Science.gov

Sample records for filtered vacuum arc

  1. Study of Linear Magnetic Filters in a Pulsed Copper Vacuum Arc

    NASA Astrophysics Data System (ADS)

    Giuliani, L.; Grondona, D.; Kelly, H.

    2006-12-01

    An experimental study of the plasma jet generated in a pulsed copper vacuum arc with an annular anode and operated with a linear magnetic filter is presented. Two types of filters were employed, one consisting of an insulating duct and the other of a conducting duct, both of them surrounded by an external coil, which generates the axial magnetic field. To improve the ion flux at the filter entrance another auxiliary magnetic field in the cathode region was applied (focusing field). Also, the cathode shape was modified to confine the cathode spot onto the front cathode surface. Operating the arc under vacuum conditions, probe measurements of the ion saturation current and the plasma potential at different axial positions along the ducts and for different filtering magnetic field values are reported. A comparison between both kinds of filters is also presented.

  2. Contamination due to memory effects in filtered vacuum arc plasma deposition systems

    SciTech Connect

    Martins, D.R.; Salvadori, M.C.; Verdonck, P.; Brown, I.G.

    2002-08-13

    Thin film synthesis by filtered vacuum arc plasma deposition is a widely used technique with a number of important emerging technological applications. A characteristic feature of the method is that during the deposition process not only is the substrate coated by the plasma, but the plasma gun itself and the magnetic field coil and/or vacuum vessel section constituting the macroparticle filter are also coated to some extent. If then the plasma gun cathode is changed to a new element, there can be a contamination of the subsequent film deposition by sputtering from various parts of the system of the previous coating species. We have experimentally explored this effect and compared our results with theoretical estimates of sputtering from the SRIM (Stopping and Range of Ions in Matter) code. We find film contamination of order 10-4 - 10-3, and the memory of the prior history of the deposition hardware can be relatively long-lasting.

  3. Surface modification of magnetic recording media by filtered cathodic vacuum arc

    NASA Astrophysics Data System (ADS)

    Zhang, H.-S.; Komvopoulos, K.

    2009-11-01

    Surface modification of a magnetic recording medium was accomplished by filtered cathodic vacuum arc (FCVA). The carbon overcoat of thin-film disks was removed by Ar+ ion sputter etching in vacuum to prevent oxidation of the exposed magnetic medium, which was then modified by FCVA carbon plasma under conditions of zero and -100 V pulsed substrate bias. Monte Carlo simulations performed with the T-DYN code, x-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and surface force microscopy (SFM) provided insight into carbon implantation profiles, surface chemical composition, roughness, and nanomechanical properties of the surface-treated magnetic medium. The dependence of surface modification on the FCVA treatment conditions is discussed in the context of T-DYN, XPS, AFM, and SFM results. The findings of this study demonstrate the potential of FCVA to provide overcoat-free magnetic recording media exhibiting oxidation resistance and enhanced nanomechanical properties.

  4. Surface modification of magnetic recording media by filtered cathodic vacuum arc

    SciTech Connect

    Zhang, H.-S.; Komvopoulos, K.

    2009-11-01

    Surface modification of a magnetic recording medium was accomplished by filtered cathodic vacuum arc (FCVA). The carbon overcoat of thin-film disks was removed by Ar{sup +} ion sputter etching in vacuum to prevent oxidation of the exposed magnetic medium, which was then modified by FCVA carbon plasma under conditions of zero and -100 V pulsed substrate bias. Monte Carlo simulations performed with the T-DYN code, x-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and surface force microscopy (SFM) provided insight into carbon implantation profiles, surface chemical composition, roughness, and nanomechanical properties of the surface-treated magnetic medium. The dependence of surface modification on the FCVA treatment conditions is discussed in the context of T-DYN, XPS, AFM, and SFM results. The findings of this study demonstrate the potential of FCVA to provide overcoat-free magnetic recording media exhibiting oxidation resistance and enhanced nanomechanical properties.

  5. Auxiliary particle filter-model predictive control of the vacuum arc remelting process

    NASA Astrophysics Data System (ADS)

    Lopez, F.; Beaman, J.; Williamson, R.

    2016-07-01

    Solidification control is required for the suppression of segregation defects in vacuum arc remelting of superalloys. In recent years, process controllers for the VAR process have been proposed based on linear models, which are known to be inaccurate in highly-dynamic conditions, e.g. start-up, hot-top and melt rate perturbations. A novel controller is proposed using auxiliary particle filter-model predictive control based on a nonlinear stochastic model. The auxiliary particle filter approximates the probability of the state, which is fed to a model predictive controller that returns an optimal control signal. For simplicity, the estimation and control problems are solved using Sequential Monte Carlo (SMC) methods. The validity of this approach is verified for a 430 mm (17 in) diameter Alloy 718 electrode melted into a 510 mm (20 in) diameter ingot. Simulation shows a more accurate and smoother performance than the one obtained with an earlier version of the controller.

  6. Comprehensive study of ZnO films prepared by filtered cathodic vacuum arc at room temperature

    NASA Astrophysics Data System (ADS)

    Wang, Y. G.; Lau, S. P.; Lee, H. W.; Yu, S. F.; Tay, B. K.; Zhang, X. H.; Tse, K. Y.; Hng, H. H.

    2003-08-01

    Room temperature deposition of high crystal quality zinc oxide (ZnO) films was realized by the filtered cathodic vacuum arc (FCVA) technique. Detrimental macroparticles in the plasma as byproducts of arcing process are removed with an off-plane double bend magnetic filter. The influence of oxygen pressure on the structural, electrical and optical properties of ZnO films were investigated in detail. The crystal structure of ZnO is hexagonal with highly c-axis orientation. Intrinsic stress decreases with an increase of chamber pressure, and near stress-free film was obtained at 1×10-3 Torr. Films with optical transmittance above 90% in the visible range and resistivity as low as 4.1×10-3 Ω cm were prepared at pressure of 5×10-4 Torr. Energetic zinc particles in the cathodic plasma and low substrate temperature enhance the probability of formation of zinc interstitials in the ZnO films. The observation of strong ultraviolet photoluminescence and weak deep level emission at room temperature manifest the high crystal quality of the ZnO films prepared by FCVA. Enlargement of the band gap is observed in the absorption and photoluminescence spectra, the band gap shifts towards lower energy with an increase of oxygen pressure. This phenomenon is attributed to the Burstein-Moss effect.

  7. Tribological characterization of chromium nitride coating deposited by filtered cathodic vacuum arc

    NASA Astrophysics Data System (ADS)

    Mo, J. L.; Zhu, M. H.

    2009-06-01

    CrN coatings were prepared by filtered cathodic vacuum arc (FCVA) technique. The influence of the deposition parameters (nitrogen partial pressure P, substrate bias voltage Vs and preheating of the substrate) on the structural, mechanical and tribological properties of the FCVA CrN coatings was investigated. Further, the FCVA CrN coating was compared in dry reciprocating sliding with commercial multi-arc ion plating (MAIP) CrN coating as to friction and wear properties. Profilometer, scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDX) were used to evaluate the wear scars and the wear mechanisms were discussed. The results showed that the structural, mechanical and tribological properties of the FCVA CrN coatings were significantly dependent on the deposition parameters. The FCVA CrN coating deposited with P of 0.1 Pa, Vs of -100 V and without preheating exhibited the optimal mechanical and tribological properties. The FCVA CrN coating exhibited much better anti-abrasive and anti-spalling properties than the MAIP CrN coating, which was resulted from significant reduction of macroparticles and pitting defects by the FCVA technique. The MAIP CrN coating suffered severe concentrated wear by a combination wear mechanisms of delamination, abrasive and oxidative wear when high normal load was applied, while for the FCVA CrN coating the wear mechanisms were ultra-mild abrasive and oxidative wear.

  8. Micromachining of large area amorphous carbon membranes prepared by filtered cathodic vacuum arc technique

    NASA Astrophysics Data System (ADS)

    Liujiang, Yu; Tay, B. K.; Sheeja, D.; Fu, Y. Q.; Miao, J. M.

    2004-02-01

    Currently, there is a strong drive to make micro-electro-mechanical system (MEMS) devices from higher performance materials such as diamond-like carbon or amorphous carbon (a-C) films, due to their excellent tribological properties, low-stiction (hydrophobic) surfaces, chemical inertness and high elastic modulus, compared to that of Si. The hydrogen free a-C films prepared, by Nanyang Technological University's (NTUs) patented filtered cathodic vacuum arc (FCVA) technique, at 100 eV exhibits high fraction of tetrahedral (sp 3 bonded) carbon atoms. These films exhibit relatively high hardness, stiffness and wear resistance in addition to low friction and stiction behaviour. However, the primary problem lies in the large intrinsic compressive stress induced during the deposition process. By making use of high substrate pulse bias, we have successfully produced low stress, thick a-C films. The films were then characterised using different equipments to evaluate the stress, microstructure and morphological roughness. Large area a-C membranes, of 2 mm×2 mm in size, have also been fabricated using the low stress, thick film deposited by the above method.

  9. Hydrogen absorption by Zr-1Nb alloy with TiNx film deposited by filtered cathodic vacuum arc

    NASA Astrophysics Data System (ADS)

    Kashkarov, E. B.; Nikitenkov, N. N.; Syrtanov, M. S.; Babihina, M. N.

    2016-02-01

    coating for Zr-2.5Nb alloy from hydrogenation. Dense TiNx films were prepared by filtered cathodic vacuum arc (CVA). Hydrogen absorption rate was calculated from the kinetic curves of hydrogen sorption at elevated temperature of the sample (T = 673 K) and pressure (P = 2 atm). Results revealed that TiNx films significantly reduced hydrogen absorption rate of Zr-2.5Nb.

  10. Model of the boundary layer of a vacuum-arc magnetic filter

    SciTech Connect

    Minotti, F.; Giuliani, L.; Grondona, D.; Della Torre, H.; Kelly, H.

    2013-03-21

    A model is developed to describe the electrostatic boundary layer in a positively biased magnetic filter in filtered arcs with low collisionality. The set of equations used includes the electron momentum equation, with an anomalous collision term due to micro-instabilities leading to Bohm diffusion, electron mass conservation, and Poisson equation. Analytical solutions are obtained, valid for the regimes of interest, leading to an explicit expression to determine the electron density current to the filter wall as a function of the potential of the filter and the ratio of electron density at the plasma to that at the filter wall. Using a set of planar and cylindrical probes it is verified experimentally that the mentioned ratio of electron densities remains reasonably constant for different magnetic field values and probe bias, which allows to obtain a closed expression for the current. Comparisons are made with the experimentally determined current collected at different sections of a positively biased straight filter.

  11. Ultrathin diamond-like carbon films deposited by filtered carbon vacuum arcs

    SciTech Connect

    Anders, Andre; Fong, Walton; Kulkarni, Ashok; Ryan, Francis W.; Bhatia, C. Singh

    2001-07-13

    Ultrathin (< 5 nm) hard carbon films are of great interest to the magnetic storage industry as the areal density approaches 100 Gbit/in{sup 2}. These films are used as overcoats to protect the magnetic layers on disk media and the active elements of the read-write slider. Tetrahedral amorphous carbon films can be produced by filtered cathodic arc deposition, but the films will only be accepted by the storage industry only if the ''macroparticle'' issue has been solved. Better plasma filters have been developed over recent years. Emphasis is put on the promising twist filter system - a compact, open structure that operates with pulsed arcs and high magnetic field. Based on corrosion tests it is shown that the macroparticle reduction by the twist filter is satisfactory for this demanding application, while plasma throughput is very high. Ultrathin hard carbon films have been synthesized using S-filter and twist filter systems. Film properties such as hardness, elastic modulus, wear, and corrosion resistance have been tested.

  12. Room temperature deposition of highly dense TiO2 thin films by filtered cathodic vacuum arc

    NASA Astrophysics Data System (ADS)

    Guillén, E.; Heras, I.; Rincón Llorente, G.; Lungwitz, F.; Alcon-Camas, M.; Escobar-Galindo, R.

    2015-08-01

    A systematic study of TiO2 films deposited by dc filtered cathodic vacuum arc (FCVA) was carried out by varying the deposition parameters in a reactive oxygen atmosphere. The influence of the oxygen partial pressure on film properties is analyzed. Composition was obtained by Rutherford backscattering spectroscopy (RBS) measurements, which also allow us to obtain the density of the films. Morphology of the samples was studied by scanning electron microscopy (SEM) and their optical properties by ellipsometry. Transparent, very dense and stoichiometric TiO2 films were obtained by FCVA at room temperature.

  13. Vacuum arc deposition devices

    SciTech Connect

    Boxman, R.L.; Zhitomirsky, V.N.

    2006-02-15

    The vacuum arc is a high-current, low-voltage electrical discharge which produces a plasma consisting of vaporized and ionized electrode material. In the most common cathodic arc deposition systems, the arc concentrates at minute cathode spots on the cathode surface and the plasma is emitted as a hypersonic jet, with some degree of contamination by molten droplets [known as macroparticles (MPs)] of the cathode material. In vacuum arc deposition systems, the location and motion of the cathode spots are confined to desired surfaces by an applied magnetic field and shields around undesired surfaces. Substrates are mounted on a holder so that they intercept some portion of the plasma jet. The substrate often provides for negative bias to control the energy of depositing ions and heating or cooling to control the substrate temperature. In some systems, a magnetic field is used to guide the plasma around an obstacle which blocks the MPs. These elements are integrated with a deposition chamber, cooling, vacuum gauges and pumps, and power supplies to produce a vacuum arc deposition system.

  14. Polycrystalline InN thin films prepared by ion-beam-assisted filtered cathodic vacuum arc technique

    NASA Astrophysics Data System (ADS)

    Ji, X. H.; Lau, S. P.

    2005-09-01

    We report on the fabrication of indium nitride (InN) thin films on silicon (1 0 0) substrates by radio frequency ion-beam-assisted filtered cathodic vacuum arc technique at low temperature. The effects of nitrogen ion energy on the structural properties of InN films have been investigated by X-ray diffraction and Raman spectroscopy. The InN films exhibit polycrystalline wurtzite structure. At nitrogen ion energy of 100 eV, the film shows preferred (0 0 0 2) orientation. The preferred orientation is changed to ( 1 0 1¯ 1) when the nitrogen ion energy is more than 100 eV. Three Raman-active optical phonons have been clearly identified and assigned to A 1(LO) at ˜588 cm -1, E22 at ˜490 cm -1 and A 1(TO) at ˜449 cm -1 of InN films, which confirmed the hexagonal structure of InN.

  15. Filtered cathodic arc source

    DOEpatents

    Falabella, Steven; Sanders, David M.

    1994-01-01

    A continuous, cathodic arc ion source coupled to a macro-particle filter capable of separation or elimination of macro-particles from the ion flux produced by cathodic arc discharge. The ion source employs an axial magnetic field on a cathode (target) having tapered sides to confine the arc, thereby providing high target material utilization. A bent magnetic field is used to guide the metal ions from the target to the part to be coated. The macro-particle filter consists of two straight solenoids, end to end, but placed at 45.degree. to one another, which prevents line-of-sight from the arc spot on the target to the parts to be coated, yet provides a path for ions and electrons to flow, and includes a series of baffles for trapping the macro-particles.

  16. Filtered cathodic arc source

    DOEpatents

    Falabella, S.; Sanders, D.M.

    1994-01-18

    A continuous, cathodic arc ion source coupled to a macro-particle filter capable of separation or elimination of macro-particles from the ion flux produced by cathodic arc discharge is described. The ion source employs an axial magnetic field on a cathode (target) having tapered sides to confine the arc, thereby providing high target material utilization. A bent magnetic field is used to guide the metal ions from the target to the part to be coated. The macro-particle filter consists of two straight solenoids, end to end, but placed at 45[degree] to one another, which prevents line-of-sight from the arc spot on the target to the parts to be coated, yet provides a path for ions and electrons to flow, and includes a series of baffles for trapping the macro-particles. 3 figures.

  17. Filtered cathodic arc source

    SciTech Connect

    Falabella, S.; Sanders, D.M.

    1992-12-31

    Disclosed is a continuous, cathodic arc ion source coupled to a macro-particle filter capable of separation or elimination of macro-particles from the ion flux produced by cathodic arc discharge. The ion source employs an axial magnetic field on a cathode (target) having tapered sides to confine the arc, thereby providing high target material utilization. A bent magnetic field is used to guide the metal ions from the target to the part to be coated. The macro-particle filter consists of two straight solenoids, end to end, but placed at 45{degrees} to one another, which prevents line-of-sight from the arc spot on the target to the parts to be coated, yet provides a path for ions and electrons to flow, and includes a series of baffles for trapping the macro-particles.

  18. Corrosive behavior of chromium carbide-based films formed on steel using a filtered cathodic vacuum arc system

    NASA Astrophysics Data System (ADS)

    Lin, Chun-Chun; Chang, Ku-Ling; Shih, Han C.

    2007-03-01

    The formation of chromium carbide-based hard-coatings on steels using a 90°-bend filtered cathodic vacuum arc (FCVA) has extensive industrial applications; such coatings are free of macroparticles and exhibit excellent characteristics. In this investigation, a working pressure of C 2H 2/Ar was adopted to synthesize amorphous chromium carbide film (a-C:Cr) and crystalline chromium carbide film (cryst-Cr 3C 2) from a Cr target (99.95%) at 500 °C under a substrate voltage of -50 V. The corrosion behavior of a-C:Cr coated on steel (a-C:Cr/steel) and cryst-Cr 3C 2 coated on steel (cryst-Cr 3C 2/steel) were compared in terms of open-circuit potentials (OCP) and polarization resistance ( Rp) in an aerated 3.5 wt% NaCl aqueous solution, as determined by electrochemical impedance spectroscopy (EIS). The XRD results indicated that the transformation of a-C:Cr to cryst-Cr 3C 2 is distinct as the working pressure declines from 1.2 × 10 -2 to 2.9 × 10 -3 Torr. The OCP of a-C:Cr/steel and cryst-Cr 3C 2/steel resemble each other and both assembly are nobler than uncoated steel. The Rp of the coatings exceeds that of the uncoated steel. The SEM observation and the EIS results demonstrate that the cryst-Cr 3C 2/steel more effectively isolates the defects than dose a-C:Cr/steel.

  19. Vacuum Gas Tungsten Arc Welding

    NASA Technical Reports Server (NTRS)

    Weeks, J. L.; Todd, D. T.; Wooten, J. R.

    1997-01-01

    A two-year program investigated vacuum gas tungsten arc welding (VGTAW) as a method to modify or improve the weldability of normally difficult-to-weld materials. After a vacuum chamber and GTAW power supply were modified, several difficult-to-weld materials were studied and key parameters developed. Finally, Incoloy 903 weld overlays were produced without microfissures.

  20. Recent advances in vacuum arc ion sources

    SciTech Connect

    Brown, I.G.; Anders, A.; Anders, S.; Dickinson, M.R.; MacGill, R.A.; Oks, E.M.

    1995-07-01

    Intense beams of metal ions can be formed from a vacuum arc ion source. Broadbeam extraction is convenient, and the time-averaged ion beam current delivered downstream can readily be in the tens of milliamperes range. The vacuum arc ion source has for these reasons found good application for metallurgical surface modification--it provides relatively simple and inexpensive access to high dose metal ion implantation. Several important source developments have been demonstrated recently, including very broad beam operation, macroparticle removal, charge state enhancement, and formation of gaseous beams. The authors have made a very broad beam source embodiment with beam formation electrodes 50 cm in diameter, producing a beam of width {approximately}35 cm for a nominal beam area of {approximately}1,000 cm{sup 2}, and a pulsed Ti beam current of about 7 A was formed at a mean ion energy of {approximately}100 keV. Separately, they`ve developed high efficiency macroparticle-removing magnetic filters and incorporated such a filter into a vacuum arc ion source so as to form macroparticle-free ion beams. Jointly with researchers at the High Current Electronics Institute at Tomsk, Russia, and the Gesellschaft fuer Schwerionenforschung at Darmstadt, Germany, they`ve developed a compact technique for increasing the charge states of ions produced in the vacuum arc plasma and thus providing a simple means of increasing the ion energy at fixed extractor voltage. Finally, operation with mixed metal and gaseous ion species has been demonstrated. Here, they briefly review the operation of vacuum marc ion sources and the typical beam and implantation parameters that can be obtained, and describe these source advances and their bearing on metal ion implantation applications.

  1. Duplex Al2O3/DLC Coating on 15SiCp/2024 Aluminum Matrix Composite Using Combined Microarc Oxidation and Filtered Cathodic Vacuum Arc Deposition

    NASA Astrophysics Data System (ADS)

    Xue, Wenbin; Tian, Hua; Du, Jiancheng; Hua, Ming; Zhang, Xu; Li, Yongliang

    2012-08-01

    Microarc oxidation (MAO) treatment produces a thick Al2O3 coating on the 15SiCp/2024 aluminum matrix composite. After pretreatment of Ti ion implantation, a thin diamond-like carbon film (DLC) was deposited on the top of polished Al2O3 coating by a pulsed filtered cathodic vacuum arc (FCVA) deposition system with a metal vapor vacuum arc (MEVVA) source. The morphology and tribological properties of the duplex Al2O3/DLC multiplayer coating were investigated by Raman spectroscopy, scanning electron microscopy (SEM) and SRV ball-on-disk friction tester. It is found that the duplex Al2O3/DLC coating had good adhesion and a low friction coefficient of less than 0.07. As compared to a single Al2O3 or DLC coating, the duplex Al2O3/DLC coating on aluminum matrix composite exhibited a better wear resistance against ZrO2 ball under dry sliding, because the Al2O3 coating as an intermediate layer improved load support for the top DLC coating on 15SiCp/2024 composite substrate, meanwhile the top DLC coating displayed low friction coefficient.

  2. Filters for cathodic arc plasmas

    DOEpatents

    Anders, Andre; MacGill, Robert A.; Bilek, Marcela M. M.; Brown, Ian G.

    2002-01-01

    Cathodic arc plasmas are contaminated with macroparticles. A variety of magnetic plasma filters has been used with various success in removing the macroparticles from the plasma. An open-architecture, bent solenoid filter, with additional field coils at the filter entrance and exit, improves macroparticle filtering. In particular, a double-bent filter that is twisted out of plane forms a very compact and efficient filter. The coil turns further have a flat cross-section to promote macroparticle reflection out of the filter volume. An output conditioning system formed of an expander coil, a straightener coil, and a homogenizer, may be used with the magnetic filter for expanding the filtered plasma beam to cover a larger area of the target. A cathodic arc plasma deposition system using this filter can be used for the deposition of ultrathin amorphous hard carbon (a-C) films for the magnetic storage industry.

  3. Filtered cathodic arc deposition apparatus and method

    DOEpatents

    Krauss, Alan R.

    1999-01-01

    A filtered cathodic arc deposition method and apparatus for the production of highly dense, wear resistant coatings which are free from macro particles. The filtered cathodic arc deposition apparatus includes a cross shaped vacuum chamber which houses a cathode target having an evaporable surface comprised of the coating material, means for generating a stream of plasma, means for generating a transverse magnetic field, and a macro particle deflector. The transverse magnetic field bends the generated stream of plasma in the direction of a substrate. Macro particles are effectively filtered from the stream of plasma by traveling, unaffected by the transverse magnetic field, along the initial path of the plasma stream to a macro particle deflector. The macro particle deflector has a preformed surface which deflects macro particles away from the substrate.

  4. Vacuum arc plasma mass separator

    NASA Astrophysics Data System (ADS)

    Paperny, V. L.; Krasov, V. I.; Lebedev, N. V.; Astrakchantsev, N. V.; Chernikch, A. A.

    2015-02-01

    The propagation of a metal plasma flow in a transport system with a curvilinear magnetic field was studied experimentally. The flow was generated by a pulsed vacuum arc discharge with a composite (W+Fe) cathode. The ion energy measurements at the transport system output showed that all ion components were accelerated up to equal energies per charge unit, about 150 eV and 320 eV in the outer and inner areas of the curved plasma flow, respectively. The spatial separation of the atoms of the cathode material was measured at the system output by x-ray fluorescence spectrometry. The ions of the lighter element (Fe) were concentrated in the inner part of the cathodic plasma flow deflected by the magnetic field while the distribution of the heavy element (W) was substantially shifted toward the outer area of the flow. The maximum mass separation efficiency reached 45, the effective value being 7.7. Such a system is promising for use in plasma technology for reprocessing spent nuclear fuel, namely for the separation of the heavy radioactive fission product from nuclear waste.

  5. Synthesis of graphene-like transparent conductive films on dielectric substrates using a modified filtered vacuum arc system

    NASA Astrophysics Data System (ADS)

    Lux, Helge; Siemroth, Peter; Sgarlata, Anna; Prosposito, Paolo; Schubert, Markus Andreas; Casalboni, Mauro; Schrader, Sigurd

    2015-05-01

    Here, we present a reliable process to deposit transparent conductive films on silicon oxide, quartz, and sapphire using a solid carbon source. This layer consists of partially ordered graphene flakes with a lateral dimension of about 5 nm. The process does not require any catalytic metal and exploits a high current arc evaporation (Φ-HCA) to homogeneously deposit a layer of carbon on heated substrates. A gas atmosphere consisting of Argon or Argon/Hydrogen blend acting as a buffer influences the morphology of the growing film. scanning tunneling microscopy, transmission electron microscopy, and Raman spectra were used for a thorough characterization of the samples in order to optimize the growth parameters. The best carbon layers have a surface resistance of 5.7 × 103 Ω◻ whereas the optical transparency of the coatings is 88% with an excellent homogeneity over areas of several cm2. Such results are compatible with most semiconductor fabrication processes and make this method very promising for various industrial applications.

  6. Synthesis of graphene-like transparent conductive films on dielectric substrates using a modified filtered vacuum arc system

    SciTech Connect

    Lux, Helge Schrader, Sigurd; Siemroth, Peter; Sgarlata, Anna; Prosposito, Paolo; Casalboni, Mauro; Schubert, Markus Andreas

    2015-05-21

    Here, we present a reliable process to deposit transparent conductive films on silicon oxide, quartz, and sapphire using a solid carbon source. This layer consists of partially ordered graphene flakes with a lateral dimension of about 5 nm. The process does not require any catalytic metal and exploits a high current arc evaporation (Φ-HCA) to homogeneously deposit a layer of carbon on heated substrates. A gas atmosphere consisting of Argon or Argon/Hydrogen blend acting as a buffer influences the morphology of the growing film. scanning tunneling microscopy, transmission electron microscopy, and Raman spectra were used for a thorough characterization of the samples in order to optimize the growth parameters. The best carbon layers have a surface resistance of 5.7 × 10{sup 3} Ω{sub ◻} whereas the optical transparency of the coatings is 88% with an excellent homogeneity over areas of several cm{sup 2}. Such results are compatible with most semiconductor fabrication processes and make this method very promising for various industrial applications.

  7. Metals purification by improved vacuum arc remelting

    DOEpatents

    Zanner, Frank J.; Williamson, Rodney L.; Smith, Mark F.

    1994-12-13

    The invention relates to improved apparatuses and methods for remelting metal alloys in furnaces, particularly consumable electrode vacuum arc furnaces. Excited reactive gas is injected into a stationary furnace arc zone, thus accelerating the reduction reactions which purify the metal being melted. Additionally, a cooled condensation surface is disposed within the furnace to reduce the partial pressure of water in the furnace, which also fosters the reduction reactions which result in a purer produced ingot. Methods and means are provided for maintaining the stationary arc zone, thereby reducing the opportunity for contaminants evaporated from the arc zone to be reintroduced into the produced ingot.

  8. Synthesis of Ti-doped DLC film on SS304 steels by Filtered Cathodic Vacuum Arc (FCVA) technique for tribological improvement

    NASA Astrophysics Data System (ADS)

    Bootkul, D.; Saenphinit, N.; Supsermpol, B.; Aramwit, C.; Intarasiri, S.

    2014-08-01

    Currently, stainless steels are widely used in various industrial applications due to their excellence in toughness and corrosion resistance. But their resistance to wear needs to be improved for appropriate use in tribological applications. The Filtered Cathodic Vacuum Arc (FCVA) is a superior technique for forming a high-density film structure of amorphous carbon, especially for a tetrahedral amorphous carbon (ta-C) type, because it can produce a plasma of highly energetic ions that can penetrate into a growing coating, resulting in densification of the film. However, this technique tends to generate high internal stress, due to serious accumulation of energy in the film structure that then leads to film delamination. In general, there are numerous solutions that have been used to reduce the internal stress. DLC with various additive elements such as Ti, Cr or W as strong-carbide-forming (SCF) metals is one of the popular methods to provide attractive combinations of properties of wear resistance and film adhesion as well as reducing the internal stress. The present study was focused on investigation of titanium-doped DLC coating on SS304 steel, mainly for adhesion improvement in optimizing for tribological applications. The synthesized films were formed by the FCVA technique at normal substrate temperature. In the experimental set-up, the films were produced by mixing the titanium and carbon ions generated by dual cathode plasma source operating in synchronous pulsed mode. Their compositions were adjusted by varying the relative duration of the pulse length from each cathode. Titanium doping concentration was varied from pure DLC deposition as the control group to titanium and graphite trigger pulses ratios of 1:16, 1:12, 1:10, 1:8 and 1:4, as the Ti-doped DLC group. The results showed that by increasing titanium trigger pulses ratio from 1:16, 1:12, 1:10 and 1:8, respectively, the film adhesion was increased while the wear rate did not change significantly as

  9. Ion charge state fluctuations in vacuum arcs

    SciTech Connect

    Anders, Andre; Fukuda, Kentaro; Yushkov, Georgy Yu

    2004-12-14

    Ion charge state distributions of cathodic vacuum arcs have been investigated using a modified time-of-flight method. Experiments have been done in double gate and burst gate mode, allowing us to study both systematic and stochastic changes of ion charge state distributions with a time resolution down to 100 ns. In the double gate method, two ion charge spectra are recorded with a well-defined time between measurements. The elements Mg, Bi, and Cu were selected for tests, representing metals of very different properties. For all elements it was found that large stochastic changes occur even at the limit of resolution. This is in agreement with fast changing arc properties observed elsewhere. Correlation of results for short times between measurements was found but it is argued that this is due to velocity mixing rather than due to cathode processes. The burst mode of time-of-flight measurements revealed the systematic time evolution of ion charge states within a single arc discharge, as opposed to previous measurements that relied on data averaged over many pulses. The technique shows the decay of the mean ion charge state as well as the level of material-dependent fluctuations.

  10. A filtered cathodic arc deposition apparatus and method

    SciTech Connect

    Krauss, Alan R.

    1997-12-01

    A filtered cathodic arc deposition method and apparatus are described for the production of highly dense, wear resistant coatings which are free from macro particles. The filtered cathodic arc deposition apparatus includes a cross shaped vacuum chamber which houses a cathode target having an evaporable surface comprised of the coating material, means for generating a stream of plasma, means for generating a transverse magnetic field, and a macro particle deflector. The transverse magnetic field bends the generated stream of plasma in the direction of a substrate. Macro particles are effectively filtered from the stream of plasma by traveling, unaffected by the transverse magnetic field, along the initial path of the plasma stream to a macro particle deflector. The macro particle deflector has a preformed surface which deflects macro particles away from the substrate.

  11. Long-Lived Electrode For Arc Welding In Vacuum

    NASA Technical Reports Server (NTRS)

    Weeks, Jack L.; Poorman, Richard M.

    1992-01-01

    Improved electrode for gas/tungsten arc welding in vacuum essentially hollow cylinder along which inert gas flows. Interior of cylinder provides large surface area for emission of electrons to form welding arc. Flow of pressurized inert gas inhibits vaporization of hot electrode material. Both features combine to reduce erosion of electrode. Electrode lasts considerably longer in vacuum than conventional electrode.

  12. Upgraded vacuum arc ion source for metal ion implantation

    SciTech Connect

    Nikolaev, A. G.; Oks, E. M.; Savkin, K. P.; Yushkov, G. Yu.; Brown, I. G.

    2012-02-15

    Vacuum arc ion sources have been made and used by a large number of research groups around the world over the past twenty years. The first generation of vacuum arc ion sources (dubbed ''Mevva,'' for metal vapor vacuum arc) was developed at Lawrence Berkeley National Laboratory in the 1980s. This paper considers the design, performance parameters, and some applications of a new modified version of this kind of source which we have called Mevva-V.Ru. The source produces broad beams of metal ions at an extraction voltage of up to 60 kV and a time-averaged ion beam current in the milliampere range. Here, we describe the Mevva-V.Ru vacuum arc ion source that we have developed at Tomsk and summarize its beam characteristics along with some of the applications to which we have put it. We also describe the source performance using compound cathodes.

  13. Ion flux from the cathode region of a vacuum arc

    SciTech Connect

    Kutzner, J. )

    1989-10-01

    This paper reviews the properties of the ion flux generated in the vacuum arc. The structure and distribution of mass erosion from individual cathode spots and the characteristics of current carriers from the cathode region at moderate arc currents are described. The main theories concerning ion acceleration in cathode spots are discussed.

  14. Stabilization of vacuum arc remelting of steels and alloys

    NASA Astrophysics Data System (ADS)

    Belyanchikov, L. N.

    2012-12-01

    The main cause of the electrode mass melting rate oscillations during vacuum arc remelting (VAR) of steels and alloys is shown to be the displacement of an arc into zones with different metallic vapor pressures. For the remelting process to be stabilized, the arc space length should be controlled as a function of the electrode melting rate and the shrinkage defects in cast electrodes should be removed by high-temperature gasostatic treatment.

  15. Interruption Phenomenon in Intermediate-Frequency Vacuum Arc

    NASA Astrophysics Data System (ADS)

    Jiang, Yuan; Wu, Jianwen

    2016-03-01

    In the condition of the 3 mm gap, experiments for 360 Hz intermediate-frequency vacuum arc are carried out in interrupters with the diameters being 41 mm and with the contact materials being CuCr50 and Cu-W-WC alloy respectively. The results indicate that the contacts material is closely related to the breaking capacity of the vacuum interrupters and characteristics of an intermediate-frequency vacuum arc. For contacts with the same diameter, the breaking capacity of CuCr50 is better than that of Cu-W-WC. When the current fails to be interrupted, the arcs overflow the gap and present irregular performances in the first half wave. Consequently a voltage spike appears. More macroscopic metal droplets can be seen in the arc column between CuCr50 contacts because of the lower melting point. It is observed that the droplet emission is much more severe during arc reignition than that in the first half wave. It is much more conspicuous that the high frequency arc voltage noises appear in Cu-W-WC contacts when the vacuum arcs reignite, for higher temperature and stronger electronic emission ability of Cu-W-WC contacts. supported by National Natural Science Foundation of China (No. 51377007), Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20131102130006), and Fundamental Research Funds for the Central Universities of China

  16. Optimal Estimation of Electrode Gap During Vacuum ARC Remelting

    SciTech Connect

    WILLIAMSON,RODNEY L.; BEAMAN,J.J.; HYSINGER,C.L.; MELGAARD,DAVID K.

    2000-06-14

    Electrode gap is a very important parameter for the safe and successful control of vacuum arc remelting (VAR), a process used extensively throughout the specialty metals industry for the production of nickel base alloys and aerospace titanium alloys. Optimal estimation theory has been applied to the problem of estimating electrode gap and a filter has been developed based on a model of the gap dynamics. Taking into account the uncertainty in the process inputs and noise in the measured process variables, the filter provides corrected estimates of electrode gap that have error variances two-to-three orders of magnitude less than estimates based solely on measurements for the sample times of interest. This is demonstrated through simulations and confined by tests on the VAR furnace at Sandia National Laboratories. Furthermore, the estimates are inherently stable against common process disturbances that affect electrode gap measurement and melting rate. This is not only important for preventing (or minimizing) the formation of solidification defects during VAR of nickel base alloys, but of importance for high current processing of titanium alloys where loss of gap control can lead to a catastrophic, explosive failure of the process.

  17. Fluoride coatings for vacuum ultraviolet reflection filters.

    PubMed

    Guo, Chun; Kong, Mingdong; Lin, Dawei; Li, Bincheng

    2015-12-10

    LaF3/MgF2 reflection filters with a high spectral-discrimination capacity of the atomic-oxygen lines at 130.4 and 135.6 nm, which were employed in vacuum ultraviolet imagers, were prepared by molybdenum-boat thermal evaporation. The optical properties of reflection filters were characterized by a high-precision vacuum ultraviolet spectrophotometer. The vulnerability of the filter's microstructures to environmental contamination and the recovery of the optical properties of the stored filter samples with ultraviolet ozone cleaning were experimentally demonstrated. For reflection filters with the optimized nonquarter-wave multilayer structures, the reflectance ratios R135.6 nm/R130.4 nm of 92.7 and 20.6 were achieved for 7° and 45° angles of incidence, respectively. On the contrary, R135.6 nm/R130.4 nm ratio of 12.4 was obtained for a reflection filter with a standard π-stack multilayer structure with H/L=1/4 at 7° AOI. PMID:26836877

  18. Metal vapor vacuum arc switching - Applications and results. [for launchers

    NASA Technical Reports Server (NTRS)

    Cope, D.; Mongeau, P.

    1984-01-01

    The design of metal-vapor vacuum-arc switches (MVSs) for electromagnetic launchers is discussed, and preliminary results are presented for an experimental MVS. The general principles of triggered-vacuum-gap and vacuum-interrupter MVSs are reviewed, and the requirements of electromagnetic launchers are analyzed. High-current design problems such as electrode erosion, current sharing, magnetic effects, and thermal effects are examined. The experimental MVS employs stainless-steel flanges, a glass vacuum vessel, an adjustable electrode gap, autonomous internal magnetic-field coils, and a tungsten-pin trigger assembly. Some results from tests without magnetic augmentation are presented graphically.

  19. A theoretical analysis of vacuum arc thruster performance

    NASA Technical Reports Server (NTRS)

    Polk, James E.; Sekerak, Mike; Ziemer, John K.; Schein, Jochen; Qi, Niansheng; Binder, Robert; Anders, Andre

    2001-01-01

    In vacuum arc discharges the current is conducted through vapor evaporated from the cathode surface. In these devices very dense, highly ionized plasmas can be created from any metallic or conducting solid used as the cathode. This paper describes theoretical models of performance for several thruster configurations which use vacuum arc plasma sources. This analysis suggests that thrusters using vacuum arc sources can be operated efficiently with a range of propellant options that gives great flexibility in specific impulse. In addition, the efficiency of plasma production in these devices appears to be largely independent of scale because the metal vapor is ionized within a few microns of the cathode electron emission sites, so this approach is well-suited for micropropulsion.

  20. Measurements of the total ion flux from vacuum arc cathodespots

    SciTech Connect

    Anders, Andre; Oks, Efim M.; Yushkov, Georgy Yu; Savkin,Konstantin P.; Brown, Ian G.; Nikolaev, Alexey G.

    2005-05-25

    The ion flux from vacuum arc cathode spots was measured in two vacuum arc systems. The first was a vacuum arc ion source which was modified allowing us to collect ions from arc plasma streaming through an anode mesh. The second discharge system essentially consisted of a cathode placed near the center of a spherically shaped mesh anode. In both systems, the ion current streaming through the mesh was measured by a biased collector. The mesh anodes had geometric transmittances of 60 percent and 72 percent, respectively, which were taken into account as correction factors. The ion current from different cathode materials was measured for 50-500 A of arc current. The ion current normalized by the arc current was found to depend on the cathode material, with values in the range from 5 percent to 19 percent. The normalized ion current is generally greater for elements of low cohesive energy. The ion erosion rates were determined from values of ion current and ion charge states, which were previously measured in the same ion source. The absolute ion erosion rates range from 16-173 mu g/C.

  1. Enhanced vacuum arc vapor deposition electrode

    NASA Technical Reports Server (NTRS)

    Weeks, Jack L. (Inventor); Todd, Douglas M. (Inventor)

    1999-01-01

    A process for forming a thin metal coating on a substrate wherein a gas stream heated by an electrical current impinges on a metallic target in a vacuum chamber to form a molten pool of the metal and then vaporize a portion of the pool, with the source of the heated gas stream being on one side of the target and the substrate being on the other side of the target such that most of the metallic vapor from the target is directed at the substrate.

  2. Measurement of total ion current from vacuum arc plasmasources

    SciTech Connect

    Oks, Efim M.; Savkin, Konstantin P.; Yushkov, Georgiu Yu.; Nikolaev, Alexey G.; Anders, A.; Brown, Ian G.

    2005-07-01

    The total ion current generated by a vacuum arc plasma source was measured. The discharge system investigated allowed ion collection from the arc plasma streaming through a hemispherical mesh anode with geometric transparency of 72 percent. A range of different cathode materials was investigated, and the arc current was varied over the range 50-500 A. We find that the normalized ion current (Iion/Iarc) depends on the cathode material, with values in the range from 5 percent to 19 percent and generally greater for elements of low cohesive energy. The application of a strong axial magnetic field in the cathode and arc region leads to increased normalized ion current, but only by virtue of enhanced ion charge states formed in a strong magnetic field.

  3. Direct-current cathodic vacuum arc system with magnetic-field mechanism for plasma stabilization

    SciTech Connect

    Zhang, H.-S.; Komvopoulos, K.

    2008-07-15

    Filtered cathodic vacuum arc (FCVA) deposition is characterized by plasma beam directionality, plasma energy adjustment via substrate biasing, macroparticle filtering, and independent substrate temperature control. Between the two modes of FCVA deposition, namely, direct current (dc) and pulsed arc, the dc mode yields higher deposition rates than the pulsed mode. However, maintaining the dc arc discharge is challenging because of its inherent plasma instabilities. A system generating a special configuration of magnetic field that stabilizes the dc arc discharge during film deposition is presented. This magnetic field is also part of the out-of-plane magnetic filter used to focus the plasma beam and prevent macroparticle film contamination. The efficiency of the plasma-stabilizing magnetic-field mechanism is demonstrated by the deposition of amorphous carbon (a-C) films exhibiting significantly high hardness and tetrahedral carbon hybridization (sp{sup 3}) contents higher than 70%. Such high-quality films cannot be produced by dc arc deposition without the plasma-stabilizing mechanism presented in this study.

  4. Direct-current cathodic vacuum arc system with magnetic-field mechanism for plasma stabilization.

    PubMed

    Zhang, H-S; Komvopoulos, K

    2008-07-01

    Filtered cathodic vacuum arc (FCVA) deposition is characterized by plasma beam directionality, plasma energy adjustment via substrate biasing, macroparticle filtering, and independent substrate temperature control. Between the two modes of FCVA deposition, namely, direct current (dc) and pulsed arc, the dc mode yields higher deposition rates than the pulsed mode. However, maintaining the dc arc discharge is challenging because of its inherent plasma instabilities. A system generating a special configuration of magnetic field that stabilizes the dc arc discharge during film deposition is presented. This magnetic field is also part of the out-of-plane magnetic filter used to focus the plasma beam and prevent macroparticle film contamination. The efficiency of the plasma-stabilizing magnetic-field mechanism is demonstrated by the deposition of amorphous carbon (a-C) films exhibiting significantly high hardness and tetrahedral carbon hybridization (sp3) contents higher than 70%. Such high-quality films cannot be produced by dc arc deposition without the plasma-stabilizing mechanism presented in this study. PMID:18681714

  5. Arc distribution during the vacuum arc remelting of Ti-6Al-4V

    SciTech Connect

    Woodside, Charles Rigel; King, Paul E.; Nordlund, Chris

    2013-01-01

    Currently, the temporal distribution of electric arcs across the ingot during vacuum arc remelting (VAR) is not a known or monitored process parameter. Previous studies indicate that the distribution of arcs can be neither diffuse nor axisymmetric about the center of the furnace. Correct accounting for the heat flux, electric current flux, and mass flux into the ingot is critical to achieving realistic solidification models of the VAR process. The National Energy Technology Laboratory has developed an arc position measurement system capable of locating arcs and determining the arc distribution within an industrial VAR furnace. The system is based on noninvasive magnetic field measurements and a VAR specific form of the Biot–Savart law. The system was installed on a coaxial industrial VAR furnace at ATI Albany Operations in Albany, OR. This article reports on the different arc distributions observed during production of Ti-6Al-4V. It is shown that several characteristic arc distribution modes can develop. This behavior is not apparent in the existing signals used to control the furnace, indicating the measurement system is providing new information. It is also shown that the different arc distribution modes observed may impact local solidification times, particularly at the side wall.

  6. Arc Distribution During the Vacuum Arc Remelting of Ti-6Al-4V

    NASA Astrophysics Data System (ADS)

    Woodside, C. Rigel; King, Paul E.; Nordlund, Chris

    2013-02-01

    Currently, the temporal distribution of electric arcs across the ingot during vacuum arc remelting (VAR) is not a known or monitored process parameter. Previous studies indicate that the distribution of arcs can be neither diffuse nor axisymmetric about the center of the furnace. Correct accounting for the heat flux, electric current flux, and mass flux into the ingot is critical to achieving realistic solidification models of the VAR process. The National Energy Technology Laboratory has developed an arc position measurement system capable of locating arcs and determining the arc distribution within an industrial VAR furnace. The system is based on noninvasive magnetic field measurements and a VAR specific form of the Biot-Savart law. The system was installed on a coaxial industrial VAR furnace at ATI Albany Operations in Albany, OR. This article reports on the different arc distributions observed during production of Ti-6Al-4V. It is shown that several characteristic arc distribution modes can develop. This behavior is not apparent in the existing signals used to control the furnace, indicating the measurement system is providing new information. It is also shown that the different arc distribution modes observed may impact local solidification times, particularly at the side wall.

  7. 49. EASTERN VIEW OF DORROLIVER VACUUM DRUM FILTER ASSEMBLY IN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    49. EASTERN VIEW OF DORR-OLIVER VACUUM DRUM FILTER ASSEMBLY IN THE FILTER CAKE HOUSE. - U.S. Steel Duquesne Works, Basic Oxygen Steelmaking Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  8. Multiply stripped ion generation in the metal vapor vacuum arc

    SciTech Connect

    Brown, I.G.; Feinberg, B.; Galvin, J.E.

    1986-08-01

    We consider the charge state distribution of ions produced in the metal vapor vacuum arc plasma discharge. A high current metal ion source, the MEVVA ion source, in which the ion beam is extracted from a metal vapor vacuum arc plasma, has been used to obtain the spectra of multiple charged ions produced within the cathode spots. A computer calculation of the charge state distribution that evolves within the spots via stepwide ionization of ions by electron impact provides a theoretical basis for comparison of the data. In this paper we report on the measured charge state distributions for a wide variety of metallic species and compare these results with the predictions of this theory. 55 refs.

  9. Vacuum arc plasma thrusters with inductive energy storage driver

    NASA Technical Reports Server (NTRS)

    Schein, Jochen (Inventor); Gerhan, Andrew N. (Inventor); Woo, Robyn L. (Inventor); Au, Michael Y. (Inventor); Krishnan, Mahadevan (Inventor)

    2004-01-01

    An apparatus for producing a vacuum arc plasma source device using a low mass, compact inductive energy storage circuit powered by a low voltage DC supply acts as a vacuum arc plasma thruster. An inductor is charged through a switch, subsequently the switch is opened and a voltage spike of Ldi/dt is produced initiating plasma across a resistive path separating anode and cathode. The plasma is subsequently maintained by energy stored in the inductor. Plasma is produced from cathode material, which allows for any electrically conductive material to be used. A planar structure, a tubular structure, and a coaxial structure allow for consumption of cathode material feed and thereby long lifetime of the thruster for long durations of time.

  10. Properties of vacuum arc deposited amorphous hard carbon films

    SciTech Connect

    Anders, S.; Anders, A.; Raoux, S.

    1995-04-01

    Amorphous hard carbon films formed by vacuum arc deposition are hydrogen-free, dense, and very hard. The properties of amorphous hard carbon films depend strongly on the energy of the incident ions. A technique which is called Plasma Immersion Ion Implantation can be applied to vacuum arc deposition of amorphous hard carbon films to influence the ion energy. The authors have studied the influence of the ion energy on the elastic modulus determined by an ultrasonic method, and have measured the optical gap for films with the highest sp{sup 3} content they have obtained so far with this deposition technique. The results show an elastic modulus close to that of diamond, and an optical gap of 2.1 eV which is much greater than for amorphous hard carbon films deposited by other techniques.

  11. High separative power vacuum arc centrifuge (HSP-VAC)

    SciTech Connect

    Qi, Niansheng; Krishnan, M.

    1997-12-01

    The reliability of supply of stable isotopes needed in medicine and science has been a problem for decades. Among the many sources of enriched stable isotopes are the Calutrons at Oak Ridge National Laboratory, ICONS of Cambridge Isotopes Limited, and reactors such as at Atomic Energy of Canada Ltd. and elsewhere. Alameda Applied Sciences Corporation (AASC) staff have spearheaded the development of a new type of isotope separator, dubbed the Vacuum Arc Centrifuge (VAC). This effort dates to the 1980s under National Science Foundation sponsorship at Yale, the early 1990s under a U.S. Department of Energy grant, and more recently, under AASC internal funding. The VAC consists of a vacuum arc discharge between a metal cathode (containing the substances to be separated) and a mesh anode across a small gap.

  12. Investigation of plasma flow in vacuum arc with hot cathode

    NASA Astrophysics Data System (ADS)

    Amirov, R.; Vorona, N.; Gavrikov, A.; Lizyakin, G.; Polistchook, V.; Samoylov, I.; Smirnov, V.; Usmanov, R.; Yartsev, I.

    2014-11-01

    One of the crucial problems which appear under development of plasma technology processing of spent nuclear fuel (SNF) is the design of plasma source. The plasma source must use solid SNF as a raw material. This article is devoted to experimental study of vacuum arc with hot cathode made of gadolinium that may consider as the simple model of SNF. This vacuum discharge was investigated in wide range of parameters. During the experiments arc current and voltage, cathode temperature, and heat flux to the cathode were measured. The data on plasma spectrum and electron temperature were obtained. It was shown that external heating of the cathode allows change significantly the main parameters of plasma. It was established by spectral and probe methods that plasma jet in studied discharge may completely consist of single charged ions.

  13. Note: Triggering behavior of a vacuum arc plasma source

    NASA Astrophysics Data System (ADS)

    Lan, C. H.; Long, J. D.; Zheng, L.; Dong, P.; Yang, Z.; Li, J.; Wang, T.; He, J. L.

    2016-08-01

    Axial symmetry of discharge is very important for application of vacuum arc plasma. It is discovered that the triggering method is a significant factor that would influence the symmetry of arc discharge at the final stable stage. Using high-speed multiframe photography, the transition processes from cathode-trigger discharge to cathode-anode discharge were observed. It is shown that the performances of the two triggering methods investigated are quite different. Arc discharge triggered by independent electric source can be stabilized at the center of anode grid, but it is difficult to achieve such good symmetry through resistance triggering. It is also found that the triggering process is highly correlated to the behavior of emitted electrons.

  14. Note: Triggering behavior of a vacuum arc plasma source.

    PubMed

    Lan, C H; Long, J D; Zheng, L; Dong, P; Yang, Z; Li, J; Wang, T; He, J L

    2016-08-01

    Axial symmetry of discharge is very important for application of vacuum arc plasma. It is discovered that the triggering method is a significant factor that would influence the symmetry of arc discharge at the final stable stage. Using high-speed multiframe photography, the transition processes from cathode-trigger discharge to cathode-anode discharge were observed. It is shown that the performances of the two triggering methods investigated are quite different. Arc discharge triggered by independent electric source can be stabilized at the center of anode grid, but it is difficult to achieve such good symmetry through resistance triggering. It is also found that the triggering process is highly correlated to the behavior of emitted electrons. PMID:27587176

  15. Measurement of total ion flux in vacuum Arc discharges

    SciTech Connect

    Anders, Andre; Oks, Efim M.; Yushkov, Georgy Yu.; Brown, Ian G.

    2004-04-12

    A vacuum arc ion source was modified allowing us to collections from arc plasma streaming through an anode mesh. The mesh had ageometric transmittance of 60 percent, which was taken into account as acorrection factor. The ion current from twenty-two cathode materials wasmeasured at an arc current of 100 A. The ion current normalized by thearc current was found to depend on the cathode material, with valuesinthe range from 5 percent to 11 percent. The normalized ion current isgenerally greater for light elements than for heavy elements. The ionerosion rates were determined fromvalues of ion currentand ion chargestates, which were previously measured in the same experimental system.The ion erosion rates range from 12-94 mu g/C.

  16. An interchangeable-cathode vacuum arc plasma source

    SciTech Connect

    Olson, David K.; Peterson, Bryan G.; Hart, Grant W.

    2010-01-15

    A simplified vacuum arc design [based on metal vapor vacuum arc (MeVVA) concepts] is employed as a plasma source for a study of a {sup 7}Be non-neutral plasma. The design includes a mechanism for interchanging the cathode source. Testing of the plasma source showed that it is capable of producing on the order of 10{sup 12} charges at confinable energies using a boron-carbide disk as the cathode target. The design is simplified from typical designs for lower energy and lower density applications by using only the trigger spark rather than the full vacuum arc in high current ion beam designs. The interchangeability of the cathode design gives the source the ability to replace only the source sample, simplifying use of radioactive materials in the plasma source. The sample can also be replaced with a completely different conductive material. The design can be easily modified for use in other plasma confinement or full MeVVA applications.

  17. Vacuum Compatibility of Flux-Core Arc Welding (FCAW)

    NASA Astrophysics Data System (ADS)

    Arose, Dana; Denault, Martin; Jurcznski, Stephan

    2010-11-01

    Typically, vacuum chambers are welded together using gas tungsten arc welding (GTAW) or gas metal arc welding (GMAW). This is demonstrated in the vacuum chamber of Princeton Plasma Physics Lab's (PPPL) National Spherical Torus Experiment (NSTX). These processes are slow and apply excess heat to the base metal, which may cause the vacuum chamber to deform beyond designed tolerance. Flux cored arc welding (FCAW) avoids these problems, but may produce an unacceptable amount of outgasing due to the flux shielding. We believe impurities due to outgasing from FCAW will not greatly exceed those found in GTAW and GMAW welding. To test this theory, samples welded together using all three welding processes will be made and baked in a residual gas analyzer (RGA). The GTAW and GMAW welds will be tested to establish a metric for permissible outgasing. By testing samples from all three processes we hope to demonstrate that FCAW does not significantly outgas, and is therefore a viable alternative to GTAW and GMAW. Results from observations will be presented.

  18. High current vacuum arc ion source for heavy ion fusion

    SciTech Connect

    Qi, N.; Schein, J.; Gensler, S.; Prasad, R.R.; Krishnan, M.; Brown, I.

    1999-07-01

    Heavy Ion fusion (HIF) is one of the approaches for the controlled thermonuclear power production. A source of heavy ions with charge states 1+ to 2+, in {approximately}0.5 A current beams with {approximately}20 {micro}s pulse widths and {approximately}10 Hz repetition rates are required. Thermionic sources have been the workhorse for the HIF program to date, but suffer from sloe turn-on, heating problems for large areas, are limited to low (contact) ionization potential elements and offer relatively low ion fluxes with a charge state limited to 1+. Gas injection sources suffer from partial ionization and deleterious neutral gas effects. The above shortcomings of the thermionic ion sources can be overcome by a vacuum arc ion source. The vacuum arc ion source is a good candidate for HIF applications. It is capable of providing ions of various elements and different charge states, in short and long pulse bursts, with low emittance and high beam currents. Under a Phase-I STTR from DOE, the feasibility of the vacuum arc ion source for the HIF applications is investigated. An existing ion source at LBNL was modified to produce {approximately}0.5 A, {approximately}60 keV Gd (A{approximately}158) ion beams. The experimental effort concentrated on beam noise reduction, pulse-to-pulse reproducibility and achieving low beam emittance at 0.5 A ion current level. Details of the source development will be reported.

  19. Vacuum Arc Ion Sources: Recent Developments and Applications

    SciTech Connect

    Brown, Ian; Oks, Efim

    2005-05-01

    The vacuum arc ion source has evolved over the past twenty years into a standard laboratory tool for the production of high current beams of metal ions, and is now used in a number of different embodiments at many laboratories around the world. The primary application of this kind of source has evolved to be ion implantation for material surface modification. Another important use is for injection of high current beams of heavy metal ions into the front ends of particle accelerators, and much excellent work has been carried out in recent years in optimizing the source for reliable accelerator application. The source also provides a valuable tool for the investigation of the fundamental plasma physics of vacuum arc plasma discharges. As the use of the source has grown and diversified, at the same time the ion source performance and operational characteristics have been improved in a variety of different ways also. Here we review the growth and status of vacuum arc ion sources around the world, and summarize some of the applications for which the sources have been used.

  20. Arc distribution and motion during the vacuum arc remelting process as detected with a magnetostatic approach

    NASA Astrophysics Data System (ADS)

    Woodside, Rigel

    Currently, the temporal arc distribution across the ingot during the vacuum arc remelting (VAR) process is not a known or monitored parameter. It is has previously been shown that arcs can spatially constrict during VAR, and this constriction can lead to undesired defects in the material. Additionally, correct accounting for the heat flux, electric current flux, and mass flux into the ingot are critical to achieving realistic solidification models of the VAR process. An arc position measurement system capable of locating slow moving arcs and determining the arc distribution within an industrial VAR furnace was developed. The system is based on non-invasive magnetic field measurements and VAR specific forms of the magnetostatic Biot-Savart Law. Electromagnetic finite element modeling assists the analysis. The measurement system was installed on an industrial VAR furnace at the ATI facility in Albany, OR. Data were taken during the commercial production of titanium alloy. Although more arcs were present than could be resolved with the number of sensors applied, overall arc distribution shifts were detected. Arc distribution and motion during the final production of Ti-6Al-4V were examined. It is shown that several characteristic arc distribution modes can develop. This behavior was not apparent in the existing signals used to control the furnace, indicating the measurement system provides new information. Finally, a solidification model was used to assess the potential impact of the different arc distribution modes. It is shown the magnetohydrodynamic stirring patterns in the molten pool are affected, which results in localized variations in solidification times in particular at the side wall.

  1. The stationary vacuum arc on non-thermionic hot cathode

    NASA Astrophysics Data System (ADS)

    Amirov, R. Kh; Antonov, N. N.; Vorona, N. A.; Gavrikov, A. V.; Liziakin, G. D.; Polistchook, V. P.; Samoylov, I. S.; Smirnov, V. P.; Usmanov, R. A.; Yartsev, I. M.

    2015-11-01

    Experimental study of vacuum arc with distributed spot on plumbum cathode at temperatures 1.25-1.45 kK has been presented. At these conditions current density of thermionic emission from cathode was less than 1 μA/cm2, while the mean current density on the cathode was about 10 A/cm2. Plumbum was placed in heat-insulated crucible (cathode) with external diameter 25 mm. Electron-beam heater was situated under the crucible. Arc current was changed in the range 20-70 A, arc voltage was about 15 V. The studied arc is characterized by the absence of the random voltage fluctuations; the micro particles of cathode erosion products were observed only in transition regimes. Spectral data of plasma radiation and values of the heat flow from plasma to cathode were obtained. It has been experimentally established that the evaporation rate in arc approximately two times less than without discharge. The average charge of plumbum particles in the cathode jet was in range 0.2-0.3e. Comparison of the characteristics of studied discharge on thermionic gadolinium cathode and non-thermionic cathodes was fulfilled. One can assume that ions provide the charge transfer on the cathode in the studied discharge.

  2. A review of anode phenomena in vacuum arces

    SciTech Connect

    Miller, H.C.

    1988-09-01

    This report discusses arc modes at the anode, experimental results pertinent to anode phenomena, and theoretical explanations of anode phenomena. The dominant mechanism controlling the formation of an anode spot appears to depend upon the electrode geometry, the electrode material, and the current waveforms of the particular vacuum arc being considered. In specific experimental conditions, either magnetic constriction in the gap plasma or gross anode melting or local anode evaporation can trigger the transition. However, the most probable explanation of anode spot formation is a combination theory, which considers magnetic constriction in the plasma together with the fluxes of material from the anode and cathode as well as the thermal, electrical, and geometric effects of the anode in analyzing the behavior of the anode and the nearby plasma. 88 refs., 6 figs., 8 tabs.

  3. Predicting ion charge state distributions of vacuum arc plasmas

    SciTech Connect

    Anders, A.; Schulke, T.

    1996-04-01

    Multiply charged ions are present in vacuum arc plasmas. The ions are produced at cathode spots, and their charge state distributions (CSDs) depend on the cathode material but only little on the arc current or other parameters as long as the current is relatively low and the anode is not actively involved in the plasma production. There are experimental data of ion CSDs available in the literature for 50 different cathode materials. The CSDs can be calculated based on the assumption that thermodynamic equilibrium is valid in the vicinity of the cathode spot, and the equilibrium CSDs `freeze` at a certain distance from the cathode spot (transition to a non-equilibrium plasma). Plasma temperatures and densities at the `freezing points` have been calculated, and, based on the existence of characteristic groups of elements in the Periodic Table, predictions of CSDs can be made for metallic elements which have not yet been used as cathode materials.

  4. The electrical properties of coating obtained by vacuum arc deposition

    NASA Astrophysics Data System (ADS)

    Novikov, V. Yu.; Goncharov, I. Yu.; Zakhvalinskii, V. S.; Kolpakov, A. Y.; Ivanov, M. B.; Kolesnikov, D. A.

    This paper investigates the electrical properties of the coating based on Ti-C-B system. The coating was obtained by vacuum-arc method by spraying of multi compound cathode prepared by reactive hot pressing of Ti, carbon black and amorphous B powder mixture. The electrical conductivity of the coating was measured in temperature range of 10-320 K which was about σ = 4.8 · 103 Ω-1 cm-1 in the entire temperature range. The carrier concentration measured was about n = 1 · 1022 cm-3. The charge carriers' mobility varies between 10 and -7 and changes sign at temperature about T = 225 K.

  5. Vacuum arc ion source for heavy ion fusion

    SciTech Connect

    Liu, F.; Qi, N.; Gensler, S.; Prasad, R.R.; Krishnan, M.; Brown, I.G.

    1998-02-01

    Heavy ion fusion is one approach to the problem of controlled thermonuclear power production, in which a small DT target is bombarded by an intense flux of heavy ions and compressed to fusion temperatures. There is a need in present HIF research and development for a reliable ion source for the production of heavy ion beams with low emittance, low beam noise, ion charge states Q=1+ to 3+, beam current {approximately}0.5A, pulse width {approximately}5{endash}20 {mu}s, and repetition rate {approximately}10 pulses per second. We have explored the suitability of a vacuum arc ion source for this application. Energetic, high current, gadolinium ion beams were produced with parameters as required or close to those required. The performance parameters can all be improved yet further in an optimized ion source design. Here we describe the ion source configuration used, the experiments conducted, and the results obtained. We conclude that a vacuum arc based metal ion source of this kind could be an excellent candidate for heavy ion fusion research application. {copyright} {ital 1998 American Institute of Physics.}

  6. 91. VIEW OF PORTLAND FILTER VACUUM RECEIVER FROM NORTHWEST. AGITATORS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    91. VIEW OF PORTLAND FILTER VACUUM RECEIVER FROM NORTHWEST. AGITATORS No. 4 AND No. 5 VISIBLE IN BACKGROUND. - Bald Mountain Gold Mill, Nevada Gulch at head of False Bottom Creek, Lead, Lawrence County, SD

  7. Quantitative characterization of arc discharge as vacuum interface

    SciTech Connect

    Huang, S.; Zhu, K.; Lu, Y. R.; Wang, S. Z.; Hershcovitch, A.; Yang, L.; Zhang, X. Y.

    2014-12-19

    An arc discharge with channel diameters of 3 mm and 6 mm and lengths between 30mm and 60mm was experimentally investigated for its potential to function as plasma window, i.e., interface vacuum regions of different pressures. In this study, electron temperature of the plasma channel measured spectroscopically varied in the range of 7000K to 15000K, increasing with discharge current while decreasing with gas flow rate. The plasma window had a slightly positive I-V characteristics over the whole range of investigated current 30A–70 A. Measurements of pressure separation capability, which were determined by input current, gas flow rate, discharge channel diameter, and length, were well explained by viscosity effect and “thermal-block” effect. The experimental results of global parameters including temperature, gas flow rate, and voltage had a good agreement with the simulation results calculated by an axis-symmetry Fluent-based magneto-hydrodynamic model.

  8. Plasma plume characterization of a vacuum arc thruster

    NASA Astrophysics Data System (ADS)

    Sekerak, Michael James

    A Vacuum Arc Thruster (VAT) is a thruster that uses the plasma created in a vacuum arc, an electrical discharge in a vacuum that creates high velocity and highly ionized plasmas, as the propellant without additional acceleration. A VAT would be a small and inexpensive low thrust ion thruster, ideal for small satellites and formation flying spacecraft. The purpose of this thesis was to quantitatively and qualitatively examine the VAT plasma plume to determine operating characteristics and limitations. A VAT with a titanium cathode was operated in two regimes: (A) single ˜100mus pulse, discharge current JD=510A, and (B) multiple ˜1500mus pulses at f=40.8Hz, JD=14A. The cathode was 3.18mm diameter Ti rod, surrounded by a 0.80mm thick alumina insulator, set in a molybdenum anode. Three Configurations were tested: Cfg1 (Regime A, cathode recessed 3.00mm from anode), Cfg2 (Regime A, cathode and anode flush), Cfg3 (Regime B, cathode recessed 3.00mm). A semi-empirical model was derived for VAT performance based on the MHD equation of motion using data for ion velocity, ion charge state distribution, ion current fraction (F), and ion current density distribution (ICDD). Additional performance parameters were a2, the peak ion current density angular offset from the cathode normal, and a3, the width of the ion current distribution. Measurements were taken at 162 points on a plane in the plasma plume using a custom faraday probe, and the ICDD empirical form was determined to be a Gaussian. The discharge voltage (VD) and F were Cfg1: VD=25.5V, F=0.025-0.035; Cfg2: VD=40.7V, F=0.08-0.10; Cfg3: VD=14.9V, F=0.006-0.021. For Cfg1, a2 started 15° off-axis while a2˜0 for Cfg2 and 3. In Cfg1, a 3=0.7-0.6, and in Cfg2 a3=1.0-1.1, so the recessed cathode focused the plasma more. However, F is more important for VAT performance because upper and lower bounds for thrust, specific impulse, thrust-to-power, and efficiency were calculated and Cfg2 had the highest performance. High

  9. High current vacuum-arc ion source for ion implantation and coating deposition technologies

    SciTech Connect

    Ryabchikov, Alexander I.; Ryabchikov, Igor A.; Stepanov, Igor B.; Dektyarev, Sergey V.

    2006-03-15

    This work is devoted to the development and investigation of a high current ion source based on dc vacuum-arc plasma generation. Extraction and acceleration of ion beams are realized in a repetitively pulsed mode with the pulse repetition rate up to 200 pps, the pulse duration up to 400 {mu}s, the accelerating voltage up to 40 kV, and the pulsed ion-beam current up to 2 A. To remove microparticles from the vacuum-arc plasma a straight-line plasma filter is used. Examples of the source use for realization of high-intensity and high-concentration ion implantation regimes including those with formation of doped layers at depths that exceed ion projective range for more than an order of magnitude are presented. At the expense of change in order and intensity of ion and plasma material treatment, the advantage of application of one source for execution of material surface pretreatment and activation regimes, formation of wide transition layers between the substrate and coating, coating deposition, and high-intensity ion mixing using ions of the same type was shown.

  10. Vacuum-arc plasma-beam motion in curved magnetic fields

    NASA Astrophysics Data System (ADS)

    Gidalevich, Evgeny; Goldsmith, Samuel; Boxman, Raymond

    1994-05-01

    A theoretical model is presented for transport of vacuum arc generated metal vapor plasma through a magnetized quarter-tours duct used for filtering out macroparticles in order to deposit high quality thin films. The model utilizes a two fluid approximation which takes into account collisions among the plasma particles. It is found that centrifugal forces must lead to a charge separation generated field, that determines plasma drift in the centrifugal force direction to the duct wall and give rise to ion loss. Another cause for plasma is the plasma pressure gradient. The plasma output flux is an increasing function of the magnetic field strength. The plasma flux in the output plane is asymmetrically skewed to favor the outside half. A further asymmetry in the flux distribution in the direction of the torroidal axis of symmetry is introduced if ions of different charge states are present in the plasma.

  11. ASBESTOS FIBER RELEASE DURING CHANGE-OUT OF FILTER BAGS FROM HEPA-FILTERED VACUUM CLEANERS

    EPA Science Inventory

    High efficiency particulate air (HEPA) filtered vacuum cleaners are the primary tool used to clean up asbestos containing material during operations and maintenance (O&M) activities. he change-out of vacuum bags is a potential source of airborne asbestos contamination. n 1989 and...

  12. Multiple Input Electrode Gap Control During Vacuum Arc Remelting

    SciTech Connect

    Beaman, J.J.; Hysinger, C.L.; Melgaard, D.K.; Williamson, R.L.

    1999-01-14

    Accurate control of the electrode gap in a vacuum arc remelting (VAR) furnace has been a goal of melters for many years. The size of the electrode gap has a direct influence on ingot solidification structure. At the high melting currents (30 to 40 kA) typically used for VAR of segregation insensitive Ti and Zr alloys, process voltage is used as an indicator of electrode gap, whereas drip-short frequency (or period) is usually used at the lower currents (5 to 8 kA) employed during VAR of superalloys. Modem controllers adjust electrode position or drive velocity to maintain a voltage or drip-short frequency (or period) set-point. Because these responses are non-linear functions of electrode gap and melting current, these controllers have a limited range for which the feedback gains are valid. Models are available that relate process voltage and drip-short frequency to electrode gap. These relationships may be used to linearize the controller feedback signal. An estimate of electrode gap may then be obtained by forming a weighted sum of the independent gap estimates obtained from the voltage and drip-short signals. By using multiple independent measures to estimate the gap, a controller that is less susceptible to process disturbances can be developed. Such a controller was designed, built and tested. The tests were carried out at Allvac Corporation during VAR of 12Cr steel at intermediate current levels.

  13. Amorphous boron coatings produced with vacuum arc deposition technology

    NASA Astrophysics Data System (ADS)

    Klepper, C. C.; Hazelton, R. C.; Yadlowsky, E. J.; Carlson, E. P.; Keitz, M. D.; Williams, J. M.; Zuhr, R. A.; Poker, D. B.

    2002-05-01

    In principle, boron (B) as a material has many excellent surface properties, including corrosion resistance, very high hardness, refractory properties, and a strong tendency to bond with most substrates. The potential technological benefits of the material have not been realized, because it is difficult to deposit it as coatings. B is difficult to evaporate, does not sputter well, and cannot be thermally sprayed. In this article, first successful deposition results from a robust system, based on the vacuum (cathodic) arc technology, are reported. Adherent coatings have been produced on 1100 Al, CP-Ti, Ti-6Al-4V, 316 SS, hard chrome plate, and 52 100 steel. Composition and thickness analyses have been performed by Rutherford backscattering spectroscopy. Hardness (H) and modules (E) have been evaluated by nanoindentation. The coatings are very pure and have properties characteristic of B suboxides. A microhardness of up to 27 GPa has been measured on a 400-nm-thick film deposited on 52 100 steel, with a corresponding modulus of 180 GPa. This gives a very high value for the H/E ratio, a figure-of-merit for impact resistance of the film. A number of applications are contemplated, including corrosion/abrasion protection for die-casting dies and improved wear resistance for biomedical implants.

  14. Vacuum arc deposition of nanostructured multilayer coatings for biomedical applications.

    PubMed

    Vladescu, A; Kiss, A; Braic, M; Cotrut, C M; Drob, P; Balaceanu, M; Vasilescu, C; Braic, V

    2008-02-01

    In recent years, the smart materials have attracted much attention due to their unusual properties such as shape memory effect and pseudoelasticity, being widely used for biomedical implants. These materials contain certain amounts of nickel, titanium and others which are not adequate for surgical implants and prosthesis. In the work reported here, two types of nonostructured multilayer coatings (TiN/ZrN, ZrN/Zr) used to prevent the ions release from shape memory alloys were investigated. For comparison, the TiN and ZrN monolayers were also examined. The films were deposited onto nickel-titanium based alloy (Ti-Ni-Nb) and Ni substrates by vacuum arc deposition technique under various deposition conditions. The concentrations of dissolved ions in Ringer solution for uncoated and coated Ni samples were determined to examine the benefic barrier effect of these coatings for ions release from shape memory alloys. In order to have a more complete characterization of the investigated coatings, other properties such as elemental and phase composition, morphology, texture, microhardness, and adhesion were studied. For all coatings, the concentrations of dissolved ions were lower that those measured in the case of the uncoated specimens. The nanostructured multilayer films exhibited the best mechanical and anticorrosive properties. PMID:18464399

  15. Quantitative characterization of arc discharge as vacuum interface

    SciTech Connect

    Huang, S.; Zhu, K. Lu, Y. R.; Wang, S. Z.; Hershcovitch, A.; Yang, L.; Zhang, X. Y.

    2014-12-15

    An arc discharge with channel diameters of 3 mm and 6 mm and lengths between 30 mm and 60 mm was experimentally investigated for its potential to function as plasma window, i.e., interface vacuum regions of different pressures. Electron temperature of the plasma channel measured spectroscopically varied in the range of 7000 K to 15 000 K, increasing with discharge current while decreasing with gas flow rate. That plasma window had a slightly positive I-V characteristics over the whole range of investigated current 30 A–70 A. Measurements of pressure separation capability, which were determined by input current, gas flow rate, discharge channel diameter, and length, were well explained by viscosity effect and “thermal-block” effect. The experimental results of global parameters including temperature, gas flow rate, and voltage had a good agreement with the simulation results calculated by an axis-symmetry Fluent-based magneto-hydrodynamic model.

  16. Solidification of a Vacuum Arc-Remelted Zirconium Ingot

    NASA Astrophysics Data System (ADS)

    Revil-Baudard, Matthieu; Jardy, Alain; Combeau, Hervé; Leclerc, Faustine; Rebeyrolle, Véronique

    2013-10-01

    As the quality of vacuum arc-remelted (VAR) zirconium ingots is directly linked to their chemical homogeneity and their metallurgical structure after solidification, it is important to predictively relate these factors to the operating conditions. Therefore, a detailed modeling study of the solidification process during VAR has been undertaken. To this purpose, the numerical macromodel SOLAR has been used. Assuming axisymmetrical geometry, this model is based on the solution of the coupled transient heat, momentum, and solute transport equations, under turbulent flow conditions during the remelting, hot-topping, and cooling of a cylindrical ingot. The actual operating parameters are defined as inputs for the model. Each of them, mainly the melting current sequence, melting rate sequence, and stirring parameters (current and period), is allowed to vary with time. Solidification mechanisms recently implemented in the model include a full coupling between energy and solute transport in the mushy zone. This modeling can be applied to actual multicomponent alloys. In this article, the macrosegregation induced by solidification in a zirconium alloy ingot is investigated. In order to validate the model results, a full-scale homogeneous Zy4 electrode has been remelted, and the resulted ingot has been analyzed. The model results show a general good agreement with the chemistry analyses, as soon as thermosolutal convection is accounted for to simulate accurately the interdendritic fluid flow in the central part of the ingot.

  17. Quantitative characterization of arc discharge as vacuum interface

    DOE PAGESBeta

    Huang, S.; Zhu, K.; Lu, Y. R.; Wang, S. Z.; Hershcovitch, A.; Yang, L.; Zhang, X. Y.

    2014-12-19

    An arc discharge with channel diameters of 3 mm and 6 mm and lengths between 30mm and 60mm was experimentally investigated for its potential to function as plasma window, i.e., interface vacuum regions of different pressures. In this study, electron temperature of the plasma channel measured spectroscopically varied in the range of 7000K to 15000K, increasing with discharge current while decreasing with gas flow rate. The plasma window had a slightly positive I-V characteristics over the whole range of investigated current 30A–70 A. Measurements of pressure separation capability, which were determined by input current, gas flow rate, discharge channel diameter,more » and length, were well explained by viscosity effect and “thermal-block” effect. The experimental results of global parameters including temperature, gas flow rate, and voltage had a good agreement with the simulation results calculated by an axis-symmetry Fluent-based magneto-hydrodynamic model.« less

  18. The evolution of ion charge states in cathodic vacuum arc plasmas: a review

    SciTech Connect

    Anders, Andre

    2011-12-18

    Cathodic vacuum arc plasmas are known to contain multiply charged ions. 20 years after “Pressure Ionization: its role in metal vapour vacuum arc plasmas and ion sources” appeared in vol. 1 of Plasma Sources Science and Technology, it is a great opportunity to re-visit the issue of pressure ionization, a non-ideal plasma effect, and put it in perspective to the many other factors that influence observable charge state distributions, such as the role of the cathode material, the path in the density-temperature phase diagram, the “noise” in vacuum arc plasma as described by a fractal model approach, the effects of external magnetic fields and charge exchange collisions with neutrals. A much more complex image of the vacuum arc plasma emerges putting decades of experimentation and modeling in perspective.

  19. Controlling electrode gap during vacuum arc remelting at low melting current

    DOEpatents

    Williamson, Rodney L.; Zanner, Frank J.; Grose, Stephen M.

    1997-01-01

    An apparatus and method for controlling electrode gap in a vacuum arc remelting furnace, particularly at low melting currents. Spectrographic analysis is performed of the metal vapor plasma, from which estimates of electrode gap are derived.

  20. Controlling electrode gap during vacuum arc remelting at low melting current

    DOEpatents

    Williamson, R.L.; Zanner, F.J.; Grose, S.M.

    1997-04-15

    An apparatus and method are disclosed for controlling electrode gap in a vacuum arc remelting furnace, particularly at low melting currents. Spectrographic analysis is performed of the metal vapor plasma, from which estimates of electrode gap are derived. 5 figs.

  1. Multiple ionization of metal ions by ECR heating of electrons in vacuum arc plasmas

    NASA Astrophysics Data System (ADS)

    Vodopyanov, A. V.; Golubev, S. V.; Zorin, V. G.; Razin, S. V.; Vizir, A. V.; Nikolaev, A. G.; Oks, E. M.; Yushkov, G. Yu.

    2004-05-01

    A joint research and development effort has been initiated, whose ultimate goal is the enhancement of the mean ion charge states in vacuum arc metal plasmas by a combination of a vacuum arc discharge and electron cyclotron resonance (ECR) heating. Metal plasma was generated by a special vacuum arc mini-gun. Plasma was pumped by high frequency gyrotron-generated microwave radiation. The results have demonstrated substantial multiple ionization of metal ions. For a lead plasma, ECR heating increased the maximum attainable ion charge state from Pb2+ up to Pb6+. The confinement parameter was as high as ˜109 cm-3 s. Further increase of the ion charge states will be attained by increasing the vacuum arc plasma density and optimizing the ECR heating conditions.

  2. Complex technology of vacuum-arc processing of structural material surface

    NASA Astrophysics Data System (ADS)

    Arustamov, V. N.; Ashurov, Kh. B.; Kadyrov, Kh. Kh.; Khudoikulov, I. Kh.

    2015-08-01

    The development of environmentally friendly and energy-resource-saving technologies based on vacuum arc discharge is a topical problem in science and engineering. In view of their unique properties, cathode spots of a vacuum arc induce cleaning of the surface of an article (cathode) from various contaminations and pulsed thermal action on the surface layers. These processes occur in complex with vacuum-arc deposition of coatings in the same technological cycle, which makes it possible to considerably increase the efficiency of methods for changing physical, mechanical, and chemical properties of the surface of steel articles, which considerably increase their service life. Analysis of the formation of the temperature regime of the surface during vacuum arc action and of the parameters of the deposited coating will make it possible to optimize the regimes of complex treatment of the surfaces of articles and is of considerable theoretical and practical importance.

  3. Postarc phenomena in a diffuse self-commutating dc vacuum arc

    SciTech Connect

    Graneau, N. . Dept. of Engineering Science)

    1989-10-01

    Measurements have been made of the postarc chopping current of a self-commutating dc vacuum arc. Cathode current, anode current, and arc voltage, as well as ion current, to a grounded shield are monitored. A qualitative description of conditions in the gap is proposed, explaining the apparent current reversal observed.

  4. Vacuum arcing behavior between transverse magnetic field contacts subjected to variable axial magnetic field

    NASA Astrophysics Data System (ADS)

    Ma, Hui; Wang, Jianhua; Liu, Zhiyuan; Geng, Yingsan; Wang, Zhenxing; Yan, Jing

    2016-06-01

    The objective of this work is to reveal the effects of an axial magnetic field (AMF) on the vacuum arc characteristics between transverse magnetic field (TMF) contacts. These vacuum arc characteristics include the vacuum arcing behavior and the arc voltage waveform. In the experiments, an external AMF was applied to a pair of TMF contacts. The external AMF flux density BAMF can be adjusted from 0 to 110 mT. The arc current in the tests varied over a range from 0 to 20 kA rms at 45 Hz. The contact material was CuCr25 (25% Cr). A high-speed charge-coupled device video camera was used to record the vacuum arc evolution. The experimental results show that the application of the AMF effectively reduces the TMF arc voltage noise component and reduces the formation of liquid metal drops between the contacts. The diffuse arc duration increases linearly with increasing AMF flux density, but it also decreases linearly with increasing arc current under application of the external AMF. The results also indicate that the diffuse arc duration before the current zero is usually more than 1 ms under the condition that the value of the AMF per kiloampere is more than 2.0 mT/kA. Finally, under application of the AMF, the arc column of the TMF contacts may constrict and remain in the center region without transverse rotation. Therefore, the combined TMF-AMF contacts should be designed such that they guarantee that the AMF is not so strong as to oppose transverse rotation of the arc column.

  5. NIF Inert Gas/Vacuum Management Prestart Review Phase 3 - Permit Spatial Filter Vacuum

    SciTech Connect

    Williams, J; Beavers, T; Bryan, S; Hermes, G; Patton, H

    2001-03-01

    A Management Prestart Review (MPR) for the National Ignition Facility (NIF) vacuum testing of spatial filters, the Cavity Spatial Filter (CSF) and the Transport Spatial Filter (TSF), was conducted during March 2001. The review was performed to determine the readiness of the Beamline Infrastucture System (BIS) team and the Integration Management and Installation (IMI) contractor to start the vacuum testing of the components and assemblies that constitute the four CSF clusters and four TSF clusters in the NIF laser. This review assures that appropriate engineering, planning and management is in place to start this testing. Completion and acceptance of this report satisfies the LLNL requirement for MPRs to be conducted whenever a significant new risk is introduced into a project and is an essential part of the ISM work authorization process.

  6. Mo-containing tetrahedral amorphous carbon deposited by dualfiltered cathodic vacuum arc with selective pulsed bias voltage

    SciTech Connect

    Pasaja, Nitisak; Sansongsiri, Sakon; Anders, Andre; Vilaithong,Thiraphat; Intasiri, Sawate

    2006-09-10

    Metal-containing tetrahedral amorphous carbon films were produced by dual filtered cathodic vacuum arc (FCVA) plasma sources operated in sequential pulsed mode. A negatively pulsed bias was applied to the substrate only when carbon plasma was generated. Films thickness was measured after deposition by profilometry. Glass slides with silver pads were used as substrate for the of the measurement sheet resistance. The microstructure and composition of the films were characterized by Raman spectroscopy and Rutherford backscattering, respectively. It found that the electrical resistivity decreases with an increase of the Mo content, which can be ascribed to an increase of sp2 content and an increase of the sp2 cluster size.

  7. Mo-containing tetrahedral amorphous carbon deposited by dualfiltered cathodic vacuum arc with selective pulsed bias voltage

    SciTech Connect

    Pasaja, Nitisak; Sansongsiri, Sakon; Intasiri, Sawate; Vilaithong, Thiraphat; Anders, Andre

    2007-01-24

    Metal-containing tetrahedral amorphous carbon films wereproduced by dual filtered cathodic vacuum arc plasma sources operatedinsequentially pulsed mode. Negatively pulsed bias was applied to thesubstrate when carbon plasma was generated, whereas it was absentwhen themolybdenum plasma was presented. Film thickness was measured afterdeposition by profilometry. Glass slides with silver padswere used assubstrates for the measurement of the sheet resistance. Themicrostructure and composition of the films were characterizedbyRamanspectroscopy and Rutherford backscattering, respectively. It was foundthat the electrical resistivity decreases with an increaseof the Mocontent, which can be ascribed to an increase of the sp2 content and anincrease of the sp2 cluster size.

  8. Motion of high-current vacuum arcs on spiral-type contacts

    SciTech Connect

    Dullni, E. )

    1989-12-01

    Motion of vacuum arcs on spiral-type contacts is not only controlled by self-induced magnetic fields, but also by heating phenomena. In this paper, an expression is derived which enables the calculation of the speed of the arc from a computation of the time needed to heat the surface up to boiling temperature. Heat flux density of the constricted arc at the anode is required as input for the calculation. Good coincidence is achieved with experimental data. The speed of the arc varies from 5 to 400 m/s depending upon experimental conditions.

  9. Voltage Node Arcing in the ICRH Antenna Vacuum Transmission Lines at JET

    SciTech Connect

    Monakhov, I.; Graham, M.; Mayoral, M.-L.; Nicholls, K.; Walden, A.

    2007-09-28

    The observation of parasitic low-VSWR activity during operations of JET RF plant and the damage caused by arcing at the voltage-node in the vacuum transmission line (VTL) in 2004 highlight the importance of the problem of low-voltage breakdown in the ICRH systems. Simulations demonstrate little response of the RF circuit to the voltage-node arcing which explains why it remains largely unnoticed and complicates the design of protection systems. Analysis of the damage pattern produced by the voltage-node arcing suggests that multipactor-related phenomena occurring at elevated voltage thresholds in conditions of unfavorable VTL geometry are most plausible arc-provoking factors.

  10. Arc voltage distribution properties as a function of melting current, electrode gap, and CO pressure during vacuum arc remelting

    SciTech Connect

    Williamson, R.L.; Zanner, F.J.; Grose, S.M.

    1997-10-01

    An industrial vacuum arc remelting experiment was carried out at Cytemp Specialty Steel Corp. (Titusville, PA) during which a 0.432-m-diameter Alloy 718 electrode was remelted into a 0.508-m-diameter ingot. The purpose of the experiment was to investigate the response of the arc voltage distribution properties (mean, standard deviation, and skewness) and the drip-short frequency to melting current, electrode gap, and CO pressure. The responses were characterized by recording and analyzing changes in the temporally averaged properties. Each independent variable was systematically varied in accordance with a modified Yates order factor space experimental design within the following ranges: melting current, 5,000 to 11,200 A; electrode gap, 0.004 to 0.056 m; and CO pressure, 0.40 to 14.7 Pa. Statistical models were developed describing the correlation between the averaged arc voltage distribution properties and the independent variables. The models demonstrate that all of the voltage distribution properties, as well as the drip-short frequency, are directly related to electrode gap. An arc column model is presented to account for the mean arc voltage properties and the model is used to estimate the arc column pressure. The potential usefulness of the distribution properties as process diagnostics and control responses is evaluated.

  11. Optical Analysis Of The Vacuum Arc Plasma Generated In Cup-Shape Contacts

    SciTech Connect

    Pavelescu, G.; Gherendi, F.; Pavelescu, D.; Dumitrescu, G.; Anghelita, P.

    2007-04-23

    In this paper are presented the results of the optical analysis on the rotating arc plasma, generated in the vacuum low voltage circuit breaker with cup-shaped contacts. An adequate experimental setup was used for single shot time and spatial resolved spectroscopy in order to analyze the evolution of the vacuum arc plasma. Different current interruption situations are correlated with plasma spectral diagnosis. The study is aimed to contribute to a better understanding of the complex phenomena that take place in the interruption process of high currents that appears in the short-circuit regime of electrical networks.

  12. Experimental investigation and numerical simulation of triggered vacuum arc behavior under TMF/RMF-AMF contact

    NASA Astrophysics Data System (ADS)

    Wang, Lijun; Deng, Jie; Qin, Kang; Zhang, Xiao; Jia, Shenli

    2016-06-01

    A series of triggering experiments was carried out to investigate the characteristics of vacuum arc controlled by TMF/RMF-AMF contacts. During all the experiments, the current ranged from 5–20 kA (rms) and both the arc appearance and behavior of cathode spots were captured by high-speed camera with corresponding arc current and arc voltage. A 3D steady magnetohydrodynamics (MHD) model was built to simulate and analyze the vacuum arc behavior under TMF/RMF-AMF contacts, and arc plasma parameters were calculated based on the above model. The experimental results showed that arc deflection was visible under both low and high current. Under high current, arc core formed, which meant the arc contracted significantly. In addition, the anode became much more active under high current. The behavior of the cathode spots showed that they split themselves into other new cathode spots. Under high current, the bulk of the spots rotated along a clockwise direction on a transverse magnetic field (TMF) plate, which caused much noise and oscillation in the arc voltage. The simulation results show that ions are likely to gather on the branches of the TMF plate on the anode plane, as a result of the effects between the electromagnetic force and pressure gradient of the arc plasma. The current contracts in the center of the TMF plate on the cathode which was due to the thin connecting rod there. The anode contraction of the current is caused by the Hall effect. Ions move along a clockwise direction on the TMF plate, which is driven by Ampere force. The current contraction resulted in significant melting in the center of the cathode surface while the other region suffered from uniform melting. The melting caused by the anode contraction is more significant than that of the cathode.

  13. High Charge State Ions Extracted from Metal Plasmas in the Transition Regime from Vacuum Spark to High Current Vacuum Arc

    SciTech Connect

    Yushkov, Georgy Yu.; Anders, A.

    2008-06-19

    Metal ions were extracted from pulsed discharge plasmas operating in the transition region between vacuum spark (transient high voltage of kV) and vacuum arc (arc voltage ~;; 20 V). At a peak current of about 4 kA, and with a pulse duration of 8 ?s, we observed mean ion charges states of about 6 for several cathode materials. In the case of platinum, the highest average charge state was 6.74 with ions of charge states as high as 10 present. For gold we found traces of charge state 11, with the highest average charge state of 7.25. At currents higher than 5 kA, non-metallic contaminations started to dominate the ion beam, preventing further enhancement of the metal charge states.

  14. The fractal nature of vacuum arc cathode spots

    SciTech Connect

    Anders, Andre

    2005-05-27

    Cathode spot phenomena show many features of fractals, for example self-similar patterns in the emitted light and arc erosion traces. Although there have been hints on the fractal nature of cathode spots in the literature, the fractal approach to spot interpretation is underutilized. In this work, a brief review of spot properties is given, touching the differences between spot type 1 (on cathodes surfaces with dielectric layers) and spot type 2 (on metallic, clean surfaces) as well as the known spot fragment or cell structure. The basic properties of self-similarity, power laws, random colored noise, and fractals are introduced. Several points of evidence for the fractal nature of spots are provided. Specifically power laws are identified as signature of fractal properties, such as spectral power of noisy arc parameters (ion current, arc voltage, etc) obtained by fast Fourier transform. It is shown that fractal properties can be observed down to the cutoff by measurement resolution or occurrence of elementary steps in physical processes. Random walk models of cathode spot motion are well established: they go asymptotically to Brownian motion for infinitesimal step width. The power spectrum of the arc voltage noise falls as 1/f {sup 2}, where f is frequency, supporting a fractal spot model associated with Brownian motion.

  15. Influence of argon and oxygen on charge-state-resolved ion energydistributions of filtered aluminum arcs

    SciTech Connect

    Rosen, Johanna; Anders, Andre; Mraz, Stanislav; Atiser, Adil; Schneider, Jochen M.

    2006-03-23

    The charge-state-resolved ion energy distributions (IEDs) in filtered aluminum vacuum arc plasmas were measured and analyzed at different oxygen and argon pressures in the range 0.5 8.0 mTorr. A significant reduction of the ion energy was detected as the pressure was increased, most pronounced in an argon environment and for the higher charge states. The corresponding average charge state decreased from 1.87 to 1.0 with increasing pressure. The IEDs of all metal ions in oxygen were fitted with shifted Maxwellian distributions. The results show that it is possible to obtain a plasma composition with a narrow charge-state distribution as well as a narrow IED. These data may enable tailoring thin-film properties through selecting growth conditions that are characterized by predefined charge state and energy distributions.

  16. Miniature pulsed vacuum arc plasma gun and apparatus for thin-film fabrication

    DOEpatents

    Brown, I.G.; MacGill, R.A.; Galvin, J.E.; Ogletree, D.F.; Salmeron, M.

    1998-11-24

    A miniature (dime-size in cross-section) vapor vacuum arc plasma gun is described for use in an apparatus to produce thin films. Any conductive material can be layered as a film on virtually any substrate. Because the entire apparatus can easily be contained in a small vacuum chamber, multiple dissimilar layers can be applied without risk of additional contamination. The invention has special applications in semiconductor manufacturing. 8 figs.

  17. Miniature pulsed vacuum arc plasma gun and apparatus for thin-film fabrication

    DOEpatents

    Brown, Ian G.; MacGill, Robert A.; Galvin, James E.; Ogletree, David F.; Salmeron, Miquel

    1998-01-01

    A miniature (dime-size in cross-section) vapor vacuum arc plasma gun is described for use in an apparatus to produce thin films. Any conductive material can be layered as a film on virtually any substrate. Because the entire apparatus can easily be contained in a small vacuum chamber, multiple dissimilar layers can be applied without risk of additional contamination. The invention has special applications in semiconductor manufacturing.

  18. Filtered pulsed carbon cathodic arc: Plasma and amorphous carbon properties

    NASA Astrophysics Data System (ADS)

    Liu, Dongping; Benstetter, Günther; Lodermeier, Edgar; Zhang, Jialiang; Liu, Yanhong; Vancea, Johann

    2004-06-01

    The carbon plasma ion energies produced by the filtered pulsed cathodic arc discharge method were measured as a function of filter inductance. The energy determination is based on the electro-optical time-of-flight method. The average ion energies of the pulsed ion beams were found to depend upon the rise time and duration of pulsed arc currents, which suggests that a gain of ion kinetic energy mainly arises from the electric plasma field from the ambipolar expansion of both electrons and ions, and an electron drag force because of the high expansion velocity of the electrons. The tetrahedral amorphous carbon (ta-C) films with a sp3 fraction of ˜70% were deposited on silicon substrates at the average ion energies of >6 eV in the highly ionized plasmas. The ta-C films were found to be covered with a few graphitelike atomic layers. The surface properties of ultrathin carbon films, such as nanoscale friction coefficients, surface layer thickness, and silicon contents were strongly dependent on the ion energies. The growth of amorphous carbon films was explained in terms of the thermal spike migration of surface carbon atoms. In terms of this model, the thermal spike provides the energy required to release surface atoms from their metastable positions and leads to the formation of the sp3 bonded carbon on a sp3 bonded matrix. The experimental results indicate that the low-energy (<3 eV) carbon ions have insufficient energies to cause the rearrangement reaction within the film and they form graphitelike structures at film surface.

  19. Energetic deposition of carbon in a cathodic vacuum arc with a biased mesh

    SciTech Connect

    Moafi, A.; Lau, D. W. M.; Sadek, A. Z.; McCulloch, D. G.; Partridge, J. G.; McKenzie, D. R.

    2011-04-01

    Carbon films were deposited in a filtered cathodic vacuum arc with a bias potential applied to a conducting mesh mounted in the plasma stream between the source and the substrate. We determined the stress and microstructural properties of the resulting carbon films and compared the results with those obtained using direct substrate bias with no mesh. Since the relationship between deposition energy and the stress, sp{sup 2} fraction and density of carbon are well known, measuring these film properties enabled us to investigate the effect of the mesh on the energy and composition of the depositing flux. When a mesh was used, the film stress showed a monotonic decrease for negative mesh bias voltages greater than 400V, even though the floating potential of the substrate did not vary. We explain this result by the neutralization of some ions when they are near to or passing through the negatively biased mesh. The microstructure of the films showed a change from amorphous to glassy carbonlike with increasing bias. Potential applications for this method include the deposition of carbon films with controlled stress on low conductivity substrates to form rectifying or ohmic contacts.

  20. Cathodic arcs

    SciTech Connect

    Anders, Andre

    2003-10-29

    Cathodic arc plasma deposition has become the technology of choice for hard, wear and corrosion resistant coatings for a variety of applications. The history, basic physics of cathodic arc operation, the infamous macroparticle problem and common filter solutions, and emerging high-tech applications are briefly reviewed. Cathodic arc plasmas standout due to their high degree of ionization, with important consequences for film nucleation, growth, and efficient utilization of substrate bias. Industrial processes often use cathodic arc plasma in reactive mode. In contrast, the science of arcs has focused on the case of vacuum arcs. Future research directions include closing the knowledge gap for reactive mode, large area coating, linear sources and filters, metal plasma immersion process, with application in high-tech and biomedical fields.

  1. Quenching of an electric arc in a vacuum gap with a uniform transverse magnetic field

    SciTech Connect

    Alferov, D. F.; Ahmetgareev, M. R.; Yevsin, D. V.; Ivanov, V. P.

    2010-12-15

    The breaking ability of a vacuum arc interrupter with a uniform transverse magnetic field formed by a system of permanent magnets was investigated experimentally. The vacuum interrupter with a 0.5-{mu}F shunting capacitor switched off a dc current of up to 150 A at magnetic fields of 100-180 mT. At magnetic fields of 120-160 mT, the breaking ability of the vacuum interrupter was increased to 300 A by introducing a nonuniformity in the magnetic field distribution near the contact surface.

  2. Multiple Ionization Of Metal Ions By ECR Heating Of Electrons In Vacuum Arc Plasmas

    NASA Astrophysics Data System (ADS)

    Vodopyanov, A. V.; Golubev, S. V.; Mansfeld, D. A.; Nikolaev, A. G.; Oks, E. M.; Razin, S. V.; Savkin, K. P.

    2005-03-01

    A joint research and development effort has been initiated, whose ultimate goal is the enhancement the mean ion charge states in vacuum arc metal plasmas by a combination of a vacuum arc discharge and an electron cyclotron resonance (ECR) heating. Metal plasma was generated by a special vacuum arc mini-gun and injected into mirror magnetic trap. Plasma was pumped by high frequency gyrotron-generated microwave radiation (frequency 37.5 GHz, max power 100 kW, pulse duration 1.5 ms). Using of powerful microwaves makes it possible to sustain sufficient temperature of electrons needed for multiple ionizations at high plasma density (more then 1013 cm-3). Parameter of multiple ionization efficiency Neτi, where Ne is plasma density, τi, is ion lifetime, in such a case could reach rather high value ˜109 cm-3-s. In our situation τi = Ltrap/Vi, where Ltrap is trap length, Vi is plasma gun flow velocity. The results have demonstrated substantial multiple ionization of metal ions (including metals with high melting temperature). For a metal (lead, platinum) plasma, ECR heating shifted the average ion charge up to 5+. Further increase of the ion charge states will be attained by increasing the vacuum arc plasma density and optimizing the ECR heating conditions.

  3. High current multicharged metal ion source using high power gyrotron heating of vacuum arc plasma.

    PubMed

    Vodopyanov, A V; Golubev, S V; Khizhnyak, V I; Mansfeld, D A; Nikolaev, A G; Oks, E M; Savkin, K P; Vizir, A V; Yushkov, G Yu

    2008-02-01

    A high current, multi charged, metal ion source using electron heating of vacuum arc plasma by high power gyrotron radiation has been developed. The plasma is confined in a simple mirror trap with peak magnetic field in the plug up to 2.5 T, mirror ratio of 3-5, and length variable from 15 to 20 cm. Plasma formed by a cathodic vacuum arc is injected into the trap either (i) axially using a compact vacuum arc plasma gun located on axis outside the mirror trap region or (ii) radially using four plasma guns surrounding the trap at midplane. Microwave heating of the mirror-confined, vacuum arc plasma is accomplished by gyrotron microwave radiation of frequency 75 GHz, power up to 200 kW, and pulse duration up to 150 micros, leading to additional stripping of metal ions by electron impact. Pulsed beams of platinum ions with charge state up to 10+, a mean charge state over 6+, and total (all charge states) beam current of a few hundred milliamperes have been formed. PMID:18315170

  4. High current multicharged metal ion source using high power gyrotron heating of vacuum arc plasma

    SciTech Connect

    Vodopyanov, A. V.; Golubev, S. V.; Khizhnyak, V. I.; Mansfeld, D. A.; Nikolaev, A. G.; Oks, E. M.; Savkin, K. P.; Vizir, A. V.; Yushkov, G. Yu.

    2008-02-15

    A high current, multi charged, metal ion source using electron heating of vacuum arc plasma by high power gyrotron radiation has been developed. The plasma is confined in a simple mirror trap with peak magnetic field in the plug up to 2.5 T, mirror ratio of 3-5, and length variable from 15 to 20 cm. Plasma formed by a cathodic vacuum arc is injected into the trap either (i) axially using a compact vacuum arc plasma gun located on axis outside the mirror trap region or (ii) radially using four plasma guns surrounding the trap at midplane. Microwave heating of the mirror-confined, vacuum arc plasma is accomplished by gyrotron microwave radiation of frequency 75 GHz, power up to 200 kW, and pulse duration up to 150 {mu}s, leading to additional stripping of metal ions by electron impact. Pulsed beams of platinum ions with charge state up to 10+, a mean charge state over 6+, and total (all charge states) beam current of a few hundred milliamperes have been formed.

  5. Generation of high charge state platinum ions on vacuum arc plasma heated by gyrotron radiation.

    PubMed

    Yushkov, G Yu; Vodopyanov, A V; Nikolaev, A G; Izotov, I V; Savkin, K P; Golubev, S V; Oks, E M

    2014-02-01

    The hybrid high charge metal ion source based on vacuum arc plasma heated by gyrotron radiation into simple magnetic trap has been developed. Two types of magnetic traps were used: a mirror configuration and a cusp one with inherent "minimum-B" structure. Pulsed high power (>100 kW) gyrotrons with frequency 37.5 GHz and 75 GHz were used for heating the vacuum arc plasma injected into the traps. Two different ways were used for injecting the metal plasma-axial injection by a miniature arc source located on-axis near the microwave window, and simultaneous radial injection by a number of sources mounted radially at the midplane of the traps. This article represents all data gathered for platinum ions, thus making comparison of the experimental results obtained with different traps and injections convenient and accurate. PMID:24593607

  6. Temporal development of ion beam mean charge state in pulsed vacuum arc ion sources

    SciTech Connect

    Oks, E. M.; Yushkov, G. Yu.; Anders, A.

    2008-02-15

    Vacuum arc ion sources, commonly also known as 'Mevva' ion sources, are used to generate intense pulsed metal ion beams. It is known that the mean charge state of the ion beam lies between 1 and 4, depending on cathode material, arc current, arc pulse duration, presence or absence of magnetic field at the cathode, as well as background gas pressure. A characteristic of the vacuum arc ion beam is a significant decrease in ion charge state throughout the pulse. This decrease can be observed up to a few milliseconds, until a ''noisy'' steady-state value is established. Since the extraction voltage is constant, a decrease in the ion charge state has a proportional impact on the average ion beam energy. This paper presents results of detailed investigations of the influence of arc parameters on the temporal development of the ion beam mean charge state for a wide range of cathode materials. It is shown that for fixed pulse duration, the charge state decrease can be reduced by lower arc current, higher pulse repetition rate, and reduction of the distance between cathode and extraction region. The latter effect may be associated with charge exchange processes in the discharge plasma.

  7. Temporal Development of Ion Beam Mean Charge State in PulsedVacuum Arc Ion Sources

    SciTech Connect

    Oks, Efim M.; Yushkov, Georgy Yu.; Anders, Andre

    2007-06-21

    Vacuum arc ion sources, commonly also known as "Mevva" ionsources, are used to generate intense pulsed metal ion beams. It is knownthat the mean charge state of the ion beam lies between 1 and 4,depending on cathode material, arc current, arc pulse duration, presenceor absence of magnetic field at the cathode, as well background gaspressure. A characteristic of the vacuum arc ion beam is a significantdecrease in ion charge state throughout the pulse. This decrease can beobserved up to a few milliseconds, until a "noisy" steady-state value isestablished. Since the extraction voltage is constant, a decrease in theion charge state has a proportional impact on the average ion beamenergy. This paper presents results of detailed investigations of theinfluence of arc parameters on the temporal development of the ion beammean charge state for a wide range of cathode materials. It is shown thatfor fixed pulse duration, the charge state decrease can be reduced bylower arc current, higher pulse repetition rate, and reduction of thedistance between cathode and extraction region. The latter effect may beassociated with charge exchange processes in the dischargeplasma.

  8. Vacuum-Induction, Vacuum-Arc, and Air-Induction Melting of a Complex Heat-Resistant Alloy

    NASA Technical Reports Server (NTRS)

    Decker, R. F.; Rowe, John P.; Freeman, J. W.

    1959-01-01

    The relative hot-workability and creep-rupture properties at 1600 F of a complex 55Ni-20Cr-15Co-4Mo-3Ti-3Al alloy were evaluated for vacuum-induction, vacuum-arc, and air-induction melting. A limited study of the role of oxygen and nitrogen and the structural effects in the alloy associated with the melting process was carried out. The results showed that the level of boron and/or zirconium was far more influential on properties than the melting method. Vacuum melting did reduce corner cracking and improve surface during hot-rolling. It also resulted in more uniform properties within heats. The creep-rupture properties were slightly superior in vacuum heats at low boron plus zirconium or in heats with zirconium. There was little advantage at high boron levels and air heats were superior at high levels of boron plus zirconium. Vacuum heats also had fewer oxide and carbonitride inclusions although this was a function of the opportunity for separation of the inclusions from high oxygen plus nitrogen heats. The removal of phosphorous by vacuum melting was not found to be related to properties. Oxygen plus nitrogen appeared to increase ductility in creep-rupture tests suggesting that vacuum melting removes unidentified elements detrimental to ductility. Oxides and carbonitrides in themselves did not initiate microcracks. Carbonitrides in the grain boundaries of air heats did initiate microcracks. The role of microcracking from this source and as a function of oxygen and nitrogen content was not clear. Oxygen and nitrogen did intensify corner cracking during hot-rolling but were not responsible for poor surface which resulted from rolling heats melted in air.

  9. A Summary of Recent Experimental Research on Ion Energy and Charge States of Pulsed Vacuum Arcs

    SciTech Connect

    Oks, Efim M.; Yushkov, Georgy Yu.; Anders, Andre

    2008-06-16

    The paper reviews the results of vacuum arc experimental investigations made collaboratively by research groups from Berkeley and Tomsk over the last two years, i.e. since the last ISDEIV in 2006. Vacuum arc plasma of various metals was produced in pulses of a few hundred microseconds duration, and the research focussed on three topics: (i) the energy distribution functions for different ion charge states, (ii) the temporal development of the ion charge state distribution, and (iii) the evolution of the mean directed ion velocities during plasma expansion. A combined quadruple mass-to-charge and energy ana-lyzer (EQP by HIDEN Ltd) and a time-of-flight spectrometer were employed. Cross-checking data by those complimen-tary techniques helped to avoid possible pitfalls in interpre-tation. It was found that the ion energy distribution func-tions in the plasma were independent of the ion charge state, which implies that the energy distribution on a substrate are not equal to due to acceleration in the substrate's sheath. In pulsed arc mode, the individual ion charge states fractions showed changes leading to a decrease of the mean charge state toward a steady-state value. This decrease can be re-duced by lower arc current, higher pulse repetition rate and reduced length of the discharge gap. It was also found that the directed ion velocity slightly decreased as the plasma expanded into vacuum.

  10. Predicting the moisture content of coals dewatered by vacuum filters

    SciTech Connect

    Arnold, B.J.

    1995-12-31

    Coal cleaning separations, both size- and gravity-based, rely on the use of water to make the process more efficient. Removal of water from the clean coal product reduces transportation costs, handling problems, and coal utilization problems. Coal cleaning refuse is also dewatered prior to disposal. The coal industry uses a wide range of equipment to dewater coal and refuse streams in cleaning plants, including thickeners, screens, filters, centrifuges, and thermal dryers. Aspen Technology Inc. developed the Coal Cleaning Simulator (CCS) running under ASPEN PLUS{trademark}. Simulator models for coal sizing, cleaning, and dewatering devices were developed by ICF Kaiser Engineers and CQ Inc., with assistance from The Pennsylvania State University. CQ Inc. and Penn State collaborated on the dewatering models. The CCS dewatering models predict the remaining free (surface) moisture of the cake, moisture which is potentially removal by mechanical means. By definition, the free moisture is the difference between total and equilibrium moisture. The equilibrium moisture is considered non-removable. One of the simpler dewatering models in the CCS is the vacuum-disk filter model. This paper highlights the calculation for moisture content in the product from this dewatering device.

  11. Investigation of Metal Puff Z pinch Based on Multichannel Vacuum Arcs

    NASA Astrophysics Data System (ADS)

    Rousskikh, A. G.; Oreshkin, V. I.; Zhigalin, A. S.; Chaikovsky, S. A.; Baksht, R. B.; Mitrofanov, K. N.

    2015-11-01

    The performance of a metal double puff Z-pinch system has been studied experimentally. In this type of system, the outer and inner cylindrical shells were produced by ten plasma guns. Each gun initiates a vacuum arc operating between aluminum electrodes. The net current of the guns was 80 kA. The arc-produced plasma shells were compressed by using a 450-kA, 450-ns driver, and as a result, a plasma column 0.2 cm in diameter was formed. The power of the Al K-line radiation emitted by the plasma for 7 ns was 800 MW/cm.

  12. Charge state dependence of cathodic vacuum arc ion energy andvelocity distributions

    SciTech Connect

    Rosen, Johanna; Schneider, Jochen M.; Anders, Andre

    2006-08-15

    In the literature, conflicting conclusions are reported concerning the charge state dependence of cathodic arc ion energy and velocity distributions. It appears that data from electrostatic energy analyzers indicate charge state dependence of ion energy, whereas time-of-flight methods support charge state independence of ion velocity. Here we present charge-state-resolved ion energy distributions and calculate the corresponding ion velocity distributions in aluminum vacuum arc plasma. We show that the conflicting conclusions reported in the literature for the two different characterization techniques may originate from the commonly employed data interpretation of energy and velocity, in which peak values and average values are not carefully distinguished.

  13. Physical Modeling of Secondary Arcing at Environmental Pressures in the Range from Atmospheric to Vacuum

    NASA Astrophysics Data System (ADS)

    Batrakov, A. V.; Dubrovskaya, E. L.; Karlik, K. V.; Kim, V. S.; Kochura, S. G.; Lavrinovich, V. A.; Suntsov, S. B.; Shnaider, A. V.

    2015-03-01

    An electrical breakdown in the onboard equipment of orbital space vehicles is a consequence of multifactor physical process related to vacuum electronics, low-temperature plasma physics, and gas discharge. The problem becomes especially urgent in connection with the application of an onboard electrical network voltage of 100 V and higher that exceeds the arcing threshold. The given problem is being actively investigated for more than 10 years; as a result, a number of standards regulating measures on prevention of secondary arcing as a consequence of electrostatic breakdown are currently in force in the world. However, arcing caused by internal processes in onboard equipment without high-voltage initiation has not yet practically been studied, despite the existence of such problem that makes these investigations urgent. The present work contains results of experiments on registration of the threshold parameters, first of all, the pressure that determines the risk of secondary arcing in the presence of the plasma imitating the primary discharge plasma and caused by wire evaporation. Results of experiments confirm the expected decrease of the threshold breakdown voltage below the minima of the Paschen curve. Experimental approaches used in this work are of methodological interest for imitation of arcing conditions and testing of stability of the equipment against arcing in orbital space.

  14. Behaviour Of Gas Conditions During Vacuum Arc Discharges Used For Deposition Of Thin Films

    NASA Astrophysics Data System (ADS)

    Strzyzewski, P.; Catani, L.; Cianchi, A.; Langner, J.; Lorkiewicz, J.; Mirowski, R.; Russo, R.; Sadowski, M.; Tazzari, S.; Witkowski, J.

    2006-01-01

    The paper concerns an important problem which is connected with the inclusion of some impurities in the deposited metal film. It was found that appearance of contaminants in the film is induced mainly by water vapor remnants inside the vacuum chamber. The paper presents information on changes in the gas composition during and between arc-discharges, which is of primary importance for the selection of appropriate experimental conditions.

  15. Variation of plasma parameters of vacuum arc column with gap distance

    NASA Astrophysics Data System (ADS)

    Han, Wen; Yuan, Zhao; He, Junjia

    2016-07-01

    On the basis of a two-dimensional (2D) magneto-hydrodynamic model, we studied long-gap-distance vacuum arcs in a uniform axial magnetic field and determined the effect of gap distance varying in a large range on plasma parameters. Simulation results showed that with increasing gap distance, the parameters of the plasma near the cathode are almost invariant, except for ion number density, but the parameters of the plasma in front of the anode clearly vary; meanwhile, joule heat gradually becomes the main source of energy for the arc column. In a short gap, a clear current constriction can be found in the entire arc column. Whereas when the gap distance exceeds a certain value, a sharp contraction of the current only arises in front of the anode.

  16. Dynamics of vaporization and dissociation during transient surface heating, with application to vacuum arcs

    SciTech Connect

    Benson, D.A.

    1981-02-01

    This report describes a model of vaporization and dissociation occurring as a result of intense heating over a localized area of a material surface. The balance of heat between the input power and losses due to vaporization, as well as radiation and conduction in the material, are considered. The model includes the effect of binary mass diffusion and changes of surface stoichiometry for multiple component materials. Effects of vapor recondensation are included. The model is then applied to the description of spot heating on a vacuum arc anode through the use of a simple power feedback model. Comparison of surface temperature measurements to model predictions are used to parametrically describe the arc behavior. Finally, extensive parametric analyses showing the effect of material property variations on the arc behavior are described.

  17. S-shaped magnetic macroparticle filter for cathodic arc deposition

    SciTech Connect

    Anders, S.; Anders, A.; Dickinson, M.R.; MacGill, R.A.; Brown, I.G.

    1996-04-01

    A new magnetic macroparticle filter design consisting of two 90{sup o} filters forming an S-shape is described. Transport properties of this S-filter are investigated using Langmuir and deposition probes. It is shown that filter efficiency is product of the efficiencies of two 90{sup o} filters and the deposition rate is still acceptably high to perform thin film deposition. Films of amorphous hard carbon have been deposited using a 90{sup o} filter and the S-filter, and macroparticle content of the films are compared.

  18. Modeling of the anode surface deformation in high-current vacuum arcs with AMF contacts

    NASA Astrophysics Data System (ADS)

    Huang, Xiaolong; Wang, Lijun; Deng, Jie; Jia, Shenli; Qin, Kang; Shi, Zongqian

    2016-02-01

    A high-current vacuum arc subjected to an axial magnetic field is maintained in a diffuse status. With an increase in arc current, the energy carried by the arc column to the anode becomes larger and finally leads to the anode temperature exceeding the melting point of the anode material. When the anode melting pool is formed, and the rotational plasma of the arc column delivers its momentum to the melting pool, the anode melting pool starts to rotate and also flow outwards along the radial direction, which has been photographed by some researchers using high-speed cameras. In this paper, the anode temperature and melting status is calculated using the melting and solidification model. The swirl flow of the anode melting pool and deformation of the anode is calculated using the magneto-hydrodynamic (MHD) model with the volume of fraction (VOF) method. All the models are transient 2D axial-rotational symmetric models. The influence of the impaction force of the arc plasma, electromagnetic force, viscosity force, and surface tension of the liquid metal are all considered in the model. The heat flux density injected into the anode and the arc pressure are obtained from the 3D numerical simulation of the high-current vacuum arc using the MHD model, which gives more realistic parameters for the anode simulation. Simulation results show that the depth of the anode melting pool increases with an increase in the arc current. Some droplets sputter out from the anode surface, which is caused by the inertial centrifugal force of the rotational melting pool and strong plasma pressure. Compared with the previous anode melting model without consideration of anode deformation, when the deformation and swirl flow of the anode melting pool are considered, the anode temperature is relatively lower, and just a little more than the melting point of Cu. This is because of liquid droplets sputtering out of the anode surface taking much of the energy away from the anode surface. The

  19. Deposition of Functional Coatings Based on Intermetallic Systems TiAl on the Steel Surface by Vacuum Arc Plasma

    NASA Astrophysics Data System (ADS)

    Budilov, V.; Vardanyan, E.; Ramazanov, K.

    2015-11-01

    Laws governing the formation of intermetallic phase by sequential deposition of nano-sized layers coatings from vacuum arc plasma were studied. Mathematical modeling process of deposition by vacuum arc plasma was performed. In order to identify the structural and phase composition of coatings and to explain their physical and chemical behaviour XRD studies were carried out. Production tests of the hardened punching tools were performed.

  20. Three-dimensional model and simulation of vacuum arcs under axial magnetic fields

    SciTech Connect

    Wang Lijun; Jia Shenli; Zhou Xin; Wang Haijing; Shi Zongqian

    2012-01-15

    In this paper, a three-dimensional (3d) magneto-hydro-dynamic (MHD) model of axial magnetic field vacuum arcs (AMFVAs) is established. Based on this model, AMFVAs are simulated and analyzed. Three-dimensional spatial distributions of many important plasma parameters and electric characteristics in AMFVAs can be obtained, such as ion number density, ion temperature, electron temperature, plasma pressure, current densities along different directions (x, y, and z), ion velocities along different directions, electric fields strength along different directions, and so on. Simulation results show that there exist significant spiral-shaped rotational phenomena in the AMFVAs, this kind of rotational phenomenon also can be verified by the many related experiments (AMFVAs photographs, especially for stronger AMF strength). For current simulation results of AMFVAs, the maximal rotational velocity at anode side is about 1100 m/s. Radial electric field is increased from arc center to arc edge; axial electric field is decreased from cathode side to anode side. Radial electric field at arc edge can be larger than axial electric field. Azimuthal electric field in most regions is much smaller than radial and axial electric field, but it can reach about 1.19 kV/m. Radial magnetic field is the smallest one compared with other components, it reaches to maximum value at the position near to anode, it can influence arc characteristics.

  1. A study of vacuum arc ion velocities using a linear set of probes

    SciTech Connect

    Hohenbild, Stefan; Grubel, Christoph; Yushkov, Georgy Yu.; Oks, Efim M.; Anders, Andre

    2008-07-15

    The most likely velocity of ions moving away from vacuum arc cathode spots was measured using a set of probes along the path of plasma expansion. The goal was to determine how much, if any, change of the ion drift velocity occurs in the expanded plasma. The arc discharge current was perturbed to create plasma density markers whose travel is picked up by the set of probes. It was found that the perturbation with current oscillations did not result in consistent data because ion current maxima and minima are not only determined by the plasma production but by the transients of the arc pulse and by the asymmetry of the ion velocity distribution function. Perturbation with a short current spike was more conclusive. The ion velocity was measured to be slightly reduced with increasing distance from the cathode, which can be explained by collisions of ions with the background of neutrals. The ion velocity was increased when the arc current was increased, which correlated with enhanced arc voltage and power dissipation. The ion velocity could be enhanced when the plasma was produced in a non-uniform magnetic field.

  2. Hybrid gas-metal co-implantation with a modified vacuum arc ion source

    SciTech Connect

    Oks, E.M.; Yushkov, G.Y.; Evans, P.J.; Oztarhan, A.; Brown, I.G.; Dickinson, M.R.; Liu, F.; MacGill, R.A.; Monteiro, O.R.; Wang, Z.

    1996-08-01

    Energetic beams of mixed metal and gaseous ion species can be generated with a vacuum arc ion source by adding gas to the arc discharge region. This could be an important tool for ion implantation research by providing a method for forming buried layers of mixed composition such as e.g. metal oxides and nitrides. In work to date, we have formed a number of mixed metal-gas ion beams including Ti+N, Pt+N, Al+O, and Zr+O. The particle current fractions of the metal-gas ion components in the beam ranged from 100% metallic to about 80% gaseous, depending on operational parameters. We have used this new variant of the vacuum arc ion source to carry out some exploratory studies of the effect of Al+O and Zr+O co-implantation on tribology of stainless steel. Here we describe the ion source modifications, species and charge state of the hybrid beams produced, and results of preliminary studies of surface modification of stainless steel by co-implantation of mixed Al/O or Zr/O ion beams. 5 figs, 21 refs.

  3. Vacuum arc plasma generation and thin film deposition from a TiB{sub 2} cathode

    SciTech Connect

    Zhirkov, Igor Petruhins, Andrejs; Naslund, Lars-Ake; Rosen, Johanna; Kolozsvári, Szilard; Polcik, Peter

    2015-11-02

    We have studied the utilization of TiB{sub 2} cathodes for thin film deposition in a DC vacuum arc system. We present a route for attaining a stable, reproducible, and fully ionized plasma flux of Ti and B by removal of the external magnetic field, which leads to dissipation of the vacuum arc discharge and an increased active surface area of the cathode. Applying a magnetic field resulted in instability and cracking, consistent with the previous reports. Plasma analysis shows average energies of 115 and 26 eV, average ion charge states of 2.1 and 1.1 for Ti and B, respectively, and a plasma ion composition of approximately 50% Ti and 50% B. This is consistent with measured resulting film composition from X-ray photoelectron spectroscopy, suggesting a negligible contribution of neutrals and macroparticles to the film growth. Also, despite the observations of macroparticle generation, the film surface is very smooth. These results are of importance for the utilization of cathodic arc as a method for synthesis of metal borides.

  4. Vacuum arc plasma generation and thin film deposition from a TiB2 cathode

    NASA Astrophysics Data System (ADS)

    Zhirkov, Igor; Petruhins, Andrejs; Naslund, Lars-Ake; Kolozsvári, Szilard; Polcik, Peter; Rosen, Johanna

    2015-11-01

    We have studied the utilization of TiB2 cathodes for thin film deposition in a DC vacuum arc system. We present a route for attaining a stable, reproducible, and fully ionized plasma flux of Ti and B by removal of the external magnetic field, which leads to dissipation of the vacuum arc discharge and an increased active surface area of the cathode. Applying a magnetic field resulted in instability and cracking, consistent with the previous reports. Plasma analysis shows average energies of 115 and 26 eV, average ion charge states of 2.1 and 1.1 for Ti and B, respectively, and a plasma ion composition of approximately 50% Ti and 50% B. This is consistent with measured resulting film composition from X-ray photoelectron spectroscopy, suggesting a negligible contribution of neutrals and macroparticles to the film growth. Also, despite the observations of macroparticle generation, the film surface is very smooth. These results are of importance for the utilization of cathodic arc as a method for synthesis of metal borides.

  5. Low jitter metal vapor vacuum arc ion source for electron beam ion trap injections

    SciTech Connect

    Holland, Glenn E.; Boyer, Craig N.; Seely, John F.; Tan, J.N.; Pomeroy, J.M.; Gillaspy, J.D.

    2005-07-15

    We describe a metal vapor vacuum arc (MeVVA) ion source containing eight different cathodes that are individually selectable via the control electronics which does not require moving components in vacuum. Inside the vacuum assembly, the arc plasma is produced by means of a 30 {mu}s pulse (26 kV,125 A) delivering 2.4 mC of charge to the cathode sample material. The trigger jitter is minimized (<200 ns) to improve the capture efficiency of the ions which are injected into an ion trap. During a single discharge, the over-damped pulse produces an ion flux of 8.4x10{sup 9} ions/cm{sup 2}, measured by an unbiased Faraday cup positioned 20 cm from the extractor grid, at discharge rates up to 5 Hz. The electronic triggering of the discharge is via a fiber optic interface. We present the design, fabrication details, and performance of this MeVVA, recently installed on the National Institute of Standards and Technology electron beam ion trap (EBIT)

  6. Contribution of neutral production to ion flux from a vacuum arc source

    NASA Astrophysics Data System (ADS)

    Humphries, Stanley, Jr.; Lockner, Thomas R.

    1996-02-01

    This article describes studies of the effect of electrode spacing on the performance of vacuum arc plasma sources for ion accelerators and other applications. We measured the time-resolved emission of neutrals from a compact arc source with a titanium cathode and 100 A drive current and found that the source emitted roughly 100 atoms for each extracted ion. The inferred neutral pressure in the arc gap was about 500 mTorr. The result suggested the possibility of achieving significant ionization in the plasma expansion region by increasing the anode-cathode gap length, thereby forcing the drive current to flow through the gas column. With a new two-stage trigger, we were able to ignite arcs with gaps as long as 20 cm. Extended gaps doubled the ion flux, gave better output directionality, and helped to stabilize the location of emission spots on the cathode. These improvements, coupled with direct observations of discharge luminosity, support the hypothesis of ionization of the expanding vapor.

  7. 3D Numerical simulation of high current vacuum arc in realistic magnetic fields considering anode evaporation

    NASA Astrophysics Data System (ADS)

    Wang, Lijun; Huang, Xiaolong; Jia, Shenli; Deng, Jie; Qian, Zhonghao; Shi, Zongqian; Schellenkens, H.; Godechot, X.

    2015-06-01

    A time-dependent 3D numerical model considering anode evaporation is developed for the high current vacuum arc (VA) under a realistic spatial magnetic field. The simulation work contains steady state 3D numerical simulation of high current VA considering anode evaporation at nine discrete moments of first half wave of 50 Hz AC current, transient numerical simulation of anode activity, and realistic spatial magnetic field calculation of commercial cup-shaped electrodes. In the simulation, contact opening and arc diffusion processes are also considered. Due to the effect of electrode slots, the simulation results of magnetic field and temperature of anode plate exhibit six leaves shape (SLS). During 6-8 ms, the strong evaporation of anode surface seriously influence the parameter distributions of VA. Ions emitted from anode penetrate into arc column and the axial velocity distribution on the anode side exhibits SLS. The ions emitted from anode surface have the same temperature with anode surface, which cool the arc plasma and lead to a relative low temperature area formed. The seriously evaporation of anode leads to the accumulation of ions near the anode, and then the current density is more uniform.

  8. Modernization of the control system and the electrical equipment of DSV vacuum arc furnaces

    NASA Astrophysics Data System (ADS)

    Dednev, A. A.; Kisselman, M. A.; Nekhamin, S. M.; Kalinin, V. I.; Koshelev, Yu. N.

    2010-06-01

    The results of modernizing one of the DSV-3.2-G1 arc furnaces at OAO Elektrostal’ Metallurgical Works are presented. New automatic control system ACS DSV-3.2 with functions of maintenance, control, and correction of the main technical parameters of vacuum arc remelting is created. The electric furnace is equipped with a modern visual control system for a heat and a unique inert gas (helium) supply system. The rod motion drive is replaced by a modern drive with frequency control of its motion velocity. New control cabinet and desk made of modern elements are mounted. Melting of a pilot series of EP-718 alloy ingots supports the high quality and reliability of the new control systems.

  9. Ion Species and Charge States of Vacuum Arc Plasma with Gas Feed and Longitudinal Magnetic Field

    SciTech Connect

    Oks, Efim; Anders, Andre

    2010-06-23

    The evolution of copper ion species and charge state distributions is measured for a long vacuum arc discharge plasma operated in the presence of a longitudinal magnetic field of several 10 mT and working gas (Ar). It was found that changing the cathode-anode distance within 20 cm as well as increasing the gas pressure did not affect the arc burning voltage and power dissipation by much. In contrast, burning voltage and power dissipation were greatly increased as the magnetic field was increased. The longer the discharge gap the greater was the fraction of gaseous ions and the lower the fraction of metal ions, while the mean ion charge state was reduced. It is argued that the results are affected by charge exchange collisions and electron impact ionization.

  10. Use of vacuum arc plasma guns for a metal puff Z-pinch system

    SciTech Connect

    Rousskikh, A. G.; Zhigalin, A. S.; Oreshkin, V. I.; Chaikovsky, S. A.; Labetskaya, N. A.; Baksht, R. B.

    2011-09-15

    The performance of a metal puff Z-pinch system has been studied experimentally. In this type of system, the initial cylindrical shell 4 cm in diameter was produced by ten plasma guns. Each gun initiates a vacuum arc operating between magnesium electrodes. The net current of the guns was 80 kA. The arc-produced plasma shell was compressed by using a 450-kA, 450-ns driver, and as a result, a plasma column 0.3 cm in diameter was formed. The electron temperature of the plasma reached 400 eV at an average ion concentration of 1.85 {center_dot} 10{sup 18} cm{sup -3}. The power of the Mg K-line radiation emitted by the plasma for 15-30 ns was 300 MW/cm.

  11. Influence of discharge gap on the discharge stability in a short vacuum arc ion source

    SciTech Connect

    Chen, L.; Zhang, G. L.; Jin, D. Z.; Dai, J. Y.; Yang, L.

    2012-02-15

    The influence of the discharge gap between cathode and anode on the discharge stability in a short vacuum arc (SVA) ion source is presented in this paper. Planar cathode and cylindrical hollow anode made of titanium are investigated. There is a great need in present accelerator injection research for SVA source to produce the small deviation of the ion current beam. Current research shows that increasing the short discharge gap can reduce the level of ion current deviation and ion charge deviation from 29% and 31% to 15% and 17%, respectively. A microplasma plume generation mechanism in SVA and scanning electron microscopic results can be used to explain this interesting phenomenon.

  12. Performance Evaluation of a Magnetically Enhanced Micro-Cathode Vacuum Arc Thruster

    NASA Astrophysics Data System (ADS)

    Denz, Thomas Andrew

    A magnetically enhanced Micro-Cathode Vacuum Arc Thruster (microCAT) was designed and fabricated at the George Washington University (GWU). This thesis reports on the results of experimental performance testing of the microCAT. The thruster impulse and exhaust velocity were considered as well as various energy and efficiency values. Magnetic field simulations were conducted of different permanent magnet configurations that could be used in the magnetically enhanced microCAT. Plasma parameters within the microCAT were examined. Finally, a possible microCAT application to perform an orbit change maneuver for a small satellite was considered.

  13. Method of forming ultra thin film devices by vacuum arc vapor deposition

    NASA Technical Reports Server (NTRS)

    Schramm, Harry F. (Inventor)

    2005-01-01

    A method for providing an ultra thin electrical circuit integral with a portion of a surface of an object, including using a focal Vacuum Arc Vapor Deposition device having a chamber, a nozzle and a nozzle seal, depressing the nozzle seal against the portion of the object surface to create an airtight compartment in the chamber and depositing one or more ultra thin film layer(s) only on the portion of the surface of the object, the layers being of distinct patterns such that they form the circuit.

  14. Development of a cascade arc discharge source for an atmosphere-vacuum interface device

    NASA Astrophysics Data System (ADS)

    Namba, S.; Endo, T.; Fujino, S.; Suzuki, C.; Tamura, N.

    2016-08-01

    To realize a novel vacuum-atmosphere interface that does not require a large differential pumping system, a robust cascade arc discharge source called a plasma window is constructed and tested for long-term operation. By modifying a test plasma with a direct current discharge, a vacuum interface with a high gas pressure ratio of 1/407 between the discharge and expansion sections is demonstrated for currents as high as 20 A. No significant damage to the electrodes is observed during the operation. Analysis of the visible emission spectra reveals that a stationary, stable argon plasma having a temperature of 1 eV and a density of 1.5 × 1016 cm-3 is generated in the plasma channel.

  15. Development of a cascade arc discharge source for an atmosphere-vacuum interface device.

    PubMed

    Namba, S; Endo, T; Fujino, S; Suzuki, C; Tamura, N

    2016-08-01

    To realize a novel vacuum-atmosphere interface that does not require a large differential pumping system, a robust cascade arc discharge source called a plasma window is constructed and tested for long-term operation. By modifying a test plasma with a direct current discharge, a vacuum interface with a high gas pressure ratio of 1/407 between the discharge and expansion sections is demonstrated for currents as high as 20 A. No significant damage to the electrodes is observed during the operation. Analysis of the visible emission spectra reveals that a stationary, stable argon plasma having a temperature of 1 eV and a density of 1.5 × 10(16) cm(-3) is generated in the plasma channel. PMID:27587119

  16. Vacuum arc behavior and its voltage characteristics in drawing process controlled by composite magnetic fields along axial and transverse directions

    NASA Astrophysics Data System (ADS)

    Wang, Lijun; Deng, Jie; Wang, Haijing; Jia, Shenli; Qin, Kang; Shi, Zongqian

    2015-10-01

    In this research, drawing vacuum arc (VA) experiments were conducted using composite contacts under currents ranging from 5 kA to 20 kA root mean square (rms). The new type of contact comprised an axial magnetic field (AMF) configuration and a transverse magnetic field (TMF) configuration. The TMF plate was in the center, surrounded by the AMF plate. The contact generated both AMFs and TMFs simultaneously. VA appearances and arc voltages were recorded, and the VA was modeled as a conductor for electromagnetic force analysis in ANSYS software. The results showed that the coaxiality of operating mechanisms significantly influenced arc behavior just as the arc was ignited. When arc brightness did not increase after ignition, there was a voltage drop accompanied with diffusion of the VA. As to VA development, when an arc was ignited on an AMF plate, it spread on the plate and rotated. Over time the arc current increased, the constricting arc forms, and the arc column rotated on the TMF plate under the action of Ampere's force. With regard to the influence of a magnetic field on a VA at different stages, in the initial drawing arc stage the TMF was dominant, and the arc started to rotate under the action of Ampere's force. Afterwards, the AMF was dominant, with a steadily burning arc. As for contact melting, in the initial arcing period, a contracted short arc caused severe melting and erosion of the contact plate. When the ignition spot or root was close to the slot of plate, the electromagnetic force pushed the arc toward slot and contact edge, resulting in local erosion of the slot region.

  17. Vacuum arc behavior and its voltage characteristics in drawing process controlled by composite magnetic fields along axial and transverse directions

    SciTech Connect

    Wang, Lijun Deng, Jie; Wang, Haijing; Jia, Shenli; Qin, Kang; Shi, Zongqian

    2015-10-15

    In this research, drawing vacuum arc (VA) experiments were conducted using composite contacts under currents ranging from 5 kA to 20 kA root mean square (rms). The new type of contact comprised an axial magnetic field (AMF) configuration and a transverse magnetic field (TMF) configuration. The TMF plate was in the center, surrounded by the AMF plate. The contact generated both AMFs and TMFs simultaneously. VA appearances and arc voltages were recorded, and the VA was modeled as a conductor for electromagnetic force analysis in ANSYS software. The results showed that the coaxiality of operating mechanisms significantly influenced arc behavior just as the arc was ignited. When arc brightness did not increase after ignition, there was a voltage drop accompanied with diffusion of the VA. As to VA development, when an arc was ignited on an AMF plate, it spread on the plate and rotated. Over time the arc current increased, the constricting arc forms, and the arc column rotated on the TMF plate under the action of Ampere's force. With regard to the influence of a magnetic field on a VA at different stages, in the initial drawing arc stage the TMF was dominant, and the arc started to rotate under the action of Ampere's force. Afterwards, the AMF was dominant, with a steadily burning arc. As for contact melting, in the initial arcing period, a contracted short arc caused severe melting and erosion of the contact plate. When the ignition spot or root was close to the slot of plate, the electromagnetic force pushed the arc toward slot and contact edge, resulting in local erosion of the slot region.

  18. Investigation of firing properties of a vacuum arcs triggered by plasma injection

    SciTech Connect

    Bernardet, H.; Godechot, X.; Riviere, C.

    1996-08-01

    The firing characteristic of a vacuum arc, by means of plasma injection, is described. In this method, a plasma, created from a trigger device, plumes away to the space between the cathode and anode. As the plasma is quasi-neutral, the electrostatic field is concentrated across the sheath at the surface of the cathode, thus, creating a high electrical field. As a result, a vacuum arc fires between the cathode and anode. The authors have investigated the firing rate as a function of the trigger cathode distance, trigger current, the anode-cathode distance and voltage. They found a firing rate between 90 to 100% for a trigger current in the range of 400-1200 A, the trigger pulse length was 4 ps, and the trigger-cathode distance was 1.6 to 3.6 cm. The anode cathode gap length changes the firing rate to a low extent for values between 2 to 5 cm. The anode cathode voltage do not change the firing rate. The effect of a magnetic field applied axially over the trigger have also been investigated. Using a version of a highly reliable trigger, the authors were able to deposit stainless steel, copper, carbon and molybdenum, thin films.

  19. On the mechanism of operation of a cathode spot cell in a vacuum arc

    SciTech Connect

    Mesyats, G. A.; Petrov, A. A.; Bochkarev, M. B.; Barengolts, S. A.

    2014-05-05

    The erosive structures formed on a tungsten cathode as a result of the motion of the cathode spot of a vacuum arc over the cathode surface have been examined. It has been found that the average mass of a cathode microprotrusion having the shape of a solidified jet is approximately equal to the mass of ions removed from the cathode within the lifetime of a cathode spot cell carrying a current of several amperes. The time of formation of a new liquid-metal jet under the action of the reactive force of the plasma ejected by the cathode spot is about 10 ns, which is comparable to the lifetime of a cell. The growth rate of a liquid-metal jet is ∼10{sup 4} cm/s. The geometric shape and size of a solidified jet are such that a new explosive emission center (spot cell) can be initiated within several nanoseconds during the interaction of the jet with the dense cathode plasma. This is the underlying mechanism of the self-sustained operation of a vacuum arc.

  20. Generation of multicomponent ion beams by a vacuum arc ion source with compound cathode

    SciTech Connect

    Savkin, K. P.; Yushkov, Yu. G.; Nikolaev, A. G.; Oks, E. M.; Yushkov, G. Yu.

    2010-02-15

    This paper presents the results of time-of-flight mass spectrometry studies of the elemental and mass-to-charge state compositions of metal ion beams produced by a vacuum arc ion source with compound cathode (WC-Co{sub 0.5}, Cu-Cr{sub 0.25}, Ti-Cu{sub 0.1}). We found that the ion beam composition agrees well with the stoichiometric composition of the cathode material from which the beam is derived, and the maximum ion charge state of the different plasma components is determined by the ionization capability of electrons within the cathode spot plasma, which is common to all components. The beam mass-to-charge state spectrum from a compound cathode features a greater fraction of multiply charged ions for those materials with lower electron temperature in the vacuum arc cathode spot, and a smaller fraction for those with higher electron temperature within the spot. We propose a potential diagram method for determination of attainable ion charge states for all components of the compound cathodes.

  1. [Preliminary study of atomic emission spectrometry of Ti (H) plasma produced by vacuum arc ion source].

    PubMed

    Deng, Chun-Feng; Wu, Chun-Lei; Wang, Yi-Fu; Lu, Biao; Wen, Zhong-Wei

    2014-03-01

    In order to study the discharge process of vacuum arc ion source, make a detail description of the discharge plasma, and lay the foundation for further research on ion source, atomic emission spectrometry was used to diagnose the parameters of plasma produced by vaccum arc ion source. In the present paper, two kinds of analysis method for the emission spectra data collected by a spectrometer were developed. Those were based in the stark broadening of spectral lines and Saba-Boltzmann equation. Using those two methods, the electron temperature, electron number density and the ion temperature of the plasma can be determined. The emission spectroscopy data used in this paper was collected from the plasma produced by a vacuum are ion source whose cathode was made by Ti material (which adsorbed hydrogen during storage procedure). Both of the two methods were used to diagnose the plasma parameters and judge the thermal motion state of the plasma. Otherwise, the validity of the diagnostic results by the two methods were analyzed and compared. In addition, the affection from laboratory background radiation during the spectral acquisition process was discussed. PMID:25208416

  2. Generation of multicomponent ion beams by a vacuum arc ion source with compound cathode.

    PubMed

    Savkin, K P; Yushkov, Yu G; Nikolaev, A G; Oks, E M; Yushkov, G Yu

    2010-02-01

    This paper presents the results of time-of-flight mass spectrometry studies of the elemental and mass-to-charge state compositions of metal ion beams produced by a vacuum arc ion source with compound cathode (WC-Co(0.5), Cu-Cr(0.25), Ti-Cu(0.1)). We found that the ion beam composition agrees well with the stoichiometric composition of the cathode material from which the beam is derived, and the maximum ion charge state of the different plasma components is determined by the ionization capability of electrons within the cathode spot plasma, which is common to all components. The beam mass-to-charge state spectrum from a compound cathode features a greater fraction of multiply charged ions for those materials with lower electron temperature in the vacuum arc cathode spot, and a smaller fraction for those with higher electron temperature within the spot. We propose a potential diagram method for determination of attainable ion charge states for all components of the compound cathodes. PMID:20192356

  3. Modification of anti-bacterial surface properties of textile polymers by vacuum arc ion source implantation

    NASA Astrophysics Data System (ADS)

    Nikolaev, A. G.; Yushkov, G. Yu.; Oks, E. M.; Oztarhan, A.; Akpek, A.; Hames-Kocabas, E.; Urkac, E. S.; Brown, I. G.

    2014-08-01

    Ion implantation provides an important technology for the modification of material surface properties. The vacuum arc ion source is a unique instrument for the generation of intense beams of metal ions as well as gaseous ions, including mixed metal-gas beams with controllable metal:gas ion ratio. Here we describe our exploratory work on the application of vacuum arc ion source-generated ion beams for ion implantation into polymer textile materials for modification of their biological cell compatibility surface properties. We have investigated two specific aspects of cell compatibility: (i) enhancement of the antibacterial characteristics (we chose to use Staphylococcus aureus bacteria) of ion implanted polymer textile fabric, and (ii) the "inverse" concern of enhancement of neural cell growth rate (we chose Rat B-35 neuroblastoma cells) on ion implanted polymer textile. The results of both investigations were positive, with implantation-generated antibacterial efficiency factor up to about 90%, fully comparable to alternative conventional (non-implantation) approaches and with some potentially important advantages over the conventional approach; and with enhancement of neural cell growth rate of up to a factor of 3.5 when grown on suitably implanted polymer textile material.

  4. Synthesis of Nanosized Titanium Oxide and Nitride Through Vacuum Arc Plasma Expansion Technique

    NASA Astrophysics Data System (ADS)

    Lepeshev, A. A.; Karpov, I. V.; Ushakov, A. V.; Fedorov, L. Yu.; Shaihadinov, A. A.

    2016-12-01

    Physical vapor deposition techniques such vacuum arc plasma deposition — which are very commonly used in thin film technology — appear to hold much promise for the synthesis of nanocrystalline thin films as well as nanoparticles. Monodisperse and spherical titanium oxide (TiO2) and nitride nanoparticles were produced at room temperature as a cluster beam in the gas phase using a cluster-deposition source. Using the basic principles of the gas condensation method, this study has developed vacuum arc nanoparticle synthesis system. We demonstrate that major process deposition parameter is the pressure in the plasma chamber. This is the major advantage of these techniques over thermal evaporation. Our method affords TiN powders with high specific surface areas exceeding 200m2g-1. TEM micrograph of TiO2 nanoparticles prepared at an oxygen pressure of 60Pa show an average particle size of 6nm. TiO2 nanoparticles prepared at an oxygen pressure of 70Pa were observed to not have a reduced average particle size.

  5. A high current vacuum arc ion source for heavy ion fusion

    SciTech Connect

    Qi, N.; Gensler, S.W.; Prasad, R.R.; Krishnan, M.; Liu, F.; Brown, I.G.

    1997-12-31

    AASC is presently developing a vacuum arc ion source for Heavy Ion Fusion (HIF) and other commercial applications. Induction linear accelerators that produce energetic heavy ions beams are a prime candidate for power-producing fusion reactors. A source of heavy ions with low emittance and low beam noise, 1+ to 3+ charge states, {approx}0.5 A current, 5--20 {micro}s pulse widths and {approximately}10 Hz repetition rates is required. A gadolinium (A {approx} 158) ion beam with {approx}0.12 A beam current, 120 keV beam energy, {approx}2.5 cm diameter extraction aperture and 20 {micro}s pulse width has been produced for HIF studies. The authors have measured that >80% Gd ions were in the 2+ charge state, the beam current fluctuation level (rms) was {approx}1.5% and the beam emittance was {approx}0.3 {pi} mm mrad (normalized). With {approx}8 {times} 10{sup {minus}5} torr background gas pressure, the beam was well space-charge neutralized and good propagation of the 20 {micro}s long Gd ion beams was observed. Details of the work will be presented. The results of the experiment imply that the vacuum arc ion source is a highly promising candidate for HIF applications.

  6. Study of nanostructured (Ti-Zr-Nb)N coatings’ physical- mechanical properties obtained by vacuum arc evaporation

    NASA Astrophysics Data System (ADS)

    Plotnikov, S. V.; Pogrebnjak, A. D.; Yerokhina, L. N.; Yeskermessov, D. K.; erdybaeva, N. K. Y.

    2016-02-01

    The coatings were formed by vacuum arc deposition. Unit cast target (cathodes) was used on the basis of 30 atm. % Ti, 35 at. % Zr and 35 atm. % Nb as the vaporized materials. Molecular nitrogen was used as the working gas. The thickness of the coatings in the experiments was 4.0 microns. The surface morphology fractograph fracture, track friction were investigated in a scanning electron microscope JSM-6390 LV. The use of multicoatings based on carbides is very promising to ensure the high performance properties of the complex, nitrides and silicides of transition metals. Findings - nanostructured coating of (Ti-Zr-Nb) N was obtained by vacuum arc evaporation cathode-cast in a nitrogen gas reaction medium. Multicomponent films have a pronounced columnar structure. Elemental composition was obtained by the vacuum arc deposition of coatings (Ti-Zr-Nb) N, depending on the physical parameters of the deposition process, in particular the pressure of the reaction gas nitrogen.

  7. Influence of argon and oxygen on charge-state-resolved ion energy distributions of filtered aluminum arcs

    NASA Astrophysics Data System (ADS)

    Rosén, Johanna; Anders, André; Mráz, Stanislav; Atiser, Adil; Schneider, Jochen M.

    2006-06-01

    The charge-state-resolved ion energy distributions (IEDs) in filtered aluminum vacuum arc plasmas were measured and analyzed at different oxygen and argon pressures in the range of 0.5-8.0 mTorr. A significant reduction of the ion energy was detected as the pressure was increased, most pronounced in an argon environment and for the higher charge states. The corresponding average charge state decreased from 1.87 to 1.0 with increasing pressure. The IEDs of all metal ions in oxygen were fitted with shifted Maxwellian distributions. The results show that it is possible to obtain a plasma composition with a narrow charge-state distribution as well as a narrow IED. These data may enable tailoring thin film properties through selecting growth conditions that are characterized by predefined charge state and energy distributions.

  8. Mass Spectrum Analysis of Gas Emitted during Organic Contaminant Removal from a Metal Surface with an Arc in Low Vacuum

    SciTech Connect

    Sugimoto, Masaya; Takeda, Koichi

    2006-05-05

    The gas emitted during organic contaminant removal from a metal surface with an arc in low vacuum is investigated using a quadrupole mass spectrometer. The experimental results show that fragment molecules of the contaminant material, which are created by the decomposition of the contaminant material, exist in the emitted gas. The decomposition rate of the contaminant increased with the treatment current, which indicates that the decomposition occurs not in the cathode spot, but in the arc column.

  9. Vacuum-arc chromium-based coatings for protection of zirconium alloys from the high-temperature oxidation in air

    NASA Astrophysics Data System (ADS)

    Kuprin, A. S.; Belous, V. A.; Voyevodin, V. N.; Bryk, V. V.; Vasilenko, R. L.; Ovcharenko, V. D.; Reshetnyak, E. N.; Tolmachova, G. N.; V'yugov, P. N.

    2015-10-01

    Multilayer Cr-Zr/Cr/Cr-N coatings for protection of zirconium alloys from the high-temperature oxidation in air have been obtained by the vacuum-arc evaporation technique with application of filters for plasma cleaning from macroparticles. The effect of the coatings on the corrosion resistance of zirconium alloys at test temperatures between 660 and 1100 °C for 3600 s has been investigated. The thickness, structure, phase composition, mechanical properties of the coatings and oxide layers before and after oxidation tests were examined by scanning electron microscopy, X-ray diffraction analysis and nanoindentation technique. It is shown that the hard multilayer coating effectively protects zirconium from the oxidation in air for 1 h at test temperatures. As a result of the oxidation in the coating the CrO and Cr2O3 oxides are formed which reduce the oxygen penetration through the coating. At maximum test temperature of 1100 °C the oxide layer thickness in the coating is about 5 μm. The tube shape remains unchanged independent of alloy type. It has been found that uncoated zirconium oxidizes rapidly throughout the temperature range under study. At 1100 °C a porous monoclinic ZrO2 oxide layer of ≥120 μm is formed that leads to the deformation of the samples, cracking and spalling of the oxide layer.

  10. Filtered cathodic arc deposition with ion-species-selectivebias

    SciTech Connect

    Anders, Andre; Pasaja, Nitisak; Sansongsiri, Sakon; Lim, SunnieH.N.

    2006-10-05

    A dual-cathode arc plasma source was combined with acomputer-controlled bias amplifier such as to synchronize substrate biaswith the pulsed production of plasma. In this way, bias can be applied ina material-selective way. The principle has been applied to the synthesismetal-doped diamond-like carbon films, where the bias was applied andadjusted when the carbon plasma was condensing, and the substrate was atground when the metal was incorporated. In doing so, excessive sputteringby too-energetic metal ions can be avoided while the sp3/sp2 ratio can beadjusted. It is shown that the resistivity of the film can be tuned bythis species-selective bias. The principle can be extended tomultiple-material plasma sources and complex materials

  11. Substrate temperature influence on W/WCNx bilayers grown by pulsed vacuum arc discharge

    NASA Astrophysics Data System (ADS)

    Ospina, R.; Escobar, D.; Restrepo-Parra, E.; Arango, P. J.; Jurado, J. F.

    2012-04-01

    W/WCNx coatings were produced by using a repetitive pulsed vacuum arc discharge on stainless-steel 304 substrates, varying the substrate temperature from room temperature to 200 °C. Energy dispersive spectroscopy (EDS) was used for determining W, C and N concentrations dependence on the substrate temperature. A competition between C and N can be observed. Atomic force microscopy was employed for obtaining the thickness and grain size that present similar tendencies as a function of the temperature. X-ray diffraction characterization showed phases of W and α-WCN (hexagonal). Raman spectra for all substrate temperatures were obtained, presenting two peaks corresponding to D (disorder) and G (graphite) bands in the region of 1100-1700 cm-1 due to the amorphous carbon. As an important conclusion, it was stated that substrate temperature has strong influence on the structure, chemical composition and morphology of W/WCNx bilayers, caused by the competition between carbon and nitrogen.

  12. Combined electron beam and vacuum ARC melting for barrier tube shell material

    SciTech Connect

    Worcester, S.A.; Woods, C.R.

    1989-07-18

    This patent describes a process of the type wherein zirconium tetrachloride is reduced to produce a metallic zirconium sponge. The sponge is distilled to generally remove residual magnesium and magnesium chloride, and the distilled sponge is melted to produce an ingot, the improvement for making a non-crystal bar material for use in lining the interior of zirconium alloy fuel element cladding which comprises: a. forming the distilled sponge into a consumable electrode; b. melting the consumable electrode in a multiple swept beam electron furnace with a feed rate between 1 and 20 inches per hour to form an intermediate ingot; and c. vacuum arc melting the intermediate ingot to produce a homogeneous final ingot, having 50-500 ppm iron.

  13. Formation of gas-saturated defects in titanium alloys during vacuum-arc remelting

    NASA Astrophysics Data System (ADS)

    Tarenkova, N. Yu.; Vykhodets, V. B.; Krashaninin, V. A.; Kurennykh, T. E.; Fishman, A. Ya.

    2011-02-01

    The formation of gas-saturated defects in titanium alloys during vacuum-arc remelting is studied theoretically and experimentally. The defects of a metallurgical origin that were detected upon long-term monitoring of a commercial process of production are considered. The light-element contents are determined with a high-locality nuclear accelerator microanalysis technique. A theoretical model is developed to describe the dissolution of solid gas-saturated inclusions in liquid titanium; it is based on a mechanism of diffusion of modifying defects in melting. The critical parameters of defect sources (defect size, nitrogen concentration in a defect) at which defects do not dissolve in titanium upon melting are determined. The obtained dependence of the average light-element concentration in a defect on the defect size is explained.

  14. Modeling of thermal stress development during the vacuum arc remelting process

    SciTech Connect

    Ali, Z.; Alam, M.K.; Semiatin, S.L.

    1995-12-31

    The development of thermal stresses during the vacuum arc remelting (VAR) process was investigated through numerical solution of the two-dimensional, non-steady state heat conduction and stress equilibrium equations. Solutions were obtained for various levels of input power efficiency, values of the crucible-ingot interface heat transfer coefficients, and lengths of the melted and resolidified ingot. Model predictions revealed that the maximum tensile thermal stresses are developed at the bottom of the ingot for cases involving low input power efficiency and high interface heat transfer coefficients. The predicted development of large tensile stresses at the mid-radius position correlates well with observations of thermal cracking during VAR of near-gamma titanium aluminide alloy ingots.

  15. Highly transparent and conductive ZnO:Al thin films prepared by vacuum arc plasma evaporation

    NASA Astrophysics Data System (ADS)

    Miyata, Toshihiro; Minamino, Youhei; Ida, Satoshi; Minami, Tadatsugu

    2004-07-01

    A vacuum arc plasma evaporation (VAPE) method using both oxide fragments and gas sources as the source materials is demonstrated to be very effective for the preparation of multicomponent oxide thin films. Highly transparent and conductive Al-doped ZnO (AZO) thin films were prepared by the VAPE method using a ZnO fragment target and a gas source Al dopant, aluminum acethylacetonate (Al(C5H7O2)3) contained in a stainless steel vessel. The Al content in the AZO films was altered by controlling the partial pressure (or flow rate) of the Al dopant gas. High deposition rates as well as uniform distributions of resistivity and thickness on the substrate surface were obtained on large area glass substrates. A low resistivity on the order of 10-4 Ω cm and an average transmittance above 80% in the visible range were obtained in AZO thin films deposited on glass substrates. .

  16. Model of liquid-metal splashing in the cathode spot of a vacuum arc discharge

    NASA Astrophysics Data System (ADS)

    Gashkov, M. A.; Zubarev, N. M.; Zubareva, O. V.; Mesyats, G. A.; Uimanov, I. V.

    2016-04-01

    The formation of microjets is studied during the extrusion of a melted metal by the plasma pressure from craters formed on a cathode in a burning vacuum arc. An analytic model of liquid-metal splashing that includes two stages is proposed. At the first stage, the liquid motion has the axial symmetry and a liquid-metal wall surrounding the crater is formed. At the second stage, the axial symmetry is broken due to the development of the Plateau-Rayleigh instability in the upper part of the wall. The wall breakup process is shown to have a threshold. The minimal plasma pressure and the minimal electric current flowing through the crater required for obtaining the liquid-metal splashing regime are found. The basic spatial and temporal characteristics of the jet formation process are found using the analytic model.

  17. High energy implantation with high-charge-state ions in a vacuum arc ion implanter

    SciTech Connect

    Oks, E.M. |; Anders, A.; Brown, I.G.; Dickinson, M.R.; MacGill, R.A.

    1996-08-01

    Ion implantation energy can in principal be increased by increasing the charge states of the ions produced by the ion source rather than by increasing the implanter operating voltage, providing an important savings in cost and size of the implanter. In some recent work the authors have shown that the charge states of metal ions produced in a vacuum arc ion source can be elevated by a strong magnetic field. In general, the effect of both high arc current and high magnetic field is to push the distribution to higher charge states--the mean ion charge state is increased and new high charge states are formed. The effect is significant for implantation application--the mean ion energy can be about doubled without change in extraction voltage. Here they describe the ion source modifications, the results of time-of-flight measurements of ion charge state distributions, and discuss the use and implications of this technique as a means for doing metal iron implantation in the multi-hundreds of keV ion energy range.

  18. Boron ion beam generation utilizing lanthanum hexaboride cathodes: Comparison of vacuum arc and planar magnetron glow

    NASA Astrophysics Data System (ADS)

    Nikolaev, A. G.; Oks, E. M.; Vizir, A. V.; Yushkov, G. Yu.; Frolova, V. P.

    2016-02-01

    Boron ion beams are widely used for semiconductor ion implantation and for surface modification for improving the operating parameters and increasing the lifetime of machine parts and tools. For the latter application, the purity requirements of boron ion beams are not as stringent as for semiconductor technology, and a composite cathode of lanthanum hexaboride may be suitable for the production of boron ions. We have explored the use of two different approaches to boron plasma production: vacuum arc and planar high power impulse magnetron in self-sputtering mode. For the arc discharge, the boron plasma is generated at cathode spots, whereas for the magnetron discharge, the main process is sputtering of cathode material. We present here the results of comparative test experiments for both kinds of discharge, aimed at determining the optimal discharge parameters for maximum yield of boron ions. For both discharges, the extracted ion beam current reaches hundreds of milliamps and the fraction of boron ions in the total extracted ion beam is as high as 80%.

  19. Boron ion beam generation utilizing lanthanum hexaboride cathodes: Comparison of vacuum arc and planar magnetron glow.

    PubMed

    Nikolaev, A G; Oks, E M; Vizir, A V; Yushkov, G Yu; Frolova, V P

    2016-02-01

    Boron ion beams are widely used for semiconductor ion implantation and for surface modification for improving the operating parameters and increasing the lifetime of machine parts and tools. For the latter application, the purity requirements of boron ion beams are not as stringent as for semiconductor technology, and a composite cathode of lanthanum hexaboride may be suitable for the production of boron ions. We have explored the use of two different approaches to boron plasma production: vacuum arc and planar high power impulse magnetron in self-sputtering mode. For the arc discharge, the boron plasma is generated at cathode spots, whereas for the magnetron discharge, the main process is sputtering of cathode material. We present here the results of comparative test experiments for both kinds of discharge, aimed at determining the optimal discharge parameters for maximum yield of boron ions. For both discharges, the extracted ion beam current reaches hundreds of milliamps and the fraction of boron ions in the total extracted ion beam is as high as 80%. PMID:26931963

  20. Formation of Ultrananocrystalline Diamond/Amorphous Carbon Composite Films in Vacuum Using Coaxial Arc Plasma Gun

    NASA Astrophysics Data System (ADS)

    Hanada, Kenji; Yoshida, Tomohiro; Nakagawa, You; Yoshitake, Tsuyoshi

    2010-12-01

    Ultrananocrystalline diamond (UNCD)/nonhydrogenated amorphous carbon (a-C) composite films were grown in vacuum using a coaxial arc plasma gun. From the X-ray diffraction measurement, the UNCD crystallite size was estimated to be 1.6 nm. This size is dramatically reduced from that (2.3 nm) of UNCD/hydrogenated amorphous carbon (a-C:H) composite films grown in a hydrogen atmosphere. The sp3/(sp3 + sp2) value, which was estimated from the X-ray photoemission spectrum, was also reduced to be 41%. A reason for it might be the reduction in the UNCD crystallite size. From the near-edge X-ray absorption fine-structure (NEXAFS) spectrum, it was found that the π*C=C and π*C≡C bonds are preferentially formed instead of the σ*C-H bonds in the UNCD/a-C:H films. Since the extremely small UNCD crystallites (1.6 nm) correspond to the nuclei of diamond, we consider that UNCD crystallite formation should be due predominantly to nucleation. The supersaturated condition required for nucleation is expected to be realized in the deposition using the coaxial arc plasma gun.

  1. Some novel design features of the LBL metal vapor vacuum arc ion sources

    SciTech Connect

    MacGill, R.A.; Brown, I.G.; Galvin, J.E.

    1989-06-01

    The family of MEVVA (metal vapor vacuum arc) high current metal ion sources developed at LBL over the past several years has grown to include a number of different source versions with a wide range of some of the design and operational parameters. The MicroMEVVA source is a particularly compact version, about 2 cm diameter and 10 cm long, while the MEVVA IV weighs some 30 kG. MEVVAs IV and V incorporate multiple cathode assemblies (16 and 18 separate cathodes, respectively), and the operating cathode can be switched rapidly and without down-time. The new MEVVA V embodiment is quite compact considering its broad beam (10 cm), high voltage (100 kV) and multiple cathode features. The large-area extractor grids used in the MEVVA V were fabricated using a particularly simple technique, and they are clamped into position and so can be changed simply and quickly. The electrical system used to drive the arc is particularly simple and incorporates several attractive features. In this paper we review and describe a number of the mechanical and electrical design features that have been developed for these sources. 9 refs., 5 figs.

  2. Modern control strategies for vacuum arc remelting of segregation sensitive alloys

    SciTech Connect

    Williamson, R.L.; Schlienger, M.E.; Hysinger, C.L.; Beaman, J.J.

    1997-06-01

    There are several process variables which are crucial to the control of vacuum arc remelting of segregation sensitive alloys. These are: electrode gap, melt rate, cooling rate, furnace annulus, furnace atmosphere and electrode quality (i.e. cleanliness and integrity). Of these variables, active, closed loop control is usually applied only to electrode gap. Other variables are controlled by controlling furnace operational parameters to preset schedules (e.g. melting current is ramped or held constant to control melt rate in an open loop fashion), through proper maintenance and calibration of equipment (e.g. to ensure proper cooling water and gas flow rates, or to accomplish an acceptable vacuum leak rate), through proper practice of procedures, and by maintaining electrode quality control. Electrode gap control is accomplished by controlling an electrode gap indicator such as drip-short frequency (or period) to a specified set-point. This type of control, though often adequate, ignores information available from other electrode gap indicators and is susceptible to upsets. A multiple input electrode gap controller is described which uses optimal estimation techniques to address this problem.

  3. Dynamic Mission Modeling and Simulation: Application of Micro-Vacuum Arc Thrusters and Frozen Orbits

    NASA Astrophysics Data System (ADS)

    Suaris, Therese

    The dynamic mission modeling and simulation of scenarios around the Earth, Moon, and libration points are used to explore the application of the Vacuum Arc Thruster and frozen orbits for future space exploration missions. The Micro-Vacuum Arc Thruster (microVAT) is a propulsion system that uses an arc to evaporate solid cathode material. The propulsion system is compatible for nano-satellite applications due to its low operating voltage, low mass, and its simplicity to be integrated into the spacecraft operating system. The microVAT experimental performance values were used to baseline the numerical thruster model for the space mission operational scenarios. The simulation results were used analyze and make recommendations on the performance parameters that are required for maneuvers and interplanetary trajectories for space exploration missions. In addition, the analytical derivation and numerical analysis of Earth-based frozen orbits are used to baseline the low-altitude, frozen orbits. A high resolution in order and degree lunar gravity model and third-body perturbations due to the Earth and Sun are included in the detailed simulation. The time evolution of the classical frozen orbital conditions is calculated by numerically propagating the orbits in an environment where all the perturbations are included. The behaviour and evolution pattern of the orbital elements are used to baseline a set of numerical quasi-frozen conditions for a series of low-altitude, polar orbits. The numerically integrated results for a family of polar frozen orbits provide insight into the predictive behaviour pattern and evolution of the orbital elements that can be extended to any given set of initial conditions and requirements. It is shown that these results are not a fixed point solution that is calculated for a selective set of perturbations, but rather the numerical model can be used to determine a set of conditions and orbital elements to satisfy a given set of mission

  4. Waste water treatment costs reduced by 50% with rotary vacuum precoat filter

    SciTech Connect

    Mrozinski, W.; Short, A.J.

    1983-01-01

    This article describes a rotary vacuum precoat filter which reduces waste treatment costs by 50%. This filter was used to solve Union Carbide Corporation's Linde Division's plant problem of high operating costs at the facility due to frequent cleaning, repair, and replacement of electric filters.The solids separation system at Linde's waste water treatment facility also had high operating, maintenance and sludge disposal costs. Installation of the rotary vacuum precoat filter with diatomite precoat performs the same functions as were previously accomplished with the high pressure filter and a centrifuge, and does these with less total horsepower, fewer water treatment chemicals, reduced maintenance, and lower water content in the sludge. All of these improvements have added up to a 50% reduction in the total cost of waste water treatment. On a trial-basis, the small rotary vacuum precoat flter satisfactorily handled all the waste water treatment required at present plant production rates. Based on full plant operating rates and the installation of an appropriate sized filter, total savings from using this system are estimated at $92,000/yr.

  5. Generation of high charge state metal ion beams by electron cyclotron resonance heating of vacuum arc plasma in cusp trap

    SciTech Connect

    Nikolaev, A. G.; Savkin, K. P.; Oks, E. M.; Vizir, A. V.; Yushkov, G. Yu.; Vodopyanov, A. V.; Izotov, I. V.; Mansfeld, D. A.

    2012-02-15

    A method for generating high charge state heavy metal ion beams based on high power microwave heating of vacuum arc plasma confined in a magnetic trap under electron cyclotron resonance conditions has been developed. A feature of the work described here is the use of a cusp magnetic field with inherent ''minimum-B'' structure as the confinement geometry, as opposed to a simple mirror device as we have reported on previously. The cusp configuration has been successfully used for microwave heating of gas discharge plasma and extraction from the plasma of highly charged, high current, gaseous ion beams. Now we use the trap for heavy metal ion beam generation. Two different approaches were used for injecting the vacuum arc metal plasma into the trap - axial injection from a miniature arc source located on-axis near the microwave window, and radial injection from sources mounted radially at the midplane of the trap. Here, we describe preliminary results of heating vacuum arc plasma in a cusp magnetic trap by pulsed (400 {mu}s) high power (up to 100 kW) microwave radiation at 37.5 GHz for the generation of highly charged heavy metal ion beams.

  6. On the Dissolution of Nitrided Titanium Defects During Vacuum Arc Remelting of Ti Alloys

    NASA Astrophysics Data System (ADS)

    Ghazal, G.; Jardy, A.; Chapelle, P.; Millet, Y.

    2010-06-01

    The elimination of high interstitial defects (also known as hard-α inclusions) is of great importance to the titanium industry. This article presents a model capable of simulating the motion and dissolution of such defects during their residence in the pool of a vacuum arc remelted (VAR) ingot. To predict the complete history of that inclusion, the study couples a dissolution model of the defect and a Lagrangian particle-tracking model. This numerical tool is implemented in SOLAR (solidification during arc remelting), a computational fluid dynamics code developed at the Nancy School of Mines in the framework of an important research project conducted during the last 15 years, which aims to study and optimize the VAR process. The dissolution model numerically solves the nitrogen diffusion equation in a spherical inclusion and in thermal equilibrium with the surrounding fluid. The computational domain is divided into a central zone (α phase) and a surrounding layer (β phase), which appears because the diffusion of nitrogen into the liquid pool causes some solidification. The dissolution kinetics strongly depend on the liquid temperature and velocity of the inclusion. The model can compute the nitrogen profile in the defect at each moment as well as the thickness of the different layers; therefore, it can compute the overall size of the inclusion. The trajectory model consists of solving Newton’s law of motion. Because the inclusion size is large, the consequence of fluid-flow turbulence is to modify the local flow around the inclusion so that the drag is affected. Results presented and discussed in this article include a parametric study of the influence of the pool thermohydrodynamics, the relative inclusion-fluid density, and the initial diameter of the defect as it enters the melt pool. Finally, an example of the full history of an inclusion during triple VAR illustrates the possibility to remove such a defect effectively by dissolving it in the liquid phase.

  7. Experimental investigation on the characteristics of the plasma jet of a low-current vacuum arc in axial magnetic fields

    NASA Astrophysics Data System (ADS)

    Wang, Cong; Shi, Zongqian; Wu, Bingzhou; Gao, Zhanpeng; Jia, Shenli; Wang, Lijun

    2016-04-01

    In this paper, the characteristics of the plasma jet of a low-current vacuum arc with a single cathode spot (CS) in an external axial magnetic field (AMF) up to 150 mT is investigated experimentally, at a constant arc current ranging from 20 A to 60 A. The experiments are conducted with Cu butt contacts in a demountable vacuum chamber. Images of the plasma jets are photographed with a high-speed digital camera with an exposure time of 2 μs. The uniform constant AMF (B n ) within the inter-contacts region is supplied by Nd-Fe-B permanent magnets. The influence of the external AMF on the shape of the jet near the anode surface as well as in the arc column is mainly investigated. A luminous ‘spot’ is observed on the anode surface facing the position of the CS under a relatively strong AMF. The mechanism of the appearance of the luminous ‘spot’ is proposed to be connected to the secondary plasma originating from the anode. Moreover, with the increase in the strength of the AMF, the spreading angle of the cone-shaped plasma jet in the arc-column region decreases gradually. The plasma jet, subjected to a relatively strong AMF (120 mT and 150 mT), becomes cylindrical in shape in the arc-column region and conical in shape in the near-electrode regions. The overall geometry of the plasma jet looks like a dumbbell.

  8. Functional properties of multilayer vacuum-arc TiN/ZrN coatings

    NASA Astrophysics Data System (ADS)

    Plotnikov, S. V.; Pogrebnyak, A. D.; Tleukenov, Y. O.; Erdybaeva, N. K.

    2016-02-01

    Nanostructured multilayer Ti/ZrN coatings were synthesized by vacuum-arc deposition with a number of layers 134-533 and an average thickness 20-125nm of layers. A good planarity was revealed resulting in a range of nanometer layer from plasma streams in a reactive environment. Phase-structural changes mechanisms were established as a model of critical operating coatings’ conditions of in the surface layers under the action of an aggressive oxygen atmosphere at high temperature (700°C). The thickness parameter effect on its hardness of the multilayer system was shown. It was found that the maximum hardness of 42 GPa and the lowest abrasion of coating 1,3×10-5 mm3×H-1×mm-and counterbody 1,9×10-6 mm3×H-1×mm-1 inherent in TiN/ZrN system with the smallest layer thickness of 20 nm in the period. The results are explained by the influence of the size factor interphase boundaries magnified in a multilayer system with a nanometer thick layers.

  9. Laser-assisted vacuum arc extreme ultraviolet source: a comparison of picosecond and nanosecond laser triggering

    NASA Astrophysics Data System (ADS)

    Beyene, Girum A.; Tobin, Isaac; Juschkin, Larissa; Hayden, Patrick; O’Sullivan, Gerry; Sokell, Emma; Zakharov, Vassily S.; Zakharov, Sergey V.; O’Reilly, Fergal

    2016-06-01

    Extreme ultraviolet (EUV) light generation by hybrid laser-assisted vacuum arc discharge plasmas, utilizing Sn-coated rotating-disc-electrodes, was investigated. The discharge was initiated by localized ablation of the liquid tin coating of the cathode disc by a laser pulse. The laser pulse, at 1064 nm, was generated by Nd:YAG lasers with variable energy from 1 to 100 mJ per pulse. The impact of shortening the laser pulse from 7 ns to 170 ps on the EUV generation has been investigated in detail. The use of ps pulses resulted in an increase in emission of EUV radiation. With a fixed discharge energy of ~4 J, the EUV conversion efficiency tends to plateau at ~2.4  ±  0.25% for the ps laser pulses, while for the ns pulses, it saturates at ~1.7  ±  0.3%. Under similar discharge and laser energy conditions, operating the EUV source with the ps-triggering resulted also in narrower spectral profiles of the emission in comparison to ns-triggering. The results indicate an advantage in using ps-triggering in laser-assisted discharges to produce brighter plasmas required for applications such as metrology.

  10. Preparation of transparent conducting B-doped ZnO films by vacuum arc plasma evaporation

    SciTech Connect

    Miyata, Toshihiro; Honma, Yasunori; Minami, Tadatsugu

    2007-07-15

    Highly transparent and conductive B-doped ZnO (BZO) thin films have been prepared by a newly developed vacuum arc plasma evaporation method that provided high-rate film depositions using sintered BZO pellets and fragments. The obtained electrical and optical properties of the deposited BZO thin films were considerably affected by the deposition conditions as well as the preparation method of the BZO pellets and fragments used. The lowest thin film resistivity was obtained with a B doping content [B/(B+Zn) atomic ratio] of approximately 1 at. %. A resistivity as low as 5x10{sup -4} {omega} cm and an average transmittance above about 80% in the wavelength range of 400-1300 nm were obtained in BZO films prepared with a thickness above approximately 400 nm at a substrate temperature of 200 deg. C. In addition, a low resistivity of 7.97x10{sup -4} {omega} cm and average transmittances above about 80% in the visible wavelength range were obtained in a BZO film prepared at a substrate temperature of 100 deg. C and an O{sub 2} gas flow rate of 10 SCCM (SCCM denotes cubic centimeter per minute at STP). The deposition rate of BZO films was typically 170 nm/min with a cathode plasma power of 4.5 kW.

  11. In vitro studies on silver implanted pure iron by metal vapor vacuum arc technique.

    PubMed

    Huang, Tao; Cheng, Yan; Zheng, Yufeng

    2016-06-01

    Pure iron has been verified as a promising biodegradable metal for absorbable cardiovascular stent usage. However, the degradation rate of pure iron is too slow. To accelerate the degradation of the surface of pure iron, silver ions were implanted into pure iron by metal vapor vacuum arc (MEVVA) source at an extracted voltage of 40keV. The implanted influence was up to 2×10(17)ions/cm(2). The composition and depth profiles, corrosion behavior and biocompatibility of Ag ion implanted pure iron were investigated. The implantation depths of Ag was around 60nm. The element Ag existed as Ag2O in the outermost layer, then gradually transited to metal atoms in zero valent state with depth increase. The implantation of Ag ions accelerated the corrosion rate of pure iron matrix, and exhibited much more uniform corrosion behavior. For cytotoxicity assessment, the implantation of Ag ions slightly decreased the viability of all kinds of cell lines used in these tests. The hemolysis rate of Ag ion implanted pure iron was lower than 2%, which was acceptable, whereas the platelet adhesion tests indicated the implantation of Ag ions might increase the risk of thrombosis. PMID:26925722

  12. Anodic vacuum arc developed nanocrystalline Cu-Ni and Fe-Ni thin film thermocouples

    SciTech Connect

    Mukherjee, S. K.; Sinha, M. K.; Pathak, B.; Rout, S. K.; Barhai, P. K.

    2009-12-01

    This paper deals with the development of nanocrystalline Cu-Ni and Fe-Ni thin film thermocouples (TFTCs) by using ion-assisted anodic vacuum arc deposition technique. The crystallographic structure and surface morphology of individual layer films have been studied by x-ray diffraction and scanning electron microscopy, respectively. The resistivity, temperature coefficient of resistance, and thermoelectric power of as deposited and annealed films have been measured. The observed departure of these transport parameters from their respective bulk values can be understood in terms of intrinsic scattering due to enhanced crystallite boundaries. From the measured values of thermoelectric power and the corresponding temperature coefficient of resistance of annealed Cu, Ni, and Fe films, the calculated values of log derivative of the mean free path of conduction electrons at the Fermi surface with respect to energy (U) are found to be -0.51, 3.22, and -8.39, respectively. The thermoelectric response of annealed Cu-Ni and Fe-Ni TFTCs has been studied up to a maximum temperature difference of 300 deg. C. Reproducibility of TFTCs has been examined in terms of the standard deviation in thermoelectric response of 16 test samples for each pair. Cu-Ni and Fe-Ni TFTCs agree well with their wire thermocouple equivalents. The thermoelectric power values of Cu-Ni and Fe-Ni TFTCs at 300 deg. C are found to be 0.0178 and 0.0279 mV/ deg. C, respectively.

  13. Study of W/WC films produced by plasma assisted vacuum arc discharge

    NASA Astrophysics Data System (ADS)

    Ospina, R.; Arango, P.; Arango, Y. C.; Restrepo, E.; Devia, A.

    2005-08-01

    W/WC films were grown by the PAPVD repetitive pulsed vacuum arc technique on 304 stainless steel substrates. To produce the coatings, a target of W with purity of 99.9999% was used. The system is composed by a reaction chamber with two opposite electrodes placed inside it. The target is located on the cathode and the samples on the anode. A pulsed power supply is used to generate the discharge. For the production of the W layer, the chamber was filled with Ar gas at a pressure of 3 mbar, and the voltage of the discharge was 270 V with 3 pulses. WC films were grown in an atmosphere of methane at 3 mbar and a voltage discharge of 275 V with 4 pulses. The active and passive times of the discharge were 1 s and 0.5 s, respectively.XRD technique was employed to study the coatings, to study the present phases and the crystallographic orientation of the films, the XRD analyses were carried out varying the temperature of the system-coating-substrate between room temperature and 600 °C, when the WC coatings are degradated, leaving just the tugsten. XPS analyses present the apparition of WC, WO and WO2 compounds. AFM analyses allowed to measure the morphological properties and the thickness around 3 μm.

  14. Ion charge state distributions of pulsed vacuum arc plasmas in strong magnetic fields

    SciTech Connect

    Anders, A.; Yushkov, G.; Oks, E.; Nikolaev, A.; Brown, I.

    1998-02-01

    Vacuum arc plasmas with discharge currents of 300 A and duration 250 {mu}s have been produced in strong magnetic fields up to 4 T. Ion charge state distributions have been measured for C, Al, Ag, Ta, Pt, Ho, and Er with a time-of-flight charge-mass spectrometer. Our previous measurements have been confirmed which show that ion charge states can be considerably enhanced when increasing the magnetic field up to about 1 T. The new measurements address the question of whether or not the additional increase continues at even higher magnetic field strength. It has been found that the increase becomes insignificant for field strengths greater than 1 T. Ion charge state distributions are almost constant for magnetic field strengths between 2 and 4 T. The results are explained by comparing the free expansion length with the freezing length. The most significant changes of charge state distributions are observed when these lengths are similar. {copyright} {ital 1998 American Institute of Physics.}

  15. Wear Resistance of Mo-Implanted H13 Steel by a Metal Vapour Vacuum Arc Source

    NASA Astrophysics Data System (ADS)

    Yang, Jian-Hua; Zhang, Tong-He

    2003-10-01

    Pulsed molybdenum ion beams extracted from a metal vapour vacuum arc ion source at voltage of 25 kV or 48 kV were implanted into H13 steel with a high implantation dose of 5×1017 ions·cm-2 and a time-averaged ion beam current density of about 300 µA·cm-2. We have investigated the steel implanted for wear resistance by an optical interference microscope and a pin-on-disc apparatus. The Rutherford backscattering spectroscopy demonstrated that rather low-energy ions could penetrate quite deep into the substrates. It was observed by x-ray photoelectron spectroscopy and transmission-electron microscopy that carbide of molybdenum appeared in the doped region. The results showed that dramatically improved wear resistance of H13 steel after molybdenum ion implantation at 48 kV was attributed to the development of Mo2C precipitates in the doped zone and to the formation of the implantation affected zone below the doped zone.

  16. Method and apparatus for controlling electrode gap during vacuum consumable arc remelting

    DOEpatents

    Fisher, R.W.; Maroone, J.P.; Tipping, D.W.; Zanner, F.J.

    During vacuum consumable arc remelting the electrode gap between a consumable electrode and a pool of molten metal is difficult to control. The present invention monitors drop shorts by detecting a decrease in the voltage between the consumable electrode and molten pool. The drop shorts and their associated voltage reductions occur as repetitive pulses which are closely correlated to the electrode gap. Thus, the method and apparatus of the present invention controls electrode gap based upon drop shorts detected from the monitored anode-cathode voltage. The number of drop shorts are accumulated, and each time the number of drop shorts reach a predetermined number, the average period between drop shorts is calculated from this predetermined number and the time in which this number is accumulated. This average drop short period is used in a drop short period electrode gap model which determines the actual electrode gap from the drop short. The actual electrode gap is then compared with a desired electrode gap which is selected to produce optimum operating conditions and the velocity of the consumable error is varied based upon the gap error. The consumable electrode is driven according to any prior art system at this velocity. In the preferred embodiment, a microprocessor system is utilized to perform the necessary calculations and further to monitor the duration of each drop short. If any drop short exceeds a preset duration period, the consumable electrode is rapidly retracted a predetermined distance to prevent bonding of the consumable electrode to the molten remelt.

  17. Advancing alloy 718 vacuum arc remelting technology through developing model-based controls.

    SciTech Connect

    DeBarbadillo, John J; Beaman, Joseph Jefferson; Zanner, Frank J.; Williamson, Rodney L.

    2005-06-01

    The Specialty Metals Processing Consortium (SMPC) was established in 1990 with the goal of advancing the technology of melting and remelting nickel and titanium alloys. In recent years, the SMPC technical program has focused on developing technology to improve control over the final ingot remelting and solidification processes to alleviate conditions that lead to the formation of inclusions and positive and negative segregation. A primary objective is the development of advanced monitoring and control techniques for application to vacuum arc remelting (VAR), with special emphasis on VAR of Alloy 718. This has lead to the development of an accurate, low order electrode melting model for this alloy as well as an advanced process estimator that provides real-time estimates of important process variables such as electrode temperature distribution, instantaneous melt rate, process efficiency, fill ratio, and voltage bias. This, in turn, has enabled the development and industrial application of advanced VAR process monitoring and control systems. The technology is based on the simple idea that the set of variables describing the state of the process must be self-consistent as required by the dynamic process model. The output of the process estimator comprises the statistically optimal estimate of this self-consistent set. Process upsets such as those associated with glows and cracked electrodes are easily identified using estimator based methods.

  18. Impedance analysis of nano thickness layered AlGaN acoustic sensor deposited by thermionic vacuum arc

    NASA Astrophysics Data System (ADS)

    Özen, Soner; Bilgiç, Eyüp; Gülmez, Gülay; Şenay, Volkan; Pat, Suat; Korkmaz, Şadan; Mohammadigharehbagh, Reza

    2016-03-01

    In this study, AlGaN acoustic sensor was deposited on aluminum metal substrate by thermionic vacuum arc (TVA) method for the first time. Gallium materials are used in many applications for optoelectronic device and semiconductor technology. Thermionic vacuum arc is the deposition technology for the variously materials and applications field. The thickness of the acoustic sensor is in deposited as nano layer. Impedance analyses were realized. Also, TVA production parameters and some properties of the deposited layers were investigated. TVA is a fast deposition technology for the gallium compounds and doped gallium compounds. Obtained results show that AlGaN materials are very promising materials. Moreover, these acoustic sensors have been produced by TVA technology.

  19. Model-based melt rate control during vacuum arc remelting of alloy 718

    NASA Astrophysics Data System (ADS)

    Williamson, Rodney L.; Melgaard, David K.; Shelmidine, Gregory J.; Beaman, Joseph J.; Morrison, Robert

    2004-02-01

    Vacuum arc remelting (VAR) is used widely throughout the specialty metals industry to produce superalloy and titanium alloy cast ingots. Optimum VAR casting requires that the electrode melting rate be controlled at all times during the process. This is especially difficult when process conditions are such that the temperature distribution in the electrode has not achieved, or has been driven away from, steady state. This condition is encountered during the beginning and closing stages of the VAR process, and also during some process disturbances such as when the melt zone passes through a transverse crack. To address these transient melting situations, a new method of VAR melt rate control has been developed that incorporates an accurate, low-order melting model to continually estimate the temperature distribution in the electrode. This method of model-based control was tested at Carpenter Technology Corporation. In the first test, two 0.43-m-diameter alloy 718 electrodes were melted into 0.51-m-diameter ingots. Aggressive start-up and hot-top procedures were used to test the dynamic capabilities of the control technique. Additionally, a transverse cut was placed in each electrode with an abrasive saw to mimic an electrode crack. Accurate melt rate control was demonstrated throughout each melt. The second test used an electrode size and grade proprietary to the host company. Because it was not stress relieved after the primary casting process, the electrode was known to possess multiple cracks that make accurate melt rate control impossible using standard VAR controller technology. This electrode was also successfully melted with good melt rate control using the model-based controller.

  20. To enhance the dewatering of vacuum filter by adding surfactant reagent

    SciTech Connect

    Cai, Z.; Wu, J.; Liu, H.; Xu, S.

    1997-12-31

    A vacuum filter is the main equipment for fine coal dewatering and usually the moisture content of the cake is high. It has a number of serious handling problems. To reduce the moisture content of the cake, surfactant is added to the slurry which is fed to the filter system to enhance dewatering efficiency. Different kinds of surfactant have been used in the laboratory filter system. A variety of tests have been done and the factors which influence dewatering are investigated. Four of the surfactants have good dewatering efficiency. The moisture contents are decreased 5% or so. Two of them have been used in a commercial process. The method is very simple and will solve an excess moisture problem of coal preparation plants.

  1. Influence of residual plasma drift velocity on the post-arc sheath expansion of vacuum circuit breakers

    NASA Astrophysics Data System (ADS)

    Mo, Yongpeng; Shi, Zongqian; Bai, Zhibin; Jia, Shenli; Wang, Lijun

    2016-05-01

    The residual plasma in the inter-contact region of a vacuum circuit breaker moves towards the post-arc cathode at current zero, because the residual plasma mainly comes from the cathode spots during the arc burning process. In the most previous theoretical researches on the post-arc sheath expansion process of vacuum circuit breakers, only the thermal motion of residual plasma was taken into consideration. Alternately, the residual plasma was even assumed to be static at the moment of current zero in some simplified models. However, the influence of residual plasma drift velocity at current zero on the post-arc sheath expansion process was rarely investigated. In this paper, this effect is investigated by a one-dimensional particle-in-cell model. Simulation results indicate that the sheath expands slower with higher residual plasma drift velocity in the initial sheath expansion stage. However, with the increase of residual plasma drift velocity, the overall plasma density in the inter-contact region decreases faster, and the sheath expansion velocity increases earlier. Consequently, as a whole, it needs shorter time to expel the residual plasma from the inter-contact region. Furthermore, if the residual plasma drift velocity is high enough, the sheath expansion process ceases before it develops to the post-arc anode. Besides, the influence of the collisions between charges and neutrals is investigated as well in terms of the density of metal vapor. It shows that the residual plasma drift velocity takes remarkable effect only if the density of the metal vapor is relatively low, which corresponds to the circumstance of low-current interruptions.

  2. Filtered pulsed cathodic arc deposition of fullerene-like carbon and carbon nitride films

    SciTech Connect

    Tucker, Mark D. Broitman, Esteban; Näslund, Lars-Åke; Hultman, Lars; Rosen, Johanna; Czigány, Zsolt

    2014-04-14

    Carbon and carbon nitride films (CN{sub x}, 0 ≤ x ≤ 0.26) were deposited by filtered pulsed cathodic arc and were investigated using transmission electron microscopy and X-ray photoelectron spectroscopy. A “fullerene-like” (FL) structure of ordered graphitic planes, similar to that of magnetron sputtered FL-CN{sub x} films, was observed in films deposited at 175 °C and above, with N{sub 2} pressures of 0 and 0.5 mTorr. Higher substrate temperatures and significant nitrogen incorporation are required to produce similar FL structure by sputtering, which may, at least in part, be explained by the high ion charge states and ion energies characteristic of arc deposition. A gradual transition from majority sp{sup 3}-hybridized films to sp{sup 2} films was observed with increasing substrate temperature. High elastic recovery, an attractive characteristic mechanical property of FL-CN{sub x} films, is evident in arc-deposited films both with and without nitrogen content, and both with and without FL structure.

  3. The effect of debris accumulation on and filter resistance to airflow for four commercially available vacuum cleaners.

    PubMed

    Heitbrink, William A; Santalla-Elias, Javier

    2009-06-01

    Mortar removal with right-angle grinders can cause excessive exposure to respirable crystalline silica. To control this dust exposure, vacuum cleaners need to exhaust 2.3 m(3)/min (80 cubic feet per minute) from the grinder's exhaust hood. Maintaining this airflow while collecting as much as 15.9 kg (35 lb) of debris in the vacuum cleaner has been problematic. A laboratory study was conducted to evaluate how mortar debris affects vacuum cleaner airflow and filter pressure loss. Four vacuum cleaners were tested. Two of the vacuum cleaners used vacuum cleaner bags as a prefilter; the other two vacuum cleaners used cyclones to reduce the amount of debris that reaches the filter. Test debris was collected by a masonry restoration contractor during actual mortar removal using a grinder fitted with a hood. The hood is attached to a vacuum cleaner with cyclonic pre-separation. The vacuum cleaner fan curves were obtained experimentally to learn how pressure loss affects vacuum cleaner airflows. Then, 15.9 kg (35 lb) of mortar removal debris was sucked into the vacuum cleaner in 2.27-kg (5-lb) increments. Before and after adding each 2.27-kg (5-lb) increment of debris, vacuum cleaner airflows were measured with a venturi meter, and vacuum cleaner static pressures were measured at the inlet to the vacuum cleaner motor, and before and after each filter. The vacuum cleaners equipped with cyclonic pre-separation were unaffected by the mass of debris collected in the vacuum cleaner and were able to maintain airflows in excess of 1.98 m(3)/min (70 cfm) throughout the testing program. As debris accumulated in the vacuum cleaners that used bags, airflow decreased from 2.3 m(3)/min (80 cfm) to as little as 0.85 m(3)/min (30 cfm). This airflow loss is caused by the increased airflow resistance of the bags that increased from less 0.03 kPa/m(3)/min (0.1 inches of water per cfm) to 16.7 kPa/m(3)/min (1.9 inches of water/cfm). Apparently, vacuum cleaners using bags should be used in

  4. All-atomic generation and noise-quadrature filtering of squeezed vacuum in hot Rb vapor

    NASA Astrophysics Data System (ADS)

    Horrom, Travis; Romanov, Gleb; Novikova, Irina; Mikhailov, Eugeniy E.

    2013-01-01

    With our all-atomic squeezing and filtering setup, we demonstrate control over the noise amplitudes and manipulation of the frequency-dependent squeezing angle of a squeezed vacuum quantum state by passing it through an atomic medium with electromagnetically induced transparency (EIT). We generate low sideband frequency squeezed vacuum using the polarization self-rotation effect in a hot Rb vapor cell, and direct it through a second atomic vapor subject to EIT conditions. We use the frequency-dependent absorption of the EIT window to demonstrate an example of squeeze amplitude attenuation and squeeze angle rotation of the quantum noise quadratures of the squeezed probe. These studies have implications for quantum memory and storage as well as gravitational wave interferometric detectors.

  5. Radioactive air emissions notice of construction HEPA filtered vacuum radioactive air emission units

    SciTech Connect

    JOHNSON, R.E.

    1999-09-01

    This notice of construction (NOC) requests a categorical approval for construction and operation of certain portable high-efficiency particulate air (HEPA) filtered vacuum radionuclide airborne emission units (HVUs). Approval of this NOC application is intended to allow operation of the HVUs without prior project-specific approval. This NOC does not request replacement or supersedence of any previous agreements/approvals by the Washington State Department of Health for the use of vacuums on the Hanford Site. These previous agreement/approvals include the approved NOCs for the use of EuroClean HEPA vacuums at the T Plant Complex (routine technical meeting 12/10/96) and the Kelly Decontamination System at the Plutonium-Uranium Extraction (PUREX) Plant (routine technical meeting 06/25/96). Also, this NOC does not replace or supersede the agreement reached regarding the use of HEPA hand-held/shop-vacuum cleaners for routine cleanup activities conducted by the Environmental Restoration Project. Routine cleanup activities are conducted during the surveillance and maintenance of inactive waste sites (Radioactive Area Remedial Action Project) and inactive facilities. HEPA hand-held/shop-vacuum cleaners are used to clean up spot surface contamination areas found during outdoor radiological field surveys, and to clean up localized radiologically contaminated material (e.g., dust, dirt, bird droppings, animal feces, liquids, insects, spider webs, etc.). This agreement, documented in the October 12, 1994 Routine Meeting Minutes, is based on routine cleanup consisting of spot cleanup of low-level contamination provided that, in each case, the source term potential would be below 0.1 millirem per year.

  6. Ion emission intensity ratios as a function of electrode gap, melting current, and pressure during low current vacuum arc remelting

    SciTech Connect

    Williamson, R.L.; Grose, S.M.

    1994-08-01

    The arc energy distribution in the electrode gap plays a central role in the vacuum arc remelting (VAR) process. However, very little has been done to investigate the response of this important process variable to changes in process parameters. Emission spectroscopy was used to investigate variations in arc energy in the annulus of a VAR furnace during melting of 0.43 m diameter Alloy 718 electrode into 0.51 in diameter ingot. Time averaged (1 second) intensity data from various chromium atom and ion (Cr{sup +}) emission lines were simultaneously collected and selected intensity ratios were subsequently used as air energy indicators. These studies were carried out as a function of melting current, electrode gap, and CO partial pressure. The data were modeled and the ion electronic energy was found to be a function of electrode gap, the energy content of the ionic vapor decreasing with increasing gap length; the ion ratios were not found to be sensitive to pressure. On the other hand, the chromium atom electronic energy was difficult to model in the factor space investigated, but was determined to be sensitive, to pressure. The difference in character of the chromium ion and atom energy fluctuations in the furnace annulus are attributed to the difference in the origins of these arc species and the non-equilibrium nature of the metal vapor arc. Most of the ion population is emitted directly from cathode spots, whereas much of the atomic vapor arises due to vaporization from the electrode and pool surfaces. Also, the positively charged ionic species interact more strongly with the electron gas than the neutral atomic species, the two distributions never equilibrating due to the low pressure.

  7. Development of X-Shape Filtered Arc Deposition Apparatus for Thick ta-C Film Coating

    NASA Astrophysics Data System (ADS)

    Hikokasa, Hiroki; Iwasaki, Yasuhiro; Takikawa, Hirofumi; Sakakibara, Tateki; Hasegawa, Hiroshi; Tsuji, Nobuhiro

    Novel X-shape filtered arc deposition (X-FAD) apparatus is specially designed and newly developed for thick hydrogen-free tetrahedral amorphous-carbon (ta-C) film coating on superhard alloy (or cemented carbide) substrate. The apparatus has a graphite cathode for deposition of hydrogen-free diamond-like carbon (DLC; ta-C and amorphous carbon: a-C) film and a chromium (Cr) cathode for deposition of Cr layer. The filter duct shapes a composed form of a T-shape filter (T-FAD) for DLC film and a crank-shape filter (Crank FAD) for Cr film. Both carbon plasma beam and Cr plasma beam finally pass through a common plasma duct and scanner part, and go forward to the substrate. It is known that the adhesion of ta-C film to the superhard alloy is not good and the employment of binding interlayer between ta-C film and superhard alloy is one of the solutions. In this paper, using X-FAD, thick ta-C film was prepared on the superhard alloy. Principal results were as follows. (1) Crank FAD remarkably worked to prepare droplet-free Cr film. (2) Cr single layer did not work as appropriate biding interlayer between superhard alloy and ta-C. (3) Multi interlayer composed of Cr, a-C, and functionally graded DLC (a-C to ta-C), worked as a good biding interlayer for ta-C film on superhard alloy with thickness of more than 1 μm.

  8. Transparent and conductive indium doped cadmium oxide thin films prepared by pulsed filtered cathodic arc deposition

    DOE PAGESBeta

    Zhu, Yuankun; Mendelsberg, Rueben J.; Zhu, Jiaqi; Han, Jiecai; Anders, André

    2012-11-26

    Indium doped cadmium oxide (CdO:In) films with different In concentrations were prepared on low-cost glass substrates by pulsed filtered cathodic arc deposition (PFCAD). In this study, it is shown that polycrystalline CdO:In films with smooth surface and dense structure are obtained. In-doping introduces extra electrons leading to remarkable improvements of electron mobility and conductivity, as well as improvement in the optical transmittance due to the Burstein Moss effect. CdO:In films on glass substrates with thickness near 230 nm show low resistivity of 7.23 x 10-5 Ωcm, high electron mobility of 142 cm2/Vs, and mean transmittance over 80% from 500-1250 nmmore » (including the glass substrate). These high quality pulsed arc-grown CdO:In films are potentially suitable for high efficiency multi-junction solar cells that harvest a broad range of the solar spectrum.« less

  9. Transparent and conductive indium doped cadmium oxide thin films prepared by pulsed filtered cathodic arc deposition

    SciTech Connect

    Zhu, Yuankun; Mendelsberg, Rueben J.; Zhu, Jiaqi; Han, Jiecai; Anders, André

    2012-11-26

    Indium doped cadmium oxide (CdO:In) films with different In concentrations were prepared on low-cost glass substrates by pulsed filtered cathodic arc deposition (PFCAD). In this study, it is shown that polycrystalline CdO:In films with smooth surface and dense structure are obtained. In-doping introduces extra electrons leading to remarkable improvements of electron mobility and conductivity, as well as improvement in the optical transmittance due to the Burstein Moss effect. CdO:In films on glass substrates with thickness near 230 nm show low resistivity of 7.23 x 10-5 Ωcm, high electron mobility of 142 cm2/Vs, and mean transmittance over 80% from 500-1250 nm (including the glass substrate). These high quality pulsed arc-grown CdO:In films are potentially suitable for high efficiency multi-junction solar cells that harvest a broad range of the solar spectrum.

  10. Charge state, angular distribution, and kinetic energy of ions from multicomponent-cathodes in vacuum arc devices

    SciTech Connect

    Nikolaev, A. G. Savkin, K. P.; Yushkov, G. Yu.; Frolova, V. P.; Barengolts, S. A.

    2014-12-07

    We present research results on vacuum arc plasma produced with multicomponent cathode made of several different elements. The ion mass-to-charge-state spectra of the plasmas were studied by time-of-flight spectrometry. The angular distributions of different ion species were measured, and the kinetic energy of their directed (streaming) motion was determined. It is shown that the fractional composition of ions of different cathode components in the plasma flow from the cathode spot closely matches the fractional content of these components in the composite cathode. The charge states of ions of the various cathode components are determined by the average electron temperature in the cathode spot plasma. The angular distribution of lower mass ions in the plasma from a multicomponent cathode is less isotropic and broader than for the plasma from a single-component cathode of the same light element. The directed kinetic energies of the ions of the different components for plasma from a multicomponent cathode are lower for lighter elements and greater for heavier elements compared to the ion directed energy for plasmas from single-component cathodes made of the same materials. The physical processes responsible for these changes in the ion charge states in multicomponent-cathode vacuum arc plasma are discussed.

  11. Solidification observations and sliding wear behavior of vacuum arc melting processed Ni-Al-TiC composites

    SciTech Connect

    Karantzalis, A.E. Lekatou, A.; Tsirka, K.

    2012-07-15

    Monolithic Ni{sub 3}Al and Ni-25 at.%Al intermetallic matrix TiC-reinforced composites were successfully produced by vacuum arc melting. TiC crystals were formed through a dissolution-reprecipitation mechanism and their final morphology is explained by means of a) Jackson's classical nucleation and growth phenomena and b) solidification rate considerations. The TiC presence altered the matrix microconstituents most likely due to specific melt-particle interactions and crystal plane epitaxial matching. TiC particles caused a significant decrease on the specific wear rate of the monolithic Ni{sub 3}Al alloy and the possible wear mechanisms are approached by means of a) surface oxidation, b) crack/flaws formation, c) material detachment and d) debris-counter surfaces interactions. - Highlights: Black-Right-Pointing-Pointer Vacuum arc melting (VAM) of Ni-Al based intermetallic matrix composite materials. Black-Right-Pointing-Pointer Solidification phenomena examination. Black-Right-Pointing-Pointer TiC crystal formation and growth mechanisms. Black-Right-Pointing-Pointer Sliding wear examination.

  12. Magnesium plasma diagnostics by heated probe and characterization of the Mg thin films deposited by thermionic vacuum arc technology

    NASA Astrophysics Data System (ADS)

    Vladoiu, Rodica; Mandes, Aurelia; Dinca Balan, Virginia; Prodan, Gabriel; Kudrna, Pavel; Tichý, Milan

    2015-06-01

    The aim of this paper is to report on magnesium plasma diagnostics and to investigate the properties of thin Mg films deposited on Si and glass substrates by using thermionic vacuum arc (TVA) technology. TVA is an original deposition method using a combination of anodic arc and powerful electron gun system (up to 600 W) for the growth of thin films from solid precursors under a vacuum of 10-6Torr. Due to the comparatively high deposition rate as well as comparatively high plasma potential—around 0.5 kV—plasma diagnostics were carried out by a heated probe that prevents layer deposition on the probe surface. The estimated value of electron density was in the order of 1.0  ×  1016m-3 and the electron temperature varied between 4  ×  104 and 1.2  ×  105 K (corresponding to two different discharge conditions). The thin Mg films were investigated using SEM images and TEM analyses provided with HR-TEM and SAED facilities. According to the SAED patterns the structure of the films can be indexed as two forms: hexagonal structure for Mg and cubic structure for MgO; the peak value of grain size distribution was 91.29 nm in diameter for Mg TVA/Si and 61.06 nm for Mg TVA/Gl.

  13. Generation of super-size macroparticles in a direct current vacuum arc discharge from a Mo-Cu cathode

    NASA Astrophysics Data System (ADS)

    Zhirkov, Igor; Petruhins, Andrejs; Polcik, Peter; Kolozsvári, Szilard; Rosen, Johanna

    2016-02-01

    An inherent property of cathodic arc is the generation of macroparticles, of a typical size ranging from submicrometer up to a few tens of μm. In this work, we have studied macroparticle generation from a Mo0.78Cu0.22 cathode used in a dc vacuum arc discharge, and we present evidence for super-size macroparticles of up to 0.7 mm in diameter. All analyzed particles are found to be rich in Mo (≥98 at. %). The particle generation is studied by visual observation of the cathode surface during arcing, by analysis of composition and geometrical features of the used cathode surface, and by examination of the generated macroparticles with respect to shape and composition. A mechanism for super-size macroparticle generation is suggested based on observed segregated layers of Mo and Cu identified in the topmost part of the cathode surface, likely due to the discrepancy in melting and evaporation temperatures of Mo and Cu. The results are of importance for increasing the fundamental understanding of macroparticle generation, which in turn may lead to increased process control and potentially provide paths for tuning, or even mitigating, macroparticle generation.

  14. Combined filtered cathodic arc etching pretreatment magnetronsputter deposition of highly adherent crn films

    SciTech Connect

    Ehiasarian, A.P.; Anders, A.; Petrov, I.

    2006-12-09

    CrN films were prepared on steel substrates by a hybridmethod utilizing filtered cathodic arc for Cr ion pretreatment andmagnetron sputtering for coating deposition. During pretreatment thesubstrates were biased to -1200 V and exposed to filtered chromiumplasma. The substrate-coating interface formed during the pretreatmentcontained a Cr-enriched modified layer with composition that was stronglyinfluenced by the temperature of the substrate as observed by scanningtransmission electron microscopy--energy dispersive spectroscopy. Themodified layer had a nanocrystalline morphology and thickness of 15 nm.The path of formation of the layer is linked to the combined action ofimplantation, diffusion, and resputtering. The resulting adhesion of 3 mum thick CrN films was very high with scratch test critical load values of83 N. The morphology of the films was smooth without large scale defectsand the microstructure was columnar. The coatings behaved well in drysliding tests with very low wear coefficients of 2.3 x 10-16 m3 N-1m-1,whichcan be linked to the high adhesion and defect-free microstructure.The smooth coatings also had a high resistance to corrosion asdemonstrated by potentiodynamic tests with particularly high pittingpotentials of +800 mV.

  15. Combined filtered cathodic arc etching pretreatment magnetronsputter deposition of highly adherent crn films

    SciTech Connect

    Ehiasarian, A.P.; Anders, A.; Petrov, I.

    2006-12-09

    CrN films were prepared on steel substrates by a hybridmethod utilizing filtered cathodic arc for Cr ion pretreatment andmagnetron sputtering for coating deposition. During pretreatment thesubstrates were biased to -1200 V and exposed to filtered chromiumplasma. The substrate-coating interface formed during the pretreatmentcontained a Cr-enriched modified layer withcomposition that was stronglyinfluenced by the temperature of the substrate as observed by scanningtransmission electron microscopy--energy dispersive spectroscopy. Themodified layer had a nanocrystalline morphology and thickness of 15 nm.The path of formation of the layer is linked to the combined action ofimplantation, diffusion, and resputtering. The resulting adhesion of 3 mum thick CrN films was very high with scratch test critical load values of83 N. The morphology of the films was smooth without large scale defectsand the microstructure was columnar. The coatings behaved well in drysliding tests with very low wear coefficients of 2.3 x 10-16 m3 N-1m-1,whichcan be linked to the high adhesion and defect-free microstructure.The smooth coatings also had a high resistance to corrosion asdemonstrated by potentiodynamic tests with particularly high pittingpotentials of +800 mV.

  16. Radioactive air emissions notice of construction for HEPA filtered vacuum radioactive air emission units

    SciTech Connect

    Johnson, R.E.

    1997-10-27

    This notice of construction (NOC) requests a categorical approval for construction and operation of certain portable high-efficiency particulate air (HEPA) filtered vacuum radionuclide airborne emission units (HVUs). Approval of this NOC application is intended to allow operation of the HVUs without prior project-specific approval. This NOC does not request replacement or supersedence of any previous agreements/approvals by the Washington State Department of Health (WDOH) for the use of vacuums on the Hanford Site. These previous agreements/approvals include the approved NOCs for the use of EuroClean HEPA vacuums at the T Plant Complex and the Kelly Decontamination System at the Plutonium-Uranium Extraction (PUREX) Plant. Also, this NOC does not replace or supersede the agreement reached regarding the use of HEPA hand-held/shop-vacuum cleaners for routine cleanup activities conducted by the Environmental Restoration Project. Routine cleanup activities are conducted during the surveillance and maintenance of inactive waste sites (Radioactive Area Remedial Action Project) and inactive facilities. HEPA hand-held/shop-vacuum cleaners are used to clean up spot surface contamination areas found during outdoor radiological field surveys, and to clean up localized radiologically contaminated material (e.g., dust, dirt, bird droppings, animal feces, liquids, insects, spider webs, etc.). This agreement, documented in the October 12, 1994 Routine Meeting Minutes, is based on routine cleanup consisting of spot cleanup of low-level contamination provided that, in each case, the source term potential would be below 0.1 millirem per year. This application is intended to request sitewide approval for the new activities, and provide an option for any facility on the site to use this approval, within the terms of this NOC. The HVUs used in accordance with this NOC will support reduction of radiological contamination at various locations on the Hanford Site. Radiation Protection Air

  17. Vacuum arc with a distributed cathode spot as a plasma source for plasma separation of spent nuclear fuel and radioactive waste

    NASA Astrophysics Data System (ADS)

    Amirov, R. Kh.; Vorona, N. A.; Gavrikov, A. V.; Lizyakin, G. D.; Polishchuk, V. P.; Samoilov, I. S.; Smirnov, V. P.; Usmanov, R. A.; Yartsev, I. M.

    2015-10-01

    Results from experimental studies of a vacuum arc with a distributed cathode spot on the heated cathode are presented. Such an arc can be used as a plasma source for plasma separation of spent nuclear fuel and radioactive waste. The experiments were performed with a gadolinium cathode, the properties of which are similar to those of an uranium arc cathode. The heat flux from the plasma to the cathode (and its volt equivalent) at discharge voltages of 4-15 V and discharge currents of 44-81 A, the radial distribution of the emission intensity of gadolinium atoms and singly charged ions in the arc channel at a voltage of 4.3 V, and the plasma electron temperature behind the anode were measured. The average charge of plasma ions at arc voltages of 3.5-8 V and a discharge current of 52 A and the average rate of gadolinium evaporation in the discharge were also determined.

  18. Vacuum arc with a distributed cathode spot as a plasma source for plasma separation of spent nuclear fuel and radioactive waste

    SciTech Connect

    Amirov, R. Kh. Vorona, N. A.; Gavrikov, A. V.; Lizyakin, G. D.; Polishchuk, V. P.; Samoilov, I. S.; Smirnov, V. P.; Usmanov, R. A.; Yartsev, I. M.

    2015-10-15

    Results from experimental studies of a vacuum arc with a distributed cathode spot on the heated cathode are presented. Such an arc can be used as a plasma source for plasma separation of spent nuclear fuel and radioactive waste. The experiments were performed with a gadolinium cathode, the properties of which are similar to those of an uranium arc cathode. The heat flux from the plasma to the cathode (and its volt equivalent) at discharge voltages of 4-15 V and discharge currents of 44-81 A, the radial distribution of the emission intensity of gadolinium atoms and singly charged ions in the arc channel at a voltage of 4.3 V, and the plasma electron temperature behind the anode were measured. The average charge of plasma ions at arc voltages of 3.5-8 V and a discharge current of 52 A and the average rate of gadolinium evaporation in the discharge were also determined.

  19. Optimization of a DC Vacuum Arc to Obtain Anatase Phase TiO2 Coatings

    SciTech Connect

    Kleiman, A.; Marquez, A.; Lamas, D. G.

    2006-12-04

    In this work, the characterization of TiO2 coatings obtained with a dc cathodic arc is presented. The arc was run with a current of 100 A. Glass samples placed in front of the cathode on the chamber axis were exposed to the discharge during 5 min. The samples were mounted on a heater that allows heating the sample up to 400 deg. C. The gas flow and the sample temperature were varied in order to find the optimum conditions for growing TiO2 in anatase phase. The coatings were analyzed by X-Ray Diffraction and Scanning Electron Microscopy. The results obtained by varying the gas flow in a range of 30-40 sccm and the sample temperature from 200 to 400 deg. C are presented.

  20. Shock layer vacuum UV spectroscopy in an arc-jet wind tunnel

    NASA Technical Reports Server (NTRS)

    Palumbo, G.

    1990-01-01

    An experimental program is being developed to obtain measurements of the incident surface radiation in the 1000 A to 2000 A range from the shock stagnation region of a blunt model in the Ames 20 MW Arc-Jet Wind Tunnel. The setup consists of a water-cooled blunt model, with a magnesium fluoride forward-viewing window. Radiation incident on the window is optically imaged via an evacuated system and reflective optical elements onto the entrance slit of a spectrograph. The model will be exposed to the supersonic plasma stream from the exit nozzle of the arc-jet tunnel. The resulting bow shock radiation will be measured. It is expected that this experiment will help evaluate the importance of atomic N and O lines to the radiative heating of future Aeroassist Space Transfer Vehicles (ASTVs).

  1. New ion-assisted filtered cathodic arc deposition (IFCAD) technology for producing advanced thin films on temperature-sensitive substrates

    NASA Astrophysics Data System (ADS)

    Fulton, Michael L.

    1999-10-01

    An innovative Ion-Assisted Filtered Cathodic Arc Deposition (IFCAD) system has been developed for low temperature production of thin-film coatings. The IFCAD system employs electro-magnetic and mechanical filtering techniques to remove unwanted macroparticles and neutral atoms from the plasma stream. Therefore, only ions within a defined energy range arrive at the substrate surface, depositing thin-films with excellent mechanical and optical properties. Ion- Assisted-Deposition is coupled with Filtered Cathodic Arc technology to enhance and modify the arc deposited thin- films. Using an advanced computer controlled plasma beam scanning system, high quality, large area, uniform IFCAD multi-layer film structures are attained. Amorphous Diamond- Like-Carbon films (up to 85% sp3 bonded carbon; and micro- hardness greater than 50 GPa) have been deposited in multi- layer thin-film combinations with other IFCAD source materials (such as: Al2O3) for optical and tribological applications. Rutile TiO2 (refractive index of 2.8 at 500 nm) has been deposited with this technology for advanced optical filter applications. The new IFCAD technology has been included in development programs, such as: plastic and glass lens coatings for optical systems; wear resistant coatings on various metal substrates, ultra smooth, durable, surface hydrophobic coatings for aircraft windows; EUV coatings for space instrumentation; transparent conductive coatings; and UV protective coatings for solar cell concentrator plastic Fresnel lens elements for space power.

  2. The biocompatibility of the tantalum and tantalum oxide films synthesized by pulse metal vacuum arc source deposition

    NASA Astrophysics Data System (ADS)

    Leng, Y. X.; Chen, J. Y.; Yang, P.; Sun, H.; Wang, J.; Huang, N.

    2006-01-01

    The surface modification technique is extensively employed to improve and control biocompatibility for blood and cell attachment. In this paper, tantalum thin films were synthesized by pulsed metal vacuum arc source deposition, the tantalum oxide films were fabricated by tantalum films heated at 700 °C for 1 h in air. The films were characterized using X-ray diffraction (XRD). In vitro investigations of cultured human umbilical vein endothelial cells (HUVEC) on Ta, tantalum oxide films, 316L stainless steel and CP-Ti revealed that the growth and proliferation behavior of endothelial cells on the sample surfaces varied significantly. The adherence, growth, shape and proliferation of endothelial cells on tantalum and tantalum oxide films were much better than 316L stainless steel and CP-Ti. The Ta and tantalum oxide films shown to fulfill the requirements necessary for the application as a blood-contacting device (such as stent) coating.

  3. A Multiscale 3D Model of the Vacuum Arc Remelting Process

    NASA Astrophysics Data System (ADS)

    Pericleous, Koulis; Djambazov, Georgi; Ward, Mark; Yuan, Lang; Lee, Peter D.

    2013-12-01

    A three-dimensional, transient, multiscale model of the VAR process is presented, allowing novel simulations of the influence of fluctuations in arc behavior on the flow and heat transfer in the molten pool and the effect this has on the microstructure and defects. The transient behavior of the arc was characterized using the external magnetic field and surface current measurements, which were then used as transient boundary conditions in the model. The interactions of the magnetic field, turbulent metal flow, and heat transfer were modeled using CFD techniques and this "macro" model was linked to a microscale solidification model. This allowed the transient fluctuations in the dendritic microstructure to be predicted, allowing the first coupled three-dimensional correlations between macroscopic operational parameters and microstructural defects to be performed. It was found that convection driven by the motion of the arc caused local remelting of the mushy zone, resulting in variations in permeability and solute density. This causes variations in the local Rayleigh number, leading to conditions under which freckle solidification defects will initiate. A three-dimensional transient tracking of particle fall-in was also simulated, enabling predictions of "white spot" defects via quantification of the trajectory and dissolution of inclusions entering the melt.

  4. High Rate Deposition of High Quality ZnO:Al by Filtered Cathodic Arc

    SciTech Connect

    Mendelsberg, Rueben J.; Lim, S.H.N.; Milliron, D.J.; Anders, Andre

    2010-11-18

    High quality ZnO:Al (AZO) thin films were prepared on glass substrates by direct current filtered cathodic arc deposition. Substrate temperature was varied from room temperature to 425oC, and samples were grown with and without the assistance of low power oxygen plasma (75W). For each growth condition, at least 3 samples were grown to give a statistical look at the effect of the growth environment on the film properties and to explore the reproducibility of the technique. Growth rate was in the 100-400 nm/min range but was apparently random and could not be easily traced to the growth conditions explored. For optimized growth conditions, 300-600 nm AZO films had resistivities of 3-6 x 10-4 ?Omega cm, carrier concentrations in the range of 2-4 x 1020 cm3, Hall mobility as high as 55 cm2/Vs, and optical transmittance greater than 90percent. These films are also highly oriented with the c-axis perpendicular to the substrate and a surface roughness of 2-4 nm.

  5. LARGE AREA FILTERED ARC DEPOSITION OF CARBON AND BORON BASED HARD COATINGS

    SciTech Connect

    Bhattacharya, Rabi S.

    2003-12-05

    This document is a final report covering work performed under Contract No. DE-FG02-99ER82911 from the Department of Energy under a SBIR Phase II Program. Wear resistant, hard coatings can play a vital role in many engineering applications. The primary goal of this project was to develop coatings containing boron and carbon with hardness greater than 30 GPa and evaluate these coatings for machining applications. UES has developed a number of carbon and boron containing coatings with hardness in the range of 34 to 65 GPa using a combination of filtered cathodic arc and magnetron sputtering. The boron containing coatings were based on TiB2, TiBN, and TiBCN, while the carbon containing coatings ere TiC+C and hydrogen free diamond-like-carbon. Machining tests were performed with single and multilayer coated tools. The turning and milling tests were run at TechSolve Inc., under a subcontract at Ohio State University. Significant increases in tool lives were realized in end milling of H-13 die steel (8X) and titanium alloy (80%) using the TiBN coating. A multilayer TiBN/TiN performed the best in end-milling of highly abrasive Al-Si alloys. A 40% increase in life over the TiAlN benchmark coating was found. Further evaluations of these coatings with commercialization partners are currently in progress.

  6. TiN coating of the PEP-II low-energy ring aluminum arc vacuum chambers

    SciTech Connect

    Kennedy, K.; Harteneck, B.; Millos, G.

    1997-05-01

    The PEP-II Low-Energy Ring will operate at a nominal energy of 3.1 GeV with a positron beam current of 2.1 A. Design parameters for vacuum components are 3.5 GeV at 3 A. The arc vacuum system is based on an aluminum antechamber concept. It consists of 192 pairs of 2 m long magnet chambers and 5.5 m long pumping chambers. Titanium nitride coating of the entire positron duct is needed in order to suppress beam instabilities caused by multipactoring and the {open_quotes}electron-cloud{close_quotes} effect. An extensive R&D program has been conducted to develop coating parameters that give proper stoichiometry and a suitable thickness of TiN. The total secondary emission yield of TiN-coated aluminum coupons has been measured after the samples were exposed to air and again after electron-beam bombardment. A coating facility has been built to cope with the large quantity of production chambers and the very tight schedule requirements.

  7. Angular ion emission characteristics of a laser triggered tin vacuum arc as light source for extreme ultraviolet lithography

    NASA Astrophysics Data System (ADS)

    Verbraak, Harald; Küpper, Felix; Jonkers, Jeroen; Bergmann, Klaus

    2010-11-01

    The angular resolved emission of tin ions from a laser triggered vacuum arc to be used as light source for extreme ultraviolet lithography is presented. Ion energies of more than 200 keV for emission angles up to 50° with respect to the optical axis are observed. The angular emission characteristic is strongly anisotropic with a pronounced peak for fast ions into a cone with an opening angle of roughly 10° at an angle of 35° with respect to the optical axis. These ions also exhibit a distinct energy distribution function compared to the more isotropic emitted bulk of ions, which can be referred to different mechanisms of production. Looking at the discharge current parameters, the production of the directed fast ions can be connected with a peaked increase in the impedance, which gives hint to a plasma instability as origin of those ions. The emission of isotropic emitted ions is in agreement with a model of plasma expansion into vacuum. The emission characteristic is also strongly dependent on the parameter of the trigger laser. It is shown that using a double trigger laser pulse the fast ion production can be suppressed by more than one order of magnitude.

  8. Tribological performance of hybrid filtered arc-magnetron coatings - Part I: Coating deposition process and basic coating properties characterization

    SciTech Connect

    Gorokhovsky, Vladimir; Bowman, C.; Gannon, Paul E.; VanVorous, D.; Voevodin, A. A.; Rutkowski, A.; Muratore, C.; Smith, Richard J.; Kayani, Asghar N.; Gelles, David S.; Shutthanandan, V.; Trusov, B. G.

    2006-12-04

    Aircraft propulsion applications require low-friction and wear resistant surfaces that operate under high contact loads in severe environments. Recent research on supertough and low friction nanocomposite coatings produced with hybrid plasma deposition processes was demonstrated to have a high potential for such demanding applications. However, industrially scalable hybrid plasma technologies are needed for their commercial realization. The Large area Filtered Arc Deposition (LAFAD) process provides atomically smooth coatings at high deposition rates over large surface areas. The LAFAD technology allows functionally graded, multilayer, super-lattice and nanocomposite architectures of multi-elemental coatings via electro-magnetic mixing of two plasma flows composed of different metal ion vapors. Further advancement can be realized through a combinatorial process using a hybrid filtered arc-magnetron deposition system. In the present study, multilayer and nanostructured TiCrCN/TiCr +TiBC composite cermet coatings were deposited by the hybrid filtered arc-magnetron process. Filtered plasma streams from arc evaporated Ti and Cr targets, and two unbalanced magnetron sputtered B4C targets, were directed to the substrates in the presence of reactive gases. A multiphase nanocomposite coating architecture was designed to provide the optimal combination of corrosion and wear resistance of advanced steels (Pyrowear 675) used in aerospace bearing and gear applications. Coatings were characterized using SEM/EDS, XPS and RBS for morphology and chemistry, XRD and TEM for structural analyses, wafer curvature and nanoindentation for stress and mechanical properties, and Rockwell and scratch indentions for adhesion. Coating properties were evaluated for a variety of coating architectures. Thermodynamic modeling was used for estimation of phase composition of the top TiBC coating segment. Correlations between coating chemistry, structure and mechanical properties are discussed.

  9. Effects of flattening filter-free and volumetric-modulated arc therapy delivery on treatment efficiency.

    PubMed

    Thomas, Evan M; Popple, Richard A; Prendergast, Brendan M; Clark, Grant M; Dobelbower, Michael C; Fiveash, John B

    2013-01-01

    Flattening filter-free (FFF) beams are available on an increasing number of commercial linear accelerators. FFF beams have higher dose rates than flattened beams of equivalent energy which can lead to increased efficiency of treatment delivery, especially in conjunction with increased FFF beam energy and arc-based delivery configurations. The purpose of this study is to quantify and assess the implications of improved treatment efficiency for several FFF delivery options on common types of linac applicable radiotherapy. Eleven characteristic cases representative of a variety of clinical treatment sites and prescription doses were selected from our patient population. Treatment plans were generated for a Varian TrueBeam linear accelerator. For each case, a reference plan was created using DMLC IMRT with 6MV flat beams. From the same initial objectives, plans were generated using DMLC IMRT and volumetric-modulated arc therapy (VMAT) with 6 MV FFF and 10 MV FFF beams (max. dose rates of 1400 and 2400 MU/min, respectively). The plans were delivered to a phantom; beam-on time, total treatment delivery time, monitor units (MUs), and integral dose were recorded. For plans with low dose fractionations (1.8-2.0 & 3.85 Gy/fraction), mean beam-on time difference between reference plan and most efficient FFF plan was 0.56 min (41.09% decrease); mean treatment delivery time difference between the reference plan and most efficient FFF plan was 1.54 min (range: 0.31-3.56 min), a relative improvement of 46.1% (range: 29.2%-59.2%). For plans with high dose fractionations (16-20 Gy/fraction), mean beam-on time difference was 6.79 min (74.9% decrease); mean treatment delivery time difference was 8.99 min (range: 5.40-13.05 min), a relative improvement of 71.1% (range: 53.4%- 82.4%). 10 MV FFF VMAT beams generated the most efficient plan, except in the spine SBRT case. The distribution of monitor unit counts did not vary by plan type. In cases where respiratory motion management would

  10. A new test method for the assessment of the arc tracking properties of wire insulation in air, oxygen enriched atmospheres and vacuum

    NASA Technical Reports Server (NTRS)

    Koenig, Dieter

    1994-01-01

    Development of a new test method suitable for the assessment of the resistance of aerospace cables to arc tracking for different specific environmental and network conditions of spacecraft is given in view-graph format. The equipment can be easily adapted for tests at different realistic electrical network conditions incorporating circuit protection and the test system works equally well whatever the test atmosphere. Test results confirm that pure Kapton insulated wire has bad arcing characteristics and ETFE insulated wire is considerably better in air. For certain wires, arc tracking effects are increased at higher oxygen concentrations and significantly increased under vacuum. All tests on different cable insulation materials and in different environments, including enriched oxygen atmospheres, resulted in a more or less rapid extinguishing of all high temperature effects at the beginning of the post-test phase. In no case was a self-maintained fire initiated by the arc.

  11. Continuous phase transition in the region of the vacuum arc cathode spot

    SciTech Connect

    Askari, S.; Minoo, H.; Moussakhani, K.

    2008-09-15

    A model for the near-cathode region of electric arcs is presented to investigate the liquid-plasma phase transition in the cathode spot region. Due to the high values of pressure and temperature after spot ignition, a 'continuous phase transition' occurs in the liquid-vapor interface. A set of fluid equations with suitable boundary conditions have been solved to obtain diagrams of the spot plasma in the temperature-density plane during the spot evolution for a typical spot. To evaluate the model, the magnitude of some essential quantities such as the mean ion charge state of plasma and current density have been calculated, which are in accordance with experimental results.

  12. Investigations on phosphorus recovery and reuse as soil amendment from electric arc furnace slag filters.

    PubMed

    Bird, Simon C; Drizo, Aleksandra

    2009-11-01

    Electric arc furnace (EAF) steel slag has been identified as an effective filter material for the removal of phosphorus (P) from both point and non-point sources. To determine the feasibility of land-applying P saturated EAF steel slag this study was undertaken to investigate (i) saturated EAF steel slag material's potential as a P fertilizer or soil amendment and (ii) P desorption and metals leachate from saturated EAF steel slag material to surface runoff. Medicago sativa (alfalfa) was planted in a nutrient depleted washed sand media. Phosphorus was added either as saturated EAF steel slag or as a standard commercial phosphate fertilizer in order to assess the plant availability of the P from saturated EAF steel slag. Four different P application levels were tested: a low (20 lbs acre furrow slice(-1) (5.5 g P m(-3))) two medium (40 and 60 lbs. acre f.s.(-1) (11 and 16.5 g P m(-3))) and a high (120 lbs. acre f.s.(-1) (33 g P m(-3))). The above-ground biomass of half of the plants was harvested after 5 weeks and the second half at 10 weeks. All treatments regardless of the P source used showed high rates of germination. At the first harvest period (5 weeks) significantly higher above-ground biomass (p < 0.01) was seen at the 3 highest P amendment rates in treatments with triple super phosphate fertilizer (TSP) than with EAF steel slag. However, by the second harvest (10 weeks) only the highest amendment rate of TSP showed a significantly higher amount of biomass (p < 0.01), suggesting that EAF steel slag might be an effective slow release P source. In a second experiment, a rain simulator was used to assess desorption of DRP, TP and metals from a saturated and semi-saturated EAF steel slag. The results revealed that the total amounts of DRP and TP released to surface runoff from EAF steel slag were negligible when compared to the total quantities of P retained by this material. Overall the results from this study demonstrated that once the EAF steel slag filter

  13. Thickening, refertilization, and the deep lithosphere filter in continental arcs: Constraints from major and trace elements and oxygen isotopes

    NASA Astrophysics Data System (ADS)

    Chin, Emily J.; Lee, Cin-Ty A.; Barnes, Jaime D.

    2014-07-01

    Arc magmatism is a complex process involving generation of primary melts in the mantle wedge and chemical refinement of these melts into differentiated products akin to continental crust. Interaction of magmas (cooling, crystallization and assimilation) with the overlying crust, particularly if it is thick, is one way by which primary basalts are refined into more evolved compositions. Here, we explore the role of the mantle lithosphere as a trap and/or reactive filter of magmas. We use mantle xenoliths from the Sierra Nevada continental arc in California as a probe into sub-Moho processes. Based on clinopyroxene modal abundance and major, minor and moderately incompatible trace element concentrations, the peridotites define a refertilization trend that increases with depth, grading from clinopyroxene-poor (<5%), undeformed spinel peridotites equilibrated at <3 GPa (<90 km) to clinopyroxene-rich (10-20%), porphyroclastic garnet peridotites equilibrated between 3 and 3.5 GPa (90-105 km), the latter presumably approaching the top of the subducting slab. The petrology and geochemistry of the xenoliths suggest that the fertile peridotites were originally depleted spinel peridotites, which were subsequently refertilized. Incompatible trace element geochemistry reveals a pervasive cryptic metasomatic overprint in all peridotites, suggesting involvement of small amounts of subduction-derived fluids from the long-lived Farallon plate beneath western North America. However, bulk reconstructed δOSMOW18 values of the peridotites, including the most refertilized, fall between 5.4 and 5.9‰, within the natural variability of unmetasomatized mantle (∼5.5±0.2‰). Together with Sm, Yb, and Ca compositional data, the oxygen isotope data suggest that the role of slab or sediment melts in refertilizing the peridotites was negligible (<5% in terms of added melt mass). Instead, binary mixing models suggest that many of the Sierran garnet peridotites, particularly those with high

  14. InGaN thin film deposition on Si(100) and glass substrates by termionic vacuum arc

    NASA Astrophysics Data System (ADS)

    Erdoğan, E.; Kundakçı, M.; Mantarcı, A.

    2016-04-01

    Group-III nitride semiconductors covering infrared, visible and ultraviolet spectral range has direct band gaps changing from 0,7 eV (InN) to 3,4 eV (GaN). LEDs emit red, blue, green light, ultraviolet (UV) laser diodes (LD), UV light detectors and high power electronic devices are obtained and commercialized based on group-III nitride materials. InGaN semiconductor can be deposited by different techniques such as molecular beam epitaxy (MBE), metal organic chemical vapor deposition (MOCVD). In this study, InGaN thin films were prepared on Si and glass substrates as well as on GaN layer by termionic vacuum arc (TVA) which is a plasma asisted thin film deposition technique. The film was deposited at 10-6 torr working pressure, 18A filament current. Plasma was produced at 200 V with 0,6A plasma current. The purpose of this research is to investigate the properties of InGaN thin films. X-ray diffraction (XRD) spectrophotometer was used to analyze microstructure of the deposited films. Scanning electon microscopy (SEM) were used for surface morphology characterizations. Compositional analysis was done by energy dispersive X-ray spectroscopy (EDAX).

  15. Photon reflectivity distributions from the LHC beam screen and their implications on the arc beam vacuum system

    NASA Astrophysics Data System (ADS)

    Mahne, N.; Baglin, V.; Collins, I. R.; Giglia, A.; Pasquali, L.; Pedio, M.; Nannarone, S.; Cimino, R.

    2004-07-01

    In particle accelerators with intense positively charged bunched beams, an electron cloud may induce beam instabilities and the related beam induced electron multipacting (BIEM) can result in an undesired pressure rise. In a cryogenic machine such as the large hadron collider (LHC), the BIEM will introduce additional heat load. When present, synchrotron radiation (SR) may generate a significant number of photoelectrons, that may play a role in determining the onset and the detailed properties of the electron cloud related instability. Since electrons are constrained to move along field lines, those created on the accelerator equator in a strong vertical (dipole) field cannot participate in the e-cloud build-up. Therefore, for the LHC there has been a continuous effort to find solutions to absorb the photons on the equator. The solution adopted for the LHC dipole beam screens is a saw-tooth structure on the illuminated equator. SR from a bending magnet beamline at ELETTRA, Italy (BEAR) has been used to measure the reflectivities (forward, back-scattered and diffuse), for a flat and a saw-tooth structured Cu co-laminated surface using both white light SR, similar to the one emitted by LHC, and monochromatic light. Our data show that the saw-tooth structure does reduce the total reflectivity and modifies the photon energy distribution of the reflected photons. The implications of these results on the LHC arc vacuum system are discussed.

  16. Surface modification of compressor steels using thermally assisted ionic diffusion in the titanium plasma of a vacuum arc discharge

    NASA Astrophysics Data System (ADS)

    Muboyadzhyan, S. A.; Azarovskii, E. N.

    2015-11-01

    The thermally stimulated ionic diffusion (ionic modification) of titanium ions at the surfaces of EP866 and EI961 compressor steels is considered in the plasma of the high-current vacuum-arc discharge (VAD) in an ion-plasma MAP-3 plant. The dependences of the sample temperature in the sputtering chamber of the ion-plasma MAP-3 plant and the rate of specific change of the sample mass on the bias voltage at a VAD current of 300 A are obtained. The elemental composition of the surface layers of the samples subjected to ion treatment is studied. It is shown that, at a VAD current of 300 A and a bias voltage up to 400 V, the compressor steel sample temperature does not exceed 440°C and the inversion voltage, which determines the transition from coating condensation to ion etching of a substrate, is ~360 V for EP866 steel and ~390 V for EI961 steel. The corrosion resistance of the compressor steels modified at a VAD current of 300 A is investigated.

  17. Preparation of transparent and conductive multicomponent Zn-In-Sn oxide thin films by vacuum arc plasma evaporation

    NASA Astrophysics Data System (ADS)

    Minami, Tadatsugu; Tsukada, Satoshi; Minamino, Youhei; Miyata, Toshihiro

    2005-07-01

    This article describes the preparation of transparent conducting oxide (TCO) thin films by a vacuum arc plasma evaporation (VAPE) method using multicomponent oxide materials composed of any combination of two of the following binary compounds: ZnO, In2O3, and SnO2. The resulting TCO thin films were prepared with high deposition rates with the desired chemical composition in the ZnO-In2O3, In2O3-SnO2, and SnO2-ZnO systems by altering the composition of the sintered oxide fragments used as the source materials. Minimum resistivities were obtained in amorphous In2O3-ZnO, SnO2-In2O3, and ZnO-SnO2 thin films that were prepared with a Zn content of about 8.5 at. %, an In content of about 46 at. %, and a Sn content of about 78 at. %, respectively. It was found that the electrical, optical and chemical properties in ZnO-SnO2 thin films prepared using the VAPE method could be controlled by altering the Sn content.

  18. Overview spectra and axial distribution of spectral line intensities in a high-current vacuum arc with CuCr electrodes

    SciTech Connect

    Lisnyak, M.; Pipa, A. V.; Gorchakov, S. E-mail: weltmann@inp-greifswald.de; Iseni, S.; Franke, St.; Khapour, A.; Methling, R.; Weltmann, K.-D. E-mail: weltmann@inp-greifswald.de

    2015-09-28

    Spectroscopic investigations of free-burning vacuum arcs in diffuse mode with CuCr electrodes are presented. The experimental conditions of the investigated arc correspond to the typical system for vacuum circuit breakers. Spectra of six species Cu I, Cu II, Cu III, Cr I, Cr II, and Cr III have been analyzed in the wavelength range 350–810 nm. The axial intensity distributions were found to be strongly dependent on the ionization stage of radiating species. Emission distributions of Cr II and Cu II can be distinguished as well as the distributions of Cr III and Cu III. Information on the axial distribution was used to identify the spectra and for identification of overlapping spectral lines. The overview spectra and some spectral windows recorded with high resolution are presented. Analysis of axial distributions of emitted light, which originates from different ionization states, is presented and discussed.

  19. Mechanical properties and platelet adhesion behavior of diamond-like carbon films synthesized by pulsed vacuum arc plasma deposition

    NASA Astrophysics Data System (ADS)

    Leng, Y. X.; Chen, J. Y.; Yang, P.; Sun, H.; Wan, G. J.; Huang, N.

    2003-05-01

    Diamond-like carbon (DLC) is an attractive biomedical material due to its high inertness and excellent mechanical properties. In this study, DLC films were fabricated on Ti6Al4V and Si(1 0 0) substrates at room temperature by pulsed vacuum arc plasma deposition. By changing the argon flow from 0 to 13 sccm during deposition, the effects of argon flow on the characteristics of the DLC films were systematically examined to correlate to the blood compatibility. The microstructure and mechanical properties of the films were investigated using Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) surface analysis, a nano-indenter and pin-on-disk tribometer. The blood compatibility of the films was evaluated using in vitro platelet adhesion investigation, and the quantity and morphology of the adherent platelets was investigated employing optical microscopy and scanning electron microscopy. The Raman spectroscopy results showed a decreasing sp 3 fraction (an increasing trend in ID/ IG ratio) with increasing argon flow from 0 to 13 sccm. The sp 3:sp 2 ratio of the films was evaluated from the deconvoluted XPS spectra. We found that the sp 3 fraction decreased as the argon flow was increased from 0 to 13 sccm, which is consistent with the results of the Raman spectra. The mechanical properties results confirmed the decreasing sp 3 content with increasing argon flow. The Raman D-band to G-band intensity ratio increased and the platelet adhesion behavior became better with higher flow. This implies that the blood compatibility of the DLC films is influenced by the sp 3:sp 2 ratio. DLC films deposited on titanium alloys have high wear resistance, low friction and good adhesion.

  20. Volumetric modulation arc radiotherapy with flattening filter-free beams compared with conventional beams for nasopharyngeal carcinoma: a feasibility study

    PubMed Central

    Zhuang, Mingzan; Zhang, Tuodan; Chen, Zhijian; Lin, Zhixiong; Li, Derui; Peng, Xun; Qiu, Qingchun; Wu, Renhua

    2013-01-01

    There is increasing interest in the clinical use of flattening filter-free (FFF) beams. In this study, we aimed to investigate the dosimetric characteristics of volumetric modulated arc radiotherapy (VMAT) with FFF beams for nasopharyngeal carcinoma (NPC). Ten NPC patients were randomly selected to undergo a RapidArc plan with either FFF beams (RA-FFF) or conventional beams (RA-C). The doses to the planning target volumes (PTVs), organs at risk (OARs), and normal tissues were compared. The technical delivery parameters for RapidArc plans were also assessed to compare the characteristics of FFF and conventional beams. Both techniques delivered adequate doses to PTVs. For PTVs, RA-C delivered lower maximum and mean doses and improved conformity and homogeneity compared with RA-FFF. Both techniques provided similar maximum doses to the optic nerves and lenses. For the brain stem, spinal cord, larynx, parotid glands, oral cavity, and skin, RA-FFF showed significant dose increases compared to RA-C. The dose to normal tissue was lower in RA-FFF. The monitor units (MUs) were (536 ± 46) MU for RA-FFF and (501 ± 25) MU for RA-C. The treatment duration did not significantly differ between plans. Although both treatment plans could meet clinical needs, RA-C is dosimetrically superior to RA-FFF for NPC radiotherapy. PMID:23237224

  1. High-RRR thin-films of NB produced using energetic condensation from a coaxial, rotating vacuum ARC plasma (CEDTM)

    NASA Astrophysics Data System (ADS)

    Valderrama, Enrique Francisco; James, Colt; Krishnan, Mahadevan; Zhao, Xin; Phillips, Larry; Reece, Charles; Seo, Kang

    2012-06-01

    We have recently demonstrated unprecedentedly high values of RRR (up to 542) in thin-films of pure Nb deposited on a-plane sapphire and MgO crystal substrates. The Nb films were grown using a vacuum arc discharge struck between a reactor grade Nb cathode rod (RRR 30) and a coaxial, semi-transparent Mo mesh anode, with a heated substrate placed just outside it. The substrates were pre-heated for several hours prior to deposition at different temperatures. Low pre-heat temperatures (<300°C) and deposition temperatures (<300°C) give low RRR (<50) films, whereas higher pre-heat (700°C) and coating temperatures (500°C) give RRR=214 on a-sapphire and RRR=542 on MgO. XRD (Bragg-Brentano scans and Pole Figures), EBSD and SIMS data reveal several features: (1) on asapphire, higher temperatures show better 3D registry for epitaxial growth of Nb; the crystal structure evolves from textured, polycrystalline (with twins) to single-crystal; (2) on MgO, there is a transition from {110} planes to {100} as the temperature is increased beyond 500°C. The dramatic increase in RRR (from 10 at <300°C to 500 at >600°C) is correlated with better epitaxial crystal structure in both a-sapphire and MgO substrate grown films. However, the SIMS data reveal that the most important requirement for high-RRR Nb films on either substrate is the reduction of impurities in the film, especially hydrogen. The hydrogen content in the MgO grown films is 1000 times lower than in bulk Nb tested as a reference from SRF cavity grade Nb. This result has potential implications for SRF accelerators. Coating bulk Nb cavities with an MgO layer followed by our CEDTM deposited Nb films, might create superior SRF cavities that would avoid Q-slope and operate at higher peak fields. This research was supported by Department of Energy grants DE-SC0004994 and DE-FG02-08ER85162.

  2. Numerical simulation of high-current vacuum arc characteristics under combined action of axial magnetic field and external magnetic field from bus bar

    SciTech Connect

    Wang Lijun; Jia Shenli; Liu Ke; Wang Liuhuo; Shi Zongqian

    2009-10-15

    In this paper, the two-dimensional high-current vacuum arc (HCVA) model under the combined action of axial magnetic field (AMF) and external magnetic field from bus bar (EMFBB) is established. Based on this model, the influence of AMF and EMFBB on HCVA characteristics can be simulated and analyzed. Simulation results show that the HCVA column will be deflected by the Lorentz force generated by EMFBB and higher arc current. Moreover, the deflection level will be increased with the increase in external EMFBB strength. For HCVA, due to the smaller axial velocity near cathode side, the deflection of plasma parameters (such as ion number density, ion temperature, electron temperature, plasma pressure, and so on) near cathode side is more significant than that near anode side. The current deflection near cathode side toward direction of Lorentz force is more significant than that near anode side.

  3. Ultrathin ta-C films on heads depositied by twist-filteredcathodic arc carbon plasmas

    SciTech Connect

    Anders, Andre; Ryan, Francis W.

    2000-07-14

    It is known that filtered cathodic-arc-deposited ta-C films have outstanding properties even within the family of diamondlike materials. However, filtering of macroparticles is usually incomplete or accompanied by significant plasma losses. Ongoing research effort is directed towards the following goals: (1) complete elimination of macro- and nanoparticles from the vacuum arc plasma, (2) increase of plasma utilization in the cathodic-arc and macroparticle-filter system, (3) precise control and reproducibility of film deposition, and (4) synthesis of ultrathin films (< 5 nm) that meet requirements of the magnetic storage industry. The development of new filters, in particular the ''Twist Filter'', enables cathodic arc plasma deposition to synthesize ultrathin ta-C films of 3 nm on heads that pass corrosion and other relevant tests. We describe the Twist Filter system and report about recent ta-C tests results. In light of these results, even thinner films seem to be possible.

  4. Possibilities of structural engineering in multilayer vacuum-arc ZrN/CrN coatings by varying the nanolayer thickness and application of a bias potential

    NASA Astrophysics Data System (ADS)

    Sobol', O. V.; Andreev, A. A.; Gorban', V. F.; Stolbovoy, V. A.; Melekhov, A. A.; Postelnyk, A. A.

    2016-07-01

    The possibility of attaining an superhard state in multilayer vacuum-arc ZrN/CrN coatings with a layer thickness of about 20 nm has been established. It has been shown that the application of a constant negative potential for structural engineering during deposition leads to the formation of solid solutions due to mixing of interfaces. The hardness of these systems exceeds 30 GPa. The application of a pulsed high-voltage bias potential at which the ordering of atoms stimulated by elevated mobility is observed makes it possible to suppress the mixing of the interfaces and to attain elevated hardness (up to 42 GPa) for nanometer layer thicknesses.

  5. Correlation between Microstructure and Mechanical Properties ofTiC Films Produced by Vacuum arc Deposition and Reactive MagnetronSputtering

    SciTech Connect

    Monteiro, O.R.; Delplancke-Ogletree, M.P.; Winand, R.; Brown, I.G.

    1999-07-29

    We have studied the synthesis of TiC films by vacuum arc deposition and reactive magnetron sputtering over a wide range of compositions. The films were deposited on silicon and tool steel. The films were characterized by various techniques: Auger electron and X-ray photoelectron spectroscopies, Rutherford backscattering, transmission electron diffraction and X-ray diffraction. Mechanical properties such as stress, adhesion, friction coefficient and wear resistance were obtained by carrying measurements of the curvature of the silicon substrate, pull tests, and ball-on-disk tests, respectively.

  6. High quality ZnO:Al transparent conducting oxide films synthesized by pulsed filtered cathodic arc deposition

    SciTech Connect

    Anders, Andre; Lim, Sunnie H.N.; Yu, Kin Man; Andersson, Joakim; Rosen, Johanna; McFarland, Mike; Brown, Jeff

    2009-04-24

    Aluminum-doped zinc oxide, ZnO:Al or AZO, is a well-known n-type transparent conducting oxide with great potential in a number of applications currently dominated by indium tin oxide (ITO). In this study, the optical and electrical properties of AZO thin films deposited on glass and silicon by pulsed filtered cathodic arc deposition are systematically studied. In contrast to magnetron sputtering, this technique does not produce energetic negative ions, and therefore ion damage can be minimized. The quality of the AZO films strongly depends on the growth temperature while only marginal improvements are obtained with post-deposition annealing. The best films, grown at a temperature of about 200?C, have resistivities in the low to mid 10-4 Omega cm range with a transmittance better than 85percent in the visible part of the spectrum. It is remarkable that relatively good films of small thickness (60 nm) can be fabricated using this method.

  7. Experimental test of whether electrostatically charged micro-organisms and their spores contribute to the onset of arcs across vacuum gaps

    NASA Astrophysics Data System (ADS)

    Grisham, L. R.; von Halle, A.; Carpe, A. F.; Gilton, K. R.; Rossi, Guy; Stevenson, T. N.

    2013-12-01

    Recently it was proposed [L. R. Grisham et al. Phys. Plasmas 19, 023107 (2012)] that one of the initiators of vacuum voltage breakdown between conducting electrodes might be micro-organisms and their spores, previously deposited during exposure to air, which then become electrostatically charged when an electric potential is applied across the vacuum gap. This note describes a simple experiment to compare the number of voltage-conditioning pulses required to reach the nominal maximum operating voltage across a gap between two metallic conductors in a vacuum, comparing cases in which biological cleaning was done just prior to pump-down with cases where this was not done, with each case preceded by exposure to ambient air for three days. Based upon these results, it does not appear that air-deposited microbes and their spores constitute a major pathway for arc initiation, at least for exposure periods of a few days, and for vacuum gaps of a few millimeters, in the regime where voltage holding is usually observed to vary linearly with gap distance.

  8. Experimental Test Of Whether Electrostatically Charged Micro-organisms And Their Spores Contribute To The Onset Of Arcs Across Vacuum Gaps

    SciTech Connect

    none,; Grisham, Larry R.

    2014-02-24

    Recently it was proposed [L.R. Grisham, A. vonHalle, A.F. Carpe, Guy Rossi, K.R. Gilton, E.D. McBride, E.P. Gilson, A. Stepanov, T.N. Stevenson, Physics of Plasma 19 023107 (2012)] that one of the initiators of vacuum voltage breakdown between condu cting electrodes might be micro-organisms and their spores, previously deposited during exposure to air, which tnen become electrostatically charged when an electric potential is applied across the vacuum gap. The note describes a simple experiment to compare the number of voltage-conditioning pulses required to reach the nominal maxium operating voltage across a gap between two metallic conductors in a vacuum, comparing cases in which biological cleaning was done just prior to pump-down with cases where this was not done, with each preceded by exposure to ambient air for three days. Based upon these results, it does not appear that air-deposited microbes and their spores constitute a major pathway for arc initiation, at least for exposure periods of a few days, and for vacuum gaps of a few millimeters, in the regime where voltage holding is usually observed to vary linearly with gap distance

  9. Experimental test of whether electrostatically charged micro-organisms and their spores contribute to the onset of arcs across vacuum gaps

    SciTech Connect

    Grisham, L. R.; Halle, A. von; Carpe, A. F.; Gilton, K. R.; Rossi, Guy; Stevenson, T. N.

    2013-12-15

    Recently it was proposed [L. R. Grisham et al. Phys. Plasmas 19, 023107 (2012)] that one of the initiators of vacuum voltage breakdown between conducting electrodes might be micro-organisms and their spores, previously deposited during exposure to air, which then become electrostatically charged when an electric potential is applied across the vacuum gap. This note describes a simple experiment to compare the number of voltage-conditioning pulses required to reach the nominal maximum operating voltage across a gap between two metallic conductors in a vacuum, comparing cases in which biological cleaning was done just prior to pump-down with cases where this was not done, with each case preceded by exposure to ambient air for three days. Based upon these results, it does not appear that air-deposited microbes and their spores constitute a major pathway for arc initiation, at least for exposure periods of a few days, and for vacuum gaps of a few millimeters, in the regime where voltage holding is usually observed to vary linearly with gap distance.

  10. Deposition of various metal, ceramic, and cermet coatings by an industrial-scale large area filtered arc deposition process

    SciTech Connect

    Gorokhovsky, V.; Bowman, C.; VanVorous, D.; Wallace, J.

    2009-07-15

    Nearly defect-free nitride, carbide, and oxiceramic coatings have been deposited by a unidirectional dual large area filtered arc deposition (LAFAD) process. One LAFAD dual arc vapor plasma source was used in both gas ionization and coating deposition modes with and without vertical magnetic rastering of the plasma flow. Substrates made of different metal alloys, as well as carbide and ceramics, were installed at different vertical positions on the 0.5 m diameter turntable of the industrial-scale batch coating system which was rotated at 12 rpm to assess deposition rates and coating thickness uniformity. Targets of the same or different compositions were installed on the primary cathodic arc sources of the LAFAD plasma source to deposit a variety of coating compositions by mixing the metal vapor and reactive gaseous components in a magnetically confined, strongly ionized plasma flow with large kinetic energy. The maximum deposition rate typically ranged from 1.5 {mu}m/h for TiCr/TiCrN to 2.5 {mu}m/h for Ti/TiN multilayer and AlN single layer coatings, and up to 6 {mu}m/h for AlCr-based oxiceramic coatings for primary cathode current ranging from 120 to 140 A. When the arc current was increased to 200 A, the deposition rates of TiN-based coatings were as high as 5 {mu}m/h. The vertical coating thickness uniformity was {+-}15% inside of a 150 mm area without vertical rastering. Vertical rastering increased the uniform coating deposition area up to 250 mm. The coating thickness distribution was well correlated with the output ion current distribution as measured by a multisection ion collector probe. Coatings were characterized for thickness, surface profile, adhesion, hardness, and elemental composition. Estimates of electrical resistivity indicated good dielectric properties for most of the TiCrAlY-based oxiceramic, oxinitride, and nitride coatings. The multielement LAFAD plasma flow consisting of fully ionized metal vapor with a reactive gas ionization rate in

  11. Combined filtered cathodic arc etching pretreatment-magnetron sputter deposition of highly adherent CrN films

    SciTech Connect

    Ehiasarian, A. P.; Anders, A.; Petrov, I.

    2007-05-15

    CrN films were prepared on steel substrates by a hybrid method utilizing filtered cathodic arc for Cr ion pretreatment and magnetron sputtering for coating deposition. During pretreatment the substrates were biased to -1200 V and exposed to filtered chromium plasma. The substrate-coating interface formed during the pretreatment contained a Cr-enriched modified layer with composition that was strongly influenced by the temperature of the substrate as observed by scanning transmission electron microscopy--energy dispersive spectroscopy. The modified layer had a nanocrystalline morphology and thickness of 15 nm. The path of formation of the layer is linked to the combined action of implantation, diffusion, and resputtering. The resulting adhesion of 3 {mu}m thick CrN films was very high with scratch test critical load values of 83 N. The morphology of the films was smooth without large scale defects and the microstructure was columnar. The coatings behaved well in dry sliding tests with very low wear coefficients of 2.3x10{sup -16} m{sup 3} N{sup -1} m{sup -1}, which can be linked to the high adhesion and defect-free microstructure. The smooth coatings also had a high resistance to corrosion as demonstrated by potentiodynamic tests with particularly high pitting potentials of +800 mV.

  12. A 4 MV flattening filter-free beam: commissioning and application to conformal therapy and volumetric modulated arc therapy

    NASA Astrophysics Data System (ADS)

    Stevens, S. W.; Rosser, K. E.; Bedford, J. L.

    2011-07-01

    Recent studies have indicated that radiotherapy treatments undertaken on a flattening filter-free (FFF) linear accelerator have a number of advantages over treatments undertaken on a conventional linear accelerator. In addition, 4 MV photon beams may give improved isodose coverage for some treatment volumes at air/tissue interfaces, compared to when utilizing the clinical standard of 6 MV photons. In order to investigate these benefits, FFF beams were established on an Elekta Beam Modulator linear accelerator for 4 MV photons. Commissioning beam data were obtained for open and wedged fields. The measured data were then imported into a treatment planning system and a beam model was commissioned. The beam model was optimized to improve dose calculations at shallow, clinically relevant depths. Following verification, the beam model was utilized in a treatment planning study, including volumetric modulated arc therapy, for a selection of lung, breast/chest wall and larynx patients. Increased dose rates of around 800 MU min-1 were recorded for open fields (relative to 320 MU min-1 for filtered open fields) and reduced head scatter was inferred from output factor measurements. Good agreement between planned and delivered dose was observed in verification of treatment plans. The planning study indicated that with a FFF beam, equivalent (and in some cases improved) isodose profiles could be achieved for small lung and larynx treatment volumes relative to 4 MV filtered treatments. Furthermore, FFF treatments with wedges could be replicated using open fields together with an 'effective wedge' technique and isocentre shift. Clinical feasibility of a FFF beam was therefore demonstrated, with beam modelling, treatment planning and verification being successfully accomplished.

  13. Note: A cryogenic, ultra-high-vacuum, microwave filter which passes a narrow beam.

    PubMed

    Evetts, N; Dosanjh, P; Zvyagintsev, V; Hardy, W N

    2015-12-01

    We report on a device which filters microwave radiation prone to heating cryogenic experiments while at the same time allowing large apertures which will not disturb a propagating beam. A method for evaporating thin films onto the inner face of a narrow tube is also described. PMID:26724082

  14. Note: A cryogenic, ultra-high-vacuum, microwave filter which passes a narrow beam

    SciTech Connect

    Evetts, N. Dosanjh, P.; Hardy, W. N.; Zvyagintsev, V.

    2015-12-15

    We report on a device which filters microwave radiation prone to heating cryogenic experiments while at the same time allowing large apertures which will not disturb a propagating beam. A method for evaporating thin films onto the inner face of a narrow tube is also described.

  15. Flattening Filter-Free Beams in Intensity-Modulated Radiotherapy and Volumetric Modulated Arc Therapy for Sinonasal Cancer

    PubMed Central

    Huang, Bao-Tian

    2016-01-01

    Purpose To evaluate the dosimetric impacts of flattening filter-free (FFF) beams in intensity-modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT) for sinonasal cancer. Methods For fourteen cases, IMRT and VMAT planning was performed using 6-MV photon beams with both conventional flattened and FFF modes. The four types of plans were compared in terms of target dose homogeneity and conformity, organ-at-risk (OAR) sparing, number of monitor units (MUs) per fraction, treatment time and pure beam-on time. Results FFF beams led to comparable target dose homogeneity, conformity, increased number of MUs and lower doses to the spinal cord, brainstem and normal tissue, compared with flattened beams in both IMRT and VMAT. FFF beams in IMRT resulted in improvements by up to 5.4% for sparing of the contralateral optic structures, with shortened treatment time by 9.5%. However, FFF beams provided comparable overall OAR sparing and treatment time in VMAT. With FFF mode, VMAT yielded inferior homogeneity and superior conformity compared with IMRT, with comparable overall OAR sparing and significantly shorter treatment time. Conclusions Using FFF beams in IMRT and VMAT is feasible for the treatment of sinonasal cancer. Our results suggest that the delivery mode of FFF beams may play an encouraging role with better sparing of contralateral optic OARs and treatment efficiency in IMRT, but yield comparable results in VMAT. PMID:26734731

  16. Study of the phase composition of silicide coatings, based on layered Nb-Mo structures, obtained by vacuum-arc deposition

    NASA Astrophysics Data System (ADS)

    Lozovan, A. A.; Betsofen, S. Ya; Lenkovets, A. S.

    2016-07-01

    A multilayer composite ∼1000 μm in thickness, formed by niobium and molybdenum layers (number of layers n = 230), is obtained by vacuum-arc deposition with subsequent siliconization of the surface layers at a temperature of 1200 °C. Layer-by-layer phase analysis is performed by X-ray diffraction and scanning electron microscopy. It is found that in the surface layers ∼130 μm in thickness, single-phase silicides (Nb x Mo1- x )Si2 are formed with the hexagonal C40 structure (Strukturbericht designations). Alternating layers of solid solutions based on niobium and molybdenum with a body-centered cubic (BCC) lattice are observed within the composite. The formation of solid solutions caused by heating of the coating leads to convergence of the values of the linear thermal expansion coefficient and Young's modulus at the interface between the layers.

  17. Fabrication of TiC-Reinforced Composites by Vacuum Arc Melting: TiC Mode of Reprecipitation in Different Molten Metals and Alloys

    NASA Astrophysics Data System (ADS)

    Karantzalis, A. E.; Arni, Z.; Tsirka, K.; Evangelou, A.; Lekatou, A.; Dracopoulos, V.

    2016-06-01

    TiC crystals were developed and grown through a melt dissolution and reprecipitation mechanism, in different alloy matrices (pure Fe, 316L, Fe-22 at.%Al, Ni-25at.%Al, and pure Co) through the use of Vacuum Arc Melting (VAM) process. The TiC surfaces exhibit a characteristic faceted mode of growth which is explained in terms of classic nucleation and crystal growth theories and is related with the well-known Jackson factor of crystal growth. Different morphologies of the finally solidified TiC grains are observed (dendritic, radially grown, isolated blocky crystals, particle clusters), the establishment of which may be most likely related with solidification progress, cooling rate, and melt compositional considerations. An initial, rough and qualitative phase identification shows a variety of compounds, and the attempts to define specific phase crystallographic-orientational relationships led to rather random results.

  18. Vacuum distillation: vapor filtered-catalytic oxidation water reclamation system utilizing radioisotopes

    NASA Technical Reports Server (NTRS)

    Honegger, R. J.; Remus, G. A.; Kurg, E. K.

    1971-01-01

    The development of a functional model water reclamation system is discussed. The system produces potable water by distillation from the urine and respiration-perspiration condensate at the normal rate generated by four men. Basic processes employed are vacuum distillation, vapor filtration, vapor phase catalytic oxidation, and condensation. The system is designed to use four 75-watt isotope heaters for distillation thermal input, and one 45-watt isotope for the catalytic oxidation unit. The system is capable of collecting and storing urine, and provides for stabilizing the urine by chemical pretreatment. The functional model system is designed for operation in a weightless condition with liquid-vapor phase separators for the evaporator still, and centrifugal separators for urine collection and vapor condensation. The system provides for storing and dispensing reclaimed potable water. The system operates in a batch mode for 40 days, with urine residues accumulating in the evaporator. The evaporator still and residue are removed to storage and replaced with a fresh still for the next 40-day period.

  19. Modified Volumetric Modulated Arc Therapy in Left Sided Breast Cancer After Radical Mastectomy With Flattening Filter Free Versus Flattened Beams.

    PubMed

    Lai, Youqun; Chen, Yanyan; Wu, Sangang; Shi, Liwan; Fu, Lirong; Ha, Huiming; Lin, Qin

    2016-04-01

    Conventional volumetric modulated arc therapy (C-VMAT) for breast cancer after radical mastectomy had its limitation that resulted in larger volumes of normal tissue receiving low doses. We explored whether there was a way to deal with this disadvantage and determined the potential benefit of flattening filter-free (FFF) beams.Twenty patients with breast cancer after radical mastectomy were subjected to 3D conformal radiotherapy (3DCRT) and VMAT treatment planning. For VMAT plans, 3 different designs were employed with RapidArc form: conventional-VMAT plan (C-VMAT), modified-VMAT plan (M-VMAT), and modified-VMAT plan using FFF beams (M-VMAT-F). Plan quality and efficiency were assessed for all plans.For each technique in homogeneity, there were no statistically significant differences. VMAT plans showed superiority compared with 3DCRT in conformity. C-VMAT plans were obviously not only superior to 3DCRT in the medium to high-dose regions (about 15-50 Gy) but also resulted in larger volumes in low-dose regions (about 0-10 Gy). M-VMAT plans were similar to M-VMAT-F. Both of them might significantly reduce the regions of low dose compared with C-VMAT (V5lung: ∼ 11.5%; V5heart: ∼ 23.8%, P < 0.05), even less than 3DCRT in heart irradiation (V2.5heart, 9.4%, P < 0.05). For liver, contralateral breast, and lung irradiation, M-VMAT-F plans were slightly superior to M-VMAT with a reduction of ∼0.08, 0.2, and 0.24 Gy in the respective mean doses (P < 0.05).C-VMAT plans showed superiority compared with 3DCRT, while also resulted in larger volumes of normal tissue receiving low doses. M-VMAT and M-VMAT-F plans might not only reduce the region in the medium to high doses but also have lower volumes in low-dose regions. M-VMAT-F plans were slightly superior compared with M-VMAT due to further contralateral organs sparing. PMID:27057896

  20. Modified Volumetric Modulated Arc Therapy in Left Sided Breast Cancer After Radical Mastectomy With Flattening Filter Free Versus Flattened Beams

    PubMed Central

    Lai, Youqun; Chen, Yanyan; Wu, Sangang; Shi, Liwan; Fu, Lirong; Ha, Huiming; Lin, Qin

    2016-01-01

    Abstract Conventional volumetric modulated arc therapy (C-VMAT) for breast cancer after radical mastectomy had its limitation that resulted in larger volumes of normal tissue receiving low doses. We explored whether there was a way to deal with this disadvantage and determined the potential benefit of flattening filter-free (FFF) beams. Twenty patients with breast cancer after radical mastectomy were subjected to 3D conformal radiotherapy (3DCRT) and VMAT treatment planning. For VMAT plans, 3 different designs were employed with RapidArc form: conventional-VMAT plan (C-VMAT), modified-VMAT plan (M-VMAT), and modified-VMAT plan using FFF beams (M-VMAT-F). Plan quality and efficiency were assessed for all plans. For each technique in homogeneity, there were no statistically significant differences. VMAT plans showed superiority compared with 3DCRT in conformity. C-VMAT plans were obviously not only superior to 3DCRT in the medium to high-dose regions (about 15–50 Gy) but also resulted in larger volumes in low-dose regions (about 0–10 Gy). M-VMAT plans were similar to M-VMAT-F. Both of them might significantly reduce the regions of low dose compared with C-VMAT (V5lung: ∼ 11.5%; V5heart: ∼ 23.8%, P < 0.05), even less than 3DCRT in heart irradiation (V2.5heart, 9.4%, P < 0.05). For liver, contralateral breast, and lung irradiation, M-VMAT-F plans were slightly superior to M-VMAT with a reduction of ∼0.08, 0.2, and 0.24 Gy in the respective mean doses (P < 0.05). C-VMAT plans showed superiority compared with 3DCRT, while also resulted in larger volumes of normal tissue receiving low doses. M-VMAT and M-VMAT-F plans might not only reduce the region in the medium to high doses but also have lower volumes in low-dose regions. M-VMAT-F plans were slightly superior compared with M-VMAT due to further contralateral organs sparing. PMID:27057896

  1. Electrical properties of a-C:Mo films produced by dual-cathode filtered cathodic arc plasma deposition

    SciTech Connect

    Sansongsiri, Sakon; Anders, Andre; Yodsombat, Banchob

    2008-01-20

    Molybdenum-containing amorphous carbon (a-C:Mo) thin films were prepared using a dual-cathode filtered cathodic arc plasma source with a molybdenum and a carbon (graphite) cathode. The Mo content in the films was controlled by varying the deposition pulse ratio of Mo and C. Film sheet resistance was measured in situ at process temperature, which was close to room temperature, as well as ex situ as a function of temperature (300-515 K) in ambient air. Film resistivity and electrical activation energy were derived for different Mo and C ratios and substrate bias. Film thickness was in the range 8-28 nm. Film resistivity varied from 3.55x10-4 Omega m to 2.27x10-6 Omega m when the Mo/C pulse ratio was increased from 0.05 to 0.4, with no substrate bias applied. With carbon-selective bias, the film resistivity was in the range of 4.59x10-2 and 4.05 Omega m at a Mo/C pulse ratio of 0.05. The electrical activation energy decreased from 3.80x10-2 to 3.36x10-4 eV when the Mo/C pulse ratio was increased in the absence of bias, and from 0.19 to 0.14 eV for carbon-selective bias conditions. The resistivity of the film shifts systematically with the amounts of Mo and upon application of substrate bias voltage. The intensity ratio of the Raman D-peak and G-peak (ID/IG) correlated with the pre-exponential factor (sigma 0) which included charge carrier density and density of states.

  2. Dosimetric Impact of Intrafraction Motion During RapidArc Stereotactic Vertebral Radiation Therapy Using Flattened and Flattening Filter-Free Beams

    SciTech Connect

    Ong, Chin Loon; Dahele, Max; Cuijpers, Johan P.; Senan, Suresh; Slotman, Ben J.; Verbakel, Wilko F.A.R.

    2013-07-01

    Purpose: To study the dosimetric impact of relatively short-duration intrafraction shifts during a single fraction of RapidArc delivery for vertebral stereotactic body radiation therapy (SBRT) using flattened (FF) and flattening filter-free (FFF) beams. Methods and Materials: The RapidArc plans, each with 2 to 3 arcs, were generated for 9 patients using 6-MV FF and 10-MV FFF beams with maximum dose rates of 1000 and 2400 MU/min, respectively. A total of 1272 plans were created to estimate the dosimetric consequences in target and spinal cord volumes caused by intrafraction shifts during one of the arcs. Shifts of 1, 2, and 3 mm for periods of 5, 10, and 30 seconds, and 5 mm for 5 and 10 seconds, were modelled during a part of the arc associated with high doses and steep dose gradients. Results: For FFF plans, shifts of 2 mm over 10 seconds and 30 seconds could increase spinal cord D{sub max} by up to 6.5% and 13%, respectively. Dosimetric deviations in FFF plans were approximately 2-fold greater than in FF plans. Reduction in target coverage was <1% for 83% and 96% of the FFF and FF plans, respectively. Conclusion: Even short-duration intrafraction shifts can cause significant dosimetric deviations during vertebral SBRT delivery, especially when using very high dose rate FFF beams and when the shift occurs in that part of the arc delivering high doses and steep gradients. The impact is greatest on the spinal cord and its planning-at-risk volume. Accurate and stable patient positioning is therefore required for vertebral SBRT.

  3. Chemical and morphological difference between TiN/DLC and a-C:H/DLC grown by pulsed vacuum arc techniques

    NASA Astrophysics Data System (ADS)

    Castillo, H. A.; Restrepo-Parra, E.; Arango-Arango, P. J.

    2011-01-01

    In order to improve the adherence of DLC films, interlayers of amorphous hydrogenated carbon (a-C:H) and titanium nitride (TiN) were deposited by means of the pulsed vacuum arc technique. Bilayers were obtained by using a carbon target of 99.98% of purity in mixtures of (Ar + CH4) and (Ar + H2) for producing a-C and DLC, respectively and a target of titanium of 99.999% in a mixture of (Ar + N2) for growing TiN. After the deposition, chemical and morphological differences between TiN/DLC and a-C:H/DLC bilayers grown on silicon and stainless steel 304 were studied using X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR), and scanning probe microscopy (SPM) techniques. XPS analysis showed a difference in sp3/(sp2+sp3) bonds ratio for each bilayer, being 0.67 for TiN/DLC and 0.45 for a-C:H/DLC bilayers. sp3 and sp2 bonds were also observed by the FTIR technique. SPM images, in atomic force microscopy (AFM) and lateral force microscopy (LFM) modes were carried out for illustrating the comparison between TiN/DLC and a-C/DLC morphologic characteristics. Roughness and grain size were studied as a function of the H2 concentration for both bilayers.

  4. Influence of N2 partial pressure on structural and microhardness properties of TiN/ZrN multilayers deposited by Ar/N2 vacuum arc discharge

    NASA Astrophysics Data System (ADS)

    Naddaf, M.; Abdallah, B.; Ahmad, M.; A-Kharroub, M.

    2016-08-01

    The influence of N2 partial pressure on structural, mechanical and wetting properties of multilayered TiN/ZrN thin films deposited on silicon substrates by vacuum arc discharge of (N2 + Ar) gas mixtures is investigated. X-ray diffraction (XRD) results show that the average texturing coefficient of (1 1 1) orientation and the grain size of both TiN and ZrN individual layers increase with increasing the N2 partial pressure. The Rutherford back scattering (RBS) measurements and analysis reveal that incorporation of the nitrogen in the film increases with increasing the N2 partial pressure and both TiN and ZrN individual layers have a nitrogen over-stoichiometry for N2 partial pressure ⩾50%. The change in the film micro-hardness is correlated to the changes in crystallographic texture, grain size, stoichiometry and the residual stress in the film as a function of the N2 partial pressure. In particular, stoichiometry of ZrN and TiN individual is found to play the vital role in determining the multilayer hardness. The multilayer film deposited at N2 partial pressure of 25% has the best stoichiometric ratio of both TiN and ZrN layers and the highest micro-hardness of about 32 GPa. In addition, water contact angle (WCA) measurements and analysis show a decrease in the work of adhesion on increasing the N2 partial pressure.

  5. Temperature influence on deuterium retention for Be-W mixed thin films prepared by Thermionic Vacuum Arc method exposed to PISCES B plasma

    NASA Astrophysics Data System (ADS)

    Jepu, I.; Doerner, R. P.; Baldwin, M. J.; Porosnicu, C.; Lungu, C. P.

    2015-08-01

    Beryllium-tungsten thin films with well controlled elemental composition were prepared using Thermionic Vacuum Arc (TVA) technique and subsequently exposed to steady state, high ion flux (5.5 - 9.8 × 1022 ions m-2 s-1) deuterium (D) plasma in the PISCES-B facility to consistent fluences of 2.3 × 1026 m-2. Six types of layers were studied, ranging from pure Be, composite Be-W, having the atomic ratios of 9:1; 7:3; 1:1; 3:7; to pure W with a total deposited layer thickness of 2 μm. The sample exposure temperatures, namely 300 K, 473 K, 573 K and 773 K, respectively, were measured in situ with a thermocouple placed on the back of the sample. Morphological and structural examinations were undertaken before and after plasma exposure. Results show an influence of temperature on the subsequent morphology of the surface. Thermal Desorption Spectrometry (TDS) spectra showed a change in the D release behavior for different Be-W ratio for a certain exposure temperature.

  6. Silicon carbide multilayer protective coating on carbon obtained by thermionic vacuum arc method

    NASA Astrophysics Data System (ADS)

    Ciupină, Victor; Lungu, Cristian Petrica; Vladoiu, Rodica; Prodan, Gabriel; Porosnicu, Corneliu; Belc, Marius; Stanescu, Iuliana M.; Vasile, Eugeniu; Rughinis, Razvan

    2014-01-01

    Thermionic vacuum arc (TVA) method is currently developing, in particular, to work easily with heavy fusible material for the advantage presented by control of directing energy for the elements forming a plasma. The category of heavy fusible material can recall C and W (high-melting point materials), and are difficult to obtain or to control by other means. Carbon is now used in many areas of special mechanical, thermal, and electrical properties. We refer in particular to high-temperature applications where unwanted effects may occur due to oxidation. Changed properties may lead to improper functioning of the item or device. For example, increasing the coefficient of friction may induce additional heat on moving items. One solution is to protect the item in question by coating with proper materials. Silicon carbide (SiC) was chosen mainly due to compatibility with coated carbon substrate. Recently, SiC has been used as conductive transparent window for optical devices, particularly in thin film solar cells. Using the TVA method, SiC coatings were obtained as thin films (multilayer structures), finishing with a thermal treatment up to 1000°C. Structural properties and oxidation behavior of the multilayer films were investigated, and the measurements showed that the third layer acts as a stopping layer for oxygen. Also, the friction coefficient of the protected films is lower relative to unprotected carbon films.

  7. Effect of Ti-Al cathode composition on plasma generation and plasma transport in direct current vacuum arc

    SciTech Connect

    Zhirkov, I. Petruhins, A.; Dahlqvist, M.; Ingason, A. S.; Rosen, J.; Eriksson, A. O.

    2014-03-28

    DC arc plasma from Ti, Al, and Ti{sub 1-x}Al{sub x} (x = 0.16, 0.25, 0.50, and 0.70) compound cathodes was characterized with respect to plasma chemistry and charge-state-resolved ion energy. Scanning electron microscopy, X-ray diffraction, and Energy-dispersive X-ray spectroscopy of the deposited films and the cathode surfaces were used for exploring the correlation between cathode-, plasma-, and film composition. Experimental work was performed at a base pressure of 10{sup −6} Torr, to exclude plasma-gas interaction. The plasma ion composition showed a reduction of Al of approximately 5 at. % compared to the cathode composition, while deposited films were in accordance with the cathode stoichiometry. This may be explained by presence of neutrals in the plasma/vapour phase. The average ion charge states (Ti = 2.2, Al = 1.65) were consistent with reference data for elemental cathodes, and approximately independent on the cathode composition. On the contrary, the width of the ion energy distributions (IEDs) were drastically reduced when comparing the elemental Ti and Al cathodes with Ti{sub 0.5}Al{sub 0.5}, going from ∼150 and ∼175 eV to ∼100 and ∼75 eV for Ti and Al ions, respectively. This may be explained by a reduction in electron temperature, commonly associated with the high energy tail of the IED. The average Ti and Al ion energies ranged between ∼50 and ∼61 eV, and ∼30 and ∼50 eV, respectively, for different cathode compositions. The attained energy trends were explained by the velocity rule for compound cathodes, which states that the most likely velocities of ions of different mass are equal. Hence, compared to elemental cathodes, the faster Al ions will be decelerated, and the slower Ti ions will be accelerated when originating from compound cathodes. The intensity of the macroparticle generation and thickness of the deposited films were also found to be dependent on the cathode composition. The presented results

  8. Effect of Ti-Al cathode composition on plasma generation and plasma transport in direct current vacuum arc

    NASA Astrophysics Data System (ADS)

    Zhirkov, I.; Eriksson, A. O.; Petruhins, A.; Dahlqvist, M.; Ingason, A. S.; Rosen, J.

    2014-03-01

    DC arc plasma from Ti, Al, and Ti1-xAlx (x = 0.16, 0.25, 0.50, and 0.70) compound cathodes was characterized with respect to plasma chemistry and charge-state-resolved ion energy. Scanning electron microscopy, X-ray diffraction, and Energy-dispersive X-ray spectroscopy of the deposited films and the cathode surfaces were used for exploring the correlation between cathode-, plasma-, and film composition. Experimental work was performed at a base pressure of 10-6 Torr, to exclude plasma-gas interaction. The plasma ion composition showed a reduction of Al of approximately 5 at. % compared to the cathode composition, while deposited films were in accordance with the cathode stoichiometry. This may be explained by presence of neutrals in the plasma/vapour phase. The average ion charge states (Ti = 2.2, Al = 1.65) were consistent with reference data for elemental cathodes, and approximately independent on the cathode composition. On the contrary, the width of the ion energy distributions (IEDs) were drastically reduced when comparing the elemental Ti and Al cathodes with Ti0.5Al0.5, going from ˜150 and ˜175 eV to ˜100 and ˜75 eV for Ti and Al ions, respectively. This may be explained by a reduction in electron temperature, commonly associated with the high energy tail of the IED. The average Ti and Al ion energies ranged between ˜50 and ˜61 eV, and ˜30 and ˜50 eV, respectively, for different cathode compositions. The attained energy trends were explained by the velocity rule for compound cathodes, which states that the most likely velocities of ions of different mass are equal. Hence, compared to elemental cathodes, the faster Al ions will be decelerated, and the slower Ti ions will be accelerated when originating from compound cathodes. The intensity of the macroparticle generation and thickness of the deposited films were also found to be dependent on the cathode composition. The presented results may be of importance for choice of cathodes for thin film

  9. One-dimensional particle-in-cell simulation on the influence of electron and ion temperature on the sheath expansion process in the post-arc stage of vacuum circuit breaker

    SciTech Connect

    Mo, Yongpeng; Shi, Zongqian; Jia, Shenli; Wang, Lijun

    2015-02-15

    The inter-contact region of vacuum circuit breakers is filled with residual plasma at the moment when the current is zero after the burning of metal vapor arc. The residual plasma forms an ion sheath in front of the post-arc cathode. The sheath then expands towards the post-arc anode under the influence of a transient recovery voltage. In this study, a one-dimensional particle-in-cell model is developed to investigate the post-arc sheath expansion. The influence of ion and electron temperatures on the decrease in local plasma density at the post-arc cathode side and post-arc anode side is discussed. When the decay in the local plasma density develops from the cathode and anode sides into the high-density region and merges, the overall plasma density in the inter-contact region begins to decrease. Meanwhile, the ion sheath begins to expand faster. Furthermore, the theory of ion rarefaction wave only explains quantitatively the decrease in the overall plasma density at relatively low ion temperatures. With the increase of ion temperature to certain extent, another possible reason for the decrease in the overall plasma density is proposed and results from the more active thermal diffusion of plasma.

  10. Radiation hard vacuum switch

    DOEpatents

    Boettcher, Gordon E.

    1990-03-06

    A vacuum switch with an isolated trigger probe which is not directly connected to the switching electrodes. The vacuum switch within the plasmatron is triggered by plasma expansion initiated by the trigger probe which travels through an opening to reach the vacuum switch elements. The plasma arc created is directed by the opening to the space between the anode and cathode of the vacuum switch to cause conduction.