Sample records for final focus superconducting

  1. FOREWORD: Focus on Superconductivity in Semiconductors Focus on Superconductivity in Semiconductors

    NASA Astrophysics Data System (ADS)

    Takano, Yoshihiko

    2008-12-01

    Since the discovery of superconductivity in diamond, much attention has been given to the issue of superconductivity in semiconductors. Because diamond has a large band gap of 5.5 eV, it is called a wide-gap semiconductor. Upon heavy boron doping over 3×1020 cm-3, diamond becomes metallic and demonstrates superconductivity at temperatures below 11.4 K. This discovery implies that a semiconductor can become a superconductor upon carrier doping. Recently, superconductivity was also discovered in boron-doped silicon and SiC semiconductors. The number of superconducting semiconductors has increased. In 2008 an Fe-based superconductor was discovered in a research project on carrier doping in a LaCuSeO wide-gap semiconductor. This discovery enhanced research activities in the field of superconductivity, where many scientists place particular importance on superconductivity in semiconductors. This focus issue features a variety of topics on superconductivity in semiconductors selected from the 2nd International Workshop on Superconductivity in Diamond and Related Materials (IWSDRM2008), which was held at the National Institute for Materials Science (NIMS), Tsukuba, Japan in July 2008. The 1st workshop was held in 2005 and was published as a special issue in Science and Technology of Advanced Materials (STAM) in 2006 (Takano 2006 Sci. Technol. Adv. Mater. 7 S1). The selection of papers describe many important experimental and theoretical studies on superconductivity in semiconductors. Topics on boron-doped diamond include isotope effects (Ekimov et al) and the detailed structure of boron sites, and the relation between superconductivity and disorder induced by boron doping. Regarding other semiconductors, the superconducting properties of silicon and SiC (Kriener et al, Muranaka et al and Yanase et al) are discussed, and In2O3 (Makise et al) is presented as a new superconducting semiconductor. Iron-based superconductors are presented as a new series of high

  2. Focus on superconducting properties of iron chalcogenides

    NASA Astrophysics Data System (ADS)

    Takano, Yoshihiko

    2012-10-01

    Since the discovery of iron-based superconductors, much attention has been given to the exploration of new superconducting compounds. Numerous superconducting iron compounds have been found and categorized into five groups: LnFeAsO (Ln = lanthanide), BaFe2As2, KFeAs, FeSe and FeAs with perovskite blocking layers. Among them, FeSe has the simplest crystal structure. Since the crystal structure is composed of only superconducting Fe layers, the FeSe family must be the best material to investigate the mechanism of iron-based superconductivity. FeSe shows very strong pressure effects. The superconducting transition temperature (Tc) of FeSe is approximately 8 K at ambient pressure. However Tc dramatically increases up to 37 K under applied pressure of 4-6 GPa. This is the third highest Tc value among binary superconductors, surpassed only by CsC60 under pressure (Tc = 38 K) and MgB2 (Tc = 39 K). On the other hand, despite FeTe having a crystal structure analogous to that of FeSe, FeTe shows antiferromagnetic properties without superconductivity. Doping of small ions, either Se or S, however, can induce superconductivity in FeTe1-xSex or FeTe1-xSx . The superconductivity is very weak for small x values, and annealing under certain conditions is required to obtain strong superconductivity, for instance annealing in oxygen or alcoholic beverages such as red wine. The following selection of papers describe many important experimental and theoretical studies on iron chalcogenide superconductors including preparation of single crystals, bulk samples and thin films; NMR measurements; photoemission spectroscopy; high-pressure studies; annealing effects and research on new BiS2-based superconductors. I hope this focus issue will help researchers understand the frontiers of iron chalcogenide superconductors and assist in the discovery of new phenomena related to iron-based superconductivity.

  3. Theory of superconductivity in oxides. Final technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, P.W.

    1988-05-18

    Progress was made towards a final theory of high-Tc superconductivity. The key elements are the work on normal-state properties and the actual mechanism for Tc. With the understanding (ZA) of the large anisotropy and other transport properties in the normal state, the model is uniquely determined: one must have one version or another of a holon-spinon quantum-fluid state, which is not a normal Fermi liquid. And with the recognition (HWA) of the large-repulsion holon-holon interactions, the author has the first way of thinking quantitatively about the superconducting state. Work on the pure Heisenberg system, which is related but not necessarilymore » crucial to understanding the superconducting properties is described.« less

  4. Preparation of MgB2 superconducting microbridges by focused ion beam direct milling

    NASA Astrophysics Data System (ADS)

    Zhang, Xuena; Li, Yanli; Xu, Zhuang; Kong, Xiangdong; Han, Li

    2017-01-01

    MgB2 superconducting microbridges were prepared by focused ion beam (FIB) direct milling on MgB2 films. The surface topography of the microbridges were observed using SEM and AFM and the superconductivity was measured in this paper. Lots of cracks and holes were found near the milled area. And the superconducting transition temperature was decreased a lot and the bridges prepared were not superconducting due to ion damage after milled with large dose. Through these works, we explored the effect regular of FIB milling and experimental parameters on the performance of microbridges.

  5. Low-Loss Superconducting Nanowire Circuits Using a Neon Focused Ion Beam

    NASA Astrophysics Data System (ADS)

    Burnett, J.; Sagar, J.; Kennedy, O. W.; Warburton, P. A.; Fenton, J. C.

    2017-07-01

    We present low-temperature measurements of low-loss superconducting nanowire-embedded resonators in the low-power limit relevant for quantum circuits. The superconducting resonators are embedded with superconducting nanowires with widths down to 20 nm using a neon focused ion beam. In the low-power limit, we demonstrate an internal quality factor up to 3.9 ×105 at 300 mK [implying a two-level-system-limited quality factor up to 2 ×105 at 10 mK], not only significantly higher than in similar devices but also matching the state of the art of conventional Josephson-junction-embedded resonators. We also show a high sensitivity of the nanowire to stray infrared photons, which is controllable by suitable precautions to minimize stray photons in the sample environment. Our results suggest that there are excellent prospects for superconducting-nanowire-based quantum circuits.

  6. Fabrication of superconducting nanowires from ultrathin MgB2 films via focused ion beam milling

    NASA Astrophysics Data System (ADS)

    Zhang, Chen; Wang, Da; Liu, Zheng-Hao; Zhang, Yan; Ma, Ping; Feng, Qing-Rong; Wang, Yue; Gan, Zi-Zhao

    2015-02-01

    High quality superconducting nanowires were fabricated from ultrathin MgB2 films by a focused ion beam milling technique. The precursor MgB2 films in 10 nm thick were grown on MgO substrates by using a hybrid physical-chemical vapor deposition method. The nanowires, in widths of about 300-600 nm and lengths of 1 or 10 μm, showed high superconducting critical temperatures (Tc's) above 34 K and narrow superconducting transition widths (ΔTc's) of 1-3 K. The superconducting critical current density Jc of the nanowires was above 5 × 107 A/cm2 at 20 K. The high Tc, narrow ΔTc, and high Jc of the nanowires offered the possibility of making MgB2-based nano-devices such as hot-electron bolometers and superconducting nanowire single-photon detectors with high operating temperatures at 15-20 K.

  7. Focusing Electron Beams at SLAC.

    ERIC Educational Resources Information Center

    Taylor, Richard L.

    1993-01-01

    Describes the development of a set of magnets that focus high-energy electron and positron beams causing them to collide, annihilate each other, and generate new particles. Explains how dipoles bend the beam, how quadrupoles focus the beam, how the focal length is calculated, and the superconducting final focus. (MDH)

  8. Final Report: Superconducting Joints Between (RE)Ba 2Cu 3O 7-x Coated Conductors via Electric Field Assisted Processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwartz, Justin

    Here we report the results from a project aimed at developing a fully superconducting joint between two REBCO coated conductors using electric field processing (EFP). Due to a reduction in the budget and time period of this contract, we reduced the project scope and focused first on the key scientific issues for forming a strong bond between conductors, and subsequently focused on improving through-the-joint transport. A modified timeline and task list is shown in Table 1, summarizing accomplishments to date. In the first period, we accomplished initial surface characterization as well as rounds of EFP experiments to begin to understandmore » processing parameters which produce well-bonded tapes. In the second phase, we explored the effects of two fundamental EFP parameters, voltage and pressure, and the limitations they place on the process. In the third phase, we achieved superconducting joints and established base characteristics of both the bonding process and the types of tapes best suited to this process. Finally, we investigated some of the parameters related to kinetics which appeared inhibit joint quality and performance.« less

  9. Vertical Growth of Superconducting Crystalline Hollow Nanowires by He+ Focused Ion Beam Induced Deposition.

    PubMed

    Córdoba, Rosa; Ibarra, Alfonso; Mailly, Dominique; De Teresa, José Ma

    2018-02-14

    Novel physical properties appear when the size of a superconductor is reduced to the nanoscale, in the range of its superconducting coherence length (ξ 0 ). Such nanosuperconductors are being investigated for potential applications in nanoelectronics and quantum computing. The design of three-dimensional nanosuperconductors allows one to conceive novel schemes for such applications. Here, we report for the first time the use of a He + focused-ion-beam-microscope in combination with the W(CO) 6 precursor to grow three-dimensional superconducting hollow nanowires as small as 32 nm in diameter and with an aspect ratio (length/diameter) of as much as 200. Such extreme resolution is achieved by using a small He + beam spot of 1 nm for the growth of the nanowires. As shown by transmission electron microscopy, they display grains of large size fitting with face-centered cubic WC 1-x phase. The nanowires, which are grown vertically to the substrate, are felled on the substrate by means of a nanomanipulator for their electrical characterization. They become superconducting at 6.4 K and show large critical magnetic field and critical current density resulting from their quasi-one-dimensional superconducting character. These results pave the way for future nanoelectronic devices based on three-dimensional nanosuperconductors.

  10. Design of high-energy high-current linac with focusing by superconducting solenoids

    NASA Astrophysics Data System (ADS)

    Batskikh, Guennady I.; Belugin, Vladimir M.; Bondarev, Boris I.; Fedotov, Arkady P.; Durkin, Alexander P.; Ivanov, Yury D.; Mikhailov, Vladimir N.; Murin, Boris P.; Mustafin, Kharis Kh.; Shumakov, Igor V.; Uksusov, Nikolay I.

    1995-09-01

    The advancement of MRTI design for 1.5 GeV and 250 mA ion CW linac is presented in the report. In new linac version all the way from input to output the ions are focused by magnetic fields of superconducting solenoids. The ion limit current is far beyond the needed value. The linac focusing channel offers major advantages over the more conventional ones. The acceptance is 1.7 times as large for such focusing channel as for quadrupole one. Concurrently, a random perturbation sensitivity for such channel is one order of magnitude smaller than in quadrupole channel. These focusing channel features allow to decrease beam matched radius and increase a linac radiation purity without aperture growth. ``Regotron'' is used as high power generator in linac main part. But D&W cavities need not be divided into sections connected by RF-bridges which denuded them of high coupling factor.

  11. Design of high-energy high-current linac with focusing by superconducting solenoids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Batskikh, Guennady I.; Belugin, Vladimir M.; Bondarev, Boris I.

    1995-09-15

    The advancement of MRTI design for 1.5 GeV and 250 mA ion CW linac is presented in the report. In new linac version all the way from input to output the ions are focused by magnetic fields of superconducting solenoids. The ion limit current is far beyond the needed value. The linac focusing channel offers major advantages over the more conventional ones. The acceptance is 1.7 times as large for such focusing channel as for quadrupole one. Concurrently, a random perturbation sensitivity for such channel is one order of magnitude smaller than in quadrupole channel. These focusing channel features allowmore » to decrease beam matched radius and increase a linac radiation purity without aperture growth. ''Regotron'' is used as high power generator in linac main part. But D and W cavities need not be divided into sections connected by RF-bridges which denuded them of high coupling factor.« less

  12. Design of high-energy high-current linac with focusing by superconducting solenoids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Batskikh, G.I.; Belugin, V.M.; Bondarev, B.I.

    1995-10-01

    The advancement of MRTI design for 1.5 GeV and 250 mA ion CW linac was presented in a previous report. In this new linac version all the way from input to output the ions are focused by magnetic fields of superconducting solenoids. The ion limit current is far beyond the needed value. The linac focusing channel offers major advantages over the more conventional ones. The acceptance is 1.7 times as large for such focusing channel as for quadrupole one. Concurrently, a random perturbation sensitivity for such channel is one order of magnitude smaller than in quadrupole channel. These focusing channelmore » features allow to decrease beam matched radius and increase a linac radiation purity without aperture growth. {open_quotes}Regotron{close_quotes} is used as high power generator in linac main part. But D&W cavities need not be divided into sections connected by RF-bridges which denuded them of high coupling factor.« less

  13. Optimization of the Processing Parameters of High Temperature Superconducting Glass-Ceramics: Center Director's Discretionary Fund Final Report

    NASA Technical Reports Server (NTRS)

    Ethridge, E. C.; Kaukler, W. F.

    1993-01-01

    A number of promising glass forming compositions of high Tc superconducting Ba-Sr-Ca-Cu-O (BSCCO) materials were evaluated for their glass-ceramic crystallization ability. The BSCCO ceramics belonging to the class of superconductors in the Ba-Sr-Ca-Cu-O system were the focus of this study. By first forming the superconducting material as a glass, subsequent devitrification into the crystalline (glass-ceramic) superconductor can be performed by thermal processing of the glass preform body. Glass formability and phase formation were determined by a variety of methods in another related study. This study focused on the nucleation and crystallization of the materials. Thermal analysis during rapid cooling aids in the evaluation of nucleation and crystallization behavior. Melt viscosity is used to predict glass formation ability.

  14. Magnetic and superconducting nanowires.

    PubMed

    Piraux, L; Encinas, A; Vila, L; Mátéfi-Tempfli, S; Mátéfi-Tempfli, M; Darques, M; Elhoussine, F; Michotte, S

    2005-03-01

    This article is focused on the use of electrodeposition and of various nanoporous templates for the fabrication of metallic nanowires made from single metals (Ni, Co, Pb, Sn), alloys (NiFe, CoFe, CoPt), and multilayers (Co/Cu, NiFe/Cu). An overview is given of our recent studies performed on both magnetic and superconducting nanowires. Using different approaches entailing measurements on both single wires and arrays, numerous interesting physical properties have been identified in relation to the nanoscopic dimensions of these materials. Finally, various novel applications of the nanowires are also discussed.

  15. Superconductive radiofrequency window assembly

    DOEpatents

    Phillips, Harry Lawrence; Elliott, Thomas S.

    1998-01-01

    The present invention is a superconducting radiofrequency window assembly for use in an electron beam accelerator. The srf window assembly (20) has a superconducting metal-ceramic design. The srf window assembly (20) comprises a superconducting frame (30), a ceramic plate (40) having a superconducting metallized area, and a superconducting eyelet (50) for sealing plate (40) into frame (30). The plate (40) is brazed to eyelet (50) which is then electron beam welded to frame (30). A method for providing a ceramic object mounted in a metal member to withstand cryogenic temperatures is also provided. The method involves a new metallization process for coating a selected area of a ceramic object with a thin film of a superconducting material. Finally, a method for assembling an electron beam accelerator cavity utilizing the srf window assembly is provided. The procedure is carried out within an ultra clean room to minimize exposure to particulates which adversely affect the performance of the cavity within the electron beam accelerator.

  16. Superconductive radiofrequency window assembly

    DOEpatents

    Phillips, H.L.; Elliott, T.S.

    1998-05-19

    The present invention is a superconducting radiofrequency window assembly for use in an electron beam accelerator. The SRF window assembly has a superconducting metal-ceramic design. The SRF window assembly comprises a superconducting frame, a ceramic plate having a superconducting metallized area, and a superconducting eyelet for sealing plate into frame. The plate is brazed to eyelet which is then electron beam welded to frame. A method for providing a ceramic object mounted in a metal member to withstand cryogenic temperatures is also provided. The method involves a new metallization process for coating a selected area of a ceramic object with a thin film of a superconducting material. Finally, a method for assembling an electron beam accelerator cavity utilizing the SRF window assembly is provided. The procedure is carried out within an ultra clean room to minimize exposure to particulates which adversely affect the performance of the cavity within the electron beam accelerator. 11 figs.

  17. Superconducting radiofrequency window assembly

    DOEpatents

    Phillips, Harry L.; Elliott, Thomas S.

    1997-01-01

    The present invention is a superconducting radiofrequency window assembly for use in an electron beam accelerator. The srf window assembly (20) has a superconducting metal-ceramic design. The srf window assembly (20) comprises a superconducting frame (30), a ceramic plate (40) having a superconducting metallized area, and a superconducting eyelet (50) for sealing plate (40) into frame (30). The plate (40) is brazed to eyelet (50) which is then electron beam welded to frame (30). A method for providing a ceramic object mounted in a metal member to withstand cryogenic temperatures is also provided. The method involves a new metallization process for coating a selected area of a ceramic object with a thin film of a superconducting material. Finally, a method for assembling an electron beam accelerator cavity utilizing the srf window assembly is provided. The procedure is carried out within an ultra clean room to minimize exposure to particulates which adversely affect the performance of the cavity within the electron beam accelerator.

  18. Superconducting radiofrequency window assembly

    DOEpatents

    Phillips, H.L.; Elliott, T.S.

    1997-03-11

    The present invention is a superconducting radiofrequency window assembly for use in an electron beam accelerator. The srf window assembly has a superconducting metal-ceramic design. The srf window assembly comprises a superconducting frame, a ceramic plate having a superconducting metallized area, and a superconducting eyelet for sealing plate into frame. The plate is brazed to eyelet which is then electron beam welded to frame. A method for providing a ceramic object mounted in a metal member to withstand cryogenic temperatures is also provided. The method involves a new metallization process for coating a selected area of a ceramic object with a thin film of a superconducting material. Finally, a method for assembling an electron beam accelerator cavity utilizing the srf window assembly is provided. The procedure is carried out within an ultra clean room to minimize exposure to particulates which adversely affect the performance of the cavity within the electron beam accelerator. 11 figs.

  19. FOCUS: a fire management planning system -- final report

    Treesearch

    Frederick W. Bratten; James B. Davis; George T. Flatman; Jerold W. Keith; Stanley R. Rapp; Theodore G. Storey

    1981-01-01

    FOCUS (Fire Operational Characteristics Using Simulation) is a computer simulation model for evaluating alternative fire management plans. This final report provides a broad overview of the FOCUS system, describes two major modules-fire suppression and cost, explains the role in the system of gaming large fires, and outlines the support programs and ways of...

  20. Superconducting focusing lenses for the SSR-1 cryomodule of PXIE test stand at Fermilab

    DOE PAGES

    DiMarco, J.; Tartaglia, M.; Terechkine, I.

    2016-12-05

    Five solenoid-based focusing lenses designed for use inside the SSR1 cryomodule of the PXIE test stand at Fermilab have been fabricated and tested. In addition to a focusing solenoid, each lens is equipped with a set of windings that generate magnetic field in the transverse plane and can be used in the steering dipole mode or as a skew quadrupole corrector. The lenses will be installed between superconducting cavities in the cryomodule, so getting sufficiently low fringe magnetic field was one of the main design requirements. Beam dynamics simulations indicated a need for high accuracy positioning of the lenses inmore » the cryomodule, which triggered a study towards understanding uncertainties of the magnetic axis position relative to the geometric features of the lens. Furthermore, this report summarizes the efforts towards certification of the lenses, including results of performance tests, fringe field data, and uncertainty of the magnetic axis position.« less

  1. Superconducting focusing lenses for the SSR-1 cryomodule of PXIE test stand at Fermilab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DiMarco, J.; Tartaglia, M.; Terechkine, I.

    Five solenoid-based focusing lenses designed for use inside the SSR1 cryomodule of the PXIE test stand at Fermilab have been fabricated and tested. In addition to a focusing solenoid, each lens is equipped with a set of windings that generate magnetic field in the transverse plane and can be used in the steering dipole mode or as a skew quadrupole corrector. The lenses will be installed between superconducting cavities in the cryomodule, so getting sufficiently low fringe magnetic field was one of the main design requirements. Beam dynamics simulations indicated a need for high accuracy positioning of the lenses inmore » the cryomodule, which triggered a study towards understanding uncertainties of the magnetic axis position relative to the geometric features of the lens. Furthermore, this report summarizes the efforts towards certification of the lenses, including results of performance tests, fringe field data, and uncertainty of the magnetic axis position.« less

  2. Method of preforming and assembling superconducting circuit elements

    NASA Astrophysics Data System (ADS)

    Haertling, Gene H.; Buckley, John D.

    1991-03-01

    The invention is a method of preforming and pretesting rigid and discrete superconductor circuit elements to optimize the superconductivity development of the preformed circuit element prior to its assembly, and encapsulation on a substrate and final environmental testing of the assembled ceramic superconductive elements.

  3. Exotic Superconductivity in Correlated Electron Systems

    DOE PAGES

    Mu, Gang; Sandu, Viorel; Li, Wei; ...

    2015-05-25

    Over the past decades, the search for high-T c superconductivity (SC) and its novel superconducting mechanisms is one of the most challenging tasks of condensed matter physicists and material scientists, wherein the most striking achievement is the discovery of high- c and unconventional superconductivity in strongly correlated 3d-electron systems, such as cuprates and iron pnictides/chalcogenides. Those exotic superconductors display the behaviors beyond the scope of the BCS theory (in the SC states) and the Landau-Fermi liquid theory (in the normal states). In general, such exotic superconductivity can be seen as correlated electron systems, where there are strong interplays among charge,more » spin, orbital, and lattice degrees of freedom. Thus, we focus on the exotic superconductivity in materials with correlated electrons in the present special issue.« less

  4. Superconducting wind turbine generators

    NASA Astrophysics Data System (ADS)

    Abrahamsen, A. B.; Mijatovic, N.; Seiler, E.; Zirngibl, T.; Træholt, C.; Nørgård, P. B.; Pedersen, N. F.; Andersen, N. H.; Østergård, J.

    2010-03-01

    We have examined the potential of 10 MW superconducting direct drive generators to enter the European offshore wind power market and estimated that the production of about 1200 superconducting turbines until 2030 would correspond to 10% of the EU offshore market. The expected properties of future offshore turbines of 8 and 10 MW have been determined from an up-scaling of an existing 5 MW turbine and the necessary properties of the superconducting drive train are discussed. We have found that the absence of the gear box is the main benefit and the reduced weight and size is secondary. However, the main challenge of the superconducting direct drive technology is to prove that the reliability is superior to the alternative drive trains based on gearboxes or permanent magnets. A strategy of successive testing of superconducting direct drive trains in real wind turbines of 10 kW, 100 kW, 1 MW and 10 MW is suggested to secure the accumulation of reliability experience. Finally, the quantities of high temperature superconducting tape needed for a 10 kW and an extreme high field 10 MW generator are found to be 7.5 km and 1500 km, respectively. A more realistic estimate is 200-300 km of tape per 10 MW generator and it is concluded that the present production capacity of coated conductors must be increased by a factor of 36 by 2020, resulting in a ten times lower price of the tape in order to reach a realistic price level for the superconducting drive train.

  5. Superconducting pipes and levitating magnets

    NASA Astrophysics Data System (ADS)

    Levin, Yan; Rizzato, Felipe B.

    2006-12-01

    Motivated by a beautiful demonstration of the Faraday and the Lenz laws in which a small neodymium magnet falls slowly through a conducting nonferromagnetic tube, we consider the dynamics of a magnet falling coaxially through a superconducting pipe. Unlike the case of normal conducting pipes, in which the magnet quickly reaches the terminal velocity, inside a superconducting tube the magnet falls freely. On the other hand, to enter the pipe the magnet must overcome a large electromagnetic energy barrier. For sufficiently strong magnets, the barrier is so large that the magnet will not be able to penetrate it and will be levitated over the mouth of the pipe. We calculate the work that must done to force the magnet to enter a superconducting tube. The calculations show that superconducting pipes are very efficient at screening magnetic fields. For example, the magnetic field of a dipole at the center of a short pipe of radius a and length L≳a decays, in the axial direction, with a characteristic length ξ≈0.26a . The efficient screening of the magnetic field might be useful for shielding highly sensitive superconducting quantum interference devices. Finally, the motion of the magnet through a superconducting pipe is compared and contrasted to the flow of ions through a trans-membrane channel.

  6. Superconducting magnet

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Extensive computer based engineering design effort resulted in optimization of a superconducting magnet design with an average bulk current density of approximately 12KA/cm(2). Twisted, stranded 0.0045 inch diameter NbTi superconductor in a copper matrix was selected. Winding the coil from this bundle facilitated uniform winding of the small diameter wire. Test coils were wound using a first lot of the wire. The actual packing density was measured from these. Interwinding voltage break down tests on the test coils indicated the need for adjustment of the wire insulation on the lot of wire subsequently ordered for construction of the delivered superconducting magnet. Using the actual packing densities from the test coils, a final magnet design, with the required enhancement and field profile, was generated. All mechanical and thermal design parameters were then also fixed. The superconducting magnet was then fabricated and tested. The first test was made with the magnet immersed in liquid helium at 4.2K. The second test was conducted at 2K in vacuum. In the latter test, the magnet was conduction cooled from the mounting flange end.

  7. Superconducting pipes and levitating magnets.

    PubMed

    Levin, Yan; Rizzato, Felipe B

    2006-12-01

    Motivated by a beautiful demonstration of the Faraday and the Lenz laws in which a small neodymium magnet falls slowly through a conducting nonferromagnetic tube, we consider the dynamics of a magnet falling coaxially through a superconducting pipe. Unlike the case of normal conducting pipes, in which the magnet quickly reaches the terminal velocity, inside a superconducting tube the magnet falls freely. On the other hand, to enter the pipe the magnet must overcome a large electromagnetic energy barrier. For sufficiently strong magnets, the barrier is so large that the magnet will not be able to penetrate it and will be levitated over the mouth of the pipe. We calculate the work that must done to force the magnet to enter a superconducting tube. The calculations show that superconducting pipes are very efficient at screening magnetic fields. For example, the magnetic field of a dipole at the center of a short pipe of radius a and length L approximately > a decays, in the axial direction, with a characteristic length xi approximately 0.26a. The efficient screening of the magnetic field might be useful for shielding highly sensitive superconducting quantum interference devices. Finally, the motion of the magnet through a superconducting pipe is compared and contrasted to the flow of ions through a trans-membrane channel.

  8. Thickness-modulated tungsten-carbon superconducting nanostructures grown by focused ion beam induced deposition for vortex pinning up to high magnetic fields.

    PubMed

    Serrano, Ismael García; Sesé, Javier; Guillamón, Isabel; Suderow, Hermann; Vieira, Sebastián; Ibarra, Manuel Ricardo; De Teresa, José María

    2016-01-01

    We report efficient vortex pinning in thickness-modulated tungsten-carbon-based (W-C) nanostructures grown by focused ion beam induced deposition (FIBID). By using FIBID, W-C superconducting films have been created with thickness modulation properties exhibiting periodicity from 60 to 140 nm, leading to a strong pinning potential for the vortex lattice. This produces local minima in the resistivity up to high magnetic fields (2.2 T) in a broad temperature range due to commensurability effects between the pinning potential and the vortex lattice. The results show that the combination of single-step FIBID fabrication of superconducting nanostructures with built-in artificial pinning landscapes and the small intrinsic random pinning potential of this material produces strong periodic pinning potentials, maximizing the opportunities for the investigation of fundamental aspects in vortex science under changing external stimuli (e.g., temperature, magnetic field, electrical current).

  9. 2011 Superconductivity Centennial Conference - EUCAS-ISEC-ICMC

    NASA Astrophysics Data System (ADS)

    Rogalla, Horst

    2012-11-01

    In 2011 a Centennial Conference was organized in the "World Forum" Conference Center in Den Haag, the Netherlands, celebrating the discovery of Superconductivity by Heike Kamerlingh Onnes and his group 100 years ago in Leiden in the Netherlands. They found superconductivity in pure mercury after successfully liquefying helium for which Kamerlingh Onnes received a Nobel Prize in 1913. Since then superconductivity has been in the vivid focus of fundamental solid state physics, applied sciences and engineering in a very active community which already in 2005 came forward with the request to organize a Centennial Conference. Horst Rogalla and Dick Veldhuis from the University of Twente and Peter Kes from the University of Leiden took over the task to organize this conference in cooperation with three international conferences, the European Conference on Applied Superconductivity (EUCAS), the International Superconducting Electronics Conference (ISEC) and the International Cryogenic Materials Conference (ICMC). All three are biannual conferences with quite a long history in superconductivity, its applications and its materials.

  10. Half-metallic superconducting triplet spin multivalves

    NASA Astrophysics Data System (ADS)

    Alidoust, Mohammad; Halterman, Klaus

    2018-02-01

    We study spin switching effects in finite-size superconducting multivalve structures. We examine F1F2SF3 and F1F2SF3F4 hybrids where a singlet superconductor (S) layer is sandwiched among ferromagnet (F) layers with differing thicknesses and magnetization orientations. Our results reveal a considerable number of experimentally viable spin-valve configurations that lead to on-off switching of the superconducting state. For S widths on the order of the superconducting coherence length ξ0, noncollinear magnetization orientations in adjacent F layers with multiple spin axes leads to a rich variety of triplet spin-valve effects. Motivated by recent experiments, we focus on samples where the magnetizations in the F1 and F4 layers exist in a fully spin-polarized half-metallic phase, and calculate the superconducting transition temperature, spatially and energy resolved density of states, and the spin-singlet and spin-triplet superconducting correlations. Our findings demonstrate that superconductivity in these devices can be completely switched on or off over a wide range of magnetization misalignment angles due to the generation of equal-spin and opposite-spin triplet pairings.

  11. Fidelity study of superconductivity in extended Hubbard models

    DOE PAGES

    Plonka, N.; Jia, C. J.; Wang, Y.; ...

    2015-07-08

    The Hubbard model with local on-site repulsion is generally thought to possess a superconducting ground state for appropriate parameters, but the effects of more realistic long-range Coulomb interactions have not been studied extensively. We study the influence of these interactions on superconductivity by including nearest- and next-nearest-neighbor extended Hubbard interactions in addition to the usual on-site terms. Utilizing numerical exact diagonalization, we analyze the signatures of superconductivity in the ground states through the fidelity metric of quantum information theory. Finally, we find that nearest and next-nearest neighbor interactions have thresholds above which they destabilize superconductivity regardless of whether they aremore » attractive or repulsive, seemingly due to competing charge fluctuations.« less

  12. PREFACE: Focus section on superconducting power systems Focus section on superconducting power systems

    NASA Astrophysics Data System (ADS)

    Cardwell, D. A.; Amemiya, N.; Fair, R.

    2012-01-01

    This focus section of Superconductor Science and Technology looks at the properties, technology and applications of (RE)BCO and MgB2 based superconductors for power engineering systems. Both bulk and conductor forms of material are addressed, including elements of materials fabrication and processing, and the measurement of their applied properties for various levels of system application. The areas of research include ac losses in type II materials in power devices, cables and coated conductors, the development of high current dc cables and the application of superconductors in levitation devices, motors and fault current limiters. This focus section presents a broad cross-section of contemporary issues, that represent state-of-the-art for power applications of superconductors, and highlights the areas that require further development if commercial applications of these rapidly emerging materials are to be realised. It contains papers from some of the major groups in the field, including contributions from Europe, the USA and Japan, and describes devices that are relatively close to market.

  13. A Course on Applied Superconductivity Shared by Four Departments

    ERIC Educational Resources Information Center

    Jensen, Bogi B.; Abrahamsen, Asger B.; Sorensen, Mads P.; Hansen, Jorn B.

    2013-01-01

    In this paper, a course on applied superconductivity is described. The course structure is outlined and the learning objectives and the learning activities are described. The teaching was multidisciplinary given by four departments each contributing with their expertise. Being applied superconductivity, the focus was on an application, which could…

  14. US Navy superconductivity program

    NASA Technical Reports Server (NTRS)

    Gubser, Donald U.

    1991-01-01

    Both the new high temperature superconductors (HTS) and the low temperature superconductors (LTS) are important components of the Navy's total plan to integrate superconductivity into field operational systems. Fundamental research is an important component of the total Navy program and focuses on the HTS materials. Power applications (ship propulsion) use LTS materials while space applications (millimeter wave electronics) use HTS materials. The Space Experiment to be conducted at NRL will involve space flight testing of HTS devices built by industry and will demonstrate the ability to engineer and space qualify these devices for systems use. Another important component of the Navy's effort is the development of Superconducting Quantum Interference Device (SQUID) magnetometers. This program will use LTS materials initially, but plans to implement HTS materials as soon as possible. Hybrid HTS/LTS systems are probable in many applications. A review of the status of the Navy's HTS materials research is given as well as an update on the Navy's development efforts in superconductivity.

  15. Dissipation-driven phase transitions in superconducting wires

    NASA Astrophysics Data System (ADS)

    Lobos, Alejandro; Iucci, Aníbal; Müller, Markus; Giamarchi, Thierry

    2010-03-01

    Narrow superconducting wires with diameter dξ0 (where ξ0 is the bulk superconducting coherence length) are quasi-1D systems in which fluctuations of the order parameter strongly affect low-temperature properties. Indeed, fluctuations cause the magnitude of the order parameter to temporarily vanish at some point along the wire, allowing its phase to slip by 2π, and to produce finite resistivity for all temperatures below Tc. In this work, we show that a weak coupling to a diffusive metallic film reinforces superconductivity in the wire through a quench of phase fluctuations. We analyze the effective phase-only action of the system by a perturbative renormalization-group and a self-consistent variational approach to obtain the critical points and phases at T=0. We predict a quantum phase transition towards a superconducting phase with long-range order as a function of the wire stiffness and coupling to the metal. Finally we discuss implications for the DC resistivity of the wire.

  16. Superconductivity in interacting interfaces of cuprate-based heterostructures

    NASA Astrophysics Data System (ADS)

    Di Castro, Daniele; Balestrino, Giuseppe

    2018-07-01

    Low dimensional superconducting systems have been the subject of numerous studies in the recent past, with the aim of achieving a higher and higher critical temperature (T c ). The recent improvement in film deposition techniques has allowed the realization of artificial heterostructures, with atomically flat surfaces and interfaces, where novel properties appear that are not present in the single constituent. For instance, quasi-2D superconductivity was found at the interface between different oxides. In this review we analyze, in particular, the quasi-2D superconductivity occurring at the interface between two non-superconducting oxides, mostly cuprates. Throughout a comparison of the superconducting properties of different oxide heterostructures and superlattices, we propose a phenomenological explanation of the behavior of the T c as a function of the number of conducting CuO2 planes. This is achieved by introducing two different interactions between the superconducting 2D sheets. This interpretation is finally extended also to standard high T c cuprates, contributing to the solution of the long-standing question of the dependence of T c on the number of CuO2 planes in these systems.

  17. Recent progress towards developing a high field, high-T(sub c) superconducting magnet for magnetic suspension and balance systems

    NASA Technical Reports Server (NTRS)

    Derochemont, L. Pierre; Oakes, Carlton E.; Squillante, Michael R.; Duan, Hong-Min; Hermann, Allen M.; Andrews, Robert J.; Poeppel, Roger B.; Maroni, Victor A.; Carlberg, Ingrid A.; Kelliher, Warren C.

    1992-01-01

    This paper reviews superconducting magnets and high T(sub c) superconducting oxide ceramic materials technology to identify areas of fundamental impasse to the fabrication of components and devices that tap what are believed to be the true potential of these new materials. High T(sub c) ceramics pose problems in fundamentally different areas which need to be solved unlike low T(sub c) materials. The authors map out an experimental plan designed to research process technologies which, if suitably implemented, should allow these deficiencies to be solved. Finally, assessments are made of where and on what regimes magnetic system designers should focus their attention to advance the practical development of systems based on these new materials.

  18. Superconducting Magnets for Particle Accelerators

    DOE PAGES

    Bottura, Luca; Gourlay, Stephen A.; Yamamoto, Akira; ...

    2015-11-10

    In this study, we summarize the evolution and contributions of superconducting magnets to particle accelerators as chronicled over the last 50 years of Particle Accelerator Conferences (PAC, NA-PAC and IPAC). We begin with an historical overview based primarily on PAC Proceedings augmented with references to key milestones in the development of superconducting magnets for particle accelerators. We then provide some illustrative examples of applications that have occurred over the past 50 years, focusing on those that have either been realized in practice or provided technical development for other projects, with discussion of possible future applications.

  19. Superconducting Magnets for Particle Accelerators

    NASA Astrophysics Data System (ADS)

    Bottura, Luca; Gourlay, Stephen A.; Yamamoto, Akira; Zlobin, Alexander V.

    2016-04-01

    In this paper we summarize the evolution and contributions of superconducting magnets to particle accelerators as chronicled over the last 50 years of Particle Accelerator Conferences (PAC, NA-PAC and IPAC). We begin with an historical overview based primarily on PAC Proceedings augmented with references to key milestones in the development of superconducting magnets for particle accelerators. We then provide some illustrative examples of applications that have occurred over the past 50 years, focusing on those that have either been realized in practice or provided technical development for other projects, with discussion of possible future applications.

  20. Plasma lens experiments at the Final Focus Test Beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barletta, B.; Chattopadhyay, S.; Chen, P.

    1993-04-01

    We intend to carry out a series of plasma lens experiments at the Final Focus Test Beam facility at SLAC. These experiments will be the first to study the focusing of particle beams by plasma focusing devices in the parameter regime of interest for high energy colliders, and is expected to lead to plasma lens designs capable of unprecedented spot sizes. Plasma focusing of positron beams will be attempted for the first time. We will study the effects of lens aberrations due to various lens imperfections. Several approaches will be applied to create the plasma required including laser ionization andmore » beam ionization of a working gas. At an increased bunch population of 2.5 {times} 10{sup 10}, tunneling ionization of a gas target by an electron beam -- an effect which has never been observed before -- should be significant. The compactness of our device should prove to be of interest for applications at the SLC and the next generation linear colliders.« less

  1. Mechanical alignment of particles for use in fabricating superconducting and permanent magnetic materials

    DOEpatents

    Nellis, William J.; Maple, M. Brian

    1992-01-01

    A method for mechanically aligning oriented superconducting or permanently magnetic materials for further processing into constructs. This pretreatment optimizes the final crystallographic orientation and, thus, properties in these constructs. Such materials as superconducting fibers, needles and platelets are utilized.

  2. Pantechnik new superconducting ion source: PantechniK Indian Superconducting Ion Source.

    PubMed

    Gaubert, G; Bieth, C; Bougy, W; Brionne, N; Donzel, X; Leroy, R; Sineau, A; Vallerand, C; Villari, A C C; Thuillier, T

    2012-02-01

    The new ECR ion source PantechniK Indian Superconducting Ion Source (PKISIS) was recently commissioned at Pantechnik. Three superconducting coils generate the axial magnetic field configuration, while the radial magnetic field is done with the multi-layer permanent magnets. Special care was devoted to the design of the hexapolar structure, allowing a maximum magnetic field of 1.32 T at the wall of the 82 mm diameter plasma chamber. The three superconducting coils using low temperature superconducting wires are cooled by a single double stage cryo-cooler (4.2 K). Cryogen-free technology is used, providing reliability and easy maintenance at low cost. The maximum installed RF power (18.0 GHz) is of 2 kW. Metallic beams can be produced with an oven (T(max) = 1400 °C) installed with an angle of 5° with respect to the source axis or a sputtering system, mounted on the axis of the source. The beam extraction system is constituted of three electrodes in accel-decel configuration. The new source of Pantechnik is conceived for reaching optimum performances at 18 GHz RF frequencies. PKISIS magnetic fields are 2.1 T axial B(inj) and 1.32 T radial field in the wall, variable B(min) with an independent coil and a large and opened extraction region. Moreover, PKISIS integrates modern design concepts, like RF direct injection (2 kW availability), dc-bias moving disk, out-of-axis oven and axial sputtering facility for metal beams. Finally, PKISIS is also conceived in order to operate in a high-voltage platform with minor power consumption.

  3. Superconductivity and hybrid soft modes in Ti Se 2

    DOE PAGES

    Maschek, M.; Rosenkranz, S.; Hott, R.; ...

    2016-12-12

    The interplay between superconductivity and charge-density-wave (CDW) order plays a central role in the layered transition-metal dichalcogenides. 1 T-TiSe 2 forms a prime example, featuring superconducting domes on intercalation as well as under applied pressure. Here, we present high energy-resolution inelastic x-ray scattering measurements of the CDW soft phonon mode in intercalated Cu xTiSe 2 and pressurized 1 T-TiSe 2 along with detailed ab-initio calculations for the lattice dynamical properties and phonon-mediated superconductivity. We find that the intercalation-induced superconductivity can be explained by a solely phonon-mediated pairing mechanism, while this is not possible for the superconducting phase under pressure. Wemore » argue that a hybridization of phonon and exciton modes in the pairing mechanism is necessary to explain the full observed temperature-pressure-intercalation phase diagram. Finally, these results indicate that 1 T-TiSe 2 under pressure is close to the elusive state of the excitonic insulator.« less

  4. Electrostatic separation of superconducting particles from non-superconducting particles and improvement in fuel atomization by electrorheology

    NASA Astrophysics Data System (ADS)

    Chhabria, Deepika

    particles are smaller than 45mum. One always come across multiphase superconducting materials where most superconducting grains are much smaller than 45mum. On the other hand, since our technology is based on the surface effect, it gets stronger when the particles become smaller. Our technology is thus perfect for small superconducting particles and for fabrication of HTSC materials. The area of superconductivity is expected to be very important for 21 st Century energy industry. The key for this development is the HTSC materials. We, therefore, expect that our technology will have strong impact in the area. (2) Improving engine efficiency and reducing pollutant emissions are extremely important. Here we report our fuel injection technology based on new physics principle that proper application of electrorheology can reduce the viscosity of petroleum fuels. A small device is thus introduced just before the fuel injection for the engine, producing a strong electric field to reduce the fuel viscosity, resulting in much smaller fuel droplets in atomization. As combustion starts at the interface between fuel and air and most harmful emissions are coming from incomplete burning, reducing the size of fuel droplets would increase the total surface area to start burning, leading to a cleaner and more efficient engine. This concept has been widely accepted as the discussions about future engine for efficient and clean combustion are focused on ultra-dilute mixtures at extremely high pressure to produce much finer mist of fuel for combustion. The technology is expected to have broad applications, applicable to current internal combustion engines and future engines as well.

  5. Nematicity, magnetism and superconductivity in FeSe

    NASA Astrophysics Data System (ADS)

    Böhmer, Anna E.; Kreisel, Andreas

    2018-01-01

    Iron-based superconductors are well known for their complex interplay between structure, magnetism and superconductivity. FeSe offers a particularly fascinating example. This material has been intensely discussed because of its extended nematic phase, whose relationship with magnetism is not obvious. Superconductivity in FeSe is highly tunable, with the superconducting transition temperature, T c, ranging from 8 K in bulk single crystals at ambient pressure to almost 40 K under pressure or in intercalated systems, and to even higher temperatures in thin films. In this topical review, we present an overview of nematicity, magnetism and superconductivity, and discuss the interplay of these phases in FeSe. We focus on bulk FeSe and the effects of physical pressure and chemical substitutions as tuning parameters. The experimental results are discussed in the context of the well-studied iron-pnictide superconductors and interpretations from theoretical approaches are presented.

  6. Nematicity, magnetism and superconductivity in FeSe.

    PubMed

    Böhmer, Anna E; Kreisel, Andreas

    2018-01-17

    Iron-based superconductors are well known for their complex interplay between structure, magnetism and superconductivity. FeSe offers a particularly fascinating example. This material has been intensely discussed because of its extended nematic phase, whose relationship with magnetism is not obvious. Superconductivity in FeSe is highly tunable, with the superconducting transition temperature, T c , ranging from 8 K in bulk single crystals at ambient pressure to almost 40 K under pressure or in intercalated systems, and to even higher temperatures in thin films. In this topical review, we present an overview of nematicity, magnetism and superconductivity, and discuss the interplay of these phases in FeSe. We focus on bulk FeSe and the effects of physical pressure and chemical substitutions as tuning parameters. The experimental results are discussed in the context of the well-studied iron-pnictide superconductors and interpretations from theoretical approaches are presented.

  7. Development work for a superconducting linear collider

    NASA Technical Reports Server (NTRS)

    Matheisen, Axel

    1995-01-01

    For future linear e(+)e(-) colliders in the TeV range several alternatives are under discussion. The TESLA approach is based on the advantages of superconductivity. High Q values of the accelerator structures give high efficiency for converting RF power into beam power. A low resonance frequency for the RF structures can be chosen to obtain a large number of electrons (positrons) per bunch. For a given luminosity the beam dimensions can be chosen conservatively which leads to relaxed beam emittance and tolerances at the final focus. Each individual superconducting accelerator component (resonator cavity) of this linear collider has to deliver an energy gain of 25 MeV/m to the beam. Today s.c. resonators are in use at CEBAF/USA, at DESY/Germany, Darmstadt/Germany KEK/Japan and CERN/Geneva. They show acceleration gradients between 5 MV/m and 10 MV/m. Encouraging experiments at CEA Saclay and Cornell University showed acceleration gradients of 20 MV/m and 25 MV/m in single and multicell structures. In an activity centered at DESY in Hamburg/Germany the TESLA collaboration is constructing a 500 MeV superconducting accelerator test facility (TTF) to demonstrate that a linear collider based on this technique can be built in a cost effective manner and that the necessary acceleration gradients of more than 15 MeV/m can be reached reproducibly. The test facility built at DESY covers an area of 3.000 m2 and is divided into 3 major activity areas: (1) The testlinac, where the performance ofthe modular components with an electron beam passing the 40 m long acceleration section can be demonstrated. (2) The test area, where all individual resonators are tested before installation into a module. (3) The preparation and assembly area, where assembly of cavities and modules take place. We report here on the design work to reach a reduction of costs compared to actual existing superconducting accelerator structures and on the facility set up to reach high acceleration gradients in

  8. Low Loss Superconducting Microstrip Development at Argonne National Lab

    DOE PAGES

    Chang, C. L.; Ade, P. A. R.; Ahmed, Z.; ...

    2014-11-20

    Low loss superconducting microstrip is an essential component in realizing 100 kilo-pixel multichroic cosmic microwave background detector arrays. In this paper, we have been developing a low loss microstrip by understanding and controlling the loss mechanisms. We present the fabrication of the superconducting microstrip, the loss measurements at a few GHz frequencies using half-wavelength resonators, and the loss measurements at 220 GHz frequencies with the superconducting microstrip coupled to slot antennas at one end and to TES detectors at the other end. Finally, the measured loss tangent of the microstrip made of sputtered Nb and SiOx is 1-2e-3.

  9. Finite element analysis of time-independent superconductivity. Ph.D. Thesis Final Report

    NASA Technical Reports Server (NTRS)

    Schuler, James J.

    1993-01-01

    The development of electromagnetic (EM) finite elements based upon a generalized four-potential variational principle is presented. The use of the four-potential variational principle allows for downstream coupling of EM fields with the thermal, mechanical, and quantum effects exhibited by superconducting materials. The use of variational methods to model an EM system allows for a greater range of applications than just the superconducting problem. The four-potential variational principle can be used to solve a broader range of EM problems than any of the currently available formulations. It also reduces the number of independent variables from six to four while easily dealing with conductor/insulator interfaces. This methodology was applied to a range of EM field problems. Results from all these problems predict EM quantities exceptionally well and are consistent with the expected physical behavior.

  10. Conceptual study of superconducting urban area power systems

    NASA Astrophysics Data System (ADS)

    Noe, Mathias; Bach, Robert; Prusseit, Werner; Willén, Dag; Gold-acker, Wilfried; Poelchau, Juri; Linke, Christian

    2010-06-01

    Efficient transmission, distribution and usage of electricity are fundamental requirements for providing citizens, societies and economies with essential energy resources. It will be a major future challenge to integrate more sustainable generation resources, to meet growing electricity demand and to renew electricity networks. Research and development on superconducting equipment and components have an important role to play in addressing these challenges. Up to now, most studies on superconducting applications in power systems have been concentrated on the application of specific devices like for example cables and current limiters. In contrast to this, the main focus of our study is to show the consequence of a large scale integration of superconducting power equipment in distribution level urban power systems. Specific objectives are to summarize the state-of-the-art of superconducting power equipment including cooling systems and to compare the superconducting power system with respect to energy and economic efficiency with conventional solutions. Several scenarios were considered starting from the replacement of an existing distribution level sub-grid up to a full superconducting urban area distribution level power system. One major result is that a full superconducting urban area distribution level power system could be cost competitive with existing solutions in the future. In addition to that, superconducting power systems offer higher energy efficiency as well as a number of technical advantages like lower voltage drops and improved stability.

  11. Superconductive wire

    DOEpatents

    Korzekwa, David A.; Bingert, John F.; Peterson, Dean E.; Sheinberg, Haskell

    1995-01-01

    A superconductive article is made by inserting a rigid mandrel into an internal cavity of a first metallic tube, said tube having an interior surface and an exterior surface, said interior surface defining the interior cavity, forming a layer of a superconductive material or superconductive precursor upon the exterior surface of said first metallic tube, machining the layer of superconductive material or superconductive precursor to a predetermined diameter to form an intermediate article configured for insertion into a second metallic tube having an interior diameter corresponding to the predetermined diameter, inserting the machined intermediate article into a second metallic tube having an internal diameter corresponding to the predetermined diameter of the intermediate article to form a composite intermediate article, reducing or ironing the composite intermediate article to a predetermined cross-sectional diameter, and sintering the reduced or ironed composite intermediate article at temperatures and for time sufficient for the superconductive material or superconductive precursor to exhibit superconductivity.

  12. Superconductive wire

    DOEpatents

    Korzekwa, D.A.; Bingert, J.F.; Peterson, D.E.; Sheinberg, H.

    1995-07-18

    A superconductive article is made by inserting a rigid mandrel into an internal cavity of a first metallic tube, said tube having an interior surface and an exterior surface, said interior surface defining the interior cavity, forming a layer of a superconductive material or superconductive precursor upon the exterior surface of said first metallic tube, machining the layer of superconductive material or superconductive precursor to a predetermined diameter to form an intermediate article configured for insertion into a second metallic tube having an interior diameter corresponding to the predetermined diameter, inserting the machined intermediate article into a second metallic tube having an internal diameter corresponding to the predetermined diameter of the intermediate article to form a composite intermediate article, reducing or ironing the composite intermediate article to a predetermined cross-sectional diameter, and sintering the reduced or ironed composite intermediate article at temperatures and for time sufficient for the superconductive material or superconductive precursor to exhibit superconductivity. 2 figs.

  13. Nematicity, magnetism and superconductivity in FeSe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bohmer, Anna E.; Kreisel, Andreas

    Iron-based superconductors are well known for their complex interplay between structure, magnetism and superconductivity. FeSe offers a particularly fascinating example. This material has been intensely discussed because of its extended nematic phase, whose relationship with magnetism is not obvious. Superconductivity in FeSe is highly tunable, with the superconducting transition temperature, T c, ranging from 8 K in bulk single crystals at ambient pressure to almost 40 K under pressure or in intercalated systems, and to even higher temperatures in thin films. In this topical review, we present an overview of nematicity, magnetism and superconductivity, and discuss the interplay of thesemore » phases in FeSe. We focus on bulk FeSe and the effects of physical pressure and chemical substitutions as tuning parameters. In conclusion, the experimental results are discussed in the context of the well-studied iron-pnictide superconductors and interpretations from theoretical approaches are presented.« less

  14. Nematicity, magnetism and superconductivity in FeSe

    DOE PAGES

    Bohmer, Anna E.; Kreisel, Andreas

    2017-12-15

    Iron-based superconductors are well known for their complex interplay between structure, magnetism and superconductivity. FeSe offers a particularly fascinating example. This material has been intensely discussed because of its extended nematic phase, whose relationship with magnetism is not obvious. Superconductivity in FeSe is highly tunable, with the superconducting transition temperature, T c, ranging from 8 K in bulk single crystals at ambient pressure to almost 40 K under pressure or in intercalated systems, and to even higher temperatures in thin films. In this topical review, we present an overview of nematicity, magnetism and superconductivity, and discuss the interplay of thesemore » phases in FeSe. We focus on bulk FeSe and the effects of physical pressure and chemical substitutions as tuning parameters. In conclusion, the experimental results are discussed in the context of the well-studied iron-pnictide superconductors and interpretations from theoretical approaches are presented.« less

  15. Superconducting dome in doped quasi-two-dimensional organic Mott insulators: A paradigm for strongly correlated superconductivity

    NASA Astrophysics Data System (ADS)

    Hébert, Charles-David; Sémon, Patrick; Tremblay, A.-M. S.

    2015-11-01

    first-order transition between metal and pseudogap. Finally, we predict that electron doping should also lead to an increased range of U /t for superconductivity but with a reduced maximum Tc. This work also clearly shows that the superconducting dome in organic superconductors is tied to the Mott transition and its continuation as a transition separating pseudogap phase from correlated metal in doped compounds, as in the cuprates. Contrary to heavy fermions for example, the maximum Tc is definitely not attached to an antiferromagnetic quantum critical point. That can also be verified experimentally.

  16. How experimentally to detect a solitary superconductivity in dirty ferromagnet-superconductor trilayers?

    NASA Astrophysics Data System (ADS)

    Avdeev, Maxim V.; Proshin, Yurii N.

    2017-10-01

    We theoretically study the proximity effect in the thin-film layered ferromagnet (F) - superconductor (S) heterostructures in F1F2S design. We consider the boundary value problem for the Usadel-like equations in the case of so-called ;dirty; limit. The ;latent; superconducting pairing interaction in F layers taken into account. The focus is on the recipe of experimental preparation the state with so-called solitary superconductivity. We also propose and discuss the model of the superconducting spin valve based on F1F2S trilayers in solitary superconductivity regime.

  17. Design optimization of superconducting coils based on asymmetrical characteristics of REBCO tapes

    NASA Astrophysics Data System (ADS)

    Hong, Zhiyong; Li, Wenrong; Chen, Yanjun; Gömöry, Fedor; Frolek, Lubomír; Zhang, Min; Sheng, Jie

    2018-07-01

    Angle dependence Ic(B,θ) of superconducting tape is a crucial parameter to calculate the influence of magnetic field during the design of superconducting applications,. This paper focuses on the asymmetrical characteristics found in REBCO tapes and further applications based on this phenomenon. This paper starts with angle dependence measurements of different HTS tapes, asymmetrical characteristics are found in some of the testing samples. On basis of this property, optimization of superconducting coils in superconducting motor, transformer and insert magnet is discussed by simulation. Simplified experiments which represent the structure of insert magnet were carried out to prove the validity of numerical studies. Conclusions obtained in this paper show that the asymmetrical property of superconducting tape is quite important in design of superconducting applications, and optimized winding technique based on this property can be used to improve the performance of superconducting devices.

  18. Superconducting coil and method of stress management in a superconducting coil

    DOEpatents

    McIntyre, Peter M.; Shen, Weijun; Diaczenko, Nick; Gross, Dan A.

    1999-01-01

    A superconducting coil (12) having a plurality of superconducting layers (18) is provided. Each superconducting layer (18) may have at least one superconducting element (20) which produces an operational load. An outer support structure (24) may be disposed outwardly from the plurality of layers (18). A load transfer system (22) may be coupled between at least one of the superconducting elements (20) and the outer support structure (24). The load transfer system (22) may include a support matrix structure (30) operable to transfer the operational load from the superconducting element (20) directly to the outer support structure (24). A shear release layer (40) may be disposed, in part, between the superconducting element (20) and the support matrix structure (30) for relieving a shear stress between the superconducting element (20) and the support matrix structure (30). A compliant layer (42) may also be disposed, in part, between the superconducting element (20) and the support matrix structure (30) for relieving a compressive stress on the superconducting element (20).

  19. Superconducting Cable

    DOEpatents

    Hughey, Raburn L.; Sinha, Uday K.; Reece, David S.; Muller, Albert C.

    2005-03-08

    In order to provide a flexible oxide superconducting cable which is reduced in AC loss, tape-shaped superconducting wires covered with a stabilizing metal are wound on a flexible former. The superconducting wires are preferably laid on the former at a bending strain of not more than 0.2%. In laying on the former, a number of tape-shaped superconducting wires are laid on a core member in a side-by-side manner, to form a first layer. A prescribed number of tape-shaped superconducting wires are laid on top of the first layer in a side-by-side manner, to form a second layer. The former may be made of a metal, plastic, reinforced plastic, polymer, or a composite and provides flexibility to the superconducting wires and the cable formed therewith.

  20. Superconducting Cable

    DOEpatents

    Hughey, Raburn L.; Sinha, Uday K.; Reece, David S.; Muller, Albert C.

    2005-07-22

    In order to provide a flexible oxide superconducting cable which is reduced in AC loss, tape-shaped superconducting wires covered with a stabilizing metal are wound on a flexible former. The superconducting wires are preferably laid on the former at a bending strain of not more than 0.2%. In laying on the former, a number of tape-shaped superconducting wires are laid on a core member in a side-by-side manner, to form a first layer. A prescribed number of tape-shaped superconducting wires are laid on top of the first layer in a side-by-side manner, to form a second layer. The former may be made of a metal, plastic, reinforced plastic, polymer, or a composite and provides flexibility to the superconducting wires and the cable formed therewith.

  1. Mechanisms of superconductivity investigated by nuclear radiation

    NASA Technical Reports Server (NTRS)

    Autler, S. H.; Coffey, H. T.; Keller, E. L.; Patterson, A.

    1967-01-01

    Investigation focused on the behavior of superconducting magnet and its constituent materials during and after exposure to nuclear radiation. The results will indicate the feasibility of their use in diverse applications and various environments.

  2. Superconducting structure

    DOEpatents

    Kwon, Chuhee; Jia, Quanxi; Foltyn, Stephen R.

    2003-04-01

    A superconductive structure including a dielectric oxide substrate, a thin buffer layer of a superconducting material thereon; and, a layer of a rare earth-barium-copper oxide superconducting film thereon the thin layer of yttrium-barium-copper oxide, the rare earth selected from the group consisting of samarium, gadolinium, ytterbium, erbium, neodymium, dysprosium, holmium, lutetium, a combination of more than one element from the rare earth group and a combination of one or more elements from the rare earth group with yttrium, the buffer layer of superconducting material characterized as having chemical and structural compatibility with the dielectric oxide substrate and the rare earth-barium-copper oxide superconducting film is provided.

  3. Superconducting Structure

    DOEpatents

    Kwon, Chuhee; Jia, Quanxi; Foltyn, Stephen R.

    2005-09-13

    A superconductive structure including a dielectric oxide substrate, a thin buffer layer of a superconducting material thereon; and, a layer of a rare earth-barium-copper oxide superconducting film thereon the thin layer of yttrium-barium-copper oxide, the rare earth selected from the group consisting of samarium, gadolinium, ytterbium, erbium, neodymium, dysprosium, holmium, lutetium, a combination of more than one element from the rare earth group and a combination of one or more elements from the rare earth group with yttrium, the buffer layer of superconducting material characterized as having chemical and structural compatibility with the dielectric oxide substrate and the rare earth-barium-copper oxide superconducting film is provided.

  4. PREFACE: Superconductivity in ultrathin films and nanoscale systems Superconductivity in ultrathin films and nanoscale systems

    NASA Astrophysics Data System (ADS)

    Bianconi, Antonio; Bose, Sangita; Garcia-Garcia, Antonio Miguel

    2012-12-01

    The recent technological developments in the synthesis and characterization of high-quality nanostructures and developments in the theoretical techniques needed to model these materials, have motivated this focus section of Superconductor Science and Technology. Another motivation is the compelling evidence that all new superconducting materials, such as iron pnictides and chalcogenides, diborides (doped MgB2) and fullerides (alkali-doped C60 compounds), are heterostrucures at the atomic limit, such as the cuprates made of stacks of nanoscale superconducting layers intercalated by different atomic layers with nanoscale periodicity. Recently a great amount of interest has been shown in the role of lattice nano-architecture in controlling the fine details of Fermi surface topology. The experimental and theoretical study of superconductivity in the nanoscale started in the early 1960s, shortly after the discovery of the BCS theory. Thereafter there has been rapid progress both in experiments and the theoretical understanding of nanoscale superconductors. Experimentally, thin films, granular films, nanowires, nanotubes and single nanoparticles have all been explored. New quantum effects appear in the nanoscale related to multi-component condensates. Advances in the understanding of shape resonances or Fano resonances close to 2.5 Lifshitz transitions near a band edge in nanowires, 2D films and superlattices [1, 2] of these nanosized modules, provide the possibility of manipulating new quantum electronic states. Parity effects and shell effects in single, isolated nanoparticles have been reported by several groups. Theoretically, newer techniques based on solving Richardson's equation (an exact theory incorporating finite size effects to the BCS theory) numerically by path integral methods or solving the entire Bogoliubov-de Gennes equation in these limits have been attempted, which has improved our understanding of the mechanism of superconductivity in these confined

  5. Superconductivity in Weyl semimetal candidate MoTe2.

    PubMed

    Qi, Yanpeng; Naumov, Pavel G; Ali, Mazhar N; Rajamathi, Catherine R; Schnelle, Walter; Barkalov, Oleg; Hanfland, Michael; Wu, Shu-Chun; Shekhar, Chandra; Sun, Yan; Süß, Vicky; Schmidt, Marcus; Schwarz, Ulrich; Pippel, Eckhard; Werner, Peter; Hillebrand, Reinald; Förster, Tobias; Kampert, Erik; Parkin, Stuart; Cava, R J; Felser, Claudia; Yan, Binghai; Medvedev, Sergey A

    2016-03-14

    Transition metal dichalcogenides have attracted research interest over the last few decades due to their interesting structural chemistry, unusual electronic properties, rich intercalation chemistry and wide spectrum of potential applications. Despite the fact that the majority of related research focuses on semiconducting transition-metal dichalcogenides (for example, MoS2), recently discovered unexpected properties of WTe2 are provoking strong interest in semimetallic transition metal dichalcogenides featuring large magnetoresistance, pressure-driven superconductivity and Weyl semimetal states. We investigate the sister compound of WTe2, MoTe2, predicted to be a Weyl semimetal and a quantum spin Hall insulator in bulk and monolayer form, respectively. We find that bulk MoTe2 exhibits superconductivity with a transition temperature of 0.10 K. Application of external pressure dramatically enhances the transition temperature up to maximum value of 8.2 K at 11.7 GPa. The observed dome-shaped superconductivity phase diagram provides insights into the interplay between superconductivity and topological physics.

  6. Superconductivity in Weyl semimetal candidate MoTe2

    PubMed Central

    Qi, Yanpeng; Naumov, Pavel G.; Ali, Mazhar N.; Rajamathi, Catherine R.; Schnelle, Walter; Barkalov, Oleg; Hanfland, Michael; Wu, Shu-Chun; Shekhar, Chandra; Sun, Yan; Süß, Vicky; Schmidt, Marcus; Schwarz, Ulrich; Pippel, Eckhard; Werner, Peter; Hillebrand, Reinald; Förster, Tobias; Kampert, Erik; Parkin, Stuart; Cava, R. J.; Felser, Claudia; Yan, Binghai; Medvedev, Sergey A.

    2016-01-01

    Transition metal dichalcogenides have attracted research interest over the last few decades due to their interesting structural chemistry, unusual electronic properties, rich intercalation chemistry and wide spectrum of potential applications. Despite the fact that the majority of related research focuses on semiconducting transition-metal dichalcogenides (for example, MoS2), recently discovered unexpected properties of WTe2 are provoking strong interest in semimetallic transition metal dichalcogenides featuring large magnetoresistance, pressure-driven superconductivity and Weyl semimetal states. We investigate the sister compound of WTe2, MoTe2, predicted to be a Weyl semimetal and a quantum spin Hall insulator in bulk and monolayer form, respectively. We find that bulk MoTe2 exhibits superconductivity with a transition temperature of 0.10 K. Application of external pressure dramatically enhances the transition temperature up to maximum value of 8.2 K at 11.7 GPa. The observed dome-shaped superconductivity phase diagram provides insights into the interplay between superconductivity and topological physics. PMID:26972450

  7. Magnetoresistance in the superconducting state at the (111) LaAlO3/SrTiO3 interface

    NASA Astrophysics Data System (ADS)

    Davis, S.; Huang, Z.; Han, K.; Ariando, Venkatesan, T.; Chandrasekhar, V.

    2017-10-01

    Condensed-matter systems that simultaneously exhibit superconductivity and ferromagnetism are rare due the antagonistic relationship between conventional spin-singlet superconductivity and ferromagnetic order. In materials in which superconductivity and magnetic order are known to coexist (such as some heavy-fermion materials), the superconductivity is thought to be of an unconventional nature. Recently, the conducting gas that lives at the interface between the perovskite band insulators LaAlO3 (LAO) and SrTiO3 (STO) has also been shown to host both superconductivity and magnetism. Most previous research has focused on LAO/STO samples in which the interface is on the (001) crystal plane. Relatively little work has focused on the (111) crystal orientation, which has hexagonal symmetry at the interface, and has been predicted to have potentially interesting topological properties, including unconventional superconducting pairing states. Here we report measurements of the magnetoresistance of (111) LAO/STO heterostructures at temperatures at which they are also superconducting. As with the (001) structures, the magnetoresistance is hysteretic, indicating the coexistence of magnetism and superconductivity, but in addition, we find that this magnetoresistance is anisotropic. Such an anisotropic response is completely unexpected in the superconducting state and suggests that (111) LAO/STO heterostructures may support unconventional superconductivity.

  8. A strong-focusing 800 MeV cyclotron for high-current applications

    NASA Astrophysics Data System (ADS)

    Pogue, N.; Assadi, S.; Badgley, K.; Comeaux, J.; Kellams, J.; McInturff, A.; McIntyre, P.; Sattarov, A.

    2013-04-01

    A superconducting strong-focusing cyclotron (SFC) is being developed for high-current applications. It incorporates four innovations. Superconducting quarter-wave cavities are used to provide >20 MV/turn acceleration. The orbit separation is thereby opened so that bunch-bunch interactions between successive orbits are eliminated. Quadrapole focusing channels are incorporated within the sectors so that alternating-gradient strong-focusing transport is maintained throughout. Dipole windings on the inner and outer orbits provide enhanced control for injection and extraction of bunches. Finally each sector magnet is configured as a flux-coupled stack of independent apertures, so that any desired number of independent cyclotrons can be integrated within a common footprint. Preliminary simulations indicate that each SFC should be capable of accelerating 10 mA CW to 800 MeV with very low loss and >50% energy efficiency. A primary motivation for SFC is as a proton driver for accelerator-driven subcritical fission in a molten salt core. The cores are fueled solely with the transuranics from spent nuclear fuel from a conventional nuclear power plant. The beams from one SFC stack would destroy all of the transuranics and long-lived fission products that are produced by a GWe reactor [1]. This capability offers the opportunity to close the nuclear fuel cycle and provide a path to green nuclear energy.

  9. Radiation damage and waste management options for the SOMBRERO final focus system and neutron dumps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Latkowski, J F; Meier, W R; Reyes, S

    1999-08-09

    Previous studies of the safety and environmental aspects of the SOMBRERO inertial fusion energy (IFE) power plant design did not completely address the issues associated with the final focus system. While past work calculated neutron fluences for a grazing incidence metal mirror (GIMM) and a final focus mirror, scattering off of the final optical component was not included, and thus, fluences in the final focus mirror were significantly underestimated. In addition, past work did not consider neutron-induced gamma-rays. Finally, power plant lifetime waste volumes may have been underestimated as neutron activation of the neutron dumps and building structure were notmore » addressed. In the present work, a modified version of the SOMBRERO target building is presented where a significantly larger open solid-angle fraction (5%) is used to enhance beam smoothing of a diode-pumped solid-state laser (DPSSL). The GIMMs are replaced with transmissive fused silica wedges and have been included in three -dimensional neutron and photon transport calculations. This work shows that a power plant with a large open solid-angle fraction, needed for beam smoothing with a DPSSL, is acceptable from tritium breeding, and neutron activation points-of-view.« less

  10. High field superconducting magnets

    NASA Technical Reports Server (NTRS)

    Hait, Thomas P. (Inventor); Shirron, Peter J. (Inventor)

    2011-01-01

    A superconducting magnet includes an insulating layer disposed about the surface of a mandrel; a superconducting wire wound in adjacent turns about the mandrel to form the superconducting magnet, wherein the superconducting wire is in thermal communication with the mandrel, and the superconducting magnet has a field-to-current ratio equal to or greater than 1.1 Tesla per Ampere; a thermally conductive potting material configured to fill interstices between the adjacent turns, wherein the thermally conductive potting material and the superconducting wire provide a path for dissipation of heat; and a voltage limiting device disposed across each end of the superconducting wire, wherein the voltage limiting device is configured to prevent a voltage excursion across the superconducting wire during quench of the superconducting magnet.

  11. Introduction to Superconducting RF Structures and the Effect of High Pressure Rinsing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tajima, Tsuyoshi

    2016-06-30

    This presentation begins by describing RF superconductivity and SRF accelerating structures. Then the use of superconducting RF structures in a number of accelerators around the world is reviewed; for example, the International Linear Collider (ILC) will use ~16,000 SRF cavities with ~2,000 cryomodules to get 500 GeV e⁺/e⁻ colliding energy. Field emission control was (and still is) a very important practical issue for SRF cavity development. It has been found that high-pressure ultrapure water rinsing as a final cleaning step after chemical surface treatment resulted in consistent performance of single- and multicell superconducting cavities.

  12. Signal processing: opportunities for superconductive circuits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ralston, R.W.

    1985-03-01

    Prime motivators in the evolution of increasingly sophisticated communication and detection systems are the needs for handling ever wider signal bandwidths and higher data processing speeds. These same needs drive the development of electronic device technology. Until recently the superconductive community has been tightly focused on digital devices for high speed computers. The purpose of this paper is to describe opportunities and challenges which exist for both analog and digital devices in a less familiar area, that of wideband signal processing. The function and purpose of analog signal-processing components, including matched filters, correlators and Fourier transformers, will be described andmore » examples of superconductive implementations given. A canonic signal-processing system is then configured using these components in combination with analog/digital converters and digital output circuits to highlight the important issues of dynamic range, accuracy and equivalent computation rate. Superconductive circuits hold promise for processing signals of 10-GHz bandwidth. Signal processing systems, however, can be properly designed and implemented only through a synergistic combination of the talents of device physicists, circuit designers, algorithm architects and system engineers. An immediate challenge to the applied superconductivity community is to begin sharing ideas with these other researchers.« less

  13. Electronic structure and superconductivity of FeSe-related superconductors.

    PubMed

    Liu, Xu; Zhao, Lin; He, Shaolong; He, Junfeng; Liu, Defa; Mou, Daixiang; Shen, Bing; Hu, Yong; Huang, Jianwei; Zhou, X J

    2015-05-13

    FeSe superconductors and their related systems have attracted much attention in the study of iron-based superconductors owing to their simple crystal structure and peculiar electronic and physical properties. The bulk FeSe superconductor has a superconducting transition temperature (Tc) of ~8 K and it can be dramatically enhanced to 37 K at high pressure. On the other hand, its cousin system, FeTe, possesses a unique antiferromagnetic ground state but is non-superconducting. Substitution of Se with Te in the FeSe superconductor results in an enhancement of Tc up to 14.5 K and superconductivity can persist over a large composition range in the Fe(Se,Te) system. Intercalation of the FeSe superconductor leads to the discovery of the AxFe2-ySe2 (A = K, Cs and Tl) system that exhibits a Tc higher than 30 K and a unique electronic structure of the superconducting phase. A recent report of possible high temperature superconductivity in single-layer FeSe/SrTiO3 films with a Tc above 65 K has generated much excitement in the community. This pioneering work opens a door for interface superconductivity to explore for high Tc superconductors. The distinct electronic structure and superconducting gap, layer-dependent behavior and insulator-superconductor transition of the FeSe/SrTiO3 films provide critical information in understanding the superconductivity mechanism of iron-based superconductors. In this paper, we present a brief review of the investigation of the electronic structure and superconductivity of the FeSe superconductor and related systems, with a particular focus on the FeSe films.

  14. Superconducting levitating bearing

    NASA Technical Reports Server (NTRS)

    Moon, Francis C. (Inventor)

    1996-01-01

    A superconducting bearing assembly includes a coil field source that may be superconducting and a superconducting structure. The coil field source assembly and superconducting structure are positioned so as to enable relative rotary movement therebetween. The structure and coil field source are brought to a supercooled temperature before a power supply induces a current in the coil field source. A Meissner-like effect is thereby obtained and little or no penetration of the field lines is seen in the superconducting structure. Also, the field that can be obtained from the superconducting coil is 2-8 times higher than that of permanent magnets. Since the magnetic pressure is proportioned to the square of the field, magnetic pressures from 4 to 64 times higher are achieved.

  15. High temperature interface superconductivity

    DOE PAGES

    Gozar, A.; Bozovic, I.

    2016-01-20

    High-T c superconductivity at interfaces has a history of more than a couple of decades. In this review we focus our attention on copper-oxide based heterostructures and multi-layers. We first discuss the technique, atomic layer-by-layer molecular beam epitaxy (ALL-MBE) engineering, that enabled High-T c Interface Superconductivity (HT-IS), and the challenges associated with the realization of high quality interfaces. Then we turn our attention to the experiments which shed light on the structure and properties of interfacial layers, allowing comparison to those of single-phase films and bulk crystals. Both ‘passive’ hetero-structures as well as surface-induced effects by external gating are discussed.more » Here, we conclude by comparing HT-IS in cuprates and in other classes of materials, especially Fe-based superconductors, and by examining the grand challenges currently laying ahead for the field.« less

  16. Metastable Superconductivity in Two-Dimensional IrTe2 Crystals.

    PubMed

    Yoshida, Masaro; Kudo, Kazutaka; Nohara, Minoru; Iwasa, Yoshihiro

    2018-05-09

    Two-dimensional (2D) materials exhibit unusual physical and chemical properties that are attributed to the thinning-induced modification of their electronic band structure. Recently, reduced thickness was found to dramatically impact not only the static electronic structure, but also the dynamic ordering kinetics. The ordering kinetics of first-order phase transitions becomes significantly slowed with decreasing thickness, and metastable supercooled states can be realized by thinning alone. We therefore focus on layered iridium ditelluride (IrTe 2 ), a charge-ordering system that is transformed into a superconductor by suppressing its first-order transition. Here, we discovered a persistent superconducting zero-resistance state in mechanically exfoliated IrTe 2 thin flakes. The maximum superconducting critical temperature ( T c ) was identical to that which is chemically optimized, and the emergent superconductivity was revealed to have a metastable nature. The discovered robust metastable superconductivity suggests that 2D material is a new platform to induce, control, and functionalize metastable electronic states that are inaccessible in bulk crystals.

  17. Preparing Teachers to Discuss Superconductivity at High School Level: A Didactical Approach

    ERIC Educational Resources Information Center

    Ostermann, Fernanda; Ferreira, Leticie Mendonca

    2006-01-01

    We present an introduction to superconductivity that is intended to support the teaching and learning of this subject at a high school level. As a first step we propose to focus on the main properties of superconducting materials, i.e. zero electrical resistivity and the Meissner effect. Physics teachers and students will thereby be enabled to…

  18. Niobium superconducting rf cavity fabrication by electrohydraulic forming

    NASA Astrophysics Data System (ADS)

    Cantergiani, E.; Atieh, S.; Léaux, F.; Perez Fontenla, A. T.; Prunet, S.; Dufay-Chanat, L.; Koettig, T.; Bertinelli, F.; Capatina, O.; Favre, G.; Gerigk, F.; Jeanson, A. C.; Fuzeau, J.; Avrillaud, G.; Alleman, D.; Bonafe, J.; Marty, P.

    2016-11-01

    Superconducting rf (SRF) cavities are traditionally fabricated from superconducting material sheets or made of copper coated with superconducting material, followed by trim machining and electron-beam welding. An alternative technique to traditional shaping methods, such as deep-drawing and spinning, is electrohydraulic forming (EHF). In EHF, half-cells are obtained through ultrahigh-speed deformation of blank sheets, using shockwaves induced in water by a pulsed electrical discharge. With respect to traditional methods, such a highly dynamic process can yield interesting results in terms of effectiveness, repeatability, final shape precision, higher formability, and reduced springback. In this paper, the first results of EHF on high purity niobium are presented and discussed. The simulations performed in order to master the multiphysics phenomena of EHF and to adjust its process parameters are presented. The microstructures of niobium half-cells produced by EHF and by spinning have been compared in terms of damage created in the material during the forming operation. The damage was assessed through hardness measurements, residual resistivity ratio (RRR) measurements, and electron backscattered diffraction analyses. It was found that EHF does not worsen the damage of the material during forming and instead, some areas of the half-cell have shown lower damage compared to spinning. Moreover, EHF is particularly advantageous to reduce the forming time, preserve roughness, and to meet the final required shape accuracy.

  19. Reliability of the quench protection system for the LHC superconducting elements

    NASA Astrophysics Data System (ADS)

    Vergara Fernández, A.; Rodríguez-Mateos, F.

    2004-06-01

    The Quench Protection System (QPS) is the sole system in the Large Hadron Collider machine monitoring the signals from the superconducting elements (bus bars, current leads, magnets) which form the cold part of the electrical circuits. The basic functions to be accomplished by the QPS during the machine operation will be briefly presented. With more than 4000 internal trigger channels (quench detectors and others), the final QPS design is the result of an optimised balance between on-demand availability and false quench reliability. The built-in redundancy for the different equipment will be presented, focusing on the calculated, expected number of missed quenches and false quenches. Maintenance strategies in order to improve the performance over the years of operation will be addressed.

  20. Classification of "multipole" superconductivity in multiorbital systems and its implications

    NASA Astrophysics Data System (ADS)

    Nomoto, T.; Hattori, K.; Ikeda, H.

    2016-11-01

    Motivated by a growing interest in multiorbital superconductors with spin-orbit interactions, we perform the group-theoretical classification of various unconventional superconductivity emerging in symmorphic O , D4, and D6 space groups. The generalized Cooper pairs, which we here call "multipole" superconductivity, possess spin-orbital coupled (multipole) degrees of freedom, instead of the conventional spin singlet/triplet in single-orbital systems. From the classification, we obtain the following key consequences, which have never been focused in the long history of research in this field: (1) A superconducting gap function with Γ9⊗Γ9 in D6 possesses nontrivial momentum dependence different from the usual spin-1/2 classification. (2) Unconventional gap structure can be realized in the BCS approximation of purely local (onsite) interactions irrespective of attraction/repulsion. It implies the emergence of an electron-phonon (e-ph) driven unconventional superconductivity. (3) Reflecting symmetry of orbital basis functions there appear not symmetry protected but inevitable line nodes/gap minima, and thus, anisotropic s -wave superconductivity can be naturally explained even in the absence of competing fluctuations.

  1. μ SR and magnetometry study of superconducting 5% Pt-doped IrTe 2

    DOE PAGES

    Wilson, M. N.; Medina, T.; Munsie, T. J.; ...

    2016-11-11

    In this paper, we present magnetometry and muon spin rotation ( SR) measurements of the superconducting dichalcogenide Ir 0.95Pt 0.05Te 2. From both sets of measurements we calculate the penetration depth and thence superfluid density as a function of temperature. The temperature dependence of the superfluid densities from both sets of data indicate fully gapped superconductivity that can be fit to a conventional s-wave model and yield fitting parameters consistent with a BCS weak coupling superconductor. Finally, we therefore see no evidence for exotic superconductivity in Ir 0.95Pt 0.05Te 2.

  2. TRILEX and G W +EDMFT approach to d -wave superconductivity in the Hubbard model

    NASA Astrophysics Data System (ADS)

    Vučičević, J.; Ayral, T.; Parcollet, O.

    2017-09-01

    We generalize the recently introduced TRILEX approach (TRiply irreducible local EXpansion) to superconducting phases. The method treats simultaneously Mott and spin-fluctuation physics using an Eliashberg theory supplemented by local vertex corrections determined by a self-consistent quantum impurity model. We show that, in the two-dimensional Hubbard model, at strong coupling, TRILEX yields a d -wave superconducting dome as a function of doping. Contrary to the standard cluster dynamical mean field theory (DMFT) approaches, TRILEX can capture d -wave pairing using only a single-site effective impurity model. We also systematically explore the dependence of the superconducting temperature on the bare dispersion at weak coupling, which shows a clear link between strong antiferromagnetic (AF) correlations and the onset of superconductivity. We identify a combination of hopping amplitudes particularly favorable to superconductivity at intermediate doping. Finally, we study within G W +EDMFT the low-temperature d -wave superconducting phase at strong coupling in a region of parameter space with reduced AF fluctuations.

  3. Fermi-surface-free superconductivity in underdoped (Bi,Pb)(Sr,La) 2CuO 6+δ (Bi2201)

    DOE PAGES

    Mistark, Peter; Hafiz, Hasnain; Markiewicz, Robert S.; ...

    2015-06-18

    Fermi-surface-free superconductivity arises when the superconducting order pulls down spectral weight from a band that is completely above the Fermi energy in the normal state. Here, we show that this can arise in hole-doped cuprates when a competing order causes a reconstruction of the Fermi surface. The change in Fermi surface topology is accompanied by a characteristic rise in the spectral weight. Finally, our results support the presence of a trisected superconducting dome, and suggest that superconductivity is responsible for stabilizing the (π,π) magnetic order at higher doping.

  4. Superconductivity and spin-orbit coupling in non-centrosymmetric materials: a review

    NASA Astrophysics Data System (ADS)

    Smidman, M.; Salamon, M. B.; Yuan, H. Q.; Agterberg, D. F.

    2017-03-01

    In non-centrosymmetric superconductors, where the crystal structure lacks a centre of inversion, parity is no longer a good quantum number and an electronic antisymmetric spin-orbit coupling (ASOC) is allowed to exist by symmetry. If this ASOC is sufficiently large, it has profound consequences on the superconducting state. For example, it generally leads to a superconducting pairing state which is a mixture of spin-singlet and spin-triplet components. The possibility of such novel pairing states, as well as the potential for observing a variety of unusual behaviors, led to intensive theoretical and experimental investigations. Here we review the experimental and theoretical results for superconducting systems lacking inversion symmetry. Firstly we give a conceptual overview of the key theoretical results. We then review the experimental properties of both strongly and weakly correlated bulk materials, as well as two dimensional systems. Here the focus is on evaluating the effects of ASOC on the superconducting properties and the extent to which there is evidence for singlet-triplet mixing. This is followed by a more detailed overview of theoretical aspects of non-centrosymmetric superconductivity. This includes the effects of the ASOC on the pairing symmetry and the superconducting magnetic response, magneto-electric effects, superconducting finite momentum pairing states, and the potential for non-centrosymmetric superconductors to display topological superconductivity.

  5. PREFACE: 11th European Conference on Applied Superconductivity (EUCAS2013)

    NASA Astrophysics Data System (ADS)

    Farinon, Stefania; Pallecchi, Ilaria; Malagoli, Andrea; Lamura, Gianrico

    2014-05-01

    During the 11th edition of the European Conference on Applied Superconductivity, successfully held in Genoa from 15-19 September 2013, more than one thousand participants from over 40 countries were registered and contributions of 7 plenary lectures, 23 invited talks, 203 oral talks and 550 posters were presented. The present issue of Journal of Physics: Conference Series (JPCS) collects the 218 submitted papers that were peer reviewed and accepted in the Conference Proceedings. Similarly to the Superconductor Science and Technology Special issue: ''EUCAS 11th European Conference on Applied Superconductivity'' which contains some plenary and invited contributions, as well as some selected contributions, in this issue the papers are sorted according to the four traditional topics of interest of EUCAS, namely Materials (56 papers), Wires and Tapes (47 papers), Large Scale Applications (64 papers) and Electronics (51 papers). While the it Superconductors Science and Technology special issue focuses on the scientific and technological highlights of the conference, this collection provides an overall view of the worldwide research activity on applied superconductivity, mirroring the main guidelines and the hottest issues, which range from basic studies on newly discovered superconducting compounds to the state-of-the-art advances in large scale applications, wires and tapes fabrication and electronics. We would like to point out that, among the JPCS contributions, six papers present works financed by ongoing EU-Japan projects, three papers belong to the session on junctions and SQUIDs dedicated to the memory of Antonio Barone and one paper belongs to the session on pinning and flux dynamics dedicated to the memory of John Clem. Finally, we would like to thank all the people whose careful work contributed to the preparation of this JPCS issue, in particular the session chairs as well as the peer reviewers. The Editors Stefania Farinon (Editor in Chief, Large Scale

  6. Protective link for superconducting coil

    DOEpatents

    Umans, Stephen D [Belmont, MA

    2009-12-08

    A superconducting coil system includes a superconducting coil and a protective link of superconducting material coupled to the superconducting coil. A rotating machine includes first and second coils and a protective link of superconducting material. The second coil is operable to rotate with respect to the first coil. One of the first and second coils is a superconducting coil. The protective link is coupled to the superconducting coil.

  7. Superconducting transmission line particle detector

    DOEpatents

    Gray, K.E.

    1988-07-28

    A microvertex particle detector for use in a high energy physic collider including a plurality of parallel superconducting thin film strips separated from a superconducting ground plane by an insulating layer to form a plurality of superconducting waveguides. The microvertex particle detector indicates passage of a charged subatomic particle by measuring a voltage pulse measured across a superconducting waveguide caused by the transition of the superconducting thin film strip from a superconducting to a non- superconducting state in response to the passage of a charged particle. A plurality of superconducting thin film strips in two orthogonal planes plus the slow electromagnetic wave propagating in a superconducting transmission line are used to resolve N/sup 2/ ambiguity of charged particle events. 6 figs.

  8. Superconducting transmission line particle detector

    DOEpatents

    Gray, Kenneth E.

    1989-01-01

    A microvertex particle detector for use in a high energy physic collider including a plurality of parallel superconducting thin film strips separated from a superconducting ground plane by an insulating layer to form a plurality of superconducting waveguides. The microvertex particle detector indicates passage of a charged subatomic particle by measuring a voltage pulse measured across a superconducting waveguide caused by the transition of the superconducting thin film strip from a superconducting to a non-superconducting state in response to the passage of a charged particle. A plurality of superconducting thin film strips in two orthogonal planes plus the slow electromagnetic wave propogating in a superconducting transmission line are used to resolve N.sup.2 ambiguity of charged particle events.

  9. Superconducting transmission line particle detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gray, K.E.

    A microvertex particle detector for use in a high energy physic collider including a plurality of parallel superconducting thin film strips separated from a superconducting ground plane by an insulating layer to form a plurality of superconducting waveguides. The microvertex particle detector indicates passage of a charged subatomic particle by measuring a voltage pulse measured across a superconducting waveguide caused by the transition of the superconducting thin film strip from a superconducting to a non- superconducting state in response to the passage of a charged particle. A plurality of superconducting thin film strips in two orthogonal planes plus the slowmore » electromagnetic wave propagating in a superconducting transmission line are used to resolve N/sup 2/ ambiguity of charged particle events. 6 figs.« less

  10. Superconducting transmission line particle detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gray, K.E.

    This paper describes a microvertex particle detector for use in a high energy physic collider including a plurality of parallel superconducting thin film strips separated from a superconducting ground plane by an insulating layer to form a plurality of superconducting waveguides. The microvertex particle detector indicates passage of a charged subatomic particle by measuring a voltage pulse measured across a superconducting waveguide caused by the transition of the superconducting thin film strip from a superconducting to a non-superconducting state in response to the passage of a charged particle. A plurality of superconducting thin film strips in two orthogonal planes plusmore » the slow electromagnetic wave propogating in a superconducting transmission line are used to resolve N{sup 2} ambiguity of charged particle events.« less

  11. Analytical approach to chromatic correction in the final focus system of circular colliders

    DOE PAGES

    Cai, Yunhai

    2016-11-28

    Here, a conventional final focus system in particle accelerators is systematically analyzed. We find simple relations between the parameters of two focus modules in the final telescope. Using the relations, we derive the chromatic Courant-Snyder parameters for the telescope. The parameters are scaled approximately according to (L*/βmore » $$*\\atop{y}$$)δ, where L* is the distance from the interaction point to the first quadrupole, β$$*\\atop{y}$$ the vertical beta function at the interaction point, and δ the relative momentum deviation. Most importantly, we show how to compensate its chromaticity order by order in δ by a traditional correction module flanked by an asymmetric pair of harmonic multipoles. The method enables a circular Higgs collider with 2% momentum aperture and illuminates a path forward to 4% in the future.« less

  12. High Tc superconducting materials and devices

    NASA Technical Reports Server (NTRS)

    Haertling, Gene H.

    1990-01-01

    The high Tc Y1Ba2Cu3O(7-x) ceramic materials, initially developed in 1987, are now being extensively investigated for a variety of engineering applications. The superconductor applications which are presently identified as of most interest to NASA-LaRC are low-noise, low thermal conductivity grounding links; large-area linear Meissner-effect bearings; and sensitive, low-noise sensors and leads. Devices designed for these applications require the development of a number of processing and fabrication technologies. Included among the technologies most specific to the present needs are tapecasting, melt texturing, magnetic field grain alignment, superconductor/polymer composite fabrication, thin film MOD (metal-organic decomposition) processing, screen printing of thick films, and photolithography of thin films. The overall objective of the program was to establish a high Tc superconductivity laboratory capability at NASA-LaRC and demonstrate this capability by fabricating superconducting 123 material via bulk and thin film processes. Specific objectives include: order equipment and set up laboratory; prepare 1 kg batches of 123 material via oxide raw material; construct tapecaster and tapecaster 123 material; fabricate 123 grounding link; fabricate 123 composite for Meissner linear bearing; develop 123 thin film processes (nitrates, acetates); establish Tc and Jc measurement capability; and set up a commercial use of space program in superconductivity at LaRC. In general, most of the objectives of the program were met. Finally, efforts to implement a commercial use of space program in superconductivity at LaRC were completed and at least two industrial companies have indicated their interest in participating.

  13. Performance of conduction cooled splittable superconducting magnet package for linear accelerators

    DOE PAGES

    Kashikhin, Vladimire S.; Andreev, N.; Cheban, S.; ...

    2016-02-19

    New Linear Superconducting Accelerators need a superconducting magnet package installed inside SCRF Cryomodules to focus and steer electron or proton beams. A superconducting magnet package was designed and built as a collaborative effort of FNAL and KEK. The magnet package includes one quadrupole, and two dipole windings. It has a splittable in the vertical plane configuration, and features for conduction cooling. The magnet was successfully tested at room temperature, in a liquid He bath, and in a conduction cooling experiment. The paper describes the design and test results including: magnet cooling, training, and magnetic measurements by rotational coils. Furthermore, themore » effects of superconductor and iron yoke magnetization, hysteresis, and fringe fields are discussed.« less

  14. Superconductivity in few-layer stanene

    NASA Astrophysics Data System (ADS)

    Liao, Menghan; Zang, Yunyi; Guan, Zhaoyong; Li, Haiwei; Gong, Yan; Zhu, Kejing; Hu, Xiao-Peng; Zhang, Ding; Xu, Yong; Wang, Ya-Yu; He, Ke; Ma, Xu-Cun; Zhang, Shou-Cheng; Xue, Qi-Kun

    2018-04-01

    A single atomic slice of α-tin—stanene—has been predicted to host the quantum spin Hall effect at room temperature, offering an ideal platform to study low-dimensional and topological physics. Although recent research has focused on monolayer stanene, the quantum size effect in few-layer stanene could profoundly change material properties, but remains unexplored. By exploring the layer degree of freedom, we discover superconductivity in few-layer stanene down to a bilayer grown on PbTe, while bulk α-tin is not superconductive. Through substrate engineering, we further realize a transition from a single-band to a two-band superconductor with a doubling of the transition temperature. In situ angle-resolved photoemission spectroscopy (ARPES) together with first-principles calculations elucidate the corresponding band structure. The theory also indicates the existence of a topologically non-trivial band. Our experimental findings open up novel strategies for constructing two-dimensional topological superconductors.

  15. Novel superconducting phenomena in quasi-one-dimensional Bechgaard salts

    NASA Astrophysics Data System (ADS)

    Jerome, Denis; Yonezawa, Shingo

    2016-03-01

    It is the saturation of the transition temperature Tc in the range of 24 K for known materials in the late sixties that triggered the search for additional materials offering new coupling mechanisms leading in turn to higher Tc's. As a result of this stimulation, superconductivity in organic matter was discovered in tetramethyl-tetraselenafulvalene-hexafluorophosphate, (TMTSF)2PF6, in 1979, in the laboratory founded at Orsay by Professor Friedel and his colleagues in 1962. Although this conductor is a prototype example for low-dimensional physics, we mostly focus in this article on the superconducting phase of the ambient-pressure superconductor (TMTSF)2ClO4, which has been studied most intensively among the TMTSF salts. We shall present a series of experimental results supporting nodal d-wave symmetry for the superconducting gap in these prototypical quasi-one-dimensional conductors.

  16. Superconductivity in transition metals.

    PubMed

    Slocombe, Daniel R; Kuznetsov, Vladimir L; Grochala, Wojciech; Williams, Robert J P; Edwards, Peter P

    2015-03-13

    A qualitative account of the occurrence and magnitude of superconductivity in the transition metals is presented, with a primary emphasis on elements of the first row. Correlations of the important parameters of the Bardeen-Cooper-Schrieffer theory of superconductivity are highlighted with respect to the number of d-shell electrons per atom of the transition elements. The relation between the systematics of superconductivity in the transition metals and the periodic table high-lights the importance of short-range or chemical bonding on the remarkable natural phenomenon of superconductivity in the chemical elements. A relationship between superconductivity and lattice instability appears naturally as a balance and competition between localized covalent bonding and so-called broken covalency, which favours d-electron delocalization and superconductivity. In this manner, the systematics of superconductivity and various other physical properties of the transition elements are related and unified. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  17. Spin-orbit-coupled superconductivity

    PubMed Central

    Lo, Shun-Tsung; Lin, Shih-Wei; Wang, Yi-Ting; Lin, Sheng-Di; Liang, C.-T.

    2014-01-01

    Superconductivity and spin-orbit (SO) interaction have been two separate emerging fields until very recently that the correlation between them seemed to be observed. However, previous experiments concerning SO coupling are performed far beyond the superconducting state and thus a direct demonstration of how SO coupling affects superconductivity remains elusive. Here we investigate the SO coupling in the critical region of superconducting transition on Al nanofilms, in which the strength of disorder and spin relaxation by SO coupling are changed by varying the film thickness. At temperatures T sufficiently above the superconducting critical temperature Tc, clear signature of SO coupling reveals itself in showing a magneto-resistivity peak. When T < Tc, the resistivity peak can still be observed; however, its line-shape is now affected by the onset of the quasi two-dimensional superconductivity. By studying such magneto-resistivity peaks under different strength of spin relaxation, we highlight the important effects of SO interaction on superconductivity. PMID:24961726

  18. Superconductivity devices: Commercial use of space

    NASA Technical Reports Server (NTRS)

    Haertling, Gene; Furman, Eugene; Hsi, Chi-Shiung; Li, Guang

    1993-01-01

    The processing and screen printing of the superconducting BSCCO and 123 YBCO materials on substrates is described. The resulting superconducting properties and the use of these materials as possible electrode materials for ferroelectrics at 77 K are evaluated. Also, work performed in the development of solid-state electromechanical actuators is reported. Specific details include the fabrication and processing of high strain PBZT and PLZT electrostrictive materials, the development of PSZT and PMN-based ceramics, and the testing and evaluation of these electrostrictive materials. Finally, the results of studies on a new processing technology for preparing piezoelectric and electrostrictive ceramic materials are summarized. The process involves a high temperature chemical reduction which leads to an internal pre-stressing of the oxide wafer. These reduced and internally biased oxide wafers (RAINBOW) can produce bending-mode actuator devices which possess a factor of ten more displacement and load bearing capacity than present-day benders.

  19. High-Tc superconducting microbolometer for terahertz applications

    NASA Astrophysics Data System (ADS)

    Ulysse, C.; Gaugue, A.; Adam, A.; Kreisler, A. J.; Villégier, J.-C.; Thomassin, J.-L.

    2002-05-01

    Superconducting hot electron bolometer mixers are now a competitive alternative to Schottky diode mixers in the terahertz frequency range because of their ultra wideband (from millimeter waves to visible light), high conversion gain, and low intrinsic noise level. High Tc superconductor materials can be used to make hot electron bolometers and present some advantage in term of operating temperature and cooling. In this paper, we present first a model for the study of superconducting hot electron bolometers responsivity in direct detection mode, in order to establish a firm basis for the design of future THz mixers. Secondly, an original process to realize YBaCuO hot electron bolometer mixers will be described. Submicron YBaCuO superconducting structures are expitaxially sputter deposited on MgO substrates and patterned by using electron beam lithography in combination with optical lithography. Metal masks achieved by electron beam lithography are insuring a good bridge definition and protection during ion etching. Finally, detection experiments are being performed with a laser at 850 nm wavelength, in homodyne mode in order to prove the feasibility and potential performances of these devices.

  20. Theory of parametrically amplified electron-phonon superconductivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Babadi, Mehrtash; Knap, Michael; Martin, Ivar

    2017-07-01

    Ultrafast optical manipulation of ordered phases in strongly correlated materials is a topic of significant theoretical, experimental, and technological interest. Inspired by a recent experiment on light-induced superconductivity in fullerenes [M. Mitrano et al., Nature (London) 530, 461 (2016)], we develop a comprehensive theory of light-induced superconductivity in driven electron-phonon systemswith lattice nonlinearities. In analogy with the operation of parametric amplifiers, we show how the interplay between the external drive and lattice nonlinearities lead to significantly enhanced effective electron-phonon couplings. We provide a detailed and unbiased study of the nonequilibrium dynamics of the driven system using the real-time Green's functionmore » technique. To this end, we develop a Floquet generalization of the Migdal-Eliashberg theory and derive a numerically tractable set of quantum Floquet-Boltzmann kinetic equations for the coupled electron-phonon system. We study the role of parametric phonon generation and electronic heating in destroying the transient superconducting state. Finally, we predict the transient formation of electronic Floquet bands in time-and angle-resolved photoemission spectroscopy experiments as a consequence of the proposed mechanism.« less

  1. Enhanced superconductivity of fullerenes

    DOEpatents

    Washington, II, Aaron L.; Teprovich, Joseph A.; Zidan, Ragaiy

    2017-06-20

    Methods for enhancing characteristics of superconductive fullerenes and devices incorporating the fullerenes are disclosed. Enhancements can include increase in the critical transition temperature at a constant magnetic field; the existence of a superconducting hysteresis over a changing magnetic field; a decrease in the stabilizing magnetic field required for the onset of superconductivity; and/or an increase in the stability of superconductivity over a large magnetic field. The enhancements can be brought about by transmitting electromagnetic radiation to the superconductive fullerene such that the electromagnetic radiation impinges on the fullerene with an energy that is greater than the band gap of the fullerene.

  2. Superconductivity of lanthanum revisited

    NASA Astrophysics Data System (ADS)

    Loeptien, Peter; Zhou, Lihui; Wiebe, Jens; Khajetoorians, Alexander Ako; Wiesendanger, Roland

    2014-03-01

    The thickness dependence of the superconductivity in clean hexagonal lanthanum films grown on tungsten (110) is studied by means of scanning tunneling microscopy (STM) and spectroscopy (STS). Fitting of the measured spectra to BCS theory yields the superconducting energy gaps from which the critical temperatures are determined. For the case of thick, bulk-like films, the bulk energy gap and critical temperature of dhcp lanthanum turn out to be considerably higher as compared to values from the literature measured by other techniques. In thin films the superconductivity is quenched by the boundary condition for the superconducting wavefunction imposed by the substrate and surface, leading to a linear decrease of the superconducting transition temperature as a function of the inverse film thickness. This opens up the possibility to grow lanthanum films with defined superconducting properties.

  3. Performance of Superconducting Magnet Prototypes for LCLS-II Linear Accelerator

    DOE PAGES

    Kashikhin, Vladimir; Andreev, Nikolai; DiMarco, Joseph; ...

    2017-01-05

    The new LCLS-II Linear Superconducting Accelerator at SLAC needs superconducting magnet packages installed inside SCRF Cryomodules to focus and steer an electron beam. Two magnet prototypes were built and successfully tested at Fermilab. Magnets have an iron dominated configuration, quadrupole and dipole NbTi superconducting coils, and splittable in the vertical plane configuration. Magnets inside the Cryomodule are conductively cooled through pure Al heat sinks. Both magnets performance was verified by magnetic measurements at room temperature, and during cold tests in liquid helium. Test results including magnetic measurements are discussed. Special attention was given to the magnet performance at low currentsmore » where the iron yoke and the superconductor hysteresis effects have large influence. Both magnet prototypes were accepted for the installation in FNAL and JLAB prototype Cryomodules.« less

  4. Analysis and measurement of the transfer matrix of a 9-cell, 1.3-GHz superconducting cavity

    DOE PAGES

    Halavanau, A.; Eddy, N.; Edstrom, D.; ...

    2017-04-13

    Superconducting linacs are capable of producing intense, stable, high-quality electron beams that have found widespread applications in science and industry. Here, the 9-cell, 1.3-GHz superconducting standing-wave accelerating rf cavity originally developed for e +/e - linear-collider applications has been broadly employed in various superconducting-linac designs. In this paper we discuss the transfer matrix of such a cavity and present its measurement performed at the Fermilab Accelerator Science and Technology (FAST) facility. Finally, the experimental results are found to be in agreement with analytical calculations and numerical simulations.

  5. Optimization of superconducting tiling pattern for superconducting bearings

    DOEpatents

    Hull, John R.

    1996-01-01

    An apparatus and method for reducing magnetic field inhomogeneities which produce rotational loss mechanisms in high temperature superconducting magnetic bearings. Magnetic field inhomogeneities are reduced by dividing high temperature superconducting structures into smaller structures, and arranging the smaller structures into tiers which stagger the magnetic field maximum locations of the smaller structures.

  6. Final Assembly and Factory Testing of the Jefferson Lab SHMS Spectrometer Quadrupole and Dipole Superconducting Magnets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brindza, Paul; Lassiter, Steven; Sun, Eric

    Jefferson Lab is constructing an 11 Gev/c electron spectrometer called the Super High Momentum Spectrometer (SHMS) as part of the 12 GeV JLAB upgrade for experimental Hall C. Three of the five superconducting(SC) SHMS magnets are under construction at SigmaPhi in Vannes France as a result of an international competition for design and fabrication. The three magnets Q2 and Q3 60 cm bore quadrupoles and the 60 cm warm bore dipole are complete or near complete and have many design features in common. All three magnets share a common superconductor, collaring system, cryostat design, cold to warm support, cryogenic interface,more » burnout resistant current leads, DC power supply, quench protection, instrumentation and controls. The three magnets are collared, installed in cryostats and welded up and in various stages of final testing. The Q2 quadrupole is due to ship from France to America in August arriving during this ASC conference and has passed all final hipot, leak and pressure tests. The dipole is in leak and pressure testing as of July 2016 while the Q3 quadrupole requires some outer vacuum vessel assembly. Delivery of the Q3 and Dipole magnets will follow the Q2 at about 1 month intervals. Lastly, factory testing have included hipot and electrical tests, magnetic tests at low field, mechanical alignments to center the coils, leak tests and ASME Code required pressure tests. Upon installation in Hall C at JLAB cold testing will commence.« less

  7. Final Assembly and Factory Testing of the Jefferson Lab SHMS Spectrometer Quadrupole and Dipole Superconducting Magnets

    DOE PAGES

    Brindza, Paul; Lassiter, Steven; Sun, Eric; ...

    2017-06-01

    Jefferson Lab is constructing an 11 Gev/c electron spectrometer called the Super High Momentum Spectrometer (SHMS) as part of the 12 GeV JLAB upgrade for experimental Hall C. Three of the five superconducting(SC) SHMS magnets are under construction at SigmaPhi in Vannes France as a result of an international competition for design and fabrication. The three magnets Q2 and Q3 60 cm bore quadrupoles and the 60 cm warm bore dipole are complete or near complete and have many design features in common. All three magnets share a common superconductor, collaring system, cryostat design, cold to warm support, cryogenic interface,more » burnout resistant current leads, DC power supply, quench protection, instrumentation and controls. The three magnets are collared, installed in cryostats and welded up and in various stages of final testing. The Q2 quadrupole is due to ship from France to America in August arriving during this ASC conference and has passed all final hipot, leak and pressure tests. The dipole is in leak and pressure testing as of July 2016 while the Q3 quadrupole requires some outer vacuum vessel assembly. Delivery of the Q3 and Dipole magnets will follow the Q2 at about 1 month intervals. Lastly, factory testing have included hipot and electrical tests, magnetic tests at low field, mechanical alignments to center the coils, leak tests and ASME Code required pressure tests. Upon installation in Hall C at JLAB cold testing will commence.« less

  8. Optimization study on the magnetic field of superconducting Halbach Array magnet

    NASA Astrophysics Data System (ADS)

    Shen, Boyang; Geng, Jianzhao; Li, Chao; Zhang, Xiuchang; Fu, Lin; Zhang, Heng; Ma, Jun; Coombs, T. A.

    2017-07-01

    This paper presents the optimization on the strength and homogeneity of magnetic field from superconducting Halbach Array magnet. Conventional Halbach Array uses a special arrangement of permanent magnets which can generate homogeneous magnetic field. Superconducting Halbach Array utilizes High Temperature Superconductor (HTS) to construct an electromagnet to work below its critical temperature, which performs equivalently to the permanent magnet based Halbach Array. The simulations of superconducting Halbach Array were carried out using H-formulation based on B-dependent critical current density and bulk approximation, with the FEM platform COMSOL Multiphysics. The optimization focused on the coils' location, as well as the geometry and numbers of coils on the premise of maintaining the total amount of superconductor. Results show Halbach Array configuration based superconducting magnet is able to generate the magnetic field with intensity over 1 Tesla and improved homogeneity using proper optimization methods. Mathematical relation of these optimization parameters with the intensity and homogeneity of magnetic field was developed.

  9. Signal processing: opportunities for superconductive circuits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ralston, R.W.

    1985-03-01

    Prime motivators in the evolution of increasingly sophisticated communication and detection systems are the needs for handling ever wider signal bandwidths and higher data-processing speeds. These same needs drive the development of electronic device technology. Until recently the superconductive community has been tightly focused on digital devices for high speed computers. The purpose of this paper is to describe opportunities and challenges which exist for both analog and digital devices in a less familiar area, that of wideband signal processing. The function and purpose of analog signal-processing components, including matched filters, correlators and Fourier transformers, will be described and examplesmore » of superconductive implementations given. A canonic signal-processing system is then configured using these components and digital output circuits to highlight the important issues of dynamic range, accuracy and equivalent computation rate. (Reprints)« less

  10. Superconductivity in few-layer stanene

    DOE PAGES

    Liao, Menghan; Zang, Yunyi; Guan, Zhaoyong; ...

    2018-01-15

    A single atomic slice of α-tin—stanene—has been predicted to host the quantum spin Hall effect at room temperature, offering an ideal platform to study low-dimensional and topological physics. Although recent research has focused on monolayer stanene, the quantum size effect in few-layer stanene could profoundly change material properties, but remains unexplored. By exploring the layer degree of freedom, we discover superconductivity in few-layer stanene down to a bilayer grown on PbTe, while bulk α-tin is not superconductive. Through substrate engineering, we further realize a transition from a single-band to a two-band superconductor with a doubling of the transition temperature. Inmore » situ angle-resolved photoemission spectroscopy (ARPES) together with first-principles calculations elucidate the corresponding band structure. The theory also indicates the existence of a topologically non-trivial band. Thus, our experimental findings open up novel strategies for constructing two-dimensional topological superconductors.« less

  11. Superconductivity in few-layer stanene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liao, Menghan; Zang, Yunyi; Guan, Zhaoyong

    A single atomic slice of α-tin—stanene—has been predicted to host the quantum spin Hall effect at room temperature, offering an ideal platform to study low-dimensional and topological physics. Although recent research has focused on monolayer stanene, the quantum size effect in few-layer stanene could profoundly change material properties, but remains unexplored. By exploring the layer degree of freedom, we discover superconductivity in few-layer stanene down to a bilayer grown on PbTe, while bulk α-tin is not superconductive. Through substrate engineering, we further realize a transition from a single-band to a two-band superconductor with a doubling of the transition temperature. Inmore » situ angle-resolved photoemission spectroscopy (ARPES) together with first-principles calculations elucidate the corresponding band structure. The theory also indicates the existence of a topologically non-trivial band. Thus, our experimental findings open up novel strategies for constructing two-dimensional topological superconductors.« less

  12. Phase Separation of Superconducting Phases in the Penson-Kolb-Hubbard Model

    NASA Astrophysics Data System (ADS)

    Jerzy Kapcia, Konrad; Czart, Wojciech Robert; Ptok, Andrzej

    2016-04-01

    In this paper, we determine the phase diagrams (for T = 0 as well as T > 0) of the Penson-Kolb-Hubbard model for two dimensional square lattice within Hartree-Fock mean-field theory focusing on an investigation of superconducting phases and on a possibility of the occurrence of the phase separation. We obtain that the phase separation, which is a state of coexistence of two different superconducting phases (with s- and η-wave symmetries), occurs in definite ranges of the electron concentration. In addition, increasing temperature can change the symmetry of the superconducting order parameter (from η-wave into s-wave). The system considered exhibits also an interesting multicritical behaviour including bicritical points. The relevance of the results to experiments for real materials is also discussed.

  13. Process for producing clad superconductive materials

    DOEpatents

    Cass, Richard B.; Ott, Kevin C.; Peterson, Dean E.

    1992-01-01

    A process for fabricating superconducting composite wire by the steps of placing a superconductive precursor admixture capable of undergoing a self propagating combustion in stoichiometric amounts sufficient to form a superconductive product within a metal tube, sealing one end of said tube, igniting said superconductive precursor admixture whereby said superconductive precursor admixture endburns along the length of the admixture, and cross-section reducing said tube at a rate substantially equal to the rate of burning of said superconductive precursor admixture and at a point substantially planar with the burnfront of the superconductive precursor mixture, whereby a clad superconductive product is formed in situ, the product characterized as superconductive without a subsequent sintering stage, is disclosed.

  14. High-temperature superconductivity in one-unit-cell FeSe films.

    PubMed

    Wang, Ziqiao; Liu, Chaofei; Liu, Yi; Wang, Jian

    2017-04-20

    Since the dramatic enhancement of the superconducting transition temperature (T c ) was reported in a one-unit-cell FeSe film grown on a SrTiO 3 substrate (1-UC FeSe/STO) by molecular beam epitaxy (MBE), related research on this system has become a new frontier in condensed matter physics. In this paper, we present a brief review on this rapidly developing field, mainly focusing on the superconducting properties of 1-UC FeSe/STO. Experimental evidence for high-temperature superconductivity in 1-UC FeSe/STO, including direct evidence revealed by transport and diamagnetic measurements, as well as other evidence from scanning tunneling microscopy (STM) and angle-resolved photoemission spectroscopy (ARPES), are overviewed. The potential mechanisms of the enhanced superconductivity are also discussed. There are accumulating arguments to suggest that the strengthened Cooper pairing in 1-UC FeSe/STO originates from the interface effects, specifically the charge transfer and coupling to phonon modes in the TiO 2 plane. The study of superconductivity in 1-UC FeSe/STO not only sheds new light on the mechanism of high-temperature superconductors with layered structures, but also provides an insight into the exploration of new superconductors by interface engineering.

  15. Superstrong Adjustable Permanent Magnet for a Linear Collider Final Focus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mihara, T.

    A superstrong permanent magnet quadrupole (PMQ) is one of the candidates for the final focus lens for the linear collider because of its compactness and low power consumption. The first fabricated prototype of our PMQ achieved a 300T/m superstrong field gradient with a 100mm overall magnet radius and a 7mm bore radius, but a drawback is its fixed strength. Therefore, a second prototype of PMQ, whose strength is adjustable, was fabricated. Its strength adjustability is based on the ''double ring structure'', rotating subdivided magnet slices separately. This second prototype is being tested. Some of the early results are presented.

  16. The Fabrication Technique and Property Analysis of Racetrack-Type High Temperature Superconducting Magnet for High Power Motor

    NASA Astrophysics Data System (ADS)

    Xie, S. F.; Wang, Y.; Wang, D. Y.; Zhang, X. J.; Zhao, B.; Zhang, Y. Y.; Li, L.; Li, Y. N.; Chen, P. M.

    2013-03-01

    The superconducting motor is now the focus of the research on the application of high temperature superconducting (HTS) materials. In this manuscript, we mainly introduce the recent progress on the fabrication technique and property research of the superconducting motor magnet in Luoyang Ship Material Research Institute (LSMRI) in China, including the materials, the winding and impregnation technique, and property measurement of magnet. Several techniques and devices were developed to manufacture the magnet, including the technique of insulation and thermal conduction, the device for winding the racetrack-type magnet, etc. At last, the superconducting magnet used for the MW class motor were successfully developed, which is the largest superconducting motor magnet in china at present. The critical current of the superconducting magnet exceeds the design value (90 A at 30 K).

  17. Optimization of superconducting tiling pattern for superconducting bearings

    DOEpatents

    Hull, J.R.

    1996-09-17

    An apparatus and method for reducing magnetic field inhomogeneities which produce rotational loss mechanisms in high temperature superconducting magnetic bearings are disclosed. Magnetic field inhomogeneities are reduced by dividing high temperature superconducting structures into smaller structures, and arranging the smaller structures into tiers which stagger the magnetic field maximum locations of the smaller structures. 20 figs.

  18. Palm-size miniature superconducting bulk magnet

    NASA Astrophysics Data System (ADS)

    Saho, Norihide; Matsuda, Kazuya; Nishijima, Noriyo

    The development of a small, light, powerful and energy-efficient superconducting magnet has been desired in order to realize better efficiency and manipulability in guiding magnetic nano-particles, magnetic organic cells and other items to the right place. This study focuses on the development of a high-temperature superconducting (HTS) bulk magnet characterized by comparatively low leak magnetism despite a relatively high magnetic field. On this basis, the authors developed a palm-sized superconducting bulk magnet, which is the world's smallest, lightest, and lowest power consuming, as well as a new technology to effectively magnetize such a bulk magnet in a compact Stirling-cycle cryocooler (magnet C) with a pre-magnetized HTS bulk magnet (magnet B) in a compact cryocooler. This technology is demonstrated in two steps. In the first step, magnet B is magnetized using a superconducting solenoid magnet with a high magnetic field (magnet A) via the field cooling method. In the second step, magnet C is magnetized in the high magnetic field of magnet B. The prototype magnet C weighs 1.8 kg, and measures 235 × 65 × 115 mm (L × W × H). Magnet B was magnetized to 4.9 T using a 5 T magnet, and the target, magnet C, was magnetized using magnet B so that its maximum trapped magnetic flux density reached the value of 3.15 T. The net power consumption in a steady cooling state was 23 W, which is very low and comparable to that of a laptop computer.

  19. Superconductivity in the Sn-Ba-Sr-Y-Cu-O system

    NASA Technical Reports Server (NTRS)

    Aleksandrov, K. S.; Khrustalev, B. P.; Krivomazov, S. N.; Petrov, M. I.; Vasilyev, A. D.; Zwegintsev, S. A.

    1991-01-01

    After the discovery of high-T(sub c) superconductivity in the La-Ba-Cu-O compound, several families of superconducting oxides were synthesized. Here, researchers report the results of the search for superconductivity in the compounds based on tin which has a lone electron pair like Bi, Tl, and Pb. The following compounds were synthesized: Sn1Ba1Sr1Cu3O(sub x), Sn1Ba1Ca1Cu3O(sub x), Sn1Ba1Mg1Cu3O(sub x), Sn1Sr1Ca1Cu3O(sub x), Sn1Sr1Mg1Cu3O(sub x), and Sn1Ca1Mg1Cu3O(sub x). The initial components were oxides and carbonates of the appropriate elements. A standard firing-grinding procedure was used. Final heating was carried out at 960 C during 12 hours. Then the samples were cooled inside the furnace. All the synthesis cycles were carried out in air atmosphere. Among the synthesized compounds only Sn1Ba1Sr1Cu3O(sub x) showed remarkable conductivity. Other compounds were practically dielectrics. Presence of a possible superconductivity in Sn1Ba1Sr1Cu3O(sub x) was defined by using the Meissner effect. At low temperature a deviation from paramagnetic behavior is observed. The hysteresis loops obtained at lower temperature undoubtly testify to the presence of a superconductive phase in the sample. However, the part of the superconductive phase in the Sn1Ba1Sr1Cu3O(sub x) ceramic turned out to be small, less than 2 percent, which agrees with the estimation from magnetic data. In order to increase the content of the superconductive phase, two-valent cations Ba and Sr were partially substituted by univalent (K) and three-valent ones (Y).

  20. 3D Magnetic field modeling of a new superconducting synchronous machine using reluctance network method

    NASA Astrophysics Data System (ADS)

    Kelouaz, Moussa; Ouazir, Youcef; Hadjout, Larbi; Mezani, Smail; Lubin, Thiery; Berger, Kévin; Lévêque, Jean

    2018-05-01

    In this paper a new superconducting inductor topology intended for synchronous machine is presented. The studied machine has a standard 3-phase armature and a new kind of 2-poles inductor (claw-pole structure) excited by two coaxial superconducting coils. The air-gap spatial variation of the radial flux density is obtained by inserting a superconducting bulk, which deviates the magnetic field due to the coils. The complex geometry of this inductor usually needs 3D finite elements (FEM) for its analysis. However, to avoid a long computational time inherent to 3D FEM, we propose in this work an alternative modeling, which uses a 3D meshed reluctance network. The results obtained with the developed model are compared to 3D FEM computations as well as to measurements carried out on a laboratory prototype. Finally, a 3D FEM study of the shielding properties of the superconducting screen demonstrates the suitability of using a diamagnetic-like model of the superconducting screen.

  1. Making Superconducting Welds between Superconducting Wires

    NASA Technical Reports Server (NTRS)

    Penanen, Konstantin I.; Eom, Byeong Ho

    2008-01-01

    A technique for making superconducting joints between wires made of dissimilar superconducting metals has been devised. The technique is especially suitable for fabrication of superconducting circuits needed to support persistent electric currents in electromagnets in diverse cryogenic applications. Examples of such electromagnets include those in nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) systems and in superconducting quantum interference devices (SQUIDs). Sometimes, it is desirable to fabricate different parts of a persistent-current-supporting superconducting loop from different metals. For example, a sensory coil in a SQUID might be made of Pb, a Pb/Sn alloy, or a Cu wire plated with Pb/Sn, while the connections to the sensory coil might be made via Nb or Nb/Ti wires. Conventional wire-bonding techniques, including resistance spot welding and pressed contact, are not workable because of large differences between the hardnesses and melting temperatures of the different metals. The present technique is not subject to this limitation. The present technique involves the use (1) of a cheap, miniature, easy-to-operate, capacitor-discharging welding apparatus that has an Nb or Nb/Ti tip and operates with a continuous local flow of gaseous helium and (2) preparation of a joint in a special spark-discharge welding geometry. In a typical application, a piece of Nb foil about 25 m thick is rolled to form a tube, into which is inserted a wire that one seeks to weld to the tube (see figure). The tube can be slightly crimped for mechanical stability. Then a spark weld is made by use of the aforementioned apparatus with energy and time settings chosen to melt a small section of the niobium foil. The energy setting corresponds to the setting of a voltage to which the capacitor is charged. In an experiment, the technique was used to weld an Nb foil to a copper wire coated with a Pb/Sn soft solder, which is superconducting. The joint was evaluated as

  2. Coherent optical excitations in superconducting qubit chain

    NASA Astrophysics Data System (ADS)

    Ian, Hou; Liu, Yu-Xi

    2012-06-01

    In the recent years, the theories of quantum optics have been borrowed to study the flows of electron pairs and their interactions with the circuit photon in the superconducting qubit circuits. These studies bring about new theories of quantum optics, such as the tunable electromagnetically induced transparency effect, peculiar to the Cooper pairs in circuits. In this talk, we focus on a special type of superconducting qubit circuits: superconducting qubit chain (SQC), which comprises dozens of qubits linearly placed along a stripline resonator. Since the dimensions of the qubits and the stripline have made their interactions inhomogeneous, the SQC cannot be diagonalized using the usual Dicke model. We present a new theoretical method, the deformation-projection method, for the exact diagonalization of the collective excitations of the qubits. This method allows us to predict that these excitations emulate the behaviors of Wannier and Frenckel excitons in the solid-state systems. The spontaneous emissions from the individual qubits in SQC are relayed to their neighbors, eventually arriving at a coherent emission, known as superradiance. We present a quantum relay model, which is crucial to quantum information processing, based on this finding.

  3. Discovery of superconductivity in quasicrystal.

    PubMed

    Kamiya, K; Takeuchi, T; Kabeya, N; Wada, N; Ishimasa, T; Ochiai, A; Deguchi, K; Imura, K; Sato, N K

    2018-01-11

    Superconductivity is ubiquitous as evidenced by the observation in many crystals including carrier-doped oxides and diamond. Amorphous solids are no exception. However, it remains to be discovered in quasicrystals, in which atoms are ordered over long distances but not in a periodically repeating arrangement. Here we report electrical resistivity, magnetization, and specific-heat measurements of Al-Zn-Mg quasicrystal, presenting convincing evidence for the emergence of bulk superconductivity at a very low transition temperature of [Formula: see text] K. We also find superconductivity in its approximant crystals, structures that are periodic, but that are very similar to quasicrystals. These observations demonstrate that the effective interaction between electrons remains attractive under variation of the atomic arrangement from periodic to quasiperiodic one. The discovery of the superconducting quasicrystal, in which the fractal geometry interplays with superconductivity, opens the door to a new type of superconductivity, fractal superconductivity.

  4. Free-standing oxide superconducting articles

    DOEpatents

    Wu, X.D.; Muenchausen, R.E.

    1993-12-14

    A substrate-free, free-standing epitaxially oriented superconductive film including a layer of a template material and a layer of a ceramic superconducting material is provided together with a method of making such a substrate-free ceramic superconductive film by coating an etchable material with a template layer, coating the template layer with a layer of a ceramic superconductive material, coating the layer of ceramic superconductive material with a protective material, removing the etchable material by an appropriate means so that the etchable material is separated from a composite structure including the template layer.

  5. Development of superconducting magnetic bearing using superconducting coil and bulk superconductor

    NASA Astrophysics Data System (ADS)

    Seino, H.; Nagashima, K.; Arai, Y.

    2008-02-01

    The authors conducted a study on superconducting magnetic bearing, which consists of superconducting rotor and stator to apply the flywheel energy-storage system for railways. In this study, high temperature bulk superconductor (HTS bulk) was combined with superconducting coils to increase the load capacity of the bearing. In the first step of the study, the thrust rolling bearing was selected for application by using liquid nitrogen cooled HTS bulk. 60mm-diameter HTS bulks and superconducting coil which generated a high gradient of magnetic field by cusp field were adopted as a rotor and a stator for superconducting magnetic bearing, respectively. The results of the static load test and the rotation test, creep of the electromagnetic forces caused by static flux penetration and AC loss due to eccentric rotation were decreased to the level without any problems in substantial use by using two HTS bulks. In the result of verification of static load capacity, levitation force (thrust load) of 8900N or more was supportable, and stable static load capacity was obtainable when weight of 460kg was levitated.

  6. Anomalous expansion of the copper-apical-oxygen distance in superconducting cuprate bilayers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Hua; Yacoby, Yizhak; Butko, Vladimir Y.

    2010-08-27

    We have introduced an improved x-ray phase-retrieval method with unprecedented speed of convergence and precision, and used it to determine with sub-Angstrom resolution the complete atomic structure of epitaxial La{sub 2-x}Sr{sub x}CuO{sub 4} ultrathin films. We focus on superconducting heterostructures built from constituent materials that are not superconducting in bulk samples. Single-phase metallic or superconducting films are also studied for comparison. The results show that this phase-retrieval diffraction method enables accurate measurement of structural modifications in near-surface layers, which may be critically important for elucidation of surface-sensitive experiments. Specifically we find that, while the copper-apical-oxygen distance remains approximately constant inmore » single-phase films, it shows a dramatic increase from the metallic-insulating interface of the bilayer towards the surface by as much as 0.45 {angstrom}. The apical-oxygen displacement is known to have a profound effect on the superconducting transition temperature.« less

  7. Ultrasensitive interplay between ferromagnetism and superconductivity in NbGd composite thin films

    PubMed Central

    Bawa, Ambika; Gupta, Anurag; Singh, Sandeep; Awana, V.P.S.; Sahoo, Sangeeta

    2016-01-01

    A model binary hybrid system composed of a randomly distributed rare-earth ferromagnetic (Gd) part embedded in an s-wave superconducting (Nb) matrix is being manufactured to study the interplay between competing superconducting and ferromagnetic order parameters. The normal metallic to superconducting phase transition appears to be very sensitive to the magnetic counterpart and the modulation of the superconducing properties follow closely to the Abrikosov-Gor’kov (AG) theory of magnetic impurity induced pair breaking mechanism. A critical concentration of Gd is obtained for the studied NbGd based composite films (CFs) above which superconductivity disappears. Besides, a magnetic ordering resembling the paramagnetic Meissner effect (PME) appears in DC magnetization measurements at temperatures close to the superconducting transition temperature. The positive magnetization related to the PME emerges upon doping Nb with Gd. The temperature dependent resistance measurements evolve in a similar fashion with the concentration of Gd as that with an external magnetic field and in both the cases, the transition curves accompany several intermediate features indicating the traces of magnetism originated either from Gd or from the external field. Finally, the signatures of magnetism appear evidently in the magnetization and transport measurements for the CFs with very low (<1 at.%) doping of Gd. PMID:26725684

  8. High temperature interfacial superconductivity

    DOEpatents

    Bozovic, Ivan [Mount Sinai, NY; Logvenov, Gennady [Port Jefferson Station, NY; Gozar, Adrian Mihai [Port Jefferson, NY

    2012-06-19

    High-temperature superconductivity confined to nanometer-scale interfaces has been a long standing goal because of potential applications in electronic devices. The spontaneous formation of a superconducting interface in bilayers consisting of an insulator (La.sub.2CuO.sub.4) and a metal (La.sub.1-xSr.sub.xCuO.sub.4), neither of which is superconducting per se, is described. Depending upon the layering sequence of the bilayers, T.sub.c may be either .about.15 K or .about.30 K. This highly robust phenomenon is confined to within 2-3 nm around the interface. After exposing the bilayer to ozone, T.sub.c exceeds 50 K and this enhanced superconductivity is also shown to originate from a 1 to 2 unit cell thick interfacial layer. The results demonstrate that engineering artificial heterostructures provides a novel, unconventional way to fabricate stable, quasi two-dimensional high T.sub.c phases and to significantly enhance superconducting properties in other superconductors. The superconducting interface may be implemented, for example, in SIS tunnel junctions or a SuFET.

  9. Superconductive ADC Project Fabrication Package. Final Design Review Package (Briefing Charts)

    DTIC Science & Technology

    2010-09-07

    Simulation Results Iin 1.45mV 2.5Ω 1pH 4pH 100fF 310uA 1fΩ Ic = 300uA Rn = 0.8Ω Cs = 0.32pF Ic = 300uA Rn = 0.8Ω Cs = 0.32pF Iin Vout Vout Ic = 500uA Rn...0.55Ω Cs = 0.32pF ONR Superconductive ADC CLIN/SLIN 0001AD September 2010, Brad Perranoski Pg. 17 Modulator Design Documentation Comparator Design...Comparator Design - Cadence Schematic & Simulation Comparator Testbench Simulation Results 1.45mV 2.5Ω 1pH 4pH 100fF 310uA 1fΩSine wave 100uApk Iin Ic

  10. Review of 2D superconductivity: the ultimate case of epitaxial monolayers

    NASA Astrophysics Data System (ADS)

    Brun, Christophe; Cren, Tristan; Roditchev, Dimitri

    2017-01-01

    The purpose of this review is to focus from an experimental point-of-view on the new physical properties of some of the thinnest superconducting films that can be fabricated and studied in situ nowadays with state-of-the-art methods. An important characteristic of the films we address is that the underlying electronic system forms a two-dimensional electron gas (2DEG). Up to now there are only few of these systems. Such true 2D superconductors can be divided into two classes: surface-confined or interface-confined films. Because the second types of films are burried below the surface, they are not accessible to purely surface-sensitive techniques like angular-resolved photoemission spectroscopy (ARPES) or scanning tunneling spectroscopy (STS). As a consequence the bandstructure characteristics of the 2DEG cannot be probed nor the local superconducting properties. On the other hand, in situ prepared surface-confined films are nowadays accessible not only to ARPES and STS but also to electrical transport measurements. As a consequence surface-confined systems represent at present the best archetypes on which can be summarized the new properties emerging in ultimately thin superconducting films hosting a 2DEG, probed by both macroscopic and microscopic measurement techniques. The model system we will widely refer to consists of a single atomic plane of a conventional superconductor, like for example lead (Pb), grown on top of a semiconducting substrate, like Si(111). In the introductory part 1 we first introduce the topic and give historical insights into this field. Then in the section 2, we introduce useful concepts worked out in studies of so-called ‘granular’ and ‘homogeneous’ superconducting thin films that will be necessary to understand the role of non-magnetic disorder on 2DEG superconductors. In this section, we also briefly review the superconducting properties of crystalline Pb/Si(111) ultrathin films grown under ultrahigh vacuum (UHV) conditions in

  11. Superconductive imaging surface magnetometer

    DOEpatents

    Overton, Jr., William C.; van Hulsteyn, David B.; Flynn, Edward R.

    1991-01-01

    An improved pick-up coil system for use with Superconducting Quantum Interference Device gradiometers and magnetometers involving the use of superconducting plates near conventional pick-up coil arrangements to provide imaging of nearby dipole sources and to deflect environmental magnetic noise away from the pick-up coils. This allows the practice of gradiometry and magnetometry in magnetically unshielded environments. One embodiment uses a hemispherically shaped superconducting plate with interior pick-up coils, allowing brain wave measurements to be made on human patients. another embodiment using flat superconducting plates could be used in non-destructive evaluation of materials.

  12. Superconductivity-related insulating behavior.

    PubMed

    Sambandamurthy, G; Engel, L W; Johansson, A; Shahar, D

    2004-03-12

    We present the results of an experimental study of superconducting, disordered, thin films of amorphous indium oxide. These films can be driven from the superconducting phase to a reentrant insulating state by the application of a perpendicular magnetic field (B). We find that the high-B insulator exhibits activated transport with a characteristic temperature, TI. TI has a maximum value (TpI) that is close to the superconducting transition temperature (Tc) at B=0, suggesting a possible relation between the conduction mechanisms in the superconducting and insulating phases. Tp(I) and Tc display opposite dependences on the disorder strength.

  13. Structural differences between superconducting and non-superconducting CaCuO2/SrTiO3 interfaces

    NASA Astrophysics Data System (ADS)

    Zarotti, Francesca; Di Castro, Daniele; Felici, Roberto; Balestrino, Giuseppe

    2018-06-01

    A study of the interface structure of superconducting and non-superconducting CaCuO2/SrTiO3 heterostructures grown on NdGaO3(110) substrates is reported. Using the combination of high resolution x-ray reflectivity and surface diffraction, the crystallographic structure of superconducting and non-superconducting samples has been investigated. The analysis has demonstrated the excellent sharpness of the CaCuO2/SrTiO3 interface (roughness smaller than one perovskite unit cell). Furthermore, we were able to discriminate between the superconducting and the non-superconducting phase. In the former case, we found an increase of the spacing between the topmost Ca plane of CaCuO2 block and the first TiO2 plane of the overlaying STO block, relative to the non-superconducting case. These results are in agreement with the model that foresees a strong oxygen incorporation in the interface Ca plane in the superconducting heterostructures.

  14. Driven superconducting quantum circuits

    NASA Astrophysics Data System (ADS)

    Nakamura, Yasunobu

    2014-03-01

    Driven nonlinear quantum systems show rich phenomena in various fields of physics. Among them, superconducting quantum circuits have very attractive features such as well-controlled quantum states with design flexibility, strong nonlinearity of Josephson junctions, strong coupling to electromagnetic driving fields, little internal dissipation, and tailored coupling to the electromagnetic environment. We have investigated properties and functionalities of driven superconducting quantum circuits. A transmon qubit coupled to a transmission line shows nearly perfect spatial mode matching between the incident and scattered microwave field in the 1D mode. Dressed states under a driving field are studied there and also in a semi-infinite 1D mode terminated by a resonator containing a flux qubit. An effective Λ-type three-level system is realized under an appropriate driving condition. It allows ``impedance-matched'' perfect absorption of incident probe photons and down conversion into another frequency mode. Finally, the weak signal from the qubit is read out using a Josephson parametric amplifier/oscillator which is another nonlinear circuit driven by a strong pump field. This work was partly supported by the Funding Program for World-Leading Innovative R&D on Science and Technology (FIRST), Project for Developing Innovation Systems of MEXT, MEXT KAKENHI ``Quantum Cybernetics,'' and the NICT Commissioned Research.

  15. Superconductivity in diamond.

    PubMed

    Ekimov, E A; Sidorov, V A; Bauer, E D; Mel'nik, N N; Curro, N J; Thompson, J D; Stishov, S M

    2004-04-01

    Diamond is an electrical insulator well known for its exceptional hardness. It also conducts heat even more effectively than copper, and can withstand very high electric fields. With these physical properties, diamond is attractive for electronic applications, particularly when charge carriers are introduced (by chemical doping) into the system. Boron has one less electron than carbon and, because of its small atomic radius, boron is relatively easily incorporated into diamond; as boron acts as a charge acceptor, the resulting diamond is effectively hole-doped. Here we report the discovery of superconductivity in boron-doped diamond synthesized at high pressure (nearly 100,000 atmospheres) and temperature (2,500-2,800 K). Electrical resistivity, magnetic susceptibility, specific heat and field-dependent resistance measurements show that boron-doped diamond is a bulk, type-II superconductor below the superconducting transition temperature T(c) approximately 4 K; superconductivity survives in a magnetic field up to Hc2(0) > or = 3.5 T. The discovery of superconductivity in diamond-structured carbon suggests that Si and Ge, which also form in the diamond structure, may similarly exhibit superconductivity under the appropriate conditions.

  16. Superconducting thermoelectric generator

    DOEpatents

    Metzger, J.D.; El-Genk, M.S.

    1996-01-01

    An apparatus and method for producing electricity from heat. The present invention is a thermoelectric generator that uses materials with substantially no electrical resistance, often called superconductors, to efficiently convert heat into electrical energy without resistive losses. Preferably, an array of superconducting elements is encased within a second material with a high thermal conductivity. The second material is preferably a semiconductor. Alternatively, the superconducting material can be doped on a base semiconducting material, or the superconducting material and the semiconducting material can exist as alternating, interleaved layers of waferlike materials. A temperature gradient imposed across the boundary of the two materials establishes an electrical potential related to the magnitude of the temperature gradient. The superconducting material carries the resulting electrical current at zero resistivity, thereby eliminating resistive losses. The elimination of resistive losses significantly increases the conversion efficiency of the thermoelectric device.

  17. Superconducting thermoelectric generator

    DOEpatents

    Metzger, John D.; El-Genk, Mohamed S.

    1998-01-01

    An apparatus and method for producing electricity from heat. The present invention is a thermoelectric generator that uses materials with substantially no electrical resistance, often called superconductors, to efficiently convert heat into electrical energy without resistive losses. Preferably, an array of superconducting elements is encased within a second material with a high thermal conductivity. The second material is preferably a semiconductor. Alternatively, the superconducting material can be doped on a base semiconducting material, or the superconducting material and the semiconducting material can exist as alternating, interleaved layers of waferlike materials. A temperature gradient imposed across the boundary of the two materials establishes an electrical potential related to the magnitude of the temperature gradient. The superconducting material carries the resulting electrical current at zero resistivity, thereby eliminating resistive losses. The elimination of resistive losses significantly increases the conversion efficiency of the thermoelectric device.

  18. High Temperature Superconducting Materials Database

    National Institute of Standards and Technology Data Gateway

    SRD 62 NIST High Temperature Superconducting Materials Database (Web, free access)   The NIST High Temperature Superconducting Materials Database (WebHTS) provides evaluated thermal, mechanical, and superconducting property data for oxides and other nonconventional superconductors.

  19. Variation in superconducting transition temperature due to tetragonal domains in two-dimensionally doped SrTiO 3

    DOE PAGES

    Noad, Hilary; Spanton, Eric M.; Nowack, Katja C.; ...

    2016-11-28

    Strontium titanate is a low-temperature, non–Bardeen-Cooper-Schrieffer superconductor that superconducts to carrier concentrations lower than in any other system and exhibits avoided ferroelectricity at low temperatures. Neither the mechanism of superconductivity in strontium titanate nor the importance of the structure and dielectric properties for the superconductivity are well understood. We studied the effects of twin structure on superconductivity in a 5.5-nm-thick layer of niobium-doped SrTiO 3 embedded in undoped SrTiO 3. We used a scanning superconducting quantum interference device susceptometer to image the local diamagnetic response of the sample as a function of temperature. We observed regions that exhibited a superconductingmore » transition temperature T c ≳ 10% higher than the temperature at which the sample was fully superconducting. The pattern of these regions varied spatially in a manner characteristic of structural twin domains. Some regions are too wide to originate on twin boundaries; therefore, we propose that the orientation of the tetragonal unit cell with respect to the doped plane affects T c. Finally, our results suggest that the anisotropic dielectric properties of SrTiO 3 are important for its superconductivity and need to be considered in any theory of the mechanism of the superconductivity.« less

  20. Superconducting wires and methods of making thereof

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Xingchen; Sumption, Michael D.; Peng, Xuan

    Disclosed herein are superconducting wires. The superconducting wires can comprise a metallic matrix and at least one continuous subelement embedded in the matrix. Each subelement can comprise a non-superconducting core, a superconducting layer coaxially disposed around the non-superconducting core, and a barrier layer coaxially disposed around the superconducting layer. The superconducting layer can comprise a plurality of Nb.sub.3Sn grains stabilized by metal oxide particulates disposed therein. The Nb.sub.3Sn grains can have an average grain size of from 5 nm to 90 nm (for example, from 15 nm to 30 nm). The superconducting wire can have a high-field critical current densitymore » (J.sub.c) of at least 5,000 A/mm.sup.2 at a temperature of 4.2 K in a magnetic field of 12 T. Also described are superconducting wire precursors that can be heat treated to prepare superconducting wires, as well as methods of making superconducting wires.« less

  1. Robust superconductivity with nodes in the superconducting topological insulator CuxBi2Se3 : Zeeman orbital field and nonmagnetic impurities

    NASA Astrophysics Data System (ADS)

    Nagai, Yuki

    2015-02-01

    We study the robustness against nonmagnetic impurities in the topological superconductor with point nodes, focusing on an effective model of CuxBi2Se3 . We find that the topological superconductivity with point nodes is not fragile against nonmagnetic impurities, although the superconductivity with nodes in past studies is usually fragile. Exchanging the role of spin with the one of orbital, and vice versa, we find that in the "dual" space the topological superconductor with point nodes is regarded as the intraorbital spin-singlet s -wave one. From the viewpoint of the dual space, we deduce that the point-node state is not fragile against nonmagnetic impurity, when the orbital imbalance in the normal states is small. Since the spin imbalance is induced by the Zeeman magnetic field, we shall name this key quantity for the impurity effects the Zeeman "orbital" field. The numerical calculations support that the deduction is correct. If the Zeeman orbital field is small, the topological superconductivity is not fragile in dirty materials, even with nodes. Thus, the topological superconductors cannot be simply regarded as one of the conventional unconventional superconductors.

  2. Superconductivity in doped Dirac semimetals

    NASA Astrophysics Data System (ADS)

    Hashimoto, Tatsuki; Kobayashi, Shingo; Tanaka, Yukio; Sato, Masatoshi

    2016-07-01

    We theoretically study intrinsic superconductivity in doped Dirac semimetals. Dirac semimetals host bulk Dirac points, which are formed by doubly degenerate bands, so the Hamiltonian is described by a 4 ×4 matrix and six types of k -independent pair potentials are allowed by the Fermi-Dirac statistics. We show that the unique spin-orbit coupling leads to characteristic superconducting gap structures and d vectors on the Fermi surface and the electron-electron interaction between intra and interorbitals gives a novel phase diagram of superconductivity. It is found that when the interorbital attraction is dominant, an unconventional superconducting state with point nodes appears. To verify the experimental signature of possible superconducting states, we calculate the temperature dependence of bulk physical properties such as electronic specific heat and spin susceptibility and surface state. In the unconventional superconducting phase, either dispersive or flat Andreev bound states appear between point nodes, which leads to double peaks or a single peak in the surface density of states, respectively. As a result, possible superconducting states can be distinguished by combining bulk and surface measurements.

  3. Superconductivity in graphite intercalation compounds

    DOE PAGES

    Smith, Robert P.; Weller, Thomas E.; Howard, Christopher A.; ...

    2015-02-26

    This study examines the field of superconductivity in the class of materials known as graphite intercalation compounds which has a history dating back to the 1960s. This paper recontextualizes the field in light of the discovery of superconductivity in CaC₆ and YbC₆ in 2005. In what follows, we outline the crystal structure and electronic structure of these and related compounds. We go on to experiments addressing the superconducting energy gap, lattice dynamics, pressure dependence, and how this relates to theoretical studies. The bulk of the evidence strongly supports a BCS superconducting state. However, important questions remain regarding which electronic statesmore » and phonon modes are most important for superconductivity and whether current theoretical techniques can fully describe the dependence of the superconducting transition temperature on pressure and chemical composition.« less

  4. Investigation of superconducting and normal-state properties of the filled-skutterudite system PrPt 4 Ge 12 - x Sb x

    DOE PAGES

    Jeon, I.; Huang, K.; Yazici, D.; ...

    2016-03-07

    We report a study of the superconducting and normal-state properties of the filled-skutterudite system PrPt 4Ge 12 - x Sb x. Polycrystalline samples with Sb concentrations up to x = 5 were synthesized and investigated by means of x-ray diffraction, electrical resistivity, magnetic susceptibility, and specific heat measurements. We observed a suppression of superconductivity with increasing Sb substitution up to x = 4 , above which no signature of superconductivity was observed down to 140 mK. The Sommerfeld coefficient, γ , of superconducting specimens decreases with increasing x up to x = 3 , suggesting that superconductivity may depend onmore » the density of electronic states in this system. Finally, the specific heat for x = 0.5 exhibits an exponential temperature dependence in the superconducting state, reminiscent of a nodeless superconducting energy gap. Here we observed evidence for a weak “rattling” mode associated with the Pr ions, characterized by an Einstein temperature Θ E ~ 60 K for 0 ≤ x ≤ 5 ; however, the rattling mode may not play any role in suppressing superconductivity.« less

  5. Superconducting thermoelectric generator

    DOEpatents

    Metzger, J.D.; El-Genk, M.S.

    1998-05-05

    An apparatus and method for producing electricity from heat is disclosed. The present invention is a thermoelectric generator that uses materials with substantially no electrical resistance, often called superconductors, to efficiently convert heat into electrical energy without resistive losses. Preferably, an array of superconducting elements is encased within a second material with a high thermal conductivity. The second material is preferably a semiconductor. Alternatively, the superconducting material can be doped on a base semiconducting material, or the superconducting material and the semiconducting material can exist as alternating, interleaved layers of waferlike materials. A temperature gradient imposed across the boundary of the two materials establishes an electrical potential related to the magnitude of the temperature gradient. The superconducting material carries the resulting electrical current at zero resistivity, thereby eliminating resistive losses. The elimination of resistive losses significantly increases the conversion efficiency of the thermoelectric device. 4 figs.

  6. Point contact tunneling spectroscopy apparatus for large scale mapping of surface superconducting properties

    DOE PAGES

    Groll, Nickolas; Pellin, Michael J.; Zasadzinksi, John F.; ...

    2015-09-18

    In this paper, we describe the design and testing of a point contact tunneling spectroscopy device that can measure material surface superconducting properties (i.e., the superconducting gap Δ and the critical temperature T C) and density of states over large surface areas with size up to mm 2. The tip lateral (X,Y) motion, mounted on a (X,Y,Z) piezo-stage, was calibrated on a patterned substrate consisting of Nb lines sputtered on a gold film using both normal (Al) and superconducting (PbSn) tips at 1.5 K. The tip vertical (Z) motion control enables some adjustment of the tip-sample junction resistance that canmore » be measured over 7 orders of magnitudes from a quasi-ohmic regime (few hundred Ω) to the tunnel regime (from tens of kΩ up to few GΩ). The low noise electronic and LabVIEW program interface are also presented. Finally, the point contact regime and the large-scale motion capabilities are of particular interest for mapping and testing the superconducting properties of macroscopic scale superconductor-based devices.« less

  7. Korea's developmental program for superconductivity

    NASA Technical Reports Server (NTRS)

    Hong, Gye-Won; Won, Dong-Yeon; Kuk, Il-Hyun; Park, Jong-Chul

    1995-01-01

    Superconductivity research in Korea was firstly carried out in the late 70's by a research group in Seoul National University (SNU), who fabricated a small scale superconducting magnetic energy storage system under the financial support from Korea Electric Power Company (KEPCO). But a few researchers were involved in superconductivity research until the oxide high Tc superconductor was discovered by Bednorz and Mueller. After the discovery of YBaCuO superconductor operating above the boiling point of liquid nitrogen (77 K)(exp 2), Korean Ministry of Science and Technology (MOST) sponsored a special fund for the high Tc superconductivity research to universities and national research institutes by recognizing its importance. Scientists engaged in this project organized 'High Temperature Superconductivity Research Association (HITSRA)' for effective conducting of research. Its major functions are to coordinate research activities on high Tc superconductivity and organize the workshop for active exchange of information. During last seven years the major superconductivity research has been carried out through the coordination of HITSRA. The major parts of the Korea's superconductivity research program were related to high temperature superconductor and only a few groups were carrying out research on conventional superconductor technology, and Korea Atomic Energy Research Institute (KAERI) and Korea Electrotechnology Research Institute (KERI) have led this research. In this talk, the current status and future plans of superconductivity research in Korea will be reviewed based on the results presented in interim meeting of HITSRA, April 1-2, 1994. Taejeon, as well as the research activity of KAERI.

  8. Korea's developmental program for superconductivity

    NASA Astrophysics Data System (ADS)

    Hong, Gye-Won; Won, Dong-Yeon; Kuk, Il-Hyun; Park, Jong-Chul

    1995-04-01

    Superconductivity research in Korea was firstly carried out in the late 70's by a research group in Seoul National University (SNU), who fabricated a small scale superconducting magnetic energy storage system under the financial support from Korea Electric Power Company (KEPCO). But a few researchers were involved in superconductivity research until the oxide high Tc superconductor was discovered by Bednorz and Mueller. After the discovery of YBaCuO superconductor operating above the boiling point of liquid nitrogen (77 K)(exp 2), Korean Ministry of Science and Technology (MOST) sponsored a special fund for the high Tc superconductivity research to universities and national research institutes by recognizing its importance. Scientists engaged in this project organized 'High Temperature Superconductivity Research Association (HITSRA)' for effective conducting of research. Its major functions are to coordinate research activities on high Tc superconductivity and organize the workshop for active exchange of information. During last seven years the major superconductivity research has been carried out through the coordination of HITSRA. The major parts of the Korea's superconductivity research program were related to high temperature superconductor and only a few groups were carrying out research on conventional superconductor technology, and Korea Atomic Energy Research Institute (KAERI) and Korea Electrotechnology Research Institute (KERI) have led this research. In this talk, the current status and future plans of superconductivity research in Korea will be reviewed based on the results presented in interim meeting of HITSRA, April 1-2, 1994. Taejeon, as well as the research activity of KAERI.

  9. Superconducting energy recovery linacs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ben-Zvi, Ilan

    High-average-power and high-brightness electron beams from a combination of laser photocathode electron guns and a superconducting energy recovery linac (ERL) is an emerging accelerator science with applications in ERL light sources, high repetition rate free electron lasers , electron cooling, electron ion colliders and more. This paper reviews the accelerator physics issues of superconducting ERLs, discusses major subsystems and provides a few examples of superconducting ERLs.

  10. Superconducting energy recovery linacs

    DOE PAGES

    Ben-Zvi, Ilan

    2016-09-01

    High-average-power and high-brightness electron beams from a combination of laser photocathode electron guns and a superconducting energy recovery linac (ERL) is an emerging accelerator science with applications in ERL light sources, high repetition rate free electron lasers , electron cooling, electron ion colliders and more. This paper reviews the accelerator physics issues of superconducting ERLs, discusses major subsystems and provides a few examples of superconducting ERLs.

  11. Free-standing oxide superconducting articles

    DOEpatents

    Wu, Xin D.; Muenchausen, Ross E.

    1993-01-01

    A substrate-free, free-standing epitaxially oriented superconductive film including a layer of a template material and a layer of a ceramic superconducting material is provided together with a method of making such a substrate-free ceramic superconductive film by coating an etchable material with a template layer, coating the template layer with a layer of a ceramic superconductive material, coating the layer of ceramic superconductive material with a protective material, removing the etchable material by an appropriate means so that the etchable material is separated from a composite structure including the template lay This invention is the result of a contract with the Department of Energy (Contract No. W-7405-ENG-36).

  12. Development of a compact superconducting rotating-gantry for heavy-ion therapy

    PubMed Central

    Iwata, Yoshiyuki; Noda, K.; Murakami, T.; Shirai, T.; Furukawa, T.; Fujita, T.; Mori, S.; Sato, S.; Mizushima, K.; Shouda, K.; Fujimoto, T.; Arai, H.; Ogitsu, T.; Obana, T.; Amemiya, N.; Orikasa, T.; Takami, S.; Takayama, S.

    2014-01-01

    An isocentric superconducting rotating-gantry for heavy-ion therapy is being developed [ 1]. This rotating gantry can transport heavy ions having 430 MeV/u to an isocenter with irradiation angles of over ±180°, and is further capable of performing fast raster-scanning irradiation [ 2]. A layout of the beam-transport line for the compact rotating-gantry is presented in Fig. 1. The rotating gantry has 10 superconducting magnets (BM01-10), a pair of the scanning magnets (SCM-X and SCM-Y) and two pairs of beam profile- monitor and steering magnets (ST01-02 and PRN01-02). For BM01-BM06 and BM09-BM10, the combined-function superconducting magnets are employed. Further, these superconducting magnets are designed for fast slewing of the magnetic field to follow the multiple flattop operation of the synchrotron [ 3]. The use of the combined-function superconducting magnets with optimized beam optics allows a compact gantry design with a large scan size at the isocenter; the length and the radius of the gantry will be to be ∼13 and 5.5 m, respectively, which are comparable to those for the existing proton gantries. Furthermore, the maximum scan size at the isocenter is calculated to be as large as ∼200 mm square for heavy-ion beams at the maximum energy of 430 MeV/u. All of the superconducting magnets were designed, and their magnetic fields were calculated using the Opera-3d code [ 4]. With the calculated magnetic fields, beam-tracking simulations were made. The simulation results agreed well with those of the linear beam-optics calculation, proving validity of the final design for the superconducting magnets. The five out of 10 superconducting magnets, as well as the model magnet were currently manufactured. With these magnets, rotation tests, magnetic field measurements and fast slewing tests were conducted. However, we did not observe any significant temperature increase, which may cause a quench problem. Further, results of the magnetic field measurements roughly

  13. Topological superconductivity in the extended Kitaev-Heisenberg model

    NASA Astrophysics Data System (ADS)

    Schmidt, Johann; Scherer, Daniel D.; Black-Schaffer, Annica M.

    2018-01-01

    We study superconducting pairing in the doped Kitaev-Heisenberg model by taking into account the recently proposed symmetric off-diagonal exchange Γ . By performing a mean-field analysis, we classify all possible superconducting phases in terms of symmetry, explicitly taking into account effects of spin-orbit coupling. Solving the resulting gap equations self-consistently, we map out a phase diagram that involves several topologically nontrivial states. For Γ <0 , we find a competition between a time-reversal symmetry-breaking chiral phase with Chern number ±1 and a time-reversal symmetric nematic phase that breaks the rotational symmetry of the lattice. On the other hand, for Γ ≥0 we find a time-reversal symmetric phase that preserves all the lattice symmetries, thus yielding clearly distinguishable experimental signatures for all superconducting phases. Both of the time-reversal symmetric phases display a transition to a Z2 nontrivial phase at high doping levels. Finally, we also include a symmetry-allowed spin-orbit coupling kinetic energy and show that it destroys a tentative symmetry-protected topological order at lower doping levels. However, it can be used to tune the time-reversal symmetric phases into a Z2 nontrivial phase even at lower doping.

  14. Smart monitoring system based on adaptive current control for superconducting cable test.

    PubMed

    Arpaia, Pasquale; Ballarino, Amalia; Daponte, Vincenzo; Montenero, Giuseppe; Svelto, Cesare

    2014-12-01

    A smart monitoring system for superconducting cable test is proposed with an adaptive current control of a superconducting transformer secondary. The design, based on Fuzzy Gain Scheduling, allows the controller parameters to adapt continuously, and finely, to the working variations arising from transformer nonlinear dynamics. The control system is integrated in a fully digital control loop, with all the related benefits, i.e., high noise rejection, ease of implementation/modification, and so on. In particular, an accurate model of the system, controlled by a Fuzzy Gain Scheduler of the superconducting transformer, was achieved by an experimental campaign through the working domain at several current ramp rates. The model performance was characterized by simulation, under all the main operating conditions, in order to guide the controller design. Finally, the proposed monitoring system was experimentally validated at European Organization for Nuclear Research (CERN) in comparison to the state-of-the-art control system [P. Arpaia, L. Bottura, G. Montenero, and S. Le Naour, "Performance improvement of a measurement station for superconducting cable test," Rev. Sci. Instrum. 83, 095111 (2012)] of the Facility for the Research on Superconducting Cables, achieving a significant performance improvement: a reduction in the system overshoot by 50%, with a related attenuation of the corresponding dynamic residual error (both absolute and RMS) up to 52%.

  15. Superconductivity in CVD diamond films.

    PubMed

    Takano, Yoshihiko

    2009-06-24

    A beautiful jewel of diamond is insulator. However, boron doping can induce semiconductive, metallic and superconducting properties in diamond. When the boron concentration is tuned over 3 × 10(20) cm(-3), diamonds enter the metallic region and show superconductivity at low temperatures. The metal-insulator transition and superconductivity are analyzed using ARPES, XAS, NMR, IXS, transport and magnetic measurements and so on. This review elucidates the physical properties and mechanism of diamond superconductor as a special superconductivity that occurs in semiconductors.

  16. Unconventional superconductivity in heavy-fermion compounds

    DOE PAGES

    White, B. D.; Thompson, J. D.; Maple, M. B.

    2015-02-27

    Over the past 35 years, research on unconventional superconductivity in heavy-fermion systems has evolved from the surprising observations of unprecedented superconducting properties in compounds that convention dictated should not superconduct at all to performing explorations of rich phase spaces in which the delicate interplay between competing ground states appears to support emergent superconducting states. In this article, we review the current understanding of superconductivity in heavy-fermion com- pounds and identify a set of characteristics that is common to their unconventional superconducting states. These core properties are compared with those of other classes of unconventional superconductors such as the cuprates andmore » iron-based superconductors. Lastly, we conclude by speculating on the prospects for future research in this field and how new advances might contribute towards resolving the long-standing mystery of how unconventional superconductivity works.« less

  17. Development of a compact HTS lead unit for the SC correction coils of the SuperKEKB final focusing magnet system

    NASA Astrophysics Data System (ADS)

    Zong, Zhanguo; Ohuchi, Norihito; Tsuchiya, Kiyosumi; Arimoto, Yasushi

    2016-09-01

    Forty-three superconducting (SC) correction coils with maximum currents of about 60 A are installed in the SuperKEKB final focusing magnet system. Current leads to energize the SC correction coils should have an affordable heat load and fit the spatial constraints in the service cryostat where the current leads are installed. To address the requirements, design optimization of individual lead was performed with vapor cooled current lead made of a brass material, and a compact unit was designed to accommodate eight current leads together in order to be installed with one port in the service cryostat. The 2nd generation high temperature SC (HTS) tape was adopted and soldered at the cold end of the brass current lead to form a hybrid HTS lead structure. A prototype of the compact lead unit with HTS tape was constructed and tested with liquid helium (LHe) environment. This paper presents a cryogenic measurement system to simulate the real operation conditions in the service cryostat, and analysis of the experimental results. The measured results showed excellent agreement with the theoretical analysis and numerical simulation. In total, 11 sets of the compact HTS lead units were constructed for the 43 SC correction coils at KEK. One set from the mass production was tested in cryogenic conditions, and exhibited the same performance as the prototype. The compact HTS lead unit can feed currents to four SC correction coils simultaneously with the simple requirement of controlling and monitoring helium vapor flow, and has a heat load of about 0.762 L/h in terms of LHe consumption.

  18. 2017 Gordon Conference on Superconductivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chubukov, Andrey

    The DOE award was for a 2017 Gordon Research conference on Superconductivity (GRC). The objective of GRC is to interchange the information about the latest theoretical and experimental developments in the area of superconductivity and to select most perspective directions for future research in this area.The goal of the Gordon Conference on Superconductivity is to present and discuss the latest results in the field of modern superconductivity, discuss new ideas and new directions of research in the area. It is a long-standing tradition of the Gordon conference on Superconductivity that the vast majority of participants are junior scientists. Funding formore » the conference would primarily be used to support junior researchers, particularly from under-represented groups. We had more 10 female speakers, some of them junior researchers, and some funding was used to support these speakers. The conference was held together with Gordon Research Seminar on Superconductivity, where almost all speakers and participants were junior scientists.« less

  19. Fringe Field Superconducting Switch

    DTIC Science & Technology

    1997-10-31

    However, it is not believed that any known superconducting switch has all of these desirable 3 properties . 4 Many known superconducting devices rely on...will recognize, a weak link is a structure that does not in itself have superconducting properties , but 7 will allow a relatively small flow of tunnel... properties of the junction. 12 Thus, the operating parameters of conventional Josephson junctions tend to drift over time. This 13 shortcoming of

  20. Tunable high-q superconducting notch filter

    DOEpatents

    Pang, C.S.; Falco, C.M.; Kampwirth, R.T.; Schuller, I.K.

    1979-11-29

    A superconducting notch filter is made of three substrates disposed in a cryogenic environment. A superconducting material is disposed on one substrate in a pattern of a circle and an annular ring connected together. The second substrate has a corresponding pattern to form a parallel plate capacitor and the second substrate has the circle and annular ring connected by a superconducting spiral that forms an inductor. The third substrate has a superconducting spiral that is placed parallel to the first superconducting spiral to form a transformer. Relative motion of the first substrate with respect to the second is effected from outside the cryogenic environment to vary the capacitance and hence the frequency of the resonant circuit formed by the superconducting devices.

  1. 119Sn-NMR investigations on superconducting Ca 3Ir 4Sn 13: Evidence for multigap superconductivity

    DOE PAGES

    Sarkar, R.; Petrovic, C.; Bruckner, F.; ...

    2015-09-25

    In this study, we report bulk superconductivity (SC) in Ca 3Ir 4Sn 13 by means of 119Sn nuclear magnetic resonance (NMR) experiments. Two classical signatures of BCS superconductivity in spin-lattice relaxation rate (1/T 1), namely the Hebel–Slichter coherence peak just below the T c, and the exponential decay in the superconducting phase, are evident. The noticeable decrease of 119Sn Knight shift below T c indicates spin-singlet superconductivity. The temperature dependence of the spin-lattice relaxation rate 119(1/T 1) is convincingly described by the multigap isotropic superconducting gap. NMR experiments do not witness any sign of enhanced spin fluctuations.

  2. Phase slips in superconducting weak links

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kimmel, Gregory; Glatz, Andreas; Aranson, Igor S.

    2017-01-01

    Superconducting vortices and phase slips are primary mechanisms of dissipation in superconducting, superfluid, and cold-atom systems. While the dynamics of vortices is fairly well described, phase slips occurring in quasi-one- dimensional superconducting wires still elude understanding. The main reason is that phase slips are strongly nonlinear time-dependent phenomena that cannot be cast in terms of small perturbations of the superconducting state. Here we study phase slips occurring in superconducting weak links. Thanks to partial suppression of superconductivity in weak links, we employ a weakly nonlinear approximation for dynamic phase slips. This approximation is not valid for homogeneous superconducting wires andmore » slabs. Using the numerical solution of the time-dependent Ginzburg-Landau equation and bifurcation analysis of stationary solutions, we show that the onset of phase slips occurs via an infinite period bifurcation, which is manifested in a specific voltage-current dependence. Our analytical results are in good agreement with simulations.« less

  3. Superconducting proximity effect in topological materials

    NASA Astrophysics Data System (ADS)

    Reeg, Christopher R.

    In recent years, there has been a renewed interest in the proximity effect due to its role in the realization of topological superconductivity. In this dissertation, we discuss several results that have been obtained in the field of proximity-induced superconductivity and relate the results to the search for Majorana fermions. First, we show that repulsive electron-electron interactions can induce a non-Majorana zero-energy bound state at the interface between a conventional superconductor and a normal metal. We show that this state is very sensitive to disorder, owing to its lack of topological protection. Second, we show that Rashba spin-orbit coupling, which is one of the key ingredients in engineering a topological superconductor, induces triplet pairing in the proximity effect. When the spin-orbit coupling is strong (i.e., when the characteristic energy scale for spin-orbit coupling is comparable to the Fermi energy), the induced singlet and triplet pairing amplitudes can be comparable in magnitude. Finally, we discuss how the size of the proximity-induced gap, which appears in a low-dimensional material coupled to a superconductor, evolves as the thickness of the (quasi-)low-dimensional material is increased. We show that the induced gap can be comparable to the bulk energy gap of the underlying superconductor in materials that are much thicker than the Fermi wavelength, even in the presence of an interfacial barrier and strong Fermi surface mismatch. This result has important experimental consequences for topological superconductivity, as a sizable gap is required to isolate and detect the Majorana modes.

  4. Operational Merits of Maritime Superconductivity

    NASA Astrophysics Data System (ADS)

    Ross, R.; Bosklopper, J. J.; van der Meij, K. H.

    The perspective of superconductivity to transfer currents without loss is very appealing in high power applications. In the maritime sector many machines and systems exist in the roughly 1-100 MW range and the losses are well over 50%, which calls for dramatic efficiency improvements. This paper reports on three studies that aimed at the perspectives of superconductivity in the maritime sector. It is important to realize that the introduction of superconductivity comprises two technology transitions namely firstly electrification i.e. the transition from mechanical drives to electric drives and secondly the transition from normal to superconductive electrical machinery. It is concluded that superconductivity does reduce losses, but its impact on the total energy chain is of little significance compared to the investments and the risk of introducing a very promising but as yet not proven technology in the harsh maritime environment. The main reason of the little impact is that the largest losses are imposed on the system by the fossil fueled generators as prime movers that generate the electricity through mechanical torque. Unless electric power is supplied by an efficient and reliable technology that does not involve mechanical torque with the present losses both normal as well as superconductive electrification of the propulsion will hardly improve energy efficiency or may even reduce it. One exception may be the application of degaussing coils. Still appealing merits of superconductivity do exist, but they are rather related to the behavior of superconductive machines and strong magnetic fields and consequently reduction in volume and mass of machinery or (sometimes radically) better performance. The merits are rather convenience, design flexibility as well as novel applications and capabilities which together yield more adequate systems. These may yield lower operational costs in the long run, but at present the added value of superconductivity rather seems more

  5. Quantum Memristors with Superconducting Circuits

    PubMed Central

    Salmilehto, J.; Deppe, F.; Di Ventra, M.; Sanz, M.; Solano, E.

    2017-01-01

    Memristors are resistive elements retaining information of their past dynamics. They have garnered substantial interest due to their potential for representing a paradigm change in electronics, information processing and unconventional computing. Given the advent of quantum technologies, a design for a quantum memristor with superconducting circuits may be envisaged. Along these lines, we introduce such a quantum device whose memristive behavior arises from quasiparticle-induced tunneling when supercurrents are cancelled. For realistic parameters, we find that the relevant hysteretic behavior may be observed using current state-of-the-art measurements of the phase-driven tunneling current. Finally, we develop suitable methods to quantify memory retention in the system. PMID:28195193

  6. Survey of the state-of-the-art of miniature cryocoolers for superconductive devices. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, J.L.; Robinson, G.Y.; Iwasa, Y.

    1984-12-31

    This document presents the results of a survey of the state-of-the-art as applied to cryocoolers to cool small superconducting devices. The survey included visits to over 100 facilities involved in the production or development of small cryocoolers in the United States, Japan, Europe. Specifications of commercially available cryocoolers having capacities of one to five watts in the 80 to 4 K range are presented.

  7. Superconducting thermoelectric generator

    DOEpatents

    Metzger, J.D.; El-Genk, M.S.

    1994-01-01

    Thermoelectricity is produced by applying a temperature differential to dissimilar electrically conducting or semiconducting materials, thereby producing a voltage that is proportional to the temperature difference. Thermoelectric generators use this effect to directly convert heat into electricity; however, presently-known generators have low efficiencies due to the production of high currents which in turn cause large resistive heating losses. Some thermoelectric generators operate at efficiencies between 4% and 7% in the 800{degrees} to 1200{degrees}C range. According to its major aspects and bradly stated, the present invention is an apparatus and method for producing electricity from heat. In particular, the invention is a thermoelectric generator that juxtaposes a superconducting material and a semiconducting material - so that the superconducting and the semiconducting materials touch - to convert heat energy into electrical energy without resistive losses in the temperature range below the critical temperature of the superconducting material. Preferably, an array of superconducting material is encased in one of several possible configurations within a second material having a high thermal conductivity, preferably a semiconductor, to form a thermoelectric generator.

  8. Status of the Consolidation of the LHC Superconducting Magnets and Circuits

    NASA Astrophysics Data System (ADS)

    Tock, J. Ph; Atieh, S.; Bodart, D.; Bordry, F.; Bourcey, N.; Cruikshank, P.; Dahlerup-Petersen, K.; Dalin, J. M.; Garion, C.; Musso, A.; Ostojic, R.; Perin, A.; Pojer, M.; Savary, F.; Scheuerlein, C.

    2014-05-01

    The first LHC long shutdown (LS1) started in February 2013. It was triggered by the need to consolidate the 13 kA splices between the superconducting magnets to allow the LHC to reach safely its design energy of 14 TeV center of mass. The final design of the consolidated splices is recalled. 1695 interconnections containing 10 170 splices have to be opened. In addition to the work on the 13 kA splices, the other interventions performed during the first long shut-down on all the superconducting circuits are described. All this work has been structured in a project, gathering about 280 persons. The opening of the interconnections started in April 2013 and consolidation works are planned to be completed by August 2014. This paper describes first the preparation phase with the building of the teams and the detailed planning of the operation. Then, it gives feedback from the worksite, namely lessons learnt and adaptations that were implemented, both from the technical and organizational points of view. Finally, perspectives for the completion of this consolidation campaign are given.

  9. Superconducting Cable Having A Felexible Former

    DOEpatents

    Hughey, Raburn L.; Sinha, Uday K.; Reece, David S.; Muller, Albert C.

    2005-03-15

    In order to provide a flexible oxide superconducting cable which is reduced in AC loss, tape-shaped superconducting wires covered with a stabilizing metal are wound on a flexible former. The superconducting wires are preferably laid on the former at a bending strain of not more than 0.2%. In laying on the former, a number of tape-shaped superconducting wires are laid on a core member in a side-by-side manner, to form a first layer. A prescribed number of tape-shaped superconducting wires are laid on top of the first layer in a side-by-side manner, to form a second layer. The former may be made of a metal, plastic, reinforced plastic, polymer, or a composite and provides flexibility to the superconducting wires and the cable formed therewith.

  10. Superconducting Cable Having A Flexible Former

    DOEpatents

    Hughey, Raburn L.; Sinha, Uday K.; Reece, David S.; Muller, Albert C.

    2005-08-30

    In order to provide a flexible oxide superconducting cable which is reduced in AC loss, tape-shaped superconducting wires covered with a stabilizing metal are wound on a flexible former. The superconducting wires are preferably laid on the former at a bending strain of not more than 0.2%. In laying on the former, a number of tape-shaped superconducting wires are laid on a core member in a side-by-side manner, to form a first layer. A prescribed number of tape-shaped superconducting wires are laid on top of the first layer in a side-by-side manner, to form a second layer. The former may be made of a metal, plastic, reinforced plastic, polymer, or a composite and provides flexibility to the superconducting wires and the cable formed therewith.

  11. Superconducting fault current-limiter with variable shunt impedance

    DOEpatents

    Llambes, Juan Carlos H; Xiong, Xuming

    2013-11-19

    A superconducting fault current-limiter is provided, including a superconducting element configured to resistively or inductively limit a fault current, and one or more variable-impedance shunts electrically coupled in parallel with the superconducting element. The variable-impedance shunt(s) is configured to present a first impedance during a superconducting state of the superconducting element and a second impedance during a normal resistive state of the superconducting element. The superconducting element transitions from the superconducting state to the normal resistive state responsive to the fault current, and responsive thereto, the variable-impedance shunt(s) transitions from the first to the second impedance. The second impedance of the variable-impedance shunt(s) is a lower impedance than the first impedance, which facilitates current flow through the variable-impedance shunt(s) during a recovery transition of the superconducting element from the normal resistive state to the superconducting state, and thus, facilitates recovery of the superconducting element under load.

  12. Superconducting magnetic energy storage and superconducting self-supplied electromagnetic launcher

    NASA Astrophysics Data System (ADS)

    Ciceron, Jérémie; Badel, Arnaud; Tixador, Pascal

    2017-10-01

    Superconductors can be used to build energy storage systems called Superconducting Magnetic Energy Storage (SMES), which are promising as inductive pulse power source and suitable for powering electromagnetic launchers. The second generation of high critical temperature superconductors is called coated conductors or REBCO (Rare Earth Barium Copper Oxide) tapes. Their current carrying capability in high magnetic field and their thermal stability are expanding the SMES application field. The BOSSE (Bobine Supraconductrice pour le Stockage d'Energie) project aims to develop and to master the use of these superconducting tapes through two prototypes. The first one is a SMES with high energy density. Thanks to the performances of REBCO tapes, the volume energy and specific energy of existing SMES systems can be surpassed. A study has been undertaken to make the best use of the REBCO tapes and to determine the most adapted topology in order to reach our objective, which is to beat the world record of mass energy density for a superconducting coil. This objective is conflicting with the classical strategies of superconducting coil protection. A different protection approach is proposed. The second prototype of the BOSSE project is a small-scale demonstrator of a Superconducting Self-Supplied Electromagnetic Launcher (S3EL), in which a SMES is integrated around the launcher which benefits from the generated magnetic field to increase the thrust applied to the projectile. The S3EL principle and its design are presented. Contribution to the topical issue "Electrical Engineering Symposium (SGE 2016)", edited by Adel Razek

  13. Superconducting gyroscope research

    NASA Technical Reports Server (NTRS)

    Hendricks, J. B.; Karr, G. R.

    1985-01-01

    Four basic areas of research and development of superconducting gyroscopes are studied. Chapter 1 studies the analysis of a SQUID readout for a superconducting gyroscope. Chapter 2 studies the dependence of spin-up torque on channel and gas properties. Chapter 3 studies the theory of super fluid plug operation. And chapter 4 studies the gyro rotor and housing manufacture.

  14. Characterization of the superconducting state in hafnium hydride under high pressure

    NASA Astrophysics Data System (ADS)

    Duda, A. M.; Szewczyk, K. A.; Jarosik, M. W.; Szcześniak, K. M.; Sowińska, M. A.; Szcześniak, D.

    2018-05-01

    The hydrogen-rich compounds at high pressure may exhibit notably high superconducting transition temperatures. In the paper, we have calculated the basic thermodynamic parameters of the superconducting state in two selected phases of HfH2 hydride under high-pressure respectively at 180 GPa for Cmma and 260 GPa for P21 / m . Calculations has been conducted in the framework of the Eliashberg formalism. In particular, we have determined the values of the critical temperature (TC) to be equal to 8 K and 13 K for the Cmma and P21 / m phases, respectively. Moreover, we have estimated other thermodynamic properties such as the order parameter (Δ (T)) , the thermodynamic critical field (HC (T)) , and the specific heat for the normal (CN) and superconducting (CS) state. Finally, we have shown that the characteristic ratios: RΔ = 2 Δ (0) /kBTC and RC = ΔC (TC) /CN (TC) , which are related to the above thermodynamic functions, slightly differ from the predictions of the Bardeen-Cooper-Schrieffer theory due to the strong-coupling and retardation effects.

  15. The Hardest Superconducting Metal Nitride

    NASA Astrophysics Data System (ADS)

    Wang, Shanmin; Antonio, Daniel; Yu, Xiaohui; Zhang, Jianzhong; Cornelius, Andrew L.; He, Duanwei; Zhao, Yusheng

    2015-09-01

    Transition-metal (TM) nitrides are a class of compounds with a wide range of properties and applications. Hard superconducting nitrides are of particular interest for electronic applications under working conditions such as coating and high stress (e.g., electromechanical systems). However, most of the known TM nitrides crystallize in the rock-salt structure, a structure that is unfavorable to resist shear strain, and they exhibit relatively low indentation hardness, typically in the range of 10-20 GPa. Here, we report high-pressure synthesis of hexagonal δ-MoN and cubic γ-MoN through an ion-exchange reaction at 3.5 GPa. The final products are in the bulk form with crystallite sizes of 50 - 80 μm. Based on indentation testing on single crystals, hexagonal δ-MoN exhibits excellent hardness of ~30 GPa, which is 30% higher than cubic γ-MoN (~23 GPa) and is so far the hardest among the known metal nitrides. The hardness enhancement in hexagonal phase is attributed to extended covalently bonded Mo-N network than that in cubic phase. The measured superconducting transition temperatures for δ-MoN and cubic γ-MoN are 13.8 and 5.5 K, respectively, in good agreement with previous measurements.

  16. Materials, Strands, and Cables for Superconducting Accelerator Magnets. Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sumption, Mike D.; Collings, Edward W.

    2014-09-19

    This report focuses on Materials, Strands and Cables for High Energy Physics Particle accelerators. In the materials area, work has included studies of basic reactions, diffusion, transformations, and phase assemblage of Nb 3Sn. These materials science aspects have been married to results, in the form of flux pinning, B c2, B irr, and transport J c, with an emphasis on obtaining the needed J c for HEP needs. Attention has also been paid to the “intermediate-temperature superconductor”, magnesium diboride emphasis being placed on (i) irreversibility field enhancement, (ii) critical current density and flux pinning, and (iii) connectivity. We also reportmore » on studies of Bi-2212. The second area of the program has been in the area of “Strands” in which, aside from the materials aspect of the conductor, its physical properties and their influence on performance have been studied. Much of this work has been in the area of magnetization estimation and flux jump calculation and control. One of the areas of this work was strand instabilities in high-performance Nb 3Sn conductors due to combined fields and currents. Additionally, we investigated quench and thermal propagation in YBCO coated conductors at low temperatures and high fields. The last section, “Cables”, focussed on interstrand contact resistance, ICR, it origins, control, and implications. Following on from earlier work in NbTi, the present work in Nb 3Sn has aimed to make ICR intermediate between the two extremes of too little contact (no current sharing) and too much (large and unacceptable magnetization and associated beam de-focussing). Interstrand contact and current sharing measurements are being made on YBCO based Roebel cables using transport current methods. Finally, quench was investigated for YBCO cables and the magnets wound from them, presently with a focus on 50 T solenoids for muon collider applications.« less

  17. Electron pairing without superconductivity

    NASA Astrophysics Data System (ADS)

    Levy, Jeremy

    Strontium titanate (SrTiO3) is the first and best known superconducting semiconductor. It exhibits an extremely low carrier density threshold for superconductivity, and possesses a phase diagram similar to that of high-temperature superconductors--two factors that suggest an unconventional pairing mechanism. Despite sustained interest for 50 years, direct experimental insight into the nature of electron pairing in SrTiO3 has remained elusive. Here we perform transport experiments with nanowire-based single-electron transistors at the interface between SrTiO3 and a thin layer of lanthanum aluminate, LaAlO3. Electrostatic gating reveals a series of two-electron conductance resonances--paired electron states--that bifurcate above a critical pairing field Bp of about 1-4 tesla, an order of magnitude larger than the superconducting critical magnetic field. For magnetic fields below Bp, these resonances are insensitive to the applied magnetic field; for fields in excess of Bp, the resonances exhibit a linear Zeeman-like energy splitting. Electron pairing is stable at temperatures as high as 900 millikelvin, well above the superconducting transition temperature (about 300 millikelvin). These experiments demonstrate the existence of a robust electronic phase in which electrons pair without forming a superconducting state. Key experimental signatures are captured by a model involving an attractive Hubbard interaction that describes real-space electron pairing as a precursor to superconductivity. Support from AFOSR, ONR, ARO, NSF, DOE and NSSEFF is gratefully acknowledged.

  18. Superconductivity in an electron band just above the Fermi level: possible route to BCS-BEC superconductivity.

    PubMed

    Okazaki, K; Ito, Y; Ota, Y; Kotani, Y; Shimojima, T; Kiss, T; Watanabe, S; Chen, C-T; Niitaka, S; Hanaguri, T; Takagi, H; Chainani, A; Shin, S

    2014-02-28

    Conventional superconductivity follows Bardeen-Cooper-Schrieffer(BCS) theory of electrons-pairing in momentum-space, while superfluidity is the Bose-Einstein condensation(BEC) of atoms paired in real-space. These properties of solid metals and ultra-cold gases, respectively, are connected by the BCS-BEC crossover. Here we investigate the band dispersions in FeTe(0.6)Se(0.4)(Tc = 14.5 K ~ 1.2 meV) in an accessible range below and above the Fermi level(EF) using ultra-high resolution laser angle-resolved photoemission spectroscopy. We uncover an electron band lying just 0.7 meV (~8 K) above EF at the Γ-point, which shows a sharp superconducting coherence peak with gap formation below Tc. The estimated superconducting gap Δ and Fermi energy [Symbol: see text]F indicate composite superconductivity in an iron-based superconductor, consisting of strong-coupling BEC in the electron band and weak-coupling BCS-like superconductivity in the hole band. The study identifies the possible route to BCS-BEC superconductivity.

  19. SSC [Superconducting Super Collider] Project: Technical Training for the Future of Texas. Navarro College/Dallas Community College District. Final Report for Year One.

    ERIC Educational Resources Information Center

    Orsak, Charles; McGlohen, Patti J.

    The Superconducting Super Collider Laboratory (SSCL) is a national lab for research on the fundamental forces and constituents of the universe. A major part of the research will involve an oval ring 54 miles in circumference through which superconducting magnets will steer two beams of protons in opposite directions. In response to the…

  20. Superconducting properties of NbN film, bridge and meanders

    NASA Astrophysics Data System (ADS)

    Joshi, Lalit M.; Verma, Apoorva; Gupta, Anurag; Rout, P. K.; Husale, Sudhir; Budhani, R. C.

    2018-05-01

    The transport properties of superconducting NbN nanostructures in the form of thin film, bridge of width (w) = 50 μm and three meanders of w = 500, 250 and 100 nm have been investigated by resistance (R) measurements in temperature (T) range = 2 -300 K and magnetic field (B) range = 0 - 7 Tesla. The nanostructuring was carried out using Focused Ion Beam (FIB) milling. Reduction of sample width results in significant changes in the normal and superconducting state properties. For instance, the observed metallic behavior in the thin film sample is lost and the normal state resistance increases drastically from 2.4 Ω to 418 kΩ for the 100 nm meander. In the superconducting state, the value of critical temperature Tc (upper critical field Bc2 at T = 0 K) reduces gradually with width reduction, it changes from 13.15 K (42.8 Tesla) in the case of thin film sample to 5.7 K (12.7 Tesla) for the 100 nm meander sample. The superconducting transitions are found to get broader for the bridge sample and the meanders additionally show low-temperature resistive tails. In case of all the samples with reduced width, the transition onsets are found to be rounded at surprisingly high values of T ˜ 25 K >> Tc. These results are discussed in terms of the possible effects of FIB processing and weak localization in our samples.

  1. Oxide-based platform for reconfigurable superconducting nanoelectronics.

    PubMed

    Veazey, Joshua P; Cheng, Guanglei; Irvin, Patrick; Cen, Cheng; Bogorin, Daniela F; Bi, Feng; Huang, Mengchen; Bark, Chung-Wung; Ryu, Sangwoo; Cho, Kwang-Hwan; Eom, Chang-Beom; Levy, Jeremy

    2013-09-20

    We report quasi-1D superconductivity at the interface of LaAlO3 and SrTiO3. The material system and nanostructure fabrication method supply a new platform for superconducting nanoelectronics. Nanostructures having line widths w ~ 10 nm are formed from the parent two-dimensional electron liquid using conductive atomic force microscope lithography. Nanowire cross-sections are small compared to the superconducting coherence length in LaAlO3/SrTiO3, placing them in the quasi-1D regime. Broad superconducting transitions versus temperature and finite resistances in the superconducting state well below Tc ≈ 200 mK are observed, suggesting the presence of fluctuation- and heating-induced resistance. The superconducting resistances and V-I characteristics are tunable through the use of a back gate. Four-terminal resistances in the superconducting state show an unusual dependence on the current path, varying by as much as an order of magnitude. This new technology, i.e., the ability to 'write' gate-tunable superconducting nanostructures on an insulating LaAlO3/SrTiO3 'canvas', opens possibilities for the development of new families of reconfigurable superconducting nanoelectronics.

  2. Focus on Adaptation. Final Report.

    ERIC Educational Resources Information Center

    Focus, 1997

    1997-01-01

    A panel of state staff, Professional Development Center directors, and other experts reviewed current or previous exemplary projects in Pennsylvania and in the U.S. and published project descriptions in a newsletter ("FOCUS" bulletin). Twenty-two special projects were selected as exemplary based on a five-point scale for innovation,…

  3. Quantum and wave dynamical chaos in superconducting microwave billiards

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dietz, B., E-mail: dietz@ikp.tu-darmstadt.de; Richter, A., E-mail: richter@ikp.tu-darmstadt.de

    2015-09-15

    Experiments with superconducting microwave cavities have been performed in our laboratory for more than two decades. The purpose of the present article is to recapitulate some of the highlights achieved. We briefly review (i) results obtained with flat, cylindrical microwave resonators, so-called microwave billiards, concerning the universal fluctuation properties of the eigenvalues of classically chaotic systems with no, a threefold and a broken symmetry; (ii) summarize our findings concerning the wave-dynamical chaos in three-dimensional microwave cavities; (iii) present a new approach for the understanding of the phenomenon of dynamical tunneling which was developed on the basis of experiments that weremore » performed recently with unprecedented precision, and finally, (iv) give an insight into an ongoing project, where we investigate universal properties of (artificial) graphene with superconducting microwave photonic crystals that are enclosed in a microwave resonator, i.e., so-called Dirac billiards.« less

  4. Quantum and wave dynamical chaos in superconducting microwave billiards.

    PubMed

    Dietz, B; Richter, A

    2015-09-01

    Experiments with superconducting microwave cavities have been performed in our laboratory for more than two decades. The purpose of the present article is to recapitulate some of the highlights achieved. We briefly review (i) results obtained with flat, cylindrical microwave resonators, so-called microwave billiards, concerning the universal fluctuation properties of the eigenvalues of classically chaotic systems with no, a threefold and a broken symmetry; (ii) summarize our findings concerning the wave-dynamical chaos in three-dimensional microwave cavities; (iii) present a new approach for the understanding of the phenomenon of dynamical tunneling which was developed on the basis of experiments that were performed recently with unprecedented precision, and finally, (iv) give an insight into an ongoing project, where we investigate universal properties of (artificial) graphene with superconducting microwave photonic crystals that are enclosed in a microwave resonator, i.e., so-called Dirac billiards.

  5. Superconductivity in highly disordered dense carbon disulfide

    PubMed Central

    Dias, Ranga P.; Yoo, Choong-Shik; Struzhkin, Viktor V.; Kim, Minseob; Muramatsu, Takaki; Matsuoka, Takahiro; Ohishi, Yasuo; Sinogeikin, Stanislav

    2013-01-01

    High pressure plays an increasingly important role in both understanding superconductivity and the development of new superconducting materials. New superconductors were found in metallic and metal oxide systems at high pressure. However, because of the filled close-shell configuration, the superconductivity in molecular systems has been limited to charge-transferred salts and metal-doped carbon species with relatively low superconducting transition temperatures. Here, we report the low-temperature superconducting phase observed in diamagnetic carbon disulfide under high pressure. The superconductivity arises from a highly disordered extended state (CS4 phase or phase III[CS4]) at ∼6.2 K over a broad pressure range from 50 to 172 GPa. Based on the X-ray scattering data, we suggest that the local structural change from a tetrahedral to an octahedral configuration is responsible for the observed superconductivity. PMID:23818624

  6. Superconductivity in highly disordered dense carbon disulfide.

    PubMed

    Dias, Ranga P; Yoo, Choong-Shik; Struzhkin, Viktor V; Kim, Minseob; Muramatsu, Takaki; Matsuoka, Takahiro; Ohishi, Yasuo; Sinogeikin, Stanislav

    2013-07-16

    High pressure plays an increasingly important role in both understanding superconductivity and the development of new superconducting materials. New superconductors were found in metallic and metal oxide systems at high pressure. However, because of the filled close-shell configuration, the superconductivity in molecular systems has been limited to charge-transferred salts and metal-doped carbon species with relatively low superconducting transition temperatures. Here, we report the low-temperature superconducting phase observed in diamagnetic carbon disulfide under high pressure. The superconductivity arises from a highly disordered extended state (CS4 phase or phase III[CS4]) at ~6.2 K over a broad pressure range from 50 to 172 GPa. Based on the X-ray scattering data, we suggest that the local structural change from a tetrahedral to an octahedral configuration is responsible for the observed superconductivity.

  7. Giant phonon anomaly associated with superconducting fluctuations in the pseudogap phase of cuprates

    DOE PAGES

    Liu, Ye-Hua; Konik, Robert M.; Rice, T. M.; ...

    2016-01-20

    The pseudogap in underdoped cuprates leads to significant changes in the electronic structure, and was later found to be accompanied by anomalous fluctuations of superconductivity and certain lattice phonons. Here we propose that the Fermi surface breakup due to the pseudogap, leads to a breakup of the pairing order into two weakly coupled sub-band amplitudes, and a concomitant low energy Leggett mode due to phase fluctuations between them. This increases the temperature range of superconducting fluctuations containing an overdamped Leggett mode. In this range inter-sub-band phonons show strong damping due to resonant scattering into an intermediate state with a pairmore » of overdamped Leggett modes. In the ordered state, the Leggett mode develops a finite energy, changing the anomalous phonon damping into an anomaly in the dispersion. Finally, this proposal explains the intrinsic connection between the anomalous pseudogap phase, enhanced superconducting fluctuations and giant anomalies in the phonon spectra.« less

  8. Suppressed Superconductivity on the Surface of Superconducting RF Quality Niobium for Particle Accelerating Cavities

    NASA Astrophysics Data System (ADS)

    Sung, Z. H.; Polyanskii, A. A.; Lee, P. J.; Gurevich, A.; Larbalestier, D. C.

    2011-03-01

    Significant performance degradation of superconducting RF (radio frequency) niobium cavities in high RF field is strongly associated with the breakdown of superconductivity on localized multi-scale surface defects lying within the 40 nm penetration depth. These defects may be on the nanometer scale, like grain boundaries and dislocations or even at the much larger scale of surface roughness and welding pits. By combining multiple superconducting characterization techniques including magneto-optical (MO) imaging and direct transport measurement with non-contact characterization of the surface topology using scanning confocal microscopy, we were able to show clear evidence of suppression of surface superconductivity at chemically treated RF-quality niobium. We found that pinning of vortices along GBs is weaker than pinning of vortices in the grains, which may indicate suppressed superfluid density on GBs. We also directly measured the local magnetic characteristics of BCP-treated Nb sample surface using a micro-Hall sensor in order to further understanding of the effect of surface topological features on the breakdown of superconducting state in RF mode.

  9. Superconductive articles including cerium oxide layer

    DOEpatents

    Wu, Xin D.; Muenchausen, Ross E.

    1993-01-01

    A ceramic superconductor comprising a metal oxide substrate, a ceramic high temperature superconductive material, and a intermediate layer of a material having a cubic crystal structure, said layer situated between the substrate and the superconductive material is provided, and a structure for supporting a ceramic superconducting material is provided, said structure comprising a metal oxide substrate, and a layer situated over the surface of the substrate to substantially inhibit interdiffusion between the substrate and a ceramic superconducting material deposited upon said structure.

  10. Evaluation of superconducting wiggler designs and free-electron laser support: Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1990-10-12

    This report consists of copies of previous progress reports, and copies of viewgraphs presented in a talk at Los Alamos. The report describes activities carried out as part of a project to evaluate the design and performance of a superconducting wiggler magnet design. It includes work on evaluating the appropriate materials for the magnet coils and poles, and stress evaluations for the design. It includes work on beam optics through the magnet, and design considerations to optimize extraction: work on the cryocooling system; weight minimization efforts; and design work on the vacuum liner for the magnet. A major concern inmore » all of this design work is heat loads which will be dissipated in different parts of the system during operation, as well as transient events.« less

  11. Superconducting quantum circuits theory and application

    NASA Astrophysics Data System (ADS)

    Deng, Xiuhao

    Superconducting quantum circuit models are widely used to understand superconducting devices. This thesis consists of four studies wherein the superconducting quantum circuit is used to illustrate challenges related to quantum information encoding and processing, quantum simulation, quantum signal detection and amplification. The existence of scalar Aharanov-Bohm phase has been a controversial topic for decades. Scalar AB phase, defined as time integral of electric potential, gives rises to an extra phase factor in wavefunction. We proposed a superconducting quantum Faraday cage to detect temporal interference effect as a consequence of scalar AB phase. Using the superconducting quantum circuit model, the physical system is solved and resulting AB effect is predicted. Further discussion in this chapter shows that treating the experimental apparatus quantum mechanically, spatial scalar AB effect, proposed by Aharanov-Bohm, can't be observed. Either a decoherent interference apparatus is used to observe spatial scalar AB effect, or a quantum Faraday cage is used to observe temporal scalar AB effect. The second study involves protecting a quantum system from losing coherence, which is crucial to any practical quantum computation scheme. We present a theory to encode any qubit, especially superconducting qubits, into a universal quantum degeneracy point (UQDP) where low frequency noise is suppressed significantly. Numerical simulations for superconducting charge qubit using experimental parameters show that its coherence time is prolong by two orders of magnitude using our universal degeneracy point approach. With this improvement, a set of universal quantum gates can be performed at high fidelity without losing too much quantum coherence. Starting in 2004, the use of circuit QED has enabled the manipulation of superconducting qubits with photons. We applied quantum optical approach to model coupled resonators and obtained a four-wave mixing toolbox to operate photons

  12. Superconducting six-axis accelerometer

    NASA Technical Reports Server (NTRS)

    Paik, H. J.

    1990-01-01

    A new superconducting accelerometer, capable of measuring both linear and angular accelerations, is under development at the University of Maryland. A single superconducting proof mass is magnetically levitated against gravity or any other proof force. Its relative positions and orientations with respect to the platform are monitored by six superconducting inductance bridges sharing a single amplifier, called the Superconducting Quantum Interference Device (SQUID). The six degrees of freedom, the three linear acceleration components and the three angular acceleration components, of the platform are measured simultaneously. In order to improve the linearity and the dynamic range of the instrument, the demodulated outputs of the SQUID are fed back to appropriate levitation coils so that the proof mass remains at the null position for all six inductance bridges. The expected intrinsic noise of the instrument is 4 x 10(exp -12)m s(exp -2) Hz(exp -1/2) for linear acceleration and 3 x 10(exp -11) rad s(exp -2) Hz(exp -1/2) for angular acceleration in 1-g environment. In 0-g, the linear acceleration sensitivity of the superconducting accelerometer could be improved by two orders of magnitude. The design and the operating principle of a laboratory prototype of the new instrument is discussed.

  13. Quantum Memristors with Superconducting Circuits

    DOE PAGES

    Salmilehto, J.; Deppe, F.; Di Ventra, M.; ...

    2017-02-14

    Memristors are resistive elements retaining information of their past dynamics. They have garnered substantial interest due to their potential for representing a paradigm change in electronics, information processing and unconventional computing. Given the advent of quantum technologies, a design for a quantum memristor with superconducting circuits may be envisaged. Along these lines, we introduce such a quantum device whose memristive behavior arises from quasiparticle-induced tunneling when supercurrents are cancelled. Here in this paper, for realistic parameters, we find that the relevant hysteretic behavior may be observed using current state-of-the-art measurements of the phase-driven tunneling current. Finally, we develop suitable methodsmore » to quantify memory retention in the system.« less

  14. Progress with High-Field Superconducting Magnets for High-Energy Colliders

    NASA Astrophysics Data System (ADS)

    Apollinari, Giorgio; Prestemon, Soren; Zlobin, Alexander V.

    2015-10-01

    One of the possible next steps for high-energy physics research relies on a high-energy hadron or muon collider. The energy of a circular collider is limited by the strength of bending dipoles, and its maximum luminosity is determined by the strength of final focus quadrupoles. For this reason, the high-energy physics and accelerator communities have shown much interest in higher-field and higher-gradient superconducting accelerator magnets. The maximum field of NbTi magnets used in all present high-energy machines, including the LHC, is limited to ˜10 T at 1.9 K. Fields above 10 T became possible with the use of Nb3Sn superconductors. Nb3Sn accelerator magnets can provide operating fields up to ˜15 T and can significantly increase the coil temperature margin. Accelerator magnets with operating fields above 15 T require high-temperature superconductors. This review discusses the status and main results of Nb3Sn accelerator magnet research and development and work toward 20-T magnets.

  15. Progress with high-field superconducting magnets for high-energy colliders

    DOE PAGES

    Apollinari, Giorgio; Prestemon, Soren; Zlobin, Alexander V.

    2015-10-01

    One of the possible next steps for high-energy physics research relies on a high-energy hadron or muon collider. The energy of a circular collider is limited by the strength of bending dipoles, and its maximum luminosity is determined by the strength of final focus quadrupoles. For this reason, the high-energy physics and accelerator communities have shown much interest in higher-field and higher-gradient superconducting accelerator magnets. The maximum field of NbTi magnets used in all present high-energy machines, including the LHC, is limited to ~10 T at 1.9 K. Fields above 10 T became possible with the use of Nbmore » $$_3$$Sn superconductors. Nb$$_3$$Sn accelerator magnets can provide operating fields up to ~15 T and can significantly increase the coil temperature margin. Accelerator magnets with operating fields above 15 T require high-temperature superconductors. Furthermore, this review discusses the status and main results of Nb$$_3$$Sn accelerator magnet research and development and work toward 20-T magnets.« less

  16. Superconductive articles including cerium oxide layer

    DOEpatents

    Wu, X.D.; Muenchausen, R.E.

    1993-11-16

    A ceramic superconductor comprising a metal oxide substrate, a ceramic high temperature superconductive material, and a intermediate layer of a material having a cubic crystal structure, said layer situated between the substrate and the superconductive material is provided, and a structure for supporting a ceramic superconducting material is provided, said structure comprising a metal oxide substrate, and a layer situated over the surface of the substrate to substantially inhibit interdiffusion between the substrate and a ceramic superconducting material deposited upon said structure. 7 figures.

  17. National Action Plan on Superconductivity Research and Development

    NASA Astrophysics Data System (ADS)

    1989-12-01

    The Superconductivity Action Plan pursuant to the Superconductivity and Competitiveness Act of 1988 is presented. The plan draws upon contributions from leaders in the technical community of the Federal Government responsible for research and development in superconductivity programs, as well as from the report of the Committee to Advise the President on Superconductivity. Input from leaders in the private sector was obtained during the formulation and review of the plan. Some contents: Coordination of the plan; Technical areas (high temperature superconductivity materials in general, high temperature superconductivity films for sensors and electronics, magnets, large area high temperature superconductivity films, bulk conductors); and Policy areas.

  18. Overview of superconductivity in Japan Strategy road map and R&D status

    NASA Astrophysics Data System (ADS)

    Tsukamoto, O.

    2008-09-01

    Superconducting technology benefits society in broad fields; environment/energy, life science, manufacturing industry and information and communication. Superconducting equipments and devices used in various fields are divided into two categories, electric and electronic applications. Technologies in those applications are progressing remarkably owing to firm and consistent supports by various national projects. The final target of the NEDO R&D project of fundamental technology for superconductivity applications to develop 500 m long coated conductors (CCs) of the critical current 300 A/cm (at 77 K, 0 T) will be fulfilled by the end of JFY 2007 and manufacturing process to produce extremely low-cost CCs is to be developed to make the applications realistic. Preliminary works to develop power apparatuses using CCs have started in the frame of the R&D project for the fundamental technology and have produced significant results. Performance of BSCCO/Ag-sheathed wires has been improved greatly and various applications using those wires are being developed. R&D projects for SMES, power cable, flywheel energy storage and rotating machines are going to introduce those equipments to the real world. Technologies of SQUID and SFQ, basic devices of the electronic applications, are progressing dramatically also owing to various national projects. In this back ground the technology strategy map in the field of superconducting technology was formulated to prioritize investments in R&D by clearly defining the objectives and inspire autonomous R&D actives in various fields of industries. R&D activities in the superconducting technologies are to be scheduled following this strategy map.

  19. Visualizing domain wall and reverse domain superconductivity.

    PubMed

    Iavarone, M; Moore, S A; Fedor, J; Ciocys, S T; Karapetrov, G; Pearson, J; Novosad, V; Bader, S D

    2014-08-28

    In magnetically coupled, planar ferromagnet-superconductor (F/S) hybrid structures, magnetic domain walls can be used to spatially confine the superconductivity. In contrast to a superconductor in a uniform applied magnetic field, the nucleation of the superconducting order parameter in F/S structures is governed by the inhomogeneous magnetic field distribution. The interplay between the superconductivity localized at the domain walls and far from the walls leads to effects such as re-entrant superconductivity and reverse domain superconductivity with the critical temperature depending upon the location. Here we use scanning tunnelling spectroscopy to directly image the nucleation of superconductivity at the domain wall in F/S structures realized with Co-Pd multilayers and Pb thin films. Our results demonstrate that such F/S structures are attractive model systems that offer the possibility to control the strength and the location of the superconducting nucleus by applying an external magnetic field, potentially useful to guide vortices for computing application.

  20. Method for forming bismuth-based superconducting ceramics

    DOEpatents

    Maroni, Victor A.; Merchant, Nazarali N.; Parrella, Ronald D.

    2005-05-17

    A method for reducing the concentration of non-superconducting phases during the heat treatment of Pb doped Ag/Bi-2223 composites having Bi-2223 and Bi-2212 superconducting phases is disclosed. A Pb doped Ag/Bi-2223 composite having Bi-2223 and Bi-2212 superconducting phases is heated in an atmosphere having an oxygen partial pressure not less than about 0.04 atmospheres and the temperature is maintained at the lower of a non-superconducting phase take-off temperature and the Bi-2223 superconducting phase grain growth take-off temperature. The oxygen partial pressure is varied and the temperature is varied between about 815.degree. C. and about 835.degree. C. to produce not less than 80 percent conversion to Pb doped Bi-2223 superconducting phase and not greater than about 20 volume percent non-superconducting phases. The oxygen partial pressure is preferably varied between about 0.04 and about 0.21 atmospheres. A product by the method is disclosed.

  1. Visualizing domain wall and reverse domain superconductivity

    PubMed Central

    Iavarone, M.; Moore, S. A.; Fedor, J.; Ciocys, S. T.; Karapetrov, G.; Pearson, J.; Novosad, V.; Bader, S. D.

    2014-01-01

    In magnetically coupled, planar ferromagnet-superconductor (F/S) hybrid structures, magnetic domain walls can be used to spatially confine the superconductivity. In contrast to a superconductor in a uniform applied magnetic field, the nucleation of the superconducting order parameter in F/S structures is governed by the inhomogeneous magnetic field distribution. The interplay between the superconductivity localized at the domain walls and far from the walls leads to effects such as re-entrant superconductivity and reverse domain superconductivity with the critical temperature depending upon the location. Here we use scanning tunnelling spectroscopy to directly image the nucleation of superconductivity at the domain wall in F/S structures realized with Co-Pd multilayers and Pb thin films. Our results demonstrate that such F/S structures are attractive model systems that offer the possibility to control the strength and the location of the superconducting nucleus by applying an external magnetic field, potentially useful to guide vortices for computing application. PMID:25164004

  2. Final Report. Novel Behavior of Ferromagnet/Superconductor Hybrid Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Birge, Norman

    Final report for grant DE-FG02-06ER46341. This work has produced a most convincing experimental demonstration that spin-triplet supercurrent can appear in Josephson junctions containing ferromagnetic materials, even when the superconducting electrodes are conventional, spin-singlet superconductors.

  3. Superconducting Continuous Graphene Fibers via Calcium Intercalation.

    PubMed

    Liu, Yingjun; Liang, Hui; Xu, Zhen; Xi, Jiabin; Chen, Genfu; Gao, Weiwei; Xue, Mianqi; Gao, Chao

    2017-04-25

    Superconductors are important materials in the field of low-temperature magnet applications and long-distance electrical power transmission systems. Besides metal-based superconducting materials, carbon-based superconductors have attracted considerable attention in recent years. Up to now, five allotropes of carbon, including diamond, graphite, C 60 , CNTs, and graphene, have been reported to show superconducting behavior. However, most of the carbon-based superconductors are limited to small size and discontinuous phases, which inevitably hinders further application in macroscopic form. Therefore, it raises a question of whether continuously carbon-based superconducting wires could be accessed, which is of vital importance from viewpoints of fundamental research and practical application. Here, inspired by superconducting graphene, we successfully fabricated flexible graphene-based superconducting fibers via a well-established calcium (Ca) intercalation strategy. The resultant Ca-intercalated graphene fiber (Ca-GF) shows a superconducting transition at ∼11 K, which is almost 2 orders of magnitude higher than that of early reported alkali metal intercalated graphite and comparable to that of commercial superconducting NbTi wire. The combination of lightness and easy scalability makes Ca-GF highly promising as a lightweight superconducting wire.

  4. Phonon-mediated quasiparticle poisoning of superconducting microwave resonators

    NASA Astrophysics Data System (ADS)

    Patel, U.; Pechenezhskiy, Ivan V.; Plourde, B. L. T.; Vavilov, M. G.; McDermott, R.

    2017-12-01

    Nonequilibrium quasiparticles represent a significant source of decoherence in superconducting quantum circuits. Here we investigate the mechanism of quasiparticle poisoning in devices subjected to local quasiparticle injection. We find that quasiparticle poisoning is dominated by the propagation of pair-breaking phonons across the chip. We characterize the energy dependence of the time scale for quasiparticle poisoning. Finally, we observe that incorporation of extensive normal metal quasiparticle traps leads to a more than order-of-magnitude reduction in quasiparticle loss for a given injected quasiparticle power.

  5. Superconducting active impedance converter

    DOEpatents

    Ginley, D.S.; Hietala, V.M.; Martens, J.S.

    1993-11-16

    A transimpedance amplifier for use with high temperature superconducting, other superconducting, and conventional semiconductors allows for appropriate signal amplification and impedance matching to processing electronics. The amplifier incorporates the superconducting flux flow transistor into a differential amplifier configuration which allows for operation over a wide temperature range, and is characterized by high gain, relatively low noise, and response times less than 200 picoseconds over at least a 10-80 K. temperature range. The invention is particularly useful when a signal derived from either far-IR focal plane detectors or from Josephson junctions is to be processed by higher signal/higher impedance electronics, such as conventional semiconductor technology. 12 figures.

  6. Superconducting active impedance converter

    DOEpatents

    Ginley, David S.; Hietala, Vincent M.; Martens, Jon S.

    1993-01-01

    A transimpedance amplifier for use with high temperature superconducting, other superconducting, and conventional semiconductor allows for appropriate signal amplification and impedance matching to processing electronics. The amplifier incorporates the superconducting flux flow transistor into a differential amplifier configuration which allows for operation over a wide temperature range, and is characterized by high gain, relatively low noise, and response times less than 200 picoseconds over at least a 10-80 K. temperature range. The invention is particularly useful when a signal derived from either far-IR focal plane detectors or from Josephson junctions is to be processed by higher signal/higher impedance electronics, such as conventional semiconductor technology.

  7. Routes to heavy-fermion superconductivity

    NASA Astrophysics Data System (ADS)

    Steglich, F.; Stockert, O.; Wirth, S.; Geibel, C.; Yuan, H. Q.; Kirchner, S.; Si, Q.

    2013-07-01

    Superconductivity in lanthanide- and actinide-based heavy-fermion (HF) metals can have different microscopic origins. Among others, Cooper pair formation based on fluctuations of the valence, of the quadrupole moment or of the spin of the localized 4f/5f shell have been proposed. Spin-fluctuation mediated superconductivity in CeCu2Si2 was demonstrated by inelastic neutron scattering to exist in the vicinity of a spin-density-wave (SDW) quantum critical point (QCP). The isostructural HF compound YbRh2Si2 which is prototypical for a Kondo-breakdown QCP has so far not shown any sign of superconductivity down to T ≈ 10 mK. In contrast, results of de-Haas-van-Alphen experiments by Shishido et al. (J. Phys. Soc. Jpn. 74, 1103 (2005)) suggest superconductivity in CeRhIn5 close to an antiferromagnetic QCP beyond the SDW type, at which the Kondo effect breaks down. For the related compound CeCoIn5 however, a field-induced QCP of SDW type is extrapolated to exist inside the superconducting phase.

  8. Superconductivity in CaBi 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winiarski, M. J.; Wiendlocha, B.; Golba, S.

    We observed superconductivity with critical temperature T c = 2.0 K in self-flux-grown single crystals of CaBi 2. This material adopts the ZrSi 2 structure type with lattice parameters a = 4.696(1) Å, b = 17.081(2) Å and c = 4.611(1) Å. The crystals of CaBi 2 were studied by means of magnetic susceptibility, specific heat and electrical resistivity measurements. The heat capacity jump at T c is ΔC/γT c = 1.41, confirming bulk superconductivity; the Sommerfeld coefficient γ = 4.1 mJ mol -1 K -2 and the Debye temperature Θ D = 157 K. The electron–phonon coupling strength ismore » λ el–ph = 0.59, and the thermodynamic critical field H c is low, between 111 and 124 Oe CaBi 2 is a moderate coupling type-I superconductor. Our results of electronic structure calculations are reported and charge densities, electronic bands, densities of states and Fermi surfaces are discussed, focusing on the effects of spin–orbit coupling and electronic property anisotropy. Furthermore, we find a mixed quasi-2D + 3D character in the electronic structure, which reflects the layered crystal structure of the material.« less

  9. Superconductivity in CaBi 2

    DOE PAGES

    Winiarski, M. J.; Wiendlocha, B.; Golba, S.; ...

    2016-07-12

    We observed superconductivity with critical temperature T c = 2.0 K in self-flux-grown single crystals of CaBi 2. This material adopts the ZrSi 2 structure type with lattice parameters a = 4.696(1) Å, b = 17.081(2) Å and c = 4.611(1) Å. The crystals of CaBi 2 were studied by means of magnetic susceptibility, specific heat and electrical resistivity measurements. The heat capacity jump at T c is ΔC/γT c = 1.41, confirming bulk superconductivity; the Sommerfeld coefficient γ = 4.1 mJ mol -1 K -2 and the Debye temperature Θ D = 157 K. The electron–phonon coupling strength ismore » λ el–ph = 0.59, and the thermodynamic critical field H c is low, between 111 and 124 Oe CaBi 2 is a moderate coupling type-I superconductor. Our results of electronic structure calculations are reported and charge densities, electronic bands, densities of states and Fermi surfaces are discussed, focusing on the effects of spin–orbit coupling and electronic property anisotropy. Furthermore, we find a mixed quasi-2D + 3D character in the electronic structure, which reflects the layered crystal structure of the material.« less

  10. Superconducting wire with improved strain characteristics

    DOEpatents

    Luhman, Thomas; Klamut, Carl J.; Suenaga, Masaki; Welch, David

    1982-01-01

    A superconducting wire comprising a superconducting filament and a beryllium strengthened bronze matrix in which the addition of beryllium to the matrix permits a low volume matrix to exhibit reduced elastic deformation after heat treating which increases the compression of the superconducting filament on cooling and thereby improve the strain characteristics of the wire.

  11. Superconducting wire with improved strain characteristics

    DOEpatents

    Luhman, Thomas; Klamut, Carl J.; Suenaga, Masaki; Welch, David

    1982-01-01

    A superconducting wire comprising a superconducting filament and a beryllium strengthened bronze matrix in which the addition of beryllium to the matrix permits a low volume matrix to exhibit reduced elastic deformation after heat treating which increases the compression of the superconducting filament on cooling and thereby improves the strain characteristics of the wire.

  12. Superconducting wire with improved strain characteristics

    DOEpatents

    Luhman, T.; Klamut, C.J.; Suenaga, M.; Welch, D.

    1979-12-19

    A superconducting wire comprising a superconducting filament and a beryllium strengthened bronze matrix in which the addition of beryllium to the matrix permits a low volume matrix to exhibit reduced elastic deformation after heat treating which increases the compression of the superconducting filament on cooling and thereby improve the strain characteristics of the wire.

  13. Remarkable effects of disorder on superconductivity of single atomic layers of lead on silicon

    NASA Astrophysics Data System (ADS)

    Brun, Christophe

    2015-03-01

    It is well known that conventional superconductivity is very robust against non-magnetic disorder. Nevertheless for thin and ultrathin films the structural properties play a major role in determining the superconducting properties, through a subtle interplay between disorder and Coulomb interactions. Unexpectedly, in 2010 superconductivity was discovered in single atomic layers of lead and indium grown on silicon substrate using scanning tunneling spectroscopy and confirmed later on by macroscopic transport measurements. Such well-controlled and tunable crystalline monolayers are ideal systems for studying the influence of various kinds of structural defects on the superconducting properties at the atomic and mesoscopic scale. In particular, Pb monolayers offer the opportunity of probing new effects of disorder because not only superconductivity is 2D but also the electronic wave functions are 2D. Our study of two Pb monolayers of different crystal structures by very-low temperature STM (300 mK) under magnetic field reveals unexpected results involving new spatial spectroscopic variations. Our results show that although the sheet resistance of the Pb monolayers is much below the resistance quantum, strong non-BCS corrections appear leading to peak heights fluctuations in the dI/dV tunneling spectra at a spatial scale much smaller than the superconducting coherence length. Furthermore, strong local evidence of the signature of Rashba effect on the superconductivity of the Pb/Si(111) monolayer is revealed through filling of in gap states and local spatial variations of this filling. Finally the nature of vortices in a monolayer is found to be very sensitive to the properties of step edges areas. This work was supported by University Pierre et Marie Curie UPMC `Emergence' project, French ANR Project `ElectroVortex,' ANR-QuDec and Templeton Foundation (40381), ARO (W911NF-13-1-0431) and CNRS PICS funds. Partial funding by US-DOE Grant DE-AC02-07CH1.

  14. CARE activities on superconducting RF cavities at INFN Milano

    NASA Astrophysics Data System (ADS)

    Bosotti, A.; Pierini, P.; Michelato, P.; Pagani, C.; Paparella, R.; Panzeri, N.; Monaco, L.; Paulon, R.; Novati, M.

    2005-09-01

    The SC RF group at INFN Milano-LASA is involved both in the TESLA/TTF collaboration and in the research and design activity on superconducting cavities for proton accelerators. Among these activities, some are supported by the European community within the CARE project. In the framework of the JRASRF collaboration we are developing a coaxial blade tuner for ILC (International Linear Collider) cavities, integrated with piezoelectric actuators for the compensation of the Lorenz force detuning and microphonics perturbation. Another activity, regarding the improved component design on SC technology, based on the information retrieving about the status of art on ancillaries and experience of various laboratories involved in SCRF, has started in our laboratory. Finally, in the framework of the HIPPI collaboration, we are testing two low beta superconducting cavities, built for the Italian TRASCO project, to verify the possibility to use them for pulsed operation. All these activities will be described here, together with the main results and the future perspectives.

  15. Nematic and chiral superconductivity induced by odd-parity fluctuations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Fengcheng; Martin, Ivar

    Recent experiments indicate that superconductivity in Bi 2Se 3 intercalated with Cu, Nb, or Sr is nematic with rotational symmetry breaking. Motivated by this observation, we present a model study of nematic and chiral superconductivity induced by odd-parity fluctuations. Additionally, we show that odd-parity fluctuations in the two-component E u representation of D 3d crystal point group can generate attractive interaction in both the even-parity s-wave and odd-parity E-u pairing channels, but repulsive interaction in other odd-parity pairing channels. Coulomb repulsion can suppress s-wave pairing relative to E u pairing, and thus the latter can have a higher critical temperature.more » E u pairing has two distinct phases: a nematic phase and a chiral phase, both of which can be realized in our model. Finally, when s-wave and E u pairings have similar instability temperature, we find an intermediate phase in which both types of pairing coexist.« less

  16. Nematic and chiral superconductivity induced by odd-parity fluctuations

    DOE PAGES

    Wu, Fengcheng; Martin, Ivar

    2017-10-09

    Recent experiments indicate that superconductivity in Bi 2Se 3 intercalated with Cu, Nb, or Sr is nematic with rotational symmetry breaking. Motivated by this observation, we present a model study of nematic and chiral superconductivity induced by odd-parity fluctuations. Additionally, we show that odd-parity fluctuations in the two-component E u representation of D 3d crystal point group can generate attractive interaction in both the even-parity s-wave and odd-parity E-u pairing channels, but repulsive interaction in other odd-parity pairing channels. Coulomb repulsion can suppress s-wave pairing relative to E u pairing, and thus the latter can have a higher critical temperature.more » E u pairing has two distinct phases: a nematic phase and a chiral phase, both of which can be realized in our model. Finally, when s-wave and E u pairings have similar instability temperature, we find an intermediate phase in which both types of pairing coexist.« less

  17. The Hardest Superconducting Metal Nitride

    DOE PAGES

    Wang, Shanmin; Antonio, Daniel; Yu, Xiaohui; ...

    2015-09-03

    Transition–metal (TM) nitrides are a class of compounds with a wide range of properties and applications. Hard superconducting nitrides are of particular interest for electronic applications under working conditions such as coating and high stress (e.g., electromechanical systems). However, most of the known TM nitrides crystallize in the rock–salt structure, a structure that is unfavorable to resist shear strain, and they exhibit relatively low indentation hardness, typically in the range of 10–20 GPa. Here, we report high–pressure synthesis of hexagonal δ–MoN and cubic γ–MoN through an ion–exchange reaction at 3.5 GPa. The final products are in the bulk form withmore » crystallite sizes of 50 – 80 μm. Based on indentation testing on single crystals, hexagonal δ–MoN exhibits excellent hardness of ~30 GPa, which is 30% higher than cubic γ–MoN (~23 GPa) and is so far the hardest among the known metal nitrides. The hardness enhancement in hexagonal phase is attributed to extended covalently bonded Mo–N network than that in cubic phase. The measured superconducting transition temperatures for δ–MoN and cubic γ–MoN are 13.8 and 5.5 K, respectively, in good agreement with previous measurements.« less

  18. PREFACE: Anisotropic and multiband pairing: from borides to multicomponent superconductivity Anisotropic and multiband pairing: from borides to multicomponent superconductivity

    NASA Astrophysics Data System (ADS)

    Annett, James; Kusmartsev, Feodor; Bianconi, Antonio

    2009-01-01

    Caivano et al, in which it is proposed that the Feschbach resonance mechanism operating near to a quantum critical point may lead to stripe-like fluctuations in these materials. A number of papers describe multigap-related effects in high-Tc superconductors. In particular, Atkinson shows how the existence of CuO chain states at the Fermi surface leads to a set of resonances in the induced gap in the chain layer, which have a pronounced effect on the vortex core shape. Kristoffel et al discuss the existence of the two coherence lengths in two-gap superconductors, and describe how this leads to spatially periodic fluctuations, with possible application to high-temperature superconductivity. Kugel et al describe a scenario for phase separation due to long-range Coulomb forces leading to microstrain and nanoscale inhomogeneities in high-Tc cuprates. Kusmartsev and Saarela also argue that charge over-screening may lead to 'Coulomb bubbles' in high-Tc superconductors. Finally, Wysokiński et al describe multigap effects in strontium ruthenate, in particular the effects on the NMR relaxation rate spectra, which are obtained for NMR on different nuclear species.

  19. PREFACE: The 6th European Conference on Applied Superconductivity (EUCAS 2003)

    NASA Astrophysics Data System (ADS)

    Vaglio, Ruggero; Donaldson, Gordon

    2004-05-01

    This special issue of Superconductor Science and Technology contains papers presented at the 6th European Conference on Applied Superconductivity (EUCAS), which was held in Sorrento, Italy, 14--18 September 2003. This important biennial event followed previous successful meetings held in Gottingen, Germany; Edinburgh, Scotland; Eindhoven, the Netherlands; Sitges (Barcelona), Spain; and Copenhagen, Denmark. Following tradition, this EUCAS conference focused on the role of superconductivity in bridging various aspects of research with a variety of concrete advanced applications. EUCAS 2003 attracted about 1000 participants from all around the world with large participation from non-European countries. This conference benefited the worldwide superconductivity community tremendously as scientists operating internationally were able to share their knowledge and experience with one another. We are grateful to all those who submitted papers to the Conference Proceedings, which will be published in an Institute of Physics Conference Series, and also to those who contributed to this special issue. Unfortunately we could not consider every one of the large number of papers submitted to this issue and we express our regret to those whose work could not be included.

  20. The road to superconducting spintronics

    NASA Astrophysics Data System (ADS)

    Eschrig, Matthias

    Energy efficient computing has become a major challenge, with the increasing importance of large data centres across the world, which already today have a power consumption comparable to that of Spain, with steeply increasing trend. Superconducting computing is progressively becoming an alternative for large-scale applications, with the costs for cooling being largely outweighed by the gain in energy efficiency. The combination of superconductivity and spintronics - ``superspintronics'' - has the potential and flexibility to develop into such a green technology. This young field is based on the observation that new phenomena emerge at interfaces between superconducting and other, competing, phases. The past 15 years have seen a series of pivotal predictions and experimental discoveries relating to the interplay between superconductivity and ferromagnetism. The building blocks of superspintronics are equal-spin Cooper pairs, which are generated at the interface between superconducting and a ferromagnetic materials in the presence of non-collinear magnetism. Such novel, spin-polarised Cooper pairs carry spin-supercurrents in ferromagnets and thus contribute to spin-transport and spin-control. Geometric Berry phases appear during the singlet-triplet conversion process in structures with non-coplanar magnetisation, enhancing functionality of devices, and non-locality introduced by superconducting order leads to long-range effects. With the successful generation and control of equal-spin Cooper pairs the hitherto notorious incompatibility of superconductivity and ferromagnetism has been not only overcome, but turned synergistic. I will discuss these developments and their extraordinary potential. I also will present open questions posed by recent experiments and point out implications for theory. This work is supported by the Engineering and Physical Science Research Council (EPSRC Grant No. EP/J010618/1).

  1. Superconducting Metallic Glass Transition-Edge-Sensors

    NASA Technical Reports Server (NTRS)

    Hays, Charles C. (Inventor)

    2013-01-01

    A superconducting metallic glass transition-edge sensor (MGTES) and a method for fabricating the MGTES are provided. A single-layer superconducting amorphous metal alloy is deposited on a substrate. The single-layer superconducting amorphous metal alloy is an absorber for the MGTES and is electrically connected to a circuit configured for readout and biasing to sense electromagnetic radiation.

  2. Heterogeneous Superconducting Low-Noise Sensing Coils

    NASA Technical Reports Server (NTRS)

    Hahn, Inseob; Penanen, Konstantin I.; Ho Eom, Byeong

    2008-01-01

    A heterogeneous material construction has been devised for sensing coils of superconducting quantum interference device (SQUID) magnetometers that are subject to a combination of requirements peculiar to some advanced applications, notably including low-field magnetic resonance imaging for medical diagnosis. The requirements in question are the following: The sensing coils must be large enough (in some cases having dimensions of as much as tens of centimeters) to afford adequate sensitivity; The sensing coils must be made electrically superconductive to eliminate Johnson noise (thermally induced noise proportional to electrical resistance); and Although the sensing coils must be cooled to below their superconducting- transition temperatures with sufficient cooling power to overcome moderate ambient radiative heat leakage, they must not be immersed in cryogenic liquid baths. For a given superconducting sensing coil, this combination of requirements can be satisfied by providing a sufficiently thermally conductive link between the coil and a cold source. However, the superconducting coil material is not suitable as such a link because electrically superconductive materials are typically poor thermal conductors. The heterogeneous material construction makes it possible to solve both the electrical- and thermal-conductivity problems. The basic idea is to construct the coil as a skeleton made of a highly thermally conductive material (typically, annealed copper), then coat the skeleton with an electrically superconductive alloy (typically, a lead-tin solder) [see figure]. In operation, the copper skeleton provides the required thermally conductive connection to the cold source, while the electrically superconductive coating material shields against Johnson noise that originates in the copper skeleton.

  3. New superconducting cyclotron driven scanning proton therapy systems

    NASA Astrophysics Data System (ADS)

    Klein, Hans-Udo; Baumgarten, Christian; Geisler, Andreas; Heese, Jürgen; Hobl, Achim; Krischel, Detlef; Schillo, Michael; Schmidt, Stefan; Timmer, Jan

    2005-12-01

    Since one and a half decades ACCEL is investing in development and engineering of state of the art particle-therapy systems. A new medical superconducting 250 MeV proton cyclotron with special focus on the present and future beam requirements of fast scanning treatment systems has been designed. The first new ACCEL medical proton cyclotron is under commissioning at PSI for their PROSCAN proton therapy facility having undergone successful factory tests especially of the closed loop cryomagnetic system. The second cyclotron is part of ACCEL's integrated proton therapy system for Europe's first clinical center, RPTC in Munich. The cyclotron, the energy selection system, the beamline as well as the four gantries and patient positioners have been installed. The scanning system and major parts of the control software have already been tested. We will report on the concept of ACCEL's superconducting cyclotron driven scanning proton therapy systems and the current status of the commissioning work at PSI and RPTC.

  4. Superconductivity of magnesium diboride

    DOE PAGES

    Bud’ko, Sergey L.; Canfield, Paul C.

    2015-07-15

    Over the past 14 years MgB 2 has gone from a startling discovery to a promising, applied superconductor. In our article we present a brief overview of the synthesis and the basic superconducting properties of this remarkable compound. Specifically, the effect of pressure, substitutions and neutron irradiation on superconducting properties are discussed.

  5. Search for Superconductivity in Micrometeorites

    PubMed Central

    Guénon, S.; Ramírez, J. G.; Basaran, Ali C.; Wampler, J.; Thiemens, M.; Taylor, S.; Schuller, Ivan K.

    2014-01-01

    We have developed a very sensitive, highly selective, non-destructive technique for screening inhomogeneous materials for the presence of superconductivity. This technique, based on phase sensitive detection of microwave absorption is capable of detecting 10−12 cc of a superconductor embedded in a non-superconducting, non-magnetic matrix. For the first time, we apply this technique to the search for superconductivity in extraterrestrial samples. We tested approximately 65 micrometeorites collected from the water well at the Amundsen-Scott South pole station and compared their spectra with those of eight reference materials. None of these micrometeorites contained superconducting compounds, but we saw the Verwey transition of magnetite in our microwave system. This demonstrates that we are able to detect electro-magnetic phase transitions in extraterrestrial materials at cryogenic temperatures. PMID:25476841

  6. Spectroscopic signatures of different symmetries of the superconducting order parameter in metal-decorated graphene

    NASA Astrophysics Data System (ADS)

    Saari, Timo; Nieminen, Jouko; Bansil, Arun

    2017-06-01

    Motivated by the recent experiments indicating superconductivity in metal-decorated graphene sheets, we investigate their quasi-particle structure within the framework of an effective tight-binding Hamiltonian augmented by appropriate BCS-like pairing terms for p-type order parameter. The normal state band structure of graphene is modified not only through interaction with adsorbed metal atoms, but also due to the folding of bands at Brillouin zone boundaries resulting from a \\sqrt{3}× \\sqrt{3}R{{30}\\circ} reconstruction. Several different types of pairing symmetries are analyzed utilizing Nambu-Gorkov Green’s function techniques to show that p+\\text{i}p -symmetric nearest-neighbor pairing yields the most enhanced superconducting gap. The character of the order parameter depends on the nature of the atomic orbitals involved in the pairing process and exhibits interesting angular and radial asymmetries. Finally, we suggest a method to distinguish between singlet and triplet type superconductivity in the presence of magnetic substitutional impurities using scanning tunneling spectroscopy.

  7. Armored spring-core superconducting cable and method of construction

    DOEpatents

    McIntyre, Peter M.; Soika, Rainer H.

    2002-01-01

    An armored spring-core superconducting cable (12) is provided. The armored spring-core superconducting cable (12) may include a spring-core (20), at least one superconducting strand (24) wound onto the spring-core (20), and an armored shell (22) that encases the superconducting strands (24). The spring-core (20) is generally a perforated tube that allows purge gases and cryogenic liquids to be circulated through the armored superconducting cable (12), as well as managing the internal stresses within the armored spring-core superconducting cable (12). The armored shell (22) manages the external stresses of the armored spring-core superconducting cable (12) to protect the fragile superconducting strands (24). The armored spring-core superconducting cable (12) may also include a conductive jacket (34) formed outwardly of the armored shell (22).

  8. Coexistence of ferromagnetism and superconductivity in YBCO nanoparticles.

    PubMed

    Zhu, Zhonghua; Gao, Daqiang; Dong, Chunhui; Yang, Guijin; Zhang, Jing; Zhang, Jinlin; Shi, Zhenhua; Gao, Hua; Luo, Honggang; Xue, Desheng

    2012-03-21

    Nanoparticles of superconducting YBa(2)Cu(3)O(7-δ) were synthesized via a citrate pyrolysis technique. Room temperature ferromagnetism was revealed in the samples by a vibrating sample magnetometer. Electron spin resonance spectra at selected temperatures indicated that there is a transition from the normal to the superconducting state at temperatures below 100 K. The M-T curves with various applied magnetic fields showed that the superconducting transition temperatures are 92 K and 55 K for the air-annealed and the post-annealed samples, respectively. Compared to the air-annealed sample, the saturation magnetization of the sample by reheating the air-annealed one in argon atmosphere is enhanced but its superconductivity is weakened, which implies that the ferromagnetism maybe originates from the surface oxygen defects. By superconducting quantum interference device measurements, we further confirmed the ferromagnetic behavior at high temperatures and interesting upturns in field cooling magnetization curves within the superconducting region are found. We attributed the upturn phenomena to the coexistence of ferromagnetism and superconductivity at low temperatures. Room temperature ferromagnetism of superconducting YBa(2)Cu(3)O(7-δ) nanoparticles has been observed in some previous related studies, but the issue of the coexistence of ferromagnetism and superconductivity within the superconducting region is still unclear. In the present work, it will be addressed in detail. The cooperation phenomena found in the spin-singlet superconductors will help us to understand the nature of superconductivity and ferromagnetism in more depth.

  9. Reliability of large superconducting magnets through design

    NASA Astrophysics Data System (ADS)

    Henning, C. D.

    1981-01-01

    Design and quality control of large superconducting magnets for reliability comparable to pressure vessels are discussed. The failure modes are analyzed including thermoelectric instabilities, electrical shorts, cryogenic/vacuum defects, and mechanical malfunctions. Design must take into consideration conductor stability, insulation based on the Paschen curves, and the possible burnout of cryogenic transition leads if the He flow is interrupted. The final stage of the metal drawing process should stress the superconductor material to a stress value higher than the magnet design stress, cabled conductors should be used to achieve mechanical redundancy, and ground-plane insulation must be multilayered for arc prevention.

  10. Superconductivity and ferromagnetism in Pd doped Y 9Co 7

    DOE PAGES

    Strychalska, Judyta; Thompson, Joe D.; Cava, Robert J.; ...

    2016-01-15

    The ferromagnetic superconductor Y 9Co 7 was chemically doped to yield the solid solution Y 9Co 7-xPd x for 0 < x < 0.4. The lattice parameter a does not depend on x, whereas c increases with increasing Pd content up to x = 0.2, the palladium solubility limit. The transition from ferromagnetism (T C = 4.25 K) to superconductivity (T sc = 2.4 K) was observed only for the parent Y 9Co 7 compound. For the lowest tested Pd doping level (x = 0.05), ferromagnetism is enhanced strongly (T C = 9.35 K) and superconductivity is not seen abovemore » 1.8 K. Finally, the Curie temperature rapidly increases from 4.25 K to about 10 K for a Pd concentration of x = 0.1 and remains almost unchanged for Y 9Co 6.8Pd 0.2.« less

  11. Superconducting thermal neutron detectors

    NASA Astrophysics Data System (ADS)

    Merlo, V.; Pietropaolo, A.; Celentano, G.; Cirillo, M.; Lucci, M.; Ottaviani, I.; Salvato, M.; Scherillo, A.; Schooneveld, E. M.; Vannozzi, A.

    2016-09-01

    A neutron detection concept is presented that is based on superconductive niobium nitride (NbN) strips coated by a boron (B) layer. The working principle is well described by a hot spot mechanism: upon the occurrence of the nuclear reactions n + 10B → α + 7Li + 2.8 MeV, the energy released by the secondary particles into the strip induces a superconducting-normal state transition. The latter is recognized as a voltage signal which is the evidence of the incident neutron. The above described detection principle has been experimentally assessed and verified by irradiating the samples with a pulsed neutron beam at the ISIS spallation neutron source (UK). It is found that the boron coated superconducting strips, kept at a temperature T below 11K and current-biased below the critical current IC, are driven into the normal state upon thermal neutron irradiation. Measurements on the counting rate of the device are presented and the basic physical features of the detector are discussed and compared to those of a borated Nb superconducting strip.

  12. Superconducting magnet performance for 28 GHz electron cyclotron resonance ion source developed at the Korea Basic Science Institute.

    PubMed

    Park, Jin Yong; Choi, Seyong; Lee, Byoung-Seob; Yoon, Jang-Hee; Ok, Jung-Woo; Kim, Byoung Chul; Shin, Chang Seouk; Ahn, Jung Keun; Won, Mi-Sook

    2014-02-01

    A superconducting magnet for use in an electron cyclotron resonance ion source was developed at the Korea Basic Science Institute. The superconducting magnet is comprised of three solenoids and a hexapole magnet. According to the design value, the solenoid magnets can generate a mirror field, resulting in axial magnetic fields of 3.6 T at the injection area and 2.2 T at the extraction region. A radial field strength of 2.1 T can also be achieved by hexapole magnet on the plasma chamber wall. NbTi superconducting wire was used in the winding process following appropriate techniques for magnet structure. The final assembly of the each magnet involved it being vertically inserted into the cryostat to cool down the temperature using liquid helium. The performance of each solenoid and hexapole magnet was separately verified experimentally. The construction of the superconducting coil, the entire magnet assembly for performance testing and experimental results are reported herein.

  13. Fast superconducting magnetic field switch

    DOEpatents

    Goren, Yehuda; Mahale, Narayan K.

    1996-01-01

    The superconducting magnetic switch or fast kicker magnet is employed with electron stream or a bunch of electrons to rapidly change the direction of flow of the electron stream or bunch of electrons. The apparatus employs a beam tube which is coated with a film of superconducting material. The tube is cooled to a temperature below the superconducting transition temperature and is subjected to a constant magnetic field which is produced by an external dc magnet. The magnetic field produced by the dc magnet is less than the critical field for the superconducting material, thus, creating a Meissner Effect condition. A controllable fast electromagnet is used to provide a magnetic field which supplements that of the dc magnet so that when the fast magnet is energized the combined magnetic field is now greater that the critical field and the superconducting material returns to its normal state allowing the magnetic field to penetrate the tube. This produces an internal field which effects the direction of motion and of the electron stream or electron bunch. The switch can also operate as a switching mechanism for charged particles.

  14. Fast superconducting magnetic field switch

    DOEpatents

    Goren, Y.; Mahale, N.K.

    1996-08-06

    The superconducting magnetic switch or fast kicker magnet is employed with electron stream or a bunch of electrons to rapidly change the direction of flow of the electron stream or bunch of electrons. The apparatus employs a beam tube which is coated with a film of superconducting material. The tube is cooled to a temperature below the superconducting transition temperature and is subjected to a constant magnetic field which is produced by an external dc magnet. The magnetic field produced by the dc magnet is less than the critical field for the superconducting material, thus, creating a Meissner Effect condition. A controllable fast electromagnet is used to provide a magnetic field which supplements that of the dc magnet so that when the fast magnet is energized the combined magnetic field is now greater that the critical field and the superconducting material returns to its normal state allowing the magnetic field to penetrate the tube. This produces an internal field which effects the direction of motion and of the electron stream or electron bunch. The switch can also operate as a switching mechanism for charged particles. 6 figs.

  15. Superconductivity in compensated and uncompensated semiconductors.

    PubMed

    Yanase, Youichi; Yorozu, Naoyuki

    2008-12-01

    We investigate the localization and superconductivity in heavily doped semiconductors. The crossover from the superconductivity in the host band to that in the impurity band is described on the basis of the disordered three-dimensional attractive Hubbard model for binary alloys. The microscopic inhomogeneity and the thermal superconducting fluctuation are taken into account using the self-consistent 1-loop order theory. The superconductor-insulator transition accompanies the crossover from the host band to the impurity band. We point out an enhancement of the critical temperature T c around the crossover. Further localization of electron wave functions leads to the localization of Cooper pairs and induces the pseudogap. We find that both the doping compensation by additional donors and the carrier increase by additional acceptors suppress the superconductivity. A theoretical interpretation is proposed for the superconductivity in the boron-doped diamond, SiC, and Si.

  16. Superconductivity in compensated and uncompensated semiconductors

    PubMed Central

    Yanase, Youichi; Yorozu, Naoyuki

    2008-01-01

    We investigate the localization and superconductivity in heavily doped semiconductors. The crossover from the superconductivity in the host band to that in the impurity band is described on the basis of the disordered three-dimensional attractive Hubbard model for binary alloys. The microscopic inhomogeneity and the thermal superconducting fluctuation are taken into account using the self-consistent 1-loop order theory. The superconductor-insulator transition accompanies the crossover from the host band to the impurity band. We point out an enhancement of the critical temperature Tc around the crossover. Further localization of electron wave functions leads to the localization of Cooper pairs and induces the pseudogap. We find that both the doping compensation by additional donors and the carrier increase by additional acceptors suppress the superconductivity. A theoretical interpretation is proposed for the superconductivity in the boron-doped diamond, SiC, and Si. PMID:27878018

  17. Canted-Cosine-Theta Superconducting Accelerator Magnets for High Energy Physics and Ion Beam Cancer Therapy

    NASA Astrophysics Data System (ADS)

    Brouwer, Lucas Nathan

    Advances in superconducting magnet technology have historically enabled the construction of new, higher energy hadron colliders. Looking forward to the needs of a potential future collider, a significant increase in magnet field and performance is required. Such a task requires an open mind to the investigation of new design concepts for high field magnets. Part I of this thesis will present an investigation of the Canted-Cosine-Theta (CCT) design for high field Nb3Sn magnets. New analytic and finite element methods for analysis of CCT magnets will be given, along with a discussion on optimization of the design for high field. The design, fabrication, and successful test of the 2.5 T NbTi dipole CCT1 will be presented as a proof-of-principle step towards a high field Nb3Sn magnet. Finally, the design and initial steps in the fabrication of the 16 T Nb3Sn dipole CCT2 will be described. Part II of this thesis will investigate the CCT concept extended to a curved magnet for use in an ion beam therapy gantry. The introduction of superconducting technology in this field shows promise to reduce the weight and cost of gantries, as well as open the door to new beam optics solutions with high energy acceptance. An analytic approach developed for modeling curved CCT magnets will be presented, followed by a design study of a superconducting magnet for a proton therapy gantry. Finally, a new magnet concept called the "Alternating Gradient CCT" (AG-CCT) will be introduced. This concept will be shown to be a practical magnet solution for achieving the alternating quadrupole fields desired for an achromatic gantry, allowing for the consideration of treatment with minimal field changes in the superconducting magnets. The primary motivation of this thesis is to share new developments for Canted-Cosine-Theta superconducting magnets, with the hope this design will improve technology for high energy physics and ion beam cancer therapy.

  18. Thermal properties of a large-bore cryocooled 10 T superconducting magnet for a hybrid magnet

    NASA Astrophysics Data System (ADS)

    Ishizuka, M.; Hamajima, T.; Itou, T.; Sakuraba, J.; Nishijima, G.; Awaji, S.; Watanabe, K.

    2010-11-01

    A cryocooled 10 T superconducting magnet with a 360 mm room temperature bore has been developed for a hybrid magnet. The superconducting magnet cooled by four Gifford-McMahon cryocoolers has been designed to generate a magnetic field of 10 T. Since superconducting wires composed of coils were subjected to large hoop stress over 150 MPa and Nb3Sn superconducting wires particularly showed a low mechanical strength due to those brittle property, Nb3Sn wires strengthened by NbTi-filaments were developed for the cryocooled superconducting magnet. We have already reported that the hybrid magnet could generate the resultant magnetic field of 27.5 T by adding 8.5 T from the superconducting magnet and 19 T from a water-cooled Bitter resistive magnet, after the water-cooled resistive magnet was inserted into the 360 mm room temperature bore of the cryocooled superconducting magnet. When the hybrid magnet generated the field of 27.5 T, it achieved the high magnetic-force field (B × ∂Bz/∂z) of 4500 T2/m, which was useful for magneto-science in high fields such as materials levitation research. In this paper, we particularly focus on the cause that the cryocooled superconducting magnet was limited to generate the designed magnetic field of 10 T in the hybrid magnet operation. As a result, it was found that there existed mainly two causes as the limitation of the magnetic field generation. One was a decrease of thermal conductive passes due to exfoliation from the coil bobbin of the cooling flange. The other was large AC loss due to both a thick Nb3Sn layer and its large diameter formed on Nb-barrier component in Nb3Sn wires.

  19. Large enhancement of superconductivity in Zr point contacts.

    PubMed

    Aslam, Mohammad; Singh, Chandan; Das, Shekhar; Kumar, Ritesh; Datta, Soumya; Halder, Soumyadip; Gayen, Sirshendu; Kabir, Mukul; Sheet, Goutam

    2018-04-30

    For certain complex superconducting systems, the superconducting properties get enhanced under mesoscopic point contacts made of elemental non-superconducting metals. However, understanding of the mechanism through which such contact induced local enhancement of superconductivity happens has been limited due to the complex nature of such compounds. In this paper we present a large enhancement of superconducting transition temperature (T<sub>c</sub>) and superconducting energy gap (Δ) in a simple elemental superconductor Zr. While bulk Zr shows a critical temperature around 0.6K, superconductivity survives at Ag/Zr and Pt/Zr point contacts up to 3K with a corresponding five-fold enhancement of Δ. Further, the first-principles calculations on a model system provide useful insights. We show that the enhancement in superconducting properties can be attributed to a modification in the electron-phonon coupling accompanied by an enhancement of the density of states which involves the appearance of a new electron band at the Ag/Zr interfaces. © 2018 IOP Publishing Ltd.

  20. Thermal expansion of coexistence of ferromagnetism and superconductivity

    NASA Astrophysics Data System (ADS)

    Hatayama, Nobukuni; Konno, Rikio

    2010-01-01

    The temperature dependence of thermal expansion of coexistence of ferromag-netism and superconductivity below the superconducting transition temperature Tc↑ of a majority spin conduction band is investigated. Majority spin and minority spin superconducting gaps exist in the coexistent state. We assume that the Curie temperature is much larger than the superconducting transition temperatures. The free energy that Linder et al. [Phys. Rev. B76, 054511 (2007)] derived is used. The thermal expansion of coexistence of ferromagnetism and superconductivity is derived by the application of the method of Takahashi and Nakano [J. Phys.: Condens. Matter 18, 521 (2006)]. We find that we have the anomalies of the thermal expansion in the vicinity of the superconducting transition temperatures.

  1. Application and Prospect of Superconducting High Gradient Magnetic Separation in Disposal of Micro-fine Tailings

    NASA Astrophysics Data System (ADS)

    Yang, Changqiao; Li, Suqin; Guo, Zijie; Kong, Jiawei

    2017-12-01

    Magnetic separation technology is playing an increasingly important role in the field of environmental protection such as waste gas, waste water and solid waste treatment. As a new type of solid waste treatment technology, superconducting high gradient magnetic separation (HGMS) is mainly applied in the separation of micro-fine weakly magnetic particles because of the advantages of high separation efficiency, energy saving, simple equipment and easy automation. In this paper, the basic principle of superconducting HGMS was firstly introduced, then the research status of scholars at home and aboard on the disposal of micro-fine tailings were summarized. Finally, the direction of development for HGMS was put forward.

  2. Method for making mirrored surfaces comprising superconducting material

    DOEpatents

    Early, J.T.; Hargrove, R.S.

    1989-12-12

    Superconducting mirror surfaces are provided by forming a mirror surface from a material which is superconductive at a temperature above about 40 K and adjusting the temperature of the surface to that temperature at which the material is superconducting. The mirror surfaces are essentially perfect reflectors for electromagnetic radiation with photon energy less than the superconducting band gap.

  3. Superconductivity in the system Mo{sub x}C{sub y}Ga{sub z}O{sub δ} prepared by focused ion beam induced deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weirich, P. M., E-mail: p.weirich@Physik.uni-frankfurt.de; Schwalb, C. H.; Winhold, M.

    2014-05-07

    We have prepared the new amorphous superconductor Mo{sub x}C{sub y}Ga{sub z}O{sub δ} with a maximum critical temperature T{sub c} of 3.8 K by the direct-write nano-patterning technique of focused (gallium) ion beam induced deposition (FIBID) using Mo(CO){sub 6} as precursor gas. From a detailed analysis of the temperature-dependent resistivity and the upper critical field, we found clear evidence for proximity of the samples to a disorder-induced metal-insulator transition. We observed a strong dependence of T{sub c} on the deposition parameters and identified clear correlations between T{sub c}, the localization tendency visible in the resistance data and the sample composition. By anmore » in-situ feedback-controlled optimization process in the FIB-induced growth, we were able to identify the beam parameters which lead to samples with the largest T{sub c}-value and sharpest transition into the superconducting state.« less

  4. Superconducting tensor gravity gradiometer

    NASA Technical Reports Server (NTRS)

    Paik, H. J.

    1981-01-01

    The employment of superconductivity and other material properties at cryogenic temperatures to fabricate sensitive, low-drift, gravity gradiometer is described. The device yields a reduction of noise of four orders of magnitude over room temperature gradiometers, and direct summation and subtraction of signals from accelerometers in varying orientations are possible with superconducting circuitry. Additional circuits permit determination of the linear and angular acceleration vectors independent of the measurement of the gravity gradient tensor. A dewar flask capable of maintaining helium in a liquid state for a year's duration is under development by NASA, and a superconducting tensor gravity gradiometer for the NASA Geodynamics Program is intended for a LEO polar trajectory to measure the harmonic expansion coefficients of the earth's gravity field up to order 300.

  5. Fabrication and Characterization of Superconducting Resonators

    PubMed Central

    Cataldo, Giuseppe; Barrentine, Emily M.; Brown, Ari D.; Moseley, Samuel H.; U-Yen, Kongpop; Wollack, Edward J.

    2016-01-01

    Superconducting microwave resonators are of interest for a wide range of applications, including for their use as microwave kinetic inductance detectors (MKIDs) for the detection of faint astrophysical signatures, as well as for quantum computing applications and materials characterization. In this paper, procedures are presented for the fabrication and characterization of thin-film superconducting microwave resonators. The fabrication methodology allows for the realization of superconducting transmission-line resonators with features on both sides of an atomically smooth single-crystal silicon dielectric. This work describes the procedure for the installation of resonator devices into a cryogenic microwave testbed and for cool-down below the superconducting transition temperature. The set-up of the cryogenic microwave testbed allows one to do careful measurements of the complex microwave transmission of these resonator devices, enabling the extraction of the properties of the superconducting lines and dielectric substrate (e.g., internal quality factors, loss and kinetic inductance fractions), which are important for device design and performance. PMID:27284966

  6. High Temperature Superconducting State in Metallic Nanoclusters and Nano-Based Systems

    DTIC Science & Technology

    2013-12-01

    pr.ac Semenova 1a Russia EOARD ISTC 09-7006/P-4084p Report Date: December 2013 Final Report from 01 October 2010 to 30 September 2013...CONTRACT NUMBER ISTC PPA 4084p 5b. GRANT NUMBER ISTC 09-7006 5c. PROGRAM ELEMENT NUMBER 61102F 6. AUTHOR(S...discussed in the conventional theory. High Temperature Superconducting State in Metallic Nanoclusters and Nano-Based Systems ISTC Project No. 4084p

  7. Pressure-tuned superconductivity and normal-state behavior in Ba ( Fe 0.943 Co 0.057 ) 2 As 2 near the antiferromagnetic boundary

    DOE PAGES

    Liu, W.; Wu, Y. F.; Li, X. J.; ...

    2018-04-23

    Superconductivity in iron pnictides is unconventional and pairing may be mediated by magnetic fluctuations in the Fe sublattice. Pressure is a clean method to explore superconductivity in iron based superconductors by tuning the ground state continuously without introducing disorder. Here we present a systematic high pressure transport study in Ba (Fe 1 - xCo x) 2 As 2 single crystals with x = 0.057, which is near the antiferromagnetic instability. Resistivity ρ = ρ 0 + AT n was studied under applied pressure up to 7.90 GPa. The parameter n approaches a minimum value of n ≈ 1 at amore » critical pressure P c = 3.65 GPa. Near P c, the superconducting transition temperature T c reaches a maximum value of 25.8 K. In addition, the superconducting diamagnetism at 2 K shows a sudden change around the same critical pressure. Finally, these results may be associated with a possible quantum critical point hidden inside the superconducting dome, near optimum T c.« less

  8. Pressure-tuned superconductivity and normal-state behavior in Ba ( Fe 0.943 Co 0.057 ) 2 As 2 near the antiferromagnetic boundary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, W.; Wu, Y. F.; Li, X. J.

    Superconductivity in iron pnictides is unconventional and pairing may be mediated by magnetic fluctuations in the Fe sublattice. Pressure is a clean method to explore superconductivity in iron based superconductors by tuning the ground state continuously without introducing disorder. Here we present a systematic high pressure transport study in Ba (Fe 1 - xCo x) 2 As 2 single crystals with x = 0.057, which is near the antiferromagnetic instability. Resistivity ρ = ρ 0 + AT n was studied under applied pressure up to 7.90 GPa. The parameter n approaches a minimum value of n ≈ 1 at amore » critical pressure P c = 3.65 GPa. Near P c, the superconducting transition temperature T c reaches a maximum value of 25.8 K. In addition, the superconducting diamagnetism at 2 K shows a sudden change around the same critical pressure. Finally, these results may be associated with a possible quantum critical point hidden inside the superconducting dome, near optimum T c.« less

  9. Plasmon and exciton superconductivity mechanisms in layered structures

    NASA Technical Reports Server (NTRS)

    Gabovich, A. M.; Pashitskiy, E. A.; Uvarova, S. K.

    1977-01-01

    Plasmon and exciton superconductivity mechanisms are discussed. Superconductivity in a three layer metal semiconductor metal and insulator semimetal insulator sandwich structure was described in terms of the temperature dependent Green function of the longitudinal (Coulomb) field. The dependences of the superconducting transition temperature on structure parameters were obtained. In a semiconducting film, as a result of interactions of degenerate free carriers with excitons, superconductivity exists only in a certain range of parameter values, and the corresponding critical temperature is much lower than in the plasmon mechanism of superconductivity.

  10. Nano-fabricated superconducting radio-frequency composites, method for producing nano-fabricated superconducting rf composites

    DOEpatents

    Norem, James H.; Pellin, Michael J.

    2013-06-11

    Superconducting rf is limited by a wide range of failure mechanisms inherent in the typical manufacture methods. This invention provides a method for fabricating superconducting rf structures comprising coating the structures with single atomic-layer thick films of alternating chemical composition. Also provided is a cavity defining the invented laminate structure.

  11. The upside of noise: engineered dissipation as a resource in superconducting circuits

    NASA Astrophysics Data System (ADS)

    Kapit, Eliot

    2017-09-01

    Historically, noise in superconducting circuits has been considered an obstacle to be removed. A large fraction of the research effort in designing superconducting circuits has focused on noise reduction, with great success, as coherence times have increased by four orders of magnitude in the past two decades. However, noise and dissipation can never be fully eliminated, and further, a rapidly growing body of theoretical and experimental work has shown that carefully tuned noise, in the form of engineered dissipation, can be a profoundly useful tool in designing and operating quantum circuits. In this article, I review important applications of engineered dissipation, including state generation, state stabilization, and autonomous quantum error correction, where engineered dissipation can mitigate the effect of intrinsic noise, reducing logical error rates in quantum information processing. Further, I provide a pedagogical review of the basic noise processes in superconducting qubits (photon loss and phase noise), and argue that any dissipative mechanism which can correct photon loss errors is very likely to automatically suppress dephasing. I also discuss applications for quantum simulation, and possible future research directions.

  12. Synthetic Superconductivity in Single-Layer Crystals

    NASA Astrophysics Data System (ADS)

    Levitov, Leonid; Borgnia, Dan; Lee, Patrick

    2015-03-01

    Electronic states in atomically thin 2D crystals are fully exposed and can couple to extrinsic degrees of freedom via long-range Coulomb interactions. Novel many-body effects in such systems can be engineered by embedding them in a polar environment. Superconducting pairing interaction induced in this way can enhance the intrinsic electron-phonon pairing mechanism. We take on this notion, which was around since the 60's (''excitonic superconductivity''), and consider synthetic superconductivity (SSC) induced in 2D crystals by a polar environment. One interesting aspect of this scenario is that Coulomb repulsion acts as superconductivity friend rather than a foe. Such repulsion-to-attraction transmutation allows to access strong-coupling superconductivity regime even when intrinsic pairing interaction is weak. We analyze pairing interaction in 2D crystals placed atop a highly polarizable dielectric with dispersive permittivity ɛ (ω) and predict that by optimizing system parameters a substantial enhancement can be achieved. We also argue that the SSC mechanism can be responsible, at least in part, for 100 K superconductivity recently observed in FeSe monolayers grown on SrTiO3 substrate, with Tc more than 10 times larger than in bulk 3D FeSe crystals, arxiv:1406.3435.

  13. Collective coupling in hybrid superconducting circuits

    NASA Astrophysics Data System (ADS)

    Saito, Shiro

    Hybrid quantum systems utilizing superconducting circuits have attracted significant recent attention, not only for quantum information processing tasks but also as a way to explore fundamentally new physics regimes. In this talk, I will discuss two superconducting circuit based hybrid quantum system approaches. The first is a superconducting flux qubit - electron spin ensemble hybrid system in which quantum information manipulated in the flux qubit can be transferred to, stored in and retrieved from the ensemble. Although the coherence time of the ensemble is short, about 20 ns, this is a significant first step to utilize the spin ensemble as quantum memory for superconducting flux qubits. The second approach is a superconducting resonator - flux qubit ensemble hybrid system in which we fabricated a superconducting LC resonator coupled to a large ensemble of flux qubits. Here we observed a dispersive frequency shift of approximately 250 MHz in the resonators transmission spectrum. This indicates thousands of flux qubits are coupling to the resonator collectively. Although we need to improve our qubits inhomogeneity, our system has many potential uses including the creation of new quantum metamaterials, novel applications in quantum metrology and so on. This work was partially supported by JSPS KAKENHI Grant Number 25220601.

  14. Nozzle for superconducting fiber production

    DOEpatents

    Righi, Jamal

    1992-11-17

    A nozzle apparatus for producing flexible fibers of superconducting material receives melted material from a crucible for containing a charge of the superconducting material. The material is melted in the crucible and falls in a stream through a bottom hole in the crucible. The stream falls through a protecting collar which maintains the stream at high temperatures. The stream is then supplied through the downwardly directed nozzle where it is subjected to a high velocity air flow which breaks the melted superconducting material into ligaments which solidify into the flexible fibers. The fibers are collected by blowing them against a porous cloth.

  15. Lattice parameters guide superconductivity in iron-arsenides

    DOE PAGES

    Konzen, Lance M. N.; Sefat, Athena S.

    2017-01-12

    The discovery of superconducting materials has led to their use in modern technological marvels, such as magnetic field sensors in MRI machines, powerful research magnets, and high-speed trains. Despite such applications, the uses of superconductors are not widespread due to high cooling costs. Since the discovery of Cu- and Fe-based high-temperature superconductors (HTS), numerous studies have tried to explain and understand the superconducting phenomenon. While no exact explanations are given, several trends are reported in relation to the materials basis in magnetism and spin excitations. In fact, most HTS have antiferromagnetic undoped ‘parent’ materials that undergo a superconducting transition uponmore » small chemical substitutions in them. As it is currently unclear which ‘dopants’ can favor of superconductivity, this manuscript investigates crystal structure changes upon chemical substitutions, to find clues in lattice parameters for the superconducting occurrence. We review the chemical substitution effects on the crystal lattice of iron-based materials (2008 to present). We note that (a) HTS compounds have nearly tetragonal structures with a-lattice parameter close to 4 Å, and (b) superconductivity can depend strongly on the c-lattice parameter changes with chemical substitution. For example, a decrease in c-lattice parameter is required to induce ‘in-plane’ superconductivity. The review of lattice parameter trends in iron-based superconductors presented here, should guide synthesis of new materials and give clues for superconductivity.« less

  16. Superconducting fault current limiter for railway transport

    NASA Astrophysics Data System (ADS)

    Fisher, L. M.; Alferov, D. F.; Akhmetgareev, M. R.; Budovskii, A. I.; Evsin, D. V.; Voloshin, I. F.; Kalinov, A. V.

    2015-12-01

    A resistive switching superconducting fault current limiter (SFCL) for DC networks with voltage of 3.5 kV and nominal current of 2 kA is developed. The SFCL consists of two series-connected units: block of superconducting modules and high-speed vacuum breaker with total disconnection time not more than 8 ms. The results of laboratory tests of superconducting SFCL modules in current limiting mode are presented. The recovery time of superconductivity is experimentally determined. The possibility of application of SFCL on traction substations of Russian Railways is considered.

  17. Te vacancy-driven superconductivity in orthorhombic molybdenum ditelluride

    NASA Astrophysics Data System (ADS)

    Cho, Suyeon; Kang, Se Hwang; Yu, Ho Sung; Kim, Hyo Won; Ko, Wonhee; Hwang, Sung Woo; Han, Woo Hyun; Choe, Duk-Hyun; Jung, Young Hwa; Chang, Kee Joo; Lee, Young Hee; Yang, Heejun; Wng Kim, Sung

    2017-06-01

    Two-dimensional (2D) transition metal dichalcogenides (TMDs) have received great attentions because of diverse quantum electronic states such as topological insulating (TI), Weyl semimetallic (WSM) and superconducting states. Recently, the superconducting states emerged in pressurized semimetallic TMDs such as MoTe2 and WTe2 have become one of the central issues due to their predicted WSM states. However, the difficulty in synthetic control of chalcogen vacancies and the ambiguous magneto transport properties have hindered the rigorous study on superconducting and WSM states. Here, we report the emergence of superconductivity at 2.1 K in Te-deficient orthorhombic T d-MoTe2-x with an intrinsic electron-doping, while stoichiometric monoclinic 1T‧-MoTe2 shows no superconducting state down to 10 mK, but exhibits a large magnetoresistance of 32 000% at 2 K in a magnetic field of 14 T originating from nearly perfect compensation of electron and hole carriers. Scanning tunnelling spectroscopy and synchrotron x-ray diffraction combined with theoretical calculations clarify that Te vacancies trigger superconductivity via intrinsic electron doping and the evolution of the T d phase from the 1T‧ phase below 200 K. Unlike the pressure-induced superconducting state of monoclinic MoTe2, this Te vacancy-induced superconductivity is emerged in orthorhombic MoTe2, which is predicted as Weyl semimetal, via electron-doping. This chalcogen vacancy induced-superconductivity provides a new route for cultivating superconducting state together with WSM state in 2D van der Waals materials.

  18. Anomalous electron doping independent two-dimensional superconductivity

    NASA Astrophysics Data System (ADS)

    Zhou, Wei; Xing, Xiangzhuo; Zhao, Haijun; Feng, Jiajia; Pan, Yongqiang; Zhou, Nan; Zhang, Yufeng; Qian, Bin; Shi, Zhixiang

    2017-07-01

    Transition metal (Co and Ni) co-doping effects are investigated on an underdoped Ca0.94La0.06Fe2As2 compound. It is discovered that electron doping from substituting Fe with transition metal (TM = Co, Ni) can trigger high-{T}{{c}} superconductivity around 35 K, which emerges abruptly before the total suppression of the innate spin-density-wave/anti-ferromagnetism (SDW/AFM) state. Remarkably, the critical temperature for the high-{T}{{c}} superconductivity remains constant against a wide range of TM doping levels. And the net electron doping density dependence of the superconducting {T}{{c}} based on the rigid band model can be nicely scaled into a single curve for Co and Ni substitutions, in stark contrast to the case of Ba(Fe1-x TM x )2As2. This carrier density independent superconductivity and the unusual scaling behavior are presumably resulted from the interface superconductivity based on the similarity with the interface superconductivity in a La2-x Sr x CuO4-La2CuO4 bilayer. Evidence of the two-dimensional character of the superfluid by angle-resolved magneto-resistance measurements can further strengthen the interface nature of the high-{T}{{c}} superconductivity.

  19. An experimental investigation of high temperature superconducting microstrip antennas at K- and Ka-band frequencies. Ph.D. Thesis Final Report

    NASA Technical Reports Server (NTRS)

    Richard, Mark A.

    1993-01-01

    The recent discovery of high temperature superconductors (HTS) has generated a substantial amount of interest in microstrip antenna applications. However, the high permittivity of substrates compatible with HTS results in narrow bandwidths and high patch edge impedances of such antennas. To investigate the performance of superconducting microstrip antennas, three antenna architectures at K and Ka-band frequencies are examined. Superconducting microstrip antennas that are directly coupled, gap coupled, and electromagnetically coupled to a microstrip transmission line were designed and fabricated on lanthanum aluminate substrates using YBa2Cu3O7 superconducting thin films. For each architecture, a single patch antenna and a four element array were fabricated. Measurements from these antennas, including input impedance, bandwidth, patterns, efficiency, and gain are presented. The measured results show usable antennas can be constructed using any of the architectures. All architectures show excellent gain characteristics, with less than 2 dB of total loss in the four element arrays. Although the direct and gap coupled antennas are the simplest antennas to design and fabricate, they suffer from narrow bandwidths. The electromagnetically coupled antenna, on the other hand, allows the flexibility of using a low permittivity substrate for the patch radiator, while using HTS for the feed network, thus increasing the bandwidth while effectively utilizing the low loss properties of HTS. Each antenna investigated in this research is the first of its kind reported.

  20. Superconducting proximity effect in a topological insulator using Fe(Te, Se)

    NASA Astrophysics Data System (ADS)

    Zhao, He; Rachmilowitz, Bryan; Ren, Zheng; Han, Ruobin; Schneeloch, J.; Zhong, Ruidan; Gu, Genda; Wang, Ziqiang; Zeljkovic, Ilija

    2018-06-01

    Interest in the superconducting proximity effect has recently been reignited by theoretical predictions that it could be used to achieve topological superconductivity. Low-Tc superconductors have predominantly been used in this effort, but small energy scales of ˜1 meV have hindered the characterization of the emergent electronic phase, limiting it to extremely low temperatures. In this work, we use molecular beam epitaxy to grow topological insulator B i2T e3 in a range of thicknesses on top of a high-Tc superconductor Fe(Te,Se). Using scanning tunneling microscopy and spectroscopy, we detect Δind as high as ˜3.5 meV, which is the largest reported gap induced by proximity to an s -wave superconductor to date. We find that Δind decays with B i2T e3 thickness, but remains finite even after the topological surface states have been formed. Finally, by imaging the scattering and interference of surface state electrons, we provide a microscopic visualization of the fully gapped B i2T e3 surface state due to Cooper pairing. Our results establish Fe-based high-Tc superconductors as a promising new platform for realizing high-Tc topological superconductivity.

  1. High power density superconducting rotating machines—development status and technology roadmap

    NASA Astrophysics Data System (ADS)

    Haran, Kiruba S.; Kalsi, Swarn; Arndt, Tabea; Karmaker, Haran; Badcock, Rod; Buckley, Bob; Haugan, Timothy; Izumi, Mitsuru; Loder, David; Bray, James W.; Masson, Philippe; Stautner, Ernst Wolfgang

    2017-12-01

    Superconducting technology applications in electric machines have long been pursued due to their significant advantages of higher efficiency and power density over conventional technology. However, in spite of many successful technology demonstrations, commercial adoption has been slow, presumably because the threshold for value versus cost and technology risk has not yet been crossed. One likely path for disruptive superconducting technology in commercial products could be in applications where its advantages become key enablers for systems which are not practical with conventional technology. To help systems engineers assess the viability of such future solutions, we present a technology roadmap for superconducting machines. The timeline considered was ten years to attain a Technology Readiness Level of 6+, with systems demonstrated in a relevant environment. Future projections, by definition, are based on the judgment of specialists, and can be subjective. Attempts have been made to obtain input from a broad set of organizations for an inclusive opinion. This document was generated through a series of teleconferences and in-person meetings, including meetings at the 2015 IEEE PES General meeting in Denver, CO, the 2015 ECCE in Montreal, Canada, and a final workshop in April 2016 at the University of Illinois, Urbana-Champaign that brought together a broad group of technical experts spanning the industry, government and academia.

  2. Optimization of radial-type superconducting magnetic bearing using the Taguchi method

    NASA Astrophysics Data System (ADS)

    Ai, Liwang; Zhang, Guomin; Li, Wanjie; Liu, Guole; Liu, Qi

    2018-07-01

    It is important and complicated to model and optimize the levitation behavior of superconducting magnetic bearing (SMB). That is due to the nonlinear constitutive relationships of superconductor and ferromagnetic materials, the relative movement between the superconducting stator and PM rotor, and the multi-parameter (e.g., air-gap, critical current density, and remanent flux density, etc.) affecting the levitation behavior. In this paper, we present a theoretical calculation and optimization method of the levitation behavior for radial-type SMB. A simplified model of levitation force calculation is established using 2D finite element method with H-formulation. In the model, the boundary condition of superconducting stator is imposed by harmonic series expressions to describe the traveling magnetic field generated by the moving PM rotor. Also, experimental measurements of the levitation force are performed and validate the model method. A statistical method called Taguchi method is adopted to carry out an optimization of load capacity for SMB. Then the factor effects of six optimization parameters on the target characteristics are discussed and the optimum parameters combination is determined finally. The results show that the levitation behavior of SMB is greatly improved and the Taguchi method is suitable for optimizing the SMB.

  3. Design and market considerations for axial flux superconducting electric machine design

    NASA Astrophysics Data System (ADS)

    Ainslie, M. D.; George, A.; Shaw, R.; Dawson, L.; Winfield, A.; Steketee, M.; Stockley, S.

    2014-05-01

    In this paper, the authors investigate a number of design and market considerations for an axial flux superconducting electric machine design that uses high temperature superconductors. The axial flux machine design is assumed to utilise high temperature superconductors in both wire (stator winding) and bulk (rotor field) forms, to operate over a temperature range of 65-77 K, and to have a power output in the range from 10s of kW up to 1 MW (typical for axial flux machines), with approximately 2-3 T as the peak trapped field in the bulk superconductors. The authors firstly investigate the applicability of this type of machine as a generator in small- and medium-sized wind turbines, including the current and forecasted market and pricing for conventional turbines. Next, a study is also carried out on the machine's applicability as an in-wheel hub motor for electric vehicles. Some recommendations for future applications are made based on the outcome of these two studies. Finally, the cost of YBCO-based superconducting (2G HTS) wire is analysed with respect to competing wire technologies and compared with current conventional material costs and current wire costs for both 1G and 2G HTS are still too great to be economically feasible for such superconducting devices.

  4. Cooling arrangement for a superconducting coil

    DOEpatents

    Herd, K.G.; Laskaris, E.T.

    1998-06-30

    A superconducting device is disclosed, such as a superconducting rotor for a generator or motor. A vacuum enclosure has an interior wall surrounding a cavity containing a vacuum. A superconductive coil is placed in the cavity. A generally-annularly-arranged, thermally-conductive sheet has an inward-facing surface contacting generally the entire outward-facing surface of the superconductive coil. A generally-annularly-arranged coolant tube contains a cryogenic fluid and contacts a generally-circumferential portion of the outward-facing surface of the sheet. A generally-annularly-arranged, thermally-insulative coil overwrap generally circumferentially surrounds the sheet. The coolant tube and the inward-facing surface of the coil overwrap together contact generally the entire outward-facing surface of the sheet. 3 figs.

  5. Superconducting quantum spin-Hall systems with giant orbital g-factors

    NASA Astrophysics Data System (ADS)

    Hankiewicz, Ewelina; Reinthaler, Rolf; Tkachov, Grigory

    Topological aspects of superconductivity in quantum spin-Hall systems (QSHSs) such as thin layers of three-dimensional topological insulators (3D Tis) or two-dimensional Tis are in the focus of current research. Here, we describe a novel superconducting quantum spin-Hall effect (quantum spin Hall system in the proximity to the s-wave superconductor and in the orbital in-plane magnetic field), which is protected against elastic backscattering by combined time-reversal and particle-hole symmetry. This effect is characterized by spin-polarized edge states, which can be manipulated in weak magnetic fields due to a giant effective orbital g-factor, allowing the generation of spin currents. The phenomenon provides a novel solution to the outstanding challenge of detecting the spin-polarization of the edge states. Here we propose the detection of the edge polarization in the three-terminal junction using unusual transport properties of superconducting quantum Hall-effect: a non-monotonic excess current and a zero-bias conductance splitting. We thank for the financial support the German Science Foundation (DFG), Grants No HA 5893/4-1 within SPP 1666, HA5893/5-2 within FOR1162 and TK60/1-1 (G.T.), as well the ENB graduate school ``Topological insulators''.

  6. Ab-initio study of superconducting state in intercalated MoSe2 and WSe2 bilayers

    NASA Astrophysics Data System (ADS)

    Szcześniak, R.; Durajski, A. P.; Jarosik, M. W.

    2018-05-01

    A two-dimensional systems have attracted significant interest due to their outstanding physical, chemical and optoelectronic properties. This paper focuses on the detailed investigations of the electronic, phononic and superconducting properties of transition-metal dichalcogenide bilayers MSe 2 (M = Mo, W) intercalated by calcium atoms. The first-principles calculations show that (MoSe2)2Ca and (WSe2)2Ca systems exhibit metallic behavior and weak phonon-mediated superconductivity with low critical temperature of 0.51 and 0.30 K, respectively. These results confirm other theoretical predictions and suggest that the investigated materials cannot be a good candidates for a nanoscale superconductors.

  7. Synchronous Generators with Superconductive Excitation Windings,

    DTIC Science & Technology

    1983-07-27

    AD-Al3i 832 SYNCHRONOUS GENERATORS WITH SUPERCONDUCTIVE EXCITATION i/i WINDINGS(U) FOREIGN TECHNOLOGY DIV WRIGHT-PATTERSON AFB OH W PASZEK ET AL. 27...1.1 FTD-ID(RS)T-1087-83 FOREIGN TECHNOLOGY DIVISION SYNCHRONOUS GENERATORS WITH SUPERCONDUCTIVE EXCITATION WINDINGS by W. Paszek and A. Rozycki DTIC...MICROFICHE NR: FTD-83-C-000906 j.r.voiFor SYNCHRONOUS GENERATORS WITH SUPERCONDUCTIVE T EXCITATION WINDINGS 0;~f~on~ SJustification By: W./Paszek and A

  8. Microwave photonics with superconducting quantum circuits

    NASA Astrophysics Data System (ADS)

    Gu, Xiu; Kockum, Anton Frisk; Miranowicz, Adam; Liu, Yu-xi; Nori, Franco

    2017-11-01

    In the past 20 years, impressive progress has been made both experimentally and theoretically in superconducting quantum circuits, which provide a platform for manipulating microwave photons. This emerging field of superconducting quantum microwave circuits has been driven by many new interesting phenomena in microwave photonics and quantum information processing. For instance, the interaction between superconducting quantum circuits and single microwave photons can reach the regimes of strong, ultra-strong, and even deep-strong coupling. Many higher-order effects, unusual and less familiar in traditional cavity quantum electrodynamics with natural atoms, have been experimentally observed, e.g., giant Kerr effects, multi-photon processes, and single-atom induced bistability of microwave photons. These developments may lead to improved understanding of the counterintuitive properties of quantum mechanics, and speed up applications ranging from microwave photonics to superconducting quantum information processing. In this article, we review experimental and theoretical progress in microwave photonics with superconducting quantum circuits. We hope that this global review can provide a useful roadmap for this rapidly developing field.

  9. Superconductivity bordering Rashba type topological transition

    DOE PAGES

    Jin, M. L.; Sun, F.; Xing, L. Y.; ...

    2017-01-04

    Strong spin orbital interaction (SOI) can induce unique quantum phenomena such as topological insulators, the Rashba effect, or p-wave superconductivity. Combining these three quantum phenomena into a single compound has important scientific implications. Here we report experimental observations of consecutive quantum phase transitions from a Rashba type topological trivial phase to topological insulator state then further proceeding to superconductivity in a SOI compound BiTeI tuned via pressures. The electrical resistivity measurement with V shape change signals the transition from a Rashba type topological trivial to a topological insulator phase at 2 GPa, which is caused by an energy gap closemore » then reopen with band inverse. Superconducting transition appears at 8 GPa with a critical temperature T C of 5.3 K. Structure refinements indicate that the consecutive phase transitions are correlated to the changes in the Bi–Te bond and bond angle as function of pressures. As a result, the Hall Effect measurements reveal an intimate relationship between superconductivity and the unusual change in carrier density that points to possible unconventional superconductivity.« less

  10. Chemical bond and superconductivity. Technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Messmer, R.P.

    1987-07-01

    The search for understanding of the physical mechanisms operating in the recently discovered high-T/sub c/ superconductors forces a re-examination of the basic concepts and physical assumptions of current theoretical approaches. The attractive interaction of a more-general theory may be rather more complicated than the electron-phonon interaction usually assumed. In fact, it probably contains the critical chemical parameters of the material. This is the motivation for the present work in which the focus is two-fold: first, to call attention to some recent developments in our understanding of the chemical bond, and second, to prepose that this new understanding is not onlymore » germane to the electronic structure of solids but also provides a new perspective on the relationship between the chemical bond and superconductivity. Studying the connection between chemical bonding and superconductivity would seem to be rather an academic exercise if it were not for the high-temperature superconductors. These materials have brought attention in a dramatic fashion to the ignorance that exists in relating chemistry to the important physical parameters of a superconductor. Although this point was raised in numerous contributions by Matthias, its full import was never so apparent when the superconductors were traditional metals and alloys.« less

  11. Advanced superconducting gradiometers for mine detection

    NASA Astrophysics Data System (ADS)

    Clem, Ted R.

    1996-05-01

    Sensors incorporating superconducting quantum interference devices provide the greatest sensitivity for magnetic anomaly detection available with current technology. During the 1980s, the Coastal Systems Station (CSS) developed a superconducting magnetic gradiometer capable of operation outside of the laboratory environment. With this sensor, the CSS was able to demonstrate buried mine detection for the U.S. Navy. Subsequently, the sensor was incorporated into a multisensor suite onboard an underwater towed vehicle to provide a robust mine hunting capability for the Magnetic and Acoustic Detection of Mines Project. This sensor using thin film niobium and a new liquid helium cooling concept was developed to provide significant increases in sensitivity and detection range. In the late 1980s, a new class of `high- Tc' superconductor were discovered with critical temperatures above the boiling point of liquid nitrogen (77 K). This advance has opened up new opportunities for mine reconnaissance and hunting, especially for operation onboard small unmanned underwater vehicles. A high-Tc sensor concept using liquid nitrogen refrigeration has been developed and a test article of that concept is currently being evaluated for its applicability to mobile operation. The design principles for the two new sensor approaches and the results of their evaluations will be described. Finally, the implications of these advances to mine reconnaissance and hunting will be discussed.

  12. Effects of cold-treatment and strain-rate on mechanical properties of NbTi/Cu superconducting composite wires.

    PubMed

    Guan, Mingzhi; Wang, Xingzhe; Zhou, Youhe

    2015-01-01

    During design and winding of superconducting magnets at room temperature, a pre-tension under different rate is always applied to improve the mechanical stability of the magnets. However, an inconsistency rises for superconductors usually being sensitive to strain and oversized pre-stress which results in degradation of the superconducting composites' critical performance at low temperature. The present study focused on the effects of the cold-treatment and strain-rate of tension deformation on mechanical properties of NbTi/Cu superconducting composite wires. The samples were immersed in a liquid nitrogen (LN2) cryostat for the adiabatic cold-treatment, respectively with 18-hour, 20-hour, 22-hour and 24-hour. A universal testing machine was utilized for tension tests of the NbTi/Cu superconducting composite wires at room temperature; a small-scale extensometer was used to measure strain of samples with variable strain-rate. The strength, elongation at fracture and yield strength of pre-cold-treatment NbTi/Cu composite wires were drawn. It was shown that, the mechanical properties of the superconducting wires are linearly dependent on the holding time of cold-treatment at lower tensile strain-rate, while they exhibit notable nonlinear features at higher strain-rate. The cold-treatment in advance and the strain-rate of pre-tension demonstrate remarkable influences on the mechanical property of the superconducting composite wires.

  13. Superconducting cable connections and methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    van der Laan, Daniel Cornelis

    2017-09-05

    Superconducting cable connector structures include a terminal body (or other structure) onto which the tapes from the superconducting cable extend. The terminal body (or other structure) has a diameter that is sufficiently larger than the diameter of the former of the superconducting cable, so that the tapes spread out over the outer surface of the terminal body. As a result, gaps are formed between tapes on the terminal body (or other structure). Those gaps are filled with solder (or other suitable flowable conductive material), to provide a current path of relatively high conductivity in the radial direction. Other connector structuresmore » omit the terminal body.« less

  14. Growth And Patterning Of High-Tc Superconducting Films

    NASA Technical Reports Server (NTRS)

    Warner, J. D.; Bhasin, K. B.; Varaljay, N. C.; Bohman, D. Y.; Chorey, C. M.

    1992-01-01

    Superconducting films of YBa(2)Cu(3)O(7-delta), having high superconducting-transition temperatures (Tc's), deposited on LaAlO3 substrates and etched into patterns representative of passive microwave devices, with no deterioration of superconducting properties.

  15. Magnetic torque on a rotating superconducting sphere

    NASA Technical Reports Server (NTRS)

    Holdeman, L. B.

    1975-01-01

    The London theory of superconductivity is used to calculate the torque on a superconducting sphere rotating in a uniform applied magnetic field. The London theory is combined with classical electrodynamics for a calculation of the direct effect of excess charge on a rotating superconducting sphere. Classical electrodynamics, with the assumption of a perfect Meissner effect, is used to calculate the torque on a superconducting sphere rotating in an arbitrary magnetic induction; this macroscopic approach yields results which are correct to first order. Using the same approach, the torque due to a current loop encircling the rotating sphere is calculated.

  16. Development of superconducting magnetic bearing with superconducting coil and bulk superconductor for flywheel energy storage system

    NASA Astrophysics Data System (ADS)

    Arai, Y.; Seino, H.; Yoshizawa, K.; Nagashima, K.

    2013-11-01

    We have been developing superconducting magnetic bearing for flywheel energy storage system to be applied to the railway system. The bearing consists of a superconducting coil as a stator and bulk superconductors as a rotor. A flywheel disk connected to the bulk superconductors is suspended contactless by superconducting magnetic bearings (SMBs). We have manufactured a small scale device equipped with the SMB. The flywheel was rotated contactless over 2000 rpm which was a frequency between its rigid body mode and elastic mode. The feasibility of this SMB structure was demonstrated.

  17. The use of superconductivity in magnetic balance design

    NASA Technical Reports Server (NTRS)

    Moss, F. E.

    1973-01-01

    The magnetic field and field gradient requirements for magnetic suspension in a Mach 3, 6-in. diameter wind tunnel are stated, along with the power requirements for gradient coil pairs wound of copper operating at room temperature and aluminum cooled to 20 K. The power dissipated is large enough that the use of superconductivity in the coil design becomes an attractive alternative. The problems of stability and ac losses are outlined along with the properties of stabilized superconductors. A brief review of a simplified version of the critical state model of C. P. Bean is presented, and the problems involved in calculations of the ac losses in superconducting coils are outlined. A summary of ac loss data taken on pancake coils wound of commercially available Nb3Sn partially stabilized tape is presented and shown as leading to the U.Va. gradient coil design. The actual coil performance is compared with predictions based on the BNL results. Finally, some remarks are presented concerning scaling of the ac losses to larger magnetic suspension systems as well as prospects for improved performance using newer multifilament superconductors.

  18. Superconductivity in solid benzene molecular crystal.

    PubMed

    Zhong, Guo-Hua; Yang, Chun-Lei; Chen, Xiao-Jia; Lin, Hai-Qing

    2018-06-20

    Light-element compounds hold great promise of high critical temperature superconductivity judging from the theoretical perspective. A hydrogen-rich material, benzene, is such a kind of candidate but also an organic compound. A series of first-principles calculations are performed on the electronic structures, dynamics properties, and electron-phonon interactions of solid benzene at high pressures. Benzene is found to be dynamically stable in the pressure range of 180-200 GPa and to exhibit superconductivity with a maximum transition temperature of 20 K at 195 GPa. The phonon modes of carbon atoms are identified to mainly contribute to the electron-phonon interactions driving this superconductivity. The predicted superconductivity in this simplest pristine hydrocarbon shows a common feature in aromatic hydrocarbons and also makes it a bridge to organic and hydrogen-rich superconductors.

  19. Superconductivity in solid benzene molecular crystal

    NASA Astrophysics Data System (ADS)

    Zhong, Guo-Hua; Yang, Chun-Lei; Chen, Xiao-Jia; Lin, Hai-Qing

    2018-06-01

    Light-element compounds hold great promise of high critical temperature superconductivity judging from the theoretical perspective. A hydrogen-rich material, benzene, is such a kind of candidate but also an organic compound. A series of first-principles calculations are performed on the electronic structures, dynamics properties, and electron–phonon interactions of solid benzene at high pressures. Benzene is found to be dynamically stable in the pressure range of 180–200 GPa and to exhibit superconductivity with a maximum transition temperature of 20 K at 195 GPa. The phonon modes of carbon atoms are identified to mainly contribute to the electron–phonon interactions driving this superconductivity. The predicted superconductivity in this simplest pristine hydrocarbon shows a common feature in aromatic hydrocarbons and also makes it a bridge to organic and hydrogen-rich superconductors.

  20. Controlling Hysteresis in Superconducting Weak Links and μ-Superconducting Quantum Interference Devices

    NASA Astrophysics Data System (ADS)

    Kumar, Nikhil; Winkelmann, C. B.; Biswas, Sourav; Courtois, H.; Gupta, Anjan K.

    We have fabricated and studied the current-voltage characteristics of a number of niobium film based weak-link devices and μ-SQUIDs showing a critical current and two re-trapping currents. We have proposed a new understanding for the re-trapping currents in terms of thermal instabilities in different portions of the device. We also find that the superconducting proximity effect and the phase-slip processes play an important role in dictating the temperature dependence of the critical current in the non-hysteretic regime. The proximity effect helps in widening the temperature range of hysteresis-free characteristics. Finally we demonstrate control on temperature-range with hysteresis-free characteristics in two ways: 1) By using a parallel shunt resistor in close vicinity of the device, and 2) by reducing the weak-link width. Thus we get non-hysteretic behavior down to 1.3 K temperature in some of the studied devices. We acknowledge the financial support from CSIR, India as well as CNRS-Institute Neel, Grenoble, France.

  1. Crystal structure, magnetic susceptibility and thermopower of superconducting and non-superconducting Nd 1.85Ce 0.15CuO 4+y

    NASA Astrophysics Data System (ADS)

    Magelschots, I.; Andersen, N. H.; Lebech, B.; Wisniewski, A.; Jacobsen, C. S.

    1992-12-01

    An experimental study of superconducting and non-superconducting Nd 1.85Ce 0.15CuO 4+ y, including structure determination by neutron powder diffraction, recording of oxygen changes by gas volumetry, and susceptibility and thermoelectric measurements, is reported. Difference neutron diffraction patterns from samples prepared on-line at the spectrometer show that the structures of superconducting and non-superconducting samples are identical within the limits set by the statistical errors of our data. Simultaneous gas volumetric measurements reveal that Δy<0.03 (1) when the sample is oxidized from the superconducting to the non-superconducting state. Structural refinements confirm that Nd 1.85Ce 0.15CuO 4+ y has the T‧-type tetragonal structure reported in the literature, but additional oxygen may be located on the apical O(3) oxygen site of the T-type structure, with a total oxygen content of 4+ y=4.03 (5). Consistent with this result, we find very small values of the thermoelectric power indicating that Nd 1.85Ce 0.15CuO 4+ y is close to the formal threshold, yc=0.075, between electron and hole conduction, but surprisingly, the thermoelectric power of the superconducting sample is positive, while it is negative in the non-superconducting sample below 210 K.

  2. Pb/InAs nanowire josephson junction with high critical current and magnetic flux focusing.

    PubMed

    Paajaste, J; Amado, M; Roddaro, S; Bergeret, F S; Ercolani, D; Sorba, L; Giazotto, F

    2015-03-11

    We have studied mesoscopic Josephson junctions formed by highly n-doped InAs nanowires and superconducting Ti/Pb source and drain leads. The current-voltage properties of the system are investigated by varying temperature and external out-of-plane magnetic field. Superconductivity in the Pb electrodes persists up to ∼7 K and with magnetic field values up to 0.4 T. Josephson coupling at zero backgate voltage is observed up to 4.5 K and the critical current is measured to be as high as 615 nA. The supercurrent suppression as a function of the magnetic field reveals a diffraction pattern that is explained by a strong magnetic flux focusing provided by the superconducting electrodes forming the junction.

  3. Competition of superconductivity with the structural transition in M o 3 S b 7

    DOE PAGES

    Ye, G. Z.; Cheng, J. -G.; Yan, Jiaqiang; ...

    2016-12-14

    Prior to the superconducting transition at T c ≈ 2.3 K, Mo 3Sb 7 undergoes a symmetry-lowering, cubic-to-tetragonal structural transition at T s = 53 K. In this paper, we have monitored the pressure dependence of these two transitions by measuring the resistivity of Mo 3Sb 7 single crystals under various hydrostatic pressures up to 15 GPa. The application of external pressure enhances T c but suppresses T s until P c ≈ 10 GPa, above which a pressure-induced first order structural transition takes place and is manifested by the phase coexistence in the pressure range 8 ≤ P ≤more » 12 GPa. The cubic phase above 12 GPa is also found to be superconducting with a higher T c ≈ 6 K that decreases slightly with further increasing pressure. The variations with pressure of T c and T s satisfy the Bilbro-McMillan equation, i.e. T c nT s 1-n = constant, thus suggesting the competition of superconductivity with the structural transition that has been proposed to be accompanied with a spin-gap formation at T s. Finally, this scenario is supported by our first-principles calculations which imply the plausible importance of magnetism that competes with the superconductivity in Mo 3Sb 7.« less

  4. Damping in high-temperature superconducting levitation systems

    DOEpatents

    Hull, John R [Sammamish, WA

    2009-12-15

    Methods and apparatuses for improved damping in high-temperature superconducting levitation systems are disclosed. A superconducting element (e.g., a stator) generating a magnetic field and a magnet (e.g. a rotor) supported by the magnetic field are provided such that the superconducting element is supported relative to a ground state with damped motion substantially perpendicular to the support of the magnetic field on the magnet. Applying this, a cryostat housing the superconducting bearing may be coupled to the ground state with high damping but low radial stiffness, such that its resonant frequency is less than that of the superconducting bearing. The damping of the cryostat may be substantially transferred to the levitated magnetic rotor, thus, providing damping without affecting the rotational loss, as can be derived applying coupled harmonic oscillator theory in rotor dynamics. Thus, damping can be provided to a levitated object, without substantially affecting the rotational loss.

  5. Superconducting inductive displacement detection of a microcantilever

    NASA Astrophysics Data System (ADS)

    Vinante, A.

    2014-07-01

    We demonstrate a superconducting inductive technique to measure the displacement of a micromechanical resonator. In our scheme, a type I superconducting microsphere is attached to the free end of a microcantilever and approached to the loop of a dc Superconducting Quantum Interference Device (SQUID) microsusceptometer. A local magnetic field as low as 100 μT, generated by a field coil concentric to the SQUID, enables detection of the cantilever thermomechanical noise at 4.2 K. The magnetomechanical coupling and the magnetic spring are in good agreement with image method calculations assuming pure Meissner effect. These measurements are relevant to recent proposals of quantum magnetomechanics experiments based on levitating superconducting microparticles.

  6. Superconducting properties of under- and over-doped BaxK1‑xBiO3 perovskite oxide

    NASA Astrophysics Data System (ADS)

    Szczȩśniak, D.; Kaczmarek, A. Z.; Szczȩśniak, R.; Turchuk, S. V.; Zhao, H.; Drzazga, E. A.

    2018-06-01

    In this study, we investigate the thermodynamic properties of the BaxK1‑xBiO3 (BKBO) superconductor in the under- (x = 0.5) and over-doped (x = 0.7) regime, within the framework of the Migdal-Eliashberg formalism. The analysis is conducted to verify that the electron-phonon pairing mechanism is responsible for the induction of the superconducting phase in the mentioned compound. In particular, we show that BKBO is characterized by the relatively high critical value of the Coulomb pseudopotential, which changes with doping level and does not follow the Morel-Anderson model. In what follows, the corresponding superconducting band gap size and related dimensionless ratio are estimated to increase with the doping, in agreement with the experimental predictions. Moreover, the effective mass of electrons is found to take on high values in the entire doping and temperature region. Finally, the characteristic dimensionless ratios for the superconducting band gap, the critical magnetic field and the specific heat for the superconducting state are predicted to exceed the limits set within the Bardeen-Cooper-Schrieffer theory, suggesting pivotal role of the strong-coupling and retardation effects in the analyzed compound. Presented results supplement our previous investigations and account for the strong-coupling phonon-mediated character of the superconducting phase in BKBO at any doping level.

  7. From BCS to Vortices: A 40 Year Personal Journey through Superconductivity from Basic Research to Power Applications

    NASA Astrophysics Data System (ADS)

    Grant, Paul M.

    2011-03-01

    A century has passed since the discovery of superconductivity in Leiden followed 75 years later by the Great Leap Forward in Zuerich. This talk will chronicle the author's trajectory through the science and technology of superconductivity first taking off with his IBM career in fundamental research on organic and layered copper oxide perovskite superconductors to a final landing at EPRI to explore applications of the latter to the electric power industry. Although many fundamental mysteries remain with respect to the copper and iron compounds, especially regarding the BCS pairing mechanism, nonetheless a significant number of successful demonstrations of cables, rotating machinery, storage and power conditioning equipment employing both low-and high- T superconducting materials have been undertaken worldwide since the decade of the 1960s to the present. However, massive application to the power industry has yet to take place or be inserted into utility long-range planning. Although there will certainly be a relatively small number of opportunistic deployments in those situations where superconductivity has a compelling advantage over conventional technology, its time will more likely await a future revolution in energy and electricity infrastructure such as a symbiosis of nuclear and hydrogen with superconductivity. Perhaps the distant future will even deliver the dream of a room temperature superconductor. ``20th Anniversary of the Woodstock of Physics,'' APS March Meeting 2007, Denver, CO.

  8. Spectroscopic evidence of odd frequency superconducting order

    PubMed Central

    Pal, Avradeep; Ouassou, J. A.; Eschrig, M.; Linder, J.; Blamire, M. G.

    2017-01-01

    Spin filter superconducting S/I/N tunnel junctions (NbN/GdN/TiN) show a robust and pronounced Zero Bias Conductance Peak (ZBCP) at low temperatures, the magnitude of which is several times the normal state conductance of the junction. Such a conductance anomaly is representative of unconventional superconductivity and is interpreted as a direct signature of an odd frequency superconducting order. PMID:28106102

  9. Milan Army Ammunition Plant focused feasibility study for the northern industrial area soil. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Locandro, R.R.; Okusu, N.M.; Case, J.

    1995-04-01

    ICF Kaiser Engineers (ICF) and Environmental Resources Management (ERM) have been contracted by the US Army Environmental Center (USAEC) to perform a Focused Feasibility Study (FS) for contaminated soil within the northern industrial areas of Milan Army Ammunition Plant (MAAP), Tennessee. The purpose of the Focused FS is to develop and evaluate remedial alternatives such that an appropriate remedy can be selected for the site. The MAAP Remedial Investigation (RI) performed in 1989--1991 confirmed that the O-Line Ponds area, facility drainage ditches that received industrial wastewater, and manufacturing and disposal areas have been sources of groundwater contamination. One finding ofmore » the RI Report was that sufficient information was available concerning the O-Line Ponds area to proceed with a Focused FS. The O-Line Ponds area was further divided into two operable units (OUs): OU1 is the groundwater immediately downgradient of the O-Line Ponds area, and OU2 is the soil, surface water, and sediment at the O-Line Ponds area. A Proposed Plan and Record of Decision (ROD) for OU1 were finalized in 1992, which called for groundwater extraction, treatment, and reinjection of the treated water upgradient of the O-Line Ponds. The design of this system was completed in 1993, and construction of the system is currently underway. For OU2, the Proposed Plan and ROD (finalized in 1993) called for the extension of the existing multi-layered cap to cover the contaminated soil around the perimeter of the existing cap. The design of the cap extension was completed in 1994, and construction will begin in late 1994.« less

  10. The Superconducting Bird: A Didactical Toy.

    ERIC Educational Resources Information Center

    Guarner, E.; Sanchez, A. M.

    1992-01-01

    Describes the design of the superconducting bird, a device to demonstrate the phenomenon of superconductivity. Discusses the utilization of the device as an example of a motor and compares it to the toy called the drinking bird. (MDH)

  11. Anyon Superconductivity of Sb

    NASA Astrophysics Data System (ADS)

    Maksoed, Wh-; Parengkuan, August

    2016-10-01

    In any permutatives to Pedro P. Kuczhynski from Peru, for anyon superconductivity sought EZ Kuchinskii et al.: ``Anion height dependence of Tc & d.o.s of Fe-based Superconductors'', 2010 as well as ``on the basis of electron microscopy & AFM measurements, these phenomena are quantified with focus on fractal dimension, particle perimeter & size of the side branch(tip width) in bert Stegemann et al.:Crystallization of Sb nanoparticles-Pattern Formation & Fractal Growth'', J.PhysChem B., 2004. For dendritic & dendrimer fractal characters shown further: ``antimony denrites were found to be composed of well-crystallized nanoflakes with size 20-4 nm''- Bou Zhau, et al., MaterialLetters, 59 (2005). The alkyl triisopropyl attached in TIPSb those includes in DNA, haemoglobin membrane/fixed-bed reactor for instance quotes in Dragony Fu, Nature Review Cancer, 12 (Feb 2012). Heartfelt Gratitudes to HE. Mr. Prof. Ir. Handojo.

  12. High-Field Superconductivity on Iron Chalcogenide FeSe

    NASA Astrophysics Data System (ADS)

    Shi, Anlu; Kitagawa, Shunsaku; Ishida, Kenji; Böhmer, Anna E.; Meingast, Christoph; Wolf, Thomas

    2018-06-01

    We have performed ac-susceptibility and 77Se-NMR measurements on single-crystal FeSe in the field range from 12.5 to 14.75 T below 1.6 K in order to investigate the superconducting properties of the B phase. Our results show that although superconductivity persists beyond the A-B transition line (H*), the broadening of the 77Se-NMR linewidth arising from the superconducting diamagnetic effect decreases at around H*, suggesting that superconducting character is changed at H*.

  13. Techniques for Connecting Superconducting Thin Films

    NASA Technical Reports Server (NTRS)

    Mester, John; Gwo, Dz-Hung

    2006-01-01

    Several improved techniques for connecting superconducting thin films on substrates have been developed. The techniques afford some versatility for tailoring the electronic and mechanical characteristics of junctions between superconductors in experimental electronic devices. The techniques are particularly useful for making superconducting or alternatively normally conductive junctions (e.g., Josephson junctions) between patterned superconducting thin films in order to exploit electron quantum-tunneling effects. The techniques are applicable to both low-Tc and high-Tc superconductors (where Tc represents the superconducting- transition temperature of a given material), offering different advantages for each. Most low-Tc superconductors are metallic, and heretofore, connections among them have been made by spot welding. Most high-Tc superconductors are nonmetallic and cannot be spot welded. These techniques offer alternatives to spot welding of most low-Tc superconductors and additional solutions to problems of connecting most high-Tc superconductors.

  14. Final Commissioning of the Superconducting Heavy Ion Linear Accelerator at IUAC, Delhi

    NASA Astrophysics Data System (ADS)

    Datta, Tripti Sekhar; Choudhury, Anup; Chacko, Jacob; Kar, Soumen; Antony, Joby; Babu, Suresh; Kumar, Manoj; Mathuria, D. S.; Sahu, Santosh; Kanjilal, Dinakar

    The superconducting linac as a booster of the 15UD Pelletron accelerator was partly commissioned with one linac module housing eight quarter wave bulk niobium cavities along with the superbuncher and rebuncher cryomodules. Subsequently two more linac cryomodules were added to have in total 24 cavities for acceleration. In addition, a new Linde helium refrigerator of capacity 750 W @ 4.2 K was installed in parallel to the earlier CCI refrigerator. The new refrigerator was integrated with the earlier cryogenics network system through a specially designed liquid helium distribution line without any valve box. The cooling philosophy with this new system is modified to have a faster cool down rate in the critical zone (150 - 70 K) to avoid Q disease. The helium gas pressure fluctuation in the cavities is reduced significantly to have stable RF locking. The full linac is being operated and beams with higher energy are being delivered to the users. The present paper will highlight the performance of the new cryogenic system with respect to cool down rate, and helium pressure fluctuation.

  15. High critical current superconducting tapes

    DOEpatents

    Holesinger, Terry G [Los Alamos, NM; Jia, Quanxi [Los Alamos, NM; Foltyn, Stephen R [Los Alamos, NM

    2003-09-23

    Improvements in critical current capacity for superconducting film structures are disclosed and include the use of a superconducting RE-BCO layer including a mixture of rare earth metals, e.g., yttrium and europium, where the ratio of yttrium to europium in the RE-BCO layer ranges from about 3 to 1 to from about 1.5 to 1.

  16. Lattice parameters guide superconductivity in iron-arsenides

    NASA Astrophysics Data System (ADS)

    Konzen, Lance M. N.; Sefat, Athena S.

    2017-03-01

    The discovery of superconducting materials has led to their use in technological marvels such as magnetic-field sensors in MRI machines, powerful research magnets, short transmission cables, and high-speed trains. Despite such applications, the uses of superconductors are not widespread because they function much below room-temperature, hence the costly cooling. Since the discovery of Cu- and Fe-based high-temperature superconductors (HTS), much intense effort has tried to explain and understand the superconducting phenomenon. While no exact explanations are given, several trends are reported in relation to the materials basis in magnetism and spin excitations. In fact, most HTS have antiferromagnetic undoped ‘parent’ materials that undergo a superconducting transition upon small chemical substitutions in them. As it is currently unclear which ‘dopants’ can favor superconductivity, this manuscript investigates crystal structure changes upon chemical substitutions, to find clues in lattice parameters for the superconducting occurrence. We review the chemical substitution effects on the crystal lattice of iron-arsenide-based crystals (2008 to present). We note that (a) HTS compounds have nearly tetragonal structures with a-lattice parameter close to 4 Å, and (b) superconductivity can depend strongly on the c-lattice parameter changes with chemical substitution. For example, a decrease in c-lattice parameter is required to induce ‘in-plane’ superconductivity. The review of lattice parameter trends in iron-arsenides presented here should guide synthesis of new materials and provoke theoretical input, giving clues for HTS.

  17. Superconductivity and fusion energy—the inseparable companions

    NASA Astrophysics Data System (ADS)

    Bruzzone, Pierluigi

    2015-02-01

    Although superconductivity will never produce energy by itself, it plays an important role in energy-related applications both because of its saving potential (e.g., power transmission lines and generators), and its role as an enabling technology (e.g., for nuclear fusion energy). The superconducting magnet’s need for plasma confinement has been recognized since the early development of fusion devices. As long as the research and development of plasma burning was carried out on pulsed devices, the technology of superconducting fusion magnets was aimed at demonstrations of feasibility. In the latest generation of plasma devices, which are larger and have longer confinement times, the superconducting coils are a key enabling technology. The cost of a superconducting magnet system is a major portion of the overall cost of a fusion plant and deserves significant attention in the long-term planning of electricity supply; only cheap superconducting magnets will help fusion get to the energy market. In this paper, the technology challenges and design approaches for fusion magnets are briefly reviewed for past, present, and future projects, from the early superconducting tokamaks in the 1970s, to the current ITER (International Thermonuclear Experimental Reactor) and W7-X projects and future DEMO (Demonstration Reactor) projects. The associated cryogenic technology is also reviewed: 4.2 K helium baths, superfluid baths, forced-flow supercritical helium, and helium-free designs. Open issues and risk mitigation are discussed in terms of reliability, technology, and cost.

  18. Lattice parameters guide superconductivity in iron-arsenides.

    PubMed

    Konzen, Lance M N; Sefat, Athena S

    2017-03-01

    The discovery of superconducting materials has led to their use in technological marvels such as magnetic-field sensors in MRI machines, powerful research magnets, short transmission cables, and high-speed trains. Despite such applications, the uses of superconductors are not widespread because they function much below room-temperature, hence the costly cooling. Since the discovery of Cu- and Fe-based high-temperature superconductors (HTS), much intense effort has tried to explain and understand the superconducting phenomenon. While no exact explanations are given, several trends are reported in relation to the materials basis in magnetism and spin excitations. In fact, most HTS have antiferromagnetic undoped 'parent' materials that undergo a superconducting transition upon small chemical substitutions in them. As it is currently unclear which 'dopants' can favor superconductivity, this manuscript investigates crystal structure changes upon chemical substitutions, to find clues in lattice parameters for the superconducting occurrence. We review the chemical substitution effects on the crystal lattice of iron-arsenide-based crystals (2008 to present). We note that (a) HTS compounds have nearly tetragonal structures with a-lattice parameter close to 4 Å, and (b) superconductivity can depend strongly on the c-lattice parameter changes with chemical substitution. For example, a decrease in c-lattice parameter is required to induce 'in-plane' superconductivity. The review of lattice parameter trends in iron-arsenides presented here should guide synthesis of new materials and provoke theoretical input, giving clues for HTS.

  19. Superconductivity and the environment: a Roadmap

    NASA Astrophysics Data System (ADS)

    Nishijima, Shigehiro; Eckroad, Steven; Marian, Adela; Choi, Kyeongdal; Kim, Woo Seok; Terai, Motoaki; Deng, Zigang; Zheng, Jun; Wang, Jiasu; Umemoto, Katsuya; Du, Jia; Febvre, Pascal; Keenan, Shane; Mukhanov, Oleg; Cooley, Lance D.; Foley, Cathy P.; Hassenzahl, William V.; Izumi, Mitsuru

    2013-11-01

    disasters will be helped by future supercomputer technologies that support huge amounts of data and sophisticated modeling, and with the aid of superconductivity these systems might not require the energy of a large city. We present different sections on applications that could address (or are addressing) a range of environmental issues. The Roadmap covers water purification, power distribution and storage, low-environmental impact transport, environmental sensing (particularly for the removal of unexploded munitions), monitoring the Earth’s magnetic fields for earthquakes and major solar activity, and, finally, developing a petaflop supercomputer that only requires 3% of the current supercomputer power provision while being 50 times faster. Access to fresh water. With only 2.5% of the water on Earth being fresh and climate change modeling forecasting that many areas will become drier, the ability to recycle water and achieve compact water recycling systems for sewage or ground water treatment is critical. The first section (by Nishijima) points to the potential of superconducting magnetic separation to enable water recycling and reuse. Energy. The Equinox Summit held in Waterloo Canada 2011 (2011 Equinox Summit: Energy 2030 http://wgsi.org/publications-resources) identified electricity use as humanity’s largest contributor to greenhouse gas emissions. Our appetite for electricity is growing faster than for any other form of energy. The communiqué from the summit said ‘Transforming the ways we generate, distribute and store electricity is among the most pressing challenges facing society today…. If we want to stabilize CO2 levels in our atmosphere at 550 parts per million, all of that growth needs to be met by non-carbon forms of energy’ (2011 Equinox Summit: Energy 2030 http://wgsi.org/publications-resources). Superconducting technologies can provide the energy efficiencies to achieve, in the European Union alone, 33-65% of the required reduction in greenhouse

  20. Superconducting selenides intercalated with organic molecules: synthesis, crystal structure, electric and magnetic properties, superconducting properties, and phase separation in iron based-chalcogenides and hybrid organic-inorganic superconductors

    NASA Astrophysics Data System (ADS)

    Krzton-Maziopa, Anna; Pesko, Edyta; Puzniak, Roman

    2018-06-01

    Layered iron-based superconducting chalcogenides intercalated with molecular species are the subject of intensive studies, especially in the field of solid state chemistry and condensed matter physics, because of their intriguing chemistry and tunable electric and magnetic properties. Considerable progress in the research, revealing superconducting inorganic–organic hybrid materials with transition temperatures to superconducting state, T c, up to 46 K, has been brought in recent years. These novel materials are synthesized by low-temperature intercalation of molecular species, such as solvates of alkali metals and nitrogen-containing donor compounds, into layered FeSe-type structure. Both the chemical nature as well as orientation of organic molecules between the layers of inorganic host, play an important role in structural modifications and may be used for fine tuning of superconducting properties. Furthermore, a variety of donor species compatible with alkali metals, as well as the possibility of doping also in the host structure (either on Fe or Se sites), makes this system quite flexible and gives a vast array of new materials with tunable electric and magnetic properties. In this review, the main aspects of intercalation chemistry are discussed with a particular attention paid to the influence of the unique nature of intercalating species on the crystal structure and physical properties of the hybrid inorganic–organic materials. To get a full picture of these materials, a comprehensive description of the most effective chemical and electrochemical methods, utilized for synthesis of intercalated species, with critical evaluation of their strong and weak points, related to feasibility of synthesis, phase purity, crystal size and morphology of final products, is included as well.

  1. Ceramic/metal and A15/metal superconducting composite materials exploiting the superconducting proximity effect and method of making the same

    DOEpatents

    Holcomb, Matthew J.

    1999-01-01

    A composite superconducting material made of coated particles of ceramic superconducting material and a metal matrix material. The metal matrix material fills the regions between the coated particles. The coating material is a material that is chemically nonreactive with the ceramic. Preferably, it is silver. The coating serves to chemically insulate the ceramic from the metal matrix material. The metal matrix material is a metal that is susceptible to the superconducting proximity effect. Preferably, it is a NbTi alloy. The metal matrix material is induced to become superconducting by the superconducting proximity effect when the temperature of the material goes below the critical temperature of the ceramic. The material has the improved mechanical properties of the metal matrix material. Preferably, the material consists of approximately 10% NbTi, 90% coated ceramic particles (by volume). Certain aspects of the material and method will depend upon the particular ceramic superconductor employed. An alternative embodiment of the invention utilizes A15 compound superconducting particles in a metal matrix material which is preferably a NbTi alloy.

  2. High-field superconducting nested coil magnet

    NASA Technical Reports Server (NTRS)

    Laverick, C.; Lobell, G. M.

    1970-01-01

    Superconducting magnet, employed in conjunction with five types of superconducting cables in a nested solenoid configuration, produces total, central magnetic field strengths approaching 70 kG. The multiple coils permit maximum information on cable characteristics to be gathered from one test.

  3. Damping in high-temperature superconducting levitation systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hull, John R.

    2009-12-15

    Methods and apparatuses for improved damping in high-temperature superconducting levitation systems are disclosed. A superconducting element (e.g., a stator) generating a magnetic field and a magnet (e.g. a rotor) supported by the magnetic field are provided such that the superconducting element is supported relative to a ground state with damped motion substantially perpendicular to the support of the magnetic field on the magnet. Applying this, a cryostat housing the superconducting bearing may be coupled to the ground state with high damping but low radial stiffness, such that its resonant frequency is less than that of the superconducting bearing. The dampingmore » of the cryostat may be substantially transferred to the levitated magnetic rotor, thus, providing damping without affecting the rotational loss, as can be derived applying coupled harmonic oscillator theory in rotor dynamics. Thus, damping can be provided to a levitated object, without substantially affecting the rotational loss.« less

  4. Superconducting parity effect across the Anderson limit

    PubMed Central

    Vlaic, Sergio; Pons, Stéphane; Zhang, Tianzhen; Assouline, Alexandre; Zimmers, Alexandre; David, Christophe; Rodary, Guillemin; Girard, Jean-Christophe; Roditchev, Dimitri; Aubin, Hervé

    2017-01-01

    How small can superconductors be? For isolated nanoparticles subject to quantum size effects, P.W. Anderson in 1959 conjectured that superconductivity could only exist when the electronic level spacing δ is smaller than the superconducting gap energy Δ. Here we report a scanning tunnelling spectroscopy study of superconducting lead (Pb) nanocrystals grown on the (110) surface of InAs. We find that for nanocrystals of lateral size smaller than the Fermi wavelength of the 2D electron gas at the surface of InAs, the electronic transmission of the interface is weak; this leads to Coulomb blockade and enables the extraction of electron addition energy of the nanocrystals. For large nanocrystals, the addition energy displays superconducting parity effect, a direct consequence of Cooper pairing. Studying this parity effect as a function of nanocrystal volume, we find the suppression of Cooper pairing when the mean electronic level spacing overcomes the superconducting gap energy, thus demonstrating unambiguously the validity of the Anderson criterion. PMID:28240294

  5. Observation of Superconductivity in Tetragonal FeS.

    PubMed

    Lai, Xiaofang; Zhang, Hui; Wang, Yingqi; Wang, Xin; Zhang, Xian; Lin, Jianhua; Huang, Fuqiang

    2015-08-19

    The possibility of superconductivity in tetragonal FeS has attracted considerable interest because of its similarities to the FeSe superconductor. However, all efforts made to pursue superconductivity in tetragonal FeS have failed so far, and it remains controversial whether tetragonal FeS is metallic or semiconducting. Here we report the observation of superconductivity at 5 K in tetragonal FeS that is synthesized by the hydrothermal reaction of iron powder with sulfide solution. The obtained samples are highly crystalline and less air-sensitive, in contrast to those reported in the literature, which are meta-stable and air-sensitive. Magnetic and electrical properties measurements show that the samples behave as a paramagnetic metal in the normal state and exhibit superconductivity below 5 K. The high crystallinity and the stoichiometry of the samples play important roles in the observation of superconductivity. The present results demonstrate that tetragonal FeS is a promising new platform to realize high-temperature superconductors.

  6. Superconductivity, pairing symmetry, and disorder in the doped topological insulator Sn 1 - x In x Te for x ≥ 0.10

    DOE PAGES

    Smylie, M. P.; Claus, H.; Kwok, W. -K.; ...

    2018-01-19

    In this paper, the temperature dependence of the London penetration depth Δλ(T) in the superconducting doped topological crystalline insulator Sn 1-xIn xTe was measured down to 450 mK for two different doping levels, x ≈ 0.45 (optimally doped) and x ≈ 0.10 (underdoped), bookending the range of cubic phase in the compound. The results indicate no deviation from fully gapped BCS-like behavior, eliminating several candidate unconventional gap structures. Critical field values below 1 K and other superconducting parameters are also presented. Finally, the introduction of disorder by repeated particle irradiation with 5 MeV protons does not enhance T c, indicatingmore » that ferroelectric interactions do not compete with superconductivity.« less

  7. Superconductivity, pairing symmetry, and disorder in the doped topological insulator Sn 1 - x In x Te for x ≥ 0.10

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smylie, M. P.; Claus, H.; Kwok, W. -K.

    In this paper, the temperature dependence of the London penetration depth Δλ(T) in the superconducting doped topological crystalline insulator Sn 1-xIn xTe was measured down to 450 mK for two different doping levels, x ≈ 0.45 (optimally doped) and x ≈ 0.10 (underdoped), bookending the range of cubic phase in the compound. The results indicate no deviation from fully gapped BCS-like behavior, eliminating several candidate unconventional gap structures. Critical field values below 1 K and other superconducting parameters are also presented. Finally, the introduction of disorder by repeated particle irradiation with 5 MeV protons does not enhance T c, indicatingmore » that ferroelectric interactions do not compete with superconductivity.« less

  8. Passive Superconducting Shielding: Experimental Results and Computer Models

    NASA Technical Reports Server (NTRS)

    Warner, B. A.; Kamiya, K.

    2003-01-01

    Passive superconducting shielding for magnetic refrigerators has advantages over active shielding and passive ferromagnetic shielding in that it is lightweight and easy to construct. However, it is not as easy to model and does not fail gracefully. Failure of a passive superconducting shield may lead to persistent flux and persistent currents. Unfortunately, modeling software for superconducting materials is not as easily available as is software for simple coils or for ferromagnetic materials. This paper will discuss ways of using available software to model passive superconducting shielding.

  9. Superconducting thin films on potassium tantalate substrates

    DOEpatents

    Feenstra, Roeland; Boatner, Lynn A.

    1992-01-01

    A superconductive system for the lossless transmission of electrical current comprising a thin film of superconducting material Y.sub.1 Ba.sub.2 Cu.sub.3 O.sub.7-x epitaxially deposited upon a KTaO.sub.3 substrate. The KTaO.sub.3 is an improved substrate over those of the prior art since the it exhibits small lattice constant mismatch and does not chemically react with the superconducting film.

  10. Multiband superconductivity and nanoscale inhomogeneity at oxide interfaces

    NASA Astrophysics Data System (ADS)

    Caprara, S.; Biscaras, J.; Bergeal, N.; Bucheli, D.; Hurand, S.; Feuillet-Palma, C.; Rastogi, A.; Budhani, R. C.; Lesueur, J.; Grilli, M.

    2013-07-01

    The two-dimensional electron gas at the LaTiO3/SrTiO3 or LaAlO3/SrTiO3 oxide interfaces becomes superconducting when the carrier density is tuned by gating. The measured resistance and superfluid density reveal an inhomogeneous superconductivity resulting from percolation of filamentary structures of superconducting “puddles” with randomly distributed critical temperatures, embedded in a nonsuperconducting matrix. Following the evidence that superconductivity is related to the appearance of high-mobility carriers, we model intrapuddle superconductivity by a multiband system within a weak coupling BCS scheme. The microscopic parameters, extracted by fitting the transport data with a percolative model, yield a consistent description of the dependence of the average intrapuddle critical temperature and superfluid density on the carrier density.

  11. Impact of nearest-neighbor repulsion on superconducting pairing in 2D extended Hubbard model

    NASA Astrophysics Data System (ADS)

    Jiang, Mi; Hahner, U. R.; Maier, T. A.; Schulthess, T. C.

    Using dynamical cluster approximation (DCA) with an continuous-time QMC solver for the two-dimensional extended Hubbard model, we studied the impact of nearest-neighbor Coulomb repulsion V on d-wave superconducting pairing dynamics. By solving Bethe-Salpeter equation for particle-particle superconducting channel, we focused on the evolution of leading d-wave eigenvalue with V and the momentum and frequency dependence of the corresponding eigenfunction. The comparison with the evolution of both spin and charge susceptibilities versus V is presented showing the competition between spin and charge fluctuations. This research received generous support from the MARVEL NCCR and used resources of the Swiss National Supercomputing Center, as well as (INCITE) program in Oak Ridge Leadership Computing Facility.

  12. Dimensionality Driven Enhancement of Ferromagnetic Superconductivity in URhGe.

    PubMed

    Braithwaite, Daniel; Aoki, Dai; Brison, Jean-Pascal; Flouquet, Jacques; Knebel, Georg; Nakamura, Ai; Pourret, Alexandre

    2018-01-19

    In most unconventional superconductors, like the high-T_{c} cuprates, iron pnictides, or heavy-fermion systems, superconductivity emerges in the proximity of an electronic instability. Identifying unambiguously the pairing mechanism remains nevertheless an enormous challenge. Among these systems, the orthorhombic uranium ferromagnetic superconductors have a unique position, notably because magnetic fields couple directly to ferromagnetic order, leading to the fascinating discovery of the reemergence of superconductivity in URhGe at a high field. Here we show that uniaxial stress is a remarkable tool allowing the fine-tuning of the pairing strength. With a relatively small stress, the superconducting phase diagram is spectacularly modified, with a merging of the low- and high-field superconducting states and a significant enhancement of the superconductivity. The superconducting critical temperature increases both at zero field and under a field, reaching 1 K, more than twice higher than at ambient pressure. This enhancement of superconductivity is shown to be directly related to a change of the magnetic dimensionality detected from an increase of the transverse magnetic susceptibility: In addition to the Ising-type longitudinal ferromagnetic fluctuations, transverse magnetic fluctuations also play an important role in the superconducting pairing.

  13. Structural and magnetic phase diagram of CrAs and its relationship with pressure-induced superconductivity

    DOE PAGES

    Shen, Yao; Wang, Qisi; Hao, Yiqing; ...

    2016-02-01

    In this paper, we use neutron diffraction to study the structure and magnetic phase diagram of the newly discovered pressure-induced superconductor CrAs. Unlike most magnetic unconventional superconductors where the magnetic moment direction barely changes upon doping, here we show that CrAs exhibits a spin reorientation from the ab plane to the ac plane, along with an abrupt drop of the magnetic propagation vector at a critical pressure (P c ≈ 0.6 GPa). This magnetic phase transition, accompanied by a lattice anomaly, coincides with the emergence of bulk superconductivity. With further increasing pressure, the magnetic order completely disappears near the optimalmore » T c regime (P ≈ 0.94 GPa). Moreover, the Cr magnetic moments tend to be aligned antiparallel between nearest neighbors with increasing pressure toward the optimal superconductivity regime. Finally, our findings suggest that the noncollinear helimagnetic order is strongly coupled to structural and electronic degrees of freedom, and that the antiferromagnetic correlations between nearest neighbors might be essential for superconductivity.« less

  14. Superconducting Ring Cyclotron for Riken RI Beam Factory in Japan

    NASA Astrophysics Data System (ADS)

    Okuno, H.; Dantsuka, T.; Yamada, K.; Kase, M.; Maie, T.; Kamigaito, O.

    2010-04-01

    Since 1997, RIKEN Nishina Center has been constructing the Radioactive Isotope Beam Factory (RIBF) and succeeded in beam commissioning of its accelerator complex at the end of 2006. The world's first superconducting ring cyclotron (SRC) is the final booster in the RIBF accelerator complex which is able to accelerate all-element heavy ions to a speed of about 70% of the velocity of light. The ring cyclotron consists of 6 major superconducting sector magnets with a maximum field of 3.8 T. The total stored energy is 235 MJ, and its overall sizes are 19 m diameter, 8 m height and 8,300 tons. The magnet system assembly was completed in August 2005, and successfully reached the maximum field in November 2005. The first beam was extracted at the end of 2006 and the first uranium beam was extracted in March 2007. However operation of the helium refrigerator was not satisfactory although the commissioning of SRC was successful. Operation was stopped every two month due to degradation of its cooling power. In February 2008 the reason of the degradation was revealed to be oil contamination. Operation of the cryogenic system was restarted from August 2008 after hard task to clean up the helium refrigerator and to add oil separators to the compressor. After restoration long-term steady operation to keep the magnet superconducting continued for about 8 months with no sign of degradation of cooling capacity.

  15. Stable superconducting magnet. [high current levels below critical temperature

    NASA Technical Reports Server (NTRS)

    Boom, R. W. (Inventor)

    1967-01-01

    Operation of a superconducting magnet is considered. A method is described for; (1) obtaining a relatively high current in a superconducting magnet positioned in a bath of a gas refrigerant; (2) operating a superconducting magnet at a relatively high current level without training; and (3) operating a superconducting magnet containing a plurality of turns of a niobium zirconium wire at a relatively high current level without training.

  16. Power superconducting power transmission cable

    DOEpatents

    Ashworth, Stephen P.

    2003-06-10

    The present invention is for a compact superconducting power transmission cable operating at distribution level voltages. The superconducting cable is a conductor with a number of tapes assembled into a subconductor. These conductors are then mounted co-planarly in an elongated dielectric to produce a 3-phase cable. The arrangement increases the magnetic field parallel to the tapes thereby reducing ac losses.

  17. Power superconducting power transmission cable

    DOEpatents

    Ashworth, Stephen P.

    2003-01-01

    The present invention is for a compact superconducting power transmission cable operating at distribution level voltages. The superconducting cable is a conductor with a number of tapes assembled into a subconductor. These conductors are then mounted co-planarly in an elongated dielectric to produce a 3-phase cable. The arrangement increases the magnetic field parallel to the tapes thereby reducing ac losses.

  18. Three-Axis Superconducting Gravity Gradiometer

    NASA Technical Reports Server (NTRS)

    Paik, Ho Jung

    1987-01-01

    Gravity gradients measured even on accelerating platforms. Three-axis superconducting gravity gradiometer based on flux quantization and Meissner effect in superconductors and employs superconducting quantum interference device as amplifier. Incorporates several magnetically levitated proof masses. Gradiometer design integrates accelerometers for operation in differential mode. Principal use in commercial instruments for measurement of Earth-gravity gradients in geo-physical surveying and exploration for oil.

  19. The infinite range Heisenberg model and high temperature superconductivity

    NASA Astrophysics Data System (ADS)

    Tahir-Kheli, Jamil

    1992-01-01

    The thesis deals with the theory of high temperature superconductivity from the standpoint of three-band Hubbard models.Chapter 1 of the thesis proposes a strongly coupled variational wavefunction that has the three-spin system of an oxygen hole and its two neighboring copper spins in a doublet and the background Cu spins in an eigenstate of the infinite range antiferromagnet. This wavefunction is expected to be a good "zeroth order" wavefunction in the superconducting regime of dopings. The three-spin polaron is stabilized by the hopping terms rather than the copper-oxygen antiferromagnetic coupling Jpd. Considering the effect of the copper-copper antiferromagnetic coupling Jdd, we show that the three-spin polaron cannot be pure Emery (Dg), but must have a non-negligible amount of doublet-u (Du) character for hopping stabilization. Finally, an estimate is made for the magnitude of the attractive coupling of oxygen holes.Chapter 2 presents an exact solution to a strongly coupled Hamiltonian for the motion of oxygen holes in a 1-D Cu-O lattice. The Hamiltonian separates into two pieces: one for the spin degrees of freedom of the copper and oxygen holes, and the other for the charge degrees of freedom of the oxygen holes. The spinon part becomes the Heisenberg antiferromagnet in 1-D that is soluble by the Bethe Ansatz. The holon piece is also soluble by a Bethe Ansatz with simple algebraic relations for the phase shifts.Finally, we show that the nearest neighbor Cu-Cu spin correlation increases linearly with doping and becomes positive at x [...] 0.70.

  20. Apparatus and process for making a superconducting magnet for particle accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jarabak, A.J.; Sunderman, W.H.; Mendola, E.G.

    1992-03-10

    This patent describes an apparatus for manufacturing a coil of superconducting material. It comprises a horizontally disposed winding mandrel; an adjustable support for receiving a spool of superconducting material, the spool having a vertical axis; means for translating the spool of superconducting material in a generally oval path around the winding mandrel so that the superconducting material is de-reeled from the spool, in order to wind a predetermined amount of superconducting material onto the mandrel, such that a coil of superconducting material is formed; means for guiding the superconducting material from the spool so as to deliver the superconducting materialmore » to the winding mandrel on a plane perpendicular to the vertical axis of the spool and parallel with a winding plane on the winding mandrel; means for imparting a tensioning force on the superconducting material as it is guided from the spool; means for rotating the winding mandrel about the horizontal axis thereof; means for clamping the superconducting material against the winding mandrel as the wire is wound thereon; means for securing the coil to the winding mandrel for lifting mandrel with the coil thereon; and means for curing the coil of superconducting material whereby a finished coil of superconducting material is formed.« less

  1. Analysis of Mechanical Stresses/Strains in Superconducting Wire

    NASA Astrophysics Data System (ADS)

    Barry, Matthew; Chen, Jingping; Zhai, Yuhu

    2016-10-01

    The optimization of superconducting magnet performance and development of high-field superconducting magnets will greatly impact the next generation of fusion devices. A successful magnet development, however, relies deeply on the understanding of superconducting materials. Among the numerous factors that impact a superconductor's performance, mechanical stress is the most important because of the extreme operation temperature and large electromagnetic forces. In this study, mechanical theory is used to calculate the stresses/strains in typical superconducting strands, which consist of a stabilizer, a barrier, a matrix and superconducting filaments. Both thermal loads and mechanical loads are included in the analysis to simulate operation conditions. Because this model simulates the typical architecture of major superconducting materials, such as Nb3Sn, MgB2, Bi-2212 etc., it provides a good overall picture for us to understand the behavior of these superconductors in terms of thermal and mechanical loads. This work was supported in part by the U.S. Department of Energy, Office of Science, Office of Workforce Development for Teachers and Scientists (WDTS) under the Science Undergraduate Laboratory Internship (SULI) program.

  2. Phase diagram and neutron spin resonance of superconducting NaFe 1 - x Cu x As

    DOE PAGES

    Tan, Guotai; Song, Yu; Zhang, Rui; ...

    2017-02-03

    In this paper, we use transport and neutron scattering to study the electronic phase diagram and spin excitations of NaFe 1-xCu xAs single crystals. Similar to Co- and Ni-doped NaFeAs, a bulk superconducting phase appears near x≈2% with the suppression of stripe-type magnetic order in NaFeAs. Upon further increasing Cu concentration the system becomes insulating, culminating in an antiferromagnetically ordered insulating phase near x≈50%. Using transport measurements, we demonstrate that the resistivity in NaFe 1-xCu xAs exhibits non-Fermi-liquid behavior near x≈1.8%. Our inelastic neutron scattering experiments reveal a single neutron spin resonance mode exhibiting weak dispersion along c axis inmore » NaFe 0.98Cu 0.02As. The resonance is high in energy relative to the superconducting transition temperature T c but weak in intensity, likely resulting from impurity effects. These results are similar to other iron pnictides superconductors despite that the superconducting phase in NaFe 1-xCu xAs is continuously connected to an antiferromagnetically ordered insulating phase near x≈50% with significant electronic correlations. Finally, therefore, electron correlations is an important ingredient of superconductivity in NaFe 1-xCu xAs and other iron pnictides.« less

  3. Possible exotic superconductivity in the monolayer and bilayer silicene

    NASA Astrophysics Data System (ADS)

    Yang, Fan; Yao, Yugui; Zhang, Li-Da; Liu, Cheng-Cheng; Liu, Feng

    2014-03-01

    Silicene, the silicon-based counterpart of graphene, has attracted a lot of research interest since synthesized recently. Similar honeycomb lattice structures of the two systems let them share most of their marvelous physical properties. The most important structural difference between the two systems lie in the noncoplanar lowbuckled geometry in silicene, which brings up a lot of interesting physical consequence to the system. Here we focus on possible exotic superconductivity (SC) in the family, via random phase approximation (RPA) study on the relevant Hubbard-models. Two systems of this family are studied, including the monolayer and bilayer silicene. For the former system, we found an electric-field driven quantum phase transition (QPT) from chiral d+id to f-wave SC when the field is perpendicular to the silicene plane. For the latter system, we found that even the undoped system is intrinsically metallic and superconducting with chiral d+id symmetry and tunable Tc which can be high . Our study not only provides a new playground for the study of the exotic SC, but also brings a new epoch to the familiar Si industry.

  4. Passive microwave device applications of high T(c) superconducting thin films

    NASA Astrophysics Data System (ADS)

    Lyons, W. G.; Withers, R. S.

    1990-11-01

    Superconductors with a transition temperature T(c) from 40 K to 125 K are analyzed, with focus placed on their behavior around the boiling point of liquid nitrogen (77 K). It is shown that high-T(c) superconductors are similar to conventional type-II superconductors with paired holes instead of paired electrons. The nature of the electromagnetic response of a superconductor is illustrated with a two-fluid model, and surface resistance and conductor loss are assessed. Several microwave applications of high-T(c) superconductors are outlined including a six-pole dielectric loaded cavity filter used in multiplexers on current communication satellites and a four-pole superconducting filter. An implementation of a chirp filter using superconducting striplines with a cascaded array of backward-wave couplers to achieve a downchirp is presented as well as a 60-GHz phased antenna utilizing microstrip lines in the feed network.

  5. Superconductivity in Al-substituted Ba8Si46 clathrates

    NASA Astrophysics Data System (ADS)

    Li, Yang; Garcia, Jose; Chen, Ning; Liu, Lihua; Li, Feng; Wei, Yuping; Bi, Shanli; Cao, Guohui; Feng, Z. S.

    2013-05-01

    There is a great deal of interest vested in the superconductivity of Si clathrate compounds with sp3 network, in which the structure is dominated by strong covalent bonds among silicon atoms, rather than the metallic bonding that is more typical of traditional superconductors. A joint experimental and theoretical investigation of superconductivity in Al-substituted type-I silicon clathrates is reported. Samples of the general formula Ba8Si46-xAlx, with different values of x were prepared. With an increase in the Al composition, the superconducting transition temperature TC was observed to decrease systematically. The resistivity measurement revealed that Ba8Si42Al4 is superconductive with transition temperature at TC = 5.5 K. The magnetic measurements showed that the bulk superconducting Ba8Si42Al4 is a type II superconductor. For x = 6 sample Ba8Si40Al6, the superconducting transition was observed down to TC = 4.7 K which pointed to a strong suppression of superconductivity with increasing Al content as compared with TC = 8 K for Ba8Si46. Suppression of superconductivity can be attributed primarily to a decrease in the density of states at the Fermi level, caused by reduced integrity of the sp3 hybridized networks as well as the lowering of carrier concentration. These results corroborated by first-principles calculations showed that Al substitution results in a large decrease of the electronic density of states at the Fermi level, which also explains the decreased superconducting critical temperature within the BCS framework. The work provided a comprehensive understanding of the doping effect on superconductivity of clathrates.

  6. Recent advances in superconducting-mixer simulations

    NASA Technical Reports Server (NTRS)

    Withington, S.; Kennedy, P. R.

    1992-01-01

    Over the last few years, considerable progress have been made in the development of techniques for fabricating high-quality superconducting circuits, and this success, together with major advances in the theoretical understanding of quantum detection and mixing at millimeter and submillimeter wavelengths, has made the development of CAD techniques for superconducting nonlinear circuits an important new enterprise. For example, arrays of quasioptical mixers are now being manufactured, where the antennas, matching networks, filters and superconducting tunnel junctions are all fabricated by depositing niobium and a variety of oxides on a single quartz substrate. There are no adjustable tuning elements on these integrated circuits, and therefore, one must be able to predict their electrical behavior precisely. This requirement, together with a general interest in the generic behavior of devices such as direct detectors and harmonic mixers, has lead us to develop a range of CAD tools for simulating the large-signal, small-signal, and noise behavior of superconducting tunnel junction circuits.

  7. Strongly correlated superconductivity and quantum criticality

    NASA Astrophysics Data System (ADS)

    Tremblay, A.-M. S.

    Doped Mott insulators and doped charge-transfer insulators describe classes of materials that can exhibit unconventional superconducting ground states. Examples include the cuprates and the layered organic superconductors of the BEDT family. I present results obtained from plaquette cellular dynamical mean-field theory. Continuous-time quantum Monte Carlo evaluation of the hybridization expansion allows one to study the models in the large interaction limit where quasiparticles can disappear. The normal state which is unstable to the superconducting state exhibits a first-order transition between a pseudogap and a correlated metal phase. That transition is the finite-doping extension of the metal-insulator transition obtained at half-filling. This transition serves as an organizing principle for the normal and superconducting states of both cuprates and doped organic superconductors. In the less strongly correlated limit, these methods also describe the more conventional case where the superconducting dome surrounds an antiferromagnetic quantum critical point. Sponsored by NSERC RGPIN-2014-04584, CIFAR, Research Chair in the Theory of Quantum Materials.

  8. All-metal superconducting planar microwave resonator

    NASA Astrophysics Data System (ADS)

    Horsley, Matt; Pereverzev, Sergey; Dubois, Jonathon; Friedrich, Stephan; Qu, Dongxia; Libby, Steve; Lordi, Vincenzo; Carosi, Gianpaolo; Stoeffl, Wolfgang; Chapline, George; Drury, Owen; Quantum Noise in Superconducting Devices Team

    There is common agreement that noise and resonance frequency jitter in superconducting microwave planar resonators are caused by presence of two-level systems, or fluctuators, in resonator materials- in dielectric substrate, in superconducting and dielectric layers and on the boundaries and interfaces. Scaling of noise with device dimensions indicate that fluctuators are likely concentrated around boundaries; physical nature of those fluctuators remains unclear. The presence of dielectrics is not necessary for the superconducting device functionality, and one can ask question about properties of all-metal device, where dielectric substrate and oxide films on metal are absent. Resonator made from of thin conducting layer with cuts in it is usually called slot line resonator. We report on the design, fabrication and initial testing of multiple split rings slot line resonator made out of thin molybdenum plate. This work is being funded as part of a three year strategic initiative (LDRD 16-SI-004) to better understand noise in superconducting devices.

  9. Antiferromagnetism, confinement and spin response in the QED(3) effective theory of high-temperature superconductivity

    NASA Astrophysics Data System (ADS)

    Seradjeh, Babak Hosseyni

    In this thesis, we study the effective theory of a phase-fluctuating d-wave superconductor at zero temperature, formulated by quantum electrodynamics in three space-time dimensions (QED3). This theory describes the quantum critical behaviour in underdoped high-temperature superconductors in terms of an emergent gauge field. The gauge field couples minimally to nodal spin degrees of freedom (spinons) at low energies. It is massive in the superconductor but exhibits Maxwell dynamics when superconductivity is destroyed by strong phase fluctuations of the Cooper pairs. We show that, when dynamical chiral symmetry breaking in QED3 is supplemented by residual interactions, namely, the velocity anisotropy around the nodes, short-range repulsion between electrons, and nonlinear effects of dispersion (all irrelevant for the critical behaviour itself), the loss of superconductivity gives rise to an antiferromagnetic state, in accord with observation. Then, we turn to the problem of confinement of spinons outside the superconducting phase. We assume that the gauge group is a compact U(1) and, thus, allows for monopole configurations. In the absence of fermions, the interaction between monopoles is Coulombic, monopoles form a free plasma, and static fermionic charge is confined for all values of the gauge coupling by a linear potential mediated by free monopoles. We show that this permanent confinement survives in the presence of dynamical fermionic matter. This work comprises three separate studies. We first support our claim, for relativistic fermions, by an electrostatic study of the monopole gas. This is backed up by a controlled renormalization group analysis on the equivalent sine-Gordon theory. In the second study, we extend these findings to the non-relativistic case, with a spinon Fermi surface. In the last study, we provide a variational approach to the problem, in agreement with our other works. Finally, we focus our attention on the more practical application of

  10. Preliminary study of superconducting bulk magnets for Maglev

    NASA Astrophysics Data System (ADS)

    Fujimoto, Hiroyuki; Kamijo, Hiroki

    Recent development shows that melt-processed YBaCuO (Y123) or Rare Earth (RE)123 superconductors have a high Jc at 77 K and high magnetic field, leading to high field application as a superconducting quasi-permanent bulk magnet with the liquid nitrogen refrigeration. One of the promising applications is a superconducting magnet for the magnetically levitated (Maglev) train. We discuss a superconducting bulk magnet for the Maglev train in the aspect of a preliminary design of the bulk magnet and also processing for (L)REBaCuO bulk superconductors and their characteristic superconducting properties.

  11. Feasibility of turbidity removal by high-gradient superconducting magnetic separation.

    PubMed

    Zeng, Hua; Li, Yiran; Xu, Fengyu; Jiang, Hao; Zhang, Weimin

    2015-01-01

    Several studies have focused on pollutant removal by magnetic seeding and high-gradient superconducting magnetic separation (HGSMS). However, few works reported the application of HGSMS for treating non-magnetic pollutants by an industrial large-scale system. The feasibility of turbidity removal by a 600 mm bore superconducting magnetic separation system was evaluated in this study. The processing parameters were evaluated by using a 102 mm bore superconducting magnetic separation system that was equipped with the same magnetic separation chamber that was used in the 600 mm bore system. The double-canister system was used to process water pollutants. Analytical grade magnetite was used as a magnetic seed and the turbidity of the simulated raw water was approximately 110 NTU, and the effects of polyaluminum chloride (PAC) and magnetic seeds on turbidity removal were evaluated. The use of more PAC and magnetic seeds had few advantages for the HGSMS at doses greater than 8 and 50 mg/l, respectively. A magnetic intensity of 5.0 T was beneficial for HGSMS, and increasing the flow rate through the steel wool matrix decreased the turbidity removal efficiency. In the breakthrough experiments, 90% of the turbidity was removed when 100 column volumes were not reached. The processing capacity of the 600 mm bore industry-scale superconducting magnetic separator for turbidity treatment was approximately 78.0 m(3)/h or 65.5 × 10(4) m(3)/a. The processing cost per ton of water for the 600 mm bore system was 0.1 $/t. Thus, the HGSMS separator could be used in the following special circumstances: (1) when adequate space is not available for traditional water treatment equipment, especially the sedimentation tank, and (2) when decentralized sewage treatment HGSMS systems are easier to transport and install.

  12. Superconductivity in Bi/Ni bilayer system: Clear role of superconducting phases found at Bi/Ni interface

    NASA Astrophysics Data System (ADS)

    Liu, L. Y.; Xing, Y. T.; Merino, I. L. C.; Micklitz, H.; Franceschini, D. F.; Baggio-Saitovitch, E.; Bell, D. C.; Solórzano, I. G.

    2018-01-01

    Bi/Ni bilayers with varying Bi and Ni layer thicknesses have been prepared by (a) pulsed-laser deposition (PLD) at 300 K and (b) thermal evaporation at 4.2 K. A two-step superconducting transition appears on the electrical transport measurements in the samples prepared by PLD. High-resolution transmission and scanning transmission electron microscopy, supported by energy-dispersive x-ray spectroscopy (EDXS) analysis, reveal that two superconducting intermetallic alloys, namely NiBi and NiBi3, are formed by interdiffusion, if the bilayers are prepared at 300 K. The Tc of the two phases behaves very differently in an external magnetic field and the upper critical magnetic fields at zero temperature [Bc 2(0 ) ] were estimated as 1.1 and 7.4 T, respectively. The lower value corresponds to the Bc 2(0) of NiBi3 phase and the higher one is supposed to be of NiBi. These alloys are responsible for the superconductivity and the two-step transition appearing in the Bi/Ni bilayer system. Surprisingly, the Bi-rich phase (NiBi3) is formed near the Ni layer, while the Ni-rich phase (NiBi) is formed far from the Ni layer. The EDXS analysis at nanometer scale clearly shows an unusual increase of Ni concentration near the interface of Bi/substrate. The limited thickness of Bi layer in the interdiffusion process results in an unexpected distribution of Ni concentration. Samples prepared at 4.2 K after annealing at 300 K do not show any superconductivity, which indicates that a nonepitaxial Bi/Ni interface does not induce superconductivity in the case interdiffusion does not occur. These results offer a deeper understanding of the superconductivity in the Bi/Ni bilayer system.

  13. Superconductivity in electron-doped arsenene

    NASA Astrophysics Data System (ADS)

    Kong, Xin; Gao, Miao; Yan, Xun-Wang; Lu, Zhong-Yi; Xiang, Tao

    2018-04-01

    Based on the first-principles density functional theory electronic structure calculation, we investigate the possible phonon-mediated superconductivity in arsenene, a two-dimensional buckled arsenic atomic sheet, under electron doping. We find that the strong superconducting pairing interaction results mainly from the $p_z$-like electrons of arsenic atoms and the $A_1$ phonon mode around the $K$ point, and the superconducting transition temperature can be as high as 30.8 K in the arsenene with 0.2 doped electrons per unit cell and 12\\% applied biaxial tensile strain. This transition temperature is about ten times higher than that in the bulk arsenic under high pressure. It is also the highest transition temperature that is predicted for electron-doped two-dimensional elemental superconductors, including graphene, silicene, phosphorene, and borophene.

  14. Strain tolerant microfilamentary superconducting wire

    DOEpatents

    Finnemore, D.K.; Miller, T.A.; Ostenson, J.E.; Schwartzkopf, L.A.; Sanders, S.C.

    1993-02-23

    A strain tolerant microfilamentary wire capable of carrying superconducting currents is provided comprising a plurality of discontinuous filaments formed from a high temperature superconducting material. The discontinuous filaments have a length at least several orders of magnitude greater than the filament diameter and are sufficiently strong while in an amorphous state to withstand compaction. A normal metal is interposed between and binds the discontinuous filaments to form a normal metal matrix capable of withstanding heat treatment for converting the filaments to a superconducting state. The geometry of the filaments within the normal metal matrix provides substantial filament-to-filament overlap, and the normal metal is sufficiently thin to allow supercurrent transfer between the overlapped discontinuous filaments but is also sufficiently thick to provide strain relief to the filaments.

  15. Two distinct superconducting phases in LiFeAs

    PubMed Central

    Nag, P. K.; Schlegel, R.; Baumann, D.; Grafe, H.-J.; Beck, R.; Wurmehl, S.; Büchner, B.; Hess, C.

    2016-01-01

    A non-trivial temperature evolution of superconductivity including a temperature-induced phase transition between two superconducting phases or even a time-reversal symmetry breaking order parameter is in principle expected in multiband superconductors such as iron-pnictides. Here we present scanning tunnelling spectroscopy data of LiFeAs which reveal two distinct superconducting phases: at = 18 K a partial superconducting gap opens, evidenced by subtle, yet clear features in the tunnelling spectra, i.e. particle-hole symmetric coherence peak and dip-hump structures. At Tc = 16 K, these features substantiate dramatically and become characteristic of full superconductivity. Remarkably, the distance between the dip-hump structures and the coherence peaks remains practically constant in the whole temperature regimeT ≤ . This rules out the connection of the dip-hump structures to an antiferromagnetic spin resonance. PMID:27297474

  16. Adiabatic two-qubit state preparation in a superconducting qubit system

    NASA Astrophysics Data System (ADS)

    Filipp, Stefan; Ganzhorn, Marc; Egger, Daniel; Fuhrer, Andreas; Moll, Nikolaj; Mueller, Peter; Roth, Marco; Schmidt, Sebastian

    The adiabatic transport of a quantum system from an initial eigenstate to its final state while remaining in the instantaneous eigenstate of the driving Hamiltonian can be used for robust state preparation. With control over both qubit frequencies and qubit-qubit couplings this method can be used to drive the system from initially trivial eigenstates of the uncoupled qubits to complex entangled multi-qubit states. In the context of quantum simulation, the final state may encode a non-trivial ground-state of a complex molecule or, in the context of adiabatic quantum computing, the solution to an optimization problem. Here, we present experimental results on a system comprising fixed-frequency superconducting transmon qubits and a tunable coupler to adjust the qubit-qubit coupling via parametric frequency modulation. We realize different types of interaction by adjusting the frequency of the modulation. A slow variation of drive amplitude and phase leads to an adiabatic steering of the system to its final state showing entanglement between the qubits.

  17. Gate-Induced Interfacial Superconductivity in 1T-SnSe2.

    PubMed

    Zeng, Junwen; Liu, Erfu; Fu, Yajun; Chen, Zhuoyu; Pan, Chen; Wang, Chenyu; Wang, Miao; Wang, Yaojia; Xu, Kang; Cai, Songhua; Yan, Xingxu; Wang, Yu; Liu, Xiaowei; Wang, Peng; Liang, Shi-Jun; Cui, Yi; Hwang, Harold Y; Yuan, Hongtao; Miao, Feng

    2018-02-14

    Layered metal chalcogenide materials provide a versatile platform to investigate emergent phenomena and two-dimensional (2D) superconductivity at/near the atomically thin limit. In particular, gate-induced interfacial superconductivity realized by the use of an electric-double-layer transistor (EDLT) has greatly extended the capability to electrically induce superconductivity in oxides, nitrides, and transition metal chalcogenides and enable one to explore new physics, such as the Ising pairing mechanism. Exploiting gate-induced superconductivity in various materials can provide us with additional platforms to understand emergent interfacial superconductivity. Here, we report the discovery of gate-induced 2D superconductivity in layered 1T-SnSe 2 , a typical member of the main-group metal dichalcogenide (MDC) family, using an EDLT gating geometry. A superconducting transition temperature T c ≈ 3.9 K was demonstrated at the EDL interface. The 2D nature of the superconductivity therein was further confirmed based on (1) a 2D Tinkham description of the angle-dependent upper critical field B c2 , (2) the existence of a quantum creep state as well as a large ratio of the coherence length to the thickness of superconductivity. Interestingly, the in-plane B c2 approaching zero temperature was found to be 2-3 times higher than the Pauli limit, which might be related to an electric field-modulated spin-orbit interaction. Such results provide a new perspective to expand the material matrix available for gate-induced 2D superconductivity and the fundamental understanding of interfacial superconductivity.

  18. Levitation properties of superconducting magnetic bearings using superconducting coils and bulk superconductors

    NASA Astrophysics Data System (ADS)

    Arai, Yuuki; Seino, Hiroshi; Nagashima, Ken

    2010-11-01

    We have been developing a flywheel energy storage system (FESS) with 36 MJ energy capacity for a railway system with superconducting magnetic bearings (SMBs). We prepared two kinds of models using superconducting coils and bulk superconductors (SCs). One model demonstrated SMB load capacity of 20 kN and the other model proved non-contact stable levitation and non-contact rotation with SMBs. Combining these results, the feasibility of a 36 MJ energy capacity FESS with SMBs completely inside a cryostat has been confirmed. In this paper, we report the levitation properties of SMBs in these models.

  19. Summary of development of 70 MW class model superconducting generator--research and development of superconducting for electric power application

    NASA Astrophysics Data System (ADS)

    Oishi, Ikuo; Nishijima, Kenichi

    2002-03-01

    A 70 MW class superconducting model generator was designed, manufactured, and tested from 1988 to 1999 as Phase I, which was Japan's national project on applications of superconducting technologies to electric power apparatuses that was commissioned by NEDO as part of New Sunshine Program of AIST and MITI. Phase II then is now being carried out by almost same organization as Phase I. With the development of the 70 MW class superconducting model generator, technologies for a 200 MW class pilot generator were established. The world's largest output (79 MW), world's longest continuous operation (1500 h), and other sufficient characteristics were achieved on the 70 MW class superconducting model generator, and key technologies of design and manufacture required for the 200 MW class pilot generator were established. This project contributed to progress of R&D of power apparatuses. Super-GM has started the next project (Phase II), which shall develop the key technologies for larger-capacity and more-compact machine and is scheduled from 2000 to 2003. Phase II shall be the first step for commercialization of superconducting generator.

  20. Quantum fluctuations of the superconducting cosmic string

    NASA Technical Reports Server (NTRS)

    Zhang, Shoucheng

    1987-01-01

    Quantum fluctuations of the proposed superconducting string with Bose charge carriers are studied in terms of the vortices on the string world sheet. In the thermodynamical limit, it is found that they appear in the form of free vortices rather than as bound pairs. This fluctuation mode violates the topological conservation law on which superconductivity is based. However, this limit may not be reached. The critical size of the superconducting string is estimated as a function of the coupling constants involved.

  1. High Temperature Superconducting Compounds

    DTIC Science & Technology

    1992-11-30

    broadened interest in superconductivity in both the engineering and scientific communities. Superconducting materials may be offered as a solution to a...YBa2Cu307- has been made. For yttrium, the tris( isopropoxide ) was used exclusively, while the use of both Ba(O-i-Pr)2 and Ba(OCH2Ch2OEt)2 (prepared in... solutions of Cu(acac)2, Ba(OCH2CH 2OEt)2 , and Y(O-i-Pr)3 were spin coated on SrTiO 3 (100) and fired under oxygen to give oriented (b axis normal to the

  2. Method and means for separating and classifying superconductive particles

    DOEpatents

    Park, Jin Y.; Kearney, Robert J.

    1991-01-01

    The specification and drawings describe a series of devices and methods for classifying and separating superconductive particles. The superconductive particles may be separated from non-superconductive particles, and the superconductive particles may be separated by degrees of susceptibility to the Meissner effect force. The particles may also be simultaneously separated by size or volume and mass to obtain substantially homogeneous groups of particles. The separation techniques include levitation, preferential sedimentation and preferential concentration. Multiple separation vector forces are disclosed.

  3. Experimental investigations of recent anomalous results in superconductivity

    NASA Astrophysics Data System (ADS)

    Souw, Victor K.

    2000-12-01

    This thesis examines three recent anomalous results associated with irreversibility in type-II superconductivity: (1) The magnetic properties of the predicted superconductors LiBeH3 and Li2BeH 4, (2) the paramagnetic transition near T = Tc in Nb, and (3) a noise transition in a YBa2Cu3O7-delta thin film near the vortex-solid transition. The investigation of Li 2BeH4 and LiBeH3 was prompted by theoretical predictions of room-temperature superconductivity for Li2BeH4 and LiBeH3 and a recent report that Li2BeH4 showed magnetic irreversibilities similar to those of type-II superconductors. A modified experimental method is introduced in order to avoid artifacts due to background signals. The resulting data is suggestive of a superparamagnetic impurity from one of the reagents used in the synthesis and after subtracting this contribution, the temperature-dependent susceptibilities of Li2 BeH4 and LiBeH3 are estimated. However, no magnetic irreversibility suggestive of superconductivity is observed. The anomalous paramagnetic transition in Nb is intriguing because Nb does not share the d-wave order parameter symmetry often invoked to explain the phenomenon in other superconductors. A modified experimental method was developed in order to avoid instrumental artifacts known to produce a similar apparently paramagnetic response, but the results of this method indicate that the paramagnetic response is a physical property of the sample. Finally, a very sharp noise transition in a YBa2Cu3O7-delta thin film was found to be distinct from previously reported features in the voltage noise commonly associated with vortex fluctuations near the irreversibility line. In each of these three cases the examination of experimental techniques is an integral part of the investigation of novel vortex behavior near the onset of irreversibility.

  4. Experimental Investigation of Superconducting Synchronous Machines

    DTIC Science & Technology

    The report details the design and testing of a synchronous motor with superconducting field and armature windings. Data are furnished on the...as a generator with its armature in LN2 and in the superconducting state are given. Data are given on the machine operated as a synchronous motor. The

  5. Superconducting Microelectronics.

    ERIC Educational Resources Information Center

    Henry, Richard W.

    1984-01-01

    Discusses superconducting microelectronics based on the Josephson effect and its advantages over conventional integrated circuits in speed and sensitivity. Considers present uses in standards laboratories (voltage) and in measuring weak magnetic fields. Also considers future applications in superfast computer circuitry using Superconducting…

  6. Commissioning of the cryogenics of the LHC long straight sections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perin, A.; Casas-Cubillos, J.; Claudet, S.

    2010-01-01

    The LHC is made of eight circular arcs interspaced with eight Long Straight Sections (LSS). Most powering interfaces to the LHC are located in these sections where the particle beams are focused and shaped for collision, cleaning and acceleration. The LSSs are constituted of several unique cryogenic devices and systems like electrical feed-boxes, standalone superconducting magnets, superconducting links, RF cavities and final focusing superconducting magnets. This paper presents the cryogenic commissioning and the main results obtained during the first operation of the LHC Long Straight Sections.

  7. Fidelity Study of Superconductivity in Extended Hubbard Models

    NASA Astrophysics Data System (ADS)

    Plonka, Nachum; Jia, Chunjing; Moritz, Brian; Wang, Yao; Devereaux, Thomas

    2015-03-01

    The role of strong electronic correlations on unconventional superconductivity remains an important open question. Here, we explore the influence of long-range Coulomb interactions, present in real material systems, through nearest and next-nearest neighbor extended Hubbard interactions in addition to the usual on-site terms. Utilizing large scale, numerical exact diagonalization, we analyze the signatures of superconductivity in the ground states through the fidelity metric of quantum information theory. We find that these extended interactions enhance charge fluctuations with various wave vectors. These suppress superconductivity in general, but in certain parameter regimes superconductivity is sustained. This has implications for tuning extended interactions in real materials.

  8. Tailoring Superconductivity with Quantum Dislocations.

    PubMed

    Li, Mingda; Song, Qichen; Liu, Te-Huan; Meroueh, Laureen; Mahan, Gerald D; Dresselhaus, Mildred S; Chen, Gang

    2017-08-09

    Despite the established knowledge that crystal dislocations can affect a material's superconducting properties, the exact mechanism of the electron-dislocation interaction in a dislocated superconductor has long been missing. Being a type of defect, dislocations are expected to decrease a material's superconducting transition temperature (T c ) by breaking the coherence. Yet experimentally, even in isotropic type I superconductors, dislocations can either decrease, increase, or have little influence on T c . These experimental findings have yet to be understood. Although the anisotropic pairing in dirty superconductors has explained impurity-induced T c reduction, no quantitative agreement has been reached in the case a dislocation given its complexity. In this study, by generalizing the one-dimensional quantized dislocation field to three dimensions, we reveal that there are indeed two distinct types of electron-dislocation interactions. Besides the usual electron-dislocation potential scattering, there is another interaction driving an effective attraction between electrons that is caused by dislons, which are quantized modes of a dislocation. The role of dislocations to superconductivity is thus clarified as the competition between the classical and quantum effects, showing excellent agreement with existing experimental data. In particular, the existence of both classical and quantum effects provides a plausible explanation for the illusive origin of dislocation-induced superconductivity in semiconducting PbS/PbTe superlattice nanostructures. A quantitative criterion has been derived, in which a dislocated superconductor with low elastic moduli and small electron effective mass and in a confined environment is inclined to enhance T c . This provides a new pathway for engineering a material's superconducting properties by using dislocations as an additional degree of freedom.

  9. Rotating Cryocooler for Superconducting Motor

    NASA Astrophysics Data System (ADS)

    Ko, Junseok; Jeong, Sangkwon; Kim, Hongseong; Jung, Jeheon; Choi, Jaeyoung; In, Sehwan; Sohn, Myunghwan; Kwon, Young-Kil

    2006-04-01

    A single-stage coaxial pulse tube refrigerator has been designed for HTS (High Temperature Superconductor) motor application. This paper discusses a practical realization of an advanced cooling method for superconducting rotor, on-board cryocooler. When a cryocooler is considered to be mounted on the superconducting rotor, the following two factors must be satisfied for practical application. First, the on-board cryocooler should not disturb the high-speed revolution of the rotor. Second, at the same time, the high-speed revolution of the rotor should not deteriorate the cooling performance of the cryocooler. These mutual technical demands restrict the type of cryocooler suitable for high-speed rotating environment. We select a Stirling-type coaxial pulse tube cryocooler and incorporate it on the 1800-rpm superconducting motor mock-up. The pulse tube cryocooler is designed with an adiabatic model and a various loss mechanism analysis. The no-load temperature is approximately 100 K with less than 150 W electric input power. The axisymmetric configuration of the fabricated cryocooler does not produce any undesirable effect at high-speed rotation. Even if the thermal performance of the rotating pulse tube cryocooler is not satisfactory, the feasibility of simple on-board cooling method for superconducting rotor is confirmed in this paper.

  10. NASA superconducting magnetic mirror facility

    NASA Technical Reports Server (NTRS)

    Reinmann, J. J.; Swanson, M. C.; Nichols, C. R.; Obloy, S. J.; Nagy, L. A.; Brady, F. J.

    1973-01-01

    This report summarizes the design details and initial test results of a superconducting magnetic mirror facility that has been constructed at NASA Lewis Research Center for use in thermonuclear research. The magnet system consists of four solenoidal coils which are individually rated at 5.0 T. Each coil is composed of an inner, middle, and outer winding. The inner winding is wound of stabilized Nb3SN superconducting ribbon, and the middle and outer windings are wound of stabilized Nb-Ti superconducting wire. When arranged in the mirror geometry, the four coils will produce 8.7 T at the mirrors and a 1.8 mirror ratio. The magnet has a 41-cm diameter clear bore which is open to atmosphere. Distance between the mirrors is 111 cm. Presently there are only three magnets in the facility; the fourth magnet is being rebuilt.

  11. Sensing with Superconducting Point Contacts

    PubMed Central

    Nurbawono, Argo; Zhang, Chun

    2012-01-01

    Superconducting point contacts have been used for measuring magnetic polarizations, identifying magnetic impurities, electronic structures, and even the vibrational modes of small molecules. Due to intrinsically small energy scale in the subgap structures of the supercurrent determined by the size of the superconducting energy gap, superconductors provide ultrahigh sensitivities for high resolution spectroscopies. The so-called Andreev reflection process between normal metal and superconductor carries complex and rich information which can be utilized as powerful sensor when fully exploited. In this review, we would discuss recent experimental and theoretical developments in the supercurrent transport through superconducting point contacts and their relevance to sensing applications, and we would highlight their current issues and potentials. A true utilization of the method based on Andreev reflection analysis opens up possibilities for a new class of ultrasensitive sensors. PMID:22778630

  12. Lighting up superconducting stripes

    NASA Astrophysics Data System (ADS)

    Ergeçen, Emre; Gedik, Nuh

    2018-02-01

    Cuprate superconductors display a plethora of complex phases as a function of temperature and carrier concentration, the understanding of which could provide clues into the mechanism of superconductivity. For example, when about one-eighth of the conduction electrons are removed from the copper oxygen planes in cuprates such as La2‑xBaxCuO4 (LBCO), the doped holes (missing electrons) organize into one-dimensional stripes (1). The bulk superconducting transition temperature (Tc) is greatly reduced, and just above Tc, electrical transport perpendicular to the planes (along the c axis) becomes resistive, but parallel to the copper oxygen planes, resistivity remains zero for a range of temperatures (2). It was proposed a decade ago (3) that this anisotropic behavior is caused by pair density waves (PDWs); superconducting Cooper pairs exist along the stripes within the planes but cannot tunnel to the adjacent layers. On page 575 of this issue, Rajasekaran et al. (4) now report detection of this state in LBCO using nonlinear reflection of high-intensity terahertz (THz) light.

  13. Magnetically leviated superconducting bearing

    DOEpatents

    Weinberger, Bernard R.; Lynds, Jr., Lahmer

    1993-01-01

    A magnetically levitated superconducting bearing includes a magnet (2) mounted on a shaft (12) that is rotatable around an axis of rotation and a Type II superconductor (6) supported on a stator (14) in proximity to the magnet (2). The superconductor (6) is positioned so that when it is cooled to its superconducting state in the presence of a magnetic field, it interacts with the magnet (2) to produce an attractive force that levitates the magnet (2) and supports a load on the shaft (12). The interaction between the superconductor (6) and magnet(2) also produces surface screening currents (8) that generate a repulsive force perpendicular to the load. The bearing also has means for maintaining the superconductor at a temperature below its critical temperature (16, 18). The bearing could also be constructed so the magnet (2) is supported on the stator (14) and the superconductor (6) is mounted on the shaft (12). The bearing can be operated by cooling the superconductor (6) to its superconducting state in the presence of a magnetic field.

  14. Superconducting traveling wave accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farkas, Z.D.

    1984-11-01

    This note considers the applicability of superconductivity to traveling wave accelerators. Unlike CW operation of a superconducting standing wave or circulating wave accelerator section, which requires improvement factors (superconductor conductivity divided by copper conductivity) of about 10/sup 6/ in order to be of practical use, a SUperconducting TRaveling wave Accelerator, SUTRA, operating in the pulsed mode requires improvement factors as low as about 10/sup 3/, which are attainable with niobium or lead at 4.2K, the temperature of liquid helium at atmospheric pressure. Changing from a copper traveling wave accelerator to SUTRA achieves the following. (1) For a given gradient SUTRAmore » reduces the peak and average power requirements typically by a factor of 2. (2) SUTRA reduces the peak power still further because it enables us to increase the filling time and thus trade pulse width for gradient. (3) SUTRA makes possible a reasonably long section at higher frequencies. (4) SUTRA makes possible recirculation without additional rf average power. 8 references, 6 figures, 1 table.« less

  15. Superconducting generators and motors and methods for employing same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tomsic, Michael J.; Long, Larry

    A superconducting electrical generator or motor having a plurality of cryostats is described. The cryostats contain coolant and a first cryostat encloses at least one of a plurality of superconducting coils. A first coil is in superconducting electrical communication with a second coil contained in a second cryostat through a superconducting conduction cooling cable enclosing a conductor. The first cryostat and the second cryostat may be in fluid communication through at least one cryogen channel within the at least one superconducting conduction cooling cable. In other embodiments, none of the plurality of cryostats may be in fluid communication and themore » cable may be cooled by conduction along the conductor from the first or second cryostat, or from both. The conductor may have different segments at temperatures equal to or above the temperature of the coolant and the superconducting conduction cooling cables may be connected through quick connect fittings.« less

  16. μ SR Investigation of Superconducting PbTaSe2

    NASA Astrophysics Data System (ADS)

    Wilson, Murray; Hallas, Alannah; Cai, Yipeng; Guo, Shengli; Gong, Zizhou; Ali, Mazhar; Cava, Robert; Uemura, Yasutomo; Luke, Graeme

    Noncentrosymmetric superconductors are a topic of considerable interest in the condensed matter physics community. These materials have the potential to exhibit exotic superconducting states, particularly in the presence of strong spin orbit coupling. PbTaSe2 is a noncentrosymmetric material which has very strong spin orbit coupling, and is superconducting with a TC of 3.6 K. Previous studies of this material have identified exotic properties such as Dirac cones gapped by spin-orbit coupling, a topological semi-metal state, and possible multi-band superconductivity. To further explore this material, it is of considerable interest to investigate the pairing symmetry of the superconducting state, and determine whether odd-parity superconductivity may exist. In this talk we will present a μSR investigation of the penetration depth temperature dependece to infer the pairing symmetry. We will also present zero field μSR measurements which suggest that this material has an even-parity superconducting state.

  17. Decompression-Driven Superconductivity Enhancement in In2 Se3.

    PubMed

    Ke, Feng; Dong, Haini; Chen, Yabin; Zhang, Jianbo; Liu, Cailong; Zhang, Junkai; Gan, Yuan; Han, Yonghao; Chen, Zhiqiang; Gao, Chunxiao; Wen, Jinsheng; Yang, Wenge; Chen, Xiao-Jia; Struzhkin, Viktor V; Mao, Ho-Kwang; Chen, Bin

    2017-09-01

    An unexpected superconductivity enhancement is reported in decompressed In 2 Se 3 . The onset of superconductivity in In 2 Se 3 occurs at 41.3 GPa with a critical temperature (T c ) of 3.7 K, peaking at 47.1 GPa. The striking observation shows that this layered chalcogenide remains superconducting in decompression down to 10.7 GPa. More surprisingly, the highest T c that occurs at lower decompression pressures is 8.2 K, a twofold increase in the same crystal structure as in compression. It is found that the evolution of T c is driven by the pressure-induced R-3m to I-43d structural transition and significant softening of phonons and gentle variation of carrier concentration combined in the pressure quench. The novel decompression-induced superconductivity enhancement implies that it is possible to maintain pressure-induced superconductivity at lower or even ambient pressures with better superconducting performance. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Technical issues of a high-Tc superconducting bulk magnet

    NASA Astrophysics Data System (ADS)

    Fujimoto, Hiroyuki

    2000-06-01

    Superconducting magnets made of high-Tc superconductors are promising for industrial applications. It is well known that REBa2Cu3O7-x superconductors prepared by melt processes have a high critical current density, Jc, at 77 K and high magnetic fields. The materials are very promising for high magnetic field applications as a superconducting permanent/bulk magnet with liquid-nitrogen refrigeration. Light rare-earth (LRE) BaCuO bulks, compared with REBaCuO bulks, exhibit a larger Jc in high magnetic fields and a much improved irreversibility field, Hirr, at 77 K. In this study, we discuss technical issues of a high-Tc superconducting bulk magnet, namely the aspects of the melt processing for bulk superconductors, their characteristic superconducting properties and mechanical properties, and trapped field properties of a superconducting bulk magnet. One of the possible applications is a superconducting bulk magnet for the magnetically levitated (Maglev) train in the future.

  19. PREFACE: 7th European Conference on Applied Superconductivity (EUCAS '05)

    NASA Astrophysics Data System (ADS)

    Weber, Harald W.; Sauerzopf, Franz M.

    2006-07-01

    This issue of Journal of Physics: Conference Series contains those contributed papers that were submitted to the Conference Proceedings of the 7th European Conference on Applied Superconductivity (EUCAS '05) on 11 - 15 September 2005. The plenary and invited papers were published in the journal Superconductor Science and Technology 19 2006 (March issue). The scientific aims of EUCAS '05 followed the tradition established at the preceding conferences in Göttingen, Edinburgh, Eindhoven, Sitges (Barcelona), Lyngby (Copenhagen) and finally Sorrento (Napoli). The focus was placed on the interplay between the most recent developments in superconductor research and the positioning of applications of superconductivity in the marketplace. Although initially founded as an exchange forum mainly for European scientists, it has gradually developed into a truly international meeting with significant attendance from the Far East and the United States. The Vienna conference attracted 813 participants in the scientific programme and 90 guests: of the particpants 59% were from Europe, 31% from the Far East, 6% from the United States and Canada and 4% from other nations worldwide. There were 32 plenary and invited lectures highlighting the state-of-the-art in the areas of materials, large-scale and small-scale applications, and 625 papers were contributed (556 of these were posters) demonstrating the broad range of exciting activities in all research areas of our field. A total of 27 companies presented their most recent developments in the field. This volume contains 349 papers, among them 173 on materials (49.6%), 90 on large scale applications (25.8%) and 86 on small scale applications (24.6%). EUCAS '05 generated a feeling of optimism and enthusiasm for this fascinating field of research and for its well established technological potential, especially among the numerous young researchers attending this Conference. We are grateful to all those who participated in the meeting and

  20. Robustness of Topological Superconductivity in Solid State Hybrid Structures

    NASA Astrophysics Data System (ADS)

    Sitthison, Piyapong

    The non-Abelian statistics of Majorana fermions (MFs) makes them an ideal platform for implementing topological quantum computation. In addition to the fascinating fundamental physics underlying the emergence of MFs, this potential for applications makes the study of these quasiparticles an extremely popular subject in condensed matter physics. The commonly called `Majorana fermions' are zero-energy bound states that emerge near boundaries and defects in topological superconducting phases, which can be engineered, for example, by proximity coupling strong spin-orbit coupling semiconductor nanowires and ordinary s-wave superconductors. The stability of these bound states is determined by the stability of the underlying topological superconducting phase. Hence, understanding their stability (which is critical for quantum computation), involves studying the robustness of the engineered topological superconductors. This work addresses this important problem in the context of two types of hybrid structures that have been proposed for realizing topological superconductivity: topological insulator - superconductor (TI-SC) and semiconductor - superconductor (SM-SC) nanostructures. In both structures, electrostatic effects due to applied external potentials and interface-induced potentials are significant. This work focuses on developing a theoretical framework for understanding these effects, to facilitate the optimization of the nanostructures studied in the laboratory. The approach presented in this thesis is based on describing the low-energy physics of the hybrid structure using effective tight-binding models that explicitly incorporate the proximity effects emerging at interfaces. Generically, as a result of the proximity coupling to the superconductor, an induced gap emerges in the semiconductor (topological insulator) sub-system. The strength of the proximity-induced gap is determined by the transparency of the interface and by the amplitude of the low- energy SM

  1. Hermetically sealed superconducting magnet motor

    DOEpatents

    DeVault, Robert C.; McConnell, Benjamin W.; Phillips, Benjamin A.

    1996-01-01

    A hermetically sealed superconducting magnet motor includes a rotor separated from a stator by either a radial gap, an axial gap, or a combined axial and radial gap. Dual conically shaped stators are used in one embodiment to levitate a disc-shaped rotor made of superconducting material within a conduit for moving cryogenic fluid. As the rotor is caused to rotate when the field stator is energized, the fluid is pumped through the conduit.

  2. Thin Film Approaches to the SRF Cavity Problem Fabrication and Characterization of Superconducting Thin Films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beringer, Douglas

    Superconducting Radio Frequency (SRF) cavities are responsible for the acceleration of charged particles to relativistic velocities in most modern linear accelerators, such as those employed at high-energy research facilities like Thomas Jefferson National Laboratory’s CEBAF and the LHC at CERN. Recognizing SRF as primarily a surface phenomenon enables the possibility of applying thin films to the interior surface of SRF cavities, opening a formidable tool chest of opportunities by combining and designing materials that offer greater performance benefit. Thus, while improvements in radio frequency cavity design and refinements in cavity processing techniques have improved accelerator performance and efficiency – 1.5more » GHz bulk niobium SRF cavities have achieved accelerating gradients in excess of 35 MV/m – there exist fundamental material bounds in bulk superconductors limiting the maximally sustained accelerating field gradient (≈ 45 MV/m for Nb) where inevitable thermodynamic breakdown occurs. With state of the art Nb based cavity design fast approaching these theoretical limits, novel material innovations must be sought in order to realize next generation SRF cavities. One proposed method to improve SRF performance is to utilize thin film superconducting-insulating-superconducting (SIS) multilayer structures to effectively magnetically screen a bulk superconducting layer such that it can operate at higher field gradients before suffering critically detrimental SRF losses. This dissertation focuses on the production and characterization of thin film superconductors for such SIS layers for radio frequency applications. Correlated studies on structure, surface morphology and superconducting properties of epitaxial Nb and MgB2 thin films are presented.« less

  3. Superconductivity at Dawn of the Iron Age

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tesanovic, Zlatko

    2010-03-03

    Superconductivity is a stunning quantum phenomenon and among the deepest paradigms in all of physics. From fundamental theories of the universe to strange goings-on in exotic materials to medical imaging and cell phones, its conceptual and practical dimensions span a reach as wide as anything in science. Twenty-odd years ago, the discovery of copper oxides ushered in a new era of high-temperature superconductivity, and the joyous exuberance that followed - with physicists throwing everything from fancy gauge theories to synchrotron radiation into its kitchen sink - only recently began to show any signs of waning. In the spring of 2008,more » as if on cue, a new family of iron pnictide high-temperature superconductors burst on the scene, hinting at an alternative route to room-temperature superconductivity and all of its momentous consequences. Fueled by genuine excitement - and a bit of hype - the iron-based superconductivity turned into a science blockbuster of 2009. I will present a pedagogical review of this new field, contrast the physics of iron- and copper-based systems, and speculate on the microscopic origins of the two types of high-temperature superconductivity.« less

  4. Domain-wall superconductivity in superconductor-ferromagnet hybrids.

    PubMed

    Yang, Zhaorong; Lange, Martin; Volodin, Alexander; Szymczak, Ritta; Moshchalkov, Victor V

    2004-11-01

    Superconductivity and magnetism are two antagonistic cooperative phenomena, and the intriguing problem of their coexistence has been studied for several decades. Recently, artificial hybrid superconductor-ferromagnet systems have been commonly used as model systems to reveal the interplay between competing superconducting and magnetic order parameters, and to verify the existence of new physical phenomena, including the predicted domain-wall superconductivity (DWS). Here we report the experimental observation of DWS in superconductor-ferromagnet hybrids using a niobium film on a BaFe(12)O(19) single crystal. We found that the critical temperature T(c) of the superconductivity nucleation in niobium increases with increasing field until it reaches the saturation field of BaFe(12)O(19). In accordance with the field-shift of the maximum value of T(c), pronounced hysteresis effects have been found in resistive transitions. We argue that the compensation of the applied field by the stray fields of the magnetic domains as well as the change in the domain structure is responsible for the appearance of the DWS and the coexistence of superconductivity and magnetism in the superconductor-ferromagnet hybrids.

  5. Superconductivity at Dawn of the Iron Age

    ScienceCinema

    Tesanovic, Zlatko

    2018-01-12

    Superconductivity is a stunning quantum phenomenon and among the deepest paradigms in all of physics. From fundamental theories of the universe to strange goings-on in exotic materials to medical imaging and cell phones, its conceptual and practical dimensions span a reach as wide as anything in science. Twenty-odd years ago, the discovery of copper oxides ushered in a new era of high-temperature superconductivity, and the joyous exuberance that followed - with physicists throwing everything from fancy gauge theories to synchrotron radiation into its kitchen sink - only recently began to show any signs of waning. In the spring of 2008, as if on cue, a new family of iron pnictide high-temperature superconductors burst on the scene, hinting at an alternative route to room-temperature superconductivity and all of its momentous consequences. Fueled by genuine excitement - and a bit of hype - the iron-based superconductivity turned into a science blockbuster of 2009. I will present a pedagogical review of this new field, contrast the physics of iron- and copper-based systems, and speculate on the microscopic origins of the two types of high-temperature superconductivity.

  6. Development of a superconducting claw-pole linear test-rig

    NASA Astrophysics Data System (ADS)

    Radyjowski, Patryk; Keysan, Ozan; Burchell, Joseph; Mueller, Markus

    2016-04-01

    Superconducting generators can help to reduce the cost of energy for large offshore wind turbines, where the size and mass of the generator have a direct effect on the installation cost. However, existing superconducting generators are not as reliable as the alternative technologies. In this paper, a linear test prototype for a novel superconducting claw-pole topology, which has a stationary superconducting coil that eliminates the cryocooler coupler will be presented. The issues related to mechanical, electromagnetic and thermal aspects of the prototype will be presented.

  7. Superconducting molybdenum-rhenium electrodes for single-molecule transport studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaudenzi, R.; Island, J. O.; Bruijckere, J. de

    2015-06-01

    We demonstrate that electronic transport through single molecules or molecular ensembles, commonly based on gold (Au) electrodes, can be extended to superconducting electrodes by combining gold with molybdenum-rhenium (MoRe). This combination induces proximity-effect superconductivity in the gold to temperatures of at least 4.6 K and magnetic fields of 6 T, improving on previously reported aluminum based superconducting nanojunctions. As a proof of concept, we show three-terminal superconductive transport measurements through an individual Fe{sub 4} single-molecule magnet.

  8. Superconductivity in Potassium-Doped Metallic Polymorphs of MoS2.

    PubMed

    Zhang, Renyan; Tsai, I-Ling; Chapman, James; Khestanova, Ekaterina; Waters, John; Grigorieva, Irina V

    2016-01-13

    Superconducting layered transition metal dichalcogenides (TMDs) stand out among other superconductors due to the tunable nature of the superconducting transition, coexistence with other collective electronic excitations (charge density waves), and strong intrinsic spin-orbit coupling. Molybdenum disulfide (MoS2) is the most studied representative of this family of materials, especially since the recent demonstration of the possibility to tune its critical temperature, Tc, by electric-field doping. However, just one of its polymorphs, band-insulator 2H-MoS2, has so far been explored for its potential to host superconductivity. We have investigated the possibility to induce superconductivity in metallic polytypes, 1T- and 1T'-MoS2, by potassium (K) intercalation. We demonstrate that at doping levels significantly higher than that required to induce superconductivity in 2H-MoS2, both 1T and 1T' phases become superconducting with Tc = 2.8 and 4.6 K, respectively. Unusually, K intercalation in this case is responsible both for the structural and superconducting phase transitions. By adding new members to the family of superconducting TMDs, our findings open the way to further manipulate and enhance the electronic properties of these technologically important materials.

  9. Pressure-induced superconductivity in parent CaFeAsF single crystals

    NASA Astrophysics Data System (ADS)

    Gao, Bo; Ma, Yonghui; Mu, Gang; Xiao, Hong

    2018-05-01

    Flouroarsenide CaFeAsF is a parent compound of the 1111 type of iron-based superconductors. It is similar to the parent LaFeAsO, but it is oxygen-free. To date, studies of pressure-induced effects have only focused on pure and doped polycrystalline CaFeAsF samples. Here, we carried out high-pressure electrical resistivity and Hall coefficient measurements up to 48.2 GPa on single crystals of CaFeAsF. The structural transition temperature Tstr decreased monotonically upon increasing the pressure, and reached ˜60 K at 9.6 GPa. Superconductivity emerged suddenly at 8.6 GPa with the Tc ,onset˜25.7 K , which decreased monotonically with increasing pressure to 5.7 K under 48.2 GPa. Moreover, just after the appearance of superconductivity, the Hall coefficient at 40 K started to decrease with increasing pressure, while keeping its sign negative persisting up to 48.2 GPa.

  10. Helium refrigeration systems for super-conducting accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ganni, V.

    Many of the present day accelerators are based on superconducting technology which requires 4.5-K or 2-K helium refrigeration systems. These systems utilize superconducting radio frequency (SRF) cavities and/or superconducting magnets which are packaged into vacuum vessels known as cryo-modules (CM’s). Many of the present day accelerators are optimized to operate primarily at around 2-K, requiring specialized helium refrigeration systems which are cost intensive to produce and to operate. Some of the cryogenic refrigeration system design considerations for these challenging applications are discussed.

  11. Top gating control of superconductivity at the LaAlO3 /SrTiO3 interfaces

    NASA Astrophysics Data System (ADS)

    Jouan, Alexis; Hurand, Simon; Feuillet-Palma, Cheryl; Singh, Gyanendra; Lesueur, Jerome; Bergeal, Nicolas; Lesne, Edouard; Reyren, Nicolas

    2015-03-01

    Transition metal oxides display a great variety of quantum electronic behaviors. Epitaxial interfaces involving such materials give a unique opportunity to engineer artificial materials where new electronic orders take place. It has been shown that a superconducting two-dimensional electron gas could form at the interface of two insulators such as LaAlO3 and SrTiO3 [1], or LaTiO3 and SrTiO3 [2]. An important feature of these interfaces lies in the possibility to control their electronic properties, including superconductivity and spin-orbit coupling (SOC) with field effect [3-5]. However, experiments have been performed almost exclusively with a metallic gate on the back of the sample. In this presentation, we will report on the realization of a top-gated LaAlO3/SrTiO3 device whose physical properties, including superconductivity and SOC, can be tuned over a wide range of electrostatic doping. In particular, we will present a phase diagram of the interface and compare the effect of the top-gate and back-gate. Finally, we will discuss the field-effect modulation of the Rashba spin-splitting energy extracted from the analysis of magneto-transport measurements. Our result paves the way for the realization of mesoscopic devices where both superconductivity and SOC can be tuned locally.

  12. Superconducting shielded core reactor with reduced AC losses

    DOEpatents

    Cha, Yung S.; Hull, John R.

    2006-04-04

    A superconducting shielded core reactor (SSCR) operates as a passive device for limiting excessive AC current in a circuit operating at a high power level under a fault condition such as shorting. The SSCR includes a ferromagnetic core which may be either closed or open (with an air gap) and extends into and through a superconducting tube or superconducting rings arranged in a stacked array. First and second series connected copper coils each disposed about a portion of the iron core are connected to the circuit to be protected and are respectively wound inside and outside of the superconducting tube or rings. A large impedance is inserted into the circuit by the core when the shielding capability of the superconducting arrangement is exceeded by the applied magnetic field generated by the two coils under a fault condition to limit the AC current in the circuit. The proposed SSCR also affords reduced AC loss compared to conventional SSCRs under continuous normal operation.

  13. Development status of a 125 horsepower superconducting motor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schiferl, R.F.; Zhang, B.X.; Driscoll, D.I.

    1997-06-01

    The current development status of an air core synchronous motor with high-temperature superconducting field coils is presented. The work described is part of a U.S. DoE Superconductivity Partnership Initiative award. The motor design features a topology with a combination of a modified conventional armature and a rotating four-pole superconducting field winding operating at a nominal temperature of 27 K. For testing purposes, an open-loop cryogenic system is adopted to supply helium gas to the rotor cryostat for maintaining the operating temperature of the superconducting field winding. The exhaust helium gas intercepts heat leak into the rotor cryostat before being vented.more » The motor is expected to deliver 125 horsepower (hp) at 1,800 rpm. Successful demonstration of the 125 hp motor will represent a major milestone in the process of developing commercial superconducting motors with integrated closed-loop cryogenic systems. Design objectives and results as well as current project status are discussed.« less

  14. Particle-hole symmetry reveals failed superconductivity in the metallic phase of two-dimensional superconducting films

    PubMed Central

    Breznay, Nicholas P.; Kapitulnik, Aharon

    2017-01-01

    Electrons confined to two dimensions display an unexpected diversity of behaviors as they are cooled to absolute zero. Noninteracting electrons are predicted to eventually “localize” into an insulating ground state, and it has long been supposed that electron correlations stabilize only one other phase: superconductivity. However, many two-dimensional (2D) superconducting materials have shown surprising evidence for metallic behavior, where the electrical resistivity saturates in the zero-temperature limit; the nature of this unexpected metallic state remains under intense scrutiny. We report electrical transport properties for two disordered 2D superconductors, indium oxide and tantalum nitride, and observe a magnetic field–tuned transition from a true superconductor to a metallic phase with saturated resistivity. This metallic phase is characterized by a vanishing Hall resistivity, suggesting that it retains particle-hole symmetry from the disrupted superconducting state. PMID:28929135

  15. Particle-hole symmetry reveals failed superconductivity in the metallic phase of two-dimensional superconducting films.

    PubMed

    Breznay, Nicholas P; Kapitulnik, Aharon

    2017-09-01

    Electrons confined to two dimensions display an unexpected diversity of behaviors as they are cooled to absolute zero. Noninteracting electrons are predicted to eventually "localize" into an insulating ground state, and it has long been supposed that electron correlations stabilize only one other phase: superconductivity. However, many two-dimensional (2D) superconducting materials have shown surprising evidence for metallic behavior, where the electrical resistivity saturates in the zero-temperature limit; the nature of this unexpected metallic state remains under intense scrutiny. We report electrical transport properties for two disordered 2D superconductors, indium oxide and tantalum nitride, and observe a magnetic field-tuned transition from a true superconductor to a metallic phase with saturated resistivity. This metallic phase is characterized by a vanishing Hall resistivity, suggesting that it retains particle-hole symmetry from the disrupted superconducting state.

  16. Current driven transition from Abrikosov-Josephson to Josephson-like vortex in mesoscopic lateral S/S’/S superconducting weak links

    PubMed Central

    Carapella, G.; Sabatino, P.; Barone, C.; Pagano, S.; Gombos, M.

    2016-01-01

    Vortices are topological defects accounting for many important effects in superconductivity, superfluidity, and magnetism. Here we address the stability of a small number of such excitations driven by strong external forces. We focus on Abrikosov-Josephson vortex that appears in lateral superconducting S/S’/S weak links with suppressed superconductivity in S’. In such a system the vortex is nucleated and confined in the narrow S’ region by means of a small magnetic field and moves under the effect of a force proportional to an applied electrical current with a velocity proportional to the measured voltage. Our numerical simulations show that when a slow moving Abrikosov-Josephson vortex is driven by a strong constant current it becomes unstable with respect to a faster moving excitation: the Josephon-like vortex. Such a current-driven transition explains the structured dissipative branches that we observe in the voltage-current curve of the weak link. When vortex matter is strongly confined phenomena as magnetoresistance oscillations and reentrance of superconductivity can possibly occur. We experimentally observe these phenomena in our weak links. PMID:27752137

  17. Composite Ceramic Superconducting Wires for Electric Motor Applications

    DTIC Science & Technology

    1989-07-07

    generators that have been built using NbTi superconducting wire at liquid 3 helium temperature (4.2*K). Most of these magnets , motors, and generators have...temperature superconductors. A magnetic diffusivity value cannot be rigorously determined for the superconductor in the superconducting state when flux jump...cv, FIRST ANNUAL REPORT FOR THE PROJECT "COMPOSITE CERAMIC SUPERCONDUCTING WIRES FOR ELECTRIC MOTOR APPLICATIONS" 2 PRIME CONTRACTOR CERAMICS PROCESS

  18. Substrates suitable for deposition of superconducting thin films

    DOEpatents

    Feenstra, Roeland; Boatner, Lynn A.

    1993-01-01

    A superconducting system for the lossless transmission of electrical current comprising a thin film of superconducting material Y.sub.1 Ba.sub.2 Cu.sub.3 O.sub.7-x epitaxially deposited upon a KTaO.sub.3 substrate. The KTaO.sub.3 is an improved substrate over those of the prior art since the it exhibits small lattice constant mismatch and does not chemically react with the superconducting film.

  19. Ted Geballe: A lifetime of contributions to superconductivity

    NASA Astrophysics Data System (ADS)

    Stewart, G. R.

    2015-07-01

    The editors have dedicated this special issue on superconducting materials "to Ted Geballe in honor of his numerous seminal contributions to the field of superconducting materials over more than 60 years, on the year of his 95th birthday." Here, as an executive summary, are just a few highlights of his research in superconductivity, leavened with some anecdotes, and ending with some of Ted's general insights and words of wisdom.

  20. Monolithic mm-wave phase shifter using optically activated superconducting switches

    NASA Technical Reports Server (NTRS)

    Romanofsky, Robert R. (Inventor); Bhasin, Kul B. (Inventor)

    1992-01-01

    A phase shifter is disclosed having a reference path and a delay path, light sources, and superconductive switches. Each of the superconductive switches is terminated in a virtual short circuit, which may be a radial stub. Switching between the reference path and delayed path is accomplished by illuminating the superconductive switches connected to the desired path, while not illuminating the superconductive switches connected to the other path.

  1. Four-junction superconducting circuit

    PubMed Central

    Qiu, Yueyin; Xiong, Wei; He, Xiao-Ling; Li, Tie-Fu; You, J. Q.

    2016-01-01

    We develop a theory for the quantum circuit consisting of a superconducting loop interrupted by four Josephson junctions and pierced by a magnetic flux (either static or time-dependent). In addition to the similarity with the typical three-junction flux qubit in the double-well regime, we demonstrate the difference of the four-junction circuit from its three-junction analogue, including its advantages over the latter. Moreover, the four-junction circuit in the single-well regime is also investigated. Our theory provides a tool to explore the physical properties of this four-junction superconducting circuit. PMID:27356619

  2. Gambling with Superconducting Fluctuations

    NASA Astrophysics Data System (ADS)

    Foltyn, Marek; Zgirski, Maciej

    2015-08-01

    Josephson junctions and superconducting nanowires, when biased close to superconducting critical current, can switch to a nonzero voltage state by thermal or quantum fluctuations. The process is understood as an escape of a Brownian particle from a metastable state. Since this effect is fully stochastic, we propose to use it for generating random numbers. We present protocol for obtaining random numbers and test the experimentally harvested data for their fidelity. Our work is prerequisite for using the Josephson junction as a tool for stochastic (probabilistic) determination of physical parameters such as magnetic flux, temperature, and current.

  3. Levitation pressure and friction losses in superconducting bearings

    DOEpatents

    Hull, John R.

    2001-01-01

    A superconducting bearing having at least one permanent magnet magnetized with a vertical polarization. The lower or stator portion of the bearing includes an array of high-temperature superconducting elements which are comprised of a plurality of annular rings. An annular ring is located below each permanent magnet and an annular ring is offset horizontally from at least one of the permanent magnets. The rings are composed of individual high-temperature superconducting elements located circumferentially along the ring. By constructing the horizontally-offset high-temperature superconducting ring so that the c-axis is oriented in a radial direction, a higher levitation force can be achieved. Such an orientation will also provide substantially lower rotational drag losses in the bearing.

  4. Fidelity study of superconductivity in extended Hubbard models

    NASA Astrophysics Data System (ADS)

    Plonka, N.; Jia, C. J.; Wang, Y.; Moritz, B.; Devereaux, T. P.

    2015-07-01

    The Hubbard model with local on-site repulsion is generally thought to possess a superconducting ground state for appropriate parameters, but the effects of more realistic long-range Coulomb interactions have not been studied extensively. We study the influence of these interactions on superconductivity by including nearest- and next-nearest-neighbor extended Hubbard interactions in addition to the usual on-site terms. Utilizing numerical exact diagonalization, we analyze the signatures of superconductivity in the ground states through the fidelity metric of quantum information theory. We find that nearest and next-nearest neighbor interactions have thresholds above which they destabilize superconductivity regardless of whether they are attractive or repulsive, seemingly due to competing charge fluctuations.

  5. Superconducting Magnetometry for Cardiovascular Studies and AN Application of Adaptive Filtering.

    NASA Astrophysics Data System (ADS)

    Leifer, Mark Curtis

    Sensitive magnetic detectors utilizing Superconducting Quantum Interference Devices (SQUID's) have been developed and used for studying the cardiovascular system. The theory of magnetic detection of cardiac currents is discussed, and new experimental data supporting the validity of the theory is presented. Measurements on both humans and dogs, in both healthy and diseased states, are presented using the new technique, which is termed vector magnetocardiography. In the next section, a new type of superconducting magnetometer with a room temperature pickup is analyzed, and techniques for optimizing its sensitivity to low-frequency sub-microamp currents are presented. Performance of the actual device displays significantly improved sensitivity in this frequency range, and the ability to measure currents in intact, in vivo biological fibers. The final section reviews the theoretical operation of a digital self-optimizing filter, and presents a four-channel software implementation of the system. The application of the adaptive filter to enhancement of geomagnetic signals for earthquake forecasting is discussed, and the adaptive filter is shown to outperform existing techniques in suppressing noise from geomagnetic records.

  6. Emergent high-spin state above 7 GPa in superconducting FeSe

    NASA Astrophysics Data System (ADS)

    Lebert, B. W.; Balédent, V.; Toulemonde, P.; Ablett, J. M.; Rueff, J.-P.

    2018-05-01

    The local electronic and magnetic properties of superconducting FeSe have been investigated by K β x-ray emission and simultaneous x-ray absorption spectroscopy (XAS) at the Fe K edge at high pressure and low temperature. Our results indicate a sluggish decrease of the local Fe spin moment under pressure up to 7 GPa, in line with previous reports, followed by a sudden increase at higher pressure. The magnetic surge is preceded by an abrupt change of the Fe local structure as observed by the decrease of the XAS preedge region intensity and corroborated by ab initio simulations. This pressure corresponds to a structural transition from the C m m a form to the denser P b n m form with octahedral coordination of iron. Finally, the near-edge region of the XAS spectra shows a change before this transition at 5 GPa, corresponding well with the onset pressure of the sudden enhancement of Tc. Our results emphasize the delicate interplay between structural, magnetic, and superconducting properties in FeSe under pressure.

  7. Interface-Induced Zeeman-Protected Superconductivity in Ultrathin Crystalline Lead Films

    NASA Astrophysics Data System (ADS)

    Liu, Yi; Wang, Ziqiao; Zhang, Xuefeng; Liu, Chaofei; Liu, Yongjie; Zhou, Zhimou; Wang, Junfeng; Wang, Qingyan; Liu, Yanzhao; Xi, Chuanying; Tian, Mingliang; Liu, Haiwen; Feng, Ji; Xie, X. C.; Wang, Jian

    2018-04-01

    Two-dimensional (2D) superconducting systems are of great importance for exploring exotic quantum physics. The recent development of fabrication techniques has stimulated studies of high-quality single-crystalline 2D superconductors, where intrinsic properties give rise to unprecedented physical phenomena. Here, we report the observation of Zeeman-type spin-orbit interaction protected superconductivity (Zeeman-protected superconductivity) in 4-monolayer (ML) to 6-ML crystalline Pb films grown on striped incommensurate Pb layers on Si(111) substrates by molecular beam epitaxy. An anomalously large in-plane critical field far beyond the Pauli limit is detected, which can be attributed to the Zeeman-protected superconductivity due to the in-plane inversion symmetry breaking at the interface. Our work demonstrates that, in superconducting heterostructures, the interface can induce Zeeman-type spin-orbit interactions and modulate the superconductivity.

  8. A high-temperature superconducting transformer with localized magnetic field

    NASA Astrophysics Data System (ADS)

    Volkov, E. P.; Dzhafarov, E. A.

    2013-12-01

    This paper describes a high-temperature superconducting transformer with a bar-type magnetic core and concentric windings with alternating layers, with single-channel and multi-channel arrangements. There is given the design concept of high-temperature superconducting windings of the transformer, made in the form of newly developed first-generation high-temperature superconducting ribbon wires, with localized magnetic field intended for producing maximum transport currents in the windings, as well as for reducing the consumption of a high-temperature superconducting material, cooling agent, and energy losses in these windings.

  9. Damping and support in high-temperature superconducting levitation systems

    DOEpatents

    Hull, John R [Sammamish, WA; McIver, Carl R [Everett, WA; Mittleider, John A [Kent, WA

    2009-12-15

    Methods and apparatuses to provide improved auxiliary damping for superconducting bearings in superconducting levitation systems are disclosed. In a superconducting bearing, a cryostat housing the superconductors is connected to a ground state with a combination of a damping strip of material, a set of linkage arms to provide vertical support, and spring washers to provide stiffness. Alternately, the superconducting bearing may be supported by a cryostat connected to a ground state by posts constructed from a mesh of fibers, with the damping and stiffness controlled by the fiber composition, size, and mesh geometry.

  10. High Tc superconducting bolometric and nonbolometric infrared (IR) detectors

    NASA Technical Reports Server (NTRS)

    Lakeou, Samuel

    1994-01-01

    The original workplan for the first year of the project includes the following: establishment of a pilot superconductivity application laboratory at UDC to support the research component of the project; research on the source of electrical noise in High Tc superconducting films in order to optimize the film microstructure and lower the NEP; and lay the foundation of an academic support for exposing UDC students to the theory and application of High Tc superconductivity. Attached to this status report are abstracts and the course description for Introduction to Applications of Superconductivity.

  11. Hermetically sealed superconducting magnet motor

    DOEpatents

    DeVault, R.C.; McConnell, B.W.; Phillips, B.A.

    1996-07-02

    A hermetically sealed superconducting magnet motor includes a rotor separated from a stator by either a radial gap, an axial gap, or a combined axial and radial gap. Dual conically shaped stators are used in one embodiment to levitate a disc-shaped rotor made of superconducting material within a conduit for moving cryogenic fluid. As the rotor is caused to rotate when the field stator is energized, the fluid is pumped through the conduit. 6 figs.

  12. Method for manufacturing a rotor having superconducting coils

    DOEpatents

    Driscoll, David I.; Shoykhet, Boris A.

    2001-01-01

    A method and apparatus for manufacturing a rotor for use with a rotating machine is provided that employs a superconducting coil on the rotor. An adhesive is applied to an outer surface of the rotor body, which may include a groove disposed within an outer surface of the rotor body. A superconducting coil is then mounted onto the rotor body such that the adhesive bonds the superconducting coil to the rotor body.

  13. Graphite, graphene and the flat band superconductivity

    NASA Astrophysics Data System (ADS)

    Volovik, G. E.

    2018-04-01

    Superconductivity has been observed in bilayer graphene [1,2]. The main factor, which determines the mechanism of the formation of this superconductivity is the "magic angle" of twist of two graphene layers, at which the electronic band structure becomes nearly flat. The specific role played by twist and by the band flattening, has been earlier suggested for explanations of the signatures of room-temperature superconductivity observed in the highly oriented pyrolytic graphite (HOPG), when the quasi two-dimensional interfaces between the twisted domains are present. The interface contains the periodic array of misfit dislocations (analogs of the boundaries of the unit cell of the Moire superlattice in bilayer graphene), which provide the possible source of the flat band. This demonstrates that it is high time for combination of the theoretical and experimental efforts in order to reach the reproducible room-temperature superconductivity in graphite or in similar real or artificial materials.

  14. Sr 2IrO 4: Gateway to cuprate superconductivity?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitchell, J. F.

    High temperature superconductivity in cuprates remains a defining challenge in condensed matter physics. Recently, a new set of related compounds based on Ir rather than Cu has been discovered that may be on the verge of superconductivity themselves or be able to shed new light on the underlying interactions responsible for superconductivity in the cuprates.

  15. Thin Film Approaches to the SRF Cavity Problem: Fabrication and Characterization of Superconducting Thin Films

    NASA Astrophysics Data System (ADS)

    Beringer, Douglas B.

    Superconducting Radio Frequency (SRF) cavities are responsible for the acceleration of charged particles to relativistic velocities in most modern linear accelerators, such as those employed at high-energy research facilities like Thomas Jefferson National Laboratory's CEBAF and the LHC at CERN. Recognizing SRF as primarily a surface phenomenon enables the possibility of applying thin films to the interior surface of SRF cavities, opening a formidable tool chest of opportunities by combining and designing materials that offer greater benefit. Thus, while improvements in radio frequency cavity design and refinements in cavity processing techniques have improved accelerator performance and efficiency - 1.5 GHz bulk niobium SRF cavities have achieved accelerating gradients in excess of 35 MV/m - there exist fundamental material bounds in bulk superconductors limiting the maximally sustained accelerating field gradient (approximately 45 MV/m for Niobium) where inevitable thermodynamic breakdown occurs. With state of the art niobium based cavity design fast approaching these theoretical limits, novel material innovations must be sought in order to realize next generation SRF cavities. One proposed method to improve SRF performance is to utilize thin film superconducting-insulating-superconducting (SIS) multilayer structures to effectively magnetically screen a bulk superconducting layer such that it can operate at higher field gradients before suffering critically detrimental SRF losses. This dissertation focuses on the production and characterization of thin film superconductors for such SIS layers for radio-frequency applications.

  16. Tests on a 30 kVA class superconducting transformer

    NASA Astrophysics Data System (ADS)

    Yoneda, E. S.; Tashiro, I.; Morohoshi, M.; Ito, D.

    To demonstrate the applicability of superconductors to electric power machines, the present authors made and tested a 30 kVA class single-phase superconducting transformer. The aim of the study was to determine the superconducting transformer properties. Therefore the superconducting transformer has a simple structure, i.e. the primary to secondary voltage ratio is 1:1 and the iron core is immersed in liquid helium. The core loss, evaluated from no-load tests, was 13 W and leakage impedance, obtained by short circuit tests, was 0.02 Ω in accordance with a calculated value. The superconducting transformer showed the limitation effect of fault currents. The authors succeeded in continuous operation with a 0.5 Ω load resistance. These results suggest that efficiency can be 98.5%, if the iron core is located outside the cryostat and if high Tc superconductors are used as current leads. Superconducting windings exhibit training quenches in general. The authors also developed a superconducting transformer quench detector with a third winding around the iron core. The quench detector revealed that the secondary winding quenches before the primary winding.

  17. Theoretical studies of superconductivity in doped BaCoSO

    NASA Astrophysics Data System (ADS)

    Qin, Shengshan; Li, Yinxiang; Zhang, Qiang; Le, Congcong; Hu, Jiangping

    2018-06-01

    We investigate superconductivity that may exist in the doped BaCoSO, a multi-orbital Mott insulator with a strong antiferromagnetic ground state. The superconductivity is studied in both t-J type and Hubbard type multi-orbital models by mean field approach and random phase approximation (RPA) analysis. Even if there is no C 4 rotational symmetry, it is found that the system still carries a d-wave like pairing symmetry state with gapless nodes and sign changed superconducting order parameters on Fermi surfaces. The results are largely doping insensitive. In this superconducting state, the three {t_{{2_g}}} orbitals have very different superconducting form factors in momentum space. In particular, the intra-orbital pairing of the {d_{{x^2} - {y^2}}} orbital has an s-wave like pairing form factor. The two methods also predict very different pairing strength on different parts of Fermi surfaces. These results suggest that BaCoSO and related materials can be a new ground to test and establish fundamental principles for unconventional high temperature superconductivity.

  18. Interplay of superconductivity and bosonic coupling in the peak-dip-hump structure of Bi2Sr2CaCu2O8 +δ

    NASA Astrophysics Data System (ADS)

    Miller, Tristan L.; Zhang, Wentao; Ma, Jonathan; Eisaki, Hiroshi; Moore, Joel E.; Lanzara, Alessandra

    2018-04-01

    Because of the important role of electron-boson interactions in conventional superconductivity, it has long been asked whether any similar mechanism is at play in high-temperature cuprate superconductors. Evidence for strong electron-boson coupling is observed in cuprates with angle-resolved photoemission spectroscopy (ARPES), in the form of a dispersion kink and peak-dip-hump structure. What is missing is evidence of a causal relation to superconductivity. Here we revisit the problem using the technique of time-resolved ARPES on Bi2Sr2CaCu2O8 +δ . We focus on the peak-dip-hump structure, and show that laser pulses shift spectral weight into the dip as superconductivity is destroyed on picosecond time scales. We compare our results to simulations of Eliashberg theory in a superconductor with an Einstein boson, and find that the magnitude of the shift in spectral weight depends on the degree to which the bosonic mode contributes to superconductivity. Further study could address one of the longstanding mysteries of high-temperature superconductivity.

  19. Ceramic superconductor/metal composite materials employing the superconducting proximity effect

    DOEpatents

    Holcomb, Matthew J.

    2002-01-01

    Superconducting composite materials having particles of superconducting material disposed in a metal matrix material with a high electron-boson coupling coefficient (.lambda.). The superconducting particles can comprise any type of superconductor including Laves phase materials, Chevrel phase materials, A15 compounds, and perovskite cuprate ceramics. The particles preferably have dimensions of about 10-500 nanometers. The particles preferably have dimensions larger than the superconducting coherence length of the superconducting material. The metal matrix material has a .lambda. greater than 0.2, preferably the .lambda. is much higher than 0.2. The metal matrix material is a good proximity superconductor due to its high .lambda.. When cooled, the superconductor particles cause the metal matrix material to become superconducting due to the proximity effect. In cases where the particles and the metal matrix material are chemically incompatible (i.e., reactive in a way that destroys superconductivity), the particles are provided with a thin protective metal coating. The coating is chemically compatible with the particles and metal matrix material. High Temperature Superconducting (HTS) cuprate ceramic particles are reactive and therefore require a coating of a noble metal resistant to oxidation (e.g., silver, gold). The proximity effect extends through the metal coating. With certain superconductors, non-noble metals can be used for the coating.

  20. Investigation of properties of nanobridge Josephson junctions and superconducting tracks fabricated by FIB

    NASA Astrophysics Data System (ADS)

    Li, B.; Godfrey, T.; Cox, D.; Li, T.; Gallop, J.; Galer, S.; Nisbet, A.; Romans, Ed; Hao, L.

    2018-02-01

    An important requirement across a range of sensitive detectors is to determine accurately the energy deposited by the impact of a particle in a small volume. The particle may be anything from a visible photon through to an X-ray or massive charged particle. We have been developing nanobridge Josephson junctions based SQUIDs and nanoSQUID devices covering the entire range of particle detection energies from 1eV to MeV. In this paper we discuss some developments in nanobridge Josephson junctions fabrication using focussed ion beam (FIB) and how these developments impact future applications. We focus on tuning of the transition temperature of a superconducting thin-film absorber, with the aim to match the absorber Tc to the working temperature range of the SQUID and also on using a new Xe FIB to improve Josephson junction and superconducting film quality.

  1. The National Superconducting Cyclotron Laboratory

    NASA Astrophysics Data System (ADS)

    Gelbke, C. Korad; Morrissey, D. J.; York, R. C.

    1996-10-01

    The National Superconducting Cyclotron Laboratory (NSCL) at Michigan State University has constructed and operates two superconducting cyclotrons for research in nuclear science, accelerator and instrumental physics. The K500, the world's first superconducting cyclotron, was commissioned in 1982 and the K1200, the world's most powerful cyclotron, was commissioned in 1988. Heavy-ion beams across the entire periodic table produced in a pair of ECR ion sources and accelerated to energies on the order of 100 MeV/A are delivered to a modern and versatile complement of experimental apparatus, including the new S800 high-resolution superconducting magnetic spectrograph now undergoing initial testing. The diverse variety of beams are used for studies of the quantum-statistical properties of hot nuclei, the liquid-gas phase transition in nuclear matter, and for nuclear structure research, particularly with radioactive ion beams from the A1200 fragment separator. The NSCL provides radioactive nuclear beams out to the limits of stability on both the neutron-rich and the proton-rich sides of the valley of stability. The laboratory is also used for multi-disciplinary research in astrophysics, condensed matter physics, geophysics, medicine, and biology. The NSCL has recently proposed a major upgrade of its facility based on coupled operation of the two cyclotrons. The upgrade will provide large increases in beam intensities for radioactive beam production and increased energies of the heaviest beams.

  2. An adjustable short-focal length, high-gradient PMQ electron-beam final-focus system for the PLEIADES ultra-fast x-ray Thomson source

    NASA Astrophysics Data System (ADS)

    Lim, Jae-Ku

    In the span of a 100 year since the discovery of first x-rays by Roentgen that won him the first Nobel prize in physics, several types of radiation sources have been developed. Currently, radiations at extremely short wavelengths have only been accessed at synchrotron radiation sources. However, the current 3rd generation synchrotron sources can only produce x-rays of energy up to 60 keV and pulse lengths of several picoseconds long. But needs for shorter wavelength and shorter pulse duration radiations demanded by scientists to understand the nature of matter at atomic/molecular scale initiated the new scientific research for the production of sub-picosecond, hard x-rays. At the Lawrence Livermore National Laboratory, a Thomson x-ray source in the backscattering mode---a head-on collision between a high intensity Ti:Sapphire Chirped Pulse Amplification laser and a relativistic electron beam---called the PLEIADES (Picosecond Laser-Electron Inter-Action for the Dynamical Evaluation of Structures) laboratory has been developed. Early works demonstrated the production of quasi-monochromatic, femto-second long, hard x-rays. Initially reported x-ray flux was in the low range of 105--10 6 photons per shot. During the early stage of PLEIADES experiments, 15 T/m electromagnet final focusing quadrupoles (in a triplet lattice configuration) were employed to focus the beam to a 40-50 mum spot-size. A larger focal spot-size beam has a low-density of electron particles available at the interaction with incident photons, which leads to a low scattering probability. The current dissertation shows that by employing a 560 T/m PMQ (Permanent-Magnet Quadrupole) final focus system, an electron beam as small as 10-20 mum can be achieved. The implementation of this final focus system demonstrated the improvement of the total x-ray flux by two orders of magnitude. The PMQ final focus system also produced small electron beams consistently over 30-100 MeV electron beam energy, which

  3. Experimenting with a Superconducting Levitation Train

    ERIC Educational Resources Information Center

    Miryala, Santosh; Koblischka, M. R.

    2014-01-01

    The construction and operation of a prototype high-"Tc" superconducting train model is presented. The train is levitated by a melt-processed GdBa[subscript 2]Cu[subscript 3]O[subscript x] (Gd-123) superconducting material over a magnetic rail (track). The oval shaped track is constructed in S-N-S or PM3N configuration arranged on an iron…

  4. Particle-hole symmetry reveals failed superconductivity in the metallic phase of two-dimensional superconducting films

    DOE PAGES

    Breznay, Nicholas P.; Kapitulnik, Aharon

    2017-09-15

    Electrons confined to two dimensions display an unexpected diversity of behaviors as they are cooled to absolute zero. Noninteracting electrons are predicted to eventually “localize” into an insulating ground state, and it has long been supposed that electron correlations stabilize only one other phase: superconductivity. However, many two-dimensional (2D) superconducting materials have shown surprising evidence for metallic behavior, where the electrical resistivity saturates in the zero-temperature limit; the nature of this unexpected metallic state remains under intense scrutiny. We report electrical transport properties for two disordered 2D superconductors, indium oxide and tantalum nitride, and observe a magnetic field–tuned transition frommore » a true superconductor to a metallic phase with saturated resistivity. Lastly, this metallic phase is characterized by a vanishing Hall resistivity, suggesting that it retains particle-hole symmetry from the disrupted superconducting state.« less

  5. Flat-band superconductivity in strained Dirac materials

    NASA Astrophysics Data System (ADS)

    Kauppila, V. J.; Aikebaier, F.; Heikkilä, T. T.

    2016-06-01

    We consider superconducting properties of a two-dimensional Dirac material such as graphene under strain that produces a flat-band spectrum in the normal state. We show that in the superconducting state, such a model results in a highly increased critical temperature compared to the case without the strain, inhomogeneous order parameter with two-peak shaped local density of states and yet a large and almost uniform and isotropic supercurrent. This model could be realized in strained graphene or ultracold atom systems and could be responsible for unusually strong superconductivity observed in some graphite interfaces and certain IV-VI semiconductor heterostructures.

  6. The design and evaluation of superconducting connectors

    NASA Technical Reports Server (NTRS)

    Payne, J. E.

    1982-01-01

    The development of a superconducting connector for superconducting circuits on space flights is described. It is proposed that such connectors be used between the superconducting readout loop and the SQUID magnetometer in the Gravity Probe B experiment. Two types of connectors were developed. One type employs gold plated niobium wires making pressure connections to gold plated niobium pads. Lead-plated beryllium-copper spring contacts can replace the niobium wires. The other type is a rigid solder or weld connection between the niobium wires and the niobium pads. A description of the methods used to produce these connectors is given and their performance analyzed.

  7. Sitewise manipulations and Mott insulator-superfluid transition of interacting photons using superconducting circuit simulators

    DOE PAGES

    Deng, Xiuhao; Jia, Chunjing; Chien, Chih-Chun

    2015-02-23

    We report that the Bose Hubbard model (BHM) of interacting bosons in a lattice has been a paradigm in many-body physics, and it exhibits a Mott insulator (MI)-superfluid (SF) transition at integer filling. Here a quantum simulator of the BHM using a superconducting circuit is proposed. Specifically, a superconducting transmission line resonator supporting microwave photons is coupled to a charge qubit to form one site of the BHM, and adjacent sites are connected by a tunable coupler. To obtain a mapping from the superconducting circuit to the BHM, we focus on the dispersive regime where the excitations remain photonlike. Standardmore » perturbation theory is implemented to locate the parameter range where the MI-SF transition may be simulated. This simulator allows single-site manipulations and we illustrate this feature by considering two scenarios where a single-site manipulation can drive a MI-SF transition. The transition can be analyzed by mean-field analyses, and the exact diagonalization was implemented to provide accurate results. The variance of the photon density and the fidelity metric clearly show signatures of the transition. Lastly, experimental realizations and other possible applications of this simulator are also discussed.« less

  8. The superconducting magnet for the Maglev transport system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakashima, Hiroshi

    1994-07-01

    Magnetically levitated vehicles (Maglev) using superconducting magnets have been under development in Japan for the past 23 years. The superconducting magnets for the Maglev system are used in a special environment compared to other applications. They have to work stably subject to both mechanical and electromagnetic disturbances. The brief history of the Maglev development in Japan, the planning of new test line, the superconducting magnet`s stability and the on board refrigeration system will be presented.

  9. Superconducting Polarons and Bipolarons

    NASA Astrophysics Data System (ADS)

    Alexandrov, A. S.

    The seminal work by Bardeen, Cooper and Schrieffer (BCS) extended further by Eliashberg to the intermediate coupling regime solved one of the major scientific problems of Condensed Matter Physics in the last century. The BCS theory provides qualitative and in many cases quantitative descriptions of low-temperature superconducting metals and their alloys, and some novel high-temperature superconductors like magnesium diboride. The theory has been extended by us to the strong-coupling regime where carriers are small lattice polarons and bipolarons. Here I review the multi-polaron strong-coupling theory of superconductivity. Attractive electron correlations, prerequisite to any superconductivity, are caused by an almost unretarded electron-phonon (e-ph) interaction sufficient to overcome the direct Coulomb repulsion in this regime. Low energy physics is that of small polarons and bipolarons, which are real-space electron (hole) pairs dressed by phonons. They are itinerant quasiparticles existing in the Bloch states attemperatures below the characteristic phonon frequency. Since there is almost no retardation (i.e. no Tolmachev-Morel-Anderson logarithm) reducing the Coulomb repulsion, e-ph interactions should be relatively strong to overcome the direct Coulomb repulsion, so carriers mustbe polaronic to form pairs in novel superconductors. I identify the long-range Fröhlich electron-phonon interaction as the most essential for pairing in superconducting cuprates. A number of key observations have been predicted or explained with polarons and bipolarons including unusual isotope effects and upper critical fields, normal state (pseudo)gaps and kinetic properties, normal state diamagnetism, and giant proximity effects. These and many other observations provide strong evidence for a novel state of electronic matter in layered cuprates, which is a charged Bose-liquid of small mobile bipolarons.

  10. Building logical qubits in a superconducting quantum computing system

    NASA Astrophysics Data System (ADS)

    Gambetta, Jay M.; Chow, Jerry M.; Steffen, Matthias

    2017-01-01

    The technological world is in the midst of a quantum computing and quantum information revolution. Since Richard Feynman's famous `plenty of room at the bottom' lecture (Feynman, Engineering and Science23, 22 (1960)), hinting at the notion of novel devices employing quantum mechanics, the quantum information community has taken gigantic strides in understanding the potential applications of a quantum computer and laid the foundational requirements for building one. We believe that the next significant step will be to demonstrate a quantum memory, in which a system of interacting qubits stores an encoded logical qubit state longer than the incorporated parts. Here, we describe the important route towards a logical memory with superconducting qubits, employing a rotated version of the surface code. The current status of technology with regards to interconnected superconducting-qubit networks will be described and near-term areas of focus to improve devices will be identified. Overall, the progress in this exciting field has been astounding, but we are at an important turning point, where it will be critical to incorporate engineering solutions with quantum architectural considerations, laying the foundation towards scalable fault-tolerant quantum computers in the near future.

  11. Superconductivity in dense carbon-based materials

    DOE PAGES

    Lu, Siyu; Liu, Hanyu; Naumov, Ivan I.; ...

    2016-03-08

    Guided by a simple strategy in searching of new superconducting materials we predict that high temperature superconductivity can be realized in classes of high-density materials having strong sp 3 chemical bonding and high lattice symmetry. Here, we examine in detail sodalite carbon frameworks doped with simple metals such as Li, Na, and Al. Though such materials share some common features with doped diamond, their doping level is not limited and the density of states at the Fermi level in them can be as high as that in the renowned MgB 2. Altogether, with other factors, this boosts the superconducting temperaturemore » (T c) in the materials investigated to higher levels compared to doped diamond. For example, the superconducting T c of sodalite-like NaC 6 is predicted to be above 100 K. This phase and a series of other sodalite-based superconductors are predicted to be metastable phases but are dynamically stable. In owing to the rigid carbon framework of these and related dense carbon-materials, these doped sodalite-based structures could be recoverable as potentially useful superconductors.« less

  12. High temperature superconducting composite conductor and method for manufacturing the same

    DOEpatents

    Holesinger, Terry G.; Bingert, John F.

    2002-01-01

    A high temperature superconducting composite conductor is provided including a high temperature superconducting material surrounded by a noble metal layer, the high temperature superconducting composite conductor characterized as having a fill factor of greater than about 40. Additionally, the conductor can be further characterized as containing multiple cores of high temperature superconducting material surrounded by a noble metal layer, said multiple cores characterized as having substantially uniform geometry in the cross-sectional dimensions. Processes of forming such a high temperature superconducting composite conductor are also provided.

  13. Ballistic superconductivity in semiconductor nanowires.

    PubMed

    Zhang, Hao; Gül, Önder; Conesa-Boj, Sonia; Nowak, Michał P; Wimmer, Michael; Zuo, Kun; Mourik, Vincent; de Vries, Folkert K; van Veen, Jasper; de Moor, Michiel W A; Bommer, Jouri D S; van Woerkom, David J; Car, Diana; Plissard, Sébastien R; Bakkers, Erik P A M; Quintero-Pérez, Marina; Cassidy, Maja C; Koelling, Sebastian; Goswami, Srijit; Watanabe, Kenji; Taniguchi, Takashi; Kouwenhoven, Leo P

    2017-07-06

    Semiconductor nanowires have opened new research avenues in quantum transport owing to their confined geometry and electrostatic tunability. They have offered an exceptional testbed for superconductivity, leading to the realization of hybrid systems combining the macroscopic quantum properties of superconductors with the possibility to control charges down to a single electron. These advances brought semiconductor nanowires to the forefront of efforts to realize topological superconductivity and Majorana modes. A prime challenge to benefit from the topological properties of Majoranas is to reduce the disorder in hybrid nanowire devices. Here we show ballistic superconductivity in InSb semiconductor nanowires. Our structural and chemical analyses demonstrate a high-quality interface between the nanowire and a NbTiN superconductor that enables ballistic transport. This is manifested by a quantized conductance for normal carriers, a strongly enhanced conductance for Andreev-reflecting carriers, and an induced hard gap with a significantly reduced density of states. These results pave the way for disorder-free Majorana devices.

  14. Ballistic superconductivity in semiconductor nanowires

    PubMed Central

    Zhang, Hao; Gül, Önder; Conesa-Boj, Sonia; Nowak, Michał P.; Wimmer, Michael; Zuo, Kun; Mourik, Vincent; de Vries, Folkert K.; van Veen, Jasper; de Moor, Michiel W. A.; Bommer, Jouri D. S.; van Woerkom, David J.; Car, Diana; Plissard, Sébastien R; Bakkers, Erik P.A.M.; Quintero-Pérez, Marina; Cassidy, Maja C.; Koelling, Sebastian; Goswami, Srijit; Watanabe, Kenji; Taniguchi, Takashi; Kouwenhoven, Leo P.

    2017-01-01

    Semiconductor nanowires have opened new research avenues in quantum transport owing to their confined geometry and electrostatic tunability. They have offered an exceptional testbed for superconductivity, leading to the realization of hybrid systems combining the macroscopic quantum properties of superconductors with the possibility to control charges down to a single electron. These advances brought semiconductor nanowires to the forefront of efforts to realize topological superconductivity and Majorana modes. A prime challenge to benefit from the topological properties of Majoranas is to reduce the disorder in hybrid nanowire devices. Here we show ballistic superconductivity in InSb semiconductor nanowires. Our structural and chemical analyses demonstrate a high-quality interface between the nanowire and a NbTiN superconductor that enables ballistic transport. This is manifested by a quantized conductance for normal carriers, a strongly enhanced conductance for Andreev-reflecting carriers, and an induced hard gap with a significantly reduced density of states. These results pave the way for disorder-free Majorana devices. PMID:28681843

  15. High-temperature superconducting undulator magnets

    DOE PAGES

    Kesgin, Ibrahim; Kasa, Matthew; Ivanyushenkov, Yury; ...

    2017-02-13

    Here, this paper presents test results on a prototype superconducting undulator magnet fabricated using 15% Zr-doped rare-earth barium copper oxide high temperature superconducting (HTS) tapes. On an 11-pole magnet we demonstrate an engineering current density, J e, of more than 2.1 kA mm -2 at 4.2 K, a value that is 40% higher than reached in comparable devices wound with NbTi-wire, which is used in all currently operating superconducting undulators. A novel winding scheme enabling the continuous winding of tape-shaped conductors into the intricate undulator magnets as well as a partial interlayer insulation procedure were essential in reaching this advancemore » in performance. Currently, there are rapid advances in the performance of HTS; therefore, achieving even higher current densities in an undulator structure or/and operating it at temperatures higher than 4.2 K will be possible, which would substantially simplify the cryogenic design and reduce overall costs.« less

  16. Emerging superconductivity hidden beneath charge-transfer insulators

    PubMed Central

    Krockenberger, Yoshiharu; Irie, Hiroshi; Matsumoto, Osamu; Yamagami, Keitaro; Mitsuhashi, Masaya; Tsukada, Akio; Naito, Michio; Yamamoto, Hideki

    2013-01-01

    In many of today's most interesting materials, strong interactions prevail upon the magnetic moments, the electrons, and the crystal lattice, forming strong links between these different aspects of the system. Particularly, in two-dimensional cuprates, where copper is either five- or six-fold coordinated, superconductivity is commonly induced by chemical doping which is deemed to be mandatory by destruction of long-range antiferromagnetic order of 3d9 Cu2+ moments. Here we show that superconductivity can be induced in Pr2CuO4, where copper is four-fold coordinated. We induced this novel quantum state of Pr2CuO4 by realizing pristine square-planar coordinated copper in the copper-oxygen planes, thus, resulting in critical superconducting temperatures even higher than by chemical doping. Our results demonstrate new degrees of freedom, i.e., coordination of copper, for the manipulation of magnetic and superconducting order parameters in quantum materials. PMID:23887134

  17. Majorana spin liquids, topology, and superconductivity in ladders

    NASA Astrophysics Data System (ADS)

    Le Hur, Karyn; Soret, Ariane; Yang, Fan

    2017-11-01

    We theoretically address spin chain analogs of the Kitaev quantum spin model on the honeycomb lattice. The emergent quantum spin-liquid phases or Anderson resonating valence-bond (RVB) states can be understood, as an effective model, in terms of p -wave superconductivity and Majorana fermions. We derive a generalized phase diagram for the two-leg ladder system with tunable interaction strengths between chains allowing us to vary the shape of the lattice (from square to honeycomb ribbon or brickwall ladder). We evaluate the winding number associated with possible emergent (topological) gapless modes at the edges. In the Az phase, as a result of the emergent Z2 gauge fields and π -flux ground state, one may build spin-1/2 (loop) qubit operators by analogy to the toric code. In addition, we show how the intermediate gapless B phase evolves in the generalized ladder model. For the brick-wall ladder, the B phase is reduced to one line, which is analyzed through perturbation theory in a rung tensor product states representation and bosonization. Finally, we show that doping with a few holes can result in the formation of hole pairs and leads to a mapping with the Su-Schrieffer-Heeger model in polyacetylene; a superconducting-insulating quantum phase transition for these hole pairs is accessible, as well as related topological properties.

  18. High temperature superconducting magnetic energy storage for future NASA missions

    NASA Technical Reports Server (NTRS)

    Faymon, Karl A.; Rudnick, Stanley J.

    1988-01-01

    Several NASA sponsored studies based on 'conventional' liquid helium temperature level superconductivity technology have concluded that superconducting magnetic energy storage has considerable potential for space applications. The advent of high temperature superconductivity (HTSC) may provide additional benefits over conventional superconductivity technology, making magnetic energy storage even more attractive. The proposed NASA space station is a possible candidate for the application of HTSC energy storage. Alternative energy storage technologies for this and other low Earth orbit missions are compared.

  19. Superconductivity in LaPd2Al2-xGax compounds

    NASA Astrophysics Data System (ADS)

    Klicpera, M.; Pásztorová, J.; Javorský, P.

    2014-08-01

    The superconductivity in LaPd2Al2-xGax compounds was studied by means of electrical resistivity and specific heat measurements. The concentration development of the superconducting properties was revealed. The measured data deviate significantly from the Bardeen-Cooper-Schrieffer theory predictions and are discussed in the context of unconventional superconductivity. The electronic specific heat below {{T}_{SC}} follows almost quadratic temperature dependence, which might indicate an axial state with line nodes in the superconducting gap structure.

  20. Correlation-induced superconductivity dynamically stabilized and enhanced by laser irradiation.

    PubMed

    Ido, Kota; Ohgoe, Takahiro; Imada, Masatoshi

    2017-08-01

    Studies on out-of-equilibrium dynamics have paved a way to realize a new state of matter. Superconductor-like properties above room temperatures recently suggested to be in copper oxides achieved by selectively exciting vibrational phonon modes by laser have inspired studies on an alternative and general strategy to be pursued for high-temperature superconductivity. We show that the superconductivity can be enhanced by irradiating laser to correlated electron systems owing to two mechanisms: First, the effective attractive interaction of carriers is enhanced by the dynamical localization mechanism, which drives the system into strong coupling regions. Second, the irradiation allows reaching uniform and enhanced superconductivity dynamically stabilized without deteriorating into equilibrium inhomogeneities that suppress superconductivity. The dynamical superconductivity is subject to the Higgs oscillations during and after the irradiation. Our finding sheds light on a way to enhance superconductivity that is inaccessible in equilibrium in strongly correlated electron systems.

  1. Macroscopic character of composite high-temperature superconducting wires

    NASA Astrophysics Data System (ADS)

    Kivelson, S. A.; Spivak, B.

    2015-11-01

    The "d -wave" symmetry of the superconducting order in the cuprate high temperature superconductors is a well established fact [J. Tsuei and J. R. Kirtley, Rev. Mod. Phys. 72, 969 (2000), 10.1103/RevModPhys.72.969 and D. J. Vanharlingen, Rev. Mod. Phys. 67, 515 (1995), 10.1103/RevModPhys.67.515], and one which identifies them as "unconventional." However, in macroscopic contexts—including many potential applications (i.e., superconducting "wires")—the material is a composite of randomly oriented superconducting grains in a metallic matrix, in which Josephson coupling between grains mediates the onset of long-range phase coherence. [See, e.g., D. C. Larbalestier et al., Nat. Mater. 13, 375 (2014), 10.1038/nmat3887, A. P. Malozemoff, MRS Bull. 36, 601 (2011), 10.1557/mrs.2011.160, and K. Heine et al., Appl. Phys. Lett. 55, 2441 (1989), 10.1063/1.102295] Here we analyze the physics at length scales that are large compared to the size of such grains, and in particular the macroscopic character of the long-range order that emerges. While X Y -superconducting glass order and macroscopic d -wave superconductivity may be possible, we show that under many circumstances—especially when the d -wave superconducting grains are embedded in a metallic matrix—the most likely order has global s -wave symmetry.

  2. Superconducting proximity in three-dimensional Dirac materials: Odd-frequency, pseudoscalar, pseudovector, and tensor-valued superconducting orders

    NASA Astrophysics Data System (ADS)

    Faraei, Zahra; Jafari, S. A.

    2017-10-01

    We find that a conventional s -wave superconductor in proximity to a three-dimensional Dirac material (3DDM), to all orders of perturbation in tunneling, induces a combination of s - and p -wave pairing only. We show that the Lorentz invariance of the superconducting pairing prevents the formation of Cooper pairs with higher orbital angular momenta in the 3DDM. This no-go theorem acquires stronger form when the probability of tunneling from the conventional superconductor to positive and negative energy states of 3DDM are equal. In this case, all the p -wave contribution except for the lowest order, identically vanish and hence we obtain an exact result for the induced p -wave superconductivity in 3DDM. Fierz decomposing the superconducting matrix we find that the temporal component of the vector superconducting order and the spatial components of the pseudovector order have odd-frequency pairing symmetry. We find that the latter is odd with respect to exchange of position and chirality of the electrons in the Cooper pair and is a spin-triplet, which is necessary for NMR detection of such an exotic pseudovector pairing. Moreover, we show that the tensorial order breaks into a polar vector and an axial vector and both of them have conventional pairing symmetry except for being a spin triplet. According to our study, for gapless 3DDM, the tensorial superconducting order will be the only order that is odd with respect to the chemical potential μ . Therefore we predict that a transverse p -n junction binds Majorana fermions. This effect can be used to control the neutral Majorana fermions with electric fields.

  3. A superconducting nanowire can be modeled by using SPICE

    NASA Astrophysics Data System (ADS)

    Berggren, Karl K.; Zhao, Qing-Yuan; Abebe, Nathnael; Chen, Minjie; Ravindran, Prasana; McCaughan, Adam; Bardin, Joseph C.

    2018-05-01

    Modeling of superconducting nanowire single-photon detectors typically requires custom simulations or finite-element analysis in one or two dimensions. Here, we demonstrate two simplified one-dimensional SPICE models of a superconducting nanowire that can quickly and efficiently describe the electrical characteristics of a superconducting nanowire. These models may be of particular use in understanding alternative architectures for nanowire detectors and readouts.

  4. Suppression of superconductivity and structural phase transitions under pressure in tetragonal FeS

    DOE PAGES

    Lai, Xiaofang; Liu, Ying; Lu, Xujie; ...

    2016-08-08

    Pressure is a powerful tool to study iron-based superconductors. Here, we report systematic high-pressure transport and structural characterizations of the newly discovered superconductor FeS. It is found that superconductor FeS (tetragonal) partly transforms to a hexagonal structure at 0.4 GPa, and then completely transforms to an orthorhombic phase at 7.4 GPa and finally to a monoclinic phase above 9.0 GPa. The superconducting transition temperature of tetragonal FeS was gradually depressed by pressure, different from the case in tetragonal FeSe. With pressure increasing, the S-Fe-S angles only slightly change but the anion height deviates farther from 1.38 Å. This change ofmore » anion height, together with the structural instability under pressure, should be closely related to the suppression of superconductivity. We also observed an anomalous metal-semiconductor transition at 6.0 GPa and an unusual increased resistance with further compression above 9.6 GPa. The former can be ascribed to the tetragonal-orthorhombic structural phase transition, and the latter to the electronic structure changes of the high-pressure monoclinic phase. Lastly, a phase diagram of tetragonal FeS as functions of pressure and temperature was mapped out for the first time, which will shed new light on understanding of the structure and physics of the superconducting FeS.« less

  5. Superconducting Digital Multiplexers for Sensor Arrays

    NASA Technical Reports Server (NTRS)

    Kadin, Alan M.; Brock, Darren K.; Gupta, Deepnarayan

    2004-01-01

    Arrays of cryogenic microbolometers and other cryogenic detectors are being developed for infrared imaging. If the signal from each sensor is amplified, multiplexed, and digitized using superconducting electronics, then this data can be efficiently read out to ambient temperature with a minimum of noise and thermal load. HYPRES is developing an integrated system based on SQUID amplifiers, a high-resolution analog-to-digital converter (ADC) based on RSFQ (rapid single flux quantum) logic, and a clocked RSFQ multiplexer. The ADC and SQUIDs have already been demonstrated for other projects, so this paper will focus on new results of a digital multiplexer. Several test circuits have been fabricated using Nb Josephson technology and are about to be tested at T = 4.2 K, with a more complete prototype in preparation.

  6. Improved thermal isolation for superconducting magnet systems

    NASA Technical Reports Server (NTRS)

    Wiebe, E. R.

    1974-01-01

    Closed-cycle refrigerating system for superconductive magnet and maser is operated in vacuum environment. Each wire leading from external power source passes through cooling station which blocks heat conduction. In connection with these stations, switch with small incandescent light bulb, which generates heat, is used to stop superconduction.

  7. Superconductivity in disordered thin films: giant mesoscopic fluctuations.

    PubMed

    Skvortsov, M A; Feigel'man, M V

    2005-07-29

    We discuss the intrinsic inhomogeneities of superconductive properties of uniformly disordered thin films with a large dimensionless conductance g. It is shown that mesoscopic fluctuations, which usually contain a small factor 1/g, are crucially enhanced near the critical conductance g(cF) > 1 where superconductivity is destroyed at T = 0 due to Coulomb suppression of the Cooper attraction. This leads to strong spatial fluctuations of the local transition temperature and thus to the percolative nature of the thermal superconductive transition.

  8. High-Resolution Hard X-Ray and Gamma-Ray Spectrometers Based on Superconducting Absorbers Coupled to Superconducting Transition Edge Sensors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    van den Berg, M.; Chow, D.; Loshak, A.

    2000-09-21

    We are developing detectors based on bulk superconducting absorbers coupled to superconducting transition edge sensors (TES) for high-resolution spectroscopy of hard X-rays and soft gamma-rays. We have achieved an energy resolution of 70 eV FWHM at 60 keV using a 1 x 1 x 0.25 mm{sup 3} Sn absorber coupled to a Mo/Cu multilayer TES with a transition temperature of 100 mK. The response of the detector is compared with a simple model using only material properties data and characteristics derived from IV-measurements. We have also manufactured detectors using superconducting absorbers with a higher stopping power, such as Pb andmore » Ta. We present our first measurements of these detectors, including the thermalization characteristics of the bulk superconducting absorbers. The differences in performance between the detectors are discussed and an outline of the future direction of our detector development efforts is given.« less

  9. Freely oriented portable superconducting magnet

    DOEpatents

    Schmierer, Eric N [Los Alamos, NM; Prenger, F Coyne [Los Alamos, NM; Hill, Dallas D [Los Alamos, NM

    2010-01-12

    A freely oriented portable superconducting magnet is disclosed. Coolant is supplied to the superconducting magnet from a repository separate from the magnet, enabling portability of the magnet. A plurality of support assemblies structurally anchor and thermally isolate the magnet within a thermal shield. A plurality of support assemblies structurally anchor and thermally isolate the thermal shield within a vacuum vessel. The support assemblies restrain movement of the magnet resulting from energizing and cooldown, as well as from changes in orientation, enabling the magnet to be freely orientable.

  10. Superconductivity and ferromagnetism in topological insulators

    NASA Astrophysics Data System (ADS)

    Zhang, Duming

    Topological insulators, a new state of matter discovered recently, have attracted great interest due to their novel properties. They are insulating inside the bulk, but conducting at the surface or edges. This peculiar behavior is characterized by an insulating bulk energy gap and gapless surface or edge states, which originate from strong spin-orbit coupling and time-reversal symmetry. The spin and momentum locked surface states not only provide a model system to study fundamental physics, but can also lead to applications in spintronics and dissipationless electronics. While topological insulators are interesting by themselves, more exotic behaviors are predicted when an energy gap is induced at the surface. This dissertation explores two types of surface state gap in topological insulators, a superconducting gap induced by proximity effect and a magnetic gap induced by chemical doping. The first three chapters provide introductory theory and experimental details of my research. Chapter 1 provides a brief introduction to the theoretical background of topological insulators. Chapter 2 is dedicated to material synthesis principles and techniques. I will focus on two major synthesis methods: molecular beam epitaxy for the growth of Bi2Se3 thin films and chemical vapor deposition for the growth of Bi2Se3 nanoribbons and nanowires. Material characterization is discussed in Chapter 3. I will describe structural, morphological, magnetic, electrical, and electronic characterization techniques used to study topological insulators. Chapter 4 discusses the experiments on proximity-induced superconductivity in topological insulator (Bi2Se3) nanoribbons. This work is motivated by the search for the elusive Majorana fermions, which act as their own antiparticles. They were proposed by Ettore Majorara in 1937, but have remained undiscovered. Recently, Majorana's concept has been revived in condensed matter physics: a condensed matter analog of Majorana fermions is predicted to

  11. Magnetism in structures with ferromagnetic and superconducting layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhaketov, V. D.; Nikitenko, Yu. V., E-mail: nikiten@nf.jinr.ru; Radu, F.

    2017-01-15

    The influence of superconductivity on ferromagnetism in the layered Ta/V/Fe{sub 1–x}V{sub x}/V/Fe{sub 1–x}V{sub x}/Nb/Si structures consisting of ferromagnetic and superconducting layers is studied using polarized neutron reflection and scattering. It is experimentally shown that magnetic structures with linear sizes from 5 nm to 30 μm are formed in these layered structures at low temperatures. The magnetization of the magnetic structures is suppressed by superconductivity at temperatures below the superconducting transition temperatures in the V and Nb layers. The magnetic states of the structures are shown to undergo relaxation over a wide magnetic-field range, which is caused by changes in themore » states of clusters, domains, and Abrikosov vortices.« less

  12. A voltage-controlled superconducting quantum bus

    NASA Astrophysics Data System (ADS)

    Casparis, Lucas; Pearson, Natalie; KringhøJ, Anders; Larsen, Thorvald; Kuemmeth, Ferdinand; Krogstrup, Peter; Nygard, Jesper; Petersson, Karl; Marcus, Charles

    Superconducting qubits couple strongly to microwave photons and can therefore be coupled over long distances through a superconducting cavity acting as a quantum bus. To avoid frequency-crowding it is desirable to turn qubit coupling off while rearranging qubit frequencies. Here, we present experiments with two gatemon qubits coupled through a cavity, which can be tuned by a voltage-controlled superconducting switch. We characterize the bus tunability and demonstrate switchable qubit coupling with an on/off ratio up to 8. We find that pulsing the bus switch on nanosecond timescales results in the apparent loss of qubit coherence. Further work is needed to understand how dynamic control of the tuneable bus affects qubit operation. We acknowledge financial support from Microsoft Project Q, the Danish National Research Foundation and the US Army Research Office.

  13. Superconducting magnetic shielding apparatus and method

    DOEpatents

    Clem, John R.; Clem, John R.

    1983-01-01

    Disclosed is a method and apparatus for providing magnetic shielding around a working volume. The apparatus includes a hollow elongated superconducting shell or cylinder having an elongated low magnetic pinning central portion, and two high magnetic pinning end regions. Transition portions of varying magnetic pinning properties are interposed between the central and end portions. The apparatus further includes a solenoid substantially coextensive with and overlying the superconducting cylinder, so as to be magnetically coupled therewith. The method includes the steps passing a longitudinally directed current through the superconducting cylinder so as to depin magnetic reservoirs trapped in the cylinder. Next, a circumferentially directed current is passed through the cylinder, while a longitudinally directed current is maintained. Depinned magnetic reservoirs are moved to the end portions of the cylinder, where they are trapped.

  14. Superconducting magnetic shielding apparatus and method

    DOEpatents

    Clem, J.R.; Clem, J.R.

    1983-10-11

    Disclosed are a method and apparatus for providing magnetic shielding around a working volume. The apparatus includes a hollow elongated superconducting shell or cylinder having an elongated low magnetic pinning central portion, and two high magnetic pinning end regions. Transition portions of varying magnetic pinning properties are interposed between the central and end portions. The apparatus further includes a solenoid substantially coextensive with and overlying the superconducting cylinder, so as to be magnetically coupled therewith. The method includes the steps passing a longitudinally directed current through the superconducting cylinder so as to depin magnetic reservoirs trapped in the cylinder. Next, a circumferentially directed current is passed through the cylinder, while a longitudinally directed current is maintained. Depinned magnetic reservoirs are moved to the end portions of the cylinder, where they are trapped. 5 figs.

  15. Superconducting magnetic shielding apparatus and method

    DOEpatents

    Clem, J.R.

    1982-07-09

    Disclosed is a method and apparatus for providing magnetic shielding around a working volume. The apparatus includes a hollow elongated superconducting shell or cylinder having an elongated low magnetic pinning central portion, and two high magnetic pinning end regions. Transition portions of varying magnetic pinning properties are interposed between the central and end portions. The apparatus further includes a solenoid substantially coextensive with and overlying the superconducting cylinder, so as to be magnetically coupled therewith. The method includes the steps passing a longitudinally directed current through the superconducting cylinder so as to depin magnetic reservoirs trapped in the cylinder. Next, a circumferentially directed current is passed through the cylinder, while a longitudinally directed current is maintained. Depinned magnetic reservoirs are moved to the end portions of the cylinder, where they are trapped.

  16. Lightweight MgB2 superconducting 10 MW wind generator

    NASA Astrophysics Data System (ADS)

    Marino, I.; Pujana, A.; Sarmiento, G.; Sanz, S.; Merino, J. M.; Tropeano, M.; Sun, J.; Canosa, T.

    2016-02-01

    The offshore wind market demands a higher power rate and more reliable turbines in order to optimize capital and operational costs. The state-of-the-art shows that both geared and direct-drive conventional generators are difficult to scale up to 10 MW and beyond due to their huge size and weight. Superconducting direct-drive wind generators are considered a promising solution to achieve lighter weight machines. This work presents an innovative 10 MW 8.1 rpm direct-drive partial superconducting generator using MgB2 wire for the field coils. It has a warm iron rotor configuration with the superconducting coils working at 20 K while the rotor core and the armature are at ambient temperature. A cooling system based on cryocoolers installed in the rotor extracts the heat from the superconducting coils by conduction. The generator's main parameters are compared against a permanent magnet reference machine, showing a significant weight and size reduction. The 10 MW superconducting generator concept will be experimentally validated with a small-scale magnetic machine, which has innovative components such as superconducting coils, modular cryostats and cooling systems, and will have similar size and characteristics as the 10 MW generator.

  17. Quantum phase slip phenomenon in ultra-narrow superconducting nanorings

    NASA Astrophysics Data System (ADS)

    Arutyunov, Konstantin Yu.; Hongisto, Terhi T.; Lehtinen, Janne S.; Leino, Leena I.; Vasiliev, Alexander L.

    2012-02-01

    The smaller the system, typically - the higher is the impact of fluctuations. In narrow superconducting wires sufficiently close to the critical temperature Tc thermal fluctuations are responsible for the experimentally observable finite resistance. Quite recently it became possible to fabricate sub-10 nm superconducting structures, where the finite resistivity was reported within the whole range of experimentally obtainable temperatures. The observation has been associated with quantum fluctuations capable to quench zero resistivity in superconducting nanowires even at temperatures T-->0. Here we demonstrate that in tiny superconducting nanorings the same phenomenon is responsible for suppression of another basic attribute of superconductivity - persistent currents - dramatically affecting their magnitude, the period and the shape of the current-phase relation. The effect is of fundamental importance demonstrating the impact of quantum fluctuations on the ground state of a macroscopically coherent system, and should be taken into consideration in various nanoelectronic applications.

  18. Multipole Superconductivity in Nonsymmorphic Sr2IrO4

    NASA Astrophysics Data System (ADS)

    Sumita, Shuntaro; Nomoto, Takuya; Yanase, Youichi

    2017-07-01

    Discoveries of marked similarities to high-Tc cuprate superconductors point to the realization of superconductivity in the doped Jeff=1 /2 Mott insulator Sr2IrO4. Contrary to the mother compound of cuprate superconductors, several stacking patterns of in-plane canted antiferromagnetic moments have been reported, which are distinguished by the ferromagnetic components as -++-, ++++, and -+-+ . In this paper, we clarify unconventional features of the superconductivity coexisting with -++- and -+-+ structures. Combining the group theoretical analysis and numerical calculations for an effective Jeff=1 /2 model, we show unusual superconducting gap structures in the -++- state protected by nonsymmorphic magnetic space group symmetry. Furthermore, our calculation shows that the Fulde-Ferrell-Larkin-Ovchinnikov superconductivity is inevitably stabilized in the -+-+ state since the odd-parity magnetic -+-+ order makes the band structure asymmetric by cooperating with spin-orbit coupling. These unusual superconducting properties are signatures of magnetic multipole order in nonsymmorphic crystal.

  19. Suite of three protein crystallography beamlines with single superconducting bend magnet as the source.

    PubMed

    MacDowell, Alastair A; Celestre, Rich S; Howells, Malcolm; McKinney, Wayne; Krupnick, James; Cambie, Daniella; Domning, Edward E; Duarte, Robert M; Kelez, Nicholas; Plate, David W; Cork, Carl W; Earnest, Thomas N; Dickert, Jeffery; Meigs, George; Ralston, Corie; Holton, James M; Alber, Tom; Berger, James M; Agard, David A; Padmore, Howard A

    2004-11-01

    At the Advanced Light Source, three protein crystallography beamlines have been built that use as a source one of the three 6 T single-pole superconducting bending magnets (superbends) that were recently installed in the ring. The use of such single-pole superconducting bend magnets enables the development of a hard X-ray program on a relatively low-energy 1.9 GeV ring without taking up insertion-device straight sections. The source is of relatively low power but, owing to the small electron beam emittance, it has high brightness. X-ray optics are required to preserve the brightness and to match the illumination requirements for protein crystallography. This was achieved by means of a collimating premirror bent to a plane parabola, a double-crystal monochromator followed by a toroidal mirror that focuses in the horizontal direction with a 2:1 demagnification. This optical arrangement partially balances aberrations from the collimating and toroidal mirrors such that a tight focused spot size is achieved. The optical properties of the beamline are an excellent match to those required by the small protein crystals that are typically measured. The design and performance of these new beamlines are described.

  20. Superconductivity in the vicinity of antiferromagnetic order in CrAs.

    PubMed

    Wu, Wei; Cheng, Jinguang; Matsubayashi, Kazuyuki; Kong, Panpan; Lin, Fukun; Jin, Changqing; Wang, Nanlin; Uwatoko, Yoshiya; Luo, Jianlin

    2014-11-19

    One of the common features of unconventional superconducting systems such as the heavy-fermion, high transition-temperature cuprate and iron-pnictide superconductors is that the superconductivity emerges in the vicinity of long-range antiferromagnetically ordered state. In addition to doping charge carriers, the application of external pressure is an effective and clean approach to induce unconventional superconductivity near a magnetic quantum critical point. Here we report on the discovery of superconductivity on the verge of antiferromagnetic order in CrAs via the application of external pressure. Bulk superconductivity with Tc≈2 K emerges at the critical pressure Pc≈8 kbar, where the first-order antiferromagnetic transition at T(N)≈265 K under ambient pressure is completely suppressed. The close proximity of superconductivity to an antiferromagnetic order suggests an unconventional pairing mechanism for CrAs. The present finding opens a new avenue for searching novel superconductors in the Cr and other transition metal-based systems.

  1. Superconducting dark energy

    NASA Astrophysics Data System (ADS)

    Liang, Shi-Dong; Harko, Tiberiu

    2015-04-01

    Based on the analogy with superconductor physics we consider a scalar-vector-tensor gravitational model, in which the dark energy action is described by a gauge invariant electromagnetic type functional. By assuming that the ground state of the dark energy is in a form of a condensate with the U(1) symmetry spontaneously broken, the gauge invariant electromagnetic dark energy can be described in terms of the combination of a vector and of a scalar field (corresponding to the Goldstone boson), respectively. The gravitational field equations are obtained by also assuming the possibility of a nonminimal coupling between the cosmological mass current and the superconducting dark energy. The cosmological implications of the dark energy model are investigated for a Friedmann-Robertson-Walker homogeneous and isotropic geometry for two particular choices of the electromagnetic type potential, corresponding to a pure electric type field, and to a pure magnetic field, respectively. The time evolutions of the scale factor, matter energy density and deceleration parameter are obtained for both cases, and it is shown that in the presence of the superconducting dark energy the Universe ends its evolution in an exponentially accelerating vacuum de Sitter state. By using the formalism of the irreversible thermodynamic processes for open systems we interpret the generalized conservation equations in the superconducting dark energy model as describing matter creation. The particle production rates, the creation pressure and the entropy evolution are explicitly obtained.

  2. A small scale remote cooling system for a superconducting cyclotron magnet

    NASA Astrophysics Data System (ADS)

    Haug, F.; Berkowitz Zamorra, D.; Michels, M.; Gomez Bosch, R.; Schmid, J.; Striebel, A.; Krueger, A.; Diez, M.; Jakob, M.; Keh, M.; Herberger, W.; Oesterle, D.

    2017-02-01

    Through a technology transfer program CERN is involved in the R&D of a compact superconducting cyclotron for future clinical radioisotope production, a project led by the Spanish research institute CIEMAT. For the remote cooling of the LTc superconducting magnet operating at 4.5 K, CERN has designed a small scale refrigeration system, the Cryogenic Supply System (CSS). This refrigeration system consists of a commercial two-stage 1.5 W @ 4.2 K GM cryocooler and a separate forced flow circuit. The forced flow circuit extracts the cooling power of the first and the second stage cold tips, respectively. Both units are installed in a common vacuum vessel and, at the final configuration, a low loss transfer line will provide the link to the magnet cryostat for the cooling of the thermal shield with helium at 40 K and the two superconducting coils with two-phase helium at 4.5 K. Currently the CSS is in the testing phase at CERN in stand-alone mode without the magnet and the transfer line. We have added a “validation unit” housed in the vacuum vessel of the CSS representing the thermo-hydraulic part of the cyclotron magnet. It is equipped with electrical heaters which allow the simulation of the thermal loads of the magnet cryostat. A cooling power of 1.4 W at 4.5 K and 25 W at the thermal shield temperature level has been measured. The data produced confirm the design principle of the CSS which could be validated.

  3. Theory and application of high temperature superconducting eddy current probes for nondestructive evaluation

    NASA Astrophysics Data System (ADS)

    Claycomb, James Ronald

    1998-10-01

    Several High-T c Superconducting (HTS) eddy current probes have been developed for applications in electromagnetic nondestructive evaluation (NDE) of conducting materials. The probes utilize high-T c SUperconducting Quantum Interference Device (SQUID) magnetometers to detect the fields produced by the perturbation of induced eddy currents resulting from subsurface flaws. Localized HTS shields are incorporated to selectively screen out environmental electromagnetic interference and enable movement of the instrument in the Earth's magnetic field. High permeability magnetic shields are employed to focus flux into, and thereby increase the eddy current density in the metallic test samples. NDE test results are presented, in which machined flaws in aluminum alloy are detected by probes of different design. A novel current injection technique performing NDE of wires using SQUIDs is also discussed. The HTS and high permeability shields are designed based on analytical and numerical finite element method (FEM) calculations presented here. Superconducting and high permeability magnetic shields are modeled in uniform noise fields and in the presence of dipole fields characteristic of flaw signals. Several shield designs are characterized in terms of (1) their ability to screen out uniform background noise fields; (2) the resultant improvement in signal-to-noise ratio and (3) the extent to which dipole source fields are distorted. An analysis of eddy current induction is then presented for low frequency SQUID NDE. Analytical expressions are developed for the induced eddy currents and resulting magnetic fields produced by excitation sources above conducting plates of varying thickness. The expressions derived here are used to model the SQUID's response to material thinning. An analytical defect model is also developed, taking into account the attenuation of the defect field through the conducting material, as well as the current flow around the edges of the flaw. Time harmonic

  4. Superconductive microstrip exhibiting negative differential resistivity

    DOEpatents

    Huebener, R.P.; Gallus, D.E.

    1975-10-28

    A device capable of exhibiting negative differential electrical resistivity over a range of values of current and voltage is formed by vapor- depositing a thin layer of a material capable of exhibiting superconductivity on an insulating substrate, establishing electrical connections at opposite ends of the deposited strip, and cooling the alloy into its superconducting range. The device will exhibit negative differential resistivity when biased in the current- induced resistive state.

  5. Superconducting Sr 2- xAxCuO 2F 2+ δ( A=Ca, Ba): Synthetic Pathways and Associated Structural Rearrangements

    NASA Astrophysics Data System (ADS)

    Francesconi, M. G.; Slater, P. R.; Hodges, J. P.; Greaves, C.; Edwards, P. P.; Al-Mamouri, M.; Slaski, M.

    1998-01-01

    The low-temperature fluorination of a range of insulating alkaline earth cuprates Sr2-xAxCuO3(A=Ca (0≤x≤2);A=Ba (0≤x≤0.6)) can result in superconducting oxide fluorides Sr2-xAxCuO2F2+δ. In contrast, conventional high-temperature solid-state reactions produce thermodynamically more stable mixtures of oxides and fluorides. Various soft-chemistry fluorination pathways (utilizing F2gas, NH4F,MF2[M=Cu, Zn, Ni, Ag]) are compared with respect to their efficacy and mechanisms. Attention is also focused on the structural features of the mixed-oxide precursor and the final-oxide fluorides to highlight the remarkable structural rearrangements that occur during the low-temperature fluorination. The effects of fluorination of other Sr-Cu-O systems are used to identify the structural requirements of the precursor oxide in order to achieve such transformations.

  6. Strong interplay between stripe spin fluctuations, nematicity and superconductivity in FeSe

    DOE PAGES

    Wang, Qisi; Shen, Yao; Pan, Bingying; ...

    2015-12-07

    In iron-based superconductors the interactions driving the nematic order (that breaks four-fold rotational symmetry in the iron plane) may also mediate the Cooper pairing. The experimental determination of these interactions, which are believed to depend on the orbital or the spin degrees of freedom, is challenging because nematic order occurs at, or slightly above, the ordering temperature of a stripe magnetic phase. In this paper, we study FeSe—which exhibits a nematic (orthorhombic) phase transition at T s = 90 K without antiferromagnetic ordering—by neutron scattering, finding substantial stripe spin fluctuations coupled with the nematicity that are enhanced abruptly on coolingmore » through T s. A sharp spin resonance develops in the superconducting state, whose energy (~4 meV) is consistent with an electron–boson coupling mode revealed by scanning tunnelling spectroscopy. The magnetic spectral weight in FeSe is found to be comparable to that of the iron arsenides. Finally, our results support recent theoretical proposals that both nematicity and superconductivity are driven by spin fluctuations.« less

  7. Strong interplay between stripe spin fluctuations, nematicity and superconductivity in FeSe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Qisi; Shen, Yao; Pan, Bingying

    In iron-based superconductors the interactions driving the nematic order (that breaks four-fold rotational symmetry in the iron plane) may also mediate the Cooper pairing. The experimental determination of these interactions, which are believed to depend on the orbital or the spin degrees of freedom, is challenging because nematic order occurs at, or slightly above, the ordering temperature of a stripe magnetic phase. In this paper, we study FeSe—which exhibits a nematic (orthorhombic) phase transition at T s = 90 K without antiferromagnetic ordering—by neutron scattering, finding substantial stripe spin fluctuations coupled with the nematicity that are enhanced abruptly on coolingmore » through T s. A sharp spin resonance develops in the superconducting state, whose energy (~4 meV) is consistent with an electron–boson coupling mode revealed by scanning tunnelling spectroscopy. The magnetic spectral weight in FeSe is found to be comparable to that of the iron arsenides. Finally, our results support recent theoretical proposals that both nematicity and superconductivity are driven by spin fluctuations.« less

  8. Resonance fluorescence trajectories in superconducting qubit

    NASA Astrophysics Data System (ADS)

    Naghiloo, Mahdi; Tan, Dian; Harrington, Patrick; Lewalle, Philippe; Jordan, Andrew; Murch, Kater

    We employ phase-sensitive amplification to perform homodyne detection of the resonance fluorescence from a driven superconducting artificial atom. Entanglement between the emitter and its fluorescence allows us to track the individual quantum state trajectories of the emitter. We analyze the ensemble properties of these trajectories by considering paths that connect specific initial and final states. By applying a stochastic path integral formalism, we calculate equations of motion for the most likely path between two quantum states and compare these predicted paths to experimental data. Drawing on the mathematical similarity between the action formalism of the most likely quantum paths and ray optics, we study the emergence of caustics in quantum trajectories-situations where multiple extrema in the stochastic action occur. We observe such multiple most likely paths in experimental data and find these paths to be in reasonable quantitative agreement with theoretical calculations. Supported by the John Templeton Foundation.

  9. Electronic origin of high-temperature superconductivity in single-layer FeSe superconductor.

    PubMed

    Liu, Defa; Zhang, Wenhao; Mou, Daixiang; He, Junfeng; Ou, Yun-Bo; Wang, Qing-Yan; Li, Zhi; Wang, Lili; Zhao, Lin; He, Shaolong; Peng, Yingying; Liu, Xu; Chen, Chaoyu; Yu, Li; Liu, Guodong; Dong, Xiaoli; Zhang, Jun; Chen, Chuangtian; Xu, Zuyan; Hu, Jiangping; Chen, Xi; Ma, Xucun; Xue, Qikun; Zhou, X J

    2012-07-03

    The recent discovery of high-temperature superconductivity in iron-based compounds has attracted much attention. How to further increase the superconducting transition temperature (T(c)) and how to understand the superconductivity mechanism are two prominent issues facing the current study of iron-based superconductors. The latest report of high-T(c) superconductivity in a single-layer FeSe is therefore both surprising and significant. Here we present investigations of the electronic structure and superconducting gap of the single-layer FeSe superconductor. Its Fermi surface is distinct from other iron-based superconductors, consisting only of electron-like pockets near the zone corner without indication of any Fermi surface around the zone centre. Nearly isotropic superconducting gap is observed in this strictly two-dimensional system. The temperature dependence of the superconducting gap gives a transition temperature T(c)~ 55 K. These results have established a clear case that such a simple electronic structure is compatible with high-T(c) superconductivity in iron-based superconductors.

  10. Hidden Order as a Source of Interface Superconductivity

    NASA Astrophysics Data System (ADS)

    Moor, Andreas; Volkov, Anatoly; Efetov, Konstantin

    2015-03-01

    We propose a new mechanism of the interfacial superconductivity observed in many heterostructures composed of different materials including high-temperature superconductors. Our proposal is based on the use of the Ginzburg-Landau equations applicable to a wide class of systems. The system under consideration is assumed to have, alongside the superconducting order parameter, also another competing order that might be a charge- or spin-density wave. At certain temperatures or doping level the superconducting state is not realized (thus, ``hidden''), while the amplitude of another order parameter corresponds to a minimum of the free energy. We also assume that at an interface or at a defect, the non-superconducting order parameter is suppressed (strongly or weakly), e.g., due to an enhanced impurity scattering. The local superconductivity is shown to emerge at the interface, and the spatial dependence of the corresponding order parameter is described by the Gross-Pitaevskii equation. The quantized values of the temperature and doping levels, at which Δ (x) arises, are determined by the ``energy'' levels of the linearized Gross-Pitaevskii equation, i.e., of the Schrodinger equation. Interestingly, the local superconductivity arises even at a small suppression of the rival order. We appreciate the support from DFG via the Projekt EF 11/8-1; K. B. E. gratefully acknowledges the financial support of the Ministry of Education and Science of the Russian Federation in the framework of Increase Competitiveness Program of NUST ``MISiS.''

  11. Chemical Bonding and Thermodynamics in Superconductivity and Superfluidity

    NASA Astrophysics Data System (ADS)

    Love, Peter

    2012-05-01

    Superconductivity and superfluidity are physical states that occur in a variety of chemical and physical systems. These physical states share a common type of real, or virtual, chemical bonding. Each of the systems discussed herein contain at least one real, or effective, coordinate covalent bond. This is formed from an electron pair donor species and an electron pair acceptor species. When the electronegativity difference between the electron pair donor and acceptor species is sufficiently small, the resultant coordinate covalent bond density can be substantial. If delocalized, this bond density can result in a significant increase in the electron pair orbital volume relative to that of the parent species, and an increase in the valence shell orbital entropy. In terms of the normalized Gibbs-Helmholtz equation, this results in a concomitant decrease in free energy of the delocalized electronic system. A decrease in free energy to negative values can support a boson state, and superconductivity. A clear example of these principles is the occurrence of superconductivity in the ceramic material, MgB2. These generalizations apply to superconducting elements, high temperature superconductors, superconducting alloys, and equivalently to superfluid 4He.

  12. Quantum Devices Bonded Beneath a Superconducting Shield: Part 2

    NASA Astrophysics Data System (ADS)

    McRae, Corey Rae; Abdallah, Adel; Bejanin, Jeremy; Earnest, Carolyn; McConkey, Thomas; Pagel, Zachary; Mariantoni, Matteo

    The next-generation quantum computer will rely on physical quantum bits (qubits) organized into arrays to form error-robust logical qubits. In the superconducting quantum circuit implementation, this architecture will require the use of larger and larger chip sizes. In order for on-chip superconducting quantum computers to be scalable, various issues found in large chips must be addressed, including the suppression of box modes (due to the sample holder) and the suppression of slot modes (due to fractured ground planes). By bonding a metallized shield layer over a superconducting circuit using thin-film indium as a bonding agent, we have demonstrated proof of concept of an extensible circuit architecture that holds the key to the suppression of spurious modes. Microwave characterization of shielded transmission lines and measurement of superconducting resonators were compared to identical unshielded devices. The elimination of box modes was investigated, as well as bond characteristics including bond homogeneity and the presence of a superconducting connection.

  13. Current-induced SQUID behavior of superconducting Nb nano-rings

    NASA Astrophysics Data System (ADS)

    Sharon, Omri J.; Shaulov, Avner; Berger, Jorge; Sharoni, Amos; Yeshurun, Yosef

    2016-06-01

    The critical temperature in a superconducting ring changes periodically with the magnetic flux threading it, giving rise to the well-known Little-Parks magnetoresistance oscillations. Periodic changes of the critical current in a superconducting quantum interference device (SQUID), consisting of two Josephson junctions in a ring, lead to a different type of magnetoresistance oscillations utilized in detecting extremely small changes in magnetic fields. Here we demonstrate current-induced switching between Little-Parks and SQUID magnetoresistance oscillations in a superconducting nano-ring without Josephson junctions. Our measurements in Nb nano-rings show that as the bias current increases, the parabolic Little-Parks magnetoresistance oscillations become sinusoidal and eventually transform into oscillations typical of a SQUID. We associate this phenomenon with the flux-induced non-uniformity of the order parameter along a superconducting nano-ring, arising from the superconducting leads (‘arms’) attached to it. Current enhanced phase slip rates at the points with minimal order parameter create effective Josephson junctions in the ring, switching it into a SQUID.

  14. Superconductivity Series in Transition Metal Dichalcogenides by Ionic Gating

    PubMed Central

    Shi, Wu; Ye, Jianting; Zhang, Yijin; Suzuki, Ryuji; Yoshida, Masaro; Miyazaki, Jun; Inoue, Naoko; Saito, Yu; Iwasa, Yoshihiro

    2015-01-01

    Functionalities of two-dimensional (2D) crystals based on semiconducting transition metal dichalcogenides (TMDs) have now stemmed from simple field effect transistors (FETs) to a variety of electronic and opto-valleytronic devices, and even to superconductivity. Among them, superconductivity is the least studied property in TMDs due to methodological difficulty accessing it in different TMD species. Here, we report the systematic study of superconductivity in MoSe2, MoTe2 and WS2 by ionic gating in different regimes. Electrostatic gating using ionic liquid was able to induce superconductivity in MoSe2 but not in MoTe2 because of inefficient electron accumulation limited by electronic band alignment. Alternative gating using KClO4/polyethylene glycol enabled a crossover from surface doping to bulk doping, which induced superconductivities in MoTe2 and WS2 electrochemically. These new varieties greatly enriched the TMD superconductor families and unveiled critical methodology to expand the capability of ionic gating to other materials. PMID:26235962

  15. Superconductivity Series in Transition Metal Dichalcogenides by Ionic Gating.

    PubMed

    Shi, Wu; Ye, Jianting; Zhang, Yijin; Suzuki, Ryuji; Yoshida, Masaro; Miyazaki, Jun; Inoue, Naoko; Saito, Yu; Iwasa, Yoshihiro

    2015-08-03

    Functionalities of two-dimensional (2D) crystals based on semiconducting transition metal dichalcogenides (TMDs) have now stemmed from simple field effect transistors (FETs) to a variety of electronic and opto-valleytronic devices, and even to superconductivity. Among them, superconductivity is the least studied property in TMDs due to methodological difficulty accessing it in different TMD species. Here, we report the systematic study of superconductivity in MoSe2, MoTe2 and WS2 by ionic gating in different regimes. Electrostatic gating using ionic liquid was able to induce superconductivity in MoSe2 but not in MoTe2 because of inefficient electron accumulation limited by electronic band alignment. Alternative gating using KClO4/polyethylene glycol enabled a crossover from surface doping to bulk doping, which induced superconductivities in MoTe2 and WS2 electrochemically. These new varieties greatly enriched the TMD superconductor families and unveiled critical methodology to expand the capability of ionic gating to other materials.

  16. Multipole Superconductivity in Nonsymmorphic Sr_{2}IrO_{4}.

    PubMed

    Sumita, Shuntaro; Nomoto, Takuya; Yanase, Youichi

    2017-07-14

    Discoveries of marked similarities to high-T_{c} cuprate superconductors point to the realization of superconductivity in the doped J_{eff}=1/2 Mott insulator Sr_{2}IrO_{4}. Contrary to the mother compound of cuprate superconductors, several stacking patterns of in-plane canted antiferromagnetic moments have been reported, which are distinguished by the ferromagnetic components as -++-, ++++, and -+-+. In this paper, we clarify unconventional features of the superconductivity coexisting with -++- and -+-+ structures. Combining the group theoretical analysis and numerical calculations for an effective J_{eff}=1/2 model, we show unusual superconducting gap structures in the -++- state protected by nonsymmorphic magnetic space group symmetry. Furthermore, our calculation shows that the Fulde-Ferrell-Larkin-Ovchinnikov superconductivity is inevitably stabilized in the -+-+ state since the odd-parity magnetic -+-+ order makes the band structure asymmetric by cooperating with spin-orbit coupling. These unusual superconducting properties are signatures of magnetic multipole order in nonsymmorphic crystal.

  17. Development of Superconducting Insertion Device Magnets at NSRRC

    NASA Astrophysics Data System (ADS)

    Hwang, C. S.; Chang, C. H.; Chen, H. H.; Jan, J. C.; Lin, F. Y.; Fan, T. C.; Chen, J.; Hsu, S. N.; Hsu, K. T.; Huang, M. H.; Chang, H. P.; Hsiung, G. Y.; Chien, Y. C.; Chen, J. R.; Kuo, C. C.; Chen, C. T.

    2007-01-01

    A superconducting wavelength shifter (SWLS) with a magnetic field of 6.5 T in cryogen-free operation provides X-rays for high-resolution X-ray microscopy, EXAFS, and medical imaging beamlines. A 32-pole superconducting wiggler (SW) with a period of 6.1 cm and a magnetic field of 3.2 T in a liquid helium bath provides for three dedicated protein crystallography beamlines. Additionally, three 16-pole in-achromatic superconducting wigglers (IASW) with a period of 6.1 cm and a field strength of 3.1 T were constructed in-house and installed between the first and second bending magnets of a TBA arc section. Development of a prototype superconducting undulator (SU15) with a period of 15 mm and a field strength of 1.4 T is currently underway at National Synchrotron Radiation Research Center (MSRRC).

  18. Ultrahigh pressure superconductivity in molybdenum disulfide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chi, Zhenhua; Yen, Feihsiang; Peng, Feng

    2015-03-18

    Superconductivity commonly appears under pressure in charge densit wave (CDW)-bearing transition metal dichalcogenides (TMDs) 1,2, but ha emerged so far only via either intercalation with electron donors 3 or electrostati doping 4 in CDW-free TMDs. Theoretical calculations have predicted that th latter should be metallized through bandgap closure under pressure 5,6, bu superconductivity remained elusive in pristine 2H-MoS 2 upon substantia compression, where a pressure of up to 60 GPa only evidenced the metalli state 7,8. Here we report the emergence of superconductivity in pristine 2H-MoS at 90 GPa. The maximum onset transition temperature T c (onset) of 11.5 K,more » th highest value among TMDs and nearly constant from 120 up to 200 GPa, is wel above that obtained by chemical doping3 but comparable to that obtained b electrostatic doping4. T c (onset) is more than an order of magnitude larger tha present theoretical expectations, raising questions on either the curren calculation methodologies or the mechanism of the pressure-induced pairin state. Lastly, our findings strongly suggest further experimental and theoretical effort directed toward the study of the pressure-induced superconductivity in all CDWfre TMDs.« less

  19. Unconventional high-Tc superconductivity in fullerides

    PubMed Central

    Takabayashi, Yasuhiro; Prassides, Kosmas

    2016-01-01

    A3C60 molecular superconductors share a common electronic phase diagram with unconventional high-temperature superconductors such as the cuprates: superconductivity emerges from an antiferromagnetic strongly correlated Mott-insulating state upon tuning a parameter such as pressure (bandwidth control) accompanied by a dome-shaped dependence of the critical temperature, Tc. However, unlike atom-based superconductors, the parent state from which superconductivity emerges solely by changing an electronic parameter—the overlap between the outer wave functions of the constituent molecules—is controlled by the C603− molecular electronic structure via the on-molecule Jahn–Teller effect influence of molecular geometry and spin state. Destruction of the parent Mott–Jahn–Teller state through chemical or physical pressurization yields an unconventional Jahn–Teller metal, where quasi-localized and itinerant electron behaviours coexist. Localized features gradually disappear with lattice contraction and conventional Fermi liquid behaviour is recovered. The nature of the underlying (correlated versus weak-coupling Bardeen–Cooper–Schrieffer theory) s-wave superconducting states mirrors the unconventional/conventional metal dichotomy: the highest superconducting critical temperature occurs at the crossover between Jahn–Teller and Fermi liquid metal when the Jahn–Teller distortion melts. This article is part of the themed issue ‘Fullerenes: past, present and future, celebrating the 30th anniversary of Buckminster Fullerene’. PMID:27501971

  20. Study of superconducting magnetic bearing applicable to the flywheel energy storage system that consist of HTS-bulks and superconducting-coils

    NASA Astrophysics Data System (ADS)

    Seino, Hiroshi; Nagashima, Ken; Tanaka, Yoshichika; Nakauchi, Masahiko

    2010-06-01

    The Railway Technical Research Institute conducted a study to develop a superconducting magnetic bearing applicable to the flywheel energy-storage system for railways. In the first step of the study, the thrust rolling bearing was selected for application, and adopted liquid-nitrogen-cooled HTS-bulk as a rotor, and adopted superconducting coil as a stator for the superconducting magnetic bearing. Load capacity of superconducting magnetic bearing was verified up to 10 kN in the static load test. After that, rotation test of that approximately 5 kN thrust load added was performed with maximum rotation of 3000rpm. In the results of bearing rotation test, it was confirmed that position in levitation is able to maintain with stability during the rotation. Heat transfer properties by radiation in vacuum and conductivity by tenuous gas were basically studied by experiment by the reason of confirmation of rotor cooling method. The experimental result demonstrates that the optimal gas pressure is able to obtain without generating windage drag. In the second stage of the development, thrust load capacity of the bearing will be improved aiming at the achievement of the energy capacity of a practical scale. In the static load test of the new superconducting magnetic bearing, stable 20kN-levitation force was obtained.

  1. Superconducting homopolar motor and conductor development

    NASA Astrophysics Data System (ADS)

    Gubser, Donald U.

    1996-10-01

    The U.S. Navy has been developing superconducting homopolar motors for ship applications since 1969; a successful at-sea demonstration of the first motor, using NbTi wire for the magnet, was achieved in the early 1980s. Recently, this same motor was used as a test bed to demonstrate progress in high-critical-temperature superconducting magnet technology using bismuth-strontium- calcium-copper-oxide (BSCCO) compounds. In the fall of 1995, this motor achieved a performance of 124 kW operating at a temperature of 4.2 K and 91 kW while operating at 28 K. Future tests are scheduled using new magnets with conductors of both the 2223 and the 2212 BSCCO phases. This article describes the advantages of superconducting propulsion and recent progress in the development of BSCCO conductors for use in Navy power systems.

  2. High-T c superconductivity in undoped ThFeAsN.

    PubMed

    Shiroka, T; Shang, T; Wang, C; Cao, G-H; Eremin, I; Ott, H-R; Mesot, J

    2017-07-31

    Unlike the widely studied ReFeAsO series, the newly discovered iron-based superconductor ThFeAsN exhibits a remarkably high critical temperature of 30 K, without chemical doping or external pressure. Here we investigate in detail its magnetic and superconducting properties via muon-spin rotation/relaxation and nuclear magnetic resonance techniques and show that ThFeAsN exhibits strong magnetic fluctuations, suppressed below ~35 K, but no magnetic order. This contrasts strongly with the ReFeAsO series, where stoichiometric parent materials order antiferromagnetically and superconductivity appears only upon doping. The ThFeAsN case indicates that Fermi-surface modifications due to structural distortions and correlation effects are as important as doping in inducing superconductivity. The direct competition between antiferromagnetism and superconductivity, which in ThFeAsN (as in LiFeAs) occurs at already zero doping, may indicate a significant deviation of the s-wave superconducting gap in this compound from the standard s ± scenario.Exploring the interplay between the superconducting gap and the antiferromagnetic phase in Fe-based superconductors remains an open issue. Here, the authors show that Fermi-surface modifications by means of structural distortions and correlation effects are as important as doping in inducing superconductivity in undoped ThFeAsN.

  3. Superconducting NbTiN thin films for superconducting radio frequency accelerator cavity applications

    DOE PAGES

    Burton, Matthew C.; Beebe, Melissa R.; Yang, Kaida; ...

    2016-02-12

    Current superconducting radio frequency technology, used in various particle accelerator facilities across the world, is reliant upon bulk niobium superconducting cavities. Due to technological advancements in the processing of bulk Nb cavities, the facilities have reached accelerating fields very close to a material-dependent limit, which is close to 50 MV/m for bulk Nb. One possible solution to improve upon this fundamental limitation was proposed a few years ago by Gurevich [Appl. Phys. Lett. 88, 012511 (2006)], consisting of the deposition of alternating thin layers of superconducting and insulating materials on the interior surface of the cavities. The use of type-IImore » superconductors with Tc > Tc Nb and H c > HcNb, (e.g., Nb 3Sn, NbN, or NbTiN) could potentially greatly reduce the surface resistance (Rs) and enhance the accelerating field, if the onset of vortex penetration is increased above Hc Nb, thus enabling higher field gradients. Although Nb 3Sn may prove superior, it is not clear that it can be grown as a suitable thin film for the proposed multilayer approach, since very high temperature is typically required for its growth, hindering achieving smooth interfaces and/or surfaces. On the other hand, since NbTiN has a smaller lower critical field (H c1) and higher critical temperature (T c) than Nb and increased conductivity compared to NbN, it is a promising candidate material for this new scheme. Here, the authors present experimental results correlating filmmicrostructure with superconducting properties on NbTiN thin film coupon samples while also comparing filmsgrown with targets of different stoichiometry. In conclusion, it is worth mentioning that the authors have achieved thin films with bulk-like lattice parameter and transition temperature while also achieving H c1 values larger than bulk for films thinner than their London penetration depths.« less

  4. Perspectives of synchrotron radiation sources with superconductivity

    NASA Astrophysics Data System (ADS)

    Tanaka, Takashi

    2007-10-01

    The synchrotron radiation source is a magnetic device to generate a periodic magnetic field where a relativistic electron moves along a periodic trajectory and emits light called synchrotron radiation (SR), which has been used as a scientific probe for many years in various fields. Although permanent magnets (PMs) are usually used to generate the magnetic field in the SR source because of their cost-effectiveness and availability, a large number of SR sources with superconductors have been constructed for special uses, i.e., to obtain a strong magnetic field over 3 T, which cannot be achieved by using PMs alone. Most of these SR sources are composed of electromagnets with superconducting coils made of NbTi as in commercially available superconducting magnets. For stronger magnetic field, research on application of Nb3Sn is in progress. On the other hand, utilization of high Tc superconducting bulk magnets has been recently proposed and R&Ds toward realization are being carried out. This paper reviews the currents status of the SR sources with superconductivity and describes the future perspectives.

  5. Detection of geometric phases in superconducting nanocircuits

    PubMed

    Falci; Fazio; Palma; Siewert; Vedral

    2000-09-21

    When a quantum-mechanical system undergoes an adiabatic cyclic evolution, it acquires a geometrical phase factor' in addition to the dynamical one; this effect has been demonstrated in a variety of microscopic systems. Advances in nanotechnology should enable the laws of quantum dynamics to be tested at the macroscopic level, by providing controllable artificial two-level systems (for example, in quantum dots and superconducting devices). Here we propose an experimental method to detect geometric phases in a superconducting device. The setup is a Josephson junction nanocircuit consisting of a superconducting electron box. We discuss how interferometry based on geometrical phases may be realized, and show how the effect may be applied to the design of gates for quantum computation.

  6. Investigation of the superconducting proximity effect (SPE) and magnetic dead layers (MDL) in thin film double layers

    NASA Astrophysics Data System (ADS)

    Tateishi, Go

    When a thin superconducting film (S film) is condensed onto a thin normal conducting film (N film), the first layers of the S film loose their superconductivity. This phenomenon is generally called the "superconducting proximity effect (SPE)". As an investigation of SPE we focus on the transition temperature of extremely thin NS double layers in the thin regime. Normal metal is condensed on top of insulating Sb, then Pb is deposited on it in small steps. The transition temperature is plotted in an inverse Tc-reduction 1/Delta T c =1/(Ts - Tc) versus Pb thickness graph. To compare our experimental results with the theoretical prediction, a numerical calculation of the SN double layer is performed by our group using the linear gap equation. As a result, there are large discrepancies between the experimental and theoretical results generally. The results of the NS double layers can be divided into three groups in terms of their discrepancies between experiment and theory.(1) Non-coupling (Tc = 0 K): N= Mg, Ag, Cu, Au. There are large deviations between experiment and theory by a factor to the order of 2.5. (2) Weak coupling (Tc is low (< 2.5 K)) : N=Cd, Zn, Al. Deviation is present, but only by a factor of 1.5. (3) Intermediate coupling (T c is around half of Pb's (≈ 4.5 K)) : N=In, Sn. The experimental results agree with the theory. Next, we examine the detection of the magnetic dead layer (MDL) of Ni thin films in terms of the anomalous Hall effect (AHE) with several non-magnetic metal substrates. In our results, when Ni film is contact with a polyvalent metal substrate film, the sandwich film has around 2 to 3.5 at.lay. of magnetic dead layers. However we have not observed the magnetic dead Ni layers with the alkali and noble metal substrate film. Finally, we revisit the Pb/Ni system to measure the magnetic scattering of Ni with the method of Weak Localization (WL) to compare with the dephasing rate due to the Tc-reduction. In this series, we use only very thin

  7. Enhancement of superconducting transition temperature by pointlike disorder and anisotropic energy gap in FeSe single crystals

    DOE PAGES

    Teknowijoyo, S.; Cho, K.; Tanatar, M. A.; ...

    2016-08-29

    A highly anisotropic superconducting gap is found in single crystals of FeSe by studying the London penetration depth Δλ measured down to 50 mK in samples before and after 2.5 MeV electron irradiation. The gap minimum increases with introduced pointlike disorder, indicating the absence of symmetry-imposed nodes. Surprisingly, the superconducting transition temperature T c increases by 0.4 K from T c0 ≈ 8.8 K while the structural transition temperature T s decreases by 0.9 K from T s0 ≈ 91.2 K after electron irradiation. Finally, we discuss several explanations for the T c enhancement and propose that local strengthening ofmore » the pair interaction by irradiation-induced Frenkel defects most likely explains the phenomenon.« less

  8. EDITORIAL: Focus on Iron-Based Superconductors FOCUS ON IRON-BASED SUPERCONDUCTORS

    NASA Astrophysics Data System (ADS)

    Hosono, Hideo; Ren, Zhi-An

    2009-02-01

    pace of research within the last year, iron-based superconductors have revealed several unique properties such as a high upper critical field and a robustness to impurities. Participation of five 3d-orbitals in the Fermi levels also means that the electronic structure is complex compared with the cuprates. So, we now have a new family of superconductors and it is worth stressing that we have only just begun looking at the many varieties of candidate materials containing an iron square lattice. At this time we do not know whether a material with a critical temperature greater than 100 K exists, or if completely new properties are to be found. However, as a research community we should go ahead with hope and 'strike while the iron is hot'—this saying is always true! This focus issue of New Journal of Physics was put together to provide a broad-based, free-to-read snapshot of the current state of research in this rapidly emerging field. The papers included cover many aspects related to material exploration, physical analysis, and the theory of these materials, and, as editors, we thank the authors for their fine contributions, and the many referees for their considerable efforts that have ensured fast publication. As an aside, the first special issue on this SUBject was published in November 2008 in the Journal of the Physical Society of Japan (vol 77, supplement c) as the proceedings of the International Symposium on Iron-Pnictide Superconductors held in Tokyo on 29-30 June 2008. We would like to encourage the community to read both issues. On a final note we would like to acknowledge the staff of New Journal of Physics for all of their efficient work in bringing this collection to fruition. Focus on Iron-Based Superconductors Contents Microwave response of superconducting pnictides: extended s+/- scenario O V Dolgov, A A Golubov and D Parker Orbital and spin effects for the upper critical field in As-deficient disordered Fe pnictide superconductors G Fuchs, S

  9. Superconducting compounds and alloys research

    NASA Technical Reports Server (NTRS)

    Otto, G.

    1975-01-01

    Resistivity measurements as a function of temperature were performed on alloys of the binary material system In sub(1-x) Bi sub x for x varying between 0 and 1. It was found that for all single-phase alloys (the pure elements, alpha-In, and the three intermetallic compounds) at temperatures sufficiently above the Debye-temperature, the resistivity p can be expressed as p = a sub o T(n), where a sub o and n are composition-dependent constants. The same exponential relationship can also be applied for the sub-system In-In2Bi, when the two phases are in compositional equilibrium. Superconductivity measurements on single and two-phase alloys can be explained with respect to the phase diagram. There occur three superconducting phases (alpha-In, In2Bi, and In5Bi3) with different transition temperatures in the alloying system. The magnitude of the transition temperatures for the various intermetallic phases of In-Bi is such that the disappearance or occurrence of a phase in two component alloys can be demonstrated easily by means of superconductivity measurements.

  10. Superconductivity driven by pairing of the coherent parts of the physical electrons

    NASA Astrophysics Data System (ADS)

    Su, Yuehua; Zhang, Chao

    2018-03-01

    How the superconductivity in unconventional superconductors emerges from the diverse mother normal states is still a big puzzle. Whatever the mother normal states are the superconductivity is normal with BCS-like behaviours of the paired quasiparticles in condensation. To reconcile the diverse mother normal states and the normal superconductivity in unconventional superconductors, we revisit a proposal that the emergence of the low-energy coherent parts of the physical electrons, which survive from the interaction correlations, is an essential prerequisite for superconductivity. The superconductivity is driven by the pair condensation of these coherent parts of the physical electrons. Moreover the incoherent parts of the physical electrons can enhance the superconducting transition temperature Tc although they are not in driving role in the emergence of the superconductivity. Some experimental responses of the coherent parts of the physical electrons are predicted.

  11. RF Control and Measurement of Superconducting Qubits

    DTIC Science & Technology

    2015-02-14

    Schoelkopf, Leonid I. Glazman, Michel H. Devoret. Coherent suppression of electromagnetic dissipation due to superconducting quasiparticles ...Frunzio, L.?I. Glazman, M.?H. Devoret. Non-Poissonian Quantum Jumps of a Fluxonium Qubit due to Quasiparticle Excitations, Physical Review Letters...Devoret, G. Catelani, L. I. Glazman, R. J. Schoelkopf. Measurement and control of quasiparticle dynamics in a superconducting qubit, Nature

  12. [The discussion of superconducting MRI magnet transformation without LHe].

    PubMed

    Yu, Huixian

    2014-01-01

    In this paper, from the current situation of the domestic use of superconducting MRI, on liquid helium supply and demand crisis in the market, the significance of the transformation without LHe of the superconducting MRI magnet was explained, and according to the enterprise's production process, a number of operating without liquid helium transformation practice and ideas were raised, important value orientation for the domestic manufacture and use of superconducting MRI was provided.

  13. Superconductivity switch from spin-singlet to -triplet pairing in a topological superconducting junction.

    PubMed

    Tao, Ze; Chen, F J; Zhou, L Y; Li, Bin; Tao, Y C; Wang, J

    2018-06-06

    The interedge coupling is the cardinal characteristic of the narrow quantum spin Hall (QSH) insulator, and thus could bring about exotic transport phenomena. Herein, we present a theoretical investigation of the spin-resolved Andreev reflection (AR) in a QSH insulator strip touching on two neighbouring ferromagnetic insulators and one s-wave superconductor. It is demonstrated that, due to the interplay of the interedge coupling and ferromagnetic configuration, there could be not only usual local ARs leading to the spin-singlet pairing with the incident electron and Andreev-reflected hole from different spin subbands, but also novel local ARs giving rise to the spin-triplet pairing from the same spin subband. However, only the latter exists in the absence of the interedge coupling, and therefore the two pairings in turn testify the helical spin texture of the edge states. By proper tuning of the band structures of the ferromagnetic layers, under the resonance bias voltage, the usual and novel local ARs of [Formula: see text] can be all exhibited, resulting in fully spin-polarized pure spin-singlet superconductivity and pure spin-triplet superconductivity, respectively, which suggests a superconductivity switch from spin-singlet to -triplet pairing by electrical control. The results can be experimentally confirmed by the tunneling conductance and the noise power.

  14. Superconductivity switch from spin-singlet to -triplet pairing in a topological superconducting junction

    NASA Astrophysics Data System (ADS)

    Tao, Ze; Chen, F. J.; Zhou, L. Y.; Li, Bin; Tao, Y. C.; Wang, J.

    2018-06-01

    The interedge coupling is the cardinal characteristic of the narrow quantum spin Hall (QSH) insulator, and thus could bring about exotic transport phenomena. Herein, we present a theoretical investigation of the spin-resolved Andreev reflection (AR) in a QSH insulator strip touching on two neighbouring ferromagnetic insulators and one s-wave superconductor. It is demonstrated that, due to the interplay of the interedge coupling and ferromagnetic configuration, there could be not only usual local ARs leading to the spin-singlet pairing with the incident electron and Andreev-reflected hole from different spin subbands, but also novel local ARs giving rise to the spin-triplet pairing from the same spin subband. However, only the latter exists in the absence of the interedge coupling, and therefore the two pairings in turn testify the helical spin texture of the edge states. By proper tuning of the band structures of the ferromagnetic layers, under the resonance bias voltage, the usual and novel local ARs of can be all exhibited, resulting in fully spin-polarized pure spin-singlet superconductivity and pure spin-triplet superconductivity, respectively, which suggests a superconductivity switch from spin-singlet to -triplet pairing by electrical control. The results can be experimentally confirmed by the tunneling conductance and the noise power.

  15. Intermediate coupled superconductivity in yttrium intermetallics

    NASA Astrophysics Data System (ADS)

    Sharma, Ramesh; Ahmed, Gulzar; Sharma, Yamini

    2017-09-01

    Non-magnetic YIn3, LaIn3 and LuIn3 with a superconducting transition temperature Tc of 0.78, 0.71 and 0.24 K were investigated for superconductivity. Similarly, rare-earth compound LaSn3 has been reported to exhibit superconductivity around 6.25 K, whereas the non-magnetic YSn3 is a superconductor with Tc of 7 K. The substitution of 13th group In-atoms by 14th group Sn-atoms is seen to enhance Tc by nearly one order, although the lattice parameters increase by ∼1.0% in YSn3 compared to YIn3 compound. It is observed from the ground state properties that the slight difference in the energy band structures of YIn3, YIn2Sn and YSn3 gives rise to various complex Fermi surfaces which are multiply connected and exhibit vast differences. The Fermi level lies on a sharp peak in YSn3 which has a higher density of states N(EF), whereas Fermi level lies on the shoulder of a sharp peak in YIn3. The electron localization function (ELF) and difference charge density maps clearly illustrate the difference in the nature of bonding; the Ysbnd Sn bonds are clearly more ionic (due to larger bond length) than Ysbnd In bonds. These results are consistent with the Bader charges which show loss of charges from Y-atoms and a gain of charges by In/Sn atoms. The dynamical properties also clearly illustrate the difference in the nature of bonds in YX3 intermetallics. A softening of the lowermost acoustic modes is observed in YIn3, whereas all the modes in YSn3 are observed to have positive frequencies which imply its greater stability. Since λel-ph < 1, both YIn3 and YSn3 compounds exhibit type I superconductivity according to BCS theory. However, the smaller N(EF) obtained from the density of states (DOS); the electron-phonon coupling constant λel-ph obtained from the temperature dependent specific heat as well as the instability in phonon modes due to stronger Ysbnd In and Insbnd In bonds in YIn3 may be the cause of lower Tc and filamentary nature of superconductivity. Insertion of Sn

  16. Characterizing superconducting thin films using AC Magnetic Susceptibility

    NASA Astrophysics Data System (ADS)

    Mahoney, C. H.; Porzio, J.; Sullivan, M. C.

    2014-03-01

    We present our work on using ac magnetic susceptibility to determine the critical temperature of superconducting thin films. In ac magnetic susceptibility, the thin film is placed between two coils. One coil carries an ac signal, creating a varying external magnetic field. We measure the voltage induced in the pick-up coil on the opposite side of the sample and measure how the sample magnetization changes as the temperature changes. We will present our work to use ac susceptibility to determine critical temperature and superconducting volume fraction. Using our own analysis program, we are able to accurately locate the critical temperatures of the samples and determine the transition width. For the superconducting volume fraction, we etch samples in order to control the thicknesses of the sample and measure how much of the material grown on the surface is superconducting. Supported by NFS grant DMR-1305637.

  17. Coexistence of superconductivity and magnetism by chemical design

    NASA Astrophysics Data System (ADS)

    Coronado, Eugenio; Martí-Gastaldo, Carlos; Navarro-Moratalla, Efrén; Ribera, Antonio; Blundell, Stephen J.; Baker, Peter J.

    2010-12-01

    Although the coexistence of superconductivity and ferromagnetism in one compound is rare, some examples of such materials are known to exist. Methods to physically prepare hybrid structures with both competing phases are also known, which rely on the nanofabrication of alternating conducting layers. Chemical methods of building up hybrid materials with organic molecules (superconducting layers) and metal complexes (magnetic layers) have provided examples of superconductivity with some magnetic properties, but not fully ordered. Now, we report a chemical design strategy that uses the self assembly in solution of macromolecular nanosheet building blocks to engineer the coexistence of superconductivity and magnetism in [Ni0.66Al0.33(OH)2][TaS2] at ~4 K. The method is further demonstrated in the isostructural [Ni0.66Fe0.33(OH)2][TaS2], in which the magnetic ordering is shifted from 4 K to 16 K.

  18. Inducing Strong Superconductivity in WTe2 by a Proximity Effect.

    PubMed

    Huang, Ce; Narayan, Awadhesh; Zhang, Enze; Liu, Yanwen; Yan, Xiao; Wang, Jiaxiang; Zhang, Cheng; Wang, Weiyi; Zhou, Tong; Yi, Changjiang; Liu, Shanshan; Ling, Jiwei; Zhang, Huiqin; Liu, Ran; Sankar, Raman; Chou, Fangcheng; Wang, Yihua; Shi, Youguo; Law, Kam Tuen; Sanvito, Stefano; Zhou, Peng; Han, Zheng; Xiu, Faxian

    2018-06-21

    The search for proximity-induced superconductivity in topological materials has generated widespread interest in the condensed matter physics community. The superconducting states inheriting nontrivial topology at interfaces are expected to exhibit exotic phenomena such as topological superconductivity and Majorana zero modes, which hold promise for applications in quantum computation. However, a practical realization of such hybrid structures based on topological semimetals and superconductors has hitherto been limited. Here, we report the strong proximity-induced superconductivity in type-II Weyl semimetal WTe 2 , in a van der Waals hybrid structure obtained by mechanically transferring NbSe 2 onto various thicknesses of WTe 2 . When the WTe 2 thickness ( t WTe 2 ) reaches 21 nm, the superconducting transition occurs around the critical temperature ( T c ) of NbSe 2 with a gap amplitude (Δ p ) of 0.38 meV and an unexpected ultralong proximity length ( l p ) up to 7 μm. With the thicker 42 nm WTe 2 layer, however, the proximity effect yields T c ≈ 1.2 K, Δ p = 0.07 meV, and a short l p of less than 1 μm. Our theoretical calculations, based on the Bogoliubov-de Gennes equations in the clean limit, predict that the induced superconducting gap is a sizable fraction of the NbSe 2 superconducting one when t WTe 2 is less than 30 nm and then decreases quickly as t WTe 2 increases. This agrees qualitatively well with the experiments. Such observations form a basis in the search for superconducting phases in topological semimetals.

  19. Evidence for preferential flux flow at the grain boundaries of superconducting RF-quality niobium

    NASA Astrophysics Data System (ADS)

    Sung, Z.-H.; Lee, P. J.; Gurevich, A.; Larbalestier, D. C.

    2018-04-01

    The question of whether grain boundaries (GBs) in niobium can be responsible for lowered operating field (B RF) or quality factor (Q 0) in superconducting radio frequency (SRF) cavities is still controversial. Here, we show by direct DC transport across planar GBs isolated from a slice of very large-grain SRF-quality Nb that vortices can preferentially flow along the grain boundary when the external magnetic field lies in the GB plane. However, increasing the misalignment between the GB plane and the external magnetic field vector markedly reduces preferential flux flow along the GB. Importantly, we find that preferential GB flux flow is more prominent for a buffered chemical polished than for an electropolished bi-crystal. The voltage-current characteristics of GBs are similar to those seen in low angle grain boundaries of high temperature superconductors where there is clear evidence of suppression of the superconducting order parameter at the GB. While local weakening of superconductivity at GBs in cuprates and pnictides is intrinsic, deterioration of current transparency of GBs in Nb appears to be extrinsic, since the polishing method clearly affect the local GB degradation. The dependence of preferential GB flux flow on important cavity preparation and experimental variables, particularly the final chemical treatment and the angle between the magnetic field and the GB plane, suggests two more reasons why real cavity performance can be so variable.

  20. The role of local repulsion in superconductivity in the Hubbard-Holstein model

    NASA Astrophysics Data System (ADS)

    Lin, Chungwei; Wang, Bingnan; Teo, Koon Hoo

    2017-01-01

    We examine the superconducting solution in the Hubbard-Holstein model using Dynamical Mean Field Theory. The Holstein term introduces the site-independent Boson fields coupling to local electron density, and has two competing influences on superconductivity: The Boson field mediates the effective electron-electron attraction, which is essential for the S-wave electron pairing; the same coupling to the Boson fields also induces the polaron effect, which makes the system less metallic and thus suppresses superconductivity. The Hubbard term introduces an energy penalty U when two electrons occupy the same site, which is expected to suppress superconductivity. By solving the Hubbard-Holstein model using Dynamical Mean Field theory, we find that the Hubbard U can be beneficial to superconductivity under some circumstances. In particular, we demonstrate that when the Boson energy Ω is small, a weak local repulsion actually stabilizesthe S-wave superconducting state. This behavior can be understood as an interplay between superconductivity, the polaron effect, and the on-site repulsion: As the polaron effect is strong and suppresses superconductivity in the small Ω regime, the weak on-site repulsion reduces the polaron effect and effectively enhances superconductivity. Our calculation elucidates the role of local repulsion in the conventional S-wave superconductors.

  1. Resilient Nodeless d -Wave Superconductivity in Monolayer FeSe

    NASA Astrophysics Data System (ADS)

    Agterberg, D. F.; Shishidou, T.; O'Halloran, J.; Brydon, P. M. R.; Weinert, M.

    2017-12-01

    Monolayer FeSe exhibits the highest transition temperature among the iron based superconductors and appears to be fully gapped, seemingly consistent with s -wave superconductivity. Here, we develop a theory for the superconductivity based on coupling to fluctuations of checkerboard magnetic order (which has the same translation symmetry as the lattice). The electronic states are described by a symmetry based k .p -like theory and naturally account for the states observed by angle resolved photoemission spectroscopy. We show that a prediction of this theory is that the resultant superconducting state is a fully gapped, nodeless, d -wave state. This state, which would usually have nodes, stays nodeless because, as seen experimentally, the relevant spin-orbit coupling has an energy scale smaller than the superconducting gap.

  2. Superconductivity in two-dimensional phosphorus carbide (β0-PC).

    PubMed

    Wang, Bao-Tian; Liu, Peng-Fei; Bo, Tao; Yin, Wen; Eriksson, Olle; Zhao, Jijun; Wang, Fangwei

    2018-05-09

    Two-dimensional (2D) boron has been predicted to show superconductivity. However, intrinsic 2D carbon and phosphorus have not been reported to be superconductors, which has inspired us to study the superconductivity of their mixture. Here we performed first-principles calculations for the electronic structure, phonon dispersion, and electron-phonon coupling of the metallic phosphorus carbide monolayer, β0-PC. The results show that it is an intrinsic phonon-mediated superconductor, with an estimated superconducting temperature Tc of ∼13 K. The main contribution to the electron-phonon coupling is from the out-of-plane vibrations of phosphorus. A Kohn anomaly on the first acoustic branch is observed. The superconducting related physical quantities are found to be tunable by applying strain or by carrier doping.

  3. First heavy ion beam tests with a superconducting multigap CH cavity

    NASA Astrophysics Data System (ADS)

    Barth, W.; Aulenbacher, K.; Basten, M.; Busch, M.; Dziuba, F.; Gettmann, V.; Heilmann, M.; Kürzeder, T.; Miski-Oglu, M.; Podlech, H.; Rubin, A.; Schnase, A.; Schwarz, M.; Yaramyshev, S.

    2018-02-01

    Very compact accelerating-focusing structures, as well as short focusing periods, high accelerating gradients and short drift spaces are strongly required for superconducting (sc) accelerator sections operating at low and medium energies for continuous wave (cw) heavy ion beams. To keep the GSI-super heavy element (SHE) program competitive on a high level and even beyond, a standalone sc cw linac (Helmholtz linear accelerator) in combination with the GSI high charge state injector (HLI), upgraded for cw operation, is envisaged. Recently the first linac section (financed by Helmholtz Institute Mainz (HIM) and GSI) as a demonstration of the capability of 217 MHz multigap crossbar H-mode structures (CH) has been commissioned and extensively tested with heavy ion beam from the HLI. The demonstrator setup reached acceleration of heavy ions up to the design beam energy. The required acceleration gain was achieved with heavy ion beams even above the design mass to charge ratio at high beam intensity and full beam transmission. This paper presents systematic beam measurements with varying rf amplitudes and phases of the CH cavity, as well as phase space measurements for heavy ion beams with different mass to charge ratio. The worldwide first and successful beam test with a superconducting multigap CH cavity is a milestone of the R&D work of HIM and GSI in collaboration with IAP in preparation of the HELIAC project and other cw-ion beam applications.

  4. A superconducting large-angle magnetic suspension

    NASA Astrophysics Data System (ADS)

    Downer, James R.; Anastas, George V., Jr.; Bushko, Dariusz A.; Flynn, Frederick J.; Goldie, James H.; Gondhalekar, Vijay; Hawkey, Timothy J.; Hockney, Richard L.; Torti, Richard P.

    1992-12-01

    SatCon Technology Corporation has completed a Small Business Innovation Research (SBIR) Phase 2 program to develop a Superconducting Large-Angle Magnetic Suspension (LAMS) for the NASA Langley Research Center. The Superconducting LAMS was a hardware demonstration of the control technology required to develop an advanced momentum exchange effector. The Phase 2 research was directed toward the demonstration for the key technology required for the advanced concept CMG, the controller. The Phase 2 hardware consists of a superconducting solenoid ('source coils') suspended within an array of nonsuperconducting coils ('control coils'), a five-degree-of-freedom positioning sensing system, switching power amplifiers, and a digital control system. The results demonstrated the feasibility of suspending the source coil. Gimballing (pointing the axis of the source coil) was demonstrated over a limited range. With further development of the rotation sensing system, enhanced angular freedom should be possible.

  5. Hybrid quantum systems: Outsourcing superconducting qubits

    NASA Astrophysics Data System (ADS)

    Cleland, Andrew

    Superconducting qubits offer excellent prospects for manipulating quantum information, with good qubit lifetimes, high fidelity single- and two-qubit gates, and straightforward scalability (admittedly with multi-dimensional interconnect challenges). One interesting route for experimental development is the exploration of hybrid systems, i.e. coupling superconducting qubits to other systems. I will report on our group's efforts to develop approaches that will allow interfacing superconducting qubits in a quantum-coherent fashion to spin defects in solids, to optomechanical devices, and to resonant nanomechanical structures. The longer term goals of these efforts include transferring quantum states between different qubit systems; generating and receiving ``flying'' acoustic phonon-based as well as optical photon-based qubits; and ultimately developing systems that can be used for quantum memory, quantum computation and quantum communication, the last in both the microwave and fiber telecommunications bands. Work is supported by Grants from AFOSR, ARO, DOE and NSF.

  6. A superconducting large-angle magnetic suspension

    NASA Technical Reports Server (NTRS)

    Downer, James R.; Anastas, George V., Jr.; Bushko, Dariusz A.; Flynn, Frederick J.; Goldie, James H.; Gondhalekar, Vijay; Hawkey, Timothy J.; Hockney, Richard L.; Torti, Richard P.

    1992-01-01

    SatCon Technology Corporation has completed a Small Business Innovation Research (SBIR) Phase 2 program to develop a Superconducting Large-Angle Magnetic Suspension (LAMS) for the NASA Langley Research Center. The Superconducting LAMS was a hardware demonstration of the control technology required to develop an advanced momentum exchange effector. The Phase 2 research was directed toward the demonstration for the key technology required for the advanced concept CMG, the controller. The Phase 2 hardware consists of a superconducting solenoid ('source coils') suspended within an array of nonsuperconducting coils ('control coils'), a five-degree-of-freedom positioning sensing system, switching power amplifiers, and a digital control system. The results demonstrated the feasibility of suspending the source coil. Gimballing (pointing the axis of the source coil) was demonstrated over a limited range. With further development of the rotation sensing system, enhanced angular freedom should be possible.

  7. Conventional superconductivity in the type-II Dirac semimetal PdTe2

    NASA Astrophysics Data System (ADS)

    Das, Shekhar; Amit, Sirohi, Anshu; Yadav, Lalit; Gayen, Sirshendu; Singh, Yogesh; Sheet, Goutam

    2018-01-01

    The transition metal dichalcogenide PdTe2 was recently shown to be a unique system where a type-II Dirac semimetallic phase and a superconducting phase coexist. This observation has led to wide speculation on the possibility of the emergence of an unconventional topological superconducting phase in PdTe2. Here, through direct measurement of the superconducting energy gap by scanning tunneling spectroscopy, and temperature and magnetic-field evolution of same, we show that the superconducting phase in PdTe2 is conventional in nature. The superconducting energy gap is measured to be 326 μ eV at 0.38 K, and it follows a temperature dependence that is well described within the framework of Bardeen-Cooper-Schrieffer's theory of conventional superconductivity. This is surprising because our quantum oscillation measurements confirm that at least one of the bands participating in transport has topologically nontrivial character.

  8. YBa2Cu3O x superconducting nanorods

    NASA Astrophysics Data System (ADS)

    Rieken, William; Bhargava, Atit; Horie, Rie; Akimitsu, Jun; Daimon, Hiroshi

    2018-02-01

    Herein, we report the synthesis of YBa2Cu3O x superconducting nanorods performed by solution chemistry. Initially, a mixture of fine-grained coprecipitated powder was obtained and subsequently converted to YBa2Cu3O x nanorods by heating to 1223 K in oxygen for 12 h. The nanorods are superconducting without the need for any further sintering or oxygenation, thereby providing an avenue for direct application to substrates at room temperature or direct use as formed nanorods. A critical superconducting transition temperature T c of about 92 K was achieved at a critical magnetic field of 10 Oe.

  9. Interpolation of Superconducting Gravity Observations Using Least-Squares Collocation Method

    NASA Astrophysics Data System (ADS)

    Habel, Branislav; Janak, Juraj

    2014-05-01

    A pre-processing of the gravity data measured by superconducting gravimeter involves removing of spikes, offsets and gaps. Their presence in observations can limit the data analysis and degrades the quality of obtained results. Short data gaps are filling by theoretical signal in order to get continuous records of gravity. It requires the accurate tidal model and eventually atmospheric pressure at the observed site. The poster presents a design of algorithm for interpolation of gravity observations with a sampling rate of 1 min. Novel approach is based on least-squares collocation which combines adjustment of trend parameters, filtering of noise and prediction. It allows the interpolation of missing data up to a few hours without necessity of any other information. Appropriate parameters for covariance function are found using a Bayes' theorem by modified optimization process. Accuracy of method is improved by the rejection of outliers before interpolation. For filling of longer gaps the collocation model is combined with theoretical tidal signal for the rigid Earth. Finally, the proposed method was tested on the superconducting gravity observations at several selected stations of Global Geodynamics Project. Testing demonstrates its reliability and offers results comparable with the standard approach implemented in ETERNA software package without necessity of an accurate tidal model.

  10. On Magnetic Flux Trapping by Surface Superconductivity

    NASA Astrophysics Data System (ADS)

    Podolyak, E. R.

    2018-03-01

    The magnetic flux trapping by surface superconductivity is considered. The stability of the state localized at the cylindrical sample surface upon a change in the external magnetic field is tested. It is shown that as the magnetic field decreases, the sample acquires a positive magnetic moment due to magnetic flux trapping; i.e., the magnetization curve of surface superconductivity is "paramagnetic" by nature.

  11. Unconventional high-Tc superconductivity in fullerides.

    PubMed

    Takabayashi, Yasuhiro; Prassides, Kosmas

    2016-09-13

    A3C60 molecular superconductors share a common electronic phase diagram with unconventional high-temperature superconductors such as the cuprates: superconductivity emerges from an antiferromagnetic strongly correlated Mott-insulating state upon tuning a parameter such as pressure (bandwidth control) accompanied by a dome-shaped dependence of the critical temperature, Tc However, unlike atom-based superconductors, the parent state from which superconductivity emerges solely by changing an electronic parameter-the overlap between the outer wave functions of the constituent molecules-is controlled by the C60 (3-) molecular electronic structure via the on-molecule Jahn-Teller effect influence of molecular geometry and spin state. Destruction of the parent Mott-Jahn-Teller state through chemical or physical pressurization yields an unconventional Jahn-Teller metal, where quasi-localized and itinerant electron behaviours coexist. Localized features gradually disappear with lattice contraction and conventional Fermi liquid behaviour is recovered. The nature of the underlying (correlated versus weak-coupling Bardeen-Cooper-Schrieffer theory) s-wave superconducting states mirrors the unconventional/conventional metal dichotomy: the highest superconducting critical temperature occurs at the crossover between Jahn-Teller and Fermi liquid metal when the Jahn-Teller distortion melts.This article is part of the themed issue 'Fullerenes: past, present and future, celebrating the 30th anniversary of Buckminster Fullerene'. © 2016 The Author(s).

  12. Design of a cryogenic system for a 20m direct current superconducting MgB2 and YBCO power cable

    NASA Astrophysics Data System (ADS)

    Cheadle, Michael J.; Bromberg, Leslie; Jiang, Xiaohua; Glowacki, Bartek; Zeng, Rong; Minervini, Joseph; Brisson, John

    2014-01-01

    The Massachusetts Institute of Technology, the University of Cambridge in the United Kingdom, and Tsinghua University in Beijing, China, are collaborating to design, construct, and test a 20 m, direct current, superconducting MgB2 and YBCO power cable. The cable will be installed in the State Key Laboratory of Power Systems at Tsinghua University in Beijing beginning in 2013. In a previous paper [1], the cryogenic system was briefly discussed, focusing on the cryogenic issues for the superconducting cable. The current paper provides a detailed discussion of the design, construction, and assembly of the cryogenic system and its components. The two-stage system operates at nominally 80 K and 20 K with the primary cryogen being helium gas. The secondary cryogen, liquid nitrogen, is used to cool the warm stage of binary current leads. The helium gas provides cooling to both warm and cold stages of the rigid cryostat housing the MgB2 and YBCO conductors, as well as the terminations of the superconductors at the end of the current leads. A single cryofan drives the helium gas in both stages, which are thermally isolated with a high effectiveness recuperator. Refrigeration for the helium circuit is provided by a Sumitomo RDK415 cryocooler. This paper focuses on the design, construction, and assembly of the cryostat, the recuperator, and the current leads with associated superconducting cable terminations.

  13. AC Loss Analysis of MgB2-Based Fully Superconducting Machines

    NASA Astrophysics Data System (ADS)

    Feddersen, M.; Haran, K. S.; Berg, F.

    2017-12-01

    Superconducting electric machines have shown potential for significant increase in power density, making them attractive for size and weight sensitive applications such as offshore wind generation, marine propulsion, and hybrid-electric aircraft propulsion. Superconductors exhibit no loss under dc conditions, though ac current and field produce considerable losses due to hysteresis, eddy currents, and coupling mechanisms. For this reason, many present machines are designed to be partially superconducting, meaning that the dc field components are superconducting while the ac armature coils are conventional conductors. Fully superconducting designs can provide increases in power density with significantly higher armature current; however, a good estimate of ac losses is required to determine the feasibility under the machines intended operating conditions. This paper aims to characterize the expected losses in a fully superconducting machine targeted towards aircraft, based on an actively-shielded, partially superconducting machine from prior work. Various factors are examined such as magnet strength, operating frequency, and machine load to produce a model for the loss in the superconducting components of the machine. This model is then used to optimize the design of the machine for minimal ac loss while maximizing power density. Important observations from the study are discussed.

  14. Percolating transport in superconducting nanoparticle films

    NASA Astrophysics Data System (ADS)

    Fostner, Shawn; Nande, Amol; Smith, Alex; Martinez Gazoni, Rodrigo; Grigg, Jack; Temst, Kristiaan; Van Bael, Margriet J.; Brown, Simon A.

    2017-12-01

    Nanostructured and disordered superconductors exhibit many exotic fundamental phenomena, and also have many possible applications. We show here that films of superconducting lead nanoparticles with a wide range of particle coverages, exhibit non-linear V(I) characteristics that are consistent with percolation theory. Specifically, it is found that V ∝(I-Ic) a , where a = 2.1 ± 0.2, independent of both temperature and particle coverage, and that the measured critical currents (Ic) are also consistent with percolation models. For samples with low normal state resistances, this behaviour is observable only in pulsed current measurements, which suppress heating effects. We show that the present results are not explained by vortex unbinding [Berezinskii-Kosterlitz-Thouless] physics, which is expected in such samples, but which gives rise to a different power law behaviour. Finally, we compare our results to previous calculations and simulations, and conclude that further theoretical developments are required to explain the high level of consistency in the measured exponents a.

  15. Superconductivity in single crystalline YPd2Ge2

    NASA Astrophysics Data System (ADS)

    Chajewski, G.; Wiśniewski, P.; Hackemer, A.; Pikul, A. P.; Kaczorowski, D.

    2018-05-01

    Single crystals of the YPd2Ge2 compound, crystallizing in the body-centered tetragonal ThCr2Si2-type structure, were studied by means of low-temperature magnetization, specific heat and electrical resistivity measurements. The zero-field data confirmed bulk and intrinsic superconductivity of the compound with the critical temperature 1.14 K, while the experiments performed in magnetic fields revealed a non-trivial character of the superconducting state. In particular, low and close to each other critical fields μ0Hc1 and μ0Hc2 (of about 20-30 mT) and field-induced first-order phase transition occurring only in the field parallel to the ab plane suggest possible cross-over from the type-I to type-II/1 superconductivity. Moreover, YPd2Ge2 exhibits robust surface superconductivity with the critical field μ0Hc3 about 20 times larger than μ0Hc1 and μ0Hc2.

  16. Advanced Code-Division Multiplexers for Superconducting Detector Arrays

    NASA Astrophysics Data System (ADS)

    Irwin, K. D.; Cho, H. M.; Doriese, W. B.; Fowler, J. W.; Hilton, G. C.; Niemack, M. D.; Reintsema, C. D.; Schmidt, D. R.; Ullom, J. N.; Vale, L. R.

    2012-06-01

    Multiplexers based on the modulation of superconducting quantum interference devices are now regularly used in multi-kilopixel arrays of superconducting detectors for astrophysics, cosmology, and materials analysis. Over the next decade, much larger arrays will be needed. These larger arrays require new modulation techniques and compact multiplexer elements that fit within each pixel. We present a new in-focal-plane code-division multiplexer that provides multiplexing elements with the required scalability. This code-division multiplexer uses compact lithographic modulation elements that simultaneously multiplex both signal outputs and superconducting transition-edge sensor (TES) detector bias voltages. It eliminates the shunt resistor used to voltage bias TES detectors, greatly reduces power dissipation, allows different dc bias voltages for each TES, and makes all elements sufficiently compact to fit inside the detector pixel area. These in-focal plane code-division multiplexers can be combined with multi-GHz readout based on superconducting microresonators to scale to even larger arrays.

  17. 100 Years of Superconductivity: Perspective on Energy Applications

    NASA Astrophysics Data System (ADS)

    Grant, Paul

    2011-11-01

    One hundred years ago this past April, in 1911, traces of superconductivity were first detected near 4.2 K in mercury in the Leiden laboratory of Kammerlingh Onnes, followed seventy-five years later in January, 1986, by the discovery of ``high temperature'' superconductivity above 30 K in layered copper oxide perovskites by Bednorz and Mueller at the IBM Research Laboratory in Rueschlikon. Visions of application to the electric power infrastructure followed each event, and the decades following the 1950s witnessed numerous, successful demonstrations to electricity generation, transmission and end use -- rotating machinery, cables, transformers, storage, current limiters and power conditioning, employing both low and high temperature superconductors in the USA, Japan, Europe, and more recently, China. Despite these accomplishments, there has been to date no substantial insertion of superconducting technology in the electric power infrastructure worldwide, and its eventual deployment remains problematic. We will explore the issues delaying such deployment and suggest future electric power scenarios where superconductivity will play an essential central role.

  18. Nonempirical Calculation of Superconducting Transition Temperatures in Light-Element Superconductors.

    PubMed

    Arita, Ryotaro; Koretsune, Takashi; Sakai, Shiro; Akashi, Ryosuke; Nomura, Yusuke; Sano, Wataru

    2017-07-01

    Recent progress in the fully nonempirical calculation of the superconducting transition temperature (T c ) is reviewed. Especially, this study focuses on three representative light-element high-T c superconductors, i.e., elemental Li, sulfur hydrides, and alkali-doped fullerides. Here, it is discussed how crucial it is to develop the beyond Migdal-Eliashberg (ME) methods. For Li, a scheme of superconducting density functional theory for the plasmon mechanism is formulated and it is found that T c is dramatically enhanced by considering the frequency dependence of the screened Coulomb interaction. For sulfur hydrides, it is essential to go beyond not only the static approximation for the screened Coulomb interaction, but also the constant density-of-states approximation for electrons, the harmonic approximation for phonons, and the Migdal approximation for the electron-phonon vertex, all of which have been employed in the standard ME calculation. It is also shown that the feedback effect in the self-consistent calculation of the self-energy and the zero point motion considerably affect the calculation of T c . For alkali-doped fullerides, the interplay between electron-phonon coupling and electron correlations becomes more nontrivial. It has been demonstrated that the combination of density functional theory and dynamical mean field theory with the ab initio downfolding scheme for electron-phonon coupled systems works successfully. This study not only reproduces the experimental phase diagram but also obtains a unified view of the high-T c superconductivity and the Mott-Hubbard transition in the fullerides. The results for these high-T c superconductors will provide a firm ground for future materials design of new superconductors. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Full-switching FSF-type superconducting spin-triplet magnetic random access memory element

    NASA Astrophysics Data System (ADS)

    Lenk, D.; Morari, R.; Zdravkov, V. I.; Ullrich, A.; Khaydukov, Yu.; Obermeier, G.; Müller, C.; Sidorenko, A. S.; von Nidda, H.-A. Krug; Horn, S.; Tagirov, L. R.; Tidecks, R.

    2017-11-01

    In the present work a superconducting Co/CoOx/Cu41Ni59 /Nb/Cu41Ni59 nanoscale thin film heterostructure is investigated, which exhibits a superconducting transition temperature, Tc, depending on the history of magnetic field applied parallel to the film plane. In more detail, around zero applied field, Tc is lower when the field is changed from negative to positive polarity (with respect to the cooling field), compared to the opposite case. We interpret this finding as the result of the generation of the odd-in-frequency triplet component of superconductivity arising at noncollinear orientation of the magnetizations in the Cu41Ni59 layer adjacent to the CoOx layer. This interpretation is supported by superconducting quantum interference device magnetometry, which revealed a correlation between details of the magnetic structure and the observed superconducting spin-valve effects. Readout of information is possible at zero applied field and, thus, no permanent field is required to stabilize both states. Consequently, this system represents a superconducting magnetic random access memory element for superconducting electronics. By applying increased transport currents, the system can be driven to the full switching mode between the completely superconducting and the normal state.

  20. Single Spin Superconductivity: Bulk and Junction Effects

    NASA Astrophysics Data System (ADS)

    Rudd, Robert E.; Pickett, Warren E.

    1998-03-01

    The Josephson Effect provides a primary signature of single spin superconductivity (SSS), the as yet unobserved superconducting state which was proposed recently(W.E. Pickett, Phys. Rev. Lett. 77), 3185 (1996). as a low temperature phase of half-metallic antiferromagnets.(W.E. Pickett, ``Spin Density Functional Based Search for Half-Metallic Antiferromagnets,'' cond-mat/9709100 (1997).) These materials are insulating in the spin-down channel but are metallic in the spin-up channel. The SSS state is characterized by a unique form of p-wave pairing within a single spin channel.(R.E. Rudd and W.E. Pickett, ``Single Spin Superconductivity:Formulation and Ginzburg-Landau Theory,'' Phys. Rev. B. in press) We develop the theory of a rich variety of Josephson effects that arise due to the form of the SSS order parameter. Tunneling is allowed at a SSS-SSS^' junction depending on the relative orientation of each of their order parameters (SSS and HM AFM). No current flows between an SSS and an s-wave BCS system, which provides a powerful method to distinguish SSS from other superconducting states.