Science.gov

Sample records for fin heat exchanger

  1. Heat exchanger with transpired, highly porous fins

    DOEpatents

    Kutscher, Charles F.; Gawlik, Keith

    2002-01-01

    The heat exchanger includes a fin and tube assembly with increased heat transfer surface area positioned within a hollow chamber of a housing to provide effective heat transfer between a gas flowing within the hollow chamber and a fluid flowing in the fin and tube assembly. A fan is included to force a gas, such as air, to flow through the hollow chamber and through the fin and tube assembly. The fin and tube assembly comprises fluid conduits to direct the fluid through the heat exchanger, to prevent mixing with the gas, and to provide a heat transfer surface or pathway between the fluid and the gas. A heat transfer element is provided in the fin and tube assembly to provide extended heat transfer surfaces for the fluid conduits. The heat transfer element is corrugated to form fins between alternating ridges and grooves that define flow channels for directing the gas flow. The fins are fabricated from a thin, heat conductive material containing numerous orifices or pores for transpiring the gas out of the flow channel. The grooves are closed or only partially open so that all or substantially all of the gas is transpired through the fins so that heat is exchanged on the front and back surfaces of the fins and also within the interior of the orifices, thereby significantly increasing the available the heat transfer surface of the heat exchanger. The transpired fins also increase heat transfer effectiveness of the heat exchanger by increasing the heat transfer coefficient by disrupting boundary layer development on the fins and by establishing other beneficial gas flow patterns, all at desirable pressure drops.

  2. The optimum fin spacing of circular tube bank fin heat exchanger with vortex generators

    NASA Astrophysics Data System (ADS)

    Hu, Wanling; Su, Mei; Wang, Liangcheng; Zhang, Qiang; Chang, Limin; Liu, Song; Wang, Liangbi

    2013-09-01

    In real application, once the pattern of fin is determined, fin spacing of tube bank fin heat exchanger can be adjusted in a small region, and air flow velocity in the front of the heat exchanger is not all the same. Therefore, the effects of fin spacing on heat transfer performance of such heat exchanger are needed. This paper numerically studied the optimal fin spacing regarding the different front flow velocities of a circular tube bank fin heat exchanger with vortex generators. To screen the optimal fin spacing, an appropriate evaluation criterion JF was used. The results show that when front velocity is 1.75 m/s, the optimal fin spacing is 2.25 mm, when front velocity is 2.5 m/s, the optimal fin spacing is 2 mm, and when front velocity is higher than 2.5 m/s, the optimal fin spacing is 1.75 mm.

  3. Airside performances of finned eight-tube heat exchangers

    NASA Astrophysics Data System (ADS)

    Li, Cheng; Li, Junming

    2016-01-01

    For applications in the relatively low temperature refrigeration systems with large constant temperature bath, the present work performed the experimental studies on the airside performances of the staggered finned eight-tube heat exchangers with large fin pitches. The airside heat transfer coefficients and pressure drops for three fin types and two fin pitches are obtained and analyzed. The heat transfer enhancement with louver fins is 11-16 % higher than the flat fins and that with sinusoidal corrugated fins is 1.1-3.4 % higher than the flat fins. Higher Re brings larger enhancement for various fins. Fin pitches show weak influence on heat transfer for eight tube rows. However, effects of fin pitch on heat transfer for both the sinusoidal corrugation and the louvered fin are larger than the flat fins and they are different from those for N ≤ 6. Airside Colburn j factor are compared with previous and it could be concluded that the airside j factor is almost constant for finned tube heat exchangers with eight tubes and large fin pitches, when Re is from 250 to 2500. The results are different from previous studies for fewer tube rows.

  4. Finned Tube With Vortex Generators For A Heat Exchanger.

    DOEpatents

    Sohal, Monohar S.; O'Brien, James E.

    2004-09-14

    A system for and method of manufacturing a finned tube for a heat exchanger is disclosed herein. A continuous fin strip is provided with at least one pair of vortex generators. A tube is rotated and linearly displaced while the continuous fin strip with vortex generators is spirally wrapped around the tube.

  5. Finned Tube With Vortex Generators For A Heat Exchanger.

    DOEpatents

    Sohal, Manohar S.; O'Brien, James E.

    2005-12-20

    A system for and method of manufacturing a finned tube for a heat exchanger is disclosed herein. A continuous fin strip is provided with at one pair of vortex generators. A tube is rotated and linearly displaced while the continuous fin strip with vortex generators is spirally wrapped around the tube.

  6. Performance Evaluation of Heat Transfer Enhancement in Plate-fin Heat Exchangers with Offset Strip Fins

    NASA Astrophysics Data System (ADS)

    Yujie, Yang; Yanzhong, Li; Biao, Si; Jieyu, Zheng

    Generally, the Offset Strip Fin (OSF) in a plate-fin heat exchanger provides a greater heat transfer coefficient than plain plate-fin, but it also leads to an increase in flow friction. A new parameter, called relative entropy generation distribution factor, Ψ*, is proposed to evaluate the thermodynamic advantages of OSFs. This parameter presents a ratio of relative changes of entropy generation. The relative effects of the geometrical parameters α, γ and δ are discussed. The results show that there exist the optimum values of α and γ at a certain flow condition, which obviously maximize the degree of the heat transfer enhancement of OSFs.

  7. Slotting Fins of Heat Exchangers to Provide Thermal Breaks

    NASA Technical Reports Server (NTRS)

    Scull, Timothy D.

    2003-01-01

    Heat exchangers that include slotted fins (in contradistinction to continuous fins) have been invented. The slotting of the fins provides thermal breaks that reduce thermal conduction along flow paths (longitudinal thermal conduction), which reduces heat-transfer efficiency. By increasing the ratio between transverse thermal conduction (the desired heat-transfer conduction) and longitudinal thermal conduction, slotting of the fins can be exploited to (1) increase heat-transfer efficiency (thereby reducing operating cost) for a given heat-exchanger length or to (2) reduce the length (thereby reducing the weight and/or cost) of the heat exchanger needed to obtain a given heat transfer efficiency. By reducing the length of a heat exchanger, one can reduce the pressure drop associated with the flow through it. In a case in which slotting enables the use of fins with thermal conductivity greater than could otherwise be tolerated on the basis of longitudinal thermal conduction, one can exploit the conductivity to make the fins longer (in the transverse direction) than they otherwise could be, thereby making it possible to make a heat exchanger that contains fewer channels and therefore, that weighs less, contains fewer potential leak paths, and can be constructed from fewer parts and, hence, reduced cost.

  8. Two dimensional model for multistream plate fin heat exchangers

    NASA Astrophysics Data System (ADS)

    Goyal, Mukesh; Chakravarty, Anindya; Atrey, M. D.

    2014-05-01

    A model based on finite volume analysis is presented here for multistream plate fin heat exchangers for cryogenic applications. The heat exchanger core is discretised in both the axial and transverse directions. The model accounts for effects of secondary parameters like axial heat conduction through the heat exchanger metal matrix, parasitic heat in-leak from surroundings, and effects of variable fluid properties/metal matrix conductivity. Since the fins are discretised in the transverse direction, the use of a fin efficiency is eliminated and the effects of transverse heat conduction/stacking pattern can be taken care of. The model is validated against results obtained using commercially available software and a good agreement is observed. Results from the developed code are discussed for sample heat exchangers.

  9. Method of assembling a plate-fin heat exchanger

    SciTech Connect

    Kopczynski, J.F.

    1986-07-22

    A method is described of assembling a plate-fin heat exchanger comprising the steps of providing like substantially straight elongate plate fins with spaced holes therein, bowing the plate-fins to increase their stability and accumulating the plate fins in a stacked contiguous relationship to provide a bundle, providing elongated substantially parallel tubes spaced from each other substantially the same distance as the spaced holes and oriented substantially perpendicularly to the stacked plate fins, and mounting the plate fins in the stacked contiguous relationship onto the elongated substantially parallel tubes by inserting the substantially parallel tubes into the spaced holes, transferring the bundle of bowed plate-fins into a carriage, and transferring the bundle of plate-fins from the carriage onto the elongated substantially parallel tubes.

  10. Effectiveness and Fin Efficiency of Plate-fin and Tube Heat Exchangers

    NASA Astrophysics Data System (ADS)

    Seshimo, Yu

    This paper presents a method for the determination of effectiveness on plate-fin and tube heat exchangers as a function of the parameters, viz. the thermal capacity ratio, the number of transfer unit and the flow arrangement. The analytical model of the heat exchanger which is adopted that of a multi-pass crossflow heat exchanger with one fluid mixed and another unmixed. For three kinds of flow arrangements of plate-fin and tube heat exchangers, equations on the effectiveness were obtained and the experimental verification of these equations was also performed. In addition, this paper is concerned with method which obtains the fin efficiency of the plate-fin and tube heat exchangers. It is usual practice to evaluate the fin efficiency by assuming that the uniform heat transfer and other suppositions. In this paper, a more realistic determination of fin efficiency is reported, which take into account the heat transfer distribution over the fin surface. It was confirmed that the results of fin efficiency by usual manner were almost equal to that of the realistic estimation in this study.

  11. Study of transient behavior of finned coil heat exchangers

    NASA Technical Reports Server (NTRS)

    Rooke, S. P.; Elissa, M. G.

    1993-01-01

    The status of research on the transient behavior of finned coil cross-flow heat exchangers using single phase fluids is reviewed. Applications with available analytical or numerical solutions are discussed. Investigation of water-to-air type cross-flow finned tube heat exchangers is examined through the use of simplified governing equations and an up-wind finite difference scheme. The degenerate case of zero air-side capacitance rate is compared with available exact solution. Generalization of the numerical model is discussed for application to multi-row multi-circuit heat exchangers.

  12. Fouling of HVAC fin and tube heat exchangers

    SciTech Connect

    Siegel, Jeffrey; Carey, Van P.

    2001-07-01

    Fin and tube heat exchangers are used widely in residential, commercial and industrial HVAC applications. Invariably, indoor and outdoor air contaminants foul these heat exchangers. This fouling can cause decreased capacity and efficiency of the HVAC equipment as well as indoor air quality problems related to microbiological growth. This paper describes laboratory studies to investigate the mechanisms that cause fouling. The laboratory experiments involve subjecting a 4.7 fins/cm (12 fins/inch) fin and tube heat exchanger to an air stream that contains monodisperse particles. Air velocities ranging from 1.5-5.2 m/s (295 ft/min-1024 ft/min) and particle sizes from 1--8.6 {micro}m are used. The measured fraction of particles that deposit as well as information about the location of the deposited material indicate that particles greater than about 1 {micro}m contribute to fouling. These experimental results are used to validate a scaling analysis that describes the relative importance of several deposition mechanisms including impaction, Brownian diffusion, turbophoresis, thermophoresis, diffusiophoresis, and gravitational settling. The analysis is extended to apply to different fin spacings and particle sizes typical of those found in indoor air.

  13. Effects of fin pattern on the air-side heat transfer coefficient in plate finned-tube heat exchangers

    SciTech Connect

    Beecher, D.T.; Fagan, T.J.

    1987-06-01

    The effects of air velocity, heat exchanger geometry, and fin patternation on air-side heat transfer in plate finned tube heat exchangers were investigated experimentally using a single-fin passage model. The geometric parameters considered included tube diameter, transverse tube spacing, longitudinal tube spacing, number of tube rows, and fin spacing. The effects of fin pattern depth and number of fin patterns per longitudinal tube row were investigated for a pattern consisting of corrugations of triangular cross-section transverse to the direction of airflow. The heat transfer data were correlated in terms of the dimensionless heat transfer coefficient (Nusselt number) based on the arithmetic mean temperature difference, Nu/sub a/, and the Graetz number, Gz, a dimensionless measure of the level of flow development.

  14. Effects of fin pattern on the air side heat transfer coefficient in plate finned tube heat exchangers

    SciTech Connect

    Beecher, D.T.; Fagan, T.J.

    1987-06-01

    The effects of air velocity, heat exchanger geometry and fin pattern on air side heat transfer in plate finned tube heat exchangers were investigated experimentally using a single fin passage model. The geometric parameters considered included tube diameter, transverse tube spacing, longitudinal tube spacing, number of tube rows and fin spacing. The effects of fin pattern depth and number of fin patterns per longitudinal tube row were investigated for a pattern consisting of corrugations of triangular cross section transverse to the direction of air flow. The heat transfer data were correlated in terms of the dimensionless heat transfer coefficient (Nussult number) based on the arithmetic mean temperature difference Nu/sub a/ and the Graetz number Gz, a dimensionless measure of the level of flow development.

  15. Experimental and numerical investigation on air-side performance of fin-and-tube heat exchangers with various fin patterns

    SciTech Connect

    Tang, L.H.; Zeng, M.; Wang, Q.W.

    2009-07-15

    Air-side heat transfer and friction characteristics of five kinds of fin-and-tube heat exchangers, with the number of tube rows (N = 12) and the diameter of tubes (D{sub o} = 18 mm), have been experimentally investigated. The test samples consist of five types of fin configurations: crimped spiral fin, plain fin, slit fin, fin with delta-wing longitudinal vortex generators (VGs) and mixed fin with front 6-row vortex-generator fin and rear 6-row slit fin. The heat transfer and friction factor correlations for different types of heat exchangers were obtained with the Reynolds numbers ranging from 4000 to 10000. It was found that crimped spiral fin provides higher heat transfer and pressure drop than the other four fins. The air-side performance of heat exchangers with the above five fins has been evaluated under three sets of criteria and it was shown that the heat exchanger with mixed fin (front vortex-generator fin and rear slit fin) has better performance than that with fin with delta-wing vortex generators, and the slit fin offers best heat transfer performance at high Reynolds numbers. Based on the correlations of numerical data, Genetic Algorithm optimization was carried out, and the optimization results indicated that the increase of VG attack angle or length, or decrease of VG height may enhance the performance of vortex-generator fin. The heat transfer performances for optimized vortex-generator fin and slit fin at hand have been compared with numerical method. (author)

  16. Heat transfer characteristics of a plate-fin type supercritical/liquid helium heat exchanger

    NASA Astrophysics Data System (ADS)

    Kato, T.; Miyake, A.; Hiyama, T.; Kawano, K.; Iwamoto, S.; Ebisu, H.; Takahashi, T.; Hamada, K.; Tsuji, H.; Tsukamoto, N.; Yamaguchi, M.; Ishida, H.; Honda, T.; Yamanishi, A.; Ohmori, T.; Mori, M.

    A compact supercritical-helium/liquid-helium heat exchanger composed of a plate-fin type was studied. The heat exchange limit performance was determined through the experiment. The pulse heating performance was observed to apply the pulse heating by an electric heater. A numerical heat exchanger simulating calculation was carried out, which successfully expresses the experiment results.

  17. Numerical modeling of pin-fin micro heat exchangers

    NASA Astrophysics Data System (ADS)

    Galvis, E.; Jubran, B. A.; Behdinan, F. Xi. K.; Fawaz, Z.

    2008-04-01

    A micro heat exchanger (MHE) can effectively control the temperature of surfaces in high heat flux applications. In this study, several turbulence models are analyzed using a 3D finite element model of a MHE. The MHE consists of a narrow planar flow passage between flat parallel plates with small cylindrical pin fins spanning these walls. The pin fin array geometry investigated is staggered, with pin diameters of 0.5, 5.1 and 8.5 mm, height to diameter ratio of 1.0 and streamwise (longitudinal) and spanwise (transverse) to diameter ratios of 1.5 and 2.5, respectively. Pressure loss and heat transfer simulated results for 4,000 ≤ Re ≤ 50,000 are reported and compared with previously published numerical and experimental results. It was found that the flat micro pin fin overall thermal performance always exceeds that of the parallel plate counterpart (smooth channel) by a factor of as much as 2.2 for the 8.5 mm diameter pins, and by 4 for the 0.5 mm diameter pins in the investigated Reynolds number range. Further, among the six turbulence models investigated, the RNG model tends to be the best model to predict both the Nusselt number and the friction factor and capture the main feature of the flow field in MHE.

  18. Optimal design of plate-fin heat exchangers by particle swarm optimization

    NASA Astrophysics Data System (ADS)

    Yousefi, M.; Darus, A. N.

    2011-12-01

    This study explores the application of Particle Swarm Optimization (PSO) for optimization of a cross-flow plate fin heat exchanger. Minimization total annual cost is the target of optimization. Seven design parameters, namely, heat exchanger length at hot and cold sides, fin height, fin frequency, fin thickness, fin-strip length and number of hot side layers are selected as optimization variables. A case study from the literature proves the effectiveness of the proposed algorithm in case of achieving more accurate results.

  19. Heat Transfer of Tube-fin Heat Exchanger Having Parallel Louver Continuous Fins

    NASA Astrophysics Data System (ADS)

    Take-Uchi, Masaaki; Yamada, Jun; Tanaka, Jun-Ichirou

    Heat transfer from tubes has been numerically simulated in a fan coil unit for an airconditioning equipment. The array of tubes has parallel louver continuous fins, perpendicular to staggered round tubes. Quite a few of slits divide plates into many strips, which are offsetted, so that the heat transfer will be augmented from the plate to the air flow. On the other hand, the conduction of heat in the platemight be prevented with these slits. The conduction retardation due to slit is estimated, and the simulation shows that the retardation is not serious for present fins.

  20. Heat transfer and friction correlations for wavy plate fin-and-tube heat exchangers

    SciTech Connect

    Kim, N.H.; Youn, J.H.; Webb, R.L.

    1996-12-31

    This paper deals with heat exchangers having plate fins of herringbone wave configuration. Correlations are developed to predict the air-side heat transfer coefficient and friction factor as a function of flow conditions and geometric variables of the heat exchanger. Correlations are provided for both staggered and in-line arrays of circular tubes. A multiple regression technique was used to correlate 41 wavy fin geometries by Beecher and Fagan (1987), Wang et al. (1995) and Beecher (1968). For the staggered layout, 92% of the heat transfer data are correlated within {+-}10%, and 91% of the friction data are correlated within {+-}15%.

  1. An Experimental-Numerical Evaluation of Thermal Contact Conductance in Fin-Tube Heat Exchangers

    NASA Astrophysics Data System (ADS)

    Kim, Chang Nyung; Jeong, Jin; Youn, Baek; Kil, Seong Ho

    The contact between fin collar and tube surface of a fin-tube heat exchanger is secured through mechanical expansion of tubes. However, the characteristics of heat transfer through the interfaces between the tubes and fins have not been clearly understood because the interfaces consist partially of metal-to-metal contact and partially of air. The objective of the present study is to develop a new method utilizing an experimental-numerical method for the estimation of the thermal contact resistance between the fin collar and tube surface and to evaluate the factors affecting the thermal contact resistance in a fin-tube heat exchanger. In this study, heat transfer characteristics of actual heat exchanger assemblies have been tested in a vacuum chamber using water as an internal fluid, and a finite difference numerical scheme has been employed to reduce the experimental data for the evaluation of the thermal contact conductance. The present study has been conducted for fin-tube heat exchangers of tube diameter of 7mm with different tube expansion ratios, fin spacings, and fin types. The results show, with an appropriate error analysis, that these parameters as well as hydrophilic fin coating affect notably the thermal contact conductance. It has been found out that the thermal contact resistance takes fairly large portion of the total thermal resistance in a fin-tube heat exchanger and it turns out that careful consideration is needed in a manufacturing process of heat exchangers to reduce the thermal contact resistance.

  2. Investigation of contact resistance for fin-tube heat exchanger by means of tube expansion

    NASA Astrophysics Data System (ADS)

    Hing, Yau Kar; Raghavan, Vijay R.; Meng, Chin Wai

    2012-06-01

    An experimental study on the heat transfer performance of a fin-tube heat exchanger due to mechanical expansion of the tube by bullets has been reported in this paper. The manufacture of a fin-tube heat exchanger commonly involves inserting copper tubes into a stack of aluminium fins and expanding the tubes mechanically. The mechanical expansion is achieved by inserting a steel bullet through the tube. The steel bullet has a larger diameter than the tube and the expansion provides a firm surface contact between fins and tubes. Five bullet expansion ratios (i.e. 1.045 to 1.059) have been used in the study to expand a 9.52mm diameter tubes in a fin-tube heat exchanger. The study is conducted on a water-to-water loop experiment rig under steady state conditions. In addition, the effects of fin hardness and fin pitch are investigated in the study. The results indicate that the optimum heat transfer occurred at a bullet expansion ratio ranging from 1.049 to 1.052. It is also observed that larger fin pitches require larger bullet expansion ratios, especially with lower fin hardness. As the fin pitch increases, both fin hardness (i.e. H22 and H24) exhibit increasing heat transfer rate per fin (W/fin). With the H22 hardness temper, the increase is as much as 11% while H24 increases by 1.2%.

  3. Three-dimensional numerical investigation of heat transfer for plate fin heat exchangers

    NASA Astrophysics Data System (ADS)

    Buyruk, Ertan; Karabulut, Koray; Karabulut, Ömer Onur

    2013-06-01

    In the present study, the potential of rectangular fins with 30° and 90° angle and 10 mm offset from the horizontal direction for heat transfer enhancement in a plate fin heat exchanger is numerically evaluated with conjugated heat transfer approach. The rectangular fins are mounted on the flat plate channel. The numerical computations are performed by solving a steady, three-dimensional Navier-Stokes equation and an energy equation by using Fluent software program. Air is taken as working fluid. The study is carried out at Re = 400 and inlet temperatures, velocities of cold and hot air are fixed as 300, 600 K and 1.338, 0.69 m/s, respectively. Colburn factor j versus Re design data is presented by using Fluent. The results show that the heat transfer is increased by 10 % at the exit of channel with fin angle of 30° when compared to channel without fin for counter flow. The heat transfer enhancement with fins of 30° and 90° for different values of Reynolds number with 300, 500 and 800 and for varying fin heights, fin intervals and also temperature distributions of fluids on the top and bottom surface of the channel are investigated for parallel and counter flow.

  4. Measurement of frost characteristics on heat exchanger fins. Part 2: Data and analysis

    SciTech Connect

    Chen, H.; Thomas, L.; Besant, R.W.

    1999-07-01

    Part 1 of this paper described the frost growth test facility and instrumentation. In Part 2, results are presented for typical operating conditions with frost growth on heat exchanger fins. Typical data are presented for frost height distributions on fins, increase in pressure loss for airflow through a finned test section, frost mass accumulation on fins, and heat rate. Special attention is given to the uncertainty in each of these measurements and calculations.

  5. Inverse heat transfer problem in digital temperature control in plate fin and tube heat exchangers

    NASA Astrophysics Data System (ADS)

    Taler, Dawid; Sury, Adam

    2011-12-01

    The aim of the paper is a steady-state inverse heat transfer problem for plate-fin and tube heat exchangers. The objective of the process control is to adjust the number of fan revolutions per minute so that the water temperature at the heat exchanger outlet is equal to a preset value. Two control techniques were developed. The first is based on the presented mathematical model of the heat exchanger while the second is a digital proportional-integral-derivative (PID) control. The first procedure is very stable. The digital PID controller becomes unstable if the water volumetric flow rate changes significantly. The developed techniques were implemented in digital control system of the water exit temperature in a plate fin and tube heat exchanger. The measured exit temperature of the water was very close to the set value of the temperature if the first method was used. The experiments showed that the PID controller works also well but becomes frequently unstable.

  6. Performance Characteristics of Cross-Fin-Tube-Type Heat Exchanger for Air Conditioner

    NASA Astrophysics Data System (ADS)

    Sasaki, Naoe; Kakiyama, Shiro; Sanuki, Noriyoshi

    The effects of enhanced heat transfer tube with ability to control the heat transfer disturbance by mechanical tube expanding were experimentally investigated on the performance characteristics of air-cooled cross-fin-tube-type heat exchanger for air conditioner. Three kinds of the enhanced heat transfer tube were developed and used in the experiment. The enhanced heat transfer tube was a kind of spirally grooved tube and composed with the fins smaller than those of the conventional spirally grooved tube excepting four fins located in orthogonal position on the tube circumference. The optimum groove number to enhance the performance of heat exchanger was also shown.

  7. 3D numerical simulation on fluid flow and heat transfer characteristics in multistage heat exchanger with slit fins

    NASA Astrophysics Data System (ADS)

    Tao, W. Q.; Cheng, Y. P.; Lee, T. S.

    2007-11-01

    In this paper, a numerical investigation is performed for three-stage heat exchangers with plain plate fins and slit fins respectively, with a three-dimensional laminar conjugated model. The tubes are arranged in a staggered way, and heat conduction in fins is considered. In order to save the computer resource and speed up the numerical simulation, the numerical modeling is carried out stage by stage. In order to avoid the large pressure drop penalty in enhancing heat transfer, a slit fin is presented with the strip arrangement of “front coarse and rear dense” along the flow direction. The numerical simulation shows that, compared to the plain plate fin heat exchanger, the increase in the heat transfer in the slit fin heat exchanger is higher than that of the pressure drop, which proves the excellent performance of this slit fin. The fluid flow and heat transfer performance along the stages is also provided.

  8. Two-dimensional fin efficiency of plate fin-tube heat exchangers under partially and fully wet conditions

    NASA Astrophysics Data System (ADS)

    Jang, Jiin-Yuh; Lin, Chien-Nan

    2002-08-01

    This paper presents the two-dimensional analysis for the efficiency of continuous plate fin-tube heat exchangers in staggered and in-lined arrangements under the dry, partially wet, and fully wet conditions for different heat transfer coefficient ( h=20 W/m2K to h=80 W/m2K) and air relative humidity over the full range from ϕ=0 % to ϕ=100%. It is shown that the fin efficiencies of the staggered arrangement are higher than those for the in-lined arrangement, and the fully wet fin efficiency is 10-20% lower than that for a dry fin. The conventional 1-D sector method underestimates the fin efficiency up to 4 % as compared to the 2-D analysis.

  9. DRY/WET PERFORMANCE OF A PLATE-FIN AIR COOLED HEAT EXCHANGER WITH CONTINUOUS CORRUGATED FINS

    EPA Science Inventory

    The report describes work to (1) determine experimentally the performance and operating characteristics of a plate-fin heat exchanger during dry/wet or 'deluge' operation and (2) continue developing the deluge heat/mass transfer model. This work supports the improvement of power ...

  10. Boiling heat transfer of refrigerant R-21 in upward flow in plate-fin heat exchanger

    NASA Astrophysics Data System (ADS)

    Kuznetsov, V. V.; Shamirzaev, A. S.

    2015-11-01

    The article presents the results of experimental investigation of boiling heat transfer of refrigerant R-21 in upward flow in a vertical plate-fin heat exchanger with transverse size of the channels that is smaller than the capillary constant. The heat transfer coefficients obtained in ranges of small mass velocities and low heat fluxes, which are typical of the industry, have been poorly studied yet. The characteristic patterns of the upward liquid-vapor flow in the heat exchanger channels and the regions of their existence are detected. The obtained data show a weak dependence of heat transfer coefficient on equilibrium vapor quality, mass flow rate, and heat flux density and do not correspond to calculations by the known heat transfer models. A possible reason for this behavior is a decisive influence of evaporation of thin liquid films on the heat transfer at low heat flux.

  11. Effect of Fin-Collar Shape at Contact Area between Tube and Fin on Heat Exchanger Performance

    NASA Astrophysics Data System (ADS)

    Matsuo, Yoshimi; Tsubaki, Koutaro; Miyara, Akio

    In this study, numerical simulation of a cross fin-tube heat exchanger was conducted to investigate the effects of fin-collar shape on the heat transfer performance and pressure drop. During the making process, two adjacent fin-collars and a tube form a triangular space and the end of fin collar protrude to air side. To investigate these effects on the heat exchanger performance, the form ratio was defined to make an indicator of the triangular space size. Furthermore, the simulation of the models with and without protruded end was conducted. The results indicated that the increase of the form ratio results in the decrease in the heat transfer rate. On the other hand, it contributed to a relatively small increase in the heat transfer coefficient on the air side. A high heat transfer coefficient on the air side was obtained by the protruded fin-collar end. However, the pressure drop was not much different between the models with and without the protruded end. The ratio of the thermal contact resistance to the air side thermal resistance was about 1:5 for the form ratio of 20% to 40%.

  12. Effects of slitted fins on the heat transfer and pressure drop characteristics of a compact heat exchanger

    SciTech Connect

    Kim, C.H.; Yun, J.Y.

    1996-12-31

    A compact heat exchanger which consists of air-cooled aluminum fins and copper tubes circulating refrigerant has been used in a cooling system for a long time. There are two key parameters to be seriously considered for a design of the heat exchanger and its performance improvement. These are the heat transfer rate and pressure drop coefficient which varies with the change of the tube size, its arrangement and the fin configuration. In here, a numerical study was carried to understand the effect of the fin configuration on the heat transfer and pressure drop of the heat exchanger. The diameter and the arrangement of tubes were fixed but three different types of the fin configuration were used to see its effect on the heat transfer capacity and the static pressure drop. The calculation results were compared with that of a flat plate fin. From the comparison, it was found that the slitted fins have higher pressure drop; however, they have higher heat transfer rate. It means that the simpler of the fin configuration, the lower pressure drop and heat transfer coefficients are obtained. It is mainly due to the discretisation of the thermal boundary layer on the fin surface to maximize the heat transfer to air. The slitted sides of fins act like obstacles in the airflow path. From the experimental result, it was found that the same trend in the variation of the heat transfer rate and the pressure drop with the change of the fin configuration was obtained.

  13. Development of colburn ` j' factor and fanning friction factor ` f' correlations for compact heat exchanger plain fins by using CFD

    NASA Astrophysics Data System (ADS)

    Bala Sundar Rao, R.; Ranganath, G.; Ranganayakulu, C.

    2013-07-01

    A numerical model has been developed for plain fin of plate fin heat exchanger. Plain fin performance has been analyzed with the help of CFD by changing the various parameters of the fin, Colburn ` j' and fanning friction ` f' factors are calculated. These values compared with the standard values. The correlations have been developed between Reynolds number Re, fin height h, fin thickness t, fin spacing s, Colburn factor ` j' and friction factor ` f'.

  14. Dry/wet performance of a plate-fin air-cooled heat exchanger with continuous corrugated fins

    SciTech Connect

    Hauser, S.G.; Kreid, D.K.; Johnson, B.M.

    1981-01-01

    The performance and operating characteristics of a plate-fin heat exchanger in dry/wet or deluge operations was experimentally determined. Development of the deluge heat/mass transfer model continued. The experiments were conducted in a specially-designed wind tunnel at the PNL. Air that was first heated and humidified to specified conditions was circulated at a controlled rate through a 2 ft x 6 ft heat exchanger module. The heat exchanger used in the tests was a wavy surface, plate fin on tube configuration. Hot water was circulated through the tubes at high flow rates to maintain an essentially isothermal condition on the tube side. Deionized water sprayed on the top of the vertically oriented plate fins was collected at the bottom of the core and recirculated. Instrumentation was provided for measurement of flow rates and thermodynamic conditions in the air, in the core circulation water, and in the deluge water. Measurements of the air side pressure drop and heat rejection rate were made as a function of air flow rate, air inlet temperature and humidity, deluge water flow rate, and the core inclination from the vertical. An overall heat transfer coefficient and an effective deluge film convective coefficient was determined. The deluge model, for predicting heat transfer from a wet finned heat exchanger was further developed and refined, and a major extension of the model was formulated that permits simultaneous calculation of both the heat transfer and evaporation rates from the wetted surface. The experiments showed an increase in the heat rejection rate due to wetting, accompanied by a proportional increase in the air side pressure drop. For operation at the same air side pressure drop, the enhancement ratio Q/sub w//Q/sub d/ varied between 2 and 5 for the conditions tested. Thus, the potential enhancement of heat transfer due to wetting can be substantial.

  15. Experimental investigation of plastic finned-tube heat exchangers, with emphasis on material thermal conductivity

    SciTech Connect

    Chen, Lin; Li, Zhen; Guo, Zeng-Yuan

    2009-07-15

    In this paper, two modified types of polypropylene (PP) with high thermal conductivity up to 2.3 W/m K and 16.5 W/m K are used to manufacture the finned-tube heat exchangers, which are prospected to be used in liquid desiccant air conditioning, heat recovery, water source heat pump, sea water desalination, etc. A third plastic heat exchanger is also manufactured with ordinary PP for validation and comparison. Experiments are carried out to determine the thermal performance of the plastic heat exchangers. It is found that the plastic finned-tube heat exchanger with thermal conductivity of 16.5 W/m K can achieve overall heat transfer coefficient of 34 W/m{sup 2} K. The experimental results are compared with calculation and they agree well with each other. Finally, the effect of material thermal conductivity on heat exchanger thermal performance is studied in detail. The results show that there is a threshold value of material thermal conductivity. Below this value improving thermal conductivity can considerably improve the heat exchanger performance while over this value improving thermal conductivity contributes very little to performance enhancement. For the finned-tube heat exchanger designed in this paper, when the plastic thermal conductivity can reach over 15 W/m K, it can achieve more than 95% of the titanium heat exchanger performance and 84% of the aluminum or copper heat exchanger performance with the same dimension. (author)

  16. Local Heat Transfer for Finned-Tube Heat Exchangers using Oval Tubes

    SciTech Connect

    O'Brien, James Edward; Sohal, Manohar Singh

    2000-08-01

    This paper presents the results of an experimental study of forced convection heat transfer in a narrow rectangular duct fitted with either a circular tube or an elliptical tube in crossflow. The duct was designed to simulate a single passage in a fin-tube heat exchanger. Heat transfer measurements were obtained using a transient technique in which a heated airflow is suddenly introduced to the test section. High-resolution local fin-surface temperature distributions were obtained at several times after initiation of the transient using an imaging infrared camera. Corresponding local fin-surface heat transfer coefficient distributions were then calculated from a locally applied one-dimensional semi-infinite inverse heat conduction model. Heat transfer results were obtained over an airflow rate ranging from 1.56 x 10-3 to 15.6 x 10-3 kg/s. These flow rates correspond to a duct-height Reynolds number range of 630 – 6300 with a duct height of 1.106 cm and a duct width-toheight ratio, W/H, of 11.25. The test cylinder was sized such that the diameter-to-duct height ratio, D/H is 5. The elliptical tube had an aspect ratio of 3:1 and a/H equal to 4.33. Results presented in this paper reveal visual and quantitative details of local fin-surface heat transfer distributions in the vicinity of circular and oval tubes and their relationship to the complex horseshoe vortex system that forms in the flow stagnation region. Fin surface stagnation-region Nusselt numbers are shown to be proportional to the square-root of Reynolds number.

  17. Dry/wet performance of a plate-fin air cooled heat exchanger with continuous corrugated fins

    NASA Astrophysics Data System (ADS)

    Hauser, S. G.; Kreid, D. K.; Johnson, B. M.

    1982-04-01

    Work to determine experimentally the performance and operating characteristics of a plate-fin heat exchanger during dry/wet of deluge operation is discussed, as well as the development of the deluge heat/mass transfer model. The work supports the improvement of power plant cooling systems that conserve fresh water in an environmentally and economically viable manner. The experiments identified important trade-offs concerning deluge cooling; these are discussed. The earlier deluge model was refined and extended to the simultaneous calculation of heat transfer and evaporation from wetted surfaces. Experiments showed the model to be an excellent predictor of heat exchanger performance during deluge operation.

  18. SIMULATION OF BOILING HEAT TRANSFER AROUND MICRO PIN-FIN HEAT EXCHANGER: PROGRESS AND CHALLENGES

    SciTech Connect

    Tyagi, M.; Maha, A.; Singh, K. V.; Li, G.; and Pang, S.S.

    2006-07-01

    Boiling at microscales is a challenging problem for the computational models as well as the resources. During boiling, the formation and departure of vapor bubbles from the heated surface involves the physics from nano/micro level to the macro level. Therefore, a hierarchical methodology is needed to incorporate the nano/microscale physics with the macroscale system performance. Using micro-fabrication techniques, microstructures (micropin-fins) can be fabricated around the tubes in the heat exchanger of Pressurized Water Reactors (PWRs) to increase the heat-exchanging efficiency and reduce the overall size of the heat-exchanger for the given heat transfer rates. Combined with high fidelity simulations of the thermal transport in the entire system, optimal design of microstructure patterns and layouts can be worked out pragmatically. Properly patterned microstructures on the pipe in the steam generation zone should create more nuclei for bubble to form and result in a reduced average bubble size and shorter retention time, i.e. the time for the vapor phase sticking on the pipe surface. The smaller average steam bubble size and shorter bubble retention time will enhance the overall thermal efficiency. As a preliminary step, a periodic arrangement of micropin-fins containing four in-line cylindrical fins was modeled. The governing equations for the mass, momentum and energy transport were solved in the fluid in a conjugate heat transfer mode. In the future, several studies will be conducted to simulate different geometric arrangements, different fin cross-sections, and realistic operating conditions including phase-change with boiling by adding complexities in simple steps.

  19. Three-dimensional structural analysis of the plate-fin heat exchanger

    SciTech Connect

    Nakagawa, T.; Sou, T.

    1984-06-01

    The Brazed aluminum plate-fin heat exchanger is a complex structure consisting of a core, headers and nozzles. The core is built of many layers of flat parting sheets and corrugated fins, and is sealed by side bars. Stress patterns in this type of heat exchanger have so far not been accurately analyzed, due to the complexity of the structure. A three dimensional structural analysis of such a core-header-nozzle structure subject to internal pressure is performed herein, using the finite element method, in order to investigate the mechanical characteristics of the structure. In the analysis, the corrugated fin is modeled by an equivalent anisotropic continuum element, to save on the computational cost. The adequacy of the analysis is then verified by performing a strain measurement test on the actual plate-fin heat exchanger. On the basis of the analytical results, it becomes clear that some critical parts need special attention when designing such structures.

  20. Heat Transfer Enhancement for Finned-tube Heat Exchangers with Winglets

    SciTech Connect

    O'Brien, James Edward; Sohal, Manohar Singh

    2000-11-01

    This paper presents the results of an experimental study of forced convection heat transfer in a narrow rectangular duct fitted with a circular tube and/or a delta-winglet pair. The duct was designed to simulate a single passage in a fin-tube heat exchanger. Heat transfer measurements were obtained using a transient technique in which a heated airflow is suddenly introduced to the test section. High-resolution local fin-surface temperature distributions were obtained at several times after initiation of the transient using an imaging infrared camera. Corresponding local fin-surface heat transfer coefficient distributions were then calculated from a locally applied one-dimensional semi-infinite inverse heat conduction model. Heat transfer results were obtained over an airflow rate ranging from 1.51 x 10-3 to 14.0 x 10-3 kg/s. These flow rates correspond to a duct-height Reynolds number range of 670 – 6300 with a duct height of 1.106 cm and a duct width-toheight ratio, W/H, of 11.25. The test cylinder was sized such that the diameter-to-duct height ratio, D/H is 5. Results presented in this paper reveal visual and quantitative details of local fin-surface heat transfer distributions in the vicinity of a circular tube, a delta-winglet pair, and a combination of a circular tube and a delta-winglet pair. Comparisons of local and average heat transfer distributions for the circular tube with and without winglets are provided. Overall mean finsurface Nusselt-number results indicate a significant level of heat transfer enhancement associated with the deployment of the winglets with the circular cylinder. At the lowest Reynolds numbers (which correspond to the laminar operating conditions of existing geothermal air-cooled condensers), the enhancement level is nearly a factor of two. At higher Reynolds numbers, the enhancement level is close to 50%.

  1. Effect of anti-corrosion coating on the thermal characteristics of a louvered finned tube heat exchanger under dehumidifying conditions

    SciTech Connect

    Fu, W.L.; Wang, C.C.; Chang, W.R.; Chang, C.T.

    1995-12-31

    An experimental study on four louver fin tube heat exchangers were carried out in a forced-circulation wind tunnel. The heat exchangers consist of three anti-corrosion coated louver fin heat exchangers with various fin pitches and one non-coated louver fin heat exchanger. The effect of anti-corrosion coating on both dry and wet operating conditions were investigated. In addition, the effect of fin pitches was also shown in the present investigation. Data were presented in terms of total j factors, sensible j factors and friction factor f.

  2. Heat and mass transfer performances on plate fin and tube heat exchangers with dehumidification

    SciTech Connect

    Seshimo, Y.; Ogawa, K.; Marumoto, K.; Fujii, M. )

    1990-09-01

    The authors discuss how they conducted an experimental study on the air side performance of a single-row plate fin and tube heat exchanger in moist air where mass transfer exist under a relatively low driving potential. The results are as follows: The heat transfer with dehumidification is about 20% greater than that with only sensible heat transfer. Also the air side pressure drop is about 30-40% greater. The reason, as clarified by visual observations, comes from the condensate effect. To study how the condensate film affects performance, the presence of the stagnant condensate in the heat exchanger was modeled as an apparent change of the heat exchanger geometry, and the equivalent thickness of the condensate film was calculated from the increase in the air side pressure drop. As a result, if the presence of condensate in the heat exchanger is considered, then the heat transfer with dehumidification can be treated in the same way as with only sensible heat transfer. The analogy between heat and mass transfer does not strictly hold, the experimental results being closed to the Lewis Law.

  3. Heat transfer in thin, compact heat exchangers with circular, rectangular, or pin-fin flow passages

    NASA Technical Reports Server (NTRS)

    Olson, D. A.

    1992-01-01

    Heat transfer and pressure drop have been measured of three thin, compact heat exchangers in helium gas at 3.5 MPa and higher, with Reynolds numbers of 450 to 36,000. The flow geometries for the three heat exchanger specimens were: circular tube, rectangular channel, and staggered pin fin with tapered pins. The specimens were heated radiatively at heat fluxes up to 77 W/sq cm. Correlations were developed for the isothermal friction factor as a function of Reynolds number, and for the Nusselt number as a function of Reynolds number and the ratio of wall temperature to fluid temperature. The specimen with the pin fin internal geometry had significantly better heat transfer than the other specimens, but it also had higher pressure drop. For certain conditions of helium flow and heating, the temperature more than doubled from the inlet to the outlet of the specimens, producing large changes in gas velocity, density, viscosity, and thermal conductivity. These changes in properties did not affect the correlations for friction factor and Nusselt number in turbulent flow.

  4. Heat Transfer Enhancement for Finned-Tube Heat Exchangers with Vortex Generators: Experimental and Numerical Results

    SciTech Connect

    O'Brien, James Edward; Sohal, Manohar Singh; Huff, George Albert

    2002-08-01

    A combined experimental and numerical investigation is under way to investigate heat transfer enhancement techniques that may be applicable to large-scale air-cooled condensers such as those used in geothermal power applications. The research is focused on whether air-side heat transfer can be improved through the use of finsurface vortex generators (winglets,) while maintaining low heat exchanger pressure drop. A transient heat transfer visualization and measurement technique has been employed in order to obtain detailed distributions of local heat transfer coefficients on model fin surfaces. Pressure drop measurements have also been acquired in a separate multiple-tube row apparatus. In addition, numerical modeling techniques have been developed to allow prediction of local and average heat transfer for these low-Reynolds-number flows with and without winglets. Representative experimental and numerical results presented in this paper reveal quantitative details of local fin-surface heat transfer in the vicinity of a circular tube with a single delta winglet pair downstream of the cylinder. The winglets were triangular (delta) with a 1:2 height/length aspect ratio and a height equal to 90% of the channel height. Overall mean fin-surface Nusselt-number results indicate a significant level of heat transfer enhancement (average enhancement ratio 35%) associated with the deployment of the winglets with oval tubes. Pressure drop measurements have also been obtained for a variety of tube and winglet configurations using a single-channel flow apparatus that includes four tube rows in a staggered array. Comparisons of heat transfer and pressure drop results for the elliptical tube versus a circular tube with and without winglets are provided. Heat transfer and pressure-drop results have been obtained for flow Reynolds numbers based on channel height and mean flow velocity ranging from 700 to 6500.

  5. Structure and Output Characteristics of a TEM Array Fitted to a Fin Heat Exchanger

    NASA Astrophysics Data System (ADS)

    Zhang, Z.; Chen, L. N.; Chen, Z. J.; Xiao, G. Q.; Liu, Z. J.

    2015-06-01

    In the design of a thermoelectric generator, both the heat transfer area and the number of thermoelectric modules (TEMs) should be increased accordingly as the generator power increases; crucially, both aspects need to be coordinated. A kilowatt thermoelectric generator with a fin heat exchanger is proposed for use in a constant-speed diesel generator unit. Interior fins enhance convective heat transfer, whereas an exterior fin segment increases the heat transfer area. The heat transfer surface is double that of a plane heat exchanger, and the temperature field over the exterior fins is constrained to a one-dimensional distribution. Between adjoining exterior fins, there is a cooling water channel with trapezoid cross-section, enabling compact TEMs and cooling them. Hence, more TEMs are built as a series-parallel array of TEMs with lower resistance and more stable output current. Under nonuniform conditions, to prevent circulation and energy loss, bypass diodes and antidiodes are added. Experiments and numerical calculations show that, with matching and optimization of the heat exchanger and TEM array, a stable maximum output power is obtainable from the interior of the thermoelectric generator system, which can be connected to an external maximum power point tracking system.

  6. Exergy destruction analysis of a vortices generator in a gas liquid finned tube heat exchanger: an experimental study

    NASA Astrophysics Data System (ADS)

    Ghazikhani, M.; Khazaee, I.; Monazzam, S. M. S.; Takdehghan, H.

    2016-01-01

    In the present work, the effect of using different shapes of vortices generator (VG) on a gas liquid finned heat exchanger is investigated experimentally with irreversibility analysis. In this project the ambient air with mass flow rates of 0.047-0.072 kg/s is forced across the finned tube heat exchanger. Hot water with constant flow rate of 240 L/h is circulated inside heat exchanger tubes with inlet temperature range of 45-73 °C. The tests are carried out on the flat finned heat exchanger and then repeated on the VG finned heat exchanger. The results show that using the vortex generator can decrease the ratio of air side irreversibility to heat transfer (ASIHR) of the heat exchanger. Also the results show that the IASIHR is >1.05 for all air mass flow rates, which means that ASIHR for the initial heat exchanger is higher than 5 % greater than that of improved heat exchanger.

  7. Experimental Investigation of Gas-Side Performance of a Compact Finned-Tube Heat Exchanger

    NASA Technical Reports Server (NTRS)

    Gedeon, Louis

    1959-01-01

    Heat-transfer and pressure-drop data were obtained experimentally for the gas side of a liquid-metal to air, compact finned-tube heat exchanger. The heat exchanger was fabricated from 0.185-inch Inconel tubing in an inline array. The fins were made of 310 stainless-steel- clad copper with a total thickness of 0.010 inch, and the fin pitch was 15.3 fins per inch. The liquid used as the heating medium was sodium. The heat-exchanger inlet gas temperature was varied from 5100 to 1260 R by burning JP fuel for airflow rates of 0.4 to 10.5 pounds per second corresponding to an approximate Reynolds number range of 300 to 9000. The sodium inlet temperature was held at 1400 R with the exception of a few runs taken at 1700 and 1960 R. The maximum ratio of surface temperature to air bulk temperature was 1.45. Friction-factor data with heat transfer were best represented by a single line when the density and viscosity of Reynolds number were evaluated at the average film temperature. At the lower Reynolds numbers reported, the friction data with heat transfer plotted slightly above the friction data without heat transfer. The density of the friction factor was calculated at the average bulk temperature. Heat-transfer results of this investigation were correlated by evaluating the physical properties of air (specific heat, viscosity, and thermal conductivity) at the film temperature.

  8. A leak-proof plate-fin heat exchanger concept for process plant applications

    SciTech Connect

    McDonald, C.F.

    1997-12-31

    Over the last four decades, plate-fin heat exchangers have been used extensively for aerospace applications, their major attributes being compact size, light weight overall assembly, and high reliability. Several million units have seen service for a wide range of fluids, including operation t high temperature and pressure, and clearly a well established technology base exists. Within the process industries the heat exchanger trend is towards units of smaller size and weight, and lower cost, and the utilization of the plate-fin type of construction is viewed as being in concert with these goals. Recognizing that there are applications involving dissimilar fluids, where an internal heat exchanger leak could result in a hazardous condition, a leak-proof concept to avoid this is discussed in this paper. For a plate-fin heat exchanger of brazed construction, this is achieved by means of a double headering bar system, and a buffer layer between the two fluids. On-line monitoring of heat exchanger integrity can be achieved by monitoring a small continuous purge flow in the buffer interspace. The process industry can benefit from a well established aircraft heat exchanger technology base that exists for this type of compact leak-proof heat exchanger.

  9. Numerical study of a round tube heat exchanger with louvered fins and delta winglets

    NASA Astrophysics Data System (ADS)

    Huisseune, H.; T'Joen, C.; De Jaeger, P.; Ameel, B.; De Paepe, M.

    2012-11-01

    Louvered fin and round tube heat exchangers are widely used in air conditioning devices and heat pumps. In this study the effect of punching delta winglet vortex generators in the louvered fin surface is studied numerically. The delta winglets are located in a common-flow-down orientation behind each tube of the staggered tube layout. It is shown that the generated vortices significantly reduce the size of the tube wakes. Three important heat transfer enhancement mechanisms can be distinguished: a better flow mixing, boundary layer thinning and a delay in flow separation from the tube surface. The compound heat exchanger has a better thermal hydraulic performance then when only louvers or only delta winglets are used. Comparison to other enhanced fin designs clearly shows its potential, especially for low Reynolds number applications.

  10. Measurement of frost characteristics on heat exchanger fins. Part 1: Test facility and instrumentation

    SciTech Connect

    Thomas, L.; Chen, H.; Besant, R.W.

    1999-07-01

    A special test facility was developed to characterize frost growing on heat exchanger fins where the cold surfaces and the air supply conditions were similar to those experienced in freezers, i.e., cold surface temperatures ranging from {minus}35 C to {minus}40 C, air supply temperatures from {minus}10 C to {minus}20 C, and 80% to 100% relative humidity (RH). This test facility included a test section with removable fins to measure the frost height and mass concentration. Frost height on heat exchanger fins was measured using a new automated laser scanning system to measure the height of frost and its distribution on selected fins. The increase in air pressure loss resulting from frost growth on the fins was measured directly in the test loop. The frost mass accumulation distribution was measured for each test using special pre-etched fins that could be easily subdivided and weighed. The total heat rate was measured using a heat flux meter. These frost-measuring instruments were calibrated and the uncertainty of each is stated.

  11. Study of junction flows in louvered fin round tube heat exchangers using the dye injection technique

    SciTech Connect

    Huisseune, H.; Willockx, A.; De Paepe, M.; T'Joen, C.; De Jaeger, P.

    2010-11-15

    Detailed studies of junction flows in heat exchangers with an interrupted fin design are rare. However, understanding these flow structures is important for design and optimization purposes, because the thermal hydraulic performance of heat exchangers is strongly related to the flow behaviour. In this study flow visualization experiments were performed in six scaled-up models of a louvered fin round tube heat exchanger. The models have three tube rows in a staggered layout and differ only in their fin spacing and louver angle. A water tunnel was designed and built and the flow visualizations were carried out using dye injection. At low Reynolds numbers the streakline follows the tube contours, while at higher Reynolds numbers a horseshoe vortex is developed ahead of the tubes. The two resulting streamwise vortex legs are destroyed by the downstream louvers (i.e. downstream the turnaround louver), especially at higher Reynolds numbers, smaller fin pitches and larger louver angles. Increasing the fin spacing results in a larger and stronger horseshoe vortex. This illustrates that a reduction of the fin spacing results in a dissipation of vortical motion by mechanical blockage and skin friction. Furthermore it was observed that the vortex strength and number of vortices in the second tube row is larger than in the first tube row. This is due to the thicker boundary layer in the second tube row, and the flow deflection, which is typical for louvered fin heat exchangers. Visualizations at the tube-louver junction showed that in the transition part between the angled louver and the flat landing a vortex is present underneath the louver surface which propagates towards the angled louver. (author)

  12. CFD simulation on inlet configuration of plate-fin heat exchangers

    NASA Astrophysics Data System (ADS)

    Zhang, Zhe; Li, YanZhong

    2003-12-01

    A computational fluid dynamics (CFD) program FLUENT has been used to predict the fluid flow distribution in plate-fin heat exchangers. It is found that the flow maldistribution is very serious in the y direction of header for the conventional header used in industry. The results of flow maldistribution are presented for a plate-fin heat exchanger, which is simulated according to the configuration of the plate-fin heat exchanger currently used in industry. The numerical prediction shows a good agreement with experimental measurement. By the investigation, two modified headers with a two-stage-distributing structure are proposed and simulated in this paper. The numerical investigation of the effects of the inlet equivalent diameters for the two-stage structures has been conducted and also compared with experimental measurement. It is verified that the fluid flow distribution in plate-fin heat exchangers is more uniform if the ratios of outlet and inlet equivalent diameters for both headers are equal.

  13. Plate Fin Heat Exchanger Model with Axial Conduction and Variable Properties

    SciTech Connect

    Hansen, B.J.; White, M.J.; Klebaner, A.; /Fermilab

    2011-06-10

    Future superconducting radio frequency (SRF) cavities, as part of Project X at Fermilab, will be cooled to superfluid helium temperatures by a cryogenic distribution system supplying cold supercritical helium. To reduce vapor fraction during the final Joule-Thomson (J-T) expansion into the superfluid helium cooling bath, counter-flow, plate-fin heat exchangers will be utilized. Due to their compact size and ease of fabrication, plate-fin heat exchangers are an effective option. However, the design of compact and high-effectiveness cryogenic heat exchangers operating at liquid helium temperatures requires consideration of axial heat conduction along the direction of flow, in addition to variable fluid properties. Here we present a numerical model that includes the effects of axial conduction and variable properties for a plate fin heat exchanger. The model is used to guide design decisions on heat exchanger material choice and geometry. In addition, the J-T expansion process is modeled with the heat exchanger to analyze the effect of heat load and cryogenic supply parameters. A numerical model that includes the effects of axial conduction and variable properties for a plate fin heat exchanger was developed and the effect of various design parameters on overall heat exchanger size was investigated. It was found that highly conductive metals should be avoided in the design of compact JT heat exchangers. For the geometry considered, the optimal conductivity is around 3.5 W/m-K and can range from 0.3-10 W/m-K without a large loss in performance. The model was implemented with an isenthalpic expansion process. Increasing the cold side inlet temperature from 2K to 2.2 K decreased the liquid fraction from 0.856 to 0.839 which corresponds to a 0.12 g/s increase in supercritical helium supply needed to maintain liquid level in the cooling bath. Lastly, it was found that the effectiveness increased when the heat load was below the design value. Therefore, the heat exchanger

  14. Coldplate of pin fin design makes efficient heat exchanger

    NASA Technical Reports Server (NTRS)

    Dyer, W. F.

    1967-01-01

    Flat, hollow coldplate that permits the flow of coolant liquid removes heat from heat-generating electronic equipment. This coldplate solves usual problems of bulk, weight, and excessive pumping requirements.

  15. Mathematical model of a plate fin heat exchanger operating under solid oxide fuel cell working conditions

    NASA Astrophysics Data System (ADS)

    Kaniowski, Robert; Poniewski, Mieczysław

    2013-12-01

    Heat exchangers of different types find application in power systems based on solid oxide fuel cells (SOFC). Compact plate fin heat exchangers are typically found to perfectly fit systems with power output under 5 kWel. Micro-combined heat and power (micro-CHP) units with solid oxide fuel cells can exhibit high electrical and overall efficiencies, exceeding 85%, respectively. These values can be achieved only when high thermal integration of a system is assured. Selection and sizing of heat exchangers play a crucial role and should be done with caution. Moreover, performance of heat exchangers under variable operating conditions can strongly influence efficiency of the complete system. For that reason, it becomes important to develop high fidelity mathematical models allowing evaluation of heat exchangers under modified operating conditions, in high temperature regimes. Prediction of pressure and temperatures drops at the exit of cold and hot sides are important for system-level studies. Paper presents dedicated mathematical model used for evaluation of a plate fin heat exchanger, operating as a part of micro-CHP unit with solid oxide fuel cells.

  16. Fluid-structure interaction numerical simulation of thermal performance and mechanical property on plate-fins heat exchanger

    NASA Astrophysics Data System (ADS)

    Zhang, Lingjie; Qian, Zuoqin; Deng, Jun; Yin, Yuting

    2015-09-01

    A numerical simulation and experimental study of heat transfer, fluid flow and fins mechanical property on plate-fin heat exchanger has been presented in this paper. The methods used in this study are experiment, CFD analysis, fluid-structure interaction and finite element method. An air-oil wind tunnel is established for this experiment. The temperature difference, pressure drop, streamlines are obtained in overall model, and the heat transfer coefficient, j/ f factor, temperature and stress distribution of plate-fin body are obtained in different fin thickness and fin offset. The prediction from the CFD simulation shows reasonably good agreement with the experimental results.

  17. A computer program for designing fin-and-tube heat exchanger for EGR cooler application

    NASA Astrophysics Data System (ADS)

    Syaiful, Marwan, M. A.; Tandian, N. P.; Bae, M.

    2016-03-01

    EGR (exhaust gas recirculation) cooler is a kind of heat exchanger that is used to cool exhaust gas recirculation prior to be mixed with fresh air in an intake manifold of vehicle in order to obtain good reduction of NOxemissions. A fin-and-tube heat exchanger is more preferred as an EGR cooler than a shell-and-tube heat exchanger in this study due to its compactness. Manually designing many configurations of fin-and-tube heat exchanger for EGR cooler application consumes a lot of time and is high cost. Therefore, a computer aided design process of EGR cooler is required to overcome this problem. The EGR cooler design process was started by arranging the sequences of calculation algorithm in a computer program. A cooling media for this EGR cooler is air. The design is based on the effectiveness-number transfer unit (NTU) method. The EGR cooler design gives the geometry, heat transfer surface area, heat transfer coefficient and pressure drop of the EGR cooler. Comparison of the EGR cooler Nusselt number obtained in this study and that reported in literature shows less than 6.2% discrepancy.

  18. Study of flow distribution and its improvement on the header of plate-fin heat exchanger

    NASA Astrophysics Data System (ADS)

    Wen, Jian; Li, Yanzhong

    2004-11-01

    In order to enhance the uniformity of flow distribution, an improved header configuration of plate-fin heat exchanger is put forward in this paper. Based on the analysis of the fluid flow maldistribution for the conventional header used in industry, a baffle with small holes of three different kinds of diameters is recommended to install in the header. The flow maldistribution parameter S is obtained under different header configuration. When the baffle is properly installed with an optimum length, with stagger arranged and suitably distributed holes from axial line to baffle boundary, the ratio of the maximum flow velocity to the minimum flow velocity drops from 3.44-3.04 to 1.57-1.68 for various Reynolds numbers. The numerical results indicate that the improved header configuration can effectively improve the performance. The conclusion of this paper is of great significance in the improvement of plate-fin heat exchanger.

  19. PIV experimental investigation of entrance configuration on flow maldistribution in plate-fin heat exchanger

    NASA Astrophysics Data System (ADS)

    Wen, Jian; Li, Yanzhong; Zhou, Aimin; Zhang, Ke; Wang, Jiang

    2006-01-01

    Flow characteristics of flow field in the entrance of plate-fin heat exchanger have been investigated by means of particle image velocimetry (PIV). The velocity fields were measured using the two-frame cross-correlation technique. A series of velocity vector and streamline graphs of different cross-sections are achieved in the experiment. The experimental results indicate that performance of fluid maldistribution in conventional entrance configuration is very serious, while the improved entrance configuration with punched baffle can effectively improve the performance of fluid flow distribution in the entrance. Based on the analysis of the fluid flow maldistribution, a baffle with small holes is recommended to install in the entrance configuration in order to improve the performance of flow distribution. When the punched baffle is proper in length, the small holes is distributed in staggered arrangement, and the punched ratio gradually increases from central axis to the boundary along with the baffle length, the performance of flow distribution in plate-fin heat exchanger is effectively improved by the optimum design of the entrance configuration. The flow maldistribution parameter S in plate-fin heat exchanger has been reduced from 1.21 to 0.209 and the ratio of the maximum velocity to the minimum θ is reduced from 23.2 to 1.76 by installing the punched baffle. The results validate that PIV is well suitable to investigate complex flow pattern and the conclusion of this paper is of great significance in the optimum design of plate-fin heat exchanger.

  20. Plate fin heat exchanger model with axial conduction and variable properites

    NASA Astrophysics Data System (ADS)

    Hansen, Benjamin Jacob; White, Michael Joseph; Klebaner, Arkadiy

    2012-06-01

    Future superconduction radio frequency (SRF) cavities, as part of Project X at Fermilab,will be cooled to superfluid helium temperatures by a cryogenic distribution system supplying cold supercritical helium. To reduce vapor fraction during the final Joule Thomson (J-T) expansion into the superfluid helium cooling bath, counter-flow, plate-fin heat exchanger are an effective option. However, at liquid helium temperatures requires consideration of axial heat conduction along the direction of flow, in addition to variable fluid properties. Here we present a numberical model that includes the effects of axial guide design decisions on heat exhanger material choice and geometry. In addition, the J-T expansion process is modeled with the heat exchanger to analyze the effect of heat load and cryogenic supply parameters.

  1. Numerical estimation of heat transfer characteristics for two-row plate-finned tube heat exchangers with experimental data

    NASA Astrophysics Data System (ADS)

    Chen, Han-Taw; Lu, Chih-Han; Huang, Yao-Sheng; Liu, Kuo-Chi

    2016-05-01

    This study applies a three-dimensional computational fluid dynamics commercial software in conjunction with various flow models to estimate the heat transfer and fluid flow characteristics of the two-row plate-finned tube heat exchanger in staggered arrangement. The effect of air speed and fin spacing on the results obtained is investigated. Temperature and velocity distributions of air between the two fins and heat transfer coefficient on the fins are determined using the laminar flow and RNG k-ɛ turbulence models. More accurate results can be obtained, if the heat transfer coefficient obtained is close to the inverse results and matches existing correlations. Furthermore, the fin temperature measured at the selected locations also coincides with the experimental temperature data. The results obtained using the RNG k-ɛ turbulence model are more accurate than those using the laminar flow model. An interesting finding is the number of grid points may also need to change with fin spacing and air speed.

  2. The Experimental Study of Atmospheric Stirling Engines Using Pin-Fin Arrays' Heat Exchangers

    NASA Astrophysics Data System (ADS)

    Isshiki, Seita; Sato, Hidekazu; Konno, Shoji; Shiraishi, Hiroaki; Isshiki, Naotsugu; Fujii, Iwane; Mizui, Hiroyuki

    This paper reports experimental results on two kinds of atmospheric Stirling engines that were designed and manufactured using a pin-fin array heat exchanger for the heater and cooler (abbreviated to “pin-fin Stirling engine” hereafter). The first one is a large β type pin-fin Stirling engine with a 1.7-liter displacement volume and power piston volume. The heater consists of an aluminum circular disk with a diameter of 270mm and with large-scale pin-fin arrays carved into the surface. The maximum output reached 91W at a temperature difference of 330K, which is 36% of the scheduled value and 68% of the Kolin's cubic power law. The maximum thermal efficiency was estimated 4.2%. The second engine is an α type pin-fin Stirling engine. Glass syringes were used for the piston-cylinder system and the Ross-yoke mechanism was used for the crank mechanism. By changing temperature difference, the characteristic of output torque in the large range was measured with a precision torque detector.

  3. New printed circuit heat exchanger with S-shaped fins for hot water supplier

    SciTech Connect

    Ngo, Tri Lam; Kato, Yasuyoshi; Nikitin, Konstantin; Tsuzuki, Nobuyoshi

    2006-08-15

    A new PCHE with an S-shaped fin configuration was applied to a hot water supplier in which cold water of 7{sup o}C is warmed to 90{sup o}C through heat-exchange with supercritical CO{sub 2} of 118{sup o}C and 11.5MPa pressure. The fin and plate configurations were determined using 3D CFD simulations for the CO{sub 2} side and H{sub 2}O side and the thermal-hydraulic performance of hot water supplier was evaluated. Compared with a hot water supplier that is currently used in a residential heat pump, the new PCHE provides about 3.3 times less volume; and lower pressure drop by 37% in the CO{sub 2} side and by 10 times in H{sub 2}O side. (author)

  4. Compound heat transfer enhancement for shell side of double-pipe heat exchanger by helical fins and vortex generators

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Guo, Hongmei; Wu, Jianhua; Du, Wenjuan

    2012-07-01

    To improve heat transfer performance of shell side of double-pipe heat exchanger with helical fins on its inner tube, some vortex generators (VGs) were installed along the centerline of the helical channel. Heat transfer performance and pressure drop characteristic of the enhanced heat exchangers were investigated using air as the working fluid and steam as the heating medium. The helical fins were in the annulus and span its full width at different helical pitch. Wing-type VGs (delta or rectangular wing) and winglet-type VGs (delta or rectangular winglet pair) were used to combine with helical fins. The friction factor and Nusselt number can be well correlated by power-law correlations in the Reynolds number range studied. In order to evaluate the thermal performance of the shell side enhanced over the shell side without enhancement, comparisons were made under three constraints: (1) identical mass flow rate, IMF; (2) identical pressure drop, IPD and (3) identical pumping power, IPP. The results show the shell side enhanced by the compound heat transfer enhancement has better performance than the shell side only enhanced by helical fins at shorter helical pitch under the three constraints.

  5. 3D Numerical heat transfer and fluid flow analysis in plate-fin and tube heat exchangers with electrohydrodynamic enhancement

    NASA Astrophysics Data System (ADS)

    Lin, Chia-Wen; Jang, Jiin-Yuh

    2005-05-01

    Three-dimensional laminar fluid flow and heat transfer over a four-row plate-fin and tube heat exchanger with electrohydrodynamic (EHD) wire electrodes are studied numerically. The effects of different electrode arrangements (square and diagonal), tube pitch arrangements (in-line and staggered) and applied voltage (VE=0-16 kV) are investigated in detail for the Reynolds number range (based on the fin spacing and frontal velocity) ranging from 100 to 1,000. It is found that the EHD enhancement is more effective for lower Re and higher applied voltage. The case of staggered tube pitch with square wire electrode arrangement gives the best heat transfer augmentation. For VE=16 kV and Re = 100, this study identifies a maximum improvement of 218% in the average Nusselt number and a reduction in fin area of 56% as compared that without EHD enhancement.

  6. Thermal performance of plate-fin heat exchanger using passive techniques: vortex-generator and nanofluid

    NASA Astrophysics Data System (ADS)

    Khoshvaght-Aliabadi, Morteza

    2016-04-01

    This experimental study investigates the effects of vortex-generator (VG) and Cu/water nanofluid flow on performance of plate-fin heat exchangers. The Cu/water nanofluids are produced by using a one-step method, namely electro-exploded wire technique, with four nanoparticles weight fractions (i.e. 0.1, 0.2, 0.3, and 0.4 %). Required properties of nanofluids are systematically measured, and empirical correlations are developed. A highly precise test loop is fabricated to obtain accurate results of the heat transfer and pressure drop characteristics. Experiments are conducted for nanofluids flow inside the plain and VG channels. Based on the experimental results, utilizing the VG channel instead of the plain channel enhances the heat transfer rate, remarkably. Also, the results show that the VG channel is more effective than the nanofluid on the performance of plate-fin heat exchangers. It is observed that the combination of the two heat transfer enhancement techniques has a noticeably high thermal-hydraulic performance, about 1.67. Finally, correlations are developed to predict Nusselt number and friction factor of nanofluids flow inside the VG channel.

  7. Experimental study and numerical simulation of flow and heat transfer performance on an offset plate-fin heat exchanger

    NASA Astrophysics Data System (ADS)

    Du, Juan; Qian, Zuo-Qin; Dai, Zhong-yuan

    2015-10-01

    An experimental investigation of heat transfer and pressure drop characteristics of an offset plate-fin heat exchanger for cooling of lubricant oil is conducted. The empirical correlations for j-factor and f-factor are obtained by evaluating the experimental data with a modified Wilson plot method. A numerical simulation is performed and the comparison between numerical results and experimental data are presented and discussed. The results show that the simulation results are consistent with experimental data.

  8. New application of plate-fin heat exchanger with regenerative cryocoolers

    NASA Astrophysics Data System (ADS)

    Chang, Ho-Myung; Gwak, Kyung Hyun

    2015-09-01

    A design idea is newly proposed and investigated for the application of plate-fin heat exchanger (PFHX) with regenerative cryocoolers. The role of this heat exchanger is to effectively absorb heat from the stream of coolant and deliver it to the cold-head of a cryocooler. While various types of tubular HX's have been developed so far, a small PFHX could be more useful for this purpose by taking advantage of compactness and design flexibility. In order to confirm the feasibility and effectiveness, a prototype of aluminum-brazed PFHX is designed, fabricated, and tested with a single-stage GM cryocooler in experiments for subcooling liquid nitrogen from 78 K to 65-70 K. The results show that the PFHX is 30-50% more effective in cooling rate than the tubular HX's. Several potential applications of PFHX are presented and discussed with specific design concepts.

  9. Condensation heat transfer and pressure drop of R-134a saturated vapour inside a brazed compact plate fin heat exchanger with serrated fin

    NASA Astrophysics Data System (ADS)

    Ramana Murthy, K. V.; Ranganayakulu, C.; Ashok Babu, T. P.

    2016-05-01

    This paper presents the experimental heat transfer coefficient and pressure drop measured during R-134a saturated vapour condensation inside a small brazed compact plate fin heat exchanger with serrated fin surface. The effects of saturation temperature (pressure), refrigerant mass flux, refrigerant heat flux, effect of fin surface characteristics and fluid properties are investigated. The average condensation heat transfer coefficients and frictional pressure drops were determined experimentally for refrigerant R-134a at five different saturated temperatures (34, 38, 40, 42 and 44 °C). A transition point between gravity controlled and forced convection condensation has been found for a refrigerant mass flux around 22 kg/m2s. In the forced convection condensation region, the heat transfer coefficients show a three times increase and 1.5 times increase in frictional pressure drop for a doubling of the refrigerant mass flux. The heat transfer coefficients show weak sensitivity to saturation temperature (Pressure) and great sensitivity to refrigerant mass flux and fluid properties. The frictional pressure drop shows a linear dependence on the kinetic energy per unit volume of the refrigerant flow. Correlations are provided for the measured heat transfer coefficients and frictional pressure drops.

  10. Characteristics of Plate-Fin Heat Exchanger with Phase Change Material

    NASA Astrophysics Data System (ADS)

    Okada, Masashi

    In the present paper, a plate-fin heat exchanger with a phase change material (PCM) was studied. The heat exchanger was a singlepass cross-flow type, where both fluids (air) were unmixed. N-octadecane, of which the fusion temperature is 28.0°C, was used as the PCM. Three kinds of experiments were carried out and the inlet and outlet temperatures and the temperatures in the PCM were measured. In the first experiments, the effectiveness and the overall heat-transfer coefficient were obtained at steady states. By the calculations of steady three-dimensional heat conduction, the effects of the parameters, ---, dimensions, thermal properties, and heat transfer coefficients of air ---, on the overall heat-transfer coefficients were obtaiend clearly. In the second experiments, after the higher-temperature air-flow was stopped, the outlet temperatures of the lower-temperature air were maintained at the constant temperatures for 90-150 minutes. In the third experiments, the higher temperature air was flowed intermittently with an equal interval. The fluctuation of the outlet temperature of the lower-temperature air was within ±2.5°C. The above transient and periodical experiments showed that the present heat exchanger with PCM had useful characters of latent heat storage.

  11. Experimental determination of correlations for mean heat transfer coefficients in plate fin and tube heat exchangers

    NASA Astrophysics Data System (ADS)

    Taler, Dawid

    2012-09-01

    This paper presents a numerical method for determining heat transfer coefficients in cross-flow heat exchangers with extended heat exchange surfaces. Coefficients in the correlations defining heat transfer on the liquid- and air-side were determined using a nonlinear regression method. Correlation coefficients were determined from the condition that the sum of squared liquid and air temperature differences at the heat exchanger outlet, obtained by measurements and those calculated, achieved minimum. Minimum of the sum of the squares was found using the Levenberg-Marquardt method. The uncertainty in estimated parameters was determined using the error propagation rule by Gauss. The outlet temperature of the liquid and air leaving the heat exchanger was calculated using the analytical model of the heat exchanger.

  12. Augmentation of heat transfer by longitudinal vortices in plate-fin heat exchangers with two rows of tubes

    SciTech Connect

    Rodrigues, R. Jr.; Yanagihara, J.I.

    1999-07-01

    The thermal performance of fin-tube compact heat exchangers is highly affected by the thermal resistance occurring on the air side, which is much higher than the thermal resistance inside the tubes. Since this kind of heat exchanger is widely used in these days, with applications on air-conditioning, refrigeration, automobilistic industry and many other areas, the development of more efficient and cheaper heat exchangers is highly attractive, because it will permit the manufacturing of more competitive equipments. This work presents results of numerical simulations for fin-tube compact heat exchangers using smooth fins and longitudinal vortex generators. The computational model has two rows of round tubes in staggered arrangement. Built-in delta winglet vortex generators were used, and its geometric dimensions were chosen according to the best results of literature. The steady-state numerical simulations were carried out at Re = 300, with a code based on the finite volume method. The typical configuration, where the vortex generators of both tube rows have identical parameters set, was compared with new ones where the vortex generators of the second row have different attack angles and positions. The global and local influence of vortex generators on heat transfer and flow losses are analyzed by comparison with a smooth fin model without vortex generators. The results show that a best heat transfer performance can be obtained by positioning the vortex generators of the second row at a particular position and angle of attack, when the increasing of the flow losses was smaller than the heat transfer enhancement achieved.

  13. Net Shape Fins for Compact Heat Exchanger Produced by Cold Spray

    NASA Astrophysics Data System (ADS)

    Cormier, Yannick; Dupuis, Philippe; Jodoin, Bertrand; Corbeil, Antoine

    2013-10-01

    This work explores the manufacturability of pyramidal fin arrays produced using the cold spray process. Near-net shaped pyramidal fin arrays of various sizes and fin densities were manufactured using masks made of commercially available steel wire mesh. The feedstock powders used to produce the fins are characterized using scanning electron microscopy. Obstruction of the masks was investigated. The standoff distances between the substrate, mesh, and nozzle were empirically determined. Fin array characterization was performed using digital microscopy. The fin arrays' heat transfer performance was assessed experimentally for a range of Reynolds number relevant to the application sought. The fins produced using the cold spray process outperform traditional straight (rectangular) fins at the same fin density and it is hypothesized that this is due to increased fluid mixing and turbulence.

  14. The optimization of fin-tube heat exchanger with longitudinal vortex generators using response surface approximation and genetic algorithm

    NASA Astrophysics Data System (ADS)

    Wu, Xuehong; Liu, DanDan; Zhao, Min; Lu, YanLi; Song, Xiaoyong

    2015-11-01

    Delta winglet works better than other vortex generators in improving the performance of fin-tube heat exchangers. In this paper, Response Surface Approximation is used to study the effects of the fin pitch, the ratio of the longitudinal tube pitch to transverse tube pitch, the ratio of both sides V 1 , V h of delta winglets and the attack angle of delta winglets on the performance of fin-tube heat exchanger. Firstly, Twenty-nine numerical group experiments including five times repeated experiments at the central point are conducted. Then, the analyses of variable (ANOVA) and regression are performed to verify the accuracy of the polynomial coefficients. Finally, the optimization of the fin-tube heat exchanger using the Genetic Algorithm is conducted and the best performance of j/f (1/3) is found to be 0.07945, which is consistent with the numerical result.

  15. Experimental study on heat transfer and pressure drop characteristics of four types of plate fin-and-tube heat exchanger surfaces

    NASA Astrophysics Data System (ADS)

    Kang, H. J.; Li, W.; Li, H. Z.; Xin, R. C.; Tao, W. Q.

    1994-03-01

    In this paper, air side heat transfer and pressure drop characteristics of twelve three-row plate fin-and-tube heat exchanger cores of four types of fin configurations have been experimentally investigated. The heat transfer and friction factor correlations for the twelve cores are provided in a wide range of Reynolds number. It is found that in the range of Reynolds number tested, the Nusselt number of the slotted fin surface is the largest and that of the plain plate fin is the lowest while the Nusselt numbers of two types of wavy fins are somewhere in between.

  16. The combined effects of longitudinal heat conduction, flow nonuniformity and temperature nonuniformity in crossflow plate-fin heat exchangers

    SciTech Connect

    Ranganayakulu, C. ); Seetharamu, K.N. . School of Mechanical Engineering)

    1999-07-01

    An analysis of a crossflow plate-fin compact heat exchanger, accounting for the combined effects of two-dimensional longitudinal heat conduction through the exchanger wall and nonuniform inlet fluid flow and temperature distribution is carried out using a finite element method. A mathematical equation is developed to generate different types of fluid flow/temperature maldistribution models considering the possible deviations in fluid flow. Using these models, the exchanger effectiveness and its deterioration due to the combined effects of longitudinal heat conduction, flow nonuniformity and temperature nonuniformity are calculated for various design and operating conditions of the exchanger. It was found that the performance variations are quite significant in some typical applications.

  17. Multi-objective optimization of a plain fin-and-tube heat exchanger using genetic algorithm

    NASA Astrophysics Data System (ADS)

    Juan, Du; Qin, Qian Zuo

    2014-04-01

    In the present paper, a plate fin-and-tube heat exchanger (PFTHE) is considered for optimization with air and water as working fluid, four geometric variables are taken as parameters for optimization, a Genetic Algorithm (GA) was used to search for the optimal structure sizes of the PFTHE, the maximum total heat transfer rate and the minimum total pressure drop are taken as objective functions in GA, respectively. Performance of the optimized result was evaluated and correspondingly the total heat transfer rate, the total pressure drop, the heat transfer coefficient and the local Nusselt number, j-factor and friction factor ξ are calculated respectively. Results show that the total heat transfer rate of the optimized heat exchanger increased by about 2.1-9.2% comparing with the original one, the heat transfer coefficient increased by about 8.2-14.7% and the total pressure drop decreased by about 4.4-8% in the range of Re = 1200-14000.

  18. Parametric study of graphite foam fins and application in heat exchangers

    NASA Astrophysics Data System (ADS)

    Collins, Michael

    This thesis focuses on the simulation and experimental studies of finned graphite foam extended surfaces to test their heat transfer characteristics and potential applications in condensers. Different fin designs were developed to conduct a parametric study on the thermal effectiveness with respect to thickness, spacing and fin offset angle. Each fin design was computationally simulated to estimate the heat transfer under specific conditions. The simulations showed that this optimal fin configuration could conduct more than 297% the amount of thermal energy as compared to straight aluminum fins. Graphite foam fins were then implemented into a simulation of the condenser system. The condenser was simulated with six different orientations of baffles to examine the incoming vapor and resulting two-phase flow patterns. The simulations showed that using both horizontal and vertical baffling provided the configuration with the highest heat transfer and minimized the bypass regions where the vapor would circumvent the graphite foam. This baffle configuration increased the amount of vapor flow through the inner graphite fins and cold water pipes, which gave this configuration the highest heat transfer. The results from experimental tests using the condenser system confirmed that using three baffles will increase performance consistent with the simulation results. The experimental data showed that the condenser using graphite foam had five times the heat transfer compared to the condenser using only aluminum fins. Incorporating baffles into the condenser using graphite foam enabled this system to conduct nearly ten times more heat transfer than the condenser system which only had aluminum fins without baffles. The results from this research indicate that graphite foam is a far superior material heat transfer enhancement material for heat transfer compared to aluminum used as an extended surface. The longitudinal and horizontal baffles incorporated into the condenser system

  19. Modeling the dynamic operation of a small fin plate heat exchanger - parametric analysis

    NASA Astrophysics Data System (ADS)

    Motyliński, Konrad; Kupecki, Jakub

    2015-09-01

    Given its high efficiency, low emissions and multiple fuelling options, the solid oxide fuel cells (SOFC) offer a promising alternative for stationary power generators, especially while engaged in micro-combined heat and power (μ-CHP) units. Despite the fact that the fuel cells are a key component in such power systems, other auxiliaries of the system can play a critical role and therefore require a significant attention. Since SOFC uses a ceramic material as an electrolyte, the high operating temperature (typically of the order of 700-900 °C) is required to achieve sufficient performance. For that reason both the fuel and the oxidant have to be preheated before entering the SOFC stack. Hot gases exiting the fuel cell stack transport substantial amount of energy which has to be partly recovered for preheating streams entering the stack and for heating purposes. Effective thermal integration of the μ-CHP can be achieved only when proper technical measures are used. The ability of efficiently preheating the streams of oxidant and fuel relies on heat exchangers which are present in all possible configurations of power system with solid oxide fuel cells. In this work a compact, fin plate heat exchanger operating in the high temperature regime was under consideration. Dynamic model was proposed for investigation of its performance under the transitional states of the fuel cell system. Heat exchanger was simulated using commercial modeling software. The model includes key geometrical and functional parameters. The working conditions of the power unit with SOFC vary due to the several factors, such as load changes, heating and cooling procedures of the stack and others. These issues affect parameters of the incoming streams to the heat exchanger. The mathematical model of the heat exchanger is based on a set of equations which are simultaneously solved in the iterative process. It enables to define conditions in the outlets of both the hot and the cold sides

  20. Numerical study of heat transfer in two-row heat exchangers having extended fin surfaces

    SciTech Connect

    Sheui, T.W.H.; Tsai, S.F.; Chiang, T.P.

    1999-05-28

    This paper reports on a three-dimensional study of air through two-row cylinder tubes. The analysis is intended to present a comparison of numerical and experimental data to validate the laminar flow postulation. The current study explores the influence of four perforated fin surfaces on the pressure drop and heat transfer rate. To gain further insight into the three-dimensional vortical flow structure, the authors conduct a topological study of the velocity field. Examination of the surface flow topology and the flow patterns at cross-flow plumes sheds some light on the complex interaction of the cylinder tube with the mainstream flow. This study clearly reveals a saddle point in front of the first row of cylinder tubes. Also clearly revealed by the computed solutions is a flow reversal found in the wake of the tube. The character of the critical-point-induced flow is also addressed. This study shows that the addition of perforated fins is not without deficiency. There is, in fact, a trade-off between the benefit of having an improved heat transfer and the penalty of having an increased pressure drop.

  1. Additions to compact heat exchanger technology: Jet impingement cooling & flow & heat transfer in metal foam-fins

    NASA Astrophysics Data System (ADS)

    Onstad, Andrew J.

    Compact heat exchangers have been designed following the same basic methodology for over fifty years. However, with the present emphasis on energy efficiency and light weight of prime movers there is increasing demand for completely new heat exchangers. Moreover, new materials and mesoscale fabrication technologies offer the possibility of significantly improving heat exchanger performance over conventional designs. This work involves fundamental flow and heat transfer experimentation to explore two new heat exchange systems: in Part I, large arrays of impinging jets with local extraction and in Part II, metal foams used as fins. Jet impingement cooling is widely used in applications ranging from paper manufacturing to the cooling of gas turbine blades because of the very high local heat transfer coefficients that are possible. While the use of single jet impingement results in non-uniform cooling, increased and more uniform mean heat transfer coefficients may be attained by dividing the total cooling flow among an array of smaller jets. Unfortunately, when the spent fluid from the array's central jets interact with the outer jets, the overall mean heat transfer coefficient is reduced. This problem can be alleviated by locally extracting the spent fluid before it is able to interact with the surrounding jets. An experimental investigation was carried out on a compact impingement array (Xn/Djet = 2.34) utilizing local extraction of the spent fluid (Aspent/Ajet = 2.23) from the jet exit plane. Spatially resolved measurements of the mean velocity field within the array were carried out at jet Reynolds numbers of 2300 and 5300 by magnetic resonance velocimetry, MRV. The geometry provided for a smooth transition from the jet to the target surface and out through the extraction holes without obvious flow recirculation. Mean Nusselt number measurements were also carried out for a Reynolds number range of 2000 to 10,000. The Nusselt number was found to increase with the

  2. Study of plate-fin heat exchanger and cold plate for the active thermal control system of Space Station

    NASA Technical Reports Server (NTRS)

    Chyu, MING-C.

    1992-01-01

    Plate-fin heat exchangers will be employed in the Active Thermal Control System of Space Station Freedom. During ground testing of prototypic heat exchangers, certain anomalous behaviors have been observed. Diagnosis has been conducted to determine the cause of the observed behaviors, including a scrutiny of temperature, pressure, and flow rate test data, and verification calculations based on such data and more data collected during the ambient and thermal/vacuum tests participated by the author. The test data of a plate-fin cold plate have been also analyzed. Recommendation was made with regard to further tests providing more useful information of the cold plate performance.

  3. Optimization of Fin Distribution to Improve the Temperature Uniformity of a Heat Exchanger in a Thermoelectric Generator

    NASA Astrophysics Data System (ADS)

    Wang, Yiping; Wu, Cheng; Tang, Zebo; Yang, Xue; Deng, Yadong; Su, Chuqi

    2015-06-01

    Thermoelectric generators (TEGs) are currently a topic of interest for energy recovery in vehicles. By applying TEGs to the outside surface of the exhaust tailpipe, a small amount of electrical power can be generated because of the temperature difference between the hot exhaust gases and the automobile coolant. The amount of power is anticipated to be a few hundred watts based on the expected temperature difference and the properties of the thermoelectric materials used in TEGs. It is well know that, for thermoelectric exhaust energy recovery, the temperature uniformity of the heat exchangers has a strong influence on the electric power generation. In the current research, the temperature uniformity of a heat exchanger was improved by optimizing the fin distribution to maximize the electric power generated for a given vehicle TEG. A computational fluid dynamics (CFD) model of the heat exchanger was constructed to assess the influence of different fin distributions on the temperature uniformity and the pressure drop in the exhaust system. For the fin distributions, four factors were considered: the length of, spacing between, angle of, and thickness of the fins. Based on these four factors, a design of experiments study using the orthogonal experimental method was conducted to analyze the sensitivity to the design variables and build a database to set up a surrogate model using the Kriging response surface method. A multi-island genetic algorithm was used to optimize the fin distribution based on this surrogate model. To validate the accuracy of the CFD model, a generic heat exchanger module was manufactured and a related testbed constructed, then the temperature distribution on the surface of the exchanger was measured to compare with the results obtained by CFD.

  4. Numerical investigation of forced convection of nano fluid flow in horizontal U-longitudinal finned tube heat exchanger

    NASA Astrophysics Data System (ADS)

    Qasim, S. M.; Sahar, A. F. A.; Firas, A. A.

    2015-11-01

    A numerical study has been carried out to investigate the heat transfer by laminar forced convection of nanofluid taking Titania (TiO2) and Alumina (Al2O3) as nanoparticles and the water as based fluid in a three dimensional plain and U-longitudinal finned tube heat exchanger. A Solid WORKS PREMIUM 2012 is used to draw the geometries of plain tube heat exchanger or U-longitudinal copper finned tube heat exchanger. Four U-longitudinal copper fins have 100 cm long, 3.8cm height and 1mm thickness are attached to a straight copper tube of 100 cm length, 2.2 cm inner diameter and 2.39 cm outer diameter. The governing equations which used as continuity, momentum and energy equations under assumptions are utilized to predict the flow field, temperature distribution, and heat transfer of the heat exchanger. The finite volume approach is used to obtain all the computational results using commercial ANSYS Fluent copy package 14.0 with assist of solid works and Gambit software program. The effect of various parameters on the performance of heat exchanger are investigated numerically such as Reynolds' number (ranging from 270 to 1900), volume consternation of nanoparticles (0.2%, 0.4%, 0.6%, 0.8%), type of nanoparticles, and mass flow rate of nanofluid in the hot region of heat exchanger. For 0.8% consternation of nanoparticles, heat transfer has significant enhancement in both nanofluids. It can be found about 7.3% for TiO2 and about 7.5% for Al2O3 compared with the water only as a working fluid.

  5. Simulation of multistream plate-fin heat exchangers of an air separation unit

    NASA Astrophysics Data System (ADS)

    Boehme, R.; Parise, J. A. R.; Pitanga Marques, R.

    2003-06-01

    Hot and cold reversible heat exchangers of an air separation unit are simulated. Five fluid streams exchange heat with six fluid streams in parallel and counter flow. The numerical method employed divides the heat exchanger in a number of sections, for which fluid properties, capacity rates and heat transfer coefficients are considered constant. Single and two-phase streams are taken into account. Results obtained from the model are compared with field data.

  6. UNIQUE METHOD FOR LIQUID NITROGEN PRECOOLING OF A PLATE FIN HEAT EXCHANGER IN A HELIUM REFRIGERATION CYCLE.

    SciTech Connect

    Weber, T

    2004-06-02

    Precooling of helium by means of liquid nitrogen is one the oldest and most common process features used in helium refrigerators. The principal tasks are to permit a rapid cool down to 80 K of the plant, to increase the cooling power of the plant in low temperature operation and to increase the rate of pure liquid production. The advent of aluminum plate fin heat exchangers in the design of helium refrigerators has made this task more complicated because of the potential damage to these heat exchangers.

  7. Development of a High-Performance Fin-and-Tube Heat Exchanger with Vortex Generators for a Vending Machine

    NASA Astrophysics Data System (ADS)

    Iwasaki, Masamichi; Saito, Hiroshi; Mochizuki, Sadanari; Murata, Akira

    The effect of delta-wing-vortex generators (combination of a delta wing and a delta winglet pair) on the heat transfer performance of fin-and-tube heat exchangers for vending machines has been investegated. Flow visualizations, numerical simulations and heat transfer experiments were conducted to find an optimum geometrical shape and arrangement of the vortex generators. Maximum heat transfer enhancement was achieved by the combination of (a) the delta wing with the apex angle of 86 degrees and (b) the delta winglet pair with the inline angle of 45 degrees. In relatively low Reynolds number range, about 40 % increase in heat transfer coefficient was attained with the above mentioned combination of the vortex generators compared to the ordinary heat exchangers with plain fins. It was revealed that the heat transfer enhancement was attributed to (1) the longitudinal vortexes generated by the delta wing and (2) the reduction of wake area behind the tube. It was also found that an increase in the apex angle of the delta wing brought about heat transfer enhancement, and the scale as well as the streggth of the induced longitudinal vortices played an important role in the heat transfer performance.

  8. Numerical analysis of filmwise condensation in a plate fin-and-tube heat exchanger in presence of non-condensable gas

    NASA Astrophysics Data System (ADS)

    Benelmir, Riad; Mokraoui, Salim; Souayed, Ali

    2009-10-01

    In the present paper, a numerical model of a fin-and-tube heat exchanger is proposed. The simulation of water vapor condensation in presence of non-condensable gas (air) between two vertical plane plates and in a plate fin-and-tube heat exchanger in a stationary mode is performed using Fluent software. The differential equations that describe the heat and mass transfer were integrated by the finite volume method, in two and three dimensions.

  9. A tube-by-tube reduction method for simultaneous heat and mass transfer characteristics for plain fin-and-tube heat exchangers in dehumidifying conditions

    NASA Astrophysics Data System (ADS)

    Pirompugd, Worachest; Wongwises, Somchai; Wang, Chi-Chuan

    2005-06-01

    This study proposed a new method, namely a tube-by-tube reduction method to analyze the performance of fin-and-tube heat exchangers having plain fin configuration under dehumidifying conditions. The mass transfer coefficients which seldom reported in the open literature, are also presented. For fully wet conditions, it is found that the reduced results for both sensible heat transfer performance and the mass transfer performance by the present method are insensitive to change of inlet humidity. Unlike those tested in fully dry condition, the sensible heat transfer performance under dehumidification is comparatively independent of fin pitch. The ratio of the heat transfer characteristic to mass transfer characteristic (hc,o/hd,o Cp,a) is in the range of 0.6~1.0, and the ratio is insensitive to change of fin spacing at low Reynolds number. However, a slight drop of the ratio of (hc,o/hd,o Cp,a) is seen with the decrease of fin spacing when the Reynolds number is sufficient high. This is associated with the more pronounced influence due to condensate removal by the vapor shear. Correlations are proposed to describe the heat and mass performance for the present plate fin configurations. These correlations can describe 89% of the Chilton Colburn j-factor of the heat transfer (jh) within 15% and can correlate 81% of the Chilton Colburn j-factor of the mass transfer (jm) within 20%.

  10. Heat transfer characteristics of the metal hydride vessel based on the plate-fin type heat exchanger

    NASA Astrophysics Data System (ADS)

    Oi, Tsutomu; Maki, Kohei; Sakaki, Yoshinori

    Heat transfer characteristics of the metal hydride vessel based on the plate-fin type heat exchanger were investigated. Metal hydride beds were filled with AB 2 type hydrogen-storage alloy's particles, Ti 0.42Zr 0.58Cr 0.78Fe 0.57Ni 0.2Mn 0.39Cu 0.03, with a storage capacity of 0.92 wt.%. Heat transfer model in the metal hydride bed based on the heat transfer mechanism for packed bed proposed by Kunii and co-workers is presented. The time-dependent hydrogen absorption/desorption rate and pressure in the metal hydride vessel calculated by the model were compared with the experimental results. During the hydriding, calculated hydrogen absorption rates agreed with measured ones. Calculated thermal equilibrium hydrogen pressures were slightly lower than the measured hydrogen pressures at the inlet of metal hydride vessel. Taking account of the pressure gradient between the inlet of metal hydride vessel and the metal hydride bed, it is considered that this discrepancy is reasonable. During the dehydriding, there were big differences between the calculated hydrogen desorption rates and measured ones. As calculated hydrogen desorption rates were lower than measured ones, there were big differences between the calculated thermal equilibrium hydrogen pressures and the measured hydrogen pressures at the inlet of metal hydride vessel. It is considered that those differences are due to the differences of the heat transfer characteristics such as thermal conductivity of metal hydride particles and porosity between the assumed and actual ones. It is important to obtain the heat transfer characteristics such as thermal conductivity of metal hydride particles and porosity both during the hydriding and dehydriding to design a metal hydride vessel.

  11. Heat transfer and pressure drop correlations of microchannel heat exchangers with S-shaped and zigzag fins for carbon dioxide cycles

    SciTech Connect

    Ngo, Tri Lam; Kato, Yasuyoshi; Nikitin, Konstantin; Ishizuka, Takao

    2007-11-15

    A new microchannel heat exchanger (MCHE) with S-shaped fins was developed using the three-dimensional computational fluid dynamics (3D CFD) FLUENT code. The MCHE provided 6-7 times lower pressure drop while maintaining heat-transfer performance that was almost equivalent to that of a conventional MCHE with zigzag fins. This study was done to confirm the simulation results of thermal-hydraulic performance using a supercritical carbon dioxide loop, and to propose empirical correlations of Nusselt numbers and pressure-drop factors for a new MCHE with S-shaped fins and a conventional one with zigzag fins. This study is also intended to confirm the independence of Pr obtained in the previous study by widely varying Pr from 0.75 to 2.2. Experimental results show that the pressure-drop factor of the MCHEs with S-shaped fins is 4-5 times less than that of MCHE with zigzag fins, although Nu is 24-34% less, depending on the Re within its range. The Nusselt number correlations are expressed, respectively as Nu{sub S-shaped} {sub fins} = 0.1740 Re{sup 0.593}Pr{sup 0.430} and Nu{sub zigzag} {sub fins} = 0.1696 Re{sup 0.629}Pr{sup 0.317} for the MCHE with S-shaped and zigzag fins, and their pressure-drop factors are given as f{sub S-shaped} {sub fins} = 0.4545 Re{sup -0.340} and f{sub zigzag} {sub fins} = 0.1924 Re{sup -0.091}. The Nu correlation of the MCHE with S-shaped fins reproduces the experimental data of overall heat transfer coefficients with a standard deviation (1 sigma) of {+-}2.3%, although it is {+-}3.0% for the MCHE with zigzag fins. The calculated pressure drops obtained from pressure-drop factor correlations agree with the experimental data within a standard deviation of {+-}16.6% and {+-}13.5% for the MCHEs with S-shaped and zigzag fins, respectively. (author)

  12. Dehumidification: Prediction of Condensate Flow Rate for Plate-Fin Tube Heat Exchangers Using the Latent j Factor

    SciTech Connect

    Baxter, V.D.; Chen, D.T.; Conklin, J.C.

    1999-03-15

    Condensate flow rate is an important factor in designing dehumidifiers or evaporators. In this paper, the latentj fimtor is used to analyze the dehumidification performance of two plate-fin tube heat exchangers. This latent j factor, analogous to the total j factor, is a flmction of the mass transfa coefllcient, the volumetric air flow rate, and the Schmidt number. This latent j factor did predict condensate flow rate more directly and accurately than any other sensiblej factor method. The Iatentj factor has been used in the present study because the sensible j factor correlations presented in the literature failed to predict the condensate flow rate at high Reynolds numbers. Results show that the latent j i%ctor em be simply correlated as a fhnction of the Reynolds number based on the tube outside diameter and number of rows of the heat exchanger.

  13. Heat transfer and pressure drop in a compact pin-fin heat exchanger with pin orientation at 18 deg to the flow direction

    NASA Technical Reports Server (NTRS)

    Olson, D. A.

    1991-01-01

    The heat transfer and pressure drop characteristics of a novel, compact heat exchanger in helium gas were measured at 3.5 MPa and Reynolds numbers of 450 to 12,000. The pin-fin specimen consisted of pins, 0.51 mm high and spaced 2.03 mm on centers, spanning a channel through which the helium flows; the angle of the row of pins to the flow direction was 18 deg. The specimen was radiatively heated on the top side at heat fluxes up to 74 W/sq cm and insulated on the back side. Correlations were developed for the friction factor and Nusselt number. The Nusselt number compares favorably to those of past studies of staggered pin-fins, when the measured temperatures are extrapolated to the temperature of the wall-fluid interface.

  14. Indoor solar thermal energy saving time with phase change material in a horizontal shell and finned-tube heat exchanger.

    PubMed

    Paria, S; Sarhan, A A D; Goodarzi, M S; Baradaran, S; Rahmanian, B; Yarmand, H; Alavi, M A; Kazi, S N; Metselaar, H S C

    2015-01-01

    An experimental as well as numerical investigation was conducted on the melting/solidification processes of a stationary phase change material (PCM) in a shell around a finned-tube heat exchanger system. The PCM was stored in the horizontal annular space between a shell and finned-tube where distilled water was employed as the heat transfer fluid (HTF). The focus of this study was on the behavior of PCM for storage (charging or melting) and removal (discharging or solidification), as well as the effect of flow rate on the charged and discharged solar thermal energy. The impact of the Reynolds number was determined and the results were compared with each other to reveal the changes in amount of stored thermal energy with the variation of heat transfer fluid flow rates. The results showed that, by increasing the Reynolds number from 1000 to 2000, the total melting time decreases by 58%. The process of solidification also will speed up with increasing Reynolds number in the discharging process. The results also indicated that the fluctuation of gradient temperature decreased and became smooth with increasing Reynolds number. As a result, by increasing the Reynolds number in the charging process, the theoretical efficiency rises. PMID:25879052

  15. Indoor Solar Thermal Energy Saving Time with Phase Change Material in a Horizontal Shell and Finned-Tube Heat Exchanger

    PubMed Central

    Paria, S.; Sarhan, A. A. D.; Goodarzi, M. S.; Baradaran, S.; Rahmanian, B.; Yarmand, H.; Alavi, M. A.; Kazi, S. N.; Metselaar, H. S. C.

    2015-01-01

    An experimental as well as numerical investigation was conducted on the melting/solidification processes of a stationary phase change material (PCM) in a shell around a finned-tube heat exchanger system. The PCM was stored in the horizontal annular space between a shell and finned-tube where distilled water was employed as the heat transfer fluid (HTF). The focus of this study was on the behavior of PCM for storage (charging or melting) and removal (discharging or solidification), as well as the effect of flow rate on the charged and discharged solar thermal energy. The impact of the Reynolds number was determined and the results were compared with each other to reveal the changes in amount of stored thermal energy with the variation of heat transfer fluid flow rates. The results showed that, by increasing the Reynolds number from 1000 to 2000, the total melting time decreases by 58%. The process of solidification also will speed up with increasing Reynolds number in the discharging process. The results also indicated that the fluctuation of gradient temperature decreased and became smooth with increasing Reynolds number. As a result, by increasing the Reynolds number in the charging process, the theoretical efficiency rises. PMID:25879052

  16. The Effect of Circuiting Arrangement on the Thermal Performance of Refrigeration Mixtures in Tube-and-Fin Condensing Heat Exchangers

    SciTech Connect

    Chen, D.T.; Conklin, J.C.

    1999-03-15

    For the pure or azeotropic refrigerants typically used in present air conditioning and refrigeration applications, the refrigerant changes phase at a constant temperature. Thus, the refrigerant circuiting arrangement such as crossfiow, counterfiow, or cross-counterflow, has no effect on the thermal performance. For zeotropic refrigerant mixtures, however, the phase-change occurs over a temperature range, or "glide", and the refrigerant circuiting arrangement, or flow path through the heat exchanger, can affect the thermal performance of both the heat exchangers as well as the overall efficiency of the vapor compression cooling cycle. The effects of tsvo diflerent circuiting arrangements on the thermal performance of a zeotropic retligerant mixture and an almost azeotropic refrigerant mixture in a four-row cross-countertlow heat exchanger arrangement are reported here. The two condensers differ only in the manner of circuiting the refrigerant tubes, where one has refrigerant always flowing downward in the active heat transfer region ("identical order") and the other has refrigerant alternating flow direction in the active heat transfer region ("inverted order"). All other geometric parameters, such as bce are% fin louver geometry, refrigerant tube size and enhancement etc., are the same for both heat exchangers. One refrigerant mixture (R-41OA) un&rgoes a small temperature change ("low glide") during phase change, and the other retligerant mixture (a multi- component proprietary mixture) has a substantial temperature change ("high glide") of approximately 10"C during the phase change process. The overall thermal conductance, two-phase conductance, and pressure drop are presented. For the flow conditions of these tests, which are representative of resi&ntial cooling conditions, inverted order circuiting is more desirable than identical order. The potential thermal advantages of the i&ntical order arrangement for high-glide zeotropic refrigerant mixtures are negated

  17. The effect of circuiting arrangement on the thermal performance of refrigerant mixtures in tube-and-fin condensing heat exchangers

    SciTech Connect

    Conklin, J.C.; Chen, D.T.

    1999-07-01

    For the pure or azeotropic refrigerants typically used in present air conditioning and refrigeration applications, the refrigerant changes phase at a constant temperature. Thus, the refrigerant circuiting arrangement such as crossflow, counterflow, or cross-counterflow, has no effect on the thermal performance. For zeotropic refrigerant mixtures, however, the phase-change occurs over a temperature range, or glide, and the refrigerant circuiting arrangement, or flow path through the heat exchanger, can affect the thermal performance of both the heat exchangers as well as the overall efficiency of the vapor compression cooling cycle. The effects of two different circuiting arrangements on the thermal performance of a zeotropic refrigerant mixture and an almost azeotropic refrigerant mixture and an almost azeotropic refrigerant mixture in a four-row cross-counterflow heat exchanger arrangement are reported here. The two condensers differ only in the manner of circuiting the refrigerant tubes, where one has refrigerant always flowing downward in the active heat transfer region (identical order) and the other has refrigerant alternating flow direction in the active heat transfer region (inverted order). All other geometric parameters, such as face area, fin louver geometry, refrigerant tube size and enhancement, etc., are the same for both heat exchangers. One refrigerant mixture (R-410A) undergoes a small temperature change (low glide) during phase change, and the other refrigerant mixture (a multi-component proprietary mixture) has a substantial temperature change (high glide) of approximately 10 C during the phase change process. The overall thermal conductance, two-phase conductance, and pressure drop are presented. For the flow conditions of these tests, which are representative of residential cooling conditions, inverted order circuiting is more desirable than identical order. The potential thermal advantages of the identical order arrangement for high

  18. A numerical analysis of three-dimensional turbulent fluid flow and heat transfer in plate-fin and tube heat exchangers

    SciTech Connect

    Jang, Jiin-Yuh; Chang, Wen-Jen; Lin, Min-Sheng

    1996-12-31

    Fluid flow and heat transfer over a multi-row (1-5 rows) plate-fin and tube heat exchanger are studied numerically. Flow is incompressible, three-dimensional and turbulent. The effects of tube arrangements and tube row numbers are investigated in detail for the Reynolds number ReH (based on the fin spacing H) ranging from 2000 to 10000. The effects of turbulence are simulated by the k-{epsilon} turbulence model. Stream and isothermal lines through the whole tube bank, local and average Nusselt number and pressure coefficient in the streamwise direction are presented. The numerical results for the average heat transfer coefficient agree well with the previously published experimental data.

  19. Qualification of Fin-Type Heat Exchangers for the ITER Current Leads

    NASA Astrophysics Data System (ADS)

    Ballarino, A.; Bauer, P.; Bordini, B.; Devred, A.; Ding, K.; Niu, E.; Sitko, M.; Taylor, T.; Yang, Y.; Zhou, T.

    2015-12-01

    The ITER current leads will transfer large currents of up to 68 kA into the biggest superconducting magnets ever built. Following the development of prototypes and targeted trials of specific manufacturing processes through mock-ups, the ASIPP (Chinese Institute of Plasma Physics) is preparing for the series fabrication. A key component of the ITER HTS current leads are the resistive heat exchangers. Special R&D was conducted for these components at CERN and ASIPP in support of their designs. In particular several mock-ups were built and tested in room temperature gas to measure the dynamic pressure drop and compare to 3D CFD models.

  20. Influence of Alumina Addition to Aluminum Fins for Compact Heat Exchangers Produced by Cold Spray Additive Manufacturing

    NASA Astrophysics Data System (ADS)

    Farjam, Aslan; Cormier, Yannick; Dupuis, Philippe; Jodoin, Bertrand; Corbeil, Antoine

    2015-10-01

    In this work, aluminum and aluminum-alumina powder mixtures were used to produce pyramidal fin arrays on aluminum substrates using cold spray as an additive manufacturing process. Using aluminum-alumina mixtures instead of pure aluminum powder could be seen as a cost-effective measure, preventing nozzle clogging or the need to use expensive polymer nozzles that wear out rapidly during cold spray. The fin geometries that were produced were observed using a 3D digital microscope to determine the flow passages width and fins' geometric details. Heat transfer and pressure drop tests were carried out using different ranges of appropriate Reynolds numbers for the sought commercial application to compare each fin array and determine the effect of alumina content. It was found that the presence of alumina reduces the fins' performance when compared to pure aluminum fins but that they were still outperforming traditional fins. Numerical simulations were performed to model the fin arrays and were used to predict the pressure loss in the fin array and compare these results with experimental values. The numerical model opens up new avenues in predicting different applicable operating conditions and other possible fin shapes using the same fin composition, instead of performing costly and time-consuming experiments.

  1. Computer program for performance and sizing analysis of compact counter-flow plate-fin heat exchangers, research and development report

    NASA Astrophysics Data System (ADS)

    Ness, J. C.

    1982-12-01

    This report presents a computer program for preliminary design analysis of counter-flow, compact, plate-fin heat exchangers. The program method is based on the effectiveness-NTU relationship analysis. The heat exchanger design begins with assumptions for counter-flow length, total frontal flow area and core matrix fin geometry. Using these constraints, the program proceeds to calculate the resulting effectiveness and pressure drop based on specified air-side and gas-side fin types; the pressures, temperatures, and mass flows of the air and gas streams; fuel-air ratio; as well as, the maximum air-side inlet header velocity. Heat exchanger designs may be generated based on four different fin types (i.e., plain, louvered, strip/offset or wavy fins) over a varied number of core dimensions. Program output includes inlet and exit conditions on air and gas sides, effectiveness, fin characteristics, core length and volume, total frontal units, overall weight, and air-side header diameters and velocities. This report presents the analysis method, description of input and output with sample cases, and a program listing.

  2. Heat and fluid flow characteristics of an oval fin-and-tube heat exchanger with large diameters for textile machine dryer

    NASA Astrophysics Data System (ADS)

    Bae, Kyung Jin; Cha, Dong An; Kwon, Oh Kyung

    2016-01-01

    The objectives of this paper are to develop correlations between heat transfer and pressure drop for oval finned-tube heat exchanger with large diameters (larger than 20 mm) used in a textile machine dryer. Numerical tests using ANSYS CFX are performed for four different parameters; tube size, fin pitch, transverse tube pitch and longitudinal tube pitch. The numerical results showed that the Nusselt number and the friction factor are in a range of -16.2 ~ +3.1 to -7.7 ~ +3.9 %, respectively, compared with experimental results. It was found that the Nusselt number linearly increased with increasing Reynolds number, but the friction factor slightly decreased with increasing Reynolds number. It was also found that the variation of longitudinal tube pitch has little effect on the Nusselt number and friction factor than other parameters (below 2.0 and 2.5 %, respectively). This study proposed a new Nusselt number and friction factor correlation of the oval finned-tube heat exchanger with large diameters for textile machine dryer.

  3. Plate-fin Heat-exchangers for a 10 kW Brayton Cryocooler and a 1 km HTS Cable

    NASA Astrophysics Data System (ADS)

    Chang, Ho-Myung; Gwak, Kyung Hyun; Jung, Seyong; Yang, Hyung Suk; Hwang, Si-Dole

    Plate-fin heat exchangers (PFHX) are designed and fabricated for a cryogenic cooling system, serving for a 10 kW Brayton cryocooler and a 1 km HTS transmission cable under development in Korea. To achieve compactness and thermal efficiency at the same time, a recuperative HX for Brayton cycle and a sub-cooling HX of liquid nitrogen for HTS cable are designed as integrated parts. A key design feature is focused on the coldest part of sub-cooling HX, where the streams of liquid nitrogen and refrigerant (helium gas) are arranged as two-pass cross-flow so that the risk of freeze-out of liquid nitrogen can be reduced. Details of hardware PFHX design are presented and discussed towards its immediate application to the HTS cable system.

  4. A nonlinear inverse problem for the prediction of local thermal contact conductance in plate finned-tube heat exchangers

    NASA Astrophysics Data System (ADS)

    Huang, C.-H.; Hsu, G.-C.; Jang, J.-Y.

    A nonlinear inverse problem utilizing the Conjugate Gradient Method (CGM) of minimization is used successfully to estimate the temporally and circumferentially varying thermal contact conductance of a plate finned-tube heat exchanger by reading the simulated transient temperature measurement data from the thermocouples located on the plate. The thermal properties of the fin and tube are assumed to be functions of temperature, and this makes the problem nonlinear. It is assumed that no prior information is available on the functional form of the unknown thermal contact conductance in the present study, thus, it is classified as the function estimation in the inverse calculation. The accuracy of the inverse analysis is examined by using the simulated temperature measurements. Finally the inverse solutions with and without the consideration of temperature-dependent thermal properties are compared. Results show that when the nonlinear inverse calculations are performed an excellent estimation on the thermal contact conductance can be obtained with any arbitrary initial guesses within a couple of minute's CPU time on a HP-730 workstation.

  5. Designing Energy-Efficient Heat Exchangers--- Creating Micro-Channels on the Aluminum Fin Surface

    NASA Astrophysics Data System (ADS)

    Ying, Jia; Sommers, Andrew; Eid, Khalid

    2010-03-01

    In this research, a method for patterning micro-channels on aluminum surfaces is described for the purpose of exploiting those features to affect the surface wettability. Minimizing water retention on aluminum is important in the design of energy-efficient heat exchangers because water retention can deteriorate the performance of such devices. It increases the air-side pressure drop and can decrease the sensible heat transfer coefficient thereby increasing energy consumption and contributing to higher pollution levels in the environment. Photolithography is used to create the micro-scale channels and a hydrophobic polymer is used to reduce the surface energy of the aluminum plates. Droplets are both injected on the surface using a micro-syringe and condensed on the surface using an environmentally-controlled chamber. A ram'e-hart goniometer is used to determine the advancing and receding contact angles of water droplets on these modified surfaces, and a tilt-table assembly is used to measure the critical inclination angle for sliding. Our results show that droplets placed on these patterned surfaces not only have significantly lower critical inclination angles for sliding but are easier to remove from the surface at low air flow rates. Efforts to model the onset of droplet movement on these surfaces using a simple force balance relationship are currently underway.

  6. Experimental study of a constrained vapor bubble fin heat exchanger in the absence of external natural convection.

    PubMed

    Basu, Sumita; Plawsky, Joel L; Wayner, Peter C

    2004-11-01

    In preparation for a microgravity flight experiment on the International Space Station, a constrained vapor bubble fin heat exchanger (CVB) was operated both in a vacuum chamber and in air on Earth to evaluate the effect of the absence of external natural convection. The long-term objective is a general study of a high heat flux, low capillary pressure system with small viscous effects due to the relatively large 3 x 3 x 40 mm dimensions. The current CVB can be viewed as a large-scale version of a micro heat pipe with a large Bond number in the Earth environment but a small Bond number in microgravity. The walls of the CVB are quartz, to allow for image analysis of naturally occurring interference fringes that give the pressure field for liquid flow. The research is synergistic in that the study requires a microgravity environment to obtain a low Bond number and the space program needs thermal control systems, like the CVB, with a large characteristic dimension. In the absence of natural convection, operation of the CVB may be dominated by external radiative losses from its quartz surface. Therefore, an understanding of radiation from the quartz cell is required. All radiative exchange with the surroundings occurs from the outer surface of the CVB when the temperature range renders the quartz walls of the CVB optically thick (lambda > 4 microns). However, for electromagnetic radiation where lambda < 2 microns, the walls are transparent. Experimental results obtained for a cell charged with pentane are compared with those obtained for a dry cell. A numerical model was developed that successfully simulated the behavior and performance of the device observed experimentally. PMID:15644365

  7. Microgravity condensing heat exchanger

    NASA Technical Reports Server (NTRS)

    Thomas, Christopher M. (Inventor); Ma, Yonghui (Inventor); North, Andrew (Inventor); Weislogel, Mark M. (Inventor)

    2011-01-01

    A heat exchanger having a plurality of heat exchanging aluminum fins with hydrophilic condensing surfaces which are stacked and clamped between two cold plates. The cold plates are aligned radially along a plane extending through the axis of a cylindrical duct and hold the stacked and clamped portions of the heat exchanging fins along the axis of the cylindrical duct. The fins extend outwardly from the clamped portions along approximately radial planes. The spacing between fins is symmetric about the cold plates, and are somewhat more closely spaced as the angle they make with the cold plates approaches 90.degree.. Passageways extend through the fins between vertex spaces which provide capillary storage and communicate with passageways formed in the stacked and clamped portions of the fins, which communicate with water drains connected to a pump externally to the duct. Water with no entrained air is drawn from the capillary spaces.

  8. Heat exchange enhancement structure

    SciTech Connect

    Cornelison, R.C.; Kreith, F.

    1980-12-02

    A passive heat exchange enhancement structure which operates by free convection includes a flat mounting portion having a plurality of integral fins bent outwardly from one side edge thereof. The mounting portion is securable around a stovepipe, to a flat surface or the like for transferring heat from the pipe through the fins to the surrounding air by rotation-enhanced free convection.

  9. Heat exchange apparatus

    DOEpatents

    Degtiarenko, Pavel V.

    2003-08-12

    A heat exchange apparatus comprising a coolant conduit or heat sink having attached to its surface a first radial array of spaced-apart parallel plate fins or needles and a second radial array of spaced-apart parallel plate fins or needles thermally coupled to a body to be cooled and meshed with, but not contacting the first radial array of spaced-apart parallel plate fins or needles.

  10. Optimization of a fin-plate heat exchanger for cooling avionic electronics

    NASA Astrophysics Data System (ADS)

    Eby, R. J.; Karam, R. D.

    1980-07-01

    This paper deals with an engineering evaluation of multichanneled cold plates of the type used in avionics components temperature control. The equations of flow and heat transfer are solved in view of the constraints of the geometric parameters, and the results are optimized in terms of minimizing the temperature difference between the components and the cooling air. An example is given to illustrate application of the theory.

  11. Designing Energy-Efficient Heat Exchangers--Creating Micro-Channels on the Aluminum Fin Surface

    NASA Astrophysics Data System (ADS)

    Brest, Tyler; Eid, Khalid; Sommers, Andrew

    2010-10-01

    In this project, a new method of patterning micro-channels on aluminum and copper surfaces is described for the purpose of using those features to manipulate the surface wettability. The channels will provide preferential drainage paths for droplets to flow from the surface. Photolithography is used for the fabrication of the micro-scale channels and a hydrophobic polymer is used to reduce the surface energy of the aluminum and copper plates. The scope of this project includes applications in the design of Heating, Ventilating, and Air Conditioner (HVAC) systems which would increase their efficiency by reducing the water retention on their surfaces.

  12. Honeycomb-Fin Heat Sink

    NASA Technical Reports Server (NTRS)

    Rippel, Wally E.

    1989-01-01

    Improved finned heat sink for electronic components more lightweight, inexpensive, and efficient. Designed for use with forced air, easily scaled up to dissipate power up to few hundred watts. Fins are internal walls of aluminum honeycomb structure. Cell structure gives strength to thin aluminum foil. Length of channels chosen for thermodynamic efficency; columns of cells combined in any reasonable number because flowing air distributed to all. Heat sink cools nearly as effectively at ends as near its center, no matter how many columns of cells combined.

  13. Transient thermal, hydraulic, and mechanical analysis of a counter flow offset strip fin intermediate heat exchanger using an effective porous media approach

    NASA Astrophysics Data System (ADS)

    Urquiza, Eugenio

    This work presents a comprehensive thermal hydraulic analysis of a compact heat exchanger using offset strip fins. The thermal hydraulics analysis in this work is followed by a finite element analysis (FEA) to predict the mechanical stresses experienced by an intermediate heat exchanger (IHX) during steady-state operation and selected flow transients. In particular, the scenario analyzed involves a gas-to-liquid IHX operating between high pressure helium and liquid or molten salt. In order to estimate the stresses in compact heat exchangers a comprehensive thermal and hydraulic analysis is needed. Compact heat exchangers require very small flow channels and fins to achieve high heat transfer rates and thermal effectiveness. However, studying such small features computationally contributes little to the understanding of component level phenomena and requires prohibitive computational effort using computational fluid dynamics (CFD). To address this issue, the analysis developed here uses an effective porous media (EPM) approach; this greatly reduces the computation time and produces results with the appropriate resolution [1]. This EPM fluid dynamics and heat transfer computational code has been named the Compact Heat Exchanger Explicit Thermal and Hydraulics (CHEETAH) code. CHEETAH solves for the two-dimensional steady-state and transient temperature and flow distributions in the IHX including the complicating effects of temperature-dependent fluid thermo-physical properties. Temperature- and pressure-dependent fluid properties are evaluated by CHEETAH and the thermal effectiveness of the IHX is also calculated. Furthermore, the temperature distribution can then be imported into a finite element analysis (FEA) code for mechanical stress analysis using the EPM methods developed earlier by the University of California, Berkeley, for global and local stress analysis [2]. These simulation tools will also allow the heat exchanger design to be improved through an

  14. Heat exchanger with heat transfer control

    SciTech Connect

    Wiard, M.R.

    1986-11-18

    This patent describes a multi-sided plate and fin type heat exchanger core in which plate elements, intermediately positioning spacer elements and fin strips are stacked in a layered assembly providing fluid passages for different fluids to flow in a segregated heat transfer relation to one another. The core is characterized in that at certain locations in a stacked assembly layers include spacer elements substantially closing all sides of the heat exchangers to define between adjacent fluid passages layers of increased heat transfer resistance. The fin strips are sheet-like elements corrugated to forms specifically identifiable in terms of fins per inch, there being fin strips in at least certain resistance layers differing in terms of fins per inch from other strips in certain resistance layers.

  15. Hybrid Heat Exchangers

    NASA Technical Reports Server (NTRS)

    Tu, Jianping Gene; Shih, Wei

    2010-01-01

    A hybrid light-weight heat exchanger concept has been developed that uses high-conductivity carbon-carbon (C-C) composites as the heat-transfer fins and uses conventional high-temperature metals, such as Inconel, nickel, and titanium as the parting sheets to meet leakage and structural requirements. In order to maximize thermal conductivity, the majority of carbon fiber is aligned in the fin direction resulting in 300 W/m.K or higher conductivity in the fin directions. As a result of this fiber orientation, the coefficient of thermal expansion (CTE) of the C-C composite in both non-fiber directions matches well with the CTE of various high-temperature metal alloys. This allows the joining of fins and parting sheets by using high-temperature braze alloys.

  16. Compact heat and mass exchangers of the plate fin type in thermal sorption systems: Application in an absorption heat pump with the working pair CH3OH-LiBr/ZnBr2

    NASA Astrophysics Data System (ADS)

    Becker, Harry

    The possible application of Compact Heat and Mass Exchangers (CHME) in a gas fired Absorption Heat Pump (AHP) for domestic heating is studied. The above mentioned heat and mass exchangers are of the plate type. The space between the parallel and plain plates is filled up with corrugated plates of a certain height. The plain and finned plates are stacked and welded together. This gives a heat and mass exchanger which is very compact, expressed by a high area density (m2/m3). This leads to heat and mass transfer processes with small temperature and concentration differences. For testing purposes a pilot plant was built using the above type of components in order to test their heat and/or mass transfer performance. Only the generator is of the Shell And Tube (SAT) type. As the working pair, CH3OH - LiBr/ ZnBr2 was chosen, with the alcohol as the solvent and the salt mixture as the absorbent. This leads to sub atmospheric working pressures with only solvent in the vapor phase. Three series of experiments have been carried out, during which the input parameters were varied over a certain range. It is concluded that the plate fin CHMES are very suitable for application in an AHP for domestic heating purposes.

  17. Heat exchanger

    DOEpatents

    Daman, Ernest L.; McCallister, Robert A.

    1979-01-01

    A heat exchanger is provided having first and second fluid chambers for passing primary and secondary fluids. The chambers are spaced apart and have heat pipes extending from inside one chamber to inside the other chamber. A third chamber is provided for passing a purge fluid, and the heat pipe portion between the first and second chambers lies within the third chamber.

  18. Heat transfer and pressure drop performance of a finned-tube heat exchanger proposed for use in the NASA Lewis Altitude Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Vanfossen, G. J.

    1985-01-01

    A segment of the heat exchanger proposed for use in the NASA Lewis Altitude Wind Tunnel (AWT) facility has been tested under dry and icing conditions. The heat exchanger has the largest pressure drop of any component in the AWT loop. It is therefore critical that its performance be known at all conditions before the final design of the AWT is complete. The heat exchanger segment is tested in the NASA Lewis Icing Research Tunnel (IRT) in order to provide an icing cloud environment similar to what will be encountered in the AWT. Dry heat transfer and pressure drop data are obtained and compared to correlations available in the literature. The effects of icing sprays on heat transfer and pressure drop are also investigated.

  19. HEAT EXCHANGER

    DOEpatents

    Fox, T.H. III; Richey, T. Jr.; Winders, G.R.

    1962-10-23

    A heat exchanger is designed for use in the transfer of heat between a radioactive fiuid and a non-radioactive fiuid. The exchanger employs a removable section containing the non-hazardous fluid extending into the section designed to contain the radioactive fluid. The removable section is provided with a construction to cancel out thermal stresses. The stationary section is pressurized to prevent leakage of the radioactive fiuid and to maintain a safe, desirable level for this fiuid. (AEC)

  20. The combined effects of inlet fluid flow and temperature nonuniformity in cross flow plate-fin compact heat exchanger using finite element method

    NASA Astrophysics Data System (ADS)

    Ranganayakulu, C.; Seetharamu, K. N.

    An analysis of a crossflow plate-fin heat exchanger accouning for the combined effects of inlet fluid flow nonuniformity and temperature nonuniformity on both hot and cold fluid sides is carried out using a Finite Element Model. A mathematical equation is developed to generate different types of fluid flow/temperature maldistribution models considering the possible deviations in inlet fluid flow. Using these fluid flow maldistribution models, the exchanger effectiveness and its deteriorations due to flow/temperature nonuniformity are calculated for entire range of design and operating conditions. It was found that the performance deteriorations are quite significant in some typical applications due to inlet fluid flow/temperature nonuniformity. Zusammenfassung Mit Hilfe der Finitelement-Methode wird der zusammenwirkende Einfluß ungleichförmiger Strömungs- und Temperaturverteilungen am Eintritt des kalten, wie des warmen Fluids eines kreuzstrombetriebenen, berippten Kompakt-Plattenwärmetauschers untersucht. Über eine mathematische Beziehung lassen sich verschiedene Arten ungleichmäßiger Strömungs bzw. Temperaturverteilungen in den Eintrittsquerschnitten generieren. Unter Verwendung dieser Fehlverteilungsmodelle wird deren Einfluß auf den Austauscher-Gütegrad im gesamten Auslegungs- und Betriebsbereich ermittelt. Es zeigte sich, daß diese Auswirkungen bei typischen Ungleichförmigkeiten der Strömungs- bzw. Temperaturfelder in den Eintrittsquerschnitten erheblich sein können.

  1. Heat exchanger

    SciTech Connect

    Drury, C.R.

    1988-02-02

    A heat exchanger having primary and secondary conduits in heat-exchanging relationship is described comprising: at least one serpentine tube having parallel sections connected by reverse bends, the serpentine tube constituting one of the conduits; a group of open-ended tubes disposed adjacent to the parallel sections, the open-ended tubes constituting the other of the conduits, and forming a continuous mass of contacting tubes extending between and surrounding the serpentine tube sections; and means securing the mass of tubes together to form a predetermined cross-section of the entirety of the mass of open-ended tubes and tube sections.

  2. Enhanced boiling heat transfer using radial fins

    NASA Astrophysics Data System (ADS)

    Razelos, P.; Das, S.; Krikkis, R. N.

    2008-04-01

    A numerical bifurcation analysis is carried out in order to determine the solution structure of radial fins subjected to multi-boiling heat transfer mode. One-dimensional conduction is employed throughout the thermal analysis. The fluid heat transfer coefficient is temperature dependent on the three regimes of phase-change of the fluid. Six fin profiles, defined in the text, are considered. Multiplicity structure is obtained to determine different types of bifurcation diagrams, which describe the dependence of a state variable of the system like the temperature or the heat dissipation on the fin design parameters, conduction convection parameter (CCP) or base temperature difference (Δ T). Specifically, the effects of Δ T, CCP and Biot number are analyzed. The results are presented graphically, showing the significant behavioral features of the heat rejection mechanism.

  3. Corrosive resistant heat exchanger

    DOEpatents

    Richlen, Scott L.

    1989-01-01

    A corrosive and errosive resistant heat exchanger which recovers heat from a contaminated heat stream. The heat exchanger utilizes a boundary layer of innocuous gas, which is continuously replenished, to protect the heat exchanger surface from the hot contaminated gas. The innocuous gas is conveyed through ducts or perforations in the heat exchanger wall. Heat from the heat stream is transferred by radiation to the heat exchanger wall. Heat is removed from the outer heat exchanger wall by a heat recovery medium.

  4. Heat exchanger

    DOEpatents

    Brackenbury, Phillip J.

    1986-04-01

    A heat exchanger comparising a shell attached at its open end to one side of a tube sheet and a detachable head connected to the other side of said tube sheet. The head is divided into a first and second chamber in fluid communication with a nozzle inlet and nozzle outlet, respectively, formed in said tube sheet. A tube bundle is mounted within said shell and is provided with inlets and outlets formed in said tube sheet in communication with said first and second chambers, respectively.

  5. Corrosion protected reversing heat exchanger

    SciTech Connect

    Zawierucha, R.

    1984-09-25

    A reversing heat exchanger of the plate and fin type having multiple aluminum parting sheets in a stacked arrangement with corrugated fins separating the sheets to form multiple flow paths, means for closing the ends of the sheets, an input manifold arrangement of headers for the warm end of of the exchanger and an output manifold arrangement for the cold end of the exchanger with the input air feed stream header and the waste gas exhaust header having an alloy of zinc and aluminum coated on the inside surface for providing corrosion protection to the stack.

  6. Comparison of Analytical and Experimental Effectiveness of Four-Row Plate-Fin-Tube Heat Exchangers with Water, R-22, and R-410A

    SciTech Connect

    Baxter, V.D.; Chen, T.D.; Conklin, J.C.

    1998-11-15

    The analytical solutions of heat exchanger effectiveness for four-row crcmilow, cross-countertlow and cross-paralleltlow have been derived in the recent study. The main objective of this study is to investigate the etlkct of heat exchawger tlow conllguration on thermal performance with refrigerant mixtures. Difference of heat exchanger effectiveness for all flow arrangements relative to an analytical many-row solution has been analyzed. A comparison of four-row cross cou~ltet-ilow heat exchanger effectiveness between analytical solutions and experimental data with water, R-22, and R-4 10A is presented.

  7. Effects of Fin Shape on Condensation Heat Transfer and Pressure Drop inside Herringbone Micro Fin Tubes

    NASA Astrophysics Data System (ADS)

    Miyara, Akio; Otsubo, Yusuke; Ohtsuka, Satoshi

    Experiments of in-tube condensation of R410A have been carried out for as mooth tube, a h elical micro fin tube and five types of herringbone micro fin tubes. In the herringbone micro fin tube, the micro fins work to remove liquid at fin-diverging parts and collect liquid at fin-converging parts. In the high mass velocity region, heat transfer coefficient of all the herringbone tubes is about 2-4 times higher than that of the helical micro fin tube. In the low mass velocity region, however, the heat transfer coefficients of the herringbone micro fin tubes are equal to or smaller than those of the helical micro fin tube. Up to the fin height of 0.18 mm, the heat transfer coefficient is higher for higher fin, whereas that of ah igher fin tube is saturated. The pressure drop increases with increasing fin height. The helix angle strongly affects the heat transfer and pressure drop. Higher helix angle causes higher heat transfer coefficient and higher pressure drop. In the case of the herringbone tube which has shorter fin and/or smaller helix angle, pressure drops are equal to or lower than that of the helical micro fin tube, whereas those of other tubes are higher.

  8. Effects of the arrangement of triangle-winglet-pair vortex generators on heat transfer performance of the shell side of a double-pipe heat exchanger enhanced by helical fins

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Shang, Bojun; Meng, Huibo; Li, Yaxia; Wang, Cuihua; Gong, Bin; Wu, Jianhua

    2016-04-01

    To improve heat transfer performance of the shell side of a double-pipe heat exchanger enhanced by helical fins, triangle-winglet-pair vortex generators (VG) were installed along the centerline of the helical channel with rectangular cross section. The effects of the arrangement of the triangle-winglet-pair VG, such as the geometry, the angle of attack and the quantity on heat transfer performance and pressure drop characteristics have been investigated experimentally to find out the optimal design of the VG. Air was used as working fluid within the range of Re from 680 to 16,000. The results show that, the heat exchange effectiveness of the shell side with VG is 16.6 % higher than that without VG. The vortices and the unsteadiness of the flow introduced by the VG make a great contribution to the increase. Under identical pressure drop condition, the angle of attack of 30° is the best choice compared with 45° and 60°. Under the three constraints, i.e., identical mass flow rate, identical pressure drop and identical pumping power, the largest VG size can achieve the best enhancement effect. Installation of three pairs of VG within one pitch is an optimal design for the shell side used in the present experiments. The enhancement effect of isosceles right triangle is better than that of right triangle in which one acute angle is 30°.

  9. Segmented heat exchanger

    DOEpatents

    Baldwin, Darryl Dean; Willi, Martin Leo; Fiveland, Scott Byron; Timmons, Kristine Ann

    2010-12-14

    A segmented heat exchanger system for transferring heat energy from an exhaust fluid to a working fluid. The heat exchanger system may include a first heat exchanger for receiving incoming working fluid and the exhaust fluid. The working fluid and exhaust fluid may travel through at least a portion of the first heat exchanger in a parallel flow configuration. In addition, the heat exchanger system may include a second heat exchanger for receiving working fluid from the first heat exchanger and exhaust fluid from a third heat exchanger. The working fluid and exhaust fluid may travel through at least a portion of the second heat exchanger in a counter flow configuration. Furthermore, the heat exchanger system may include a third heat exchanger for receiving working fluid from the second heat exchanger and exhaust fluid from the first heat exchanger. The working fluid and exhaust fluid may travel through at least a portion of the third heat exchanger in a parallel flow configuration.

  10. Heat pipe array heat exchanger

    DOEpatents

    Reimann, Robert C.

    1987-08-25

    A heat pipe arrangement for exchanging heat between two different temperature fluids. The heat pipe arrangement is in a ounterflow relationship to increase the efficiency of the coupling of the heat from a heat source to a heat sink.

  11. Optimal design of crossflow heat exchangers

    SciTech Connect

    Van den Bulck, E. )

    1991-05-01

    The design of plate-fin and tube-fin crossflow heat exchangers is discussed. The transfer surface area of crossflow heat exchangers is used ineffectively because of the nonuniform distribution of the heat transfer across the volume of the exchanger. The optimal distribution of the transfer surface area for maximum heat exchanger effectiveness and constant total surface area is determined. It is found that a Dirac delta distribution of the transfer surface aligned along the diagonal of the crossflow exchanger gives the best performance; equal to that of a counterflow device. Design guidelines for optimal area allocation within crossflow heat exchangers are established. Compared to conventional designs, designs following these guidelines may lead to either a higher exchanger effectiveness for equal pressure drops and surface area, reduced pressure drops for equal exchanger effectiveness, or reduced weight and a near cubic form of the exchanger core for equal pressure drops and effectiveness.

  12. Numerical investigation for finding the appropriate design parameters of a fin-and-tube heat exchanger with delta-winglet vortex generators

    NASA Astrophysics Data System (ADS)

    Behfard, M.; Sohankar, A.

    2016-01-01

    A numerical simulation is performed to investigate the heat transfer and pressure drop characteristics of three-row inline tube bundles as a part of a heat exchanger (Re = 1000, Pr = 4.29). To enhance heat transfer, two pairs of delta winglet-type vortex generators (VGs) installed beside the first row and between the first and second rows of the tube bundles. The diameter of the second row of the tubes is chosen smaller than those of the first and third. A comprehensive study on the effects of various geometrical parameters such as transverse and longitudinal positions of VGs, length and height of VGs and angle of attack of the delta winglets is performed to augment heat transfer. Based on this study the best values of these design parameters are determined. The results showed that the best model increases the convective heat transfer ratio and thermal performance factor about 59 and 43 %, respectively, in compare with the geometry without VG.

  13. Flow and heat transfer enhancement in tube heat exchangers

    NASA Astrophysics Data System (ADS)

    Sayed Ahmed, Sayed Ahmed E.; Mesalhy, Osama M.; Abdelatief, Mohamed A.

    2015-11-01

    The performance of heat exchangers can be improved to perform a certain heat-transfer duty by heat transfer enhancement techniques. Enhancement techniques can be divided into two categories: passive and active. Active methods require external power, such as electric or acoustic field, mechanical devices, or surface vibration, whereas passive methods do not require external power but make use of a special surface geometry or fluid additive which cause heat transfer enhancement. The majority of commercially interesting enhancement techniques are passive ones. This paper presents a review of published works on the characteristics of heat transfer and flow in finned tube heat exchangers of the existing patterns. The review considers plain, louvered, slit, wavy, annular, longitudinal, and serrated fins. This review can be indicated by the status of the research in this area which is important. The comparison of finned tubes heat exchangers shows that those with slit, plain, and wavy finned tubes have the highest values of area goodness factor while the heat exchanger with annular fin shows the lowest. A better heat transfer coefficient ha is found for a heat exchanger with louvered finned and thus should be regarded as the most efficient one, at fixed pumping power per heat transfer area. This study points out that although numerous studies have been conducted on the characteristics of flow and heat transfer in round, elliptical, and flat tubes, studies on some types of streamlined-tubes shapes are limited, especially on wing-shaped tubes (Sayed Ahmed et al. in Heat Mass Transf 50: 1091-1102, 2014; in Heat Mass Transf 51: 1001-1016, 2015). It is recommended that further detailed studies via numerical simulations and/or experimental investigations should be carried out, in the future, to put further insight to these fin designs.

  14. Woven heat exchanger

    DOEpatents

    Piscitella, R.R.

    1984-07-16

    This invention relates to a heat exchanger for waste heat recovery from high temperature industrial exhaust streams. In a woven ceramic heat exchanger using the basic tube-in-shell design, each heat exchanger consisting of tube sheets and tube, is woven separately. Individual heat exchangers are assembled in cross-flow configuration. Each heat exchanger is woven from high temperature ceramic fiber, the warp is continuous from tube to tube sheet providing a smooth transition and unitized construction.

  15. Woven heat exchanger

    DOEpatents

    Piscitella, Roger R.

    1987-05-05

    In a woven ceramic heat exchanger using the basic tube-in-shell design, each heat exchanger consisting of tube sheets and tube, is woven separately. Individual heat exchangers are assembled in cross-flow configuration. Each heat exchanger is woven from high temperature ceramic fiber, the warp is continuous from tube to tube sheet providing a smooth transition and unitized construction.

  16. Bayonet heat exchangers in heat-assisted Stirling heat pump

    SciTech Connect

    Yagyu, S.; Fukuyama, Y.; Morikawa, T.; Isshiki, N.; Satoh, I.; Corey, J.; Fellows, C.

    1998-07-01

    The Multi-Temperature Heat Supply System is a research project creating a city energy system with lower environmental load. This system consists of a gas-fueled internal combustion engine and a heat-assisted Stirling heat pump utilizing shaft power and thermal power in a combination of several cylinders. The heat pump is mainly driven by engine shaft power and is partially assisted by thermal power from engine exhaust heat source. Since this heat pump is operated by proportioning the two energy sources to match the characteristics of the driving engine, the system is expected to produce cooling and heating water at high COP. This paper describes heat exchanger development in the project to develop a heat-assisted Stirling heat pump. The heat pump employs the Bayonet type heat exchangers (BHX Type I) for supplying cold and hot water and (BHX Type II) for absorbing exhaust heat from the driving engine. The heat exchanger design concepts are presented and their heat transfer and flow loss characteristics in oscillating gas flow are investigated. The main concern in the BHX Type I is an improvement of gas side heat transfer and the spirally finned tubes were applied to gas side of the heat exchanger. For the BHX Type II, internal heat transfer characteristics are the main concern. Shell-and-tube type heat exchangers are widely used in Stirling machines. However, since brazing is applied to the many tubes for their manufacturing processes, it is very difficult to change flow passages to optimize heat transfer and loss characteristics once they have been made. The challenge was to enhance heat transfer on the gas side to make a highly efficient heat exchanger with fewer parts. It is shown that the Bayonet type heat exchanger can have good performance comparable to conventional heat exchangers.

  17. Heat transfer and flow characteristics of offset fins in low-Reynolds-number region

    SciTech Connect

    Mizuno, Masayuki; Morioka, Mikio; Hori, Masayoshi; Kudo, Kazuhiko

    1995-12-31

    The characteristics of heat exchangers with offset-type plate fins are studied in a Reynolds-number region less than 300 based on the hydraulic diameter. To study the effects of the development of the thermal boundary layer along the bottom plate on the heat-transfer characteristics of the fins standing on the plate, three-dimensional analysis is carried out. The parameters used in the study are the Reynolds number, the Prandtl number of fluid and the thermal properties of the fluid and the fins. Also, an experiment is carried out to show the validity of the present analyses. It is found that the Nusselt number on the fin surfaces is characterized by the ratio of the thermal-conductivity of the fluid to that of the fin material. This is caused by the fact that the thermal boundary layer which developed on the bottom plate relaxes the temperature gradient in the fluid perpendicular to the fin surface.

  18. The heat transfer of cooling fins on moving air

    NASA Technical Reports Server (NTRS)

    Doetsch, Hans

    1935-01-01

    The present report is a comparison of the experimentally defined temperature and heat output of cooling fins in the air stream with theory. The agreement is close on the basis of a mean coefficient of heat transfer with respect to the total surface. A relationship is established between the mean coefficient of heat transfer, the dimensions of the fin arrangement, and the air velocity.

  19. Enhancement of heat transfer in waste-heat heat exchangers

    NASA Astrophysics Data System (ADS)

    Stoeffler, R. C.

    1980-07-01

    The Fluidfire shallow fluidized bed heat transfer facility was modified to give increased air flow capacity and to allow testing with different distributor plates and with two stage heat exchangers. The effect of reduced distributor plate pressure loss and amount and type of bed material on the heat transfer performance of a single stage fluidized bed heat exchanger is explored. Elutriation from the bed was measured for different bed materials and distributor plates; alternate heat exchanger surfaces having different fin spacings were also tested. Two types of two stage fluidized bed heat exchangers were tested: one having a baffle (having almost no pressure loss) located between the stages and which allowed bed material to recirculate between upper and lower beds; the second having two distributor plates in series with no recirculation of the bed material.

  20. Brayton-cycle heat exchanger technology program

    NASA Technical Reports Server (NTRS)

    Killackey, J. J.; Coombs, M. G.; Graves, R. F.; Morse, C. J.

    1976-01-01

    The following five tasks designed to advance this development of heat exchanger systems for close loop Brayton cycle power systems are presented: (1) heat transfer and pressure drop data for a finned tubular heat transfer matrix. The tubes are arranged in a triangular array with copper stainless steel laminate strips helically wound on the tubes to form a disk fin geometry; (2) the development of a modularized waste heat exchanger. Means to provide verified double containment are described; (3) the design, fabrication, and test of compact plate fin heat exchangers representative of full scale Brayton cycle recuperators; (4) the analysis and design of bellows suitable for operation at 1600 F and 200 psia for 1,000 cycles and 50,000 hours creep life; and (5) screening tests used to select a low cost braze alloy with the desirable attributes of a gold base alloy. A total of 22 different alloys were investigated; the final selection was Nicrobraz 30.

  1. Mixed convection laminar flow and heat transfer of liquids in horizontal internally finned tubes

    SciTech Connect

    Shome, B.

    1998-01-01

    Energy and material savings, as well as economic incentives, have led to concentrated efforts over the past several decades in the field of heat transfer enhancement to produce more efficient and compact heat exchangers. Internally finned tubes are widely used for heat transfer enhancement, particularly in chemical process and petroleum industries. A finned tube heat exchanger with optimum geometry could offer 35--40% increase in heat duty for equal pumping power and size over a smooth tube heat exchanger or a comparable decrease in the heat exchanger size for a given heat duty. Developing mixed convection flow in internally finned tubes with variable viscosity was numerically investigated for a fin geometry range of 8 {le} N {le} 24, 0.1 {le} H {le} 0.3 and an operating condition range of 50 {le} Pr{sub in} {le} 1,250, 0 {le} Ra{sub in} {le} 10{sup 7}, and 0 {le} q{sub w}d/k{sub in} {le} 2,000. The numerical model was validated by comparison with existing numerical and experimental data. Internal finning was found to produce a complex two-cell, buoyancy-induced vortex structure. The results show that coring (retarded velocity in the interfin region) leads to poor heat transfer performance of tubes with large numbers of fins or with tall fins. The overall results indicated that large enhancement in the heat transfer can be obtained in the entrance region. Furthermore, variable viscosity effects are seen to have a pronounced effect on the friction factor and Nusselt number predictions.

  2. Evaluation of a Fin and Tube Type Adsorber/Desorber Heat Exchanger using =ACF/C2H5OH Pair

    NASA Astrophysics Data System (ADS)

    Kariya, Keishi; Makimoto, Naoya; Kuwahara, Ken; Koyama, Shigeru

    This study deals with the experiment to clarify the characteristics of adsorption refrigeration system employing activated carbon fiber (ACF) and ethanol pair and to evaluate the performance of adsorber/desorber heat exchanger defined by two kind of index to the system performance. The experiments are carried out by varying system running parameters such as regeneration temperature for adsorber, ethanol temperature in the evaporator, pre-heating/cooling cycle time, adsorption/desorption cycle time. Regeneration temperature for adsorber is from 60 to 90 °C and ethanol temperature is from 0 to 20 °C and pre-heating/cooling cycle time is 60 and 120 second and adsorption/desorption cycle time is from 120 to 300 second. Results show that the system can be operated with regeneration temperature of 60 °C and the system performance improves with increase of ethanol temperature. It is also found that the system performance is affected by regeneration temperature for adsorber and the pre-heating/cooling cycle time and adsorption/desorption cycle time.

  3. Heat Transfer from Finned Metal Cylinders in an Air Stream

    NASA Technical Reports Server (NTRS)

    Biermann, Arnold, E; Pinkel, Benjamin

    1935-01-01

    This report presents the results of tests made to supply design information for the construction of metal fins for the cooling of heated cylindrical surfaces by an air stream. A method is given for determining fin dimensions for a maximum heat transfer with the expenditure of a given amount of material for a variety of conditions of air flow and metals.

  4. Pressurized bellows flat contact heat exchanger interface

    NASA Technical Reports Server (NTRS)

    Voss, Fred E. (Inventor); Howell, Harold R. (Inventor); Winkler, Roger V. (Inventor)

    1990-01-01

    Disclosed is an interdigitated plate-type heat exchanger interface. The interface includes a modular interconnect to thermally connect a pair or pairs of plate-type heat exchangers to a second single or multiple plate-type heat exchanger. The modular interconnect comprises a series of parallel, plate-type heat exchangers arranged in pairs to form a slot therebetween. The plate-type heat exchangers of the second heat exchanger insert into the slots of the modular interconnect. Bellows are provided between the pairs of fins of the modular interconnect so that when the bellows are pressurized, they drive the plate-type heat exchangers of the modular interconnect toward one another, thus closing upon the second heat exchanger plates. Each end of the bellows has a part thereof a thin, membrane diaphragm which readily conforms to the contours of the heat exchanger plates of the modular interconnect when the bellows is pressurized. This ensures an even distribution of pressure on the heat exchangers of the modular interconnect thus creating substantially planar contact between the two heat exchangers. The effect of the interface of the present invention is to provide a dry connection between two heat exchangers whereby the rate of heat transfer can be varied by varying the pressure within the bellows.

  5. Pressurized bellows flat contact heat exchanger interface

    NASA Astrophysics Data System (ADS)

    Voss, Fred E.; Howell, Harold R.; Winkler, Roger V.

    1990-03-01

    Disclosed is an interdigitated plate-type heat exchanger interface. The interface includes a modular interconnect to thermally connect a pair or pairs of plate-type heat exchangers to a second single or multiple plate-type heat exchanger. The modular interconnect comprises a series of parallel, plate-type heat exchangers arranged in pairs to form a slot therebetween. The plate-type heat exchangers of the second heat exchanger insert into the slots of the modular interconnect. Bellows are provided between the pairs of fins of the modular interconnect so that when the bellows are pressurized, they drive the plate-type heat exchangers of the modular interconnect toward one another, thus closing upon the second heat exchanger plates. Each end of the bellows has a part thereof a thin, membrane diaphragm which readily conforms to the contours of the heat exchanger plates of the modular interconnect when the bellows is pressurized. This ensures an even distribution of pressure on the heat exchangers of the modular interconnect thus creating substantially planar contact between the two heat exchangers. The effect of the interface of the present invention is to provide a dry connection between two heat exchangers whereby the rate of heat transfer can be varied by varying the pressure within the bellows.

  6. Direct fired heat exchanger

    DOEpatents

    Reimann, Robert C.; Root, Richard A.

    1986-01-01

    A gas-to-liquid heat exchanger system which transfers heat from a gas, generally the combustion gas of a direct-fired generator of an absorption machine, to a liquid, generally an absorbent solution. The heat exchanger system is in a counterflow fluid arrangement which creates a more efficient heat transfer.

  7. Analytical Study on Multi-stream Heat Exchanger Include Longitudinal Heat Conduction and Parasitic Heat Loads

    NASA Astrophysics Data System (ADS)

    Zhu, Weiping; Xie, Xiujuan; Yang, Huihui; Li, Laifeng; Gong, Linghui

    High performance heat exchangers are critical component in many cryogenic systems and its performance is typically very sensitive to longitudinal heat conduction, parasitic heat loads and property variations. This paper gives an analytical study on 1-D model for multi-stream parallel-plate fin heat exchanger by using the method of decoupling transformations. The results obtained in the present paper are valuable for the reference on optimization for heat exchanger design.

  8. Wound tube heat exchanger

    DOEpatents

    Ecker, Amir L.

    1983-01-01

    What is disclosed is a wound tube heat exchanger in which a plurality of tubes having flattened areas are held contiguous adjacent flattened areas of tubes by a plurality of windings to give a double walled heat exchanger. The plurality of windings serve as a plurality of effective force vectors holding the conduits contiguous heat conducting walls of another conduit and result in highly efficient heat transfer. The resulting heat exchange bundle is economical and can be coiled into the desired shape. Also disclosed are specific embodiments such as the one in which the tubes are expanded against their windings after being coiled to insure highly efficient heat transfer.

  9. Rate of Heat Transfer from Finned Metal Surfaces

    NASA Technical Reports Server (NTRS)

    Taylor, G Fayette; Rehbock, A

    1930-01-01

    The object was to evaluate the factors which control the rate of heat transfer to a moving current of air from finned metal surfaces similar to those used on aircraft engine cylinders. The object was to establish data which will enable the finning of cooling surfaces to be designed to suit the particular needs of any specific application. Most of the work was done on flat copper specimens 6 inches square, upon which were mounted copper fins with spacings varying from 1/2 inch to 1/12 inch. All fins were 1 inch deep, 6 inches long, and .020 inch thick. The results of the investigation are given in the form of curves included here. In general, it was found that for specimens of this kind, the effectiveness of a given fin does not decrease very rapidly until its distance from adjacent fins has been reduced to 1/9 or 1/10 of an inch. A formula for the heat transfer from a flat surface without fins was developed, and an approximate formula for the finned specimens is suggested.

  10. Experimental study of heat transfer and thermal performance with longitudinal fins of solar air heater

    PubMed Central

    Chabane, Foued; Moummi, Noureddine; Benramache, Said

    2013-01-01

    The thermal performance of a single pass solar air heater with five fins attached was investigated experimentally. Longitudinal fins were used inferior the absorber plate to increase the heat exchange and render the flow fluid in the channel uniform. The effect of mass flow rate of air on the outlet temperature, the heat transfer in the thickness of the solar collector, and the thermal efficiency were studied. Experiments were performed for two air mass flow rates of 0.012 and 0.016 kg s−1. Moreover, the maximum efficiency values obtained for the 0.012 and 0.016 kg s−1 with and without fins were 40.02%, 51.50% and 34.92%, 43.94%, respectively. A comparison of the results of the mass flow rates by solar collector with and without fins shows a substantial enhancement in the thermal efficiency. PMID:25685486

  11. Optimization of Heat Exchangers

    SciTech Connect

    Ivan Catton

    2010-10-01

    The objective of this research is to develop tools to design and optimize heat exchangers (HE) and compact heat exchangers (CHE) for intermediate loop heat transport systems found in the very high temperature reator (VHTR) and other Generation IV designs by addressing heat transfer surface augmentation and conjugate modeling. To optimize heat exchanger, a fast running model must be created that will allow for multiple designs to be compared quickly. To model a heat exchanger, volume averaging theory, VAT, is used. VAT allows for the conservation of mass, momentum and energy to be solved for point by point in a 3 dimensional computer model of a heat exchanger. The end product of this project is a computer code that can predict an optimal configuration for a heat exchanger given only a few constraints (input fluids, size, cost, etc.). As VAT computer code can be used to model characteristics )pumping power, temperatures, and cost) of heat exchangers more quickly than traditional CFD or experiment, optimization of every geometric parameter simultaneously can be made. Using design of experiment, DOE and genetric algorithms, GE, to optimize the results of the computer code will improve heat exchanger disign.

  12. Heat transfer from cylinders having closely spaced fins

    NASA Technical Reports Server (NTRS)

    Biermann, Arnold E

    1937-01-01

    The heat-transfer coefficients have been determined for five steel cylinders having fins 1.22 inches wide and the spacing between the fins ranging from 0.022 to 0.131 inch. The cylinders were tested with and without baffles in a wind tunnel; they were also tested enclosed in jackets with the cooling air supplied by a blower. A maximum heat transfer was reached at a fin space of about 0.45 inch for the cylinders tested with each of the three methods of cooling investigated. The rise in temperature of the air passing between the fins and the change in flow pattern were found to be important factors limiting the heat transfer that may be obtained by decreasing the fin space. The use of baffles for directing the air around the cylinders with closely spaced fins proved very effective in increasing the over-all heat-transfer coefficient, provided that the spacing was not appreciably less than that for maximum heat transfer.

  13. Heat Dissipation from a Finned Cylinder at Different Fin-Plane/Air-stream Angles

    NASA Technical Reports Server (NTRS)

    Schey, Oscar W; Biermann, Arnold E

    1932-01-01

    This report gives the results of an experimental determination of the temperature distribution in and the heat dissipation from a cylindrical finned surface for various fin-plane/air-stream angles. A steel cylinder 4.5 inches in diameter having slightly tapered fins of 0.30-inch pitch and 0.6 -inch width was equipped with an electrical heating unit furnishing 13 to 248 B.T.U. per hour per square inch of inside wall area. Air at speeds form 30 to 150 miles per hour was directed at seven different angles from 0 degrees to 90 degrees with respect to the fin planes. The tests show the best angle for cooling at all air speeds to be about 45 degrees. With the same temperature for the two conditions and with an air speed of 76 miles per hour, the heat input to the cylinder can be increased 50 percent at 45 degrees fin-plane/air-stream angle over that at 0 degrees.

  14. Testing and analysis of immersed heat exchangers

    SciTech Connect

    Farrington, R.B.; Bingham, C.E.

    1986-08-01

    The objectives were to determine the performance of four immersed, ''supply-side'' heat exchangers used in solar domestic-hot-water systems; to examine the effects of flow rate, temperature difference, and coil configuration on performance; and to develop a simple model to predict the performance of immersed heat exchangers. We tested four immersed heat exchangers: a smooth coil, a finned spiral, a single-wall bayonet, and a double-wall bayonet. We developed two analyticl models and a simple finite difference model. We experimentally verified that the performance of these heat exchangers depends on the flow rate through them; we also showed that the temperature difference between the heat exchanger's inlet and the storage tank can strongly affect a heat exchanger's performance. We also compared the effects of the heat exchanger's configuration and correlated Nusselt and Rayleigh numbers for each heat exchanger tested. The smooth coil had a higher effectiveness than the others, while the double-wall bayonet had a very low effectiveness. We still do not know the long-term effectiveness of heat exchangers regarding scale accumulation, nor do we know the effects of very low flow rates on a heat exchanger's performance.

  15. Nature's Heat Exchangers.

    ERIC Educational Resources Information Center

    Barnes, George

    1991-01-01

    Discusses the heat-transfer systems of different animals. Systems include heat conduction into the ground, heat transferred by convection, heat exchange in lizards, fish and polar animals, the carotid rete system, electromagnetic radiation from animals and people, and plant and animal fiber optics. (MDH)

  16. Active microchannel heat exchanger

    DOEpatents

    Tonkovich, Anna Lee Y [Pasco, WA; Roberts, Gary L [West Richland, WA; Call, Charles J [Pasco, WA; Wegeng, Robert S [Richland, WA; Wang, Yong [Richland, WA

    2001-01-01

    The present invention is an active microchannel heat exchanger with an active heat source and with microchannel architecture. The microchannel heat exchanger has (a) an exothermic reaction chamber; (b) an exhaust chamber; and (c) a heat exchanger chamber in thermal contact with the exhaust chamber, wherein (d) heat from the exothermic reaction chamber is convected by an exothermic reaction exhaust through the exhaust chamber and by conduction through a containment wall to the working fluid in the heat exchanger chamber thereby raising a temperature of the working fluid. The invention is particularly useful as a liquid fuel vaporizer and/or a steam generator for fuel cell power systems, and as a heat source for sustaining endothermic chemical reactions and initiating exothermic reactions.

  17. Microscale Regenerative Heat Exchanger

    NASA Technical Reports Server (NTRS)

    Moran, Matthew E.; Stelter, Stephan; Stelter, Manfred

    2006-01-01

    The device described herein is designed primarily for use as a regenerative heat exchanger in a miniature Stirling engine or Stirling-cycle heat pump. A regenerative heat exchanger (sometimes called, simply, a "regenerator" in the Stirling-engine art) is basically a thermal capacitor: Its role in the Stirling cycle is to alternately accept heat from, then deliver heat to, an oscillating flow of a working fluid between compression and expansion volumes, without introducing an excessive pressure drop. These volumes are at different temperatures, and conduction of heat between these volumes is undesirable because it reduces the energy-conversion efficiency of the Stirling cycle.

  18. Heat and mass exchanger

    SciTech Connect

    Lowenstein, Andrew; Sibilia, Marc J.; Miller, Jeffrey A.; Tonon, Thomas

    2011-06-28

    A mass and heat exchanger includes at least one first substrate with a surface for supporting a continuous flow of a liquid thereon that either absorbs, desorbs, evaporates or condenses one or more gaseous species from or to a surrounding gas; and at least one second substrate operatively associated with the first substrate. The second substrate includes a surface for supporting the continuous flow of the liquid thereon and is adapted to carry a heat exchange fluid therethrough, wherein heat transfer occurs between the liquid and the heat exchange fluid.

  19. Heat and mass exchanger

    SciTech Connect

    Lowenstein, Andrew; Sibilia, Marc J.; Miller, Jeffrey A.; Tonon, Thomas

    2007-09-18

    A mass and heat exchanger includes at least one first substrate with a surface for supporting a continuous flow of a liquid thereon that either absorbs, desorbs, evaporates or condenses one or more gaseous species from or to a surrounding gas; and at least one second substrate operatively associated with the first substrate. The second substrate includes a surface for supporting the continuous flow of the liquid thereon and is adapted to carry a heat exchange fluid therethrough, wherein heat transfer occurs between the liquid and the heat exchange fluid.

  20. Thermoelectric heat exchange element

    DOEpatents

    Callas, James J.; Taher, Mahmoud A.

    2007-08-14

    A thermoelectric heat exchange module includes a first substrate including a heat receptive side and a heat donative side and a series of undulatory pleats. The module may also include a thermoelectric material layer having a ZT value of 1.0 or more disposed on at least one of the heat receptive side and the heat donative side, and an electrical contact may be in electrical communication with the thermoelectric material layer.

  1. Vacuum powered heat exchanger

    SciTech Connect

    Ruffolo, R.F.

    1986-06-24

    In an internal combustion engine including an oil lubrication system, a liquid cooling system, and an improved air intake system is described. The improved air intake system comprises: a housing including a first opening in one end, which opening is open to the atmosphere and a second opening comprising an air outlet opening in the other end open to the air intake manifold of the engine, a heat exchanger positioned in the first opening. The heat exchanger consists of a series of coils positioned in the flow path of the atmospheric air as it enters the housing, the heat exchanger being fluidly connected to either the engine lubrication system or the cooling system to provide a warm heat source for the incoming air to the housing, acceleration means positioned in the housing downstream of the heat exchanger, the acceleration means comprising a honeycomb structure positioned across the air intake flow path. The honey-comb structure includes a multitude of honey combed mini-venturi cells through which the heated air flows in an accelerated mode, a removable air filter positioned between the heat exchanger and the acceleration means and a single opening provided in the housing through which the air filter can be passed and removed, and additional openings in the housing positioned downstream of the heat exchanger and upstream of the air filter, the additional openings including removable flaps for opening and closing the openings to control the temperature of the air flowing through the housing.

  2. A corrosive resistant heat exchanger

    DOEpatents

    Richlen, S.L.

    1987-08-10

    A corrosive and erosive resistant heat exchanger which recovers heat from a contaminated heat stream. The heat exchanger utilizes a boundary layer of innocuous gas, which is continuously replenished, to protect the heat exchanger surface from the hot contaminated gas. The innocuous gas is pumped through ducts or perforations in the heat exchanger wall. Heat from the heat stream is transferred by radiation to the heat exchanger wall. Heat is removed from the outer heat exchanger wall by a heat recovery medium. 3 figs., 3 tabs.

  3. Outdoor heat exchanger section

    SciTech Connect

    Kessler, A.F.; Smiley, W.A. III; Wendt, M.E.

    1988-02-09

    An outdoor section for an air conditioning system is described comprising: a compressor; a heat exchanger; a cabinet having an upper cabinet section, a lower cabinet section and a louvered lower section top cover, the heat exchanger and the compressor being housed in the lower cabinet section and the upper cabinet section having a solid top which overlies the louvers in the lower section top cover; and a fan disposed in the lower cabinet section to draw air through the sides of the lower cabinet section and through the heat exchanger housed therein, the fan discharging air, after having been drawn through the heat exchanger, upward through the louvers in the lower cabinet section top cover and into the interior of the upper cabinet section.

  4. Comparative analysis of compact heat exchangers for application as the intermediate heat exchanger for advanced nuclear reactors

    DOE PAGESBeta

    Bartel, N.; Chen, M.; Utgikar, V. P.; Sun, X.; Kim, I. -H.; Christensen, R.; Sabharwall, P.

    2015-04-04

    A comparative evaluation of alternative compact heat exchanger designs for use as the intermediate heat exchanger in advanced nuclear reactor systems is presented in this article. Candidate heat exchangers investigated included the Printed circuit heat exchanger (PCHE) and offset strip-fin heat exchanger (OSFHE). Both these heat exchangers offer high surface area to volume ratio (a measure of compactness [m2/m3]), high thermal effectiveness, and overall low pressure drop. Helium–helium heat exchanger designs for different heat exchanger types were developed for a 600 MW thermal advanced nuclear reactor. The wavy channel PCHE with a 15° pitch angle was found to offer optimummore » combination of heat transfer coefficient, compactness and pressure drop as compared to other alternatives. The principles of the comparative analysis presented here will be useful for heat exchanger evaluations in other applications as well.« less

  5. Comparative analysis of compact heat exchangers for application as the intermediate heat exchanger for advanced nuclear reactors

    SciTech Connect

    Bartel, N.; Chen, M.; Utgikar, V. P.; Sun, X.; Kim, I. -H.; Christensen, R.; Sabharwall, P.

    2015-04-04

    A comparative evaluation of alternative compact heat exchanger designs for use as the intermediate heat exchanger in advanced nuclear reactor systems is presented in this article. Candidate heat exchangers investigated included the Printed circuit heat exchanger (PCHE) and offset strip-fin heat exchanger (OSFHE). Both these heat exchangers offer high surface area to volume ratio (a measure of compactness [m2/m3]), high thermal effectiveness, and overall low pressure drop. Helium–helium heat exchanger designs for different heat exchanger types were developed for a 600 MW thermal advanced nuclear reactor. The wavy channel PCHE with a 15° pitch angle was found to offer optimum combination of heat transfer coefficient, compactness and pressure drop as compared to other alternatives. The principles of the comparative analysis presented here will be useful for heat exchanger evaluations in other applications as well.

  6. Microtube Strip Heat Exchanger

    SciTech Connect

    Doty, F.D.

    1990-12-27

    Doty Scientific (DSI) believes their Microtube-Strip Heat Exchanger will contribute significantly to (a) the closed Brayton cycles being pursued at MIT, NASA, and elsewhere; (b) reverse Brayton cycle cryocoolers, currently being investigated by NASA for space missions, being applied to MRI superconducting magnets; and (c) high-efficiency cryogenic gas separation schemes for CO{sub 2} removal from exhaust stacks. The goal of this current study is to show the potential for substantial progress in high-effectiveness, low-cost, gas-to-gas heat exchangers for diverse applications at temperatures from below 100 K to above 1000 K. To date, the highest effectiveness measured is about 98%, and relative pressure drops below 0.1% with a specific conductance of about 45 W/kgK are reported. During the pre-award period DSI built and tested a 3-module heat exchanger bank using 103-tube microtube strip (MTS) modules. To add to their analytical capabilities, DSI has acquired computational fluid dynamics (CFD) software. This report describes the pre-award work and the status of the ten tasks of the current project, which are: analyze flow distribution and thermal stresses within individual modules; design a heat exchanger bank of ten modules with 400 microtube per module; obtain production quality tubestrip die and AISI 304 tubestrips; obtain production quality microtubing; construct revised MTS heat exchanger; construct dies and fixtures for prototype heat exchanger; construct 100 MTS modules; assemble 8-10 prototype MTS heat exchangers; test prototype MTS heat exchanger; and verify test through independent means. 7 refs., 9 figs. 1 tab. (CK)

  7. Radial flow heat exchanger

    DOEpatents

    Valenzuela, Javier

    2001-01-01

    A radial flow heat exchanger (20) having a plurality of first passages (24) for transporting a first fluid (25) and a plurality of second passages (26) for transporting a second fluid (27). The first and second passages are arranged in stacked, alternating relationship, are separated from one another by relatively thin plates (30) and (32), and surround a central axis (22). The thickness of the first and second passages are selected so that the first and second fluids, respectively, are transported with laminar flow through the passages. To enhance thermal energy transfer between first and second passages, the latter are arranged so each first passage is in thermal communication with an associated second passage along substantially its entire length, and vice versa with respect to the second passages. The heat exchangers may be stacked to achieve a modular heat exchange assembly (300). Certain heat exchangers in the assembly may be designed slightly differently than other heat exchangers to address changes in fluid properties during transport through the heat exchanger, so as to enhance overall thermal effectiveness of the assembly.

  8. Counterflow Regolith Heat Exchanger

    NASA Technical Reports Server (NTRS)

    Zubrin, Robert; Jonscher, Peter

    2013-01-01

    A problem exists in reducing the total heating power required to extract oxygen from lunar regolith. All such processes require heating a great deal of soil, and the heat energy is wasted if it cannot be recycled from processed material back into new material. The counterflow regolith heat exchanger (CoRHE) is a device that transfers heat from hot regolith to cold regolith. The CoRHE is essentially a tube-in-tube heat exchanger with internal and external augers attached to the inner rotating tube to move the regolith. Hot regolith in the outer tube is moved in one direction by a right-hand - ed auger, and the cool regolith in the inner tube is moved in the opposite direction by a left-handed auger attached to the inside of the rotating tube. In this counterflow arrangement, a large fraction of the heat from the expended regolith is transferred to the new regolith. The spent regolith leaves the heat exchanger close to the temperature of the cold new regolith, and the new regolith is pre-heated close to the initial temperature of the spent regolith. Using the CoRHE can reduce the heating requirement of a lunar ISRU system by 80%, reducing the total power consumption by a factor of two. The unique feature of this system is that it allows for counterflow heat exchange to occur between solids, instead of liquids or gases, as is commonly done. In addition, in variants of this concept, the hydrogen reduction can be made to occur within the counterflow heat exchanger itself, enabling a simplified lunar ISRU (in situ resource utilization) system with excellent energy economy and continuous nonbatch mode operation.

  9. DESIGN OF A COMPACT HEAT EXCHANGER FOR HEAT RECUPERATION FROM A HIGH TEMPERATURE ELECTROLYSIS SYSTEM

    SciTech Connect

    G. K. Housley; J.E. O'Brien; G.L. Hawkes

    2008-11-01

    Design details of a compact heat exchanger and supporting hardware for heat recuperation in a high-temperature electrolysis application are presented. The recuperative heat exchanger uses a vacuum-brazed plate-fin design and operates between 300 and 800°C. It includes corrugated inserts for enhancement of heat transfer coefficients and extended heat transfer surface area. Two recuperative heat exchangers are required per each four-stack electrolysis module. The heat exchangers are mated to a base manifold unit that distributes the inlet and outlet flows to and from the four electrolysis stacks. Results of heat exchanger design calculations and assembly details are also presented.

  10. Monogroove liquid heat exchanger

    NASA Technical Reports Server (NTRS)

    Brown, Richard F. (Inventor); Edelstein, Fred (Inventor)

    1990-01-01

    A liquid supply control is disclosed for a heat transfer system which transports heat by liquid-vapor phase change of a working fluid. An assembly (10) of monogroove heat pipe legs (15) can be operated automatically as either heat acquisition devices or heat discharge sources. The liquid channels (27) of the heat pipe legs (15) are connected to a reservoir (35) which is filled and drained by respective filling and draining valves (30, 32). Information from liquid level sensors (50, 51) on the reservoir (35) is combined (60) with temperature information (55) from the liquid heat exchanger (12) and temperature information (56) from the assembly vapor conduit (42) to regulate filling and draining of the reservoir (35), so that the reservoir (35) in turn serves the liquid supply/drain needs of the heat pipe legs (15), on demand, by passive capillary action (20, 28).

  11. Heat exchanger restart evaluation

    SciTech Connect

    Morrison, J.M.; Hirst, C.W.; Lentz, T.F.

    1992-02-28

    On December 24, 1991, the K-Reactor was in the shutdown mode with full AC process water flow and full cooling water flow. Safety rod testing was being performed as part of the power ascension testing program. The results of cooling water samples indicated tritium concentrations higher than allowable. Further sampling and testing confirmed a Process Water System to Cooling Water System leak in heat exchanger 4A (HX 4A). The heat exchanger was isolated and the plant shutdown. Heat exchanger 4kA was removed from the plant and moved to C-Area prior to performing examinations and diagnostic testing. This included locating and identifying the leaking tube or tubes, eddy current examination of the leaking tube and a number of adjacent tubes, visually inspecting the leaking tube from both the inside as well as the area surrounding the failure mechanism. In addition ten other tubes that either exhibited eddy current indications or would represent a baseline condition were removed from heat exchanger 4A for metallurgical examination. Additional analysis and review of heat exchanger leakage history was performed to determine if there are any patterns which can be used for predictive purposes. Compensatory actions have been taken to improve the sensitivity and response time to any future events of this type. The results of these actions are summarized herein.

  12. Heat exchanger restart evaluation

    SciTech Connect

    Morrison, J.M.; Hirst, C.W.; Lentz, T.F.

    1992-03-18

    On December 24, 1991, the K-Reactor was in the shutdown mode with full AC process water flow and full cooling water flow. Safety rod testing was being performed as part of the power ascension testing program. The results of cooling water samples indicated tritium concentrations higher than allowable. Further sampling and testing confirmed a Process Water System to Cooling Water System leak in heat exchanger 4A (HX 4A). The heat exchanger was isolated and the plant shutdown. Heat exchanger 4A was removed from the plant and moved to C-Area prior to performing examinations and diagnostic testing. This included locating and identifying the leaking tube or tubes, eddy current examination of the leaking tube and a number of adjacent tubes, visually inspecting the leaking tube from both the inside as well as the area surrounding the identified tube. The leaking tube was removed and examined metallurgically to determine the failure mechanism. In addition ten other tubes that either exhibited eddy current indications or would represent a baseline condition were removed from heat exchanger 4A for metallurgical examination. Additional analysis and review of heat exchanger leakage history was performed to determine if there are any patterns which can be used for predictive purposes. Compensatory actions have been taken to improve the sensitivity and response time to any future events of this type. The results of these actions are summary herein.

  13. Heat exchanger restart evaluation

    SciTech Connect

    Morrison, J.M.; Hirst, C.W.; Lentz, T.F.

    1992-03-18

    On December 24, 1991, the K-Reactor was in the shutdown mode with full AC process water flow and full cooling water flow. Safety rod testing was being performed as part of the power ascension testing program. The results of cooling water samples indicated tritium concentrations higher than allowable. Further sampling and testing confirmed a Process Water System to Cooling Water System leak in heat exchanger 4A (HX 4A). The heat exchanger was isolated and the plant shutdown. Heat exchanger 4A was removed from the plant and moved to C-Area prior to performing examinations and diagnostic testing. This included locating and identifying the leaking tube or tubes, eddy current examination of the leaking tube and a number of adjacent tubes, visually inspecting the leaking tube from both the inside as well as the area surrounding the identified tube. The leaking tube was removed and examined metallurgically to determine the failure mechanism. In addition ten other tubes that either exhibited eddy current indications or would represent a baseline condition were removed from heat exchanger 4A for metallurgical examination. Additional analysis and review of heat exchanger leakage history was performed to determine if there are any patterns which can be used for predictive purposes. Compensatory actions have been taken to improve the sensitivity and response time to any future events of this type. The results of these actions are summarized.

  14. Downhole heat exchangers

    SciTech Connect

    Culver, G.; Lund, J.W.

    1999-09-01

    The downhole heat exchanger (DHE) eliminates the problem of disposal of geothermal fluid, since only heat is taken from the well. The exchanger consists of a system of pipes or tubes suspended in the well through which clean secondary water is pumped or allowed to circulate by natural convection. These systems offer substantial economic savings over surface heat exchangers where a single-well system is adequate (typically less than 0.8 MWt, with well depths up to about 500 ft) and may be economical under certain conditions at well depths to 1500 ft. Several designs have proven successful; but, the most popular are a simple hairpin loop or multiple loops of iron pipe (similar to the tubes in a U-tube and shell exchanger) extending to near the well bottom. An experimental design consisting of multiple small tubes with headers at each end suspended just below the water surface appears to offer economic and heating capacity advantages. The paper describes design and construction details and New Zealand`s experience with downhole heat exchangers.

  15. Heat transfer coefficients for staggered arrays of short pin fins

    NASA Technical Reports Server (NTRS)

    Vanfossen, G. J.

    1981-01-01

    Short pin fins are often used to increase that heat transfer to the coolant in the trailing edge of a turbine blade. Due primarily to limits of casting technology, it is not possible to manufacture pins of optimum length for heat transfer purposes in the trailing edge region. In many cases the pins are so short that they actually decrease the total heat transfer surface area compared to a plain wall. A heat transfer data base for these short pins is not available in the literature. Heat transfer coefficients on pin and endwall surfaces were measured for several staggered arrays of short pin fins. The measured Nusselt numbers when plotted versus Reynolds numbers were found to fall on a single curve for all surfaces tested. The heat transfer coefficients for the short pin fins (length to diameter ratios of 1/2 and 2) were found to be about a factor of two lower than data from the literature for longer pin arrays (length to diameter ratios of about 8).

  16. Heat transfer coefficients for staggered arrays of short pin fins

    NASA Technical Reports Server (NTRS)

    Vanfossen, G. J.

    1981-01-01

    Short pin fins are often used to increase the heat transfer to the coolant in the trailing edge of a turbine blade. Due primarily to limits of casting technology, it is not possible to manufacture pins of optimum length for heat transfer purposes in the trailing edge region. In many cases the pins are so short that they actually decrease the total heat transfer surface area compared to a plain wall. A heat transfer data base for these short pins is not available in the literature. Heat transfer coefficients on pin and endwall surfaces were measured for several staggered arrays of short pin fins. The measured Nusselt numbers when plotted versus Reynolds numbers were found to fall on a single curve for all surfaces tested. The heat transfer coefficients for the short pin fins (length to diameter ratios of 1/2 and 2) were found to be about a factor of two lower than data from the literature for longer pin arrays (length to diameter ratios of about 8).

  17. Chimney heat exchanger

    SciTech Connect

    Whiteley, I.C.

    1981-09-01

    A heat exchanger for installation on the top of a chimney of a building includes a housing having a lower end receiving the top of the chimney and an upper end with openings permitting the escape of effluent from the chimney and a heat exchanger assembly disposed in the housing including a central chamber and a spirally arranged duct network defining an effluent spiral path between the top of the chimney and the central chamber and a fresh air spiral path between an inlet disposed at the lower end of the housing and the central chamber, the effluent and fresh air spiral paths being in heat exchange relationship such that air passing through the fresh air spiral path is heated by hot effluent gases passing upward through the chimney and the effluent spiral path for use in heating the building. A pollution trap can be disposed in the central chamber of the heat exchanger assembly for removing pollutants from the effluent, the pollution trap including a rotating cage carrying pumice stones for absorbing pollutants from the effluent with the surface of the pumice gradually ground off to reveal fresh stone as the cage rotates.

  18. Modular heat exchanger

    DOEpatents

    Culver, Donald W.

    1978-01-01

    A heat exchanger for use in nuclear reactors includes a heat exchange tube bundle formed from similar modules each having a hexagonal shroud containing a large number of thermally conductive tubes which are connected with inlet and outlet headers at opposite ends of each module, the respective headers being adapted for interconnection with suitable inlet and outlet manifold means. In order to adapt the heat exchanger for operation in a high temperature and high pressure environment and to provide access to all tube ports at opposite ends of the tube bundle, a spherical tube sheet is arranged in sealed relation across the chamber with an elongated duct extending outwardly therefrom to provide manifold means for interconnection with the opposite end of the tube bundle.

  19. Method for making heat exchange tubes

    SciTech Connect

    Cunningham, J.L.; Campbell, B.J.

    1987-09-15

    This patent describes a method of making a heat exchange tube from difficult to work materials such as titanium and stainless steel in a single finning pass. It consists of inserting a mandrel having at least a first larger diameter portion and a second smaller diameter portion inside a plain tube. Then move the axes of a rotating disc carrying finning arbors toward the tube so that first and second sets of discs on the arbors, which are separated from each other by a spacer member, will sequentially force portions of the tube toward the first and second portions of the mandrel. The first set of discs serve to initially form the fins on the tube to at least approximately their final outside diameter and the second set of discs, whose discs are axially spaced so as to have a greater pitch than the discs of the first set, serve to reduce the root diameter of the fins previously formed by the first set of discs without substantially changing the outer diameter of the fins formed by the first set of discs. The greater pitch of the second set of discs causes an elongation of the tube and reduces its tendency to twist during finning.

  20. Heat exchanger panel

    NASA Technical Reports Server (NTRS)

    Warburton, Robert E. (Inventor); Cuva, William J. (Inventor)

    2005-01-01

    The present invention relates to a heat exchanger panel which has broad utility in high temperature environments. The heat exchanger panel has a first panel, a second panel, and at least one fluid containment device positioned intermediate the first and second panels. At least one of the first panel and the second panel have at least one feature on an interior surface to accommodate the at least one fluid containment device. In a preferred embodiment, each of the first and second panels is formed from a high conductivity, high temperature composite material. Also, in a preferred embodiment, the first and second panels are joined together by one or more composite fasteners.

  1. Microtube strip heat exchanger

    SciTech Connect

    Doty, F.D.

    1991-10-16

    This progress report is for the September--October 1991 quarter. We have demonstrated feasibility of higher specific conductance by a factor of five than any other work in high-temperature gas-to-gas exchangers. These laminar-flow, microtube exchangers exhibit extremely low pressure drop compared to alternative compact designs under similar conditions because of their much shorter flow length and larger total flow area for lower flow velocities. The design appears to be amenable to mass production techniques, but considerable process development remains. The reduction in materials usage and the improved heat exchanger performance promise to be of enormous significance in advanced engine designs and in cryogenics.

  2. Finned Carbon-Carbon Heat Pipe with Potassium Working Fluid

    NASA Technical Reports Server (NTRS)

    Juhasz, Albert J.

    2010-01-01

    This elemental space radiator heat pipe is designed to operate in the 700 to 875 K temperature range. It consists of a C-C (carbon-carbon) shell made from poly-acrylonitride fibers that are woven in an angle interlock pattern and densified with pitch at high process temperature with integrally woven fins. The fins are 2.5 cm long and 1 mm thick, and provide an extended radiating surface at the colder condenser section of the heat pipe. The weave pattern features a continuous fiber bath from the inner tube surface to the outside edges of the fins to maximize the thermal conductance, and to thus minimize the temperature drop at the condenser end. The heat pipe and radiator element together are less than one-third the mass of conventional heat pipes of the same heat rejection surface area. To prevent the molten potassium working fluid from eroding the C C heat pipe wall, the shell is lined with a thin-walled, metallic tube liner (Nb-1 wt.% Zr), which is an integral part of a hermetic metal subassembly which is furnace-brazed to the inner surface of the C-C tube. The hermetic metal liner subassembly includes end caps and fill tubes fabricated from the same Nb-1Zr alloy. A combination of laser and electron beam methods is used to weld the end caps and fill tubes. A tungsten/inert gas weld seals the fill tubes after cleaning and charging the heat pipes with potassium. The external section of this liner, which was formed by a "Uniscan" rolling process, transitions to a larger wall thickness. This section, which protrudes beyond the C-C shell, constitutes the "evaporator" part of the heat pipe, while the section inside the shell constitutes the condenser of the heat pipe (see figure).

  3. New Configurations of Micro Plate-Fin Heat Sink to Reduce Coolant Pumping Power

    NASA Astrophysics Data System (ADS)

    Rezania, A.; Rosendahl, L. A.

    2012-06-01

    The thermal resistance of heat exchangers has a strong influence on the electric power produced by a thermoelectric generator (TEG). In this work, a real TEG device is applied to three configurations of micro plate-fin heat sink. The distance between certain microchannels is varied to find the optimum heat sink configuration. The particular focus of this study is to reduce the coolant mass flow rate by considering the thermal resistances of the heat sinks and, thereby, to reduce the coolant pumping power in the system. The three-dimensional governing equations for the fluid flow and the heat transfer are solved using the finite-volume method for a wide range of pressure drop laminar flows along the heat sink. The temperature and the mass flow rate distribution in the heat sink are discussed. The results, which are in good agreement with previous computational studies, show that using suggested heat sink configurations reduces the coolant pumping power in the system.

  4. Boundary element method applied to a gas-fired pin-fin-enhanced heat pipe

    SciTech Connect

    Andraka, C.E.; Knorovsky, G.A.; Drewien, C.A.

    1998-02-01

    The thermal conduction of a portion of an enhanced surface heat exchanger for a gas fired heat pipe solar receiver was modeled using the boundary element and finite element methods (BEM and FEM) to determine the effect of weld fillet size on performance of a stud welded pin fin. A process that could be utilized by others for designing the surface mesh on an object of interest, performing a conversion from the mesh into the input format utilized by the BEM code, obtaining output on the surface of the object, and displaying visual results was developed. It was determined that the weld fillet on the pin fin significantly enhanced the heat performance, improving the operating margin of the heat exchanger. The performance of the BEM program on the pin fin was measured (as computational time) and used as a performance comparison with the FEM model. Given similar surface element densities, the BEM method took longer to get a solution than the FEM method. The FEM method creates a sparse matrix that scales in storage and computation as the number of nodes (N), whereas the BEM method scales as N{sup 2} in storage and N{sup 3} in computation.

  5. Study on heat transfer of heat exchangers in the Stirling engine - Performance of heat exchangers in the test Stirling engine

    NASA Astrophysics Data System (ADS)

    Kanzaka, Mitsuo; Iwabuchi, Makio

    1992-11-01

    The heat transfer performance of the actual heat exchangers obtained from the experimental results of the test Stirling engine is presented. The heater for the test engine has 120 heat transfer tubes that consist of a bare-tube part and a fin-tube part. These tubes are located around the combustion chamber and heated by the combustion gas. The cooler is the shell-and-tube-type heat exchanger and is chilled by water. It is shown that the experimental results of heat transfer performance of the heater and cooler of the test Stirling engine are in good agreement with the results calculated by the correlation proposed in our previous heat transfer study under the periodically reversing flow condition. Our correlation is thus confirmed to be applicable to the evaluation of the heat transfer coefficient and the thermal design of the heat exchangers in the Stirling engine.

  6. Pressure loss and heat transfer in a toothed finned heat transfer medium

    NASA Astrophysics Data System (ADS)

    Ebeling, W. D.; Leidinger, B. J. G.

    Thermohydraulic investigation was carried out in a special toothed-finned geometry, which was provided for increasing heat transfer in an evaporator cooler. The evaporator cooler has applications in space navigation. The toothed-finned heat carrier was used in a counter current, with a view to simplifying the heat transfer coefficient evaluation, from the temperature and volume flows measured. Test results obtained confirmed the suitability of this test arrangement. Relationships were derived from test results, for the pressure loss coefficient and the Nusselt number, with regard to the Reynolds number for this determined finned geometry.

  7. Influence of heating load on heat transfer characteristics in micro-pin-fin arrays

    NASA Astrophysics Data System (ADS)

    Guan, Ning; Luan, Tao; Jiang, Guilin; Liu, Zhi-Gang; Zhang, Cheng-Wu

    2016-02-01

    Experimental investigations were carried out to explore the convective heat transfer in micro pin-fins with different aspect ratios, and the influence of heating load on Nusselt numbers in micro pin-fins with liquid water as working fluid were investigated. The mechanism of convective heat transfer in micro pin-fins at different heating load were studied by 3-D numerical investigations, and the relationships of thermal physical properties change, the end wall effect and axial thermal conduction with Nu numbers in micro pin-fins were analysed. It was found that the thickness of boundary layer was decreased as much as 33.3 % attributed to the destructive effect of thermal physical properties change, and convective heat transfer in the micro pin-fin channel was more than 20 % enhanced by the flow disturbance caused by the increase of temperature difference. The discrepancy of Nu in micro pin-fin channel with different aspect ratios reached 34.59 %, and this discrepancy was reduced by the increase of heating load. The maximum value of impact factors of dynamic viscosity and thermal conductivity on the Nu in micro-pin-fins reached 25.02 and 7.68 %, respectively.

  8. Heat exchanger-accumulator

    DOEpatents

    Ecker, Amir L.

    1980-01-01

    What is disclosed is a heat exchanger-accumulator for vaporizing a refrigerant or the like, characterized by an upright pressure vessel having a top, bottom and side walls; an inlet conduit eccentrically and sealingly penetrating through the top; a tubular overflow chamber disposed within the vessel and sealingly connected with the bottom so as to define an annular outer volumetric chamber for receiving refrigerant; a heat transfer coil disposed in the outer volumetric chamber for vaporizing the liquid refrigerant that accumulates there; the heat transfer coil defining a passageway for circulating an externally supplied heat exchange fluid; transferring heat efficiently from the fluid; and freely allowing vaporized refrigerant to escape upwardly from the liquid refrigerant; and a refrigerant discharge conduit penetrating sealingly through the top and traversing substantially the length of the pressurized vessel downwardly and upwardly such that its inlet is near the top of the pressurized vessel so as to provide a means for transporting refrigerant vapor from the vessel. The refrigerant discharge conduit has metering orifices, or passageways, penetrating laterally through its walls near the bottom, communicating respectively interiorly and exteriorly of the overflow chamber for controllably carrying small amounts of liquid refrigerant and oil to the effluent stream of refrigerant gas.

  9. Heat exchanger tube mounts

    DOEpatents

    Wolowodiuk, W.; Anelli, J.; Dawson, B.E.

    1974-01-01

    A heat exchanger in which tubes are secured to a tube sheet by internal bore welding is described. The tubes may be moved into place in preparation for welding with comparatively little trouble. A number of segmented tube support plates are provided which allow a considerable portion of each of the tubes to be moved laterally after the end thereof has been positioned in preparation for internal bore welding to the tube sheet. (auth)

  10. An experimental and numerical investigation of air side heat transfer and flow characteristics on finned plate configuration

    NASA Astrophysics Data System (ADS)

    Gu, Lihao; Ling, Xiang; Peng, Hao

    2012-10-01

    In this paper, a new type of finned plate heat exchanger (FPHE) is presented to recover the waste heat from exhaust flue gases. A finned plate configuration causes low pressure drop and it is especially appropriate for heat transfer at the flue gas side. Meanwhile, this paper presents a detailed experimental and numerical study of convection heat transfer and pressure drop of the new structure. Three-dimensional numerical simulation results using the CFD code FLUENT6.3 were compared with experimental data to select the best model. The heat transfer and pressure drop with different geometry pattern was then studied numerically using the selected model. And the velocity field and temperature distribution of air flow in the finned plate channel are presented with different geometry patterns. These results provide insight into improved designs of FPHEs.

  11. Prediction of Heat Transfer Characteristics of Binary Refrigerant Mixtures in a Plate-Fin Condenser

    NASA Astrophysics Data System (ADS)

    Yara, Tomoyasu; Koyama, Shigeru

    The heat transfer characteristics of binary refrigerant mixtures in a plate-fin condenser are experimentally investigated using a vapor compression heat transformer, in which binary refrigerant mixtures of R 134a/ R 123 are used as the working fluid and water is used as both heat sink and source. Pure refrigerants of R 22 and R 134a are also tested as the working fluid. The experimental ranges of heat flux and mass velocity are from 2 to 20 kW/m2 and from 50 to 100 kg/m2s, respectively. The heat transfer characteristics of the condensation and vapor single-phase flow of pure and mixed refrigerants are discussed, and empirical correlation equations of the condensate heat transfer and vapor single-phase heat transfer are proposed. The correlation equation of water-side heat transfer is also presented. Combining these correlation equations with a correlation equation of vapor mass transfer based on the Chilton-Colburn analogy, a prediction model for condensation of the binary refrigerant mixtures in a plate-fin heat exchanger is developed based on the assumption that the phase equilibrium is only established at the vapor-liquid interface. The calculation results for the pure and mixed refrigerants agree well with the present experimental data. The mass transfer characteristics are also revealed from the calculation results.

  12. Heat transfer and flow characteristics of automotive brazed aluminum heat exchangers

    SciTech Connect

    Chang, Y.J.; Wang, C.C.; Chang, W.J.

    1994-12-31

    Extensive experiments on the heat transfer and pressure-drop characteristics of automotive brazed aluminum heat exchangers were carried out. In the present study, 18 samples of louvered-fin heat exchangers with different geometrical parameters, including tube width, louver length, louver pitch, fin height, and fin pitch, were tested in an induced open wind tunnel. Results are presented as plots of friction factor and Colburn j-factor against Reynolds number based on the volumetric hydraulic diameter in the range of 200 to 1,600. The comparisons between the Sahnoun and Webb model and the present test data are reported and good agreement was found. By introducing a finning factor, a simpler correlation of the Colburn j-factor is obtained. The heat transfer data for the Colburn j-factor are correlated within 10%, and those for the friction factor are within 15%.

  13. Pressure drop and heat transfer characteristics of circular and oblong low aspect ratio pin fins

    NASA Astrophysics Data System (ADS)

    Arora, S. C.; Messeh, W. A.

    1985-09-01

    The pressure drop and heat transfer characteristics of circular and oblong pin fins of height-to-diameter ratio of unity used to augment internal cooling of gas turbine airfoils are presented. Data were obtained for an array of 10 rows of staggered pin fins in a 25:1 aspect ratio channel, with both pins and channel endwalls forming the heat transfer surface. Results show that the array average friction factor increases with increasing blockage caused by different arrangement of pin fin geometries in the channel. The local heat transfer coefficient increases up to the 3rd row of pin fins and decreases thereafter. Oblong pin fins with gamma=90 deg (major axis parallel to the direction of flow) result in higher heat transfer rates and lower friction factor than the circular pin fins. For other orientations, oblong pin fins do not offer any advantage over circular pin fins for Re or = 20,000 (typical of small gas turbine engines).

  14. Experimental study on thermal performance of micro pin fin heat sinks with various shapes

    NASA Astrophysics Data System (ADS)

    Hua, Junye; Li, Gui; Zhao, Xiaobao; Li, Qihe

    2016-07-01

    This paper presents a visualization experimental study on the heat transfer characteristics of various shapes of micro pin fins, including the circular, ellipse, diamond, square and triangle shape micro pin fin arrays with various equivalent diameters and pin fin density. The influences study of different sizes and shapes of pin fin on Nusselt number and heat transfer coefficient have been conducted. The results show that with the increase of the flow rate, the temperature of the bottom of the experimental section decreases. And the Nusselt number of different shapes of micro pin fins increases with the increase of Re. In which, the heat transfer performance of the ellipse shape pin fin appears better among the other shapes of pin fins. However, the higher pin fin of the ellipse shape density leads to a weaker flow performance. Besides, the micro-scale heat transfer correlation between the Nusselt number and the Reynolds number is fitted based on the experimental data.

  15. Lightweight Long Life Heat Exchanger

    NASA Technical Reports Server (NTRS)

    Moore, E. K.

    1976-01-01

    A shuttle orbiter flight configuration aluminum heat exchanger was designed, fabricated, and tested. The heat exchanger utilized aluminum clad titanium composite parting sheets for protection against parting sheet pin hole corrosion. The heat exchanger, which is fully interchangeable with the shuttle condensing heat exchanger, includes slurpers (a means for removing condensed water from the downstream face of the heat exchanger), and both the core air passes and slurpers were hydrophilic coated to enhance wettability. The test program included performance tests which demonstrated the adequacy of the design and confirmed the predicted weight savings.

  16. High heat flux single phase heat exchanger

    NASA Technical Reports Server (NTRS)

    Valenzuela, Javier A.; Izenson, Michael G.

    1990-01-01

    This paper presents the results obtained to date in a program to develop a high heat flux, single-phase heat exchanger for spacecraft thermal management. The intended application is a net generation interface heat exchanger to couple the crew module water thermal bus to the two-phase ammonia main thermal bus in the Space Station Freedom. The large size of the interface heat exchanger is dictated by the relatively poor water-side heat transfer characteristics. The objective of this program is to develop a single-phase heat transfer approach which can achieve heat fluxes and heat transfer coefficients comparable to those of the evaporation ammonia side. A new heat exchanger concept has been developed to meet these objecties. The main feature of this heat exchanger is that it can achieve very high heat fluxes with a pressure drop one to two orders of magnitude lower than those of previous microchannel or jet impingement high heat flux heat exchangers. This paper describes proof-of-concept experiments performed in air and water and presents analytical model of the heat exchanger.

  17. Fault-Tolerant Heat Exchanger

    NASA Technical Reports Server (NTRS)

    Izenson, Michael G.; Crowley, Christopher J.

    2005-01-01

    A compact, lightweight heat exchanger has been designed to be fault-tolerant in the sense that a single-point leak would not cause mixing of heat-transfer fluids. This particular heat exchanger is intended to be part of the temperature-regulation system for habitable modules of the International Space Station and to function with water and ammonia as the heat-transfer fluids. The basic fault-tolerant design is adaptable to other heat-transfer fluids and heat exchangers for applications in which mixing of heat-transfer fluids would pose toxic, explosive, or other hazards: Examples could include fuel/air heat exchangers for thermal management on aircraft, process heat exchangers in the cryogenic industry, and heat exchangers used in chemical processing. The reason this heat exchanger can tolerate a single-point leak is that the heat-transfer fluids are everywhere separated by a vented volume and at least two seals. The combination of fault tolerance, compactness, and light weight is implemented in a unique heat-exchanger core configuration: Each fluid passage is entirely surrounded by a vented region bridged by solid structures through which heat is conducted between the fluids. Precise, proprietary fabrication techniques make it possible to manufacture the vented regions and heat-conducting structures with very small dimensions to obtain a very large coefficient of heat transfer between the two fluids. A large heat-transfer coefficient favors compact design by making it possible to use a relatively small core for a given heat-transfer rate. Calculations and experiments have shown that in most respects, the fault-tolerant heat exchanger can be expected to equal or exceed the performance of the non-fault-tolerant heat exchanger that it is intended to supplant (see table). The only significant disadvantages are a slight weight penalty and a small decrease in the mass-specific heat transfer.

  18. Theoretical determination of design parameters for an arrayed heat sink with vertical plate fins

    NASA Astrophysics Data System (ADS)

    Lin, Shiang-Jiun; Chen, Yi-Jin

    2016-05-01

    This paper employs theoretical approach to determine the adequate design parameters of an arrayed plate-fins heat sink based on maximizing heat flow. According to analyzed results, increasing the dimensions of configurative parameters does not always yield the significant increase in the heat flow. As the fin length and fin space increases until a critical value, the heat flow will significantly reduce the increment or decay, respectively.

  19. Heat exchanger performance monitoring guidelines

    SciTech Connect

    Stambaugh, N. ); Closser, W. Jr. ); Mollerus, F.J. )

    1991-12-01

    Fouling can occur in many heat exchanger applications in a way that impedes heat transfer and fluid flow and reduces the heat transfer or performance capability of the heat exchanger. Fouling may be significant for heat exchanger surfaces and flow paths in contact with plant service water. This report presents guidelines for performance monitoring of heat exchangers subject to fouling. Guidelines include selection of heat exchangers to monitor based on system function, safety function and system configuration. Five monitoring methods are discussed: the heat transfer, temperature monitoring, temperature effectiveness, delta P and periodic maintenance methods. Guidelines are included for selecting the appropriate monitoring methods and for implementing the selected methods. The report also includes a bibliography, example calculations, and technical notes applicable to the heat transfer method.

  20. Heat exchanger for electrothermal devices

    NASA Technical Reports Server (NTRS)

    Zavesky, Ralph J. (Inventor); Sovey, James S. (Inventor); Mirtich, Michael J. (Inventor); Marinos, Charalampus (Inventor); Penko, Paul F. (Inventor)

    1986-01-01

    An improved electrothermal device is disclosed. An electrothermal thruster utilizes a generally cylindrical heat exchanger chamber to convert electricity to heat which raises the propellant temperature. A textured, high emissivity heat element radiatively transfers heat to the inner wall of this chamber that is ion beam morphologically controlled for high absorptivity. This, in turn, raises the temperature of a porous heat exchanger material in an annular chamber surrounding the cylindrical chamber. Propellant gas flows through the annular chamber and is heated by the heat exchanger material.

  1. Condensing Heat Exchanger with Hydrophilic Antimicrobial Coating

    NASA Technical Reports Server (NTRS)

    Thomas, Christopher M. (Inventor); Ma, Yonghui (Inventor)

    2014-01-01

    A multi-layer antimicrobial hydrophilic coating is applied to a substrate of anodized aluminum, although other materials may form the substrate. A silver layer is sputtered onto a thoroughly clean anodized surface of the aluminum to about 400 nm thickness. A layer of crosslinked, silicon-based macromolecular structure about 10 nm thickness overlies the silver layer, and the outermost surface of the layer of crosslinked, silicon-based macromolecular structure is hydroxide terminated to produce a hydrophilic surface with a water drop contact angle of less than 10.degree.. The coated substrate may be one of multiple fins in a condensing heat exchanger for use in the microgravity of space, which has narrow channels defined between angled fins such that the surface tension of condensed water moves water by capillary flow to a central location where it is pumped to storage. The antimicrobial coating prevents obstruction of the capillary passages.

  2. Heat exchange assembly

    DOEpatents

    Lowenstein, Andrew; Sibilia, Marc; Miller, Jeffrey; Tonon, Thomas S.

    2004-06-08

    A heat exchange assembly comprises a plurality of plates disposed in a spaced-apart arrangement, each of the plurality of plates includes a plurality of passages extending internally from a first end to a second end for directing flow of a heat transfer fluid in a first plane, a plurality of first end-piece members equaling the number of plates and a plurality of second end-piece members also equaling the number of plates, each of the first and second end-piece members including a recessed region adapted to fluidly connect and couple with the first and second ends of the plate, respectively, and further adapted to be affixed to respective adjacent first and second end-piece members in a stacked formation, and each of the first and second end-piece members further including at least one cavity for enabling entry of the heat transfer fluid into the plate, exit of the heat transfer fluid from the plate, or 180.degree. turning of the fluid within the plate to create a serpentine-like fluid flow path between points of entry and exit of the fluid, and at least two fluid conduits extending through the stacked plurality of first and second end-piece members for providing first fluid connections between the parallel fluid entry points of adjacent plates and a fluid supply inlet, and second fluid connections between the parallel fluid exit points of adjacent plates and a fluid discharge outlet so that the heat transfer fluid travels in parallel paths through each respective plate.

  3. Experimental Study of Heat Transfer of Parallel Louvered Fins through Laser Holographic Interferometry

    NASA Astrophysics Data System (ADS)

    Kurosaki, Yasuo; Kashiwagi, Takao; Kobayashi, Hiroki; Uzuhashi, Hideo; Tang, Xue-Zhong

    The objectives of this paper are experimentally to study the detail of heat transfer in louver-array and to propose the preferable geometrical arrangement of louver from the point of view of improving the performance of heat exchanger. Our approach toward that goal was made via the following steps. The first step in the present study is optically to visualize the temperature field around louvers by employing the primitive heated flat louver model consisting of thin bakelite plate and thin Nichrome foil as a heater, and to measure the heat transfer coefficients of the louvers. Our experiment achieved to visualize the isotherms through the Laser holographic interferometry. The clear isotherms for various louver arrangements were successfully obtained. The thermal boundary layer and wake generated by an upstream louver were clearly observed to extend toward downstream ones ; the heat transfer coefficients obtained by the experiment were virtually affected by those boundary layers and wakes. The second step is to examine the plausible arrangement of louver for enhancing heat transfer. The slight position shift of downstream louvers toward the direction avoiding the influence of heated air wake was proposed from both the observation of isotherms and the measurement of heat transfer coefficients in staggered louver array ; its effectiveness was varified by the experiment. The improvement of the performance of heat exchanger is expected by applying the proposed minor rearrangement of louver array for enhanced fins.

  4. Quasi-stationary phase change heat transfer on a fin

    NASA Astrophysics Data System (ADS)

    Orzechowski, Tadeusz; Stokowiec, Katarzyna

    2016-03-01

    The paper presents heat transfer research basing on a long fin with a circular cross-section. Its basis is welded to the pipe where the hot liquid paraffin, having a temperature of 70°C at the inflow, is pumped. The analyzed element is a recurrent part of a refrigeration's condenser, which is immersed in a paraffin. The temperature of the inflowing liquid is higher than the temperature of the melting process for paraffin, which allows the paraffin to liquify. The temperature at the basis of the rib changes and it is assumed that the heat transfer is quasi-stationary. On this basis the estimation of the mean value of heat transfer coefficient was conducted. The unsteady thermal field of the investigated system was registered with an infrared camera V50 produced by a Polish company Vigo System. This device is equipped with a microbolometric detector with 384 × 288 elements and the single pixel size 25 × 25 μm. Their thermal resolution is lower than 70 mK at a temperature of 30 °C. The camera operates at 7,5 ÷ 14 μm long-wave infrared radiation range. For a typical lens 35 mm the special resolution is 0.7 mrad. The result of the calculations is mean heat transfer coefficient for the considered time series. It is equal to 50 W m -2 K-1 and 47 W m -2 K-1 on the left and right side of the fin, respectively. The distance between the experimental data and the curve approximating the temperature distribution was assessed with the standard deviation, Sd = 0.04 K.

  5. Heat exchanger bypass test report

    SciTech Connect

    De Vries, M.L.

    1995-01-26

    This test report documents the results that were obtained while conducting the test procedure which bypassed the heat exchangers in the HC-21C sludge stabilization process. The test was performed on November 15, 1994 using WHC-SD-CP-TC-031, ``Heat Exchanger Bypass Test Procedure.`` The primary objective of the test procedure was to determine if the heat exchangers were contributing to condensation of moisture in the off-gas line. This condensation was observed in the rotameters. Also, a secondary objective was to determine if temperatures at the rotameters would be too high and damage them or make them inaccurate without the heat exchangers in place.

  6. Testing and analysis of load-side immersed heat exchangers for solar domestic hot water systems

    SciTech Connect

    Farrington, R.B.; Bingham, C.E.

    1987-10-01

    This report describes work to determine the performance of load-side heat exchangers for use in residential solar domestic hot water systems. We measured the performance of four heat exchangers: a smooth coil and a finned coil having heat transfer areas of 2.5 m/sup 2/ (26 ft/sup 2/) and those having areas of 1.7 m/sup 2/ (19 ft/sup 2/). A numerical model using the thermal network program MITAS was constructed, and results were compared to the experimental results. Research showed a smooth coil with only 70% of the surface area of a finned coil performed better than the finned coil. Also, load-side heat exchangers can maintain and enhance stratification in storage tanks, permitting the use of control strategies that take advantage of stratified storage tanks to increase system performance. The analytical model, which agreed reasonably well with the experimental results, was used to vary heat exchanger flow rate and area and initial tank temperature for both a smooth- and a finned-coil heat exchanger. Increasing the heat exchanger flow rate and area results in higher heat transfer rates but not necessarily optimal performance. Lower initial tank temperatures resulted in reduced tank stratification. The smooth heat exchanger outperformed the finned heat exchanger with the same outside surface area. 15 refs., 37 figs., 9 tabs.

  7. The Design on the Refrigerant Circuit of Heat Exchanger

    NASA Astrophysics Data System (ADS)

    Wang, Kaijian; Fukaya, Masaharu; Ding, Guoliang; Liu, Jian

    The efficient design method for plate fin-and-tube heat exchanger has been developed with the directed graph(graph-based traversal method) in graph theory and the distribution model of refrigerant flow rate. According to the experimental results of heat exchanger which is carried out under 98 experimental conditions of the changes of air velocity and the refrigerant flow rates and so on, by using the refrigerant R 22 and R 410A, we conclude the following deviations of analysis: the heat transfer rate is within ±10% and the pressure drop is within ±20%. Now this design method has being used for designing plate fin-and-tube heat exchangers efficiently.

  8. Expert System For Heat Exchanger

    NASA Technical Reports Server (NTRS)

    Bagby, D. Gordon; Cormier, Reginald A.

    1991-01-01

    Diagnosis simplified for non-engineers. Developmental expert-system computer program assists operator in controlling, monitoring operation, diagnosing malfunctions, and ordering repairs of heat-exchanger system dissipating heat generated by 20-kW radio transmitter. System includes not only heat exchanger but also pumps, fans, sensors, valves, reservoir, and associated plumbing. Program conceived to assist operator while avoiding cost of keeping engineer in full-time attendance. Similar programs developed for heating, ventilating, and air-conditioning systems.

  9. Graphite Foam Heat Exchangers for Thermal Management

    SciTech Connect

    Klett, J.W.

    2004-06-07

    Improved thermal management is needed to increase the power density of electronic and more effectively cool electronic enclosures that are envisioned in future aircraft, spacecraft and surface ships. Typically, heat exchanger cores must increase in size to more effectively dissipate increased heat loads, this would be impossible in many cases, thus improved heat exchanger cores will be required. In this Phase I investigation, MRi aimed to demonstrate improved thermal management using graphite foam (Gr-foam) core heat exchangers. The proposed design was to combine Gr-foams from POCO with MRi's innovative low temperature, active metal joining process (S-Bond{trademark}) to bond Gr-foam to aluminum, copper and aluminum/SiC composite faceplates. The results were very favorable, so a Phase II SBIR with the MDA was initiated. This had primarily 5 tasks: (1) bonding, (2) thermal modeling, (3) cooling chip scale packages, (4) evaporative cooling techniques and (5) IGBT cold plate development. The bonding tests showed that the ''reflow'' technique with S-Bond{reg_sign}-220 resulted in the best and most consistent bond. Then, thermal modeling was used to design different chip scale packages and IGBT cold plates. These designs were used to fabricate many finned graphite foam heat sinks specifically for two standard type IC packages, the 423 and 478 pin chips. These results demonstrated several advantages with the foam. First, the heat sinks with the foam were lighter than the copper/aluminum sinks used as standards. The sinks for the 423 design made from foam were not as good as the standard sinks. However, the sinks made from foam for the 478 pin chips were better than the standard heat sinks used today. However, this improvement was marginal (in the 10-20% better regime). However, another important note was that the epoxy bonding technique resulted in heat sinks with similar results as that with the S-bond{reg_sign}, slightly worse than the S-bond{reg_sign}, but still

  10. High Temperature Heat Exchanger Project

    SciTech Connect

    Anthony E. Hechanova, Ph.D.

    2008-09-30

    The UNLV Research Foundation assembled a research consortium for high temperature heat exchanger design and materials compatibility and performance comprised of university and private industry partners under the auspices of the US DOE-NE Nuclear Hydrogen Initiative in October 2003. The objectives of the consortium were to conduct investigations of candidate materials for high temperature heat exchanger componets in hydrogen production processes and design and perform prototypical testing of heat exchangers. The initial research of the consortium focused on the intermediate heat exchanger (located between the nuclear reactor and hydrogen production plan) and the components for the hydrogen iodine decomposition process and sulfuric acid decomposition process. These heat exchanger components were deemed the most challenging from a materials performance and compatibility perspective

  11. Modular heat exchanger

    DOEpatents

    Giardina, A.R.

    1981-03-03

    A shell and tube heat exchanger is described having a plurality of individually removable tube bundle modules. A lattice of structural steel forming rectangular openings therein is placed at each end of a cylindrical shell. Longitudinal structural members are placed in the shell between corners of the rectangular openings situated on opposite ends of the shell. Intermediate support members interconnect the longitudinal supports so as to increase the longitudinal supports rigidity. Rectangular parallelepiped tube bundle modules occupy the space defined by the longitudinal supports and end supports and each include a rectangular tube sheet situated on each end of a plurality of tubes extending there through, a plurality of rectangular tube supports located between the tube sheets, and a tube bundle module stiffening structure disposed about the bundle's periphery and being attached to the tube sheets and tube supports. The corners of each tube bundle module have longitudinal framework members which are mateable with and supported by the longitudinal support members. Intermediate support members constitute several lattices, each of which is situated in a plane between the end support members. The intermediate support members constituting the several lattices extend horizontally and vertically between longitudinal supports of adjacent tube module voids. An alternative embodiment for intermediate support members constitute a series of structural plates situated at the corners of the module voids and having recesses therein for receiving the respective longitudinal support members adjacent thereto, protrusions separating the recesses, and a plurality of struts situated between protrusions of adjacent structural plates. 12 figs.

  12. Modular heat exchanger

    DOEpatents

    Giardina, Angelo R. [Marple Township, Delaware County, PA

    1981-03-03

    A shell and tube heat exchanger having a plurality of individually removable tube bundle modules. A lattice of structural steel forming rectangular openings therein is placed at each end of a cylindrical shell. Longitudinal structural members are placed in the shell between corners of the rectangular openings situated on opposite ends of the shell. Intermediate support members interconnect the longitudinal supports so as to increase the longitudinal supports rigidity. Rectangular parallelpiped tube bundle moldules occupy the space defined by the longitudinal supports and end supports and each include a rectangular tube sheet situated on each end of a plurality of tubes extending therethrough, a plurality of rectangular tube supports located between the tube sheets, and a tube bundle module stiffening structure disposed about the bundle's periphery and being attached to the tube sheets and tube supports. The corners of each tube bundle module have longitudinal framework members which are mateable with and supported by the longitudinal support members. Intermediate support members constitute several lattice, each of which is situate d in a plane between the end support members. The intermediate support members constituting the several lattice extend horizontally and vertically between longitudinal supports of adjacent tube module voids. An alternative embodiment for intermediate support members constitute a series of structural plates situated at the corners of the module voids and having recesses therein for receiving the respective longitudinal support members adjacent thereto, protrusions separating the recesses, and a plurality of struts situated between protrusions of adjacent structural plates.

  13. Selection and costing of heat exchangers

    NASA Astrophysics Data System (ADS)

    1992-12-01

    ESDU 92013 gives guidance on the selection of heat exchanger types for a given duty against various criteria; they include the general characteristics, together with such detailed aspects as the ranges of pressure and temperature appropriate, compatibility with the fluids involved, space and weight requirements, and cleaning accessibility and maintenance. That allows an initial choice to be made from 18 principal types of exchangers. The various types are all illustrated. A final choice can then be made between the feasible types on the basis of costs. Detailed costing data provided by manufacturers are tabulated as a function of heat load, operating pressure and the types of cold- and hot-side fluids for the following types of exchangers: shell-and-tube, double-pipe, printed-circuit, plate-fin, air-cooled and welded plate. Costing data are also tabulated as a function of heat load and the types of cold- and hot-side fluids for gasketed-plate exchangers. Seven worked examples of selection based on technical suitability and using the tabulated cost data illustrate fully the use of the information.

  14. Fluid flow and heat transfer of a power-law fluid in an internally finned tube with different fin lengths

    NASA Astrophysics Data System (ADS)

    Grabski, Jakub Krzysztof; Kołodziej, Jan Adam

    2016-06-01

    In the paper an analysis of fluid flow and heat transfer of a power-law fluid in an internally finned tube with different fin length is conducted. Nonlinear momentum equation of a power-law fluid flow and nonlinear energy equation are solved using the Picard iteration method. Then on each iteration step the solution of inhomogeneous equation consists of two parts: the general solution and the particular solution. Firstly the particular solution is obtained by interpolation of the inhomogeneous term by means of the radial basis functions and monomials. Then the general solution is obtained using the method of fundamental solutions and by fulfilling boundary conditions.

  15. Correlations for heat transfer and flow friction characteristics of compact plate-type heat exchangers

    NASA Astrophysics Data System (ADS)

    Tinaut, F. V.; Melgar, A.; Rahman Ali, A. A.

    1992-07-01

    Correlations for heat transfer and flow friction coefficients are provided for plane parallel plates and offset strip-fin plates over the ranges used in compact heat exchangers. Closed form expressions have been used to present these correlations. The proposed correlations allow one to adequately predict experimental data available for the heat exchanged and pressure losses in compact plate-type heat exchangers. The correlation cover continuously the full range from laminar to turbulent flow, for both short and long pipes. Suggestions to extend the correlations to other flow conditions are provided.

  16. Design of heat exchange element for plastic film heat exchanger

    NASA Astrophysics Data System (ADS)

    Guyer, E. C.; Brownell, D. L.

    1984-12-01

    This report presents the results of an effort to design a plastic film heat exchanger element (PFHX) suitable for use in an industrial heat pump evaporator. This report addresses the selection of materials, the expected flow and heat transfer behavior, and the mechanical design features of a parallel plate type exchanger that uses thin plastic films as the boundary between the two process fluids. Criteria for material selection are presented, candidate materials are reviewed, and material recommendations are provided. Heat transfer performance is addressed in terms of the overall or total coefficient of heat transfer between condensing steam and a confined falling film of water. Appropriate mechanical designs of water flow manifolds are described along with methods of fabrication and assembly. This report addresses only the individual heat exchange element.

  17. Heat transfer, erosion and acid condensation characteristics for novel H-type finned oval tube

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Zhao, X.; Tang, G.

    2015-09-01

    Low efficiency of heat transfer, acid corrosion and erosion of economizers affect the economy and security in coal-fired power plants significantly. The H-type finned oval tube is proposed to alleviate these problems. Based on the H-type finned oval tube, we investigated three novel types of fins, including bleeding dimples, longitudinal vortex generators (LVGs), and compound dimple-LVG. We considered the three aspects together, and obtained the heat transfer, acid condensation rate and erosion loss. The results show that the tube bank with the new structured fins can improve the performance on the three aspects, and the compound dimple-LVG performs the highest comprehensive effect.

  18. Heat exchanger with ceramic elements

    DOEpatents

    Corey, John A.

    1986-01-01

    An annular heat exchanger assembly includes a plurality of low thermal growth ceramic heat exchange members with inlet and exit flow ports on distinct faces. A mounting member locates each ceramic member in a near-annular array and seals the flow ports on the distinct faces into the separate flow paths of the heat exchanger. The mounting member adjusts for the temperature gradient in the assembly and the different coefficients of thermal expansion of the members of the assembly during all operating temperatures.

  19. Heat exchanger using graphite foam

    SciTech Connect

    Campagna, Michael Joseph; Callas, James John

    2012-09-25

    A heat exchanger is disclosed. The heat exchanger may have an inlet configured to receive a first fluid and an outlet configured to discharge the first fluid. The heat exchanger may further have at least one passageway configured to conduct the first fluid from the inlet to the outlet. The at least one passageway may be composed of a graphite foam and a layer of graphite material on the exterior of the graphite foam. The layer of graphite material may form at least a partial barrier between the first fluid and a second fluid external to the at least one passageway.

  20. Self-Heating Effects and Analog Performance Optimization of Fin-Type Field-Effect Transistors

    NASA Astrophysics Data System (ADS)

    Takahashi, Tsunaki; Beppu, Nobuyasu; Chen, Kunro; Oda, Shunri; Uchida, Ken

    2013-04-01

    The self-heating effects (SHEs) of bulk and silicon-on-insulator (SOI) fin-type field-effect transistors (FinFETs) and their impacts on circuit performance have been investigated on the basis of a realistic thermal conductivity of silicon. The heat dissipation via interconnect wires and interface thermal resistance in the high-κ gate stack were incorporated in simulations. It is shown that the depth of the shallow trench isolation (STI) of bulk FinFETs cannot be decreased to less than 100 nm owing to the increase in off-state leakage current. We observed that the thermal resistance Rth of SOI FinFETs greatly decreases upon thinning the buried oxide (BOX) layer. When the BOX thickness tBOX is less than 50 nm, the Rth of SOI FinFETs is smaller than that of bulk FinFETs with an STI thickness of 100 nm, indicating a lower operation temperature of the thin-BOX SOI FinFETs than that of bulk FinFETs. The lower operation temperature of the 5-nm BOX SOI FinFET was confirmed under a practical bias condition for analog operations. In fin width, Wfin, versus Rth characteristics, a strong Wfin dependence of Rth was observed only in the bulk FinFETs, implying that fluctuations in Wfin result in the variability of the operation temperature of the bulk FinFETs. Analog performance has been analyzed by calculating the cutoff frequency fT and the maximum oscillation frequency fmax. We demonstrated that both fT and fmax can be maximized in SOI FinFETs by optimizing tBOX with regard to electrical and thermal properties. Better analog performance, and hence the optimization of tBOX, are indispensable for the device design of a FinFET-based system-on-a-chip (SoC) platform.

  1. Thermal performance analysis of optimized hexagonal finned heat sinks in impinging air jet

    NASA Astrophysics Data System (ADS)

    Yakut, Kenan; Yeşildal, Faruk; Karabey, Altuǧ; Yakut, Rıdvan

    2016-04-01

    In this study, thermal performance analysis of hexagonal finned heat sinks which optimized according to the experimental design and optimization method of Taguchi were investigated. Experiments of air jet impingement on heated hexagonal finned heat sinks were carried out adhering to the L18(21*36) orthogonal array test plan. Optimum geometries were determined and named OH-1, OH-2. Enhancement efficiency with the first law of thermodynamics was analyzed for optimized heat sinks with 100, 150, 200 mm heights of hexagonal fin. Nusselt correlations were found out and variations of enhancement efficiency with Reynolds number presented in η-Re graphics.

  2. Phase Change Material Heat Exchangers

    NASA Video Gallery

    NASA’s Game Changing Development is taking on a technologydevelopment and demonstration effort to design, build, and test the next generation of Phase Change Material Heat Exchangers (PCM HXs) on ...

  3. Experimental Study on Cooling Heat Transfer of Supercritical Carbon Dioxide Inside Horizontal Micro-Fin Tubes

    NASA Astrophysics Data System (ADS)

    Kuwahara, Ken; Higashiiu, Shinya; Ito, Daisuke; Koyama, Shigeru

    This paper deals with the experimental study on cooling heat transfer of supercritical carbon dioxide inside micro-fin tubes. The geometrical parameters in micro-fin tubes used in the present study are 6.02 mm in outer diameter, 4.76 mm to 5.11 mm in average inner diameter, 0.15 mm to 0.24 mm in fin height, 5 to 25 in helix angle, 46 to 52 in number of fins and 1.4 to 2.3 in area expansion ratio. Heat transfer coefficients were measured at 8-10 MPa in pressure, 360-690 kg/(m2•s) in mass velocity and 20-75 °C in CO2 temperature. The measured heat transfer coefficients of micro-fin tubes were 1.4 to 2 times higher than those of the smooth tube having 4.42 in inner diameter. The predicted heat transfer coefficients using the correlation equation, which was developed for single-phase turbulent fluid flow inside micro-fin-tubes, showed large deviations to the measured values. The new correlation to predict cooling heat transfer coefficient of supercritical carbon dioxide inside micro-fin tubes was developed taking into account the shape of fins based on experimental data empirically. This correlation equation agreed within ±20% of almost all of the experimental data.

  4. Mathematical equations for heat conduction in the fins of air-cooled engines

    NASA Technical Reports Server (NTRS)

    Harper, R R; Brown, W B

    1923-01-01

    The problem considered in this report is that of reducing actual geometrical area of fin-cooling surface, which is, of course, not uniform in temperature, to equivalent cooling area at one definite temperature, namely, that prevailing on the cylinder wall at the point of attachment of the fin. This makes it possible to treat all the cooling surface as if it were part of the cylinder wall and 100 per cent effective. The quantities involved in the equations are the geometrical dimensions of the fin, thermal conductivity of the material composing it, and the coefficient of surface heat dissipation between the fin and the air streams.

  5. Heat exchanger and related methods

    SciTech Connect

    Turner, Terry D.; McKellar, Michael G.

    2015-12-22

    Heat exchangers include a housing having an inlet and an outlet and forming a portion of a transition chamber. A heating member may form another portion of the transition chamber. The heating member includes a first end having a first opening and a second end having a second opening larger than the first opening. Methods of conveying a fluid include supplying a first fluid into a transition chamber of a heat exchanger, supplying a second fluid into the transition chamber, and altering a state of a portion of the first fluid with the second fluid. Methods of sublimating solid particles include conveying a first fluid comprising a material in a solid state into a transition chamber, heating the material to a gaseous state by directing a second fluid through a heating member and mixing the first fluid and the second fluid.

  6. The effect of the transverse nonisothermality of a heat-exchange surface on its thermal characteristics

    NASA Astrophysics Data System (ADS)

    Manushin, E. A.; Dorokhov, A. M.

    1982-10-01

    Nusselt numbers have been obtained experimentally for heat-exchange surfaces with straight ducts of triangular cross section for the case of laminar flow of the heat transfer agent. It is found that the experimentally determined thermal performance of a surface having high heat conductivity is 25-45% better than that of a low-conductivity surface. It is concluded that the transverse heat conductivity of materials must be taken into account when designing plate-type and finned heat exchangers.

  7. Heat transfer simulation of motorcycle fins under varying velocity using CFD method

    NASA Astrophysics Data System (ADS)

    Shahril, K.; Mohd Kasim, Nurhayati Binti; Sabri, M.

    2013-12-01

    Motorcycle engine releases heat to the atmosphere through the mode of force convection. To solve this, fins are provided on the outer of the cylinder. The heat transfer rate is defined depending on the velocity of vehicle, fin geometry and the ambient temperature. Increasing the temperature difference between the object and the environment, increasing the convection heat transfer coefficient, or increasing the surface area of the object increases the heat transfer. Many experimental methods are available in literature to analyze the effect of these factors on the heat transfer rate. However, CFD analysis will be use to simulate the heat transfer of the engine block. ANSYS software is selected to run the simulation.

  8. FEM simulation for cold press forging forming of the round-fin heat sink

    NASA Astrophysics Data System (ADS)

    Wang, Kesheng; Han, Yu; Zhang, Haiyan; Zhang, Lihan

    2013-05-01

    In this paper, the finite element method is used to investigate the forming process of cold press forging for the round-fin heat sink in the automotive lighting. A series of simulations on the round-fin heat sink forming using the program DEFORM were carried out. The blank thickness and friction coefficient on the formation of round-fin were studied, and the tooling structure with counterpressure on the heat sink formation was also investigated. The results show that the blank thickness is very good for the round-fin formation, and the thicker the blank is, the better the round-fin can be formed; and also When both the punch-blank interface and the die-blank interface have the same value of friction factor, the larger value of friction factor is in favor of round-fin forming, the further investigation reveals that the friction at the punch-blank interface has more significant effect on preventing the initiation of flow-through compared with the friction at the die-blank interface, which implies that the punch-blank interface has more significant effect on the material flow in the formation of round-fin. Meanwhile, The tooling structure with counterpressure is helpful to the formation of round-fin heat sink, which not only ensures the height of each round-fin on the heat sink is uniform but also retards the initiation of flow-through on the reverse side of round-fin. In addition, the experiments of press forging process were conducted to validate the finite element analysis, and the simulation results are in good agreement with the experimental data.

  9. A novel trapezoid fin pattern applicable for air-cooled heat sink

    NASA Astrophysics Data System (ADS)

    Chen, Chien-Hung; Wang, Chi-Chuan

    2015-11-01

    The present study proposed a novel step or trapezoid surface design applicable to air-cooled heat sink under cross flow condition. A total of five heat sinks were made and tested, and the corresponding fin patterns are (a) plate fin; (b) step fin (step 1/3, 3 steps); (c) 2-step fin (step 1/2, 2 steps); (d) trapezoid fin (trap 1/3, cutting 1/3 length from the rear end) and (e) trapezoid fin (trap 1/2, cutting 1/2 length from the rear end). The design is based on the heat transfer augmentation via (1) longer perimeter of entrance region and (2) larger effective temperature difference at the rear part of the heat sink. From the test results, it is found that either step or trapezoid design can provide a higher heat transfer conductance and a lower pressure drop at a specified frontal velocity. The effective conductance of trap 1/3 design exceeds that of plate surface by approximately 38 % at a frontal velocity of 5 m s-1 while retains a lower pressure drop of 20 % with its surface area being reduced by 20.6 %. For comparisons exploiting the overall thermal resistance versus pumping power, the resultant thermal resistance of the proposed trapezoid design 1/3, still reveals a 10 % lower thermal resistance than the plate fin surface at a specified pumping power.

  10. A general method for the analysis of compact multifluid heat exchangers.

    NASA Technical Reports Server (NTRS)

    Demetri, E. P.; Platt, M.

    1972-01-01

    An analytical method of treating the complex heat-transfer processes involved in compact multifluid heat exchangers is described. The method is based on representing the heat transfer by means of the analogy between heat-transfer paths and electrical circuits. For plate-fin configurations, it includes the effects of heat exchange among nonadjacent fluids due to conduction through the fins of intervening passages. The application of the developed solution procedures to the design and analysis of multifluid heat exchangers is also discussed. Results obtained in using the electrical-analog method to examine the effects of conduction on performance are presented graphically in parametric form for a number of three-fluid plate-fin configurations. The discussion of the data presented includes a comparison with results given by alternative analytical procedures which neglect direct transfer between nonadjacent fluids.

  11. Prediction of Heat Transfer Characteristics of Binary Refrigerant Mixtures in a Falling Film Type Plate-fin Evaporator

    NASA Astrophysics Data System (ADS)

    Yara, Tomoyasu; Koyama, Shigeru

    This paper deals with the characteristics of heat transfer and pressure drop of R 22, R 134a pure refrigerant and R 134a/R123 refrigerant mixtures in a falling film type plate-fin evaporator. The refrigerants have been tested in the ranges of heat flux from 3 to 20 kW/m2 and mass velocity from 50 to 100 kg/m2s. It is clarified that heat transfer characteristics of evaporation in the present experimental range are not affected by shear stress. Taking the fin efficiency into consideration, a correlation equation of heat transfer coefficient is proposed. The characteristic of pressure drop is also proposed by modifying friction factor of Soliman's equation. Furthermore, a prediction model for evaporation of mixtures in a plate fin heat exchanger is developed based on the assumption that the phase equilibrium in a cross-section of the refrigerant path is established. The prediction results are in good agreement with the experimental data.

  12. Heat exchanger for electrothermal devices

    SciTech Connect

    Zavesky, R.J.; Sovey, J.S.; Mirtich, M.J.; Marinos, C.; Penko, P.F.

    1986-09-02

    A heat exchanger is described for heating a gaseous propellant to a temperature between about 200/sup 0/C and about 2200/sup 0/C in an electrothermal thruster having a nozzle comprising a hollow housing forming a cylindrical chamber adjacent to the nozzle, the hollow housing having a textured inner surface to provide high absorptivity and an oppositely disposed textured outer surface to provide high emissivity, an outer housing surrounding the cylindrical chamber in spaced relationship thereto thereby forming an annular chamber for conducting the gaseous propellant to the nozzle, a porous heat exchanger material selected from the group consisting of refractories, ceramics, and cermets contained within the annular chamber, housing a wire coiled about the outer surface of the hollow housing in engagement with the outer housing for providing a lengthened spiral flow path for the propellant to the annular chamber, an electrical heating comprising a coiled tube having a wall thickness of about 0.25 mm and a textured surface for providing high emissivity mounted within the cylindrical chamber in spaced relationship with the textured inner surface for radiatively heating the hollow housing and heat exchanger material without contacting the gaseous propellant, means for supplying a gaseous propellant to the lengthened spiral flow path and seal annular chamber whereby the propellant is uniformly heated by the hollow housing and the porous heat exchanger material as it flows therethrough in a minimum gas path length, and a thermal choke formed in the electrical heating element adjacent to the coiled wire for reducing conducted thermal energy.

  13. Heat exchanger demonstration expert system

    NASA Technical Reports Server (NTRS)

    Bagby, D. G.; Cormier, R. A.

    1988-01-01

    A real-time expert system intended for detecting and diagnosing faults in a 20 kW microwave transmitter heat exchanger is described. The expert system was developed on a LISP machine, Incorporated (LMI), Lambda Plus computer using Process Intelligent Control (PICON) software. The Heat Exhanger Expert System was tested and debugged. Future applications and extensions of the expert system to transmitters, masers, and antenna subassemblies are discussed.

  14. Heat exchanger demonstration expert system

    NASA Astrophysics Data System (ADS)

    Bagby, D. G.; Cormier, R. A.

    1988-05-01

    A real-time expert system intended for detecting and diagnosing faults in a 20 kW microwave transmitter heat exchanger is described. The expert system was developed on a LISP machine, Incorporated (LMI), Lambda Plus computer using Process Intelligent Control (PICON) software. The Heat Exhanger Expert System was tested and debugged. Future applications and extensions of the expert system to transmitters, masers, and antenna subassemblies are discussed.

  15. Condensate removal device for heat exchanger

    NASA Technical Reports Server (NTRS)

    Trusch, R. B.; Oconnor, E. W. (Inventor)

    1975-01-01

    A set of perforated tubes disposed at the gas output side of a heat exchanger, in a position not to affect the rate of flow of the air or other gas is described. The tubes are connected to a common manifold which is connected to a sucking device. Where it is necessary to conserve and recirculate the air sucked through the tubes, the output of the manifold is run through a separator to remove the condensate from the gas. The perforations in the slurper tubes are small, lying in the range of 0.010 inch to 0.100 inch. The tubes are disposed in contact with the surfaces of the heat exchanger on which the condensate is precipitated, whether fins or plates, so that the water may be directed to the tube openings by means of surface effects, together with the assistance of the air flow. Only about 5 percent of the air output need be thus diverted, and it effectively removes virtually all of the condensate.

  16. Deposition of biological aerosols on HVAC heat exchangers

    SciTech Connect

    Siegel, Jeffrey; Walker, Ian

    2001-09-01

    Many biologically active materials are transported as bioaerosols 1-10 {micro}m in diameter. These particles can deposit on cooling and heating coils and lead to serious indoor air quality problems. This paper investigates several of the mechanisms that lead to aerosol deposition on fin and tube heat exchangers. A model has been developed that incorporates the effects of several deposition mechanisms, including impaction, Brownian and turbulent diffusion, turbophoresis, thermophoresis, diffusiophoresis, and gravitational settling. The model is applied to a typical range of air velocities that are found in commercial and residential HVAC systems 1 - 6 m/s (200 - 1200 ft/min), particle diameters from 1 - 8 {micro}m, and fin spacings from 3.2 - 7.9 fins/cm (8 - 16 fins/inch or FPI). The results from the model are compared to results from an experimental apparatus that directly measures deposition on a 4.7 fins/cm (12 FPI) coil. The model agrees reasonably well with this measured data and suggests that cooling coils are an important sink for biological aerosols and consequently a potential source of indoor air quality problems.

  17. Ceramic heat exchanger

    DOEpatents

    LaHaye, Paul G.; Rahman, Faress H.; Lebeau, Thomas P. E.; Severin, Barbara K.

    1998-01-01

    A tube containment system. The tube containment system does not significantly reduce heat transfer through the tube wall. The contained tube is internally pressurized, and is formed from a ceramic material having high strength, high thermal conductivity, and good thermal shock resistance. The tube containment system includes at least one ceramic fiber braid material disposed about the internally pressurized tube. The material is disposed about the tube in a predetermined axial spacing arrangement. The ceramic fiber braid is present in an amount sufficient to contain the tube if the tube becomes fractured. The tube containment system can also include a plurality of ceramic ring-shaped structures, in contact with the outer surface of the tube, and positioned between the tube and the ceramic fiber braid material, and/or at least one transducer positioned within tube for reducing the internal volume and, therefore, the energy of any shrapnel resulting from a tube fracture.

  18. Ceramic heat exchanger

    DOEpatents

    LaHaye, P.G.; Rahman, F.H.; Lebeau, T.P.; Severin, B.K.

    1998-06-16

    A tube containment system is disclosed. The tube containment system does not significantly reduce heat transfer through the tube wall. The contained tube is internally pressurized, and is formed from a ceramic material having high strength, high thermal conductivity, and good thermal shock resistance. The tube containment system includes at least one ceramic fiber braid material disposed about the internally pressurized tube. The material is disposed about the tube in a predetermined axial spacing arrangement. The ceramic fiber braid is present in an amount sufficient to contain the tube if the tube becomes fractured. The tube containment system can also include a plurality of ceramic ring-shaped structures, in contact with the outer surface of the tube, and positioned between the tube and the ceramic fiber braid material, and/or at least one transducer positioned within tube for reducing the internal volume and, therefore, the energy of any shrapnel resulting from a tube fracture. 6 figs.

  19. Control Dewar Subcooler Heat Exchanger Calculations

    SciTech Connect

    Rucinski, R.; /Fermilab

    1993-10-04

    The calculations done to size the control dewar subcooler were done to obtain a sufficient subcooler size based on some conservative assumptions. The final subcooler design proposed in the design report will work even better because (1) It has more tubing length, and (2) will have already subcooled liquid at the inlet due to the transfer line design. The subcooler design described in the 'Design Report of the 2 Tesla Superconducting Solenoid for the Fermilab D0 Detector Upgrade' is the final design proposed. A short description of this design follows. The subcooler is constructed of 0.50-inch OD copper tubing with 1.0-inch diameter fins. It has ten and one half spirals at a 11.375-inch centerline diameter to provide 31 feet of tubing length. The liquid helium supply for the solenoid flows through the subcooler and then is expanded through a J-T valve. The subcooler spirals are immersed in the return two phase helium process stream. The return stream is directed over the finned tubing by an annulus created by a 10-inch pipe inside a 12-inch pipe. The transfer line from the refrigerator to the control dewar is constructed such that the liquid helium supply tube is in the refrigerator return stream, thereby subcooling the liquid up to the point where the u-tubes connect the transfer line to the control dewar. The subcooler within the control dewar will remove the heat picked up in the helium supply u-tube/bayonets. The attached subcooler/heat exchanger calculations were done neglecting any subcooling in the transfer line. All heat picked up in the transfer line from the refrigerator storage dewar to the control dewar is absorbed by the supply stream. The subcooler was sized such that the two phase supply fluid is subcooled at 1.7 atm pressure and when expanded through a JT valve to 1.45 atm pressure it is at a saturated liquid state. The calculations apply during steady state operation and at a flow rate of 16 g/s. The analysis of the heat exchanger was broken into

  20. Lightweight long life heat exchanger

    NASA Technical Reports Server (NTRS)

    Moore, E. K.

    1975-01-01

    The design, fabrication, and evaluation of a full scale shuttle-type condensing heat exchanger constructed of aluminum and utilizing aluminum clad titanium parting sheets is described. A long term salt spray test of candidate parting sheet specimens is described. The results of an investigation into an alternate method of making composite sheet material are discussed.

  1. Heat exchanger with oscillating flow

    NASA Technical Reports Server (NTRS)

    Scotti, Stephen J. (Inventor); Blosser, Max L. (Inventor); Camarda, Charles J. (Inventor)

    1992-01-01

    Various heat exchange apparatuses are described in which an oscillating flow of primary coolant is used to dissipate an incident heat flux. The oscillating flow may be imparted by a reciprocating piston, a double action twin reciprocating piston, fluidic oscillators, or electromagnetic pumps. The oscillating fluid flows through at least one conduit in either an open loop or a closed loop. A secondary flow of coolant may be used to flow over the outer walls of at least one conduit to remove heat transferred from the primary coolant to the walls of the conduit.

  2. Heat exchanger with oscillating flow

    NASA Technical Reports Server (NTRS)

    Scotti, Stephen J. (Inventor); Blosser, Max L. (Inventor); Camarda, Charles J. (Inventor)

    1993-01-01

    Various heat exchange apparatuses are described in which an oscillating flow of primary coolant is used to dissipate an incident heat flux. The oscillating flow may be imparted by a reciprocating piston, a double action twin reciprocating piston, fluidic oscillators or electromagnetic pumps. The oscillating fluid flows through at least one conduit in either an open loop or a closed loop. A secondary flow of coolant may be used to flow over the outer walls of at least one conduit to remove heat transferred from the primary coolant to the walls of the conduit.

  3. A fuel-oil matrix heat exchanger

    NASA Astrophysics Data System (ADS)

    Mikulin, E. I.; Shevich, Iu. A.; Potapov, V. N.; Veselov, V. A.; Saltais, E. A.; Glukhovskii, G. I.

    A novel design of a welded matrix heat exchanger capable of handling high-pressure liquid and gas coolants is described. Results of tests conducted on matrix heat exchangers and their models are presented, and formulas are recommended for calculating the heat transfer and hydraulic resistance characteristics. A comparison of the characteristics of matrix and tube heat exchangers demonstrates the advantages of the former.

  4. Light bulb heat exchanger for magnetohydrodynamic generator applications - Preliminary evaluation

    NASA Technical Reports Server (NTRS)

    Smith, J. M.; Hwang, C. C.; Seikel, G. R.

    1974-01-01

    The light-bulb heat-exchanger concept is investigated as a possible means of using a combustion heat source to supply energy to an inert gas MHD power generator system. In this concept, combustion gases flow through a central passage which consists of a duct with transparent walls through which heat is transferred by radiation to a radiation receiver which in turn heats the inert gas by convection. The effects of combustion-gas emissivity, transparent-wall-transmissivity, radiation-receiver emissivity, and the use of fins in the inert gas coolant passage are studied. The results indicate that inert gas outlet temperatures of 2500 K are possible for combustion temperatures of 3200 K and that sufficient energy can be transferred from the combustion gas to reduce its temperature to approximately 2000 K. At this temperature more conventional heat exchangers can be used.

  5. Investigations on the heat transfer performance of edge-shaped finned-tubes

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-wu; Wan, Zhen-ping; Tang, Yong

    2014-09-01

    The third generation enhanced heat transfer technologies, such as three-dimensional fin and dimple, are still important means of improving energy efficiency and will continue to be challenging issues. This paper concentrates on the analysis of the condensation heat transfer performance of an edge-shaped finned-tube fabricated by extrusion-ploughing process. Experimental results show that the overall heat transfer coefficient increases with increases of volumetric flow rate of cold water and heat flux whereas the shell side heat transfer coefficient decreases with volumetric flow rate and heat flux increasing. At the similar volumetric flow rate, the shell side heat transfer coefficient of the edge-shaped finned-tube is 4-6 times larger than that of the smooth tube. At the similar volumetric flow rate, the shell side heat transfer coefficient of edge-shaped finned-tube increases with ploughing depth increasing. At the same temperature difference between wall and vapor, the shell side heat transfer coefficient is also higher than what had been reported in the literature.

  6. Oxidizer heat exchanger component test

    NASA Technical Reports Server (NTRS)

    Kanic, P. G.

    1988-01-01

    The RL10-IIB engine, is capable of multimode thrust operation. The engine operates at two low-thrust levels: tank head idle (THI), approximately 1 to 2 percent of full thrust; and pumped idle, 10 percent of full thrust. Operation at THI provides vehicle propellant settling thrust and efficient thermal conditioning; PI operation provides vehicle tank prepressurization and maneuver thrust for low-g deployment. Stable combustion of the RL10-IIB engine during the low-thrust operating modes can be accomplished by using a heat exchanger to supply gaseous oxygen to the propellant injector. The oxidized heat exchanger (OHE) vaporizes the liquid oxygen using hydrogen as the energy source. This report summarizes the test activity and post-test data analysis for two possible heat exchangers, each of which employs a completely different design philosophy. One design makes use of a low-heat transfer (PHT) approach in combination with a volume to attenuate pressure and flow oscillations. The test data showed that the LHT unit satisfied the oxygen exit quality of 0.95 or greater in both the THI and PI modes while maintaining stability. The HHT unit fulfilled all PI requirements; data for THI satisfactory operation is implied from experimental data that straddle the exact THI operating point.

  7. Heat transfer studies on a rectangular channel with offset plate fins

    NASA Astrophysics Data System (ADS)

    Masterson, Jeffrey M.

    1993-12-01

    Convective heat transfer characteristics of a liquid cooled rectangular channel, containing offset plate fins, were investigated experimentally. The selected geometry was a 10x model of the fluid circulation passages in the commercially available SEM-E type electronic cooling modules. The test surface containing fins was made of aluminum and was heated at its base by a thermofoil heater. The Reynolds numbers were varied between 100-800, with water as the cooling fluid. Surface temperature measurements on the heated surface were used to determine the Colburn j factor. The effects of natural convection were also investigated.

  8. The Effect of Baffles on the Temperature Distribution and Heat-transfer Coefficients of Finned Cylinders

    NASA Technical Reports Server (NTRS)

    Schey, Oscar W; Rollin, Vern G

    1936-01-01

    This report presents the results of an investigation to determine the effect of baffles on the temperature distribution and the heat-transfer coefficient of finned cylinders. The tests were conducted in a 30-inch wind tunnel on electrically heated cylinders with fins of 0.25 and 0.31 inch pitch. The results of these tests showed that the use of integral baffles gave a reduction of 31.9 percent in the rear wall temperatures and an increase of 54.2 percent in the heat transfer coefficient as compared with a cylinder without baffles.

  9. Heat transfer and flow characteristics of fin-tube bundles with and without winglet-type vortex generators

    NASA Astrophysics Data System (ADS)

    Kwak, K. M.; Torii, K.; Nishino, K.

    2002-08-01

    The objective of this research is to investigate the effect of longitudinal vortices that can be applied to the heat transfer enhancement for fin-tube heat exchangers such as air-cooled condensers. A multichannel test core was designed and fabricated for the determination of overall heat transfer and pressure loss with circular tubes and winglet vortex generators. Heat transfer results were obtained using a transient method referred to as the modified single-blow method. For a three-row tube bundle in an in-line arrangement without winglets, the heat transfer and the pressure loss were 72% and 210% higher, respectively, than for a multichannel test core without any built-in tube or winglet. These increases were caused by vortices around the tube banks. The corresponding increases for a staggered tube bundle are 95% and 310%, respectively. The triangular winglets recommended by the previous studies in a fin-tube bundle in an in-line arrangement increase the overall heat transfer 10-25% and the pressure loss 20-35% for the Reynolds numbers ranging from 300 to 2700.

  10. DHE (downhole heat exchangers). [Downhole Heat Exchangers (DHE)

    SciTech Connect

    Culver, G.

    1990-11-01

    The use of downhole heat exchangers (DHE) for residential or commercial space and domestic water heating and other applications has several desirable features. Systems are nearly or completely passive -- that is, no or very little geothermal water or steam is produced from the well either reducing or completely eliminating surface environmental concerns and the need for disposal systems or injection wells. Initial cost of pumps and installation are eliminated or reduced along with pumping power costs and maintenance costs associated with pumping often corrosive geothermal fluids. Many residential and small commercial systems do not require circulating pumps because the density difference in the incoming and outgoing sides of the loop are sufficient to overcome circulating friction losses in the entire system. The major disadvantage of DHEs is their dependence on natural heat flow. In areas where geological conditions provide high permeability and a natural hydraulic gradient, DHEs can provide a substantial quantity of heat. A single 500-ft (152 m) well in Klamath Falls, Oregon, supplies over one megawatt thermal and output is apparently limited by the surface area of pipe that can be installed in the well bore. In contrast, DHEs used in conjunction with heat pumps may supply less than 8 KW from a well of similar depth. Here output is limited by conductive heat flow with perhaps a small contribution from convection near the well bore. The highest capacity DHE reported to date, in Turkey, supplies 6 MW thermal from an 820-ft (250 m) well. There were two main goals for this project. The first was to gather, disseminate and exchange internationally information on DHES. The second was to perform experiments that would provide insight into well bore/aquifer interaction and thereby provide more information on which to base DHE designs. 27 refs., 31 figs., 3 tabs.