possible misinterpretation of the sensor signals. The use of micro-machined catalytic gas sensors offers great advantages regarding the response time, which allows advanced analysis of the sensor response. By using temperature modulation, additional information about the gas characteristics can be measured and drift effects caused by material shifting or environmental temperature changes can be avoided. In this work a miniaturized catalytic gas sensor which offers a very short response time (<150 ms) was developed. Operation with modulated temperature allows analysis of the signal spectrum with advanced information content, based on the Arrhenius approach. Therefore, a high-precise electronic device was developed, since theory shows that harmonics induced by the electronics must be avoided to generate a comprehensible signal. PMID:25356643

  1. All thin film magnetoelectric magnetic field sensors.

    NASA Astrophysics Data System (ADS)

    Zhao, Peng

    2009-03-01

    We have fabricated prototype ac magnetic field sensors operating at room temperature based on all thin film ME devices showing strong magnetoelectric (ME) coupling. The ME layers consist of a sol-gel derived Pb(Zr0.52Ti0.48)TiO3 (PZT) film and a dc magnetron sputter deposited magnetostrictive Fe70Ga30 (FeGa) film. The bilayer structures are prepared on micromachined Si wafers, and the laser cutting technique is used to release and isolate the cantilevers for optimization of the sensor performance. The PZT layer and the FeGa layer couple via the piezoelectric d31 mode and the corresponding ME coupling coefficient is as high as 2 V/(Oe cm) for a lateral dimension of 1 mm^2 device at the mechanical resonant frequency of 333 Hz of a Si cantilever. The soft magnetic FeGa film requires dc bias magnetic field of around 90 Oe to operate the thin film ME device. The coupling between the PZT and the FeGa films is remarkably improved by depositing a 40 nm thick Pt intermediate layer. The clamping effect on the ME coupling is dramatically reduced by back-etching the Si cantilever down to 35 μm thick. The present work indicates presence of robust ME coupling in microfabricated multilayer thin film ME devices.

  2. Thin films of tetrafluorosubstituted cobalt phthalocyanine: Structure and sensor properties

    NASA Astrophysics Data System (ADS)

    Klyamer, Darya D.; Sukhikh, Aleksandr S.; Krasnov, Pavel O.; Gromilov, Sergey A.; Morozova, Natalya B.; Basova, Tamara V.

    2016-05-01

    In this work, thin films of tetrafluorosubstituted cobalt phthalocyanine (CoPcF4) were prepared by organic molecular beam deposition and their structure was studied using UV-vis, polarization dependent Raman spectroscopy, XRD and atomic force microscopy. Quantum chemical calculations (DFT) have been employed in order to determine the detailed assignment of the bands in the CoPcF4 IR and Raman spectra. The electrical sensor response of CoPcF4 films to ammonia vapours was investigated and compared with that of unsubstituted cobalt phthalocyanine films. In order to explain the difference in sensitivity of the unsubstituted and fluorinated phthalocyanines to ammonia, the nature and properties of chemical binding between CoPc derivatives and NH3 were described by quantum-chemical calculations utilizing DFT method. The effect of post-deposition annealing on surface morphology and gas sensing properties of CoPcF4 films was also studied.

  3. Development of Sic Gas Sensor Systems

    NASA Technical Reports Server (NTRS)

    Hunter, G. W.; Neudeck, P. G.; Okojie, R. S.; Beheim, G. M.; Thomas, V.; Chen, L.; Lukco, D.; Liu, C. C.; Ward, B.; Makel, D.

    2002-01-01

    Silicon carbide (SiC) based gas sensors have significant potential to address the gas sensing needs of aerospace applications such as emission monitoring, fuel leak detection, and fire detection. However, in order to reach that potential, a range of technical challenges must be overcome. These challenges go beyond the development of the basic sensor itself and include the need for viable enabling technologies to make a complete gas sensor system: electrical contacts, packaging, and transfer of information from the sensor to the outside world. This paper reviews the status at NASA Glenn Research Center of SiC Schottky diode gas sensor development as well as that of enabling technologies supporting SiC gas sensor system implementation. A vision of a complete high temperature microfabricated SiC gas sensor system is proposed. In the long-term, it is believed that improvements in the SiC semiconductor material itself could have a dramatic effect on the performance of SiC gas sensor systems.

  4. Vehicle exhaust gas chemical sensors using acoustic wave resonators

    SciTech Connect

    Cernosek, R.W.; Small, J.H.; Sawyer, P.S.; Bigbie, J.R.; Anderson, M.T.

    1998-03-01

    Under Sandia`s Laboratory Directed Research and Development (LDRD) program, novel acoustic wave-based sensors were explored for detecting gaseous chemical species in vehicle exhaust streams. The need exists for on-line, real-time monitors to continuously analyze the toxic exhaust gases -- nitrogen oxides (NOx), carbon monoxide (CO), and hydrocarbons (HC) -- for determining catalytic converter efficiency, documenting compliance to emission regulations, and optimizing engine performance through feedback control. In this project, the authors adapted existing acoustic wave chemical sensor technology to the high temperature environment and investigated new robust sensor materials for improving gas detection sensitivity and selectivity. This report describes one new sensor that has potential use as an exhaust stream residual hydrocarbon monitor. The sensor consists of a thickness shear mode (TSM) quartz resonator coated with a thin mesoporous silica layer ion-exchanged with palladium ions. When operated at temperatures above 300 C, the high surface area film catalyzes the combustion of the hydrocarbon vapors in the presence of oxygen. The sensor acts as a calorimeter as the exothermic reaction slightly increases the temperature, stressing the sensor surface, and producing a measurable deviation in the resonator frequency. Sensitivities as high as 0.44 (ppm-{Delta}f) and (ppm-gas) have been measured for propylene gas, with minimum detectable signals of < 50 ppm of propylene at 500 C.

  5. Electrospray-printed nanostructured graphene oxide gas sensors

    NASA Astrophysics Data System (ADS)

    Taylor, Anthony P.; Velásquez-García, Luis F.

    2015-12-01

    We report low-cost conductometric gas sensors that use an ultrathin film made of graphene oxide (GO) nanoflakes as transducing element. The devices were fabricated by lift-off metallization and near-room temperature, atmospheric pressure electrospray printing using a shadow mask. The sensors are sensitive to reactive gases at room temperature without requiring any post heat treatment, harsh chemical reduction, or doping with metal nanoparticles. The sensors’ response to humidity at atmospheric pressure tracks that of a commercial sensor, and is linear with changes in humidity in the 10%-60% relative humidity range while consuming <6 μW. Devices with GO layers printed by different deposition recipes yielded nearly identical response characteristics, suggesting that intrinsic properties of the film control the sensing mechanism. The gas sensors successfully detected ammonia at concentrations down to 500 ppm (absolute partial pressure of ˜5 × 10-4 T) at ˜1 T pressure, room temperature conditions. The sensor technology can be used in a great variety of applications including air conditioning and sensing of reactive gas species in vacuum lines and abatement systems.

  6. Gas Sensors Based on Semiconducting Nanowire Field-Effect Transistors

    PubMed Central

    Feng, Ping; Shao, Feng; Shi, Yi; Wan, Qing

    2014-01-01

    One-dimensional semiconductor nanostructures are unique sensing materials for the fabrication of gas sensors. In this article, gas sensors based on semiconducting nanowire field-effect transistors (FETs) are comprehensively reviewed. Individual nanowires or nanowire network films are usually used as the active detecting channels. In these sensors, a third electrode, which serves as the gate, is used to tune the carrier concentration of the nanowires to realize better sensing performance, including sensitivity, selectivity and response time, etc. The FET parameters can be modulated by the presence of the target gases and their change relate closely to the type and concentration of the gas molecules. In addition, extra controls such as metal decoration, local heating and light irradiation can be combined with the gate electrode to tune the nanowire channel and realize more effective gas sensing. With the help of micro-fabrication techniques, these sensors can be integrated into smart systems. Finally, some challenges for the future investigation and application of nanowire field-effect gas sensors are discussed. PMID:25232915

  7. Porous Silicon Structures as Optical Gas Sensors.

    PubMed

    Levitsky, Igor A

    2015-01-01

    We present a short review of recent progress in the field of optical gas sensors based on porous silicon (PSi) and PSi composites, which are separate from PSi optochemical and biological sensors for a liquid medium. Different periodical and nonperiodical PSi photonic structures (bares, modified by functional groups or infiltrated with sensory polymers) are described for gas sensing with an emphasis on the device specificity, sensitivity and stability to the environment. Special attention is paid to multiparametric sensing and sensor array platforms as effective trends for the improvement of analyte classification and quantification. Mechanisms of gas physical and chemical sorption inside PSi mesopores and pores of PSi functional composites are discussed. PMID:26287199

  8. Zeolitic imidazolate framework as formaldehyde gas sensor.

    PubMed

    Chen, Er-Xia; Yang, Hui; Zhang, Jian

    2014-06-01

    Traditional semiconducting metal oxide-based gas sensors are always limited on low surface areas and high operating temperatures. Considering the high surface area and high stability of zeolitic imidazolate framework (ZIF), ZIF-67 (surface area of 1832.2 m(2) g(-1)) was first employed as a promising formaldehyde gas sensor at a low operating temperature (150 °C), and the gas sensor could detect formaldehyde as low as 5 ppm. This work develops a new promising application approach for porous metal-organic frameworks. PMID:24813234

  9. Porous Silicon Structures as Optical Gas Sensors

    PubMed Central

    Levitsky, Igor A.

    2015-01-01

    We present a short review of recent progress in the field of optical gas sensors based on porous silicon (PSi) and PSi composites, which are separate from PSi optochemical and biological sensors for a liquid medium. Different periodical and nonperiodical PSi photonic structures (bares, modified by functional groups or infiltrated with sensory polymers) are described for gas sensing with an emphasis on the device specificity, sensitivity and stability to the environment. Special attention is paid to multiparametric sensing and sensor array platforms as effective trends for the improvement of analyte classification and quantification. Mechanisms of gas physical and chemical sorption inside PSi mesopores and pores of PSi functional composites are discussed. PMID:26287199

  10. Nanocrystalline films for gas-reactive applications

    DOEpatents

    Eastman, Jeffrey A.; Thompson, Loren J.

    2004-02-17

    A gas sensor for detection of oxidizing and reducing gases, including O.sub.2, CO.sub.2, CO, and H.sub.2, monitors the partial pressure of a gas to be detected by measuring the temperature rise of an oxide-thin-film-coated metallic line in response to an applied electrical current. For a fixed input power, the temperature rise of the metallic line is inversely proportional to the thermal conductivity of the oxide coating. The oxide coating contains multi-valent cation species that change their valence, and hence the oxygen stoichiometry of the coating, in response to changes in the partial pressure of the detected gas. Since the thermal conductivity of the coating is dependent on its oxygen stoichiometry, the temperature rise of the metallic line depends on the partial pressure of the detected gas. Nanocrystalline (<100 nm grain size) oxide coatings yield faster sensor response times than conventional larger-grained coatings due to faster oxygen diffusion along grain boundaries rather than through grain interiors.

  11. Thin Film Sensors for Minimally-Intrusive Measurements in Harsh High Temperature Environment

    NASA Technical Reports Server (NTRS)

    Lei, Jih-Fen; Will, Herbert A.; Martin, Lisa C.

    1998-01-01

    Advanced thin film sensors are being developed to provide accurate surface temperature, heat flux and strain measurements for components used in hostile propulsion environments. These sensors are sputter deposited and microfabricated directly onto the test articles with no additional bonding agent. The thickness of the sensors is only a few micrometers which creates minimal disturbance of the gas flow over the test surface. Thus thin film sensors have the advantage over conventional wire- based sensors by providing minimally intrusive measurement and having a faster response. These thin film sensors are being developed for characterization of advanced materials and structures in hostile, high-temperature environments, and for validation of design codes. This paper presents the advances of three high temperature thin film sensor technologies developed at NASA Lewis Research Center: thermocouples, heat-flux gages and strain gages. The fabrication techniques of these thin film sensors which include physical vapor deposition, photolithography patterning and lead Wire attachment are described. Sensors demonstrations on a variety of engine materials, including superalloys, ceramics and advanced ceramic matrix composites, in several hostile, high-temperature test environments are presented. The advantages and limitations of thin film sensor technology are also discussed.

  12. SiC-Based Gas Sensors

    NASA Technical Reports Server (NTRS)

    Chen, Liang-Yu; Hunter, Gary W.; Neudeck, Philip G.; Knight, Dak; Liu, C. C.; Wu, Q. H.

    1997-01-01

    Electronic grade Silicon Carbide (SiC) is a ceramic material which can operate as a semiconductor at temperatures above 600 C. Recently, SiC semiconductors have been used in Schottky diode gas sensor structures. These sensors have been shown to be functional at temperatures significantly above the normal operating range of Si-based devices. SiC sensor operation at these higher temperatures allows detection of gases such as hydrocarbons which are not detectable at lower temperatures. This paper discusses the development of SiC-based Schottky diode gas sensors for the detection of hydrogen, hydrocarbons, and nitrogen oxides (NO(x)). Sensor designs for these applications are discussed. High sensitivity is observed for the hydrogen and hydrocarbon sensors using Pd on SiC Schottky diodes while the NO(x) sensors are still under development. A prototype sensor package has been fabricated which allows high temperature operation in a room temperature ambient by minimizing heat loss to that ambient. It is concluded that SiC-based gas sensors have considerable potential in a variety of gas sensing applications.

  13. Thin-film spectroscopic sensor

    DOEpatents

    Burgess, Jr., Lloyd W.; Goldman, Don S.

    1992-01-01

    There is disclosed an integrated spectrometer for chemical analysis by evanescent electromagnetic radiation absorption in a reaction volume. The spectrometer comprises a noninteractive waveguide, a substrate, an entrance grating and an exit grating, an electromagnetic radiation source, and an electromagnetic radiation sensing device. There is further disclosed a chemical sensor to determine the pressure and concentration of a chemical species in a mixture comprising an interactive waveguide, a substrate, an entrance grating and an exit grating, an electromagnetic radiation source, and an electromagnetic radiation sensing device.

  14. Diamond diode-based chemical gas sensors

    NASA Astrophysics Data System (ADS)

    Gurbuz, Yasar

    The successful utilization of microelectronic-based gas sensors (MOS Capacitor, MOSFET, MS, and MIS diodes) in many practical applications such as automotive, aeronautical, commercial, and environmental has not been achieved due to the limited operating temperature range of Si and GaAs semiconductors (less than 200sp°C). Present development in the diamond technology provides an opportunity to address this problem. Along with its well known physical and optical properties, the superior semiconductor properties of diamond over Si, GaAs, and SiC (higher breakdown voltage, energy band gap, carrier mobility, and thermal conductivity) are useful for gas sensor applications. We have developed a novel family of diamond-based chemical gas sensors for the detection of hydrogen, oxygen and carbon monoxide at a higher operating temperature range than currently possible with Si- and GaAs-based microelectronic gas sensors. The new devices were fabricated in the form of a Pd/i-diamond/psp+-diamond MIS structure for the detection hydrogen and a Pt/SnOsb{x}/i-diamond/psp+-diamond CAIS structure for the detection of oxygen and carbon monoxide. Sensor performances have been investigated over a wide temperature range (22sp° C{-}400sp° C). The gas sensitivity of the devices have been found to be large, fast, selective, repeatable, and reproducible. Detection mechanisms of the sensors have been developed. The hydrogen detection mechanism of the diamond-based MIS device is due to hydrogen dipole formation at the Pd/i-diamond interface and a subsequent change in the voltage distribution across the junction. The oxygen and carbon monoxide sensitivity of the CAIS device is attributed to the modification of the oxygen vacancies in the SnOsb{x} layer and the subsequent change in the voltage drop across the oxide. The current transport mechanisms of the sensors have been studied and gas adsorption effects on sensor parameters have been modeled. The current conduction mechanism of the sensors is Space Charge Limited, distinctively different from Si- and GaAs-based diodes. While no significant change was observed on the ideality factor, a change in the barrier height and tunneling factor of the sensors was found upon gas adsorption. The findings of this study form the basis for the utilization of microelectronic devices in wide range of gas sensor applications, requiring large sensitivity, fast, repeatable, and reproducible response, wider operating temperature range, and stability in harsh environments. Furthermore, this study contributes a fundamental knowledge in the operating principles and sensing mechanisms of the high temperature-tolerant microelectronic gas sensors.

  15. Unsteady heat transfer from a thick hot-film sensor

    NASA Astrophysics Data System (ADS)

    Park, Chong H.; Cole, Kevin D.

    1994-10-01

    This study is aimed at developing numerical and analytical models of thick hot-film sensor that include thermal storage in the sensor. Transient conjugate heat transfer analysis is carried out with the unsteady surface element (USE) method. The temperature response of the sensor is determined from analysis of three bodies (air, hot film, and polymer substrate). The average temperature of the hot-film sensor is determined, with known heat flux input to the hot film and with known air velocity. This work, which involves steady airflow with transient heat transfer, is a first step toward transient airflow analysis of these sensors.

  16. Developing Multilayer Thin Film Strain Sensors With High Thermal Stability

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Fralick, Gustave C.; Gonzalez, Jose M., III

    2006-01-01

    A multilayer thin film strain sensor for large temperature range use is under development using a reactively-sputtered process. The sensor is capable of being fabricated in fine line widths utilizing the sacrificial-layer lift-off process that is used for micro-fabricated noble-metal sensors. Tantalum nitride films were optimized using reactive sputtering with an unbalanced magnetron source. A first approximation model of multilayer resistance and temperature coefficient of resistance was used to set the film thicknesses in the multilayer film sensor. Two multifunctional sensors were fabricated using multilayered films of tantalum nitride and palladium chromium, and tested for low temperature resistivity, TCR and strain response. The low temperature coefficient of resistance of the films will result in improved stability in thin film sensors for low to high temperature use.

  17. Effects of Palladium Loading on the Response of a Thick Film Flame-made ZnO Gas Sensor for Detection of Ethanol Vapor

    PubMed Central

    Liewhiran, Chaikarn; Phanichphant, Sukon

    2007-01-01

    ZnO nanoparticles doped with 0-5 mol% Pd were successfully produced in a single step by flame spray pyrolysis (FSP) using zinc naphthenate and palladium (II) acetylacetonate dissolved in toluene-acetonitrile (80:20 vol%) as precursors. The effect of Pd loading on the ethanol gas sensing performance of the ZnO nanoparticles and the crystalline sizes were investigated. The particle properties were analyzed by XRD, BET, AFM, SEM (EDS line scan mode), TEM, STEM, EDS, and CO-pulse chemisorption measurements. A trend of an increase in specific surface area of samples and a decrease in the dBET with increasing Pd concentrations was noted. ZnO nanoparticles were observed as particles presenting clear spheroidal, hexagonal and rod-like morphologies. The sizes of ZnO spheroidal and hexagonal particle crystallites were in the 10-20 nm range. ZnO nanorods were in the range of 10-20 nm in width and 20-50 nm in length. The size of Pd nanoparticles increased and Pd-dispersion% decreased with increasing Pd concentrations. The sensing films were produced by mixing the particles into an organic paste composed of terpineol and ethyl cellulose as a vehicle binder. The paste was doctor-bladed onto Al2O3 substrates interdigitated with Au electrodes. The film morphology was analyzed by SEM and EDS analyses. The gas sensing of ethanol (25-250 ppm) was studied in dry air at 400°C. The oxidation of ethanol on the sensing surface of the semiconductor was confirmed by MS. A well-dispersed of 1 mol%Pd/ZnO films showed the highest sensitivity and the fastest response time (within seconds).

  18. Hydrogen gas sensor and method of manufacture

    DOEpatents

    McKee, John M.

    1991-01-01

    A sensor for measuring the pressure of hydrogen gas in a nuclear reactor, and method of manufacturing the same. The sensor comprises an elongated tube of hydrogen permeable material which is connected to a pressure transducer through a feedthrough tube which passes through a wall at the boundary of the region in which hydrogen is present. The tube is pressurized and flushed with hydrogen gas at an elevated temperature during the manufacture of the sensor in order to remove all gasses other than hydrogen from the device.

  19. Integrated Microfluidic Gas Sensors for Water Monitoring

    NASA Technical Reports Server (NTRS)

    Zhu, L.; Sniadecki, N.; DeVoe, D. L.; Beamesderfer, M.; Semancik, S.; DeVoe, D. L.

    2003-01-01

    A silicon-based microhotplate tin oxide (SnO2) gas sensor integrated into a polymer-based microfluidic system for monitoring of contaminants in water systems is presented. This device is designed to sample a water source, control the sample vapor pressure within a microchannel using integrated resistive heaters, and direct the vapor past the integrated gas sensor for analysis. The sensor platform takes advantage of novel technology allowing direct integration of discrete silicon chips into a larger polymer microfluidic substrate, including seamless fluidic and electrical interconnects between the substrate and silicon chip.

  20. ZnO Coated Nanospring-Based Gas Sensors

    NASA Astrophysics Data System (ADS)

    Bakharev, Pavel Viktorovich

    The current research demonstrates new techniques for characterization of electrical transport properties of the metal oxide polycrystalline structures, gas and vapor phase kinetics, surface processes such as gas-surface, vapor-surface interactions and redox processes by applying novel gas sensing devices. Real-time sensor electrical response characteristics obtained under highly controlled laboratory conditions have been used to characterize corresponding surface interactions and electrical properties of the gas sensitive structures. Novel redox chemical sensors (chemiresistors) have been fabricated with 3-D and 1-D ZnO coated nanospring (NS) structures. Silica NSs served as insulating scaffolding for a ZnO gas sensitive layer and has been grown via a vapor-liquid-solid (VLS) mechanism by using a chemical vapor deposition (CVD) technique. The NSs have been coated with polycrystalline ZnO by atomic layer deposition (ALD). The chemiresistor devices have been thoroughly characterized in terms of their crystal structures (by XRD, FESEM, TEM, and ellipsometry) and their electrical response properties. A 3-D gas sensor has been constructed from a xenon light bulb by coating it with a 3-D zinc oxide coated silica nanospring mat, where the xenon light bulb served as a sensor heater. This inexpensive sensor platform has been used to characterize gas-solid, vapor-solid, and redox processes. The optimal temperature of the gas sensitive ZnO layer, the temperature of the vapor-gas mixture and the crystal structure of the gas sensitive layer have been determined to reach the highest sensitivity of the gas sensors. The activation energy of toluene oxidation (Ed) on the ZnO surface and the activation energy of oxidation (Ea) of the depleted ZnO surface have been determined and analyzed. A 1-D chemiresistor has been fabricated with a single ZnO coated silica nanospring by photolithography. The question of sensor sensitivity of MOS nanomaterials and MOS thin films has been addressed. The experimental and computational analyses of the sensing properties of the 3-D (nanospring-based) and flat thin films structures show that the complexity and periodic boundary conditions of the nanospring-based devices result in a lower detection limit, while flat thin films exhibit higher sensitivity to small analyte concentration fluctuations. Our analysis shows that the productive approach to fabrication of integrated sensors (electronic noses) is to use both the structures (3D and flat geometries) as the receptors for a prompt and reliable detection and recognition of the target chemical compounds. Analog lock-in amplifier (LIA) AC measurements of the electrical response have been performed to significantly improve the signal-to-noise ratio (SNR) and reduce the detection limit of the single ZnO coated nanospring chemiresistor from the ppm to the ppb analyte concentration ranges. The LIA-based sensor signal recognition technique has shown to extend the capabilities of the gas sensor array for a linear discrimination analysis (LDA), an independent component analysis (ICA), a principal component analysis (PCA) and other multiple odor recognition methods.

  1. Sensor array for toxic gas detection

    DOEpatents

    Stetter, Joseph R.; Zaromb, Solomon; Penrose, William R.

    1987-01-01

    A portable instrument for use in the field in detecting and identifying a hazardous component in air or other gas including an array of small sensors which upon exposure to the gas from a pattern of electrical responses, a source of standard response patterns characteristic of various components, and microprocessor means for comparing the sensor-formed response pattern with one or more standard patterns to thereby identify the component on a display. The number of responses may be increased beyond the number of sensors by changing the operating voltage, temperature or other condition associated with one or more sensors to provide a plurality of responses from each of one or more of the sensors. In one embodiment, the instrument is capable of identifying anyone of over 50-100 hazardous components.

  2. The study of structural properties of carbon nanotubes decorated with NiFe₂O₄ nanoparticles and application of nano-composite thin film as H₂S gas sensor.

    PubMed

    Hajihashemi, R; Rashidi, Ali M; Alaie, M; Mohammadzadeh, R; Izadi, N

    2014-11-01

    Nano-composite of multiwall carbon nanotube, decorated with NiFe2O4 nanoparticles (NiFe2O4-MWCNT), was synthesized using the sol-gel method. NiFe2O4-MWCNTs were characterized using different methods such as X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), high resolution transmission electron microscopy (HRTEM), atomic force microscopy (AFM) and vibrating sample magnetometer (VSM). The average size of the crystallites is 23.93 nm. The values of the saturation magnetization (MS), coercivity (HC) and retentivity (MR) of NiFe2O4-MWCNTs are obtained as 15 emu g(-1), 21Oe and 5 emu g(-1), respectively. In this research, NiFe2O4-MWCNT thin films were prepared with the spin-coating method. These thin films were used as the H2S gas sensor. The results suggest the possibility of the utilization of NiFe2O4-MWCNT nano-composite, as the H2S detector. The sensor shows appropriate response towards 100 ppm of H2S at 300°C. PMID:25280723

  3. Resistive Oxygen Gas Sensors for Harsh Environments

    PubMed Central

    Moos, Ralf; Izu, Noriya; Rettig, Frank; Reiß, Sebastian; Shin, Woosuck; Matsubara, Ichiro

    2011-01-01

    Resistive oxygen sensors are an inexpensive alternative to the classical potentiometric zirconia oxygen sensor, especially for use in harsh environments and at temperatures of several hundred °C or even higher. This device-oriented paper gives a historical overview on the development of these sensor materials. It focuses especially on approaches to obtain a temperature independent behavior. It is shown that although in the past 40 years there have always been several research groups working concurrently with resistive oxygen sensors, novel ideas continue to emerge today with respect to improvements of the sensor response time, the temperature dependence, the long-term stability or the manufacture of the devices themselves using novel techniques for the sensitive films. Materials that are the focus of this review are metal oxides; especially titania, titanates, and ceria-based formulations. PMID:22163805

  4. Graphene nanomesh as highly sensitive chemiresistor gas sensor

    PubMed Central

    Paul, Rajat Kanti; Badhulika, Sushmee; Saucedo, Nuvia M.; Mulchandani, Ashok

    2016-01-01

    Graphene is a one atom thick carbon allotrope with all surface atoms that has attracted significant attention as a promising material as the conduction channel of a field-effect transistor and chemical field-effect transistor sensors. However, the zero bandgap of semimetal graphene still limits its application for these devices. In this work, ethanol-chemical vapor deposition (CVD) grown p-type semiconducting large-area monolayer graphene film was patterned into nanomesh by the combination of nanosphere lithography and reactive ion etching and evaluated as field-effect transistor and chemiresistor gas sensors. The resulting neck-width of the synthesized nanomesh was about ~20 nm comprised of the gap between polystyrene spheres that was formed during the reactive ion etching process. The neck-width and the periodicities of the graphene nanomesh could be easily controlled depending the duration/power of RIE and the size of PS nanospheres. The fabricated GNM transistor device exhibited promising electronic properties featuring high drive current and ION/IOFF ratio of about 6, significantly higher than its film counterpart. Similarly, when applied as chemiresistor gas sensor at room temperature, the graphene nanomesh sensor showed excellent sensitivity towards NO2 and NH3, significantly higher than their film counterparts. The ethanol-based graphene nanomesh sensors exhibited sensitivities of about 4.32%/ppm in NO2 and 0.71%/ppm in NH3 with limit of detections of 15 ppb and 160 ppb, respectively. Our demonstrated studies on controlling the neck width of the nanomesh would lead to further improvement of graphene-based transistors and sensors. PMID:22931286

  5. Integrated Micro-Machined Hydrogen Gas Sensor. Final Report

    SciTech Connect

    Frank DiMeo, Jr.

    2000-10-02

    This report details our recent progress in developing novel MEMS (Micro-Electro-Mechanical Systems) based hydrogen gas sensors. These sensors couple novel thin films as the active layer on a device structure known as a Micro-HotPlate. This coupling has resulted in a gas sensor that has several unique advantages in terms of speed, sensitivity, stability and amenability to large scale manufacture. This Phase-I research effort was focused on achieving the following three objectives: (1) Investigation of sensor fabrication parameters and their effects on sensor performance. (2) Hydrogen response testing of these sensors in wet/dry and oxygen-containing/oxygen-deficient atmospheres. (3) Investigation of the long-term stability of these thin film materials and identification of limiting factors. We have made substantial progress toward achieving each of these objectives, and highlights of our phase I results include the demonstration of signal responses with and without oxygen present, as well as in air with a high level of humidity. We have measured response times of <0.5 s to 1% H{sub 2} in air, and shown the ability to detect concentrations of <200 ppm. These results are extremely encouraging and suggest that this technology has substantial potential for meeting the needs of a hydrogen based economy. These achievements demonstrate the feasibility of using micro-hotplates structures in conjunction with palladium+coated metal-hydride films for sensing hydrogen in many of the environments required by a hydrogen based energy economy. Based on these findings, they propose to continue and expand the development of this technology in Phase II.

  6. High resolution gas volume change sensor

    SciTech Connect

    Dirckx, Joris J. J.; Aernouts, Jef E. F.; Aerts, Johan R. M.

    2007-05-15

    Changes of gas quantity in a system can be measured either by measuring pressure changes or by measuring volume changes. As sensitive pressure sensors are readily available, pressure change is the commonly used technique. In many physiologic systems, however, buildup of pressure influences the gas exchange mechanisms, thus changing the gas quantity change rate. If one wants to study the gas flow in or out of a biological gas pocket, measurements need to be done at constant pressure. In this article we present a highly sensitive sensor for quantitative measurements of gas volume change at constant pressure. The sensor is based on optical detection of the movement of a droplet of fluid enclosed in a capillary. The device is easy to use and delivers gas volume data at a rate of more than 15 measurements/s and a resolution better than 0.06 {mu}l. At the onset of a gas quantity change the sensor shows a small pressure artifact of less than 15 Pa, and at constant change rates the pressure artifact is smaller than 10 Pa or 0.01% of ambient pressure.

  7. Acoustic composition sensor for cryogenic gas mixtures

    NASA Technical Reports Server (NTRS)

    Shakkottai, P.; Kwack, E. Y.; Luchik, T. S.; Back, L. H.

    1991-01-01

    An acoustic sensor useful for the determination of the composition of a gaseous binary mixture in cryogenic liquid spills has been characterized. One version of the instrument traps a known mixture of helium and nitrogen at ambient temperature in a tube which is interrogated by sonic pulses to determine the speed of sound and hence the composition. Experimental data shows that this sensor is quite accurate. The second version uses two unconfined microphones which sense sound pulses. Experimental data acquired during mixing when liquid nitrogen is poured into a vessel of gaseous helium is presented. Data during transient cooling of the tubular sensor containing nitrogen when the sensor is dipped into liquid nitrogen and during transient warm-up when the sensor is withdrawn are also presented. This sensor is being developed for use in the mixing of liquid cryogens with gas evolution in the simulation of liquid hydrogen/liquid oxygen explosion hazards.

  8. Biomaterial based sulphur di oxide gas sensor

    NASA Astrophysics Data System (ADS)

    Ghosh, P. K.; Sarkar, A.

    2013-06-01

    Biomaterials are getting importance in the present research field of sensors. In this present paper performance of biomaterial based gas sensor made of gum Arabica and garlic extract had been studied. Extract of garlic clove with multiple medicinal and chemical utility can be proved to be useful in sensing Sulphur di Oxide gas. On exposure to Sulphur di Oxide gas the material under observation suffers some temporary structural change, which can be observed in form of amplified potentiometric change through simple electronic circuitry. Exploiting this very property a potentiometric gas sensor of faster response and recovery time can be designed. In this work sensing property of the said material has been studied through DC conductance, FTIR spectrum etc.

  9. Sensitivity Analysis of Lateral Field Excited Acoustic Wave Gas Sensors with Finite Element Method

    NASA Astrophysics Data System (ADS)

    Chen, Yung-Yu; Liu, Chih-Chieh

    2011-07-01

    In the last decade, there are increasing investigations on lateral field excited (LFE) acoustic wave sensors in biochemical liquid sensing applications due to their high sensitivity and simple fabrication. However, the research on this kind of sensor for gas detection is still awaited. This paper presents a theoretical modeling of the LFE acoustic wave gas sensor with a nanostrustured selective film for the first time. We developed this model by adopting a finite element software, COMSOL. Besides the eigenfrequency and frequency-response analyses, the sensitivities to the variations of mass density and electrical conductivity of the selective film caused from gas concentration were calculated. In the meantime, quartz crystal microbalance (QCM) sensors were also analyzed for comparison. Finally, the effect of geometry of the LFE gas sensor on the sensitivity was discussed. Results show that the LFE sensor exhibits larger sensing range and higher sensitivity to external electrical variation than the QCM sensor. This is because no shielding electrode exists on sensing surface of the LFE sensor, and hence the electric field can penetrate into the selective film. The simulation results provide useful guidelines for designing LFE acoustic wave gas sensors.

  10. Thin Film Heat Flux Sensors: Design and Methodology

    NASA Technical Reports Server (NTRS)

    Fralick, Gustave C.; Wrbanek, John D.

    2013-01-01

    Thin Film Heat Flux Sensors: Design and Methodology: (1) Heat flux is one of a number of parameters, together with pressure, temperature, flow, etc. of interest to engine designers and fluid dynamists, (2) The measurement of heat flux is of interest in directly determining the cooling requirements of hot section blades and vanes, and (3)In addition, if the surface and gas temperatures are known, the measurement of heat flux provides a value for the convective heat transfer coefficient that can be compared with the value provided by CFD codes.

  11. Acoustic Sensors for Fission Gas Characterization in MTR Harsh Environment

    NASA Astrophysics Data System (ADS)

    Very, F.; Rosenkrantz, E.; Fourmentel, D.; Destouches, C.; Villard, J. F.; Combette, P.; Ferrandis, J. Y.

    Our group is now working for more than 15 years, in a close partnership with CEA, on the development of acoustic sensors devoted to the characterization of fission gas release for in-pile experiments in Material Testing Reactor. First of all, we will present the main principle of the method and the result of a first succeed experiment called REMORA 3 used to differentiate helium and fission gas released kinetics under transient operating condition [1]. Then we will present our new researches involving thick film transducers produced by screen-printing process in order to propose piezoelectric structures for harsh temperature and irradiation measurements in new MTR reactor.

  12. Boundary layer measurements using hot-film sensors

    NASA Technical Reports Server (NTRS)

    Holmes, Harlan K.; Carraway, Debra L.

    1986-01-01

    Measurements in the aerodynamic boundary layer using heat transfer, hot-film sensors are receiving a significant amount of effort at the Langley Research Center. A description of the basic sensor, the signal conditioning employed, and several manifestations of the sensor are given. Results of a flow reversal sensor development are presented, and future work areas are outlined.

  13. Solid State Gas Sensor Research in Germany – a Status Report

    PubMed Central

    Moos, Ralf; Sahner, Kathy; Fleischer, Maximilian; Guth, Ulrich; Barsan, Nicolae; Weimar, Udo

    2009-01-01

    This status report overviews activities of the German gas sensor research community. It highlights recent progress in the field of potentiometric, amperometric, conductometric, impedimetric, and field effect-based gas sensors. It is shown that besides step-by-step improvements of conventional principles, e.g. by the application of novel materials, novel principles turned out to enable new markets. In the field of mixed potential gas sensors, novel materials allow for selective detection of combustion exhaust components. The same goal can be reached by using zeolites for impedimetric gas sensors. Operando spectroscopy is a powerful tool to learn about the mechanisms in n-type and in p-type conductometric sensors and to design knowledge-based improved sensor devices. Novel deposition methods are applied to gain direct access to the material morphology as well as to obtain dense thick metal oxide films without high temperature steps. Since conductometric and impedimetric sensors have the disadvantage that a current has to pass the gas sensitive film, film morphology, electrode materials, and geometrical issues affect the sensor signal. Therefore, one tries to measure directly the Fermi level position either by measuring the gas-dependent Seebeck coefficient at high temperatures or at room temperature by applying a modified miniaturized Kelvin probe method, where surface adsorption-based work function changes drive the drain-source current of a field effect transistor. PMID:22408529

  14. Smart single-chip gas sensor microsystem

    NASA Astrophysics Data System (ADS)

    Hagleitner, C.; Hierlemann, A.; Lange, D.; Kummer, A.; Kerness, N.; Brand, O.; Baltes, H.

    2001-11-01

    Research activity in chemical gas sensing is currently directed towards the search for highly selective (bio)chemical layer materials, and to the design of arrays consisting of different partially selective sensors that permit subsequent pattern recognition and multi-component analysis. Simultaneous use of various transduction platforms has been demonstrated, and the rapid development of integrated-circuit technology has facilitated the fabrication of planar chemical sensors and sensors based on three-dimensional microelectromechanical systems. Complementary metal-oxide silicon processes have previously been used to develop gas sensors based on metal oxides and acoustic-wave-based sensor devices. Here we combine several of these developments to fabricate a smart single-chip chemical microsensor system that incorporates three different transducers (mass-sensitive, capacitive and calorimetric), all of which rely on sensitive polymeric layers to detect airborne volatile organic compounds. Full integration of the microelectronic and micromechanical components on one chip permits control and monitoring of the sensor functions, and enables on-chip signal amplification and conditioning that notably improves the overall sensor performance. The circuitry also includes analog-to-digital converters, and an on-chip interface to transmit the data to off-chip recording units. We expect that our approach will provide a basis for the further development and optimization of gas microsystems.

  15. Miniaturized gas ionization sensors using carbon nanotubes.

    PubMed

    Modi, Ashish; Koratkar, Nikhil; Lass, Eric; Wei, Bingqing; Ajayan, Pulickel M

    2003-07-10

    Gas sensors operate by a variety of fundamentally different mechanisms. Ionization sensors work by fingerprinting the ionization characteristics of distinct gases, but they are limited by their huge, bulky architecture, high power consumption and risky high-voltage operation. Here we report the fabrication and successful testing of ionization microsensors featuring the electrical breakdown of a range of gases and gas mixtures at carbon nanotube tips. The sharp tips of nanotubes generate very high electric fields at relatively low voltages, lowering breakdown voltages several-fold in comparison to traditional electrodes, and thereby enabling compact, battery-powered and safe operation of such sensors. The sensors show good sensitivity and selectivity, and are unaffected by extraneous factors such as temperature, humidity, and gas flow. As such, the devices offer several practical advantages over previously reported nanotube sensor systems. The simple, low-cost, sensors described here could be deployed for a variety of applications, such as environmental monitoring, sensing in chemical processing plants, and gas detection for counter-terrorism. PMID:12853951

  16. Ultra-Low-Power MEMS Selective Gas Sensors

    NASA Technical Reports Server (NTRS)

    Stetter, Joseph

    2012-01-01

    This innovation is a system for gas sensing that includes an ultra-low-power MEMS (microelectromechanical system) gas sensor, combined with unique electronic circuitry and a proprietary algorithm for operating the sensor. The electronics were created from scratch, and represent a novel design capable of low-power operation of the proprietary MEMS gas sensor platform. The algorithm is used to identify a specific target gas in a gas mixture, making the sensor selective to that target gas.

  17. Recognizing indoor formaldehyde in binary gas mixtures with a micro gas sensor array and a neural network

    NASA Astrophysics Data System (ADS)

    Lv, Pin; Tang, Zhenan; Wei, Guangfen; Yu, Jun; Huang, Zhengxing

    2007-09-01

    Low-concentration formaldehyde (HCHO) together with ethanol/toluene/acetone/α-pinene (as an interference gas of HCHO) is detected with a micro gas sensor array, composed of eight tin oxide (SnO2) thin film gas sensors with Au, Cu, Pt or Pd metal catalysts. The characteristics of the multi-dimensional signals from the eight sensors are evaluated. A multilayer neural network with an error backpropagation (BP) learning algorithm, plus the principal component analysis (PCA) technique, is implemented to recognize these indoor volatile organic compounds (VOC). The results show that the micro gas sensor array, plus the multilayer neural network, is very effective in recognizing 0.06 ppm HCHO in single gas component and in binary gas mixtures, toluene/ethanol/α-pinene with small relative error.

  18. Optical Sensors Based on Single Arm Thin Film Waveguide Interferometer

    NASA Technical Reports Server (NTRS)

    Sarkisov, S. S.; Diggs, D.; Curley, M.; Adamovsky, Grigory (Technical Monitor)

    2001-01-01

    Single-arm double-mode double-order optical waveguide interferometer utilizes interference between two propagating modes of different orders. Sensing effect results from the change in propagation conditions of the modes caused by the environment. The waveguide is made as an open asymmetric slab structure containing a dye-doped polymer film onto a fused quartz substrate. It is more sensitive to the change of environment than its conventional polarimetric analog using orthogonal modes (TE and TM) of the same order. The sensor still preserves the option of operating in polarimetric regime using a variety of mode combinations such as TE(sub 0)/TM(sub 0) (conventional), TE(sub 0)/TM(sub 1), TE(sub 1)/TM(sub 0), or TE(sub 1)/TM(sub 1) but can also work in nonpolarimetric regime using combinations TE(sub 0)/TM(sub 1) or TE(sub 0)/TM(sub 1). Utilization of different mode combinations simultaneously makes the device more versatile. Application of the sensor to gas sensing is based on doping polymer film with an organic indicator dye sensitive to a particular gas. Change of optical absorption spectrum of the dye caused by the gaseous pollutant results change of the reactive index of the dye-doped polymer film that can be detected by the sensor. As an indicator dyes, we utilize Bromocresol Purple doped into polymer poly(methyl) methacrylate, which shows a reversible growth of the absorption peak neat 600 nm after exposure to wet ammonia. We have built a breadboard prototype of the sensor with He-Ne laser as a light source and with a single mode fiber input and a multimode fiber output. The prototype showed sensitivity to temperature change of the order of 2 C per one full oscillation of the signal. The sensitivity of the sensor to the presence of wet ammonia is 200 ppm per one full oscillation of the signal. The further improvements include switching to a longer wavelength laser source (750-nm semiconductor laser), substitution of poly(methyl) methacrylate with hydrophilic high-temperature polyimide, and increase the doping rate of indicator dye. All these improvements are expected to bring sensitivity to 10 ppm of ammonia per one full oscillation of signal independent on the humidity of ambient air. The proposed sensor can be used as a robust and inexpensive stand-alone instrument for continuous environment pollution monitoring.

  19. Temperature dependence of gas sensing behaviour of TiO2 doped PANI composite thin films

    NASA Astrophysics Data System (ADS)

    Srivastava, Subodh; Sharma, S. S.; Sharma, Preetam; Sharma, Vinay; Rajura, Rajveer Singh; Singh, M.; Vijay, Y. K.

    2014-04-01

    In the present work we have reported the effect of temperature on the gas sensing properties of TiO2 doped PANI composite thin film based chemiresistor type gas sensors for hydrogen gas sensing application. PANI and TiO2 doped PANI composite were synthesized by in situ chemical oxidative polymerization of aniline at low temperature. The electrical properties of these composite thin films were characterized by I-V measurements as function of temperature. The I-V measurement revealed that conductivity of composite thin films increased as the temperature increased. The changes in resistance of the composite thin film sensor were utilized for detection of hydrogen gas. It was observed that at room temperature TiO2 doped PANI composite sensor shows higher response value and showed unstable behavior as the temperature increased. The surface morphology of these composite thin films has also been characterized by scanning electron microscopy (SEM) measurement.

  20. Thin film heat flux sensor for Space Shuttle Main Engine turbine environment

    NASA Technical Reports Server (NTRS)

    Will, Herbert

    1991-01-01

    The Space Shuttle Main Engine (SSME) turbine environment stresses engine components to their design limits and beyond. The extremely high temperatures and rapid temperature cycling can easily cause parts to fail if they are not properly designed. Thin film heat flux sensors can provide heat loading information with almost no disturbance of gas flows or of the blade. These sensors can provide steady state and transient heat flux information. A thin film heat flux sensor is described which makes it easier to measure small temperature differences across very thin insulating layers.

  1. Low temperature operated NiO-SnO2 heterostructured SO2 gas sensor

    NASA Astrophysics Data System (ADS)

    Tyagi, Punit; Sharma, Anjali; Tomar, Monika; Gupta, Vinay

    2016-04-01

    Sulfur dioxide (SO2) is among the most toxic gas released by the industries which is extremely dangerous for human health. In the present communication, an attempt has been made for the detection of SO2 gas (500 ppm) with the help of SnO2 thin film based gas sensor. A low sensing response of 1.3 is obtained for sputtered SnO2 thin films based sensors at a high operating temperature of 220 °C. To improve the sensing response, different heterostructured sensors are developed by incorporating other metal oxide thin films (PdO, MgO, NiO, V2O5) over SnO2 thin film surface. Sensing response studies of different sensors towards SO2 gas (500 ppm) are presented in the present report. Among all the prepared sensors NiO-SnO2 hetero-structure sensor is showing highest sensing response (˜8) at a comparatively lower operating temperature (140 °C). Possible sensing mechanism for NiO-SnO2 heterostructured sensor has also been discussed in the present report.

  2. Improving the sensitivity of the ZnO gas sensor to dimethyl sulfide

    NASA Astrophysics Data System (ADS)

    Suchorska-Woźniak, P.; Nawrot, W.; Rac, O.; Fiedot, M.; Teterycz, H.

    2016-01-01

    This study was focused on how to improve the gas sensing properties of resistive gas sensors based on zinc oxide to dimethyl sulfide (DMS). The aim of this research was to investigate possible ways of improvement detection of dimethyl sulfide, such as volume doping with synthesized gold nanoparticles or applying sepiolite passive filter. The addition of noble metal into the gas sensing layer is a widely known method of increasing gas sensor response. Sepiolite is a clay mineral with highly porous structure consisting of nanotubes few micrometers long and water absorption abilities. In this work thick-film resistive gas sensors based on zinc oxide were made (pure ZnO, modified by gold nanoparticles, with the addition of filter) and tested for low concentration (2 ppm) of dimethyl sulfide. The sensitivities to DMS of developed sensors were compared. Attention was paid to the analysis of the impact of high humidity (90% RH) on the sensor time response.

  3. Superconductive thin film makes convenient liquid helium level sensor

    NASA Technical Reports Server (NTRS)

    Becker, H. H.

    1968-01-01

    Sensor consisting of superconductive film mounted on a dipstick measures the level of liquid helium in a Dewar flask. The sensor is made by depositing a thin film of niobium metal to a thickness of 2000 angstroms on a quartz substrate, which is then mounted on a graduated dipstick.

  4. Development of High Temperature Gas Sensor Technology

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.; Chen, Liang-Yu; Neudeck, Philip G.; Knight, Dak; Liu, Chung-Chiun; Wu, Quing-Hai; Zhou, Huan-Jun

    1997-01-01

    The measurement of engine emissions is important for their monitoring and control. However, the ability to measure these emissions in-situ is limited. We are developing a family of high temperature gas sensors which are intended to operate in harsh environments such as those in an engine. The development of these sensors is based on progress in two types of technology: (1) The development of SiC-based semiconductor technology; and (2) Improvements in micromachining and microfabrication technology. These technologies are being used to develop point-contact sensors to measure gases which are important in emission control especially hydrogen, hydrocarbons, nitrogen oxides, and oxygen. The purpose of this paper is to discuss the development of this point-contact sensor technology. The detection of each type of gas involves its own challenges in the fields of materials science and fabrication technology. Of particular importance is sensor sensitivity, selectivity, and stability in long-term, high temperature operation. An overview is presented of each sensor type with an evaluation of its stage of development. It is concluded that this technology has significant potential for use in engine applications but further development is necessary.

  5. Passive Chemiresistor Sensor Based on Iron (II) Phthalocyanine Thin Films for Monitoring of Nitrogen Dioxide

    NASA Astrophysics Data System (ADS)

    Shu, John Hungjen

    In this dissertation, an alternate, new approach was investigated to produce a nonreversible, passive, iron (II) phthalocyanine (FePc) thin film sensor that does not require continuous power for operation. The sensor was manufactured using standard microelectronics fabrication procedures, with emphasis on low cost and sensor consistency. The sensor substrate consists of a gold interdigitated electrode pattern deposited on an oxidized silicon or quartz wafer. The FePc thin film is then vacuum sublimed over the interdigitated electrodes to form the finalized sensor. Different thicknesses and morphologies of FePc thin films were fabricated. Once sensor fabrication was accomplished, the general response, temperature dependence, concentration dependence, specificity, and longevity of FePc thin film sensors were investigated. To evaluate general sensor reponse, sensors were exposed to 100 ppm nitrogen dioxide in nitrogen, with a flow rate of 0.25 liters per minute (L/min), at the temperatures of -46, 20, and 71 °C. For each case, the resistance of the sensor decreased exponentially as a function of exposure duration and reached saturation within 25 minutes. The resistance decrease was measured to be four, three, and two orders of magnitude for the exposure temperatures of -46, 20, and 71 .C respectively. In these experiments, sub-zero temperature detection of nitrogen dioxide with FePc thin films was reported for the first time. It was found that the response at -46 °C was greater than at 20 or 71 °C. To evaluate temperature dependence, sensors were thermal cycled in the range of -50 to 80 °C, first under ultra-high purity nitrogen gas at 0.25 L/min, and then under 100 ppm nitrogen dioxide gas at 0.25 L/min. Intrinsic FePc film conductivity was measured by thermal cycling sensors under nitrogen gas. Extrinsic FePc film conductivity was measured by thermal cycling sensors under nitrogen dioxide gas. Results from these tests indicated that the temperature dependence of FePc thin film conductivity is described by the Arrhenius equation. Activation energies of 0.70 and 0.36 eV were measured for intrinsic and extrinsic conductivity respectively. To investigate the effects of sensor fabrication parameters, the film thickness, substrate type, and heat treatment effects were analyzed. FePc film thickness effects were investigated by fabricating sensors ranging from 50 to 450 nm in thickness. Observation of surface morphology under a scanning electron microscope (SEM) showed an evolution of increasing grain size and film roughness as film thickness increased. The 450 nm films have the largest grain size and surface roughness. They also form the best film-electrode contact. For substrate type analysis, FePc thin films simultaneously deposited on sensor substrates consisting of n-type oxidized silicon, p-type oxidized silicon, and quartz wafers were observed under SEM. Visual results show similar film morphologies. Electrical resistance levels under a continuous -50 to 80 °C thermal cycle under 0.1 L/min flowing nitrogen gas also indicated similar film conductivity values. In attempt to understand the sensor conductivity mechanism and to model sensor response, two theoretical models were developed. To determine the sensor conductivity mechanism, theoretical surface and bulk conductivity equations were derived for the sensor geometry. Comparison of measured resistance values with published metal-Pc conductivity values suggests that the bulk conductivity assumption yields comparable intrinsic values of 2.2 x 10-5 and 2.49 x 10-8 O-1m -1 at 80 and -50 °C respectively. Since a passive, integrating sensor inevitably approaches saturation, a sensor response model was developed for determining analyte concentrations based on the level of saturation. This passive response model was derived with reference to established equations on gas adsorption-desorption kinetics. Experimental sensor saturation data revealed that film conductivity is a power law of surface coverage. The passive sensing model also predicts a linear, proportional relationship between normalized resistance change and analyte gas concentration. Experimental sensor response to a concentration gradient showed that the model was able to provide excellent predictions for sensor response to various concentrations of nitrogen dioxide. The lower limit of detection was determined to be roughly 0.3 ppm. In summary, results show that as-deposited FePc thin films on silicon dioxide and quartz substrates with no post-deposition heat treatment produced sensors that can reliably differentiate nitrogen dioxide concentrations as low as 0.3 ppm, via passive monitoring of resistance levels. (Abstract shortened by UMI.)

  6. Multi-Channel Taste Sensor with LB Films

    NASA Astrophysics Data System (ADS)

    Arata, Tsuyoshi; Hirata, Takamichi; Akiya, Masashiro

    In this paper, sensor responses using film materials such as stearic acid were described. In addition, the difference of sensor response from some kind of film materials was compared. Film material of stearic acid was used other than dioctadecyldimethylammonium bromide and trioctadecylamine hydrochloride. Evaporated electrode of Au and Ag were used for stearic acid. To detect five basic taste substances, sensor parameters were defined as maximum voltage change and response time. These eight parameters obtained from four sensors were applied to principle component analysis. Five basic tastes were divided into each quadrant. Finally, five basic taste substances were clearly discriminated.

  7. Development of a thin film solid state gaseous HCl sensor

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The selection of materials to develop a thin film HCl sensor is discussed. Data were primarily concerned with chemical and physical properties of the film and with electrical properties which exhibit and enhance electrical response when HCl is absorbed on the film surface. Techniques investigated for enhancing electrical response include changing conditions for growing films, adding impurities to the film, changing ambient light intensity, and altering the ambient temperature of the sensing element.

  8. A magnonic gas sensor based on magnetic nanoparticles.

    PubMed

    Matatagui, D; Kolokoltsev, O V; Qureshi, N; Mejía-Uriarte, E V; Saniger, J M

    2015-06-01

    In this paper, we propose an innovative, simple and inexpensive gas sensor based on the variation in the magnetic properties of nanoparticles due to their interaction with gases. To measure the nanoparticle response a magnetostatic spin wave (MSW) tunable oscillator has been developed using an yttrium iron garnet (YIG) epitaxial thin film as a delay line (DL). The sensor has been prepared by coating a uniform layer of CuFe2O4 nanoparticles on the YIG film. The unperturbed frequency of the oscillator is determined by a bias magnetic field, which is applied parallel to the YIG film and perpendicularly to the wave propagation direction. In this device, the total bias magnetic field is the superposition of the field of a permanent magnet and the field associated with the layer of magnetic nanoparticles. The perturbation produced in the magnetic properties of the nanoparticle layer due to its interaction with gases induces a frequency shift in the oscillator, allowing the detection of low concentrations of gases. In order to demonstrate the ability of the sensor to detect gases, it has been tested with organic volatile compounds (VOCs) which have harmful effects on human health, such as dimethylformamide, isopropanol and ethanol, or the aromatic hydrocarbons like benzene, toluene and xylene more commonly known by its abbreviation (BTX). All of these were detected with high sensitivity, short response time, and good reproducibility. PMID:25952501

  9. A magnonic gas sensor based on magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Matatagui, D.; Kolokoltsev, O. V.; Qureshi, N.; Mejía-Uriarte, E. V.; Saniger, J. M.

    2015-05-01

    In this paper, we propose an innovative, simple and inexpensive gas sensor based on the variation in the magnetic properties of nanoparticles due to their interaction with gases. To measure the nanoparticle response a magnetostatic spin wave (MSW) tunable oscillator has been developed using an yttrium iron garnet (YIG) epitaxial thin film as a delay line (DL). The sensor has been prepared by coating a uniform layer of CuFe2O4 nanoparticles on the YIG film. The unperturbed frequency of the oscillator is determined by a bias magnetic field, which is applied parallel to the YIG film and perpendicularly to the wave propagation direction. In this device, the total bias magnetic field is the superposition of the field of a permanent magnet and the field associated with the layer of magnetic nanoparticles. The perturbation produced in the magnetic properties of the nanoparticle layer due to its interaction with gases induces a frequency shift in the oscillator, allowing the detection of low concentrations of gases. In order to demonstrate the ability of the sensor to detect gases, it has been tested with organic volatile compounds (VOCs) which have harmful effects on human health, such as dimethylformamide, isopropanol and ethanol, or the aromatic hydrocarbons like benzene, toluene and xylene more commonly known by its abbreviation (BTX). All of these were detected with high sensitivity, short response time, and good reproducibility.

  10. Construction of a Polyaniline Nanofiber Gas Sensor

    ERIC Educational Resources Information Center

    Virji, Shabnam; Weiller, Bruce H.; Huang, Jiaxing; Blair, Richard; Shepherd, Heather; Faltens, Tanya; Haussmann, Philip C.; Kaner, Richard B.; Tolbert, Sarah H.

    2008-01-01

    The electrical properties of polyaniline changes by orders of magnitude upon exposure to analytes such as acids or bases, making it a useful material for detection of these analytes in the gas phase. The objectives of this lab are to synthesize different diameter polyaniline nanofibers and compare them as sensor materials. In this experiment

  11. Optical Sensor Of High Gas Temperatures

    NASA Technical Reports Server (NTRS)

    Hill, Arthur J.

    1988-01-01

    Contact pyrometer resists effects of heat, vibration, and moisture. New sensor consists of shielded sapphire rod with sputtered layer of precious metal on end. Metal layer acts as blackbody. Emits radiation having known dependence of spectral distribution with temperature of metal and temperature of hot gas flowing over metal. Fiber-optic cable carries radiation from sapphire rod to remote photodetector.

  12. Construction of a Polyaniline Nanofiber Gas Sensor

    ERIC Educational Resources Information Center

    Virji, Shabnam; Weiller, Bruce H.; Huang, Jiaxing; Blair, Richard; Shepherd, Heather; Faltens, Tanya; Haussmann, Philip C.; Kaner, Richard B.; Tolbert, Sarah H.

    2008-01-01

    The electrical properties of polyaniline changes by orders of magnitude upon exposure to analytes such as acids or bases, making it a useful material for detection of these analytes in the gas phase. The objectives of this lab are to synthesize different diameter polyaniline nanofibers and compare them as sensor materials. In this experiment…

  13. Review Of Fibre Optic Gas Sensors

    NASA Astrophysics Data System (ADS)

    Dakin, J. P.

    1989-02-01

    This short review presents an outline of recent work on optical-fibre-based sensors for the detection of gases. Emphasis will be placed on aspects related to the detection of flammable gases in general and of methane in particular, in view of the importance of explosion hazards in many industrial workplaces, particularly from naturally occuring methane gas.

  14. Test Structures for Rapid Prototyping of Gas and Pressure Sensors

    NASA Technical Reports Server (NTRS)

    Buehler, M.; Cheng, L. J.; Martin, D.

    1996-01-01

    A multi-project ceramic substrate was used in developing a gas sensor and pressure sensor. The ceramic substrate cantained 36 chips with six variants including sensors, process control monitors, and an interconnect ship. Tha gas sensor is being developed as an air quality monitor and the pressure gauge as a barometer.

  15. Ink-jet printed colorimetric gas sensors on plastic foil

    NASA Astrophysics Data System (ADS)

    Courbat, Jerome; Briand, Danick; de Rooij, Nico F.

    2010-08-01

    An all polymeric colorimetric gas sensor with its associated electronics for ammonia (NH3) detection targeting low-cost and low-power applications is presented. The gas sensitive layer was inkjet printed on a plastic foil. The use of the foil directly as optical waveguide simplified the fabrication, made the device more cost effective and compatible with large scale fabrication techniques, such as roll to roll processes. Concentrations of 500 ppb of NH3 in nitrogen with 50% of RH were measured with a power consumption of about 868 μW in an optical pulsed mode of operation. Such sensors foresee applications in the field of wireless systems, for environmental and safety monitoring. The fabrication of the planar sensor was based on low temperature processing. The waveguide was made of PEN or PET foil and covered with an ammonia sensitive layer deposited by inkjet printing, which offered a proper and localized deposition of the film. The influence of the substrate temperature and its surface pretreatment were investigated to achieve the optimum deposition parameters for the printed fluid. To improve the light coupling from the light source (LED) to the detectors (photodiodes), polymeric micro-mirrors were patterned in an epoxy resin. With the printing of the colorimetric film and additive patterning of polymeric micro-mirrors on plastic foil, a major step was achieved towards the implementation of full plastic selective gas sensors. The combination with printed OLED and PPD would further lead to an integrated all polymeric optical transducer on plastic foil fully compatible with printed electronics processes.

  16. Selective, pulsed CVD of platinum on microfilament gas sensors

    SciTech Connect

    Manginell, R.P.; Smith, J.H.; Ricco, A.J.; Moreno, D.J.; Hughes, R.C.; Huber, R.J.; Senturia, S.D.

    1996-05-01

    A post-processing, selective micro-chemical vapor deposition (``micro-CVD``) technology for the deposition of catalytic films on surface-micromachined, nitride-passivated polysilicon filaments has been investigated. Atmospheric pressure deposition of Pt on microfilaments was accomplished by thermal decomposition of Pt acetylacetonate; deposition occurs selectively only on those filaments which are electrically heated. Catalyst morphology, characterized by SEM, can be controlled by altering deposition time, filament temperature, and through the use of pulsed heating of the filament during deposition. Morphology plays an important role in determining the sensitivity of these devices when used as combustible gas sensors.

  17. PALLADIUM DOPED TIN OXIDE BASED HYDROGEN GAS SENSORS FOR SAFETY APPLICATIONS

    SciTech Connect

    Kasthurirengan, S.; Behera, Upendra; Nadig, D. S.

    2010-04-09

    Hydrogen is considered to be a hazardous gas since it forms a flammable mixture between 4 to 75% by volume in air. Hence, the safety aspects of handling hydrogen are quite important. For this, ideally, highly selective, fast response, small size, hydrogen sensors are needed. Although sensors based on different technologies may be used, thin-film sensors based on palladium (Pd) are preferred due to their compactness and fast response. They detect hydrogen by monitoring the changes to the electrical, mechanical or optical properties of the films. We report the development of Pd-doped tin-oxide based gas sensors prepared on thin ceramic substrates with screen printed platinum (Pt) contacts and integrated nicrome wire heaters. The sensors are tested for their performances using hydrogen-nitrogen gas mixtures to a maximum of 4%H{sub 2} in N{sub 2}. The sensors detect hydrogen and their response times are less than a few seconds. Also, the sensor performance is not altered by the presence of helium in the test gas mixtures. By the above desired performance characteristics, field trials of these sensors have been undertaken. The paper presents the details of the sensor fabrication, electronic circuits, experimental setup for evaluation and the test results.

  18. Enhanced electrodes for solid state gas sensors

    DOEpatents

    Garzon, Fernando H.; Brosha, Eric L.

    2001-01-01

    A solid state gas sensor generates an electrical potential between an equilibrium electrode and a second electrode indicative of a gas to be sensed. A solid electrolyte substrate has the second electrode mounted on a first portion of the electrolyte substrate and a composite equilibrium electrode including conterminous transition metal oxide and Pt components mounted on a second portion of the electrolyte substrate. The composite equilibrium electrode and the second electrode are electrically connected to generate an electrical potential indicative of the gas that is being sensed. In a particular embodiment of the present invention, the second electrode is a reference electrode that is exposed to a reference oxygen gas mixture so that the electrical potential is indicative of the oxygen in a gas stream.

  19. Prediction of Quartz Crystal Microbalance Gas Sensor Responses Using Grand Canonical Monte Carlo Method

    NASA Astrophysics Data System (ADS)

    Nakamoto, Takamichi

    Our group has studied an odor sensing system using an array of Quartz Crystal Microbalance (QCM) gas sensors and neural-network pattern recognition. In this odor sensing system, it is important to know the properties of sensing films coated on Quartz Crystal Microbalance electrodes. These sensing films have not been experimentally characterized well enough to predict the sensor response. We have investigated the predictions of sensor responses using a computational chemistry method, Grand Canonical Monte Carlo (GCMC) simulations. We have successfully predicted the amount of sorption using this method. The GCMC method requires no empirical parameters, unlike many other prediction methods used for QCM based sensor response modeling. In this chapter, the Grand Canonical Monte Carlo method is reviewed to predict the response of QCM gas sensor, and the modeling results are compared with experiments.

  20. Self-assembled thin film chemical sensors

    SciTech Connect

    Swanson, B.; Li, DeQuan

    1996-11-01

    This is the final report of a one-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Current chemical sensors suffer from poor molecular specificity, sensitivity, and stability and seldom have the recovery properties needed for real-time monitoring applications. We have employed self-assembly techniques to covalently bond species- selective reagents directly to the surface of the transducer so that analyte/reagent chemistry occurs at the interface between the transducer and the media to be monitored. The use of self-assembling monolayer and -multilayer (SAM) techniques results in stable sensing elements with optimal specificity built in through the use of reagents that have been designed for molecular recognition. Moreover, self-assembly chemistry applied to oxide surfaces allows flexible means of transduction spanning optical, electrochemical, mass-loading, and conduction methods. The work conducted on this project focused on demonstration of the methodology and the application to selected organic vapors (aromatic compounds and halogenated hydrocarbons). We have been able to develop a series of surface acoustic wave (SAW) sensors that are specific for aromatic compounds and halogenated hydrocarbons based on self-assembled thin films of cyclodextrins and calixarenes. Monolayers of seven different cyclodextrins and clixarenes have been attached to SAW transducers and their response to several organic molecules in the vapor phase have been measured. This preliminary data confirms the efficacy of this approach for real- time monitoring of hydrocarbons.

  1. Metal Oxide Semi-Conductor Gas Sensors in Environmental Monitoring

    PubMed Central

    Fine, George F.; Cavanagh, Leon M.; Afonja, Ayo; Binions, Russell

    2010-01-01

    Metal oxide semiconductor gas sensors are utilised in a variety of different roles and industries. They are relatively inexpensive compared to other sensing technologies, robust, lightweight, long lasting and benefit from high material sensitivity and quick response times. They have been used extensively to measure and monitor trace amounts of environmentally important gases such as carbon monoxide and nitrogen dioxide. In this review the nature of the gas response and how it is fundamentally linked to surface structure is explored. Synthetic routes to metal oxide semiconductor gas sensors are also discussed and related to their affect on surface structure. An overview of important contributions and recent advances are discussed for the use of metal oxide semiconductor sensors for the detection of a variety of gases—CO, NOx, NH3 and the particularly challenging case of CO2. Finally a description of recent advances in work completed at University College London is presented including the use of selective zeolites layers, new perovskite type materials and an innovative chemical vapour deposition approach to film deposition. PMID:22219672

  2. Thin-Film Resistance Heat-Flux Sensors

    NASA Technical Reports Server (NTRS)

    Fralick, Gustave C.; Wrbanek, John D.; Blaha, Charles A.

    2005-01-01

    Thin-film heat-flux sensors of a proposed type would offer advantages over currently available thin-film heat flux sensors. Like a currently available thin-film heat-flux sensor, a sensor according to the proposal would be based on measurement of voltages related to the temperatures of thin metal films on the hotter and colder faces of a layer of an electrically insulating and moderately thermally conductive material. The heat flux through such a device is proportional to the difference between the temperatures and to the thermal conductivity of the layer. The advantages of the proposed sensors over the commercial ones would arise from the manner in which the temperature-related voltages would be generated and measured.

  3. Metal nano-film resistivity chemical sensor.

    PubMed

    Podešva, Pavel; Foret, František

    2016-02-01

    In this work, we present a study on reusable thin metal film resistivity-based sensor for direct measurement of binding of thiol containing molecules in liquid samples. While in bulk conductors the DC current is not influenced by the surface events to a measureable degree in a thin metal layer the electrons close to the surface conduct a significant part of electricity and are influenced by the surface interactions. In this study, the thickness of the gold layer was kept below 100 nm resulting in easily measureable resistivity changes of the metal element upon a surface SH-groups binding. No further surface modifications were necessary. Thin film gold layers deposited on a glass substrate by vacuum sputtering were photolithographically structured into four sensing elements arranged in a Wheatstone bridge to compensate for resistance fluctuations due to the temperature changes. Concentrations as low 100 pM provided measureable signals. The surface after the measurement could be electrolytically regenerated for next measurements. PMID:26040502

  4. Fatigue crack monitoring with coupled piezoelectric film acoustic emission sensors

    NASA Astrophysics Data System (ADS)

    Zhou, Changjiang

    Fatigue-induced cracking is a commonly seen problem in civil infrastructures reaching their original design life. A number of high-profile accidents have been reported in the past that involved fatigue damage in structures. Such incidences often happen without prior warnings due to lack of proper crack monitoring technique. In order to detect and monitor the fatigue crack, acoustic emission (AE) technique, has been receiving growing interests recently. AE can provide continuous and real-time monitoring data on damage progression in structures. Piezoelectric film AE sensor measures stress-wave induced strain in ultrasonic frequency range and its feasibility for AE signal monitoring has been demonstrated recently. However, extensive work in AE monitoring system development based on piezoelectric film AE sensor and sensor characterization on full-scale structures with fatigue cracks, have not been done. A lack of theoretical formulations for understanding the AE signals also hinders the use of piezoelectric film AE sensors. Additionally, crack detection and source localization with AE signals is a very important area yet to be explored for this new type of AE sensor. This dissertation presents the results of both analytical and experimental study on the signal characteristics of surface stress-wave induced AE strain signals measured by piezoelectric film AE sensors in near-field and an AE source localization method based on sensor couple theory. Based on moment tensor theory, generalized expression for AE strain signal is formulated. A special case involving the response of piezoelectric film AE sensor to surface load is also studied, which could potentially be used for sensor calibration of this type of sensor. A new concept of sensor couple theory based AE source localization technique is proposed and validated with both simulated and experimental data from fatigue test and field monitoring. Two series of fatigue tests were conducted to perform fatigue crack monitoring on large-scale steel test specimens using piezoelectric film AE sensors. Continuous monitoring of fatigue crack growth in steel structures is demonstrated in these fatigue test specimens. The use of piezoelectric film AE sensor for field monitoring of existing fatigue crack is also demonstrated in a real steel I-girder bridge located in Maryland. The sensor couple theory based AE source localization is validated using a limited number of piezoelectric film AE sensor data from both fatigue test specimens and field monitoring bridge. Through both laboratory fatigue test and field monitoring of steel structures with active fatigue cracks, the signal characteristics of piezoelectric film AE sensor have been studied in real-world environment.

  5. Sensor Array Devices Utilizing Nano-structured Metal-oxides for Hazardous Gas Detection

    NASA Astrophysics Data System (ADS)

    Andio, Mark A.

    Methane and carbon monoxide are two hazardous gases which require continuous monitoring by gas sensors in underground coal mines for explosion prevention and toxicity, respectively. This work explored implementing miniaturized gas sensors in this area to simultaneously detect both gases for benefits of increased portability and reduced power consumption of the chemiresistive gas sensor device. The focus of this research was to understand how the particle size, morphology, and microstructure of the metaloxide film affected the gas sensor performance to the two gases of interest on miniaturized gas sensor devices in the form of microhotplate platforms. This was done through three main research studies. The first was conducted by growing SnO2 nanowires from SnO 2 particles using an Au-catalyst. Growth conditions including temperature, time, and oxygen partial pressure were explored to determine the formation aspects of the SnO2 nanowires. Gas sensor studies were completed that provided evidence that the SnO2 nanowires increased detection to a fixed concentration of carbon monoxide compared to SnO2 particles without nano-structure formation. A second research study was performed to compare the gas sensor performance of SnO2 nanoparticles, hierarchical particles, and micron-size particles. The nanoparticles were developed into an ink and deposited via ink-jet printing on the microhotplate substrates to control the microstructure of the metal-oxide film. By preventing agglomeration of the nanoparticle film, the SnO2 nanoparticles displayed similar gas sensor performance to methane and carbon monoxide as the hierarchical particles. Both nano-structures had much higher gas sensor response than the micron-size particles which confirms the surface area of the metal-oxide film is critical for reaction of the analyte gas at the surface. The last research study presented in the dissertation describes an oxide nanoparticle array developed for detecting methane and carbon monoxide in the presence of one another. A design of experiments was constructed and principal component analysis was used for determining the optimum temperatures of the metal-oxide elements. A four element array was developed with the SnO 2 and TiO2 sensor elements able to detect methane concentrations of interest and the ZnO and NiO sensor elements able to detect the carbon monoxide concentrations. A linear based prediction model was developed and tested for accuracy and reproducibility of the model to a series of random gas concentrations.

  6. Integrated optical switches and gas sensors.

    PubMed

    Tiefenthaler, K; Lukosz, W

    1984-04-01

    We have demonstrated new switching and gas-sensing effects in integrated optics using input and output grating couplers and Bragg reflector gratings with 1200 lines/mm on planar SiO(2)-TiO(2) waveguides. Switching is actuated by adsorption or desorption of water or other adsorbates on the waveguide surface through a change in the effective index of the guided modes under the grating. We derived theoretically the ultimate sensitivity limits of the grating devices employed either as switches or as gas sensors. Switching requires the adsorption and desorption, respectively, of less than one H(2)O monolayer. Sensors can detect variations in surface coverage of 1/100 of an H(2)O monolayer. PMID:19721522

  7. Multifrequency interrogation of nanostructured gas sensor arrays: a tool for analyzing response kinetics.

    PubMed

    Vergara, Alexander; Calavia, Raul; Vzquez, Rosa Mara; Mozalev, Alexander; Abdelghani, Adnane; Huerta, Ramn; Hines, Evor H; Llobet, Eduard

    2012-09-01

    This paper presents a unique perspective on enhancing the physicochemical mechanisms of two distinct highly sensitive nanostructured metal oxide micro hot plate gas sensors by utilizing an innovative multifrequency interrogation method. The two types of sensors evaluated here employ an identical silicon transducer geometry but with a different morphological structure of the sensitive film. While the first sensing film consists of self-ordered tungsten oxide nanodots, limiting the response kinetics of the sensor-chemical species pair only to the reaction phenomena occurring at the sensitive film surface, the second modality is a three-dimensional array of tungsten oxide nanotubes, which in turn involves both the diffusion and adsorption of the gas during its reaction kinetics with the sensitive film itself. By utilizing the proposed multifrequency interrogation methodology, we demonstrate that the optimal temperature modulation frequencies employed for the nanotubes-based sensors to selectively detect hydrogen, carbon monoxide, ethanol, and dimethyl methyl phosphonate (DMMP) are significantly higher than those utilized for the nanodot-based sensors. This finding helps understand better the amelioration in selectivity that temperature modulation of metal oxides brings about, and, most importantly, it sets the grounds for the nanoengineering of gas-sensitive films to better exploit their practical usage. PMID:22834982

  8. Chemical Sensors: Precisely Controlled Ultrathin Conjugated Polymer Films for Large Area Transparent Transistors and Highly Sensitive Chemical Sensors (Adv. Mater. 14/2016).

    PubMed

    Khim, Dongyoon; Ryu, Gi-Seong; Park, Won-Tae; Kim, Hyunchul; Lee, Myungwon; Noh, Yong-Young

    2016-04-01

    A precise control over the film thickness is a vital requirement for achievement of high performance in thin-film electronic devices. On page 2752, Y.-Y. Noh and co-workers develop an effective way to deposit a large-area and uniform ultrathin polymer film with a molecular-level precision via a simple wire-wound bar-coating method for high-performance organic transistors and gas sensors. PMID:27062168

  9. Platinum thin film resistors as accurate and stable temperature sensors

    NASA Technical Reports Server (NTRS)

    Diehl, W.

    1984-01-01

    The measurement characteristics of thin-Pt-film temperature sensors fabricated using advanced methods are discussed. The limitations of wound-wire Pt temperature sensors and the history of Pt-film development are outlined, and the commonly used film-deposition, structuring, and trimming methods are presented in a table. The development of a family of sputtered film resistors is described in detail and illustrated with photographs of the different types. The most commonly used tolerances are reported as + or - 0.3 C + 0.5 percent of the temperature measured.

  10. Fabrication and characterization of SnO2/ZnO gas sensors for detecting toluene gas.

    PubMed

    Min, Byung-Sam; Park, Young-Ho; Lee, Chang-Seop

    2014-11-01

    This study investigates the use of SnO2, ZnO, Ag, Au, Cu, In, Pd, Ru and carbon black to improve the sensitivity of a gas sensor for detecting toluene gas. Metal-SnO2/ZnO thick films were screen-printed onto Al2O3 substrates with platinum electrodes. The physico-chemical properties of the sensor materials were characterized using SEM/EDS, XRD, and BET analyses. Measuring the electrical resistance of each sensor as a function of the gas concentration determined the sensing characteristics. The sensors were tested using toluene, benzene, xylene, ethanol, methanol, ammonia and trimethylamine vapors with concentrations of 1-2000 ppm. The gas sensing properties of metal-SnO2/ZnO thick films depended on the content and variety of metals and the content of carbon black. The optimum condition of sensor material for toluene gas detection is operation temperature 300 degrees C and when metal catalyst Cu and carbon black were added. The best sensitivity and selectivity for toluene gas at 300 degrees C resulted from doping with 5 wt.% carbon black, 1 wt.% Cu and 20 wt.% ZnO to SnO2. PMID:25958552

  11. Properties of a lithium solid electrolyte gas sensor based on reaction kinetics

    NASA Astrophysics Data System (ADS)

    Jasinski, Grzegorz; Jasinski, Piotr; Nowakowski, Antoni; Chachulski, Bogdan

    2006-01-01

    Principle of operation, construction and properties of a gas sensor based on lithium ion-conductor solid electrolyte (Lisicon) are presented. The sensor has been prepared using thick film technology. Its working principle is based on electric current acquisition, while a voltage ramp is applied to the sensor. The current-voltage plot has a unique shape, which depends on the surrounding gas type and its concentration. Results of measurements conducted in mixtures of high purity gases—nitrogen dioxide, sulfur dioxide, carbon dioxide and synthetic air of controlled concentration—over a wide range of temperatures are presented and discussed.

  12. Gas sensors based on carbon nanoflake/tin oxide composites for ammonia detection.

    PubMed

    Lee, Soo-Keun; Chang, Daeic; Kim, Sang Wook

    2014-03-15

    Carbon nanoflake (CNFL) was obtained from graphite pencil by using the electrochemical method and the CNFL/SnO2 composite material assessed its potential as an ammonia gas sensor. A thin film resistive gas sensor using the composite material was manufactured by the drop casting method, and the sensor was evaluated to test in various ammonia concentrations and operating temperatures. Physical and chemical characteristics of the composite material were assessed using SEM, TEM, SAED, EDS and Raman spectroscopy. The composite material having 10% of SnO2 showed 3 times higher sensor response and better repeatability than the gas sensor using pristine SnO2 nano-particle at the optimal temperature of 350°C. PMID:24473403

  13. Gas Main Sensor and Communications Network System

    SciTech Connect

    Hagen Schempf

    2006-05-31

    Automatika, Inc. was contracted by the Department of Energy (DOE) and with co-funding from the Northeast Gas Association (NGA), to develop an in-pipe natural gas prototype measurement and wireless communications system for assessing and monitoring distribution networks. This projected was completed in April 2006, and culminated in the installation of more than 2 dozen GasNet nodes in both low- and high-pressure cast-iron and steel mains owned by multiple utilities in the northeastern US. Utilities are currently logging data (off-line) and monitoring data in real time from single and multiple networked sensors over cellular networks and collecting data using wireless bluetooth PDA systems. The system was designed to be modular, using in-pipe sensor-wands capable of measuring, flow, pressure, temperature, water-content and vibration. Internal antennae allowed for the use of the pipe-internals as a waveguide for setting up a sensor network to collect data from multiple nodes simultaneously. Sensor nodes were designed to be installed with low- and no-blow techniques and tools. Using a multi-drop bus technique with a custom protocol, all electronics were designed to be buriable and allow for on-board data-collection (SD-card), wireless relaying and cellular network forwarding. Installation options afforded by the design included direct-burial and external polemounted variants. Power was provided by one or more batteries, direct AC-power (Class I Div.2) and solar-array. The utilities are currently in a data-collection phase and intend to use the collected (and processed) data to make capital improvement decisions, compare it to Stoner model predictions and evaluate the use of such a system for future expansion, technology-improvement and commercialization starting later in 2006.

  14. Review on optical fiber sensors with sensitive thin films

    NASA Astrophysics Data System (ADS)

    Yang, Minghong; Dai, Jixiang

    2012-03-01

    The combination of fiber optics with nano-structure technologies and sensitive thin films offers great potential for the realization of novel sensor concepts. Miniatured optical fiber sensors with thin films as sensitive elements could open new fields for optical fiber sensor applications. Thin films work as sensitive elements and transducer to get response and feedback from environments, in which optical fibers are employed to work as signal carrier. This article presents some research work conducted at the National Engineering Laboratory for Optical Fiber Sensing Technologies in recent years. Concrete examples are: Pd/WO3 co-sputtered coating as sensing material for optical hydrogen sensors shows robust mechanical stability and meanwhile good sensing performance; TbDyFe magnetostrictive coating directly deposited on fiber Bragg grating (FBG) demonstrates its possibility of miniature optical magnetic field/current sensors, and 40-pm shift of the FBG wavelength happens at a magnetic field order of 50 mT.

  15. Nanostructure Engineered Chemical Sensors for Hazardous Gas and Vapor Detection

    NASA Technical Reports Server (NTRS)

    Li, Jing; Lu, Yijiang

    2005-01-01

    A nanosensor technology has been developed using nanostructures, such as single walled carbon nanotubes (SWNTs) and metal oxides nanowires or nanobelts, on a pair of interdigitated electrodes (IDE) processed with a silicon based microfabrication and micromachining technique. The IDE fingers were fabricated using thin film metallization techniques. Both in-situ growth of nanostructure materials and casting of the nanostructure dispersions were used to make chemical sensing devices. These sensors have been exposed to hazardous gases and vapors, such as acetone, benzene, chlorine, and ammonia in the concentration range of ppm to ppb at room temperature. The electronic molecular sensing in our sensor platform can be understood by electron modulation between the nanostructure engineered device and gas molecules. As a result of the electron modulation, the conductance of nanodevice will change. Due to the large surface area, low surface energy barrier and high thermal and mechanical stability, nanostructured chemical sensors potentially can offer higher sensitivity, lower power consumption and better robustness than the state-of-the-art systems, which make them more attractive for defense and space applications. Combined with MEMS technology, light weight and compact size sensors can be made in wafer scale with low cost.

  16. Gas Sensors Based on Ceramic p-n Heterocontacts

    SciTech Connect

    Seymen Murat Aygun

    2004-12-19

    Ceramic p-n heterocontacts based on CuO/ZnO were successfully synthesized and a systematic study of their hydrogen sensitivity was conducted. The sensitivity and response rates of CuO/ZnO sensors were studied utilizing current-voltage, current-time, and impedance spectroscopy measurements. The heterocontacts showed well-defined rectifying characteristics and were observed to detect hydrogen via both dc and ac measurements. Surface coverage data were derived from current-time measurements which were then fit to a two-site Langmuir adsorption model quite satisfactorily. The fit suggested that there should be two energetically different adsorption sites in the system. The heterocontacts were doped in an attempt to increase the sensitivity and the response rate of the sensor. First, the effects of doping the p-type (CuO) on the sensor characteristics were investigated. Doping the p-type CuO with both acceptor and isovalent dopants greatly improved the hydrogen sensitivity. The sensitivity of pure heterocontact observed via I-V measurements was increased from {approx}2.3 to {approx}9.4 with Ni doping. Dopants also enhanced the rectifying characteristics of the heterocontacts. Small amounts of Li addition were shown to decrease the reverse bias (saturation) current to 0.2 mA at a bias level of -5V. No unambiguous trends were observed between the sensitivity, the conductivity, and the density of the samples. Comparing the two phase microstructure to the single phase microstructure there was no dramatic increase in the sensitivity. Kinetic studies also confirmed the improved sensor characteristics with doping. The dopants decreased the response time of the sensor by decreasing the response time of one of the adsorption sites. The n-type ZnO was doped with both acceptor and donor dopants. Li doping resulted in the degradation of the p-n junction and the response time of the sensor. However, the current-voltage behavior of Ga-doped heterocontacts showed the best rectifying characteristics with very high forward currents. Ga doped heterocontacts showed the highest sensitivity observed during current-time measurements as well, even though the sensor response was rather slow. Finally, a possible synergistic effect of doping both p and n-sides was studied by utilizing current-time measurements for 1.5 mol% Ni-CuO/1.5 mol% Ga-ZnO heterocontact. A sensitivity value of {approx}5.1 was obtained with the fastest response among all the samples. The time needed to reach 90% coverage was lowered by a factor of 4 when compared to the pure heterocontact and the time needed to reach 70% coverage was just over one minute. Heterocontact gas sensors are promising candidates for high temperature sensor applications. Today, Si-based microelectromechanical system (MEMS) technology has shown great promise for developing novel devices such as pressure sensors, chemical sensors, and temperature sensors through complex designs. However, the harsh thermal, vibrational, and corrosive environments common to many aerospace applications impose severe limitations on their use. Sensors based on ceramic p-n heterocontacts are promising alternatives because of their inherent corrosion resistance and environmental stability. The other advantages include their inherent tuning ability to differentiate between different reducing gases and a possible cost efficient production of a wireless sensor. Being a capacitive type sensor, its output can be transformed into a passive wireless device by creating a tuned LC circuit. In this way, the sensor output (the capacitance) can be accessed remotely by measuring the resonant frequency. The relatively simple structure of heterocontacts makes it suitable for thick film fabrication techniques to make sensor packages.

  17. Surface acoustic wave ammonia sensor based on ZnO/SiO2 composite film.

    PubMed

    Wang, Shuang-Yue; Ma, Jin-Yi; Li, Zhi-Jie; Su, H Q; Alkurd, N R; Zhou, Wei-Lie; Wang, Lu; Du, Bo; Tang, Yong-Liang; Ao, Dong-Yi; Zhang, Shou-Chao; Yu, Q K; Zu, Xiao-Tao

    2015-03-21

    A surface acoustic wave (SAW) resonator with ZnO/SiO2 (ZS) composite film was used as an ammonia sensor in this study. ZS composite films were deposited on the surface of SAW devices using the sol-gel method, and were characterized using SEM, AFM, and XRD. The performance of the sensors under ammonia gas was optimized by adjusting the molar ratio of ZnO:SiO2 to 1:1, 1:2 and 1:3, and the sensor with the ratio of ZnO to SiO2 equaling to 1:2 was found to have the best performance. The response of sensor was 1.132 kHz under 10 ppm NH3, which was much higher than that of the sensor based on a pristine ZnO film. Moreover, the sensor has good selectivity, reversibility and stability at room temperature. These can be attributed to the enhanced absorption of ammonia and unique surface reaction on composite films due to the existence of silica. PMID:25528236

  18. Fabrication and reducing gas detection characterization of highly-crystalline p-type zinc chromite oxide thin film

    NASA Astrophysics Data System (ADS)

    Liang, Yuan-Chang; Cheng, Yu-Ru; Hsia, Hao-Yuan; Chung, Cheng-Chia

    2016-02-01

    A p-type ternary ZnCr2O4 (ZCO) thin film was fabricated using rf sputtering on a sapphire substrate. Microstructural analyses revealed that the ZCO thin film had a high crystalline quality. Surface morphology investigations showed that the ZCO film had a rugged surface because of a distinct columnar grain feature. A gas sensor composed of the ZCO thin film exhibited marked acetone and NH3 gas-sensing responses. These acetone and NH3 gas-sensing responses reached an optimal value at operating temperatures of 250 °C and 300 °C, respectively. The ZCO sensor showed satisfactory repeatability when operated under dynamic conditions. The stable gas-sensing behavior of the p-type ZCO thin film to acetone and NH3 gases broadens the design of oxide gas sensors incorporated with this ternary oxide.

  19. Electrochemical high-temperature gas sensors

    NASA Astrophysics Data System (ADS)

    Saruhan, B.; Stranzenbach, M.; Yüce, A.; Gönüllü, Y.

    2012-06-01

    Combustion produced common air pollutant, NOx associates with greenhouse effects. Its high temperature detection is essential for protection of nature. Component-integration capable high-temperature sensors enable the control of combustion products. The requirements are quantitative detection of total NOx and high selectivity at temperatures above 500°C. This study reports various approaches to detect NO and NO2 selectively under lean and humid conditions at temperatures from 300°C to 800°C. All tested electrochemical sensors were fabricated in planar design to enable componentintegration. We suggest first an impedance-metric gas sensor for total NOx-detection consisting of NiO- or NiCr2O4-SE and PYSZ-electrolyte. The electrolyte-layer is about 200μm thickness and constructed of quasi-single crystalline columns. The sensing-electrode (SE) is magnetron sputtered thin-layers of NiO or NiCr2O4. Sensor sensitivity for detection of total NOx has been measured by applying impedance analysis. The cross-sensitivity to other emission gases such as CO, CO2, CH4 and oxygen (5 vol.%) has been determined under 0-1000ppm NO. Sensor maintains its high sensitivity at temperatures up to 550°C and 600°C, depending on the sensing-electrode. NiO-SE yields better selectivity to NO in the presence of oxygen and have shorter response times comparing to NiCr2O4-SE. For higher temperature NO2-sensing capability, a resistive DC-sensor having Al-doped TiO2-sensing layers has been employed. Sensor-sensitivity towards NO2 and cross-sensitivity to CO has been determined in the presence of H2O at temperatures 600°C and 800°C. NO2 concentrations varying from 25 to 100ppm and CO concentrations from 25 to 75ppm can be detected. By nano-tubular structuring of TiO2, NO2 sensitivity of the sensor was increased.

  20. Sensors employing Functionalized Conducting Polymer Thin Film Transistors

    NASA Astrophysics Data System (ADS)

    Tanese, M. C.; Torsi, L.; Cioffi, N.; Sabbatini, L.; Zambonin, P. G.

    2003-12-01

    Functionalized conducting polymers are employed as active layers in sensors with a thin film transistor (TFT) device structure. Such devices can work as multi-parameter sensors with responses that are fast, repeatable and reversible at room temperature. In this work, a strategy is proposed to enhance the chemical selectivity of organic TFT sensors, by selecting active layers that are made of conducting polymers bearing chemically different substituents. A modulation of the devices sensitivity towards analytes such as alcohols and ketones is demonstrated.

  1. Gas jet deposition of thin films

    NASA Astrophysics Data System (ADS)

    Halpern, B. L.; Schmitt, J. J.; Golz, J. W.; Di, Y.; Johnson, D. L.

    1991-06-01

    A novel approach to thin film deposition is presented, which combines supersonic gas jets with fast flow techniques for the "gas jet deposition" (GJD) of metal, semiconductor, oxide, nitride, and organic thin films. The vapor sources are supersonic jets, usually of helium and hydrogen, which convect condensible vapors to a wide range of substrates. Areas larger than the jet area can be coated by moving the substrate relative to the jet. GJD provides numerous advantages. The apparatus is simple and flexible, and requires only high-speed mechanical pumps rather than high-vacuum equipment with attendant long pumpdown times. The paper describes several kinds of GJD apparatus as well as examples of GJD films and applications. These include multilayer structures, oxide and eitride films, gold elelectron deposition on heat-sensitive piezoelectric plastic, and trapping of "guest" rhodamine dye molecules in silicon dioxide and nitride "host" films.

  2. Understanding the response behavior of potentiometric gas sensors for non-equilibrium gas mixtures

    SciTech Connect

    Garzon, F. H.; Mukundan, R.; Brosha, E. L.

    2002-01-01

    Many applications of gas sensors require concentration measurements of reactive gases in mixtures that are out of thermodynamic equilibrium. These applications include: hydrogen and hydrocarbon fuel gas sensors operating in ambient air for explosion hazard detection, carbon monoxide detection in ambient air for health protection, combustion efficiency sensors for stoichiometry control, and nitric oxide sensors for air pollution monitoring. Many potentiometric and amperometric electrochemical sensor technologies have been developed for these applications. A class of the potentiometric sensors developed for gas mixtures are the non-Nerstian sensors. This presentation defines a categorization and theoretical analysis of three distinct electrochemical processes that can produce a non-Nernstian sensor response.

  3. Growth and toxic gas sensing properties of poly(urethaneimide) thin films.

    PubMed

    Youssef, Ismail Ben; Sarry, Frederic; Nysten, Bernard; Alexieva, Gergana; Strashilov, Vesselin; Kolev, Iliyan; Alem, Halima

    2016-06-01

    In this work we present a study on the growth and the gas sensing properties of poly(urethane imide) thin films. We first deeply characterized by atomic force microscopy (AFM) the nanostructuration of the poly(urethane imide) holding different amine groups. We further studied the interaction between highly toxic gases such as hexamethyleneimine (HMI) and pyridine and the polymer by using an unconventional method based on Quartz Crystal Microbalance (QCM) measurement. We showed for the first time that weak interactions, i.e. hydrogen bonding between the gas molecules and the polymer film allow the diffusion of the gas molecule deep in the polymeric film and the recovery of the film once the gas molecules leave the sensor. This first work paves a new way for the design of a completely recoverable sensor able to detect highly toxic gases for environmental concern. PMID:27130101

  4. Method of Forming Micro-Sensor Thin-Film Anemometer

    NASA Technical Reports Server (NTRS)

    Sheplak, Mark (Inventor); McGinley, Catherine B. (Inventor); Spina, Eric F. (Inventor); Stephens, Ralph M. (Inventor); Hopson, Purnell, Jr. (Inventor); Cruz, Vincent B. (Inventor)

    2000-01-01

    A device for measuring turbulence in high-speed flows is provided which includes a micro- sensor thin-film probe. The probe is formed from a single crystal of aluminum oxide having a 14 deg half-wedge shaped portion. The tip of the half-wedge is rounded and has a thin-film sensor attached along the stagnation line. The bottom surface of the half-wedge is tilted upward to relieve shock induced disturbances created by the curved tip of the half-wedge. The sensor is applied using a microphotolithography technique.

  5. Metal Sulfides as Sensing Materials for Chemoresistive Gas Sensors

    PubMed Central

    Gaiardo, Andrea; Fabbri, Barbara; Guidi, Vincenzo; Bellutti, Pierluigi; Giberti, Alessio; Gherardi, Sandro; Vanzetti, Lia; Malagù, Cesare; Zonta, Giulia

    2016-01-01

    This work aims at a broad overview of the results obtained with metal-sulfide materials in the field of chemoresistive gas sensing. Indeed, despite the well-known electrical, optical, structural and morphological features previously described in the literature, metal sulfides present lack of investigation for gas sensing applications, a field in which the metal oxides still maintain a leading role owing to their high sensitivity, low cost, small dimensions and simple integration, in spite of the wide assortment of sensing materials. However, despite their great advantages, metal oxides have shown significant drawbacks, which have led to the search for new materials for gas sensing devices. In this work, Cadmium Sulfide and Tin (IV) Sulfide were investigated as functional materials for thick-film chemoresistive gas-sensors fabrication and they were tested both in thermo- and in photo-activation modes. Furthermore, electrical characterization was carried out in order to verify their gas sensing properties and material stability, by comparing the results obtained with metal sulfides to those obtained by using their metal-oxides counterparts. The results highlighted the possibility to use metal sulfides as a novel class of sensing materials, owing to their selectivity to specific compounds, stability, and the possibility to operate at room temperature. PMID:26927120

  6. Metal Sulfides as Sensing Materials for Chemoresistive Gas Sensors.

    PubMed

    Gaiardo, Andrea; Fabbri, Barbara; Guidi, Vincenzo; Bellutti, Pierluigi; Giberti, Alessio; Gherardi, Sandro; Vanzetti, Lia; Malagù, Cesare; Zonta, Giulia

    2016-01-01

    This work aims at a broad overview of the results obtained with metal-sulfide materials in the field of chemoresistive gas sensing. Indeed, despite the well-known electrical, optical, structural and morphological features previously described in the literature, metal sulfides present lack of investigation for gas sensing applications, a field in which the metal oxides still maintain a leading role owing to their high sensitivity, low cost, small dimensions and simple integration, in spite of the wide assortment of sensing materials. However, despite their great advantages, metal oxides have shown significant drawbacks, which have led to the search for new materials for gas sensing devices. In this work, Cadmium Sulfide and Tin (IV) Sulfide were investigated as functional materials for thick-film chemoresistive gas-sensors fabrication and they were tested both in thermo- and in photo-activation modes. Furthermore, electrical characterization was carried out in order to verify their gas sensing properties and material stability, by comparing the results obtained with metal sulfides to those obtained by using their metal-oxides counterparts. The results highlighted the possibility to use metal sulfides as a novel class of sensing materials, owing to their selectivity to specific compounds, stability, and the possibility to operate at room temperature. PMID:26927120

  7. Temperature and Humidity Dependence of a Polymer-Based Gas Sensor

    NASA Technical Reports Server (NTRS)

    Ryan, M. A.; Buehler, M. G.

    1997-01-01

    This paper quantifies the temperature and humidity dependence of a polymer-based gas sensor. The measurement and analysis of three polymers indicates that resistance changes in the polymer films, due to temperature and humidity, can be positive or negative. The temperature sensitivity ranged from +1600 to -320 ppm/nd the relative sensitivity ranged from +1100 to -260 ppm/%.

  8. Carbon-Nanotube-Based Chemical Gas Sensor

    NASA Technical Reports Server (NTRS)

    Kaul, Arunpama B.

    2010-01-01

    Conventional thermal conductivity gauges (e.g. Pirani gauges) lend themselves to applications such as leak detectors, or in gas chromatographs for identifying various gas species. However, these conventional gauges are physically large, operate at high power, and have a slow response time. A single-walled carbon-nanotube (SWNT)-based chemical sensing gauge relies on differences in thermal conductance of the respective gases surrounding the CNT as it is voltage-biased, as a means for chemical identification. Such a sensor provides benefits of significantly reduced size and compactness, fast response time, low-power operation, and inexpensive manufacturing since it can be batch-fabricated using Si integrated-circuit (IC) process technology.

  9. Optical hydrogen sensor using Pd/MoO{sub x} films

    SciTech Connect

    Hamagami, Jun-ichi; Huybrechts, Ben; Takata, Masasuke; Watanabe, Yuichi

    1994-12-31

    An optical hydrogen sensor which colors under an H{sub 2}-atmosphere is prepared. The sensor consists of a molybdenum oxide (MoO{sub x}) layer (500-1300 nm) on a glass substrate covered with a very thin palladium layer of about 10 nm. Both layers are deposited by radio-frequency magnetron sputtering. The sputtering of the MoO{sub x} films is carried out in a mixed Ar-O{sub 2} atmosphere using a molybdenum metal plate as the target. The relationship between the hydrogen gas sensing properties and oxygen content in the MoO{sub x} film is examined. The oxygen content in the films, estimated by X-ray photoelectron spectroscopy (XPS), increases with the oxygen concentration in the sputtering gas. For amorphous MoO{sub x} films the initial coloration rate slightly increased with the oxygen concentration in the films. The initial coloration rate for the crystalline MoO{sub 3} film, obtained by sputtering in an oxygen atmosphere, was 7 times higher than the one for the amorphous MoO{sub x} films.

  10. Palladium-nanoparticle-coated carbon nanotube gas sensor

    NASA Astrophysics Data System (ADS)

    Han, Maeum; Jung, Daewoong; Lee, Gil S.

    2014-08-01

    Flexible hydrogen gas sensors were fabricated using multi-walled carbon nanotubes (MWCNTs) decorated with Pd nanoparticles for the detection of H2 gas at room temperature. A comparative gas-sensing study was carried out on both the Pd-nanoparticles-decorated and undecorated MWCNT sheets in order to examine the effect of Pd nanoparticles on the gas-sensing performances at room temperature. Experimental results showed that the MWCNTs/Pd sensor exhibited fast response and recovery as well as high sensitivity compared with the pure MWCNT sensor. The improved sensing properties of this sensor were attributed to the spillover effect of Pd nanoparticles and the highly conductive MWCNT sheet.

  11. A Micro-Fabricated Force Sensor Using an All Thin Film Piezoelectric Active Sensor

    PubMed Central

    Lee, Junwoo; Choi, Wook; Yoo, Yong Kyoung; Hwang, Kyo Seon; Lee, Sang-Myung; Kang, Sungchul; Kim, Jinseok; Lee, Jeong Hoon

    2014-01-01

    The ability to measure pressure and force is essential in biomedical applications such as minimally invasive surgery (MIS) and palpation for detecting cancer cysts. Here, we report a force sensor for measuring a shear and normal force by combining an arrayed piezoelectric sensors layer with a precut glass top plate connected by four stress concentrating legs. We designed and fabricated a thin film piezoelectric force sensor and proposed an enhanced sensing tool to be used for analyzing gentle touches without the external voltage source used in FET sensors. Both the linear sensor response from 3 kPa to 30 kPa and the exact signal responses from the moving direction illustrate the strong feasibility of the described thin film miniaturized piezoelectric force sensor. PMID:25429407

  12. Liquid Crystalline Compositions as Gas Sensors

    NASA Astrophysics Data System (ADS)

    Shibaev, Petr; Murray, John; Tantillo, Anthony; Wenzlick, Madison; Howard-Jennings, Jordan

    2015-03-01

    Droplets and films of nematic and cholesteric liquid crystalline mixtures were studied as promising detectors of volatile organic compounds (VOCs) in the air. Under increasing concentration of VOC in the air the detection may rely on each of the following effects sequentially observed one after the other due to the diffusion of VOC inside liquid crystalline matrix: i. slight changes in orientation and order parameter of liquid crystal, ii. formation of bubbles on the top of the liquid crystalline droplet due to the mass transfer between the areas with different order parameter, iii. complete isotropisation of the liquid crystal. All three stages can be easily monitored by optical microscopy and photo camera. Detection limits corresponding to the first stage are typically lower by a factor of 3-6 than detection limits corresponding to the beginning of mass transfer and isotropisation. The prototype of a compact sensor sensitive to the presence of organic solvents in the air is described in detail. The detection limits of the sensor is significantly lower than VOC exposure standards. The qualitative model is presented to account for the observed changes related to the diffusion, changes of order parameter and isotropisation.

  13. Temperature dependence of gas sensing behaviour of TiO{sub 2} doped PANI composite thin films

    SciTech Connect

    Srivastava, Subodh Sharma, Preetam; Singh, M.; Vijay, Y. K.; Sharma, S. S.; Sharma, Vinay; Rajura, Rajveer Singh

    2014-04-24

    In the present work we have reported the effect of temperature on the gas sensing properties of TiO{sub 2} doped PANI composite thin film based chemiresistor type gas sensors for hydrogen gas sensing application. PANI and TiO{sub 2} doped PANI composite were synthesized by in situ chemical oxidative polymerization of aniline at low temperature. The electrical properties of these composite thin films were characterized by I-V measurements as function of temperature. The I-V measurement revealed that conductivity of composite thin films increased as the temperature increased. The changes in resistance of the composite thin film sensor were utilized for detection of hydrogen gas. It was observed that at room temperature TiO{sub 2} doped PANI composite sensor shows higher response value and showed unstable behavior as the temperature increased. The surface morphology of these composite thin films has also been characterized by scanning electron microscopy (SEM) measurement.

  14. SnO2 Highly Sensitive CO Gas Sensor Based on Quasi-Molecular-Imprinting Mechanism Design

    PubMed Central

    Li, Chenjia; Lv, Meng; Zuo, Jialin; Huang, Xintang

    2015-01-01

    Response of highly sensitive SnO2 semiconductor carbon monoxide (CO) gas sensors based on target gas CO quasi-molecular-imprinting mechanism design is investigated with gas concentrations varied from 50 to 3000 ppm. SnO2 nanoparticles prepared via hydrothermal method and gas sensor film devices SC (exposed to the target gas CO for 12 h after the suspension coating of SnO2 film to be fully dried, design of quasi-molecular-imprinting mechanism, the experiment group) and SA (exposed to air after the suspension coating of SnO2 film to be fully dried, the comparison group) made from SnO2 nanoparticles are all characterized by XRD, SEM and BET surface area techniques, respectively. The gas response experimental results reveal that the sensor SC demonstrates quicker response and higher sensitivity than the sensor SA does. The results suggest that in addition to the transformation of gas sensor materials, surface area, and porous membrane devices, the Molecular Imprinting Theory is proved to be another way to promote the performance of gas sensors. PMID:25664435

  15. A pressurized gas squeeze film journal damper

    NASA Technical Reports Server (NTRS)

    Stiffler, A. K.

    1977-01-01

    A lumped parameter model is developed to determine the stiffness and damping characteristics of inherently compensated gas film bearings. The model relies on the average static pressure over a one dimensional strip bearing. Results of the model are compared with known computer solutions for the distributed strip and a two dimensional square bearing. The results for the stiffness agree well with the computer solutions although the model proved to be inadequate for predicting the film damping.

  16. Pulse-driven micro gas sensor fitted with clustered Pd/SnO2 nanoparticles.

    PubMed

    Suematsu, Koichi; Shin, Yuka; Ma, Nan; Oyama, Tokiharu; Sasaki, Miyuki; Yuasa, Masayoshi; Kida, Tetsuya; Shimanoe, Kengo

    2015-08-18

    Real-time monitoring of specific gas concentrations with a compact and portable gas sensing device is required to sense potential health risk and danger from toxic gases. For such purposes, we developed an ultrasmall gas sensor device, where a micro sensing film was deposited on a micro heater integrated with electrodes fabricated by the microelectromechanical system (MEMS) technology. The developed device was operated in a pulse-heating mode to significantly reduce the heater power consumption and make the device battery-driven and portable. Using clustered Pd/SnO2 nanoparticles, we succeeded in introducing mesopores ranging from 10 to 30 nm in the micro gas sensing film (area: ϕ 150 μm) to detect large volatile organic compounds (VOCs). The micro sensor showed quick, stable, and high sensor responses to toluene at ppm (parts per million) concentrations at 300 °C even by operating the micro heater in a pulse-heating mode where switch-on and -off cycles were repeated at one-second intervals. The high performance of the micro sensor should result from the creation of efficient diffusion paths decorated with Pd sensitizers by using the clustered Pd/SnO2 nanoparticles. Hence we demonstrate that our pulse-driven micro sensor using nanostructured oxide materials holds promise as a battery-operable, portable gas sensing device. PMID:26196499

  17. Thin Film Ceramic Strain Sensor Development for High Temperature Environments

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Fralick, Gustave C.; Gonzalez, Jose M.; Laster, Kimala L.

    2008-01-01

    The need for sensors to operate in harsh environments is illustrated by the need for measurements in the turbine engine hot section. The degradation and damage that develops over time in hot section components can lead to catastrophic failure. At present, the degradation processes that occur in the harsh hot section environment are poorly characterized, which hinders development of more durable components, and since it is so difficult to model turbine blade temperatures, strains, etc, actual measurements are needed. The need to consider ceramic sensing elements is brought about by the temperature limits of metal thin film sensors in harsh environments. The effort at the NASA Glenn Research Center (GRC) to develop high temperature thin film ceramic static strain gauges for application in turbine engines is described, first in the fan and compressor modules, and then in the hot section. The near-term goal of this research effort was to identify candidate thin film ceramic sensor materials and provide a list of possible thin film ceramic sensor materials and corresponding properties to test for viability. A thorough literature search was conducted for ceramics that have the potential for application as high temperature thin film strain gauges chemically and physically compatible with the NASA GRCs microfabrication procedures and substrate materials. Test results are given for tantalum, titanium and zirconium-based nitride and oxynitride ceramic films.

  18. Detecting Changes of a Distant Gas Source with an Array of MOX Gas Sensors

    PubMed Central

    Pashami, Sepideh; Lilienthal, Achim J.; Trincavelli, Marco

    2012-01-01

    We address the problem of detecting changes in the activity of a distant gas source from the response of an array of metal oxide (MOX) gas sensors deployed in an open sampling system. The main challenge is the turbulent nature of gas dispersion and the response dynamics of the sensors. We propose a change point detection approach and evaluate it on individual gas sensors in an experimental setup where a gas source changes in intensity, compound, or mixture ratio. We also introduce an efficient sensor selection algorithm and evaluate the change point detection approach with the selected sensor array subsets. PMID:23443385

  19. Sensoring hydrogen gas concentration using electrolyte made of proton

    SciTech Connect

    Ueda, Yoshikatsu; Kolesnikov, Alexander I; Koyanaka, Hideki

    2011-01-01

    Hydrogen gas promises to be a major clean fuel in the near future. Thus, sensors that can measure the concentrations of hydrogen gas over a wide dynamic range (e.g., 1 99.9%) are in demand for the production, storage, and utilization of hydrogen gas. However, it is difficult to directly measure hydrogen gas concentrations greater than 10% using conventional sensor [1 11]. We report a simple sensor using an electrolyte made of proton conductive manganese dioxide that enables in situmeasurements of hydrogen gas concentration over a wide range of 0.1 99.9% at room temperature.

  20. Development of an endoscopic tactile sensor using PVDF films

    NASA Astrophysics Data System (ADS)

    Okuyama, Takeshi; Sone, Mikiko; Tanahashi, Yoshikatsu; Chonan, Seiji; Tanaka, Mami

    2007-12-01

    In this work, a prototype Polyvinylidene Fluoride (PVDF) tactile sensor for endoscopic application has been developed. The sensor aims to measure hardness, which is one of the information of tactile perceptions, of biomedical tissue. This sensor is composed of two PVDF films, a silicone cylindrical column, and an aluminum cylinder. And the classification of hardness is concerned with the ratio of these PVDF outputs. In this paper, two sensors are fabricated using two silicone cylindrical columns with different Young's modulus. The performance evaluation of each sensor is conducted using 6 silicone rubbers as measuring object. The experimental results correspond with the simplified theoretical analysis and the proposed sensor can distinguish a difference of elastic property.

  1. Compact and multiplexible hydrogen gas sensor assisted by self-referencing technique.

    PubMed

    Park, Kwan Seob; Kim, Young Ho; Eom, Joo Beom; Park, Seong Jun; Park, Min-Su; Jang, Jae-Hyeong; Lee, Byeong Ha

    2011-09-12

    We have experimentally implemented a multiplexible but compact fiber sensor system suitable for multipoint sensing of hydrogen gas leakage. By making dual cavities along an optical fiber and coating a palladium film only at the end of the fiber tip, the measurement errors induced by the optical source power fluctuation and the mechanical perturbation in the lead fiber could be compensated. By adjusting the length of the dual-cavity, the capability of multiplexing several hydrogen sensors could be achieved. The experiment results showed that the response speed of the sensor was increasing with temperature, but at a low temperature the response amplitude became large. PMID:21935185

  2. Electrical properties of gas sensors based on graphene and single-wall carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Kondrashov, Ivan I.; Sokolov, Igor V.; Rusakov, Pavel S.; Rybin, Maxim G.; Barmin, Alexander A.; Rizakhanov, Razhudin N.; Obraztsova, Elena D.

    2016-01-01

    Here, we present investigation of the influence of different gases (carbon dioxide, ammonia, and iodine vapor) on the sensory properties of graphene and single-wall carbon nanotube films. The gas molecules are adsorbed by carbon films (graphene or nanotubes) and change the film's electrical resistance. In the course of this work, the setup for studying the electrophysical properties of carbon nanomaterials has been designed and constructed in the lab. With this home-made equipment, we have demonstrated a high efficiency of graphene and nanotubes as adsorbents of different gases and a possibility to use these materials as gas sensors. We have also performed a chemical modification of graphene and carbon nanotubes by attaching the nanoparticles of calcium carbonate (CaCO3) to improve the sensitivity and selectivity of sensors.

  3. Oxygen sensor for monitoring gas mixtures containing hydrocarbons

    DOEpatents

    Ruka, R.J.; Basel, R.A.

    1996-03-12

    A gas sensor measures O{sub 2} content of a reformable monitored gas containing hydrocarbons, H{sub 2}O and/or CO{sub 2}, preferably in association with an electrochemical power generation system. The gas sensor has a housing communicating with the monitored gas environment and carries the monitored gas through an integral catalytic hydrocarbon reforming chamber containing a reforming catalyst, and over a solid electrolyte electrochemical cell used for sensing purposes. The electrochemical cell includes a solid electrolyte between a sensor electrode that is exposed to the monitored gas, and a reference electrode that is isolated in the housing from the monitored gas and is exposed to a reference gas environment. A heating element is also provided in heat transfer communication with the gas sensor. A circuit that can include controls operable to adjust operations via valves or the like is connected between the sensor electrode and the reference electrode to process the electrical signal developed by the electrochemical cell. The electrical signal varies as a measure of the equilibrium oxygen partial pressure of the monitored gas. Signal noise is effectively reduced by maintaining a constant temperature in the area of the electrochemical cell and providing a monitored gas at chemical equilibria when contacting the electrochemical cell. The output gas from the electrochemical cell of the sensor is fed back into the conduits of the power generating system. 4 figs.

  4. Oxygen sensor for monitoring gas mixtures containing hydrocarbons

    DOEpatents

    Ruka, Roswell J.; Basel, Richard A.

    1996-01-01

    A gas sensor measures O.sub.2 content of a reformable monitored gas containing hydrocarbons H.sub.2 O and/or CO.sub.2, preferably in association with an electrochemical power generation system. The gas sensor has a housing communicating with the monitored gas environment and carries the monitored gas through an integral catalytic hydrocarbon reforming chamber containing a reforming catalyst, and over a solid electrolyte electrochemical cell used for sensing purposes. The electrochemical cell includes a solid electrolyte between a sensor electrode that is exposed to the monitored gas, and a reference electrode that is isolated in the housing from the monitored gas and is exposed to a reference gas environment. A heating element is also provided in heat transfer communication with the gas sensor. A circuit that can include controls operable to adjust operations via valves or the like is connected between the sensor electrode and the reference electrode to process the electrical signal developed by the electrochemical cell. The electrical signal varies as a measure of the equilibrium oxygen partial pressure of the monitored gas. Signal noise is effectively reduced by maintaining a constant temperature in the area of the electrochemical cell and providing a monitored gas at chemical equilibria when contacting the electrochemical cell. The output gas from the electrochemical cell of the sensor is fed back into the conduits of the power generating system.

  5. Fabrication of a SnO2-Based Acetone Gas Sensor Enhanced by Molecular Imprinting

    PubMed Central

    Tan, Wenhu; Ruan, Xiaofan; Yu, Qiuxiang; Yu, Zetai; Huang, Xintang

    2015-01-01

    This work presents a new route to design a highly sensitive SnO2–based sensor for acetone gas enhanced by the molecular imprinting technique. Unassisted and acetone-assisted thermal synthesis methods are used to synthesis SnO2 nanomaterials. The prepared SnO2 nanomaterials have been characterized by X-ray powder diffraction, scanning electron microscopy and N2 adsorption−desorption. Four types of SnO2 films were obtained by mixing pure deionized water and liquid acetone with the two types of as-prepared powders, respectively. The acetone gas sensing properties of sensors coated by these films were evaluated. Testing results reveal that the sensor coated by the film fabricated by mixing liquid acetone with the SnO2 nanomaterial synthesized by the acetone-assisted thermal method exhibits the best acetone gas sensing performance. The sensor is optimized for the smooth adsorption and desorption of acetone gas thanks to the participation of acetone both in the procedure of synthesis of the SnO2 nanomaterial and the device fabrication, which results in a distinct response–recovery behavior. PMID:25549174

  6. Preparation of the spacer for narrow electrode gap configuration in ionization-based gas sensor

    SciTech Connect

    Saheed, Mohamed Shuaib Mohamed; Mohamed, Norani Muti; Burhanudin, Zainal Arif

    2012-09-26

    Carbon nanotubes (CNTs) have started to be developed as the sensing element for ionization-based gas sensors due to the demand for improved sensitivity, selectivity, stability and other sensing properties beyond what can be offered by the conventional ones. Although these limitations have been overcome, the problems still remain with the conventional ionization-based gas sensors in that they are bulky and operating with large breakdown voltage and high temperature. Recent studies have shown that the breakdown voltage can be reduced by using nanostructured electrodes and narrow electrode gap. Nanostructured electrode in the form of aligned CNTs array with evenly distributed nanotips can enhance the linear electric field significantly. The later is attributed to the shorter conductivity path through narrow electrode gap. The paper presents the study on the design consideration in order to realize ionization based gas sensor using aligned carbon nanotubes array in an optimum sensor configuration with narrow electrode gap. Several deposition techniques were studied to deposit the spacer, the key component that can control the electrode gap. Plasma spray deposition, electron beam deposition and dry oxidation method were employed to obtain minimum film thickness around 32 {mu}m. For plasma spray method, sand blasting process is required in order to produce rough surface for strong bonding of the deposited film onto the surface. Film thickness, typically about 39 {mu}m can be obtained. For the electron beam deposition and dry oxidation, the film thickness is in the range of nanometers and thus unsuitable to produce the spacer. The deposited multilayer film consisting of copper, alumina and ferum on which CNTs array will be grown was found to be removed during the etching process. This is attributed to the high etching rate on the thin film which can be prevented by reducing the rate and having a thicker conductive copper film.

  7. Preparation of the spacer for narrow electrode gap configuration in ionization-based gas sensor

    NASA Astrophysics Data System (ADS)

    Saheed, Mohamed Shuaib Mohamed; Mohamed, Norani Muti; Burhanudin, Zainal Arif

    2012-09-01

    Carbon nanotubes (CNTs) have started to be developed as the sensing element for ionization-based gas sensors due to the demand for improved sensitivity, selectivity, stability and other sensing properties beyond what can be offered by the conventional ones. Although these limitations have been overcome, the problems still remain with the conventional ionization-based gas sensors in that they are bulky and operating with large breakdown voltage and high temperature. Recent studies have shown that the breakdown voltage can be reduced by using nanostructured electrodes and narrow electrode gap. Nanostructured electrode in the form of aligned CNTs array with evenly distributed nanotips can enhance the linear electric field significantly. The later is attributed to the shorter conductivity path through narrow electrode gap. The paper presents the study on the design consideration in order to realize ionization based gas sensor using aligned carbon nanotubes array in an optimum sensor configuration with narrow electrode gap. Several deposition techniques were studied to deposit the spacer, the key component that can control the electrode gap. Plasma spray deposition, electron beam deposition and dry oxidation method were employed to obtain minimum film thickness around 32 μm. For plasma spray method, sand blasting process is required in order to produce rough surface for strong bonding of the deposited film onto the surface. Film thickness, typically about 39 μm can be obtained. For the electron beam deposition and dry oxidation, the film thickness is in the range of nanometers and thus unsuitable to produce the spacer. The deposited multilayer film consisting of copper, alumina and ferum on which CNTs array will be grown was found to be removed during the etching process. This is attributed to the high etching rate on the thin film which can be prevented by reducing the rate and having a thicker conductive copper film.

  8. Pd Nanoparticles and Thin Films for Room Temperature Hydrogen Sensor.

    PubMed

    Joshi, Rakesh K; Krishnan, Subramanian; Yoshimura, Mashamichi; Kumar, Ashok

    2009-01-01

    We report the application of palladium nanoparticles and thin films for hydrogen sensor. Electrochemically grown palladium particles with spherical shapes deposited on Si substrate and sputter deposited Pd thin films were used to detect hydrogen at room temperature. Grain size dependence of H(2) sensing behavior has been discussed for both types of Pd films. The electrochemically grown Pd nanoparticles were observed to show better hydrogen sensing response than the sputtered palladium thin films. The demonstration of size dependent room temperature H(2) sensing paves the ways to fabricate the room temperature metallic and metal-metal oxide semiconductor sensor by tuning the size of metal catalyst in mixed systems. H(2) sensing by the Pd nanostructures is attributed to the chemical and electronic sensitization mechanisms. PMID:20596429

  9. Magnetoelastic sensor for characterizing properties of thin-film/coatings

    NASA Technical Reports Server (NTRS)

    Bachas, Leonidas G. (Inventor); Barrett, Gary (Inventor); Grimes, Craig A. (Inventor); Kouzoudis, Dimitris (Inventor); Schmidt, Stefan (Inventor)

    2004-01-01

    An apparatus for determining elasticity characteristics of a thin-film layer. The apparatus comprises a sensor element having a base magnetostrictive element at least one surface of which is at least partially coated with the thin-film layer. The thin-film layer may be of a variety of materials (having a synthetic and/or bio-component) in a state or form capable of being deposited, manually or otherwise, on the base element surface, such as by way of eye-dropper, melting, dripping, brushing, sputtering, spraying, etching, evaporation, dip-coating, laminating, etc. Among suitable thin-film layers for the sensor element of the invention are fluent bio-substances, thin-film deposits used in manufacturing processes, polymeric coatings, paint, an adhesive, and so on. A receiver, preferably remotely located, is used to measure a plurality of values for magneto-elastic emission intensity of the sensor element in either characterization: (a) the measure of the plurality of values is used to identify a magneto-elastic resonant frequency value for the sensor element; and (b) the measure of the plurality of successive values is done at a preselected magneto-elastic frequency.

  10. Improved gas sensing and dielectric properties of Fe doped hydroxyapatite thick films: Effect of molar concentrations

    SciTech Connect

    Mene, Ravindra U.; Mahabole, Megha P.; Mohite, K.C.; Khairnar, Rajendra S.

    2014-02-01

    Highlights: • We report improved gas sensing and dielectric characteristics of Fe ion exchanged HAp films. • Fe doped HAp film shows maximum gas response at relatively lower temperature. • Response and gas uptake capacity of sensors is improved for appropriate amount of Fe ions in HAp matrix. • Fe-HAp films exhibit remarkable improvement in dielectric properties compared to pure HAp. • Fe doped HAp films show significant improvement in gas sensing as well as in dielectric properties. - Abstract: In the present work Fe doped hydroxyapatite (Fe-HAp) thick films has been successfully utilized to improve the gas sensing as well as its dielectric properties. Initially, HAp nano powder is synthesized by chemical precipitation process and later on Fe ions are doped in HAp by ion exchange process. Structural and morphological modifications are observed by means of X-ray diffraction and scanning electron microscopy analysis. The sensing parameters such as operating temperature, response/recovery time and gas uptake capacity are experimentally determined. The Fe-HAp (0.05 M) film shows improved CO and CO{sub 2} gas sensing capacity at lower operating temperature compared to pure HAp. Moreover, variation of dielectric constant and dielectric loss for pure and Fe-HAp thick films are studied as a function of frequency in the range of 10 Hz–1 MHz. The study reveals that Fe doped HAp thick films improve the sensing and dielectric characteristics as compared to pure HAp.

  11. Development of bulk-scale and thin film magnetostrictive sensor

    NASA Astrophysics Data System (ADS)

    Liang, Cai

    Three key areas were investigated in this research. These are: (1) finite element modeling using modal analysis to better understand the mechanics of longitudinal vibration system, (2) thin film material Young's modulus measurement in a nondestructive manner by a magnetostrictive sensor, and (3) optimization of a deposition process for sputtering magnetostrictive thin films from Metglas 2826 MB ribbon and machining them into useful sensor platforms. We have verified the principle of operation for the longitudinal vibrating system through experimentation and comparison with numerical simulations of cantilevers, bridges, and beams. The results indicated that the governing vibration equation should use the plane-stress or biaxial modulus. Furthermore, the Poisson's ratio for Metglas 2826 MB was found to be 0.33. A resonating mechanical sensor was constructed from commercially available Metglas 2826 MB strip material and was used to measure Young's modulus of sputter deposited thin film material, e.g. Cu, Au, Al, Cr, Sn, In, SnAu (20/80 eutectic), and SiC, with a proposed measurement methodology. The determined Young's modulus values were comparable to those found in the literature. In addition, a finite element modeling analysis was employed to verify the Young's modulus determined by experimentation. Glass beads (size of ˜425 mum) were attached to freestanding (free-free ended) magnetostrictive sensors in order to simulate the attachment of target species. These mass-loading results indicated that the frequency shifts are sensitive to the location of the mass on the sensor's surface. Finite element analysis was conducted and ascertained that when a particle comparable in size to E. Coli O157 cell (mass in pico-gram range) attaches to sensor of 250 x 50 x 1.5 microns in size, a significant resonant frequency shift results, indicating that the sensor has the potential to detect the attachment of a single bacterium. These simulations also confirm that the resonant frequency shift is dependent on the location of the mass attachment along the longitudinal axis of the sensor. Finally, a process for depositing magnetostrictive thin film material from directly sputtering of Metglas 2826 MB ribbon was developed. Microscale sensors were fabricated with this film material. Dynamic testing of these microscale sensors was carried out on freestanding particles of the size 500 x 100 x 3 microns. The resonant frequency of these microfabricated particles was found to increase significantly in both magnitude and amplitude after the particle was annealed. A model was employed to explain why the magnetoelastic sensor behavior changed after annealing.

  12. Microfabricated Chemical Gas Sensors and Sensor Arrays for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.

    2005-01-01

    Aerospace applications require the development of chemical sensors with capabilities beyond those of commercially available sensors. In particular, factors such as minimal sensor size, weight, and power consumption are particularly important. Development areas which have potential aerospace applications include launch vehicle leak detection, engine health monitoring, and fire detection. Sensor development for these applications is based on progress in three types of technology: 1) Micromachining and microfabrication (Microsystem) technology to fabricate miniaturized sensors; 2) The use of nanocrystalline materials to develop sensors with improved stability combined with higher sensitivity; 3) The development of high temperature semiconductors, especially silicon carbide. This presentation discusses the needs of space applications as well as the point-contact sensor technology and sensor arrays being developed to address these needs. Sensors to measure hydrogen, hydrocarbons, nitrogen oxides (NO,), carbon monoxide, oxygen, and carbon dioxide are being developed as well as arrays for leak, fire, and emissions detection. Demonstrations of the technology will also be discussed. It is concluded that microfabricated sensor technology has significant potential for use in a range of aerospace applications.

  13. Isolating Gas Sensor From Pressure And Temperature Effects

    NASA Technical Reports Server (NTRS)

    Sprinkle, Danny R.; Chen, Tony T. D.; Chaturvedi, Sushi K.

    1994-01-01

    Two-stage flow system enables oxygen sensor in system to measure oxygen content of low-pressure, possibly-high-temperature atmosphere in test environment while protecting sensor against possibly high temperature and fluctuations in pressure of atmosphere. Sensor for which flow system designed is zirconium oxide oxygen sensor sampling atmospheres in high-temperature wind tunnels. Also adapted to other gas-analysis instruments that must be isolated from pressure and temperature effects of test environments.

  14. Flush mounting of thin film sensors

    NASA Technical Reports Server (NTRS)

    Moore, Thomas C., Sr. (Inventor)

    1992-01-01

    Flush mounting of a sensor on a surface is provided by first forming a recessed area on the surface. Next, an adhesive bonding mixture is introduced into the recessed area. The adhesive bonding mixture is chosen to provide thermal expansion matching with the surface surrounding the recessed area. A strip of high performance polymeric tape is provided, with the sensor attached to the underside thereof, and the tape is positioned over the recessed area so that it acts as a carrier of the sensor. A shim having flexibility so that it will conform to the surface surrounding the recessed area is placed over the tape, and a vacuum pad is placed over the shim. The area above the surface is then evacuated while holding the sensor flush with the surface during curing of the adhesive bonding mixture. After such curing, the pad, shim, and tape are removed from the sensor, electrical connections for the sensor are provided, after which the remaining space in the recessed area is filled with a polymeric foam.

  15. Metal Oxide Gas Sensors: Sensitivity and Influencing Factors

    PubMed Central

    Wang, Chengxiang; Yin, Longwei; Zhang, Luyuan; Xiang, Dong; Gao, Rui

    2010-01-01

    Conductometric semiconducting metal oxide gas sensors have been widely used and investigated in the detection of gases. Investigations have indicated that the gas sensing process is strongly related to surface reactions, so one of the important parameters of gas sensors, the sensitivity of the metal oxide based materials, will change with the factors influencing the surface reactions, such as chemical components, surface-modification and microstructures of sensing layers, temperature and humidity. In this brief review, attention will be focused on changes of sensitivity of conductometric semiconducting metal oxide gas sensors due to the five factors mentioned above. PMID:22294916

  16. GAS MAIN SENSOR AND COMMUNICATIONS NETWORK SYSTEM

    SciTech Connect

    Hagen Schempf, Ph.D.

    2003-02-27

    Automatika, Inc. was contracted by the Department of Energy (DOE) and with co-funding from the New York Gas Group (NYGAS), to develop an in-pipe natural gas prototype measurement and wireless communications system for assessing and monitoring distribution networks. A prototype system was built for low-pressure cast-iron mains and tested in a spider- and serial-network configuration in a live network in Long Island with the support of Keyspan Energy, Inc. The prototype unit combined sensors capable of monitoring pressure, flow, humidity, temperature and vibration, which were sampled and combined in data-packages in an in-pipe master-slave architecture to collect data from a distributed spider-arrangement, and in a master-repeater-slave configuration in serial or ladder-network arrangements. It was found that the system was capable of performing all data-sampling and collection as expected, yielding interesting results as to flow-dynamics and vibration-detection. Wireless in-pipe communications were shown to be feasible and valuable data was collected in order to determine how to improve on range and data-quality in the future.

  17. Study of ionic liquid immobilization on polyvinyl ferrocene substrates for gas sensor arrays.

    PubMed

    Hou, Kuang-Yu; Rehman, Abdul; Zeng, Xiangqun

    2011-04-19

    In this report, the effects of conductive polymer oxidation states and structures on the design and development of ionic liquid (IL)/conductive polymer (CP) composite films for gas sensing are systematically characterized. Four different polyvinyl ferrocene (PVF) films synthesized by varying the conditioning potential (0.7 vs 0.0 V) and the electrolyte are tested for their gas-sensing properties (e.g., sensitivity, selectivity, response time, linearity, and dynamic range against various gas analytes such as dichloromethane, ethanol, natural gas, methane, formaldehyde (37%), and benzene) utilizing the quartz crystal microbalance (QCM) and ATR-FT-IR. The best available film is further studied as a substrate for the immobilization of various ILs that enhanced both the sensitivity and selectivity. Finally, two arrays, each comprising four sensors with the following scheme are developed and characterized for their ability to classify the four target analytes by using linear discriminant analysis: (1) the highest sensitivity PVF film immobilized with four different ILs and (2) the highest sensitivity IL immobilized in four different PVF films. Array 2 is proven to be much better than array 1 in discriminating the analytes, which is very significant in establishing the fact that a diverse set of PVF redox states allow the rational development of a PVF/IL composite-based sensor array in order to analyze complex mixtures utilizing structural differences and the extent of intermolecular interactions. PMID:21410206

  18. Flexible Carbon Nanotube Films for High Performance Strain Sensors

    PubMed Central

    Kanoun, Olfa; Müller, Christian; Benchirouf, Abderahmane; Sanli, Abdulkadir; Dinh, Trong Nghia; Al-Hamry, Ammar; Bu, Lei; Gerlach, Carina; Bouhamed, Ayda

    2014-01-01

    Compared with traditional conductive fillers, carbon nanotubes (CNTs) have unique advantages, i.e., excellent mechanical properties, high electrical conductivity and thermal stability. Nanocomposites as piezoresistive films provide an interesting approach for the realization of large area strain sensors with high sensitivity and low manufacturing costs. A polymer-based nanocomposite with carbon nanomaterials as conductive filler can be deposited on a flexible substrate of choice and this leads to mechanically flexible layers. Such sensors allow the strain measurement for both integral measurement on a certain surface and local measurement at a certain position depending on the sensor geometry. Strain sensors based on carbon nanostructures can overcome several limitations of conventional strain sensors, e.g., sensitivity, adjustable measurement range and integral measurement on big surfaces. The novel technology allows realizing strain sensors which can be easily integrated even as buried layers in material systems. In this review paper, we discuss the dependence of strain sensitivity on different experimental parameters such as composition of the carbon nanomaterial/polymer layer, type of polymer, fabrication process and processing parameters. The insights about the relationship between film parameters and electromechanical properties can be used to improve the design and fabrication of CNT strain sensors. PMID:24915183

  19. Multifunctional thin film sensor system as monitoring system in production

    NASA Astrophysics Data System (ADS)

    Biehl, Saskia; Rumposch, Christian; Paetsch, Nancy

    2015-05-01

    The two most important measurement categories in production are temperature and load. Therefore commercial sensors are applied in machinery as near as possible to the working parts. For a cost efficient production the integration of sensor elements directly on top of the surface in the heavily loaded regions is essential to get the real temperature and load distributions during the production process. Therefore a new multifunctional thin film sensor system is in development. This multilayer system combines thermoresistive sensor structures with piezoresistive ones and exists out of wear resistant carbon based layers [1, 2, 3, 4, 5]. The sensor data will lead to a deeper process understanding, to optimization of simulation tools, to reduction of rejects and to an improvement of flexibility in production.

  20. Method of forming multi-element thin hot film sensors on polyimide film

    NASA Technical Reports Server (NTRS)

    Hopson, Jr., Purnell (Inventor)

    1996-01-01

    The invention comprises a method of forming a multi-element, thin hot film sensor on a polyimide film. The sensor is formed by first cleaning one surface of the polyimide. Then, under a continuous vacuum, the surface is simultaneously cleaned by ion bombardment while nickel is deposited by evaporation. The ion beam cleaning is discontinued and copper is then deposited to an initial thickness by evaporation without a break in the vacuum. The vacuum is then removed and a final thickness of copper is deposited by plating. Sensor patterns are then defined in the nickel and copper layers using conventional photolithography and etching techniques.

  1. Synthesis and characterization of nano crystalline nickel zinc ferrite for chlorine gas sensor at room temperature

    SciTech Connect

    Pawar, C. S.; Gujar, M. P.; Mathe, V. L.

    2015-06-24

    Nano crystalline Nickel Zinc ferrite (Ni{sub 0.25}Zn{sub 0.75}Fe{sub 2}O{sub 4}) thin films were synthesized by Sol Gel method for gas response. The phase and microstructure of the obtained Ni{sub 0.25}Zn{sub 0.75}Fe{sub 2}O{sub 4} thin films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM). The nanostructured Ni{sub 0.25}Zn{sub 0.75}Fe{sub 2}O{sub 4} thin film shows single spinel phase. Magnetic study was obtained with the help of VSM. The effects of working temperature on the gas response were studied. The results reveal that the Ni{sub 0.25}Zn{sub 0.75}Fe{sub 2}O{sub 4} thin film gas sensor shows good selectivity to chlorine gas at room temperature. The sensor shows highest sensitivity (∼50%) at room temperature, indicating its application in detecting chlorine gas at room temperature in the future.

  2. Fiber-Optic Sensor Would Monitor Growth of Polymer Film

    NASA Technical Reports Server (NTRS)

    Beamesderfer, Michael

    2005-01-01

    A proposed optoelectronic sensor system would measure the increase in thickness of a film of parylene (a thermoplastic polymer made from para-xylene) during growth of the film in a vapor deposition process. By enabling real-time monitoring of film thickness, the system would make it possible to identify process conditions favorable for growth and to tailor the final thickness of the film with greater precision than is now possible. The heart of the sensor would be a pair of fiber-optic Fabry-Perot interferometers, depicted schematically in the figure. (In principle, a single such interferometer would suffice. The proposal calls for the use of two interferometers for protective redundancy and increased accuracy.) Each interferometer would include a light source, a fiber-optic coupler, and photodetectors in a control box outside the deposition chamber. A single-mode optical fiber for each interferometer would run from inside the control box to a fused-silica faceplate in a sensor head. The sensory tips of the optical fibers would be polished flush with the free surface of the faceplate. In preparation for use, the sensor head would be mounted with a hermetic seal in a feed-through port in the deposition chamber, such that free face of the faceplate and the sensory tips of the optical fibers would be exposed to the deposition environment. During operation, light would travel along each optical fiber from the control box to the sensor head. A small portion of the light would be reflected toward the control box from the end face of each fiber. Once growth of the parylene film started, a small portion of the light would also be reflected toward the control box from the outer surface of the film. In the control box, the two reflected portions of the light beam would interfere in one of the photodetectors. The difference between the phases of the interfering reflected portions of the light beam would vary in proportion to the increasing thickness of the film and the known index of refraction of the film, causing the photodetector reading to vary in proportion to a known sinusoidal function of film thickness. Electronic means of monitoring this variation and the corresponding variation in phase and thickness are well established in the art of interferometry. Hence, by tracking the cumulative change in phase difference from the beginning of deposition, one could track the growing thickness of the film to within a small fraction of a wavelength of light.

  3. Study of quartz crystal microbalance NO2 sensor coated with sputtered indium tin oxide film

    NASA Astrophysics Data System (ADS)

    Georgieva, V.; Aleksandrova, M.; Stefanov, P.; Grechnikov, A.; Gadjanova, V.; Dilova, T.; Angelov, Ts

    2014-12-01

    A study of NO2 gas sorption ability of thin indium tin oxide (ITO) deposited on 16 MHz quartz crystal microbalance (QCM) is presented. ITO films are grown by RF sputtering of indium/tin target with weight proportion 95:5 in oxygen environment. The ITO films have been characterized by X-ray photoelectron spectroscopy measurements. The ITO surface composition in atomic % is defined to be: In-40.6%, Sn-4.3% and O-55%. The thickness and refractive index of the films are determined by ellipsometric method. The frequency shift of QCM-ITO is measured at different NO2 concentrations. The QCM-ITO system becomes sensitive at NO2 concentration >= 500 ppm. The sorbed mass for each concentration is calculated according the Sauerbrey equation. The results indicated that the 1.09 ng of the gas is sorbed into 150 nm thick ITO film at 500 ppm NO2 concentration. When the NO2 concentration increases 10 times the calculated loaded mass is 5.46 ng. The sorption process of the gas molecules is defined as reversible. The velocity of sorbtion /desorption processes are studied, too. The QCM coated with thin ITO films can be successfully used as gas sensors for detecting NO2 in the air at room temperature.

  4. Thin film devices used as oxygen partial pressure sensors

    NASA Technical Reports Server (NTRS)

    Canady, K. S.; Wortman, J. J.

    1970-01-01

    Electrical conductivity of zinc oxide films to be used in an oxygen partial pressure sensor is measured as a function of temperature, oxygen partial pressure, and other atmospheric constituents. Time response following partial pressure changes is studied as a function of temperature and environmental changes.

  5. Waveguide Zeeman interferometry for thin-film chemical sensors

    SciTech Connect

    Grace, K.M.; Shrouf, K.; Johnston, R.G.; Yang, X.; Swanson, B.; Honkanen, S.; Ayras, P.; Peyghambarian, N.; Katila, P.; Leppihalme, M.

    1997-10-01

    A chemical sensor is demonstrated which is based on Si{sub 3}N{sub 4} optical waveguides coated with species-selective thin films and using Zeeman interferometry as the detection technique. Relative phase change between TE and TM modes is measured. Real time and reversible response to toluene is shown with ppm level sensitivity.

  6. Chemical Gas Sensors for Aeronautic and Space Applications

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.; Chen, Liang-Yu; Neudeck, Philip G.; Knight, Dak; Liu, Chung-Chiun; Wu, Quing-Hai; Zhou, Huan-Jun

    1997-01-01

    Aeronautic and space applications require the development of chemical sensors with capabilities beyond those of commercially available sensors. Two areas of particular interest are safety monitoring and emission monitoring. In safety monitoring, detection of low concentrations of hydrogen at potentially low temperatures is important while for emission monitoring the detection of nitrogen oxides, hydrogen, hydrocarbons and oxygen is of interest. This paper discusses the needs of aeronautic and space applications and the point-contact sensor technology being developed to address these needs. The development of these sensors is based on progress in two types of technology: (1) Micromachining and microfabrication technology to fabricate miniaturized sensors. (2) The development of high temperature semiconductors, especially silicon carbide. The detection of each type of gas involves its own challenges in the fields of materials science and fabrication technology. The number of dual-use commercial applications of this microfabricated gas sensor technology make this general area of sensor development a field of significant interest.

  7. Flexible PZT Thin Film Tactile Sensor for Biomedical Monitoring

    PubMed Central

    Tseng, Hong-Jie; Tian, Wei-Cheng; Wu, Wen-Jong

    2013-01-01

    This paper presents the development of tactile sensors using the sol-gel process to deposit a PZT thin-film from 250 nm to 1 μm on a flexible stainless steel substrate. The PZT thin-film tactile sensor can be used to measure human pulses from several areas, including carotid, brachial, finger, ankle, radial artery, and the apical region. Flexible PZT tactile sensors can overcome the diverse topology of various human regions and sense the corresponding signals from human bodies. The measured arterial pulse waveform can be used to diagnose hypertension and cardiac failure in patients. The proposed sensors have several advantages, such as flexibility, reliability, high strain, low cost, simple fabrication, and low temperature processing. The PZT thin-film deposition process includes a pyrolysis process at 150 °C/500 °C for 10/5 min, followed by an annealing process at 650 °C for 10 min. Finally, the consistent pulse wave velocity (PWV) was demonstrated based on human pulse measurements from apical to radial, brachial to radial, and radial to ankle. It is characterized that the sensitivity of our PZT-based tactile sensor was approximately 0.798 mV/g. PMID:23698262

  8. Stand-alone sensors monitor for combustible gas leaks

    SciTech Connect

    Not Available

    1991-01-01

    Elizabeth Gas Co., a gas distribution company in New Jersey, has added a network of combustible gas sensors to a computer system already in place for continuous monitoring of gas leaks. The computer center at the company's Erie St. facility controls all dispatching, which includes routing gas through the system and controlling gas pressure. The system uses redundant Hewlett-Packard A900 central processing units (CPU), 6 monitors, including a Mitsubishi 35-in. color monitor, and Fisher control software. The company's primary tank farm, which contains over a million gallons of propane and LNG, is located near several chemical plants, an oil refinery and a residential neighborhood. To monitor for combustible leaks at the site, the company installed 49 stand-alone combustible gas sensors manufactured by Mine Safety Appliances Co. (MSA) of Pittsburgh, Pa. The sensors are designed to measure the concentrations of propane and LNG and trigger alarms at 20% of the lower explosive limit (LEL). The sensors are diffusion types that sample ambient air rather than drawing in samples through a pump. Using the principle of catalytic oxidation, the sensors produce a signal proportional to the concentration of combustible gas in the atmosphere. If gas is detected above 20% of the LEL, a relay driver signal is sent into a remote annunciator panel which contains LED alarm displays for each sensor. The remote annunciator panel also houses a 24 VDC power supply.

  9. The effect of UV irradiation on nanocrysatlline zinc oxide thin films related to gas sensing characteristics

    NASA Astrophysics Data System (ADS)

    Soleimanpour, A. M.; Hou, Yue; Jayatissa, Ahalapitiya H.

    2011-04-01

    The effect of ultraviolet (UV) light irradiation on the nanocrystalline ZnO thin films was investigated. The degree of crystallinity, electrical conductivity, optical properties and surface properties of ZnO thin films were measured as a function of UV irradiation time. It was found that the degree of crystallinity and electrical properties of ZnO films were affected by UV irradiation, however, no noticeable change in the surface morphology was observed. The gas sensing properties of as-deposited and UV irradiated films were also measured. It was observed that the gas sensing properties were affected by the UV irradiation. The irradiation time less than 5 min has improved the sensor while the irradiation time more than 5 min degraded the sensor characteristics for a UV power density of 2.45 W cm -2.

  10. Chlorine gas sensing performance of palladium doped nickel ferrite thin films

    NASA Astrophysics Data System (ADS)

    Rao, Pratibha; Godbole, R. V.; Bhagwat, Sunita

    2016-05-01

    NiFe2O4 and Pd:NiFe2O4 (Pd=1 w/o, 3 w/o and 5 w/o) thin films, p-type semiconducting oxides with an inverse spinel structure have been used as a gas sensor to detect chlorine. These films were prepared by spray pyrolysis technique and XRD was used to confirm the structure. The surface morphology was studied using SEM. Magnetization measurements were carried out at room temperature using SQUID VSM, which shows ferrimagnetic behavior of the samples. The reduction in optimum operating temperature and enhancement in response was observed on Pd-incorporation in nickel ferrite thin films. Faster response and recovery characteristic is observed Pd-incorporated nickel ferrite thin films. The long-term stability is evaluated over a period of six months. This feature may be regarded as a significant facet towards their practical application as gas sensors.

  11. Thin Film Ceramic Strain Sensor Development for Harsh Environments

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Fralick, Gustave

    2007-01-01

    The need to consider ceramic sensing elements is brought about by the temperature limits of metal thin film sensors in propulsion system applications. In order to have a more passive method of negating changes of resistance due to temperature, an effort is underway at NASA GRC to develop high temperature thin film ceramic static strain gauges for application in turbine engines, specifically in the fan and compressor modules on blades. Other applications include on aircraft hot section structures and on thermal protection systems. The near-term interim goal of this research effort was to identify candidate thin film ceramic sensor materials to test for viability and provide a list of possible thin film ceramic sensor materials and corresponding properties to test for viability. This goal was achieved by conducting a thorough literature search for ceramics that have the potential for application as high temperature thin film strain gauges chemically and physically compatible and selecting potential candidate materials for with NASA GRC's microfabrication procedures and substrates.

  12. High angular sensitivity thin film tin oxide sensor

    NASA Astrophysics Data System (ADS)

    Kaur, Davinder; Madaan, Divya; Sharma, V. K.; Kapoor, A.

    2016-05-01

    We present theoretical anlaysis of a thin film SnO2 (Tin Oxide) sensor for the measurement of variation in the refractive index of the bulk media. It is based on lossy mode resonance between the absorbing thin film lossy modes and the evanescent wave. Also the addition of low index dielectric matching layer between the prism and the lossy waveguiding layer future increase the angular sensitivity and produce an efficient refractive index sensor. The angular interrogation is done and obtained sensitivity is 110 degree/RIU. Theoretical analysis of the proposed sensor based on Fresnel reflection coefficients is presented. This enhanced sensitivity will further improve the monitoring of biomolecular interactions and the higher sensitivity of the proposed configurations makes it to be a much better option to be employed for biosensing applications.

  13. Transient hot-film sensor response in a shock tube

    NASA Technical Reports Server (NTRS)

    Roberts, A. S., Jr.; Ortgies, K. R.; Gartenberg, E.

    1989-01-01

    Shock tube experiments were performed to determine the response of a hot-film sensor, mounted flush on the side wall of a shock tube, to unsteady flow behind a normal shock wave. The present experiments attempt to isolate the response of the anemometer due only to the change in convective heat transfer at the hot-film surface. The experiments, performed at low supersonic shock speeds in air, are described along with the data acquisition procedure. The change in convective heat transfer is deduced from the data and the results are compared with those from transient boundary layer theory and another set of experimental results. Finally, a transient local heat transfer coefficient is formulated for use as the forcing function in a hot-film sensor instrument model simulation.

  14. Design and Deployment of Low-Cost Plastic Optical Fiber Sensors for Gas Monitoring

    PubMed Central

    Grassini, Sabrina; Ishtaiwi, Maen; Parvis, Marco; Vallan, Alberto

    2015-01-01

    This paper describes an approach to develop and deploy low-cost plastic optical fiber sensors suitable for measuring low concentrations of pollutants in the atmosphere. The sensors are designed by depositing onto the exposed core of a plastic fiber thin films of sensitive compounds via either plasma sputtering or via plasma-enhanced chemical vapor deposition (PECVD). The interaction between the deposited layer and the gas alters the fiber's capability to transmit the light, so that the sensor can simply be realized with a few centimeters of fiber, an LED and a photodiode. Sensors arranged in this way exhibit several advantages in comparison to electrochemical and optical conventional sensors; in particular, they have an extremely low cost and can be easily designed to have an integral, i.e., cumulative, response. The paper describes the sensor design, the preparation procedure and two examples of sensor prototypes that exploit a cumulative response. One sensor is designed for monitoring indoor atmospheres for cultural heritage applications and the other for detecting the presence of particular gas species inside the RPC (resistive plate chamber) muon detector of the Compact Muon Solenoid (CMS) experiment at CERN in Geneva. PMID:25558990

  15. Design and deployment of low-cost plastic optical fiber sensors for gas monitoring.

    PubMed

    Grassini, Sabrina; Ishtaiwi, Maen; Parvis, Marco; Vallan, Alberto

    2015-01-01

    This paper describes an approach to develop and deploy low-cost plastic optical fiber sensors suitable for measuring low concentrations of pollutants in the atmosphere. The sensors are designed by depositing onto the exposed core of a plastic fiber thin films of sensitive compounds via either plasma sputtering or via plasma-enhanced chemical vapor deposition (PECVD). The interaction between the deposited layer and the gas alters the fiber's capability to transmit the light, so that the sensor can simply be realized with a few centimeters of fiber, an LED and a photodiode. Sensors arranged in this way exhibit several advantages in comparison to electrochemical and optical conventional sensors; in particular, they have an extremely low cost and can be easily designed to have an integral, i.e., cumulative, response. The paper describes the sensor design, the preparation procedure and two examples of sensor prototypes that exploit a cumulative response. One sensor is designed for monitoring indoor atmospheres for cultural heritage applications and the other for detecting the presence of particular gas species inside the RPC (resistive plate chamber) muon detector of the Compact Muon Solenoid (CMS) experiment at CERN in Geneva. PMID:25558990

  16. SiC-Based Schottky Diode Gas Sensors

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.; Neudeck, Philip G.; Chen, Liang-Yu; Knight, Dak; Liu, Chung-Chiun; Wu, Quing-Hai

    1997-01-01

    Silicon carbide based Schottky diode gas sensors are being developed for high temperature applications such as emission measurements. Two different types of gas sensitive diodes will be discussed in this paper. By varying the structure of the diode, one can affect the diode stability as well as the diode sensitivity to various gases. It is concluded that the ability of SiC to operate as a high temperature semiconductor significantly enhances the versatility of the Schottky diode gas sensing structure and will potentially allow the fabrication of a SiC-based gas sensor arrays for versatile high temperature gas sensing applications.

  17. Semiconductor metal oxide compounds based gas sensors: A literature review

    NASA Astrophysics Data System (ADS)

    Patil, Sunil Jagannath; Patil, Arun Vithal; Dighavkar, Chandrakant Govindrao; Thakare, Kashinath Shravan; Borase, Ratan Yadav; Nandre, Sachin Jayaram; Deshpande, Nishad Gopal; Ahire, Rajendra Ramdas

    2015-03-01

    This paper gives a statistical view about important contributions and advances on semiconductor metal oxide (SMO) compounds based gas sensors developed to detect the air pollutants such as liquefied petroleum gas (LPG), H2S, NH3, CO2, acetone, ethanol, other volatile compounds and hazardous gases. Moreover, it is revealed that the alloy/composite made up of SMO gas sensors show better gas response than their counterpart single component gas sensors, i.e., they are found to enhance the 4S characteristics namely speed, sensitivity, selectivity and stability. Improvement of such types of sensors used for detection of various air pollutants, which are reported in last two decades, is highlighted herein.

  18. Thermoelectric gas sensors of different catalyst oxides and heater metals

    NASA Astrophysics Data System (ADS)

    Shin, W.; Nishibori, M.; Izu, N.; Itoh, T.; Matsubara, I.; Watanabe, N.; Kasuga, T.

    2011-10-01

    Thermoelectric hydrogen sensors with different catalyst oxides, Pt-Al2O3 and Pt-CeO2 have been prepared, and their gas sensing properties are investigated in the air and N2 flow. In air, the relationship between the sensor output and the gas concentration is a linear indicating the combustion only depends on the gas concentration in air. In N2 atmosphere, where the oxygen gas content of N2 source cylinder is below the industrial standard of 50 ppm, the sensor output shows also a linear relationship with the gas concentration, but depressed signal level. The microheater of the thermoelectric sensor has been prepared by the co-sputtering of tungsten and platinum to enhance the high temperature stability. The temperature coefficients of the Pt-W alloy multilayer heater were lowered to a half of the level of Pt.

  19. GAS MAIN SENSOR AND COMMUNICATIONS NETWORK SYSTEM

    SciTech Connect

    Hagen Schempf

    2004-09-30

    Automatika, Inc. was contracted by the Department of Energy (DOE) and with co-funding from the New York Gas Group (NYGAS), to develop an in-pipe natural gas prototype measurement and wireless communications system for assessing and monitoring distribution networks. In Phase II of this three-phase program, an improved prototype system was built for low-pressure cast-iron and high-pressure steel (including a no-blow installation system) mains and tested in a serial-network configuration in a live network in Long Island with the support of Keyspan Energy, Inc. The experiment was carried out in several open-hole excavations over a multi-day period. The prototype units (3 total) combined sensors capable of monitoring pressure, flow, humidity, temperature and vibration, which were sampled and combined in data-packages in an in-pipe master-repeater-slave configuration in serial or ladder-network arrangements. It was verified that the system was capable of performing all data-sampling, data-storage and collection as expected, yielding interesting results as to flow-dynamics and vibration-detection. Wireless in-pipe communications were shown to be feasible and the system was demonstrated to run off in-ground battery- and above-ground solar power. The remote datalogger access and storage-card features were demonstrated and used to log and post-process system data. Real-time data-display on an updated Phase-I GUI was used for in-field demonstration and troubleshooting.

  20. Multichannel monolithic quartz crystal microbalance gas sensor array.

    PubMed

    Jin, Xiaoxia; Huang, Yue; Mason, Andrew; Zeng, Xiangqun

    2009-01-15

    Multichannel Monolithic Quartz Crystal Microbalance (MQCM), in which an array of electrodes is fabricated on a monolithic quartz wafer, is a very attractive approach for miniaturization using Micro-Electro-Mechanical Systems(MEMS) technology for high throughput chemical or biological sensor systems. In this paper, we demonstrate and validate a monolithic QCM sensor array for gas detections. The monolithic QCM sensor array chip was fabricated using a simple, straightforward method. Four pairs QCM electrodes on a single AT-cut 10 MHz quartz plate were fabricated in both symmetric and asymmetric designs. Their resonance and sensing properties were thoroughly characterized and compared with a single regular QCM under the same conditions by using parallel multichannel QCM instruments. It is confirmed that each QCM in the MQCM behaves like an independent oscillator that responds to mass and/or viscosity change. Various factors that may affect the MQCM performance, such as the fabrication design, the numbers of oscillated electrodes in one MQCM, and the concentration of target analytes, were studied. Finally, the MQCM electrodes were selectively coated with an assortment of sensing films (ionic liquids (BMICS, BMIBF(4)) and conductive polymer poly(vinyl ferrocene) (PVF)). Their applications capabilities for classification and detection of Volatile Organic Compounds (VOCs, i.e., ethanol, CH(2)Cl(2), hexane) and water were studied. Our results show that the single-chip, multichannel QCM is a feasible and promising technology for a miniaturized, highly sensitive multianalysis system that can lead to substantial reductions in cost, analysis time, and sample volume. PMID:19090744

  1. Chemical Gas Sensors for Aeronautic and Space Applications 2

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.; Chen, Liong-Yu; Neudeck, Phil G.; Knight, Dale; Liu, C. C.; Wu, Q. H.; Zhou, H. J.; Makel, Darby; Liu, M.; Rauch, W. A.

    1998-01-01

    Aeronautic and space applications require the development of chemical sensors with capabilities beyond those of commercially available sensors. Areas of interest include launch vehicle safety monitoring, emission monitoring, and fire detection. This paper discusses the needs of aeronautic and space applications and the point-contact sensor technology being developed to address these needs. The development of these sensors is based on progress in two types of technology: 1) Micromachining and microfabrication technology to fabricate miniaturized sensors. 2) The development of high temperature semiconductors, especially silicon carbide. Sensor development for each application involves its own challenges in the fields of materials science and fabrication technology. The number of dual-use commercial applications of this microfabricated gas sensor technology make this area of sensor development a field of significant interest.

  2. Chemical Gas Sensors for Aeronautic and Space Applications 2

    NASA Technical Reports Server (NTRS)

    Hunter, G. W.; Chen, L. Y.; Neudeck, P. G.; Knight, D.; Liu, C. C.; Wu, Q. H.; Zhou, H. J.; Makel, D.; Liu, M.; Rauch, W. A.

    1998-01-01

    Aeronautic and Space applications require the development of chemical sensors with capabilities beyond those of commercially available sensors. Areas of most interest include launch vehicle safety monitoring emission monitoring and fire detection. This paper discusses the needs of aeronautic and space applications and the point-contact sensor technology being developed to address these needs. The development of these sensor is based on progress two types of technology: 1) Micro-machining and micro-fabrication technology to fabricate miniaturized sensors. 2) The development of high temperature semiconductors, especially silicon carbide. Sensor development for each application involves its own challenges in the fields of materials science and fabrication technology. The number of dual-use commercial applications of this micro-fabricated gas sensor technology make this area of sensor development a field of significant interest.

  3. Chemical Gas Sensors for Aeronautics and Space Applications III

    NASA Technical Reports Server (NTRS)

    Hunter, G. W.; Neudeck, P. G.; Chen, L. Y.; Liu, C. C.; Wu, Q. H.; Sawayda, M. S.; Jin, Z.; Hammond, J.; Makel, D.; Liu, M.; Rauch, W. A.; Hall, G.

    1999-01-01

    Aeronautic and space applications require the development of chemical sensors with capabilities beyond those of commercially available sensors. Areas of interest include launch vehicle safety monitoring, emission monitoring, and fire detection. This paper discusses the needs of aeronautic and space applications and the point-contact sensor technology being developed to address these needs. The development of these sensors is based on progress in two types of technology: 1) Micromachining and microfabrication technology to fabricate miniaturized sensors. 2) The development of high temperature semiconductors, especially silicon carbide. Sensor development for each application involves its own challenges in the fields of materials science and fabrication technology. The number of dual-use commercial applications of this microfabricated gas sensor technology make this area of sensor development a field of significant interest.

  4. Multifunctional CuO nanowire devices: p-type field effect transistors and CO gas sensors.

    PubMed

    Liao, L; Zhang, Z; Yan, B; Zheng, Z; Bao, Q L; Wu, T; Li, C M; Shen, Z X; Zhang, J X; Gong, H; Li, J C; Yu, T

    2009-02-25

    We report the properties of a field effect transistor (FET) and a gas sensor based on CuO nanowires. CuO nanowire FETs exhibit p-type behavior. Large-scale p-type CuO nanowire thin-film transistors (10(4) devices in a 25 mm(2) area) are fabricated and we effectively demonstrate their enhanced performance. Furthermore, CuO nanowire exhibits high and fast response to CO gas at 200 degrees C, which makes it a promising candidate for a poisonous gas sensing nanodevice. PMID:19417443

  5. Gas-film coefficients for streams

    USGS Publications Warehouse

    Rathbun, R.E.; Tai, D.Y.

    1983-01-01

    Equations for predicting the gas-film coefficient for the volatilization of organic solutes from streams are developed. The film coefficient is a function of windspeed and water temperature. The dependence of the coefficient on windspeed is determined from published information on the evaporation of water from a canal. The dependence of the coefficient on temperature is determined from laboratory studies on the evaporation of water. Procedures for adjusting the coefficients for different organic solutes are based on the molecular diffusion coefficient and the molecular weight. The molecular weight procedure is easiest to use because of the availability of molecular weights. However, the theoretical basis of the procedure is questionable. The diffusion coefficient procedure is supported by considerable data. Questions, however, remain regarding the exact dependence of the film coefficint on the diffusion coefficient. It is suggested that the diffusion coefficient procedure with a 0.68-power dependence be used when precise estimate of the gas-film coefficient are needed and that the molecular weight procedure be used when only approximate estimates are needed.

  6. Film bulk acoustic resonator pressure sensor with self temperature reference

    NASA Astrophysics Data System (ADS)

    He, X. L.; Garcia-Gancedo, L.; Jin, P. C.; Zhou, J.; Wang, W. B.; Dong, S. R.; Luo, J. K.; Flewitt, A. J.; Milne, W. I.

    2012-12-01

    A novel film bulk acoustic resonator (FBAR) with two resonant frequencies which have opposite reactions to temperature changes has been designed. The two resonant modes respond differently to changes in temperature and pressure, with the frequency shift being linearly correlated with temperature and pressure changes. By utilizing the FBAR's sealed back trench as a cavity, an on-chip single FBAR sensor suitable for measuring pressure and temperature simultaneously is proposed and demonstrated. The experimental results show that the pressure coefficient of frequency for the lower frequency peak of the FBAR sensors is approximately -17.4 ppm kPa-1, while that for the second peak is approximately -6.1 ppm kPa-1, both of them being much more sensitive than other existing pressure sensors. This dual mode on-chip pressure sensor is simple in structure and operation, can be fabricated at very low cost, and yet requires no specific package, therefore has great potential for applications.

  7. Fast patterning of oriented organic microstripes for field-effect ammonia gas sensors.

    PubMed

    Wang, Binghao; Ding, Jinqiang; Zhu, Tao; Huang, Wei; Cui, Zequn; Chen, Jianmei; Huang, Lizhen; Chi, Lifeng

    2016-02-11

    A series of organic field-effect transistors (OFETs) with patterned ultra-thin films for NH3 detection are achieved via fast dip-coating. The morphology and packing structure of the ultra-thin films are greatly dependent on the surface energy of the substrates, geometry features of the patterned electrodes and evaporation atmosphere during the dip-coating process, which in turn results in a significant difference in the NH3 sensing properties. Based on the newly proposed mechanism, low-trap dielectric-semiconductor interfaces, a stripe-like morphology and an ultrathin film (as low as 2 nm) enable the OFET-based sensors to exhibit unprecedented sensitivity (∼160) with a short response/recovery time. The efficient (2 mm s(-1)), reliable, and scalable patterning strategy opens a new route for solution-processed OFET-based gas sensors. PMID:26840884

  8. Morphology-Driven High-Performance Polymer Transistor-based Ammonia Gas Sensor.

    PubMed

    Yu, Seong Hoon; Cho, Jangwhan; Sim, Kyu Min; Ha, Jae Un; Chung, Dae Sung

    2016-03-16

    Developing high-performance gas sensors based on polymer field-effect transistors (PFETs) requires enhancing gas-capture abilities of polymer semiconductors without compromising their high charge carrier mobility. In this work, cohesive energies of polymer semiconductors were tuned by strategically inserting buffer layers, which resulted in dramatically different semiconductor surface morphologies. Elucidating morphological and structural properties of polymer semiconductor films in conjunction with FET studies revealed that surface morphologies containing large two-dimensional crystalline domains were optimal for achieving high surface areas and creating percolation pathways for charge carriers. Ammonia molecules with electron lone pairs adsorbed on the surface of conjugated semiconductors can serve as efficient trapping centers, which negatively shift transfer curves for p-type PFETs. Therefore, morphology optimization of polymer semiconductors enhances their gas sensing abilities toward ammonia, leading to a facile method of manufacturing high-performance gas sensors. PMID:26927929

  9. Characterization of Tungsten Oxide Thin Films Produced by Spark Ablation for NO2 Gas Sensing.

    PubMed

    Isaac, Nishchay A; Valenti, Marco; Schmidt-Ott, Andreas; Biskos, George

    2016-02-17

    Tungsten oxides (WOx) thin films are currently used in electro-chromic devices, solar-cells and gas sensors as a result of their versatile and unique characteristics. In this study, we produce nanoparticulate WOx films by spark ablation and focused inertial deposition, and demonstrate their application for NO2 sensing. The primary particles in the as-deposited film samples are amorphous with sizes ranging from 10 to 15 nm. To crystallize the samples, the as-deposited films are annealed at 500 °C in air. This also caused the primary particles to grow to 30-50 nm by sintering. The morphologies and crystal structures of the resulting materials are studied using scanning and transmission electron microscopy and X-ray diffraction, whereas information on composition and oxidation states are determined by X-ray photoemission spectroscopy. The observed sensitivity of the resistance of the annealed films is ∼100 when exposed to 1 ppm of NO2 in air at 200 °C, which provides a considerable margin for employing them in gas sensors for measuring even lower concentrations. The films show a stable and repeatable response pattern. Considering the numerous advantages of spark ablation for fabricating nanoparticulate thin films, the results reported here provide a promising first step toward the production of high sensitivity and high accuracy sensors. PMID:26796099

  10. Metal oxide gas sensors upon various temperature-induced profiles

    NASA Astrophysics Data System (ADS)

    GwiŻdŻ, Patryk; Brudnik, Andrzej; Zakrzewska, Katarzyna

    2014-08-01

    This paper presents how an array of sensors with different sensitivities to gases can be applied for detection of hydrogen in the presence of humidity when operated upon various temperature - induced profiles. The sensors in the array are subject to temperature modulation over the range of 350 - 500°C. Temperature profiles are based on a cardinal sine as well as Meyer wavelet phi and psi functions. Changes in the sensor operating temperature lead to distinct resistance patterns of the sensors depending on gas concentration. The sensors responses are studied as a function of target gas concentration (0 - 3000 ppm) and relative humidity level (0 - 75%Rh). Feedforward back-propagation neural networks are used in order to facilitate gas concentration and humidity level prediction. The results show reliable hydrogen detection upon temperature modulation and a reduction of the total power consumption.

  11. Formaldehyde gas sensor based on nanostructured nickel oxide and the microstructure effects on its response

    NASA Astrophysics Data System (ADS)

    Lahem, D.; Lontio, F. R.; Delcorte, A.; Bilteryst, L.; Debliquy, M.

    2016-03-01

    NiO nanostructures can be used as a promising material for semiconductor gas sensor to detect formaldehyde at low concentrations (< 1 ppm). Here, the effect of the morphology of the synthesized NiO nanostructures on gas sensing properties is studied and discussed. NiO nanostructures have been synthesized by thermal decomposition of precursors obtained by two different chemical precipitation methods and a sol-gel technique. Thick films of the synthesized NiO nanostructures were deposited by spray coating on alumina substrates fitted with gold interdigitated electrodes and a platinum heater. The gas sensing properties of those NiO films were studied for low concentrations of formaldehyde gas at different working temperatures. A clear difference in response characteristics was observed between the samples prepared by different synthesis routes.

  12. Effect of deposition times on structure of Ga-doped ZnO thin films as humidity sensor

    SciTech Connect

    Khalid, Faridzatul Shahira; Awang, Rozidawati

    2014-09-03

    Gallium doped zinc oxide (GZO) has good electrical property. It is widely used as transparent electrode in photovoltaic devices, and sensing element in gas and pressure sensors. GZO thin film was prepared using magnetron sputtering. Film deposition times were set at 10, 15, 20, 25 and 30 minutes to get samples of different thickness. X-ray diffraction (XRD) was used to determine the structure of GZO thin films. Structure for GZO thin film is hexagonal wurtzite structure. Morphology and thickness of GZO thin films was observed from FESEM micrographs. Grain size and thickness of thin films improved with increasing deposition times. However, increasing the thickness of thin films occur below 25 minutes only. Electrical properties of GZO thin films were studied using a four-point probe technique. The changes in the structure of the thin films lead to the changed of their electrical properties resulting in the reduction of the film resistance. These thin films properties significantly implying the potential application of the sample as a humidity sensor.

  13. Turbine Blade Temperature Measurements Using Thin Film Temperature Sensors

    NASA Technical Reports Server (NTRS)

    Grant, H. P.; Przybyszewski, J. S.; Claing, R. G.

    1981-01-01

    The development of thin film temperature sensors is discussed. The technology for sputtering 2 micron thin film platinum versus platinum 10 percent rhodium thermocouples on alumina forming coatings was improved and extended to applications on actual turbine blades. Good adherence was found to depend upon achieving a proper morphology of the alumina surface. Problems of adapting fabrication procedures to turbine blades were uncovered, and improvements were recommended. Testing at 1250 K at one atmosphere pressure was then extended to a higher Mach No. (0.5) in combustor flow for 60 hours and 71 thermal cycles. The mean time to failure was 47 hours accumulated during 1 hour exposures in the combustor. Calibration drift was about 0.1 percent per hour, attributable to oxidation of the rhodium in the thin films. An increase in film thickness and application of a protective overcoat are recommended to reduce drift in actual engine testing.

  14. Fast patterning of oriented organic microstripes for field-effect ammonia gas sensors

    NASA Astrophysics Data System (ADS)

    Wang, Binghao; Ding, Jinqiang; Zhu, Tao; Huang, Wei; Cui, Zequn; Chen, Jianmei; Huang, Lizhen; Chi, Lifeng

    2016-02-01

    A series of organic field-effect transistors (OFETs) with patterned ultra-thin films for NH3 detection are achieved via fast dip-coating. The morphology and packing structure of the ultra-thin films are greatly dependent on the surface energy of the substrates, geometry features of the patterned electrodes and evaporation atmosphere during the dip-coating process, which in turn results in a significant difference in the NH3 sensing properties. Based on the newly proposed mechanism, low-trap dielectric-semiconductor interfaces, a stripe-like morphology and an ultrathin film (as low as 2 nm) enable the OFET-based sensors to exhibit unprecedented sensitivity (~160) with a short response/recovery time. The efficient (2 mm s-1), reliable, and scalable patterning strategy opens a new route for solution-processed OFET-based gas sensors.A series of organic field-effect transistors (OFETs) with patterned ultra-thin films for NH3 detection are achieved via fast dip-coating. The morphology and packing structure of the ultra-thin films are greatly dependent on the surface energy of the substrates, geometry features of the patterned electrodes and evaporation atmosphere during the dip-coating process, which in turn results in a significant difference in the NH3 sensing properties. Based on the newly proposed mechanism, low-trap dielectric-semiconductor interfaces, a stripe-like morphology and an ultrathin film (as low as 2 nm) enable the OFET-based sensors to exhibit unprecedented sensitivity (~160) with a short response/recovery time. The efficient (2 mm s-1), reliable, and scalable patterning strategy opens a new route for solution-processed OFET-based gas sensors. Electronic supplementary information (ESI) available: Optical, SEM images of DTBDT-C6 microstripes; output characteristics of OTFTs based on DTBDT-C6 microstripes. See DOI: 10.1039/c5nr09001f

  15. A Thin Film Multifunction Sensor for Harsh Environments

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Fralick, Gustave C.; Martin, Lisa C.; Blaha, Charles A.

    2001-01-01

    The status of work at NASA Glenn Research Center to develop a minimally intrusive integrated sensor to provide realtime measurement of strain, heat flux and flow in high temperature environments is presented in this paper. The sensor can be beneficial as a single package to characterize multiple stress and strain modes simultaneously on materials and components during engine development and validation. A major technical challenge is to take existing individual gauge designs and modify them into one integrated thin film sensor. Ultimately, the goal is to develop the ability to deposit the sensors directly onto internal engine parts or on a small thin substrate that can be attached to engine components. Several prototype sensors constructed of platinum, platinum-rhodium alloy, and alumina on constant-strain alumina beams have been built and bench-tested. The technical challenges of the design. construction, and testing are discussed. Data from the preliminary testing of the sensor array is presented. The future direction for the sensor development is discussed as well.

  16. Co-polymer Films for Sensors

    NASA Technical Reports Server (NTRS)

    Ryan, Margaret A. (Inventor); Homer, Margie L. (Inventor); Yen, Shiao-Pin S. (Inventor); Kisor, Adam (Inventor); Jewell, April D. (Inventor); Shevade, Abhijit V. (Inventor); Manatt, Kenneth S. (Inventor); Taylor, Charles (Inventor); Blanco, Mario (Inventor); Goddard, William A. (Inventor)

    2012-01-01

    Embodiments include a sensor comprising a co-polymer, the co-polymer comprising a first monomer and a second monomer. For some embodiments, the first monomer is poly-4-vinyl pyridine, and the second monomer is poly-4-vinyl pyridinium propylamine chloride. For some embodiments, the first monomer is polystyrene and the second monomer is poly-2-vinyl pyridinium propylamine chloride. For some embodiments, the first monomer is poly-4-vinyl pyridine, and the second monomer is poly-4-vinyl pyridinium benzylamine chloride. Other embodiments are described and claimed.

  17. Co-polymer films for sensors

    NASA Technical Reports Server (NTRS)

    Ryan, Margaret A. (Inventor); Homer, Margie L. (Inventor); Yen, Shiao-Pin S. (Inventor); Kisor, Adam (Inventor); Jewell, April D. (Inventor); Shevade, Abhijit V. (Inventor); Manatt, Kenneth S. (Inventor); Taylor, Charles (Inventor); Blanco, Mario (Inventor); Goddard, William A. (Inventor)

    2010-01-01

    Embodiments include a sensor comprising a co-polymer, the co-polymer comprising a first monomer and a second monomer. For some embodiments, the first monomer is poly-4-vinyl pyridine, and the second monomer is poly-4-vinyl pyridinium propylamine chloride. For some embodiments, the first monomer is polystyrene and the second monomer is poly-2-vinyl pyridinium propylamine chloride. For some embodiments, the first monomer is poly-4-vinyl pyridine, and the second monomer is poly-4-vinyl pyridinium benzylamine chloride. Other embodiments are described and claimed.

  18. Design and Experimentation with Sandwich Microstructure for Catalytic Combustion-Type Gas Sensors

    PubMed Central

    Gu, Jun-Tao; Zhang, Yong-De; Jiang, Jin-Gang

    2014-01-01

    The traditional handmade catalytic combustion gas sensor has some problems such as a pairing difficulty, poor consistency, high power consumption, and not being interchangeable. To address these issues, integrated double catalytic combustion of alcohol gas sensor was designed and manufactured using silicon micro-electro-mechanical systems (MEMS) technology. The temperature field of the sensor is analyzed using the ANSYS finite element analysis method. In this work, the silicon oxide-PECVD-oxidation technique is used to manufacture a SiO2-Si3N2-SiO2 microstructure carrier with a sandwich structure, while wet etching silicon is used to form a beam structure to reduce the heat consumption. Thin-film technology is adopted to manufacture the platinum-film sensitive resistance. Nano Al2O3-ZrO-ThO is coated to format the sensor carrier, and the sensitive unit is dipped in a Pt-Pd catalyst solution to form the catalytic sensitive bridge arm. Meanwhile the uncoated catalyst carrier is considered as the reference unit, realizing an integrated chip based on a micro double bridge and forming sensors. The lines of the Pt thin-film resistance have been observed with an electronic microscope. The compensation of the sensitive material carriers and compensation materials have been analyzed using an energy spectrum. The results show that the alcohol sensor can detect a volume fraction between 0 and 4,500 × 10−6 and has good linear output characteristic. The temperature ranges from −20 to +40 °C. The humidity ranges from 30% to 85% RH. The zero output of the sensor is less than ±2.0% FS. The power consumption is ≤0.2 W, and both the response and recovery time are approximately 20 s. PMID:24625742

  19. Design and experimentation with sandwich microstructure for catalytic combustion-type gas sensors.

    PubMed

    Gu, Jun-Tao; Zhang, Yong-De; Jiang, Jin-Gang

    2014-01-01

    The traditional handmade catalytic combustion gas sensor has some problems such as a pairing difficulty, poor consistency, high power consumption, and not being interchangeable. To address these issues, integrated double catalytic combustion of alcohol gas sensor was designed and manufactured using silicon micro-electro-mechanical systems (MEMS) technology. The temperature field of the sensor is analyzed using the ANSYS finite element analysis method. In this work, the silicon oxide-PECVD-oxidation technique is used to manufacture a SiO2-Si3N2-SiO2 microstructure carrier with a sandwich structure, while wet etching silicon is used to form a beam structure to reduce the heat consumption. Thin-film technology is adopted to manufacture the platinum-film sensitive resistance. Nano Al2O3-ZrO-ThO is coated to format the sensor carrier, and the sensitive unit is dipped in a Pt-Pd catalyst solution to form the catalytic sensitive bridge arm. Meanwhile the uncoated catalyst carrier is considered as the reference unit, realizing an integrated chip based on a micro double bridge and forming sensors. The lines of the Pt thin-film resistance have been observed with an electronic microscope. The compensation of the sensitive material carriers and compensation materials have been analyzed using an energy spectrum. The results show that the alcohol sensor can detect a volume fraction between 0 and 4,500 10(-6) and has good linear output characteristic. The temperature ranges from -20 to +40 C. The humidity ranges from 30% to 85% RH. The zero output of the sensor is less than 2.0% FS. The power consumption is ?0.2 W, and both the response and recovery time are approximately 20 s. PMID:24625742

  20. Thickness and UV irradiation effects on the gas sensing properties of Te thin films

    SciTech Connect

    Manouchehrian, M.; Larijani, M.M.; Elahi, S.M.

    2015-02-15

    Highlights: • Tellurium thin films were prepared by thermal evaporation technique. • Tellurium thin films showed excellent gas-sensing properties to H{sub 2}S at room temperature. • Tellurium showed a remarkably enhanced response to H{sub 2}S gas under UV irradiation. • The reason of the enhanced response by UV irradiation was discussed. - Abstract: In this research, tellurium thin films were investigated for use as hydrogen sulfide gas sensors. To this end, a tellurium thin film has been deposited on Al{sub 2}O{sub 3} substrates by thermal evaporation, and the influence of thickness on the sensitivity of the tellurium thin film for measuring H{sub 2}S gas is studied. XRD patterns indicate that as the thickness increases, the crystallization improves. Observing the images obtained by SEM, it is seen that the grain size increases as the thickness increases. Studying the effect of thickness on H{sub 2}S gas measurement, it became obvious that as the thickness increases, the sensitivity decreases and the response and recovery times increase. To improve the response and recovery times of the tellurium thin film for measuring H{sub 2}S gas, the influence of UV radiation while measuring H{sub 2}S gas was also investigated. The results indicate that the response and recovery times strongly decrease using UV radiation.

  1. Properties of thin films for high temperature flow sensors

    NASA Technical Reports Server (NTRS)

    Albin, Sacharia

    1991-01-01

    Requirements of material parameters of high temperature flow sensors are identified. Refractory metal silicides offer high temperature sensitivity and high frequency response and are stable up to 1000 C. Intrinsic semiconductors of high band gap are also considered as sensor elements. SiC and diamond are identified. Combined with substrates of low thermal and electrical conductivity, such as quartz or Al2O3, these materials meet several requirements of high sensitivity and frequency response. Film deposition and patterning techniques suitable for these materials are identified.

  2. Thin film diamond temperature sensor array for harsh aerospace environment

    NASA Technical Reports Server (NTRS)

    Aslam, M.; Masood, A.; Fredricks, R. J.; Tamor, M. A.

    1992-01-01

    The feasibility of using polycrystalline CVD diamond films as temperature sensors in harsh aerospace environment associated with hypersonic flights was tested using patterned diamond resistors, fabricated on flat or curved oxidized Si surfaces, as temperature sensors at temperatures between 20 and 1000 C. In this temperature range, the measured resistance was found to vary over 3 orders of magnitude and the temperature coefficient of resistance to change from 0.017/K to 0.003/K. After an annealing treatment, the resistance change was reproducible within 1 percent on the entire temperature range for short measuring times.

  3. Low cost electrochemical sensor module for measurement of gas concentration

    NASA Astrophysics Data System (ADS)

    Jasinski, Grzegorz; Strzelczyk, Anna; Koscinski, Piotr

    2016-01-01

    This paper describes a low cost electrochemical sensor module for gas concentration measurement. A module is universal and can be used for many types of electrochemical gas sensors. Device is based on AVR ATmega8 microcontroller. As signal processing circuit a specialized integrated circuit LMP91000 is used. The proposed equipment will be used as a component of electronic nose system employed for classifying and distinguishing different levels of air contamination.

  4. Producing CCD imaging sensor with flashed backside metal film

    NASA Technical Reports Server (NTRS)

    Janesick, James R. (Inventor)

    1988-01-01

    A backside illuminated CCD imaging sensor for reading out image charges from wells of the array of pixels is significantly improved for blue, UV, far UV and low energy x-ray wavelengths (1-5000.ANG.) by so overthinning the backside as to place the depletion edge at the surface and depositing a thin transparent metal film of about 10.ANG. on a native-quality oxide film of less than about 30.ANG. grown on the thinned backside. The metal is selected to have a higher work function than that of the semiconductor to so bend the energy bands (at the interface of the semiconductor material and the oxide film) as to eliminate wells that would otherwise trap minority carriers. A bias voltage may be applied to extend the frontside depletion edge to the interface of the semiconductor material with the oxide film in the event there is not sufficient thinning. This metal film (flash gate), which improves and stabilizes the quantum efficiency of a CCD imaging sensor, will also improve the QE of any p-n junction photodetector.

  5. Thermal balance analysis of a micro-thermoelectric gas sensor using catalytic combustion of hydrogen.

    PubMed

    Nagai, Daisuke; Akamatsu, Takafumi; Itoh, Toshio; Izu, Noriya; Shin, Woosuck

    2014-01-01

    A thermoelectric gas sensor (TGS) with a combustion catalyst is a calorimetric sensor that changes the small heat of catalytic combustion into a signal voltage. We analyzed the thermal balance of a TGS to quantitatively estimate the sensor parameters. The voltage signal of a TGS was simulated, and the heat balance was calculated at two sections across the thermoelectric film of a TGS. The thermal resistances in the two sections were estimated from the thermal time constants of the experimental signal curves of the TGS. The catalytic combustion heat Q(catalyst) required for 1 mV of ?V(gas) was calculated to be 46.1 ?W. Using these parameters, we find from simulations for the device performance that the expected Q(catalyst) for 200 and 1,000 ppm H? was 3.69 ?W and 11.7 ?W, respectively. PMID:24451468

  6. Studying the Effect of Deposition Conditions on the Performance and Reliability of MEMS Gas Sensors

    PubMed Central

    Sadek, Khaled; Moussa, Walied

    2007-01-01

    In this paper, the reliability of a micro-electro-mechanical system (MEMS)-based gas sensor has been investigated using Three Dimensional (3D) coupled multiphysics Finite Element (FE) analysis. The coupled field analysis involved a two-way sequential electrothermal fields coupling and a one-way sequential thermal-structural fields coupling. An automated substructuring code was developed to reduce the computational cost involved in simulating this complicated coupled multiphysics FE analysis by up to 76 percent. The substructured multiphysics model was then used to conduct a parametric study of the MEMS-based gas sensor performance in response to the variations expected in the thermal and mechanical characteristics of thin films layers composing the sensing MEMS device generated at various stages of the microfabrication process. Whenever possible, the appropriate deposition variables were correlated in the current work to the design parameters, with good accuracy, for optimum operation conditions of the gas sensor. This is used to establish a set of design rules, using linear and nonlinear empirical relations, which can be utilized in real-time at the design and development decision-making stages of similar gas sensors to enable the microfabrication of these sensors with reliable operation.

  7. Optical and Nonlinear Optical Response of Light Sensor Thin Films

    PubMed Central

    Liu, Huimin; Rua, Armando; Vasquez, Omar; Vikhnin, Valentin S.; Fernandez, Felix E.; Fonseca, Luis F.; Resto, Oscar; Weisz, Svi Z.

    2005-01-01

    For potential ultrafast optical sensor application, both VO2 thin films and nanocomposite crystal-Si enriched SiO2 thin films grown on fused quartz substrates were successfully prepared using pulsed laser deposition (PLD) and RF co-sputtering techniques. In photoluminescence (PL) measurement c-Si/SiO2 film contains nanoparticles of crystal Si exhibits strong red emission with the band maximum ranging from 580 to 750 nm. With ultrashort pulsed laser excitation all films show extremely intense and ultrafast nonlinear optical (NLO) response. The recorded holography from all these thin films in a degenerate-four-wave-mixing configuration shows extremely large third-order response. For VO2 thin films, an optically induced semiconductor-to-metal phase transition (PT) immediately occurred upon laser excitation. it accompanied. It turns out that the fast excited state dynamics was responsible to the induced PT. For c-Si/SiO2 film, its NLO response comes from the contribution of charge carriers created by laser excitation in conduction band of the c-Si nanoparticles. It was verified by introducing Eu3+ which is often used as a probe sensing the environment variations. It turns out that the entire excited state dynamical process associated with the creation, movement and trapping of the charge carriers has a characteristic 500 ps duration.

  8. Suspended core-shell Pt-PtOx nanostructure for ultrasensitive hydrogen gas sensor

    NASA Astrophysics Data System (ADS)

    Basu, Palash Kr.; Kallatt, Sangeeth; Anumol, Erumpukuthickal A.; Bhat, Navakanta

    2015-06-01

    High sensitivity gas sensors are typically realized using metal catalysts and nanostructured materials, utilizing non-conventional synthesis and processing techniques, incompatible with on-chip integration of sensor arrays. In this work, we report a new device architecture, suspended core-shell Pt-PtOx nanostructure that is fully CMOS-compatible. The device consists of a metal gate core, embedded within a partially suspended semiconductor shell with source and drain contacts in the anchored region. The reduced work function in suspended region, coupled with built-in electric field of metal-semiconductor junction, enables the modulation of drain current, due to room temperature Redox reactions on exposure to gas. The device architecture is validated using Pt-PtO2 suspended nanostructure for sensing H2 down to 200 ppb under room temperature. By exploiting catalytic activity of PtO2, in conjunction with its p-type semiconducting behavior, we demonstrate about two orders of magnitude improvement in sensitivity and limit of detection, compared to the sensors reported in recent literature. Pt thin film, deposited on SiO2, is lithographically patterned and converted into suspended Pt-PtO2 sensor, in a single step isotropic SiO2 etching. An optimum design space for the sensor is elucidated with the initial Pt film thickness ranging between 10 nm and 30 nm, for low power (<5 μW), room temperature operation.

  9. NOVEL GAS SENSORS FOR HIGH-TEMPERATURE FOSSIL FUEL APPLICATIONS

    SciTech Connect

    Palitha Jayaweera

    2004-05-01

    SRI is developing ceramic-based microsensors for detection of exhaust gases such as NO, NO{sub 2}, and CO in advanced combustion and gasification systems. The sensors detect the electrochemical activity of the exhaust gas species on catalytic electrodes and are designed to operate at high temperatures, elevated pressures, and corrosive environments typical of large power generation exhausts. Under this research project we are developing sensors for multiple gas detection in a single package along with data acquisition and control software and hardware. The sensor package can be easily integrated into online monitoring systems for active emission control. This report details the research activities performed from October 2003 to April 2004.

  10. Optical sensors and multisensor arrays containing thin film electroluminescent devices

    DOEpatents

    Aylott, Jonathan W.; Chen-Esterlit, Zoe; Friedl, Jon H.; Kopelman, Raoul; Savvateev, Vadim N.; Shinar, Joseph

    2001-12-18

    Optical sensor, probe and array devices for detecting chemical biological, and physical analytes. The devices include an analyte-sensitive layer optically coupled to a thin film electroluminescent layer which activates the analyte-sensitive layer to provide an optical response. The optical response varies depending upon the presence of an analyte and is detected by a photodetector and analyzed to determine the properties of the analyte.

  11. Theory for a gas composition sensor based on acoustic properties

    NASA Technical Reports Server (NTRS)

    Phillips, Scott; Dain, Yefim; Lueptow, Richard M.

    2003-01-01

    Sound travelling through a gas propagates at different speeds and its intensity attenuates to different degrees depending upon the composition of the gas. Theoretically, a real-time gaseous composition sensor could be based on measuring the sound speed and the acoustic attenuation. To this end, the speed of sound was modelled using standard relations, and the acoustic attenuation was modelled using the theory for vibrational relaxation of gas molecules. The concept for a gas composition sensor is demonstrated theoretically for nitrogen-methane-water and hydrogen-oxygen-water mixtures. For a three-component gas mixture, the measured sound speed and acoustic attenuation each define separate lines in the composition plane of two of the gases. The intersection of the two lines defines the gas composition. It should also be possible to use the concept for mixtures of more than three components, if the nature of the gas composition is known to some extent.

  12. Theory for a gas composition sensor based on acoustic properties.

    PubMed

    Phillips, Scott; Dain, Yefim; Lueptow, Richard M

    2003-01-01

    Sound travelling through a gas propagates at different speeds and its intensity attenuates to different degrees depending upon the composition of the gas. Theoretically, a real-time gaseous composition sensor could be based on measuring the sound speed and the acoustic attenuation. To this end, the speed of sound was modelled using standard relations, and the acoustic attenuation was modelled using the theory for vibrational relaxation of gas molecules. The concept for a gas composition sensor is demonstrated theoretically for nitrogen-methane-water and hydrogen-oxygen-water mixtures. For a three-component gas mixture, the measured sound speed and acoustic attenuation each define separate lines in the composition plane of two of the gases. The intersection of the two lines defines the gas composition. It should also be possible to use the concept for mixtures of more than three components, if the nature of the gas composition is known to some extent. PMID:14552356

  13. Wet Chemical Synthesis and Screening of Thick Porous Oxide Films for Resistive Gas Sensing Applications

    PubMed Central

    Frenzer, Gerald; Frantzen, Andreas; Sanders, Daniel; Simon, Ulrich; Maier, Wilhelm F.

    2006-01-01

    A method of wet chemical synthesis suitable for high throughput and combinatorial applications has been developed for the synthesis of porous resistive thick-film gas sensors. This method is based on the robot-controlled application of unstable metal oxide suspensions on an array of 64 inter-digital electrodes positioned on an Al2O3 substrate. SnO2, WO3, ZrO2, TiO2, CeO2, In2O3 and Bi2O3 were chosen as base oxides, and were optimised by doping or mixed oxide formation. The parallel synthesis of mixed oxide sensors is illustrated by representative examples. The electrical characteristics and the sensor performance of the films were measured by high-throughput impedance spectroscopy while supplying various test gases (H2, CO, NO, NO2, propene). Data collection, data mining techniques applied and the best potential sensor materials discovered are presented.

  14. Investigating gas sensing mechanism of graphene oxide (GO) thin films through cross-selectivity to various gases

    NASA Astrophysics Data System (ADS)

    Kumar, Shani; Dhingra, Vishal; Garg, Amit; Chowdhuri, Arijit

    2016-05-01

    Worldwide researchers are actively engaged in utilizing Graphene and its related materials in gas sensing applications. A high surface-to-volume ratio that offers scope of optimization leading to enhanced sensing performance besides lower sensor operating temperatures are some advantages that graphene based sensors possess over conventional semiconducting metal oxide (SMO) sensors. Conventional SMO based gas sensors are known to suffer from problems of cross-selectivity where selectivity is understood to be a gas sensor's ability to preferentially detect one particular gas without responding to or experiencing interference from other gases present in the ambient. In the current study gas sensing mechanism of Graphene oxide (GO) thin films is investigated by repeatedly exposing the sensing configuration to various gases and its cross-selectivity response to the same is examined. In the investigation typical gas sensing response characteristics of the sensor configuration are studied in both oxidizing as well as reducing environments. The gas sensing data is acquired by means of Keithley 6487 picoammeter which is interfaced with a customized Gas Sensing Test Rig (GSTR) that provides a controlled ambient to the sensors for measurement of reproducible characteristics. GSTR further provided the option of varying the operating temperature and gas concentration for the different sensor configurations under study. XRD studies indicate formation of GO with typical crystallite size of 4.2 nm. UV-Vis investigations reveal a typical band-gap of 4.42 (eV) which is in conformity with those reported in the available literature.1,2

  15. Diamond thin film temperature and heat-flux sensors

    NASA Technical Reports Server (NTRS)

    Aslam, M.; Yang, G. S.; Masood, A.; Fredricks, R.

    1995-01-01

    Diamond film temperature and heat-flux sensors are developed using a technology compatible with silicon integrated circuit processing. The technology involves diamond nucleation, patterning, doping, and metallization. Multi-sensor test chips were designed and fabricated to study the thermistor behavior. The minimum feature size (device width) for 1st and 2nd generation chips are 160 and 5 micron, respectively. The p-type diamond thermistors on the 1st generation test chip show temperature and response time ranges of 80-1270 K and 0.29-25 microseconds, respectively. An array of diamond thermistors, acting as heat flux sensors, was successfully fabricated on an oxidized Si rod with a diameter of 1 cm. Some problems were encountered in the patterning of the Pt/Ti ohmic contacts on the rod, due mainly to the surface roughness of the diamond film. The use of thermistors with a minimum width of 5 micron (to improve the spatial resolution of measurement) resulted in lithographic problems related to surface roughness of diamond films. We improved the mean surface roughness from 124 nm to 30 nm by using an ultra high nucleation density of 10(exp 11)/sq cm. To deposit thermistors with such small dimensions on a curved surface, a new 3-D diamond patterning technique is currently under development. This involves writing a diamond seed pattern directly on the curved surface by a computer-controlled nozzle.

  16. Self-powered thin-film motion vector sensor

    PubMed Central

    Jing, Qingshen; Xie, Yannan; Zhu, Guang; Han, Ray P. S.; Wang, Zhong Lin

    2015-01-01

    Harnessing random micromeso-scale ambient energy is not only clean and sustainable, but it also enables self-powered sensors and devices to be realized. Here we report a robust and self-powered kinematic vector sensor fabricated using highly pliable organic films that can be bent to spread over curved and uneven surfaces. The device derives its operational energy from a close-proximity triboelectrification of two surfaces: a polytetrafluoroethylene film coated with a two-column array of copper electrodes that constitutes the mover and a polyimide film with the top and bottom surfaces coated with a two-column aligned array of copper electrodes that comprises the stator. During relative reciprocations, the electrodes in the mover generate electric signals of ±5 V to attain a peak power density of ≥65 mW m−2 at a speed of 0.3 ms−1. From our 86,000 sliding motion tests of kinematic measurements, the sensor exhibits excellent stability, repeatability and strong signal durability. PMID:26271603

  17. Xerogel optical sensor films for quantitative detection of nitroxyl.

    PubMed

    Dobmeier, Kevin P; Riccio, Daniel A; Schoenfisch, Mark H

    2008-02-15

    Xerogel sensing films were synthesized via sol-gel chemistry were used to fabricate optical nitroxyl (HNO) sensors [corrected] Selective detection of HNO in solution was achieved by monitoring the rates of manganese(III) meso-tetrakis(4-sulfonatophenyl) porphyrinate (MnIIITPPS) reductive nitrosylation in the anaerobic interior of aminoalkoxysilane-derived xerogel films. Nitroxyl permeability in sensor films deposited in round-bottom 96-well plates was enhanced via incorporation of trimethoxysilyl-terminated poly(amidoamine-organosilicon) dendrimers in the xerogel network. The selectivity of MnIIITPPS for HNO, the overall sensitivity, and the working dynamic range of the resulting sensors were characterized. The HNO-sensing microtiter plates were used to quantify pH-dependent HNO generation by the recently described HNO-donor sodium 1-(isopropylamino)diazene-1-ium-1,2-diolate (IPA/NO), and compare HNO production efficiency between IPA/NO and Angeli's salt, a traditional HNO-donor. PMID:18197695

  18. Self-powered thin-film motion vector sensor.

    PubMed

    Jing, Qingshen; Xie, Yannan; Zhu, Guang; Han, Ray P S; Wang, Zhong Lin

    2015-01-01

    Harnessing random micromeso-scale ambient energy is not only clean and sustainable, but it also enables self-powered sensors and devices to be realized. Here we report a robust and self-powered kinematic vector sensor fabricated using highly pliable organic films that can be bent to spread over curved and uneven surfaces. The device derives its operational energy from a close-proximity triboelectrification of two surfaces: a polytetrafluoroethylene film coated with a two-column array of copper electrodes that constitutes the mover and a polyimide film with the top and bottom surfaces coated with a two-column aligned array of copper electrodes that comprises the stator. During relative reciprocations, the electrodes in the mover generate electric signals of ±5 V to attain a peak power density of ≥65 mW m(-2) at a speed of 0.3 ms(-1). From our 86,000 sliding motion tests of kinematic measurements, the sensor exhibits excellent stability, repeatability and strong signal durability. PMID:26271603

  19. Structurally integrated organic light emitting device-based sensors for gas phase and dissolved oxygen.

    PubMed

    Shinar, Ruth; Zhou, Zhaoqun; Choudhury, Bhaskar; Shinar, Joseph

    2006-05-24

    A compact photoluminescence (PL)-based O2 sensor utilizing an organic light emitting device (OLED) as the light source is described. The sensor device is structurally integrated. That is, the sensing element and the light source, both typically thin films that are fabricated on separate glass substrates, are attached back-to-back. The sensing elements are based on the oxygen-sensitive dyes Pt- or Pd-octaethylporphyrin (PtOEP or PdOEP, respectively), which are embedded in a polystyrene (PS) matrix, or dissolved in solution. Their performance is compared to that of a sensing element based on tris(4,7-diphenyl-l,10-phenanthroline) Ru II (Ru(dpp)) embedded in a sol-gel film. A green OLED light source, based on tris(8-hydroxy quinoline Al (Alq3), was used to excite the porphyrin dyes; a blue OLED, based on 4,4'-bis(2,2'-diphenylviny1)-1,1'-biphenyl, was used to excite the Ru(dpp)-based sensing element. The O2 level was monitored in the gas phase and in water, ethanol, and toluene solutions by measuring changes in the PL lifetime tau of the O2-sensitive dyes. The sensor performance was evaluated in terms of the detection sensitivity, dynamic range, gas flow rate, and temperature effect, including the temperature dependence of tau in pure Ar and O2 atmospheres. The dependence of the sensitivity on the preparation procedure of the sensing film and on the PS and dye concentrations in the sensing element, whether a solid matrix or solution, were also evaluated. Typical values of the detection sensitivity in the gas phase, S(g) identical with tau(0% O2)/tau(100% O2), at 23 degrees C, were approximately 35 to approximately 50 for the [Alq3 OLED[/[PtOEP dye] pair; S(g) exceeded 200 for the Alq3/PdOEP sensor. For dissolved oxygen (DO) in water and ethanol, S(DO) (defined as the ratio of tau in de-oxygenated and oxygen-saturated solutions) was approximately 9.5 and approximately 11, respectively, using the PtOEP-based film sensor. The oxygen level in toluene was measured with PtOEP dissolved directly in the solution. That sensor exhibited a high sensitivity, but a limited dynamic range. Effects of aggregation of dye molecules, sensing film porosity, and the use of the OLED-based sensor arrays for O2 and multianalyte detection are also discussed. PMID:17761260

  20. Gas sensing mechanism in chemiresistive cobalt and metal-free phthalocyanine thin films.

    PubMed

    Bohrer, Forest I; Sharoni, Amos; Colesniuc, Corneliu; Park, Jeongwon; Schuller, Ivan K; Kummel, Andrew C; Trogler, William C

    2007-05-01

    The gas sensing behaviors of cobalt phthalocyanine (CoPc) and metal-free phthalocyanine (H2Pc) thin films were investigated with respect to analyte basicity. Chemiresistive sensors were fabricated by deposition of 50 nm thick films on interdigitated gold electrodes via organic molecular beam epitaxy (OMBE). Time-dependent current responses of the films were measured at constant voltage during exposure to analyte vapor doses. The analytes spanned a range of electron donor and hydrogen-bonding strengths. It was found that, when the analyte exceeded a critical base strength, the device responses for CoPc correlated with Lewis basicity, and device responses for H2Pc correlated with hydrogen-bond basicity. This suggests that the analyte-phthalocyanine interaction is dominated by binding to the central cavity of the phthalocyanine with analyte coordination strength governing CoPc sensor responses and analyte hydrogen-bonding ability governing H2Pc sensor responses. The interactions between the phthalocyanine films and analytes were found to follow first-order kinetics. The influence of O2 on the film response was found to significantly affect sensor response and recovery. The increase of resistance generally observed for analyte binding can be attributed to hole destruction in the semiconductor film by oxygen displacement, as well as hole trapping by electron donor ligands. PMID:17411043

  1. Corroles-Porphyrins: A Teamwork for Gas Sensor Arrays

    PubMed Central

    Capuano, Rosamaria; Pomarico, Giuseppe; Paolesse, Roberto; Di Natale, Corrado

    2015-01-01

    Porphyrins provide an excellent material for chemical sensors, and they have been used for sensing species both in air and solution. In the gas phase, the broad selectivity of porphyrins is largely dependant on molecular features, such as the metal ion complexed at the core of the aromatic ring and the peripheral substituents. Although these features have been largely exploited to design gas sensor arrays, so far, little attention has been devoted to modify the sensing properties of these macrocycles by variation of the molecular aromatic ring. In this paper, the gas sensing properties of a porphyrin analog, the corrole, are studied in comparison with those of the parent porphyrin. Results show that changes in the aromatic ring have important consequences on the sensitivity and selectivity of the sensors and that porphyrins and corroles can positively cooperate to enhance the performance of sensor arrays. PMID:25856324

  2. Method of Forming a Hot Film Sensor System on a Model

    NASA Technical Reports Server (NTRS)

    Tran, Sang Q. (Inventor)

    1998-01-01

    A method of forming a hot film sensor directly on a model is provided. A polyimide solution is sprayed onto the model. The model so sprayed is then heated in air. The steps of spraying and heating are repeated until a polyimide film of desired thickness is achieved on the model. The model with the polyimide film thereon is then thoroughly dried in air. One or more hot film sensors and corresponding electrical conducting leads are then applied directly onto the polyimide film.

  3. Effect of Electrode Configuration on Nitric Oxide Gas Sensor Behavior.

    PubMed

    Cui, Ling; Murray, Erica P

    2015-01-01

    The influence of electrode configuration on the impedancemetric response of nitric oxide (NO) gas sensors was investigated for solid electrochemical cells [Au/yttria-stabilized zirconia (YSZ)/Au)]. Fabrication of the sensors was carried out at 1050 °C in order to establish a porous YSZ electrolyte that enabled gas diffusion. Two electrode configurations were studied where Au wire electrodes were either embedded within or wrapped around the YSZ electrolyte. The electrical response of the sensors was collected via impedance spectroscopy under various operating conditions where gas concentrations ranged from 0 to 100 ppm NO and 1%-18% O₂ at temperatures varying from 600 to 700 °C. Gas diffusion appeared to be a rate-limiting mechanism in sensors where the electrode configuration resulted in longer diffusion pathways. The temperature dependence of the NO sensors studied was independent of the electrode configuration. Analysis of the impedance data, along with equivalent circuit modeling indicated the electrode configuration of the sensor effected gas and ionic transport pathways, capacitance behavior, and NO sensitivity. PMID:26404312

  4. Effect of Electrode Configuration on Nitric Oxide Gas Sensor Behavior

    PubMed Central

    Cui, Ling; Murray, Erica P.

    2015-01-01

    The influence of electrode configuration on the impedancemetric response of nitric oxide (NO) gas sensors was investigated for solid electrochemical cells [Au/yttria-stabilized zirconia (YSZ)/Au)]. Fabrication of the sensors was carried out at 1050 °C in order to establish a porous YSZ electrolyte that enabled gas diffusion. Two electrode configurations were studied where Au wire electrodes were either embedded within or wrapped around the YSZ electrolyte. The electrical response of the sensors was collected via impedance spectroscopy under various operating conditions where gas concentrations ranged from 0 to 100 ppm NO and 1%–18% O2 at temperatures varying from 600 to 700 °C. Gas diffusion appeared to be a rate-limiting mechanism in sensors where the electrode configuration resulted in longer diffusion pathways. The temperature dependence of the NO sensors studied was independent of the electrode configuration. Analysis of the impedance data, along with equivalent circuit modeling indicated the electrode configuration of the sensor effected gas and ionic transport pathways, capacitance behavior, and NO sensitivity. PMID:26404312

  5. Development of metal oxide impregnated stilbite thick film ethanol sensor

    NASA Astrophysics Data System (ADS)

    Mahabole, M. P.; Lakhane, M. A.; Choudhari, A. L.; Khairnar, R. S.

    2016-05-01

    This paper presents the study of the sensing efficiency of Titanium oxide/ Stilbite and Copper oxide /Stilbite composites towards detection of hazardous pollutants like ethanol. Stilbite based composites are prepared by physically mixing zeolite with metal oxides namely TiO2 and CuO with weight ratios of 25:75, 50:50 and 75:25. The resulting sensor materials are characterized by X-ray diffraction and Fourier Transform Infrared Spectroscopy techniques. Composite sensors are fabricated in the form of thick film by using screen printing technique. The effect of metal oxide concentration on various ethanol sensing parameters such as operating temperature, maximum uptake capacity and response/recovery time are investigated. The results indicate that metal oxide impregnated stilbite composites have great potential as low temperature ethanol sensor.

  6. Morphology and gas sensitivity of erbium di-phthalocyanine thin films

    NASA Astrophysics Data System (ADS)

    Parr, A. T. J.; Vinton, S. J.; Krier, A.; Collins, R. A.

    1993-09-01

    Studies have been made of the application of certain phthalocyanine films in the detection of toxic gases such as chlorine. Consideration has been given to preparation parameters such as deposition conditions (evaporation rate, ambient pressure, post deposition annealing) together with varying central metal atoms within the phthalocyanine molecule. Particular studies have been made concerning the relationship between elevated substrate temperature deposition, the molecular structure and the corresponding sensitivity of the films to gases. The present results are considered within the context of the development of an economically viable selective thin film gas sensor.

  7. Reflectance Infrared Spectroscopy on Operating Surface Acoustic Wave Chemical Sensors During Exposure to Gas-Phase Analytes

    SciTech Connect

    Hierlemann, A.; Hill, M.; Ricco, A.J.; Staton, A.W.; Thomas, R.C.

    1999-01-11

    We have developed instrumentation to enable the combination of surface acoustic wave (SAW) sensor measurements with direct, in-situ molecular spectroscopic measurements to understand the response of the SAW sensors with respect to the interfacial chemistry of surface-confined sensing films interacting with gas-phase analytes. Specifically, the instrumentation and software was developed to perform in-situ Fourier-transform infrared external-reflectance spectroscopy (FTIR-ERS) on operating SAW devices during dosing of their chemically modified surfaces with analytes. By probing the surface with IR spectroscopy during gas exposure, it is possible to understand in unprecedented detail the interaction processes between the sorptive SAW coatings and the gaseous analyte molecules. In this report, we provide details of this measurement system, and also demonstrate the utility of these combined measurements by characterizing the SAW and FTIR-ERS responses of organic thin-film sensor coatings interacting with gas-phase analytes.

  8. Compact Laser Multi-gas Spectral Sensors for Spacecraft Systems

    NASA Technical Reports Server (NTRS)

    Tittel, Frank K.

    1997-01-01

    The objective of this research effort has been the development of a new gas sensor technology to meet NASA requirements for spacecraft and space station human life support systems for sensitive selective and real time detection of trace gas species in the mid-infrared spectral region.

  9. Electrochemical amperometric gas sensors for environmental monitoring and control

    NASA Technical Reports Server (NTRS)

    Venkatasetty, H. V.

    1990-01-01

    Theoretical considerations and experimental results regarding a unique class of vapor sensors are presented, and the sensors are compared to semiconductor-based sensors. The electrochemical sensors are based on nonaquaeous electrolytes, and gas-detection selectivity achieved by applying a known potential to the sensing electrode using a reference electrode and a counter electrode. Results are given regarding the detection of oxygen and carbon dioxide using one cell, the detection of 3-percent carbon dioxide in nitrogen, and the detection of carbon dioxide in air at percentages ranging from 3 to 6. The sensors are found to be effective in the detection of toxic chemical species including CO, NO2, and formaldehyde; the sensors are further found to require minimal power, operate over long periods of time, and function over a wide temperature range.

  10. Gas Sensor for Volatile Anesthetic Agents Based on Raman Scattering

    NASA Astrophysics Data System (ADS)

    Schlüter, Sebastian; Popovska-Leipertz, Nadejda; Seeger, Thomas; Leipertz, Alfred

    Continuous monitoring of respiratory and anesthetic gases during a surgery is of vital importance for the patient safety. Commonly the gas composition is determined by gas chromatography or a combination of IR-spectroscopy and electrochemical sensors. This study presents a concept for an optical sensor based on spontaneous Raman scattering which offers several advantages compared to established systems. All essential components can be detected simultaneously, no sample preparation is necessary and it provides fast response times. To reach the performance of a commonly used gas monitor signal gain has to be increased e.g. by using a multi pass setup.

  11. 40 Å Platinum-porous SiC gas sensor: Investigation sensing properties of H2 gas

    NASA Astrophysics Data System (ADS)

    Keffous, A.; Cheriet, A.; Hadjersi, T.; Boukennous, Y.; Gabouze, N.; Boukezzata, A.; Belkacem, Y.; Kechouane, M.; Kerdja, T.; Menari, H.; Berouaken, M.; Talbi, L.; Ouadah, Y.

    2013-01-01

    The present paper reports on a new structure for H2 gas sensing based on thin porous silicon carbide (PSiC) films. The PSiC layer has been formed by electrochemical etching of SiC films previously deposited onto p-type silicon substrate by pulsed laser deposition (PLD) using 6H-SiC target. Current-voltage (I-V) and current-time (I-t) characteristics have been measured. A thin platinum (Pt) film (40 Å thickness) deposited onto PSiC layer has been used as a catalytic metal. The Schottky diode parameters such as ideality factor (n), barrier height (ϕBp) and series resistance (RS) have been evaluated under different concentrations of H2 gas. The experimental results show that upon exposure to H2 gas the barrier height, the ideality factor and the series resistance change significantly. The different changes in the electrical parameters of the structure (increase and decrease as a function of the H2 concentration) have been explained by the formation of two inversion layers. The first one forms as soon as the gas is in contact with the sensor and the second when the concentration reaches 90 ppm. Subsequently, the effect of gas concentration on the maximum sensitivity value of the sensor has been investigated. A high sensitivity (ΔI/I) value around 86% is found at about 1 V bias voltage. In addition, the response and recovery times were determined to be around 55 s and 160 s, respectively. Finally, the structure shows a reversible response for low gas concentration at room temperature.

  12. High-Temperature Gas Sensor Array (Electronic Nose) Demonstrated

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.

    2002-01-01

    The ability to measure emissions from aeronautic engines and in commercial applications such as automotive emission control and chemical process monitoring is a necessary first step if one is going to actively control those emissions. One single sensor will not give all the information necessary to determine the chemical composition of a high-temperature, harsh environment. Rather, an array of gas sensor arrays--in effect, a high-temperature electronic "nose"--is necessary to characterize the chemical constituents of a diverse, high-temperature environment, such as an emissions stream. The signals produced by this nose could be analyzed to determine the constituents of the emission stream. Although commercial electronic noses for near-room temperature applications exist, they often depend significantly on lower temperature materials or only one sensor type. A separate development effort necessary for a high-temperature electronic nose is being undertaken by the NASA Glenn Research Center, Case Western Reserve University, Ohio State University, and Makel Engineering, Inc. The sensors are specially designed for hightemperature environments. A first-generation high-temperature electronic nose has been demonstrated on a modified automotive engine. This nose sensor array was composed of sensors designed for hightemperature environments fabricated using microelectromechanical-systems- (MEMS-) based technology. The array included a tin-oxide-based sensor doped for nitrogen oxide (NOx) sensitivity, a SiC-based hydrocarbon (CxHy) sensor, and an oxygen sensor (O2). These sensors operate on different principles--resistor, diode, and electrochemical cell, respectively--and each sensor has very different responses to the individual gases in the environment. A picture showing the sensor head for the array is shown in the photograph on the left and the sensors installed in the engine are shown in the photograph on the right. Electronics are interfaced with the sensors for temperature control and signal conditioning, and packaging designed for high temperatures is necessary for the array to survive the engine environment.

  13. Highly selective gas sensor arrays based on thermally reduced graphene oxide.

    PubMed

    Lipatov, Alexey; Varezhnikov, Alexey; Wilson, Peter; Sysoev, Victor; Kolmakov, Andrei; Sinitskii, Alexander

    2013-06-21

    The electrical properties of reduced graphene oxide (rGO) have been previously shown to be very sensitive to surface adsorbates, thus making rGO a very promising platform for highly sensitive gas sensors. However, poor selectivity of rGO-based gas sensors remains a major problem for their practical use. In this paper, we address the selectivity problem by employing an array of rGO-based integrated sensors instead of focusing on the performance of a single sensing element. Each rGO-based device in such an array has a unique sensor response due to the irregular structure of rGO films at different levels of organization, ranging from nanoscale to macroscale. The resulting rGO-based gas sensing system could reliably recognize analytes of nearly the same chemical nature. In our experiments rGO-based sensor arrays demonstrated a high selectivity that was sufficient to discriminate between different alcohols, such as methanol, ethanol and isopropanol, at a 100% success rate. We also discuss a possible sensing mechanism that provides the basis for analyte differentiation. PMID:23661278

  14. Thermal Sensor Arrays for The Combinatorial Analysis of Thin Films

    NASA Astrophysics Data System (ADS)

    McCluskey, Patrick James

    2011-12-01

    Membrane-based thermal sensor arrays were developed for the high-throughput analysis of the thermophysical properties of thin films. The continuous growth of integrated circuits and microelectromechanical systems, as well as the development of functional materials and the optimization of materials properties, have produced the need for instruments capable of fast materials screening and analysis at reduced length scales. Two instruments were developed based on a similar architecture, one to measure thermal transport properties and the other to perform calorimetry measurements. Both have the capability to accelerate the pace of materials development and understanding using combinatorial measurement methods. The shared architecture of the instruments consists of a silicon-based micromachined array of thermal sensors. Each sensor consists of a SiN X membrane and a W heating element that also serves as a temperature gauge. The array design allows the simultaneous creation of a library of thin film samples by various deposition techniques while systematically varying a parameter of interest across the device. The membrane-based sensors have little thermal mass making them extremely sensitive to changes in thermal energy. The nano-thermal transport array has an array of sensors optimized for sensitivity to heat loss. The heat loss is determined from the temperature response of the sensor to an applied current. An analytical model is used with a linear regression analysis to fit the thermal properties of the samples to the temperature response. The assumptions of the analytical model are validated with a finite element model. Measured thermal properties include specific heat, thermal effusivity, thermal conductivity, and emissivity. The technique is demonstrated by measuring the thermal transport properties of sputter deposited Cu multilayers with a total film thickness from 15 to 470 nm. The experimental results compare well to a theory based on electronic thermal transport. The parallel nano-scanning calorimeter (PnSC) has an array of sensors optimized to sense changes in enthalpy. In this case heat loss sensitivity is minimized with sensor geometry and a reference measurement scheme. The minimal heat loss and small addendum result in sensitivity on the order of 10 nJ/K at heating rates on the order of 104 K/s. The sensitivity is demonstrated by measuring the characteristics of the melting transformation of a 25 nm In film. The combinatorial capabilities of the device are demonstrated by creating and analyzing a library of thin-film (290 nm) Ni-Ti-Zr samples with in-plane composition gradients. The Ni-Ti-Zr films are crystallized in-situ by local heating and the temperature dependence of the martensite transformation on Zr content is detected. Further analysis of the Ni-Ti-Zr samples reveals that the as-deposited amorphous samples crystallize in a multi-stage process that is a function of composition. The features of the calorimetry traces are identified with the help of x-ray diffraction measurements of the crystallized samples. Crystallization at these fast heating rates results in suppression of structural relaxation, increased crystallization temperature (allowing the detection of the glass transition), and an ultra-fine nanocrystalline grain structure with non-equilibrium phases. The characteristics of the martensite-austenite phase transformation are investigated by PnSC to determine the effects of high-temperature (900°C) heat treatments and low-temperature (450°C) thermal cycling. Heat treatments produce precipitates that vary with Zr content and alter the transformation temperature. Thermal cycling results in the accumulation of plastic deformation, which relaxes internal stresses and reduces the transformation temperature. This effect, known as thermal fatigue, is reduced in these samples due to the ultra-fine grain structure, which suppresses dislocation mobility.

  15. Micromachined force sensors using thin film nickel-chromium piezoresistors

    NASA Astrophysics Data System (ADS)

    Nadvi, Gaviraj S.; Butler, Donald P.; Çelik-Butler, Zeynep; Erkin Gönenli, İsmail

    2012-06-01

    Micromachined force/tactile sensors using nickel-chromium piezoresistors have been investigated experimentally and through finite-element analysis. The force sensors were designed with a suspended aluminum oxide (Al2O3) membrane and optimally placed piezoresistors to measure the strain in the membrane when deflected with an applied force. Different devices, each with varying size and shape of both the membrane and the piezoresistors, were designed, fabricated and characterized. The piezoresistors were placed into a half-Wheatstone bridge configuration with two active and two passive nickel-chromium resistors to provide temperature drift compensation. The force sensors were characterized using a load cell and a nanopositioner to measure the sensor response with applied load. Piezoresistive gauge factors in the range of 1-5.2 have been calculated for the thin film nichrome (NiCr 80/20 wt%) from the measured results. The force sensors were calculated to have a noise equivalent force of 65-245 nN.

  16. Modeling thin-film piezoelectric polymer ultrasonic sensors.

    PubMed

    González, M G; Sorichetti, P A; Santiago, G D

    2014-11-01

    This paper presents a model suitable to design and characterize broadband thin film sensors based on piezoelectric polymers. The aim is to describe adequately the sensor behavior, with a reasonable number of parameters and based on well-known physical equations. The mechanical variables are described by an acoustic transmission line. The electrical behavior is described by the quasi-static approximation, given the large difference between the velocities of propagation of the electrical and mechanical disturbances. The line parameters include the effects of the elastic and electrical properties of the material. The model was validated with measurements of a poly(vinylidene flouride) sensor designed for short-pulse detection. The model variables were calculated from the properties of the polymer at frequencies between 100 Hz and 30 MHz and at temperatures between 283 K and 313 K, a relevant range for applications in biology and medicine. The simulations agree very well with the experimental data, predicting satisfactorily the influence of temperature and the dielectric properties of the polymer on the behavior of the sensor. Conversely, the model allowed the calculation of the material dielectric properties from the measured response of the sensor, with good agreement with the published values. PMID:25430142

  17. Alpha-Particle Gas-Pressure Sensor

    NASA Technical Reports Server (NTRS)

    Buehler, M. C.; Bell, L. D.; Hecht, M. H.

    1996-01-01

    An approximate model was developed to establish design curves for the saturation region and a more complete model developed to characterize the current-voltage curves for an alpha-particle pressure sensor. A simple two-parameter current-voltage expression was developed to describe the dependence of the ion current on pressure. The parameters are the saturation-current pressure coefficient and mu/D, the ion mobility/diffusion coefficient. The sensor is useful in the pressure range between 0.1 and 1000 mb using a 1 - mu Ci(241) Am source. Experimental results, taken between 1 and up to 200 mb, show the sensor operates with an anode voltage of 5 V and a sensitivity of 20 fA/mb in nitrogen.

  18. Detecting insect infestation with poly3-hexylthiophenethin thin film sensor

    NASA Astrophysics Data System (ADS)

    Weerakoon, Kanchana; Li, Suiquing; Shu, Hungjen J.; Chin, Bryan A.

    2009-05-01

    The financial losses and destruction of crops due to insect infestation in the United States are estimated by the USDA to exceed 20 billion dollars annually. Much of these losses could be avoided by having a sensor that could effectively identify the early stages of insect infestation. However, traditional detection methods are time consuming, require trained personnel, and are not sufficient for early detection. Several previous research studies showed that emitting organic volatile compounds is a defensive mechanism activated by some plant species after being attacked by herbivores and parasites. Corn, cotton, pine, Brussels sprouts when attacked by Beet army worm, spider mites, bark beetles and caterpillars respectively, emits different blends of plant volatiles including γ-terpinene, α-pinene, p-cymene, farnesene, limonene and cis-hexenyl acetate, with a concentration of about 50 ppm. Therefore, monitoring for these volatile compounds may enable on-site early detection of insect infestations. In this study, a chemical resistor sensor to detect plant volatiles was designed and fabricated. The sensor platform consists of micro electronically fabricated interdigitated electrodes. On to this platform, a poly3-hexylthiophene (P3HT) thin film was deposited, using a spin coater at 8000 rpm for 30 seconds. The sensor was tested and found to be sensitive to a variety of plant volatiles, including γ-terpinene, α-pinene, p-cymene, farnesene, limonene and cis-hexenyl acetate at room temperature. These vapors interacted with the P3HT film causing an increase in the resistance of the sensor by more than one order of magnitude

  19. NOVEL GAS SENSORS FOR HIGH-TEMPERATURE FOSSIL FUEL APPLICATIONS

    SciTech Connect

    Palitha Jayaweera

    2004-05-01

    SRI is developing ceramic-based microsensors for detection of exhaust gases such as NO, NO{sub 2}, and CO in advanced combustion and gasification systems. The sensors detect the electrochemical activity of the exhaust gas species on catalytic electrodes and are designed to operate at high temperatures, elevated pressures, and corrosive environments typical of large power generation exhausts. Under this research project we are developing sensors for multiple gas detection in a single package along with data acquisition and control software and hardware. The sensor package can be easily integrated into online monitoring systems for active emission control. This report details the research activities performed from May 2004 to October 2004 including testing of catalytic materials, sensor design and fabrication, and software development.

  20. AZO thin film-based UV sensors: effects of RF power on the films

    NASA Astrophysics Data System (ADS)

    Akin, Nihan; Ceren Baskose, U.; Kinaci, Baris; Cakmak, Mehmet; Ozcelik, Suleyman

    2015-06-01

    Al-doped zinc oxide (AZO) thin films of thickness 150 nm were deposited on polyethylene terephthalate (PET) substrates by radio frequency (RF) magnetron sputtering method under various RF powers in the range of 25-100 W. Structural, morphological, optical and electrical properties of the films were investigated by X-ray diffractometer, atomic force microscope, UV-Vis spectrometer and Hall effect measurement system. All the obtained films had a highly preferred orientation along [002] direction of the c-axis perpendicular to the flexible PET substrate and had a high-quality surface. The energy band gap ( E g) values of the films varied in the range of 3.30-3.43 eV. The minimum resistivity of 1.84 × 10-4 Ω cm was obtained at a 50 W RF power. The small changes in the RF power had a critical important role on the structural, optical and electrical properties of the sputtered AZO thin films on flexible PET substrate. In addition, UV sensing of the fabricated AZO thin film-based sensors was explored by using current-voltage (I-V) characteristics. The sensors were sensitive in the UV region of the electromagnetic spectrum.

  1. The enhanced formaldehyde-sensing properties of P3HT-ZnO hybrid thin film OTFT sensor and further insight into its stability.

    PubMed

    Tai, Huiling; Li, Xian; Jiang, Yadong; Xie, Guangzhong; Du, Xiaosong

    2015-01-01

    A thin-film transistor (TFT) having an organic-inorganic hybrid thin film combines the advantage of TFT sensors and the enhanced sensing performance of hybrid materials. In this work, poly(3-hexylthiophene) (P3HT)-zinc oxide (ZnO) nanoparticles' hybrid thin film was fabricated by a spraying process as the active layer of TFT for the employment of a room temperature operated formaldehyde (HCHO) gas sensor. The effects of ZnO nanoparticles on morphological and compositional features, electronic and HCHO-sensing properties of P3HT-ZnO thin film were systematically investigated. The results showed that P3HT-ZnO hybrid thin film sensor exhibited considerable improvement of sensing response (more than two times) and reversibility compared to the pristine P3HT film sensor. An accumulation p-n heterojunction mechanism model was developed to understand the mechanism of enhanced sensing properties by incorporation of ZnO nanoparticles. X-ray photoelectron spectroscope (XPS) and atomic force microscopy (AFM) characterizations were used to investigate the stability of the sensor in-depth, which reveals the performance deterioration was due to the changes of element composition and the chemical state of hybrid thin film surface induced by light and oxygen. Our study demonstrated that P3HT-ZnO hybrid thin film TFT sensor is beneficial in the advancement of novel room temperature HCHO sensing technology. PMID:25608214

  2. The Enhanced Formaldehyde-Sensing Properties of P3HT-ZnO Hybrid Thin Film OTFT Sensor and Further Insight into Its Stability

    PubMed Central

    Tai, Huiling; Li, Xian; Jiang, Yadong; Xie, Guangzhong; Du, Xiaosong

    2015-01-01

    A thin-film transistor (TFT) having an organic–inorganic hybrid thin film combines the advantage of TFT sensors and the enhanced sensing performance of hybrid materials. In this work, poly(3-hexylthiophene) (P3HT)-zinc oxide (ZnO) nanoparticles' hybrid thin film was fabricated by a spraying process as the active layer of TFT for the employment of a room temperature operated formaldehyde (HCHO) gas sensor. The effects of ZnO nanoparticles on morphological and compositional features, electronic and HCHO-sensing properties of P3HT-ZnO thin film were systematically investigated. The results showed that P3HT-ZnO hybrid thin film sensor exhibited considerable improvement of sensing response (more than two times) and reversibility compared to the pristine P3HT film sensor. An accumulation p-n heterojunction mechanism model was developed to understand the mechanism of enhanced sensing properties by incorporation of ZnO nanoparticles. X-ray photoelectron spectroscope (XPS) and atomic force microscopy (AFM) characterizations were used to investigate the stability of the sensor in-depth, which reveals the performance deterioration was due to the changes of element composition and the chemical state of hybrid thin film surface induced by light and oxygen. Our study demonstrated that P3HT-ZnO hybrid thin film TFT sensor is beneficial in the advancement of novel room temperature HCHO sensing technology. PMID:25608214

  3. Smart chemical sensors using ZnO semiconducting thin films for freshness detection of foods and beverages

    NASA Astrophysics Data System (ADS)

    Nanto, Hidehito; Kobayashi, Toshiki; Dougami, Naganori; Habara, Masaaki; Yamamoto, Hajime; Kusano, Eiji; Kinbara, Akira; Douguchi, Yoshiteru

    1998-07-01

    The sensitivity of the chemical sensor, based on the resistance change of Al2O3-doped and SnO2-doped ZnO (ZnO:Al and ZnO:SnO2) thin film, is studied for exposure to various gases. It is found that the ZnO:Al and ZnO:Sn thin film chemical sensor has a high sensitivity and excellent selectivity for amine (TMA and DMA) gas and ethanol gas, respectively. The ZnO:Al (5.0 wt%) thin film chemical sensor which exhibit a high sensitivity for exposure to odors from rotten sea foods, such as salmon, sea bream, oyster, squid and sardine, responds to the freshness change of these sea foods. The ZnO:SnO2 (78 wt%) thin film chemical sensor which exhibit a high sensitivity for exposure to aroma from alcohols, such as wine, Japanese sake, and whisky, responds to the freshness change of these alcohols.

  4. Niobium doped lead zirconate titanate films for infrared sensor application

    NASA Astrophysics Data System (ADS)

    Han, Hui

    Nb-doped lead zirconate titanate with formula Pb1-x/2 Nbx(Zr0.2Ti0.8)1-xO 3 (x=0, 0.01, 0.02, 0.03, 0.04, and abbreviated as PNZT) films with two thicknesses: one of approximately 200 nm and the other of 1 mum, were grown on platinized silicon (Pt/TiOx/SiO2/Si) substrates using the method of chemical solution deposition. These chemical precursors were prepared in-house, and through careful control of the processing procedures high quality films were grown. All the films exhibit highly preferred (111) orientation without any presence of the impurity phase. We systematically investigated the Nb doping effect on the electrical properties of PZT films. Results indicate that Nb belongs to a class of soft dopants for lead zirconate titanate films, and as a result it increases the ferroelectric polarization, pyroelectric coefficient, dielectric constant and tan delta loss. In the capacitors with the configuration of Pt/PNZT/Pt, the leakage current at low electric fields is dominated by the interface-controlled Schottky emission, whereas bulk-controlled Frenkel-Poole emission dominates at high electric fields. Nb-doping up to 2 atomic % can remarkably suppress the Frenkel-Poole emission process. The suppression of mobile oxygen vacancies by Nb donor dopants lowered the leakage current and increases the domain wall mobility. Study also shows that 1% Nb doped PZT films exhibit the highest pyroelectric coefficient, figure of merit and voltage response among all the samples. Therefore these films with such superior properties are potential candidates for applications, especially for fabrication of uncooled pyroelectric IR sensors with better performance.

  5. SEMICONDUCTOR DEVICES: Chlorine gas sensors using hybrid organic semiconductors of PANI/ZnPcCl16

    NASA Astrophysics Data System (ADS)

    Tingping, Lei; Yunbo, Shi; Wenlong, Lü; Yang, Liu; Wei, Tao; Pengliang, Yuan; Liwei, Lin; Daoheng, Sun; Liquan, Wang

    2010-08-01

    PANI/ZnPcCl16 (polyaniline doped with sulfosalicylic acid/hexadecachloro zinc phthalocyanine) powders were vacuum co-deposited onto Si substrates, where Pt interdigitated electrodes were made by micromachining. The PANI/ZnPcCl16 films were characterized and analyzed by SEM, and the influencing factors on its intrinsic performance were analyzed and sensitivities of the sensors were investigated by exposure to chlorine (Cl2) gas. The results showed that powders prepared with a stoichiometric ratio of (ZnPcCl16)0.6(PANI)0.4 had a preferential sensitivity to Cl2 gas, superior to those prepared otherwise; the optimal vacuum co-deposition conditions for the films are a substrate temperature of 160 °C, an evaporation temperature of 425 °C and a film thickness of 75 nm; elevating the operation temperature (above 100 °C) or increasing the gas concentration (over 100 ppm) would improve the response characteristics, but there should be upper levels for each. Finally, the gas sensing mechanism of PANI/ZnPcCl16 films was also discussed.

  6. A Room Temperature Nitric Oxide Gas Sensor Based on a Copper-Ion-Doped Polyaniline/Tungsten Oxide Nanocomposite

    PubMed Central

    Wang, Shih-Han; Shen, Chi-Yen; Su, Jian-Ming; Chang, Shiang-Wen

    2015-01-01

    The parts-per-billion-level nitric oxide (NO) gas sensing capability of a copper-ion-doped polyaniline/tungsten oxide nanocomposite (Cu2+/PANI/WO3) film coated on a Rayleigh surface acoustic wave device was investigated. The sensor developed in this study was sensitive to NO gas at room temperature in dry nitrogen. The surface morphology, dopant distribution, and electric properties were characterized using scanning electron microscopy, energy-dispersive X-ray spectroscopy mapping, and Hall effect measurements, respectively. The Cu2+/PANI/WO3 film exhibited high NO gas sensitivity and selectivity as well as long-term stability. At 1 ppb of NO, a signal with a frequency shift of 4.3 ppm and a signal-to-noise ratio of 17 was observed. The sensor exhibited distinct selectivity toward NO gas with no substantial response to O2, NH3 and CO2 gases. PMID:25811223

  7. A room temperature nitric oxide gas sensor based on a copper-ion-doped polyaniline/tungsten oxide nanocomposite.

    PubMed

    Wang, Shih-Han; Shen, Chi-Yen; Su, Jian-Ming; Chang, Shiang-Wen

    2015-01-01

    The parts-per-billion-level nitric oxide (NO) gas sensing capability of a copper-ion-doped polyaniline/tungsten oxide nanocomposite (Cu(2+)/PANI/WO3) film coated on a Rayleigh surface acoustic wave device was investigated. The sensor developed in this study was sensitive to NO gas at room temperature in dry nitrogen. The surface morphology, dopant distribution, and electric properties were characterized using scanning electron microscopy, energy-dispersive X-ray spectroscopy mapping, and Hall effect measurements, respectively. The Cu(2+)/PANI/WO3 film exhibited high NO gas sensitivity and selectivity as well as long-term stability. At 1 ppb of NO, a signal with a frequency shift of 4.3 ppm and a signal-to-noise ratio of 17 was observed. The sensor exhibited distinct selectivity toward NO gas with no substantial response to O2, NH3 and CO2 gases. PMID:25811223

  8. Improved 02/H2 Gas Mixture Sensor

    NASA Technical Reports Server (NTRS)

    Moulthrop, L. C.

    1983-01-01

    Monitor of mixture concentrations uses catalyzed and uncatalyzed temperature probe. Sensor includes Pt-catalyzed temperature probe mounted in line with similar uncatalyzed temperature probe. Use of common temperature probes and standard, flareless, high-pressure tubefittings resulted in design conductive to installation in almost any system. Suitable for use in regenerative fuel cells, life-support systems, and other closed systems.

  9. Electronic characterization of thin diamondlike carbon films for pH sensor applications

    NASA Astrophysics Data System (ADS)

    Schitthelm, Frank; Roever, Kai-Sven; Ferretti, Ruediger

    1998-12-01

    Amorphous Diamond like carbon (DLC) thin films were deposited on to 4'-silicon wafers by an electron cyclotron resonance microwave excited methan (CH4) or ethin (C2H2) plasma at low pressure. Electronic characterization of DLC films were performed by I/V and C/V measurements using MIS-structures. Whereas the electrochemical pH-characteristics were measured using ion- sensitive field-effect transistors. It is shown, that the type of carrier transport mechanism in DLC films depends on the process conditions and that the electrical conductivity varies over a wide range. This can be adjusted mainly by the kinetic energy of the CxHx+ ions and the C to H ratio, which depends on the type of process gas. The dominant charge transport mechanism in DLC films based on a methan plasma is the Poole-Frenkel emission whereas the charge flow for ethin based DLC films is space-charged limited. The electronic conductivity of DLC films deposited with ethin as process gas is typically about five orders of magnitude higher than methan based films. The electrochemical characterization shows a pH-sensitivity in the range of 50 - 57 mV/pH and a long-term pH signal stability in the range of 0.3 - 25 (mu) V/h. Based on the different pH-sensitivities int will be possible to produce a pH-sensor in differential mode using DLC/DLC or DLC/Ta2O5 combinations for the sensitive layers.

  10. Negative admittance in resistive metal oxide gas sensors

    NASA Astrophysics Data System (ADS)

    Varpula, A.; Novikov, S.; Sinkkonen, J.; Utriainen, M.

    2008-03-01

    The negative admittance effect is observed in a WO3-based resistive gas sensor MOS1 from Environics Oy. The effect is caused by electron trapping (i.e. oxygen ionization) at the grain boundary. The results show that the current component related to the modulation of the grain-boundary barrier dominates in dry clean air and the charging or discharging current dominates in humid air conditions. An equivalent electrical circuit model for the sensor response is presented.

  11. Optical Sensors Based on Single Arm Thin Film Waveguide Interferometer

    NASA Technical Reports Server (NTRS)

    Sarkisov, Sergey S.

    1997-01-01

    All the goals of the research effort for the first year were met by the accomplishments. Additional efforts were done to speed up the process of development and construction of the experimental gas chamber which will be completed by the end of 1997. This chamber incorporates vacuum sealed multimode optical fiber lines which connect the sensor to the remote light source and signal processing equipment. This optical fiber line is a prototype of actual optical communication links connecting real sensors to a control unit within an aircraft or spacecraft. An important problem which we are planning to focus on during the second year is coupling of optical fiber line to the sensor. Currently this problem is solved using focusing optics and prism couplers. More reliable solutions are planned to be investigated.

  12. Selective Gas Sensing With h -BN Capped MoS2 Heterostructure Thin-Film Transistors

    NASA Astrophysics Data System (ADS)

    Liu, G.; Rumyantsev, S. L.; Jiang, C.; Shur, M. S.; Balandin, A. A.

    2015-11-01

    We have demonstrated selective gas sensing with molybdenum disulfide (MoS2) thin films transistors capped with a thin layer of hexagonal boron nitride (h-BN). The resistance change was used as a sensing parameter to detect chemical vapors such as ethanol, acetonitrile, toluene, chloroform and methanol. It was found that h-BN dielectric passivation layer does not prevent gas detection via changes in the source-drain current in the active MoS2 thin film channel. The use of h-BN cap layers (thickness H=10 nm) in the design of MoS2 thin film gas sensors improves device stability and prevents device degradation due to environmental and chemical exposure. The obtained results are important for applications of van der Waals materials in chemical and biological sensing.

  13. Thin Film Heat Flux Sensor Development for Ceramic Matrix Composite (CMC) Systems

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Fralick, Gustave C.; Hunter, Gary W.; Zhu, Dongming; Laster, Kimala L.; Gonzalez, Jose M.; Gregory, Otto J.

    2010-01-01

    The NASA Glenn Research Center (GRC) has an on-going effort for developing high temperature thin film sensors for advanced turbine engine components. Stable, high temperature thin film ceramic thermocouples have been demonstrated in the lab, and novel methods of fabricating sensors have been developed. To fabricate thin film heat flux sensors for Ceramic Matrix Composite (CMC) systems, the rough and porous nature of the CMC system posed a significant challenge for patterning the fine features required. The status of the effort to develop thin film heat flux sensors specifically for use on silicon carbide (SiC) CMC systems with these new technologies is described.

  14. Pattern Recognition for Selective Odor Detection with Gas Sensor Arrays

    PubMed Central

    Kim, Eungyeong; Lee, Seok; Kim, Jae Hun; Kim, Chulki; Byun, Young Tae; Kim, Hyung Seok; Lee, Taikjin

    2012-01-01

    This paper presents a new pattern recognition approach for enhancing the selectivity of gas sensor arrays for clustering intelligent odor detection. The aim of this approach was to accurately classify an odor using pattern recognition in order to enhance the selectivity of gas sensor arrays. This was achieved using an odor monitoring system with a newly developed neural-genetic classification algorithm (NGCA). The system shows the enhancement in the sensitivity of the detected gas. Experiments showed that the proposed NGCA delivered better performance than the previous genetic algorithm (GA) and artificial neural networks (ANN) methods. We also used PCA for data visualization. Our proposed system can enhance the reproducibility, reliability, and selectivity of odor sensor output, so it is expected to be applicable to diverse environmental problems including air pollution, and monitor the air quality of clean-air required buildings such as a kindergartens and hospitals. PMID:23443378

  15. MEMS device for mass market gas and chemical sensors

    NASA Astrophysics Data System (ADS)

    Kinkade, Brian R.; Daly, James T.; Johnson, Edward A.

    2000-08-01

    Gas and chemical sensors are used in many applications. Industrial health and safety monitors allow companies to meet OSHA requirements by detecting harmful levels of toxic or combustible gases. Vehicle emissions are tested during annual inspections. Blood alcohol breathalizers are used by law enforcement. Refrigerant leak detection ensures that the Earth's ozone layer is not being compromised. Industrial combustion emissions are also monitored to minimize pollution. Heating and ventilation systems watch for high levels of carbon dioxide (CO2) to trigger an increase in fresh air exchange. Carbon monoxide detectors are used in homes to prevent poisoning from poor combustion ventilation. Anesthesia gases are monitored during a patients operation. The current economic reality is that two groups of gas sensor technologies are competing in two distinct existing market segments - affordable (less reliable) chemical reaction sensors for consumer markets and reliable (expensive) infrared (IR) spectroscopic sensors for industrial, laboratory, and medical instrumentation markets. Presently high volume mass-market applications are limited to CO detectros and on-board automotive emissions sensors. Due to reliability problems with electrochemical sensor-based CO detectors there is a hesitancy to apply these sensors in other high volume applications. Applications such as: natural gas leak detection, non-invasive blood glucose monitoring, home indoor air quality, personal/portable air quality monitors, home fire/burnt cooking detector, and home food spoilage detectors need a sensor that is a small, efficient, accurate, sensitive, reliable, and inexpensive. Connecting an array of these next generation gas sensors to wireless networks that are starting to proliferate today creates many other applications. Asthmatics could preview the air quality of their destinations as they venture out into the day. HVAC systems could determine if fresh air intake was actually better than the air in the house. Internet grocery delivery services could check for spoiled foods in their clients' refrigerators. City emissions regulators could monitor the various emissions sources throughout the area from their desk to predict how many pollution vouchers they will need to trade in the next week. We describe a new component architecture for mass-market sensors based on silicon microelectromechanical systems (MEMS) technology. MEMS are micrometer-scale devices that can be fabricated as discrete devices or large arrays, using the technology of integrated circuit manufacturing. These new photonic bandgap and MEMS fabricataion technologies will simplify the component technology to provide high-quality gas and chemical sensors at consumer prices.

  16. Illicit material detector based on gas sensors and neural networks

    NASA Astrophysics Data System (ADS)

    Grimaldi, Vincent; Politano, Jean-Luc

    1997-02-01

    In accordance with its missions, le Centre de Recherches et d'Etudes de la Logistique de la Police Nationale francaise (CREL) has been conducting research for the past few years targeted at detecting drugs and explosives. We have focused our approach of the underlying physical and chemical detection principles on solid state gas sensors, in the hope of developing a hand-held drugs and explosives detector. The CREL and Laboratory and Scientific Services Directorate are research partners for this project. Using generic hydrocarbon, industrially available, metal oxide sensors as illicit material detectors, requires usage precautions. Indeed, neither the product's concentrations, nor even the products themselves, belong to the intended usage specifications. Therefore, the CREL is currently investigating two major research topics: controlling the sensor's environment: with environmental control we improve the detection of small product concentration; determining detection thresholds: both drugs and explosives disseminate low gas concentration. We are attempting to quantify the minimal concentration which triggers detection. In the long run, we foresee a computer-based tool likely to detect a target gas in a noisy atmosphere. A neural network is the suitable tool for interpreting the response of heterogeneous sensor matrix. This information processing structure, alongside with proper sensor environment control, will lessen the repercussions of common MOS sensor sensitivity characteristic dispersion.

  17. Nanostructured Materials for Room-Temperature Gas Sensors.

    PubMed

    Zhang, Jun; Liu, Xianghong; Neri, Giovanni; Pinna, Nicola

    2016-02-01

    Sensor technology has an important effect on many aspects in our society, and has gained much progress, propelled by the development of nanoscience and nanotechnology. Current research efforts are directed toward developing high-performance gas sensors with low operating temperature at low fabrication costs. A gas sensor working at room temperature is very appealing as it provides very low power consumption and does not require a heater for high-temperature operation, and hence simplifies the fabrication of sensor devices and reduces the operating cost. Nanostructured materials are at the core of the development of any room-temperature sensing platform. The most important advances with regard to fundamental research, sensing mechanisms, and application of nanostructured materials for room-temperature conductometric sensor devices are reviewed here. Particular emphasis is given to the relation between the nanostructure and sensor properties in an attempt to address structure-property correlations. Finally, some future research perspectives and new challenges that the field of room-temperature sensors will have to address are also discussed. PMID:26662346

  18. Fast, selective, and stable high temperature humidity sensors enabled by microfabricated yttrium-doped barium zirconate thin films

    NASA Astrophysics Data System (ADS)

    Chen, Xiaoxin

    This work tested the viability of microfabricated humidity sensors based on Y-doped BaZrO3 by developing thin film deposition processes, fabricating devices, and characterizing the device response. At high temperatures, this material becomes conductive depending on temperature, water vapor, and other gas concentrations. Such devices should help increase efficiency and decrease emissions through improved combustion process control. Using microfabrication may lead to reduced size and faster sensor response. Two hundred and twelve variations of thin film layers were deposited and characterized out of which 112 were used in sensors. BaZrO3:Y thin films (200--750 nm) were sputtered onto oxidized n-type silicon substrates at room temperature from a ceramic target in an Ar sputtering ambient. Various deposition pressures and powers were used to correlate process parameters with film properties. Films were annealed at 800 and 1000°C (3 hours, air) and characterized by X-ray diffraction (XRD), atomic force microscopy (AFM), and X-ray photoelectron spectroscopy (XPS) to determine microstructure, surface morphology, and film composition. For comparison, 30--500 nm thick films were deposited onto identical substrates using PLD (various substrate temperatures) and characterized as deposited. Selected samples were annealed at 1000°C (3 hours in air) and characterized again. Transmission electron microscopy (TEM) of 30 and 50 nm PLD films confirmed the particle sizes found by AFM of 19--25 nm. Although all layers show Barium deficiencies, stable process windows were established for sputtering and PLD close to stoichiometric compositions. Sensors with the sensitive material deposited on top of the interdigitated test structure (IDE) showed no response to changes in humidity. Sensors with the IDE placed on top of the sensing film showed sensitive response, suggesting a strong surface dominated sensing effect. Ti/Pt as contact metal yielded an unrepeatable humidity response. Cr/Au gave sensitive, selective, and long term stable humidity response. All films were exposed to varying partial pressures of water vapor, (400 to 650°C) with and without exhaust gas mixtures. Sensitivities of 0.2 to 62 atm-1 were demonstrated with tenfold selectivity towards other gases and sensor life time in excess of a year. Response times are 4--20 times faster than reports in literature.

  19. Thermal Balance Analysis of a Micro-Thermoelectric Gas Sensor Using Catalytic Combustion of Hydrogen

    PubMed Central

    Nagai, Daisuke; Akamatsu, Takafumi; Itoh, Toshio; Izu, Noriya; Shin, Woosuck

    2014-01-01

    A thermoelectric gas sensor (TGS) with a combustion catalyst is a calorimetric sensor that changes the small heat of catalytic combustion into a signal voltage. We analyzed the thermal balance of a TGS to quantitatively estimate the sensor parameters. The voltage signal of a TGS was simulated, and the heat balance was calculated at two sections across the thermoelectric film of a TGS. The thermal resistances in the two sections were estimated from the thermal time constants of the experimental signal curves of the TGS. The catalytic combustion heat Qcatalyst required for 1 mV of ΔVgas was calculated to be 46.1 μW. Using these parameters, we find from simulations for the device performance that the expected Qcatalyst for 200 and 1,000 ppm H2 was 3.69 μW and 11.7 μW, respectively. PMID:24451468

  20. Investigation of the Carbon Monoxide Gas Sensing Characteristics of Tin Oxide Mixed Cerium Oxide Thin Films

    PubMed Central

    Durrani, Sardar M. A.; Al-Kuhaili, Mohammad F.; Bakhtiari, Imran A.; Haider, Muhammad B.

    2012-01-01

    Thin films of tin oxide mixed cerium oxide were grown on unheated substrates by physical vapor deposition. The films were annealed in air at 500 °C for two hours, and were characterized using X-ray photoelectron spectroscopy, atomic force microscopy and optical spectrophotometry. X-ray photoelectron spectroscopy and atomic force microscopy results reveal that the films were highly porous and porosity of our films was found to be in the range of 11.6–21.7%. The films were investigated for the detection of carbon monoxide, and were found to be highly sensitive. We found that 430 °C was the optimum operating temperature for sensing CO gas at concentrations as low as 5 ppm. Our sensors exhibited fast response and recovery times of 26 s and 30 s, respectively. PMID:22736967

  1. Film Sensor Device Fabricated by a Piezoelectric Poly(L-lactic acid) Film

    NASA Astrophysics Data System (ADS)

    Ando, Masamichi; Kawamura, Hideki; Kageyama, Keisuke; Tajitsu, Yoshiro

    2012-09-01

    Synthetic piezoelectric polymer films produced from petroleum feedstock have long been used as thin-film sensors and actuators. However, the fossil fuel requirements for synthetic polymer production and carbon dioxide emission from its combustion have raised concern about the environmental impact of its continued use. Eco-friendly biomass polymers, such as poly(L-lactic acid) (PLLA), are made from plant-based (vegetable starch) plastics and, thus, have a much smaller carbon footprint. Additionally, PLLA does not exhibit pyroelectricity or unnecessary poling. This suggests the usefulness of PLLA films for the human-machine interface (HMI). As an example of a new HMI, we have produced a TV remote control using a PLLA film. The intuitive operation provided by this PLLA device suggests that it is useful for the elderly or handicapped.

  2. Novel SH-SAW gas sensor based on graphene

    NASA Astrophysics Data System (ADS)

    Nikolaou, I.; Hallil, H.; Deligeorgis, G.; Conedera, V.; Garcia, H.; Dejous, C.; Rebire, D.

    2015-05-01

    In this article, a novel gas sensor platform has been studied. Several layers of graphene have been deposited on a SH-SAW, as a sensitive layer. Innovative methods of graphene solutions have been prepared in order to explore gas sensing applications. The real time detection measurement of the coated sensor under ethanol and humidity is presented. The adsorption of vapors leads to a frequency shift of 10.5 kHz and 22.7 kHz, at exposure of 100 ppm of ethanol and 6.22% of Relative Humidity, respectively. The experiments have been realized at room temperature; rapid response and recovery time were observed.

  3. Electrodes for solid state gas sensor

    DOEpatents

    Mukundan, Rangachary; Brosha, Eric L.; Garzon, Fernando

    2007-05-08

    A mixed potential electrochemical sensor for the detection of gases has a ceria-based electrolyte with a surface for exposing to the gases to be detected, and with a reference wire electrode and a sensing wire electrode extending through the surface and fixed within the electrolyte as the electrolyte is compressed and sintered. The electrochemical sensor is formed by placing a wire reference electrode and a wire sensing electrode in a die, where each electrode has a first compressed planar section and a second section depending from the first section with the second section of each electrode extending axially within the die. The die is filled with an oxide-electrolyte powder and the powder is pressed within the die with the wire electrodes. The wire-electrodes and the pressed oxide-electrolyte powder are sintered to form a ceramic electrolyte base with a reference wire electrode and a sensing wire electrode depending therefrom.

  4. Electrodes for solid state gas sensor

    DOEpatents

    Mukundan, Rangachary; Brosha, Eric L.; Garzon, Fernando

    2003-08-12

    A mixed potential electrochemical sensor for the detection of gases has a ceria-based electrolyte with a surface for exposing to the gases to be detected, and with a reference wire electrode and a sensing wire electrode extending through the surface and fixed within the electrolyte as the electrolyte is compressed and sintered. The electrochemical sensor is formed by placing a wire reference electrode and a wire sensing electrode in a die, where each electrode has a first compressed planar section and a second section depending from the first section with the second section of each electrode extending axially within the die. The die is filled with an oxide-electrolyte powder and the powder is pressed within the die with the wire electrodes. The wire-electrodes and the pressed oxide-electrolyte powder are sintered to form a ceramic electrolyte base with a reference wire electrode and a sensing wire electrode depending therefrom.

  5. Chemical Gas Sensors for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.; Liu, C. C.

    1998-01-01

    Chemical sensors often need to be specifically designed (or tailored) to operate in a given environment. It is often the case that a chemical sensor that meets the needs of one application will not function adequately in another application. The more demanding the environment and specialized the requirement, the greater the need to adapt exiting sensor technologies to meet these requirements or, as necessary, develop new sensor technologies. Aerospace (aeronautic and space) applications are particularly challenging since often these applications have specifications which have not previously been the emphasis of commercial suppliers. Further, the chemical sensing needs of aerospace applications have changed over the years to reflect the changing emphasis of society. Three chemical sensing applications of particular interest to the National Aeronautics and Space Administration (NASA) which illustrate these trends are launch vehicle leak detection, emission monitoring, and fire detection. Each of these applications reflects efforts ongoing throughout NASA. As described in NASA's "Three Pillars for Success", a document which outlines NASA's long term response to achieve the nation's priorities in aerospace transportation, agency wide objectives include: improving safety and decreasing the cost of space travel, significantly decreasing the amount of emissions produced by aeronautic engines, and improving the safety of commercial airline travel. As will be discussed below, chemical sensing in leak detection, emission monitoring, and fire detection will help enable the agency to meet these objectives. Each application has vastly different problems associated with the measurement of chemical species. Nonetheless, the development of a common base technology can address the measurement needs of a number of applications.

  6. Examining graphene field effect sensors for ferroelectric thin film studies.

    PubMed

    Rajapitamahuni, A; Hoffman, J; Ahn, C H; Hong, X

    2013-09-11

    We examine a prototype graphene field effect sensor for the study of the dielectric constant, pyroelectric coefficient, and ferroelectric polarization of 100-300 nm epitaxial (Ba,Sr)TiO3 thin films. Ferroelectric switching induces hysteresis in the resistivity and carrier density of n-layer graphene (n = 1-5) below 100 K, which competes with an antihysteresis behavior activated by the combined effects of electric field and temperature. We also discuss how the polarization asymmetry and interface charge dynamics affect the electronic properties of graphene. PMID:23924380

  7. Gas Sensors Characterization and Multilayer Perceptron (MLP) Hardware Implementation for Gas Identification Using a Field Programmable Gate Array (FPGA)

    PubMed Central

    Benrekia, Fayçal; Attari, Mokhtar; Bouhedda, Mounir

    2013-01-01

    This paper develops a primitive gas recognition system for discriminating between industrial gas species. The system under investigation consists of an array of eight micro-hotplate-based SnO2 thin film gas sensors with different selectivity patterns. The output signals are processed through a signal conditioning and analyzing system. These signals feed a decision-making classifier, which is obtained via a Field Programmable Gate Array (FPGA) with Very High-Speed Integrated Circuit Hardware Description Language. The classifier relies on a multilayer neural network based on a back propagation algorithm with one hidden layer of four neurons and eight neurons at the input and five neurons at the output. The neural network designed after implementation consists of twenty thousand gates. The achieved experimental results seem to show the effectiveness of the proposed classifier, which can discriminate between five industrial gases. PMID:23529119

  8. Highly sensitive and fast response gas sensor based on a light reflection at the glass-photonic crystal interface

    NASA Astrophysics Data System (ADS)

    Kuchyanov, A. S.; Chubakov, P. A.; Plekhanov, A. I.

    2015-09-01

    We develop a versatile gas sensor based on the condition for total internal reflection at the glass-photonic crystal interface and corresponding detection scheme for rapid and precise measurement of vapors. The sensor consists of a vapor sensitive photonic crystal film as a Fabry-Perot etalon coated on a solid substrate (e.g., large face of a glass prism or glass slide). Such scheme and specific physicochemical properties of submicron silica particles provide photonic crystal sensor selectivity due to the capillary condensation of ammonia vapor with a sensitivity of 1 ppm with a response time of 100 ms.

  9. Three-gas detection system with IR optical sensor based on NDIR technology

    NASA Astrophysics Data System (ADS)

    Tan, Qiulin; Tang, Licheng; Yang, Mingliang; Xue, Chenyang; Zhang, Wendong; Liu, Jun; Xiong, Jijun

    2015-11-01

    In this paper, a three-gas detection system with a environmental parameter compensation method is proposed based on Non-dispersive infra-red (NDIR) technique, which can be applied to detect multi-gas (methane, carbon dioxide and carbon monoxide). In this system, an IR source and four single-channel pyroelectric sensors are integrated in the miniature optical gas chamber successfully. Inner wall of the chamber coated with Au film is designed as paraboloids. The infrared light is reflected twice before reaching to detectors, thus increasing optical path. Besides, a compensation method is presented to overcome the influence in variation of environment (ambient temperature, humidity and pressure), thus leading to improve the accuracy in gas detection. Experimental results demonstrated that detection ranges are 0-50,000 ppm for CH4, 0-44,500 ppm for CO, 0-48,000 ppm for CO2 and the accuracy is ±0.05%.

  10. Chemiresistive gas sensing characteristics of cobalt oxide thin films

    NASA Astrophysics Data System (ADS)

    Balouria, Vishal; Kumar, Arvind; Samanta, S.; Bhattacharya, S.; Singh, A.; Debnath, A. K.; Mahajan, Aman; Bedi, R. K.; Aswal, D. K.; Gupta, S. K.

    2012-06-01

    We report synthesis of 100 nm thick cobalt oxide films - prepared by electron-beam evaporation of Co onto quartz (Q- films) and c-plane sapphire substrate (S- films) followed by oxygen annealing. Films have been characterized for their structure and morphology by using X-ray Diffraction (XRD) and Scanning Electron Microscopy (SEM). The prepared films have been investigated for their chemiresistive gas sensing characteristics for a host of test gases (CH4, CO, NO2, Cl2, NH3 and H2S) as a function of operating temperature (between 50 and 350°C) and gas concentration (3-30 ppm). We demonstrate that both Q and S-films are highly selective to H2S at an operating temperature of 250°C. However it has been observed that films prepared on sapphire show much less base resistance drift as compared to the films on quartz substrate.

  11. Application of gas pressure sensor for fault location system in gas insulated substation

    SciTech Connect

    Takagi, I.; Yajima, E.; Sakakibara, T.; Akazaki, M.; Wakabayashi, S.; Uehara, K.; Takahashi, N.

    1995-10-01

    This is a report on increasing the sensitivity of a GIS fault location system using gas pressure sensors. It describes the results of studies on engineering problems arising where methods and sensors for the purpose are actually applied, while presenting the results of performance proof tests carried out with actual equipment, together with some results of their analysis.

  12. Preparation of nanostructured PbS thin films as sensing element for NO2 gas

    NASA Astrophysics Data System (ADS)

    Kaci, S.; Keffous, A.; Hakoum, S.; Trari, M.; Mansri, O.; Menari, H.

    2014-06-01

    In this work, we demonstrate that semiconducting films of AIVBVI compounds, in particular, of nanostructured lead sulfide (PbS) which prepared by chemical bath deposition (CBD), can be used as a sensing element for nitrogen dioxide (NO2) gas. The CBD method is versatile, simple in implementation and gives homogeneous semiconductor structures. We have prepared PbS nanocrystalline thin film at different reaction baths and temperatures. In the course of deposition, variable amounts of additives, such as organic substances among them, were introduced into the baths. The energy dispersive analysis (EDX) confirms the chemical composition of PbS films. A current-voltage (I-V) characterization of Pd/nc-PbS/a-SiC:H pSi(100)/Al Schottky diode structures were studied in the presence of NO2 gas. The gas sensing behavior showed that the synthesized PbS nanocrystalline thin films were influenced by NO2 gas at room temperature. The results can be used for developing an experimental sensing element based on chemically deposited nanostructured PbS films which can be applicable in gas sensors.

  13. Polymer flip-chip bonding of pressure sensors on a flexible Kapton film for neonatal catheters

    NASA Astrophysics Data System (ADS)

    Li, Chunyan; Sauser, Frank E.; Azizkhan, Richard G.; Ahn, Chong H.; Papautsky, Ian

    2005-09-01

    In this paper, we describe the development of a new approach to mounting silicon pressure microsensors inside a 5 French (1.67 mm outer diameter) neonatal catheter tube for intravascular blood pressure measurements. Kapton film was used as a low-cost, flexible interface between the flip-chip bonded sensors at one end and wires to external electronics at the other end. Conductive polymer paste was used to flip-chip bond sensors to the flexible Kapton substrate at low temperature, while gold traces were used to form electrical interconnects on the film surface. Conductivity and bonding strength of the resulting polymer bumps were on the order of 100 mΩ and 4.43 mN mm-2, respectively. Piezoresistive pressure microsensors were successfully mounted on Kapton carriers, packaged inside catheter tubes, and characterized in both gas and liquid environments. The sensors exhibited sensitivity of approximately 60 µV mmHg-1 over the target pressure range of 0-350 mmHg. Two-week tests in water at 27 °C and 36 °C showed only slight variations in contact resistances, indicating that the developed approach to packaging microsensors was sufficiently robust for the target application.

  14. Investigation of thiol derivatized gold nanoparticle sensors for gas analysis

    NASA Astrophysics Data System (ADS)

    Stephens, Jared S.

    Analysis of volatile organic compounds (VOCs) in air and exhaled breath by sensor array is a very useful testing technique. It can provide non-invasive, fast, inexpensive testing for many diseases. Breath analysis has been very successful in identifying cancer and other diseases by using a chemiresistor sensor or array with gold nanoparticles to detect biomarkers. Acetone is a biomarker for diabetes and having a portable testing device could help to monitor diabetic and therapeutic progress. An advantage to this testing method is it is conducted at room temperature instead of 200 degrees Celsius. 3. The objective of this research is to determine the effect of thiol derivatized gold nanoparticles based on sensor(s) detection of VOCs. The VOCs to be tested are acetone, ethanol, and a mixture of acetone and ethanol. Each chip is tested under all three VOCs and three concentration levels (0.1, 1, and 5.0 ppm). VOC samples are used to test the sensors' ability to detect and differentiate VOCs. Sensors (also referred to as a chip) are prepared using several types of thiol derivatized gold nanoparticles. The factors are: thiol compound and molar volume loading of the thiol in synthesis. The average resistance results are used to determine the VOC selectivity of the sensors tested. The results show a trend of increasing resistance as VOC concentration is increased relative to dry air; which is used as baseline for VOCs. Several sensors show a high selectivity to one or more VOCs. Overall the 57 micromoles of 4-methoxy-toluenethiol sensor shows the strongest selectivity for VOCs tested. 3. Gerfen, Kurt. 2012. Detection of Acetone in Air Using Silver Ion Exchanged ZSM-5 and Zinc Oxide Sensing Films. Master of Science thesis, University of Louisville.

  15. Energy requirements for methods improving gas detection by modulating physical properties of resistive gas sensors

    NASA Astrophysics Data System (ADS)

    Trawka, M.; Kotarski, M.

    2016-01-01

    One of the most important disadvantage of resistive gas sensors is their limited gas selectivity. Therefore, various methods modulating their physical properties are used to improve gas detection. These methods are usually limited to temperature modulation or UV light irradiation for the layers exhibiting photocatalytic effect. These methods cause increased energy consumption. In our study we consider how much energy has to be supplied to utilize such methods and what kind of additional information can be gathered. We present experimental results of selected resistive gas sensors, including commercial and prototype constructions, and practical solutions of modulating their physical properties.

  16. Polymer coating behavior of Rayleigh-SAW resonators with gold electrode structure for gas sensor applications.

    PubMed

    Avramov, Ivan D; Lnge, Kerstin; Rupp, Swen; Rapp, Bastian; Rapp, Michael

    2007-01-01

    Results from systematic polymer coating experiments on surface acoustic wave (SAW) resonators and coupled resonator filters (CRF) on ST-cut quartz with a corrosion-proof electrode structure entirely made of gold (Au) are presented and compared with data from similar SAW devices using aluminium (Al) electrodes. The recently developed Au devices are intended to replace their earlier Al counterparts in sensor systems operating in highly reactive chemical gas environments. Solid parylene C and soft poly[chlorotrifluoroethylene-co-vinylidene fluoride] (PCFV) polymer films are deposited under identical conditions onto the surface of Al and Au devices. The electrical performance of the Parylene C coated devices is monitored online during film deposition. The PCVF coated devices are evaluated after film deposition. The experimental data show that the Au devices can stand up to 40% thicker solid films for the same amount of loss increase than the Al devices and retain better resonance and phase characteristics. The frequency sensitivities of Au and Al devices to parylene C deposition are nearly identical. After coating with soft PCFV sensing film, the Au devices provide up to two times higher gas sensitivity when probed with cooling agent, octane, or tetrachloroethylene. PMID:17225810

  17. Nanoporous metal oxides thin-films as "chemical reactive layers" for magnetoelastic sensors

    NASA Astrophysics Data System (ADS)

    Zhang, Rong

    Freestanding magnetoelastic sensors are good candidates for in situ analysis of gases. After coating magnetoelastic ribbons with suitable nanoporous thin films, chemical reactive layers (CRL), sensitivity and specificity of the sensor for targeted gas increases. This thesis addresses two major aspects concerning magnetoelastic sensing of gases. The first aspect relates to developing methodology to measure mass of gas adsorbed from frequency shifts. Effective Young's modulus of the sensor coated with porous thin-films suffers large changes upon mass loading. This study demonstrates that changes in Young's modulus produced upon mass loading can be eliminated from the relationship between the magnitude of mass loaded and shifts in resonant frequency using the Two Different Length Sensors method. Sensitivity of the sensor not only depends on its properties but also depends on the nature of material being loaded and on its mass. Results show that sensitivity for the same sensor can range between 214 Hz/mg for mass loads of Au to 438,809 Hz/mg for acetone. The second aspect of this research deals with the development of CRL for ethylene sensing. Nanoporous metal oxides (TiO2 and SiO 2) surface modified with metals Pt(0) and metal ions Pt(II), Pd(II), Ag(I) were synthesized and evaluated as potential candidates. These materials were evaluated as ethylene adsorbents. We also studied the gain in weight upon ethylene adsorption and the nature of their chemical interaction with ethylene. Results from these studies showed that ethylene is completely mineralized (CO2+H2O) upon exposure to Pt(0)-modified TiO2 cermets. TiO2 modified with Pd(II) and Pt(II) oxidizes a fraction of ethylene to carboxylic and carboxylate species, causing adsorption of ethylene to be partially irreversible at room temperature. Ag(I)-doped materials react with ethylene to form surface complexes with sigma bonding character. Adsorption of ethylene is reversible process in this case. While the adsorption of ethylene by TiO2 is very small (0.02 mmols/g) at equilibrium with 40 ppmv in gas phase, the Pd(II), Pt(II) and Ag(I)-doped TiO2 adsorb, 0.50, 015 and 0.20 mmols/g respectively. The change in weight of materials upon exposure to ethylene is always less than 20% of that predicted by ethylene adsorption. This is due to desorption of water that takes place upon ethylene adsorption.

  18. Radiopacity of endodontic materials on film and a digital sensor.

    PubMed

    Rasimick, Brian J; Shah, Rinal P; Musikant, Barry Lee; Deutsch, Allan S

    2007-09-01

    The purpose of this study was to compare the radiographic appearance of 12 endodontic materials as visualized on either Kodak Ultra-speed D speed film (Eastman Kodak Company, Rochester, NY) or a Gendex eHD digital sensor (Gendex Dental Systems, Milan, Italy). Ten discs of each material were radiographed alongside an aluminum alloy 1100 (Alcoa, Pittsburgh, PA) stepwedge that was used for reference. For every radiograph, the average grayscale value of the material was converted into absorbance notation and compared with that of the reference stepwedge in order to determine the equivalent radiopacity in terms of millimeters of Al 1100 per millimeter of material. Two-way repeated-measures analysis of variance testing detected significant differences with respect to imaging system, material, and the interaction of the two factors (p < 0.001). The difference in a material's radiopacity as measured on the digital sensor compared with film was greater than 10% for 4 of the 12 materials and over 40% for InnoEndo (Heraus Kulzer, Armonk, NY). It was speculated that barium fillers cause this effect. PMID:17931942

  19. An automatic data acquisition system for optical characterization of PEDOT:PSS-based gas sensor

    NASA Astrophysics Data System (ADS)

    Junaidi, Aba, La; Triyana, Kuwat

    2015-04-01

    A measurement system that consists of a pair of laser diode and photodiode coupled with an automatic data acquisition system based on microcontroller of AVR ATMega16 (hereafter to be called DAQ MA-16) has been developed for measuring optical response of polymer-based gas sensor. In this case, the optical response was represented by the voltage output of the photodiode. The polymer-based gas sensor was a thin film of polymer of Poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) or PEDOT:PSS deposited on a glass substrate. For measurement, the sensor was placed in the chamber, and then the gas ammonia with a fix flow rate was flowed into the chamber. The opposite part of the chamber was installed a pump to throw the gas. The National Instrument Data Acquisition (NI DAQ) BNC-2110 has been used to calibrate the DAQ MA-16 system. From the calibration, it can be estimated that the accuracy of DAQ MA-16 is about 99.4%.

  20. Dataset from chemical gas sensor array in turbulent wind tunnel.

    PubMed

    Fonollosa, Jordi; Rodríguez-Luján, Irene; Trincavelli, Marco; Huerta, Ramón

    2015-06-01

    The dataset includes the acquired time series of a chemical detection platform exposed to different gas conditions in a turbulent wind tunnel. The chemo-sensory elements were sampling directly the environment. In contrast to traditional approaches that include measurement chambers, open sampling systems are sensitive to dispersion mechanisms of gaseous chemical analytes, namely diffusion, turbulence, and advection, making the identification and monitoring of chemical substances more challenging. The sensing platform included 72 metal-oxide gas sensors that were positioned at 6 different locations of the wind tunnel. At each location, 10 distinct chemical gases were released in the wind tunnel, the sensors were evaluated at 5 different operating temperatures, and 3 different wind speeds were generated in the wind tunnel to induce different levels of turbulence. Moreover, each configuration was repeated 20 times, yielding a dataset of 18,000 measurements. The dataset was collected over a period of 16 months. The data is related to "On the performance of gas sensor arrays in open sampling systems using Inhibitory Support Vector Machines", by Vergara et al.[1]. The dataset can be accessed publicly at the UCI repository upon citation of [1]: http://archive.ics.uci.edu/ml/datasets/Gas+sensor+arrays+in+open+sampling+settings. PMID:26217739

  1. Improved Sensitivity Spontaneous Raman Scattering Multi-Gas Sensor

    SciTech Connect

    Michael P. Buric; Kevin P. Chen; Joel Falk; Steven D. Woodruff1

    2009-01-01

    We report a backward-wave spontaneous-Raman multi-gas sensor employing a hollow-core photonic-bandgap-fiber to contain gasses and increase interaction length. Silica Raman noise and detection speed are reduced using a digital spatial filter and a cladding seal.

  2. Dataset from chemical gas sensor array in turbulent wind tunnel

    PubMed Central

    Fonollosa, Jordi; Rodríguez-Luján, Irene; Trincavelli, Marco; Huerta, Ramón

    2015-01-01

    The dataset includes the acquired time series of a chemical detection platform exposed to different gas conditions in a turbulent wind tunnel. The chemo-sensory elements were sampling directly the environment. In contrast to traditional approaches that include measurement chambers, open sampling systems are sensitive to dispersion mechanisms of gaseous chemical analytes, namely diffusion, turbulence, and advection, making the identification and monitoring of chemical substances more challenging. The sensing platform included 72 metal-oxide gas sensors that were positioned at 6 different locations of the wind tunnel. At each location, 10 distinct chemical gases were released in the wind tunnel, the sensors were evaluated at 5 different operating temperatures, and 3 different wind speeds were generated in the wind tunnel to induce different levels of turbulence. Moreover, each configuration was repeated 20 times, yielding a dataset of 18,000 measurements. The dataset was collected over a period of 16 months. The data is related to “On the performance of gas sensor arrays in open sampling systems using Inhibitory Support Vector Machines”, by Vergara et al.[1]. The dataset can be accessed publicly at the UCI repository upon citation of [1]: http://archive.ics.uci.edu/ml/datasets/Gas+sensor+arrays+in+open+sampling+settings PMID:26217739

  3. Electrocatalytic cermet gas detector/sensor

    DOEpatents

    Vogt, Michael C.; Shoemarker, Erika L.; Fraioli, deceased, Anthony V.

    1995-01-01

    An electrocatalytic device for sensing gases. The gas sensing device includes a substrate layer, a reference electrode disposed on the substrate layer comprised of a nonstoichiometric chemical compound enabling oxygen diffusion therethrough, a lower reference electrode coupled to the reference electrode, a solid electrolyte coupled to the lower reference electrode and an upper catalytically active electrode coupled to the solid electrolyte.

  4. A MEMS-based Benzene Gas Sensor with a Self-heating WO(3) Sensing Layer.

    PubMed

    Ke, Ming-Tsun; Lee, Mu-Tsun; Lee, Chia-Yen; Fu, Lung-Ming

    2009-01-01

    In the study, a MEMS-based benzene gas sensor is presented, consisting of a quartz substrate, a thin-film WO(3) sensing layer, an integrated Pt micro-heater, and Pt interdigitated electrodes (IDEs). When benzene is present in the atmosphere, oxidation occurs on the heated WO(3) sensing layer. This causes a change in the electrical conductivity of the WO(3) film, and hence changes the resistance between the IDEs. The benzene concentration is then computed from the change in the measured resistance. A specific orientation of the WO(3) layer is obtained by optimizing the sputtering process parameters. It is found that the sensitivity of the gas sensor is optimized at a working temperature of 300 °C. At the optimal working temperature, the experimental results show that the sensor has a high degree of sensitivity (1.0 KΩ ppm(-1)), a low detection limit (0.2 ppm) and a rapid response time (35 s). PMID:22574052

  5. A uniform porous multilayer-junction thin film for enhanced gas-sensing performance.

    PubMed

    Zhang, Ping-Ping; Zhang, Hui; Sun, Xu-Hui

    2016-01-01

    Highly-uniform In2O3/CuO bilayer and multilayer porous thin films were successfully fabricated using a self-assembled soft template and a simple sputtering deposition technique. The sensor based on the In2O3/CuO bilayer porous thin film shows obviously improved sensing performance to ethanol at a lower working temperature, compared to its single layer counterpart sensors. The response of the In2O3/CuO bilayer sensors exhibit nearly 3 and 5 times higher performance than those of the single layer In2O3 and CuO porous film sensors over the same ethanol concentration, respectively. The sensing mechanism based on the p-n hetero-junction, which contributed to the enhanced sensing performance, was also experimentally confirmed by a control experiment in which an SiO2 insulation layer was inserted between the In2O3 and CuO layers to break the p-n junction. In addition, the sensing performance can be further enhanced by increasing the number of In2O3/CuO junction layers. The facile process can be easily extended to the fabrication of other semiconductor oxide gas sensors for practical sensing applications. PMID:26673658

  6. Enhanced hydrogen gas response of Pd nanoparticles-decorated single walled carbon nanotube film/SiO2/Si heterostructure

    NASA Astrophysics Data System (ADS)

    Du, Yonggang; Xue, Qingzhong; Zhang, Zhongyang; Xia, Fujun; Liu, Zilong; Xing, Wei

    2015-02-01

    A new type carbon nanotube-based gas sensor: palladium nanoparticles decorated single walled carbon nanotube film/SiO2/Si (Pd-SWCNT film/SiO2/Si) heterostructures were fabricated by a simple and practical filtration method. When used for hydrogen (H2) sensing, the Pd-SWCNT film/SiO2/p-Si heterostructure shows very high H2 response, which is tens of times higher than that of Pd-SWCNT film resistance-type H2 sensor in this paper and is superior to those of carbon nanotube-based resistance-type H2 sensors reported previously. The mechanism of the enhanced H2 response can be explained by thermionic emission theory and interfacial effect.

  7. Thin Film Ceramic Strain Sensor Development for Harsh Environments: Identification of Candidate Thin Film Ceramics to Test for Viability for Static Strain Sensor Development

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Fralick, Gustave C.; Hunter, Gary W.

    2006-01-01

    The need to consider ceramic sensing elements is brought about by the temperature limits of metal thin film sensors in propulsion system applications. In order to have a more passive method of negating changes of resistance due to temperature, an effort is underway at NASA GRC to develop high temperature thin film ceramic static strain gauges for application in turbine engines, specifically in the fan and compressor modules on blades. Other applications include on aircraft hot section structures and on thermal protection systems. The near-term interim goal of this research effort was to identify candidate thin film ceramic sensor materials to test for viability and provide a list of possible thin film ceramic sensor materials and corresponding properties to test for viability. This goal was achieved by a thorough literature search for ceramics that have the potential for application as high temperature thin film strain gauges, reviewing potential candidate materials for chemical & physical compatibility with NASA GRC's microfabrication procedures and substrates.

  8. Compressive hyperspectral sensor for LWIR gas detection

    NASA Astrophysics Data System (ADS)

    Russell, Thomas A.; McMackin, Lenore; Bridge, Bob; Baraniuk, Richard

    2012-06-01

    Focal plane arrays with associated electronics and cooling are a substantial portion of the cost, complexity, size, weight, and power requirements of Long-Wave IR (LWIR) imagers. Hyperspectral LWIR imagers add significant data volume burden as they collect a high-resolution spectrum at each pixel. We report here on a LWIR Hyperspectral Sensor that applies Compressive Sensing (CS) in order to achieve benefits in these areas. The sensor applies single-pixel detection technology demonstrated by Rice University. The single-pixel approach uses a Digital Micro-mirror Device (DMD) to reflect and multiplex the light from a random assortment of pixels onto the detector. This is repeated for a number of measurements much less than the total number of scene pixels. We have extended this architecture to hyperspectral LWIR sensing by inserting a Fabry-Perot spectrometer in the optical path. This compressive hyperspectral imager collects all three dimensions on a single detection element, greatly reducing the size, weight and power requirements of the system relative to traditional approaches, while also reducing data volume. The CS architecture also supports innovative adaptive approaches to sensing, as the DMD device allows control over the selection of spatial scene pixels to be multiplexed on the detector. We are applying this advantage to the detection of plume gases, by adaptively locating and concentrating target energy. A key challenge in this system is the diffraction loss produce by the DMD in the LWIR. We report the results of testing DMD operation in the LWIR, as well as system spatial and spectral performance.

  9. Gas sensing properties of zinc oxide thin films prepared by spray pyrolysis

    NASA Astrophysics Data System (ADS)

    Singh, Onkar; Kohli, Nipin; Singh, Manmeet Pal; Anand, Kanika; Singh, Ravi Chand

    2012-06-01

    Metal oxide semiconductors are widely employed as potential materials for the development of sensing devices for poisonous and inflammable gases. The change in resistivity of active material is exploited as a sensing parameter. A large volume of research work has been carried out in the last few decades on sensors and potential sensor materials. The advent of nanostructured materials has given a new impetus to the sensor research. Preparation and sensing response of zinc oxide thin films towards alcohol has been reported in this paper. Zinc oxide thin film has been prepared by using spray pyrolysis, using zinc acetate and methanol as the starting materials. The thin film was characterized for morphology and structure by using x-ray diffractometer (XRD) and field emission scanning electron microscope (FESEM) techniques. The results indicated that the ZnO particles are crystallized in the wurtzite hexagonal phase, which were well distributed in the films. Prepared zinc oxide thin film was exposed to different alcohols to check its gas sensing behaviour at different temperatures.

  10. Electrocatalytic cermet gas detector/sensor

    DOEpatents

    Vogt, M.C.; Shoemarker, E.L.; Fraioli, A.V.

    1995-07-04

    An electrocatalytic device for sensing gases is described. The gas sensing device includes a substrate layer, a reference electrode disposed on the substrate layer comprised of a nonstoichiometric chemical compound enabling oxygen diffusion therethrough, a lower reference electrode coupled to the reference electrode, a solid electrolyte coupled to the lower reference electrode and an upper catalytically active electrode coupled to the solid electrolyte. 41 figs.

  11. High-performance flexible hydrogen sensor made of WS2 nanosheet-Pd nanoparticle composite film.

    PubMed

    Kuru, Cihan; Choi, Duyoung; Kargar, Alireza; Liu, Chin Hung; Yavuz, Serdar; Choi, Chulmin; Jin, Sungho; Bandaru, Prabhakar R

    2016-05-13

    We report a flexible hydrogen sensor, composed of WS2 nanosheet-Pd nanoparticle composite film, fabricated on a flexible polyimide substrate. The sensor offers the advantages of light-weight, mechanical durability, room temperature operation, and high sensitivity. The WS2-Pd composite film exhibits sensitivity (R 1/R 2, the ratio of the initial resistance to final resistance of the sensor) of 7.8 to 50 000 ppm hydrogen. Moreover, the WS2-Pd composite film distinctly outperforms the graphene-Pd composite, whose sensitivity is only 1.14. Furthermore, the ease of fabrication holds great potential for scalable and low-cost manufacturing of hydrogen sensors. PMID:27040653

  12. Thin Film Physical Sensor Instrumentation Research and Development at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Fralick, Gustave C.

    2006-01-01

    A range of thin film sensor technology has been demonstrated enabling measurement of multiple parameters either individually or in sensor arrays including temperature, strain, heat flux, and flow. Multiple techniques exist for refractory thin film fabrication, fabrication and integration on complex surfaces and multilayered thin film insulation. Leveraging expertise in thin films and high temperature materials, investigations for the applications of thin film ceramic sensors has begun. The current challenges of instrumentation technology are to further develop systems packaging and component testing of specialized sensors, further develop instrumentation techniques on complex surfaces, improve sensor durability, and to address needs for extreme temperature applications. The technology research and development ongoing at NASA Glenn for applications to future launch vehicles, space vehicles, and ground systems is outlined.

  13. Methods for gas detection using stationary hyperspectral imaging sensors

    SciTech Connect

    Conger, James L.; Henderson, John R.

    2012-04-24

    According to one embodiment, a method comprises producing a first hyperspectral imaging (HSI) data cube of a location at a first time using data from a HSI sensor; producing a second HSI data cube of the same location at a second time using data from the HSI sensor; subtracting on a pixel-by-pixel basis the second HSI data cube from the first HSI data cube to produce a raw difference cube; calibrating the raw difference cube to produce a calibrated raw difference cube; selecting at least one desired spectral band based on a gas of interest; producing a detection image based on the at least one selected spectral band and the calibrated raw difference cube; examining the detection image to determine presence of the gas of interest; and outputting a result of the examination. Other methods, systems, and computer program products for detecting the presence of a gas are also described.

  14. [Design of non-dispersed infrared (NDIR) methane gas sensor].

    PubMed

    Zhao, Zheng-Jie; Liu, Dong-Xu; Zhang, Ji-Long; Wang, Zhi-Bin; Li, Xiao; Tian, Er-Ming

    2011-02-01

    A non-dispersed infrared (NDIR) methane gas sensors system based on infrared absorption spectrum theory was designed according to single light beam and double wavelengths technology. In the system, an infrared LED IRL715 serving as the light power, a absorptive gas cell with the function of dust-proof and damp-proof and a pyroelectric detector LIM-262 are composed of optical probe. Signal condition uses active filter circuit and differential amplifier, and binomial expression fits the relation curve between methane concentration and voltage, which realizes accurate detection of gas concentration. Experiment approved that the sensor system with good consistency and applicability can detect the range of 5% methane reliably and have 0.5% of the sensitivity, possessing the conditions for industrial applications initially. PMID:21510429

  15. Nanostructured Gas Sensors for Health Care: An Overview

    PubMed Central

    Kaushik, Ajeet; Kumar, Rajesh; Jayant, Rahul Dev; Nair, Madhavan

    2015-01-01

    Nanostructured platforms have been utilized for fabrication of small, sensitive and reliable gas sensing devices owing to high functionality, enhanced charge transport and electro-catalytic property. As a result of globalization, rapid, sensitive and selective detection of gases in environment is essential for health care and security. Nonmaterial such as metal, metal oxides, organic polymers, and organic-inorganic hybrid nanocomposites exhibit interesting optical, electrical, magnetic and molecular properties, and hence are found potential gas sensing materials. Morphological, electrical, and optical properties of such nanostructures can be tailored via controlling the precursor concentration and synthesis conditions resulting to achieve desired sensing. This review presents applications of nano-enabling gas sensors to detect gases for environment monitoring. The recent update, challenges, and future vision for commercial applications of such sensor are also described here. PMID:26491544

  16. Measurement of quasiparticle transport in aluminum films using tungsten transition-edge sensors

    SciTech Connect

    Yen, J. J. Shank, B.; Cabrera, B.; Moffatt, R.; Redl, P.; Young, B. A.; Tortorici, E. C.; Brink, P. L.; Cherry, M.; Tomada, A.; Kreikebaum, J. M.

    2014-10-20

    We report on experimental studies of phonon sensors which utilize quasiparticle diffusion in thin aluminum films connected to tungsten transition-edge-sensors (TESs) operated at 35 mK. We show that basic TES physics and a simple physical model of the overlap region between the W and Al films in our devices enables us to accurately reproduce the experimentally observed pulse shapes from x-rays absorbed in the Al films. We further estimate quasiparticle loss in Al films using a simple diffusion equation approach. These studies allow the design of phonon sensors with improved performance.

  17. Comparison among performance of strain sensors based on different semiconductor thin films

    NASA Astrophysics Data System (ADS)

    Fraga, Mariana A.; Furlan, Humber; Pessoa, Rodrigo S.

    2011-06-01

    In recent years, the piezoresistive properties of different semiconductor thin films, with chemical and mechanical stability, have been studied in order to use them as base material in the fabrication of strain sensors for high temperature applications. In this context, this work compares the performance of strain sensors based on sputter-deposited semiconductor thin films such as titanium dioxide (TiO2), silicon carbide (SiC) and diamond-like carbon (DLC) operated at temperatures up to 250°C. The structure of each sensor consists of four thin-film resistors, configured in Wheatstone bridge, with Ti/Au electrical contacts. These strain sensors reported here differ from our previous works in the types of materials used and in the quantity/configuration of the thin-film resistors. The strain sensors were fabricated by photolithography techiques in conjunction with lift-off processes. The beam-bending experiments were performed to characterize the sensors.

  18. Increasing the selectivity and sensitivity of gas sensors for the detection of explosives

    NASA Astrophysics Data System (ADS)

    Mallin, Daniel

    Over the past decade, the use of improvised explosive devices (IEDs) has increased, domestically and internationally, highlighting a growing need for a method to quickly and reliably detect explosive devices in both military and civilian environments before the explosive can cause damage. Conventional techniques have been successful in explosive detection, however they typically suffer from enormous costs in capital equipment and maintenance, costs in energy consumption, sampling, operational related expenses, and lack of continuous and real-time monitoring. The goal was thus to produce an inexpensive, portable sensor that continuously monitors the environment, quickly detects the presence of explosive compounds and alerts the user. In 2012, here at URI, a sensor design was proposed for the detection of triacetone triperoxide (TATP). The design entailed a thermodynamic gas sensor that measures the heat of decomposition between trace TATP vapor and a metal oxide catalyst film. The sensor was able to detect TATP vapor at the part per million level (ppm) and showed great promise for eventual commercial use, however, the sensor lacked selectivity. Thus, the specific objective of this work was to take the original sensor design proposed in 2012 and to make several key improvements to advance the sensor towards commercialization. It was demonstrated that a sensor can be engineered to detect TATP and ignore the effects of interferent H2O2 molecules by doping SnO2 films with varying amounts of Pd. Compared with a pure SnO2 catalyst, a SnO2, film doped with 8 wt. % Pd had the highest selectivity between TATP and H2O2. Also, at 12 wt. % Pd, the response to TATP and H2O2 was enhanced, indicating that sensitivity, not only selectivity, can be increased by modifying the composition of the catalyst. An orthogonal detection system was demonstrated. The platform consists of two independent sensing mechanisms, one thermodynamic and one conductometric, which take measurements from the same catalyst simultaneously and provide a redundancy in response for positive explosive identification. TATP, 2,6-DNT and ammonium nitrate were reliably detected. Each analyte displayed a unique conductometric signature and the results indicated a detection limit at the ppb level. A preconcentrator was designed to enhance the sensitivity of the sensor and was successfully demonstrated. The magnitude of the sensor response increased from by 50% and the preconcentrator could be operated semi-continuously, maintaining one of the most attractive features of this sensor platform: the capability to operate in real time. A method to filter out extraneous heat signals from sensor response using a dynamic control was also successfully demonstrated and will likely be a fixture in all sensor experimentation and design moving forward. Finally, two MEMS based sensor platforms were designed and fabricated. It was theoretically demonstrated that the newest iteration of the MEMS sensor consumes considerably less power due to thinner membranes, a smaller active surface area and an overall smaller thermal mass, allowing for the possibility of creating networks of sensor arrays, even in a portable device.

  19. Zinc oxide nanowires on carbon microfiber as flexible gas sensor

    NASA Astrophysics Data System (ADS)

    Tonezzer, M.; Lacerda, R. G.

    2012-03-01

    In the past years, zinc oxide nanowires (ZnO NWs) have been proven to be an excellent material for gas sensors. In this work, we used ZnO nanowires in a novel architecture integrated on a carbon microfiber (μC) textile. This innovative design permits us to obtain mechanical flexibility, while the absence of any lithographic technique allows a large-area and low-cost fabrication of gas sensors. The performances of the devices are investigated for both oxidizing and reducing gases. The nano-on-micro structure of the sensor provides a high surface-to-volume ratio, leading to a fast and intense response for both oxygen (O2) and hydrogen (H2) gases. The sensor response has an optimum temperature condition at 280 °C with a response value of 10 for oxygen and 11 for hydrogen. The limit of detection (LoD) has been found to be 2 and 4 ppm for oxygen and hydrogen, respectively. Additionally, the sensor response and recovery time is small being less than 10 s for both O2 and H2.

  20. NiO thin film fabricated by electrophoretic deposition and formaldehyde gas sensing property thereof.

    PubMed

    Han, Ning; Tian, Yajun; Wei, Lianqi; Wang, Chen; Chen, Yunfa

    2009-02-01

    In the present work, nanostructured NiO thin films were prepared from a facile method based on electrophoretic deposition (EPD) using NiOOH sols as the starting material. The scanning electron microscope (SEM) and atomic force microscopy (AFM) observations revealed that the films were comprised of 40-80 nm particles with a thickness of about 100 nm. When using the obtained NiO film as formaldehyde gas sensor, it was found that such kind of nanostructured films have contributed and modified remarkably the sensing properties such as shorter response and recovery time (approximately 10 s and 5 s), higher sensitivity (approximately 3/10 ppm) at lower working temperature (approximately 300 degrees C). PMID:19441521

  1. Optical Sensors Based on Single on Arm Thin Film Waveguide Interferometer

    NASA Technical Reports Server (NTRS)

    Sarkisov, S. S.; Diggs, D.; Curley, M.; Adamovsky, Grigory (Technical Monitor)

    2000-01-01

    Single-arm dual-mode optical waveguide interferometer utilizes interference between two modes of different order. Sensing effect results from the change in propagation conditions of the modes caused by the environment. The waveguide is made as an open asymmetric structure containing a dye-doped polymer film onto a quartz substrate. It is more sensitive to the change of environment than its conventional polarimetric analog using orthogonal modes (TE and TM) of the same order. The sensor still preserves the option of operating in polarimetric regime using a variety of mode combinations such as TE(sub 0)/TM(sub 0) (conventional) TE(sub 0)/TM(sub 1), TE(sub 1)/TM(sub 0), or TE(sub 1)/TM(sub 1) but can also work in nonpolarimetric regime using combinations TE(sub 0)/TE(sub 1) or TM(sub 0)/TM(sub 1). Utilization of different mode combinations simultaneously makes the device more versatile. Application of the sensor to gas sensing is based on doping polymer film with an organic indicator dye targeting a particular gaseous reagent. Change of the optical absorption spectrum of the dye caused by the gaseous pollutant results in change of the reactive index of the dye-doped polymer film that can be detected by the sensor. As indicator dyes we utilize Bromocresol Purple doped into polymer poly(methyl) methacrylate that is sensitive to small concentrations of ammonia. The indicator dye demonstrated an irreversible increase in optical absorption near the peak at 350 nm being exposed to 5% ammonia in pure nitrogen at 600 Torr. The dye also showed reversible growth of the absorption peak near 600 nm after exposure to a vapor of standard medical ammonia spirit (65% alcohol). We have built a breadboard prototype of the sensor with He-Ne laser as a light source and with a single mode fiber input and a multimode fiber output. The prototype showed a sensitivity to temperature change of the order of 2 C per 2pi phase shift. The sensitivity of the sensor to the presence of dTy ammonia is not less than 300 ppm per 2pi phase shift. The proposed sensor can be used as a robust stand-alone instrument for continuous environment pollution monitoring.

  2. Performance and use of paracorporeal fiber optic blood gas sensors

    NASA Astrophysics Data System (ADS)

    Martin, Roy C.; Malin, Stephen F.; Bartnik, Daniel J.; Schilling, Anne; Furlong, Steven C.

    1994-07-01

    The SensiCathTM arterial blood gas (ABG) monitoring system allows rapid blood gas and pH measurements using fiber optic sensors in a paracorporeal device. The paracorporeal device location allows blood to be withdrawn from a vascular access, measured and returned to a patient, without direct handling and blood loss associated with traditional sampling techniques. The disposable device contains three fiber optic sensors and one temperature sensor. The sensors are monitored using a three-channel, solid-state instrument of minimal size and weight. Measurements of pH, pCO2, and pO2 are made at the point of care, on demand, with results available in 60 seconds. Calibration is performed using two prepackaged, sterile, nontoxic, nonpyrogenic solutions. The paracorporeal location allows access for calibration before or during patient utilization, and for quality assurance checks at any time during use. Laboratory data are presented which assess precision and accuracy of the SensiCath system by comparing its performance measured against tonometered gases and a calibrated pH glass electrode. In vivo animal data using a rabbit model indicate the SensiCath system performance is compared against two independent standard blood gas analyzers. The clinical utility of the SensiCath system incorporated into standard arterial lines is discussed.

  3. Nanostructured mesoporous tungsten oxide for gas sensor applications

    NASA Astrophysics Data System (ADS)

    Rossinyol, Emma; Arbiol, Jordi; Marsal, Andreu; Peiro, Francesca; Cornet, Albert; Morante, Joan Ramon; Solovyov, Leonid A.; Tian, Bozhi; Tu, Bo; Zhao, Dongyuan

    2005-06-01

    Due to their simple implementation, low cost and good reliability for real-time control systems, semiconductor gas sensors offer good advantages with respect to other gas sensor devices. As gas adsorption is a surface effect, one of the most important parameter to tailor the sensitivity of the sensor material is to increase the surface area. For these propose, mesoporous oxides have been synthesized. Nanostructured mesoporous materials present a large and controllable pore size and high surface are. For the preparation of ordered nanostructure arrays, a hard template method has been used. This method presents some advantages when compared with a soft template method, especially in its specific topological stability, veracity, predictability and controllability. Moreover, with this hard template method we can obtain crystalline mesoporous oxides, with small particle size and high surface area. We have used SBA-15 (two-dimensional hexagonal structure) and KIT-6 (three-dimensional cubic structure) as a template for the synthesis of different crystalline mesoporous WO3 with a particle size about 8-10 nm and high surface area. Low angle XRD spectra show a high order mesoporous structure, without rests of silica template. TEM confirms that the silica host has been completely removed; therefore, the nanowires constitute a self-supported superlattice. HRTEM studies have been focused on the detailed structural characterization of these materials. Electrical characterization of the sensor response in front of NO2 has been performed. Some catalytic additives have been also introduced, in order to increase the sensitivity of the material.

  4. Gas Sensor Evaluations in Polymer Combustion Product Atmospheres

    NASA Technical Reports Server (NTRS)

    Delgado, Rafael H.; Davis, Dennis D.; Beeson, Harold D.

    1999-01-01

    Toxic gases produced by the combustion or thermo-oxidative degradation of materials such as wire insulation, foam, plastics, or electronic circuit boards in space shuttle or space station crew cabins may pose a significant hazard to the flight crew. Toxic gas sensors are routinely evaluated in pure gas standard mixtures, but the possible interferences from polymer combustion products are not routinely evaluated. The NASA White Sands Test Facility (WSTF) has developed a test system that provides atmospheres containing predetermined quantities of target gases combined with the coincidental combustion products of common spacecraft materials. The target gases are quantitated in real time by infrared (IR) spectroscopy and verified by grab samples. The sensor responses are recorded in real time and are compared to the IR and validation analyses. Target gases such as carbon monoxide, hydrogen cyanide, hydrogen chloride, and hydrogen fluoride can be generated by the combustion of poly(vinyl chloride), polyimide-fluoropolymer wire insulation, polyurethane foam, or electronic circuit board materials. The kinetics and product identifications for the combustion of the various materials were determined by thermogravimetric-IR spectroscopic studies. These data were then scaled to provide the required levels of target gases in the sensor evaluation system. Multisensor toxic gas monitors from two manufacturers were evaluated using this system. In general, the sensor responses satisfactorily tracked the real-time concentrations of toxic gases in a dynamic mixture. Interferences from a number of organic combustion products including acetaldehyde and bisphenol-A were minimal. Hydrogen bromide in the products of circuit board combustion registered as hydrogen chloride. The use of actual polymer combustion atmospheres for the evaluation of sensors can provide additional confidence in the reliability of the sensor response.

  5. Development of a Room Temperature SAW Methane Gas Sensor Incorporating a Supramolecular Cryptophane A Coating

    PubMed Central

    Wang, Wen; Hu, Haoliang; Liu, Xinlu; He, Shitang; Pan, Yong; Zhang, Caihong; Dong, Chuan

    2016-01-01

    A new room temperature supra-molecular cryptophane A (CrypA)-coated surface acoustic wave (SAW) sensor for sensing methane gas is presented. The sensor is composed of differential resonator-oscillators, a supra-molecular CrypA coated along the acoustic propagation path, and a frequency signal acquisition module (FSAM). A two-port SAW resonator configuration with low insertion loss, single resonation mode, and high quality factor was designed on a temperature-compensated ST-X quartz substrate, and as the feedback of the differntial oscillators. Prior to development, the coupling of modes (COM) simulation was conducted to predict the device performance. The supramolecular CrypA was synthesized from vanillyl alcohol using a double trimerisation method and deposited onto the SAW propagation path of the sensing resonators via different film deposition methods. Experiential results indicate the CrypA-coated sensor made using a dropping method exhibits higher sensor response compared to the unit prepared by the spinning approach because of the obviously larger surface roughness. Fast response and excellent repeatability were observed in gas sensing experiments, and the estimated detection limit and measured sensitivity are ~0.05% and ~204 Hz/%, respectively. PMID:26751450

  6. Development of a Room Temperature SAW Methane Gas Sensor Incorporating a Supramolecular Cryptophane A Coating.

    PubMed

    Wang, Wen; Hu, Haoliang; Liu, Xinlu; He, Shitang; Pan, Yong; Zhang, Caihong; Dong, Chuan

    2016-01-01

    A new room temperature supra-molecular cryptophane A (CrypA)-coated surface acoustic wave (SAW) sensor for sensing methane gas is presented. The sensor is composed of differential resonator-oscillators, a supra-molecular CrypA coated along the acoustic propagation path, and a frequency signal acquisition module (FSAM). A two-port SAW resonator configuration with low insertion loss, single resonation mode, and high quality factor was designed on a temperature-compensated ST-X quartz substrate, and as the feedback of the differntial oscillators. Prior to development, the coupling of modes (COM) simulation was conducted to predict the device performance. The supramolecular CrypA was synthesized from vanillyl alcohol using a double trimerisation method and deposited onto the SAW propagation path of the sensing resonators via different film deposition methods. Experiential results indicate the CrypA-coated sensor made using a dropping method exhibits higher sensor response compared to the unit prepared by the spinning approach because of the obviously larger surface roughness. Fast response and excellent repeatability were observed in gas sensing experiments, and the estimated detection limit and measured sensitivity are ~0.05% and ~204 Hz/%, respectively. PMID:26751450

  7. Chemical Discrimination in Turbulent Gas Mixtures with MOX Sensors Validated by Gas Chromatography-Mass Spectrometry

    PubMed Central

    Fonollosa, Jordi; Rodríguez-Luján, Irene; Trincavelli, Marco; Vergara, Alexander; Huerta, Ramón

    2014-01-01

    Chemical detection systems based on chemo-resistive sensors usually include a gas chamber to control the sample air flow and to minimize turbulence. However, such a kind of experimental setup does not reproduce the gas concentration fluctuations observed in natural environments and destroys the spatio-temporal information contained in gas plumes. Aiming at reproducing more realistic environments, we utilize a wind tunnel with two independent gas sources that get naturally mixed along a turbulent flow. For the first time, chemo-resistive gas sensors are exposed to dynamic gas mixtures generated with several concentration levels at the sources. Moreover, the ground truth of gas concentrations at the sensor location was estimated by means of gas chromatography-mass spectrometry. We used a support vector machine as a tool to show that chemo-resistive transduction can be utilized to reliably identify chemical components in dynamic turbulent mixtures, as long as sufficient gas concentration coverage is used. We show that in open sampling systems, training the classifiers only on high concentrations of gases produces less effective classification and that it is important to calibrate the classification method with data at low gas concentrations to achieve optimal performance. PMID:25325339

  8. 21 CFR 870.4410 - Cardiopulmonary bypass in-line blood gas sensor.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cardiopulmonary bypass in-line blood gas sensor... Cardiopulmonary bypass in-line blood gas sensor. (a) Identification. A cardiopulmonary bypass in-line blood gas sensor is a transducer that measures the level of gases in the blood. (b) Classification. Class...

  9. 21 CFR 870.4410 - Cardiopulmonary bypass in-line blood gas sensor.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Cardiopulmonary bypass in-line blood gas sensor... Cardiopulmonary bypass in-line blood gas sensor. (a) Identification. A cardiopulmonary bypass in-line blood gas sensor is a transducer that measures the level of gases in the blood. (b) Classification. Class...

  10. 21 CFR 870.4410 - Cardiopulmonary bypass in-line blood gas sensor.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Cardiopulmonary bypass in-line blood gas sensor... Cardiopulmonary bypass in-line blood gas sensor. (a) Identification. A cardiopulmonary bypass in-line blood gas sensor is a transducer that measures the level of gases in the blood. (b) Classification. Class...

  11. 21 CFR 870.4410 - Cardiopulmonary bypass in-line blood gas sensor.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Cardiopulmonary bypass in-line blood gas sensor... Cardiopulmonary bypass in-line blood gas sensor. (a) Identification. A cardiopulmonary bypass in-line blood gas sensor is a transducer that measures the level of gases in the blood. (b) Classification. Class...

  12. 21 CFR 870.4410 - Cardiopulmonary bypass in-line blood gas sensor.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Cardiopulmonary bypass in-line blood gas sensor... Cardiopulmonary bypass in-line blood gas sensor. (a) Identification. A cardiopulmonary bypass in-line blood gas sensor is a transducer that measures the level of gases in the blood. (b) Classification. Class...

  13. Novel diode laser-based sensors for gas sensing applications

    NASA Technical Reports Server (NTRS)

    Tittel, F. K.; Lancaster, D. G.; Richter, D.

    2000-01-01

    The development of compact spectroscopic gas sensors and their applications to environmental sensing will be described. These sensors employ mid-infrared difference-frequency generation (DFG) in periodically poled lithium niobate (PPLN) crystals pumped by two single-frequency solid state lasers such as diode lasers, diode-pumped solid state, and fiber lasers. Ultrasensitive, highly selective, and real-time measurements of several important atmospheric trace gases, including carbon monoxide, nitrous oxide, carbon dioxide, formaldehyde [correction of formaldehye], and methane, have been demonstrated.

  14. TOPICAL REVIEW: Function and applications of gas sensors

    NASA Astrophysics Data System (ADS)

    Kohl, Dieter

    2001-10-01

    Gas sensors directed to high-volume applications are discussed. Mainly semiconductor sensors cover this sector, but the merits of competing devices are shown in comparison. Chemical and physical function is elucidated by spectroscopic results and molecular calculations. Important applications, e.g. monitoring of combustibles, especially methane, and the early detection of fires, are presented as illustrations. Progress in microelectronics has enhanced the development of electronic noses. An early example of such noses, the identification of solvents and also the present state of food aroma detection are described.

  15. Robust Design of SAW Gas Sensors by Taguchi Dynamic Method.

    PubMed

    Tsai, Hsun-Heng; Wu, Der Ho; Chiang, Ting-Lung; Chen, Hsin Hua

    2009-01-01

    This paper adopts Taguchi's signal-to-noise ratio analysis to optimize the dynamic characteristics of a SAW gas sensor system whose output response is linearly related to the input signal. The goal of the present dynamic characteristics study is to increase the sensitivity of the measurement system while simultaneously reducing its variability. A time- and cost-efficient finite element analysis method is utilized to investigate the effects of the deposited mass upon the resonant frequency output of the SAW biosensor. The results show that the proposed methodology not only reduces the design cost but also promotes the performance of the sensors. PMID:22573961

  16. Detection of nitrogen dioxide using mixed tungsten oxide-based thick film semiconductor sensor.

    PubMed

    Su, P-G; Ren-Jang, Wu; Fang-Pei, Nieh

    2003-03-10

    The thick film semiconductor sensor for NO(2) gas detection was fabricated by screen-printing method using a mixed WO(3)-based as sensing material. The sensing characteristics, such as response time, response linearity, sensitivity, working range, cross sensitivity, and long-term stability were further studied by using a WO(3)-based mixed with different metal oxides (SnO(2), TiO(2) and In(2)O(3)) and doped with noble metals (Au, Pd and Pt) as sensing materials was observed. The highest sensitivity for low concentrations (<16 mg l(-1)) was observed using WO(3)-based mixed with In(2)O(3) or TiO(2). The NO(2) gas sensor showing the fastest response and recovery time (both within 2 min), good linearity (Y=0.606X+0.788 R(2)=0.991) for gas concentrations from 3 to 310 mg l(-1), low resistance (3 MOmega), high sensitivity, undesirable cross sensitivity effect and good long-term stability (at least 120 days) using WO(3)-SnO(2)-Au as sensing material. PMID:18968954

  17. Fiber-Optic Temperature Sensor Using a Thin-Film Fabry-Perot Interferometer

    NASA Technical Reports Server (NTRS)

    Beheim, Glenn

    1997-01-01

    A fiber-optic temperature sensor was developed that is rugged, compact, stable, and can be inexpensively fabricated. This thin-film interferometric temperature sensor was shown to be capable of providing a +/- 2 C accuracy over the range of -55 to 275 C, throughout a 5000 hr operating life. A temperature-sensitive thin-film Fabry-Perot interferometer can be deposited directly onto the end of a multimode optical fiber. This batch-fabricatable sensor can be manufactured at a much lower cost than can a presently available sensor, which requires the mechanical attachment of a Fabry-Perot interferometer to a fiber. The principal disadvantage of the thin-film sensor is its inherent instability, due to the low processing temperatures that must be used to prevent degradation of the optical fiber's buffer coating. The design of the stable thin-film temperature sensor considered the potential sources of both short and long term drifts. The temperature- sensitive Fabry-Perot interferometer was a silicon film with a thickness of approx. 2 microns. A laser-annealing process was developed which crystallized the silicon film without damaging the optical fiber. The silicon film was encapsulated with a thin layer of Si3N4 over coated with aluminum. Crystallization of the silicon and its encapsulation with a highly stable, impermeable thin-film structure were essential steps in producing a sensor with the required long-term stability.

  18. Bedside arterial blood gas monitoring system using fluorescent optical sensors

    NASA Astrophysics Data System (ADS)

    Bartnik, Daniel J.; Rymut, Russell A.

    1995-05-01

    We describe a bedside arterial blood gas (ABG) monitoring system which uses fluorescent optical sensors in the measurement of blood pH, PCO2 and PO2. The Point-of-Care Arterial Blood Gas Monitoring System consists of the SensiCathTM optical sensor unit manufactured by Optical Sensors Incorporated and the TramTM Critical Care Monitoring System with ABG Module manufactured by Marquette Electronics Incorporated. Current blood gas measurement techniques require a blood sample to be removed from the patient and transported to an electrochemical analyzer for analysis. The ABG system does not require removal of blood from the patient or transport of the sample. The sensor is added to the patient's existing arterial line. ABG measurements are made by drawing a small blood sample from the arterial line in sufficient quantity to ensure an undiluted sample at the sensor. Measurements of pH, PCO2 and PO2 are made within 60 seconds. The blood is then returned to the patient, the line flushed and results appear on the bedside monitor. The ABG system offers several advantages over traditional electrochemical analyzers. Since the arterial line remains closed during the blood sampling procedure the patient's risk of infection is reduced and the caregiver's exposure to blood is eliminated. The single-use, disposable sensor can be measure 100 blood samples over 72 hours after a single two-point calibration. Quality Assurance checks are also available and provide the caregiver the ability to assess system performance even after the sensor is patient attached. The ABG module integrates with an existing bedside monitoring system. This allows ABG results to appear on the same display as ECG, respiration, blood pressure, cardiac output, SpO2, and other clinical information. The small module takes up little space in the crowded intensive care unit. Performance studies compare the ABG system with an electrochemical blood gas analyzer. Study results demonstrated accurate and precise blood gas measurement of 100 samples and 72 hour performance without need for re-calibration.

  19. DEVELOPMENT OF NOVEL CERAMIC NANOFILM-FIBER INTEGRATED OPTICAL SENSORS FOR RAPID DETECTION OF COAL DERIVED SYNTHESIS GAS

    SciTech Connect

    Junhang Dong; Hai Xiao; Xiling Tang; Hongmin Jiang; Kurtis Remmel; Amardeep Kaur

    2012-09-30

    The overall goal of this project is to conduct fundamental studies on advanced ceramic materials and fiber optic devices for developing new types of high temperature (>500{degree}C) fiber optic chemical sensors (FOCS) for monitoring fossil (mainly coal) and biomass derived gases in power plants. The primary technical objective is to investigate and demonstrate the nanocrystalline doped-ceramic thin film enabled FOCS that possess desired stability, sensitivity and selectivity for in-situ, rapid gas detection in the syngas streams from gasification and combustion flue gases. This report summarizes research works of two integrated parts: (1) development of metal oxide solid thin films as sensing materials for detection and measurement of important gas components relevant to the coal- and biomass-derived syngas and combustion gas streams at high temperatures; and (2) development of fiber optic devices that are potentially useful for constructing FOCS in combination with the solid oxide thin films identified in this program.

  20. Varying potential silicon carbide gas sensor

    NASA Technical Reports Server (NTRS)

    Shields, Virgil B. (Inventor); Ryan, Margaret A. (Inventor); Williams, Roger M. (Inventor)

    1997-01-01

    A hydrocarbon gas detection device operates by dissociating or electro-chemically oxidizing hydrocarbons adsorbed to a silicon carbide detection layer. Dissociation or oxidation are driven by a varying potential applied to the detection layer. Different hydrocarbon species undergo reaction at different applied potentials so that the device is able to discriminate among various hydrocarbon species. The device can operate at temperatures between 100.degree. C. and at least 650.degree. C., allowing hydrocarbon detection in hot exhaust gases. The dissociation reaction is detected either as a change in a capacitor or, preferably, as a change of current flow through an FET which incorporates the silicon carbide detection layers. The silicon carbide detection layer can be augmented with a pad of catalytic material which provides a signal without an applied potential. Comparisons between the catalytically produced signal and the varying potential produced signal may further help identify the hydrocarbon present.

  1. Fiber optic pressure sensor system for gas turbine engine control

    NASA Astrophysics Data System (ADS)

    Wesson, Laurence N.; Cabato, Nellie L.; Pine, Nicholson L.; Bird, Victor J.

    1991-02-01

    A high-performance fiber optic pressure sensor system is being developed for gas turbine engine applications. Based on the photoelastic effect, the four sensors convert differential pressure into bending stress in transparent plates. The bending stress is then measured by its effect on polarized light transmitted through the plates. Three different pressure ranges, from 0-15 psia to 0-500 psia, are provided to measure compressor inlet (CIP), compressor discharge (CDP), ambient static (ASP), and nozzle total pressure (NTP). The sensors are designed for accurate onengine operation at temperatures from -55 to +800°C, so the optical components, housing, and fiber cables have all been designed for stability over this temperature range. The sensor design employs fused silica and Inconel 718 to achieve these results. The fiber cable materials include metal-coated fiber, ceramics, and stainless steel. The transducer electronics interface unit (EIU) is a multiplexed analog system which gathers eight data readings (four pressures and four temperatures) and processes all eight within 2 ms. The analog intensity-modulated nature of the basic sensing method has been modified to yield highly accurate results by the use of a novel self-referencing technique. At the same time the receiver circuitry measures the temperature of each sensor by two-color pyrometry. This in turn allows continuous temperature compensation of each sensor. The multi-sensor system thus produces four separate temperature-corrected pressure readings in 12-bit digital format every 2 ms. A further benefit of the self-referencing scheme is that it allows the cables to be freely disconnected and reconnected, or reconfigured portto- port, without loss of calibration or accuracy. Each sensor pressure and temperature reading is resolved to within 0.1% of full scale.

  2. A methane gas sensor using correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Jingchao; Liang, Fang; Guan, Lijun; Xiao, Changjiang

    2008-12-01

    Differential absorption and harmonic detection techniques are always used to eliminate the intensity fluctuation and optical path interference. However, the cross-talk of gases is not eliminated. For this problem, a correlation spectroscopy method is proposed. In this paper, we analyze the theory of the system in detail. A method for methane gas sensing using a 1.6um LED as a light source is demonstrated based on the analysis of the near infrared spectral absorption of methane as well as the factors such as compatibility with the transmission characteristics of silica optical fiber and the price. The experiment result is shown and proves that the proposed method is practical for both theory and experiment within the error. The repeatability and stability are well. The method inherits the excellence of the traditional correlation spectroscopy, which has high selective characteristics. It can eliminate cross-talk of carbon dioxide etc. Then the sensitivity of the methane detection is enhanced. The system can be used to detect other gases by changing source, so it is general.

  3. Enhanced sensitivity of graphene ammonia gas sensors using molecular doping

    NASA Astrophysics Data System (ADS)

    Mortazavi Zanjani, Seyedeh Maryam; Sadeghi, Mir Mohammad; Holt, Milo; Chowdhury, Sk. Fahad; Tao, Li; Akinwande, Deji

    2016-01-01

    We report on employing molecular doping to enhance the sensitivity of graphene sensors synthesized via chemical vapor deposition to NH3 molecules at room temperature. We experimentally show that doping an as-fabricated graphene sensor with NO2 gas improves sensitivity of its electrical resistance to adsorption of NH3 molecules by about an order of magnitude. The detection limit of our NO2-doped graphene sensor is found to be ˜200 parts per billion (ppb), compared to ˜1400 ppb before doping. Electrical characterization and Raman spectroscopy measurements on graphene field-effect transistors show that adsorption of NO2 molecules significantly increases hole concentration in graphene, which results in the observed sensitivity enhancement.

  4. Thin-film chemical sensors based on electron tunneling

    NASA Technical Reports Server (NTRS)

    Khanna, S. K.; Lambe, J.; Leduc, H. G.; Thakoor, A. P.

    1985-01-01

    The physical mechanisms underlying a novel chemical sensor based on electron tunneling in metal-insulator-metal (MIM) tunnel junctions were studied. Chemical sensors based on electron tunneling were shown to be sensitive to a variety of substances that include iodine, mercury, bismuth, ethylenedibromide, and ethylenedichloride. A sensitivity of 13 parts per billion of iodine dissolved in hexane was demonstrated. The physical mechanisms involved in the chemical sensitivity of these devices were determined to be the chemical alteration of the surface electronic structure of the top metal electrode in the MIM structure. In addition, electroreflectance spectroscopy (ERS) was studied as a complementary surface-sensitive technique. ERS was shown to be sensitive to both iodine and mercury. Electrolyte electroreflectance and solid-state MIM electroreflectance revealed qualitatively the same chemical response. A modified thin-film structure was also studied in which a chemically active layer was introduced at the top Metal-Insulator interface of the MIM devices. Cobalt phthalocyanine was used for the chemically active layer in this study. Devices modified in this way were shown to be sensitive to iodine and nitrogen dioxide. The chemical sensitivity of the modified structure was due to conductance changes in the active layer.

  5. Sensor and Actuator Needs for More Intelligent Gas Turbine Engines

    NASA Technical Reports Server (NTRS)

    Garg, Sanjay; Schadow, Klaus; Horn, Wolfgang; Pfoertner, Hugo; Stiharu, Ion

    2010-01-01

    This paper provides an overview of the controls and diagnostics technologies, that are seen as critical for more intelligent gas turbine engines (GTE), with an emphasis on the sensor and actuator technologies that need to be developed for the controls and diagnostics implementation. The objective of the paper is to help the "Customers" of advanced technologies, defense acquisition and aerospace research agencies, understand the state-of-the-art of intelligent GTE technologies, and help the "Researchers" and "Technology Developers" for GTE sensors and actuators identify what technologies need to be developed to enable the "Intelligent GTE" concepts and focus their research efforts on closing the technology gap. To keep the effort manageable, the focus of the paper is on "On-Board Intelligence" to enable safe and efficient operation of the engine over its life time, with an emphasis on gas path performance

  6. Nanostructured Tungsten Oxide Composite for High-Performance Gas Sensors.

    PubMed

    Chen, Siyuan Feng; Aldalbahi, Ali; Feng, Peter Xianping

    2015-01-01

    We report the results of composite tungsten oxide nanowires-based gas sensors. The morphologic surface, crystallographic structures, and chemical compositions of the obtained nanowires have been investigated using scanning electron microscopy (SEM), X-ray diffraction (XRD), and Raman scattering, respectively. The experimental measurements reveal that each wire consists of crystalline nanoparticles with an average diameter of less than 250 nm. By using the synthesized nanowires, highly sensitive prototypic gas sensors have been designed and fabricated. The dependence of the sensitivity of tungsten oxide nanowires to the methane and hydrogen gases as a function of time has been obtained. Various sensing parameters such as sensitivity, response time, stability, and repeatability were investigated in order to reveal the sensing ability. PMID:26512670

  7. Nanostructured Tungsten Oxide Composite for High-Performance Gas Sensors

    PubMed Central

    Feng-Chen, Siyuan; Aldalbahi, Ali; Feng, Peter Xianping

    2015-01-01

    We report the results of composite tungsten oxide nanowires-based gas sensors. The morphologic surface, crystallographic structures, and chemical compositions of the obtained nanowires have been investigated using scanning electron microscopy (SEM), X-ray diffraction (XRD), and Raman scattering, respectively. The experimental measurements reveal that each wire consists of crystalline nanoparticles with an average diameter of less than 250 nm. By using the synthesized nanowires, highly sensitive prototypic gas sensors have been designed and fabricated. The dependence of the sensitivity of tungsten oxide nanowires to the methane and hydrogen gases as a function of time has been obtained. Various sensing parameters such as sensitivity, response time, stability, and repeatability were investigated in order to reveal the sensing ability. PMID:26512670

  8. Laser optical gas sensor by photoexcitation effect on refractive index.

    PubMed

    Lim, Geunsik; DeSilva, Upul P; Quick, Nathaniel R; Kar, Aravinda

    2010-03-20

    Laser optical gas sensors are fabricated by using the crystalline silicon carbide polytype 6H-SiC, which is a wide-bandgap semiconductor, and tested at high temperatures up to 650 degrees C. The sensor operates on the principle of semiconductor optics involving both the semiconductor and optical properties of the material. It is fabricated by doping 6H-SiC with an appropriate dopant such that the dopant energy level matches the quantum of energy of the characteristic radiation emitted by the combustion gas of interest. This radiation changes the electron density in the semiconductor by photoexcitation and, thereby, alters the refractive index of the sensor. The variation in the refractive index can be determined from an interference pattern. Such patterns are obtained for the reflected power of a He-Ne laser of wavelength 632.8 nm as a function of temperature. SiC sensors have been fabricated by doping two quadrants of a 6H-SiC chip with Ga and Al of dopant energy levels E(V)+0.29 eV and E(V)+0.23 eV, respectively. These doped regions exhibit distinct changes in the refractive index of SiC in the presence of carbon dioxide (CO(2)) and nitrogen monoxide (NO) gases respectively. Therefore Ga- and Al-doped 6H-SiC can be used for sensing CO(2) and NO gases at high temperatures, respectively. PMID:20300151

  9. Novel Gas Sensors for High-Temperature Fossil Fuel Applications

    SciTech Connect

    Palitha Jayaweera; Francis Tanzella

    2005-03-01

    SRI International (SRI) is developing ceramic-based microsensors to detect exhaust gases such as NO, NO{sub 2}, and CO in advanced combustion and gasification systems under this DOE NETL-sponsored research project. The sensors detect the electrochemical activity of the exhaust gas species on catalytic electrodes attached to a solid state electrolyte and are designed to operate at the high temperatures, elevated pressures, and corrosive environments typical of large power generation exhausts. The sensors can be easily integrated into online monitoring systems for active emission control. The ultimate objective is to develop sensors for multiple gas detection in a single package, along with data acquisition and control software and hardware, so that the information can be used for closed-loop control in novel advanced power generation systems. This report details the Phase I Proof-of-Concept, research activities performed from October 2003 to March 2005. SRI's research work includes synthesis of catalytic materials, sensor design and fabrication, software development, and demonstration of pulse voltammetric analysis of NO, NO{sub 2}, and CO gases on catalytic electrodes.

  10. A highly integratable silicon thermal gas flow sensor

    NASA Astrophysics Data System (ADS)

    Palmer, Kristoffer; Kratz, Henrik; Nguyen, Hugo; Thornell, Greger

    2012-06-01

    Thermal flow sensors have been designed, fabricated, and characterized. All bulk material in these devices is silicon so that they are integratable in silicon-based microsystems. To mitigate heat losses and to allow for use of corrosive gases, the heating and sensing thin film titanium/platinum elements, injecting and extracting heat, respectively, from the flow, are placed outside the channel on top of a membrane consisting of alternating layers of stress-balancing silicon dioxide and silicon nitride. For the fabrication, an unconventional bond surface protection method using sputter-deposited aluminum instead of thermal silicon dioxide is used in the process steps prior to silicon fusion bonding. A method for performing lift-off on top of the transparent membrane was also developed. The sensors, measuring 9.5 9.5 mm2, are characterized in calorimetric and time-of-flight modes with nitrogen flow rates between 0 sccm and 300 sccm. The maximum calorimetric sensor flow signal and sensitivity are 0.95 mV and 29 V sccm-1, respectively, with power consumption less than 40 mW. The time-of-flight mode is found to have a wider detectable flow range compared with calorimetric mode, and the time of flight measured indicates a response time of the sensor in the millisecond range. The design and operation of a sensor with high sensitivity and large flow range are discussed. A key element of this discussion is the configuration of the array of heaters and gauges along the channel to obtain different sensitivities and extend the operational range. This means that the sensor can be tailored to different flow ranges.

  11. Laser Raman sensor for measurement of trace-hydrogen gas

    NASA Technical Reports Server (NTRS)

    Adler-Golden, Steven M.; Goldstein, Neil; Bien, Fritz; Matthew, Michael W.; Gersh, Michael E.; Cheng, Wai K.; Adams, Frederick W.

    1992-01-01

    A new optical hydrogen sensor based on spontaneous Raman scattering of laser light has been designed and constructed for rugged field use. It provides good sensitivity, rapid response, and the inherent Raman characteristics of linearity and background gas independence of the signal. Efficient light collection and discrimination by using fast optics and a bandpass interference filter compensate for the inefficiency of the Raman-scattering process. A multipass optical cavity with a Herriott-type configuration provides intense illumination from an air-cooled CW gas laser. The observed performance is in good agreement with the theoretical signal and noise level predictions.

  12. Controlling surface adsorption to enhance the selectivity of porphyrin based gas sensors

    NASA Astrophysics Data System (ADS)

    Evyapan, M.; Dunbar, A. D. F.

    2016-01-01

    This study reports an enhancement in the selectivity of the vapor sensing properties of free base porphyrin 5,10,15,20-tetrakis[3,4-bis(2-ethylhexyloxy)phenyl]-21H,23H-porphine (EHO) Langmuir-Schaefer (LS) films. These sensors respond by changing color upon adsorption of the analyte gas to the sensor surface. The enhanced selectivity is achieved by adding selective barrier layers of 4-tert-Butylcalix[4]arene, 4-tert-Butylcalix[6]arene and 4-tert-Butylcalix[8]arene embedded in PMMA (Poly(methyl methacrylate)) on top of the porphyrin sensor films to control the gaseous adsorption onto the sensor surface. The Langmuir properties of EHO, PMMA and calix[n]arene monolayers were investigated by surface pressure-area (Π-A) isotherms in order to determine the most efficient transfer pressure. Six layer EHO films were transferred onto glass and silicon substrates to investigate their optical and structural characteristics. The three different calix[n]arenes were embedded within PMMA layers to act as the selective barrier layers which were deposited on top of the six layer EHO films. The different calix[n]arene molecules vary in size and each was mixed with PMMA in specific ratios in order to control the selectivity of the resulting barrier layers. Spectroscopic Ellipsometry (SE) and Atomic Force Microscopy (AFM) measurements were carried out to analyze the structure of the porous barrier layers. It was found that the orientation of the calix[8]arene molecules was well controlled within the Langmuir layers such that molecular ring lies flat on the EHO layers when deposited. However, the calix[6]arene and calix[4]arene molecules were quite not so reliably oriented. The sensor films (with and without the addition of the different selective barrier layers) were exposed to various carboxylic acid vapors. More specifically, acetic acid, butyric acid and hexanoic acid were chosen due to their different molecular sizes. The uncovered EHO films were highly sensitive to all the carboxylic acids. The porosity of the barrier layers which influences their selectivity was investigated by changing the size of the acid molecules. Upon deposition of a barrier layer on top of EHO film the sensing response rate and magnitude were changed depending on both the barrier layer structure and molecular size of the analyte vapor. The optical sensing results show that by controlling the size of the pores in the barrier layer it can be used as a size selective layer which limits the diffusion of analyte molecules into the sensor and in extreme cases stopping the diffusion completely. Therefore the selectivity of this sensor system has been enhanced by adding a controllable barrier layer. The enhanced sensors have been used to differentiate between acetic, butyric and hexanoic acids.

  13. Performance of a CVD grown graphene-based planar device for a hydrogen gas sensor

    NASA Astrophysics Data System (ADS)

    Dutta, D.; Hazra, A.; Hazra, S. K.; Das, J.; Bhattacharyya, S.; Sarkar, C. K.; Basu, S.

    2015-11-01

    A multilayer graphene (MLG) film was grown on thermally oxidized silicon (SiO2/Si) substrate by atmospheric pressure chemical vapor deposition (APCVD). The formation of the MLG and the presence of the oxide on the graphene surface were confirmed by Raman spectroscopy and electron dispersive spectroscopy (EDS), respectively. An energy gap of 0.234 eV was determined by the optical transmission method. The surface morphology of the graphene film was studied by field emission scanning electron microscopy (FESEM) and by atomic force microscopy (AFM). A planar device with lateral Pd metal contacts was used for the hydrogen sensor studies. The sensor performance in the temperature range (110 °C-150 °C) revealed a relatively fast response (~12 s) and recovery (~24 s) for hydrogen sensing. The reproducibility, the selectivity, and the stability of the device were also studied. The sensor was found to be selective for hydrogen relative to methane in the temperature range studied. The gas sensing mechanism has been suggested on the basis of the interaction of palladium with hydrogen, the change in the interface barrier, and the adsorption-desorption processes related to the change in the hydrogen partial pressure and temperature. The AFM study indicates the reorientation of the graphene surface after the sensing operation, most probably due to hydrogen passivation.

  14. Optical Breath Gas Sensor for Extravehicular Activity Application

    NASA Technical Reports Server (NTRS)

    Wood, William R.; Casias, Miguel E.; Vakhtin, Andrei B.; Pilgrim, Jeffrey S.; Chullen, Cinda; Falconi, Eric A.; McMillin, Summer

    2013-01-01

    The function of the infrared gas transducer used during extravehicular activity in the current space suit is to measure and report the concentration of carbon dioxide (CO2) in the ventilation loop. The next generation portable life support system (PLSS) requires next generation CO2 sensing technology with performance beyond that presently in use on the Space Shuttle/International Space Station extravehicular mobility unit (EMU). Accommodation within space suits demands that optical sensors meet stringent size, weight, and power requirements. A laser diode spectrometer based on wavelength modulation spectroscopy is being developed for this purpose by Vista Photonics, Inc. Two prototype devices were delivered to NASA Johnson Space Center (JSC) in September 2011. The sensors incorporate a laser diode-based CO2 channel that also includes an incidental water vapor (humidity) measurement and a separate oxygen channel using a vertical cavity surface emitting laser. Both prototypes are controlled digitally with a field-programmable gate array/microcontroller architecture. The present development extends and upgrades the earlier hardware to the Advanced PLSS 2.0 test article being constructed and tested at JSC. Various improvements to the electronics and gas sampling are being advanced by this project. The combination of low power electronics with the performance of a long wavelength laser spectrometer enables multi-gas sensors with significantly increased performance over that presently offered in the EMU.

  15. Optical-fibre sensor system for monitoring the performance of the gas propellant centrifuge separator of a spacecraft

    NASA Astrophysics Data System (ADS)

    Romo-Medrano, Katya E.; Khotiaintsev, Sergei N.; García-Garduño, Victor

    2004-08-01

    An optical-fibre sensor system is presented for monitoring void fraction distribution in a spacecraft's gas and propellant centrifuge separator. The system could be used at the separator development stage or for monitoring, during ground tests, the elements of the spacecraft propulsion system. Our sensor system employs an array of point optical-fibre refractometric transducers installed in the form of several linear radial arrays on the separator rotating blades. We employed a small-size hemispherical optical detection element as the transducer and we optimized its parameters through numerical ray-tracing. The aim is to minimize the effect of the thin film of liquid that forms on the transducer's surface in this application. The features of this sensor system are: (1) an efficient matrix-type multiplexing scheme, (2) the installation of the main optoelectronic unit of the sensor in a hermetically sealed container inside the separator tank located on the rotating shaft and (3) the spark-proof and explosion-proof design of the sensor circuits and elements. The sensor is simple, reliable, low-cost and is capable of withstanding the factors involved during operation of the propulsion system such as cryogenic temperatures and chemically aggressive liquids. The novel elements and design concepts implemented in this sensor system can also find applications in other sensors for spacecraft propulsion systems and also in a variety of optical-fibre sensors used in scientific research and industry.

  16. Gas sensing properties of very thin TiO2 films prepared by atomic layer deposition (ALD)

    NASA Astrophysics Data System (ADS)

    Boyadjiev, S.; Georgieva, V.; Vergov, L.; Baji, Zs; Gáber, F.; Szilágyi, I. M.

    2014-11-01

    Very thin titanium dioxide (TiO2) films of less than 10 nm were deposited by atomic layer deposition (ALD) in order to study their gas sensing properties. Applying the quartz crystal microbalance (QCM) method, prototype structures with the TiO2 ALD deposited thin films were tested for sensitivity to NO2. Although being very thin, the films were sensitive at room temperature and could register low concentrations as 50-100 ppm. The sorption is fully reversible and the films seem to be capable to detect for long term. These initial results for very thin ALD deposited TiO2 films give a promising approach for producing gas sensors working at room temperature on a fast, simple and cost-effective technology.

  17. A uniform porous multilayer-junction thin film for enhanced gas-sensing performance

    NASA Astrophysics Data System (ADS)

    Zhang, Ping-Ping; Zhang, Hui; Sun, Xu-Hui

    2016-01-01

    Highly-uniform In2O3/CuO bilayer and multilayer porous thin films were successfully fabricated using a self-assembled soft template and a simple sputtering deposition technique. The sensor based on the In2O3/CuO bilayer porous thin film shows obviously improved sensing performance to ethanol at a lower working temperature, compared to its single layer counterpart sensors. The response of the In2O3/CuO bilayer sensors exhibit nearly 3 and 5 times higher performance than those of the single layer In2O3 and CuO porous film sensors over the same ethanol concentration, respectively. The sensing mechanism based on the p-n hetero-junction, which contributed to the enhanced sensing performance, was also experimentally confirmed by a control experiment in which an SiO2 insulation layer was inserted between the In2O3 and CuO layers to break the p-n junction. In addition, the sensing performance can be further enhanced by increasing the number of In2O3/CuO junction layers. The facile process can be easily extended to the fabrication of other semiconductor oxide gas sensors for practical sensing applications.Highly-uniform In2O3/CuO bilayer and multilayer porous thin films were successfully fabricated using a self-assembled soft template and a simple sputtering deposition technique. The sensor based on the In2O3/CuO bilayer porous thin film shows obviously improved sensing performance to ethanol at a lower working temperature, compared to its single layer counterpart sensors. The response of the In2O3/CuO bilayer sensors exhibit nearly 3 and 5 times higher performance than those of the single layer In2O3 and CuO porous film sensors over the same ethanol concentration, respectively. The sensing mechanism based on the p-n hetero-junction, which contributed to the enhanced sensing performance, was also experimentally confirmed by a control experiment in which an SiO2 insulation layer was inserted between the In2O3 and CuO layers to break the p-n junction. In addition, the sensing performance can be further enhanced by increasing the number of In2O3/CuO junction layers. The facile process can be easily extended to the fabrication of other semiconductor oxide gas sensors for practical sensing applications. Electronic supplementary information (ESI) available: XRD spectra of typical In2O3/CuO bilayer porous thin films, the XPS spectrum of In2O3/CuO bilayer porous thin films. See DOI: 10.1039/c5nr05195a

  18. Gas-Sensing Performance of M-Doped CuO-Based Thin Films Working at Different Temperatures upon Exposure to Propane.

    PubMed

    Rydosz, Artur; Szkudlarek, Aleksandra

    2015-01-01

    Cupric oxide (CuO) thin films are promising materials in gas sensor applications. The CuO-based gas sensors behaved as p-type semiconductors and can be used as part of an e-nose or smart sensor array for breath analysis. The authors present the investigation results on M-doped CuO-based (M = Ag, Au, Cr, Pd, Pt, Sb, Si) sensors working at various temperatures upon exposure to a low concentration of C3H8, which can be found in exhaled human breath, and it can be considered as a one of the biomarkers of several diseases. The films have been deposited in magnetron sputtering technology on low temperature cofired ceramics substrates. The results of the gas sensors' response are also presented and discussed. The Cr:CuO-based structure, annealed at 400 °C for 4 h in air, showed the highest sensor response, of the order of 2.7 at an operation temperature of 250 °C. The response and recovery time(s) were 10 s and 24 s, respectively. The results show that the addition of M-dopants in the cupric oxide films effectively act as catalysts in propane sensors and improve the gas sensing properties. The films' phase composition, microstructure and surface topography have been assessed by the X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) methods. PMID:26287204

  19. Data set from gas sensor array under flow modulation.

    PubMed

    Ziyatdinov, Andrey; Fonollosa, Jordi; Fernández, Luis; Gutiérrez-Gálvez, Agustín; Marco, Santiago; Perera, Alexandre

    2015-06-01

    Recent studies in neuroscience suggest that sniffing, namely sampling odors actively, plays an important role in olfactory system, especially in certain scenarios such as novel odorant detection. While the computational advantages of high frequency sampling have not been yet elucidated, here, in order to motivate further investigation in active sampling strategies, we share the data from an artificial olfactory system made of 16 MOX gas sensors under gas flow modulation. The data were acquired on a custom set up featured by an external mechanical ventilator that emulates the biological respiration cycle. 58 samples were recorded in response to a relatively broad set of 12 gas classes, defined from different binary mixtures of acetone and ethanol in air. The acquired time series show two dominant frequency bands: the low-frequency signal corresponds to a conventional response curve of a sensor in response to a gas pulse, and the high-frequency signal has a clear principal harmonic at the respiration frequency. The data are related to the study in [1], and the data analysis results reported there should be considered as a reference point. The data presented here have been deposited to the web site of The University of California at Irvine (UCI) Machine Learning Repository (https://archive.ics.uci.edu/ml/datasets/Gas+sensor+array+under+flow+modulation). The code repository for reproducible analysis applied to the data is hosted at the GutHub web site (https://github.com/variani/pulmon). The data and code can be used upon citation of [1]. PMID:26217733

  20. Data set from gas sensor array under flow modulation☆

    PubMed Central

    Ziyatdinov, Andrey; Fonollosa, Jordi; Fernández, Luis; Gutiérrez-Gálvez, Agustín; Marco, Santiago; Perera, Alexandre

    2015-01-01

    Recent studies in neuroscience suggest that sniffing, namely sampling odors actively, plays an important role in olfactory system, especially in certain scenarios such as novel odorant detection. While the computational advantages of high frequency sampling have not been yet elucidated, here, in order to motivate further investigation in active sampling strategies, we share the data from an artificial olfactory system made of 16 MOX gas sensors under gas flow modulation. The data were acquired on a custom set up featured by an external mechanical ventilator that emulates the biological respiration cycle. 58 samples were recorded in response to a relatively broad set of 12 gas classes, defined from different binary mixtures of acetone and ethanol in air. The acquired time series show two dominant frequency bands: the low-frequency signal corresponds to a conventional response curve of a sensor in response to a gas pulse, and the high-frequency signal has a clear principal harmonic at the respiration frequency. The data are related to the study in [1], and the data analysis results reported there should be considered as a reference point. The data presented here have been deposited to the web site of The University of California at Irvine (UCI) Machine Learning Repository (https://archive.ics.uci.edu/ml/datasets/Gas+sensor+array+under+flow+modulation). The code repository for reproducible analysis applied to the data is hosted at the GutHub web site (https://github.com/variani/pulmon). The data and code can be used upon citation of [1]. PMID:26217733

  1. Nano particle porous alumina based thin film parallel plate capacitive humidity sensor

    NASA Astrophysics Data System (ADS)

    Kumar, Shailesh

    2014-04-01

    A Relative humidity sensor was fabricated based on porous thin film of γ-Al2O3 formed between the parallel Pd/Ag electrodes working on capacitive technique. The film was fabricated by dip coating of sol solution obtained from the sol-gel method. The electrical parameters of the sensor have been determined by Agilent 4294A impedance analyzer. The sensor so obtained is found to be sensitive in 10 to 90% RH. The response time of the sensor is very low around 24 seconds and recovery time 40 seconds.

  2. Multiscale Simulation of Gas Film Lubrication During Liquid Droplet Collision

    NASA Astrophysics Data System (ADS)

    Chen, Xiaodong; Khare, Prashant; Ma, Dongjun; Yang, Vigor

    2012-02-01

    Droplet collision plays an elementary role in dense spray combustion process. When two droplets approach each other, a gas film forms in between. The pressure generated within the film prevents motion of approaching droplets. This fluid mechanics is fluid film lubrication that occurs when opposing bearing surfaces are completely separated by fluid film. The lubrication flow in gas film decides the collision outcome, coalescence or bouncing. Present study focuses on gas film drainage process over a wide range of Weber numbers during equal- and unequal-sized droplet collision. The formulation is based on complete set of conservation equations for both liquid and surrounding gas phases. An improved volume-of-fluid technique, augmented by an adaptive mesh refinement algorithm, is used to track liquid/gas interfaces. A unique thickness-based refinement algorithm based on topology of interfacial flow is developed and implemented to efficiently resolve the multiscale problem. The grid size on interface is up O(10-4) of droplet size with a max resolution of 0.015 μm. An advanced visualization technique using the Ray-tracing methodology is used to gain direct insights to detailed physics. Theories are established by analyzing the characteristics of shape changing and flow evolution.

  3. Low-cost gas sensors produced by the graphite line-patterning technique applied to monitoring banana ripeness.

    PubMed

    Manzoli, Alexandra; Steffens, Clarice; Paschoalin, Rafaella T; Correa, Alessandra A; Alves, William F; Leite, Fábio L; Herrmann, Paulo S P

    2011-01-01

    A low-cost sensor array system for banana ripeness monitoring is presented. The sensors are constructed by employing a graphite line-patterning technique (LPT) to print interdigitated graphite electrodes on tracing paper and then coating the printed area with a thin film of polyaniline (PANI) by in-situ polymerization as the gas-sensitive layer. The PANI layers were used for the detection of volatile organic compounds (VOCs), including ethylene, emitted during ripening. The influence of the various acid dopants, hydrochloric acid (HCl), methanesulfonic acid (MSA), p-toluenesulfonic acid (TSA) and camphorsulfonic acid (CSA), on the electrical properties of the thin film of PANI adsorbed on the electrodes was also studied. The extent of doping of the films was investigated by UV-Vis absorption spectroscopy and tests showed that the type of dopant plays an important role in the performance of these low-cost sensors. The array of three sensors, without the PANI-HCl sensor, was able to produce a distinct pattern of signals, taken as a signature (fingerprint) that can be used to characterize bananas ripeness. PMID:22163963

  4. Processing effects on microstructure, percolation and resistive sensor properties of nickel-zirconium oxide cermet films on silicon substrates

    NASA Astrophysics Data System (ADS)

    Sundeen, John Edward, Jr.

    Thin Ni-ZrO2 cermet films were developed on silicon substrates using solution based, metallo-organic deposition (MOD) technique. The nickel based cermet films on silicon are of interest for heater, temperature and flow sensor devices, particularly in automotive or aerospace applications at UP to 250°C. In this study, precursors for the NiO-ZrO2 composite films were derived from metal carboxylate and nitrate based solutions. Composition and heat treatment conditions were the main process variables for controlling the structure, particle size and morphology, on which the electrical properties depend. Electrical resistance behavior was studied for Ni-ZrO2 films with 25--78 vol.% Ni content. This Ni amount exceeds the percolation threshold for conduction. The dependence of the resistance on individual processing variables, including film thickness, ambient flow rate, sintering temperature and time, and specimen geometry was studied. Electrical characterization included establishing the percolative resistive behavior in the MOD Ni-ZrO2 films. A resistive percolation threshold (pc) at ˜25 vol.% Ni was found for 800°C sintered, 1mum thick Ni-ZrO2 films. Existing models including the general effective media (GEM) percolation equation, and mixture rules were used to develop a predictive expression for Ni-ZrO2 film resistance as a function of composition. Kinetic analysis of particle size in the 55 vol.% Ni cermet films was directly correlated to the sheet resistance (Rs) of the films. The temperature coefficient of resistance (TCR) was also correlated to R s, by the equation: (TCR)alpha = alphao - betaR s. These electrical characteristics make the films suitable for use as gas flow and temperature sensors. Calculated figure of merit (rho-TCR), values for the MOD Ni-ZrO2 films Compared favorably to commercial Pt and Ni based thin and thick film formulations used for heaters and thermal sensors. An added advantage of the MOD Ni-ZrO2, compared to the non-linear behavior of Ni, was that film resistance response to temperature is highly linear over the temperature range of 20--160°C. Select films could be heated to 45--100°C with a low (I2R) power input of 400mW-2W. Then films demonstrated stable hot resistance, high sensitivity and rapid response to gas flow. Significant accomplishments from this work included the development of: (a) MOD derived cermet films of 40--78 vol.% Ni, with high positive TCR of 2600--4250ppm/°C and Rs of 2.5--60%O/□/1mum which are highly suitable for thermal sensing applications, (b) A simple mixture rule rho = rhoo - m·VNi describing the film resistivity with composition; and (c) Expressions correlating film TCR and resistance to sintering time and temperature using particle growth kinetics.

  5. Note: Durability analysis of optical fiber hydrogen sensor based on Pd-Y alloy film

    NASA Astrophysics Data System (ADS)

    Huang, Peng-cheng; Chen, You-ping; Zhang, Gang; Song, Han; Liu, Yi

    2016-02-01

    The Pd-Y alloy sensing film has an excellent property for hydrogen detection, but just for one month, the sensing film's property decreases seriously. To study the failure of the sensing film, the XPS spectra analysis was used to explore the chemical content of the Pd-Y alloy film, and analysis results demonstrate that the yttrium was oxidized. The paper presented that such an oxidized process was the potential reason of the failure of the sensing film. By understanding the reason of the failure of the sensing film better, we could improve the manufacturing process to enhance the property of hydrogen sensor.

  6. Note: Durability analysis of optical fiber hydrogen sensor based on Pd-Y alloy film.

    PubMed

    Huang, Peng-Cheng; Chen, You-Ping; Zhang, Gang; Song, Han; Liu, Yi

    2016-02-01

    The Pd-Y alloy sensing film has an excellent property for hydrogen detection, but just for one month, the sensing film's property decreases seriously. To study the failure of the sensing film, the XPS spectra analysis was used to explore the chemical content of the Pd-Y alloy film, and analysis results demonstrate that the yttrium was oxidized. The paper presented that such an oxidized process was the potential reason of the failure of the sensing film. By understanding the reason of the failure of the sensing film better, we could improve the manufacturing process to enhance the property of hydrogen sensor. PMID:26931903

  7. Failure study of SnO2 room temperature gas sensors fabricated on nanospike substrates

    NASA Astrophysics Data System (ADS)

    Wang, Pengtao; Ren, Haizhou; Huo, Haibin; Shen, Mengyan; Sun, Hongwei; Ruths, Marina

    2012-04-01

    SnO2 gas sensors were fabricated on polyurethane (PU) polymer surfaces with nanospike structures. These nanospikes are replicated with a low-cost soft nanolithography method from silicon nanospike surfaces formed by femtosecond pulsed laser irradiation. The hydrophobicity of the sensing surface was enhanced by a monolayer coating of silane (1H,1H,2H,2H-perfluorooctyltrichlorosilane, PFOTS). The resulting self-cleaning behavior enabled sensing in environments with high moisture and heavy particulate content, while performing cleaning-in-place operations to prolong the lifetime of the sensors. Failure studies were performed to quantify the effects on the sensitivity of water washing. Contact angle measurements showed that the hydrophobicity was weakened after many cycles of droplet washing due to wear of the PFOTS film and/or damage of the nanoscale spike structure. It was also found that the baseline signal increased with droplet washing, while the sensitivity changed randomly within about 7.5%, so that the sensitivity of the gas sensor remained at a constant level after several thousand cycles of water washing.

  8. Flexible Transparent Films Based on Nanocomposite Networks of Polyaniline and Carbon Nanotubes for High-Performance Gas Sensing.

    PubMed

    Wan, Pengbo; Wen, Xuemei; Sun, Chaozheng; Chandran, Bevita K; Zhang, Han; Sun, Xiaoming; Chen, Xiaodong

    2015-10-28

    A flexible, transparent, chemical gas sensor is assembled from a transparent conducting film of carbon nanotube (CNT) networks that are coated with hierarchically nanostructured polyaniline (PANI) nanorods. The nanocomposite film is synthesized by in-situ, chemical oxidative polymerization of aniline in a functional multiwalled CNT (FMWCNT) suspension and is simultaneously deposited onto a flexible polyethylene terephthalate (PET) substrate. An as-prepared flexible transparent chemical gas sensor exhibits excellent transparency of 85.0% at 550 nm using the PANI/FMWCNT nanocomposite film prepared over a reaction time of 8 h. The sensor also shows good flexibility, without any obvious decrease in performance after 500 bending/extending cycles, demonstrating high-performance, portable gas sensing at room temperature. This superior performance could be attributed to the improved electron transport and collection due to the CNTs, resulting in reliable and efficient sensing, as well as the high surface-to-volume ratio of the hierarchically nanostructured composites. The excellent transparency, improved sensing performance, and superior flexibility of the device, may enable the integration of this simple, low-cost, gas sensor into handheld flexible transparent electronic circuitry and optoelectronic devices. PMID:26294393

  9. The theory and design of piezoelectric/pyroelectric polymer film sensors for biomedical engineering applications.

    PubMed

    Brown, L F

    1989-01-01

    The unique properties of piezoelectric/pyroelectric polymers offer many new opportunities for biomedical engineering sensor applications. Since their discovery nearly 20 years ago, the polymer films have been used for many novel switching and sensor applications. Despite the prodigious exposure from many recent publications describing piezo film applications, methods of sensor fabrication and circuit interfacing still elude most engineers. This paper is presented as a tutorial guide to applying piezo polymers to biomedical engineering applications. A review of the fundamentals of piezoelectricity/pyroelectricity in piezo polymers is first presented. Their material properties are contrasted with piezoelectric ceramic materials. Some advantages and disadvantages of the films for biomedical sensors are discussed. Specific details on the fabrication of piezo film sensors are presented. Methods are described for forming, cutting, and mounting film sensors, and making lead connections. A brief discussion of equivalent circuit models for the design and simulation of piezoelectric/pyroelectric sensors is included, as well as common circuit interface techniques. Finally, several sources are recommended for further information on a variety of biomedical sensor applications. PMID:2742957

  10. Selective Gas Capture Ability of Gas-Adsorbent-Incorporated Cellulose Nanofiber Films.

    PubMed

    Shah, Kinjal J; Imae, Toyoko

    2016-05-01

    The 2,2,6,6-tetramethylpiperidine-1-oxyl radical-oxidized cellulose nanofibers (TOCNF) were hybridized with cation and anion-exchange organoclays, where poly(amido amine) dendrimers were loaded to enhance the functionality of gas adsorption, since dendrimers have the high adsorbability and the enough selectivity on the gas adsorption. The thin films were prepared from the organoclay-TOCNF hybrids and supplied to the gas adsorption. The adsorption of CO2 and NH3 gases increased with an increasing amount of organoclays in TOCNF films, but the behavior of the increase depended on gases, clays, and dendrimers. The hydrotalcite organoclay-TOCNF films displayed the highest adsorption of both gases, but the desorption of CO2 gas from hydrotalcite organoclay-TOCNF films was drastically high in comparison with the other systems. While the CO2 gas is adsorbed and remained on cationic dendrimer sites in cation-exchange organoclay-TOCNF films, the CO2 gas is adsorbed on cationic clay sites in anion exchange organoclay-TOCNF films, and it is easily desorbed from the films. The NH3 adsorption is inversive to the CO2 adsorption. Then the CO2 molecules adsorbed on the cationic dendrimers and the NH3 molecules adsorbed on the anionic dendrimers are preferably captured in these adsorbents. The present research incorporated dendrimers will be contributing to the development of gas-specialized adsorbents, which are selectively storable only in particular gases. PMID:27035217

  11. Nanostructure-engineered chemical sensors for hazardous gas and vapor detection

    NASA Astrophysics Data System (ADS)

    Li, Jing; Lu, Yijiang

    2004-12-01

    A nanosensor technology has been developed using nanostructures, such as single walled carbon nanotubes (SWNTs) and metal oxides nanowires or nanobelts, on a pair of interdigitated electrodes (IDE) processed with a siliconbased microfabrication and micromachining technique. The IDE fingers were fabricated using thin film metallization techniques. Both in-situ growth of nanostructure materials and casting of the nanostructure dispersions were used to make chemical sensing devices. These sensors have been exposed to hazardous gases and vapors, such as acetone, benzene, chlorine, and ammonia in the concentration range of ppm to ppb at room temperature. The electronic molecular sensing in our sensor platform can be understood by electron modulation between the nanostructure engineered device and gas molecules. As a result of the electron modulation, the conductance of nanodevice will change. Due to the large surface area, low surface energy barrier and high thermal and mechanical stability, nanostructured chemical sensors potentially can offer higher sensitivity, lower power consumption and better robustness than the state-of-the-art systems, which make them more attractive for defense and space applications. Combined with MEMS technology, light weight and compact size sensors can be made in wafer scale with low cost.

  12. Fabrication and NO2 gas-sensing properties of reduced graphene oxide/WO3 nanocomposite films.

    PubMed

    Su, Pi-Guey; Peng, Shih-Liang

    2015-01-01

    One-pot polyol process was combined with the metal organic decomposition (MOD) method to fabricate a room-temperature NO2 gas sensor based on tungsten oxide and reduced graphene oxide (RGO/WO3) nanocomposite films. Fourier Transform infrared spectrometer (FTIR), X-ray diffractometry (XRD), scanning electron microscopy (SEM) and atomic force microscopy (AFM) were used to analyze the microstructure and morphology of the fabricated films. The electrical and NO2 gas-sensing properties of WO3 to which various amounts of RGO were added were measured in detail as a function of concentration of NO2 gas at room temperature, to elucidate the contribution of RGO to the NO2 gas-sensing capacity. The NO2 gas-sensing mechanism of the RGO/WO3 nanocomposite films were explained by considering their composition and microstructures. The sensor that was based on a nanocomposite film of RGO/WO3 exhibited a strong response to low concentrations of NO2 gas at room temperature, satisfactory linearity and favorable long-term stability. PMID:25476324

  13. MEASUREMENT AND ANALYSIS OF ADSISTOR AND FIGARO GAS SENSORS USED FOR UNDERGROUND STORAGE TANK LEAK DETECTION

    EPA Science Inventory

    Two different sensor technologies and their properties were analyzed. he nalysis simulated a leak which occurs from an underground storage tank. igaro gas sensors and the Adsistor gas sensor were tested in simulated underground storage tank nvironments using the Carnegie Mellon R...

  14. Fabrication and characterization of nano-gas sensor arrays

    SciTech Connect

    Hassan, H. S. Kashyout, A. B.; Morsi, I. Nasser, A. A. A. Raafat, A.

    2015-03-30

    A novel structures of Nanomaterials gas sensors array constructed using ZnO, and ZnO doped with Al via sol-gel technique. Two structure arrays are developed; the first one is a double sensor array based on doping with percentages of 1% and 5%. The second is a quadrature sensor array based on several doping ratios concentrations (0%, 1%, 5% and 10%). The morphological structures of prepared ZnO were revealed using scanning electron microscope (SEM). X-ray diffraction (XRD) patterns reveal a highly crystallized wurtzite structure and used for identifying phase structure and chemical state of both ZnO and ZnO doped with Al under different preparation conditions and different doping ratios. Chemical composition of Al-doped ZnO nanopowders was performed using energy dispersive x-ray (EDS) analysis. The electrical characteristics of the sensor are determined by measuring the two terminal sensor’s output resistance for O{sub 2}, H{sub 2} and CO{sub 2} gases as a function of temperature.

  15. Formation, characterization, and flow dynamics of nanostructure modified sensitive and selective gas sensors based on porous silicon

    NASA Astrophysics Data System (ADS)

    Ozdemir, Serdar

    Nanopore covered microporous silicon interfaces have been formed via an electrochemical etch for gas sensor applications. Rapid reversible and sensitive gas sensors have been fabricated. Both top-down and bottom-up approaches are utilized in the process. A nano-pore coated micro-porous silicon surface is modified selectively for sub-ppm detection of NH3, PH3 , NO, H2S, SO2. The selective depositions include electrolessly generated SnO2, CuxO, Au xO, NiO, and nanoparticles such as TiO2, MgO doped TiO 2, Al2O3, and ZrO2. Flow dynamics are analyzed via numerical simulations and response data. An array of sensors is formed to analyze mixed gas response. A general coating selection method for chemical sensors is established via an extrapolation on the inverse of the Hard-Soft Acid-Base concept. In Chapter 1, the current state of the porous silicon gas sensor research is reviewed. Since metal oxide thin films, and, recently, nanowires are dominantly used for sensing application, the general properties of metal oxides are also discussed in this chapter. This chapter is concluded with a discussion about commercial gas sensors and the advantages of using porous silicon as a sensing material. The PS review discussed at the beginning of this chapter is an overview of the following publication: (1) "The Potential of Porous Silicon Gas Sensors", Serdar Ozdemir, James L. Gole, Current Opinion in Solid State and Materials Science, 11, 92-100 (2007). In Chapter 2, porous silicon formation is explained in detail. Interesting results of various silicon anodization experiments are discussed. In the second part of this chapter, the microfabrication process of porous silicon conductometric gas sensors and gas testing set up are briefly introduced. In chapter 3, metal oxide nanoparticle/nanocluster formation and characterization experiments via SEM and XPS analysis are discussed. Chapter 4 is an overview of the test results for various concentrations NH3, NO, NO2 and PH3. The interaction strengths between the test gases and various nanoparticles on porous silicon are measured. The flow dynamics in the micro- and nanoporous regime is analyzed by using experimental response data and numerical simulations. The results in this chapter are partially published in the following articles: (1) "Porous Silicon Gas Sensors for Room Temperature Detection of Ammonia and Phosphine ", 214th Meeting of ECS: Honolulu, Hawaii Oct 12-17, 2008, S. Ozdemir, J.L. Gole, ECS Trans. 16 (11), 379 (2008). (2) "A Phosphine Detection Matrix Using Porous Silicon Gas Sensors" S. Ozdemir, J.L. Gole, Sensors and Actuators B, 151, 274-280 (2010). (3) "A Nanostructure Modified Porous Silicon Gas Sensor Detection Matrix for NO with Demonstration of the Transient Conversion of NO to NO2", Serdar Ozdemir, Thomas B. Osburn, James L. Gole, submitted to Journal of Electrochemical Society. (4) "Selectivity Improvement and Response Time Scale of Porous Silicon Conductometric Gas Sensors" S. Ozdemir, J. L. Gole, ECS Transactions, Volume 33, Issue 8, pg 111-115. In chapter 5, a model is proposed for selectivity improvements in PS gas sensors based on Inverse of Hard Soft Acid Base interactions. An extended version of this chapter is published in the following publication: (1) " Nanostructure directed physisorption vs. chemisorption at semiconductor interfaces: the inverse of the hard-soft acid-base (HSAB) concept", J.L.Gole, S. Ozdemir, ChemPhysChem, 11, 2573.2581 (2010). Chapter 6 is a brief conclusion of the results discussed in this thesis.

  16. Prototype thin-film thermocouple/heat-flux sensor for a ceramic-insulated diesel engine

    NASA Technical Reports Server (NTRS)

    Kim, Walter S.; Barrows, Richard F.

    1988-01-01

    A platinum versus platinum-13 percent rhodium thin-film thermocouple/heat-flux sensor was devised and tested in the harsh, high-temperature environment of a ceramic-insulated, low-heat-rejection diesel engine. The sensor probe assembly was developed to provide experimental validation of heat transfer and thermal analysis methodologies applicable to the insulated diesel engine concept. The thin-film thermocouple configuration was chosen to approximate an uninterrupted chamber surface and provide a 1-D heat-flux path through the probe body. The engine test was conducted by Purdue University for Integral Technologies, Inc., under a DOE-funded contract managed by NASA Lewis Research Center. The thin-film sensor performed reliably during 6 to 10 hr of repeated engine runs at indicated mean surface temperatures up to 950 K. However, the sensor suffered partial loss of adhesion in the thin-film thermocouple junction area following maximum cyclic temperature excursions to greater than 1150 K.

  17. Fiber-tip gas pressure sensor based on dual capillaries.

    PubMed

    Xu, Ben; Wang, Chao; Wang, D N; Liu, Yaming; Li, Yi

    2015-09-01

    A micro-cavity fiber Fabry-Perot interferometer based on dual capillaries is proposed and demonstrated for gas pressure measurement. Such a device is fabricated by fusion splicing of a tiny segment of a main-capillary with a feeding-capillary on one end, and a single mode fiber on the other, to allow gas enters the main-capillary via the feeding-capillary. The reflection spectrum of the interferometer device shifts with the variation of gas pressure due to the dependence of gas refractive index on the pressure applied. During the device fabrication process, a core-offset fusion splicing method is adopted, which turns out to be highly effective for reducing the detection limit of the sensor. The experimental results obtained show that the proposed device exhibits a high gas pressure sensitivity of 4147 pm/MPa, a low temperature cross-sensitivity of less than 0.3 KPa/°C at atmospheric pressure, and an excellently low detection limit down to ~4.81 KPa. The robust tip structure, ultra-compact device size and ease of fabrication make the device an attractive candidate for reliable and highly sensitive gas pressure measurement in a precise location. PMID:26368448

  18. Novel Thin Film Sensor Technology for Turbine Engine Hot Section Components

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Fralick, Gustave C.

    2007-01-01

    Degradation and damage that develops over time in hot section components can lead to catastrophic failure of the turbine section of aircraft engines. A range of thin film sensor technology has been demonstrated enabling on-component measurement of multiple parameters either individually or in sensor arrays including temperature, strain, heat flux, and flow. Conductive ceramics are beginning to be investigated as new materials for use as thin film sensors in the hot section, leveraging expertise in thin films and high temperature materials. The current challenges are to develop new sensor and insulation materials capable of withstanding the extreme hot section environment, and to develop techniques for applying sensors onto complex high temperature structures for aging studies of hot propulsion materials. The technology research and development ongoing at NASA Glenn Research Center for applications to future aircraft, launch vehicles, space vehicles, and ground systems is outlined.

  19. Thin-film sensors with small structure size on flat and curved surfaces

    NASA Astrophysics Data System (ADS)

    Schmaljohann, F.; Hagedorn, D.; Buß, A.; Kumme, R.; Löffler, F.

    2012-07-01

    We have developed a fabrication technology for thin-film sensors on metallic substrates with flat and curved surfaces. Physical vapour deposition by means of a magnetron sputtering system is used to deposit an insulating layer and a following functional layer. This layer is structured by distinct photolithographic steps utilizing a self-developed spray coating technique, four-axis robotics with micrometer precision and a UV laser with a spot size below 10 μm. This highly flexible technique allows a rapid change of design to produce various sensor layouts in a short time. Besides the fabrication technology, we present two realized applications for thin-film sensor technology in this paper. First, a tool wear sensor for rotating cutting tools, directly detecting the flank-wear land width, and second, sputtered resistance strain gauges for force measurement. Measurement results showing the potential of thin-film sensors are given briefly.

  20. Fiber-optic Fabry-Perot hydrogen sensor coated with Pd-Y film

    NASA Astrophysics Data System (ADS)

    Yu, Caibin; Liu, Li; Chen, Xiaoxiao; Liu, Qunfeng; Gong, Yuan

    2015-06-01

    A fiber-optic Fabry-Perot hydrogen sensor was developed by measuring the fringe contrast changes at different hydrogen concentrations. The experimental results indicated that the sensing performance with the Pd-Y film was better than that with the Pd film. A fringe contrast with a decrease of 0.5 dB was detected with a hydrogen concentration change from 0% to 5.5%. The temperature response of the sensor was also measured.