Science.gov

Sample records for fine metal particulates

  1. Dispersion and Deposition of Fine Particulates, Heavy Metals and Nitrogen in Urban Landscapes

    NASA Astrophysics Data System (ADS)

    Whitlow, T. H.; Tong, Z.

    2015-12-01

    Cities are characterized by networks of heavily trafficked roads, abrupt environmental gradients and local sources of airborne pollutants. Because urban dwellers are inevitably in close proximity to near ground pollution, there has been recent interest in using trees and green roofs to reduce human exposure yet there have been few empirical studies documenting the effect of vegetation and spatial heterogeneity on pollution concentration, human exposure and food safety. In this paper we describe the results of 2 studies in the New York metropolitan area. The first describes the effect of roadside trees on the concentration of fine particulates downwind of a major highway. The second examines vertical attenuation of fine particulates between street level and a rooftop vegetable farm and the deposition of nitrogen and heavy metals to vegetables and soil on the roof.

  2. Advanced Fine Particulate Characterization Methods

    SciTech Connect

    Steven Benson; Lingbu Kong; Alexander Azenkeng; Jason Laumb; Robert Jensen; Edwin Olson; Jill MacKenzie; A.M. Rokanuzzaman

    2007-01-31

    The characterization and control of emissions from combustion sources are of significant importance in improving local and regional air quality. Such emissions include fine particulate matter, organic carbon compounds, and NO{sub x} and SO{sub 2} gases, along with mercury and other toxic metals. This project involved four activities including Further Development of Analytical Techniques for PM{sub 10} and PM{sub 2.5} Characterization and Source Apportionment and Management, Organic Carbonaceous Particulate and Metal Speciation for Source Apportionment Studies, Quantum Modeling, and High-Potassium Carbon Production with Biomass-Coal Blending. The key accomplishments included the development of improved automated methods to characterize the inorganic and organic components particulate matter. The methods involved the use of scanning electron microscopy and x-ray microanalysis for the inorganic fraction and a combination of extractive methods combined with near-edge x-ray absorption fine structure to characterize the organic fraction. These methods have direction application for source apportionment studies of PM because they provide detailed inorganic analysis along with total organic and elemental carbon (OC/EC) quantification. Quantum modeling using density functional theory (DFT) calculations was used to further elucidate a recently developed mechanistic model for mercury speciation in coal combustion systems and interactions on activated carbon. Reaction energies, enthalpies, free energies and binding energies of Hg species to the prototype molecules were derived from the data obtained in these calculations. Bimolecular rate constants for the various elementary steps in the mechanism have been estimated using the hard-sphere collision theory approximation, and the results seem to indicate that extremely fast kinetics could be involved in these surface reactions. Activated carbon was produced from a blend of lignite coal from the Center Mine in North Dakota and

  3. Regional Background Fine Particulate Matter

    EPA Science Inventory

    A modeling system composed of the global model GEOS-Chem providing hourly lateral boundary conditions to the regional model CMAQ was used to calculate the policy relevant background level of fine particulate: matter. Simulations were performed for the full year of 2004 over the d...

  4. Transfer of fine sediments and particulate heavy metals in large river basins

    NASA Astrophysics Data System (ADS)

    Scherer, Ulrike; Reid, Lucas; Fuchs, Stephan

    2013-04-01

    For heavy metals and other particulate contaminants erosion is an important emission pathway into surface waters. Emissions via erosion can strongly vary depending on land use, morphology, erodibility of the soils and the heavy metal content in the topsoil layer of the source areas. A high spatial resolution of input data is thus necessary to identify hotspots of heavy metal emissions via erosion in large river basins. In addition a part of the suspended solid load which is emitted to surface waters from the catchment areas can be deposited in the river system during transportation. The retention of sediments mainly takes place in lakes, reservoirs and river barrages. Former modelling studies in large river basins of Germany revealed, that the observed suspended sediment loads at monitoring stations were strongly overestimated, if retention processes in the river system were neglected. The objective of this study was therefore to test whether the consideration of sedimentation rates in lakes, reservoirs and river barrages can improve the prediction of observed suspended sediment loads in large river basins. We choose the German/Austrian part of the Danube basin until Passau (77 156 km²) for this analysis, as the alpine tributaries in the South of the Danube basin deliver high annual sediment rates (i.e. Inn and Isar) which are not fully recovered at the monitoring stations located further upstream of the Danube due to retention processes. The sediment input was quantified for all tributaries and added up along the flow path of the river system. Due to the large scale, sediment production within the catchments was calculated using the USLE for cultivated land and naturally covered areas and specific erosion rates for alpine areas without vegetation cover. Sediment delivery was estimated using an approach based on the location of the sediment source areas in the catchments and the morphology on the way to the surface waters. The location of the lakes, reservoirs and

  5. Southern Fine Particulate Monitoring Project

    SciTech Connect

    Ashley Williamson

    2003-05-31

    This final project report presents experimental details, results and analysis of continuous onsite ambient fine particulate data at the North Birmingham sampling site during the October, 2001-September, 2002 study period.The host site for these measurement activities is the North Birmingham PM monitoring station by the Jefferson County Health Department in Birmingham, AL.The continuous data include PM{sub 2.5} mass concentrations measured by TEOM, particle sulfate using the R&P 8400S monitor, particle size distributions measured by SMPS and APS monitors, and PM{sub 2.5} light scattering extinction coefficient as measured by nephelometer. During the course of the project, measurement intercomparison data were developed for these instruments and several complementary measurements at the site. The report details the instrument set and operating procedures and describes the resulting data. Report subsections present an overview summary of the data, followed by detailed description of the systematic time behavior of PM{sub 2.5} and other specific particulate size fractions. Specific subsections are included for particle size distribution, light scattering, and particle sulfate data. The final subsection addresses application of the measurements to the practical questions of fine PM generation and transport, source attribution, and PM{sub 2.5} management strategies.

  6. Hydrocarbons and heavy metals in fine particulates in oil field air: possible impacts on production of natural silk.

    PubMed

    Devi, Gitumani; Devi, Arundhuti; Bhattacharyya, Krishna Gopal

    2016-02-01

    Analyses of fine particulates (PM2.5) from the upper Assam oil fields of India indicated considerable presence of higher hydrocarbons (C22-C35) and heavy metals, Cd, Co, Cr, Cu, Ni, Pb, and Zn. This has raised serious concern for the sustainability of the exotic Muga (Antheraea assama) silk production, which has been a prime activity of a large number of people living in the area. The Muga worm feeds on the leaves of Machilus bombycina plant, and the impacts of air quality on its survival were further investigated by analyzing the leaves of the plant, the plantation soil, and the Muga cocoons. PM2.5 content in the air was much more during the winter due to near calm conditions and high humidity. Fourier transform infrared (FTIR), thermogravimetric analysis (TGA), and gas chromatography-mass spectrometer (GC-MS) analysis of PM2.5 showed the presence of higher alkanes (C22-C35) that could be traced to crude oil. Cr, Ni, and Zn were found in higher concentrations in PM2.5, M. bombycina leaves, and the plantation soil indicating a common origin. The winter has been the best period for production of the silk cocoons, and the unhealthy air during this period is likely to affect the production, which is already reflected in the declining yield of Muga cocoons from the area. SEM and protein analyses of the Muga silk fiber produced in the oil field area have exhibited the deteriorating quality of the silk. This is the first report from India on hydrocarbons and associated metals in PM2.5 collected from an oil field and on their possible effects on production of silk by A. assama. PMID:26490906

  7. CHARACTERIZATION OF FINE PARTICULATE MATTER

    EPA Science Inventory

    Size distribution data processing and fitting
    Ultrafine, very fine and fine PM were collected nearly continuously from December 2000 through March 2003 at a Washington State Department of Ecology site on Beacon Hill in Seattle. Particle size distributio...

  8. Combustor for fine particulate coal

    DOEpatents

    Carlson, L.W.

    1988-01-26

    A particulate coal combustor with two combustion chambers is provided. The first combustion chamber is toroidal; air and fuel are injected, mixed, circulated and partially combusted. The air to fuel ratio is controlled to avoid production of soot or nitrogen oxides. The mixture is then moved to a second combustion chamber by injection of additional air where combustion is completed and ash removed. Temperature in the second chamber is controlled by cooling and gas mixing. The clean stream of hot gas is then delivered to a prime mover. 4 figs.

  9. Combustor for fine particulate coal

    DOEpatents

    Carlson, Larry W.

    1988-01-01

    A particulate coal combustor with two combustion chambers is provided. The first combustion chamber is toroidal; air and fuel are injected, mixed, circulated and partially combusted. The air to fuel ratio is controlled to avoid production of soot or nitrogen oxides. The mixture is then moved to a second combustion chamber by injection of additional air where combustion is completed and ash removed. Temperature in the second chamber is controlled by cooling and gas mixing. The clean stream of hot gas is then delivered to a prime mover.

  10. Combustor for fine particulate coal

    DOEpatents

    Carlson, L.W.

    1988-11-08

    A particulate coal combustor with two combustion chambers is provided. The first combustion chamber is toroidal; air and fuel are injected, mixed, circulated and partially combusted. The air to fuel ratio is controlled to avoid production of soot or nitrogen oxides. The mixture is then moved to a second combustion chamber by injection of additional air where combustion is completed and ash removed. Temperature in the second chamber is controlled by cooling and gas mixing. The clean stream of hot gas is then delivered to a prime mover. 4 figs.

  11. FINE PARTICULATE MATTER EMISSIONS FROM CANDLES

    EPA Science Inventory

    The paper gives reulst of testing five types of candles, purchased from local stores, for fine particulate matter (PM) emissions under close-to-realistic conditions in a research house. The test method allows for determination of both the emission and deposition rates. Most tes...

  12. SPATIAL PREDICTION OF FINE PARTICULATE MATTER

    EPA Science Inventory

    A new national monitoring network for the measurement of fine particular matter (PM2.5) is currently under development. A primary goal of this network is to collect monitoring data in residential communities for the evaluation of compliance with particulate air quality standards...

  13. Infrared spectral behavior of fine particulate solids

    USGS Publications Warehouse

    Hunt, G.R.

    1976-01-01

    Transmission and emission spectra of clouds and layers of fine particulate samples of quartz, magnesium oxide, and aluminum oxide in the 6.5-35-??m wavelength range are presented. They demonstrate that the behavior of layers of particles constitutes a good analogue for a cloud of particles; that individual micrometer-sized particles emit most where they absorb most; that as the size of the particle is increased, the emission features reverse polarity and the spectrum approaches that of one obtained from a polished plate; and that as the particle layer-thickness increases, radiative interaction becomes increasingly important so that the emission maximum shifts from the strongest to weaker features, or produces a maximum at the Christiansen wavelength.

  14. Fine particulate chemical composition and light extinction at Meadview, AZ.

    PubMed

    Eatough, Delbert J; Cui, Wenxuan; Hull, Jeffery; Farber, Robert J

    2006-12-01

    The concentration of fine particulate nitrate, sulfate, and carbonaceous material was measured for 12-hr day-night samples using diffusion denuder samplers during the Project Measurement of Haze and Visibility Effects (MOHAVE) July to August 1992 Summer Intensive study at Meadview, AZ, just west of Grand Canyon National Park. Organic material was measured by several techniques. Only the diffusion denuder method measured the semivolatile organic material. Fine particulate sulfate and nitrate (using denuder technology) determined by various groups agreed. Based on the various collocated measurements obtained during the Project MOHAVE study, the precision of the major fine particulate species was +/- 0.6 microg/m3 organic material, +/- 0.3 microg/m3 ammonium sulfate, and +/- 0.07 microg/m3 ammonium nitrate. Data were also available on fine particulate crustal material, fine and coarse particulate mass from the Interagency Monitoring of Protected Visual Environments sampling system, and relative humidity (RH), light absorption, particle scattering, and light extinction measurements from Project MOHAVE. An extinction budget was obtained using mass scattering coefficients estimated from particle size distribution data. Literature data were used to estimate the change in the mass scattering coefficients for the measured species as a function of RH and for the absorption of light by elemental carbon. Fine particulate organic material was the principal particulate contributor to light extinction during the study period, with fine particulate sulfate as the second most important contributor. During periods of highest light extinction, contributions from fine particulate organic material, sulfate, and light-absorbing carbon dominated the extinction of light by particles. Particle light extinction was dominated by sulfate and organic material during periods of lowest light extinction. Combination of the extinction data and chemical mass balance analysis of sulfur oxides

  15. Mechanisms governing fine particulate emissions from coal flames

    SciTech Connect

    Clark, W.D.; Chen, S.L.; Kramlich, J.C.; Newton, G.H.; Seeker, W.R. ); Samuelsen, G.S. )

    1988-11-01

    The overall objectives of this project are to provide a basic understanding of the principal processes that govern fine particulate formation in pulverized coal flames, and develop procedures to predict the levels of emission of fine particles from pulverized coal combustors. (VC)

  16. Fine particulate chemical composition and light extinction at Meadview, AZ

    SciTech Connect

    Delbert J. Eatough; Wenxuan Cui; Jeffery Hull; Robert J. Farber

    2006-12-15

    The concentration of fine particulate nitrate, sulfate, and carbonaceous material was measured for 12-hr daynight samples using diffusion denuder samplers during the Project Measurement of Haze and Visibility Effects (MOHAVE) July to August 1992 Summer Intensive study at Meadview, AZ, just west of Grand Canyon National Park. Organic material was measured by several techniques. Only the diffusion denuder method measured the semivolatile organic material. Fine particulate sulfate and nitrate (using denuder technology) determined by various groups agreed. Based on the various collocated measurements obtained during the Project MOHAVE study, the precision of the major fine particulate species was {+-} 0.6 {mu}g/m{sup 3} organic material, {+-} 0.3 {mu}g/m{sup 3} ammonium sulfate, and {+-} 0.07 {mu}g/m{sup 3} ammonium nitrate. Fine particulate organic material was the principal particulate contributor to light extinction during the study period, with fine particulate sulfate as the second most important contributor. Particle light extinction was dominated by sulfate and organic material during periods of lowest light extinction. Combination of the extinction data and chemical mass balance analysis of sulfur oxides sources in the region indicate that the major anthropogenic contributors to light extinction were from the Los Angeles, CA, and Las Vegas, NV, urban areas. Mohave Power Project associated secondary sulfate was a negligible contributor to light extinction. 49 refs., 12 figs., 7 tabs.

  17. Powder and particulate production of metallic alloys

    NASA Technical Reports Server (NTRS)

    Grant, N. J.

    1982-01-01

    Developments of particulate metallurgy of alloyed materials where the final products is a fully dense body are discussed. Particulates are defined as powders, flakes, foils, silvers, ribbons and strip. Because rapid solidification is an important factor in particulate metallurgy, all of the particulates must have at least one dimension which is very fine, sometimes as fine as 10 to 50 microns, but move typically up to several hundred microns, provided that the dimension permits a minimum solidification rate of at least 100 K/s.

  18. PARTICULATE CONTROL HIGHLIGHTS: FINE PARTICLE SCRUBBER RESEARCH

    EPA Science Inventory

    The report gives highlights of fine particle scrubber research performed by, or under the direction of, EPA's Industrial Environmental Research Laboratory (IERL-RTP) at Research Triangle Park, North Carolina. The U.S. EPA has been actively involved in research and development in ...

  19. Ultra fined-grained atmospheric particulate studied by magnetic analysis

    NASA Astrophysics Data System (ADS)

    Saragnese, F.; Lanci, L.; Lanza, R.

    2009-04-01

    We present the result of an investigation on the presence of ultrafine atmospheric particulate in the urban area of Turin by magnetic methods. Magnetic minerals are a common component of atmospheric particulate, mostly arising from a number of anthropogenic activities. Atmospheric particulate is well known to represent a serious health problem in urban area and recently the attention focused especially on fine (< 2.5 μm) and ultrafine (< 0.1 m) particulates which are proven to be particularly dangerous because if inhaled they penetrate deep and reach lungs alveoli. In the last few years number studies took advantage of magnetic techniques to successfully identify atmospheric particulate matter through the magnetic analysis, however they did not draw much attention to the grain size problem. Indeed magnetic techniques have the ability to distinguish very fine-grained material by using the thermal relaxation effect and thus they potentially constitute a useful analysis tool to recognize ultrafine fractions of atmospheric particulate. We have performed low and room temperature isothermal remanent magnetization (IRM) and hysteresis loop measurements on atmospheric particulate samples in order to estimate the concentration of fine and ultrafine particles. Magnetic mineralogy was studied using IRM at room and liquid nitrogen temperature. Low temperature hysteresis and thermomagnetic curves were used study the grain size distribution that showed the presence of a mixture of low-coercivity particles, magnetite-like, and a variable grain-size populations. Samples were taken from filters collecting particulates matter with diameter < 10 µm (PM10) in different city areas, the particulate mass on the filter was also measured. Results confirm the general correlation between magnetization and concentration of particulate in air. The comparison between suburban and high-traffic area also support the previous finding that anthropogenic particulate has a large concentration of

  20. DESIGN, DEVELOPMENT, AND DEMONSTRATION OF A FINE PARTICULATE MEASURING DEVICE

    EPA Science Inventory

    The report describes the design, development, and testing of a fine particulate source monitoring instrument for real-time measurement of mass concentration as a function of aerodynamic particle size. It includes a literature review and selection of the operating principle on whi...

  1. SOURCE SAMPLING FINE PARTICULATE MATTER: WOOD-FIRED INDUSTRIAL BOILER

    EPA Science Inventory

    The report provides a profile for a wood-fired industrial boiler equipped with a multistage electrostatic precipitator control device. Along with the profile of emissions of fine particulate matter of aerodynamic diameter of 2.5 micrometers or less (PM-2.5), data are also provide...

  2. EVALUATION OF FOUR NOVEL FINE PARTICULATE COLLECTION DEVICES

    EPA Science Inventory

    The report gives results of an experimental performance evaluation of four novel fine particulate control devices: the Johns-Manville Cleanable High-Efficiency Air Filtration (CHEAF) System, the APS Electrostatic Scrubber, the APS Electrotube, and the TRW Charged Droplet Scrubber...

  3. PREDICTION OF FINE PARTICULATE LEVELS AT UNMONITORED LOCATIONS

    EPA Science Inventory

    In November and December of 1999, air concentrations of ultrafine, fine, and coarse particulate matter were measured at two intensive sites in El Paso, Texas. The intensive sites included collocated measurements of NO2 and volatile organic compounds (VOCs) in the air from both...

  4. The environmental cost of reducing agricultural fine particulate matter emissions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The US Environmental Protection Agency (EPA) revised the National Ambient Air Quality Standards (NAAQS) in 2006, reducing acceptable fine particulate (PM2.5) levels; state environmental protection agencies in states with non-attainment areas are required to draft State Implementation Plans (SIP) det...

  5. SPATIO-TEMPORAL MODELING OF FINE PARTICULATE MATTER

    EPA Science Inventory

    Studies indicate that even short-term exposure to high concentrations of fine atmospheric particulate matter (PM2.5) can lead to long-term health effects. In this paper, we propose a random effects model for PM2.5 concentrations. In particular, we anticipa...

  6. Atmospheric mercury in the vapor phase, and in fine and coarse particulate matter at Perch River, New York

    NASA Astrophysics Data System (ADS)

    Ames, Michael; Gullu, Gulen; Olmez, Ilhan

    Daily samples of size segregated atmospheric particulate matter ( da < 2.5 μm, and 2.5 μm < da < 10 μm), and vapor-phase mercury have been collected at five locations in upstate New York over a period of two years. Atmospheric concentrations were determined for mercury and, in the particulate matter, for up to 38 other elements by Instrumental Neutron Activation Analysis (INAA). At the Perch River sampling site, the average vapor-phase mercury concentration was 2.4 ng m -3 with a seasonal pattern of higher winter and lower summer concentrations observed over both years of sampling. The average fine and coarse particulate concentrations were 0.058 and 0.025 ng m -3, respectively. Concentrations for the particulate concentrations followed a log-normal frequency distribution with the most frequently occurring value for fine particulates being 0.012 ng m -3 and for coarse particulates 0.009 ng m -3. Episodic high concentrations of both fine and coarse particulate mercury indicate the impact of specific s ources. No correlation was found among the three different types of samples on either an overall or daily basis. By applying factor analysis (FA) to the data and using known marker species for specific types of emissions, the sources of the particulate mercury were identified and their contributions estimated. Fine particulate mercury concentrations were primarily associated with regional sources in the midwestern U.S.A., with copper smelting, and with the combined influence of aluminum and precious metals processing. Coarse particulate mercury concentrations were principally related to local aluminum processing facilities. The source identification results of the FA were confirmed by examining back-projected, mixed-layer wind trajectories. From February 1993 through the end of the particulate sampling in September 1993 fine particulate mercury concentrations declined significantly possibly due to the installation of particulate controls at one or more of the copper

  7. Inhibition of the WNT/β-catenin pathway by fine particulate matter in haze: Roles of metals and polycyclic aromatic hydrocarbons

    NASA Astrophysics Data System (ADS)

    Lee, Kang-Yun; Cao, Jun-Ji; Lee, Chii-Hong; Hsiao, Ta-Chih; Yeh, Chi-Tai; Huynh, Thanh-Tuan; Han, Yong-Ming; Li, Xiang-Dong; Chuang, Kai-Jen; Tian, Linwei; Ho, Kin-Fai; Chuang, Hsiao-Chi

    2015-05-01

    Air pollution might have a great impact on pulmonary health, but biological evidence in response to particulate matter less than 2.5 μm in size (PM2.5) has been lacking. Physicochemical characterization of haze PM2.5 collected from Beijing, Xian and Hong Kong was performed. Biological pathways were identified by proteomic profiling in mouse lungs, suggesting that WNT/β-catenin is important in the response to haze PM2.5. Suppression of β-catenin levels, activation of caspase-3 and alveolar destruction, as well as IL-6, TNF-α and IFN-γ production, were observed in the lungs. The inhibition of β-catenin, TCF4 and cyclin D1 was observed in vitro in response to haze PM2.5. The inhibition of WNT/β-catenin signaling, apoptosis-related results (caspase-3 and alveolar destruction), and inflammation, particularly including caspase-3 and alveolar destruction, were more highly associated with polycyclic aromatic hydrocarbons in haze PM2.5. In conclusion, decreased WNT/β-catenin expression modulated by haze PM2.5 could be involved in alveolar destruction and inflammation during haze episodes.

  8. 77 FR 50446 - Approval and Promulgation of Implementation Plans; Tennessee; Knoxville; Fine Particulate Matter...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-21

    ... Particulate Matter 2002 Base Year Emissions Inventory AGENCY: Environmental Protection Agency (EPA). ACTION: Proposed rule. SUMMARY: EPA is proposing to approve the 1997 annual fine particulate matter (PM 2.5 )...

  9. Molecular composition of organic fine particulate matter in Houston, TX

    NASA Astrophysics Data System (ADS)

    Fraser, M. P.; Yue, Z. W.; Tropp, R. J.; Kohl, S. D.; Chow, J. C.

    Organic fine particulate matter collected in Houston, TX between March 1997 and March 1998 was analyzed to determine the concentration of individual organic compounds. Samples from four sites were analyzed including two industrial locations (Houston Regional Monitoring Corporation (HRM-3) site in Channelview and Clinton Drive site near the Ship Channel Turning Basin), one suburban location (Bingle Drive site in Northwest Houston) and one background site (Galveston Island). At the three urban locations, samples were divided into three seasonal sample aggregates (spring, summer and winter), while at the background site a single annual average sample pool was used. Between 10 and 16 individual samples were pooled to get aggregate samples with enough organic carbon mass for analysis. Overall, 82 individual organic compounds were quantified. These include molecular markers which are compounds unique to specific fine particle sources and can be used to track the relative contribution of source emissions to ambient fine particle levels. The differences both spatially and temporally in these tracers can be used to evaluate the variability in emission source strengths.

  10. GENERATION AND SIMULATION OF METALLIC PARTICULATE AIR POLLUTANTS BY ELECTRIC ARC SPRAYING

    EPA Science Inventory

    The report gives results of efforts to provide a generated output with an appropriate mass and concentration of fresh, dry, fine metal oxide particles for bench or pilot scale fine particulate collection research and development work. The work involved two electric arc aerosol ge...

  11. Fine particulate matter in acute exacerbation of COPD.

    PubMed

    Ni, Lei; Chuang, Chia-Chen; Zuo, Li

    2015-01-01

    Chronic obstructive pulmonary disease (COPD) is a common airway disorder. In particular, acute exacerbations of COPD (AECOPD) can significantly reduce pulmonary function. The majority of AECOPD episodes are attributed to infections, although environmental stress also plays a role. Increasing urbanization and associated air pollution, especially in developing countries, have been shown to contribute to COPD pathogenesis. Elevated levels of particulate matter (PM) in polluted air are strongly correlated with the onset and development of various respiratory diseases. In this review, we have conducted an extensive literature search of recent studies of the role of PM2.5 (fine PM) in AECOPD. PM2.5 leads to AECOPD via inflammation, oxidative stress (OS), immune dysfunction, and altered airway epithelial structure and microbiome. Reducing PM2.5 levels is a viable approach to lower AECOPD incidence, attenuate COPD progression and decrease the associated healthcare burden. PMID:26557095

  12. Fine particulate matter in acute exacerbation of COPD

    PubMed Central

    Ni, Lei; Chuang, Chia-Chen; Zuo, Li

    2015-01-01

    Chronic obstructive pulmonary disease (COPD) is a common airway disorder. In particular, acute exacerbations of COPD (AECOPD) can significantly reduce pulmonary function. The majority of AECOPD episodes are attributed to infections, although environmental stress also plays a role. Increasing urbanization and associated air pollution, especially in developing countries, have been shown to contribute to COPD pathogenesis. Elevated levels of particulate matter (PM) in polluted air are strongly correlated with the onset and development of various respiratory diseases. In this review, we have conducted an extensive literature search of recent studies of the role of PM2.5 (fine PM) in AECOPD. PM2.5 leads to AECOPD via inflammation, oxidative stress (OS), immune dysfunction, and altered airway epithelial structure and microbiome. Reducing PM2.5 levels is a viable approach to lower AECOPD incidence, attenuate COPD progression and decrease the associated healthcare burden. PMID:26557095

  13. Effects of Crayfish on Quality of Fine Particulate Organic Matter

    NASA Astrophysics Data System (ADS)

    Montemarano, J. J.; Kershner, M. W.; Leff, L. G.

    2005-05-01

    The origin and ontogeny of detritus often determines its bioavailability. Crayfish shred and consume detrital organic matter, influencing fine particulate organic matter (FPOM) availability, composition and quality. Given consumption of FPOM by many invertebrates, crayfish can indirectly affect these organisms by altering FPOM bioavailability through organic matter fragmentation, biofilm disturbance, and defecation. These effects may or may not vary among coarse particulate organic matter (CPOM) from different leaf species. To assess crayfish effects on FPOM quality, crayfish were fed stream-conditioned maple or oak leaves in hanging 1-mm mesh-bottom baskets in aquaria. After 12 h, crayfish and remaining leaves were removed. FPOM fragments that fell through the mesh were vacuum filtered and analyzed for percent organic matter, C:N ratio, and bacterial abundance. The same analyses were conducted on crayfish feces collected using finger cots encasing crayfish abdomens. C:N ratios did not differ between feces and maple leaf CPOM, but were lower in FPOM produced through fragmentation and disturbance (P = 0.023). Overall, crayfish alter the ontogeny of detritus, which may, in turn, affect stream FPOM dynamics.

  14. 75 FR 45075 - Federal Implementation Plans To Reduce Interstate Transport of Fine Particulate Matter and Ozone

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-02

    ... Interstate Transport of Fine Particulate Matter and Ozone AGENCY: Environmental Protection Agency (EPA... the proposed rule ``Federal Implementation Plans to Reduce Interstate Transport of Fine Particulate Matter and Ozone'' (Transport Rule) which is published elsewhere in today's issue of the Federal...

  15. 76 FR 63251 - Revisions to Federal Implementation Plans To Reduce Interstate Transport of Fine Particulate...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-12

    ... Interstate Transport of Fine Particulate Matter and Ozone AGENCY: Environmental Protection Agency (EPA... Interstate Transport of Fine Particulate Matter and Ozone'', which was signed on October 6, 2011 and posted... comments regarding proposed revisions to EPA's Final Transport Rule (Federal Implementation...

  16. ON LINE MEASUREMENT OF PRIMARY FINE PARTICULATE MATTER

    SciTech Connect

    Dale R. Tree

    1999-09-01

    The measurement of fine particulate in pulverized coal flames has several applications of importance. These include but are not limited to: (1) The detection of fine particulate in the effluent for pollution control; (2) The detection of soot and fuel burnout in real time within a boiler; and (3) The quantification of soot within coal flame for improved understanding of pulverized coal flame heat transfer and soot modeling. A method has been investigated using two-color extinction along a line of sight within the flame which provides a continuous real-time measurement of the soot concentration. The method uses two inexpensive HeNe lasers and simple light detectors. The results of testing the method on a pilot scale 0.2 MW pulverized coal reactor demonstrate the method is working well in a qualitative sense and an error analysis performed on the uncertainty of the assumed values demonstrates the method to be accurate to within {+-} 30%. Additional experiments designed to quantify the measurement more accurately are ongoing. Measurements at the end of the reactor just prior to the exit showed soot could not be detected until the overall equivalence ratio became greater than 1.0. The detection limit for the method was estimated to be 1 x 10{sup -8} soot volume fraction. Peak soot concentration was found to approach a level of 0.88 x 10{sup -6} at the sootiest condition. The method was used to obtain an axial profile of soot concentration aligned with the down-fired pulverized coal flame for three different flame swirls of 0, 0.5 and 1.5 and an overall equivalence ratio of 1.2. The axial measurements showed the soot concentration to increase initially and level off to a constant maximum value. At 0.5 swirl the soot volume fraction increased more rapidly near the burner and both the 0.5 and 1.5 swirl cases showed that soot had reached a maximum by 0.9 m, but the 0 swirl soot concentration was still increasing. Previous measurements of species and velocity in the reactor

  17. Compositional Analysis of Fine Particulate Matter in Fairbanks, Alaska

    NASA Astrophysics Data System (ADS)

    Nattinger, K.; Simpson, W. R.; Huff, D.

    2015-12-01

    Fairbanks, AK experiences extreme pollution episodes that result in winter violations of the fine particulate matter (PM2.5) National Ambient Air Quality Standards. This poses a significant health risk for the inhabitants of the area. These high levels result from trapping of pollution in a very shallow boundary layer due to local meteorology, but the role of primary (direct emission) of particulate matter versus secondary production (in the atmosphere) of particulate matter is not understood. Analysis of the PM2.5 composition is being conducted to provide insight into sources, trends, and chemistry. Methods are developed to convert carbon data from IMPROVE (post-2009 analysis method) to NIOSH (pre-2009 method) utilizing blank subtraction, sampler bias adjustment, and inter-method correlations from co-located samples. By converting all carbon measurements to a consistent basis, long-term trends can be analyzed. The approach shows excellent mass closure between PM2.5 mass reconstructed from constituents and gravimetric-analyzed mass. This approach could be utilized in other US locations where the carbon analysis methods also changed. Results include organic and inorganic fractional mass percentages, analyzed over an eight-year period for two testing sites in Fairbanks and two in the nearby city of North Pole. We focus on the wintertime (Nov—Feb) period when most air quality violations occur and find that the particles consist primarily of organic carbon, with smaller percentages of sulfate, elemental carbon, ammonium, and nitrate. The Fairbanks area PM2.5 organic carbon / elemental carbon partitioning matches the source profile of wood smoke. North Pole and Fairbanks PM2.5 have significant compositional differences, with North Pole having a larger percentage of organic matter. Mass loadings in SO42-, NO3-, and total PM2.5 mass correlate with temperature. Multi-year temporal trends show little if any change with a strong effect from temperature. Insights from this

  18. Exploring Variation and Predictors of Residential Fine Particulate Matter Infiltration

    PubMed Central

    Clark, Nina A.; Allen, Ryan W.; Hystad, Perry; Wallace, Lance; Dell, Sharon D.; Foty, Richard; Dabek-Zlotorzynska, Ewa; Evans, Greg; Wheeler, Amanda J.

    2010-01-01

    Although individuals spend the majority of their time indoors, most epidemiological studies estimate personal air pollution exposures based on outdoor levels. This almost certainly results in exposure misclassification as pollutant infiltration varies between homes. However, it is often not possible to collect detailed measures of infiltration for individual homes in large-scale epidemiological studies and thus there is currently a need to develop models that can be used to predict these values. To address this need, we examined infiltration of fine particulate matter (PM2.5) and identified determinants of infiltration for 46 residential homes in Toronto, Canada. Infiltration was estimated using the indoor/outdoor sulphur ratio and information on hypothesized predictors of infiltration were collected using questionnaires and publicly available databases. Multiple linear regression was used to develop the models. Mean infiltration was 0.52 ± 0.21 with no significant difference across heating and non-heating seasons. Predictors of infiltration were air exchange, presence of central air conditioning, and forced air heating. These variables accounted for 38% of the variability in infiltration. Without air exchange, the model accounted for 26% of the variability. Effective modelling of infiltration in individual homes remains difficult, although key variables such as use of central air conditioning show potential as an easily attainable indicator of infiltration. PMID:20948956

  19. Hormesis for fine particulate matter (PM 2.5).

    PubMed

    Cox, Louis Anthony Tony

    2012-01-01

    The hypothesis of hormesis - that substances that harm health at high exposures can reduce risks below background at low exposures, e.g., if they activate defenses without overwhelming them - becomes important for practical policy making if it holds for regulated substances. Recently, the U.S. EPA concluded that reductions in ambient concentrations of fine particulate matter (PM2.5) in air caused trillions of dollars worth of human health benefits for a compliance cost of only about $65 billion per year. This conclusion depends on an unverified assumption of a positive, causal, straight-line relation between PM2.5 concentrations and mortality risks. We review empirical data on PM2.5 and mortality risks (and their precursors, inflammatory responses) and conclude that the PM2.5 concentration-response relation may be J-shaped, rather than linear. This possibility implies that the 1990 Clean Air Act Amendment may well have produced no (or negative) human health benefits, rather than the trillions of dollars worth of reduced mortalities ascribed to it by EPA; and that attempts to achieve further risk-reduction benefits by further reducing PM2.5 concentrations may be counterproductive. This creates a very high value for scientific information that better reveals the true shape of the PM2.5 concentration-response function at and below current ambient levels. PMID:22740783

  20. Airborne endotoxin in fine particulate matter in Beijing

    NASA Astrophysics Data System (ADS)

    Guan, Tianjia; Yao, Maosheng; Wang, Junxia; Fang, Yanhua; Hu, Songhe; Wang, Yan; Dutta, Anindita; Yang, Junnan; Wu, Yusheng; Hu, Min; Zhu, Tong

    2014-11-01

    Endotoxin is an important biological component of particulate matter (PM) which, upon inhalation, can induce adverse health effects, and also possibly complicate the diseases in combination with other pollutants. From 1 March 2012 to 27 February 2013 we collected air samples using quartz filters daily for the quantification of airborne endotoxin and also fine PM (PM2.5) in Beijing, China. The geometric means for endotoxin concentration and the fraction of endotoxin in PM were 0.65 EU/m3 (range: 0.10-75.02) and 10.25 EU/mg PM2.5 (range: 0.38-1627.29), respectively. The endotoxin concentrations were shown to vary greatly with seasons, typically with high values in the spring and winter seasons. Temperature and relative humidity, as well as concentrations of sulfur dioxide and nitrogen oxides were found to be significantly correlated with airborne endotoxin concentrations (p < 0.05). Additionally, positive correlations were also detected between endotoxin concentrations and natural sources of Na+, K+, Mg2+, and F-, while negative correlations were observed between endotoxin concentrations and anthropogenic sources of P, Co, Zn, As, and Tl. Oxidative potential analysis revealed that endotoxin concentrations were positively correlated with reactive oxygen species (ROS), but not dithiothreitol (DTT) of PM. This study provided the first continuous time series of airborne endotoxin concentrations in Beijing, and identifies its potential associations with atmospheric factors. The information developed here can assist in the assessment of health effects of air pollution in Beijing.

  1. Comparison of gene expression profiles induced by coarse, fine, and ultrafile particulate matter

    EPA Science Inventory

    Coarse, fine, and ultrafine particulate matter (PM) fractions possess different physical properties and chemical compositions and may produce different adverse health effects. Studies were undertaken to determine whether or not gene expression patterns may be used to discriminate...

  2. 77 FR 12769 - Approval and Promulgation of Implementation Plans; Georgia; Macon; Fine Particulate Matter 2002...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-02

    ... Matter 2002 Base Year Emissions Inventory AGENCY: Environmental Protection Agency (EPA). ACTION: Proposed rule. SUMMARY: EPA is proposing to approve the fine particulate matter (PM 2.5 ) 2002 base...

  3. PEROXIDES AND MACROPHAGES IN THE TOXICITY OF FINE PARTICULATE MATTER IN RATS

    EPA Science Inventory

    The investigators will test the hypothesis that oxidants in ambient air, such as hydrogen peroxide, may be transported by fine particulate matter into the lungs and thus contribute to lung tissue injury.

  4. Diagnostic Air Quality Model Evaluation of Source-Specific Primary and Secondary Fine Particulate Carbon

    EPA Science Inventory

    Ambient measurements of 78 source-specific tracers of primary and secondary carbonaceous fine particulate matter collected at four midwestern United States locations over a full year (March 2004–February 2005) provided an unprecedented opportunity to diagnostically evaluate...

  5. [Inhalable particulate matter and fine particulate matter: their basic characteristics, monitoring methods, and forest regulation functions].

    PubMed

    Wang, Hua; Lu, Shao-Wei; Li, Shao-Ning; Pan, Qing-Hua; Zhang, Yu-ping

    2013-03-01

    Both inhalable particulate matter (PM10) and fine particulate matter (PM2.5) are not only one of the main causes of air pollution, but also the primary pollutants in most cities. Based on the analysis of the impacts of PM10 and PM2.5 on the environment and human health, this paper summarized the components, sources, and mass concentration variations of PM10 and PM2.5 and related affecting factors, and introduced the network layout of PM10 and PM2.5 monitoring and its principles and features. The research methods on the removal of PM10 and PM2.5 by forests, the removal rates of PM10 and PM2.5 by different forests, and the related affecting mechanisms were summed up at regional and individual scales, and the existed problems in this research field were discussed. Due to the lack of the comparable observation studies on the atmospheric PM10 and PM2.5 along different gradients and in background areas, the joint effects of multiple factors on the PM10 and PM2.5 concentrations are not revealed. It was suggested that to make a rational network layout of PM10 and PM2.5 monitoring, to correctly select proper monitoring methods, and to compare and calibrate the observed results from classical manual methods would be the bases to guarantee the validity of PM10 and PM2.5 monitoring data. At present, there are few reports about the PM2.5 removal by forests, and it's not clear about the physiological processes and ecological mechanisms of PM10 and PM2.5 removal at cell, tissue, organ, and individual level. PMID:23755507

  6. Modeling of microwave heating of particulate metals

    NASA Astrophysics Data System (ADS)

    Mishra, P.; Upadhyaya, A.; Sethi, G.

    2006-10-01

    Recent studies have shown that metal powder compacts can be heated to high temperatures using microwaves. While microwave heating of ceramics is well understood and modeled, there is still uncertainty about the exact mechanism and mode of microwave heating of particulate metals. The current study describes an approach for modeling the microwave heating of metal powder compacts using an electromagnetic-thermal model. The model predicts the variation in temperature with time during sintering. The effect of powder size, emissivity, and susceptor heating on the heating rate has also been assessed. These predictions have been validated by the experimental observations of the thermal profiles of Sn-, Cu-, and W-alloy compacts, using a 2.45 GHz multimode microwave furnace.

  7. 77 FR 28785 - Revisions to Federal Implementation Plans To Reduce Interstate Transport of Fine Particulate...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-16

    ... Particulate Matter and Ozone'' as a direct final rule on February 21, 2012. See 77 FR 10342. The direct final... Fine Particulate Matter and Ozone.'' 77 FR 10342. The EPA intends to act on the parallel ] proposal as... February 21, 2012, at 77 FR 10342. FOR FURTHER INFORMATION CONTACT: Jeremy Mark, U.S....

  8. FEDERAL REFERENCE AND EQUIVALENT METHODS FOR MEASURING FINE PARTICULATE MATTER

    EPA Science Inventory

    In the national ambient air quality standards specified by the U.S. Environmental Protection Agency in the Code of Federal Regulations, new standards were established for particulate matter on July 18, 1997. The new particulate matter standards specify mass concentration as the...

  9. Fine particulate matter and the risk of autism spectrum disorder.

    PubMed

    Talbott, Evelyn O; Arena, Vincent C; Rager, Judith R; Clougherty, Jane E; Michanowicz, Drew R; Sharma, Ravi K; Stacy, Shaina L

    2015-07-01

    The causes of autism spectrum disorder (ASD) are not well known. Recent investigations have suggested that air pollution, including PM2.5, may play a role in the onset of this condition. The objective of the present work was to investigate the association between prenatal and early childhood exposure to fine particulate matter (PM2.5) and risk for childhood ASD. A population-based case-control study was conducted in children born between January 1, 2005 and December 31, 2009 in six counties in Southwestern Pennsylvania. ASD cases were recruited from specialty autism clinics, local pediatric practices, and school-based special needs services. ASD cases were children who scored 15 or above on the Social Communication Questionnaire (SCQ) and had written documentation of an ASD diagnosis. Controls were children without ASD recruited from a random sample of births from the Pennsylvania state birth registry and frequency matched to cases on birth year, gender, and race. A total of 217 cases and 226 controls were interviewed. A land use regression (LUR) model was used to create person- and time-specific PM2.5 estimates for individual (pre-pregnancy, trimesters one through three, pregnancy, years one and two of life) and cumulative (starting from pre-pregnancy) key developmental time periods. Logistic regression was used to investigate the association between estimated exposure to PM2.5 during key developmental time periods and risk of ASD, adjusting for mother's age, education, race, and smoking. Adjusted odds ratios (AOR) were elevated for specific pregnancy and postnatal intervals (pre-pregnancy, pregnancy, and year one), and postnatal year two was significant, (AOR=1.45, 95% CI=1.01-2.08). We also examined the effect of cumulative pregnancy periods; noting that starting with pre-pregnancy through pregnancy, the adjusted odds ratios are in the 1.46-1.51 range and significant for pre-pregnancy through year 2 (OR=1.51, 95% CI=1.01-2.26). Our data indicate that both

  10. Stability of metal particle and metal particulate media

    NASA Technical Reports Server (NTRS)

    Okamoto, Kazuhiro

    1992-01-01

    Metal particulate (MP) video tape was launched for 8 mm video tape in 1985. Since then MP tapes have been applied to several consumer formats and instrumental formats because of its superior electrical performance. Recently data storage media, such as DDS and D-8, have started employing MP tape. However, there are serious concerns with archival stability of MP tape particularly in the case of data storage use, as metal particles essentially have problems with chemical instability and are susceptible to oxidation and corrosion. Although there were some studies about the archival stability of metal particles or MP tapes, a clear understanding has yet to be reached. In this paper, we report the stability of magnetic properties of current metal particles, and then discuss the new technologies to improve the stability further.

  11. Fine Particulate Matter Pollution and Hospital Admissions for Respiratory Diseases in Beijing, China.

    PubMed

    Xiong, Qiulin; Zhao, Wenji; Gong, Zhaoning; Zhao, Wenhui; Tang, Tao

    2015-09-01

    Fine particulate matter has become the premier air pollutant of Beijing in recent years, enormously impacting the environmental quality of the city and the health of the residents. Fine particles with aerodynamic diameters of 0~0.3 μm, 0.3~0.5 μm, and 0.5~1.0 μm, from the yeasr 2007 to 2012, were monitored, and the hospital data about respiratory diseases during the same period was gathered and calculated. Then the correlation between respiratory health and fine particles was studied by spatial analysis and grey correlation analysis. The results showed that the aerial fine particulate matter pollution was mainly distributed in the Zizhuyuan sub-district office. There was a certain association between respiratory health and fine particles. Outpatients with respiratory system disease in this study area were mostly located in the southeastern regions (Balizhuang sub-district office, Ganjiakou sub-district office, Wanshoulu sub-district office, and Yongdinglu sub-district office) and east-central regions (Zizhuyuan sub-district office and Shuangyushu sub-district office) of the study area. Correspondingly, PM₁ (particulate matter with aerodynamic diameter smaller than 1.0 um) concentrations in these regions were higher than those in any other regions. Grey correlation analysis results showed that the correlation degree of the fine particle concentration with the number of outpatients is high, and the smaller fine particles had more obvious effects on respiratory system disease than larger particles. PMID:26402691

  12. Fine Particulate Matter Pollution and Hospital Admissions for Respiratory Diseases in Beijing, China

    PubMed Central

    Xiong, Qiulin; Zhao, Wenji; Gong, Zhaoning; Zhao, Wenhui; Tang, Tao

    2015-01-01

    Fine particulate matter has become the premier air pollutant of Beijing in recent years, enormously impacting the environmental quality of the city and the health of the residents. Fine particles with aerodynamic diameters of 0~0.3 μm, 0.3~0.5 μm, and 0.5~1.0 μm, from the yeasr 2007 to 2012, were monitored, and the hospital data about respiratory diseases during the same period was gathered and calculated. Then the correlation between respiratory health and fine particles was studied by spatial analysis and grey correlation analysis. The results showed that the aerial fine particulate matter pollution was mainly distributed in the Zizhuyuan sub-district office. There was a certain association between respiratory health and fine particles. Outpatients with respiratory system disease in this study area were mostly located in the southeastern regions (Balizhuang sub-district office, Ganjiakou sub-district office, Wanshoulu sub-district office, and Yongdinglu sub-district office) and east-central regions (Zizhuyuan sub-district office and Shuangyushu sub-district office) of the study area. Correspondingly, PM1 (particulate matter with aerodynamic diameter smaller than 1.0 um) concentrations in these regions were higher than those in any other regions. Grey correlation analysis results showed that the correlation degree of the fine particle concentration with the number of outpatients is high, and the smaller fine particles had more obvious effects on respiratory system disease than larger particles. PMID:26402691

  13. SOURCES OF AIR POLLUTANTS INDOORS: VOC AND FINE PARTICULATE SPECIES

    EPA Science Inventory

    The average concentrations of a large number of fine particle aerosol and VOC species measured in ten Boise ID residences in wintertime have been apportioned according to their contributions from all inside sources and all outside sources, regarded as two composite source categor...

  14. Energy and environmental research emphasizing low-rank coal -- Task 2.4, Air toxic fine particulate control

    SciTech Connect

    Dunham, G.E.; Heidt, M.K.; Miller, S.J.

    1995-03-01

    Emission from coal-fired boilers is an issue because of the current concern over atmospheric air toxics, which contain high concentrations of trace elements. The best method of minimizing the emission of these air toxic trace elements to the atmosphere is to install high-efficiency fine-particle control devices. After collection, the dust must be removed from the filter bags or electrostatic precipitator (ESP) plates and transferred to the hopper without significant redispersion. Since it is more difficult to collect fine particles, the extent to which the dust is redispersed into its original particle-size distribution will have a major impact on the overall fine-particle collection efficiency of the filter or ESP and, subsequently, the collection efficiency of air toxic metals. The goal of Task 2.4 was to evaluate redispersion of dust in particulate control devices so that the appropriate methods to minimize redispersion can be implemented. The primary objective was to determine the extent that fly ash is redispersed as individual particles upon cleaning of the filters or ESP plates. The current research was to determine if the level of redispersion of fly ash correlates with measurable cohesive dust properties. This will contribute to the long-term project goal of developing models to the point where they can be used to help design particulate control devices for the lowest level of fine-particle emissions at a reasonable cost.

  15. Source apportionment of airborne fine particulate matter in an underground mine.

    PubMed

    McDonald, Jacob D; Zielinska, Barbara; Sagebiel, John C; McDaniel, Mark R; Mousset-Jones, Pierre

    2003-04-01

    The chemical mass balance source apportionment technique was applied to an underground gold mine to assess the contribution of diesel exhaust, rock dust, oil mists, and cigarette smoke to airborne fine (<2.5 microm) particulate matter (PM). Apportionments were conducted in two locations in the mine, one near the mining operations and one near the exit of the mine where the ventilated mine air was exhausted. Results showed that diesel exhaust contributed 78-98% of the fine particulate mass and greater than 90% of the fine particle carbon, with rock dust making up the remainder. Oil mists and cigarette smoke contributions were below detection limits for this study. The diesel exhaust fraction of the total fine PM was higher than the recently implemented mine air quality standards based on total carbon at both sample locations in the mine. PMID:12708502

  16. Fine particulate concentrations on sidewalks in five Southern California cities

    NASA Astrophysics Data System (ADS)

    Boarnet, Marlon G.; Houston, Douglas; Edwards, Rufus; Princevac, Marko; Ferguson, Gavin; Pan, Hansheng; Bartolome, Christian

    2011-08-01

    This research provides an exploratory examination of the factors associated with fine particle concentrations in intersection and sidewalk microenvironments in five study areas in the Los Angeles region. The study areas range from low-density, auto-oriented development patterns to dense urban areas with mid- and high-rise buildings. Average concentrations of FP DT (fine particle concentrations measured with DustTrak Aerosol Monitors) ranged from about 20 to 70 μg m -3 across study areas during stationary and mobile (walking) monitoring in morning, midday, and evening periods. Results suggest that fine particle concentrations are highly variable on urban sidewalks. A regression analysis shows that concentrations are associated with traffic and the proximate built environment characteristics after accounting for meteorological factors, time of day, and location in the region. Regressions show higher concentrations were associated with lower wind speeds and higher temperatures, higher adjacent passenger vehicle traffic, higher ambient concentrations, and street canyons with buildings of over five stories. Locations in street canyons with 2-5 story buildings and with more paving and open space had lower concentrations after accounting for other factors. The associations with traffic and built environment variables explained a small amount of the variation in FP DT concentrations, suggesting that future research should examine the relative role of localized traffic and built environment characteristics compared to regional ambient concentrations and meteorology.

  17. Mechanisms governing fine particulate emissions from coal flames. Final report

    SciTech Connect

    Newton, G.H.; Schieber, C.; Socha, R.G.; Kramlich, J.C.

    1990-04-01

    The primary objective of this program was to provide a basic understanding of the principal processes that govern the formation of particulate matter in the 0.5--10 {mu}m size range in pulverized coal flames. The mechanism that produces ash particles in this size range is not clear. Particle sizes smaller than the 0.5--10 {mu}m size range are generally accepted to result from a vaporization/condensation mechanism while particles larger than this size result from the coalescence of ash in coal particles which may breakup as they burn. This program combined experimental and theoretical studies to understand the mechanisms which control the production of ash in the 0.5--10 {mu}m size range. (VC)

  18. Mechanisms governing fine particulate emissions from coal flames

    SciTech Connect

    Newton, G.H.; Schieber, C.; Socha, R.G.; Kramlich, J.C.

    1990-04-01

    The primary objective of this program was to provide a basic understanding of the principal processes that govern the formation of particulate matter in the 0.5--10 {mu}m size range in pulverized coal flames. The mechanism that produces ash particles in this size range is not clear. Particle sizes smaller than the 0.5--10 {mu}m size range are generally accepted to result from a vaporization/condensation mechanism while particles larger than this size result from the coalescence of ash in coal particles which may breakup as they burn. This program combined experimental and theoretical studies to understand the mechanisms which control the production of ash in the 0.5--10 {mu}m size range. (VC)

  19. EVALUATION OF FOAM SCRUBBING AS A METHOD FOR COLLECTING FINE PARTICULATE

    EPA Science Inventory

    The report summarizes the knowledge and data obtained during an investigation of foam scrubbing as a method for collecting fine particulate. The foam scrubber was tested at room temperature, using iron oxide aerosols at concentrations near 0.00137 mg/cu m. Inlet and outlet sample...

  20. Carbonaceous Aerosols in Fine Particulate Matter of Santiago Metropolitan Area, Chile

    PubMed Central

    Toro Araya, Richard; Flocchini, Robert; Morales Segura, Rául G. E.; Leiva Guzmán, Manuel A.

    2014-01-01

    Measurements of carbonaceous aerosols in South American cities are limited, and most existing data are of short term and limited to only a few locations. For 6 years (2002–2007), concentrations of fine particulate matter and organic and elemental carbon were measured continuously in the capital of Chile. The contribution of carbonaceous aerosols to the primary and secondary fractions was estimated at three different sampling sites and in the warm and cool seasons. The results demonstrate that there are significant differences in the levels in both the cold (March to August) and warm (September to February) seasons at all sites studied. The percent contribution of total carbonaceous aerosol fine particulate matter was greater in the cool season (53 ± 41%) than in the warm season (44 ± 18%). On average, the secondary organic carbon in the city corresponded to 29% of the total organic carbon. In cold periods, this proportion may reach an average of 38%. A comparison of the results with the air quality standards for fine particulate matter indicates that the total carbonaceous fraction alone exceeds the World Health Organization standard (10 µg/m3) and the United States Environmental Protection Agency standard (15 µg/m3) for fine particulate matter. PMID:24587753

  1. RESPIRATORY TOXICOLOGCAL EFFECTS OF WORLD TRADE CENTER FINE PARTICULATE MATTER IN MICE

    EPA Science Inventory


    ABSTRACT BODY:
    The destruction of the World Trade Center (WTC) caused the release of high levels of airborne pollutants which were reported to cause adverse respiratory responses in rescue workers and nearby residents. We examined whether WTC-derived fine particulate mat...

  2. THE ENVIRONMENTAL COST OF REDUCING AGRICULTURAL FINE PARTICULATE (PM2.5) DUST EMISSIONS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Revisions to the National Ambient Air Quality Standards (NAAQS) were promulgated by the US Environmental Protection Agency (EPA) in 2006, reducing acceptable fine particulate (PM2.5) levels. Non-attainment findings are scheduled for release in 2010. State environmental protection agencies in state...

  3. 78 FR 78315 - Revision to the Idaho State Implementation Plan; Approval of Fine Particulate Matter Control...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-26

    ...On December 14, 2012, the Idaho Department of Environmental Quality (IDEQ) submitted a revision to the State Implementation Plan (SIP) to address Clean Air Act (CAA) requirements for the Idaho portion (hereafter referred to as ``Franklin County'') of the cross border Logan, Utah-Idaho fine particulate matter (PM2.5) nonattainment area (Logan UT-ID). The EPA is proposing a limited......

  4. CHEMICAL ANALYSIS OF WORLD TRADE CENTER FINE PARTICULATE MATTER FOR USE IN TOXICOLOGICAL ASSESSMENT

    EPA Science Inventory

    Chemical Analysis of World Trade Center Fine Particulate Matter for Use in Toxicological Assessment
    John K. McGee1, Lung Chi Chen2, Mitchell D. Cohen2, Glen R. Chee2, Colette M. Prophete2, Najwa Haykal-Coates1, Shirley J. Wasson3, Teri L. Conner4, Daniel L. Costa1, and Steph...

  5. DAILY SIMULATION OF OZONE AND FINE PARTICULATES OVER NEW YORK STATE: FINDINGS AND CHALLENGES

    EPA Science Inventory

    This study investigates the potential utility of the application of a photochemical modeling system in providing simultaneous forecasts of ozone (O3) and fine particulate matter (PM2.5) over New York State. To this end, daily simulations from the Community M...

  6. MODELING FINE PARTICULATE MASS AND VISIBILITY USING THE EPA REGIONAL PARTICULATE MODEL

    EPA Science Inventory

    Particulate matter in the atmosphere can adversely impact air quality and human health, as well as significantly affect the environment. articles in the submicrometer size range, when inhaled, may pose certain health hazards. articles in this size range also scatter light, causin...

  7. Sources of fine urban particulate matter in Detroit, MI.

    PubMed

    Gildemeister, Amy E; Hopke, Philip K; Kim, Eugene

    2007-10-01

    Data from the speciation trends network (STN) was used to evaluate the amount and temporal patterns of particulate matter originating from local industrial sources and long-range transport at two sites in Detroit, MI: Allen Park, MI, southwest of both Detroit and the areas of heavy industrial activity; Dearborn, MI, located on the south side of Detroit near the most heavily industrialized region. Using positive matrix factorization (PMF) and comparing source contributions at Allen Park to those in Dearborn, contributions made by local industrial sources (power plants, coke refineries, iron smelting, waste incineration), local area sources (automobile and diesel truck) and long range sources of PM(2.5) can be distinguished in greater Detroit. Overall, the mean mass concentration measured at Dearborn was 19% higher than that measured at Allen Park. The mass at Allen Park was apportioned as: secondary sulfate 31%, secondary nitrate 28%, soil 8%, mixed aged sea and road salts 4%, gasoline 15%, diesel 4%, and biomass burning 3%. At Dearborn the mass was apportioned as: secondary sulfate 25%, secondary nitrate 20%, soil 12%, mixed aged sea and road salts 4%, gasoline 20%, diesel 8%, iron and steel, 5%, and mixed industrial 7%. The impact of the iron and steel, soil, and mixed aged sea and road salt was much higher at the Dearborn site than at the Allen Park site, suggesting that close proximity to a local industrial complex has a direct negative impact on local air quality. PMID:17537480

  8. [Coal fineness effect on primary particulate matter features during pulverized coal combustion].

    PubMed

    Lü, Jian-yi; Li, Ding-kai

    2007-09-01

    Three kinds of coal differed from fineness were burned in a laboratory-scale drop tube furnace for combustion test, and an 8-stage Andersen particle impactor was employed for sampling the primary particulate matter (PM), in order to study coal fineness effect on primary PM features during pulverized coal combustion. It has been shown that the finer the coal was, the finer the PM produced. PM, emission amount augmented with coal fineness decreased, and the amount of PM10 increased from 13 mg/g to 21 mg/g respectively generated by coarse coal and fine coal. The amount of PM2.5 increased from 2 mg/g to 8 mg/g at the same condition. Constituents and content in bulk ash varied little after three different fineness coal combustion, while the appearance of grading PM differed visibly. The value of R(EE) increased while the coal fineness deceased. The volatility of trace elements which were investigated was Pb > Cr > Zn > Cu > Ni in turn. The concentration of poisonous trace elements was higher which generated from fine coal combustion. The volatilization capacity was influenced little by coal fineness, but the volatilization extent was influenced differently by coal fineness. Fine coal combustion affects worse environment than coarse coal does. PMID:17990536

  9. Sources of fine particulate species in ambient air over Lake Champlain Basin, VT

    SciTech Connect

    Ning Gao; Amy E. Gildemeister; Kira Krumhansl; Katherine Lafferty; Philip K. Hopke; Eugene Kim; Richard L. Poirot

    2006-11-15

    This study is a part of an ongoing investigation of the types and locations of emission sources that contribute fine particulate air contaminants to Underhill, VT. The air quality monitoring data used for this study are from the Interagency Monitoring of Protected Visual Environments network for the period of 2001-2003 for the Underhill site. The main source-receptor modeling techniques used are the positive matrix factorization (PMF) and potential source contribution function (PSCF). This new study is intended as a comparison to a previous study of the 1988-1995 Underhill data that successfully revealed a total of 11 types of emission sources with significant contributions to this rural site. This new study has identified a total of nine sources: nitrate-rich secondary aerosol, wood smoke, East Coast oil combustion, automobile emission, metal working, soil/dust, sulfur-rich aerosol type I, sulfur-rich aerosol type II, and sea salt/road salt. Furthermore, the mass contributions from the PMF identified sources that correspond with sampling days with either good or poor visibility were analyzed to seek possible correlations. It has been shown that sulfur-rich aerosol type I, nitrate aerosol, and automobile emission are the most important contributors to visibility degradation. Soil/dust and sea salt/road salt also have an added effect. 38 refs., 17 figs., 2 tabs.

  10. Characteristics and oxidative stress on rats and traffic policemen of ambient fine particulate matter from Shenyang.

    PubMed

    Ma, Mingyue; Li, Shuyin; Jin, Huanrong; Zhang, Yumin; Xu, Jia; Chen, Dongmei; Kuimin, Chen; Yuan, Zhou; Xiao, Chunling

    2015-09-01

    Fine particulate matter (PM2.5) pollution is becoming serious in China. This study aimed to investigate the impact of PM2.5 on DNA damage in Shenyang city. The concentration and composition of PM2.5 in traffic policemen's working sites including fields and indoor offices were obtained. Blood samples of field and office policemen were collected to detect DNA damage by Comet assay. Rats were used to further analyzing the oxidative DNA damage. The average concentration of PM2.5 in exposed group was significantly higher than that in control group. Composition analysis revealed that toxic heavy metal and polycyclic aromatic hydrocarbon substances were main elements of this PM2.5. DNA damage in field policemen was significantly higher than those in non-field group. Moreover, animal studies confirmed the oxidative DNA damage induced by PM2.5. Taken together, high DNA damages are found in the Shenyang traffic policemen and rats exposed to high level of airborne PM2.5. PMID:25918898

  11. SOURCE SIGNATURES OF FINE PARTICULATE MATTER FROM PETROLEUM REFINING AND FUEL USE

    SciTech Connect

    Gerald P. Huffman; Frank E. Huggins; Naresh Shah; Artur Braun; Yuanzhi Chen; J. David Robertson; Joseph Kyger; Adel F. Sarofim; Ronald J. Pugmire; Henk L.C. Meuzelaar; JoAnn Lighty

    2003-07-31

    The molecular structure and microstructure of a suite of fine particulate matter (PM) samples produced by the combustion of residual fuel oil and diesel fuel were investigated by an array of analytical techniques. Some of the more important results are summarized below. Diesel PM (DPM): A small diesel engine test facility was used to generate a suite of diesel PM samples from different fuels under engine load and idle conditions. C XANES, {sup 13}C NMR, XRD, and TGA were in accord that the samples produced under engine load conditions contained more graphitic material than those produced under idle conditions, which contained a larger amount of unburned diesel fuel and lubricating oil. The difference was enhanced by the addition of 5% of oxygenated compounds to the reference fuel. Scanning transmission x-ray micro-spectroscopy (STXM) was able to distinguish particulate regions rich in C=C bonds from regions rich in C-H bonds with a resolution of {approx}50 nm. The former are representative of more graphitic regions and the latter of regions rich in unburned fuel and oil. The dominant microstructure observed by SEM and TEM consisted of complex chain-like structures of PM globules {approx}20-100 nm in mean diameter, with a high fractal dimension. High resolution TEM revealed that the graphitic part of the diesel soot consisted of onion-like structures made up of graphene layers. Typically 3-10 graphene layers make up the ''onion rings'', with the layer spacing decreasing as the number of layers increases. ROFA PM: Residual oil fly ash (ROFA) PM has been analyzed by a new approach that combines XAFS spectroscopy with selective leaching procedures. ROFA PM{sub 2.5} and PM{sub 2.5+} produced in combustion facilities at the U.S. EPA National Risk Management Research Laboratory (NRML) were analyzed by XAFS before and after leaching with water, acid (1N HCl), and pentane. Both water and acid leaching removed most of the metal sulfates, which were the dominant phase present

  12. The iron lung: a device for the continuous delivery of fine particulate matter.

    PubMed

    Arnold, I J; Berger, C; Chakrabarty, R K; Moosmüller, H; Sharma, N; Mazzoleni, C

    2014-02-01

    In aerosol research, bag-sampling techniques are commonly used for temporary storage of aerosols. They have been used for aging studies and to integrate over fluctuations in aerosol properties and concentrations. Here, we describe the design and operation of an iron lung aerosol sampler consisting of a large volume (∼277 l) drum and a conductive drum liner. This iron lung is used for the continuous delivery of fine particulate matter. Its performance for storage and sampling of fine particulate matter has been evaluated with soot from a kerosene lamp by characterizing the change of particle number and size distribution as function of time with a scanning mobility particle sizer. Changes in these properties have been shown to be smooth, demonstrating the utility of the iron lung described here. PMID:24593394

  13. Spatial, temporal, and interspecies patterns in fine particulate matter in Texas.

    PubMed

    Gebhart, Kristi A; Malm, William C; Ashbaugh, Lowell L

    2005-11-01

    The Big Bend Regional Aerosol and Visibility Observational (BRAVO) field study was conducted from July to October 1999 and was followed by several years of modeling and data analyses to examine the causes of haze at Big Bend National Park TX (BBNP). During BRAVO, daily speciated fine (diameter <2.5 microm) particulate concentrations were measured at 37 sites throughout Texas. At the primary receptor site, K-Bar Ranch, there were many additional measurements including a "high-sensitivity" version of the 24-hr fine particulate elemental data. The spatial, temporal, and interspecies patterns in these data are examined here to qualitatively investigate source regions and source types influencing the fine particulate concentrations in Texas with an emphasis on sources of sulfates, the largest contributor to fine mass and light extinction. Peak values of particulate sulfur (S) varied spatially and seasonally. Maximum S was in Northeast Texas during the summer, whereas peak S at BBNP was in the fall. Sulfate acidity at BBNP also varied by month. Sources of Se were evident in Northeast Texas and from the Carbón I and II plants. High S episodes at BBNP during BRAVO had several different trace element characteristics. Carbon concentrations at BBNP during BRAVO were probably mostly urban-related, with arrival from the Houston area likely. The Houston artificial tracer released during the second half of BRAVO was highly correlated with some carbon fractions. There was evidence of the influence of African dust at sites throughout Texas during the summer. Patterns in several trace elements were also examined. Vanadium was associated with air masses from Mexico. Lead concentrations in southern Texas have dropped dramatically over the past several years. PMID:16350362

  14. Comparing Exposure Metrics for the Effects of Fine Particulate Matter on Emergency Hospital Admissions

    PubMed Central

    Mannshardt, Elizabeth; Sucic, Katarina; Jiao, Wan; Dominici, Francesca; Frey, H. Christopher; Reich, Brian; Fuentes, Montserrat

    2013-01-01

    A crucial step in an epidemiological study of the effects of air pollution is to accurately quantify exposure of the population. In this paper, we investigate the sensitivity of the health effects estimates associated with short-term exposure to fine particulate matter with respect to three potential metrics for daily exposure: ambient monitor data, estimated values from a deterministic atmospheric chemistry model, and stochastic daily average human exposure simulation output. Each of these metrics has strengths and weaknesses when estimating the association between daily changes in ambient exposure to fine particulate matter and daily emergency hospital admissions. Monitor data is readily available, but is incomplete over space and time. The atmospheric chemistry model output is spatially and temporally complete, but may be less accurate than monitor data. The stochastic human exposure estimates account for human activity patterns and variability in pollutant concentration across microenvironments, but requires extensive input information and computation time. To compare these metrics, we consider a case study of the association between fine particulate matter and emergency hospital admissions for respiratory cases for the Medicare population across three counties in New York. Of particular interest is to quantify the impact and/or benefit to using the stochastic human exposure output to measure ambient exposure to fine particulate matter. Results indicate that the stochastic human exposure simulation output indicates approximately the same increase in relative risk associated with emergency admissions as using a chemistry model or monitoring data as exposure metrics. However, the stochastic human exposure simulation output and the atmospheric chemistry model both bring additional information which helps to reduce the uncertainly in our estimated risk. PMID:23942393

  15. Spatial, temporal, and interspecies patterns in fine particulate matter in Texas

    SciTech Connect

    Kristi A. Gebhart; William C. Malm; Lowell L. Ashbaugh

    2005-11-01

    The Big Bend Regional Aerosol and Visibility Observational (BRAVO) field study was conducted from July to October 1999 and was followed by several years of modeling and data analyses to examine the causes of haze at Big Bend National Park TX (BBNP). During BRAVO, daily speciated fine (diameter <2.5 {mu}m) particulate concentrations were measured at 37 sites throughout Texas. At the primary receptor site, K-Bar Ranch, there were many additional measurements including a 'high-sensitivity' version of the 24-hr fine particulate elemental data. The spatial, temporal, and interspecies patterns in these data are examined here to qualitatively investigate source regions and source types influencing the fine particulate concentrations in Texas with an emphasis on sources of sulfates, the largest contributor to fine mass and light extinction. Peak values of particulate sulfur (S) varied spatially and seasonally. Maximum S was in Northeast Texas during the summer, whereas peak S at BBNP was in the fall. Sulfate acidity at BBNP also varied by month. Sources of Se were evident in Northeast Texas and from the Carbon I and II coal-fired plants. High S episodes at BBNP during BRAVO had several different trace element characteristics. Carbon concentrations at BBNP during BRAVO were probably mostly urban-related, with arrival from the Houston area likely. The Houston artificial tracer released during the second half of BRAVO was highly correlated with some carbon fractions. There was evidence of the influence of African dust at sites throughout Texas during the summer. Patterns in several trace elements were also examined. Vanadium was associated with air masses from Mexico. Lead concentrations in southern Texas have dropped dramatically over the past several years. 23 refs., 9 figs., 2 tabs.

  16. 77 FR 1894 - Approval and Promulgation of Implementation Plans; Georgia; Rome; Fine Particulate Matter 2002...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-12

    ...EPA is proposing to approve the fine particulate matter (PM2.5) 2002 base year emissions inventory portion of the State Implementation Plan (SIP) revision submitted by the State of Georgia on October 27, 2009. The emissions inventory is part of the Rome, Georgia PM2.5 attainment demonstration that was submitted for the 1997 annual PM2.5 National Ambient Air......

  17. A Single Transition Metal-Rich Particulate Inhalation Exposure Elicits Concentration-Dependent Cardiovascular Toxicity in Hypertensive Rats

    EPA Science Inventory

    Recently, investigators in the CALFINE study demonstrated an association between the fine particulate matter (PM)-associated metals, Ni and Fe, in ambient air in nine California counties and increased cardiovascular mortality (Ostro et al. 2007). Residual oil fly ash (ROFA), a wa...

  18. Anodic aluminum oxide with fine pore size control for selective and effective particulate matter filtering

    NASA Astrophysics Data System (ADS)

    Zhang, Su; Wang, Yang; Tan, Yingling; Zhu, Jianfeng; Liu, Kai; Zhu, Jia

    2016-07-01

    Air pollution is widely considered as one of the most pressing environmental health issues. Particularly, atmospheric particulate matters (PM), a complex mixture of solid or liquid matter suspended in the atmosphere, are a harmful form of air pollution due to its ability to penetrate deep into the lungs and blood streams, causing permanent damages such as DNA mutations and premature death. Therefore, porous materials which can effectively filter out particulate matters are highly desirable. Here, for the first time, we demonstrate that anodic aluminum oxide with fine pore size control fabricated through a scalable process can serve as effective and selective filtering materials for different types of particulate matters (such as PM2.5, PM10). Combining selective and dramatic filtering effect, fine pore size control and a scalable process, this type of anodic aluminum oxide templates can potentially serve as a novel selective filter for different kinds of particulate matters, and a promising and complementary solution to tackle this serious environmental issue.

  19. Epidemiology of fine particulate air pollution and human health: biologic mechanisms and who's at risk?

    PubMed Central

    Pope, C A

    2000-01-01

    This article briefly summarizes the epidemiology of the health effects of fine particulate air pollution, provides an early, somewhat speculative, discussion of the contribution of epidemiology to evaluating biologic mechanisms, and evaluates who's at risk or is susceptible to adverse health effects. Based on preliminary epidemiologic evidence, it is speculated that a systemic response to fine particle-induced pulmonary inflammation, including cytokine release and altered cardiac autonomic function, may be part of the pathophysiologic mechanisms or pathways linking particulate pollution with cardiopulmonary disease. The elderly, infants, and persons with chronic cardiopulmonary disease, influenza, or asthma are most susceptible to mortality and serious morbidity effects from short-term acutely elevated exposures. Others are susceptible to less serious health effects such as transient increases in respiratory symptoms, decreased lung function, or other physiologic changes. Chronic exposure studies suggest relatively broad susceptibility to cumulative effects of long-term repeated exposure to fine particulate pollution, resulting in substantive estimates of population average loss of life expectancy in highly polluted environments. Additional knowledge is needed about the specific pollutants or mix of pollutants responsible for the adverse health effects and the biologic mechanisms involved. PMID:10931790

  20. Fluidized reduction of oxides on fine metal powders without sintering

    NASA Technical Reports Server (NTRS)

    Hayashi, T.

    1985-01-01

    In the process of reducing extremely fine metal particles (av. particle size or = 1000 angstroms) covered with an oxide layer, the metal particles are fluidized by a gas flow contg. H, heated, and reduced. The method uniformly and easily reduces surface oxide layers of the extremely fine metal particles without causing sintering. The metal particles are useful for magnetic recording materials, conductive paste, powder metallurgy materials, chem. reagents, and catalysts.

  1. Chemical analysis of World Trade Center fine particulate matter for use in toxicologic assessment.

    PubMed Central

    McGee, John K; Chen, Lung Chi; Cohen, Mitchell D; Chee, Glen R; Prophete, Colette M; Haykal-Coates, Najwa; Wasson, Shirley J; Conner, Teri L; Costa, Daniel L; Gavett, Stephen H

    2003-01-01

    The catastrophic destruction of the World Trade Center (WTC) on 11 September 2001 caused the release of high levels of airborne pollutants into the local environment. To assess the toxicity of fine particulate matter [particulate matter with a mass median aerodynamic diameter < 2.5 microm (PM2.5)], which may adversely affect the health of workers and residents in the area, we collected fallen dust samples on 12 and 13 September 2001 from sites within a half-mile of Ground Zero. Samples of WTC dust were sieved, aerosolized, and size-separated, and the PM2.5 fraction was isolated on filters. Here we report the chemical and physical properties of PM2.5 derived from these samples and compare them with PM2.5 fractions of three reference materials that range in toxicity from relatively inert to acutely toxic (Mt. St. Helens PM; Washington, DC, ambient air PM; and residual oil fly ash). X-ray diffraction of very coarse sieved WTC PM (< 53 microm) identified calcium sulfate (gypsum) and calcium carbonate (calcite) as major components. Scanning electron microscopy confirmed that calcium-sulfur and calcium-carbon particles were also present in the WTC PM2.5 fraction. Analysis of WTC PM2.5 using X-ray fluorescence, neutron activation analysis, and inductively coupled plasma spectrometry showed high levels of calcium (range, 22-33%) and sulfur (37-43% as sulfate) and much lower levels of transition metals and other elements. Aqueous extracts of WTC PM2.5 were basic (pH range, 8.9-10.0) and had no evidence of significant bacterial contamination. Levels of carbon were relatively low, suggesting that combustion-derived particles did not form a significant fraction of these samples recovered in the immediate aftermath of the destruction of the towers. Because gypsum and calcite are known to cause irritation of the mucus membranes of the eyes and respiratory tract, inhalation of high doses of WTC PM2.5 could potentially cause toxic respiratory effects. PMID:12782501

  2. A Source Apportionment of U.S. Fine Particulate Matter Air Pollution

    PubMed Central

    Thurston, George D.; Ito, Kazuhiko; Lall, Ramona

    2011-01-01

    Using daily fine particulate matter (PM2.5) composition data from the 2000–2005 U.S. EPA Chemical Speciation Network (CSN) for over 200 sites, we applied multivariate methods to identify and quantify the major fine particulate matter (PM2.5) source components in the U.S. Novel aspects of this work were: (1) the application of factor analysis (FA) to multi-city daily data, drawing upon both spatial and temporal variations of chemical species; and, (2) the exclusion of secondary components (sulfates, nitrates and organic carbon) from the source identification FA to more clearly discern and apportion the PM2.5 mass to primary emission source categories. For the quantification of source-related mass, we considered two approaches based upon the FA results: 1) using single key tracers for sources identified by FA in a mass regression; and, 2) applying Absolute Principal Component Analysis (APCA). In each case, we followed a two-stage mass regression approach, in which secondary components were first apportioned among the identified sources, and then mass was apportioned to the sources and to other secondary mass not explained by the individual sources. The major U.S. PM2.5 source categories identified via FA (and their key elements) were: Metals Industry (Pb, Zn); Crustal/Soil Particles (Ca, Si); Motor Vehicle Traffic (EC, NO2); Steel Industry (Fe, Mn); Coal Combustion (As, Se); Oil Combustion (V, Ni); Salt Particles (Na, Cl) and Biomass Burning (K). Nationwide spatial plots of the source-related PM2.5 impacts were confirmatory of the factor interpretations: ubiquitous sources, such as Traffic and Soil, were found to be spread across the nation, more unique sources (such as Steel and Metals Processing) being highest in select industrialized cities, Biomass Burning was highest in the U.S. Northwest, while Residual Oil combustion was highest in cities in the Northeastern U.S. and in cities with major seaports. The sum of these source contributions and the secondary PM2

  3. Wintertime chemical compositions of coarse and fine fractions of particulate matter in Bolu, Turkey.

    PubMed

    Öztürk, Fatma; Keleş, Melek

    2016-07-01

    Coarse (particulate matter (PM)2.5-10) and fine (PM2.5) fraction of PM samples were collected between December 2014 and February 2015 at an urban sampling site located at the Bolu plain, of the western Black Sea region of Turkey. The collected samples were analyzed in terms of metals (Al, As, Ba, Ca, Cu, Fe, K, Mg, Mn, Na, Pb, S, Si, Ti, V, and Zn); elemental carbon (EC); and organic carbon (OC). Elevated concentrations measured in this wintertime study were ∼7.8 μg/m(3) in sum of PM2.5-10 and PM2.5 for SO4 (2-) and ∼59.9 μg/m(3) in PM2.5 for OC. The contributions of primary and secondary OC (POC and SOC, respectively) to total OC mass were 60 and 40 %, respectively, while contribution of SOC to OC increased by up to 74 % in stable atmospheric conditions. The significantly high OC/EC ratio (∼10.1) found in this study relative to other wintertime studies was attributed to increased emissions from residential heating and lower mixing height observed during the study. Two and three factors were resolved by factor analysis for PM2.5-10 and PM2.5, respectively. Two Saharan dust episodes were observed on 31 January and 1 February, during which crustal PM components such as Mg, Si, and Al increased as much as three times their background concentrations. PMID:27048328

  4. Source identification of personal exposure to fine particulate matter using organic tracers

    NASA Astrophysics Data System (ADS)

    Brinkman, Gregory L.; Milford, Jana B.; Schauer, James J.; Shafer, Martin M.; Hannigan, Michael P.

    Personal exposure to fine particulate matter (PM2.5) is due to both indoor and outdoor sources. Contributions of sources to personal exposure can be quite different from those observed at ambient sampling locations. The primary goal of this study was to investigate the effectiveness of using trace organic speciation data to help identify sources influencing PM2.5 exposure concentrations. Sixty-four 24-h PM2.5 samples were obtained on seven different subjects in and around Boulder, CO. The exposure samples were analyzed for PM2.5 mass, elemental and organic carbon, organic tracer compounds, water-soluble metals, ammonia, and nitrate. This study is the first to measure a broad distribution of organic tracer compounds in PM2.5 personal samples. PM2.5 mass exposure concentrations averaged 8.4 μg m -3. Organic carbon was the dominant constituent of the PM2.5 mass. Forty-four organic species and 19 water-soluble metals were quantifiable in more than half of the samples. Fifty-four organic species and 16 water-soluble metals had measurement signal-to-noise ratios larger than two after blank subtraction. The dataset was analyzed by Principal Component Analysis (PCA) to determine the factors that account for the greatest variance. Eight significant factors were identified; each factor was matched to its likely source based primarily on the marker species that loaded the factor. The results were consistent with the expectation that multiple marker species for the same source loaded the same factor. Meat cooking was an important source of variability. The factor that represents meat cooking was highly correlated with organic carbon concentrations ( r = 0.84). The correlation between ambient PM2.5 and PM2.5 exposure was relatively weak ( r = 0.15). Time participants spent performing various activities was generally not well correlated with PCA factor scores, likely because activity duration does not measure emissions intensity. The PCA results demonstrate that organic tracers

  5. A confined vortex scrubber for fine particulate removal from flue gases

    SciTech Connect

    Loftus, P.J.; Stickler, D.B.; Diehl, R.C. )

    1992-02-01

    An innovative cleanup concept, based on a confined vortex scrubber (CVS), for fine particulate removal from combustion flue gases has been developed, tested and verified. The CVS consists of a cylindrical vortex chamber with multiple tangential flue gas inlets. The clean gas exit is via two central tubes. Water is introduced into the chamber and is confined within the vortex chamber by the extremely high centrifugal forces generated by the gas flow. The confined water forms a layer through which the flue gas is forced to bubble. Due to the high radial acceleration, the bubbles generated are very small, leading to a strong gas/liquid interaction, high inertial separation forces and extremely efficient fine particle cleanup. Collection efficiencies in excess of 99.5% have been measured for extremely fine fly ash. A collection efficiency of 98% has been measured for 0.3 micron diameter particles.

  6. Characterization of Fine Particulate Matter and Associations between Particulate Chemical Constituents and Mortality in Seoul, Korea

    PubMed Central

    Son, Ji-Young; Lee, Jong-Tae; Kim, Ki-Hyun; Jung, Kweon

    2012-01-01

    Background: Numerous studies have linked fine particles [≤ 2.5 µm in aerodynamic diameter (PM2.5)] and health. Most studies focused on the total mass of the particles, although the chemical composition of the particles varies substantially. Which chemical components of fine particles that are the most harmful is not well understood, and research on the chemical composition of PM2.5 and the components that are the most harmful is particularly limited in Asia. Objectives: We characterized PM2.5 chemical composition and estimated the effects of cause-specific mortality of PM2.5 mass and constituents in Seoul, Korea. We compared the chemical composition of particles to those of the eastern and western United States. Methods: We examined temporal variability of PM2.5 mass and its composition using hourly data. We applied an overdispersed Poisson generalized linear model, adjusting for time, day of week, temperature, and relative humidity to investigate the association between risk of mortality and PM2.5 mass and its constituents in Seoul, Korea, for August 2008 through October 2009. Results: PM2.5 and chemical components exhibited temporal patterns by time of day and season. The chemical characteristics of Seoul’s PM2.5 were more similar to PM2.5 found in the western United States than in the eastern United States. Seoul’s PM2.5 had lower sulfate (SO4) contributions and higher nitrate (NO3) contributions than that of the eastern United States, although overall PM2.5 levels in Seoul were higher than in the United States. An interquartile range (IQR) increase in magnesium (Mg) (0.05 μg/m3) was associated with a 1.4% increase (95% confidence interval: 0.2%, 2.6%) in total mortality on the following day. Several components that were among the largest contributors to PM2.5 total mass—NO3, SO4, and ammonium (NH4)—were moderately associated with same-day cardiovascular mortality at the p < 0.10 level. Other components with smaller mass contributions [Mg and

  7. Tracking Petroleum Refinery Emission Events Using Lanthanum and Lanthanides as Elemental Markers for Fine Particulate Matter

    NASA Astrophysics Data System (ADS)

    Kulkarni, P.; Chellam, S.; Fraser, M. P.

    2007-12-01

    This presentation reports the development and application of an analytical method to quantify the rare earth elements (REEs) in atmospheric particulate matter and emissions of catalyst material from the petroleum refining industry. Inductively coupled plasma - mass spectrometry following high temperature/high pressure microwave digestion has been used to study the REE composition of several fresh and spent catalysts used in fluidized-bed catalytic cracking (FCC) units in petroleum refineries as well as in ambient atmospheric fine particulate matter collected in Houston, TX. The results show that the routine emissions from local FCC units in Houston contribute a constant and low amount to ambient PM2.5 of ~0.1 micrograms per cubic meter. However, a significant (33 - 106 fold) increase in the contributions of FCC emissions to PM2.5 is quantified during an upset emission event compared with background levels associated with routine operation. The impact of emissions from the local refinery that reported the emission event was tracked to a site approximately 50 km downwind from the source, illustrating the potential exposure of humans over a large geographical area through the long-range transport of atmospheric fine particles as well as the power of elemental signatures to understand the sources of fine particles.

  8. Microfluidic paper-based analytical device for particulate metals.

    PubMed

    Mentele, Mallory M; Cunningham, Josephine; Koehler, Kirsten; Volckens, John; Henry, Charles S

    2012-05-15

    A microfluidic paper-based analytical device (μPAD) fabricated by wax printing was designed to assess occupational exposure to metal-containing aerosols. This method employs rapid digestion of particulate metals using microliters of acid added directly to a punch taken from an air sampling filter. Punches were then placed on a μPAD, and digested metals were transported to detection reservoirs upon addition of water. These reservoirs contained reagents for colorimetric detection of Fe, Cu, and Ni. Dried buffer components were used to set the optimal pH in each detection reservoir, while precomplexation agents were deposited in the channels between the sample and detection zones to minimize interferences from competing metals. Metal concentrations were quantified from color intensity images using a scanner in conjunction with image processing software. Reproducible, log-linear calibration curves were generated for each metal, with method detection limits ranging from 1.0 to 1.5 μg for each metal (i.e., total mass present on the μPAD). Finally, a standard incineration ash sample was aerosolized, collected on filters, and analyzed for the three metals of interest. Analysis of this collected aerosol sample using a μPAD showed good correlation with known amounts of the metals present in the sample. This technology can provide rapid assessment of particulate metal concentrations at or below current regulatory limits and at dramatically reduced cost. PMID:22489881

  9. Exposure to airborne metals and particulate matter and risk for youth adjudicated for criminal activity

    SciTech Connect

    Haynes, Erin N.; Chen, Aimin; Ryan, Patrick; Succop, Paul; Wright, John; Dietrich, Kim N.

    2011-11-15

    Antisocial behavior is a product of multiple interacting sociohereditary variables, yet there is increasing evidence that metal exposure, particularly, manganese and lead, play a role in its epigenesis. Other metals, such as arsenic, cadmium, chromium, and mercury, and exposure to traffic-related air pollution, such as fine particulate matter ({<=}2.5 {mu}m) have been associated with neurological deficits, yet largely unexplored with respect to their relationship with delinquent behavior. The purpose of this study is to evaluate the ecological relationship between county-wide reported airborne emissions of air metals, particulate matter, and youth adjudicated for criminal activity. Metal exposure data were collected from the Environmental Protection Agency AirData. Population statistics were obtained from the United States Census 2000 and adjudication data was obtained from the Courts of Common Pleases from each Ohio County. Simple correlations were calculated with the percentage of adjudications, all covariates, and estimated metal air emissions. Separate negative binomial regression models for each pollutant were used to provide an estimated risk ratio of pollutant emissions on the risk of adjudication for all Ohio counties adjusting for urban-rural residence, percentage of African Americans, median family income, percentage of family below poverty, percentage of high school graduation in 25 years and older populations, and population density. Metal emissions and PM in 1999 were all correlated with adjudication rate (2003-2005 average). Metal emissions were associated with slightly higher risk of adjudication, with about 3-4% increased risk per natural log unit of metal emission except chromium. The associations achieved statistical significance for manganese and mercury. The particulate matter {<=}2.5 and {<=}10 {mu}m emissions had a higher risk estimate, with 12% and 19% increase per natural log unit emission, respectively, and also achieved statistical

  10. Metals in Particulate Pollutants Affect Peak Expiratory Flow of Schoolchildren

    PubMed Central

    Hong, Yun-Chul; Hwang, Seung-Sik; Kim, Jin Hee; Lee, Kyoung-Ho; Lee, Hyun-Jung; Lee, Kwan-Hee; Yu, Seung-Do; Kim, Dae-Seon

    2007-01-01

    Background The contribution of the metal components of particulate pollutants to acute respiratory effects has not been adequately evaluated. Moreover, little is known about the effects of genetic polymorphisms of xenobiotic metabolism on pulmonary function. Objectives This study was conducted to assess lung function decrement associated with metal components in particulate pollutants and genetic polymorphisms of glutathione S-transferase M1 and T1. Methods We studied 43 schoolchildren who were in the 3rd to 6th grades. Each student measured peak expiratory flow rate three times a day for 42 days. Particulate air concentrations were monitored every day, and the concentrations of iron, manganese, lead, zinc, and aluminum in the particles were measured. Glutathione S-transferase M1 and T1 genetic polymorphisms were determined using DNA extracted from participant buccal washings. We used a mixed linear regression model to estimate the association between peak expiratory flow rate and particulate air pollutants. Results We found significant reduction in the peak expiratory flow rate after the children’s exposure to particulate pollutants. The effect was shown most significantly 1 day after exposure to the ambient particles. Manganese and lead in the particles also reduced the peak expiratory flow rate. Genetic polymorphisms of glutathione S-transferase M1 and T1 did not significantly affect peak expiratory flow rate. Conclusions This study demonstrated that particulate pollutants and metals such as manganese and lead in the particles are associated with a decrement of peak expiratory flow rate. These effects were robust even with consideration of genetic polymorphisms of glutathione S-transferase. PMID:17431494

  11. Spectral emissions and dosimetry of metal tritide particulates.

    PubMed

    Strom, D J; Stewart, R D; McDonald, J C

    2002-01-01

    Inference of intakes and doses from inhalation of metal tritide particles has come under scrutiny because of decommissioning and decontamination of US Department of Energy facilities. Since self-absorption of radiation is very significant for larger particles, interpretation of counting results of metal tritide particles by liquid scintillation requires information about emission spectra. Similarly, inference of dose requires knowledge of charged particle and photon spectra. The PENELOPE Monte Carlo radiation transport computer code was used to compute spectral emissions and other dosimetric quantities for tritide particulates of Sc, Ti, Zr, Er, and Hf. Emission fractions, radial absorbed dose distributions, specific energy distributions and related frequency-mean specific energies and lineal energies, and the emitted spectra of electrons and bremsstrahlung photons are presented for selected particulates with diameters ranging from about 0.01 microm to 25 microm. Results characterising the effects of uncertainties associated with the composition and density of the tritides are also presented. Emission spectra are used to illustrate trends in the relationship between apparent and observed activity as a function of particle type and size. Emissions from metal tritide particles are weakly penetrating, and electron emission spectra tend to 'harden' as particle size increases. Microdosimetric considerations suggest that the radiation emitted by metal tritides can be classified as a low linear energy transfer radiation source. For cells less than about 7 microm away from the surface of a metal tritide, the primary dose component is due to electrons. However, bremsstrahlung radiation may deposit some energy tens, hundreds or even thousands of micrometres away from the surface of a tritide particle. The data and analyses presented in this report will help improve the accuracy of dose determinations for particulates of five metal tritides. Future work on the spectral

  12. Evaluation of coarse and fine particulate sources using a portable aerosol monitor in a desert community.

    PubMed

    Phalen, Robert N; Coleman, Ted

    2012-08-01

    The purpose of this study was to use a portable aerosol monitor as a preliminary screening tool to identify local sources of coarse (PM(10-2.5)) and fine (PM(2.5)) particulate matter within the Coachella Valley, a low-elevation desert community. The portable aerosol monitor proved to be useful in identifying particle sources unique to the region, namely, sand dunes with sparse ground cover (vegetation), a river wash, and diesel truck and freight train traffic. The general limitations relate to discrepancies in the fraction of PM(10-2.5) when compared to regional air quality data and a lack of accurate mass-based data. PMID:22617941

  13. The pilot scale testing of a circulating fluid bed fine particulate and mercury control device

    SciTech Connect

    Helfritch, D.J.; Feldman, P.L.

    1998-07-01

    US utilities are faced with new economic challenges to remain competitive in light of deregulation initiatives and increased competition. In addition, environmental pressures are forcing many of these utilities to be prepared to reduce the air emissions such as NO{sub x}, SO{sub x}, fine particulates and mercury from coal-burning plants. The proposed PM{sub 2.5} regulations will demand improved fine particle control from existing equipment, and potential mercury vapor regulations would impose the installation of new control equipment. The device described here employs a circulating fluid bed in order to achieve a high particle density, which promotes the agglomeration of particles. The fine particles entering the system are formed into larger agglomerates, which are then more readily captured by a conventional electrostatic precipitator. Activated carbon cab be injected into the circulating bed for the adsorption of mercury vapor. High residence time, due to the recirculation, allows very effective utilization of the carbon. The fluid bed device was operated for a three-month period on a slipstream of gas exiting a coal-fired boiler at PSE and G's Mercer Generating Station. The results showed that fine particles and mercury vapor can be significantly reduced by passage through a fluidized bed of fly ash and activated carbon. The addition of lime to the fluid bed resulted in effective capture of SO{sub 2} and HCI. These results and the effects of various parameters on capture efficiencies are presented.

  14. Source Signatures of Fine Particulate Matter from Petroleum Refining and Fuel Use

    SciTech Connect

    Gerald P. Huffman; Frank E. Huggins; Naresh Shah; Robert Huggins

    1999-12-31

    Combustion experiments were carried out on four different residual fuel oils in a 732 kW boiler. Particulate matter (PM) emission samples were separated aerodynamically by a cyclone into fractions that were nominally less than and greater than 2.5 microns in diameter. However, examination of several of the samples by computer-controlled scanning electron microscopy (CCSEM) revealed that part of the <2.5 micron fraction (PM{sub 2.5}) in fact consists of carbonaceous cenospheres and vesicular particles that range up to 10 microns in diameter. X-ray absorption fine structure (XAFS) spectroscopy data were obtained at the S, V, Ni, Fe, Cu, Zn, and As Kedges, and at the Pb L-edge. Deconvolution of the x-ray absorption near edge structure (XANES) region of the S spectra established that the dominant molecular forms of S present were sulfate (26-84% of total S) and thiophene (13-39% of total S). Sulfate was greater in the PM{sub 2.5} samples than in the >2.5 micron samples (PM{sub 2.5+}). Inorganic sulfides and elemental sulfur were present in lower percentages. The Ni XANES spectra from all of the samples agree fairly well with that of NiSO4, while most of the V spectra closely resemble that of vanadyl sulfate (VO{center_dot}SO{sub 4}{center_dot}xH{sub 2}O). The other metals investigated (Fe, Cu, Zn, and Pb) were also present predominantly as sulfates. Arsenic is present as an arsenate (As{sup +5}). X-ray diffraction patterns of the PM{sub 2.5} fraction exhibit sharp lines due to sulfate compounds (Zn, V, Ni, Ca, etc.) superimposed on broad peaks due to amorphous carbons. All of the samples contain a significant organic component, with the LOI ranging from 64 to 87 % for the PM{sub 2.5} fraction and from 88 to 97% for the PM{sub 2.5+} fraction. {sup 13}C nuclear magnetic resonance (NMR) analysis indicates that the carbon is predominantly condensed in graphitic structures. Aliphatic structure was detected in only one of seven samples examined.

  15. Ensemble-Based Source Apportionment of Fine Particulate Matter and Emergency Department Visits for Pediatric Asthma

    PubMed Central

    Gass, Katherine; Balachandran, Sivaraman; Chang, Howard H.; Russell, Armistead G.; Strickland, Matthew J.

    2015-01-01

    Epidemiologic studies utilizing source apportionment (SA) of fine particulate matter have shown that particles from certain sources might be more detrimental to health than others; however, it is difficult to quantify the uncertainty associated with a given SA approach. In the present study, we examined associations between source contributions of fine particulate matter and emergency department visits for pediatric asthma in Atlanta, Georgia (2002–2010) using a novel ensemble-based SA technique. Six daily source contributions from 4 SA approaches were combined into an ensemble source contribution. To better account for exposure uncertainty, 10 source profiles were sampled from their posterior distributions, resulting in 10 time series with daily SA concentrations. For each of these time series, Poisson generalized linear models with varying lag structures were used to estimate the health associations for the 6 sources. The rate ratios for the source-specific health associations from the 10 imputed source contribution time series were combined, resulting in health associations with inflated confidence intervals to better account for exposure uncertainty. Adverse associations with pediatric asthma were observed for 8-day exposure to particles generated from diesel-fueled vehicles (rate ratio = 1.06, 95% confidence interval: 1.01, 1.10) and gasoline-fueled vehicles (rate ratio = 1.10, 95% confidence interval: 1.04, 1.17). PMID:25776011

  16. Analysis of semi-volatile materials (SVM) in fine particulate matter

    NASA Astrophysics Data System (ADS)

    Salvador, Christian Mark; Chou, Charles C.-K.

    2014-10-01

    The mass fraction of semi-volatile materials (SVM) in fine particulate matter (PM2.5) was investigated at a subtropical urban aerosol observatory (TARO, 25.0 °N, 121.5 °E) in Taipei, Taiwan during August 2013. In particular, an integrated Denuder-FDMS-TEOM system was employed to study the effectiveness of the coupling of FDMS and TEOM instruments. The charcoal and MgO denuders used in this study performed a removal efficiency of 89 and 95% for positive interferences in OC and nitrate measurements, respectively, and did not induce a significant particle loss during the field campaign, suggesting that denuders should be considered as a standard device in PM2.5 instrumentation. Analysis on the mass concentration and speciation data found that, as a result of SVM loss, FRM-based measurement underestimated PM2.5 by 21% in our case. Coupling FDMS to TEOM significantly improved the bias in PM2.5 mass concentration from -25% to -14%. The negative bias in FDMS-TEOM was attributed to the failure of FDMS in recovering the mass of lost SVOMs in PM2.5. The results of this study highlight the significance of SVM in a subtropical urban environment, give a warning of underestimated health risk relevant to PM2.5 exposure, and necessitate further development of instrument and/or technique to provide accurate ambient levels of fine particulate matters.

  17. The use of a receptor model for fine particulate in Mexico City

    SciTech Connect

    Vega, E.; Garcia, I.; Ruiz, M.E.

    1997-12-31

    Mexico City Metropolitan Area (MCMA) faces severe pollution problems typical of large urban areas all over the world. The city is in an elevated basin (2,240 m) at a subtropical latitude (19.5N), with a high mountain chain at the West and South. This basin setting inhibits dispersion of pollution and contributes to the frequent wintertime thermal inversions which further trap pollutants near the surface. The study of atmospheric pollution and its control have been carried out using physico-chemical dispersion models, and the type known as receptor models often finds favor. The main objective of this paper is to present the results of a chemical mass balance receptor model applied to two different data sets of particulate matter. The twelve-hour samples were collected during day and night periods in the winter of 1989, previous to the introduction of catalytic converters in automobiles, and the other after 1991, since the catalytic converters are compulsory in all the new model vehicles. Samples of particulate matter were collected using a denuder and a Hi-Vol systems for the fine fraction (aerosols with diameter less than 2.5 {micro}m) and total suspended particles respectively. The results show that the major source contributions to the inhalable particulate matter for the first period are: automobiles (44%); secondary aerosols (19%); dust (10%).

  18. Global Chemical Composition of Ambient Fine Particulate Matter for Exposure Assessment

    PubMed Central

    2015-01-01

    Epidemiologic and health impact studies are inhibited by the paucity of global, long-term measurements of the chemical composition of fine particulate matter. We inferred PM2.5 chemical composition at 0.1° × 0.1° spatial resolution for 2004–2008 by combining aerosol optical depth retrieved from the MODIS and MISR satellite instruments, with coincident profile and composition information from the GEOS-Chem global chemical transport model. Evaluation of the satellite-model PM2.5 composition data set with North American in situ measurements indicated significant spatial agreement for secondary inorganic aerosol, particulate organic mass, black carbon, mineral dust, and sea salt. We found that global population-weighted PM2.5 concentrations were dominated by particulate organic mass (11.9 ± 7.3 μg/m3), secondary inorganic aerosol (11.1 ± 5.0 μg/m3), and mineral dust (11.1 ± 7.9 μg/m3). Secondary inorganic PM2.5 concentrations exceeded 30 μg/m3 over East China. Sensitivity simulations suggested that population-weighted ambient PM2.5 from biofuel burning (11 μg/m3) could be almost as large as from fossil fuel combustion sources (17 μg/m3). These estimates offer information about global population exposure to the chemical components and sources of PM2.5. PMID:25343705

  19. Global chemical composition of ambient fine particulate matter for exposure assessment.

    PubMed

    Philip, Sajeev; Martin, Randall V; van Donkelaar, Aaron; Lo, Jason Wai-Ho; Wang, Yuxuan; Chen, Dan; Zhang, Lin; Kasibhatla, Prasad S; Wang, Siwen; Zhang, Qiang; Lu, Zifeng; Streets, David G; Bittman, Shabtai; Macdonald, Douglas J

    2014-11-18

    Epidemiologic and health impact studies are inhibited by the paucity of global, long-term measurements of the chemical composition of fine particulate matter. We inferred PM2.5 chemical composition at 0.1° × 0.1° spatial resolution for 2004-2008 by combining aerosol optical depth retrieved from the MODIS and MISR satellite instruments, with coincident profile and composition information from the GEOS-Chem global chemical transport model. Evaluation of the satellite-model PM2.5 composition data set with North American in situ measurements indicated significant spatial agreement for secondary inorganic aerosol, particulate organic mass, black carbon, mineral dust, and sea salt. We found that global population-weighted PM2.5 concentrations were dominated by particulate organic mass (11.9 ± 7.3 μg/m(3)), secondary inorganic aerosol (11.1 ± 5.0 μg/m(3)), and mineral dust (11.1 ± 7.9 μg/m(3)). Secondary inorganic PM2.5 concentrations exceeded 30 μg/m(3) over East China. Sensitivity simulations suggested that population-weighted ambient PM2.5 from biofuel burning (11 μg/m(3)) could be almost as large as from fossil fuel combustion sources (17 μg/m(3)). These estimates offer information about global population exposure to the chemical components and sources of PM2.5. PMID:25343705

  20. Global Chemical Composition of Ambient Fine Particulate Matter for Exposure Assessment

    DOE PAGESBeta

    Philip, Sajeev; Martin, Randall V.; van Donkelaar, Aaron; Lo, Jason Wai-Ho; Wang, Yuxuan; Chen, Dan; Zhang, Lin; Kasibhatla, Prasad S.; Wang, Siwen; Zhang, Qiang; et al

    2014-10-24

    Epidemiologic and health impact studies are inhibited by the paucity of global, long-term measurements of the chemical composition of fine particulate matter. We inferred PM2.5 chemical composition at 0.1° × 0.1° spatial resolution for 2004–2008 by combining aerosol optical depth retrieved from the MODIS and MISR satellite instruments, with coincident profile and composition information from the GEOS-Chem global chemical transport model. Evaluation of the satellite-model PM2.5 composition data set with North American in situ measurements indicated significant spatial agreement for secondary inorganic aerosol, particulate organic mass, black carbon, mineral dust, and sea salt. We found that global population-weighted PM2.5 concentrationsmore » were dominated by particulate organic mass (11.9 ± 7.3 μg/m3), secondary inorganic aerosol (11.1 ± 5.0 μg/m3), and mineral dust (11.1 ± 7.9 μg/m3). Secondary inorganic PM2.5 concentrations exceeded 30 μg/m3 over East China. Sensitivity simulations suggested that population-weighted ambient PM2.5 from biofuel burning (11 μg/m3) could be almost as large as from fossil fuel combustion sources (17 μg/m3). In conclusion, these estimates offer information about global population exposure to the chemical components and sources of PM2.5.« less

  1. Application of a microscale emission factor model for particulate matter to calculate vehicle-generated contributions to fine particulate emissions.

    PubMed

    Singh, Rakesh B; Desloges, Catherine; Sloan, James J

    2006-01-01

    This paper discusses the evaluation and application of a new generation of particulate matter (PM) emission factor model (MicroFacPM). MicroFacPM that was evaluated in Tuscarora Mountain Tunnel, Pennsylvania Turnpike, PA shows good agreement between measured and modeled emissions. MicroFacPM application is presented to the vehicle traffic on the main approach road to the Ambassador Bridge, which is one of the most important international border entry points in North America, connecting Detroit, MI, with Windsor, Ontario, Canada. An increase in border security has forced heavy-duty diesel vehicles to line up for several kilometers through the city of Windsor causing concern about elevated concentrations of ambient PM. MicroFacPM has been developed to model vehicle-generated PM (fine [PM2.5] and coarse < or = 10 microm [PM10]) from the on-road vehicle fleet, which in this case includes traffic at very low speeds (10 km/h). The Windsor case study gives vehicle generated PM2.5 sources and their breakdown by vehicle age and class. It shows that the primary sources of vehicle-generated PM2.5 emissions are the late-model heavy-duty diesel vehicles. We also applied CALINE4 and AERMOD in conjunction with MicroFacPM, using Canadian traffic and climate conditions, to describe the vehicle-generated PM2.5 dispersion near this roadway during the month of May in 2003. PMID:16499145

  2. Identification of haze-creating sources from fine particulate matter in Dhaka aerosol using carbon fractions.

    PubMed

    Begum, Bilkis A; Hopke, Philip K

    2013-09-01

    Fine particulate matter (PM2.5) samples were simultaneously collected on Teflon and quartz filters between February 2010 and February 2011 at an urban monitoring site (CAMS2) in Dhaka, Bangladesh. The samples were collected using AirMetrics MiniVol samplers. The samples on Teflon filters were analyzed for their elemental composition by PIXE and PESA. Particulate carbon on quartz filters was analyzed using the IMPROVE thermal optical reflectance (TOR) method that divides carbon into four organic carbons (OC), pyrolized organic carbon (OP), and three elemental carbon (EC) fractions. The data were analyzed by positive matrix factorization using the PMF2 program. Initially, only total OC and total EC were included in the analysis and five sources, including road dust, sea salt and Zn, soil dust, motor vehicles, and brick kilns, were obtained. In the second analysis, the eight carbon fractions (OC1, OC2, OC3, OC4, OP, EC1, EC2, EC3) were included in order to ascertain whether additional source information could be extracted from the data. In this case, it is possible to identify more sources than with only total OC and EC. The motor vehicle source was separated into gasoline and diesel emissions and a fugitive Pb source was identified. Brick kilns contribute 7.9 microg/m3 and 6.0 microg/m3 of OC and EC, respectively, to the fine particulate matter based on the two results. From the estimated mass extinction coefficients and the apportioned source contributions, soil dust, brick kiln, diesel, gasoline, and the Pb sources were found to contribute most strongly to visibility degradation, particularly in the winter. PMID:24151680

  3. Fine particulate chemical composition and light extinction at Canyonlands National Park using organic particulate material concentrations obtained with a multisystem, multichannel diffusion denuder sampler

    NASA Astrophysics Data System (ADS)

    Eatough, Delbert J.; Eatough, David A.; Lewis, Laura; Lewis, Edwin A.

    1996-08-01

    The concentration of fine particulate carbonaceous material has been measured over a 1-year period at the Interagency Monitoring of Protected Visual Environments (IMPROVE) Canyonlands National Park, Utah sampling site using a Brigham Young University organic sampling system (BOSS) multisystem, multichannel diffusion denuder sampler. Samples were collected on the IMPROVE schedule of a 24-hour sample every Wednesday and Saturday. The concentrations of particulate C, determined using only a quartz filter pack sampling system, were low by an average of 39%, as a result of the loss of semi-volatile organic compounds from the particles collected on quartz filters during sampling. The loss was higher during the summer than during the winter sampling periods. The BOSS and IMPROVE quartz filter carbon measurements were in agreement except for a few samples collected during the summer. The fine particulate carbonaceous material concentrations determined using the BOSS have been combined with concentrations of particulate elemental C (soot), sulfate, nitrate, crustal material, and fine and coarse particulate mass from the IMPROVE sampling system, as well as relative humidity, light absorption, and transmissometer measurements of light extinction from IMPROVE. Extinction budgets have been calculated using multilinear regression analyses of the data set. Literature data were used to estimate the change in the mass extinction coefficients for the measured species as a function of relative humidity. The results show carbonaceous material to be the principal contributor to light extinction due to particles during the study period, with the major contributor to light extinction being light-absorbing carbonaceous material. However, the periods of maximum light extinction are associated with high humidity and the associated increased scattering of light due to particulate sulfate during the winter. The effect of particulate organic compounds on light extinction is greatest in the

  4. Emission characteristics of particulate matter and heavy metals from small incinerators and boilers

    NASA Astrophysics Data System (ADS)

    Yoo, Jong-Ik; Kim, Ki-Heon; Jang, Ha-Na; Seo, Yong-Chil; Seok, Kwang-Seol; Hong, Ji-Hyung; Jang, Min

    The characteristics of particulate matter (PM) emission such as the estimation of emission factors, size distributions and of heavy metal emission from small-size incinerators and boilers have been investigated. In PM-10 emission, a fine mode was found in the formation of sub-micron PM by growth of nucleated aerosol of metal vapor, having a bimodal particle size distribution in overall size range. The emission ratios of PM-10 to TPM (total PM) from boilers and incinerators ranged from 29% to 62% and 10% to 84%, respectively, which resulted in more and larger sized PM emission due to poorer combustion from solid waste incinerators than boilers. The targeted metals were copper, cadmium, manganese, chromium, magnesium, lead, zinc and copper, and their contents in bottom ash, fly ash and dust (PM) were compared. More volatile metals such as cadmium, lead and zinc showed higher enrichment in PM emitted through stack than bottom ashes. Cadmium, copper, lead and zinc on the fine PM under 2.5 μm accounted for approximately 90% of the total mass of each metal in PM-10. The effects of chlorine concentration and temperature on such metals emission were also observed due to their volatility changes.

  5. Chemical speciation and source apportionment of fine particulate matter in Santiago, Chile, 2013.

    PubMed

    Villalobos, Ana M; Barraza, Francisco; Jorquera, Héctor; Schauer, James J

    2015-04-15

    Santiago is one of the largest cities in South America and has experienced high fine particulate matter (PM2.5) concentrations in fall and winter months for decades. To better understand the sources of fall and wintertime pollution in Santiago, PM2.5 samples were collected for 24 h every weekday from March to October 2013 for chemical analysis. Samples were analyzed for mass, elemental carbon (EC), organic carbon (OC), water soluble organic carbon (WSOC), water soluble nitrogen (WSTN), secondary inorganic ions, and particle-phase organic tracers for source apportionment. Selected samples were analyzed as monthly composites for organic tracers. PM2.5 concentrations were considerably higher in the coldest months (June-July), averaging (mean ± standard deviation) 62±15 μg/m(3) in these two months. Average fine particle mass concentration during the study period was 40±20 μg/m(3). Organic matter during the peak winter months was the major component of fine particles comprising around 70% of the particle mass. Source contributions to OC were calculated using organic molecular markers and a chemical mass balance (CMB) receptor model. The four combustion sources identified were wood smoke, diesel engine emission, gasoline vehicles, and natural gas. Wood smoke was the predominant source of OC, accounting for 58±42% of OC in fall and winter. Wood smoke and nitrate were the major contributors to PM2.5. In fall and winter, wood smoke accounted for 9.8±7.1 μg/m(3) (21±15%) and nitrate accounted for 9.1±4.8 μg/m(3) (20±10%) of fine PM. The sum of secondary inorganic ions (sulfate, nitrate, and ammonium) represented about 30% of PM2.5 mass. Secondary organic aerosols contributed only in warm months, accounting for about 30% of fine PM during this time. PMID:25617780

  6. The effects on bronchial epithelial mucociliary cultures of coarse, fine, and ultrafine particulate matter from an underground railway station.

    PubMed

    Loxham, Matthew; Morgan-Walsh, Rebecca J; Cooper, Matthew J; Blume, Cornelia; Swindle, Emily J; Dennison, Patrick W; Howarth, Peter H; Cassee, Flemming R; Teagle, Damon A H; Palmer, Martin R; Davies, Donna E

    2015-05-01

    We have previously shown that underground railway particulate matter (PM) is rich in iron and other transition metals across coarse (PM10-2.5), fine (PM2.5), and quasi-ultrafine (PM0.18) fractions and is able to generate reactive oxygen species (ROS). However, there is little knowledge of whether the metal-rich nature of such particles exerts toxic effects in mucus-covered airway epithelial cell cultures or whether there is an increased risk posed by the ultrafine fraction. Monolayer and mucociliary air-liquid interface (ALI) cultures of primary bronchial epithelial cells (PBECs) were exposed to size-fractionated underground railway PM (1.1-11.1 µg/cm(2)) and release of lactate dehydrogenase and IL-8 was assayed. ROS generation was measured, and the mechanism of generation studied using desferrioxamine (DFX) and N-acetylcysteine (NAC). Expression of heme oxygenase-1 (HO-1) was determined by RT-qPCR. Particle uptake was studied by transmission electron microscopy. Underground PM increased IL-8 release from PBECs, but this was diminished in mucus-secreting ALI cultures. Fine and ultrafine PM generated a greater level of ROS than coarse PM. ROS generation by ultrafine PM was ameliorated by DFX and NAC, suggesting an iron-dependent mechanism. Despite the presence of mucus, ALI cultures displayed increased HO-1 expression. Intracellular PM was observed within vesicles, mitochondria, and free in the cytosol. The results indicate that, although the mucous layer appears to confer some protection against underground PM, ALI PBECs nonetheless detect PM and mount an antioxidant response. The combination of increased ROS-generating ability of the metal-rich ultrafine fraction and ability of PM to penetrate the mucous layer merits further research. PMID:25673499

  7. The Effects on Bronchial Epithelial Mucociliary Cultures of Coarse, Fine, and Ultrafine Particulate Matter From an Underground Railway Station

    PubMed Central

    Loxham, Matthew; Morgan-Walsh, Rebecca J.; Cooper, Matthew J.; Blume, Cornelia; Swindle, Emily J.; Dennison, Patrick W.; Howarth, Peter H.; Cassee, Flemming R.; Teagle, Damon A. H.; Palmer, Martin R.; Davies, Donna E.

    2015-01-01

    We have previously shown that underground railway particulate matter (PM) is rich in iron and other transition metals across coarse (PM10–2.5), fine (PM2.5), and quasi-ultrafine (PM0.18) fractions and is able to generate reactive oxygen species (ROS). However, there is little knowledge of whether the metal-rich nature of such particles exerts toxic effects in mucus-covered airway epithelial cell cultures or whether there is an increased risk posed by the ultrafine fraction. Monolayer and mucociliary air-liquid interface (ALI) cultures of primary bronchial epithelial cells (PBECs) were exposed to size-fractionated underground railway PM (1.1–11.1 µg/cm2) and release of lactate dehydrogenase and IL-8 was assayed. ROS generation was measured, and the mechanism of generation studied using desferrioxamine (DFX) and N-acetylcysteine (NAC). Expression of heme oxygenase-1 (HO-1) was determined by RT-qPCR. Particle uptake was studied by transmission electron microscopy. Underground PM increased IL-8 release from PBECs, but this was diminished in mucus-secreting ALI cultures. Fine and ultrafine PM generated a greater level of ROS than coarse PM. ROS generation by ultrafine PM was ameliorated by DFX and NAC, suggesting an iron-dependent mechanism. Despite the presence of mucus, ALI cultures displayed increased HO-1 expression. Intracellular PM was observed within vesicles, mitochondria, and free in the cytosol. The results indicate that, although the mucous layer appears to confer some protection against underground PM, ALI PBECs nonetheless detect PM and mount an antioxidant response. The combination of increased ROS-generating ability of the metal-rich ultrafine fraction and ability of PM to penetrate the mucous layer merits further research. PMID:25673499

  8. Impact of fine particulate fluctuation and other variables on Beijing's air quality index.

    PubMed

    Chen, Bo; Lu, Shaowei; Li, Shaoning; Wang, Bing

    2015-04-01

    We analyzed fluctuation in Beijing's air quality over 328 days, based on air quality grades and air quality data from 35 atmospheric monitoring stations. Our results show the air over Beijing is subject to pollution 152 days of the year, or 46.34%. Among all pollutants, fine particulates, solid or liquid, 2.5 μm or less in size (PM2.5), appeared most frequently as the primary pollutant: 249 days, or 76% of the sample year (328 days). Nitrogen dioxide (NO2) and coarse particulates (PM10) cause the least pollution, appearing only 7 and 3 days, or 2 and 1% of the sample year, respectively. In Beijing, fine particulates like PM2.5 vary seasonally: 154.54 ± 18.60 in winter > 145.22 ± 18.61 in spring > 140.16 ± 20.76 in autumn > 122.37 ± 13.42 in summer. Air quality is best in August and worst in December, while various districts in Beijing experience different air quality. To be specific, from south to north and from west to east, air quality tends to improve. Meteorological elements have a constraining effect on air pollutants, which means there is a linear correlation between the air quality index and humidity, rainfall, wind speed, and temperature. Under a typical pollution scenario, the higher the air quality index (AQI) value, the lower the wind speed and the greater the relative humidity; the lower the AQI value, the higher the wind speed and lower the relative humidity. Analysis of influencing factors reveals that the air pollution is mainly particulate matter produced by burning coal, vehicle emissions, volatile oils and gas, fast development of food services, emissions from the surrounding region, and natural dust clouds formed in arid areas to the northwest. Topography affects the distribution of meteorological conditions, in turn varying air quality over the region from one location to another. Human activities also exercise impact on urban air quality with dual functions. PMID:25563832

  9. The metal centres of particulate methane mono-oxygenase.

    PubMed

    Rosenzweig, Amy C

    2008-12-01

    pMMO (particulate methane mono-oxygenase) is an integral membrane metalloenzyme that catalyses the oxidation of methane to methanol. The pMMO metal active site has not been identified, precluding detailed investigation of the reaction mechanism. Models for the metal centres proposed by various research groups have evolved as crystallographic and spectroscopic data have become available. The present review traces the evolution of these active-site models before and after the 2005 Methylococcus capsulatus (Bath) pMMO crystal structure determination. PMID:19021511

  10. Contribution of ship emissions to the fine particulate in the community near an international port in Hong Kong

    NASA Astrophysics Data System (ADS)

    Yau, P. S.; Lee, S. C.; Cheng, Y.; Huang, Y.; Lai, S. C.; Xu, X. H.

    2013-04-01

    Fine particulates from ship exhaust are proved to be harmful to human health. To better understand the impact of ship emissions on the particulate matter (PM) level of port-side residential areas, fine particulates (PM2.5) were collected near Kwai Chung and Tsing Yi Container Terminals (KTCT) in Hong Kong during August 2009 to March 2010. The average PM2.5 concentration was 30.5 μg/m3. The contribution of ship emissions on fine particulates near the container port was demonstrated by source apportionment. By positive matrix factorization (PMF) analysis, eight potential sources, i.e., residual oil (RO) combustion, marine diesel oil (MDO) combustion, vehicle emission, coal combustion, incineration, crustal and sea-salt, secondary sulfate and secondary nitrate were identified. Among the identified sources, RO combustion and MDO combustion were regarded as ship emissions and accounted for 12% and 7% of PM2.5 respectively. An estimate of 1.8 μg/m3 (6%) of secondary sulfate corresponded to 3.6 μg/m3 of primary fine particulates from RO combustion. Together with primary PM emitted from ships, the total ambient PM2.5 mass associated with ship emissions at the sampling site was 7.6 μg/m3 (25%).

  11. Size distribution of trace metals in Ponce, Puerto Rico air particulate matter

    NASA Astrophysics Data System (ADS)

    Infante, Rafael; Acosta, Iris L.

    The atmospheric particulate size distribution of nine heavy metals was measured in Ponce, a moderately industrial city in the south of Puerto Rico. Samples were collected in the city center and outlying suburban and rural locations during 1986. The size measurements were done with a cascade impactor. The elemental content of the size fractionated aerosol samples was determined by inductively coupled plasma atomic emission spectroscopy. The particle size distributions observed for Cu, Cd, Pb, Mn and Fe were bimodal with a gradual progression from mainly coarse mode to mainly fine mode. Al, Ni and Zn were mostly associated with coarse particles and V size distribution was unimodal with maxima associated with fine particles. The particle size distribution did not vary significantly with the sites sampled in the urban area although some regional characteristics are observed. The data obtained strongly suggest motor vehicle traffic and fuel combustion as the principal pollution pources in Ponce aerosol.

  12. The relation between past exposure to fine particulate air pollution and prevalent anxiety: observational cohort study

    PubMed Central

    Kioumourtzoglou, Marianthi-Anna; Hart, Jaime E; Okereke, Olivia I; Laden, Francine; Weisskopf, Marc G

    2015-01-01

    Objective To determine whether higher past exposure to particulate air pollution is associated with prevalent high symptoms of anxiety. Design Observational cohort study. Setting Nurses’ Health Study. Participants 71 271 women enrolled in the Nurses’ Health Study residing throughout the contiguous United States who had valid estimates on exposure to particulate matter for at least one exposure period of interest and data on anxiety symptoms. Main outcome measures Meaningfully high symptoms of anxiety, defined as a score of 6 points or greater on the phobic anxiety subscale of the Crown-Crisp index, administered in 2004. Results The 71 271 eligible women were aged between 57 and 85 years (mean 70 years) at the time of assessment of anxiety symptoms, with a prevalence of high anxiety symptoms of 15%. Exposure to particulate matter was characterized using estimated average exposure to particulate matter <2.5 μm in diameter (PM2.5) and 2.5 to 10 μm in diameter (PM2.5-10) in the one month, three months, six months, one year, and 15 years prior to assessment of anxiety symptoms, and residential distance to the nearest major road two years prior to assessment. Significantly increased odds of high anxiety symptoms were observed with higher exposure to PM2.5 for multiple averaging periods (for example, odds ratio per 10 µg/m3 increase in prior one month average PM2.5: 1.12, 95% confidence interval 1.06 to 1.19; in prior 12 month average PM2.5: 1.15, 1.06 to 1.26). Models including multiple exposure windows suggested short term averaging periods were more relevant than long term averaging periods. There was no association between anxiety and exposure to PM2.5-10. Residential proximity to major roads was not related to anxiety symptoms in a dose dependent manner. Conclusions Exposure to fine particulate matter (PM2.5) was associated with high symptoms of anxiety, with more recent exposures potentially more relevant than more distant exposures. Research evaluating

  13. A unique Critical State two-surface hyperplasticity model for fine-grained particulate media

    NASA Astrophysics Data System (ADS)

    Coombs, W. M.; Crouch, R. S.; Augarde, C. E.

    2013-01-01

    Even mild compression can cause re-arrangement of the internal structure of clay-like geomaterials, whereby clusters of particles rotate and collapse as face-to-face contacts between the constituent mineral platelets increase at the expense of edge-to-face (or edge-to-edge) contacts. The collective action of local particle re-orientation ultimately leads to path-independent isochoric macroscopic deformation under continuous shearing. This asymptotic condition is the governing feature of Critical State elasto-plasticity models. Unlike earlier formulations, the two-surface anisotropic model proposed herein is able to reproduce a unique isotropic Critical State stress envelope which agrees well with test data. Material point predictions are compared against triaxial experimental results and five other existing constitutive models. The hyperplastic formulation is seen to offer a significantly improved descriptor of the anisotropic behaviour of fine-grained particulate materials.

  14. Fine particulate matter estimated by mathematical model and hospitalizations for pneumonia and asthma in children

    PubMed Central

    César, Ana Cristina Gobbo; Nascimento, Luiz Fernando Costa; Mantovani, Katia Cristina Cota; Vieira, Luciana Cristina Pompeo

    2016-01-01

    Abstract Objective: To estimate the association between exposure to fine particulate matter with an aerodynamic diameter <2.5 microns (PM2.5) and hospitalizations for pneumonia and asthma in children. Methods: An ecological study of time series was performed, with daily indicators of hospitalization for pneumonia and asthma in children up to 10 years of age, living in Taubaté (SP) and estimated concentrations of PM2.5, between August 2011 and July 2012. A generalized additive model of Poisson regression was used to estimate the relative risk, with lag zero up to five days after exposure; the single pollutant model was adjusted by the apparent temperature, as defined from the temperature and relative air humidity, seasonality and weekday. Results: The values of the relative risks for hospitalization for pneumonia and asthma were significant for lag 0 (RR=1.051, 95%CI; 1.016 to 1.088); lag 2 (RR=1.066, 95%CI: 1.023 to 1.113); lag 3 (RR=1.053, 95%CI: 1.015 to 1.092); lag 4 (RR=1.043, 95%CI: 1.004 to 1.088) and lag 5 (RR=1.061, 95%CI: 1.018 to 1.106). The increase of 5mcg/m3 in PM2.5 contributes to increase the relative risk for hospitalization from 20.3 to 38.4 percentage points; however, the reduction of 5µg/m3 in PM2.5 concentration results in 38 fewer hospital admissions. Conclusions: Exposure to PM2.5 was associated with hospitalizations for pneumonia and asthma in children younger than 10 years of age, showing the role of fine particulate matter in child health and providing subsidies for the implementation of preventive measures to decrease these outcomes. PMID:26522821

  15. Fine particulate matter and carbon monoxide exposure concentrations in urban street transport microenvironments

    NASA Astrophysics Data System (ADS)

    Kaur, S.; Nieuwenhuijsen, M. J.; Colvile, R. N.

    Personal exposure studies are crucial alongside microenvironment and ambient studies in order to get a better understanding of the health risks posed by fine particulate matter and carbon monoxide in the urban transport microenvironment and for making informed decisions to manage and reduce the health risks. Studies specifically assessing the PM 2.5, ultrafine particle count and carbon monoxide personal exposure concentrations of adults in an urban transport microenvironment have steadily increased in number over the last decade. However, no recent collective summary is available, particularly one which also considers ultrafine particles; therefore, we present a review of the personal exposure concentration studies for the above named pollutants on different modes of surface transportation (walking, cycling, bus, car and taxi) in the urban transport microenvironment. Comparisons between personal exposure measurements and concentrations recorded at fixed monitoring sites are considered in addition to the factors influencing personal exposure in the transport microenvironment. In general, the exposure studies examined revealed pedestrians and cyclists to experience lower fine particulate matter and CO exposure concentrations in comparison to those inside vehicles—the vehicle shell provided no protection to the passengers. Proximity to the pollutant sources had a significant impact on exposure concentration levels experienced, consequently individuals should be encouraged to use back street routes. Fixed monitoring stations were found to be relatively poor predictors of CO and PM 2.5 exposure concentration levels experienced by individuals in the urban transport microenvironment. Although the mode of transport, traffic and meteorology parameters were commonly identified as significant factors influencing exposure concentrations to the different pollutants under examination, a large amount of the exposure concentration variation in the exposure studies remained

  16. Global Chemical Composition of Ambient Fine Particulate Matter for Exposure Assessment

    SciTech Connect

    Philip, Sajeev; Martin, Randall V.; van Donkelaar, Aaron; Lo, Jason Wai-Ho; Wang, Yuxuan; Chen, Dan; Zhang, Lin; Kasibhatla, Prasad S.; Wang, Siwen; Zhang, Qiang; Lu, Zifeng; Streets, David G.; Bittman, Shabtai; Macdonald, Douglas J.

    2014-10-24

    Epidemiologic and health impact studies are inhibited by the paucity of global, long-term measurements of the chemical composition of fine particulate matter. We inferred PM2.5 chemical composition at 0.1° × 0.1° spatial resolution for 2004–2008 by combining aerosol optical depth retrieved from the MODIS and MISR satellite instruments, with coincident profile and composition information from the GEOS-Chem global chemical transport model. Evaluation of the satellite-model PM2.5 composition data set with North American in situ measurements indicated significant spatial agreement for secondary inorganic aerosol, particulate organic mass, black carbon, mineral dust, and sea salt. We found that global population-weighted PM2.5 concentrations were dominated by particulate organic mass (11.9 ± 7.3 μg/m3), secondary inorganic aerosol (11.1 ± 5.0 μg/m3), and mineral dust (11.1 ± 7.9 μg/m3). Secondary inorganic PM2.5 concentrations exceeded 30 μg/m3 over East China. Sensitivity simulations suggested that population-weighted ambient PM2.5 from biofuel burning (11 μg/m3) could be almost as large as from fossil fuel combustion sources (17 μg/m3). In conclusion, these estimates offer information about global population exposure to the chemical components and sources of PM2.5.

  17. ROS-generating/ARE-activating capacity of metals in roadway particulate matter deposited in urban environment.

    PubMed

    Shuster-Meiseles, Timor; Shafer, Martin M; Heo, Jongbae; Pardo, Michal; Antkiewicz, Dagmara S; Schauer, James J; Rudich, Assaf; Rudich, Yinon

    2016-04-01

    In this study we investigated the possible causal role for soluble metal species extracted from roadway traffic emissions in promoting particulate matter (PM)-induced reactive oxygen species (ROS) production and antioxidant response element (ARE) promoter activation. To this end, these responses have been evaluated in alveolar macrophage and epithelial lung cells that have been exposed to 'Unfiltered', 'Filtered' and 'Filtered+Chelexed' water extracts of PM samples collected from the roadway urban environments of Thessaloniki, Milan and London. Except for Thessaloniki, our results demonstrate that filtration resulted in a minor decrease in ROS activity of the fine PM fraction, suggesting that ROS activity is attributed mainly to water-soluble PM species. In contrast to ROS, ARE activity was mediated predominantly by the water-soluble component of PM present in both the fine and coarse extracts. Further removal of metals by Chelex treatment from filtered water extracts showed that soluble metal species are the major factors mediating ROS and ARE activities of the soluble fraction, especially in the London PM extracts. Finally, utilizing step-wise multiple-regression analysis, we show that 87% and 78% of the total variance observed in ROS and ARE assays, respectively, is accounted for by changes in soluble metal concentration. Using a statistical analysis we find that As, Zn and Fe best predict the ROS-generating/ARE-activating capacity of the near roadway particulate matter in the pulmonary cells studied. Collectively, our findings imply that soluble metals present in roadside PM are potential drivers of both pro- and anti-oxidative effects of PM in respiratory tract. PMID:26775006

  18. Application of satellite remote-sensing data for source analysis of fine particulate matter transport events.

    PubMed

    Engel-Cox, Jill A; Young, Gregory S; Hoff, Raymond M

    2005-09-01

    Satellite sensors have provided new datasets for monitoring regional and urban air quality. Satellite sensors provide comprehensive geospatial information on air quality with both qualitative imagery and quantitative data, such as aerosol optical depth. Yet there has been limited application of these new datasets in the study of air pollutant sources relevant to public policy. One promising approach to more directly link satellite sensor data to air quality policy is to integrate satellite sensor data with air quality parameters and models. This paper presents a visualization technique to integrate satellite sensor data, ground-based data, and back trajectory analysis relevant to a new rule concerning the transport of particulate matter across state boundaries. Overlaying satellite aerosol optical depth data and back trajectories in the days leading up to a known fine particulate matter with an aerodynamic diameter of <2.5 microm (PM2.5) event may indicate whether transport or local sources appear to be most responsible for high PM2.5 levels in a certain location at a certain time. Events in five cities in the United States are presented as case studies. This type of analysis can be used to help understand the source locations of pollutants during specific events and to support regulatory compliance decisions in cases of long distance transport. PMID:16259433

  19. Modeled and observed fine particulate matter reductions from state attainment demonstrations.

    PubMed

    Cohan, Daniel S; Chen, Ran

    2014-09-01

    States rely upon photochemical models to predict the impacts of air quality attainment strategies, but the performance of those predictions is rarely evaluated retrospectively. State implementation plans (SIPs) developed to attain the 1997 U.S. standard for fine particulate matter (PM2.5; denoting particles smaller than 2.5 microns in diameter) by 2009 provide the first opportunity to assess modeled predictions of PM2.5 reductions at the state level. The SIPs were the first to rely upon a speciated modeled attainment test methodology recommended by the U.S. Environmental Protection Agency to predict PM2.5 concentrations and attainment status. Of the 23 eastern U.S. regions considered here, all but one achieved the 15 microg/m3 standard by 2009, and the other achieved it the following year with downward trends sustained in subsequent years. The attainment tests predicted 2009 PM2.5 design values at individual monitors with a mean bias of 0.38 microg/m3 and mean error of 0.68 microg/m3, and were 95% accurate in predicting whether a monitor would achieve the standard. All of the errors were false alarms, in which the monitor observed attainment after a modeled prediction of an exceedance; in these cases, the states used weight-of-evidence determinations to argue that attainment was likely. Overall, PM2.5 concentrations at monitors in the SIP regions declined by 2.6 microg/m3 from 2000-2004 to 2007-2009, compared with 1.6 microg/m3 in eastern U.S. regions originally designated as attainment. Air quality improvements tended to be largest at monitors that were initially the most polluted. Implications: As states prepare to develop plans for attaining a more stringent standard for fine particulate matter, this retrospective analysis documents substantial and sustained air quality improvements achieved under the previous standard. Significantly larger air quality improvements in regions initially designated nonattainment of the 1997 standard indicate that this status

  20. Assessment of Population Exposure to Coarse and Fine Particulate Matter in the Urban Areas of Chennai, India

    PubMed Central

    Prasannavenkatesh, Ramachandran; Andimuthu, Ramachandran; Kandasamy, Palanivelu; Rajadurai, Geetha; Subash Kumar, Divya; Radhapriya, Parthasarathy; Ponnusamy, Malini

    2015-01-01

    Research outcomes from the epidemiological studies have found that the course (PM10) and the fine particulate matter (PM2.5) are mainly responsible for various respiratory health effects for humans. The population-weighted exposure assessment is used as a vital decision-making tool to analyze the vulnerable areas where the population is exposed to critical concentrations of pollutants. Systemic sampling was carried out at strategic locations of Chennai to estimate the various concentration levels of particulate pollution during November 2013–January 2014. The concentration of the pollutants was classified based on the World Health Organization interim target (IT) guidelines. Using geospatial information systems the pollution and the high-resolution population data were interpolated to study the extent of the pollutants at the urban scale. The results show that approximately 28% of the population resides in vulnerable locations where the coarse particulate matter exceeds the prescribed standards. Alarmingly, the results of the analysis of fine particulates show that about 94% of the inhabitants live in critical areas where the concentration of the fine particulates exceeds the IT guidelines. Results based on human exposure analysis show the vulnerability is more towards the zones which are surrounded by prominent sources of pollution. PMID:26258167

  1. NONLINEARITIES IN THE SULFATE SECONDARY FINE PARTICULATE RESPONSE TO NOX EMISSIONS REDUCTIONS AS MODELED BY THE REGIONAL ACID DEPOSITION MODEL

    EPA Science Inventory

    Attention is increasingly being devoted to the health effects of fine particulates. In regions that have a large production of sulfate, sulfuric acid and nitric acid compete for the available ammonia to form aerosols. In addition, the available nitric acid is the result of ur...

  2. Zebrafish Locomotor Responses Demonstrate Irritant Effects of Fine Particulate Matter Sources and a Role for TRPA1

    EPA Science Inventory

    Fine particulate matter (PM) air pollution is a complex mixture of chemicals, the composition of which is determined by contributing sources, and has been linked to cardiopulmonary dysfunction. These effects stem in part from the irritating properties of PM constituents, which ...

  3. Exploration of the Rapid Effects of Personal Fine Particulate Matter Exposure on Hemodynamics and Vascular Function during the Same Day

    EPA Science Inventory

    Background: Levels of fine particulate matter [≤ 2.5 μm in aerodynamic diameter (PM2.5)] are associated with alterations in arterial hemodynamics and vascular function. However, the characteristics of the same-day exposure–response relationships remain unclear. Object...

  4. Source apportionment with uncertainty estimates of fine particulate matter in Ostrava, Czech Republic using Positive Matrix Factorization

    EPA Science Inventory

    A 14-week investigation during a warm and cold seasons was conducted to improve understanding of air pollution sources that might be impacting air quality in Ostrava, the Czech Republic. Fine particulate matter (PM2.5) samples were collected in consecutive 12-h day and night incr...

  5. SOURCE SAMPLING FINE PARTICULATE MATTER: A KRAFT PROCESS RECOVERY BOILER AT A PULP AND PAPER FACILITY, VOLUMES 1 AND 2

    EPA Science Inventory

    Fine particulate matter of aerodynamic diameter 2.5 m or less (PM-2.5) has been found harmful to human health, and a National Ambient Air Quality Standard for PM-2.5 was promulgated by the U.S. Environmental Protection Agency in July 1997. A national network of ambient monitorin...

  6. Toxicity of coarse and fine particulate matter from sites with contrasting traffic profiles.

    PubMed

    Gerlofs-Nijland, Miriam E; Dormans, Jan A M A; Bloemen, Henk J T; Leseman, Daan L A C; John, A; Boere, F; Kelly, Frank J; Mudway, Ian S; Jimenez, Al A; Donaldson, Ken; Guastadisegni, Cecilia; Janssen, Nicole A H; Brunekreef, Bert; Sandström, Thomas; van Bree, Leendert; Cassee, Flemming R

    2007-10-01

    Residence in urban areas with much traffic has been associated with various negative health effects. However, the contribution of traffic emissions to these adverse health effects has not been fully determined. Therefore, the objective of this in vivo study is to compare the pulmonary and systemic responses of rats exposed to particulate matter (PM) obtained from various locations with contrasting traffic profiles. Samples of coarse (2.5 microm-10 microm) and fine (0.1 microm-2.5 microm) PM were simultaneously collected at nine sites across Europe with a high-volume cascade impactor. Six PM samples from various locations were selected on the basis of contrast in in vitro analysis, chemical composition, and traffic profiles. We exposed spontaneously hypertensive (SH) rats to a single dose (3 mg PM/kg body weight or 10 mg PM/kg body weight) of either coarse or fine PM by intratracheal instillation. We assessed changes in biochemical markers, cell differentials, and histopathological changes in the lungs and blood 24 h postexposure. The dose-related adverse effects that both coarse and fine PM induced in the lungs and vascular system were mainly related to cytotoxicity, inflammation, and blood viscosity. We observed clear differences in the extent of these responses to PM from the various locations at equivalent dose levels. There was a trend that suggests that samples from high-traffic sites were the most toxic. It is likely that the toxicological responses of SH rats were associated with specific PM components derived from brake wear (copper and barium), tire wear (zinc), and wood smoke (potassium). PMID:17957546

  7. Origin of fine carbonaceous particulate matter in the Western Mediterranean Basin: fossil versus modern sources

    NASA Astrophysics Data System (ADS)

    Cruz Minguillón, María.; Perron, Nolwenn; Querol, Xavier; Szidat, Sönke; Fahrni, Simon; Wacker, Lukas; Reche, Cristina; Cusack, Michael; Baltensperger, Urs; Prévôt, André S. H.

    2010-05-01

    The present work was carried out in the frame of the international field campaign DAURE (Determination of the sources of atmospheric Aerosols in Urban and Rural Environments in the western Mediterranean). The objective of this campaign is to study the aerosol pollution episodes occurring at regional scale during winter and summer in the Western Mediterranean Basin. As part of this campaign, this work focuses on identifying the origin of fine carbonaceous aerosols. To this end, fine particulate matter (PM1) samples were collected during two different seasons (February-March and July 2009) at two sites: an urban site (Barcelona, NE Spain) and a rural European Supersite for Atmospheric Aerosol Research (Montseny, NE Spain). Subsequently, 14C analyses were carried out on these samples, both in the elemental carbon (EC) fraction and the organic carbon (OC) fraction, in order to distinguish between modern carbonaceous sources (biogenic emissions and biomass burning emissions) and fossil carbonaceous sources (mainly road traffic). Preliminary results from the winter period show that 40% of the OC at Barcelona has a fossil origin whereas at Montseny this percentage is 30%. These values can be considered as unexpected given the nature of the sites. Nevertheless, the absolute concentrations of fossil OC at Barcelona and Montseny differ by a factor of 2 (the first being higher), since the total OC at Montseny is lower than at Barcelona. Further evaluation of results and comparison with other measurements carried out during the campaign are required to better evaluate the origin of the fine carbonaceous matter in the Western Mediterranean Basin. Acknowledgements: Spanish Ministry of Education and Science, for a Postdoctoral Grant awarded to M.C. Minguillón in the frame of Programa Nacional de Movilidad de Recursos Humanos del Plan nacional de I-D+I 2008-2011. Spanish Ministry of Education and Science, for the Acción Complementaria DAURE CGL2007-30502-E/CLI.

  8. Source apportionment of fine particulate matter in Houston, TX, using organic molecular markers

    NASA Astrophysics Data System (ADS)

    Fraser, M. P.; Yue, Z. W.; Buzcu, B.

    Using ambient concentrations of molecular markers, chemical mass balancing calculations have been performed to estimate the contribution of source categories to ambient fine particle levels at four sites in Houston, TX. Eight source profiles obtained using analytical methods equivalent to the techniques used in analysis of the ambient sample were used for the calculations. The chemical mass balancing model accurately reconstructed the measured concentrations of 24 molecular markers and three fine particle chemical components to estimate the contribution of each source to ambient fine particle loads. The results show that at three sites in the Houston urban area, diesel exhausts contribute between 1.6 and 3.7 μg m -3 to ambient fine particle levels, while at an upwind background site, diesel exhausts represent 0.5 μg m -3 of ambient fine particulate matter. Other important sources include gasoline-powered vehicles (1.1-2.8 μg m -3 at three urban sites and 0.5 μg m -3 at the background site); paved road dusts (1.0-2.8 μg m -3 urban and 0.1 μg m -3 background); meat cooking operations (0.9-1.3 μg m -3 urban and 0.7 μg m -3 background) and wood combustion (0.2-0.3 μg m -3 urban and <0.1 μg m -3 background). At one site located near the highly industrialized Houston Ship Channel, fuel oil combustion contributed an estimated 1.5 μg m -3, while fuel oil combustion was not an important contribution at the other sites. Model runs using seasonally averaged data showed a high variation in source strength between seasons for some sources (i.e. paved road dusts much higher in the spring and summer than in the winter), while other sources showed little or no seasonal variation (i.e. vehicle exhausts and meat cooking operations).

  9. Analysis of trace elements and ions in ambient fine particulate matter at three elementary schools in Ohio.

    PubMed

    John, Kuruvilla; Karnae, Saritha; Crist, Kevin; Kim, Myoungwoo; Kulkarni, Amol

    2007-04-01

    The results from a chemical characterization study of fine particulate matter (PM2.5) measured at three elementary schools in Central and Southeast Ohio is presented here. PM2.5 aerosol samples were collected from outdoor monitors and indoor samplers at each monitoring location during the period of February 1, 1999, through August 31, 2000. The locations included a rural elementary school in Athens, OH, and two urban schools within Columbus, OH. The trace metal and ionic concentrations in the collected samples were analyzed using an X-ray fluorescence spectrophotometer and ion chromatography unit, respectively. Sulfate ion was found to be the largest component present in the samples at all three of the sites. Other abundant components included nitrate, chloride, ammonium, and sodium ions, as well as calcium, silicon, and iron. The average PM2.5 concentrations showed similar temporal variations among the three sites within the study region. PM2.5 and its major component, sulfate ion, showed strong seasonal variations with maximum concentrations observed during the summer at all three of the sites. The indoor environment was found to be more contaminated during the spring months (March through May) at New Albany (a suburb of Columbus, OH) and East Athens (rural Ohio area). Potential source contribution function analysis showed that particulate matter levels at the monitoring sites were affected by transport from adjoining urban areas and industrial complexes located along the Ohio River Valley. A preliminary outdoor source apportionment using the principal component analysis (PCA) technique was performed. The results from the PCA suggest that the study region was primarily impacted by industrial, fossil fuel combustion, and geological sources. The 2002 emissions inventory data for PM2.5 compiled by Ohio Environmental Protection Agency also showed impacts of similar source types, and this was used to validate the PCA analysis. PMID:17458459

  10. Electrostatic precipitator for metal and particulate emission control

    SciTech Connect

    Yang, C.L.; Beltran, M.

    2000-03-01

    Improving air pollution control systems is crucial for incinerators to be an option for sewage sludge disposal. Combinations of venturi and tray tower scrubbers are the most popular air pollution control system for sewage sludge incinerators. Recently wet electrostatic precipitators have been installed downstream of the scrubbing system to ensure the compliance of new regulations. Performance and stack tests were conducted on sludge incinerators at Somerset Raritan Valley Sewage Authority and New England Treatment Company. Efficiencies in terms of heavy metal and particulate removals are presented. This paper also describes sewage sludge incinerators, existing air pollution control systems, design considerations of the wet electrostatic precipitator, as well as sampling and analysis methods.

  11. Toxicologic and epidemiologic clues from the characterization of the 1952 London smog fine particulate matter in archival autopsy lung tissues.

    PubMed

    Hunt, Andrew; Abraham, Jerrold L; Judson, Bret; Berry, Colin L

    2003-07-01

    Exposure to atmospheric fine particulate matter (PM), even at low ambient concentrations, has clearly been linked to increases in mortality and morbidity. A 10- micro g m(-3) increase in PM10 (PM < 10 micro m) has been found to produce a 0.5% increase in daily mortality. The mechanism of action is a source of debate, although recent attention has focused on the cardiac effects of PM exposures. Likewise, several possible etiologic agents have been implicated, including ultrafine PM (PM metals, and the acid components, yet the responsible constituent remains undetermined. During the catastrophic PM exposure episode in London in December 1952, some 4,000 excess deaths occurred at the height of the event. The extreme mortality during that episode and the preservation of archival autopsy tissues allow us the unique opportunity to report on the form and composition of December 1952 London PM in situ in tissues from persons known to have died from the smog exposure. Because absolute increases in mortality with current levels of PM in Western Europe and North America are low, analogous tissues are unlikely to be contemporaneously available. Taking a lung compartment (airway, airspace, interstitium, and lymph node) approach, we differentiated exposures contemporary with death from those of earlier origin. Electron microscopic analyses revealed the dominance of retained soot and a surfeit of other particle types. A variety of metal-bearing particle types were found in all compartments, but Pb, Zn, and SnZn types appeared the least biopersistent. The results support the acute toxicologic importance of ultrafine carbonaceous and metal PM. PMID:12842775

  12. Toxicologic and epidemiologic clues from the characterization of the 1952 London smog fine particulate matter in archival autopsy lung tissues.

    PubMed Central

    Hunt, Andrew; Abraham, Jerrold L; Judson, Bret; Berry, Colin L

    2003-01-01

    Exposure to atmospheric fine particulate matter (PM), even at low ambient concentrations, has clearly been linked to increases in mortality and morbidity. A 10- micro g m(-3) increase in PM10 (PM < 10 micro m) has been found to produce a 0.5% increase in daily mortality. The mechanism of action is a source of debate, although recent attention has focused on the cardiac effects of PM exposures. Likewise, several possible etiologic agents have been implicated, including ultrafine PM (PM metals, and the acid components, yet the responsible constituent remains undetermined. During the catastrophic PM exposure episode in London in December 1952, some 4,000 excess deaths occurred at the height of the event. The extreme mortality during that episode and the preservation of archival autopsy tissues allow us the unique opportunity to report on the form and composition of December 1952 London PM in situ in tissues from persons known to have died from the smog exposure. Because absolute increases in mortality with current levels of PM in Western Europe and North America are low, analogous tissues are unlikely to be contemporaneously available. Taking a lung compartment (airway, airspace, interstitium, and lymph node) approach, we differentiated exposures contemporary with death from those of earlier origin. Electron microscopic analyses revealed the dominance of retained soot and a surfeit of other particle types. A variety of metal-bearing particle types were found in all compartments, but Pb, Zn, and SnZn types appeared the least biopersistent. The results support the acute toxicologic importance of ultrafine carbonaceous and metal PM. PMID:12842775

  13. Autonomic Effects of Controlled Fine Particulate Exposure in Young Healthy Adults: Effect Modification by Ozone

    PubMed Central

    Fakhri, Asghar A.; Ilic, Ljubomir M.; Wellenius, Gregory A.; Urch, Bruce; Silverman, Frances; Gold, Diane R.; Mittleman, Murray A.

    2009-01-01

    Background Human controlled-exposure studies have assessed the impact of ambient fine particulate matter on cardiac autonomic function measured by heart rate variability (HRV), but whether these effects are modified by concomitant ozone exposure remains unknown. Objective In this study we assessed the impact of O3 and particulate matter exposure on HRV in humans. Methods In a crossover design, 50 subjects (19–48 years of age) were randomized to 2-hr controlled exposures to filtered air (FA), concentrated ambient particles (CAPs), O3, or combined CAPs and ozone (CAPs + O3). The primary end point was change in HRV between the start and end of exposure. Secondary analyses included blood pressure (BP) responses, and effect modification by asthmatic status. Results Achieved mean CAPs and O3 exposure concentrations were 121.6 ± 48.0 μg/m3 and 113.9 ± 6.6 ppb, respectively. In a categorical analysis, exposure had no consistent effect on HRV indices. However, the dose–response relationship between CAPs mass concentration and HRV indices seemed to vary depending on the presence of O3. This heterogeneity was statistically significant for the low-frequency component of HRV (p = 0.02) and approached significance for the high-frequency component and time-domain measures of HRV. Exposure to CAPs + O3 increased diastolic BP by 2.0 mmHg (SE, 1.2; p = 0.02). No other statistically significant changes in BP were observed. Asthmatic status did not modify these effects. Conclusion The potentiation by O3 of CAPs effects on diastolic BP and possibly HRV is of small magnitude in young adults. Further studies are needed to assess potential effects in more vulnerable populations. PMID:19672410

  14. Fine Particulate Matter Air Pollution, Proximity to Traffic, and Aortic Atherosclerosis

    PubMed Central

    Allen, Ryan W.; Criqui, Michael H.; Diez Roux, Ana V.; Allison, Matthew; Shea, Steven; Detrano, Robert; Sheppard, Lianne; Wong, Nathan D.; Stukovsky, Karen Hinckley; Kaufman, Joel D.

    2012-01-01

    Background The initiation and acceleration of atherosclerosis is hypothesized as a physiologic mechanism underlying associations between air pollution and cardiovascular effects. Despite toxicologic evidence, epidemiologic data are limited. Methods In this cross-sectional analysis we investigated exposure to fine particulate matter (PM2.5) and residential proximity to major roads in relation to abdominal aortic calcification a sensitive indicator of systemic atherosclerosis. Aortic calcification was measured by computed tomography among 1147 persons, in 5 U.S. metropolitan areas, enrolled in the Multi-Ethnic Study of Atherosclerosis (MESA). The presence and quantity of aortic calcification were modeled using relative risk regression and linear regression, respectively, with adjustment for potential confounders. Results We observed a slightly elevated risk of aortic calcification (RR = 1.06; 95% confidence interval = 0.96–1.16) with a 10-μg/m3 contrast in PM2.5. The PM2.5-associated risk of aortic calcification was stronger among participants with long-term residence near a PM2.5 monitor (RR = 1.11; 1.00–1.24) and among participants not recently employed outside the home (RR = 1.10; 1.00–1.22). PM2.5 was not associated with an increase in the quantity of aortic calcification (Agatston score) and no roadway proximity effects were noted. There was indication of PM2.5 effect modification by lipid-lowering medication use, with greater effects among users, and PM2.5 associations were observed most consistently among Hispanics. Conclusions Although we did not find persuasive associations across our full study population, associations were stronger among participants with less exposure misclassification. These findings support the hypothesis of a relationship between particulate air pollution and systemic atherosclerosis. PMID:19129730

  15. Characterization, sources and redox activity of fine and coarse particulate matter in Milan, Italy

    NASA Astrophysics Data System (ADS)

    Daher, Nancy; Ruprecht, Ario; Invernizzi, Giovanni; De Marco, Cinzia; Miller-Schulze, Justin; Heo, Jong Bae; Shafer, Martin M.; Shelton, Brandon R.; Schauer, James J.; Sioutas, Constantinos

    2012-03-01

    The correlation between health effects and exposure to particulate matter (PM) has been of primary concern to public health organizations. An emerging hypothesis is that many of the biological effects derive from the ability of PM to generate reactive oxygen species (ROS) within affected cells. Milan, one of the largest and most polluted urban areas in Europe, is afflicted with high particle levels. To characterize its ambient PM, fine and coarse PM (PM2.5 and PM2.5-10, respectively) samples were collected on a weekly basis for a year-long period. Samples were analyzed for their chemical properties and ROS-activity. A molecular marker chemical mass balance (MM-CMB) model was also applied to apportion primary and secondary sources to fine organic carbon (OC) and PM. Findings revealed that PM2.5 is a major contributor to ambient particle levels in Milan, averaging 34.5 ± 19.4 μg m-3 throughout the year. Specifically, secondary inorganic ions and organic matter were the most dominant fine PM species contributing to 36 ± 7.1% and 34 ± 6.3% of its mass on a yearly-based average, respectively. Highest PM2.5 concentrations occurred during December-February and were mainly attributed to poor atmospheric dispersion. On the other hand, PM2.5-10 exhibited an annual average of 6.79 ± 1.67 μg m-3, with crustal elements prevailing. Source apportionment results showed that wood-smoke and secondary organic aerosol sources contribute to 4.6 ± 2.6% and 9.8 ± 11% of fine OC on a yearly-based average, respectively. The remaining OC is likely associated with petroleum-derived material that is not adequately represented by existing source profiles used in this study. Lastly, ROS-activity measurements indicated that PM2.5-induced redox activity expressed per m3 of air volume is greatest during January (837 μg Zymosan equivalents m-3) and February (920 μg Zymosan equivalents m-3). Conversely, intrinsic (per PM mass) ROS-activity peaked in July (22,587 μg Zymosan equivalents mg

  16. Ambient Fine Particulate Matter and Mortality among Survivors of Myocardial Infarction: Population-Based Cohort Study

    PubMed Central

    Chen, Hong; Burnett, Richard T.; Copes, Ray; Kwong, Jeffrey C.; Villeneuve, Paul J.; Goldberg, Mark S.; Brook, Robert D.; van Donkelaar, Aaron; Jerrett, Michael; Martin, Randall V.; Brook, Jeffrey R.; Kopp, Alexander; Tu, Jack V.

    2016-01-01

    Background: Survivors of acute myocardial infarction (AMI) are at increased risk of dying within several hours to days following exposure to elevated levels of ambient air pollution. Little is known, however, about the influence of long-term (months to years) air pollution exposure on survival after AMI. Objective: We conducted a population-based cohort study to determine the impact of long-term exposure to fine particulate matter ≤ 2.5 μm in diameter (PM2.5) on post-AMI survival. Methods: We assembled a cohort of 8,873 AMI patients who were admitted to 1 of 86 hospital corporations across Ontario, Canada in 1999–2001. Mortality follow-up for this cohort extended through 2011. Cumulative time-weighted exposures to PM2.5 were derived from satellite observations based on participants’ annual residences during follow-up. We used standard and multilevel spatial random-effects Cox proportional hazards models and adjusted for potential confounders. Results: Between 1999 and 2011, we identified 4,016 nonaccidental deaths, of which 2,147 were from any cardiovascular disease, 1,650 from ischemic heart disease, and 675 from AMI. For each 10-μg/m3 increase in PM2.5, the adjusted hazard ratio (HR10) of nonaccidental mortality was 1.22 [95% confidence interval (CI): 1.03, 1.45]. The association with PM2.5 was robust to sensitivity analyses and appeared stronger for cardiovascular-related mortality: ischemic heart (HR10 = 1.43; 95% CI: 1.12, 1.83) and AMI (HR10 = 1.64; 95% CI: 1.13, 2.40). We estimated that 12.4% of nonaccidental deaths (or 497 deaths) could have been averted if the lowest measured concentration in an urban area (4 μg/m3) had been achieved at all locations over the course of the study. Conclusions: Long-term air pollution exposure adversely affects the survival of AMI patients. Citation: Chen H, Burnett RT, Copes R, Kwong JC, Villeneuve PJ, Goldberg MS, Brook RD, van Donkelaar A, Jerrett M, Martin RV, Brook JR, Kopp A, Tu JV. 2016. Ambient fine

  17. The CCRUSH study: Characterization of coarse and fine particulate matter in northeastern Colorado

    NASA Astrophysics Data System (ADS)

    Clements, Nicholas Steven

    Particulate matter in the troposphere adversely impacts human health when inhaled and alters climate through cloud formation processes and by absorbing/scattering light. Particles smaller than 2.5 mum in diameter (fine particulate matter; PM2.5), are typically emitted from combustion-related sources and can form and grow through secondary processing in the atmosphere. Coarse particles (PM10-2.5), ranging 2.5 to 10 mum, are typically generated through abrasive processes, such as erosion of road surfaces, entrained via resuspension, and settle quickly out of the atmosphere due to their large size. After deciding against regulating PM10-2.5 in 2006 citing, among other reasons, mixed results from epidemiological studies of the pollutant and lack of knowledge on health impacts in rural areas, the United States Environmental Protection Agency (US EPA) funded a series of studies that investigated the ambient composition, toxicology, and epidemiology of PM10-2.5. One such study, The Colorado Coarse Rural-Urban Sources and Health (CCRUSH) study, aimed to characterize the composition, sources, and health effects of PM10-2.5 in semi-arid northeastern Colorado and consisted of two field campaigns and an epidemiological study. Summarized here are the results from the two field campaigns, the first of which included over three years of continuous PM10-2.5 and PM2.5 mass concentration monitoring at multiple sites in urban-Denver and rural-Greeley, Colorado. This data set was used to characterize the spatiotemporal variability of PM10-2.5 and PM2.5. During the second year of continuous monitoring, PM 10-2.5 and PM2.5 filter samples were collected for compositional analyses that included: elemental composition, bulk elemental and organic carbon concentrations, water-soluble organic carbon concentrations, UV-vis absorbance, fluorescence spectroscopy, and endotoxin content. Elemental composition was used to understand enrichment of trace elements in atmospheric particles and to

  18. Characterization of Fine Particulate Matter (PM) and Secondary PM Precursor Gases in the Mexico City Metropolitan Area

    SciTech Connect

    Molina, Luisa T.; Molina, Mario J.; Volkamer, Rainer; de Foy, Benjamin; Lei, Wenfang; Zavaka, Miguel; Velasco, Erik

    2008-10-31

    This project was one of three collaborating grants funded by DOE/ASP to characterize the fine particulate matter (PM) and secondary PM precursors in the Mexico City Metropolitan Area (MCMA) during the MILAGRO Campaign. The overall effort of MCMA-2006, one of the four components, focused on i) examination of the primary emissions of fine particles and precursor gases leading to photochemical production of atmospheric oxidants and secondary aerosol particles; ii) measurement and analysis of secondary oxidants and secondary fine PM production, with particular emphasis on secondary organic aerosol (SOA), and iii) evaluation of the photochemical and meteorological processes characteristic of the Mexico City Basin. The collaborative teams pursued the goals through three main tasks: i) analyses of fine PM and secondary PM precursor gaseous species data taken during the MCMA-2002/2003 campaigns and preparation of publications; ii) planning of the MILAGRO Campaign and deployment of the instrument around the MCMA; and iii) analysis of MCMA-2006 data and publication preparation. The measurement phase of the MILAGRO Campaign was successfully completed in March 2006 with excellent participation from the international scientific community and outstanding cooperation from the Mexican government agencies and institutions. The project reported here was led by the Massachusetts Institute of Technology/Molina Center for Energy and the Environment (MIT/MCE2) team and coordinated with DOE/ASP-funded collaborators at Aerodyne Research Inc., University of Colorado at Boulder and Montana State University. Currently 24 papers documenting the findings from this project have been published. The results from the project have improved significantly our understanding of the meteorological and photochemical processes contributing to the formation of ozone, secondary aerosols and other pollutants. Key findings from the MCMA-2003 include a vastly improved speciated emissions inventory from on

  19. Fine Particulate Pollution and Source Apportionment in the Urban Centers for Africa, Asia and Latin America

    NASA Astrophysics Data System (ADS)

    Guttikunda, S. K.; Johnson, T. M.; Procee, P.

    2004-12-01

    Fossil fuel combustion for domestic cooking and heating, power generation, industrial processes, and motor vehicles are the primary sources of air pollution in the developing country cities. Over the past twenty years, major advances have been made in understanding the social and economic consequences of air pollution. In both industrialized and developing countries, it has been shown that air pollution from energy combustion has detrimental impacts on human health and the environment. Lack of information on the sectoral contributions to air pollution - especially fine particulates, is one of the typical constraints for an effective integrated urban air quality management program. Without such information, it is difficult, if not impossible, for decision makers to provide policy advice and make informed investment decisions related to air quality improvements in developing countries. This also raises the need for low-cost ways of determining the principal sources of fine PM for a proper planning and decision making. The project objective is to develop and verify a methodology to assess and monitor the sources of PM, using a combination of ground-based monitoring and source apportionment techniques. This presentation will focus on four general tasks: (1) Review of the science and current activities in the combined use of monitoring data and modeling for better understanding of PM pollution. (2) Review of recent advances in atmospheric source apportionment techniques (e.g., principal component analysis, organic markers, source-receptor modeling techniques). (3) Develop a general methodology to use integrated top-down and bottom-up datasets. (4) Review of a series of current case studies from Africa, Asia and Latin America and the methodologies applied to assess the air pollution and its sources.

  20. A spatiotemporal land-use regression model of winter fine particulate levels in residential neighbourhoods.

    PubMed

    Smargiassi, Audrey; Brand, Allan; Fournier, Michel; Tessier, François; Goudreau, Sophie; Rousseau, Jacques; Benjamin, Mario

    2012-07-01

    Residential wood burning can be a significant wintertime source of ambient fine particles in urban and suburban areas. We developed a statistical model to predict minute (min) levels of particles with median diameter of <1 μm (PM1) from mobile monitoring on evenings of winter weekends at different residential locations in Quebec, Canada, considering wood burning emissions. The 6 s PM1 levels were concurrently measured on 10 preselected routes travelled 3 to 24 times during the winters of 2008-2009 and 2009-2010 by vehicles equipped with a GRIMM or a dataRAM sampler and a Global Positioning System device. Route-specific and global land-use regression (LUR) models were developed using the following spatial and temporal covariates to predict 1-min-averaged PM1 levels: chimney density from property assessment data at sampling locations, PM2.5 "regional background" levels of particles with median diameter of <2.5 μm (PM2.5) and temperature and wind speed at hour of sampling, elevation at sampling locations and day of the week. In the various routes travelled, between 49% and 94% of the variability in PM1 levels was explained by the selected covariates. The effect of chimney density was not negligible in "cottage areas." The R(2) for the global model including all routes was 0.40. This LUR is the first to predict PM1 levels in both space and time with consideration of the effects of wood burning emissions. We show that the influence of chimney density, a proxy for wood burning emissions, varies by regions and that a global model cannot be used to predict PM in regions that were not measured. Future work should consider using both survey data on wood burning intensity and information from numerical air quality forecast models, in LUR models, to improve the generalisation of the prediction of fine particulate levels. PMID:22549722

  1. Chronic Fine and Coarse Particulate Exposure, Mortality, and Coronary Heart Disease in the Nurses’ Health Study

    PubMed Central

    Puett, Robin C.; Hart, Jaime E.; Yanosky, Jeff D; Paciorek, Christopher; Schwartz, Joel; Suh, Helen; Speizer, Frank E; Laden, Francine

    2009-01-01

    Background The relationship of fine particulate matter < 2.5 μm in diameter (PM2.5) air pollution with mortality and cardiovascular disease is well established, with more recent long-term studies reporting larger effect sizes than earlier long-term studies. Some studies have suggested the coarse fraction, particles between 2.5 and 10 μm (PM10–2.5), may also be important. With respect to mortality and cardiovascular events, questions remain regarding the relative strength of effect sizes for chronic exposure to fine and coarse particles. Objectives We examined the relationship of chronic PM2.5 and PM10–2.5 exposures with all-cause mortality and fatal and nonfatal incident coronary heart disease (CHD), adjusting for time-varying covariates. Methods The current study included women from the Nurses’ Health Study living in metropolitan areas of the northeastern and midwestern United States. Follow-up was from 1992 to 2002. We used geographic information systems–based spatial smoothing models to estimate monthly exposures at each participant’s residence. Results We found increased risk of all-cause mortality [hazard ratio (HR), 1.26; 95% confidence interval (CI), 1.02–1.54] and fatal CHD (HR = 2.02; 95% CI, 1.07–3.78) associated with each 10-μg/m3 increase in annual PM2.5 exposure. The association between fatal CHD and PM10–2.5 was weaker. Conclusions Our findings contribute to growing evidence that chronic PM2.5 exposure is associated with risk of all-cause and cardiovascular mortality. PMID:20049120

  2. Winter-time size distribution and source apportionment of total suspended particulate matter and associated metals in Delhi

    NASA Astrophysics Data System (ADS)

    Srivastava, Arun; Gupta, Sandeep; Jain, V. K.

    2009-03-01

    A study of the winter time size distribution and source apportionment of total suspended particulate matter (TSPM) and associated heavy metal concentrations have been carried out for the city of Delhi. This study is important from the point of view of implementation of compressed natural gas (CNG) as alternate of diesel fuel in the public transport system in 2001 to reduce the pollution level. TSPM were collected using a five-stage cascade impactor at six sites in the winters of 2005-06. The results of size distribution indicate that a major portion (~ 40%) of TSPM concentration is in the form of PM0.7 (< 0.7 μm). Similar trends were observed with most of the heavy metals associated with various size fractions of TSPM. A very good correlation between coarse and fine size fraction of TSPM was observed. It was also observed that the metals associated with coarse particles have more chances of correlation with other metals; rather they are associated with fine particles. Source apportionment was carried out separately in coarse and fine size modes of TSPM by Chemical Mass Balance Receptor Model (CMB8) as well as by Principle Component Analysis (PCA) of SPSS. Source apportionment by PCA reveals that there are two major sources (possibly vehicular and crustal re-suspension) in both coarse and fine size fractions. Results obtained by CMB8 show the dominance of vehicular pollutants and crustal dust in fine and coarse size mode respectively. Noticeably the dominance of vehicular pollutants are now confined to fine size only whilst during pre CNG era it dominated both coarse and fine size mode. An increase of 42.5, 44.4, 48.2, 38.6 and 38.9% in the concentrations of TSPM, PM10.9, coarse particles, fine particles and lead respectively was observed during pre (2001) to post CNG (2005-06) period.

  3. Associations Between Fine Particulate Matter Components and Daily Mortality in Nagoya, Japan

    PubMed Central

    Ueda, Kayo; Yamagami, Makiko; Ikemori, Fumikazu; Hisatsune, Kunihiro; Nitta, Hiroshi

    2016-01-01

    Background Seasonal variation and regional heterogeneity have been observed in the estimated effect of fine particulate matter (PM2.5) mass on mortality. Differences in the chemical compositions of PM2.5 may cause this variation. We investigated the association of the daily concentration of PM2.5 components with mortality in Nagoya, Japan. Methods We combined daily mortality counts for all residents aged 65 years and older with concentration data for PM2.5 mass and components in Nagoya from April 2003 to December 2007. A time-stratified case-crossover design was used to examine the association of daily mortality with PM2.5 mass and each component (chloride, nitrate, sulfate, sodium, potassium, calcium, magnesium, ammonium, elemental carbon [EC], and organic carbon [OC]). Results We found a stronger association between mortality and PM2.5 mass in transitional seasons. In analysis for each PM2.5 component, sulfate, nitrate, chloride, ammonium, potassium, EC, and OC were significantly associated with mortality in a single-pollutant model. In a multi-pollutant model, an interquartile range increase in the concentration of sulfate was marginally associated with an increase in all-cause mortality of 2.1% (95% confidence interval, −0.1 to 4.4). Conclusions These findings suggest that some specific PM components have a more hazardous effect than others and contribute to seasonal variation in the health effects of PM2.5. PMID:26686882

  4. MicroRNA-1228(*) inhibit apoptosis in A549 cells exposed to fine particulate matter.

    PubMed

    Li, Xiaobo; Ding, Zhen; Zhang, Chengcheng; Zhang, Xin; Meng, Qingtao; Wu, Shenshen; Wang, Shizhi; Yin, Lihong; Pu, Yuepu; Chen, Rui

    2016-05-01

    Studies have reported associations between fine particulate matter (PM2.5) and respiratory disorders; however, the underlying mechanism is not completely clear owing to the complex components of PM2.5. microRNAs (miRNAs) demonstrate tremendous regulation to target genes, which are sensitive to exogenous stimulation, and facilitate the integrative understood of biological responses. Here, significantly modulated miRNA were profiled by miRNA microarray, coupled with bioinformatic analysis; the potential biological function of modulated miRNA were predicted and subsequently validated by cell-based assays. Downregulation of miR-1228-5p (miR-1228(*)) expression in human A549 cells were associated with PM2.5-induced cellular apoptosis through a mitochondria-dependent pathway. Further, overexpression of miR-1228(*) rescued the cellular damages induced by PM2.5. Thus, our results demonstrate that PM2.5-induced A549 apoptosis is initiated by mitochondrial dysfunction and miR-1228(*) could protect A549 cells against apoptosis. The involved pathways and target genes might be used for future mechanistic studies. PMID:26867688

  5. Diagnostic air quality model evaluation of source-specific primary and secondary fine particulate carbon.

    PubMed

    Napelenok, Sergey L; Simon, Heather; Bhave, Prakash V; Pye, Havala O T; Pouliot, George A; Sheesley, Rebecca J; Schauer, James J

    2014-01-01

    Ambient measurements of 78 source-specific tracers of primary and secondary carbonaceous fine particulate matter collected at four midwestern United States locations over a full year (March 2004-February 2005) provided an unprecedented opportunity to diagnostically evaluate the results of a numerical air quality model. Previous analyses of these measurements demonstrated excellent mass closure for the variety of contributing sources. In this study, a carbon-apportionment version of the Community Multiscale Air Quality (CMAQ) model was used to track primary organic and elemental carbon emissions from 15 independent sources such as mobile sources and biomass burning in addition to four precursor-specific classes of secondary organic aerosol (SOA) originating from isoprene, terpenes, aromatics, and sesquiterpenes. Conversion of the source-resolved model output into organic tracer concentrations yielded a total of 2416 data pairs for comparison with observations. While emission source contributions to the total model bias varied by season and measurement location, the largest absolute bias of -0.55 μgC/m(3) was attributed to insufficient isoprene SOA in the summertime CMAQ simulation. Biomass combustion was responsible for the second largest summertime model bias (-0.46 μgC/m(3) on average). Several instances of compensating errors were also evident; model underpredictions in some sectors were masked by overpredictions in others. PMID:24245475

  6. Temporal Patterns in Fine Particulate Matter Time Series in Beijing: A Calendar View

    PubMed Central

    Liu, Jianzheng; Li, Jie; Li, Weifeng

    2016-01-01

    Extremely high fine particulate matter (PM2.5) concentration has become synonymous to Beijing, the capital of China, posing critical challenges to its sustainable development and leading to major public health concerns. In order to formulate mitigation measures and policies, knowledge on PM2.5 variation patterns should be obtained. While previous studies are limited either because of availability of data, or because of problematic a priori assumptions that PM2.5 concentration follows subjective seasonal, monthly, or weekly patterns, our study aims to reveal the data on a daily basis through visualization rather than imposing subjective periodic patterns upon the data. To achieve this, we conduct two time-series cluster analyses on full-year PM2.5 data in Beijing in 2014, and provide an innovative calendar visualization of PM2.5 measurements throughout the year. Insights from the analysis on temporal variation of PM2.5 concentration show that there are three diurnal patterns and no weekly patterns; seasonal patterns exist but they do not follow a strict temporal division. These findings advance current understanding on temporal patterns in PM2.5 data and offer a different perspective which can help with policy formulation on PM2.5 mitigation. PMID:27561629

  7. Spatial-temporal association between fine particulate matter and daily mortality

    PubMed Central

    Choi, Jungsoon; Fuentes, Montserrat; Reich, Brian J.

    2008-01-01

    Fine particulate matter (PM2.5) is a mixture of pollutants that has been linked to serious health problems, including premature mortality. Since the chemical composition of PM2.5 varies across space and time, the association between PM2.5 and mortality could also change with space and season. In this work we develop and implement a statistical multi-stage Bayesian framework that provides a very broad, flexible approach to studying the spatiotemporal associations between mortality and population exposure to daily PM2.5 mass, while accounting for different sources of uncertainty. In stage 1, we map ambient PM2.5 air concentrations using all available monitoring data (IMPROVE and FRM) and an air quality model (CMAQ) at different spatial and temporal scales. In stage 2, we examine the spatial temporal relationships between the health end-points and the exposures to PM2.5 by introducing a spatial-temporal generalized Poisson regression model. We adjust for time-varying confounders, such as seasonal trends. A common seasonal trends model is to use a fixed number of basis functions to account for these confounders, but the results can be sensitive to the number of basis functions. In this study, the number of the basis functions is treated as an unknown parameter in our Bayesian model and we use a space-time stochastic search variable selection approach. We apply our methods to a data set in North Carolina for the year 2001. PMID:19652691

  8. Fossil and nonfossil carbon in fine particulate matter: A study of five European cities

    NASA Astrophysics Data System (ADS)

    Glasius, Marianne; La Cour, Agnete; Lohse, Christian

    2011-06-01

    Fossil carbon in particulate matter comes from anthropogenic use and combustion of fossil fuels, while nonfossil carbon may originate from both biogenic (e.g., pollen, plant debris, fungal spores, and biogenic secondary organic aerosol (SOA)) and anthropogenic sources (e.g., cooking and residential wood combustion). We investigated the relative contributions of fossil and nonfossil sources to fine carbonaceous aerosols in five European cities by radiocarbon analysis of aerosol samples collected at four types of sites in 2002-2004. The average fraction of nonfossil carbon was 43 ± 11%, with the lowest fraction, 36 ± 7%, at urban curbside sites and the highest fraction, 54 ± 11%, at rural background sites, farthest away from the impact of man-made emissions. Generally, fossil carbon concentrations at urban curbside sites are elevated in comparison to background sites, which is expected because of their proximity to vehicular emissions. Contrary to what might be expected, the concentration of nonfossil carbon is also higher at curbside than at background sites. This may be attributable to differences between site categories in levels of primary biological aerosols, brake and tire wear in resuspended road dust, biofuels, emissions from cooking and residential wood combustion, or processes such as anthropogenic enhancement of biogenic SOA and increased partitioning of semivolatile compounds into the aerosol phase at urban sites. The exact causes should be investigated by future detailed source analyses.

  9. Temporal Patterns in Fine Particulate Matter Time Series in Beijing: A Calendar View.

    PubMed

    Liu, Jianzheng; Li, Jie; Li, Weifeng

    2016-01-01

    Extremely high fine particulate matter (PM2.5) concentration has become synonymous to Beijing, the capital of China, posing critical challenges to its sustainable development and leading to major public health concerns. In order to formulate mitigation measures and policies, knowledge on PM2.5 variation patterns should be obtained. While previous studies are limited either because of availability of data, or because of problematic a priori assumptions that PM2.5 concentration follows subjective seasonal, monthly, or weekly patterns, our study aims to reveal the data on a daily basis through visualization rather than imposing subjective periodic patterns upon the data. To achieve this, we conduct two time-series cluster analyses on full-year PM2.5 data in Beijing in 2014, and provide an innovative calendar visualization of PM2.5 measurements throughout the year. Insights from the analysis on temporal variation of PM2.5 concentration show that there are three diurnal patterns and no weekly patterns; seasonal patterns exist but they do not follow a strict temporal division. These findings advance current understanding on temporal patterns in PM2.5 data and offer a different perspective which can help with policy formulation on PM2.5 mitigation. PMID:27561629

  10. Ambient Fine Particulate Matter Induces Apoptosis of Endothelial Progenitor Cells Through Reactive Oxygen Species Formation

    PubMed Central

    Cui, Yuqi; Xie, Xiaoyun; Jia, Fengpeng; He, Jianfeng; Li, Zhihong; Fu, Minghuan; Hao, Hong; Liu, Ying; Liu, Jason Z.; Cowan, Peter J.; Zhu, Hua; Sun, Qinghua; Liu, Zhenguo

    2015-01-01

    Background/Aims Bone marrow (BM)-derived endothelial progenitor cells (EPCs) play a critical role in angiogenesis and vascular repair. Some environmental insults, like fine particulate matter (PM) exposure, significantly impair cardiovascular functions. However, the mechanisms for PM-induced adverse effects on cardiovascular system remain largely unknown. The present research was to study the detrimental effects of PM on EPCs and explore the potential mechanisms. Methods PM was intranasal-distilled into male C57BL/6 mice for one month. Flow cytometry was used to measure the number of EPCs, apoptosis level of circulating EPCs and intracellular reactive oxygen species (ROS) formation. Serum TNF-α and IL-1β were measured using ELISA. To determine the role of PM-induced ROS in EPC apoptosis, PM was co-administrated with the antioxidant N-acetylcysteine (NAC) in wild type mice or used in a triple transgenic mouse line (TG) with overexpression of antioxidant enzyme network (AON) composed of superoxide dismutase (SOD)1, SOD3, and glutathione peroxidase (Gpx-1) with decreased in vivo ROS production. Results PM treatment significantly decreased circulating EPC population, promoted apoptosis of EPCs in association with increased ROS production and serum TNF-α and IL-1β levels, which could be effectively reversed by either NAC treatment or overexpression of AON. Conclusion PM exposure significantly decreased circulating EPCs population due to increased apoptosis via ROS formation in mice. PMID:25591776

  11. Seasonal composition of remote and urban fine particulate matter in the United States

    NASA Astrophysics Data System (ADS)

    Hand, J. L.; Schichtel, B. A.; Pitchford, M.; Malm, W. C.; Frank, N. H.

    2012-03-01

    Speciated aerosol composition data from the rural Interagency Monitoring for Protected Visual Environments (IMPROVE) network and the Environmental Protection Agency's urban/suburban Chemical Speciation Network (CSN) were combined to evaluate and contrast the PM2.5 composition and its seasonal patterns at urban and rural locations throughout the United States. We examined the 2005-2008 monthly and annual mean mass concentrations of PM2.5 ammonium sulfate (AS), ammonium nitrate (AN), particulate organic matter (POM), light-absorbing carbon (LAC), mineral soil, and sea salt from 168 rural and 176 urban sites. Urban and rural AS concentrations and seasonality were similar, and both were substantially higher in the eastern United States. Urban POM and LAC concentrations were higher than rural concentrations and were associated with very different seasonality depending on location. The highest urban and rural POM and LAC concentrations occurred in the southeastern and northwestern United States. Wintertime peaks in AN were common for both urban and rural sites, but urban concentrations were several times higher, and both were highest in California and the Midwest. Fine soil concentrations were highest in the Southwest, and similar regional patterns and seasonality in urban and rural concentrations suggested impacts from long-range transport. Contributions from sea salt to the PM2.5 budget were non-negligible only at coastal sites. This analysis revealed spatial and seasonal variability in urban and rural aerosol concentrations on a continental scale and provided insights into their sources, processes, and lifetimes.

  12. Fifteen-Year Global Time Series of Satellite-Derived Fine Particulate Matter

    SciTech Connect

    Boys, B. L.; Martin, R. V.; van Donkelaar, A.; MacDonell, R. J.; Hsu, N. C.; Cooper, M. J.; Yantosca, R. M.; Lu, Z.; Streets, D. G.; Zhang, Q.; Wang, S. W.

    2014-10-07

    Ambient fine particulate matter (PM2.5) is a leading environmental risk factor for premature mortality. We use aerosol optical depth (AOD) retrieved from two satellite instruments, MISR and SeaWiFS, to produce a unified 15-year global time series (1998-2012) of ground-level PM2.5 concentration at a resolution of 1 degrees x 1 degrees. The GEOS-Chem chemical transport model (CTM) is used to relate each individual AOD retrieval to ground-level PM2.5. Four broad areas showing significant, spatially coherent, annual trends are examined in detail: the Eastern U.S. (-0.39 +/- 0.10 mu g m(-3) yr(-1)), the Arabian Peninsula (0.81 +/- 0.21 mu g m(-3) yr(-1)), South Asia (0.93 +/- 0.22 mu g m(-3) yr(-1)) and East Asia (0.79 +/- 0.27 mu g m(-3) yr(-1)). Over the period of dense in situ observation (1999-2012), the linear tendency for the Eastern U.S. (-0.37 +/- 0.13 mu g m(-3) yr(-1)) agrees well with that from in situ measurements (-0.38 +/- 0.06 mu g m(-3) yr(-1)). A GEOS-Chem simulation reveals that secondary inorganic aerosols largely explain the observed PM2.5 trend over the Eastern U.S., South Asia, and East Asia, while mineral dust largely explains the observed trend over the Arabian Peninsula.

  13. PREPARATION AND CHARACTERIZATION OF FINELY DIVIDED PARTICULATE ENVIRONMENTAL CONTAMINANTS FOR BIOLOGICAL EXPERIMENTS

    EPA Science Inventory

    The purpose of this project was to provide a centralized source for the preparation and characterization of selected particulate materials for biological experiments. The particulate materials of interest were a range of environmental contaminants known or suspected to detrimenta...

  14. CONTRIBUTION OF SEMI-VOLATILE PARTICULATE MATTER TO AMBIENT SUSPENDED FINE PARTICLE MASS

    EPA Science Inventory

    Scope: The periodic (5 years) review of the National Ambient Air Quality Standard (NAAQS) for particulate matter (PM) and the subsequent determination by EPA and NAS of particulate matter research needs have identified areas of uncertainty including exposure measurement th...

  15. Eco-toxicological bioassay of atmospheric fine particulate matter (PM2.5) with Photobacterium Phosphoreum T3.

    PubMed

    Wang, Wenxin; Shi, Chanzhen; Yan, Yan; Yang, Yunfei; Zhou, Bin

    2016-11-01

    A bioluminescent bacterium, Photobacterium phosphoreum T3 (PPT3), was used as a bio-indicator for the atmospheric fine particulate matter (PM2.5) to determine the eco-toxicity of PM2.5. The PM2.5 contains toxic chemicals, which reduce light output. The PM2.5 samples were collected in the period from March 2014 to January 2015 in Nanjing and analyzed for the chemical composition versus their eco-toxicity. The eco-toxicological responses of each toxicant were detected in PM2.5 samples with PPT3. The dose-response curves obtained were verified using the Weibull fitting function. According to the measured EC50 values (EC50, the concentration of a toxicant that inhibits 50% of the bioluminescence), the toxicity sequence was: B[a]P>hexa-PCB>tetra-PCB>tri-PCB>Pb(2+)>DEHP>Cu(2+)>DBP>BDE209>Zn(2+)>DMP>DEP, where B[a]P is benzo(a)pyrene, PCB is polychlorinated biphenyl, DEHP is diethylhexyl phthalate, DBP is dibutyl phthalate, BDE209 is decabromodiphenyl ether, DMP is dimethyl phthalate, and DEP is diethyl phthalate. All the PM2.5 samples analyzed proved to be weak toxic for PPT3. The toxicity of PM2.5 was assessed by the dose-addition of organic species and heavy metallic elements existing in PM2.5 with PPT3. The bioluminescence test showed that the metals and organics detected in PM2.5 promoted PM2.5 toxicity. The total detectable organics (denoted by ΣOrs) exhibited slightly higher toxicity than the total metals (denoted by ΣMs). In contrast, the sum of water-soluble ions (denoted by ΣIons) was beneficial to PPT3. The PM2.5 toxicity increased as the PM2.5 trapped more organics or metallic elements from the industrial or densely populated urban areas, where the PM2.5 had a high inhibition rate of bioluminescence for PPT3 in contrast to the residential PM2.5 samples, where the minimum inhibition rate was observed. The toxicity of PM2.5 samples varied with the mass concentrations, chemical constituents, and sampling locations. The chemicals in PM2.5, especially organic

  16. Characterization of combustion-derived individual fine particulates by computer-controlled scanning electron microscopy

    SciTech Connect

    Zhang, L.; Yu, D.X.; Yao, H.; Xu, M.H.; Wang, Q.Y.; Ninomiya, Y.

    2009-11-15

    Particulate matter (PM) emission from the combustion of solid fuels potentially poses a severe threat to the environment. In this article, a novel approach was developed to examine the properties of individual particles in PM. With this method, PM emitted from combustion was first size-segregated. Subsequently, each size was characterized by computer-controlled scanning electron microscopy (CCSEM) for both bulk property and single particle analysis. Combustion of bituminous coal, dried sewage sludge (DSS) and their mixture were conducted at 1200 {sup o}C in a laboratory-scale drop tube furnace. Three individual sizes smaller than 2.5 {mu}m were investigated. The results indicate that a prior size-segregation can greatly minimize the particle size contrast and phase contrast on the backscattered images during CCSEM analysis. Consequently, high accuracy can be achieved for quantifying the sub-micron particles and their inherent volatile metals. Regarding the PM properties as attained, concentrations of volatile metals including Na, K, and Zn have a negative relationship with particle size; they are enriched in the smallest particles around 0.11 {mu}m as studied here. Strong interactions can occur during the cofiring of coal and DSS, leading to the distinct properties of PM emitted from cofiring. The method developed here and results attained from it are helpful for management of the risks relating to PM emission during coal-fired boilers.

  17. Controlling fine particulate and acid mist emissions from a residual oil fired utility boiler with an EDV{trademark} system

    SciTech Connect

    Olen, K.R.; Vincent, H.B.; Jones, G.

    1995-06-01

    Florida Power & Light Company (FPL), in cooperation with the Electric Power Research Institute (EPRI) and Belco Technologies Corporation, evaluated the performance of an EDV system to remove fine particulate and acid mist from untreated flue gas from a residual oil-fired utility boiler. The cosponsored project was carried out using a full-scale EDV module in a slip stream from one of the 400 MW wall-fired boilers at FPL`s Sanford Plant. Particulate, acid gas and chemical analytical data are presented, and used to illustrate the effects of operating variables on EDV performance. EDV system efficiencies of 90% were achieved, which resulted in controlled particulate and SO{sub 3} emissions of less than 10 mg/Nm{sup 3} (0.0065 lbs/10{sup 6}Btu) and 1 ppmv, respectively.

  18. Chemical compositions responsible for inflammation and tissue damage in the mouse lung by coarse and fine particulate samples from contrasting air pollution in Europe.

    PubMed

    Happo, Mikko S; Hirvonen, Maija-Riitta; Halinen, Arja I; Jalava, Pasi I; Pennanen, Arto S; Sillanpaa, Markus; Hillamo, Risto; Salonen, Raimo O

    2008-11-01

    Inflammation is regarded as an important mechanism in mortality and morbidity associated with exposures of cardiorespiratory patients to urban air particulate matter. We investigated the association of the chemical composition and sources of urban air fine (PM(2.5-0.2)) and coarse (PM(10-2.5)) particulate samples with the inflammatory activity in the mouse lung. The particulate samples were collected during selected seasons in six European cities using a high-volume cascade impactor. Healthy C57BL/6J mice were intratracheally instilled with a single dose (10 mg/kg) of the particulate samples. At 4, 12, and 24 h after the exposure, the lungs were lavaged and the bronchoalveolar lavage fluid (BALF) was assayed for indicators of inflammation and tissue damage: cell number, total protein, and cytokines (tumor necrosis factor [TNF]-alpha, interleukin [IL]-6, and KC). Dicarboxylic acids and transition metals, especially Ni and V, in PM(2.5-0.2) correlated positively and some secondary inorganic ions (NO3(-), NH4(+)) negatively with the inflammatory activity. Total organic matter and SO4(2-) had no consistent correlations. In addition, the soil-derived constituents (Ca2+, Al, Fe, Si) showed positive correlations with the PM(2.5-0.2)-induced inflammatory activity, but their role in PM(10-2.5) remained obscure, possibly due to largely undefined biogenic material. Markers of poor biomass and coal combustion, i.e., monosaccharide anhydrides and As, were associated with elevated PAH contents in PM(2.5-0.2) and a consistent immunosuppressive effect. Overall, our results support epidemiological findings that the local sources of incomplete combustion and resuspended road dust are important in urban air particulate pollution-related health effects. PMID:18855153

  19. Chemical compositions responsible for inflammation and tissue damage in the mouse lung by coarse and fine particulate samples from contrasting air pollution in Europe

    SciTech Connect

    Happo, M.S.; Hirvonen, M.R.; Halinen, A.I.; Jalava, P.I.; Pennanen, A.S.; Sillanpaa, M.; Hillamo, R.; Salonen, R.O.

    2008-07-01

    Inflammation is regarded as an important mechanism in mortality and morbidity associated with exposures of cardiorespiratory patients to urban air particulate matter. We investigated the association of the chemical composition and sources of urban air fine (PM2.5-0.2) and coarse (PM10-2.5) particulate samples with the inflammatory activity in the mouse lung. The particulate samples were collected during selected seasons in six European cities using a high-volume cascade impactor. Healthy C57BL/6J mice were intratracheally instilled with a single dose (10 mg/kg) of the particulate samples. At 4, 12, and 24 h after the exposure, the lungs were lavaged and the bronchoalveolar lavage fluid (BALF) was assayed for indicators of inflammation and tissue damage: cell number, total protein, and cytokines (tumor necrosis factor (TNF)-alpha, interleukin (IL)-6, and KC). Dicarboxylic acids and transition metals, especially Ni and V, in PM2.5-0.2 correlated positively and some secondary inorganic ions (NO{sub 3}{sup -}, NH{sub 4}{sup +}) negatively with the inflammatory activity. Total organic matter and SO{sub 4}{sup 2-} had no consistent correlations. In addition, the soil-derived constituents (Ca{sup 2+}, Al, Fe, Si) showed positive correlations with the PM2.5-0.2-induced inflammatory activity, but their role in PM10 (2.5) remained obscure, possibly due to largely undefined biogenic material. Markers of poor biomass and coal combustion, i.e., monosaccharide anhydrides and As, were associated with elevated PAH contents in PM2.5 (0.2) and a consistent immunosuppressive effect. Overall, our results support epidemiological findings that the local sources of incomplete combustion and resuspended road dust are important in urban air particulate pollution-related health effects.

  20. Spatiotemporal Distribution of Airborne Particulate Metals and Metalloids in a Populated Arid Region

    PubMed Central

    Prabhakar, Gouri; Sorooshian, Armin; Toffol, Emily; Arellano, Avelino F.; Betterton, Eric A.

    2014-01-01

    A statistical analysis of data from the Interagency Monitoring of Protected Visual Environments (IMPROVE) network of aerosol samplers has been used to study the spatial and temporal concentration trends in airborne particulate metals and metalloids for southern Arizona. The study region is a rapidly growing area in southwestern North America characterized by high fine soil concentrations (among the highest in the United States), anthropogenic emissions from an area within the fastest growing region in the United States, and a high density of active and abandoned mining sites. Crustal tracers in the region are most abundant in the summer (April – June) followed by fall (October – November) as a result of dry meteorological conditions which favor dust emissions from natural and anthropogenic activity. A distinct day-of-week cycle is evident for crustal tracer mass concentrations, with the greatest amplitude evident in urban areas. There have been significant reductions since 1988 in the concentrations of toxic species that are typically associated with smelting and mining. Periods with high fine soil concentrations coincide with higher concentrations of metals and metalloids in the atmosphere, with the enhancement being higher at urban sites. PMID:24955017

  1. Chemical Characterisation of the Coarse and Fine Particulate Matter in the Environment of an Underground Railway System: Cytotoxic Effects and Oxidative Stress—A Preliminary Study

    PubMed Central

    Spagnolo, Anna Maria; Ottria, Gianluca; Perdelli, Fernanda; Cristina, Maria Luisa

    2015-01-01

    Background: Exposure to the particulate matter produced in underground railway systems is arousing increasing scientific interest because of its health effects. The aim of our study was to evaluate the airborne concentrations of PM10 and three sub-fractions of PM2.5 in an underground railway system environment in proximity to platforms and in underground commercial areas within the system, and to compare these with the outdoor airborne concentrations. We also evaluated the metal components, the cytotoxic properties of the various fractions of particulate matter (PM) and their capacity to induce oxidative stress. Method: We collected the coarse fraction (5–10 µm) and the fine fractions (1–2.5 µm; 0.5–1 µm; 0.25–0.5 µm). Chemical characterisation was determined by means of spectrometry. Cytotoxicity and oxidative stress were evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and Reactive Oxygen Species (ROS) assessment. Results: The concentrations of both PM10 and PM2.5 proved to be similar at the three sampling sites. Iron and other transition metals displayed a greater concentration at the subway platform than at the other two sites. The 2.5–10 µm and 1–2.5 µm fractions of PM from all three sampling sites determined a greater increase in ROS; the intensity of oxidative stress progressively declined as particle diameter diminished. Moreover, ROS concentrations were correlated with the concentrations of some transition metals, namely Mn, Cr, Ti, Fe, Cu, Zn, Ni and Mo. All particulate matter fractions displayed lower or similar ROS values between platform level and the outdoor air. Conclusions: The present study revealed that the underground railway environment at platform level, although containing higher concentrations of some particularly reactive metallic species, did not display higher cytotoxicity and oxidative stress levels than the outdoor air. PMID:25872016

  2. Process for preparing fine-grain metal carbide powder

    DOEpatents

    Kennedy, C.R.; Jeffers, F.P.

    Fine-grain metal carbide powder suitable for use in the fabrication of heat resistant products is prepared by coating bituminous pitch on SiO/sub 2/ or Ta/sub 2/O/sub 5/ particles, heating the coated particles to convert the bituminous pitch to coke, and then heating the particles to a higher temperature to convert the particles to a carbide by reaction of said coke therewith.

  3. Ambient Fine Particulate Matter, Nitrogen Dioxide, and Preterm Birth in New York City

    PubMed Central

    Johnson, Sarah; Bobb, Jennifer F.; Ito, Kazuhiko; Savitz, David A.; Elston, Beth; Shmool, Jessie L.C.; Dominici, Francesca; Ross, Zev; Clougherty, Jane E.; Matte, Thomas

    2016-01-01

    Background: Recent studies have suggested associations between air pollution and various birth outcomes, but the evidence for preterm birth is mixed. Objective: We aimed to assess the relationship between air pollution and preterm birth using 2008–2010 New York City (NYC) birth certificates linked to hospital records. Methods: We analyzed 258,294 singleton births with 22–42 completed weeks gestation to nonsmoking mothers. Exposures to ambient fine particles (PM2.5) and nitrogen dioxide (NO2) during the first, second, and cumulative third trimesters within 300 m of maternal address were estimated using data from the NYC Community Air Survey and regulatory monitors. We estimated the odds ratio (OR) of spontaneous preterm (gestation < 37 weeks) births for the first- and second-trimester exposures in a logistic mixed model, and the third-trimester cumulative exposures in a discrete time survival model, adjusting for maternal characteristics and delivery hospital. Spatial and temporal components of estimated exposures were also separately analyzed. Results: PM2.5 was not significantly associated with spontaneous preterm birth. NO2 in the second trimester was negatively associated with spontaneous preterm birth in the adjusted model (OR = 0.90; 95% CI: 0.83, 0.97 per 20 ppb). Neither pollutant was significantly associated with spontaneous preterm birth based on adjusted models of temporal exposures, whereas the spatial exposures showed significantly reduced odds ratios (OR = 0.80; 95% CI: 0.67, 0.96 per 10 μg/m3 PM2.5 and 0.88; 95% CI: 0.79, 0.98 per 20 ppb NO2). Without adjustment for hospital, these negative associations were stronger. Conclusion: Neither PM2.5 nor NO2 was positively associated with spontaneous preterm delivery in NYC. Delivery hospital was an important spatial confounder. Citation: Johnson S, Bobb JF, Ito K, Savitz DA, Elston B, Shmool JL, Dominici F, Ross Z, Clougherty JE, Matte T. 2016. Ambient fine particulate matter, nitrogen dioxide, and

  4. Charge-Spot Model for Electrostatic Forces in Simulation of Fine Particulates

    NASA Technical Reports Server (NTRS)

    Walton, Otis R.; Johnson, Scott M.

    2010-01-01

    . Adhesive image-charge forces acting on charged particles touching conducting surfaces can be up to 50 times stronger if the charge is located in discrete spots on the particle surface instead of being distributed uniformly over the surface of the particle, as is assumed by most other models. Besides being useful in modeling particulates in space and distant objects, this modeling technique is useful for electrophotography (used in copiers) and in simulating the effects of static charge in the pulmonary delivery of fine dry powders.

  5. Local and regional sources of fine and coarse particulate matter based on traffic and background monitoring

    NASA Astrophysics Data System (ADS)

    Dimitriou, Konstantinos; Kassomenos, Pavlos

    2014-05-01

    The aim of this study was to identify local and exogenous sources affecting particulate matter (PM) levels in five major cities of Northern Europe namely: London, Paris, Hamburg, Copenhagen and Stockholm. Besides local emissions, PM profile at urban and suburban areas of the European Union (EU) is also influenced by regional PM sources due to atmospheric transport, thus geographical city distribution is of a great importance. At each city, PM10, PM2.5, NO2, SO2, CO and O3 air pollution data from two air pollution monitoring stations of the EU network were used. Different background characteristics of the selected two sampling sites at each city facilitated comparisons, providing a more exact analysis of PM sources. Four source apportionment methods: Pearson correlations among the levels of particulates and gaseous pollutants, characterisation of primal component analysis components, long-range transport analysis and extrapolation of PM size distribution ratios were applied. In general, fine (PM2.5) and coarse (PM10) particles were highly correlated, thus common sources are suggested. Combustion-originated gaseous pollutants (CO, NO2, SO2) were strongly associated to PM10 and PM2.5, primarily at areas severely affected by traffic. On the contrary, at background stations neighbouring important natural sources of particles or situated in suburban areas with rural background, natural emissions of aerosols were indicated. Series of daily PM2.5/PM10 ratios showed that minimum fraction values were detected during warm periods, due to higher volumes of airborne biogenic PM coarse, mainly at stations with important natural sources of particles in their vicinity. Hybrid single-particle Lagrangian integrated trajectory model was used, in order to extract 4-day backward air mass trajectories that arrived in the five cities which are under study during days with recorded PM10 exceedances. At all five cities, a significantly large fraction of those trajectories were classified

  6. Ambient fine particulate matter, nitrogen dioxide, and hypertensive disorders of pregnancy in New York City

    PubMed Central

    Savitz, David A.; Elston, Beth; Bobb, Jennifer F.; Clougherty, Jane E.; Dominici, Francesca; Ito, Kazuhiko; Johnson, Sarah; McAlexander, Tara; Ross, Zev; Shmool, Jessie L.C.; Matte, Thomas D.; Wellenius, Gregory A.

    2016-01-01

    BACKGROUND Previous studies suggested a possible association between fine particulate matter air pollution (PM2.5) and nitrogen dioxide (NO2) and the development of hypertensive disorders of pregnancy, but effect sizes have been small and methodologic weaknesses preclude firm conclusions. METHODS We linked birth certificates in New York City in 2008-2010 to hospital discharge diagnoses and estimated air pollution exposure based on maternal address. The New York City Community Air Survey provided refined estimates of PM2.5 and NO2 at the maternal residence. We estimated the association between exposures to PM2.5 and NO2 in the first and second trimester and risk of gestational hypertension, mild preeclampsia, and severe preeclampsia among 268,601 births. RESULTS In unadjusted analyses, we found evidence of a positive association between both pollutants and gestational hypertension. However, after adjustment for individual covariates, socioeconomic deprivation, and delivery hospital, we did not find evidence of an association between PM2.5 or NO2 in the first or second trimester and any of the outcomes. CONCLUSIONS Our data did not provide clear evidence of an effect of ambient air pollution on hypertensive disorders of pregnancy. Results need to be interpreted with caution considering the quality of the available exposure and health outcome measures and the uncertain impact of adjusting for hospital. Relative to previous studies, which have tended to identify positive associations with PM2.5 and NO2, our large study size, refined air pollution exposure estimates, hospital-based disease ascertainment, and little risk of confounding by socioeconomic deprivation, does not provide evidence for an association. PMID:26237745

  7. A Quasi-Experimental Analysis of Elementary School Absences and Fine Particulate Air Pollution.

    PubMed

    Hales, Nicholas M; Barton, Caleb C; Ransom, Michael R; Allen, Ryan T; Pope, C Arden

    2016-03-01

    Fine particulate air pollution (PM2.5) has been associated with many adverse health outcomes including school absences. Specifically, a previous study in the Utah Valley area, conducted during a time with relatively high air pollution exposure, found significant positive correlations between school absences and air pollution. We examined the hypothesis that ambient PM2.5 exposures are associated with elementary school absences using a quasi-natural experiment to help control for observed and unobserved structural factors that influence school absences. The Alpine, Provo, and Salt Lake City school districts are located in valleys subject to daily mean PM2.5 concentrations almost twice as high as those in the Park City School District. We used seminonparametric generalized additive Poisson regression models to evaluate associations between absences and daily PM2.5 levels in the 3 districts that were exposed to the most pollution while using Park City absences as a quasi-control. The study covered 3 school years (2011/12-2013/14). School absences were most strongly associated with observed structural factors such as seasonal trends across school years, day-of-week effects, holiday effects, weather, etc. However, after controlling for these structural factors directly and using a control district, a 10 μg/m increase in PM2.5 was associated with an approximately 1.7% increase in daily elementary school absences. Exposure to ambient air pollution can contribute to elementary school absences, although this effect is difficult to disentangle from various other factors. PMID:26945391

  8. Herbicide sorption to fine particulate matter suspended downwind of agricultural operations: field and laboratory investigations.

    PubMed

    Clymo, Amelia S; Shin, Jin Young; Holmen, Britt A

    2005-01-15

    Tillage-induced erosion of herbicides bound to airborne soil particles has not been quantified as a mechanism for offsite herbicide transport. This study quantifies the release of two preemergent herbicides, metolachlor and pendimethalin, to the atmosphere as gas- and particle-phase species during soil incorporation operations. Fine particulate matter (PM2.5) and gas-phase samples were collected at three sampling heights during herbicide disking into the soil in Davis, CA, in May 2000 and May 2001 using filter/PUF sampling. Quartz fiber filters (QFFs) were used in May 2000, and Teflon membrane filters (TMFs) were used in May 2001. The field data were combined with laboratory filter/PUF partitioning experiments to account for adsorption to the filter surfaces and quantify the mass of PM2.5-bound herbicides in the field samples. Laboratory results indicate a significant adsorption of metolachlor, but not pendimethalin, to the quartz filter surfaces. Metolachlor partitioning to PM2.5 collected on TMF filters resulted in corrected PM2.5 field partition coefficient values, Kp,corr = Cp/Cg, of approximately 10(-3.5) m3/microg, indicating its preference for the gas phase. Pendimethalin exhibited more semivolatile behavior,with Kp,corr values that ranged from 10(-3) to 10(-1) m3/ microg and increased with sampling height and distance downwind of the operation. An increase in pendimethalin enrichment at a height of 5 m suggests winnowing of finer, more sorptive soil components with corresponding higher transport potential. Pendimethalin was enriched in the PM2.5 samples by up to a factor of 250 compared to the field soil, indicating thatfurther research on the processes controlling the generation of PM-bound herbicides during agricultural operations is warranted to enable prediction of off-site mass fluxes by this mechanism. PMID:15707040

  9. Impacts of Intercontinental Transport of Anthropogenic Fine Particulate Matter on Human Mortality

    NASA Technical Reports Server (NTRS)

    Anenberg, Susan C.; West, J. Jason; Hongbin, Yu; Chin, Mian; Schulz, Michael; Bergmann, Dan; Bey, Isabelle; Bian, Huisheng; Diehl, Thomas; Fiore, Arlene; Hess, Peter; Marmer, Elina; Montanaro, Veronica; Park, Rokjin; Shindell, Drew; Takemura, Toshihiko; Dentener, Frank

    2014-01-01

    Fine particulate matter with diameter of 2.5 microns or less (PM2.5) is associated with premature mortality and can travel long distances, impacting air quality and health on intercontinental scales. We estimate the mortality impacts of 20 % anthropogenic primary PM2.5 and PM2.5 precursor emission reductions in each of four major industrial regions (North America, Europe, East Asia, and South Asia) using an ensemble of global chemical transport model simulations coordinated by the Task Force on Hemispheric Transport of Air Pollution and epidemiologically-derived concentration-response functions. We estimate that while 93-97 % of avoided deaths from reducing emissions in all four regions occur within the source region, 3-7 % (11,500; 95 % confidence interval, 8,800-14,200) occur outside the source region from concentrations transported between continents. Approximately 17 and 13 % of global deaths avoided by reducing North America and Europe emissions occur extraregionally, owing to large downwind populations, compared with 4 and 2 % for South and East Asia. The coarse resolution global models used here may underestimate intraregional health benefits occurring on local scales, affecting these relative contributions of extraregional versus intraregional health benefits. Compared with a previous study of 20 % ozone precursor emission reductions, we find that despite greater transport efficiency for ozone, absolute mortality impacts of intercontinental PM2.5 transport are comparable or greater for neighboring source-receptor pairs, due to the stronger effect of PM2.5 on mortality. However, uncertainties in modeling and concentration-response relationships are large for both estimates.

  10. Fine particulate air pollution, nitrogen dioxide, and systemic autoimmune rheumatic disease in Calgary, Alberta

    PubMed Central

    Bernatsky, Sasha; Smargiassi, Audrey; Johnson, Markey; Kaplan, Gilaad G.; Barnabe, Cheryl; Svenson, Larry; Brand, Allan; Bertazzon, Stefania; Hudson, Marie; Clarke, Ann E; Fortin, Paul; Edworthy, Steven; Bélisle, Patrick; Joseph, Lawrence

    2015-01-01

    Objective To estimate the association between fine particulate (PM2.5) and nitrogen dioxide (NO2) pollution and systemic autoimmune rheumatic diseases (SARDs). Methods Associations between ambient air pollution (PM2.5 and NO2) and SARDs were assessed using land-use regression models for Calgary, Alberta and administrative health data (1993-2007). SARD case definitions were based on ≥2 physician claims, or ≥1 rheumatology billing code; or ≥1 hospitalization code (for systemic lupus, Sjogren's Syndrome, scleroderma, polymyositis, dermatomyositis, or undifferentiated connective tissue disease). Bayesian hierarchical latent class regression models estimated the probability that each resident was a SARD case, based on these case definitions. The sum of individual level probabilities provided the estimated number of cases in each area. The latent class model included terms for age, sex, and an interaction term between age and sex. Bayesian logistic regression models were used to generate adjusted odds ratios (OR) for NO2 and PM2.5. pollutant models, adjusting for neighborhood income, age, sex, and an interaction between age and sex. We also examined models stratified for First-Nations (FN) and non-FN subgroups. Results Residents that were female and/or aged > 45 had a greater probability of being a SARD case, with the highest OR estimates for older females. Independently, the odds of being a SARDs case increased with PM2.5 levels, but the results were inconclusive for NO2. The results stratified by FN and Non-FN groups were not distinctly different. Conclusion In this urban Canadian sample, adjusting for demographics, exposure to PM2.5 was associated with an increased risk of SARDs. The results for NO2 were inconclusive. PMID:25988990

  11. Effects of Independence Day fireworks on atmospheric concentrations of fine particulate matter in the United States

    NASA Astrophysics Data System (ADS)

    Seidel, Dian J.; Birnbaum, Abigail N.

    2015-08-01

    Previous case studies have documented increases in air pollutants, including particulate matter (PM), during and following fireworks displays associated with various holidays and celebrations around the world. But no study to date has explored fireworks effects on air quality over large regions using systematic observations over multiple years to estimate typical regional PM increases. This study uses observations of fine PM (with particle diameters < 2.5 μm, PM2.5) from 315 air quality monitoring sites across the United States to estimate the effects of Independence Day fireworks on hourly and 24-hr average concentrations. Hourly PM2.5 concentrations during the evening of July 4 and morning of July 5 are higher than on the two preceding and following days in July, considered as control days. On national average, the increases are largest (21 μg/m3) at 9-10 pm on July 4 and drop to zero by noon on July 5. Average concentrations for the 24-hr period beginning 8 pm on July 4 are 5 μg/m3 (42%) greater than on control days, on national average. The magnitude and timing of the Independence Day increases vary from site to site and from year to year, as would be expected given variations in factors such as PM2.5 emissions from fireworks, local meteorological conditions, and distances between fireworks displays and monitoring sites. At one site adjacent to fireworks, hourly PM2.5 levels climb to ∼500 μg/m3, and 24-hr average concentrations increase by 48 μg/m3 (370%). These results have implications for potential improvements in air quality models and their predictions, which currently do not account for this emissions source.

  12. Chemical characterization and source apportionment of fine and coarse particulate matter in Lahore, Pakistan

    NASA Astrophysics Data System (ADS)

    Stone, Elizabeth; Schauer, James; Quraishi, Tauseef A.; Mahmood, Abid

    2010-03-01

    Lahore, Pakistan is an emerging megacity that is heavily polluted with high levels of particle air pollution. In this study, respirable particulate matter (PM 2.5 and PM 10) were collected every sixth day in Lahore from 12 January 2007 to 19 January 2008. Ambient aerosol was characterized using well-established chemical methods for mass, organic carbon (OC), elemental carbon (EC), ionic species (sulfate, nitrate, chloride, ammonium, sodium, calcium, and potassium), and organic species. The annual average concentration (±one standard deviation) of PM 2.5 was 194 ± 94 μg m -3 and PM 10 was 336 ± 135 μg m -3. Coarse aerosol (PM 10-2.5) was dominated by crustal sources like dust (74 ± 16%, annual average ± one standard deviation), whereas fine particles were dominated by carbonaceous aerosol (organic matter and elemental carbon, 61 ± 17%). Organic tracer species were used to identify sources of PM 2.5 OC and chemical mass balance (CMB) modeling was used to estimate relative source contributions. On an annual basis, non-catalyzed motor vehicles accounted for more than half of primary OC (53 ± 19%). Lesser sources included biomass burning (10 ± 5%) and the combined source of diesel engines and residual fuel oil combustion (6 ± 2%). Secondary organic aerosol (SOA) was an important contributor to ambient OC, particularly during the winter when secondary processing of aerosol species during fog episodes was expected. Coal combustion alone contributed a small percentage of organic aerosol (1.9 ± 0.3%), but showed strong linear correlation with unidentified sources of OC that contributed more significantly (27 ± 16%). Brick kilns, where coal and other low quality fuels are burned together, are suggested as the most probable origins of unapportioned OC. The chemical profiling of emissions from brick kilns and other sources unique to Lahore would contribute to a better understanding of OC sources in this megacity.

  13. Ensemble-trained source apportionment of fine particulate matter and method uncertainty analysis

    NASA Astrophysics Data System (ADS)

    Balachandran, Sivaraman; Pachon, Jorge E.; Hu, Yongtao; Lee, Dongho; Mulholland, James A.; Russell, Armistead G.

    2012-12-01

    An ensemble-based approach is applied to better estimate source impacts on fine particulate matter (PM2.5) and quantify uncertainties in various source apportionment (SA) methods. The approach combines source impacts from applications of four individual SA methods: three receptor-based models and one chemical transport model (CTM). Receptor models used are the chemical mass balance methods CMB-LGO (Chemical Mass Balance-Lipschitz global optimizer) and CMB-MM (molecular markers) as well as a factor analytic method, Positive Matrix Factorization (PMF). The CTM used is the Community Multiscale Air Quality (CMAQ) model. New source impact estimates and uncertainties in these estimates are calculated in a two-step process. First, an ensemble average is calculated for each source category using results from applying the four individual SA methods. The root mean square error (RMSE) between each method with respect to the average is calculated for each source category; the RMSE is then taken to be the updated uncertainty for each individual SA method. Second, these new uncertainties are used to re-estimate ensemble source impacts and uncertainties. The approach is applied to data from daily PM2.5 measurements at the Atlanta, GA, Jefferson Street (JST) site in July 2001 and January 2002. The procedure provides updated uncertainties for the individual SA methods that are calculated in a consistent way across methods. Overall, the ensemble has lower relative uncertainties as compared to the individual SA methods. Calculated CMB-LGO uncertainties tend to decrease from initial estimates, while PMF and CMB-MM uncertainties increase. Estimated CMAQ source impact uncertainties are comparable to other SA methods for gasoline vehicles and SOC but are larger than other methods for other sources. In addition to providing improved estimates of source impact uncertainties, the ensemble estimates do not have unrealistic extremes as compared to individual SA methods and avoids zero impact

  14. Origin-Oriented Elemental Profile of Fine Ambient Particulate Matter in Central European Suburban Conditions

    PubMed Central

    Rogula-Kozłowska, Wioletta; Majewski, Grzegorz; Błaszczak, Barbara; Klejnowski, Krzysztof; Rogula-Kopiec, Patrycja

    2016-01-01

    Twenty-four-hour samples of fine ambient particulate matter (PM2.5; particles with aerodynamic diameters ≤2.5 µm) were collected in a suburban (quasi-rural) area in Racibórz (Poland) between 1 January 2011 and 26 December 2012. The samples were analyzed for the contents of 28 elements. Sources of PM2.5 were identified and the contribution of each source to the PM2.5 concentration was assessed using an enrichment factor (EF) analysis, a principal component analysis (PCA), and multi-linear regression analysis (MLRA). In the cold season (January–March and October–December 2011–2012), the mean ambient concentration of PM2.5 in Racibórz was 48.7 ± 39.4 µg·m−3, which was much higher than at other suburban or rural sites in Europe. Additionally the ambient concentrations of some toxic PM2.5-bound elements were also high, i.e., the mean ambient concentrations of PM2.5-bound As, Cd, and Pb were 11.3 ± 11.5, 5.2 ± 2.5, and 34.0 ± 34.2 ng·m−3, respectively. In the warm season (April–September 2011–2012), the PM2.5 and PM2.5-bound element concentrations in Racibórz were comparable to the concentrations noted at other suburban (or rural) sites in Europe. Our findings suggest that elemental composition and concentrations of PM2.5 in Racibórz are mainly influenced by anthropogenic emissions, i.e., the energy production based on coal and biomass combustion, traffic, and industry. PMID:27428988

  15. A Quasi-Experimental Analysis of Elementary School Absences and Fine Particulate Air Pollution

    PubMed Central

    Hales, Nicholas M.; Barton, Caleb C.; Ransom, Michael R.; Allen, Ryan T.; Pope, C. Arden

    2016-01-01

    Abstract Fine particulate air pollution (PM2.5) has been associated with many adverse health outcomes including school absences. Specifically, a previous study in the Utah Valley area, conducted during a time with relatively high air pollution exposure, found significant positive correlations between school absences and air pollution. We examined the hypothesis that ambient PM2.5 exposures are associated with elementary school absences using a quasi-natural experiment to help control for observed and unobserved structural factors that influence school absences. The Alpine, Provo, and Salt Lake City school districts are located in valleys subject to daily mean PM2.5 concentrations almost twice as high as those in the Park City School District. We used seminonparametric generalized additive Poisson regression models to evaluate associations between absences and daily PM2.5 levels in the 3 districts that were exposed to the most pollution while using Park City absences as a quasi-control. The study covered 3 school years (2011/12-2013/14). School absences were most strongly associated with observed structural factors such as seasonal trends across school years, day-of-week effects, holiday effects, weather, etc. However, after controlling for these structural factors directly and using a control district, a 10 μg/m3 increase in PM2.5 was associated with an approximately 1.7% increase in daily elementary school absences. Exposure to ambient air pollution can contribute to elementary school absences, although this effect is difficult to disentangle from various other factors. PMID:26945391

  16. Fine Particulate Matter Constituents, Nitric Oxide Synthase DNA Methylation and Exhaled Nitric Oxide.

    PubMed

    Chen, Renjie; Qiao, Liping; Li, Huichu; Zhao, Yan; Zhang, Yunhui; Xu, Wenxi; Wang, Cuicui; Wang, Hongli; Zhao, Zhuohui; Xu, Xiaohui; Hu, Hui; Kan, Haidong

    2015-10-01

    It remains unknown how fine particulate matter (PM2.5) constituents affect differently the fractional concentration of exhaled nitric oxide (FeNO, a biomarker of airway inflammation) and the DNA methylation of its encoding gene (NOS2A). We aimed to investigate the short-term effects of PM2.5 constituents on NOS2A methylation and FeNO. We designed a longitudinal study among chronic obstructive pulmonary disease (COPD) patients with six repeated health measurements in Shanghai, China. We applied linear mixed-effect models to evaluate the associations. We observed that the inverse association between PM2.5 and methylation at position 1 was limited within 24 h, and the positive association between PM2.5 and FeNO was the strongest at lag 1 day. Organic carbon, element carbon, NO3(-) and NH4(+) were robustly and significantly associated with decreased methylation and elevated FeNO. An interquartile range increase in total PM2.5 and the four constituents was associated with decreases of 1.19, 1.63, 1.62, 1.17, and 1.14 in percent methylation of NOS2A, respectively, and increases of 13.30%,16.93%, 8.97%, 18.26%, and 11.42% in FeNO, respectively. Our results indicated that organic carbon, element carbon, NO3(-) and NH4(+) might be mainly responsible for the effects of PM2.5 on the decreased NOS2A DNA methylation and elevated FeNO in COPD patients. PMID:26372312

  17. Optimal estimation for global ground-level fine particulate matter concentrations

    NASA Astrophysics Data System (ADS)

    Donkelaar, Aaron; Martin, Randall V.; Spurr, Robert J. D.; Drury, Easan; Remer, Lorraine A.; Levy, Robert C.; Wang, Jun

    2013-06-01

    We develop an optimal estimation (OE) algorithm based on top-of-atmosphere reflectances observed by the MODIS satellite instrument to retrieve near-surface fine particulate matter (PM2.5). The GEOS-Chem chemical transport model is used to provide prior information for the Aerosol Optical Depth (AOD) retrieval and to relate total column AOD to PM2.5. We adjust the shape of the GEOS-Chem relative vertical extinction profiles by comparison with lidar retrievals from the CALIOP satellite instrument. Surface reflectance relationships used in the OE algorithm are indexed by land type. Error quantities needed for this OE algorithm are inferred by comparison with AOD observations taken by a worldwide network of sun photometers (AERONET) and extended globally based upon aerosol speciation and cross correlation for simulated values, and upon land type for observational values. Significant agreement in PM2.5 is found over North America for 2005 (slope = 0.89; r = 0.82; 1-σ error = 1 µg/m3 + 27%), with improved coverage and correlation relative to previous work for the same region and time period, although certain subregions, such as the San Joaquin Valley of California are better represented by previous estimates. Independently derived error estimates of the OE PM2.5 values at in situ locations over North America (of ±(2.5 µg/m3 + 31%) and Europe of ±(3.5 µg/m3 + 30%) are corroborated by comparison with in situ observations, although globally (error estimates of ±(3.0 µg/m3 + 35%), may be underestimated. Global population-weighted PM2.5 at 50% relative humidity is estimated as 27.8 µg/m3 at 0.1° × 0.1° resolution.

  18. Origin-Oriented Elemental Profile of Fine Ambient Particulate Matter in Central European Suburban Conditions.

    PubMed

    Rogula-Kozłowska, Wioletta; Majewski, Grzegorz; Błaszczak, Barbara; Klejnowski, Krzysztof; Rogula-Kopiec, Patrycja

    2016-01-01

    Twenty-four-hour samples of fine ambient particulate matter (PM2.5; particles with aerodynamic diameters ≤2.5 µm) were collected in a suburban (quasi-rural) area in Racibórz (Poland) between 1 January 2011 and 26 December 2012. The samples were analyzed for the contents of 28 elements. Sources of PM2.5 were identified and the contribution of each source to the PM2.5 concentration was assessed using an enrichment factor (EF) analysis, a principal component analysis (PCA), and multi-linear regression analysis (MLRA). In the cold season (January-March and October-December 2011-2012), the mean ambient concentration of PM2.5 in Racibórz was 48.7 ± 39.4 µg·m(-3), which was much higher than at other suburban or rural sites in Europe. Additionally the ambient concentrations of some toxic PM2.5-bound elements were also high, i.e., the mean ambient concentrations of PM2.5-bound As, Cd, and Pb were 11.3 ± 11.5, 5.2 ± 2.5, and 34.0 ± 34.2 ng·m(-3), respectively. In the warm season (April-September 2011-2012), the PM2.5 and PM2.5-bound element concentrations in Racibórz were comparable to the concentrations noted at other suburban (or rural) sites in Europe. Our findings suggest that elemental composition and concentrations of PM2.5 in Racibórz are mainly influenced by anthropogenic emissions, i.e., the energy production based on coal and biomass combustion, traffic, and industry. PMID:27428988

  19. Apportionment of the sources of high fine particulate matter concentration events in a developing aerotropolis in Taoyuan, Taiwan.

    PubMed

    Chuang, Ming-Tung; Chen, Yu-Chieh; Lee, Chung-Te; Cheng, Chung-Hao; Tsai, Yu-Jen; Chang, Shih-Yu; Su, Zhen-Sen

    2016-07-01

    To investigate the characteristics and contributions of the sources of fine particulate matter with a size of up to 2.5 μm (PM2.5) during the period when pollution events could easily occur in Taoyuan aerotropolis, Taiwan, this study conducted sampling at three-day intervals from September 2014 to January 2015. Based on the mass concentration of PM2.5, the sampling days were classified into high PM2.5 concentration event days (PM2.5>35 μg m(-3)) and non-event days (PM2.5<35 μg m(-3)). In addition, the chemical species, including water-soluble inorganic ions, carbonaceous components, and metal elements, were analyzed. The sources of pollution and their contributions were estimated using the positive matrix factorization (PMF) model. Furthermore, the effect of the weather type on the measurement results was also explored based on wind field conditions. The mass fractions of Cl(-) and NO3(-) increased when a high PM2.5 concentration event occurred, and they were also higher under local emitted conditions than under long range transported conditions, indicating that secondary nitrate aerosols were the major increasing local species that caused high PM2.5 concentration events. Seven sources of pollution could be distinguished using the PMF model on the basis of the characteristics of the species. Industrial emissions, coal combustion/urban waste incineration, and local emissions from diesel/gasoline vehicles were the main sources that contributed to pollution on high PM2.5 concentration event days. In order to reduction of high PM2.5 concentration events, the control of diesel and gasoline vehicle emission is important and should be given priority. PMID:27105163

  20. Chemical speciation of Fe and Ni in residual oil fly ash fine particulate matter using X-ray absorption spectroscopy.

    PubMed

    Pattanaik, Sidhartha; Huggins, Frank E; Huffman, Gerald P

    2012-12-01

    Epidemiological studies have linked residual oil fly ash fine particulate matter with aerodynamic diameter <2.5 μm (ROFA PM(2.5)) to morbidity and mortality from cardiovascular and respiratory illnesses. Bioavailable transition metals within PM have been cited as one of the components that induce such illnesses. By combining synchrotron-based X-ray absorption spectroscopy with leaching experiment, we studied the effect of residual oil compositions and combustion conditions on the speciation of Fe and Ni in ROFA PM(2.5) and the implication of these species for human health and environment. PM(2.5) samples were obtained from two types of combustors, a fire tube boiler (FTB) and a refractory line combustor (RLC). The study reveals that only Fe(2)(SO(4))(3)·nH(2)O is present in RLC PM(2.5) while Fe(2)(SO(4))(3)·nH(2)O predominates in FTB PM(2.5) with inclusion of varying amounts of nickel ferrite. The finding that RLC PM(2.5) is more bioavailable and hence more toxic than FTB PM(2.5) is significant. The reduction of toxicity of FTB PM(2.5) is due to the immobilization of a portion of Fe and Ni in the formation of an insoluble NiFe(2)O(4). This may explain the variation of toxicity from exposure to different ROFA PM(2.5). Additionally, the speciation data are sought for developing emission inventories for source apportionment study and understanding the mechanism of PM formation. PMID:23126560

  1. Composition and sources of fine particulate matter across urban and rural sites in the Midwestern United States

    PubMed Central

    Kundu, Shuvashish; Stone, Elizabeth. A.

    2014-01-01

    The composition and sources of fine particulate matter (PM2.5) were investigated in rural and urban locations in Iowa, located in the agricultural and industrial Midwestern United States from April 2009 to December 2012. Major chemical contributors to PM2.5 mass were sulfate, nitrate, ammonium, and organic carbon. Non-parametric statistical analyses demonstrated that the two rural sites had significantly enhanced levels of crustal materials (Si, Al) driven by agricultural activities and unpaved roads. Meanwhile, the three urban areas had enhanced levels of secondary aerosol (nitrate, sulfate, and ammonium) and combustion (organic and elemental carbon). The heavily industrialized Davenport site had significantly higher levels of PM2.5 and trace metals (Fe, Pb, Zn), demonstrating the important local impact of industrial point sources on air quality. Sources of PM2.5 were evaluated by the multi-variant positive matrix factorization (PMF) source apportionment model. For each individual site, seven to nine factors were identified: secondary sulfate (accounting for 29–30% of PM2.5), secondary nitrate (17–24%), biomass burning (9–21%), gasoline combustion (6–16), diesel combustion (3–9%), dust (6–11%), industry (0.4–5%) and winter salt (2–6%). Source contributions demonstrated a clear urban enhancement in PM2.5 from gasoline engines (by a factor of 1.14) and diesel engines (by a factor of 2.3), which is significant due to the well-documented negative health impacts of vehicular emissions. This study presents the first source apportionment results from the state of Iowa and is broadly applicable to understanding the differences in anthropogenic and natural sources in the urban-rural continuum of particle air pollution. PMID:24736797

  2. Spatial and Temporal Variation in Fine Particulate Matter Mass and Chemical Composition: The Middle East Consortium for Aerosol Research Study

    PubMed Central

    Abdeen, Ziad; Heo, Jongbae; Wu, Bo; Shpund, Jacob; Vanger, Arye; Sharf, Geula; Moise, Tamar; Brenner, Shmuel; Nassar, Khaled; Saleh, Rami; Al-Mahasneh, Qusai M.; Sarnat, Jeremy A.; Schauer, James J.

    2014-01-01

    Ambient fine particulate matter (PM2.5) samples were collected from January to December 2007 to investigate the sources and chemical speciation in Palestine, Jordan, and Israel. The 24-h PM2.5 samples were collected on 6-day intervals at eleven urban and rural sites simultaneously. Major chemical components including metals, ions, and organic and elemental carbon were analyzed. The mass concentrations of PM2.5 across the 11 sites varied from 20.6 to 40.3 μg/m3, with an average of 28.7 μg/m3. Seasonal variation of PM2.5 concentrations was substantial, with higher average concentrations (37.3 μg/m3) in the summer (April–June) months compared to winter (October–December) months (26.0 μg/m3) due mainly to high contributions of sulfate and crustal components. PM2.5 concentrations in the spring were greatly impacted by regional dust storms. Carbonaceous mass was the most abundant component, contributing 40% to the total PM2.5 mass averaged across the eleven sites. Crustal components averaged 19.1% of the PM2.5 mass and sulfate, ammonium, and nitrate accounted for 16.2%, 6.4%, and 3.7%, respectively, of the total PM2.5 mass. The results of this study demonstrate the need to better protect the health and welfare of the residents on both sides of the Jordan River in the Middle East. PMID:25045751

  3. SOURCE APPORTIONMENT OF FINE PARTICULATE MATTER IN THE U.S. AND ASSOCIATIONS WITH LUNG INFLAMMATORY MARKERS IL -8, COX -2 AND HO -1

    EPA Science Inventory

    Associations are well established between particulate matter (PM) and increased human mortality and morbidity. The association between fine PM sources and lung inflammatory markers IL-8, COX-2, and HO-1 was evaluated in this study.

  4. High-aspect-ratio fine-line metallization

    NASA Astrophysics Data System (ADS)

    Chang, Chienliu; Chang, Peizen; Yen, Kaihsiang; Lu, Sheyshi

    1998-08-01

    This study is aimed at making metallic fine lines characterized with high aspect ratio. There are two methods we have developed. One is the trilevel lift-off method with submicron lithography, and the other is the lift-off method by using the commercial negative photoresist SU-8 made by IBM. First, the trilevel lift-off method is described. A pre- imidized, soluble polyimide layer of OCG Probimide 293 A is spun on a wafer with thickness 4 micrometer. A 120 nm thick layer of silicon oxynitride was formed on the polyimide by PECVD. A layer photoresist layer was applied and patterned. This photoresist layer is used as the etching mask of silicon oxynitride by RIE with the gas CF4 plasma. Similarly, the silicon oxynitride is used as the etching mask of the thick polyimide layers by RIE with the gas O2 plasma. After metallization the pre-imidized polyimide is dissolved in methylene chloride lifting off the oxynitride and metal layers. Following this way, the submicron lithography, such as silylation technology, is suitable to make the aspect ratio up to 10 and the metal line will still have 3 micrometer height. The other is the lift-off method by using negative photoresist SU-8. This SU-8 is originally used as high aspect ratio molding. The linewidth of SU-8 is reduced to 2 micrometer linewidth with 12 micrometer height, and used as the remover to lift off after metallization. This SU-8 makes the fine-line metallization of 2 micrometer linewidth to achieve the aspect- ratio up to 5.

  5. Atmospheric mercury and fine particulate matter in coastal New England: implications for mercury and trace element sources in the northeastern United States

    USGS Publications Warehouse

    Kolker, Allan; Engle, Mark A.; Peucker-Ehrenbrink, Bernhard; Geboy, Nicholas J.; Krabbenhotft, David P. Krabbenhoft; Bothner, Michael H. Bothner; Tate, Michael T.

    2013-01-01

    Intensive sampling of ambient atmospheric fine particulate matter was conducted at Woods Hole, Massachusetts over a four-month period from 3 April to 29 July, 2008, in conjunction with year-long deployment of the USGS Mobile Mercury Lab. Results were obtained for trace elements in fine particulate matter concurrently with determination of ambient atmospheric mercury speciation and concentrations of ancillary gasses (SO2, NOx, and O3). For particulate matter, trace element enrichment factors greater than 10 relative to crustal background values were found for As, Bi, Cd, Cu, Hg, Pb, Sb, V, and Zn, indicating contribution of these elements by anthropogenic sources. For other elements, enrichments are consistent with natural marine (Na, Ca, Mg, Sr) or crustal (Ba, Ce, Co, Cs, Fe, Ga, La, Rb, Sc, Th, Ti, U, Y) sources, respectively. Positive matrix factorization was used together with concentration weighted air-mass back trajectories to better define element sources and their locations. Our analysis, based on events exhibiting the 10% highest PM2.5 contributions for each source category, identifies coal-fired power stations concentrated in the U.S. Ohio Valley, metal smelting in eastern Canada, and marine and crustal sources showing surprisingly similar back trajectories, at times each sampling Atlantic coastal airsheds. This pattern is consistent with contribution of Saharan dust by a summer maximum at the latitude of Florida and northward transport up the Atlantic Coast by clockwise circulation of the summer Bermuda High. Results for mercury speciation show diurnal production of RGM by photochemical oxidation of Hg° in a marine environment, and periodic traverse of the study area by correlated RGM-SO2(NOx) plumes, indicative of coal combustion sources.

  6. Atmospheric mercury and fine particulate matter in coastal New England: Implications for mercury and trace element sources in the northeastern United States

    NASA Astrophysics Data System (ADS)

    Kolker, Allan; Engle, Mark A.; Peucker-Ehrenbrink, Bernhard; Geboy, Nicholas J.; Krabbenhoft, David P.; Bothner, Michael H.; Tate, Michael T.

    2013-11-01

    Intensive sampling of ambient atmospheric fine particulate matter was conducted at Woods Hole, Massachusetts over a four-month period from 3 April to 29 July, 2008, in conjunction with year-long deployment of the USGS Mobile Mercury Lab. Results were obtained for trace elements in fine particulate matter concurrently with determination of ambient atmospheric mercury speciation and concentrations of ancillary gasses (SO2, NOx, and O3). For particulate matter, trace element enrichment factors greater than 10 relative to crustal background values were found for As, Bi, Cd, Cu, Hg, Pb, Sb, V, and Zn, indicating contribution of these elements by anthropogenic sources. For other elements, enrichments are consistent with natural marine (Na, Ca, Mg, Sr) or crustal (Ba, Ce, Co, Cs, Fe, Ga, La, Rb, Sc, Th, Ti, U, Y) sources, respectively. Positive matrix factorization was used together with concentration weighted air-mass back trajectories to better define element sources and their locations. Our analysis, based on events exhibiting the 10% highest PM2.5 contributions for each source category, identifies coal-fired power stations concentrated in the U.S. Ohio Valley, metal smelting in eastern Canada, and marine and crustal sources showing surprisingly similar back trajectories, at times each sampling Atlantic coastal airsheds. This pattern is consistent with contribution of Saharan dust by a summer maximum at the latitude of Florida and northward transport up the Atlantic Coast by clockwise circulation of the summer Bermuda High. Results for mercury speciation show diurnal production of RGM by photochemical oxidation of Hg° in a marine environment, and periodic traverse of the study area by correlated RGM-SO2(NOx) plumes, indicative of coal combustion sources.

  7. A measurement of summertime dry deposition of ambient air particulates and associated metallic pollutants in Central Taiwan.

    PubMed

    Fang, Guor-Cheng; Chiang, Hung-Che; Chen, Yu-Cheng; Xiao, You-Fu; Wu, Chia-Ming; Kuo, Yu-Chen

    2015-04-01

    The purpose of this study is to characterize metallic elements associated with atmospheric particulate matter in the dry deposition plate, total suspended particulate, fine particles, and coarse particles at Taichung Harbor and Gong Ming Junior High School (airport) in central Taiwan at a sampling site from June 2013 to August 2013. The results indicated that: (1) the average concentrations of the metallic elements Cr and Cd were highest at the Gong Ming Junior High School (airport), and the average concentrations of the metallic elements Ni, Cu, and Pb were highest at the Taichung Harbor sampling site. (2) The high smelting industry density and export/import rate of heavily loaded cargos were the main reasons leading to these findings. (3) The average metallic element dry deposition and metallic element PM(2.5-10) all followed the order of Pb > Cr > Cu > Ni > Cd at the two sampling sites. However, the average metallic elements Cu and Pb were found to have the highest dry deposition velocities and concentrations in PM(2.5) for the two sampling sites in this study. (4) The correlation coefficients of ambient air particle dry deposition and concentration with wind speed at the airport were higher than those from the harbor sampling site. The wind and broad open spaces at Taichung Airport were the possible reasons for the increasing correlation coefficients for ambient air particle concentration and dry deposition with wind speed at the Taichung Airport sampling site. PMID:25185928

  8. Carcinogenicity of airborne fine particulate benzo(a)pyrene: an appraisal of the evidence and the need for control.

    PubMed Central

    Perera, F

    1981-01-01

    Benzo(a)pyrene(BaP) originating from fossil fuel and other organic combustion processes is largely adsorbed on fine particulate and hence is a widespread atmospheric pollutant. Available emissions and air quality data are based on the total weight of particulate matter without reference to size and give little information on trends and concentrations of fine particulate BaP. Greater reliance on coal, synfuels and diesel fuel for energy production and transportation will significantly increase ambient levels of BaP. Because of the particulate size, BaP is substantially deposited in the lower lung and readily eluted into surrounding tissue. After elution in the lung, BaP is metabolically activated to its electrophilic, carcinogenic from by a complex enzyme system whose activity is increased by prior exposure to air pollutants, cigarette smoke and certain drugs. The resultant diol epoxide metabolite has been shown to bind covalently with the DNA of the lung. In experimental animals, BaP is a potent initiating carcinogen whose action is enhanced by sulfur dioxide, promoting agents and carrier fine particles. The effect of small, divided doses of BaP has been shown to be greater than that of a single high dose; no threshold has been established. Epidemiological studies show that mixtures containing BaP (such as urban air, industrial emissions and cigarette smoke) are carcinogenic and may interact synergistically. Occupational studies indicate that the action of BaP-containing mixtures is enhanced in the presence of SO2. However, quantitative risk assessment for BaP is precluded by problems in extrapolating to the general population from small-scale animal studies; uncertainties in findings of epidemiology; and imprecise exposure data. Existing stationary and mobile controls preferentially remove coarse particulate matter and are inefficient collectors of the particulate BaP. In the current absence of health and environmental standards for BaP, there is little incentive

  9. Assessment of Population and Microenvironmental Exposure to Fine Particulate Matter (PM2.5)

    NASA Astrophysics Data System (ADS)

    Jiao, Wan

    A positive relationship exists between fine particulate matter (PM 2.5) exposure and adverse health effects. PM2.5 concentration-response functions used in the quantitative risk assessment were based on findings from human epidemiological studies that relied on areawide ambient concentrations as surrogate for actual ambient exposure, which cannot capture the spatial and temporal variability in human exposures. The goal of the study is to assess inter-individual, geographic and seasonal variability in population exposures to inform the interpretation of available epidemiological studies, and to improve the understanding of how exposure-related factors in important exposure microenvironments contribute to the variability in individual PM2.5 exposure. Typically, the largest percentage of time in which an individual is exposed to PM2.5 of ambient origin occurs in indoor residence, and the highest ambient PM2.5 concentrations occur in transportation microenvironments because of the proximity to on-road traffic emissions. Therefore, indoor residence and traffic-related transportation microenvironments were selected for further assessment in the study. Population distributions of individual daily PM2.5 exposures were estimated for the selected regions and seasons using the Stochastic Human Exposure and Dose Simulation Model for Particulate Matter (SHEDS-PM). For the indoor residence, the current practice by assuming the entire residence to be one large single zone for calculating the indoor residential PM 2.5 concentration was evaluated by applying an indoor air quality model, RISK, to compare indoor PM2.5 concentrations between single-zone and multi-zone scenarios. For the transportation microenvironments, one field data collection focused on in-vehicle microenvironment and was conducted to quantify the variability in the in-vehicle PM2.5 concentration with respect to the outside vehicle concentration for a wide range of conditions that affect intra-vehicle variability

  10. Ambient Fine Particulate (PM2.5) Air Pollution Attributable to Household Cooking Fuel in Asia

    NASA Astrophysics Data System (ADS)

    Chafe, Z.; Mehta, S.; Smith, K. R.

    2011-12-01

    Using the Greenhouse Gas and Air Pollution Interactions and Synergies (GAINS) model, hosted by the International Institute for Applied Systems Analysis (IIASA), we estimate the proportion of fine particulate ambient air pollution (PM2.5) attributable to household fuel use for cooking in Asia. This analysis considers primary anthropogenic PM2.5 emissions in two years: 1990 and 2005. Only emissions from household cooking fuels-not heating or lighting-are considered. Due to data availability, this analysis focuses solely on Asian countries, notably India and China which are home to about half of the households using solid fuel use worldwide. Forest and grassland fires, dust, and other "natural" particle sources were omitted from this analysis. The impact of emission sources on secondary particles from aerosol precursors was not determined. In China, the proportion of total primary anthropogenic PM2.5 attributable to household cooking decreased from 44% to 31% between 1990 and 2005. In India, the percent of primary anthropogenic PM2.5 emissions attributable to household cooking decreased from 55% to 49% between 1990 and 2005. Total mass change in primary anthropogenic PM2.5 emissions was much more variable by state in India, between 1990 and 2005, than by province in China (where there was a general downward trend in the total mass emitted). Similarly, growth in industrial emissions was much more variable at the sub-national level, between 1990 and 2005, in India than in China. Energy production played a more prominent role in the growth of primary anthropogenic PM2.5 emissions in India than it did in China. Forward-looking GAINS scenarios show that the contribution of household cooking to total primary anthropogenic PM2.5 emissions is much greater than that from on-road transport in India and China between 1990 and 2030. On-road cars, trucks, and other transport vehicles are, however, the cause of important pollutants other than PM2.5 (as are as cooking stoves that do

  11. Indoor air sampling for fine particulate matter and black carbon in industrial communities in Pittsburgh.

    PubMed

    Tunno, Brett J; Naumoff Shields, Kyra; Cambal, Leah; Tripathy, Sheila; Holguin, Fernando; Lioy, Paul; Clougherty, Jane E

    2015-12-01

    Impacts of industrial emissions on outdoor air pollution in nearby communities are well-documented. Fewer studies, however, have explored impacts on indoor air quality in these communities. Because persons in northern climates spend a majority of their time indoors, understanding indoor exposures, and the role of outdoor air pollution in shaping such exposures, is a priority issue. Braddock and Clairton, Pennsylvania, industrial communities near Pittsburgh, are home to an active steel mill and coke works, respectively, and the population experiences elevated rates of childhood asthma. Twenty-one homes were selected for 1-week indoor sampling for fine particulate matter (PM2.5) and black carbon (BC) during summer 2011 and winter 2012. Multivariate linear regression models were used to examine contributions from both outdoor concentrations and indoor sources. In the models, an outdoor infiltration component explained 10 to 39% of variability in indoor air pollution for PM2.5, and 33 to 42% for BC. For both PM2.5 models and the summer BC model, smoking was a stronger predictor than outdoor pollution, as greater pollutant concentration increases were identified. For winter BC, the model was explained by outdoor pollution and an open windows modifier. In both seasons, indoor concentrations for both PM2.5 and BC were consistently higher than residence-specific outdoor concentration estimates. Mean indoor PM2.5 was higher, on average, during summer (25.8±22.7 μg/m3) than winter (18.9±13.2 μg/m3). Contrary to the study's hypothesis, outdoor concentrations accounted for only little to moderate variability (10 to 42%) in indoor concentrations; a much greater proportion of PM2.5 was explained by cigarette smoking. Outdoor infiltration was a stronger predictor for BC compared to PM2.5, especially in winter. Our results suggest that, even in industrial communities of high outdoor pollution concentrations, indoor activities--particularly cigarette smoking--may play a larger

  12. Source Apportionment of Primary and Secondary Fine Particulate Matter in China

    NASA Astrophysics Data System (ADS)

    Hu, J.; Zhang, H.; Ying, Q.

    2015-12-01

    In the past few decades, China have been facing extreme particulate matter (PM) pollution problems due to the combination of fast increase of population, industrialization, urbanization and associated energy consumption and lagging of sufficient emission control measures. Studies have identified the major components of fine PM (PM2.5) in China include primary PM (which is directly emitted into the atmosphere), sulfate and nitrate (which are mainly secondary PM, i.e., formed from gaseous precursors), and organic aerosols (which can be primary or secondary). Contributions of different source sectors to the different PM components are substantially different; therefore source apportionment of these components can provide critical information needed for policy makers to design effective emission control strategies. In the current study, a source-oriented version of the Community Multiscale Air Quality (CMAQ) model that directly tracks the contributions from multiple emission sources to primary and secondary PM2.5 is developed, and then applied to determine the regional contributions of power, industry, transportation and residential sectors to primary PM, nitrate and sulfate concentrations in China. Four months in 2012-2013 are simulated to predict the seasonal variations of source contributions. Model predictions are evaluated with ambient measured concentrations. The source-oriented CMAQ model is capable of reproducing most of the available PM10 and PM2.5 mass, and PM2.5 EC, POC, nitrate and sulfate observations. Predicted source contributions for EC also generally agree with to the source contributions estimated by receptor models reported in previous studies. Model predictions suggest residential is a major contributor to primary PM (30-70%) in the spring and winter, and industrial contributes 40-60% of primary PM in the summer and fall; Transportation is an important source for EC (20-30%); Power sector is the dominating source of nitrate and sulfate in both

  13. Fine particulate matter and visibility in the Lake Tahoe Basin: chemical characterization, trends, and source apportionment.

    PubMed

    Green, Mark C; Chen, L W Antony; DuBois, David W; Molenar, John V

    2012-08-01

    Speciated PM2.5 (particulate matter with an aerodynamic diameterFine mass at SOLA is 2.5 times that at BLIS, mainly due to enhanced organic and elemental carbon (OC and EC). SOLA experiences a winter peak in PM25 mainly due to OC and EC from residential wood combustion, whereas BLIS experiences a summer peak in PM2.5 mainly due to OC and ECfrom wildfires. Carbonaceous aerosol dominates visibility impairment, causing about 1/2 the reconstructed aerosol light extinction at BLIS and 70% at SOLA. Trend analysis (1990-2009) showed statistically significant decreases in aerosol extinction at BLIS on 20% best and 60% middle visibility days and statistically insignificant upward trends on 20% worst days. SOLA (1990-2003) showed statistically significant decreases in aerosol extinction for all day categories, driven by decreasing OC and EC. From the regional haze rule baseline period of 2000-2004 until 2005-2009, BLIS saw 20% best days improving and 20% worst days getting worse due to increased wildfire effects. Receptor modeling was performed using positive matrix factorization (PMF) and chemical mass balance (CMB). It confirmed that (1) biomass burning dominanted PM25 sources at both sites with increasing importance over time; (2) low combustion efficiency burning accounts for most of the biomass burning contribution; (3) road dust and traffic contributions were much higher at SOLA than at BLIS; and (4) industrial combustion and salting were minor sources. PMID:22916443

  14. Effects of riverine suspended particulate matter on post-dredging metal re-contamination across the sediment-water interface.

    PubMed

    Liu, Cheng; Fan, Chengxin; Shen, Qiushi; Shao, Shiguang; Zhang, Lei; Zhou, Qilin

    2016-02-01

    Environmental dredging is often used in river mouth areas to remove heavy metals. However, following dredging, high levels of metal-adsorbed suspended particulate matter (SPM) originating from polluted inflowing rivers might adversely affect the sediment-water interface (SWI). Here, we conducted a 360-day-long experiment investigating whether the riverine SPM adversely affects dredging outcome in a bay area of Lake Chaohu, China. We found that the heavy metal concentrations in the post-dredging surface sediment increased to pre-dredging levels for all metals studied (As, Cd, Cr, Cu, Ni, Pb, and Zn) after the addition of SPM. In addition, the increased concentrations were mostly detected in the relatively bioavailable non-residual fractions. Of the metals studied, the rate of increase was the greatest for Zn and Cd (482.98% and 261.07%, respectively), mostly in the weak acid extractable fraction. These results were probably due to certain characteristics of SPM (fine grain size, and high concentrations of organic matter and heavy metals) and the good oxic conditions of the SWI. Furthermore, As was the only metal for which we observed an increasing trend of diffusive flux across the SWI. However, the flux was still significantly lower than that measured before dredging. In conclusion, the quantity and character of riverine metal-adsorbed SPM affect metal re-contamination across the post-dredging SWI, and this information should be incorporated into the management schemes of dredging projects dedicated to reducing metal contamination in similar areas. PMID:26606187

  15. Inhalation of fine particulate matter during pregnancy increased IL-4 cytokine levels in the fetal portion of the placenta.

    PubMed

    de Melo, Juliana Oliveira; Soto, Sônia Fátima; Katayama, Isis Akemi; Wenceslau, Camilla Ferreira; Pires, Amanda Gonçalves; Veras, Mariana Matera; Furukawa, Luzia N S; de Castro, Isac; Saldiva, Paulo Hilário Nascimento; Heimann, Joel Claudio

    2015-01-22

    This study aimed to verify the development of placental and systemic inflammation in rats exposed to fine particulate matter before or during pregnancy. Wistar rats were exposed to filtered air (control) or to a load of 600 μg/m(3) of fine particles in the air. The gene expression of IL-1β, IL-4, IL-6, IL-10, INF-γ, TNF-α and Toll-like receptor 4 in the placenta was evaluated. The serum and placental concentrations of IL-1β, IL-4, IL-6, IL-10, INF-γ and TNF-α were measured. The total and differential blood leukocyte and blood platelet count was assessed. Compared to control animals, IL-4 content was elevated in the fetal portion of the placenta in rats exposed to air pollution before and during pregnancy. Increased IL-4 suggests that a placental inflammatory reaction may have occurred in response to exposure to fine particulate matter and that this cytokine was responsible, among possibly others factors, for resolution of the inflammatory reaction. PMID:25481569

  16. Development of Metal Substrate for Denox Catalysts and Particulate Trap

    SciTech Connect

    Pollard, Michael; Habeger, Craig; Frary, Megan; Haines, Scott; Fluharty, Amy; Dakhoul, Youssef; Carr, Michael; Park, Paul; Stefanick, Matthew; DaCosta, Herbert; Balmer-Millar, M Lou; Readey, Michael; McCluskey, Philip

    2005-12-31

    The objective of this project was to develop advanced metallic catalyst substrate materials and designs for use in off-highway applications. The new materials and designs will be used as catalyst substrates and diesel particulate traps. They will increase durability, reduce flow resistance, decrease time to light-off, and reduce cost relative to cordierite substrates. Metallic catalyst substrates are used extensively for diesel oxidation catalysts and have the potential to be used in other catalytic systems for diesel engines. Metallic substrates have many advantages over ceramic materials including improved durability and resistance to thermal shock and vibration. However, the cost is generally higher than cordierite. The most common foil material used for metallic substrates is FeCr Alloy, which is expensive and has temperature capabilities beyond what is necessary for diesel applications. The first task in the project was Identification and Testing of New Materials. In this task, several materials were analyzed to determine if a low cost substitute for FeCr Alloy was available or could be developed. Two materials were identified as having lower cost while showing no decrease in mechanical properties or oxidation resistance at the application temperatures. Also, the ability to fabricate these materials into a finished substrate was not compromised, and the ability to washcoat these materials was satisfactory. Therefore, both candidate materials were recommended for cost savings depending on which would be less expensive in production quantities. The second task dealt with the use of novel flow designs to improve the converter efficiency while possibly decreasing the size of the converter to reduce cost even more. A non-linear flow path was simulated to determine if there would be an increase in efficiency. From there, small samples were produced for bench testing. Bench tests showed that the use of non-linear channels significantly reduced the light

  17. EVALUATION OF CERAMIC FILTERS FOR HIGH-TEMPERATURE/HIGH-PRESSURE FINE PARTICULATE CONTROL

    EPA Science Inventory

    High temperature gas turbines used to generate electric power require gas streams virtually free of particulate matter. Gas streams from high temperature, high pressure coal processes, such as low Btu gasification and pressurized fluidized bed combustion, require considerable par...

  18. INVERTING CASCADE IMPACTOR DATA FOR SIZE-RESOLVED CHARACTERIZATION OF FINE PARTICULATE SOURCE EMISSIONS

    EPA Science Inventory

    Cascade impactors are particularly useful in determining the mass size distributions of particulate and individual chemical species. The impactor raw data must be inverted to reconstruct a continuous particle size distribution. An inversion method using a lognormal function for p...

  19. Acute Effects of Fine Particulate Air Pollution on ST Segment Height: A Longitudinal Study

    EPA Science Inventory

    Background: The mechanisms for the relationship between particulate air pollution and cardiac disease are not fully understood. Air pollution-induced myocardial ischemia is one of the potentially important mechanisms. Methods: We investigate the acute effects and the time cours...

  20. Cardiovascular Effects of Concentrated Ambient Fine and Ultrafine Particulate Matter Exposure in Healthy Older Volunteers

    EPA Science Inventory

    Rationale: Epidemiological studies have shown an association between the incidence of adverse cardiovascular effects and exposure to ambient particulate matter (PM). Advanced age is among the factors identified as conferring susceptibility to PM inhalation. In order to characteri...

  1. Mechanisms governing fine particulate emissions from coal flames. Quarterly technical progress reports Nos. 3 and 4, April 1, 1988--September 30, 1988

    SciTech Connect

    Clark, W.D.; Chen, S.L.; Kramlich, J.C.; Newton, G.H.; Seeker, W.R.; Samuelsen, G.S.

    1988-11-01

    The overall objectives of this project are to provide a basic understanding of the principal processes that govern fine particulate formation in pulverized coal flames, and develop procedures to predict the levels of emission of fine particles from pulverized coal combustors. (VC)

  2. Associations between ambient, personal, and indoor exposure to fine particulate matter constituents in Dutch and Finnish panels of cardiovascular patients

    PubMed Central

    Janssen, N; Lanki, T; Hoek, G; Vallius, M; de Hartog, J J; Van Grieken, R; Pekkanen, J; Brunekreef, B

    2005-01-01

    Aims: To assess the relation between ambient, indoor, and personal levels of PM2.5 and its elemental composition for elderly subjects with cardiovascular disease. Methods: In the framework of a European Union funded study, panel studies were conducted in Amsterdam, the Netherlands and Helsinki, Finland. Outdoor PM2.5 concentrations were measured at a fixed site. Each subject's indoor and personal PM2.5 exposure was measured biweekly for six months, during the 24 hour period preceding intensive health measurements. The absorbance of PM2.5 filters was measured as a marker for diesel exhaust. The elemental content of more than 50% of the personal and indoor samples and all corresponding outdoor samples was measured using energy dispersive x ray fluorescence. Results: For Amsterdam and Helsinki respectively, a total of 225 and 238 personal, and 220 and 233 indoor measurements, were analysed from 36 and 46 subjects. For most elements, personal and indoor concentrations were lower than and highly correlated with outdoor concentrations. The highest correlations (median r>0.9) were found for sulfur and particle absorbance, which both represent fine mode particles from outdoor origin. Low correlations were observed for elements that represent the coarser part of the PM2.5 particles (Ca, Cu, Si, Cl). Conclusions: The findings of this study provide support for using fixed site measurements as a measure of exposure to particulate matter in time series studies linking the day to day variation in particulate matter to the day to day variation in health endpoints, especially for components of particulate matter that are generally associated with fine particles and have few indoor sources. The high correlation for absorbance of PM2.5 documents that this applies to particulate matter from combustion sources, such as diesel vehicles, as well. PMID:16299096

  3. SYSTEMIC TRANSLOCATION OF PARTICULATE MATTER-ASSOCIATED METALS FOLLOWING A SINGLE INTRATRACHEAL INSTILLATION IN RATS

    EPA Science Inventory

    Respirable ambient particulate matter (PM) exposure has been associated with an increased risk of cardiovascular disease. Direct translocation of PM associated metals from the lungs into systemic circulation may be partly responsible. We measured elemental content of lungs, pla...

  4. EFFECTS OF METALS BOUND TO PARTICULATE MATTER ON HUMAN LUNG EPITHELIAL CELLS

    EPA Science Inventory

    While focusing on coal ash and its metal content, the investigators expect to find evidence that transition metals (metals that can participate in possibly toxic oxidative reactions) associated with particulate matter are released within lung epithelial cells and catalyze t...

  5. Characterization of Fine Particulate Matter (PM) and Secondary PM Precursor Gases in the Mexico City Metropolitan Area

    DOE R&D Accomplishments Database

    Molina, Luisa T.; Volkamer, Rainer; de Foy, Benjamin; Lei, Wenfang; Zavala, Miguel; Velasco, Erik; Molina; Mario J.

    2008-10-31

    This project was one of three collaborating grants funded by DOE/ASP to characterize the fine particulate matter (PM) and secondary PM precursors in the Mexico City Metropolitan Area (MCMA) during the MILAGRO Campaign. The overall effort of MCMA-2006, one of the four components, focused on i) examination of the primary emissions of fine particles and precursor gases leading to photochemical production of atmospheric oxidants and secondary aerosol particles; ii) measurement and analysis of secondary oxidants and secondary fine PM production, with particular emphasis on secondary organic aerosol (SOA), and iii) evaluation of the photochemical and meteorological processes characteristic of the Mexico City Basin. The collaborative teams pursued the goals through three main tasks: i) analyses of fine PM and secondary PM precursor gaseous species data taken during the MCMA-2002/2003 campaigns and preparation of publications; ii) planning of the MILAGRO Campaign and deployment of the instrument around the MCMA; and iii) analysis of MCMA-2006 data and publication preparation.

  6. An Integrated Risk Function for Estimating the Global Burden of Disease Attributable to Ambient Fine Particulate Matter Exposure

    PubMed Central

    Pope, C. Arden; Ezzati, Majid; Olives, Casey; Lim, Stephen S.; Mehta, Sumi; Shin, Hwashin H.; Singh, Gitanjali; Hubbell, Bryan; Brauer, Michael; Anderson, H. Ross; Smith, Kirk R.; Balmes, John R.; Bruce, Nigel G.; Kan, Haidong; Laden, Francine; Prüss-Ustün, Annette; Turner, Michelle C.; Gapstur, Susan M.; Diver, W. Ryan; Cohen, Aaron

    2014-01-01

    Background: Estimating the burden of disease attributable to long-term exposure to fine particulate matter (PM2.5) in ambient air requires knowledge of both the shape and magnitude of the relative risk (RR) function. However, adequate direct evidence to identify the shape of the mortality RR functions at the high ambient concentrations observed in many places in the world is lacking. Objective: We developed RR functions over the entire global exposure range for causes of mortality in adults: ischemic heart disease (IHD), cerebrovascular disease (stroke), chronic obstructive pulmonary disease (COPD), and lung cancer (LC). We also developed RR functions for the incidence of acute lower respiratory infection (ALRI) that can be used to estimate mortality and lost-years of healthy life in children < 5 years of age. Methods: We fit an integrated exposure–response (IER) model by integrating available RR information from studies of ambient air pollution (AAP), second hand tobacco smoke, household solid cooking fuel, and active smoking (AS). AS exposures were converted to estimated annual PM2.5 exposure equivalents using inhaled doses of particle mass. We derived population attributable fractions (PAFs) for every country based on estimated worldwide ambient PM2.5 concentrations. Results: The IER model was a superior predictor of RR compared with seven other forms previously used in burden assessments. The percent PAF attributable to AAP exposure varied among countries from 2 to 41 for IHD, 1 to 43 for stroke, < 1 to 21 for COPD, < 1 to 25 for LC, and < 1 to 38 for ALRI. Conclusions: We developed a fine particulate mass–based RR model that covered the global range of exposure by integrating RR information from different combustion types that generate emissions of particulate matter. The model can be updated as new RR information becomes available. Citation: Burnett RT, Pope CA III, Ezzati M, Olives C, Lim SS, Mehta S, Shin HH, Singh G, Hubbell B, Brauer M, Anderson HR

  7. AIRWAY EPITHELIAL EFFECTS OF PARTICULATE POLLUTANTS: ROLE OF METAL INTERACTIONS

    EPA Science Inventory

    Numerous epidemiologic studies have demonstrated positive associations with particulate matter (PM) air pollution and daily respiratory morbidity - including exacerbations of asthma. Data are needed to elucidate which PM subcomponents may be mediating disease exacerbation in ind...

  8. Chemical characteristics and source apportionment of fine particulate organic carbon in Hong Kong during high particulate matter episodes in winter 2003

    NASA Astrophysics Data System (ADS)

    Li, Yun-Chun; Yu, Jian Zhen; Ho, Steven Sai Hang; Schauer, James J.; Yuan, Zibing; Lau, Alexis K. H.; Louie, Peter K. K.

    2013-02-01

    PM2.5 samples were collected at six general stations and one roadside station in Hong Kong in two periods of high particulate matter (PM) in 2003 (27 October-4 November and 30 November-13 December). The highest PM2.5 reached 216 μg m- 3 during the first high PM period and 113 μg m- 3 during the second high PM period. Analysis of synoptic weather conditions identified individual sampling days under dominant influence of one of three types of air masses, that is, local, regional and long-range transported (LRT) air masses. Roadside samples were discussed separately due to heavy influences from vehicular emissions. This research examines source apportionment of fine organic carbon (OC) and contribution of secondary organic aerosol on high PM days under different synoptic conditions. Six primary OC (POC) sources (vehicle exhaust, biomass burning, cooking, cigarette smoke, vegetative detritus, and coal combustion) were identified on the basis of characteristic organic tracers. Individual POC source contributions were estimated using chemical mass balance model. In the roadside and the local samples, OC was dominated by the primary sources, accounting for more than 74% of OC. In the samples influenced by regional and LRT air masses, secondary OC (SOC), which was approximated to be the difference between the total measured OC and the apportioned POC, contributed more than 54% of fine OC. SOC was highly correlated with water-soluble organic carbon and sulfate, consistent with its secondary nature.

  9. Pulsed high energy synthesis of fine metal powders

    NASA Technical Reports Server (NTRS)

    Witherspoon, F. Douglas (Inventor); Massey, Dennis W. (Inventor)

    1999-01-01

    Repetitively pulsed plasma jets generated by a capillary arc discharge at high stagnation pressure (>15,000 psi) and high temperature (>10,000 K) are utilized to produce 0.1-10 .mu.m sized metal powders and decrease cost of production. The plasma jets impact and atomize melt materials to form the fine powders. The melt can originate from a conventional melt stream or from a pulsed arc between two electrodes. Gas streams used in conventional gas atomization are replaced with much higher momentum flux plasma jets. Delivering strong incident shocks aids in primary disintegration of the molten material. A series of short duration, high pressure plasma pulses fragment the molten material. The pulses introduce sharp velocity gradients in the molten material which disintegrates into fine particles. The plasma pulses have peak pressures of approximately one kilobar. The high pressures improve the efficiency of disintegration. High gas flow velocities and pressures are achieved without reduction in gas density. Repetitively pulsed plasma jets will produce powders with lower mean size and narrower size distribution than conventional atomization techniques.

  10. HEAVY DUTY DIESEL FINE PARTICULATE MATTER EMISSIONS: DEVELOPMENT AND APPLICATION OF ON-ROAD MEASUREMENT CAPABILITIES

    EPA Science Inventory

    The report discusses EPA's On-Road Diesel Emissions Characterization Facility, which has been collecting real-world gaseous emissions data for the past 6 years. It has recently undergone extensive modifications to enhance its particulate matter (PM) measurement capabilities, with...

  11. Species of fine particulate matter and the risk of preterm birth

    EPA Science Inventory

    Particulate matter (PM) has been variably associated with preterm birth (PTB), but the roles of PM species have been less studied. We estimated risk of birth in 4 preterm categories (risks reported as PTBs per 106 pregnancies; PTB categories = gestational age of 20-27; 28-31; 32-...

  12. Characteristics of Fine Particulate Carbonaceous Aerosol at Two Remote Sites in Central Asia

    EPA Science Inventory

    Central Asia is a relatively understudied region of the world in terms of characterizing ambient particulate matter (PM) and quantifying source impacts of PM at receptor locations, although it is speculated to have an important role as a source region for long-range transport of ...

  13. FLUX FORCE/CONDENSATION SCRUBBING FOR COLLECTING FINE PARTICULATE FROM IRON MELTING CUPOLAS

    EPA Science Inventory

    The report gives results of a 6-month test, demonstrating the industrial feasibility of a flux force/condensation (F/C) scrubbing system for controlling particulate emissions from an iron and steel melting cupola. The demonstration, conducted by A.P.T., Inc., under EPA contract, ...

  14. 77 FR 12526 - Approval and Promulgation of Implementation Plans; Georgia; Atlanta; Fine Particulate Matter 2002...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-01

    ... Particulate Matter 2002 Base Year Emissions Inventory AGENCY: Environmental Protection Agency (EPA). ACTION..., Pesticides and Toxics Management Division, U.S. Environmental Protection Agency, Region 4, 61 Forsyth Street... Planning Branch, Air, Pesticides and Toxics Management Division, U.S. Environmental Protection......

  15. Ambient air particulate concentrations and metallic elements principal component analysis at Taichung Harbor (TH) and WuChi Traffic (WT) near Taiwan Strait during 2004-2005.

    PubMed

    Fang, Guor-Cheng; Wu, Yuh-Shen; Wen, Chih-Chung; Huang, Shih-Han; Rau, Jui-Yeh

    2006-09-01

    The purpose of this study is to characterize metallic elements associated with atmospheric particulate matter of total suspended particulate (TSP), fine particle (particle matter with aerodynamical diameter <2.5 microm, PM(2.5)), coarse particle (particle matter with aerodynamical diameter 2.5-10 microm, PM (2.5-10)) at the Taichung Harbor (TH) and WuChi Traffic (WT) sampling site of central Taiwan during March 2004 to February 2005. The result indicated the average total suspended particulate concentration in 1 year was 157.31 and 112.58 microg m(-3) at TH and WT sampling site, respectively. Fine particle (PM(2.5)) size was the dominant species at TH and WT sampling site. In TH sampling site, higher correlation coefficient was observed on total suspended particulates of metallic elements Fe and Zn. And in WT sampling site, higher correlation coefficients displayed on total suspended particulates of metallic elements Fe and Zn, Fe and Mn. Ambient airborne particle principal component analysis of metallic metals was used to identify the possible pollutant sources in this study. At the TH sampling site, 50.81% of the total variance of the data was observed in factor 1. Higher loading of Fe (0.86), Zn (0.79), Pb (0.76), and Mn (0.68) were contributed by traffic emission and the soil source. At the WT sampling site, factor 1 explained 53.74% of the total variance of the data and had high loading for Zn (0.86) and Cu (0.85), which were identified as industrial/traffic emission sources. PMID:16616415

  16. ENHANCED CHARACTERIZATION OF AMBIENT FINE PARTICULATE MATTER THROUGH COMPLEMENTARY DATA INTEGRATION AND IMPROVED MEASUREMENT INSTRUMENTATION

    EPA Science Inventory

    Improvements in fine particle characterization will allow for a more complete understanding of the processes particle in the atmosphere undergo. The integration of complementary measurements into a compact mathematical form, allows for ease of transfer from particle measureme...

  17. Characterization of chemical composition and concentration of fine particulate matter during a transit strike in Ottawa, Canada

    NASA Astrophysics Data System (ADS)

    Ding, Luyi; Chan, Tak Wai; Ke, Fu; Wang, Daniel K. W.

    2014-06-01

    From December 10, 2008 to February 9, 2009, a strike stopped the public transit services in Ottawa, Ontario, Canada. To understand the changes in air quality associated with the transit strike, the chemical composition and concentration of the fine particulate matter with diameters less than 2.5 microns (PM2.5), collected before, during, and after the transit strike period, were evaluated. The collected PM2.5 samples were analyzed to determine the particulate matter mass, the levels of organic carbon (OC) and elemental carbon (EC), as well as the particulate non-polar semi-volatiles, e.g., polycyclic aromatic hydrocarbons (PAHs), hopanes, and steranes. Particle number size distributions measured during and after the transit strike period were also compared. Results indicated that during transit strike months, particle number size distributions were entirely dominated by nucleation mode particles leading to an increase in total particle number concentration by about 79%. In addition, particulate matter, organic carbon, and elemental carbon mass concentrations also increased by over 100%. The average total PAH levels during the strike months were higher by a factor of about 7. Elevated concentrations of high molecular weight PAHs (i.e., PAH with 5 and 6 rings) observed during the strike months suggested that there were more gasoline-powered vehicles on the roads over that period. The level of carcinogenic benzo[a]pyrene was higher by a factor of 5. Mass concentrations of hopanes and steranes were 30-98% higher during the strike months than non-strike months and exhibited strong correlations with EC suggesting the primary origin of these compounds. These results indicated that the increased traffic volume due to the passenger vehicles and the change in driving pattern during the transit strike period reduced the local air quality.

  18. The Metal Centers of Particulate Methane Monooxygenase from Methylosinus trichosporium OB3b

    SciTech Connect

    Hakemian,A.; Kondapalli, K.; Telser, J.; Hoffman, B.; Stemmler, T.; Rosenzweig, A.

    2008-01-01

    Particulate methane monooxygenase (pMMO) is a membrane-bound metalloenzyme that oxidizes methane to methanol in methanotrophic bacteria. The nature of the pMMO active site and the overall metal content are controversial, with spectroscopic and crystallographic data suggesting the presence of a mononuclear copper center, a dinuclear copper center, a trinuclear center, and a diiron center or combinations thereof. Most studies have focused on pMMO from Methylococcus capsulatus (Bath). pMMO from a second organism, Methylosinus trichosporium OB3b, has been purified and characterized by spectroscopic and crystallographic methods. Purified M. trichosporium OB3b pMMO contains 2 copper ions per 100 kDa protomer. Electron paramagnetic resonance (EPR) spectroscopic parameters indicate that type 2 Cu(II) is present as two distinct species. Extended X-ray absorption fine structure (EXAFS) data are best fit with oxygen/nitrogen ligands and reveal a Cu-Cu interaction at 2.52 Angstroms. Correspondingly, X-ray crystallography of M. trichosporium OB3b pMMO shows a dinuclear copper center, similar to that observed previously in the crystal structure of M. capsulatus (Bath) pMMO. There are, however, significant differences between the pMMO structures from the two organisms. A mononuclear copper center present in M. capsulatus (Bath) pMMO is absent in M. trichosporium OB3b pMMO, whereas a metal center occupied by zinc in the M. capsulatus (Bath) pMMO structure is occupied by copper in M. trichosporium OB3b pMMO. These findings extend previous work on pMMO from M. capsulatus (Bath) and provide new insight into the functional importance of the different metal centers.

  19. The metal centers of particulate methane monooxygenase from Methylosinus trichosporium OB3b.

    PubMed

    Hakemian, Amanda S; Kondapalli, Kalyan C; Telser, Joshua; Hoffman, Brian M; Stemmler, Timothy L; Rosenzweig, Amy C

    2008-07-01

    Particulate methane monooxygenase (pMMO) is a membrane-bound metalloenzyme that oxidizes methane to methanol in methanotrophic bacteria. The nature of the pMMO active site and the overall metal content are controversial, with spectroscopic and crystallographic data suggesting the presence of a mononuclear copper center, a dinuclear copper center, a trinuclear center, and a diiron center or combinations thereof. Most studies have focused on pMMO from Methylococcus capsulatus (Bath). pMMO from a second organism, Methylosinus trichosporium OB3b, has been purified and characterized by spectroscopic and crystallographic methods. Purified M. trichosporium OB3b pMMO contains approximately 2 copper ions per 100 kDa protomer. Electron paramagnetic resonance (EPR) spectroscopic parameters indicate that type 2 Cu(II) is present as two distinct species. Extended X-ray absorption fine structure (EXAFS) data are best fit with oxygen/nitrogen ligands and reveal a Cu-Cu interaction at 2.52 A. Correspondingly, X-ray crystallography of M. trichosporium OB3b pMMO shows a dinuclear copper center, similar to that observed previously in the crystal structure of M. capsulatus (Bath) pMMO. There are, however, significant differences between the pMMO structures from the two organisms. A mononuclear copper center present in M. capsulatus (Bath) pMMO is absent in M. trichosporium OB3b pMMO, whereas a metal center occupied by zinc in the M. capsulatus (Bath) pMMO structure is occupied by copper in M. trichosporium OB3b pMMO. These findings extend previous work on pMMO from M. capsulatus (Bath) and provide new insight into the functional importance of the different metal centers. PMID:18540635

  20. Surface and bulk characterization of particulates in fine-coal processing

    SciTech Connect

    Narayanan, K.S.

    1989-01-01

    An attempt is made to delineate the effects of composition, chemistry and oxidation of heterogeneous coal particulates, of different ranks and origins, on their wettability and floatability. The wetting characteristics of particulate coal samples are assessed using a relatively new film flotation technique, since it characterizes the distribution of lyophobic/lyophilic sites of an assembly of coal particles as encountered in a practical processing environment. The film flotation tests yield a wetting tension distribution diagram and an average critical wetting tension ({gamma}c), which can be used as a measure of hydrophobicity. The technique has been validated by determining the {gamma}c value (26-28 mN/m) for a homogeneous paraffin wax surface using wax-coated coal and other mineral particulates. The {gamma}c values for some of the high-ash and oxidized coals samples are estimated by combining the distribution curves of a number of as received and oxidized coal samples into a single curve by a normalization procedure, since they did not yield a complete distribution curve due to their hydrophilic nature. The film flotation results are compared with micro-scale flotation results obtained with Hallimond tube and vacuum flotation test methods. The Hallimond tube experiments using methanol solutions exhibit a frothing effect at low alcohol concentration and an entrainment effect at high concentrations. Vacuum flotation experiments using salt solutions correlate well with the film flotation results. The floatability of coals decreases with increasing {gamma}c values indicating the ability of film flotation to relate to coal floatability. In conclusion, film flotation appears to be a sensitive technique to delineate the surface wettability and floatability of heterogeneous coal particulates.

  1. Development of two fine particulate matter standard reference materials (<4 μm and <10 μm) for the determination of organic and inorganic constituents.

    PubMed

    Schantz, Michele M; Cleveland, Danielle; Heckert, N Alan; Kucklick, John R; Leigh, Stefan D; Long, Stephen E; Lynch, Jennifer M; Murphy, Karen E; Olfaz, Rabia; Pintar, Adam L; Porter, Barbara J; Rabb, Savelas A; Vander Pol, Stacy S; Wise, Stephen A; Zeisler, Rolf

    2016-06-01

    Two new Standard Reference Materials (SRMs), SRM 2786 Fine Particulate Matter (<4 μm) and SRM 2787 Fine Particulate Matter (<10 μm) have been developed in support of the US Environmental Protection Agency's National Ambient Air Quality Standards for particulate matter (PM). These materials have been characterized for the mass fractions of selected polycyclic aromatic hydrocarbons (PAHs), nitrated PAHs, brominated diphenyl ether (BDE) congeners, hexabromocyclododecane (HBCD) isomers, sugars, polychlorinated dibenzo-p-dioxin (PCDD) and dibenzofuran (PCDF) congeners, and inorganic constituents, as well as particle-size characteristics. These materials are the first Certified Reference Materials available to support measurements of both organic and inorganic constituents in fine PM. In addition, values for PAHs are available for RM 8785 Air Particulate Matter on Filter Media. As such, these SRMs will be useful as quality control samples for ensuring compatibility of results among PM monitoring studies and will fill a void to assess the accuracy of analytical methods used in these studies. Graphical Abstract Removal of PM from filter for the preparation of SRM 2786 Fine Particulate Matter. PMID:27074778

  2. Changes to the structure of blood clots formed in the presence of fine particulate matter

    NASA Astrophysics Data System (ADS)

    Metassan, Sofian; Ariens, Robert A. S.; Scott, D. Julian; Routledge, Michael N.

    2009-02-01

    Both long-term and short-term exposure (one to two hours) to particulate matter are associated with morbidity and mortality caused by cardiovascular diseases. The underlying mechanisms leading to cardiovascular events are unclear, however, changes to blood coagulability upon exposure to ultrafine particulate matter (UFPM, the smallest of which can enter the circulation) is a plausible mechanism. Objectives: This study aims to investigate the direct effects of particulate matter on fibrin polymerization, lateral aggregation and the formation of fibrin network structure. Methods: Standard Urban Particulate Matter (PM) was suspended in Tris buffer centrifuged and filtered with <200nm filter to obtain ultrafine PM or their water-soluble components. Purified normal fibrinogen was made to clot by adding thrombin and calcium chloride in the presence of varying concentrations of PM. Permeation properties (Darcy constant [Ks]) and turbidity of clots were measured to investigate the effects on flow-rate, pore size, and fibrin polymerization. In addition, confocal microscopy was performed to study detailed clot structure. Results: Total PM increased the Ks of clots in a dose dependant manner (Ks = 4.4, 6.9 and 13.2 x 10-9 cm2 for 0, 50 and 100 |ag/ml total PM concentrations, respectively). Filtered PM also produced a significant increase in Ks at PM concentration of 17 |ag/ml. Final turbidity measurements at 20min were obtained for varying concentrations of PM. Maximum optical density (OD) for 1 mg/ml fibrinogen at 0, 50, 100 and 200 |ag/ml total PM concentrations were 0.39, 0.42, 0.45 and 0.46, respectively. The maximum OD for 0, 17, 34 and 68 |ag/ml filtered PM concentrations were 0.39, 0.42 0.47 and 0.51, respectively, suggesting an increase in fibre diameter with increasing particulate concentration. The lag phase was significantly shorter and the rate of polymerisation was significantly faster in the presence of 68 |ag/ml filtered PM. Confocal microscopy results showed

  3. Chemical Composition and Emission Sources of the Fine Particulate Matters in a Southeast Asian Mega City (Dhaka, Bangladesh)

    NASA Astrophysics Data System (ADS)

    Salam, Abdus

    2016-04-01

    Air pollution has significant impact on human health, climate change, agriculture, visibility reduction, and also on the atmospheric chemistry. There are many studies already reported about the direct relation of the human mortality and morbidity with the increase of the atmospheric particulate matters. Especially, fine particulate matters can easily enter into the human respiratory system and causes many diseases. Particulate matters have the properties to absorb the solar radiation and impact on the climate. Dhaka, Bangladesh is a densely populated mega-city in the world. About 16 million inhabitants are living within an area of 360 square kilometers. Air quality situation has been degrading due to unplanned growth, increasing vehicles, severe traffic jams, brick kilns, industries, construction, and also transboundary air pollution. A rapidly growing number of vehicles has worsen the air quality in spite of major policy interventions, e.g., ban of two-stroke and three-wheeled vehicles, phase out of 20 years old vehicles, conversion to compressed natural gas (CNGs), etc. Introduction of CNGs to reduce air pollution was not the solution for fine particles at all, as evidence shows that CNGs and diesel engines are the major sources of fine particles. High concentration of the air pollutants in Dhaka city such as PM, carbonaceous species (black and organic carbon), CO, etc. has already been reported. PM2.5 mass, chemical composition (e.g., BC, OC, SO42-, NO3-, trace elements, etc.), aerosol Optical Depth (AOD) and emission sources of our recent measurements at the highly polluted south East Asian Mega city (Dhaka) Bangladesh will be presented in the conference. PM2.5 samples were collected on filters with Digital PM2.5 sampler (Switzerland) and Air photon, USA. BC was measured from filters (with thermal and optical method) and also real time with an Aethalometer AE42 (Magee Scitific., USA). Water soluble ions were determined from filters with ion chromatogram. AOD

  4. Personal exposure assessment to particulate metals using a paper-based analytical device

    NASA Astrophysics Data System (ADS)

    Cate, David; Volckens, John; Henry, Charles

    2013-03-01

    The development of a paper-based analytical device (PAD) for assessing personal exposure to particulate metals will be presented. Human exposure to metal aerosols, such as those that occur in the mining, construction, and manufacturing industries, has a significant impact on the health of our workforce, costing an estimated $10B in the U.S and causing approximately 425,000 premature deaths world-wide each year. Occupational exposure to particulate metals affects millions of individuals in manufacturing, construction (welding, cutting, blasting), and transportation (combustion, utility maintenance, and repair services) industries. Despite these effects, individual workers are rarely assessed for their exposure to particulate metals, due mainly to the high cost and effort associated with personal exposure measurement. Current exposure assessment methods for particulate metals call for an 8-hour filter sample, after which time, the filter sample is transported to a laboratory and analyzed by inductively-coupled plasma (ICP). The time from sample collection to reporting is typically weeks and costs several hundred dollars per sample. To exacerbate the issue, method detection limits suffer because of sample dilution during digestion. The lack of sensitivity hampers task-based exposure assessment, for which sampling times may be tens of minutes. To address these problems, and as a first step towards using microfluidics for personal exposure assessment, we have developed PADs for measurement of Pb, Cd, Cr, Fe, Ni, and Cu in aerosolized particulate matter.

  5. SENSITIVITY ANALYSIS OF RELMAP (REGIONAL LAGRANGIAN MODEL OF AIR POLLUTION) INVOLVING FINE AND COARSE PARTICULATE MATTER

    EPA Science Inventory

    The REgional Lagrangian Model of air pollution (RELMAP) is a mass-conserving, regional scale, Lagrangian model that simulates ambient concentrations as well as wet and dry deposition of SO2, SO4(2-), and more recently fine (diameters<2.5 micrometers) and coarse (2.5 < diameter < ...

  6. SOURCE SAMPLING FINE PARTICULATE MATTER--INSTITUTIONAL OIL-FIRED BOILER

    EPA Science Inventory

    EPA seeks to understand the correlation between ambient fine PM and adverse human health effects, and there are no reliable emission factors to use for estimating PM2.5 or NH3. The most common source of directly emitted PM2.5 is incomplete combustion of fossil or biomass fuels. M...

  7. Fine particulate matter, temperature, and lung function in healthy adults: findings from the HVNR study.

    PubMed

    Wu, Shaowei; Deng, Furong; Hao, Yu; Wang, Xin; Zheng, Chanjuan; Lv, Haibo; Lu, Xiuling; Wei, Hongying; Huang, Jing; Qin, Yu; Shima, Masayuki; Guo, Xinbiao

    2014-08-01

    Both ambient particulate air pollution and temperature alterations have been associated with adverse human health effects, but the interactive effect of ambient particulate and temperature on human health remains uncertain. The present study investigated the effects of ambient particulate matter with an aerodynamic diameter⩽2.5 μm (PM2.5) and temperature on human lung function simultaneously in a panel of 21 healthy university students from the Healthy Volunteer Natural Relocation (HVNR) study in the context of suburban/urban air pollution in Beijing, China. Each study subject used an electronic diary meter to record peak expiratory flow (PEF) and forced expiratory volume in 1s (FEV1) twice a day for 6 months in three periods before and after relocating from a suburban area to an urban area with changing ambient PM2.5 and temperature levels in Beijing. Hourly-averaged environmental data were obtained from central air-monitoring sites. Exposure effects were estimated using generalized linear mixed models controlling for potential confounders. Study subjects provided 6494 daily measurements on PEF and 6460 daily measurements on FEV1 over the study. PM2.5 was associated with reductions in evening PEF and morning/evening FEV1 whereas temperature was associated with reductions in morning PEF. The estimated PM2.5 effects on evening PEF and morning/evening FEV1 in the presence of high temperature were generally stronger than those in the presence of low temperature, and the estimated temperature effects on morning/evening PEF and morning FEV1 in the presence of high PM2.5 were also generally stronger than those in the presence of low PM2.5. For example, there were a 2.47% (95% confidence interval: -4.24, -0.69) reduction and a 0.78% (95% confidence interval: -1.59, 0.03) reduction in evening PEF associated with an interquartile range increase (78.7 μg/m(3)) in PM2.5 at 4-d moving average in the presence of high temperature (⩾21.6 °C) and low temperature (<21.6

  8. Fine Particulate Matter, Residential Proximity to Major Roads, and Markers of Small Vessel Disease in a Memory Study Population

    PubMed Central

    Wilker, Elissa H.; Martinez-Ramirez, Sergi; Kloog, Itai; Schwartz, Joel; Mostofsky, Elizabeth; Koutrakis, Petros; Mittleman, Murray A.; Viswanathan, Anand

    2016-01-01

    Background Long-term exposure to ambient air pollution has been associated with impaired cognitive function and vascular disease in older adults, but little is known about these associations among people with concerns about memory loss. Objective To examine associations between exposures to fine particulate matter and residential proximity to major roads and markers of small vessel disease. Methods From 2004—2010, 236 participants in the Massachusetts Alzheimer’s Disease Research Center Longitudinal Cohort participated in neuroimaging studies. Residential proximity to major roads and estimated 2003 residential annual average of fine particulate air pollution (PM2.5) were linked to measures of brain parenchymal fraction (BPF), white matter hyperintensities (WMH), and cerebral microbleeds. Associations were modeled using linear and logistic regression and adjusted for clinical and lifestyle factors. Results In this population (median age [interquartile range]=74[12], 57% female) living in a region with median 2003 PM2.5 annual average below the current Environmental Protection Agency (EPA) standard, there were no associations between living closer to a major roadway or for a 2 μg/m3 increment in PM2.5 and smaller BPF, greater WMH volume, or a higher odds of microbleeds. However, a 2 μg/m3 increment in PM2.5 was associated with −0.19 (95% Confidence Interval (CI): −0.37, −0.005) lower natural log-transformed WMH volume. Other associations had wide confidence intervals. Conclusions In this population, where median 2003 estimated PM2.5 levels were below the current EPA standard, we observed no pattern of association between residential proximity to major roads or 2003 average PM2.5 and greater burden of small vessel disease or neurodegeneration. PMID:27372639

  9. A summary of the 2006 critical review - health effects of fine particulate air pollution: lines that connect

    SciTech Connect

    C. Arden Pope; Douglas Dockery

    2006-06-15

    In spite of continued gaps in knowledge, several important lines of research explored in the 2006 Critical Review in the Journal of the Air Waste Management Association, June 2006, pp 709-742 have substantially helped elucidate our understanding about human health effects of particulate air pollution. A comprehensive evaluation of the literature provides a compelling evidence that continued reductions in exposure to combustion-related fine particulate air pollution as indicated by PM 2.5 will result in improvements in cardiopulmonary health. Although research on the health effects of PM has been motivated largely by environmental health policy, in this review the progress of the science has been of more interest than debates over legally mandated standards. There has been substantial progress in the evaluation of the health effects of PM at different time-scales of exposure and in the exploration of the shape of the concentration-response function. The emerging evidence of PM-related cardiovascular health effects and the growing knowledge regarding inter connected general pahtophysiological pathways that link PM exposure with cardiopulmonary morbidity and mortality are fascinating results. These results have important scientific, medical, and public health implications that are much broader than debates over air quality Standard. Unsolved scientific issues dealing with the health effects of PM air pollution need not serve as sources of division, but as opportunities for cooperation and increased collaboration between epidemiology, toxicology, exposure assessment, and related disciplines. 40 refs., 4 figs.

  10. Characterization of chemical components and bioreactivity of fine particulate matter (PM2.5) during incense burning.

    PubMed

    Lui, K H; Bandowe, Benjamin A Musa; Ho, Steven Sai Hang; Chuang, Hsiao-Chi; Cao, Jun-Ji; Chuang, Kai-Jen; Lee, S C; Hu, Di; Ho, K F

    2016-06-01

    The chemical and bioreactivity properties of fine particulate matter (PM2.5) emitted during controlled burning of different brands of incense were characterized. Incenses marketed as being environmentally friendly emitted lower mass of PM2.5 particulates than did traditional incenses. However, the environmentally friendly incenses produced higher total concentrations of non-volatile polycyclic aromatic hydrocarbons (PAHs) and some oxygenated polycyclic aromatic hydrocarbons (OPAHs). Human alveolar epithelial A549 cells were exposed to the collected PM2.5, followed by determining oxidative stress and inflammation. There was moderate to strong positive correlation (R > 0.60, p < 0.05) between selected PAHs and OPAHs against oxidative-inflammatory responses. Strong positive correlation was observed between interleukin 6 (IL-6) and summation of total Group B2 PAHs/OPAHs (∑7PAHs/ΣOPAHs). The experimental data indicate that emissions from the environmentally friendly incenses contained higher concentrations of several PAH and OPAH compounds than did traditional incense. Moreover, these PAHs and OPAHs were strongly correlated with inflammatory responses. The findings suggest a need to revise existing regulation of such products. PMID:26994327

  11. Fine particulate matter source apportionment for the chemical speciation trends network site at Birmingham, Alabama, using positive matrix factorization

    SciTech Connect

    Baumann, K.; Jayanty, R.K.; Flanagan, J.B.

    2008-01-15

    The Positive Matrix Factorization (PMF) receptor model version 1.1 was used with data from the fine particulate matter (PM2.5) Chemical Speciation Trends Network (STN) to estimate source contributions to ambient PM2.5 in a highly industrialized urban setting in the southeastern United States. Model results consistently resolved 10 factors that are interpreted as two secondary, five industrial, one motor vehicle, one road dust, and one biomass burning sources. It was found that most PMF factors did not cleanly represent single source types and instead are 'contaminated' by other sources. Secondary particulate matter formed by atmospheric processes, such as sulfate and secondary OC, contribute the majority of ambient PM2.5 and exhibit strong seasonality 37 {+-} 10% winter vs. 55 {+-} 16% summer average. Motor vehicle emissions constitute the biggest primary PM2.5 mass contribution. In summary, this study demonstrates the utility of the EC tracer method to effectively blank-correct the OC concentrations in the STN dataset. In addition, examination of the effect of input uncertainty estimates on model results indicates that the estimated uncertainties currently being provided with the STN data may be somewhat lower than the levels needed for optimum modeling results. An appendix , available to members on the website www.awma lists stationary sources of PM2.5 within 10 km of the NHBM site and PM2.5 emissions greater than 1 ton per year. 71 refs., 7 figs., 9 tabs.

  12. Ambient Fine Particulate Matter, Nitrogen Dioxide, and Term Birth Weight in New York, New York

    PubMed Central

    Savitz, David A.; Bobb, Jennifer F.; Carr, Jessie L.; Clougherty, Jane E.; Dominici, Francesca; Elston, Beth; Ito, Kazuhiko; Ross, Zev; Yee, Michelle; Matte, Thomas D.

    2014-01-01

    Building on a unique exposure assessment project in New York, New York, we examined the relationship of particulate matter with aerodynamic diameter less than 2.5 μm and nitrogen dioxide with birth weight, restricting the population to term births to nonsmokers, along with other restrictions, to isolate the potential impact of air pollution on growth. We included 252,967 births in 2008–2010 identified in vital records, and we assigned exposure at the residential location by using validated models that accounted for spatial and temporal factors. Estimates of association were adjusted for individual and contextual sociodemographic characteristics and season, using linear mixed models to quantify the predicted change in birth weight in grams related to increasing pollution levels. Adjusted estimates for particulate matter with aerodynamic diameter less than 2.5 μm indicated that for each 10-µg/m3 increase in exposure, birth weights declined by 18.4, 10.5, 29.7, and 48.4 g for exposures in the first, second, and third trimesters and for the total pregnancy, respectively. Adjusted estimates for nitrogen dioxide indicated that for each 10-ppb increase in exposure, birth weights declined by 14.2, 15.9, 18.0, and 18.0 g for exposures in the first, second, and third trimesters and for the total pregnancy, respectively. These results strongly support the association of urban air pollution exposure with reduced fetal growth. PMID:24218031

  13. Ambient fine particulate matter, nitrogen dioxide, and term birth weight in New York, New York.

    PubMed

    Savitz, David A; Bobb, Jennifer F; Carr, Jessie L; Clougherty, Jane E; Dominici, Francesca; Elston, Beth; Ito, Kazuhiko; Ross, Zev; Yee, Michelle; Matte, Thomas D

    2014-02-15

    Building on a unique exposure assessment project in New York, New York, we examined the relationship of particulate matter with aerodynamic diameter less than 2.5 μm and nitrogen dioxide with birth weight, restricting the population to term births to nonsmokers, along with other restrictions, to isolate the potential impact of air pollution on growth. We included 252,967 births in 2008-2010 identified in vital records, and we assigned exposure at the residential location by using validated models that accounted for spatial and temporal factors. Estimates of association were adjusted for individual and contextual sociodemographic characteristics and season, using linear mixed models to quantify the predicted change in birth weight in grams related to increasing pollution levels. Adjusted estimates for particulate matter with aerodynamic diameter less than 2.5 μm indicated that for each 10-µg/m(3) increase in exposure, birth weights declined by 18.4, 10.5, 29.7, and 48.4 g for exposures in the first, second, and third trimesters and for the total pregnancy, respectively. Adjusted estimates for nitrogen dioxide indicated that for each 10-ppb increase in exposure, birth weights declined by 14.2, 15.9, 18.0, and 18.0 g for exposures in the first, second, and third trimesters and for the total pregnancy, respectively. These results strongly support the association of urban air pollution exposure with reduced fetal growth. PMID:24218031

  14. Spatial interpolation of fine particulate matter concentrations using the shortest wind-field path distance.

    PubMed

    Li, Longxiang; Gong, Jianhua; Zhou, Jieping

    2014-01-01

    Effective assessments of air-pollution exposure depend on the ability to accurately predict pollutant concentrations at unmonitored locations, which can be achieved through spatial interpolation. However, most interpolation approaches currently in use are based on the Euclidean distance, which cannot account for the complex nonlinear features displayed by air-pollution distributions in the wind-field. In this study, an interpolation method based on the shortest path distance is developed to characterize the impact of complex urban wind-field on the distribution of the particulate matter concentration. In this method, the wind-field is incorporated by first interpolating the observed wind-field from a meteorological-station network, then using this continuous wind-field to construct a cost surface based on Gaussian dispersion model and calculating the shortest wind-field path distances between locations, and finally replacing the Euclidean distances typically used in Inverse Distance Weighting (IDW) with the shortest wind-field path distances. This proposed methodology is used to generate daily and hourly estimation surfaces for the particulate matter concentration in the urban area of Beijing in May 2013. This study demonstrates that wind-fields can be incorporated into an interpolation framework using the shortest wind-field path distance, which leads to a remarkable improvement in both the prediction accuracy and the visual reproduction of the wind-flow effect, both of which are of great importance for the assessment of the effects of pollutants on human health. PMID:24798197

  15. Spatial Interpolation of Fine Particulate Matter Concentrations Using the Shortest Wind-Field Path Distance

    PubMed Central

    Li, Longxiang; Gong, Jianhua; Zhou, Jieping

    2014-01-01

    Effective assessments of air-pollution exposure depend on the ability to accurately predict pollutant concentrations at unmonitored locations, which can be achieved through spatial interpolation. However, most interpolation approaches currently in use are based on the Euclidean distance, which cannot account for the complex nonlinear features displayed by air-pollution distributions in the wind-field. In this study, an interpolation method based on the shortest path distance is developed to characterize the impact of complex urban wind-field on the distribution of the particulate matter concentration. In this method, the wind-field is incorporated by first interpolating the observed wind-field from a meteorological-station network, then using this continuous wind-field to construct a cost surface based on Gaussian dispersion model and calculating the shortest wind-field path distances between locations, and finally replacing the Euclidean distances typically used in Inverse Distance Weighting (IDW) with the shortest wind-field path distances. This proposed methodology is used to generate daily and hourly estimation surfaces for the particulate matter concentration in the urban area of Beijing in May 2013. This study demonstrates that wind-fields can be incorporated into an interpolation framework using the shortest wind-field path distance, which leads to a remarkable improvement in both the prediction accuracy and the visual reproduction of the wind-flow effect, both of which are of great importance for the assessment of the effects of pollutants on human health. PMID:24798197

  16. Apportionment of ambient primary and secondary fine particulate matter at the Pittsburgh National Energy Laboratory particulate matter characterization site using positive matrix factorization and a potential source contributions function analysis

    SciTech Connect

    Donald V. Martello; Natalie J. Pekney; Richard R. Anderson

    2008-03-15

    Fine particulate matter (PM2.5) concentrations associated with 202 24-hr samples collected at the National Energy Technology Laboratory particulate matter characterization site in south Pittsburgh from October 1999 through September 2001 were used to apportion PM2.5 into primary and secondary contributions using Positive Matrix Factorization (PMF2). Input included the concentrations of PM2.5 mass determined with a Federal Reference Method (FRM) sampler, semi-volatile PM2.5 organic material, elemental carbon (EC), and trace element components of PM2.5. A total of 11 factors were identified. The results of potential source contributions function analysis using PMF2 factors and HYSPLIT-calculated back-trajectories were used to identify those factors associated with specific meteorological transport conditions. The 11 factors were identified as being associated with emissions from various specific regions and facilities including crustal material, gasoline combustion, diesel combustion, and three nearby sources high in trace metals. Three sources associated with transport from coal-fired power plants to the southeast, a combination of point sources to the northwest, and a steel mill and associated sources to the west were identified. In addition, two secondary-material-dominated sources were identified, one was associated with secondary products of local emissions and one was dominated by secondary ammonium sulfate transported to the NETL site from the west and southwest. Of these 11 factors, the four largest contributors to PM2.5 were the secondary transported material, local secondary material, diesel combustion emissions, and gasoline combustion emissions. 26 refs., 10 figs., 1 tab.

  17. TREATMENT OF HEAVY METALS IN STORMWATER USING WET POND AND WETLAND MESOCOSMS

    EPA Science Inventory

    Urban stormwater runoff is a significant source of suspended sediments and associated contaminants, including heavy metals, to receiving waterways. These metals are either dissolved or bound to particulates (coarse - >75 µm; fine particulates - <75 - 1µm; colloids - <1 µm). Inf...

  18. Characterization of Fine Particulate Matter (PM) and Secondary PM Precursor Gases in Mexico City

    SciTech Connect

    Dr. Charles E. Kolb Dr. Douglas R. Worsnop Dr. Manjula R. Canagaratna Dr. Scott C. Herndon Dr. John T. Jayne Dr. W. Berk Knighton Dr. Timothy B. Onasch Dr. Ezra C. Wood Dr. Miguel Zavala

    2008-03-31

    This project was one of three collaborating grants designed to understand the atmospheric chemistry and aerosol particle microphysics impacting air quality in the Mexico City Metropolitan Area (MCMA) and its urban plume. The overall effort, titled MCMA- 2006, focused on: 1) the primary emissions of fine particles and precursor gases leading to photochemical production of atmospheric oxidants and secondary aerosol particles and 2) the measurement and analysis of secondary oxidants and secondary fine particular matter (PM) production, with particular emphasis on secondary organic aerosol (SOA). MCAM-2006 pursued it goals through three main activities: 1) performance and publication of detailed analyses of extensive MCMA trace gas and fine PM measurements made by the collaborating groups and others during earlier MCMA field campaigns in 2002 and 2003; 2) deployment and utilization of extensive real-time trace gas and fine PM instrumentation at urban and downwind MCMA sites in support of the MAX-Mex/MILAGRO field measurements in March, 2006; and, 3) analyses of the 2006 MCMA data sets leading to further publications that are based on new data as well as insights from analysis and publication of the 2002/2003 field data. Thirteen archival publications were coauthored with other MCMA-2003 participants. Documented findings included a significantly improved speciated emissions inventory from on-road vehicles, a greatly enhanced understanding of the sources and atmospheric loadings of volatile organic compounds, a unique analysis of the high fraction of ambient formaldehyde from primary emission sources, a much more extensive knowledge of the composition, size distributions and atmospheric mass loadings of both primary and secondary fine PM, including the fact that the rate of MCMA SOA production greatly exceeded that predicted by current atmospheric models, and evaluations of significant errors that can arise from standard air quality monitors for ozone and nitrogen

  19. Respiratory disease and particulate air pollution in Santiago Chile: contribution of erosion particles from fine sediments.

    PubMed

    Garcia-Chevesich, Pablo A; Alvarado, Sergio; Neary, Daniel G; Valdes, Rodrigo; Valdes, Juan; Aguirre, Juan José; Mena, Marcelo; Pizarro, Roberto; Jofré, Paola; Vera, Mauricio; Olivares, Claudio

    2014-04-01

    Air pollution in Santiago is a serious problem every winter, causing thousands of cases of breathing problems within the population. With more than 6 million people and almost two million vehicles, this large city receives rainfall only during winters. Depending on the frequency of storms, statistics show that every time it rains, air quality improves for a couple of days, followed by extreme levels of air pollution. Current regulations focus mostly on PM10 and PM2.5, due to its strong influence on respiratory diseases. Though more than 50% of the ambient PM10s in Santiago is represented by soil particles, most of the efforts have been focused on the remaining 50%, i.e. particulate material originating from fossil and wood fuel combustion, among others. This document emphasizes the need for the creation of erosion/sediment control regulations in Chile, to decrease respiratory diseases on Chilean polluted cities. PMID:24485904

  20. Physical characterization of fine particulate matter inside the public transit buses fueled by biodiesel in Toledo, Ohio.

    PubMed

    Shandilya, Kaushik K; Kumar, Ashok

    2011-06-15

    This study presents the physical characteristics of fine particulate matter (PM) collected inside the urban-public transit buses in Toledo, OH. These buses run on 20% biodiesel blended with ultra-low sulfur diesel (ULSD) (B20). For risk analysis, it is crucial to know the modality of the size distribution and the shape factor of PM collected inside the bus. The number-size distribution, microstructure, and aspect ratio of fine PM filter samples collected in the urban-public transit buses were measured for three years (2007-2009), using an environmental scanning electron microscope (ESEM) coupled with energy dispersive X-ray spectrometry (EDX). Only the reproducible results from repeated experiments on ESEM and size distribution obtained by the GRIMM dust monitor were used in this study. The size distribution was found bi-modal in the winter and fall months and was primarily uni-modal during spring and summer. The aspect ratio for different filter samples collected inside the bus range from 2.4 to 3.6 in average value, with standard deviation ranging from 0.9 to 7.4. The square-shaped and oblong-shaped particles represent the single inhalable particle's morphology characteristics in the air of the Toledo transit buses. PMID:21497439

  1. Contribution of long range transport to local fine particulate matter concerns

    NASA Astrophysics Data System (ADS)

    Wagstrom, K. M.; Pandis, S. N.

    2011-05-01

    We have utilized the Particulate Matter Source Apportionment Technology (PSAT) in PMCAMx (a regional chemical transport model) to quantify the contributions from local emissions and short range (under 100 km), mid range (100-550 km) and long range (over 550 km) pollutant transport to both primary and secondary particulate matter concentrations using the Eastern United States as a test case. We have studied these contributions for two urban (Pittsburgh, Pennsylvania and Atlanta, Georgia) and one rural area (Great Smoky Mountains National Park) during all seasons. The local emissions impacts to elemental carbon (EC) in major urban areas were found to be substantial with approximately 50% of the EC coming from local sources and 80% emitted within 200 km of the receptor. The local sources are even more important during the night contributing around 60% of the EC and then dropping to around 40% during the early afternoon. The EC in the rural Great Smoky Mountains was mainly the result of sources 100-550 km away. The seasonal variation of the EC source area contributions is small. There was also little difference between high and low EC concentration days. The contributions to secondary aerosol species were found to be more regional with more than 50% of the sulfate and secondary organic aerosol (SOA) originating from SO 2 and VOC sources that were more than 200 km away from the receptor. The importance of sources further away increased during the winter because of the lower photochemical activity. While mid range transport dominated in the summer the sulfate and SOA levels in all areas, long range transport became the most important sulfate and SOA source during the winter in the colder Northeastern US and of sulfate in the warmer South.

  2. Monitoring personal, indoor, and outdoor exposures to metals in airborne particulate matter: Risk of contamination during sampling, handling and analysis

    NASA Astrophysics Data System (ADS)

    Rasmussen, Pat E.; Wheeler, Amanda J.; Hassan, Nouri M.; Filiatreault, Alain; Lanouette, Monique

    Rigorous sampling and quality assurance protocols are required for the reliable measurement of personal, indoor and outdoor exposures to metals in fine particulate matter (PM 2.5). Testing of five co-located replicate air samplers assisted in identifying and quantifying sources of contamination of filters in the laboratory and in the field. A field pilot study was conducted in Windsor, Ont., Canada to ascertain the actual range of metal content that may be obtained on filter samples using low-flow (4 L min -1) 24-h monitoring of personal, indoor and outdoor air. Laboratory filter blanks and NIST certified reference materials were used to assess contamination, instrument performance, accuracy and precision of the metals determination. The results show that there is a high risk of introducing metal contamination during all stages of sampling, handling and analysis, and that sources and magnitude of contamination vary widely from element to element. Due to the very small particle masses collected on low-flow 24-h filter samples (median 0.107 mg for a sample volume of approximately 6 m 3) the contribution of metals from contamination commonly exceeds the content of the airborne particles being sampled. Thus, the use of field blanks to ascertain the magnitude and variability of contamination is critical to determine whether or not a given element should be reported. The results of this study were incorporated into standard operating procedures for a large multiyear personal, indoor and outdoor air monitoring campaign in Windsor.

  3. The short-term association of selected components of fine particulate matter and mortality in the Denver Aerosol Sources and Health (DASH) study

    EPA Science Inventory

    Associations of short-term exposure to fine particulate matter (PM2.5) with daily mortality may be due to specific PM2.5 chemical components. Objectives: Daily concentrations of PM2.5 chemical species were measured over five consecutive years in Denver, CO to investigate whethe...

  4. EVALUATION OF THE CMB AND PMF MODELS USING ORGANIC MOLECULAR MARKERS IN FINE PARTICULATE MATTER COLLECTED DURING THE PITTSBURGH AIR QUALITY STUDY

    EPA Science Inventory

    This research investigated different strategies for source apportionment of airborne fine particulate matter (PM2.5) collected as part of the Pittsburgh Air Quality Study. Two source receptor models were used, the EPA Chemical Mass Balance 8.2 (CMB) and EPA Positive Matrix Facto...

  5. EVALUATION OF AN ANNUAL SIMULATION OF OZONE AND FINE PARTICULATE MATTER OVER THE CONTINENTAL UNITED STATES - WHICH TEMPORAL FEATURES ARE CAPTURED?

    EPA Science Inventory

    Motivated by growing concerns about the detrimental effects of fine particulate matter (PM2.5) on human health, the U.S. Environmental Protection Agency (EPA) recently promulgated a National Ambient Air Quality Standard (NAAQS) for PM2.5. The PM2.5 standard includes a 24-hour li...

  6. SOURCE SAMPLING FINE PARTICULATE MATTER: A KRAFT PROCESS HOGGED FUEL BOILER AT A PULP AND PAPER FACILITY, VOLUMES 1 AND 2

    EPA Science Inventory

    Fine particulate matter of aerodynamic diameter 2.5 m or less (PM-2.5) has been found harmful to human health, and a National Ambient Air Quality Standard for PM-2.5 was promulgated by the U.S. Environmental Protection Agency in July 1997. A national network of ambient monitorin...

  7. Engineering system for simultaneous inhalation exposures of rodents to fine and ultrafine concentrated ambient particulate matter from a common air source

    EPA Science Inventory

    Exposure to elevated levels of ambient particulate matter (PM) smaller than 2.5 11m (PM2.5) has been associated with adverse health effects in both humans and animals. Specific properties of either fine (0.1-2.5 11m), or ultrafine « 0.1 11m) PM responsible for exposure related he...

  8. Differences in Blood Pressure and Vascular Responses Associated with Ambient Fine Particulate Matter Exposures Measured at the Personal Versus Community Level

    EPA Science Inventory

    Background Higher ambient fine particulate matter (PM2.5) levels can be associated with increased blood pressure and vascular dysfunction. Objectives To determine the differential effects on blood pressure and vascular function of daily changes in community ambient-...

  9. Soluble Ions with ICP-MS are Superior to Total Elements with XRF in Assessing Component-specific Cardiovascular Effects of Fine Particulate Matter

    EPA Science Inventory

    Background: We previously reported that total fine particulate matter (PM2.5) was associated with flow-mediated dilation (FMD), interleukin-6 (lL-6) and tumor-necrosisfactor-alpha (TNFa) in 22 individuals with type 2 diabetes. Objectives: We now compare two laboratory methods of ...

  10. DISCUSSION AND EVALUATION OF THE VOLATILITY TEST FOR EQUIVALENCY OF OTHER METHODS TO THE FEDERAL REFERENCE METHOD FOR FINE PARTICULATE MATTER

    EPA Science Inventory

    In July 1997, EPA promulgated a new National Ambient Air Quality Standard (NAAQS) for fine particulate matter (PM2.5). This new standard was based on collection of an integrated mass sample on a filter. Field studies have demonstrated that the collection of semivolatile compoun...

  11. Lung antioxidant and cytokine responses to coarse and fine particulate matter from the great California wildfires of 2008.

    PubMed

    Wegesser, Teresa C; Franzi, Lisa M; Mitloehner, Frank M; Eiguren-Fernandez, Arantza; Last, Jerold A

    2010-06-01

    The authors have previously demonstrated that wildfire-derived coarse or fine particulate matter (PM) intratracheally instilled into lungs of mice induce a strong inflammatory response. In the current study, the authors demonstrate that wildfire PM simultaneously cause major increases in oxidative stress in the mouse lungs as measured by decreased antioxidant content of the lung lavage supernatant fluid 6 and 24 h after PM administration. Concentrations of neutrophil chemokines/cytokines and of tumor necrosis factor (TNF)-alpha were elevated in the lung lavage fluid obtained 6 and 24 h after PM instillation, consistent with the strong neutrophilic inflammatory response observed in the lungs 24 h after PM administration, suggesting a relationship between the proinflammatory activity of the PM and the measured level of antioxidant capacity in the lung lavage fluid. Chemical analysis shows relatively low levels of polycyclic aromatic hydrocarbons compared to published results from typical urban PM. Coarse PM fraction is more active (proinflammatory activity and oxidative stress) on an equal-dose basis than the fine PM despite its lower content of polycyclic aromatic hydrocarbons. There does not seem to be any correlation between the content of any specific polycyclic aromatic hydrocarbon (or of total polycyclic aromatic hydrocarbon content) in the PM fraction and its toxicity. However, the concentrations of the oxidation products of phenanthrene and anthracene, phenanthraquinone and anthraquinone, were several-fold higher in the coarse PM than the fine fraction, suggesting a significant role for atmospheric photochemistry in the formation of secondary pollutants in the wildfire PM and the possibility that such secondary pollutants could be significant sources of toxicity in the wildfire PM. PMID:20388000

  12. Involvement of TLR2 and TLR4 in inflammatory immune responses induced by fine and coarse ambient air particulate matter

    PubMed Central

    Shoenfelt, Joanna; Mitkus, Robert J.; Zeisler, Rolf; Spatz, Rabia O.; Powell, Jan; Fenton, Matthew J.; Squibb, Katherine A.; Medvedev, Andrei E.

    2009-01-01

    Induction of proinflammatory mediators by alveolar macrophages exposed to ambient air particulate matter has been suggested to be a key factor in the pathogenesis of inflammatory and allergic diseases in the lungs. However, receptors and mechanisms underlying these responses have not been fully elucidated. In this study, we examined whether TLR2, TLR4, and the key adaptor protein, MyD88, mediate the expression of proinflammatory cytokines and chemokines by mouse peritoneal macrophages exposed to fine and coarse PM. TLR2 deficiency blunted macrophage TNF-α and IL-6 expression in response to fine (PM2.5), while not affecting cytokine-inducing ability of coarse NIST Standard Reference Material (SRM 1648) particles. In contrast, TLR4−/− macrophages showed inhibited cytokine expression upon stimulation with NIST SRM 1648 but exhibited normal responses to PM2.5. Preincubation with polymyxin B markedly suppressed the capacity of NIST SRM 1648 to elicit TNF-α and IL-6, indicating endotoxin as a principal inducer of cytokine responses. Overexpression of TLR2 in TLR2/4-deficient human embryonic kidney 293 cells imparted PM2.5 sensitivity, as judged by IL-8 gene expression, whereas NIST SRM 1648, but not PM2.5 elicited IL-8 expression in 293/TLR4/MD-2 transfectants. Engagement of TLR4 by NIST SRM 1648 induced MyD88-independent expression of the chemokine RANTES, while TLR2-reactive NIST IRM PM2.5 failed to up-regulate this response. Consistent with the shared use of MyD88 by TLR2 and TLR4, cytokine responses of MyD88−/− macrophages to both types of air PM were significantly reduced. These data indicate differential utilization of TLR2 and TLR4 but shared use of MyD88 by fine and coarse air pollution particles. PMID:19406832

  13. Apportionment of ambient primary and secondary fine particulate matter during a 2001 summer intensive study at the CMU Supersite and NETL Pittsburgh Site

    SciTech Connect

    Delbert J. Eatough; Nolan F. Mangelson; Richard R. Anderson

    2007-10-15

    Gaseous and particulate pollutant concentrations associated with five samples per day collected during a July 2001 summer intensive study at the Pittsburgh Carnegie Mellon University (CMU) Supersite were used to apportion fine particulate matter (PM2.5) into primary and secondary contributions using PMF2. Input to the PMF2 analysis included the concentrations of PM2.5 nonvolatile and semivolatile organic material, elemental carbon (EC), ammonium sulfate, trace element components, gas-phase organic material, and NOx, NO{sub 2}, and O{sub 3} concentrations. A total of 10 factors were identified. These factors are associated with emissions from various sources and facilities including crustal material, gasoline combustion, diesel combustion, and three nearby sources high in trace metals. In addition, four secondary sources were identified, three of which were associated with secondary products of local emissions and were dominated by organic material and one of which was dominated by secondary ammonium sulfate transported to the CMU site from the west and southwest. The three largest contributors to PM2.5 were secondary transported material (dominated by ammonium sulfate) from the west and southwest from sources including coal-fired power plants, coke processing plants and steel mills, (49%), secondary material formed during midday photochemical processes (24%), and gasoline combustion emissions (11%). The other seven sources accounted for the remaining 16% of the PM2.5. Results obtained at the CMU site were comparable to results previously reported at the National Energy Technology Laboratory (NETL), located approximately 18 km south of downtown Pittsburgh. The major contributor at both sites was material transported from the west and southwest. Some difference in nearby sources could be attributed to meteorology as evaluated by HYSPLIT model back-trajectory calculations. 27 refs., 16 figs., 1 tab.

  14. Distribution of heavy metals in water, particulate matter and sediments of Gediz River (Eastern Aegean).

    PubMed

    Kucuksezgin, F; Uluturhan, E; Batki, H

    2008-06-01

    The present paper is the first document of heavy metal levels in surficial sediment, water and particulate matter of the Gediz River collected from five different sites in August, October 1998, February, June 1999. The present work attempts to establish the status of distribution and environmental implications of metals in the sediment, water and particulate matter and their possible sources of derivation. The concentrations of mercury ranged 0.037-0.81, 120-430; lead 0.59-1.5, 190-8,100; copper 0.24-1.6, 30-180; zinc 0.19-2.9, 10-80; manganese 30-170, 20-490; nickel 0.39-9.0, 100-510; iron 1.3-687, 100-6,200 microg/l in water and particulate matter, respectively. The maximum values in water were generally obtained in summer periods due to industrial and agricultural activities at Muradiye. The particulate metal concentrations also generally showed increased levels from the upper Gediz to the mouth of the river. Calculation of metal partition coefficients shows that the relative importance of the particulate and the water phases varies in response to water hydrochemistry and suspended solid content, but that most elements achieve a conditional equilibrium in the Gediz River. The metals ranged between Hg: 0.25-0.49, Cr: 59-814, Pb: 38-198, Cu: 15-148, Zn: 34-196, Mn: 235-1,371, Ni: 35-175, and Fe: 10,629-72,387 mg/kg in sediment. The significant increase of metals found in Muradiye suggested a pollution effect, related to anthropogenic wastes. Also, relatively high concentrations of Ni and Mn occurred in sampling site upstream, due to geochemical composition of the sediments. Maximum values of contamination factor for metals were noticed for sediment of Muradiye. The sampling stations have very high degree of contamination indicating serious anthropogenic pollution. PMID:17846908

  15. Mass concentration, composition and sources of fine and coarse particulate matter in Tijuana, Mexico, during Cal-Mex campaign

    NASA Astrophysics Data System (ADS)

    Minguillón, María Cruz; Campos, Arturo Alberto; Cárdenas, Beatriz; Blanco, Salvador; Molina, Luisa T.; Querol, Xavier

    2014-05-01

    This work was carried out in the framework of the Cal-Mex project, which focuses on investigating the atmosphere along Mexico-California border region. Sampling was carried out at two sites located in Tijuana urban area: Parque Morelos and Metales y Derivados. PM2.5 and PM10 24 h samples were collected every three days from 17th May 2010 to 27th June 2010, and were used for gravimetric and chemical analyses (major and minor elements, inorganic ions, organic and elemental carbon) of PM. A subsequent Positive Matrix Factorization (PMF) analysis was performed. PM2.5 and PM10 average concentrations during Cal-Mex were relatively lower compared to usual annual averages. Trace elements concentrations recorded in the present study were lower than those recorded in Mexico City in 2006, with the exception of Pb at Metales y Derivados, attributed to the influence of a specific industrial source, which also includes As, Cd and Tl. Apart from this industrial source, both urban sites were found to be affected by similar sources with respect to bulk PM. Fine PM (PM2.5) was mainly apportioned by fueloil and biomass combustion and secondary aerosols, and road traffic. Coarse PM (PM2.5-10) was mainly apportioned by a mineral source (sum of road dust resuspension, construction emissions and natural soil) and fresh and aged sea salt. The road traffic was responsible for more than 60% of the fine elemental carbon and almost 40% of the fine organic matter.

  16. Size and composition distribution of fine particulate matter emitted from wood burning, meat charbroiling, and cigarettes

    SciTech Connect

    Kleeman, M.J.; Schauer, J.J.; Cass, G.R.

    1999-10-15

    A dilution source sampling system is augmented to measure the size-distributed chemical composition of fine particle emissions from air pollution sources. Measurements are made using a laser optical particle counter (OPC), a differential mobility analyzer/condensation nucleus counter (DMA/CNC) combination, and a pair of microorifice uniform deposit impactors (MOUDIs). The sources tested with this system include wood smoke (pine, oak, eucalyptus), meat charbroiling, and cigarettes. The particle mass distributions from all wood smoke sources have a single mode that peaks at approximately 0.1--0.2 {micro}m particle diameter. The smoke from meat charbroiling shows a major peak in the particle mass distribution at 0.1--0.2 {micro}m particle diameter, with some material present at larger particle sizes. Particle mass distributions from cigarettes peak between 0.3 and 0.4 {micro}m particle diameter. Chemical composition analysis reveals that particles emitted from the sources tested here are largely composed of organic compounds. Noticeable concentrations of elemental carbon are found in the particles emitted from wood burning. The size distributions of the trace species emissions from these sources also are presented, including data for Na, K, Ti, Fe, Br, Ru, Cl, Al, Zn, Ba, Sr, V, Mn, Sb, La, Ce, as well as sulfate, nitrate, and ammonium ion when present in statistically significant amounts. These data are intended for use with air quality models that seek to predict the size distribution of the chemical composition of atmospheric fine particles.

  17. Seasonal trends in the composition and ROS activity of fine particulate matter in Baghdad, Iraq

    NASA Astrophysics Data System (ADS)

    Hamad, Samera Hussein; Shafer, Martin Merrill; Kadhim, Ahmed K. H.; Al-Omran, Sabah M.; Schauer, James Jay

    2015-01-01

    Baghdad suffers from severe atmospheric particulate matter (PM) pollution and has limited infrastructure to monitor and control PM-pollution. To help better understand the nature of particulate matter in Baghdad, daily PM2.5 samples were collected every 6th day from September, 2012 to September, 2013. The samples were analyzed for chemical composition and cellular oxidative stress activity using a macrophage-based assay. The annual average PM2.5 concentration was 50 ± 19 μg m-3, and was comprised of approximately 28% crustal materials, 26% organic carbon (OC), 17% sulfate, 12% elemental carbon (EC), and 8.0% ammonium ion. No clear seasonal trend was observed for the total PM2.5 mass and PM2.5 OC, but EC exhibited higher concentrations in the warmer months, likely due to the extensive use of electric generators operated by diesel and gasoline for cooling. April showed the lowest levels of both EC and OC compared with other months due to both sand and rainstorm events which led to increased deposition and dispersion of local emissions. Concentrations of nitrate ion were low in all seasons due to the high temperatures and low humidity, but slightly higher levels were observed in the cooler months of winter. The oxidative stress (reactive oxygen species (ROS)) activity (59 ± 35 μg Zymosan equivalents m-3) of the PM was relatively lower than in other studied areas. Association between the water soluble PM constituents and the oxidative activity was investigated using a multi-linear regression model which showed no strong relationships between ROS activity and the water soluble components of PM2.5, but a moderate correlation of water soluble organic carbon from biomass burning (WSOC-BB) was observed (R2 = 0.52). Biomass burning PM has been shown to be an important contributor to ROS activity in other published studies, but additional work is needed to better understand the sources leading to the ROS activity in Baghdad.

  18. The fine and coarse particulate matter at four major Mediterranean cities: local and regional sources

    NASA Astrophysics Data System (ADS)

    Dimitriou, Konstantinos; Kassomenos, Pavlos

    2013-11-01

    Particulate air pollution is associated with adverse health effects to the population exposed. The aim of this paper is the identification of local and regional sources, affecting PM10 and PM2.5 levels in four large cities of southern Europe, namely: Lisbon, Madrid, Marseille, and Rome. Air pollution data from seven sampling sites of the European Union network were used. These stations were selected due to their ability of monitoring PM2.5 concentrations and providing reliable series of data. Each station's background was also taken into account. Pearson correlation coefficients and primal component analysis components were extracted separately for cold and warm periods in order to define the relationships among particle matters (PMs) and gaseous pollutants (CO, NO2, SO2, and O3) and evaluate the contributions of local sources. Possible seasonal variations of PM2.5/PM10 ratio daily values were also used as markers of PM sources, influencing particulate size distribution. Particle emissions were primarily attributed to traffic and secondarily to natural sources. Minimum daily values of PM2.5/PM10 ratio were observed during warm periods, particularly at suburban stations with rural background, due to dust resuspension and also due to the increase of biogenic coarse PM (pollen, dust, etc.). Hybrid Single-Particle Lagrangian Integrated Trajectory Model trajectory model was used in order to compute the 4-day backward trajectories of the air masses that affected the four cities which are under study during days with recorded PM10 exceedances, within a 5-year period (2003-2007), at 300, 750, and 1,500 m above ground level (AGL). The trajectories were then divided to clusters with a K-means analysis. In all four cities, the influence of slow-moving air masses was associated with a large fraction of PM10 exceedances and with high average and maximum daily mean PM10 concentrations, principally at the 300 m AGL analysis. As far the issue of the increased PM10 concentrations

  19. Dissolved and particulate metals dynamics in a human impacted estuary from the SW Atlantic

    NASA Astrophysics Data System (ADS)

    La Colla, Noelia S.; Negrin, Vanesa L.; Marcovecchio, Jorge E.; Botté, Sandra E.

    2015-12-01

    In order to evaluate metal behavior in urban stressed estuaries, the distribution of major elements (Fe and Mn) and trace elements (Cd and Cu) between suspended particulate matter (SPM) and subsuperficial seawater in the Bahía Blanca Estuary, Argentina, was studied. Four different impacted areas were selected to study the spatial and temporal distribution of these metals in an estuary in continuous industrial development and where an environmental law was implemented to supervise industrial discharges in waters. Sampling was performed within intertidal areas. Physicochemical conditions usually influence the partitioning of metals between the dissolved and particulate fraction thus, salinity, pH, turbidity, temperature and dissolved oxygen were also measured. Dissolved metals were analyzed with atomic absorption spectrophotometry (AAS) and the particulate fraction with inductively coupled plasma optical emission spectrometry (ICP OES). Metals concentration ranges, within the dissolved fraction (μg/L), were from below the method detection limit for all the elements to 4.7 in the case of Cd, 6.0 for Cu and 62 for Fe. Minimum and maximum values in the particulate fraction (μg/g, d.w.) were from below the method detection limit to 11 for Cd; from 24 to 220 for Cu and from 630 to 1500 for Mn. For Fe, concentrations ranged from 2.2 to 9.6 (%). The general order of the dissolved/particulate partition coefficients (Log10Kds) for the studied metals, considering mean values, were: Fe (7.0) > Cu (4.2) > Cd (3.3). The metals values as well as the physicochemical parameters showed temporal variations and many correlations were found among them. Log10Kd Fe values were the highest, highlighting its strong affinity for particles. Metals concentrations were sometimes higher than those from other polluted areas as well as from previous studies from the same estuary, which highlights the potential impact of these elements in the study area. The concentrations of particulate metals

  20. Method of making metal matrix composites reinforced with ceramic particulates

    DOEpatents

    Cornie, James A.; Kattamis, Theodoulos; Chambers, Brent V.; Bond, Bruce E.; Varela, Raul H.

    1989-01-01

    Composite materials and methods for making such materials are disclosed in which dispersed ceramic particles are at chemical equilibrium with a base metal matrix, thereby permitting such materials to be remelted and subsequently cast or otherwise processed to form net weight parts and other finished (or semi-finished) articles while maintaining the microstructure and mechanical properties (e.g. wear resistance or hardness) of the original composite. The composite materials of the present invention are composed of ceramic particles in a base metal matrix. The ceramics are preferably carbides of titanium, zirconium, tungsten, molybdenum or other refractory metals. The base metal can be iron, nickel, cobalt, chromium or other high temperature metal and alloys thereof. For ferrous matrices, alloys suitable for use as the base metal include cast iron, carbon steels, stainless steels and iron-based superalloys.

  1. Method of making metal matrix composites reinforced with ceramic particulates

    DOEpatents

    Cornie, J.A.; Kattamis, T.; Chambers, B.V.; Bond, B.E.; Varela, R.H.

    1989-08-01

    Composite materials and methods for making such materials are disclosed in which dispersed ceramic particles are at chemical equilibrium with a base metal matrix, thereby permitting such materials to be remelted and subsequently cast or otherwise processed to form net weight parts and other finished (or semi-finished) articles while maintaining the microstructure and mechanical properties (e.g. wear resistance or hardness) of the original composite. The composite materials of the present invention are composed of ceramic particles in a base metal matrix. The ceramics are preferably carbides of titanium, zirconium, tungsten, molybdenum or other refractory metals. The base metal can be iron, nickel, cobalt, chromium or other high temperature metal and alloys thereof. For ferrous matrices, alloys suitable for use as the base metal include cast iron, carbon steels, stainless steels and iron-based superalloys. 2 figs.

  2. Modeling Of In-Vehicle Human Exposure to Ambient Fine Particulate Matter

    PubMed Central

    Liu, Xiaozhen; Frey, H. Christopher

    2012-01-01

    A method for estimating in-vehicle PM2.5 exposure as part of a scenario-based population simulation model is developed and assessed. In existing models, such as the Stochastic Exposure and Dose Simulation model for Particulate Matter (SHEDS-PM), in-vehicle exposure is estimated using linear regression based on area-wide ambient PM2.5 concentration. An alternative modeling approach is explored based on estimation of near-road PM2.5 concentration and an in-vehicle mass balance. Near-road PM2.5 concentration is estimated using a dispersion model and fixed site monitor (FSM) data. In-vehicle concentration is estimated based on air exchange rate and filter efficiency. In-vehicle concentration varies with road type, traffic flow, windspeed, stability class, and ventilation. Average in-vehicle exposure is estimated to contribute 10 to 20 percent of average daily exposure. The contribution of in-vehicle exposure to total daily exposure can be higher for some individuals. Recommendations are made for updating exposure models and implementation of the alternative approach. PMID:23101000

  3. Impact of ambient fine particulate matter carbon measurement methods on observed associations with acute cardiorespiratory morbidity.

    PubMed

    Winquist, Andrea; Schauer, Jamie J; Turner, Jay R; Klein, Mitch; Sarnat, Stefanie Ebelt

    2015-01-01

    Elemental carbon (EC) and organic carbon (OC) represent a substantial portion of particulate matter <2.5 μm in diameter (PM2.5), and have been associated with adverse health effects. EC and OC are commonly measured using the National Institute of Occupational Safety and Health (NIOSH) method or the Interagency Monitoring of Protected Visual Environments (IMPROVE) method. Measurement method differences could have an impact on observed epidemiologic associations. Daily speciated PM2.5 data were obtained from the St Louis-Midwest Supersite, and St Louis emergency department (ED) visit data were obtained from the Missouri Hospital Association for the period June 2001 to April 2003. We assessed acute associations between cardiorespiratory ED visits and EC and OC from NIOSH and IMPROVE methods using Poisson generalized linear models controlling for temporal trends and meteorology. Associations were generally similar for EC and OC from the different measurement methods. The most notable difference between methods was observed for congestive heart failure and EC (for example, warm season rate ratios (95% confidence intervals) per interquartile range change in EC concentration were: NIOSH=1.06 (0.99-1.13), IMPROVE=1.01 (0.96-1.07)). Overall, carbon measurement method had little impact on acute associations between EC, OC, and ED visits. Some specific differences were observed, however, which may be related to particle composition. PMID:25138293

  4. Spatiotemporal prediction of fine particulate matter during the 2008 northern California wildfires using machine learning.

    PubMed

    Reid, Colleen E; Jerrett, Michael; Petersen, Maya L; Pfister, Gabriele G; Morefield, Philip E; Tager, Ira B; Raffuse, Sean M; Balmes, John R

    2015-03-17

    Estimating population exposure to particulate matter during wildfires can be difficult because of insufficient monitoring data to capture the spatiotemporal variability of smoke plumes. Chemical transport models (CTMs) and satellite retrievals provide spatiotemporal data that may be useful in predicting PM2.5 during wildfires. We estimated PM2.5 concentrations during the 2008 northern California wildfires using 10-fold cross-validation (CV) to select an optimal prediction model from a set of 11 statistical algorithms and 29 predictor variables. The variables included CTM output, three measures of satellite aerosol optical depth, distance to the nearest fires, meteorological data, and land use, traffic, spatial location, and temporal characteristics. The generalized boosting model (GBM) with 29 predictor variables had the lowest CV root mean squared error and a CV-R2 of 0.803. The most important predictor variable was the Geostationary Operational Environmental Satellite Aerosol/Smoke Product (GASP) Aerosol Optical Depth (AOD), followed by the CTM output and distance to the nearest fire cluster. Parsimonious models with various combinations of fewer variables also predicted PM2.5 well. Using machine learning algorithms to combine spatiotemporal data from satellites and CTMs can reliably predict PM2.5 concentrations during a major wildfire event. PMID:25648639

  5. Artificial neural network models for prediction of daily fine particulate matter concentrations in Algiers.

    PubMed

    Chellali, M R; Abderrahim, H; Hamou, A; Nebatti, A; Janovec, J

    2016-07-01

    Neural network (NN) models were evaluated for the prediction of suspended particulates with aerodynamic diameter less than 10-μm (PM10) concentrations. The model evaluation work considered the sequential hourly concentration time series of PM10, which were measured at El Hamma station in Algiers. Artificial neural network models were developed using a combination of meteorological and time-scale as input variables. The results were rather satisfactory, with values of the coefficient of correlation (R (2)) for independent test sets ranging between 0.60 and 0.85 and values of the index of agreement (IA) between 0.87 and 0.96. In addition, the root mean square error (RMSE), the mean absolute error (MAE), the normalized mean squared error (NMSE), the absolute relative percentage error (ARPE), the fractional bias (FB), and the fractional variance (FS) were calculated to assess the performance of the model. It was seen that the overall performance of model 3 was better than models 1 and 2. PMID:27040548

  6. Source apportionment of fine particulate matter in the southeastern United States

    SciTech Connect

    Sangil Lee; Armistead G. Russell; Karsten Baumann

    2007-09-15

    Particulate matter (PM) less than 2.5 {mu}m in size (PM2.5) source apportionment by chemical mass balance receptor modeling was performed to enhance regional characterization of source impacts in the southeastern United States. Secondary particles, such as NH{sub 4}HSO{sub 4}, (NH{sub 4}){sub 2}SO{sub 4}, NH{sub 4}NO{sub 3}, and secondary organic carbon (OC) (SOC), formed by atmospheric photochemical reactions, contribute the majority ({gt} 50%) of ambient PM2.5 with strong seasonality. Source apportionment results indicate that motor vehicle and biomass burning are the two main primary sources in the southeast, showing relatively more motor vehicle source impacts rather than biomass burning source impacts in populated urban areas and vice versa in less urbanized areas. Spatial distributions of primary source impacts show that each primary source has distinctively different spatial source impacts. For coal combustion, higher concentrations occur in areas close to source and are highest at Jefferson (Birmingham), AL where industrial facilities use coal for fuel. Pulp and paper mills contribute high sources along the coast where oil combustion contribution is also high. Results also find impacts from shipping activities along the coast. Spatiotemporal correlations indicate that secondary particles are more regionally distributed, as are biomass burning and dust, whereas impacts of other primary sources are more local. 60 refs., 7 figs., 1 tab.

  7. Characterization and seasonal variations of levoglucosan in fine particulate matter in Xi'an, China.

    PubMed

    Zhang, Ting; Cao, Jun-Ji; Chow, Judith C; Shen, Zhen-xing; Ho, Kin-Fai; Ho, Steven Sai Hang; Liu, Sui-Xin; Han, Yong-Ming; Watson, John G; Wang, Ge-Hui; Huang, Ru-Jin

    2014-11-01

    PM2.5 (particulate matter with an aerodynamic diameter <2.5 microm) samples (n = 58) collected every sixth day in Xi'an, China, from 5 July 2008 to 27 June 2009 are analyzed for levoglucosan (1,6-anhydro-beta-D-glucopyranose) to evaluate the impacts of biomass combustion on ambient concentrations. Twenty-four-hour levoglucosan concentrations displayed clear summer minima and winter maxima that ranged from 46 to 1889 ng m(-3), with an average of 428 +/- 399 ng m(-3). Besides agricultural burning, biomass/biofuel combustion for household heating with straws and branches appears to be of regional importance during the heating season in northwestern China. Good correlations (0.70 < R < 0.91) were found between levoglucosan relative to water- soluble K+, Cl-, organic carbon (OC), elemental carbon (EC), and glyoxal. The highest levoglucosan/OC ratio of2.3% wasfound in winter, followed by autumn (1.5%). Biomass burning contributed to 5.1-43.8% of OC (with an average of 17.6 +/- 8.4%). PMID:25509553

  8. Time-resolved measurement of the ionic fraction of atmospheric fine particulate matter.

    PubMed

    Manigrasso, Maurizio; Abballe, Franco; Jack, Richard F; Avino, Pasquale

    2010-08-01

    From the health stand-point, atmospheric particulate matter (PM) is regulated through PM(10) and PM(2.5) conventions by the Directive 2008/50/EC. The Directive points out the negative impact on human health due to PM(2.5) and recognizes that no threshold has been identified for such pollutant at which no risk is foreseen for the population. Then, the goal is to pursue a general reduction of PM(2.5). Traditionally, the analytical techniques used to monitor the PM water-soluble inorganic ionic fraction involve filter-based procedures to collect, process, and analyze samples. Data obtained, while accurate, lack temporal resolution. Time resolution is required on the time-scale of the evolution of the planetary boundary layer to understand the processes that govern transport and transformation of atmospheric aerosol. In this paper, we investigated PM(2.5) nitrite, nitrate, sulfate, chloride, sodium, ammonium, calcium, and magnesium ions using a URG 9000-D aerosol ion monitor with 1-h time-resolution and detection limit of 0.1 microg/m(3). The gas phase is separated from the aerosol phase with a liquid diffusion parallel-plate denuder. Daily trends of the pollutants measured in downtown Rome are discussed and interpreted with reference to atmospheric conditions. PMID:20819279

  9. Fracture Analysis of Particulate Reinforced Metal Matrix Composites

    NASA Technical Reports Server (NTRS)

    Min, James B.; Cornie, James A.

    2013-01-01

    A fracture analysis of highly loaded particulate reinforced composites was performed using laser moire interferometry to measure the displacements within the plastic zone at the tip of an advancing crack. Ten castings were made of five different particulate reinforcement-aluminum alloy combinations. Each casting included net-shape specimens which were used for the evaluation of fracture toughness, tensile properties, and flexure properties resulting in an extensive materials properties data. Measured fracture toughness range from 14.1 MPa for an alumina reinforced 356 aluminum alloy to 23.9 MPa for a silicon carbide reinforced 2214 aluminum alloy. For the combination of these K(sub Ic) values and the measured tensile strengths, the compact tension specimens were too thin to yield true plane strain K(sub Ic) values. All materials exhibited brittle behavior characterized by very small tensile ductility suggesting that successful application of these materials requires that the design stresses be below the elastic limit. Probabilistic design principles similar to those used with ceramics are recommended when using these materials. Such principles would include the use of experimentally determined design allowables. In the absence of thorough testing, a design allowable stress of 60 percent of the measured ultimate tensile stress is recommended.

  10. Simulating the fine and coarse inorganic particulate matter concentrations in a polluted megacity

    NASA Astrophysics Data System (ADS)

    Karydis, Vlassis A.; Tsimpidi, Alexandra P.; Fountoukis, Christos; Nenes, Athanasios; Zavala, Miguel; Lei, Wenfang; Molina, Luisa T.; Pandis, Spyros N.

    2010-02-01

    A three dimensional chemical transport model (PMCAMx) is applied to the Mexico City Metropolitan Area (MCMA) in order to simulate the chemical composition and mass of the major PM 1 (fine) and PM 1-10 (coarse) inorganic components and determine the effect of mineral dust on their formation. The aerosol thermodynamic model ISORROPIA-II is used to explicitly simulate the effect of Ca, Mg, and K from dust on semi-volatile partitioning and water uptake. The hybrid approach is applied to simulate the inorganic components, assuming that the smallest particles are in thermodynamic equilibrium, while describing the mass transfer to and from the larger ones. The official MCMA 2004 emissions inventory with improved dust and NaCl emissions is used. The comparison between the model predictions and measurements during a week of April of 2003 at Centro Nacional de Investigacion y Capacitacion Ambiental (CENICA) "Supersite" shows that the model reproduces reasonably well the fine mode composition and its diurnal variation. Sulfate predicted levels are relatively uniform in the area (approximately 3 μg m -3), while ammonium nitrate peaks in Mexico City (approximately 7 μg m -3) and its concentration rapidly decreases due to dilution and evaporation away from the urban area. In areas of high dust concentrations, the associated alkalinity is predicted to increase the concentration of nitrate, chloride and ammonium in the coarse mode by up to 2 μg m -3 (a factor of 10), 0.4 μg m -3, and 0.6 μg m -3 (75%), respectively. The predicted ammonium nitrate levels inside Mexico City for this period are sensitive to the physical state (solid versus liquid) of the particles during periods with RH less than 50%.

  11. Electrically conductive polycrystalline diamond and particulate metal based electrodes

    DOEpatents

    Swain, Greg M.; Wang, Jian

    2005-04-26

    An electrically conducting and dimensionally stable diamond (12, 14) and metal particle (13) electrode produced by electrodepositing the metal on the diamond is described. The electrode is particularly useful in harsh chemical environments and at high current densities and potentials. The electrode is particularly useful for generating hydrogen, and for reducing oxygen and oxidizing methanol in reactions which are of importance in fuel cells.

  12. Fine particulate matter in the tropical environment: monsoonal effects, source apportionment, and health risk assessment

    NASA Astrophysics Data System (ADS)

    Khan, M. F.; Latif, M. T.; Saw, W. H.; Amil, N.; Nadzir, M. S. M.; Sahani, M.; Tahir, N. M.; Chung, J. X.

    2016-01-01

    The health implications of PM2.5 in the tropical region of Southeast Asia (SEA) are significant as PM2.5 can pose serious health concerns. PM2.5 concentration and sources here are strongly influenced by changes in the monsoon regime from the south-west quadrant to the north-east quadrant in the region. In this work, PM2.5 samples were collected at a semi-urban area using a high-volume air sampler at different seasons on 24 h basis. Analysis of trace elements and water-soluble ions was performed using inductively coupled plasma mass spectroscopy (ICP-MS) and ion chromatography (IC), respectively. Apportionment analysis of PM2.5 was carried out using the United States Environmental Protection Agency (US EPA) positive matrix factorization (PMF) 5.0 and a mass closure model. We quantitatively characterized the health risks posed to human populations through the inhalation of selected heavy metals in PM2.5. 48 % of the samples collected exceeded the World Health Organization (WHO) 24 h PM2.5 guideline but only 19 % of the samples exceeded 24 h US EPA National Ambient Air Quality Standard (NAAQS). The PM2.5 concentration was slightly higher during the north-east monsoon compared to south-west monsoon. The main trace metals identified were As, Pb, Cd, Ni, Mn, V, and Cr while the main ions were SO42-, NO3-, NH4+, and Na. The mass closure model identified four major sources of PM2.5 that account for 55 % of total mass balance. The four sources are mineral matter (MIN) (35 %), secondary inorganic aerosol (SIA) (11 %), sea salt (SS) (7 %), and trace elements (TE) (2 %). PMF 5.0 elucidated five potential sources: motor vehicle emissions coupled with biomass burning (31 %) were the most dominant, followed by marine/sulfate aerosol (20 %), coal burning (19 %), nitrate aerosol (17 %), and mineral/road dust (13 %). The hazard quotient (HQ) for four selected metals (Pb, As, Cd, and Ni) in PM2.5 mass was highest in PM2.5 mass from the coal burning source and least in PM2.5 mass

  13. Short-Term Effects of Fine Particulate Matter and Temperature on Lung Function among Healthy College Students in Wuhan, China.

    PubMed

    Zhang, Yunquan; He, Mingquan; Wu, Simin; Zhu, Yaohui; Wang, Suqing; Shima, Masayuki; Tamura, Kenji; Ma, Lu

    2015-07-01

    Ambient fine particulate matter (PM) has been associated with impaired lung function, but the effect of temperature on lung function and the potential interaction effect between PM and temperature remain uncertain. To estimate the short-term effects of PM2.5 combined with temperature on lung function, we measured the daily peak expiratory flow (PEF) in a panel of 37 healthy college students in four different seasons. Meanwhile, we also monitored daily concentrations of indoor and outdoor PM2.5 (particulate matter with an aerodynamic diameter ≤2.5 μm), ambient temperature and relative humidity of the study area, where the study participants lived and attended school. Associations of air pollutants and temperature with lung function were assessed by generalized estimating equations (GEEs). A 10 μg/m3 increase of indoor PM2.5 was associated with a change of -2.09 L/min in evening PEF (95%CI: -3.73 L/min--0.51 L/min) after adjusting for season, height, gender, temperature and relative humidity. The changes of -2.17 L/min (95%CI: -3.81 L/min- -0.52 L/min) and -2.18 L/min (95%CI: -3.96 L/min--0.41 L/min) in evening PEF were also observed after adjusting for outdoor SO2 and NO2 measured by Environmental Monitoring Center 3 kilometers away, respectively. An increase in ambient temperature was found to be associated with a decrease in lung function and our results revealed a small but significant antagonistic interactive effect between PM2.5 and temperature. Our findings suggest that ambient PM2.5 has an acute adverse effect on lung function in young healthy adults, and that temperature also plays an important role. PMID:26184254

  14. The Southeastern Aerosol Research and Characterization Study, Part 3: Continuous measurements of fine particulate matter mass and composition

    SciTech Connect

    Edgerton, E.S.; Hartsell, B.E.; Saylor, R.D.; Jansen, J.J.; Hansen, D.A.; Hidy, G.M.

    2006-09-15

    Deployment of continuous analyzers in the Southeastern Aerosol Research and Characterization Study (SEARCH) network began in 1998 and continues today as new technologies are developed. Measurement of fine particulate matter (PM2.5) mass is performed using a dried, 30 {sup o}C tapered element oscillating microbalance (TEOM). TEOM measurements are complemented by observations of light scattering by nephelometry. Measurements of major constituents include: (1) SO{sub 4}{sup 2-} via reduction to SO{sub 2}; (2) NH{sub 4}{sup +} and NO{sub 3}{sup -} via respective catalytic oxidation and reduction to NO, (3) black carbon (BC) by optical absorption,(4) total carbon by combustion to CO{sup 2}, and (5) organic carbon by difference between the latter two measurements. Several illustrative examples of continuous data from the SEARCH network are presented. A distinctive composite annual average diurnal pattern is observed for PM2.5 mass, nitrate, and BC, likely indicating the influence of traffic-related emissions, growth, and break up of the boundary layer and formation of ammonium nitrate. Examination of PM2.5 components indicates the need to better understand the continuous composition of the unmeasured 'other' category, because it contributes a significant fraction to total mass during periods of high PM2.5 loading. Selected episodes are presented to illustrate applications of SEARCH data. An SO{sub 2} conversion rate of 0.2%/hr is derived from an observation of a plume from a coal-fired power plant during early spring, and the importance of local, rural sources of NH{sub 3} to the formation of ammonium nitrate in particulate matter (PM) is demonstrated. 41 refs., 15 figs., 3 tabs.

  15. Fine particulate matter components and emergency department visits among a privately insured population in Greater Houston.

    PubMed

    Liu, Suyang; Ganduglia, Cecilia M; Li, Xiao; Delclos, George L; Franzini, Luisa; Zhang, Kai

    2016-10-01

    Although adverse health effects of PM2.5 (particulate matter with aerodynamic diameter less than 2.5μm) mass have been extensively studied, it remains unclear regarding which PM2.5 components are most harmful. No studies have reported the associations between PM2.5 components and adverse health effects among a privately insured population. In our study, we estimated the short-term associations between exposure to PM2.5 components and emergency department (ED) visits for all-cause and cause-specific diseases in Greater Houston, Texas, during 2008-2013 using ED visit data extracted from a private insurance company (Blue Cross Blue Shield Texas [BCBSTX]). A total of 526,453 ED visits were included in our assessment, with an average of 236 (±63) visits per day. We selected 20 PM2.5 components from the U.S. Environmental Protection Agency's Chemical Speciation Network site located in Houston, and then applied Poisson regression models to assess the previously mentioned associations. Interquartile range increases in bromine (0.003μg/m(3)), potassium (0.048μg/m(3)), sodium ion (0.306μg/m(3)), and sulfate (1.648μg/m(3)) were statistically significantly associated with the increased risks in total ED of 0.71% (95% confidence interval (CI): 0.06, 1.37%), 0.71% (95% CI: 0.21, 1.22%), 1.28% (95% CI: 0.34, 2.24%), and 1.22% (95% CI: 0.23, 2.23%), respectively. Seasonal analysis suggested strongest associations occurred during the warm season. Our findings suggest that a privately insured population, presumably healthier than the general population, may be still at risk of adverse health effects due to exposure to ambient PM2.5 components. PMID:27235902

  16. Concentrations and source insights for trace elements in fine and coarse particulate matter

    NASA Astrophysics Data System (ADS)

    Clements, Nicholas; Eav, Jenny; Xie, Mingjie; Hannigan, Michael P.; Miller, Shelly L.; Navidi, William; Peel, Jennifer L.; Schauer, James J.; Shafer, Martin M.; Milford, Jana B.

    2014-06-01

    The Colorado Coarse Rural-Urban Sources and Health (CCRUSH) study is a multi-year study focused on characterizing the mass, composition and sources of coarse particulate matter (PM10-2.5) in Denver and Greeley, CO. Between the two cities, Denver is expected to have greater influence of industry and motor vehicles as sources of PM10-2.5. Greeley is a smaller city with greater expected influence of agricultural activity. As part of the CCRUSH study, we collected integrated 24-h samples of PM from four sites in Denver and Greeley at six day intervals from February 2010 to March 2011. Dichotomous samplers with Teflon filters were used to obtain samples for gravimetric and elemental analysis. Magnetic Sector Inductively Coupled Plasma-Mass Spectroscopy (SF-ICP-MS) was used to analyze digests of monthly composited filter samples for 49 elements. Thirty-nine elements were retained for statistical analysis after excluding those with low signal-to-noise ratios. The elements Sb, Cd, Zn, Mo, As, B, Cu, Pb, and W had crustal enrichment factors greater than 10 in the PM2.5 and PM10-2.5 size ranges in both Denver and Greeley. Using positive matrix factorization (PMF) with bootstrap uncertainty estimation, we identified five factors influencing the element concentrations: a crustal factor contributing to both PM2.5 and PM10-2.5; a sodium-dominated PM10-2.5 factor likely associated with road salt; a vehicle abrasion factor contributing in both size ranges; a regional sulfur factor contributing mainly to PM2.5 and likely associated with coal combustion; and a local catalyst factor identified with high Ce and La enrichment in PM2.5 at one of the sites in Denver.

  17. Fine Particulate Matter Predictions Using High Resolution Aerosol Optical Depth (AOD) Retrievals

    NASA Technical Reports Server (NTRS)

    Chudnovsky, Alexandra A.; Koutrakis, Petros; Kloog, Itai; Melly, Steven; Nordio, Francesco; Lyapustin, Alexei; Wang, Jujie; Schwartz, Joel

    2014-01-01

    To date, spatial-temporal patterns of particulate matter (PM) within urban areas have primarily been examined using models. On the other hand, satellites extend spatial coverage but their spatial resolution is too coarse. In order to address this issue, here we report on spatial variability in PM levels derived from high 1 km resolution AOD product of Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm developed for MODIS satellite. We apply day-specific calibrations of AOD data to predict PM(sub 2.5) concentrations within the New England area of the United States. To improve the accuracy of our model, land use and meteorological variables were incorporated. We used inverse probability weighting (IPW) to account for nonrandom missingness of AOD and nested regions within days to capture spatial variation. With this approach we can control for the inherent day-to-day variability in the AOD-PM(sub 2.5) relationship, which depends on time-varying parameters such as particle optical properties, vertical and diurnal concentration profiles and ground surface reflectance among others. Out-of-sample "ten-fold" cross-validation was used to quantify the accuracy of model predictions. Our results show that the model-predicted PM(sub 2.5) mass concentrations are highly correlated with the actual observations, with out-of- sample R(sub 2) of 0.89. Furthermore, our study shows that the model captures the pollution levels along highways and many urban locations thereby extending our ability to investigate the spatial patterns of urban air quality, such as examining exposures in areas with high traffic. Our results also show high accuracy within the cities of Boston and New Haven thereby indicating that MAIAC data can be used to examine intra-urban exposure contrasts in PM(sub 2.5) levels.

  18. The molecular distribution of fine particulate organic matter emitted from Western-style fast food cooking

    NASA Astrophysics Data System (ADS)

    Zhao, Yunliang; Hu, Min; Slanina, Sjaak; Zhang, Yuanhang

    The emissions from food cooking could be a significant contributor to atmospheric particulate organic matter (POM) and its chemical composition would vary with different cooking styles. In this study, the chemical composition of POM emitted from Western-style fast food cooking was investigated. A total of six PM 2.5 samples was collected from a commercial restaurant and determined by gas chromatography-mass spectrometry (GC-MS). It is found that the total amount of quantified compounds of per mg POM in Western-style fast food cooking is much higher than that in Chinese cooking. The predominant homologue is fatty acids, accounting for 78% of total quantified POM, with the predominant one being palmitic acid. Dicarboxylic acids display the second highest concentration in the quantified homologues with hexanedioic acid being predominant, followed by nonanedioic acid. Cmax of n-alkanes occurs at C25, but they still appear relative higher concentrations at C29 and C31. In addition, both levoglucosan and cholesterol are quantified. The relationship of concentrations of unsaturated fatty acids (C16 and C18) with a double bond at C9 position and C9 acids indicates the reduction of the unsaturated fatty acids in the emissions could form the C9 acids. Moreover, the nonlinear fit indicates that other C9 species or other compounds are also produced, except for the C9 acids. The potential candidates of tracers for the emissions from Western-fast food cooking could be: tetradecanoic acid, hexadecanoic acid, octadecanoic acid, 9-octadecenoic acid, nonanal, lactones, levoglucosan, hexanedioic acid and nonanedioic acid.

  19. Metal reconstitution of particulate methane monooxygenase and heterologous expression of the pmoB subunit.

    PubMed

    Smith, Stephen M; Balasubramanian, Ramakrishnan; Rosenzweig, Amy C

    2011-01-01

    Particulate methane monooxygenase (pMMO) is a multisubunit metalloenzyme complex used by methanotrophic bacteria to oxidize methane in the first step of carbon assimilation and energy production. In this chapter, we detail methods to prepare metal free (apo) membrane-bound pMMO and to reconstitute apo pMMO with metal ions. We also describe protocols to clone, express, and refold metal-loaded soluble domain constructs of the pmoB subunit. These approaches were used to address fundamental questions concerning the metal content and location of the pMMO active site. PMID:21419923

  20. Long-Term Exposure to Fine Particulate Matter: Association with Nonaccidental and Cardiovascular Mortality in the Agricultural Health Study Cohort

    PubMed Central

    Villeneuve, Paul J.; Burnett, Richard T.; van Donkelaar, Aaron; Martin, Randall V.; Jones, Rena R.; DellaValle, Curt T.; Sandler, Dale P.; Ward, Mary H.; Hoppin, Jane A.

    2014-01-01

    Background: Few studies have examined the relationship between long-term exposure to ambient fine particulate matter (PM2.5) and nonaccidental mortality in rural populations. Objective: We examined the relationship between PM2.5 and nonaccidental and cardiovascular mortality in the U.S. Agricultural Health Study cohort. Methods: The cohort (n = 83,378) included farmers, their spouses, and commercial pesticide applicators residing primarily in Iowa and North Carolina. Deaths occurring between enrollment (1993–1997) and 30 December 2009 were identified by record linkage. Six-year average (2001–2006) remote-sensing derived estimates of PM2.5 were assigned to participants’ residences at enrollment, and Cox proportional hazards models were used to estimate hazard ratios (HR) in relation to a 10-μg/m3 increase in PM2.5 adjusted for individual-level covariates. Results: In total, 5,931 nonaccidental and 1,967 cardiovascular deaths occurred over a median follow-up time of 13.9 years. PM2.5 was not associated with nonaccidental mortality in the cohort as a whole (HR = 0.95; 95% CI: 0.76, 1.20), but consistent inverse relationships were observed among women. Positive associations were observed between ambient PM2.5 and cardiovascular mortality among men, and these associations were strongest among men who did not move from their enrollment address (HR = 1.63; 95% 0.94, 2.84). In particular, cardiovascular mortality risk in men was significantly increased when analyses were limited to nonmoving participants with the most precise exposure geocoding (HR = 1.87; 95% CI: 1.04, 3.36). Conclusions: Rural PM2.5 may be associated with cardiovascular mortality in men; however, similar associations were not observed among women. Further evaluation is required to explore these sex differences. Citation: Weichenthal S, Villeneuve PJ, Burnett RT, van Donkelaar A, Martin RV, Jones RR, DellaValle CT, Sandler DP, Ward MH, Hoppin JA. 2014. Long-term exposure to fine particulate matter

  1. Effect of prenatal exposure to fine particulate matter on ventilatory lung function of preschool children of non-smoking mothers.

    PubMed

    Jedrychowski, Wieslaw A; Perera, Frederica P; Maugeri, Umberto; Mroz, Elzbieta; Klimaszewska-Rembiasz, Maria; Flak, Elzbieta; Edwards, Susan; Spengler, John D

    2010-09-01

    Impaired fetal development is associated with a number of adult chronic diseases and it is believed that these associations arise as a result of the phenomenon of prenatal programming, which involves persisting changes in structure and function of various body organs caused by ambient factors during critical and vulnerable periods of early development. The main goal of the study was to assess the association between lung function in early childhood and prenatal exposure to fine particulate matter (PM(2.5)), which represents a wide range of chemical compounds potentially hazardous for fetal development. Among pregnant women recruited prenatally to the study, personal measurements of PM(2.5) were performed over 48 h in the second trimester of pregnancy. After delivery, infants were followed for 5 years; the interviewers visited participants in their homes to record children's respiratory symptoms every 3 months in the child's first 2 years of life and every 6 months thereafter. In the fifth year of the follow-up, children were invited for standard lung function testing of levels of forced vital capacity (FVC), forced expiratory volume in 1 s (FEV(1)) and forced expiratory volume in 0.5 s (FEV(0.5)). There were 176 children of non-smoking mothers, who performed at least two acceptable spirometry measurements. Multivariable linear regression showed a significant deficit of FVC at the highest quartile of PM(2.5) exposure (beta coefficient = -91.9, P = 0.008), after adjustment for covariates (age, gender, birthweight, height and wheezing). Also FEV(1) level in children was inversely correlated with prenatal exposure to PM(2.5), and the average FEV(1) deficit amounted to 87.7 mL (P = 0.008) at the higher level of exposure. Although the effect of PM(2.5) exposure on FEV(0.5) was proportionally weaker (-72.7, P = 0.026), it was also statistically significant. The lung function level was inversely and significantly associated with the wheezing recorded over the follow

  2. Use of Satellite Observations for Long-Term Exposure Assessment of Global Concentrations of Fine Particulate Matter

    PubMed Central

    Martin, Randall V.; Brauer, Michael; Boys, Brian L.

    2014-01-01

    Background: More than a decade of satellite observations offers global information about the trend and magnitude of human exposure to fine particulate matter (PM2.5). Objective: In this study, we developed improved global exposure estimates of ambient PM2.5 mass and trend using PM2.5 concentrations inferred from multiple satellite instruments. Methods: We combined three satellite-derived PM2.5 sources to produce global PM2.5 estimates at about 10 km × 10 km from 1998 through 2012. For each source, we related total column retrievals of aerosol optical depth to near-ground PM2.5 using the GEOS–Chem chemical transport model to represent local aerosol optical properties and vertical profiles. We collected 210 global ground-based PM2.5 observations from the literature to evaluate our satellite-based estimates with values measured in areas other than North America and Europe. Results: We estimated that global population-weighted ambient PM2.5 concentrations increased 0.55 μg/m3/year (95% CI: 0.43, 0.67) (2.1%/year; 95% CI: 1.6, 2.6) from 1998 through 2012. Increasing PM2.5 in some developing regions drove this global change, despite decreasing PM2.5 in some developed regions. The estimated proportion of the population of East Asia living above the World Health Organization (WHO) Interim Target-1 of 35 μg/m3 increased from 51% in 1998–2000 to 70% in 2010–2012. In contrast, the North American proportion above the WHO Air Quality Guideline of 10 μg/m3 fell from 62% in 1998–2000 to 19% in 2010–2012. We found significant agreement between satellite-derived estimates and ground-based measurements outside North America and Europe (r = 0.81; n = 210; slope = 0.68). The low bias in satellite-derived estimates suggests that true global concentrations could be even greater. Conclusions: Satellite observations provide insight into global long-term changes in ambient PM2.5 concentrations. Satellite-derived estimates and ground-based PM2.5 observations from this study

  3. Sources of Fine Particulate Matter and Risk of Preterm Birth in Connecticut, 2000–2006: A Longitudinal Study

    PubMed Central

    Bell, Michelle L.; Lee, Hyung Joo; Koutrakis, Petros; Belanger, Kathleen

    2014-01-01

    Background: Previous studies have examined fine particulate matter (≤ 2.5 μm; PM2.5) and preterm birth, but there is a dearth of longitudinal studies on this topic and a paucity of studies that have investigated specific sources of this exposure. Objectives: Our aim was to assess whether anthropogenic sources are associated with risk of preterm birth, comparing successive pregnancies to the same woman. Methods: Birth certificates were used to select women who had vaginal singleton live births at least twice in Connecticut during 2000–2006 (n = 23,123 women, n = 48,208 births). We procured 4,085 daily samples of PM2.5 on Teflon filters from the Connecticut Department of Environmental Protection for six cities in Connecticut. Filters were analyzed for chemical composition, and Positive Matrix Factorization was used to determine contributions of PM2.5 sources. Risk estimates were calculated with conditional logistic regression, matching pregnancies to the same women. Results: Odds ratios of preterm birth per interquartile range increase in whole pregnancy exposure to dust, motor vehicle emissions, oil combustion, and regional sulfur PM2.5 sources were 1.01 (95% CI: 0.93, 1.09), 1.01 (95% CI: 0.92, 1.10), 1.00 (95% CI: 0.89, 1.12), and 1.09 (95% CI: 0.97, 1.22), respectively. Conclusion: This was the first study of PM2.5 sources and preterm birth, and the first matched analysis, that better addresses individual-level confounding potentially inherent in all past studies. There was insufficient evidence to suggest that sources were statistically significantly associated with preterm birth. However, elevated central estimates and previously observed associations with mass concentration motivate the need for further research. Future studies would benefit from high source exposure settings and longitudinal study designs, such as that adopted in this study. Citation: Pereira G, Bell ML, Lee HJ, Koutrakis P, Belanger K. 2014. Sources of fine particulate matter and risk

  4. Higher Fish Consumption in Pregnancy May Confer Protection against the Harmful Effect of Prenatal Exposure to Fine Particulate Matter

    PubMed Central

    Jedrychowski, Wieslaw; Perera, Frederica; Mrozek-Budzyn, Dorota; Flak, Elzbieta; Mroz, Elzbieta; Sochacka-Tatara, Elzbieta; Jacek, Ryszard; Kaim, Irena; Skolicki, Zbigniew; Spengler, John D.

    2010-01-01

    Background/Aim The objective of this study was to assess a hypothesized beneficial effect of fish consumption during the last trimester of pregnancy on adverse birth outcomes resulting from prenatal exposure to fine air particulate matter. Methods The cohort consisted of 481 nonsmoking women with singleton pregnancies, of 18–35 years of age, who gave birth at term. All recruited women were asked about their usual diet over the period of pregnancy. Measurements of particulate matter less than 2.5 μm in size (PM2.5) were carried out by personal air monitoring over 48 h during the second trimester of pregnancy. The effect of PM2.5 and fish intake during gestation on the birth weight of the babies was estimated from multivariable linear regression models, which beside the main independent variables considered a set of potential confounding factors such as the size of the mother (height, prepregnancy weight), maternal education, parity, the gender of the child, gestational age and the season of birth. Results The study showed that the adjusted birth weight was significantly lower in newborns whose mothers were exposed to particulate matter greater than 46.3 μg/m3 (β coefficient = −97.02, p = 0.032). Regression analysis stratified by the level of maternal fish consumption (in tertiles) showed that the deficit in birth weight amounted to 133.26 g (p = 0.052) in newborns whose mothers reported low fish intake (<91 g/week). The birth weight deficit in newborns whose mothers reported medium (91–205 g/week) or higher fish intake (>205 g/week) was insignificant. The interaction term between PM2.5 and fish intake levels was also insignificant (β = −107,35, p = 0.215). Neither gestational age nor birth weight correlated with maternal fish consumption. Conclusions The results suggest that a higher consumption of fish by women during pregnancy may reduce the risk of adverse effects of prenatal exposure to toxicants and highlight the fact that a full assessment of

  5. Fine-scale estimation of carbon monoxide and fine particulate matter concentrations in proximity to a road intersection by using wavelet neural network with genetic algorithm

    NASA Astrophysics Data System (ADS)

    Wang, Zhanyong; Lu, Feng; He, Hong-di; Lu, Qing-Chang; Wang, Dongsheng; Peng, Zhong-Ren

    2015-03-01

    At road intersections, vehicles frequently stop with idling engines during the red-light period and speed up rapidly in the green-light period, which generates higher velocity fluctuation and thus higher emission rates. Additionally, the frequent changes of wind direction further add the highly variable dispersion of pollutants at the street scale. It is, therefore, very difficult to estimate the distribution of pollutant concentrations using conventional deterministic causal models. For this reason, a hybrid model combining wavelet neural network and genetic algorithm (GA-WNN) is proposed for predicting 5-min series of carbon monoxide (CO) and fine particulate matter (PM2.5) concentrations in proximity to an intersection. The proposed model is examined based on the measured data under two situations. As the measured pollutant concentrations are found to be dependent on the distance to the intersection, the model is evaluated in three locations respectively, i.e. 110 m, 330 m and 500 m. Due to the different variation of pollutant concentrations on varied time, the model is also evaluated in peak and off-peak traffic time periods separately. Additionally, the proposed model, together with the back-propagation neural network (BPNN), is examined with the measured data in these situations. The proposed model is found to perform better in predictability and precision for both CO and PM2.5 than BPNN does, implying that the hybrid model can be an effective tool to improve the accuracy of estimating pollutants' distribution pattern at intersections. The outputs of these findings demonstrate the potential of the proposed model to be applicable to forecast the distribution pattern of air pollution in real-time in proximity to road intersection.

  6. Metals in Nile perch (Lates niloticus) and suspended particulate matter from Lake Victoria, Tanzania.

    PubMed

    Machiwa, John F

    2005-01-01

    A study was conducted to assess the levels of pollutant metals in suspended particulate matter and Nile perch from Lake Victoria. The metals in particulate matter were determined to ascertain their concentrations at the base of the food chain. Nile perch samples were collected in September 2003 from five major fish processing factories at the shores of Lake Victoria in Mwanza and Musoma. The concentrations of total Hg, Pb, Cd, and Cu were generally low in particulate matter and in most locations were close to or below their limits of detection. The concentrations of Zn were high in suspended particulate matter, the highest being 219.4 +/- 153.0 microg L(-1) found in particulate matter from Nungwe Bay in the southern part of Lake Victoria. Nile perch generally contained low levels of heavy metals; the range for Pb was <0.01-0.08 microg g(-1) ww, Cd was <0.001-0.04 microg g(-1) ww, Cu was 0.01-0.97 microg g(-1) ww, and Zn was <0.01-18.94 microg g(-1) ww. The concentration of total mercury ranged between 31.0 and 684.2 ng g(-1) ww; generally, it was below the Food and Agriculture Organization of the United Nations/World Health Organization (1000 ng total Hg g(-1) ww for piscivorous fish species) maximum allowable level. Indeed, all Nile perch samples that weighed less than 10 kg had less than 200 ng total Hg g(-1) ww and therefore are safe for regular consumption by at-risk groups such as children and pregnant women. Levels of mercury and other heavy metals in Nile perch at present is, therefore, not a severe environmental issue; however, urgent regulatory measures should be taken to minimize metal input into the lake to maintain the current levels in the fish. PMID:16134370

  7. Changes in fine particulate matter measurement methods and ambient concentrations in California

    NASA Astrophysics Data System (ADS)

    Tao, Ling; Harley, Robert A.

    2014-12-01

    The fine particle (PM2.5) air pollution monitoring network in California underwent major changes between 1988 and 2013, adding continuous beta attenuation monitors (BAM) to the network. This paper analyzes temporal patterns using PM2.5 mass measurements from three major air basins. Regressions of BAM against filter measurements generally show BAM reads higher by 3-6 μg/m3 for annual averages. Most monitoring sites show clear downward trends in PM2.5 concentrations over time, especially in the Los Angeles area where concentrations have decreased by more than 50% since the 1990s. In most cases, PM2.5 concentrations are elevated in winter compared to summer, with basin-wide average increases of 80 ± 25% for the San Francisco Bay area and 123 ± 28% for the San Joaquin Valley. The differences are more prominent at night due to wood-burning and stagnant atmospheric conditions. The reverse is true at inland sites in southern California, which show average reductions of 46 ± 12% in winter. Weekend concentrations are slightly lower than on weekdays. Average weekend reductions in PM2.5 relative to mid-week values are 8.9 ± 5.9% for the San Francisco Bay area and 8.0 ± 3.0% for the San Joaquin Valley. Up to 25% reductions in PM2.5 are observed on weekends at traffic-dominated sites such as West Oakland.

  8. Source-specific fine particulate air pollution and systemic inflammation in ischaemic heart disease patients

    PubMed Central

    Siponen, Taina; Yli-Tuomi, Tarja; Aurela, Minna; Dufva, Hilkka; Hillamo, Risto; Hirvonen, Maija-Riitta; Huttunen, Kati; Pekkanen, Juha; Pennanen, Arto; Salonen, Iiris; Tiittanen, Pekka; Salonen, Raimo O; Lanki, Timo

    2015-01-01

    Objective To compare short-term effects of fine particles (PM2.5; aerodynamic diameter <2.5 µm) from different sources on the blood levels of markers of systemic inflammation. Methods We followed a panel of 52 ischaemic heart disease patients from 15 November 2005 to 21 April 2006 with clinic visits in every second week in the city of Kotka, Finland, and determined nine inflammatory markers from blood samples. In addition, we monitored outdoor air pollution at a fixed site during the study period and conducted a source apportionment of PM2.5 using the Environmental Protection Agency's model EPA PMF 3.0. We then analysed associations between levels of source-specific PM2.5 and markers of systemic inflammation using linear mixed models. Results We identified five source categories: regional and long-range transport (LRT), traffic, biomass combustion, sea salt, and pulp industry. We found most evidence for the relation of air pollution and inflammation in LRT, traffic and biomass combustion; the most relevant inflammation markers were C-reactive protein, interleukin-12 and myeloperoxidase. Sea salt was not positively associated with any of the inflammatory markers. Conclusions Results suggest that PM2.5 from several sources, such as biomass combustion and traffic, are promoters of systemic inflammation, a risk factor for cardiovascular diseases. PMID:25479755

  9. Poorly soluble particulates: searching for a unifying denominator of nanoparticles and fine particles for DNEL estimation.

    PubMed

    Pauluhn, Jürgen

    2011-01-11

    Under the new European chemicals regulation, REACH (Registration, Evaluation, Authorization and Restriction of Chemicals) a Derived No-Effect Level (DNEL), i.e., the level of exposure above which humans should not be exposed, is defined. The focus of this paper is to develop a weight-of-evidence-based DNEL-approach for inhaled poorly soluble particles. Despite the common mode of action of inhaled insoluble, spherical particulate matter (PM), a unifying, most appropriate metric conferring pulmonary biopersistence and toxicity has yet not been demonstrated. Nonetheless, there is compelling evidence from repeated rat inhalation exposure studies suggesting that the particle displacement volume is the most prominent unifying denominator linking the pulmonary retained dose with toxicity. Procedures were developed to analyze and model the pulmonary toxicokinetics from short-term to long-term exposure. Six different types of poorly soluble nano- to submicron PMs were compared: ultrafine and pigmentary TiO₂, synthetic iron oxide (Fe₃O₄, magnetite), two aluminum oxyhydroxides (AlOOH, Boehmite) with primary isometric particles approximately of either 10 or 40 nm, and MWCNT. The specific agglomerate densities of these materials ranged from 0.1 g/cm³ (MWCNT) to 5 g/cm³ (Fe₃O₄). Along with all PM, due to their long retention half-times and associated biopersistence in the lung, even short-term inhalation studies may require postexposure periods of at least 3 months to reveal PM-specific dispositional and toxicological characteristics. This analysis provides strong evidence that pulmonary toxicity (sustained inflammation) is dependent on the volume-based cumulative lung exposure dose. Lung toxicity, evidenced by PMN in BAL occurred at lung doses exceeding 10-times the overload threshold. Furthermore, the conclusion is supported that repeated inhalation studies on rats should utilize an experimental window of cumulative volume loads of respirable PM in the range of 1

  10. Fuel-based fine particulate and black carbon emission factors from a railyard area in Atlanta.

    PubMed

    Galvis, Boris; Bergin, Mike; Russell, Armistead

    2013-06-01

    Railyards have the potential to influence localfine particulate matter (aerodynamic diameter < or = 2.5 microm; PM2.5) concentrations through emissions from diesel locomotives and supporting activities. This is of concern in urban regions where railyards are in proximity to residential areas. Northwest of Atlanta, Georgia, Inman and Tilford railyards are located beside residential neighborhoods, industries, and schools. The PM2.5 concentrations near the railyards is the highest measured amongst the state-run monitoring sites (Georgia Environmental Protection Division, 2012; http://www.georgiaair.org/amp/report.php). The authors estimated fuel-based black carbon (BC) and PM2.5 emission factors for these railyards in order to help determine the impact of railyard activities on PM2.5 concentrations, and for assessing the potential benefits of replacing current locomotive engines with cleaner technologies. High-time-resolution measurements of BC, PM2.5, CO2, and wind speed and direction were made at two locations, north and south of the railyards. Emissions factors (i.e., the mass of BC or PM2.5 per gallon of fuel burned) were estimated by using the downwind/upwind difference in concentrations, wavelet analysis, and an event-based approach. By the authors' estimates, diesel-electric engines used in the railyards have average emission factors of 2.8 +/- 0.2 g of BC and 6.0 +/- 0.5 g of PM2.5 per gallon of diesel fuel burned. A broader mix of railyard supporting activities appear to lead to average emission factors of 0.7 +/- 0.03 g of BC and 1.5 +/- 0.1 g of PM2.5 per gallon of diesel fuel burned. Railyard emissions appear to lead to average enhancements of approximately 1.7 +/- 0.1 microg/m3 of PM2.5 and approximately 0.8 +/- 0.01 microg/m3 of BC in neighboring areas on an annual average basis. Uncertainty not quantified in these results could arise mainly from variability in downwind/upwind differences, differences in emissions of the diverse zones within the

  11. Ultrafine and fine particulate matter inhalation decreases exercise performance in healthy subjects.

    PubMed

    Rundell, Kenneth W; Caviston, Renee

    2008-01-01

    The purpose of this study was to investigate effects of PM1 (particulate matter with aerodynamic diameter 0.02-2 microm) inhalation on exercise performance in healthy subjects. Inhalation of internal combustion-derived PM is associated with adverse effects to the pulmonary and muscle microcirculation. No data are available concerning air pollution and exercise performance. Fifteen healthy college-aged males performed 4 maximal effort 6-min cycle ergometer trials while breathing low or high PM1 to achieve maximal work accumulation (kJ). Low PM1 inhalation trials 1 and 2 were separated by 3 days; then after a 7 day washout, trials 3 and 4 (separated by 3 days) were done while breathing high PM1 generated from a gasoline engine; CO was kept below 10 ppm. Lung function was done after trial 1 to verify nonasthmatic status. Lung function was normal before and after low PM1 exercise. PM1 number counts were not different between high PM1 trials (336,730 +/- 149,206 and 396,200 +/- 82,564 for trial 3 and 4, respectively) and were different from low PM1 trial number counts (2,260 +/- 500) (P < 0.0001). Mean heart rate was not different between trials (189 +/- 6.0, 188 +/- 7.6, 188 +/- 7.6, 187 +/- 7.4, for low and high PM1 trials; respectively). Work accumulated was not different between low PM1 trials (96.1 +/- 9.38 versus 96.6 +/- 10.83 kJ) and the first high PM1 trial (trial 3, 96.8 +/- 10.65 kJ). Work accumulated in the second high PM1 trial 4, 91.3 +/- 10.04 kJ) was less than in low PM1 trials 1 and 2, and high PM1 trial 3 (P = 0.004, P = 0.003, P = 0.0008; respectively). Acute inhalation of high (PM1) typical of many urban environments could impair exercise performance. PMID:18296948

  12. Vascular Responses to Long- and Short-Term Exposure to Fine Particulate Matter

    PubMed Central

    Krishnan, Ranjini M.; Adar, Sara D.; Szpiro, Adam A.; Jorgensen, Neal W.; Van Hee, Victor C.; Barr, R. Graham; O’Neill, Marie S.; Herrington, David M.; Polak, Joseph F.; Kaufman, Joel D.

    2013-01-01

    Objectives This study evaluated the association of long- and short-term air pollutant exposures with flow-mediated dilation (FMD) and baseline arterial diameter (BAD) of the brachial artery using ultrasound in a large multicity cohort. Background Exposures to ambient air pollution, especially long-term exposure to particulate matter <2.5 μm in aerodynamic diameter (PM2.5), are linked with cardiovascular mortality. Short-term exposure to PM2.5 has been associated with decreased FMD and vasoconstriction, suggesting that adverse effects of PM2.5 may involve endothelial dysfunction. However, long-term effects of PM2.5 on endothelial dysfunction have not been investigated. Methods FMD and BAD were measured by brachial artery ultrasound at the initial examination of the Multi-Ethnic Study of Atherosclerosis. Long-term PM2.5 concentrations were estimated for the year 2000 at each participant’s residence (n = 3,040) using a spatio-temporal model informed by cohort-specific monitoring. Short-term PM2.5 concentrations were based on daily central-site monitoring in each of the 6 cities. Results An interquartile increase in long-term PM2.5 concentration (3 μg/m3) was associated with a 0.3% decrease in FMD (95% confidence interval [CI] of difference: −0.6 to −0.03; p = 0.03), adjusting for demographic characteristics, traditional risk factors, sonographers, and 1/BAD. Women, nonsmokers, younger participants, and those with hypertension seemed to show a greater association of PM2.5 with FMD. FMD was not significantly associated with short-term variation in PM2.5 (−0.1% per 12 μg/m3 daily increase [95% CI: −0.2 to 0.04] on the day before examination). Conclusions Long-term PM2.5 exposure was significantly associated with decreased endothelial function according to brachial ultrasound results. These findings may elucidate an important pathway linking air pollution and cardiovascular mortality. PMID:23103035

  13. Composition and secondary formation of fine particulate matter in the Salt Lake Valley: winter 2009.

    PubMed

    Kuprov, Roman; Eatough, Delbert J; Cruickshank, Tyler; Olson, Neal; Cropper, Paul M; Hansen, Jaron C

    2014-08-01

    Under the National Ambient Air Quality Standards (NAAQS), put in place as a result of the Clean Air Amendments of 1990, three regions in the state of Utah are in violation of the NAAQS for PM10 and PM2.5 (Salt Lake County, Ogden City, and Utah County). These regions are susceptible to strong inversions that can persist for days to weeks. This meteorology, coupled with the metropolitan nature of these regions, contributes to its violation of the NAAQS for PM during the winter. During January-February 2009, 1-hr averaged concentrations of PM10-2.5, PM2.5, NO(x), NO2, NO, O3, CO, and NH3 were measured. Particulate-phase nitrate, nitrite, and sulfate and gas-phase HONO, HNO3, and SO2 were also measured on a 1-hr average basis. The results indicate that ammonium nitrate averages 40% of the total PM2.5 mass in the absence of inversions and up to 69% during strong inversions. Also, the formation of ammonium nitrate is nitric acid limited. Overall, the lower boundary layer in the Salt Lake Valley appears to be oxidant and volatile organic carbon (VOC) limited with respect to ozone formation. The most effective way to reduce ammonium nitrate secondary particle formation during the inversions period is to reduce NO(x) emissions. However, a decrease in NO(x) will increase ozone concentrations. A better definition of the complete ozone isopleths would better inform this decision. Implications: Monitoring of air pollution constituents in Salt Lake City, UT, during periods in which PM2.5 concentrations exceeded the NAAQS, reveals that secondary aerosol formation for this region is NO(x) limited. Therefore, NO(x) emissions should be targeted in order to reduce secondary particle formation and PM2.5. Data also indicate that the highest concentrations of sulfur dioxide are associated with winds from the north-northwest, the location of several small refineries. PMID:25185397

  14. Metal contents of phytoplankton and labile particulate material in the North Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Twining, Benjamin S.; Rauschenberg, Sara; Morton, Peter L.; Vogt, Stefan

    2015-09-01

    Phytoplankton contribute significantly to global C cycling and serve as the base of ocean food webs. Phytoplankton require trace metals for growth and also mediate the vertical distributions of many metals in the ocean. We collected bulk particulate material and individual phytoplankton cells from the upper water column (<150 m) of the North Atlantic Ocean as part of the US GEOTRACES North Atlantic Zonal Transect cruise (GEOTRACES GA03). Particulate material was first leached to extract biogenic and potentially-bioavailable elements, and the remaining refractory material was digested in strong acids. The cruise track spanned several ocean biomes and geochemical regions. Particulate concentrations of metals associated primarily with lithogenic phases (Fe, Al, Ti) were elevated in surface waters nearest North America, Africa and Europe, and elements associated primarily with biogenic material (P, Cd, Zn, Ni) were also found at higher concentrations near the coasts. However metal/P ratios of labile particulate material were also elevated in the middle of the transect for Fe, Ni, Co, Cu, and V. P-normalized cellular metal quotas measured with synchrotron X-ray fluorescence (SXRF) were generally comparable to ratios in bulk labile particles but did not show mid-basin increases. Manganese and Fe ratios and cell quotas were higher in the western part of the section, nearest North America, and both elements were more enriched in bulk particles, relative to P, than in cells, suggesting the presence of labile oxyhydroxide particulate phases. Cellular Fe quotas thus did not increase in step with aeolian dust inputs, which are highest near Africa; these data suggest that the dust inputs have low bioavailability. Copper and Ni cell quotas were notably higher nearest the continental margins. Overall mean cellular metal quotas were similar to those measured in the Pacific and Southern Oceans except for Fe, which was approximately 3-fold higher in North Atlantic cells. Cellular Fe

  15. Temporal and spatial distributions of summer-time ground-level fine particulate matters in Baltimore-DC region

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Greenwald, R.; Sarnat, J.; Hu, X.; Kewada, P.; Morales, Y.; Goldman, G.; Redman, J.; Russell, A. G.

    2011-12-01

    Environmental epidemiological studies have established a robust association between chronic exposure to ambient level fine particulate matters (PM2.5) and adverse health effects such as COPD, cardiorespiratory diseases, and premature death. Population exposure to PM2.5 has historically been estimated using ground measurements which are often sparse and unevenly distributed. There has been much interest as well as suspicion in both the air quality management and research communities regarding the value of satellite retrieved AOD as particle air pollution indicators. A critical step towards the future use of satellite aerosol products in air quality monitoring and management is to better understand the AOD-PM2.5 association. The existing EPA and IMPROVE networks are insufficient to validate AOD-estimated PM2.5 surface especially when higher resolution satellite products become available in the near future. As part of DISCOVER-AQ mission, we deployed 15 portable filter-based samplers alongside of ground-based sun photometers of the Distributed Regional Aerosol Gridded Observation Network (DRAGON) in July 2011. Gravimetric analyses were conducted to estimate 24h PM2.5 mass concentrations, using Teflon filters and Personal Environmental Monitors (PEMs) operated at a flow rate of 4 LPM. Pre- and post-sampling filters were weighed at our weigh room laboratory facilities at the Georgia Institute of Technology. Our objectives are (1) to examine if AOD measured by ground-based sun-photometers with the support from ground-based lidars can provide the fine scale spatial heterogeneity observed by ground PM monitors, and (2) whether PM2.5 levels estimated by satellite AOD agree with this true PM2.5 surface. Study design, instrumentation, and preliminary results of measured PM2.5 spatial patterns in July 2011 will be presented as well as discussion of further data analysis and model development.

  16. An integrated process rate analysis of a regional fine particulate matter episode over Yangtze River Delta in 2010

    NASA Astrophysics Data System (ADS)

    Li, L.; Huang, C.; Huang, H. Y.; Wang, Y. J.; Yan, R. S.; Zhang, G. F.; Zhou, M.; Lou, S. R.; Tao, S. K.; Wang, H. L.; Qiao, L. P.; Chen, C. H.; Streets, D. G.; Fu, J. S.

    2014-07-01

    A high PM2.5 pollution episode was detected in Shanghai in November 2010. The integrated process rate method, an advanced diagnostic tool, was applied to account for the contribution of different atmospheric processes during the high pollution episode in the Yangtze River Delta region (YRD). The PM2.5 process analysis indicates that the emission of fine particles is the dominant source of high surface PM2.5 concentrations in the major cities of the YRD like Shanghai, Nanjing, and Hangzhou, following horizontal transportation and aerosols. The PM2.5 concentration could be reduced due to vertical advection and diffusion from lower levels to the upper air. The aerosols process such as homogeneous nucleation and condensation producing PM2.5 occurs throughout the PBL layer in urban areas, causing vertical transport from upper levels down to the surface layer. The aerosols process is much more significant in a downwind rural and coastal site like Zhoushan than in the urban areas. The PM2.5 change initiated by both horizontal transport and vertical transport is much stronger at 40-2000 m height than in the surface layer, while the PM2.5 change caused by horizontal diffusion is very small. Dry deposition can significantly reduce concentration of the particulates in the surface level of the atmosphere, and wet deposition can remove the particles in the planetary boundary layer (PBL). The cloud processes can either increase PM2.5 due to the aqueous-phase oxidation of SO2 and NO2 or remove PM2.5 due to cloud scavenging. Solar radiation and humidity are more important to secondary pollution, and they are the significant external factors affecting the chemical reactions among sulfur dioxide, nitrogen oxides, ammonia, volatile compounds and fine particles.

  17. Water-soluble ions measured in fine particulate matter next to cement works

    NASA Astrophysics Data System (ADS)

    Galindo, N.; Yubero, E.; Nicolás, J. F.; Crespo, J.; Pastor, C.; Carratalá, A.; Santacatalina, M.

    2011-04-01

    PM2.5 samples were collected for one year in a suburban area close to an industrial complex formed by two cement factories and some quarries in southeastern Spain. Samples were analyzed by ion chromatography to determine the concentrations of major inorganic ions: Cl -, NO 3-, SO 42-, Na +, NH 4+, K +, Mg 2+ and Ca 2+. The average PM2.5 concentration (17.6 μg m -3) was within the interval reported for other Mediterranean suburban environments. Concentration peaks were registered during both winter and summer, concurrently with maxima levels of nitrate and sulfate, due to stagnation conditions and African dust episodes, respectively. Sulfate was found to be a main contributor to PM2.5 aerosol mass (4.2 μg m -3, 24%), followed by nitrate and ammonium (1.5 μg m -3, 9% each one). Correlation analyses demonstrated that fine sulfate was present as (NH 4) 2SO 4, CaSO 4 and Na 2SO 4 since ammonium concentrations were not high enough to neutralize both anions. The mean concentration of calcium (1.0 μg m -3), an element commonly found in the coarse fraction, was higher than those found in other locations of the Mediterranean basin. Additionally, the lowest levels were registered during summer, in contrast with previous findings. This was attributed to resuspension and transport of mineral dust from the neighboring quarries and cement plants during fall and winter, which was supported by the results of the CPF analysis. Atmospheric levels of potassium and chloride (0.28 and 0.51 μg m -3 annual average, respectively) also seemed to be affected by cement works, as suggested by correlation and CPF analyses. In the case of Cl -, a marked seasonality was observed, with mean winter concentrations considerably higher than summer ones, indicating a clear prevalence of anthropogenic sources over sea spray emissions.

  18. Impact of maritime traffic on polycyclic aromatic hydrocarbons, metals and particulate matter in Venice air.

    PubMed

    Gregoris, Elena; Barbaro, Elena; Morabito, Elisa; Toscano, Giuseppa; Donateo, Antonio; Cesari, Daniela; Contini, Daniele; Gambaro, Andrea

    2016-04-01

    Harbours are important hubs for economic growth in both tourism and commercial activities. They are also an environmental burden being a source of atmospheric pollution often localized near cities and industrial complexes. The aim of this study is to quantify the relative contribution of maritime traffic and harbour activities to atmospheric pollutant concentration in the Venice lagoon. The impact of ship traffic was quantified on various pollutants that are not directly included in the current European legislation for shipping emission reduction: (i) gaseous and particulate PAHs; (ii) metals in PM10; and (iii) PM10 and PM2.5. All contributions were correlated with the tonnage of ships during the sampling periods and results were used to evaluate the impact of the European Directive 2005/33/EC on air quality in Venice comparing measurements taken before and after the application of the Directive (year 2010). The outcomes suggest that legislation on ship traffic, which focused on the issue of the emissions of sulphur oxides, could be an efficient method also to reduce the impact of shipping on primary particulate matter concentration; on the other hand, we did not observe a significant reduction in the contribution of ship traffic and harbour activities to particulate PAHs and metals. Graphical abstract Impact of maritime traffic on polycyclic aromatic hydrocarbons, metals and particulate matter and evaluation of the effect of an European Directive on air quality in Venice. PMID:26681325

  19. Adverse effects of coal combustion related fine particulate matter (PM2.5) on nematode Caenorhabditis elegans.

    PubMed

    Sun, Lingmei; Lin, Zhiqing; Liao, Kai; Xi, Zhuge; Wang, Dayong

    2015-04-15

    The toxic effects of coal combustion related fine particulate matter (PM2.5), collected from Datong, Shanxi province, China, on nematode Caenorhabditis elegans were investigated. Exposure to PM2.5 resulted in deficits in development, reproduction, locomotion behavior, and lifespan, and induction of intestinal autofluorescence or reactive oxygen species (ROS) production. Prolonged exposure to PM2.5 led to more severe toxicity on nematodes than acute exposure. In addition, exposure to PM2.5 induced altered expression patterns of genes required for the control of oxidative stress. Reduction in mean defecation cycle length and developmental deficits in AVL and DVB neurons, which are involved in the control of defecation behavior, were also triggered by PM2.5 exposure. Thus, oxidative stress and abnormal defecation behavior may contribute greatly to the toxicity of coal combustion related PM2.5 in nematodes. The results also imply that the long-term adverse effects of coal combustion related PM2.5 on environmental organisms should be carefully considered. PMID:25625637

  20. The public health benefits of reducing fine particulate matter through conversion to cleaner heating fuels in New York City.

    PubMed

    Kheirbek, Iyad; Haney, Jay; Douglas, Sharon; Ito, Kazuhiko; Caputo, Steven; Matte, Thomas

    2014-12-01

    In recent years, both New York State and City issued regulations to reduce emissions from burning heating oil. To assess the benefits of these programs in New York City, where the density of emissions and vulnerable populations vary greatly, we simulated the air quality benefits of scenarios reflecting no action, partial, and complete phase-out of high-sulfur heating fuels using the Community MultiScale Air Quality (CMAQ) model conducted at a high spatial resolution (1 km). We evaluated the premature mortality and morbidity benefits of the scenarios within 42 city neighborhoods and computed benefits by neighborhood poverty status. The complete phase-out scenario reduces annual average fine particulate matter (PM2.5) by an estimated 0.71 μg/m(3) city-wide (average of 1 km estimates, 10-90th percentile: 0.1-1.6 μg/m(3)), avoiding an estimated 290 premature deaths, 180 hospital admissions for respiratory and cardiovascular disease, and 550 emergency department visits for asthma each year. The largest improvements were seen in areas of highest building and population density and the majority of benefits have occurred through the partial phase out of high-sulfur heating fuel already achieved. While emissions reductions were greatest in low-poverty neighborhoods, health benefits are estimated to be greatest in high-poverty neighborhoods due to higher baseline morbidity and mortality rates. PMID:25365783

  1. Global Estimates of Fine Particulate Matter using a Combined Geophysical-Statistical Method with Information from Satellites, Models, and Monitors.

    PubMed

    van Donkelaar, Aaron; Martin, Randall V; Brauer, Michael; Hsu, N Christina; Kahn, Ralph A; Levy, Robert C; Lyapustin, Alexei; Sayer, Andrew M; Winker, David M

    2016-04-01

    We estimated global fine particulate matter (PM2.5) concentrations using information from satellite-, simulation- and monitor-based sources by applying a Geographically Weighted Regression (GWR) to global geophysically based satellite-derived PM2.5 estimates. Aerosol optical depth from multiple satellite products (MISR, MODIS Dark Target, MODIS and SeaWiFS Deep Blue, and MODIS MAIAC) was combined with simulation (GEOS-Chem) based upon their relative uncertainties as determined using ground-based sun photometer (AERONET) observations for 1998-2014. The GWR predictors included simulated aerosol composition and land use information. The resultant PM2.5 estimates were highly consistent (R(2) = 0.81) with out-of-sample cross-validated PM2.5 concentrations from monitors. The global population-weighted annual average PM2.5 concentrations were 3-fold higher than the 10 μg/m(3) WHO guideline, driven by exposures in Asian and African regions. Estimates in regions with high contributions from mineral dust were associated with higher uncertainty, resulting from both sparse ground-based monitoring, and challenging conditions for retrieval and simulation. This approach demonstrates that the addition of even sparse ground-based measurements to more globally continuous PM2.5 data sources can yield valuable improvements to PM2.5 characterization on a global scale. PMID:26953851

  2. Investigation of the spatiotemporal variation and influencing factors on fine particulate matter and carbon monoxide concentrations near a road intersection

    NASA Astrophysics Data System (ADS)

    Wang, Zhanyong; Lu, Qing-Chang; He, Hong-Di; Wang, Dongsheng; Gao, Ya; Peng, Zhong-Ren

    2016-05-01

    The minute-scale variations of fine particulate matter (PM2.5) and carbon monoxide (CO) concentrations near a road intersection in Shanghai, China were investigated to identify the influencing factors at three traffic periods. Measurement results demonstrate a synchronous variation of pollutant concentrations at the roadside and setbacks, and the average concentration of PM2.5 at the roadside is 7% (44% for CO) higher than that of setbacks within 500 m of the intersection. The pollution level at traffic peak periods is found to be higher than that of off-peak periods, and the morning peak period is found to be the most polluted due to a large amount of diesel vehicles and unfavorable dispersion conditions. Partial least square regressions were constructed for influencing factors and setback pollutant concentrations, and results indicate that meteorological factors are the most significant, followed by setback distance from the intersection and traffic factors. CO is found to be sensitive to distance from the traffic source and vehicle type, and highly dependent on local traffic conditions, whereas PM2.5 originates more from other sources and background levels. These findings demonstrate the importance of localized factors in understanding spatiotemporal patterns of air pollution at intersections, and support decision makers in roadside pollution management and control.

  3. Expert judgment assessment of the mortality impact of changes in ambient fine particulate matter in the U.S.

    PubMed

    Roman, Henry A; Walker, Katherine D; Walsh, Tyra L; Conner, Lisa; Richmond, Harvey M; Hubbell, Bryan J; Kinney, Patrick L

    2008-04-01

    In this paper, we present findings from a multiyear expert judgment study that comprehensively characterizes uncertainty in estimates of mortality reductions associated with decreases in fine particulate matter (PM(2.5)) in the U.S. Appropriate characterization of uncertainty is critical because mortality-related benefits represent up to 90% of the monetized benefits reported in the Environmental Protection Agency's (EPA's) analyses of proposed air regulations. Numerous epidemiological and toxicological studies have evaluated the PM(2.5)-mortality association and investigated issues that may contribute to uncertainty in the concentration-response (C-R) function, such as exposure misclassification and potential confounding from other pollutant exposures. EPA's current uncertainty analysis methods rely largely on standard errors in published studies. However, no one study can capture the full suite of issues that arise in quantifying the C-R relationship. Therefore, EPA has applied state-of-the-art expert judgment elicitation techniques to develop probabilistic uncertainty distributions that reflect the broader array of uncertainties in the C-R relationship. These distributions, elicited from 12 of the world's leading experts on this issue, suggest both potentially larger central estimates of mortality reductions for decreases in long-term PM(2.5) exposure in the U.S. and a wider distribution of uncertainty than currently employed in EPA analyses. PMID:18504952

  4. Global Estimates of Fine Particulate Matter Using a Combined Geophysical-Statistical Method with Information from Satellites, Models, and Monitors

    NASA Technical Reports Server (NTRS)

    Van Donkelaar, Aaron; Martin, Randall V.; Brauer, Michael; Hsu, N. Christina; Kahn, Ralph A.; Levy, Robert C.; Lyapustin, Alexei; Sayer, Andrew M.; Winker, David M.

    2016-01-01

    We estimated global fine particulate matter (PM(sub 2.5)) concentrations using information from satellite-, simulation- and monitor-based sources by applying a Geographically Weighted Regression (GWR) to global geophysically-based satellite-derived PM(sub 2.5) estimates. Aerosol optical depth from multiple satellite products (MISR, MODIS Dark Target, MODIS and SeaWiFS Deep Blue, and MODIS MAIAC) was combined with simulation (GEOS-Chem) based upon their relative uncertainties as determined using ground-based sun photometer (AERONET) observations for 1998-2014. The GWR predictors included simulated aerosol composition and land use information. The resultant PM(sub 2.5) estimates were highly consistent (R(sup 2) equals 0.81) with out-of-sample cross-validated PM(sub 2.5) concentrations from monitors. The global population-weighted annual average PM(sub 2.5) concentrations were 3-fold higher than the 10 micrograms per cubic meter WHO guideline, driven by exposures in Asian and African regions. Estimates in regions with high contributions from mineral dust were associated with higher uncertainty, resulting from both sparse ground-based monitoring, and challenging conditions for retrieval and simulation. This approach demonstrates that the addition of even sparse ground-based measurements to more globally continuous PM(sub 2.5) data sources can yield valuable improvements to PM(sub 2.5) characterization on a global scale.

  5. Sources and Processes Affecting Fine Particulate Matter Pollution over North China: An Adjoint Analysis of the Beijing APEC Period.

    PubMed

    Zhang, Lin; Shao, Jingyuan; Lu, Xiao; Zhao, Yuanhong; Hu, Yongyun; Henze, Daven K; Liao, Hong; Gong, Sunling; Zhang, Qiang

    2016-08-16

    The stringent emission controls during the APEC 2014 (the Asia-Pacific Economic Cooperation Summit; November 5-11, 2014) offer a unique opportunity to quantify factors affecting fine particulate matter (PM2.5) pollution over North China. Here we apply a four-dimensional variational data assimilation system using the adjoint model of GEOS-Chem to address this issue. Hourly surface measurements of PM2.5 and SO2 for October 15-November 14, 2014 are assimilated into the model to optimize daily aerosol primary and precursor emissions over North China. Measured PM2.5 concentrations in Beijing average 50.3 μg m(-3) during APEC, 43% lower than the mean concentration (88.2 μg m(-3)) for the whole period including APEC. Model results attribute about half of the reduction to meteorology due to active cold surge occurrences during APEC. Assimilation of surface measurements largely reduces the model biases and estimates 6%-30% lower aerosol emissions in the Beijing-Tianjin-Hebei region during APEC than in late October. We further demonstrate that high PM2.5 events in Beijing during this period can be occasionally contributed by natural mineral dust, but more events show large sensitivities to inorganic aerosol sources, particularly emissions of ammonia (NH3) and nitrogen oxides (NOx) reflecting strong formation of aerosol nitrate in the fall season. PMID:27434821

  6. Development of an empirical model to estimate real-world fine particulate matter emission factors: the traffic air quality model.

    PubMed

    Soliman, Ahmed S M; Jacko, Robert B; Palmer, George M

    2006-11-01

    The purpose of the study was to quantify the impact of traffic conditions, such as free flow and congestion, on local air quality. The Borman Expressway (I-80/94) in Northwest Indiana is considered a test bed for this research because of the high volume of class 9 truck traffic traveling on it, as well as the existing and continuing installation of the Intelligent Transportation System (ITS) to improve traffic management along the highway stretch. An empirical traffic air quality (TAQ) model was developed to estimate the fine particulate matter (PM2.5) emission factors (grams per kilometer) based solely on the measured traffic parameters, namely, average speed, average acceleration, and class 9 truck density. The TAQ model has shown better predictions that matched the measured emission factor values more than the U.S. Environmental Protection Agency (EPA)-PART5 model. During congestion (defined as flow-speeds < 50 km/hr [30 mi/hr]), the TAQ model, on average, overpredicted the measured values only by a factor of 1.2, in comparison to a fourfold underprediction using the EPA-PART5 model. On the other hand, during free flow (defined as flow-speeds > 80 km/hr [50 mi/hr]), the TAQ model was conservative in that it overpredicted the measured values by 1.5-fold. PMID:17117739

  7. Source apportionment of fine particulate matter (PM 2.5) at a rural Ohio River Valley site

    NASA Astrophysics Data System (ADS)

    Kim, Myoungwoo; Deshpande, Seemantini R.; Crist, Kevin C.

    Twenty four-hour averaged concentrations of fine particulate matter were collected at Athens, OH between March 2004 and November 2005 in an effort to characterize the nature of PM 2.5 and apportion its sources. PM 2.5 samples were chemically analyzed and positive matrix factorization was applied to this speciation data to identify the probable sources. PMF arrived at a 7-factor model to most accurately apportion sources of the PM 2.5 observed at Athens. Conditional probability function (CPF) and potential source contribution function (PSCF) were applied to the identified sources to investigate the geographical location of these sources. Secondary sulfate source dominated the contributions with a total contribution of 62.6% with the primary and secondary organic source following second with 19.9%. Secondary nitrate contributed a total of 6.5% with the steel production source and Pb- and Zn-source coming in at 3.1% and 2.9%, respectively. Crustal and mobile sources were small contributors (2.5% each) of PM 2.5 to the Athens region. The secondary sulfate, secondary organic and nitrate portrayed a clear seasonal nature with the sulfate and secondary organic peaking in the warm months and the nitrate reaching a high in the cold months. The high percentage of secondary sulfate observed at a rural site like Athens suggests the involvement of regional transport mechanisms.

  8. Effects of fine particulate matter and its constituents on low birth weight among full-term infants in California

    SciTech Connect

    Basu, Rupa; Harris, Maria; Sie, Lillian; Malig, Brian; Broadwin, Rachel; Green, Rochelle

    2014-01-15

    Relationships between prenatal exposure to fine particles (PM{sub 2.5}) and birth weight have been observed previously. Few studies have investigated specific constituents of PM{sub 2.5}, which may identify sources and major contributors of risk. We examined the effects of trimester and full gestational prenatal exposures to PM{sub 2.5} mass and 23 PM{sub 2.5} constituents on birth weight among 646,296 term births in California between 2000 and 2006. We used linear and logistic regression models to assess associations between exposures and birth weight and risk of low birth weight (LBW; <2500 g), respectively. Models were adjusted for individual demographic characteristics, apparent temperature, month and year of birth, region, and socioeconomic indicators. Higher full gestational exposures to PM{sub 2.5} mass and several PM{sub 2.5} constituents were significantly associated with reductions in term birth weight. The largest reductions in birth weight were associated with exposure to vanadium, sulfur, sulfate, iron, elemental carbon, titanium, manganese, bromine, ammonium, zinc, and copper. Several of these PM{sub 2.5} constituents were associated with increased risk of term LBW. Reductions in birth weight were generally larger among younger mothers and varied by race/ethnicity. Exposure to specific constituents of PM{sub 2.5}, especially traffic-related particles, sulfur constituents, and metals, were associated with decreased birth weight in California. -- Highlights: • Examine full gestational and trimester fine particle and its constituents on term birth weight. • Fine particles and several of its constituents associated with birth weight reductions. • Largest reductions for traffic-related particles, sulfur constituents, and metals. • Greater birth weight reductions for younger mothers, and varied by race/ethnicity.

  9. DEVELOPMENT OF FINE PARTICULATE EMISSION FACTORS AND SPECIATION PROFILES FOR OIL AND GAS-FIRED COMBUSTION SYSTEMS

    SciTech Connect

    Glenn C. England

    2004-10-20

    In 1997, the United States Environmental Protection Agency (EPA) promulgated new National Ambient Air Quality Standards (NAAQS) for particulate matter, including for the first time particles with aerodynamic diameter smaller than 2.5 micrometers ({micro}m) referred to as PM2.5. PM2.5 in the atmosphere also contributes to reduced atmospheric visibility, which is the subject of existing rules for siting emission sources near Class 1 areas and new Regional Haze rules. There are few existing data regarding emissions and characteristics of fine aerosols from oil, gas and power generation industry combustion sources, and the information that is available is generally outdated and incomplete. Traditional stationary source air emission sampling methods tend to underestimate or overestimate the contribution of the source to ambient aerosols because they do not properly account for primary aerosol formation, which occurs after the gases leave the stack. Primary aerosol includes both filterable particles that are solid or liquid aerosols at stack temperature plus those that form as the stack gases cool through mixing and dilution processes in the plume downwind of the source. These deficiencies in the current methods can have significant impacts on regulatory decision-making. PM2.5 measurement issues were extensively reviewed by the American Petroleum Institute (API) (England et al., 1998), and it was concluded that dilution sampling techniques are more appropriate for obtaining a representative particulate matter sample from combustion systems for determining PM2.5 emission rate and chemical speciation. Dilution sampling is intended to collect aerosols including those that condense and/or react to form solid or liquid aerosols as the exhaust plume mixes and cools to near-ambient temperature immediately after the stack discharge. These techniques have been widely used in recent research studies. For example, Hildemann et al. (1994) and McDonald et al. (1998) used filtered

  10. Changes in Fine Particulate Matter Measurement Methods and Ambient Concentrations in California

    NASA Astrophysics Data System (ADS)

    Tao, L.; Harley, R.

    2014-12-01

    Networks for measuring ambient fine particle (PM2.5) mass concentrations in California have undergone major changes between 1988 and 2013, transitioning from 24-hour average filter-based sampling to beta attenuation monitors (BAM) that provide hourly measurements on a continuous basis. Over the last decade, between 2003 and 2013, the number of routine PM2.5 measurement sites increased from 10 to 19 in the San Francisco Bay area, from 15 to 27 in the San Joaquin Valley, and from 17 to 22 in the Los Angeles area. The fraction of days with PM2.5 data in each air basin also increased substantially, from 44-50% to 74-89% of site-days per year, due mainly to increased reliance on BAM in place of filter-based sampling. This research explores variations of PM2.5 on various time scales, using PM mass measurements from three major California air basins mentioned above. Regression analysis of collocated BAM and filter-based measurements of PM2.5, shows BAM reads higher than the filter data by 3-6 μg/m3. Most monitoring sites show clear downward trends in PM2.5 concentrations over time, especially in the Los Angeles area where concentrations have decreased by more than 50% since the 1990s. In most cases, PM2.5 concentrations are elevated in winter compared to summer, with basin-wide average increases of about a factor of two for both the San Francisco Bay area and the San Joaquin Valley. Winter season increases are prominent at night due to wood-burning and stagnant atmospheric conditions. The reverse is true at inland sites in southern California, which see reductions in PM2.5 during the in winter. Weekend concentrations are slightly lower than on weekdays. Reductions of ~10% in weekend PM2.5 relative to mid-week values are observed in the San Francisco Bay area and the San Joaquin Valley. Larger reductions of ~25% in PM2.5 are observed on weekends at traffic-dominated sites such as West Oakland. Weekday-weekend differences in PM2.5 mass have been difficult to observe in

  11. Urinary 8-hydroxy-2'-deoxyguanosine as a biomarker of oxidative DNA damage in workers exposed to fine particulates.

    PubMed Central

    Kim, Jee Young; Mukherjee, Sutapa; Ngo, Long C; Christiani, David C

    2004-01-01

    Residual oil fly ash (ROFA) is a chemically complex mixture of compounds, including metals that are potentially carcinogenic because of their ability to cause oxidative injury. In this study, we investigated the association between exposure to particulate matter with an aerodynamic mass median diameter metal fumes. Twenty workers (50% smokers) were monitored for 5 days during an overhaul of oil-fired boilers. The median occupational PM2.5 8-hr time-weighted average was 0.44 mg/m3 (25th-75th percentile, 0.29-0.76). The mean +/- SE creatinine-adjusted 8-OHdG levels were 13.26 +/- 1.04 micro g/g in urine samples collected pre-workshift and 15.22 +/- 0.99 micro g/g in the post-workshift samples. The urinary 8-OHdG levels were significantly greater in the post-workshift samples than in the pre-workshift samples (p = 0.02), after adjusting for urinary cotinine levels, chronic bronchitis status, and age. Linear mixed models indicated a significant exposure-response association between PM2.5 exposure and urinary 8-OHdG levels (p = 0.03). Each 1-mg/m3 incremental increase in PM2.5 exposure was associated with an increase of 1.67 micro g/g (95% confidence interval, 0.21-3.14) in 8-OHdG levels. PM2.5 vanadium, manganese, nickel, and lead exposures also were positively associated with 8-OHdG levels (p metal-containing particulate matter. PMID:15121508

  12. Distribution of metals between particulate and gaseous forms in a volcanic plume

    USGS Publications Warehouse

    Hinkley, T.K.

    1991-01-01

    In order to gain information on the distribution of metals between particles and gaseous forms in the plume of Kilauea volcano, a filter designed to collect metals associated with particles was followed in series by two other collectors intended to trap metals present in gaseous (atomic, molecular, or complexed) form: first an acid-bubbler bath and then a cold trap. Of the six metals measured, all of the In, Tl and Bi, and almost all of the Cd, Pb and Cu were found on the filter. None of any of the metals was detected in the acid-bubbler bath. Masses equivalent to 0.3% of the amount of Cd on the filter, 0.4% of the amount of Pb, and 9.3% of the Cu, were measured in the cold trap. The results indicate that all or nearly all of the six metals were partitioned to the particulate portion of the physical mixture of gases and particles that constitutes a volcanic plume, but that there may be systematic differences between chalcophile metals in the ways they are partitioned between particulate and gaseous phases in a cooled plume, and possibly differences in the acidity or other chemical properties of the molecular phases. ?? 1991 Springer-Verlag.

  13. Apportionment of ambient primary and secondary fine particulate matter at the Pittsburgh National Energy Laboratory particulate matter characterization site using positive matrix factorization and a potential source contributions function analysis

    SciTech Connect

    Martello, Donald V.; Pekney, Natalie J.; Anderson, Richard R.; Davidson, Cliff I.; Hopke, Philip K.; Kim, Eugene; Christensen, William F.; Mangelson, Nolan F.; Eatough, Delbert J.

    2008-03-01

    Fine particulate matter (PM2.5) concentrations associated with 202 24-hr samples collected at the National Energy Technology Laboratory (NETL) particulate matter (PM) characterization site in south Pittsburgh from October 1999 through September 2001 were used to apportion PM2.5 into primary and secondary contributions using Positive Matrix Factorization (PMF2). Input included the concentrations of PM2.5 mass determined with a Federal Reference Method (FRM) sampler, semi-volatile PM2.5, organic material, elemental carbon (EC), and trace element components of PM2.5. A total of 11 factors were identified. The results of potential source contributions function (PSCF) analysis using PMF2 factors and HYSPLIT-calculated back-trajectories were used to identify those factors associated with specific meteorological transport conditions. The 11 factors were identified as being associated with emissions from various specific regions and facilities including crustal material, gasoline combustion, diesel combustion, and three nearby sources high in trace metals. Three sources associated with transport from coal-fired power plants to the southeast, a combination of point sources to the northwest, and a steel mill and associated sources to the west were identified. In addition, two secondary-material-dominated sources were identified, one was associated with secondary products of local emissions and one was dominated by secondary ammonium sulfate transported to the NETL site from the west and southwest. Of these 11 factors, the four largest contributors to PM2.5, were the secondary transported material (dominated by ammonium sulfate) (47%), local secondary material (19%), diesel combustion emissions (10%), and gasoline combustion emissions (8%). The other seven factors accounted for the remaining 16% of the PM2.5 mass. The findings are consistent with the major source of PM2.5 in the Pittsburgh area being dominated by ammonium sulfate from distant transport and so decoupled from

  14. Apportionment of Ambient Primary and Secondary Fine Particulate Matter at the Pittsburgh National Energy Laboratory Particulate Matter Characterization Site Using Positive Matrix Factorization and a Potential Source Contributions Function Analysis

    SciTech Connect

    Martello, Donald; Pekney, Natalie; Anderson, Richard; Davidson, Cliff; Hopke, Philip; Kim, Eugene; Christensen, William; Mangelson, Nolan; Eatough, Delbert

    2008-03-01

    Fine particulate matter (PM2.5) concentrations associated with 202 24-hr samples collected at the National Energy Technology Laboratory (NETL) particulate matter (PM) characterization site in south Pittsburgh from October 1999 through September 2001 were used to apportion PM2.5 into primary and secondary contributions using Positive Matrix Factorization (PMF2). Input included the concentrations of PM2.5 mass determined with a Federal Reference Method (FRM) sampler, semi-volatile PM2.5, organic material, elemental carbon (EC), and trace element components of PM2.5. A total of 11 factors were identified. The results of potential source contributions function (PSCF) analysis using PMF2 factors and HYSPLIT-calculated back-trajectories were used to identify those factors associated with specific meteorological transport conditions. The 11 factors were identified as being associated with emissions from various specific regions and facilities including crustal material, gasoline combustion, diesel combustion, and three nearby sources high in trace metals. Three sources associated with transport from coal-fired power plants to the southeast, a combination of point sources to the northwest, and a steel mill and associated sources to the west were identified. In addition, two secondary-material-dominated sources were identified, one was associated with secondary products of local emissions and one was dominated by secondary ammonium sulfate transported to the NETL site from the west and southwest. Of these 11 factors, the four largest contributors to PM2.5, were the secondary transported material (dominated by ammonium sulfate) (47%), local secondary material (19%), diesel combustion emissions (10%), and gasoline combustion emissions (8%). The other seven factors accounted for the remaining 16% of the PM2.5 mass. The findings are consistent with the major source of PM2.5 in the Pittsburgh area being dominated by ammonium sulfate from distant transport and so decoupled from

  15. Apportionment of ambient primary and secondary fine particulate matter at the Pittsburgh National Energy Laboratory particulate matter characterization site using positive matrix factorization and a potential source contributions function analysis

    SciTech Connect

    Martello, D.V.; Pekney, N.J.; Anderson, R.R.; Davidson, C.I.; Hopke, P.K.; Kim, E.; Christensen, W.F.; Mangelson, N.F.; Eatough, D.J.

    2008-03-01

    Fine particulate matter (PM2.5) concentrations associated with 202 24-hr samples collected at the National Energy Technology Laboratory (NETL) particulate matter (PM) characterization site in south Pittsburgh from October 1999 through September 2001 were used to apportion PM2.5 into primary and secondary contributions using Positive Matrix Factorization (PMF2). Input included the concentrations of PM2.5 mass determined with a Federal Reference Method (FRM) sampler, semi-volatile PM2.5 organic material, elemental carbon (EC), and trace element components of PM2.5. A total of 11 factors were identified. The results of potential source contributions function (PSCF) analysis using PMF2 factors and HYSPLIT-calculated back-trajectories were used to identify those factors associated with specific meteorological transport conditions. The 11 factors were identified as being associated with emissions from various specific regions and facilities including crustal material, gasoline combustion, diesel combustion, and three nearby sources high in trace metals. Three sources associated with transport from coal-fired power plants to the southeast, a combination of point sources to the northwest, and a steel mill and associated sources to the west were identified. In addition, two secondary-material-dominated sources were identified, one was associated with secondary products of local emissions and one was dominated by secondary ammonium sulfate transported to the NETL site from the west and southwest. Of these 11 factors, the four largest contributors to PM2.5 were the secondary transported material (dominated by ammonium sulfate) (47%), local secondary material (19%), diesel combustion emissions (10%), and gasoline combustion emissions (8%). The other seven factors accounted for the remaining 16% of the PM2.5 mass. The findings are consistent with the major source of PM2.5 in the Pittsburgh area being dominated by ammonium sulfate from distant transport and so decoupled from

  16. Metallic Nickel Nanoparticles May Exhibit Higher Carcinogenic Potential than Fine Particles in JB6 Cells

    PubMed Central

    Bowman, Linda; Zou, Baobo; Mao, Guochuan; Xu, Jin; Castranova, Vincent; Zhao, Jinshun; Ding, Min

    2014-01-01

    While numerous studies have described the pathogenic and carcinogenic effects of nickel compounds, little has been done on the biological effects of metallic nickel. Moreover, the carcinogenetic potential of metallic nickel nanoparticles is unknown. Activator protein-1 (AP-1) and nuclear factor-κB (NF-κB) have been shown to play pivotal roles in tumor initiation, promotion, and progression. Mutation of the p53 tumor suppressor gene is considered to be one of the steps leading to the neoplastic state. The present study examines effects of metallic nickel fine and nanoparticles on tumor promoter or suppressor gene expressions as well as on cell transformation in JB6 cells. Our results demonstrate that metallic nickel nanoparticles caused higher activation of AP-1 and NF-κB, and a greater decrease of p53 transcription activity than fine particles. Western blot indicates that metallic nickel nanoparticles induced a higher level of protein expressions for R-Ras, c-myc, C-Jun, p65, and p50 in a time-dependent manner. In addition, both metallic nickel nano- and fine particles increased anchorage-independent colony formation in JB6 P+ cells in the soft agar assay. These results imply that metallic nickel fine and nanoparticles are both carcinogenetic in vitro in JB6 cells. Moreover, metallic nickel nanoparticles may exhibit higher carcinogenic potential, which suggests that precautionary measures should be taken in the use of nickel nanoparticles or its compounds in nanomedicine. PMID:24691273

  17. Predictors of concentrations of nitrogen dioxide, fine particulate matter, and particle constituents inside of lower socioeconomic status urban homes.

    PubMed

    Baxter, Lisa K; Clougherty, Jane E; Laden, Francine; Levy, Jonathan I

    2007-08-01

    Air pollution exposure patterns may contribute to known spatial patterning of asthma morbidity within urban areas. While studies have evaluated the relationship between traffic and outdoor concentrations, few have considered indoor exposure patterns within low socioeconomic status (SES) urban communities. In this study, part of a prospective birth cohort study assessing asthma etiology in urban Boston, we collected indoor and outdoor 3-4 day samples of nitrogen dioxide (NO2) and fine particulate matter (PM2.5) in 43 residences across multiple seasons from 2003 to 2005. Homes were chosen to represent low SES households, including both cohort and non-cohort residences in similar neighborhoods, and consisted almost entirely of multiunit residences. Reflectance analysis and X-ray fluorescence spectroscopy were performed on the particle filters to determine elemental carbon (EC) and trace element concentrations, respectively. Additionally, information on home characteristics (e.g. type, age, stove fuel) and occupant behaviors (e.g. smoking, cooking, cleaning) were collected via a standardized questionnaire. The contributions of outdoor and indoor sources to indoor concentrations were quantified with regression analyses using mass balance principles. For NO2 and most particle constituents (except outdoor-dominated constituents like sulfur and vanadium), the addition of selected indoor source terms improved the model's predictive power. Cooking time, gas stove usage, occupant density, and humidifiers were identified as important contributors to indoor levels of various pollutants. A comparison between cohort and non-cohort participants provided another means to determine the influence of occupant activity patterns on indoor-outdoor ratios. Although the groups had similar housing characteristics and were located in similar neighborhoods, cohort members had significantly higher indoor concentrations of PM2.5 and NO2, associated with indoor activities. We conclude that the

  18. Evaluation of the European population intake fractions for European and Finnish anthropogenic primary fine particulate matter emissions

    NASA Astrophysics Data System (ADS)

    Tainio, Marko; Sofiev, Mikhail; Hujo, Mika; Tuomisto, Jouni T.; Loh, Miranda; Jantunen, Matti J.; Karppinen, Ari; Kangas, Leena; Karvosenoja, Niko; Kupiainen, Kaarle; Porvari, Petri; Kukkonen, Jaakko

    The intake fraction (iF) has been defined as the integrated incremental intake of a pollutant released from a source category or region summed over all exposed individuals. In this study we evaluated the iFs in the population of Europe for emissions of anthropogenic primary fine particulate matter (PM 2.5) from sources in Europe, with a more detailed analysis of the iF from Finnish sources. Parameters for calculating the iFs include the emission strengths, the predicted atmospheric concentrations, European population data, and the average breathing rate per person. Emissions for the whole of Europe and Finland were based on the inventories of the European Monitoring and Evaluation Programme (EMEP) and the Finnish Regional Emission Scenario (FRES) model, respectively. The atmospheric dispersion of primary PM 2.5 was computed using the regional-scale dispersion model SILAM. The iFs from Finnish sources were also computed separately for six emission source categories. The iFs corresponding to the primary PM 2.5 emissions from the European countries for the whole population of Europe were generally highest for the densely populated Western European countries, second highest for the Eastern and Southern European countries, and lowest for the Northern European and Baltic countries. For the entire European population, the iF values varied from the lowest value of 0.31 per million for emissions from Cyprus, to the highest value of 4.42 per million for emissions from Belgium. These results depend on the regional distribution of the population and the prevailing long-term meteorological conditions. Regarding Finnish primary PM 2.5 emissions, the iF was highest for traffic emissions (0.68 per million) and lowest for major power plant emissions (0.50 per million). The results provide new information that can be used to find the most cost-efficient emission abatement strategies and policies.

  19. Risk of Incident Diabetes in Relation to Long-term Exposure to Fine Particulate Matter in Ontario, Canada

    PubMed Central

    Burnett, Richard T.; Kwong, Jeffrey C.; Villeneuve, Paul J.; Goldberg, Mark S.; Brook, Robert D.; van Donkelaar, Aaron; Jerrett, Michael; Martin, Randall V.; Brook, Jeffrey R.; Copes, Ray

    2013-01-01

    Background: Laboratory studies suggest that fine particulate matter (≤ 2.5 µm in diameter; PM2.5) can activate pathophysiological responses that may induce insulin resistance and type 2 diabetes. However, epidemiological evidence relating PM2.5 and diabetes is sparse, particularly for incident diabetes. Objectives: We conducted a population-based cohort study to determine whether long-term exposure to ambient PM2.5 is associated with incident diabetes. Methods: We assembled a cohort of 62,012 nondiabetic adults who lived in Ontario, Canada, and completed one of five population-based health surveys between 1996 and 2005. Follow-up extended until 31 December 2010. Incident diabetes diagnosed between 1996 and 2010 was ascertained using the Ontario Diabetes Database, a validated registry of persons diagnosed with diabetes (sensitivity = 86%, specificity = 97%). Six-year average concentrations of PM2.5 at the postal codes of baseline residences were derived from satellite observations. We used Cox proportional hazards models to estimate the associations, adjusting for various individual-level risk factors and contextual covariates such as smoking, body mass index, physical activity, and neighborhood-level household income. We also conducted multiple sensitivity analyses. In addition, we examined effect modification for selected comorbidities and sociodemographic characteristics. Results: There were 6,310 incident cases of diabetes over 484,644 total person-years of follow-up. The adjusted hazard ratio for a 10-µg/m3 increase in PM2.5 was 1.11 (95% CI: 1.02, 1.21). Estimated associations were comparable among all sensitivity analyses. We did not find strong evidence of effect modification by comorbidities or sociodemographic covariates. Conclusions: This study suggests that long-term exposure to PM2.5 may contribute to the development of diabetes. PMID:23632126

  20. The structural and functional effects of fine particulate matter from cooking oil fumes on rat umbilical cord blood vessels.

    PubMed

    Zhu, Xiaoxia; Hou, Lijuan; Zhang, Jian; Yao, Cijiang; Liu, Ying; Zhang, Chao; Xu, Yachun; Cao, Jiyu

    2016-08-01

    A growing body of epidemiological evidence has supported the association between maternal exposure to airborne fine particulate matter (PM2.5) during pregnancy and adverse pregnancy outcomes. However, the specific biological mechanisms implicated in the causes of adverse pregnancy outcomes are not well defined. In this study, a pregnant rat model of exposure to different doses of cooking oil fumes (COFs)-derived PM2.5 by tail intravenous injection in different pregnant stages was established. The results indicated that exposure to COFs-derived PM2.5 was associated with adverse pregnancy outcomes, changed the structure of umbilical cord blood vessels, decreased the diameter and lumen area, and increased wall thickness. What's more, a significant increase of maximum contraction tension was observed in the early pregnancy high-dose exposure group and pregnant low-dose exposure group compared to the control group. Based on the maximum contraction tension, acetylcholine (ACh) did not induce vasodilation but caused a dose-dependent constriction, and there were significant differences in the two groups compared to the control group. Exposure to COFs-derived PM2.5 impaired the vasomotor function of umbilical veins by affecting the expression of NO and ET-1. This is the first study that evaluated the association of risk of adverse pregnancy outcomes and pregnant rats exposed to COFs-derived PM2.5 and primarily explored the potential mechanisms of umbilical cord blood vessels injury on a rat model. More detailed vitro and vivo studies are needed to further explore the mechanism in the future. PMID:27178289

  1. Global Estimates of Average Ground-Level Fine Particulate Matter Concentrations from Satellite-Based Aerosol Optical Depth

    NASA Technical Reports Server (NTRS)

    Van Donkelaar, A.; Martin, R. V.; Brauer, M.; Kahn, R.; Levy, R.; Verduzco, C.; Villeneuve, P.

    2010-01-01

    Exposure to airborne particles can cause acute or chronic respiratory disease and can exacerbate heart disease, some cancers, and other conditions in susceptible populations. Ground stations that monitor fine particulate matter in the air (smaller than 2.5 microns, called PM2.5) are positioned primarily to observe severe pollution events in areas of high population density; coverage is very limited, even in developed countries, and is not well designed to capture long-term, lower-level exposure that is increasingly linked to chronic health effects. In many parts of the developing world, air quality observation is absent entirely. Instruments aboard NASA Earth Observing System satellites, such as the MODerate resolution Imaging Spectroradiometer (MODIS) and the Multi-angle Imaging SpectroRadiometer (MISR), monitor aerosols from space, providing once daily and about once-weekly coverage, respectively. However, these data are only rarely used for health applications, in part because the can retrieve the amount of aerosols only summed over the entire atmospheric column, rather than focusing just on the near-surface component, in the airspace humans actually breathe. In addition, air quality monitoring often includes detailed analysis of particle chemical composition, impossible from space. In this paper, near-surface aerosol concentrations are derived globally from the total-column aerosol amounts retrieved by MODIS and MISR. Here a computer aerosol simulation is used to determine how much of the satellite-retrieved total column aerosol amount is near the surface. The five-year average (2001-2006) global near-surface aerosol concentration shows that World Health Organization Air Quality standards are exceeded over parts of central and eastern Asia for nearly half the year.

  2. Spatiotemporal prediction of fine particulate matter using high-resolution satellite images in the Southeastern US 2003-2011.

    PubMed

    Lee, Mihye; Kloog, Itai; Chudnovsky, Alexandra; Lyapustin, Alexei; Wang, Yujie; Melly, Steven; Coull, Brent; Koutrakis, Petros; Schwartz, Joel

    2016-06-01

    Numerous studies have demonstrated that fine particulate matter (PM2.5, particles smaller than 2.5 μm in aerodynamic diameter) is associated with adverse health outcomes. The use of ground monitoring stations of PM2.5 to assess personal exposure, however, induces measurement error. Land-use regression provides spatially resolved predictions but land-use terms do not vary temporally. Meanwhile, the advent of satellite-retrieved aerosol optical depth (AOD) products have made possible to predict the spatial and temporal patterns of PM2.5 exposures. In this paper, we used AOD data with other PM2.5 variables, such as meteorological variables, land-use regression, and spatial smoothing to predict daily concentrations of PM2.5 at a 1-km(2) resolution of the Southeastern United States including the seven states of Georgia, North Carolina, South Carolina, Alabama, Tennessee, Mississippi, and Florida for the years from 2003 to 2011. We divided the study area into three regions and applied separate mixed-effect models to calibrate AOD using ground PM2.5 measurements and other spatiotemporal predictors. Using 10-fold cross-validation, we obtained out of sample R(2) values of 0.77, 0.81, and 0.70 with the square root of the mean squared prediction errors of 2.89, 2.51, and 2.82 μg/m(3) for regions 1, 2, and 3, respectively. The slopes of the relationships between predicted PM2.5 and held out measurements were approximately 1 indicating no bias between the observed and modeled PM2.5 concentrations. Predictions can be used in epidemiological studies investigating the effects of both acute and chronic exposures to PM2.5. Our model results will also extend the existing studies on PM2.5 which have mostly focused on urban areas because of the paucity of monitors in rural areas. PMID:26082149

  3. Fossil and contemporary fine particulate carbon fractions at 12 rural and urban sites in the United States

    NASA Astrophysics Data System (ADS)

    Schichtel, Bret A.; Malm, William C.; Bench, Graham; Fallon, Stewart; McDade, Charles E.; Chow, Judith C.; Watson, John G.

    2008-01-01

    Fine particulate matter collected at two urban, four near-urban, and six remote sites throughout the United States were analyzed for total carbon (TC) and radiocarbon (14C). Samples were collected at most sites for both a summer and winter season. The radiocarbon was used to partition the TC into fossil and contemporary fractions. On average, contemporary carbon composed about half of the carbon at the urban, ˜70-97% at near-urban, and 82-100% at remote sites. At Phoenix, Arizona, and Seattle, Washington, one monitor was located within the urban center and one outside to assess the urban excess over background concentrations. During the summer the urban and rural sites had similar contemporary carbon concentrations. However, during the winter the urban sites had more than twice the contemporary carbon measured at the neighboring sites, indicating anthropogenic contributions to the contemporary carbon. The urban fossil carbon was 4-20 times larger than the neighboring rural sites for both seasons. Organic (OC) and elemental carbon (EC) from TOR analysis were available. These and the radiocarbon data were used to estimate characteristic fossil and contemporary EC/TC ratios for the winter and summer seasons. These ratios were applied to carbon data from the Interagency Monitoring of Protected Visual Environments network to estimate the fraction of contemporary carbon at mostly rural sites throughout the United States. In addition, the ratios were used to develop a semiquantitative, lower bound estimate of secondary organic carbon (SOC) contribution to fossil and contemporary carbon. SOC accounted for more than one-third of the fossil and contemporary carbon.

  4. Association of short-term exposure to fine particulate matter and nitrogen dioxide with acute cardiovascular effects.

    PubMed

    Wu, Chang-Fu; Shen, Fu-Hui; Li, Ya-Ru; Tsao, Tsung-Ming; Tsai, Ming-Jer; Chen, Chu-Chih; Hwang, Jing-Shiang; Hsu, Sandy Huey-Jen; Chao, Hsing; Chuang, Kai-Jen; Chou, Charles C K; Wang, Ya-Nan; Ho, Chi-Chang; Su, Ta-Chen

    2016-11-01

    This study evaluated whether exposure to fine particulate matter (PM2.5) and nitrogen dioxide (NO2) is associated with cardiovascular effects by examining a panel of 89 healthy subjects in Taipei, Taiwan. The subjects received two health examinations approximately 8months apart in 2013. Brachial-ankle pulse wave velocity (baPWV), a physiological indicator of arterial stiffness, and high-sensitivity C-reactive protein (hsCRP), a biomarker of vascular inflammations, were measured during each examination. Two exposure assessment methods were used for estimating the subjects' exposure to PM2.5 and NO2. The first method involved constructing daily land use regression (LUR) models according to measurements collected at ambient air quality monitoring stations. The second method required combining the LUR estimates with indoor monitoring data at the workplace of the subjects. Linear mixed models were used to examine the association between the exposure estimates and health outcomes. The results showed that a 10-μg/m(3) increase in PM2.5 concentration at a 1-day lag was associated with 2.1% (95% confidence interval: 0.7%-3.6%) and 2.4% (0.8%-4.0%) increases in baPWV based on the two exposure assessment methods, whereas no significant association was observed for NO2. The significant effects of PM2.5 remained in the two-pollutant models. By contrast, NO2, but not PM2.5, was significantly associated with increased hsCRP levels (16.0%-37.3% in single-pollutant models and 26.4%-44.6% in two-pollutant models, per 10-ppb increase in NO2). In conclusion, arterial stiffness might be more sensitive to short-term PM2.5 exposure than is inflammation. PMID:27344119

  5. Effects of a changing climate on summertime fine particulate matter levels in the eastern U.S.

    NASA Astrophysics Data System (ADS)

    Day, Melissa C.; Pandis, Spyros N.

    2015-06-01

    The chemical transport model PMCAMx is used to examine the effect of climate change on fine (under 2.5 µms) particulate matter (PM2.5) during the summer in the eastern United States. Meteorology from 10 years in the 1990s (present) and 10 years in the 2050s (future) based on the Intergovernmental Panel on Climate Change A2 scenario is used. Anthropogenic pollutant emissions are assumed to remain constant, while biogenic emissions are climate sensitive and, depending on species, increase between 15 and 27% on average. The predicted changes of PM2.5 are modest (increases of less than 10% on average across the domain) and quite variable in space, ranging from +13% in the Plains to -7% in the Northeast. Variability is driven concurrently by changes in temperature, wind speed, rainfall, and relative humidity, with no single dominant meteorological factor. Sulfate and organic aerosol are responsible for most of the PM2.5 change. The improved treatment of organic aerosol using the volatility basis set does not increase significantly its sensitivity to climate change compared to traditional treatments that neglect the volatility of primary particles and do not simulate the chemical aging processes. Future organic aerosol is predicted to be more oxidized due to increases of its secondary biogenic and anthropogenic components. These results suggest that the effects of planned and expected emission anthropogenic emission controls will be more important than those of climate change for PM2.5 concentrations in 2050. Maximum daily 8 h average ozone increases by 5% on average are predicted, with a marked increase in the Northeast, Southeast, and Midwest.

  6. Source apportionment of ambient fine particulate matter in Dearborn, Michigan, using hourly resolved PM chemical composition data.

    PubMed

    Pancras, Joseph Patrick; Landis, Matthew S; Norris, Gary A; Vedantham, Ram; Dvonch, J Timothy

    2013-03-15

    High time-resolution aerosol sampling was conducted for one month during July-August 2007 in Dearborn, MI, a non-attainment area for fine particulate matter (PM2.5) National Ambient Air Quality Standards (NAAQS). Measurements of more than 30 PM2.5 species were made using a suite of semi-continuous sampling and monitoring instruments. Dynamic variations in the sub-hourly concentrations of source 'marker' elements were observed when discrete plumes from local sources impacted the sampling site. Hourly averaged PM2.5 composition data for 639 samples were used to identify and apportion PM2.5 emission sources using the multivariate receptor modeling techniques EPA Positive Matrix Factorization (PMF) v4.2 and EPA Unmix v6.0. Source contribution estimates from PMF and Unmix were then evaluated using the Sustained Wind Instance Method (SWIM), which identified plausible source origins. Ten sources were identified by both PMF and Unmix: (1) secondary sulfate, (2) secondary nitrate characterized by a significant diurnal trend, (3) iron and steel production, (4) a potassium-rich factor attributable to iron/steel slag waste processing, (5) a cadmium-rich factor attributable to incineration, (6) an oil refinery characterized by La/Ce>1 specific to south wind, (7) oil combustion, (8) coal combustion, (9) motor vehicles, and (10) road dust enriched with organic carbon. While both models apportioned secondary sulfate, oil refinery, and oil combustion PM2.5 masses closely, the mobile and industrial source apportionments differed. Analyses were also carried out to help infer time-of-day variations in the contributions of local sources. PMID:23302684

  7. Exploring the uncertainty associated with satellite-based estimates of premature mortality due to exposure to fine particulate matter

    NASA Astrophysics Data System (ADS)

    Ford, B.; Heald, C. L.

    2015-09-01

    The negative impacts of fine particulate matter (PM2.5) exposure on human health are a primary motivator for air quality research. However, estimates of the air pollution health burden vary considerably and strongly depend on the datasets and methodology. Satellite observations of aerosol optical depth (AOD) have been widely used to overcome limited coverage from surface monitoring and to assess the global population exposure to PM2.5 and the associated premature mortality. Here we quantify the uncertainty in determining the burden of disease using this approach, discuss different methods and datasets, and explain sources of discrepancies among values in the literature. For this purpose we primarily use the MODIS satellite observations in concert with the GEOS-Chem chemical transport model. We contrast results in the United States and China for the years 2004-2011. We estimate that in the United States, exposure to PM2.5 accounts for approximately 4 % of total deaths compared to 22 % in China (using satellite-based exposure), which falls within the range of previous estimates. The difference in estimated mortality burden based solely on a global model vs. that derived from satellite is approximately 9 % for the US and 4 % for China on a nationwide basis, although regionally the differences can be much greater. This difference is overshadowed by the uncertainty in the methodology for deriving PM2.5 burden from satellite observations, which we quantify to be on order of 20 % due to uncertainties in the AOD-to-surface-PM2.5 relationship, 10 % due to the satellite observational uncertainty, and 30 % or greater uncertainty associated with the application of concentration response functions to estimated exposure.

  8. Exploring the uncertainty associated with satellite-based estimates of premature mortality due to exposure to fine particulate matter

    NASA Astrophysics Data System (ADS)

    Ford, Bonne; Heald, Colette L.

    2016-03-01

    The negative impacts of fine particulate matter (PM2.5) exposure on human health are a primary motivator for air quality research. However, estimates of the air pollution health burden vary considerably and strongly depend on the data sets and methodology. Satellite observations of aerosol optical depth (AOD) have been widely used to overcome limited coverage from surface monitoring and to assess the global population exposure to PM2.5 and the associated premature mortality. Here we quantify the uncertainty in determining the burden of disease using this approach, discuss different methods and data sets, and explain sources of discrepancies among values in the literature. For this purpose we primarily use the MODIS satellite observations in concert with the GEOS-Chem chemical transport model. We contrast results in the United States and China for the years 2004-2011. Using the Burnett et al. (2014) integrated exposure response function, we estimate that in the United States, exposure to PM2.5 accounts for approximately 2 % of total deaths compared to 14 % in China (using satellite-based exposure), which falls within the range of previous estimates. The difference in estimated mortality burden based solely on a global model vs. that derived from satellite is approximately 14 % for the US and 2 % for China on a nationwide basis, although regionally the differences can be much greater. This difference is overshadowed by the uncertainty in the methodology for deriving PM2.5 burden from satellite observations, which we quantify to be on the order of 20 % due to uncertainties in the AOD-to-surface-PM2.5 relationship, 10 % due to the satellite observational uncertainty, and 30 % or greater uncertainty associated with the application of concentration response functions to estimated exposure.

  9. Cardiovascular effects in patrol officers are associated with fine particulate matter from brake wear and engine emissions.

    PubMed

    Riediker, Michael; Devlin, Robert B; Griggs, Thomas R; Herbst, Margaret C; Bromberg, Philip A; Williams, Ronald W; Cascio, Wayne E

    2004-12-01

    BACKGROUND: Exposure to fine particulate matter air pollutants (PM2.5) affects heart rate variability parameters, and levels of serum proteins associated with inflammation, hemostasis and thrombosis. This study investigated sources potentially responsible for cardiovascular and hematological effects in highway patrol troopers. RESULTS: Nine healthy young non-smoking male troopers working from 3 PM to midnight were studied on four consecutive days during their shift and the following night. Sources of in-vehicle PM2.5 were identified with variance-maximizing rotational principal factor analysis of PM2.5-components and associated pollutants. Two source models were calculated. Sources of in-vehicle PM2.5 identified were 1) crustal material, 2) wear of steel automotive components, 3) gasoline combustion, 4) speed-changing traffic with engine emissions and brake wear. In one model, sources 1 and 2 collapsed to a single source. Source factors scores were compared to cardiac and blood parameters measured ten and fifteen hours, respectively, after each shift. The "speed-change" factor was significantly associated with mean heart cycle length (MCL, +7% per standard deviation increase in the factor score), heart rate variability (+16%), supraventricular ectopic beats (+39%), % neutrophils (+7%), % lymphocytes (-10%), red blood cell volume MCV (+1%), von Willebrand Factor (+9%), blood urea nitrogen (+7%), and protein C (-11%). The "crustal" factor (but not the "collapsed" source) was associated with MCL (+3%) and serum uric acid concentrations (+5%). Controlling for potential confounders had little influence on the effect estimates. CONCLUSION: PM2.5 originating from speed-changing traffic modulates the autonomic control of the heart rhythm, increases the frequency of premature supraventricular beats and elicits pro-inflammatory and pro-thrombotic responses in healthy young men. PMID:15813985

  10. Chemical Characterization and Source Apportionment of Indoor and Outdoor Fine Particulate Matter (PM2.5) in Retirement Communities of the Los Angeles Basin

    PubMed Central

    Hasheminassab, Sina; Daher, Nancy; Shafer, Martin M.; Schauer, James J.; Delfino, Ralph J.; Sioutas, Constantinos

    2014-01-01

    Concurrent indoor and outdoor measurements of fine particulate matter (PM2.5) were conducted at three retirement homes in the Los Angeles Basin during two separate phases (cold and warm) between 2005 and 2006. Indoor-to-outdoor relationships of PM2.5 chemical constituents were determined and sources of indoor and outdoor PM2.5 were evaluated using a molecular marker-based chemical mass balance (MM-CMB) model. Indoor levels of elemental carbon (EC) along with metals and trace elements were found to be significantly affected by outdoor sources. EC, in particular, displayed very high indoor-to-outdoor (I/O) mass ratios accompanied by strong I/O correlations, illustrating the significant impact of outdoor sources on indoor levels of EC. Similarly, indoor levels of polycyclic aromatic hydrocarbons (PAHs), hopanes, and steranes were strongly correlated with their outdoor components and displayed I/O ratios close to unity. On the other hand, concentrations of n-alkanes and organic acids inside the retirement communities were dominated by indoor sources (e.g. food cooking and consumer products), as indicated by their I/O ratios, which exceeded unity. Source apportionment results revealed that vehicular emissions were the major contributor to both indoor and outdoor PM2.5, accounting for 39 and 46% of total mass, respectively. Moreover, the contribution of vehicular sources to indoor levels was generally comparable to its corresponding outdoor estimate. Other water-insoluble organic matter (other WIOM), which accounts for emissions from uncharacterized primary biogenic sources, displayed a wider range of contributions, varying from 2 to 73% of PM2.5, across all sites and phases of the study. Lastly, higher indoor than outdoor contribution of other water-soluble organic matter (other WSOM) was evident at some of the sites, suggesting the production of secondary aerosols as well as direct emissions from primary sources (including cleaning or other consumer products) at the

  11. Genotoxic and epigenotoxic effects of fine particulate matter from rural and urban sites in Lebanon on human bronchial epithelial cells.

    PubMed

    Borgie, Mireille; Ledoux, Frédéric; Verdin, Anthony; Cazier, Fabrice; Greige, Hélène; Shirali, Pirouz; Courcot, Dominique; Dagher, Zeina

    2015-01-01

    Assessment of air pollution by particulate matter (PM) is strongly required in Lebanon in the absence of an air quality law including updated air quality standards. Using two different PM2.5-0.3 samples collected at an urban and a rural site, we examined genotoxic/epigenotoxic effects of PM exposure within a human bronchial epithelial cell line (BEAS-2B). Inorganic and organic contents evidence the major contribution of traffic and generating sets in the PM2.5-0.3 composition. Urban PM2.5-0.3 sample increased the phosphorylation of H2AX, the telomerase activity and the miR-21 up-regulation in BEAS-2B cells in a dose-dependent manner. Furthermore, urban PM2.5-0.3 induced a significant increase in CYP1A1, CYP1B1 and AhRR genes expression. The variable concentrations of transition metals and organic compounds detected in the collected PM2.5-0.3 samples might be the active agents leading to a cumulative DNA damage, critical for carcinogenesis. PMID:25460656

  12. Source identification and metallic profiles of size-segregated particulate matters at various sites in Delhi.

    PubMed

    Hazarika, Naba; Jain, V K; Srivastava, Arun

    2015-09-01

    A study of elemental composition in the ambient air of Delhi was carried out in the monsoon, winter and summer seasons at four different sites from August 2012 to April 2013 in the size ranges <1, 1-2.5, 2.5-10 and >10 μm using "Dekati PM10" impactor. At each site, three samples were collected and were analyzed by energy-dispersive X-ray fluorescence (EDXRF). The presence of elements was found to be very common and highly concentrated in aerosol particles at all the sites, which are Na, Al, Si, K, Ca, Zn and Ba. Total suspended particulate matters (TSPMs) of fine particles were found high in comparison to coarse particles at all seasons. The TSPM of fine particles was found to be varied in the range from 303.6 to 416.2 μg/m(3). Similarly, the range of coarse TSPM was observed from 162.9 to 262.8 μg/m(3). Correlation matrices were observed between fine (size ranges <1 and 1-2.5 μm) and coarse (size ranges 2.5-10 and >10 μm) size particles for all elements with seasons. Source apportionments of elements were carried out using MS Excel 2010 through XLSTAT software. The source apportionments between fine and coarse particles were carried out through factor analysis and dominated sources found to be crustal re-suspension and industrial activities. PMID:26318319

  13. EVALUATION OF RETENTION POND AND CONSTRUCTED WETLAND BMPS FOR TREATING PARTICULATE-BOUND HEAVY METALS IN URBAN STORMWATER RUNOFF - 2007

    EPA Science Inventory

    The sources of heavy metals in urban stormwater runoff are diverse (e.g., highways, road surfaces, roofs) and the release of metals into the environment is governed by several complex mechanisms. Heavy metals in stormwater are associated with suspended particulate materials that ...

  14. EVALUATION OF RETENTION POND AND CONSTRUCTED WETLAND BMPS FOR TREATING PARTICULATE-BOUND HEAVY METALS IN URBAN STORMWATER RUNOFF

    EPA Science Inventory

    The sources of heavy metals in urban stormwater runoff are numerous (e.g., highways, road surfaces, roofs) and the release of metals into the environment is governed by several complex mechanisms. Heavy metals in stormwater are associated with suspended particulate materials tha...

  15. The association of particulate air metal concentrations with heart rate variability.

    PubMed Central

    Magari, Shannon R; Schwartz, Joel; Williams, Paige L; Hauser, Russ; Smith, Thomas J; Christiani, David C

    2002-01-01

    Numerous studies show an association between particulate air pollution and adverse health effects. Particulate matter is a complex mixture of elemental carbon, ammonium, sulfates, nitrates, organic components, and metals. The mechanisms of action of particulate matter less than or equal to 2.5 micro m in mean aerodynamic diameter (PM(2.5)), as well as the constituents responsible for the observed cardiopulmonary health effects, have not been identified. In this study we focused on the association between the metallic component of PM(2.5) and cardiac autonomic function based on standard heart rate variability (HRV) measures in an epidemiologic study of boilermakers. Thirty-nine male boilermakers were monitored throughout a work shift. Each subject wore an ambulatory electrocardiogram (Holter) monitor and a personal monitor to measure PM(2.5). We used mixed-effects models to regress heart rate and SDNN index (standard deviation of the normal-to-normal) on PM(2.5) and six metals (vanadium, nickel, chromium, lead, copper, and manganese). There were statistically significant mean increases in the SDNN index of 11.30 msec and 3.98 msec for every 1 micro g/m(3) increase in the lead and vanadium concentrations, respectively, after adjusting for mean heart rate, age, and smoking status. Small changes in mean heart rate were seen with all exposure metrics. The results of this study suggest an association between exposure to airborne metals and significant alterations in cardiac autonomic function. These results extend our understanding of the adverse health effects of the metals component of ambient PM(2.5). PMID:12204821

  16. Fine particulate matter from urban ambient and wildfire sources from California's San Joaquin Valley initiate differential inflammatory, oxidative stress, and xenobiotic responses in human bronchial epithelial cells.

    PubMed

    Nakayama Wong, L S; Aung, H H; Lamé, M W; Wegesser, T C; Wilson, D W

    2011-12-01

    Environmental particulate matter (PM) exposure has been correlated with pathogenesis of acute airway inflammatory disease such as asthma and COPD. PM size and concentration have been studied extensively, but the additional effects of particulate components such as biological material, transition metals, and polycyclic aromatic hydrocarbons could also impact initial disease pathogenesis. In this study, we compared urban ambient particulate matter (APM) collected from Fresno, California with wildfire (WF) particulate matter collected from Escalon, California on early transcriptional responses in human bronchial epithelial cells (HBE). Global gene expression profiling of APM treated HBE activated genes related to xenobiotic metabolism (CYP 1B1), endogenous ROS generation and response genes (DUOX1, SOD2, PTGS2) and pro-inflammatory responses associated with asthma or COPD such as IL-1α, IL-1β, IL-8, and CCL20. WF PM treatments also induced a pro-inflammatory gene response, but elicited a more robust xenobiotic metabolism and oxidative stress response. Inhibitor studies targeting endotoxin, ROS, and trace metals, found endotoxin inhibition had modest selective inhibition of inflammation while inhibition of hydrogen peroxide and transition metals had broad effects suggesting additional interactions with xenobiotic metabolism pathways. APM induced a greater inflammatory response while WF PM had more marked metabolism and ROS related responses. PMID:21703343

  17. Two Model-Based Methods for Policy Analyses of Fine Particulate Matter Control in China: Source Apportionment and Source Sensitivity

    NASA Astrophysics Data System (ADS)

    Li, X.; Zhang, Y.; Zheng, B.; Zhang, Q.; He, K.

    2013-12-01

    Anthropogenic emissions have been controlled in recent years in China to mitigate fine particulate matter (PM2.5) pollution. Recent studies show that sulfate dioxide (SO2)-only control cannot reduce total PM2.5 levels efficiently. Other species such as nitrogen oxide, ammonia, black carbon, and organic carbon may be equally important during particular seasons. Furthermore, each species is emitted from several anthropogenic sectors (e.g., industry, power plant, transportation, residential and agriculture). On the other hand, contribution of one emission sector to PM2.5 represents contributions of all species in this sector. In this work, two model-based methods are used to identify the most influential emission sectors and areas to PM2.5. The first method is the source apportionment (SA) based on the Particulate Source Apportionment Technology (PSAT) available in the Comprehensive Air Quality Model with extensions (CAMx) driven by meteorological predictions of the Weather Research and Forecast (WRF) model. The second method is the source sensitivity (SS) based on an adjoint integration technique (AIT) available in the GEOS-Chem model. The SA method attributes simulated PM2.5 concentrations to each emission group, while the SS method calculates their sensitivity to each emission group, accounting for the non-linear relationship between PM2.5 and its precursors. Despite their differences, the complementary nature of the two methods enables a complete analysis of source-receptor relationships to support emission control policies. Our objectives are to quantify the contributions of each emission group/area to PM2.5 in the receptor areas and to intercompare results from the two methods to gain a comprehensive understanding of the role of emission sources in PM2.5 formation. The results will be compared in terms of the magnitudes and rankings of SS or SA of emitted species and emission groups/areas. GEOS-Chem with AIT is applied over East Asia at a horizontal grid

  18. Trace element concentration in fine particulate matter (PM2.5) and their bioavailability in different microenvironments in Agra, India: a case study.

    PubMed

    Varshney, Poorti; Saini, Renuka; Taneja, Ajay

    2016-04-01

    Exposure to airborne particulate matter results in the deposition of millions of particle in the lung; consequently, there is need for monitoring them particularly in indoor environments. Case study was conducted in three different microenvironments, i.e., urban, rural and roadside to examine the elemental bioavailability in fine particulate matter and its potential health risk. The samples were collected on polytetrafluoroethylene filter paper with the help of fine particulate sampler during August-September, 2012. The average mass concentration of PM2.5 was 71.23 µg m(-3) (rural), 45.33 µg m(-3) (urban) and 36.71 µg m(-3) (roadside). Elements in PM2.5 were analyzed by inductively coupled plasma atomic emission spectroscopy. Percentage bioavailability was determined to know the amount of soluble fraction that is actually taken across the cell membrane through inhalation pathway. Cadmium and lead were found to have cancer risk in a risk evaluation using an Integrated Risk Information system. PMID:26160661

  19. Deposition of heavy metals from particulate settleable matter in soils of an industrialized area

    NASA Astrophysics Data System (ADS)

    Sanfeliu, Teófilo

    2010-05-01

    Particulate air pollutants from industrial emissions and natural resource exploitation represent an important contribution to soil contamination. These atmospheric particles, usually settleable particulate matter form (which settle by gravity) are deposited on soil through both dry and wet. The most direct consequences on soil of air pollutants are acidification and salinization, not to mention the pollution that can cause heavy metals as components of suspended particulate matter. The main objective of this study was to evaluate the influence of air pollution in soil composition. For this purpose, has been conducted a study of the composition of heavy metals in the settleable particulate matter in two locations (Almazora and Vila-real) with high industrial density (mainly ceramic companies) located in the ceramic cluster of Castellón (Spain). Settleable air particles samples were collected with a PS Standard Britannic captor (MCV-PS2) for monthly periods between January 2007 and December 2009. We analyzed the following elements: Cd, Pb, Cu, Ni, Sb and Bi which are highly toxic and have the property of accumulating in living organisms. It has been determined the concentration of heavy metals in the soluble fraction of settleable air particles by ICP-MS. The annual variation of the results obtained in both populations shows a decline over the study period the concentrations of heavy metals analyzed. This fact is associated with the steady implementation of corrective measures in the main industrial sector in the area based on the treatment of mineral raw materials. Moreover, this decline is, in turn, a lower intake of heavy metals to the soil. REFERENCES Gómez E.T.; Sanfeliu T.; Rius J.; Jordán M.M. (2005) "Evolution, sources and distribution of mineral particles and amorphous phase of atmospheric aerosol in an industrial and Mediterranean coastal area" Water, air and Soil Pollution 167:311-330 Moral R., Gilkes R.J.; Jordán M.M. (2005) "Distribution of heavy

  20. SIZE DISTRIBUTION AND RATE OF PRODUCTION OF AIRBORNE PARTICULATE MATTER GENERATED DURING METAL CUTTING

    SciTech Connect

    M.A. Ebadian, Ph.D.; S.K. Dua, Ph.D., C.H.P.; Hillol Guha, Ph.D.

    2001-01-01

    During deactivation and decommissioning activities, thermal cutting tools, such as plasma torch, laser, and gasoline torch, are used to cut metals. These activities generate fumes, smoke and particulates. These airborne species of matter, called aerosols, may be inhaled if suitable respiratory protection is not used. Inhalation of the airborne metallic aerosols has been reported to cause ill health effects, such as acute respiratory syndrome and chromosome damage in lymphocytes. In the nuclear industry, metals may be contaminated with radioactive materials. Cutting these metals, as in size reduction of gloveboxes and tanks, produces high concentrations of airborne transuranic particles. Particles of the respirable size range (size < 10 {micro}m) deposit in various compartments of the respiratory tract, the fraction and the site in the respiratory tract depending on the size of the particles. The dose delivered to the respiratory tract depends on the size distribution of the airborne particulates (aerosols) and their concentration and radioactivity/toxicity. The concentration of airborne particulate matter in an environment is dependent upon the rate of their production and the ventilation rate. Thus, measuring aerosol size distribution and generation rate is important for (1) the assessment of inhalation exposures of workers, (2) the selection of respiratory protection equipment, and (3) the design of appropriate filtration systems. Size distribution of the aerosols generated during cutting of different metals by plasma torch was measured. Cutting rates of different metals, rate of generation of respirable mass, as well as the fraction of the released kerf that become respirable were determined. This report presents results of these studies. Measurements of the particles generated during cutting of metal plates with a plasma arc torch revealed the presence of particles with mass median aerodynamic diameters of particles close to 0.2 {micro}m, arising from

  1. Mercury, trace elements and organic constituents in atmospheric fine particulate matter, Shenandoah National Park, Virginia, USA: A combined approach to sampling and analysis

    USGS Publications Warehouse

    Kolker, A.; Engle, M.A.; Orem, W.H.; Bunnell, J.E.; Lerch, H.E.; Krabbenhoft, D.P.; Olson, M.L.; McCord, J.D.

    2008-01-01

    Compliance with U.S. air quality regulatory standards for atmospheric fine particulate matter (PM2.5) is based on meeting average 24 hour (35 ?? m-3) and yearly (15 ??g m-3) mass-per-unit-volume limits, regardless of PM2.5 composition. Whereas this presents a workable regulatory framework, information on particle composition is needed to assess the fate and transport of PM2.5 and determine potential environmental/human health impacts. To address these important non-regulatory issues an integrated approach is generally used that includes (1) field sampling of atmospheric particulate matter on filter media, using a size-limiting cyclone, or with no particle-size limitation; and (2) chemical extraction of exposed filters and analysis of separate particulate-bound fractions for total mercury, trace elements and organic constituents, utilising different USGS laboratories optimised for quantitative analysis of these substances. This combination of sampling and analysis allowed for a more detailed interpretation of PM2.5 sources and potential effects, compared to measurements of PM2.5 abundance alone. Results obtained using this combined approach are presented for a 2006 air sampling campaign in Shenandoah National Park (Virginia, USA) to assess sources of atmospheric contaminants and their potential impact on air quality in the Park. PM2.5 was collected at two sampling sites (Big Meadows and Pinnacles) separated by 13.6 km. At both sites, element concentrations in PM2.5 were low, consistent with remote or rural locations. However, element/Zr crustal abundance enrichment factors greater than 10, indicating anthropogenic input, were found for Hg, Se, S, Sb, Cd, Pb, Mo, Zn and Cu, listed in decreasing order of enrichment. Principal component analysis showed that four element associations accounted for 84% of the PM 2.5 trace element variation; these associations are interpreted to represent: (1) crustal sources (Al, REE); (2) coal combustion (Se, Sb), (3) metal production

  2. Quantifying short-term and long-term health benefits of attaining ambient fine particulate pollution standards in Guangzhou, China

    NASA Astrophysics Data System (ADS)

    Lin, Hualiang; Liu, Tao; Xiao, Jianpeng; Zeng, Weilin; Li, Xing; Guo, Lingchuan; Xu, Yanjun; Zhang, Yonghui; Vaughn, Michael G.; Nelson, Erik J.; Qian, Zhengmin (Min); Ma, Wenjun

    2016-07-01

    In 2012, Chinese Environmental Bureau modified its National Ambient Air Quality Standards to include fine particulate matter (PM2.5). Recent air pollution monitoring data shows that numerous locations have exceeded this standard, which may have resulted in avoidable adverse health effects. For example, among the 74 Chinese cities with PM2.5 monitoring data in 2013, only three cities attained the annual air quality standard (35 μg/m3). This study aimed to quantify the potential short- and long-term health benefits from achieving the Chinese ambient air quality standard and WHO's air quality objectives. A generalized additive model was used to estimate the short-term association of mortality with changes in daily PM2.5 concentrations, based on which we estimated the potential premature mortality reduction that would have been achieved during the period of 2012-2015 if the daily air quality standard had been met in Guangzhou, China; we also estimated the avoidable deaths if attaining the annual air quality standard using the relative risk obtained from a previous cohort study. During the study period, there were 160 days exceeding the national daily PM2.5 standard (75 μg/m3) in Guangzhou, and the annual average concentration (47.7 μg/m3) was higher than the air quality standard of 35 μg/m3. Significant associations between PM2.5 and mortality were observed. An increase of 10 μg/m3 in PM2.5 was associated with increases in daily death counts of 0.95% (95% CI: 0.56%, 1.34%) in natural mortality, 1.31% (95% CI: 0.75%, 1.87%) in cardiovascular mortality, and 1.06% (95% CI: 0.19%, 1.94%) in respiratory mortality. The health benefits of attaining the national daily air quality standard of PM2.5 (75 μg/m3) would have prevented 143 [95% confidence interval (CI): 84, 203] fewer natural deaths, including 84 (95% CI: 48, 121) fewer cardiovascular deaths and 27 (95% CI: 5, 49) fewer respiratory deaths. Had the annual PM2.5 levels been reduced to 35 μg/m3, an estimated 3875

  3. Exposures to fine particulate air pollution and respiratory outcomes in adults using two national datasets: a cross-sectional study

    PubMed Central

    2012-01-01

    Background Relationships between chronic exposures to air pollution and respiratory health outcomes have yet to be clearly articulated for adults. Recent data from nationally representative surveys suggest increasing disparity by race/ethnicity regarding asthma-related morbidity and mortality. The objectives of this study are to evaluate the relationship between annual average ambient fine particulate matter (PM2.5) concentrations and respiratory outcomes for adults using modeled air pollution and health outcome data and to examine PM2.5 sensitivity across race/ethnicity. Methods Respondents from the 2002-2005 National Health Interview Survey (NHIS) were linked to annual kriged PM2.5 data from the USEPA AirData system. Logistic regression was employed to investigate increases in ambient PM2.5 concentrations and self-reported prevalence of respiratory outcomes including asthma, sinusitis and chronic bronchitis. Models included health, behavioral, demographic and resource-related covariates. Stratified analyses were conducted by race/ethnicity. Results Of nearly 110,000 adult respondents, approximately 8,000 and 4,000 reported current asthma and recent attacks, respectively. Overall, odds ratios (OR) for current asthma (0.97 (95% Confidence Interval: 0.87-1.07)) and recent attacks (0.90 (0.78-1.03)) did not suggest an association with a 10 μg/m3 increase in PM2.5. Stratified analyses revealed significant associations for non-Hispanic blacks [OR = 1.73 (1.17-2.56) for current asthma and OR = 1.76 (1.07-2.91) for recent attacks] but not for Hispanics and non-Hispanic whites. Significant associations were observed overall (1.18 (1.08-1.30)) and in non-Hispanic whites (1.31 (1.18-1.46)) for sinusitis, but not for chronic bronchitis. Conclusions Non-Hispanic blacks may be at increased sensitivity of asthma outcomes from PM2.5 exposure. Increased chronic PM2.5 exposures in adults may contribute to population sinusitis burdens. PMID:22490087

  4. Fine Particulate Air Pollution and Hospital Emergency Room Visits for Respiratory Disease in Urban Areas in Beijing, China, in 2013

    PubMed Central

    Wang, Shuo; Wang, Chao; Huang, Fangfang; Gao, Qi; Wu, Lijuan; Tao, Lixin; Guo, Jin; Wang, Wei; Guo, Xiuhua

    2016-01-01

    Background Heavy fine particulate matter (PM2.5) air pollution occurs frequently in China. However, epidemiological research on the association between short-term exposure to PM2.5 pollution and respiratory disease morbidity is still limited. This study aimed to explore the association between PM2.5 pollution and hospital emergency room visits (ERV) for total and cause-specific respiratory diseases in urban areas in Beijing. Methods Daily counts of respiratory ERV from Jan 1 to Dec 31, 2013, were obtained from ten general hospitals located in urban areas in Beijing. Concurrently, data on PM2.5 were collected from the Beijing Environmental Protection Bureau, including 17 ambient air quality monitoring stations. A generalized-additive model was used to explore the respiratory effects of PM2.5, after controlling for confounding variables. Subgroup analyses were also conducted by age and gender. Results A total of 92,464 respiratory emergency visits were recorded during the study period. The mean daily PM2.5 concentration was 102.1±73.6 μg/m3. Every 10 μg/m3 increase in PM2.5 concentration at lag0 was associated with an increase in ERV, as follows: 0.23% for total respiratory disease (95% confidence interval [CI]: 0.11%-0.34%), 0.19% for upper respiratory tract infection (URTI) (95%CI: 0.04%-0.35%), 0.34% for lower respiratory tract infection (LRTI) (95%CI: 0.14%-0.53%) and 1.46% for acute exacerbation of chronic obstructive pulmonary disease (AECOPD) (95%CI: 0.13%-2.79%). The strongest association was identified between AECOPD and PM2.5 concentration at lag0-3 (3.15%, 95%CI: 1.39%-4.91%). The estimated effects were robust after adjusting for SO2, O3, CO and NO2. Females and people 60 years of age and older demonstrated a higher risk of respiratory disease after PM2.5 exposure. Conclusion PM2.5 was significantly associated with respiratory ERV, particularly for URTI, LRTI and AECOPD in Beijing. The susceptibility to PM2.5 pollution varied by gender and age. PMID

  5. Long-Term Exposure to Traffic Emissions and Fine Particulate Matter and Lung Function Decline in the Framingham Heart Study

    PubMed Central

    Ljungman, Petter L.; Wilker, Elissa H.; Dorans, Kirsten S.; Gold, Diane R.; Schwartz, Joel; Koutrakis, Petros; Washko, George R.; O’Connor, George T.; Mittleman, Murray A.

    2015-01-01

    Rationale: Few studies have examined associations between long-term exposure to fine particulate matter (PM2.5) and lung function decline in adults. Objectives: To determine if exposure to traffic and PM2.5 is associated with longitudinal changes in lung function in a population-based cohort in the Northeastern United States, where pollution levels are relatively low. Methods: FEV1 and FVC were measured up to two times between 1995 and 2011 among 6,339 participants of the Framingham Offspring or Third Generation studies. We tested associations between residential proximity to a major roadway and PM2.5 exposure in 2001 (estimated by a land-use model using satellite measurements of aerosol optical thickness) and lung function. We examined differences in average lung function using mixed-effects models and differences in lung function decline using linear regression models. Current smokers were excluded. Models were adjusted for age, sex, height, weight, pack-years, socioeconomic status indicators, cohort, time, season, and weather. Measurements and Main Results: Living less than 100 m from a major roadway was associated with a 23.2 ml (95% confidence interval [CI], −44.4 to −1.9) lower FEV1 and a 5.0 ml/yr (95% CI, −9.0 to −0.9) faster decline in FEV1 compared with more than 400 m. Each 2 μg/m3 increase in average of PM2.5 was associated with a 13.5 ml (95% CI, −26.6 to −0.3) lower FEV1 and a 2.1 ml/yr (95% CI, −4.1 to −0.2) faster decline in FEV1. There were similar associations with FVC. Associations with FEV1/FVC ratio were weak or absent. Conclusions: Long-term exposure to traffic and PM2.5, at relatively low levels, was associated with lower FEV1 and FVC and an accelerated rate of lung function decline. PMID:25590631

  6. Time series analysis of fine particulate matter and asthma reliever dispensations in populations affected by forest fires

    PubMed Central

    2013-01-01

    Background Several studies have evaluated the association between forest fire smoke and acute exacerbations of respiratory diseases, but few have examined effects on pharmaceutical dispensations. We examine the associations between daily fine particulate matter (PM2.5) and pharmaceutical dispensations for salbutamol in forest fire-affected and non-fire-affected populations in British Columbia (BC), Canada. Methods We estimated PM2.5 exposure for populations in administrative health areas using measurements from central monitors. Remote sensing data on fires were used to classify the populations as fire-affected or non-fire-affected, and to identify extreme fire days. Daily counts of salbutamol dispensations between 2003 and 2010 were extracted from the BC PharmaNet database. We estimated rate ratios (RR) and 95% confidence intervals (CIs) for each population during all fire seasons and on extreme fire days, adjusted for temperature, humidity, and temporal trends. Overall effects for fire-affected and non-fire-affected populations were estimated via meta-regression. Results Fire season PM2.5 was positively associated with salbutamol dispensations in all fire-affected populations, with a meta-regression RR (95% CI) of 1.06 (1.04-1.07) for a 10 ug/m3 increase. Fire season PM2.5 was not significantly associated with salbutamol dispensations in non-fire-affected populations, with a meta-regression RR of 1.00 (0.98-1.01). On extreme fire days PM2.5 was positively associated with salbutamol dispensations in both population types, with a global meta-regression RR of 1.07 (1.04 - 1.09). Conclusions Salbutamol dispensations were clearly associated with fire-related PM2.5. Significant associations were observed in smaller populations (range: 8,000 to 170,000 persons, median: 26,000) than those reported previously, suggesting that salbutamol dispensations may be a valuable outcome for public health surveillance during fire events. PMID:23356966

  7. Spatial vulnerability of fine particulate matter relative to the geographic disparities of adult's diabetes prevalence in the United States

    NASA Astrophysics Data System (ADS)

    Chien, Lung-Chang; Alamgir, Hassanat; Yu, Hwa-Lung

    2015-04-01

    Potentially larger regional effects of climate change have been revealed on the elevation of fine particulate matter (≤ 2.5 µg in diameter; PM2.5) in the U.S. In addition, recent research supports a link between diabetes and PM2.5 in both laboratory and epidemiology studies. However, research investigating the potential relationship of the spatial vulnerability of diabetes to concomitant PM2.5 levels is still sparse, and the level of diabetes geographic disparities attributed to PM2.5 levels has yet to be evaluated. We conducted a Bayesian structured additive regression modeling approach to determine whether long-term exposure to PM2.5 is spatially associated with diabetes prevalence after adjusting for the socioeconomic status of county residents. This study utilizes the following data sources from 2004-2010: the Behavioral Risk Factor Surveillance System, the American Community Survey, and the Environmental Protection Agency. We also conducted spatial comparisons with low, median-low, median-high, and high levels of PM2.5 concentrations. When PM2.5 concentrations increased 1 µg/m3, the increase in the relative risk percentage for diabetes ranged from -5.47% (95% credible interval = -6.14, -4.77) to 2.34% (95% CI = 2.01, 2.70), where 1,323 of 3,109 counties (42.55%) displayed diabetes vulnerability with significantly positive relative risk percentages. These vulnerable counties are more likely located in the Southeast, Central, and South Regions of the U.S. A similar spatial vulnerability pattern for concentrations of low PM2.5 levels was also present in these same three regions. A clear cluster of vulnerable counties at median-high PM2.5 level was found in Michigan. This study identifies the spatial vulnerability of diabetes prevalence associated with PM2.5, and thereby provides the evidence needed to prompt and establish enhanced surveillance that can monitor diabetes vulnerability in areas with low PM2.5 pollution.

  8. Long-Term Exposure to Constituents of Fine Particulate Air Pollution and Mortality: Results from the California Teachers Study

    PubMed Central

    Ostro, Bart; Lipsett, Michael; Reynolds, Peggy; Goldberg, Debbie; Hertz, Andrew; Garcia, Cynthia; Henderson, Katherine D.; Bernstein, Leslie

    2010-01-01

    Background Several studies have reported associations between long-term exposure to ambient fine particulate matter (PM) and cardiovascular mortality. However, the health impacts of long-term exposure to specific constituents of PM2.5 (PM with aerodynamic diameter ≤ 2.5 μm) have not been explored. Methods We used data from the California Teachers Study, a prospective cohort of active and former female public school professionals. We developed estimates of long-term exposures to PM2.5 and several of its constituents, including elemental carbon, organic carbon (OC), sulfates, nitrates, iron, potassium, silicon, and zinc. Monthly averages of exposure were created using pollution data from June 2002 through July 2007. We included participants whose residential addresses were within 8 and 30 km of a monitor collecting PM2.5 constituent data. Hazard ratios (HRs) were estimated for long-term exposure for mortality from all nontraumatic causes, cardiopulmonary disease, ischemic heart disease (IHD), and pulmonary disease. Results Approximately 45,000 women with 2,600 deaths lived within 30 km of a monitor. We observed associations of all-cause, cardiopulmonary, and IHD mortality with PM2.5 mass and each of its measured constituents, and between pulmonary mortality and several constituents. For example, for cardiopulmonary mortality, HRs for interquartile ranges of PM2.5, OC, and sulfates were 1.55 [95% confidence interval (CI), 1.43–1.69], 1.80 (95% CI, 1.68–1.93), and 1.79 (95% CI, 1.58–2.03), respectively. Subsequent analyses indicated that, of the constituents analyzed, OC and sulfates had the strongest associations with all four outcomes. Conclusions Long-term exposures to PM2.5 and several of its constituents were associated with increased risks of all-cause and cardiopulmonary mortality in this cohort. Constituents derived from combustion of fossil fuel (including diesel), as well as those of crustal origin, were associated with some of the greatest risks

  9. Source identification and trends in concentrations of gaseous and fine particulate principal species in Seoul, South Korea

    SciTech Connect

    Choong-Min Kang; Byung-Wook Kang; Hak Sung Lee

    2006-07-15

    Ambient measurements were made using two sets of annular denuder system during the four seasons and were then compared with the results during the period of 1996-1997 to estimate the trends and seasonal variations in concentrations of gaseous and fine particulate matter (PM2.5) principal species. Annual averages of gaseous HNO{sub 3} and NH{sub 3} increased by 11% and 6%, respectively, compared with those of the previous study, whereas HONO and SO{sub 2} decreased by 11% and 136%, respectively. The PM2.5 concentration decreased by {approximately} 17%, 35% for SO{sub 4}{sup 2-}, and 29% for NH{sub 4}{sup +}, whereas NO{sub 3}{sup -} increased by 21%. Organic carbon (OC) and elemental carbon (EC) were 12.8 and 5.98 {mu}g/m{sup 3}, accounting for {approximately} 26 and 12% of PM2.5 concentration, respectively. The species studied accounted for 84% of PM2.5 concentration, ranging from 76% in winter to 97% in summer. Potential source contribution function (PSCF) analysis was used to identify possible source areas affecting air pollution levels at a receptor site in Seoul. High possible source areas in concentrations of PM2.5, NO{sub 3}{sup -}, SO{sub 4}{sup 2-}2, NH{sub 4}{sup +}, and K{sup +} were coastal cities of Liaoning province, inland areas of Heibei/Shandong provinces in China, and typical port cities of South Korea. The PSCF results may suggest that air pollution levels in Seoul are affected considerably by long-range transport from external areas, such as the coastal zone in China and other cities in South Korea, as well as Seoul itself. It appears that the NO{sub 3} contribution to PM2.5 increased by {approximately} 4%, whereas the SO{sub 4}{sup 2-} contribution decreased by {approximately} 2%. This trend may be explained by a shift of fuel patterns from fossil fuel to LNG, according to the governmental policies. 44 refs., 6 figs., 3 tabs.

  10. Personal exposures to fine particulate matter and black carbon in households cooking with biomass fuels in rural Ghana

    PubMed Central

    Van Vliet, Eleanne D.S.; Asante, Kwakupoku; Jack, Darby W.; Kinney, Patrick L.; Whyatt, Robin M.; Chillrud, Steven N.; Abokyi, Livesy; Zandoh, Charles; Owusu-Agyei, Seth

    2014-01-01

    Objective To examine cooking practices and 24-h personal and kitchen area exposures to fine particulate matter (PM2.5) and black carbon in cooks using biomass in Ghana. Methods Researchers administered a detailed survey to 421 households. In a sub-sample of 36 households, researchers collected 24-h integrated PM2.5 samples (personal and kitchen area); in addition, the primary cook was monitored for real-time PM2.5. All filters were also analyzed for black carbon using a multi-wavelength reflectance method. Predictors of PM2.5 exposure were analyzed, including cooking behaviors, fuel, stove and kitchen type, weather, demographic factors and other smoke sources. Results The majority of households cooked outdoors (55%; 231/417), used biomass (wood or charcoal) as their primary fuel (99%; 412/413), and cooked on traditional fires (77%, 323/421). In the sub-sample of 29 households with complete, valid exposure monitoring data, the 24-h integrated concentrations of PM2.5 were substantially higher in the kitchen sample (mean 446.8 μg/m3) than in the personal air sample (mean 128.5 μg/m3). Black carbon concentrations followed the same pattern such that concentrations were higher in the kitchen sample (14.5 μg/m3) than in the personal air sample (8.8 μg/m3). Spikes in real-time personal concentrations of PM2.5 accounted for the majority of exposure; the most polluted 5%, or 72 min, of the 24-h monitoring period accounted for 75% of all exposure. Two variables that had some predictive power for personal PM2.5 exposures were primary fuel type and ethnicity, while reported kerosene lantern use was associated with increased personal and kitchen area concentrations of black carbon. Conclusion Personal concentrations of PM2.5 exhibited considerable inter-subject variability across kitchen types (enclosed, semi-enclosed, outdoor), and can be elevated even in outdoor cooking settings. Furthermore, personal concentrations of PM2.5 were not associated with kitchen type and were

  11. Fine tuning of graphene-metal adhesion by surface alloying

    PubMed Central

    Alfè, D.; Pozzo, M.; Miniussi, E.; Günther, S.; Lacovig, P.; Lizzit, S.; Larciprete, R.; Burgos, B. Santos; Menteş, T. O.; Locatelli, A.; Baraldi, A.

    2013-01-01

    We show that bimetallic surface alloying provides a viable route for governing the interaction between graphene and metal through the selective choice of the elemental composition of the surface alloy. This concept is illustrated by an experimental and theoretical characterization of the properties of graphene on a model PtRu surface alloy on Ru(0001), with a concentration of Pt atoms in the first layer between 0 and 50%. The progressive increase of the Pt content determines the gradual detachment of graphene from the substrate, which results from the modification of the carbon orbital hybridization promoted by Pt. Alloying is also found to affect the morphology of graphene, which is strongly corrugated on bare Ru, but becomes flat at a Pt coverage of 50%. The method here proposed can be readily extended to several supports, thus opening the way to the conformal growth of graphene on metals and to a full tunability of the graphene-substrate interaction. PMID:23938361

  12. Fine tuning of graphene-metal adhesion by surface alloying.

    PubMed

    Alfè, D; Pozzo, M; Miniussi, E; Günther, S; Lacovig, P; Lizzit, S; Larciprete, R; Santos Burgos, B; Menteş, T O; Locatelli, A; Baraldi, A

    2013-01-01

    We show that bimetallic surface alloying provides a viable route for governing the interaction between graphene and metal through the selective choice of the elemental composition of the surface alloy. This concept is illustrated by an experimental and theoretical characterization of the properties of graphene on a model PtRu surface alloy on Ru(0001), with a concentration of Pt atoms in the first layer between 0 and 50%. The progressive increase of the Pt content determines the gradual detachment of graphene from the substrate, which results from the modification of the carbon orbital hybridization promoted by Pt. Alloying is also found to affect the morphology of graphene, which is strongly corrugated on bare Ru, but becomes flat at a Pt coverage of 50%. The method here proposed can be readily extended to several supports, thus opening the way to the conformal growth of graphene on metals and to a full tunability of the graphene-substrate interaction. PMID:23938361

  13. Characterizing the Indoor-Outdoor Relationship of Fine Particulate Matter in Non-Heating Season for Urban Residences in Beijing

    PubMed Central

    Huang, Lihui; Pu, Zhongnan; Li, Mu; Sundell, Jan

    2015-01-01

    Objective Ambient fine particulate matter (PM2.5) pollution is currently a major public health concern in Chinese urban areas. However, PM2.5 exposure primarily occurs indoors. Given such, we conducted this study to characterize the indoor-outdoor relationship of PM2.5 mass concentrations for urban residences in Beijing. Methods In this study, 24-h real-time indoor and ambient PM2.5 mass concentrations were concurrently collected for 41 urban residences in the non-heating season. The diurnal variation of pollutant concentrations was characterized. Pearson correlation analysis was used to examine the correlation between indoor and ambient PM2.5 mass concentrations. Regression analysis with ordinary least square was employed to characterize the influences of a variety of factors on PM2.5 mass concentration. Results Hourly ambient PM2.5 mass concentrations were 3–280 μg/m3 with a median of 58 μg/m3, and hourly indoor counterpart were 4–193 μg/m3 with a median of 34 μg/m3. The median indoor/ambient ratio of PM2.5 mass concentration was 0.62. The diurnal variation of residential indoor and ambient PM2.5 mass concentrations tracked with each other well. Strong correlation was found between indoor and ambient PM2.5 mass concentrations on the community basis (coefficients: r≥0.90, p<0.0001), and the ambient data explained ≥84% variance of the indoor data. Regression analysis suggested that the variables, such as traffic conditions, indoor smoking activities, indoor cleaning activities, indoor plants and number of occupants, had significant influences on the indoor PM2.5 mass concentrations. Conclusions PM2.5 of ambient origin made dominant contribution to residential indoor PM2.5 exposure in the non-heating season under the high ambient fine particle pollution condition. Nonetheless, the large inter-residence variability of infiltration factor of ambient PM2.5 raised the concern of exposure misclassification when using ambient PM2.5 mass concentrations as

  14. Development and evaluation of a daily temporal interpolation model for fine particulate matter species concentrations and source apportionment

    NASA Astrophysics Data System (ADS)

    Redman, Jeremiah D.; Holmes, Heather A.; Balachandran, Sivaraman; Maier, Marissa L.; Zhai, Xinxin; Ivey, Cesunica; Digby, Kyle; Mulholland, James A.; Russell, Armistead G.

    2016-09-01

    The impacts of emissions sources on air quality in St. Louis, Missouri are assessed for use in acute health effects studies. However, like many locations in the United States, the speciated particulate matter (PM) measurements from regulatory monitoring networks in St. Louis are only available every third day. The power of studies investigating acute health effects of air pollution is reduced when using one-in-three day source impacts compared to daily source impacts. This paper presents a temporal interpolation model to estimate daily speciated PM2.5 mass concentrations and source impact estimates using one-in-three day measurements. The model is used to interpolate 1-in-3 day source impact estimates and to interpolate the 1-in-3 day PM species concentrations prior to source apportionment (SA). Both approaches are compared and evaluated using two years (June 2001-May 2003) of daily data from the St. Louis Midwest Supersite (STL-SS). Data withholding is used to simulate a 1-in-3 day data set from the daily data to evaluate interpolated estimates. After evaluation using the STL-SS data, the model is used to estimate daily source impacts at another site approximately seven kilometers (7 km) northwest of the STL-SS (Blair); results between the sites are compared. For interpolated species concentrations, the model performs better for secondary species (sulfate, nitrate, ammonium, and organic carbon) than for primary species (metals and elemental carbon), likely due to the greater spatial autocorrelation of secondary species. Pearson correlation (R) values for sulfate, nitrate, ammonium, elemental carbon, and organic carbon ranged from 0.61 (elemental carbon, EC2) to 0.97 (sulfate). For trace metals, the R values ranged from 0.31 (Ba) to 0.81 (K). The interpolated source impact estimates also indicated a stronger correlation for secondary sources. Correlations of the secondary source impact estimates based on measurement data and interpolation data ranged from 0.68 to 0

  15. Number concentrations of fine and ultrafine particles containing metals

    NASA Astrophysics Data System (ADS)

    Tolocka, Michael P.; Lake, Derek A.; Johnston, Murray V.; Wexler, Anthony S.

    Typical classification schemes for large data sets of single-particle mass spectra involve statistical or neural network analysis. In this work, a new approach is evaluated in which particle spectra are pre-selected on the basis of an above threshold signal intensity at a specified m/ z (mass to charge ratio). This provides a simple way to identify candidate particles that may contain the specific chemical component associated with that m/ z. Once selected, the candidate particle spectra are then classified by the fast adaptive resonance algorithm, ART 2-a, to confirm the presence of the targeted component in the particle and to study the intra-particle associations with other chemical components. This approach is used to characterize metals in a 75,000 particle data set obtained in Baltimore, Maryland. Particles containing a specific metal are identified and then used to determine the size distribution, number concentration, time/wind dependencies and intra-particle correlations with other metals. Four representative elements are considered in this study: vanadium, iron, arsenic and lead. Number concentrations of ambient particles containing these elements can exceed 10,000 particles cm -3 at the measurement site. Vanadium, a primary marker for fuel oil combustion, is observed from all wind directions during this time period. Iron and lead are observed from the east-northeast. Most particles from this direction that contain iron also contain lead and most particles that contain lead also contain iron, suggesting a common emission source for the two. Arsenic and lead are observed from the south-southeast. Particles from this direction contain either arsenic or lead but rarely both, suggesting different sources for each element.

  16. Fine Ambient Air Particulate Matter Exposure Induces Molecular Alterations Indicative of Cardiovascular Disease Progression in Atherosclerotic Susceptible Mice -- B

    EPA Science Inventory

    Background: Epidemiology studies have reported associations between increased mortality and morbidity with exposure to particulate air pollution, particularly within individuals with pre-existing cardiovascular disease (CVD). Clinical and toxicological studies have provided evide...

  17. PREFACE: SPECIAL ISSUE OF AEROSOL SCIENCE AND TECHNOLOGY ON FINDINGS FROM THE FINE PARTICULATE MATTER SUPERSITES PROGRAM

    EPA Science Inventory

    This collection of papers, which is the first coordinated publication of results from the Phase II Supersites Program, reflects the objectives of the program - to characterize particulate matter, to provide information, such as source-receptor relationships, that support health...

  18. CORRELATION OF FINE AND ULTRAFINE PARTICULATE MATTER WITH METEOROLOGICAL CONDITIONS AND CRITERIA POLLUTANTS IN EL PASO, TEXAS

    EPA Science Inventory

    Because the harmful health effects of airborne particulate matter (PM) are not well understood, various researchers are investigating ambient PM in order to assess its hazardous components. Current hypotheses acknowledge that PM related morbidity and mortality may be a result ...

  19. Characteristics of particulate matter and metals in the ambient air from a residential area in the largest industrial city in Korea

    NASA Astrophysics Data System (ADS)

    Hieu, Nguyen Thi; Lee, Byeong-Kyu

    2010-11-01

    This study investigated the characteristics of mass size distributions and metallic elements in the airborne particulate matter from an urban, residential area in Ulsan, Korea. Daily PM samples were trapped on glass fiber filters from April to August 2008 using an eight-stage cascade impactor. The identified concentrations of PM1.0, PM2.5 and PM10 were 18.5, 27.6 and 50.5 μg/m3, respectively. Light metals (Na, K, Ca, Mg, Al) and two heavy metals (Fe and Zn) were detected in high concentrations in the coarse particles, while the remaining heavy metals (Cd, Cr, Cu, Ni, Mn and Pb) were found mainly in the fine particles. The crustal elements were found in higher concentrations in the spring and the anthropogenic elements were found in high concentrations in the summer. Chromium was found to have the highest excess cancer risk in a risk evaluation using an Integrated Risk Information System. In the results of an analysis of the enrichment factors, Cd, Pb, Cu and Zn were found to be very highly enriched, and Cr and Ni were found to be highly enriched. Factor analysis permitted the identification of three source groups (dust and vehicle exhaust, Cu smelting and oil combustion) for the fine particles and two source groups (industrial emissions and crustal traffic sources) for coarse particles.

  20. The association of expired nitric oxide with occupational particulate metal exposure.

    PubMed

    Kim, Jee Young; Hauser, Russ; Wand, Matthew P; Herrick, Robert F; Amarasiriwardena, Chitra J; Christiani, David C

    2003-10-01

    Toxicologic studies have shown that soluble transition metals in residual oil fly ash (ROFA) can induce pulmonary injury. In this study, we investigated the association between the fractional concentration of expired nitric oxide (FENO) and exposure to metal constituents of particulate matter with an aerodynamic mass median diameter < or =2.5 microm (PM2.5) in boilermakers exposed to ROFA and metal fume. Metals investigated included vanadium, chromium, manganese, nickel, copper, and lead. Subjects were monitored for 5 consecutive days during boiler repair overhauls in 1999 (n=20) and 2000 (n=14). In 1999, we found a significant inverse association between log-transformed FENO and PM2.5 metal concentrations. LogFENO changed by -0.03 (95% CI: -0.04, -0.01), -0.56 (95% CI: -0.88, -0.24), -0.09 (95% CI: -0.16, -0.02), and -0.04 (95% CI: -0.07, -0.02) per microg/m3 of PM2.5 vanadium, chromium, manganese, and nickel, respectively. In 2000, no significant associations were observed, most likely due to exposure misclassification resulting from the use of respirators. The inverse association between PM2.5 metal exposure and FENO in subjects with limited respirator usage suggests that soluble transition metals might be partially responsible for the adverse pulmonary responses seen in workers exposed to ROFA. PMID:12963400

  1. Dissolved and particulate heavy metals distribution in coastal lagoons. A case study from Mar Chiquita Lagoon, Argentina

    NASA Astrophysics Data System (ADS)

    Beltrame, María Ornela; De Marco, Silvia G.; Marcovecchio, Jorge E.

    2009-10-01

    Mar Chiquita Coastal Lagoon is located on the Atlantic coast of Argentina, and it has been declared a Biosphere Reserve under the UNESCO Man and Biosphere Programme (MAB). This coastal lagoon constitutes an estuarine environment with a very particular behaviour and it is ecologically important due to its biological diversity. The aim of the present study was to evaluate the distribution and geochemical behaviour of several heavy metals in this coastal system, focusing on their distribution in both the dissolved phase (<0.45 μm) and the suspended particulate matter. Therefore, the general hydrochemical parameters (salinity, temperature, turbidity, pH and dissolved oxygen) and concentration of total particulate and dissolved metals (Cd, Cu, Ni, Zn, Fe, Pb, Cr and Mn) were measured along 2 years (2004-2006) at two different sites. As regards their distribution, hydrological parameters did not present any evidence of deviation with respect to historical values. Suspended particulate matter showed no seasonal variation or any relationship with the tide, thus indicating that in this shallow coastal lagoon neither tides nor freshwater sources regulate the particulate matter input. Heavy metals behaviour, both in dissolved and particulate phases did not reveal any relationship with tide or seasons. Mar Chiquita Coastal Lagoon showed a large input of dissolved and particulate metals, which is probably due to intensive agriculture within the drainage basin of this system.

  2. Temporal variability of trace metal mobility of urban particulate matter from Beijing - A contribution to health impact assessments of aerosols

    NASA Astrophysics Data System (ADS)

    Schleicher, Nina J.; Norra, Stefan; Chai, Fahe; Chen, Yizhen; Wang, Shulan; Cen, Kuang; Yu, Yang; Stüben, Doris

    2011-12-01

    The total element concentration and the chemical fractionation of 18 elements (Al, As, Ca, Cd, Co, Cr, Cu, Fe, K, Mg, Mn, Ni, Pb, Rb, Sr, Ti, V, Zn) in total suspended particulate matter (TSP) from Beijing, China, were studied for a period of three years (July 2005-May 2008, n = 35). Additionally, particulate matter smaller than 2.5 μm (PM 2.5) was included in the study (February 2005-September 2007, n = 32). A chemical sequential extraction scheme according to Fernández Espinosa et al. (2002) was applied to assess the speciation and potential mobility of the elements. Four different fractions were distinguished, which can be classified as: (f1) water-extractable, (f2) bound to carbonates, oxides and reducible metals, (f3) bound to organic matter, oxidisable and sulfidic metals, and (f4) residual fraction. The chemical speciation results illustrated that potential toxic metals like Zn (41%), Cd (40%), Mn (32%), and As (29%) were detectable to a high percentage in the water-soluble fraction (f1) of TSP samples and consequently are especially harmful to the environment and exposed people. Lead and Cu in TSP samples showed highest extractability in fraction f2 (53% and 23%, respectively) and can also be considered as mobile with a negative impact on the environment and the human health. Fine particles (PM 2.5) showed comparable results with sometimes higher percentages in the highly mobile fraction f1, for example for As (52%). Anthropogenic sources, such as industry and traffic, played an important role for overall atmospheric pollution throughout the year. Additionally, these more or less constant emissions were superimposed by seasonal sources, especially coal combustion in winter and geogenic dust in spring. Coal combustion proved to be a source especially relevant for the toxic and mobile elements Cd, As and Pb. The study illustrated that special attention has to be taken to the mentioned elements and their related sources for health impact assessments and when

  3. A new method for the simultaneous determination of PAH and metals in samples of atmospheric particulate matter

    NASA Astrophysics Data System (ADS)

    Piñeiro-Iglesias, M.; López-Mahía, P.; Muniategui-Lorenzo, S.; Prada-Rodríguez, D.; Querol, X.; Alastuey, A.

    A method for the analysis of polycyclic aromatic hydrocarbons (PAH) and metals in the same filter portion employed for atmospheric particulate samples collection is proposed in this study. Two standard reference materials, SRM 1648 and SRM 1649a, were extracted by microwave-assisted extraction with hexane/acetone (1:1) and the solid residue was acid digested for the determination of levels of metals. It is demonstrated that there were no significant losses of the metal load during the PAH extraction process. Finally, the devised methodology was applied to actual atmospheric particulate samples.

  4. Emission estimates of particulate matter and heavy metals from mobile sources in Delhi (India).

    PubMed

    Kumari, Ragini; Attri, Arun K; Panis, Luc Int; Gurjar, B R

    2013-04-01

    An attempt has been made to make a comprehensive emission inventory of particulate matter (PM) of various size fractions and also of heavy metals (HMs) emitted from mobile sources (both exhaust and non-exhaust) from the road transport of Delhi, India (1991-2006). COPERT-III and 4 models were mainly used toestimate these emissions. Results show that the annual exhaust emission of PM of size upto 2.5 micrometer (PM2.5) has increased from 3Gg to 4.5Gg during 1991-2006 irrespective of'improvement in vehicle-technology and fuel use. PM emission from exhaust and non-exhaust sources in general has increased. Heavy commercial vehicles-need attention to control particulate emission as it emerged as a predominant source of PM emissions. Among non-exhaust emissions of total suspended particulate matter (TSP), road-surface wear (~49%) has the prime contribution. As a result of-introduction of unleaded gasoline Pb has significantly reduced (~8 fold) whereas share of Cu and Zn are still considerable. Among non-exhaust sources, Pb release was the most significant one from tyre-wear whereas from break-wear, Cu release was found to be the most significant followed by Pb and Cr + Zn. Because of public health concerns further policies need to be developed to reduce emissions of PM and HMs from the road transport of megacity Delhi. PMID:25508320

  5. Emission estimates of particulate matter and heavy metals from mobile sources in Delhi (India).

    PubMed

    Kumari, Ragini; Attri, Arun K; Panis, Luc Int; Gurjar, B R

    2013-04-01

    An attempt has been made to make a comprehensive emission inventory of particulate matter (PM) of various size fractions and also of heavy metals (HMs) emitted from mobile sources (both exhaust and non-exhaust) from the road transport of Delhi, India (1991-2006). COPERT-III and 4 models were mainly used toestimate these emissions. Results show that the annual exhaust emission of PM of size upto 2.5 micrometer (PM2.5) has increased from 3Gg to 4.5Gg during 1991-2006 irrespective of'improvement in vehicle-technology and fuel use. PM emission from exhaust and non-exhaust sources in general has increased. Heavy commercial vehicles-need attention to control particulate emission as it emerged as a predominant source of PM emissions. Among non-exhaust emissions of total suspended particulate matter (TSP), road-surface wear (~49%) has the prime contribution. As a result of-introduction of unleaded gasoline Pb has significantly reduced (~8 fold) whereas share of Cu and Zn are still considerable. Among non-exhaust sources, Pb release was the most significant one from tyre-wear whereas from break-wear, Cu release was found to be the most significant followed by Pb and Cr + Zn. Because of public health concerns further policies need to be developed to reduce emissions of PM and HMs from the road transport of megacity Delhi. PMID:25464689

  6. Examination of particulate matter and heavy metals and their effects in at-risk wards in Washington, DC

    NASA Astrophysics Data System (ADS)

    Greene, Natasha Ann

    One of the major contributions to pollution in the Washington, DC urban environment is particulate matter (PM). Quite often, ambient airborne toxics are closely associated with fine PM (PM2.5). We have performed high-resolution aerosol measurements of PM2.5 in four wards (Ward 1, 4, 5, and 7) of Washington, DC during two intensive observational periods (IOP). The first IOP occurred during the summer of 2003 (June 23rd to August 8th). The second IOP transpired during the late fall season of 2003 (October 20th to December 4 th). The measurement platform consisted of a Laser Particle Counter (LPC) and a Quartz Crystal Microbalance Cascade Impactor (QCM) to obtain both in-situ number and mass density distributions across the measurement sites. The data shows spatial distributions of particulate matter characterized as a function of size and mass properties. The QCM analyses show significant levels (> 15 mug/m3) of ward-averaged PM2.5 in Wards 4, 1, and 7 respectively during the summer IOP. However, all wards were less than the EPA National Ambient Air Quality Standard (NAAQS) of 15 mug/m 3 during the fall IOP ward-averaged measurements. Yet, investigations of the site-averaged measurements during the fall revealed some specific locations in Ward 4 that exceeded the NAAQS. Results also show that the aerosol mass density peaked in the 0.3 mum mode during the summer IOP and in the 0.15 mum mode during the fall IOP. The number density peaked in the 0.3--0.5 mum size range. Accordingly, the distributions have also been analyzed as a function of meteorological factors, such as wind speed and direction via NOAA HYSPLIT trajectories. One important attribute to this study is the evaluation of risks amongst IBC subgroups (youth, adults, elderly, black, white, hispanic, male, and female) for bath pediatric asthma rates and the onset of lung cancer over a lifetime (70-year period) when exposed to these levels of particulates. It has been determined that there are individual excess

  7. Atmospheric input of dissolved and particulate metals to the northwestern Mediterranean

    NASA Astrophysics Data System (ADS)

    Guieu, C.; Chester, R.; Nimmo, M.; Martin, J.-M.; Guerzoni, S.; Nicolas, E.; Mateu, J.; Keyse, S.

    Concentrations of trace elements (Al, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn) were determined for aerosols, dry deposition, precipitation and total deposition samples collected from five stations on islands and in the coastal zone of the northwestern Mediterranean. Average concentrations of metals are very homogeneous over the sampled area, in particular at the three coastal sites. Cd and Pb are almost entirely of man-made origin, even in Saharan aerosols. For the other metals, the non-crustal fraction is lower in Saharan aerosols than in European aerosols, but there is an important man-made component in the Saharan aerosol, even for metals such as Fe and Cr. This confirms the results of Chester et al. (1992) who concluded that Mediterranean aerosols have a European background upon which are superimposed Saharan inputs. Dry deposition represents an important fraction of the total deposition. Partitioning of total atmospheric deposition between the dissolved and the particulate phases shows that Al, Fe and Cr originating from the atmosphere are mostly in a particulate form in the surface waters. For the other metals studied, the dissolved fraction represents more than 30% of the total input, and for Cd it is almost 100%. Extrapolation shows that more than 50% of the dissolved metals input to the northwestern Mediterranean originates from the atmosphere. Atmospheric input entirely dominates the total external input of pollution-derived elements, such as Pb and Cd. The dissolved input of atmospheric origin is also very important (> 80%) for elements of terrigeneous origin such as A1.

  8. Distribution of dissolved and particulate trace metals in Arctic sea ice

    NASA Astrophysics Data System (ADS)

    Taylor, M.; Hendy, I. L.; Aciego, S.; Meyer, K.

    2014-12-01

    Iron (Fe) is an essential biolimiting micronutrient, however, the bioavailablility of Fe is dependent on source and speciation. In a high nutrient/low chlorophyll region of the ocean such as the Arctic, sea ice is an important aggregator of dissolved and particulate Fe from aerosol, lithogenic, and biogenic sources. While particulate Fe is less bioavailable than dissolved Fe, it is far more abundant in sea ice. As a result, sea ice directly enhances productivity by ice entrapment of mineral dust particulates containing Fe, which can be released into the surface ocean waters during melting. In seawater underlying sea ice, Fe can be concentrated up to two orders of magnitude higher than in the ice-free open ocean (Lannuzel et al., 2011). A transect of sea ice cores were collected in the spring of 2014 offshore of Barrow, AK, and the Canadian Arctic Archipelago to capture a gradient of sediment contributions from shelf sediments to aeolian sediments. At Barrow, AK, land fast first year ice was sampled. In the Canadian Arctic, both multi-year (pack ice) and first year (land fast) ice cores were retrieved. First year ice cores were between 100-150 cm thick and the multi year core was 195 cm thick. Cores were subsampled by depth and filtered. The resulting ice core sediments were analyzed for elemental composition, and multistep Fe-leaching experiments were conducted to determine the fraction of soluble Fe. Thus we have ascertained the solubility of particulate Fe prior to onset of melt season. Dissolved trace metals were also analyzed to ascertain changes in concentration with ice core depth of lithogenic elements (Mn, Al) and biologically important elements (Si, Mo, Cu, Zn). Preliminary results show some enrichment of lithogenic inputs near surface, indicating dust deposition, and lower portions of the cores, suggesting resuspended sediments from the continental shelf. Concentrations of some biologically important elements decrease with depth, suggesting possible

  9. Determinants of exposure to fine particulate matter (PM 2.5) for waiting passengers at bus stops

    NASA Astrophysics Data System (ADS)

    Hess, Daniel Baldwin; Ray, Paul David; Stinson, Anne E.; Park, JiYoung

    2010-12-01

    This research evaluates commuter exposure to particulate matter during pre-journey commute segments for passengers waiting at bus stops by investigating 840 min of simultaneous exposure levels, both inside and outside seven bus shelters in Buffalo, New York. A multivariate regression model is used to estimate the relation between exposure to particulate matter (PM 2.5 measured in μg m -3) and three vectors of determinants: time and location, physical setting and placement, and environmental factors. Four determinants have a statistically significant effect on particulate matter: time of day, passengers' waiting location, land use near the bus shelter, and the presence of cigarette smoking at the bus shelter. Model results suggest that exposure to PM 2.5 inside a bus shelter is 2.63 μg m -3 (or 18 percent) higher than exposure outside a bus shelter, perhaps due in part to the presence of cigarette smoking. Morning exposure levels are 6.51 μg m -3 (or 52 percent) higher than afternoon levels. Placement of bus stops can affect exposure to particulate matter for those waiting inside and outside of shelters: air samples at bus shelters located in building canyons have higher particulate matter than bus shelters located near open space.

  10. Mass size distribution and source identification of particulate matter metal components at four urban sites and a background site of Istanbul.

    PubMed

    Şahin, Ülkü Alver; Polat, Gülfem; Onat, Burcu

    2016-06-01

    In this study, the size distribution characteristics and metal contents of particulate matter (PM) have been determined. In this scope, PM sampling has been done at five stations in Istanbul. PM filter samples were collected for eight different sizes using the Anderson cascade impactor. PM filters were decomposed and analyzed for 20 metals. The highest median concentration for Fe, Ca, K, and Mg, known as soil metals, were observed as follows: Fe and Ca were observed at Goztepe station (1.20 and 8.28 μg/m(3)), K was observed at Kilyos station (0.33 μg/m(3)), and Mg was observed at Avcilar station (0.37 μg/m(3)). The highest median concentrations for Zn, Cu, Pb, Ni, Cr, V, As, Se, Co, and Cd, known as anthropogenic metals, were observed at Avcilar, Goztepe, and Besiktas stations. Although the lowest metal concentrations was determined at Kilyos stations that was selected as the urban background. The enrichment factors (EFs) of most metals in the fine PM is higher than those in the coarse mode. According to the factor analyses, the most important emission source was observed to be industrial facilities at Avcilar; traffic at Besiktas; traffic and domestic heating at Goztepe; and domestic heating, sea salt aerosols, and ship traffic (in the Bosphorus Channel of Istanbul) at Rasathane. PMID:26906008

  11. Advanced Hybrid Particulate Collector Project Management Plan

    SciTech Connect

    Miller, S.J.

    1995-11-01

    As the consumption of energy increases, its impact on ambient air quality has become a significant concern. Recent studies indicate that fine particles from coal combustion cause health problems as well as atmospheric visibility impairment. These problems are further compounded by the concentration of hazardous trace elements such as mercury, cadmium, selenium, and arsenic in fine particles. Therefore, a current need exists to develop superior, but economical, methods to control emissions of fine particles. Since most of the toxic metals present in coal will be in particulate form, a high level of fine- particle collection appears to be the best method of overall air toxics control. However, over 50% of mercury and a portion of selenium emissions are in vapor form and cannot be collected in particulate control devices. Therefore, this project will focus on developing technology not only to provide ultrahigh collection efficiency of particulate air toxic emissions, but also to capture vapor- phase trace metals such as mercury and selenium. Currently, the primary state-of-the-art technologies for particulate control are fabric filters (baghouses) and electrostatic precipitators (ESPs). However, they both have limitations that prevent them from achieving ultrahigh collection of fine particulate matter and vapor-phase trace metals. The objective of this project is to develop a highly reliable advanced hybrid particulate collector (AHPC) that can provide > 99.99 % particulate collection efficiency for all particle sizes between 0.01 and 50 14m, is applicable for use with all U.S. coals, and is cost-0443competitive with existing technologies. Phase I of the project is organized into three tasks: Task I - Project Management, Reporting, and Subcontract Consulting Task 2 - Modeling, Design, and Construction of 200-acfm AHPC Model Task 3 - Experimental Testing and Subcontract Consulting

  12. Airborne Particulate Transport into the Amazon Basin - The Effect of Atmospheric Processing on Trace Metal Solubility

    NASA Astrophysics Data System (ADS)

    Weiss, Dominik; Ochoa-Gonzalez, Raquel; Dong, Shuofei

    2014-05-01

    Dissolution of airborne particulate matter during atmospheric transport is an important process mobilizing nutrient trace metals from the solid phase and making nutrients readily available to remote marine and terrestrial ecosystems after atmospheric deposition. Recent work suggests that this process is accelerated through the effect of air pollution and the acidification of cloud droplets. Large urban areas surrounding the Amazon Basin have introduced vast amounts of anthropogenic air pollutants from industrial emissions and biomass burning, hence this mechanism is potentially important for the nutrient cycling in this area, affecting climate and environmental health alike. To this end in the context of the CLIM AMAZON project, we conducted studies to test the dissolution of mineral and road dust under atmospheric pollution conditions relevant to the region and we set up passive samplers to test particle matter reaching the Amazon Basin for evidence of atmospheric processing. Different mineral acids and deionized water at different pH were used. Batch leaching experiments with dust sourced from the Sahara/Sahel region were setup for 144 hours to simulate the transport time of particulate matter in the atmosphere. Trace metal solubility in mineral acids at low pH was up to five times higher than in deionized water, and approximately twice as high in hydrochloric acid compared to nitric acid. A kinetic model for the solubility in the leaching solutions was developed and it was in good agreement with the experimental data. Further work will test the effect of variable cloud compositions, determine key kinetic and thermodynamic parameters to improve atmospheric reaction models, and characterize the particulate matter collected with the passive samplers.

  13. Relationship between elemental carbon, total carbon, and diesel particulate matter in several underground metal/non-metal mines.

    PubMed

    Noll, J D; Bugarski, A D; Patts, L D; Mischler, S E; McWilliams, L

    2007-02-01

    Elemental carbon (EC) is currently used as a surrogate for diesel particulate matter (DPM) in underground mines since it can be accurately measured at low concentrations and diesels are the only source of submicrometer EC in underground mines. A disadvantage of using EC as a surrogate for DPM is that the fraction of EC in DPM is a function of various engine parameters and fuel formulations, etc. In order to evaluate how EC predicts DPM in the underground mining atmosphere, measurements of total carbon (TC; representing over 80% of the DPM) and EC were taken away from potential interferences in four underground metal/non-metal mines during actual production. In a controlled atmosphere, DPM mass, TC, and EC measurements were also collected while several different types of vehicles simulated production with and without different types of control technologies. When diesel particulate filters (DPFs) were not used, both studies showed that EC could be used to predict DPM mass or TC. The variability of the data started to increase at TC concentrations below 230 microg/m3 and was high (> +/- 20%) at TC concentrations below 160 microg/m3, probably due to the problem with sampling organic carbon (OC) at these concentrations. It was also discovered that when certain DPFs were used, the relationship between DPM and EC changed at lower DPM concentrations. PMID:17333567

  14. Metallic species in atmospheric particulate matter in Las Palmas de Gran Canaria.

    PubMed

    Cancio, J López; Castellano, A Vera; Hernández, M Chaar; Bethencourt, R García; Ortega, E Macías

    2008-12-30

    In this work, we quantified the total, water-soluble and insoluble fractions of 12 metallic species (Na, Ca, K, Mg, Fe, Zn, Cr, Ni, Cu, Cd, Pb and Mn) present in total suspended particulates (TSP) in an urban area with heavy traffic (about 80 000 vehicles/day) of Las Palmas de Gran Canaria (Canary Islands). Experimental measurements were made from July to December 2003 on a total of 42 samples (7 per month). Particulate matter (TSP) was collected in fiber filters and high volume samplers. PM10 levels were estimated assuming the PM10 fraction is about 70% of all TSP. Total fractions was determined gravimetrically. Water-soluble fraction was extracted by sonication. Concentrations of metallic elements were analyzed by flame atomic absorption spectrophotometer. Temporal changes in the concentrations of the target elements were examined and a multivariate approach used to identify the primary sources for each species. Mean value for TSP is 71.92microg/m3. The water-soluble fraction consisted mainly of Na, Ca, Mg, and K. The insoluble fraction contained higher concentrations of all elements than the soluble except Na. In the water-soluble fraction, Na, K, Ca and Mg were found to come mainly from natural sources; Cr, Pb, Cd, Ni, Zn and Cu from anthropogenic sources. PMID:18440133

  15. Metabarcoding-based fungal diversity on coarse and fine particulate organic matter in a first-order stream in Nova Scotia, Canada

    PubMed Central

    Wurzbacher, Christian; Grimmett, Ivan J.; Bärlocher, Felix

    2016-01-01

    Most streams receive substantial inputs of allochthonous organic material in the form of leaves and twigs (CPOM , coarse particulate organic matter). Mechanical and biological processing converts this into fine particulate organic matter (FPOM). Other sources of particles include flocculated dissolved matter and soil particles. Fungi are known to play a role in the CPOM conversion process, but the taxonomic affiliations of these fungi remain poorly studied. The present study seeks to shed light on the composition of fungal communities on FPOM and CPOM as assessed in a natural stream in Nova Scotia, Canada. Maple leaves were exposed in a stream for four weeks and their fungal community evaluated through pyrosequencing. Over the same period, four FPOM size fractions were collected by filtration and assessed. Particles had much lower ergosterol contents than leaves, suggesting major differences in the extent of fungal colonization. Pyrosequencing documented a total of 821 fungal operational taxonomic units (OTU), of which 726 were exclusive to particles and 47 to leaf samples. Most fungal phyla were represented, including yeast lineages (e.g., Taphrinaceae and Saccharomycotina), Basidiomycota, Chytridiomycota and Cryptomycota, but several classes of Pezizomycontina (Ascomycota) dominated. Cluster dendrograms clearly separated fungal communities from leaves and from particles. Characterizing fungal communities may shed some light on the processing pathways of fine particles in streams and broadens our view of the phylogenetic composition of fungi in freshwater ecosystems. PMID:26918122

  16. Impact of particulate pollutant metals on larval and adult bivalve molluscs

    SciTech Connect

    Gilbert, T.R.; Robinson, W.E. ); Morse, M.P. . Marine Science Lab.)

    1982-10-25

    Our investigations of the effects of pollutants on bivalve molluscs have continued with studies with in the following areas: bioaccumulation of trace metals in adult sea scallops exposed to dissolved and particulate forms of the metals, SEM/EDXA studies of phosphoritic concretions in the kidneys of adult sea scallops (Placopecten magellanicus), documentation of the normal embryonic and larval development, including shell formation, in surf clams (Spisula solidissima), evaluation of the toxicity of dissolved silver to the gametes and larvae of surf clams at several stages of development, and examination of the effects of turbid suspensions on the feeding efficiency of larval Mercenaria mercenaria. The overall goal of our work is twofold. First, we are striving to gain an understanding of the pathways by which metals are transported within bivalve molluscs. The production of metallothioneins and metal-rich inorganic concretions have been documented for a number of bivalves. The ways in which of metal-rich matrices in membrane-limited vesicles as an intermediate step, is one area of investigation. Second, we are examining the relative sensitivities of the gamete and of early life stages of these organisms to stresses induced by exposure to energy-related pollutants. 46 refs., 12 figs., 8 tabs.

  17. Role of sediment resuspension in the remobilization of particulate-phase metals from coastal sediments

    USGS Publications Warehouse

    Kalnejais, Linda H.; Martin, William R.; Signell, Richard P.; Bothner, Michael H.

    2007-01-01

    The release of particulate-phase trace metals due to sediment resuspension has been investigated by combining erosion chamber experiments that apply a range of shear stresses typically encountered in coastal environments with a shear stress record simulated by a hydrodynamic model. Two sites with contrasting sediment chemistry were investigated. Sediment particles enriched in silver, copper, and lead, 4−50 times greater than the bulk surface-sediment content, were the first particles to be eroded. As the shear-stress level was increased in the chamber, the total mass eroded increased, but the enrichment of these trace metals fell, approaching the bulk-sediment content. From the temporal distribution of shear stress generated by the hydrodynamic model for a site in Boston Harbor, resuspension fluxes were estimated. The erosion threshold of this site is exceeded during spring tides, releasing the particles enriched in trace metals into the water column. Due to the higher trace metal content and the regularity of resuspension, low-energy resuspension events (up to a shear stress of 0.2 N/m2) contribute up to 60% of the resuspension metal flux in an average year. The estimated annual quantity of copper and lead resuspended into the water column is higher than estimates of the total riverine flux for these metals. These results indicate that sediment resuspension is a very important mechanism for releasing metals into the water column and provide new insight into the chemical and physical processes controlling the long-term fate of trace metals in contaminated sediments.

  18. Characterization of the particulate methane monooxygenase metal centers in multiple redox states by X-ray absorption spectroscopy.

    PubMed

    Lieberman, Raquel L; Kondapalli, Kalyan C; Shrestha, Deepak B; Hakemian, Amanda S; Smith, Stephen M; Telser, Joshua; Kuzelka, Jane; Gupta, Rajeev; Borovik, A S; Lippard, Stephen J; Hoffman, Brian M; Rosenzweig, Amy C; Stemmler, Timothy L

    2006-10-01

    The integral membrane enzyme particulate methane monooxygenase (pMMO) converts methane, the most inert hydrocarbon, to methanol under ambient conditions. The 2.8-A resolution pMMO crystal structure revealed three metal sites: a mononuclear copper center, a dinuclear copper center, and a nonphysiological mononuclear zinc center. Although not found in the crystal structure, solution samples of pMMO also contain iron. We have used X-ray absorption spectroscopy to analyze the oxidation states and coordination environments of the pMMO metal centers in as-isolated (pMMO(iso)), chemically reduced (pMMO(red)), and chemically oxidized (pMMO(ox)) samples. X-ray absorption near-edge spectra (XANES) indicate that pMMO(iso) contains both Cu(I) and Cu(II) and that the pMMO Cu centers can undergo redox chemistry. Extended X-ray absorption fine structure (EXAFS) analysis reveals a Cu-Cu interaction in all redox forms of the enzyme. The Cu-Cu distance increases from 2.51 to 2.65 A upon reduction, concomitant with an increase in the average Cu-O/N bond lengths. Appropriate Cu2 model complexes were used to refine and validate the EXAFS fitting protocols for pMMO(iso). Analysis of Fe EXAFS data combined with electron paramagnetic resonance (EPR) spectra indicates that Fe, present as Fe(III), is consistent with heme impurities. These findings are complementary to the crystallographic data and provide new insight into the oxidation states and possible electronic structures of the pMMO Cu ions. PMID:16999437

  19. Metal contamination of short-term snow cover near urban crossroads: correlation analysis of metal content and fine particles distribution.

    PubMed

    Vasić, Milica Vučinić; Mihailović, Aleksandra; Kozmidis-Luburić, Uranija; Nemes, Tomas; Ninkov, Jordana; Zeremski-Škorić, Tijana; Antić, Bratislav

    2012-02-01

    Snow samples were collected near crossroads in Novi Sad, Serbia, during December 2009 to assess metal concentrations (Ca, K, Zn, Fe, Cu, Mn, Al, Pb and Na), fine particle distribution and pH value. The filtered samples of melted snow were analysed, with a focus on particles smaller than a few μm. The most common values of the frequency number distribution curve were either in the range of 0.05-0.07 μm or one order of magnitude higher (0.2-0.5 μm). At examined locations metal concentrations varied from 0.0004 mg L(-1) for Pb to 18.9 mg L(-1) for Na. Besides Na, which mostly originated from de-icing salt, Ca is found to be the most abundant element in snow indicating the dominant influence of natural factors on snow chemistry. No significant difference was found in concentration of the elements at locations near crossroads with either low or high traffic volume, except for Na and Zn. To investigate how metals were related a correlation analysis was done for the concentrations of metals and with respect to the particle size distribution parameters and pH values. The major influence on the fine particle volume (mass) was concluded to be due to the elements from anthropogenic sources. This conclusion was based on the significant positive correlation between Fe, Zn and Al and the fine particle volume based distribution parameters. PMID:22094049

  20. MEASUREMENT OF POLYCYCLIC AROMATIC HYDROCARBONS (PAHS) ASSOCIATED WITH FINE PARTICULATE MATTER TO ESTIMATE STATEWIDE CUMULATIVE EXPOSURES IN NORTH CAROLINA

    EPA Science Inventory

    Airborne particulate matter (PM) is routinely collected at over a thousand air monitoring stations across the nation using Teflon filters. After they are weighed to measure the amount of PM in the air, the filters are stored in refrigerators and, after a year, are thrown away. ...

  1. Source Apportionment of Ambient Fine Particulate Matter in Dearborn, Michigan, using Hourly Resolved PM Chemical Composition Data

    EPA Science Inventory

    High time-resolution aerosol sampling was conducted for one month during July–August 2007 in Dearborn, MI, a non-attainment area for fine particulate matter (PM2.5) National Ambient Air Quality Standards (NAAQS). Measurements of more than 30 PM2.5 species were made using a suite o...

  2. EVALUATION OF METHODS FOR THE DETERMINATION OF DIESEL-GENERATED FINE PARTICULATE MATTER: PHYSICAL CHARACTERIZATION OF RESULTS

    EPA Science Inventory

    A multi-phase instrument comparison study was conducted on two different diesel engines on a dynamometer to compare commonly used particulate matter (PM) measurement techniques while sampling the same diesel exhaust aerosol and to evaluate inter- and intra-method variability. In...

  3. FT-IR TRANSMISSION SPECTROSCOPY FOR QUANTITATION OF AMMONIUM BISULFATE IN FINE PARTICULATE MATTER COLLECTED ON TEFLON FILTERS

    EPA Science Inventory

    A quantitative measurement method for fine particle bisulfatein ammonium bisulfate collected from the ambient air onto Teflon filters is described. nfrared absorbance measurements of the Teflon filters are made before and after particle collection. ubtraction of the two spectra r...

  4. FINE PARTICAL AND TOXIC METAL EMISSIONS FROM THE COMBUSTION OF SEWAGE SLUDGE/COAL MIXTURES: A SYSTEMATIC ASSESSMENT

    SciTech Connect

    Jost O.L. Wendt; Wayne S. Seames; Art Fernandez

    2003-09-21

    This research project focuses on pollutants from the combustion of mixtures of dried municipal sewage sludge (MSS) and pulverized coal. The objective was to determine potential tradeoffs between CO{sub 2} mitigation through using a CO{sub 2} neutral fuel, such as municipal sewage sludge, and the emergence of other potential problems such as the emission of toxic fly ash particles. The work led to new insight into mechanisms governing the partitioning of major and trace metals from the combustion of sewage sludge, and mixtures of coal and sewage sludge. The research also showed that the co-combustion of coal and sewage sludge emitted fine particulate matter that might potentially cause greater lung injury than that from the combustion of either coal alone or municipal sewage sludge alone. The reason appeared to be that the toxicity measured required the presence of large amounts of both zinc and sulfur in particles that were inhaled. MSS provided the zinc while coal provided the sulfur. Additional research showed that the toxic effects could most likely be engineered out of the process, through the introduction of kaolinite sorbent downstream of the combustion zone, or removing the sulfur from the fuel. These results are consequences of applying ''Health Effects Engineering'' to this issue. Health Effects Engineering is a new discipline arising out of this work, and is derived from using a collaboration of combustion engineers and toxicologists to mitigate the potentially bad health effects from combustion of this biomass fuel.

  5. The geochemistry of Seine River Basin particulate matter: distribution of an integrated metal pollution index.

    PubMed

    Meybeck, Michel; Horowitz, Arthur J; Grosbois, Cecile

    2004-07-26

    Spatial analysis (1994-2001) and temporal trends (1980-2000) for particulate-associated metals at key stations in the Seine River Basin have been determined using a new metal pollution index (MPI). The MPI is based on the concentrations of Cd, Cu, Hg, Pb and Zn, normalized to calculated background levels estimated for each particulate matter samples for four fractions (clays and other aluminosilicates, carbonates, organic matter, and quartz). Background levels ascribed to each fraction were determined from a specific set of samples collected from relatively pristine areas in the upper Seine basin and validated on prehistoric samples. The unitless MPI is designed to vary between 0 for pristine samples to 100 for the ones extremely impacted by human activities and to assess the trends of general metal contamination and its mapping. Throughout the Seine basin, MPI currently range from 1 to 40, but values exceeding 100 have been found in periurban streams and the Eure tributary. Based on the MPI spatial distribution, the Seine River Basin displays a wide range of anthropogenic impacts linked to variations in population density, stream order, wastewater discharges and industrial activities. Correlations between the MPI and other trace elements indicate that anthropogenic impacts also strongly affect the concentrations of Ag, Sb, and P, marginally affect the concentrations of Ba, Ni, and Cr, and appear to have little effect on the concentrations of Li, Be, V, Co, and the major elements. Temporal MPI trends can also be reconstituted from past regulatory surveys. In the early 1980s, MPI were 2-5 times higher than nowadays at most locations, particularly downstream of Greater Paris where it reached levels as high as 250 (now 40), a value characteristic of present Paris urban sewage. The exceptional contamination of the Seine basin is gradually improving over the last 20 years but remains very high. PMID:15207586

  6. Seasonal variability of ultra-fine metals downwind of a heavily traveled secondary road

    NASA Astrophysics Data System (ADS)

    Cahill, Thomas A.; Barnes, David E.; Spada, Nicholas J.

    2014-09-01

    Since 2002, we have been studying the impact of a heavily traveled secondary road on an adjacent downwind school located at a stop light controlled intersection. The prior studies were all performed in winter conditions with typically strong inversions, but established significant PM2.5 impacts on the school roughly in accord with theoretical models and the relevant literature. In this project, we have enhanced this effort by extending the study from winter to summer, and adding compositionally-resolved ultra-fine aerosol measurements. Ultra-fine aerosols, including metals derived from both brake wear and zinc in lubricating oil, were present at high concentrations in winter downwind of the roadway but absent at a residential site 500 m upwind. Their concentrations faded to minor levels in spring and early summer, while coarse roadway resuspended dust increased in that period. A comparison of ultra-fine measurements in downtown Sacramento and other California Central Valley sites indicates that these traffic derived aerosols are widely present in urban areas impacted by heavy traffic, freeways and secondary streets, especially where heavy braking is occurring. The potential for health impacts of ultra-fine metals associated with cars braking and accelerating in inversion conditions is a serious health concern based on recent epidemiological studies.

  7. Chemical constituents of fine particulate air pollution and pulmonary function in healthy adults: the Healthy Volunteer Natural Relocation study.

    PubMed

    Wu, Shaowei; Deng, Furong; Hao, Yu; Shima, Masayuki; Wang, Xin; Zheng, Chanjuan; Wei, Hongying; Lv, Haibo; Lu, Xiuling; Huang, Jing; Qin, Yu; Guo, Xinbiao

    2013-09-15

    The study examined the associations of 32 chemical constituents of particulate matter with an aerodynamic diameter ≤2.5 μm (PM₂.₅) with pulmonary function in a panel of 21 college students. Study subjects relocated from a suburban area to an urban area with changing ambient air pollution levels and contents in Beijing, China, and provided daily morning/evening peak expiratory flow (PEF) and forced expiratory volume in 1s (FEV₂₁) measurements over 6 months in three study periods. There were significant reductions in evening PEF and morning/evening FEV₂₁ associated with various air pollutants and PM₂.₅ constituents. Four PM₂.₅ constituents (copper, cadmium, arsenic and stannum) were found to be most consistently associated with the reductions in these pulmonary function measures. These findings provide clues for the respiratory effects of specific particulate chemical constituents in the context of urban air pollution. PMID:23747477

  8. Study of excess Fe metal in the lunar fines by magnetic separation, Moessbauer spectroscopy, and microscopic examination.

    NASA Technical Reports Server (NTRS)

    Housley, R. M.; Grant, R. W.; Abdel-Gawad, M.

    1972-01-01

    A simple and convenient method of making quantitative magnetic separations has been applied to the lunar fines. The fractions obtained form groups containing distinctively different particle types; thus, it appears that magnetic separation in itself many be a useful way of characterizing lunar fines. Moessbauer studies of fines 10084 show that the metal cannot contain more than about 1.5% Ni, implying that by far the bulk of the metal results from reduction rather than from direct meteoritic addition. Microscopic examination of magnetic separates from 15101 fines suggests that reduction of Fe accompanies every major impact event on the moon.

  9. Electron paramagnetic resonance study of the generation of reactive oxygen species catalysed by transition metals and quinoid redox cycling by inhalable ambient particulate matter.

    PubMed

    Valavanidis, A; Fiotakis, K; Bakeas, E; Vlahogianni, T

    2005-01-01

    A range of epidemiological studies in the 1990s showed that exposure to ambient particulate matter (PM) is associated with adverse health effects in the respiratory system and increased morbidity and mortality rates. Oxidative stress has emerged as a pivotal mechanism that underlies the toxic pulmonary effects of PM. A key question from a variety of studies was whether the adverse health effects of PM are mediated by the carbonaceous particles of their reactive chemical compounds adsorbed into the particles. Experimental evidence showed that PM contains redox-active transition metals, redox cycling quinoids and polycyclic aromatic hydrocarbons (PAHs) which act synergistically to produce reactive oxygen species (ROS). Fine PM has the ability to penetrate deep into the respiratory tree where it overcomes the antioxidant defences in the fluid lining of the lungs by the oxidative action of ROS. From a previous study [Valavanidis A, Salika A, Theodoropoulou A. Generation of hydroxyl radicals by urban suspended particulate air matter. The role of iron ions. Atmospher Environ 2000; 34 : 2379-2386], we established that ferrous ions in PM play an important role in the generation of hydroxyl radicals in the presence of hydrogen peroxide (H2O2). In the present study, we investigated the synergistic effect of transition metals and persistent quinoid and semiquinone radicals for the generation of ROS without the presence of H2O2. We experimented with airborne particulate matter, such as TSPs (total suspended particulates), fresh automobile exhaust particles (diesel, DEP and gasoline, GEP) and fresh wood smoke soot. Using electron paramagnetic resonance (EPR), we examined the quantities of persistent free radicals, characteristic of a mixture of quinoid radicals with different structures and a carbonaceous core of carbon-centred radicals. We extracted, separated and analysed the quinoid compounds by EPR at alkaline solution (pH 9.5) and by TLC. Also, we studied the direct

  10. Trace Metal Composition of Suspended Particulate Matter Along Meridional and Zonal Clivar Sections in the Indian Ocean

    NASA Astrophysics Data System (ADS)

    Barrett, P. M.; Grand, M. M.; Landing, W. M.; Measures, C. I.; Resing, J. A.

    2014-12-01

    Total trace element concentrations (Al, Fe, Mn, Cu, Ni, Zn, Pb, Ca, Si, P) were analyzed by X-ray fluorescence on suspended particulate matter samples (>0.4μm) collected at 12-depth profiles in the upper 1000 m of the water column in the Indian Ocean at stations with 1-degree spacing along CLIVAR sections I8S and I9N (February-April 2007) from the Antarctic margin to the Bay of Bengal. Particulate Al distributions reflect large sedimentary inputs from the Ganges-Brahmaputra river system into the Bay of Bengal as well as ice melt and shelf inputs near the Antarctic continent with lower concentrations in surface waters from deposition of aerosol dust. Elevated particulate Fe is evident at depth (>300m) downstream of the Kerguelen plateau, suggesting input of particulate Fe from plateau sediments may fuel surface productivity in this region. Cu, Ni, and Pb are elevated in surface waters centered around 40S, suggesting an anthropogenic signature potentially influenced by local atmospheric deposition or advection into the interior of the basin by the South Indian Ocean Current. In the south Indian Ocean, particulate matter composition reflects high biological production as evidenced by elevated particulate P concentrations in surface waters, with a sharp delineation apparent between high particulate Ca concentrations within the 'great calcite belt' (30-55S) and high particulate Si and Zn concentrations in the Indian sector of the Southern Ocean associated with diatom productivity. We will also present particulate trace metal data from CLIVAR zonal transect I5 between South Africa and Australia (May-May 2009) that is currently being analyzed.

  11. Enhanced ionic polymer metal composite actuator with porous nafion membrane using zinc oxide particulate leaching method

    NASA Astrophysics Data System (ADS)

    Jung, Sun Yong; Ko, Seong Young; Park, Jong-Oh; Park, Sukho

    2015-03-01

    In this study, to improve the performance of an ionic polymer metal composite (IPMC), we suggest a porous nafion membrane fabricated with the particulate leaching method with zinc oxide and propose an IPMC that uses the porous nafion membrane. To fabricate this membrane, the proper ratio of nafion and zinc oxide powder is dispersed in a solvent. Then the zinc oxide embedded in the nafion membrane is fabricated with a casting method. With the particulate leaching method, the embedded zinc oxide particles are dissolved by an acid solution, and the spaces of the zinc oxide particles changed to pores. Finally, through electroless plating and ion exchange procedures, an IPMC with the porous nafion membrane is fabricated. The proposed IPMC has higher water uptake (WUP) and ion exchange capacity (IEC) and can show better actuation performance compared to the conventional nafion-based IPMC. We also measure the actuation displacement and blocking forces of the proposed IPMC. Compared with the conventional nafion-based IPMC, the proposed IPMC with the porous nafion membrane has increased displacements: about 80% at ac input and about 250% at dc input, and increased blocking force about 130% at dc input.

  12. Evaluation of Johnson-Cook model constants for aluminum based particulate metal matrix composites

    NASA Astrophysics Data System (ADS)

    Hilfi, H.; Brar, N. S.

    1996-05-01

    High strain rate and high temperature response of three types of aluminum based particulate metal matrix ceramic composites is investigated by performing split Hopkinson pressure bar (SHPB) experiments. The composites are: NGP-2014 (15% SiC), NGT-6061 (15% SiC), and NGU-6061 (15% Al2O3), in which all the reinforcement materials are percentage by volume. Johnson-Cook constitutive model constants are evaluated from the high strain rate/high temperature data and implemented in a two dimensional finite element computer code (EPIC-2D) to simulate the penetration of an ogive nose tungsten projectile (23 grams) at a velocity 1.17 km/sec into the base 6061-T6 aluminum alloy and the composite NGU-6061. The simulated penetrations in the composite and in 6061-T6 aluminum agree with in 2%, in both materials, with the measured values.

  13. Interfacial reaction in cast WC particulate reinforced titanium metal matrix composites coating produced by laser processing

    NASA Astrophysics Data System (ADS)

    Liu, Dejian; Hu, Peipei; Min, Guoqing

    2015-06-01

    Laser injection of ceramic particle was conducted to produce particulate reinforced metal matrix composites (MMCs) coating on Ti-6Al-4V alloy. Cast WC particle (WCp) was used as injection reinforcement to avoid excessive release of carbon atoms into the melt pool. The interfaces and boundaries between WC and Ti matrix were investigated by electron microscopy study. Compared with single crystal WCp, cast WCp was an appropriate solution to control the reaction products (TiC) in the matrix and the total amount of reaction products was significantly reduced. Irregular-shape reaction layers were formed around cast WCp. The reaction layers consist of a W2C layer and a mixed layer of W and TiC. Such reaction layers are effective in load transfer under an external load.

  14. Method and apparatus for removal of gaseous, liquid and particulate contaminants from molten metals

    DOEpatents

    Hobson, David O.; Alexeff, Igor; Sikka, Vinod K.

    1988-01-01

    Method and apparatus for removal of nonelectrically-conducting gaseous, liquid, and particulate contaminants from molten metal compositions by applying a force thereto. The force (commonly referred to as the Lorentz Force) exerted by simultaneous application of an electric field and a magnetic field on a molten conductor causes an increase, in the same direction as the force, in the apparent specific gravity thereof, but does not affect the nonconducting materials. This difference in apparent densities cause the nonconducting materials to "float" in the opposite direction from the Lorentz Force at a rapid rate. Means are further provided for removal of the contaminants and prevention of stirring due to rotational forces generated by the applied fields.

  15. Method and apparatus for removal of gaseous, liquid and particulate contaminants from molten metals

    DOEpatents

    Hobson, D.O.; Alexeff, I.; Sikka, V.K.

    1987-08-10

    Method and apparatus for removal of nonelectrically-conducting gaseous, liquid, and particulate contaminants from molten metal compositions by applying a force thereto. The force (commonly referred to as the Lorentz Force) exerted by simultaneous application of an electric field and a magnetic field on a molten conductor causes an increase, in the same direction as the force, in the apparent specific gravity thereof, but does not affect the nonconducting materials. This difference in apparent densities cause the nonconducting materials to ''float'' in the opposite direction from the Lorentz Force at a rapid rate. Means are further provided for removal of the contaminants and prevention of stirring due to rotational forces generated by the applied fields. 6 figs.

  16. Testing the metals hypothesis in Spokane, Washington.

    PubMed Central

    Claiborn, Candis S; Larson, Timothy; Sheppard, Lianne

    2002-01-01

    A >7-year, time-series, epidemiologic study is ongoing in Spokane, Washington, to examine the associations between ambient particulate constituents or sources and health outcomes such as emergency department (ED) visits for asthma or respiratory problems. One of the hypotheses being tested is that particulate toxic metals are associated with these health outcomes. Spokane is a desirable city in which to conduct this study because of its relatively high concentrations of particulate matter, low concentrations of potentially confounding air pollutants, variability of particulate sources, and presence of several potential particulate metals sources. Daily fine- and coarse-fraction particulate samples are analyzed for metals via energy-dispersive X-ray fluorescence (EDXRF) and instrumental neutron activation analysis. Particulate sources are determined using receptor modeling, including chemical mass balancing and positive matrix factorization coupled with partial source contribution function analysis. Principal component analysis has also been used to examine the influence of sources on the daily variability of the chemical composition of particulate samples. Based upon initial analyses using the EDXRF elemental analyses, statistically significant associations were observed between ED visits for asthma and increased combustion products, air stagnation, and fine particulate Zn. Although there is a significant soil particulate component, increased crustal particulate levels were not found to be associated with ED visits for asthma. Further research will clarify whether there is an association between specific health outcomes and either coarse or fine particulate metal species. PMID:12194884

  17. Characteristics of heavy metals in airborne particulate matter on misty and clear days.

    PubMed

    Lee, Byeong-Kyu; Park, Gee-Hyeong

    2010-12-15

    This study identified characteristics of heavy metals in ambient total suspended particulates (TSP) and air pollutants (PM(10), CO, NO(x), SO(2) and O(3)) collected on clear and misty days at an urban-residential area and an industrial area in the largest industrial city, Korea, for one-year study period. Average concentrations of TSP at the urban-residential (130 μg/m(3)) and industrial (141 μg/m(3)) areas on misty days were 1.9-2.1 (p<0.05) times higher than those on clear days. Concentrations of heavy metals in the TSP from both areas on misty days were significantly (p<0.05) higher than those on clear days. In particular, Pb and Mn concentrations on misty days were 2.4-2.6 (p<0.05) and 1.7-1.8 (p<0.05) times, respectively, higher at both areas as compared to clear days. Clear days showed higher correlations between TSP and heavy metal concentrations than on misty days at both areas. Average concentrations of PM(10), CO and NO(2) simultaneously measured at/near the sampling sites on misty days were significantly (p<0.05) higher than on clear days at both areas. Average O(3) and SO(2) concentrations showed a similar increase pattern at only one area. PMID:20851516

  18. Saccharide Composition in Fine and Coarse Particulate Matter and Soils in Central Arizona and Use of Saccharides as Molecular Markers for Source Apportionment

    NASA Astrophysics Data System (ADS)

    Jia, Y.; Clements, A.; Fraser, M.

    2009-04-01

    were analyzed in size segregated soil and ambient PM samples at Higley; intra- and inter- comparisons were made between the ambient PM and three types of soil dust samples (agricultural soil, native soil, road dust) based on the particle size (fine vs. coarse), seasonality, and relative composition of 12 saccharide compounds. Based on the ambient concentrations of major saccharides and a number of other specific compounds (including elemental and organic carbon, ions, metals, alkanes, organic acids, and polycyclic aromatic hydrocarbons) that are simultaneously resolved in Higley PM samples, a Positive Matrix Factorization (PMF) model was performed to determine the key contributors to PM10 and PM2.5 levels. Six distinct factors were isolated, with two factors dominated by the enrichment of saccharide compounds. There was not consistency between the source profiles of these two saccharide rich source factors with the saccharide composition of the local size-segregated soil samples, which implies that there may be other major sources contributing to ambient PM saccharides. One possible alternative is that PBAPs that are injected directly into the atmosphere instead of residing in the surface soil and being re-entrained through soil erosion or agricultural processing. To our knowledge, this study is the first of its kind to compare the saccharide composition between the fine and coarse fraction of different soils types in two seasons, and to relate the contribution from soil dust to ambient PM using saccharide species. REFERENCE [1] AirData: Access to Air Pollution data. [cited 2009 Jan 11, 2009]; Available from: http://www.epa.gov/air/data/index.html [2] Allergy and Asthma in the Southwestern United States. [cited 2009 Jan 11, 2009]; Available from: http://allergy.peds.arizona.edu/southwest/swpollen.html [3] Cox, C.S., Wathes, C.M., 1995. Bioaerosols Handbook, Lewis Publishers, NY [4] Simoneit, B.R.T., Elias, V.O., et al., 2004. "Sugars - Dominant water-soluble organic

  19. Saccharide Composition in Fine and Coarse Particulate Matter and Soils in Central Arizona and Use of Saccharides as Molecular Markers for Source Apportionment

    NASA Astrophysics Data System (ADS)

    Jia, Y.; Clements, A.; Fraser, M.

    2009-04-01

    were analyzed in size segregated soil and ambient PM samples at Higley; intra- and inter- comparisons were made between the ambient PM and three types of soil dust samples (agricultural soil, native soil, road dust) based on the particle size (fine vs. coarse), seasonality, and relative composition of 12 saccharide compounds. Based on the ambient concentrations of major saccharides and a number of other specific compounds (including elemental and organic carbon, ions, metals, alkanes, organic acids, and polycyclic aromatic hydrocarbons) that are simultaneously resolved in Higley PM samples, a Positive Matrix Factorization (PMF) model was performed to determine the key contributors to PM10 and PM2.5 levels. Six distinct factors were isolated, with two factors dominated by the enrichment of saccharide compounds. There was not consistency between the source profiles of these two saccharide rich source factors with the saccharide composition of the local size-segregated soil samples, which implies that there may be other major sources contributing to ambient PM saccharides. One possible alternative is that PBAPs that are injected directly into the atmosphere instead of residing in the surface soil and being re-entrained through soil erosion or agricultural processing. To our knowledge, this study is the first of its kind to compare the saccharide composition between the fine and coarse fraction of different soils types in two seasons, and to relate the contribution from soil dust to ambient PM using saccharide species. REFERENCE [1] AirData: Access to Air Pollution data. [cited 2009 Jan 11, 2009]; Available from: http://www.epa.gov/air/data/index.html [2] Allergy and Asthma in the Southwestern United States. [cited 2009 Jan 11, 2009]; Available from: http://allergy.peds.arizona.edu/southwest/swpollen.html [3] Cox, C.S., Wathes, C.M., 1995. Bioaerosols Handbook, Lewis Publishers, NY [4] Simoneit, B.R.T., Elias, V.O., et al., 2004. "Sugars - Dominant water-soluble organic

  20. Foliar uptake and metal(loid) bioaccessibility in vegetables exposed to particulate matter.

    PubMed

    Xiong, Tian-Tian; Leveque, Thibaut; Austruy, Annabelle; Goix, Sylvaine; Schreck, Eva; Dappe, Vincent; Sobanska, Sophie; Foucault, Yann; Dumat, Camille

    2014-10-01

    At the global scale, high concentrations of particulate matter (PM) enriched with metal(loid)s are currently observed in the atmosphere of urban areas. Foliar lead uptake was demonstrated for vegetables exposed to airborne PM. Our main objective here was to highlight the health risk associated with the consumption of vegetables exposed to foliar deposits of PM enriched with the various metal(loid)s frequently observed in the atmosphere of urban areas (Cd, Sb, Zn and Pb). Leaves of mature cabbage and spinach were exposed to manufactured mono-metallic oxide particles (CdO, Sb2O3 and ZnO) or to complex process PM mainly enriched with lead. Total and bioaccessible metal(loid) concentrations were then measured for polluted vegetables and the various PM used as sources. Finally, scanning electronic microscopy coupled with energy dispersive X-ray microanalysis was used to study PM-phyllosphere interactions. High quantities of Cd, Sb, Zn and Pb were taken up by the plant leaves. These levels depended on both the plant species and nature of the PM, highlighting the interest of acquiring data for different plants and sources of exposure in order to better identify and manage health risks. A maximum of 2% of the leaf surfaces were covered with the PM. However, particles appeared to be enriched in stomatal openings, with up to 12% of their area occupied. Metal(loid) bioaccessibility was significantly higher for vegetables compared to PM sources, certainly due to chemical speciation changes. Taken together, these results confirm the importance of taking atmospheric PM into account when assessing the health risks associated with ingestion of vegetables grown in urban vegetable crops or kitchen gardens. PMID:24729051

  1. DEVELOPMENT OF A NEW MOBILE LABORATORY FOR CHARACTERIZATION OF THE FINE PARTICULATE EMISSIONS FROM HEAVY-DUTY DIESEL TRUCKS.

    EPA Science Inventory

    This paper describes the development of a new mobile laboratory for the determination of the fine particle and gaseous emissions from a Class 8 diesel tractor-trailer research vehicle. The new laboratory (Diesel Emissions Aerosol Laboratory or DEAL) incorporates plume sampling ca...

  2. Speciation and Trends of Organic Nitrogen in Southeastern U.S. Fine Particulate Matter (PM2.5)

    EPA Science Inventory

    Dissolved free amino acids (FAA; amino acids present in a dissolvable state) and combined AA (CAA; amino acids present in peptides, proteins, or humic complexes) in fine aerosols (PM) are investigated at a semi-urban site in the southeastern US. Detection of native (chemically un...

  3. Dust episodes in Beirut and their effect on the chemical composition of coarse and fine particulate matter.

    PubMed

    Jaafar, Malek; Baalbaki, Rima; Mrad, Raya; Daher, Nancy; Shihadeh, Alan; Sioutas, Constantinos; Saliba, Najat A

    2014-10-15

    Particles captured during dust episodes in Beirut originated from both the African and Arabian deserts. This particular air mixture showed an increase, over non-dust episodes, in particle volume distribution which was mostly noticed for particles ranging in sizes between 2.25 and 5 μm. It also resulted in an increase in average mass concentration by 48.5% and 14.6%, for the coarse and fine fractions, respectively. Chemical analysis of major aerosol components accounted for 93% of fine PM and 71% of coarse PM. Crustal material (CM) dominated the coarse PM fraction, contributing to 39 ± 15% of the total mass. Sea salt (SS) (11 ± 10%) and secondary ions (SI) (11 ± 7%) were the second most abundant elements. In the fine fraction, SI (36 ± 14%) were the most abundant PM constituent, followed by organic matter (OM) (33 ± 7%) and CM (13 ± 2%). Enrichment factors (EF) and correlation coefficients show that biogenic and anthropogenic sources contribute to the elemental composition of particles during dust episodes. This study emphasizes on the role played by the long-range transport of aerosols in changing the chemical composition of the organic and inorganic constituents of urban coarse and fine PM. The chemical reactions between aged urban and dust aerosols are enhanced during transport, leading to the formation of organo-nitrogenated and -sulfonated compounds. Their oligomeric morphologies are further confirmed by SEM-EDX measurements. PMID:25064715

  4. SIZE DISTRIBUTIONS OF TRACE METALS IN FLUE GAS PARTICULATE FROM A PILOT-SCALE ROTARY KILN INCINERATOR

    EPA Science Inventory

    The distributions of nine trace metals in flue gas particulate by particle size range were determined as part of a pilot-scale hazardous waste incineration test program. hese tests were conducted in the rotary kiln incinerator system at the U.S. EPA's Incineration Research Facili...

  5. EFFECTS OF INHALATION OF SOLUBLE METALLIC CONSTITUENTS OF PARTICULATE MATTER ON CARDIOPULMONARY, THERMOREGULATORY, AND BIOCHEMICAL PARAMETERS IN GUINEA PIGS

    EPA Science Inventory

    EFFECTS OF INHALATION OF SOLUBLE METALLIC CONSTITUENTS OF PARTICULATE MATTER ON CARDIOPULMONARY, THERMOREGULATORY, AND BIOCHEMICAL PARAMETERS IN GUINEA PIGS. JP Nolan1, LB Wichers2, J Stanek3, UP Kodavanti1, MCJ Schladweiler1, PA Evansky1, ER Lappi1, DL Costa1, and WP Watkinson1...

  6. Ambient fine particulate air pollution triggers ST-elevation myocardial infarction, but not non-ST elevation myocardial infarction: a case-crossover study

    PubMed Central

    2014-01-01

    Background We and others have shown that increases in particulate air pollutant (PM) concentrations in the previous hours and days have been associated with increased risks of myocardial infarction, but little is known about the relationships between air pollution and specific subsets of myocardial infarction, such as ST-elevation myocardial infarction (STEMI) and non ST-elevation myocardial infarction (NSTEMI). Methods Using data from acute coronary syndrome patients with STEMI (n = 338) and NSTEMI (n = 339) and case-crossover methods, we estimated the risk of STEMI and NSTEMI associated with increased ambient fine particle (<2.5 um) concentrations, ultrafine particle (10-100 nm) number concentrations, and accumulation mode particle (100-500 nm) number concentrations in the previous few hours and days. Results We found a significant 18% increase in the risk of STEMI associated with each 7.1 μg/m3 increase in PM2.5 concentration in the previous hour prior to acute coronary syndrome onset, with smaller, non-significantly increased risks associated with increased fine particle concentrations in the previous 3, 12, and 24 hours. We found no pattern with NSTEMI. Estimates of the risk of STEMI associated with interquartile range increases in ultrafine particle and accumulation mode particle number concentrations in the previous 1 to 96 hours were all greater than 1.0, but not statistically significant. Patients with pre-existing hypertension had a significantly greater risk of STEMI associated with increased fine particle concentration in the previous hour than patients without hypertension. Conclusions Increased fine particle concentrations in the hour prior to acute coronary syndrome onset were associated with an increased risk of STEMI, but not NSTEMI. Patients with pre-existing hypertension and other cardiovascular disease appeared particularly susceptible. Further investigation into mechanisms by which PM can preferentially trigger STEMI over NSTEMI

  7. Preparation of Aluminum Metal Matrix Composite with Novel In situ Ceramic Composite Particulates, Developed from Waste Colliery Shale Material

    NASA Astrophysics Data System (ADS)

    Venkata Siva, S. B.; Sahoo, K. L.; Ganguly, R. I.; Dash, R. R.; Singh, S. K.; Satpathy, B. K.; Srinivasarao, G.

    2013-08-01

    A novel method is adapted to prepare an in situ ceramic composite from waste colliery shale (CS) material. Heat treatment of the shale material, in a plasma reactor and/or in a high temperature furnace at 1673 K (1400 °C) under high vacuum (10-6 Torr), has enabled in situ conversion of SiO2 to SiC in the vicinity of carbon and Al2O3 present in the shale material. The composite has the chemical constituents, SiC-Al2O3-C, as established by XRD/EDX analysis. Particle sizes of the composite range between 50 nm and 200 μm. The shape of the particles vary, presumably rod to spherical shape, distributed preferably in the region of grain boundaries. The CS composite so produced is added to aluminum melt to produce Al-CS composite (12 vol. pct). For comparison of properties, the aluminum metal matrix composite (AMCs) is made with Al2O3 particulates (15 vol. pct) with size <200 μm. The heat-treated Al-CS composite has shown better mechanical properties compared to the Al-Al2O3 composite. The ductility and toughness of the Al-CS composite are greater than that of the Al-Al2O3 composite. Fractographs revealed fine sheared dimples in the Al-CS composite, whereas the same of the Al-Al2O3 composite showed an appearance of cleavage-type facets. Abrasion and frictional behavior of both the composites have been compared. The findings lead to the conclusion that the in situ composite developed from the colliery shale waste material has a good future for its use in AMCs.

  8. In Brief: Climate Change Science Program comment period; Ocean Commission comment period; Fine-tuning particulate matter research

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2004-04-01

    Public comments on the draft guidelines for the synthesis and assessment products being prepared by the U.S. Climate Change Science Program are being accepted through 7 May; The long-anticipated preliminary report of the U.S. Commission on Ocean Policy is being released on 20 April. The comment period extends through 21 May; Determining the most hazardous chemical components and other characteristics of aerosol particulate matter should be a focus of research by the U.S. Environmental Protection Agency, according to a 24 March report by the National Academies' National Research Council.

  9. Monitoring the effects of disposal of fine sediments from maintenance dredging on suspended particulate matter concentration in the Belgian nearshore area (southern North Sea).

    PubMed

    Fettweis, Michael; Baeye, Matthias; Francken, Frederic; Lauwaert, Brigitte; Van den Eynde, Dries; Van Lancker, Vera; Martens, Chantal; Michielsen, Tinne

    2011-02-01

    The impact of continuous disposal of fine-grained sediments from maintenance dredging works on the suspended particulate matter concentration in a shallow nearshore turbidity maximum was investigated during dredging experiment (port of Zeebrugge, southern North Sea). Before, during and after the experiment monitoring of SPM concentration using OBS and ADV altimetry was carried out at a location 5 km west of the disposal site. A statistical analysis, based on the concept of populations and sub-sampling, was applied to evaluate the effect. The data revealed that the SPM concentration near the bed was on average more than two times higher during the dredging experiment. The disposed material was mainly transported in the benthic layer and resulted in a long-term increase of SPM concentration and formation of fluid mud layers. The study shows that SPM concentration can be used as an indicator of environmental changes if representative time series are available. PMID:21122880

  10. Effects of Personal Exposure to Ambient Fine Particulate Matter on Acute Change in Nocturnal Heart Rate Variability in Subjects Without Overt Heart Disease.

    PubMed

    Lee, Mi-Sun; Eum, Ki-Do; Rodrigues, Ema G; Magari, Shannon R; Fang, Shona C; Modest, Geoffrey A; Christiani, David C

    2016-01-01

    The immediate effect within minutes to hours of personal exposure to ambient fine particulate matter (PM2.5) on cardiac autonomic function is limited, particularly at night. Our study aimed to assess the lagged association between personal exposure to PM2.5 and nocturnal heart rate variability. Repeated measures panel study among 21 community adults recruited from a local health clinic during the period of March 1, 2004, to August 31, 2004, in Boston, Massachusetts, in the United States. Ambulatory electrocardiogram and continuous monitoring of personal exposure to PM2.5 and were measured for up to 2 consecutive days. We calculated 5-minute time-specific average PM2.5 exposure for each participant. Mixed-effects models were fit for 5-minute SD of normal-to-normal intervals (SDNN) and 5-minute heart rate in relation to 5-minute PM2.5 exposure lagged in 5-minute intervals up to 4 hours. We found an 8.4% decrease in nocturnal SDNN (95% confidence interval [CI] -11.3% to -5.5%) and a 1.9% increase in nighttime heart rate (95% CI 1.1% to 2.7%) for an interquartile range increase in PM2.5 (13.6 μg/m(3)), after adjusting for confounders. Significant decreases in nocturnal SDNN associated with PM2.5 exposure occurred within 2.5 hours. The largest decrease in nocturnal SDNN of -12.8% (95% CI -16.4 to -9.1%) that was associated with PM2.5 exposure was found with a lag of 25 minutes. Rapid changes in nocturnal heart rate variability associated with personal PM2.5 exposure occurred within the previous 2.5 hours, with the largest effects at 25 minutes, suggesting immediate cardiac autonomic effects of fine particulate exposure. PMID:26552502

  11. Sizes and polycyclic aromatic hydrocarbon composition distributions of nano, ultrafine, fine, and coarse particulates emitted from a four-stroke motorcycle.

    PubMed

    Chien, Shu M; Huang, Yuh J

    2010-11-01

    Thus, this study was undertaken to determine the size distribution, concentration, species, and carcinogenic potency of particulate matter and particle-bound polycyclic aromatic hydrocarbons (PAHs) emitted from 4-st/mc at various speeds (idle, 15 km/h, 30 km/h). Approximately 80% of the particles emitted from the that is, they are primary inhalable particulates. The particle total number concentrations (TNCs) emitted while idling and at 15 and 30 km/h were 2.07 x 10⁴, 2.35 x 10⁴, and 2.60 x 10⁴ #/cm³, respectively; i.e., they increased at elevated speeds. Notably, most of the particles emitted at 30 km/h had diameters of less than 0.65 μm and contained higher percentages of total PAHs. Excluding incomplete combustion, we suspected that some of the lower-molecular-weight PAHs [phenanthrene (PA), anthracene (Ant), pyrene (Pyr)] obtained in the fine particles at idle originated from unburned 95-octane unleaded fuel. When operated at 15 km/h, pyrolysis of the PAHs dominated, resulting in increased amounts of medium-molecular-weight PAHs {fluorene (FL), Pyr, benz[a]anthracene (BaA), chrysene (CHR)} in the ultrafine particles. Furthermore, at 30 km/h, more pyrosynthesis products {benzo[a]pyrene (BaP), indeno[1,2,3,-cd]pyrene (IND), dibenz[a,h]anthracene (DBA)}, induced through combustion at the correspondingly higher temperature, were exhausted with the nanoparticles. Although the total concentrations of BaP-equivalent emissions were inconsistent with the total PAHs, the nanoscale-sized particulates emitted from the 4-st/mc at higher speeds had the strongest PAH-related carcinogenic potencies, which should be a great concern. PMID:20924922

  12. Eight-year (2007-2014) trends in ambient fine particulate matter (PM2.5) and its chemical components in the Capital Region of Alberta, Canada.

    PubMed

    Bari, Md Aynul; Kindzierski, Warren B

    2016-05-01

    Currently there have been questions about ambient fine particulate matter (PM2.5) levels in the Capital Region of Alberta, Canada. An investigation of temporal trends in PM2.5 and its chemical components was undertaken in the City of Edmonton within the Capital Region over an 8-year period (2007-2014). A non-parametric trend detection method was adopted to characterize trends in ambient concentrations. No statistically significant change was observed for ambient PM2.5 concentrations during 2007-2014, while significant decreasing trends were found for organic carbon, elemental carbon, oxalate, barium, lead and cadmium. A statistically significant increasing trend was observed for sodium chloride indicating an increase of de-icing salt contribution for winter road maintenance in recent years. Concentrations of potassium ion and zinc exhibited strong and significant seasonal variability with higher concentrations in winter than in summer likely reflecting wood smoke origins more than other potential sources in Edmonton and the surrounding region. No statistically significant changes were observed for all other chemical components examined. Notwithstanding robust population growth that has occurred in Edmonton, these findings reveal that particulate air quality and corresponding trace elements in Edmonton's air has been unchanged or improved over the investigated period (2007-2014). Longer-term air quality monitoring at least over several decades is needed to establish whether trends reported here are actually occurring. PMID:26949866

  13. A New Method to Jointly Estimate the Mortality Risk of Long-Term Exposure to Fine Particulate Matter and its Components

    PubMed Central

    Crouse, Dan L.; Philip, Sajeev; van Donkelaar, Aaron; Martin, Randall V.; Jessiman, Barry; Peters, Paul A.; Weichenthal, Scott; Brook, Jeffrey R.; Hubbell, Bryan; Burnett, Richard T.

    2016-01-01

    Most studies on the association between exposure to fine particulate matter (PM2.5) and mortality have considered only total concentration of PM2.5 or individual components of PM2.5, and not the combined effects of concentration and particulate composition. We sought to develop a method to estimate the risk of death from long-term exposure to PM2.5 and the distribution of its components, namely: sulphate, nitrate, ammonium, organic mass, black carbon, and mineral dust. We decomposed PM2.5 exposure into the sum of total concentration and the proportion of each component. We estimated the risk of death due to exposure using a cohort of ~2.4 million Canadians who were followed for vital status over 16 years. Modelling the concentration of PM2.5 with the distribution of the proportions of components together was a superior predictor for mortality than either total PM2.5 concentration alone, or all component concentrations modelled together. Our new approach has the advantage of characterizing the toxicity of the atmosphere in its entirety. This is required to fully understand the health benefits associated with strategies to improve air quality that may result in complex changes not only in PM2.5 concentration, but also in the distribution of particle components. PMID:26732864

  14. A New Method to Jointly Estimate the Mortality Risk of Long-Term Exposure to Fine Particulate Matter and its Components

    NASA Astrophysics Data System (ADS)

    Crouse, Dan L.; Philip, Sajeev; van Donkelaar, Aaron; Martin, Randall V.; Jessiman, Barry; Peters, Paul A.; Weichenthal, Scott; Brook, Jeffrey R.; Hubbell, Bryan; Burnett, Richard T.

    2016-01-01

    Most studies on the association between exposure to fine particulate matter (PM2.5) and mortality have considered only total concentration of PM2.5 or individual components of PM2.5, and not the combined effects of concentration and particulate composition. We sought to develop a method to estimate the risk of death from long-term exposure to PM2.5 and the distribution of its components, namely: sulphate, nitrate, ammonium, organic mass, black carbon, and mineral dust. We decomposed PM2.5 exposure into the sum of total concentration and the proportion of each component. We estimated the risk of death due to exposure using a cohort of ~2.4 million Canadians who were followed for vital status over 16 years. Modelling the concentration of PM2.5 with the distribution of the proportions of components together was a superior predictor for mortality than either total PM2.5 concentration alone, or all component concentrations modelled together. Our new approach has the advantage of characterizing the toxicity of the atmosphere in its entirety. This is required to fully understand the health benefits associated with strategies to improve air quality that may result in complex changes not only in PM2.5 concentration, but also in the distribution of particle components.

  15. Effect of meteorological parameters on fine and coarse particulate matter mass concentration in a coal-mining area in Zonguldak, Turkey

    SciTech Connect

    Lokman Hakan Tecer; Pinar Suren; Omar Alagha; Ferhat Karaca; Gurdal Tuncel

    2008-04-15

    In this work, the effect of meteorological parameters and local topography on mass concentrations of fine (PM2.5) and coarse (PM2.5-10) particles and their seasonal behavior was investigated. A total of 236 pairs of samplers were collected using an Anderson Dichotomous sampler between December 2004 and October 2005. The average mass concentrations of PM2.5, PM2.5-10, and particulate matter less than 10 m in aerodynamic diameter (PM10) were found to be 29.38, 23.85, and 53.23 {mu}g/m{sup 3}, respectively. The concentrations of PM2.5 and PM10 were found to be higher in heating seasons (December to May) than in summer. The increase of relative humidity, cloudiness, and lower temperature was found to be highly related to the increase of particulate matter (PM) episodic events. During non-rainy days, the episodic events for PM2.5 and PM10 were increased by 30 and 10.7%, respectively. This is a result of the extensive use of fuel during winter for heating purposes and also because of stagnant air masses formed because of low temperature and low wind speed over the study area. 54 refs., 8 figs., 5 tabs.

  16. Redox/methylation mediated abnormal DNA methylation as regulators of ambient fine particulate matter-induced neurodevelopment related impairment in human neuronal cells.

    PubMed

    Wei, Hongying; Liang, Fan; Meng, Ge; Nie, Zhiqing; Zhou, Ren; Cheng, Wei; Wu, Xiaomeng; Feng, Yan; Wang, Yan

    2016-01-01

    Fine particulate matter (PM2.5) has been implicated as a risk factor for neurodevelopmental disorders including autism in children. However, the underlying biological mechanism remains unclear. DNA methylation is suggested to be a fundamental mechanism for the neuronal responses to environmental cues. We prepared whole particle of PM2.5 (PM2.5), water-soluble extracts (Pw), organic extracts (Po) and carbon core component (Pc) and characterized their chemical constitutes. We found that PM2.5 induced significant redox imbalance, decreased the levels of intercellular methyl donor S-adenosylmethionine and caused global DNA hypomethylation. Furthermore, PM2.5 exposure triggered gene-specific promoter DNA hypo- or hypermethylation and abnormal mRNA expression of autism candidate genes. PM2.5-induced DNA hypermethylation in promoter regions of synapse related genes were associated with the decreases in their mRNA and protein expression. The inhibiting effects of antioxidative reagents, a methylation-supporting agent and a DNA methyltransferase inhibitor demonstrated the involvement of redox/methylation mechanism in PM2.5-induced abnormal DNA methylation patterns and synaptic protein expression. The biological effects above generally followed a sequence of PM2.5 ≥ Pwo > Po > Pw > Pc. Our results implicated a novel epigenetic mechanism for the neurodevelopmental toxicity of particulate air pollution, and that eliminating the chemical components could mitigate the neurotoxicity of PM2.5. PMID:27624276

  17. A New Method to Jointly Estimate the Mortality Risk of Long-Term Exposure to Fine Particulate Matter and its Components.

    PubMed

    Crouse, Dan L; Philip, Sajeev; van Donkelaar, Aaron; Martin, Randall V; Jessiman, Barry; Peters, Paul A; Weichenthal, Scott; Brook, Jeffrey R; Hubbell, Bryan; Burnett, Richard T

    2016-01-01

    Most studies on the association between exposure to fine particulate matter (PM2.5) and mortality have considered only total concentration of PM2.5 or individual components of PM2.5, and not the combined effects of concentration and particulate composition. We sought to develop a method to estimate the risk of death from long-term exposure to PM2.5 and the distribution of its components, namely: sulphate, nitrate, ammonium, organic mass, black carbon, and mineral dust. We decomposed PM2.5 exposure into the sum of total concentration and the proportion of each component. We estimated the risk of death due to exposure using a cohort of ~2.4 million Canadians who were followed for vital status over 16 years. Modelling the concentration of PM2.5 with the distribution of the proportions of components together was a superior predictor for mortality than either total PM2.5 concentration alone, or all component concentrations modelled together. Our new approach has the advantage of characterizing the toxicity of the atmosphere in its entirety. This is required to fully understand the health benefits associated with strategies to improve air quality that may result in complex changes not only in PM2.5 concentration, but also in the distribution of particle components. PMID:26732864

  18. The grape cluster, metal particle 63344,1. [in lunar coarse fines

    NASA Technical Reports Server (NTRS)

    Goldstein, J. I.; Axon, H. J.; Agrell, S. O.

    1975-01-01

    The grape cluster metal particle 63344,1 found in lunar coarse fines is examined using the scanning electron microscope (SEM), electron microprobe, and an optical microscope. This metal particle is approximately 0.5 cm in its largest dimension and consists of hundreds of metallic globules welded together to form a structure somewhat like a bunch of grapes. Electron microprobe analysis for Fe, Ni, Co, P, and S in the metal was carried out using wavelength dispersive detectors. No primary solidification structure is observed in the globules, and the particle is slow cooled from the solidification temperature (nearly 1300 C) taking days to probably months to reach 600 C. Two mechanisms for the formation of globules are proposed. One mechanism involves the primary impact of an iron meteorite which produces a metallic liquid and vapor phase. The second mechanism involves the formation of a liquid pool of metal after impact of an iron meteorite projectile followed by a secondary impact in the liquid metal pool.

  19. Online molecular characterization of fine particulate matter in Port Angeles, WA: Evidence for a major impact from residential wood smoke

    NASA Astrophysics Data System (ADS)

    Gaston, Cassandra J.; Lopez-Hilfiker, Felipe D.; Whybrew, Lauren E.; Hadley, Odelle; McNair, Fran; Gao, Honglian; Jaffe, Daniel A.; Thornton, Joel A.

    2016-08-01

    We present on-line molecular composition measurements of wintertime particulate matter (PM) during 2014 using an iodide-adduct high-resolution, time-of-flight chemical ionization mass spectrometer (HR-TOF-CIMS) coupled to a Filter Inlet for Gases and AEROsols (FIGAERO). These measurements were part of an intensive effort to characterize PM in the region with a focus on ultrafine particle sources. The technique was used to detect and quantify different classes of wood burning tracers, including levoglucosan, methoxyphenols, and nitrocatechols, among other compounds in near real-time. During the campaign, particulate mass concentrations of compounds with the same molecular composition as levoglucosan ranged from 0.002 to 19 μg/m3 with a median mass concentration of 0.9 μg/m3. Wood burning markers, in general, showed a strong diurnal pattern peaking at night and in the early morning. This diurnal profile combined with cold, stagnant conditions, wind directions from predominantly residential areas, and observations of lower combustion efficiency at night support residential wood burning as a dominant source of wintertime PM in Port Angeles. This finding has implications for improving wintertime air quality in the region by encouraging the use of high efficiency wood-burning stoves or other cleaner home heating options throughout the relevant domain.

  20. Characterization of Fine Airborne Particulate Collected in Tokyo and Major Atmospheric Emission Sources by Using Single Particle Measurement of SEM-EDX

    NASA Astrophysics Data System (ADS)

    Sato, K.; Iijima, A.; Furuta, N.

    2008-12-01

    In our long-term monitoring of size-classified Airborne Particulate Matter (APM) in Tokyo since 1995, it had been demonstrated that toxic elements such as As, Se, Cd, Sb and Pb were extremely enriched in fine APM (PM2.5). However, in that study, total sampled APM on a filter was digested with acids, and thus only averaged elemental composition in fine APM could be obtained. One of the effective methods to determine the origin of APM is single particle measurement by using SEM-EDX. By using characteristic shapes observed by SEM and marker elements contained in APM measured by EDX, detailed information for source identification can be obtained. In this study, fine APM (PM2.5) was collected at various locations such as roadside, diesel vehicle exhaust, a heavy oil combustion plant and a waste incineration plant as well as ambient atmosphere in Tokyo, and characteristics of fine particles that will be utilized for identification of emission sources are elucidated. Fine particles can be classified into 3 main characteristic shape groups; edge-shaped, cotton-like and spherical. Shape of particles collected in a heavy oil combustion plant and a waste incineration plant was mostly spherical, and these particles may be associated with thermal process. Diesel exhaust particles were predominantly cotton-like which may consist of coagulated nano-sized particles. Most of brake abrasion dusts were edge-shaped, which may be associated with mechanical abrasion of brake pads. In the elemental analysis of fine particles, high concentrations of Sb, Cu, Ti and Ba were detected in brake abrasion dusts. Since these elements are major constituents of brake pads, these can be used for marker elements of brake abrasion dusts. High concentration of C was detected in diesel exhaust particles and oil combustion particles, and thus C can be used for marker elements of their origin. Furthermore, high concentrations of C, Ca and K were detected in fly ash from a waste incineration plant, which

  1. Modelling the fine and coarse fraction of heavy metals in Spain

    NASA Astrophysics Data System (ADS)

    García Vivanco, Marta; González, M. Angeles

    2014-05-01

    Heavy metals, such as cadmium, lead, nickel, arsenic, copper, chrome, zinc and selenium, are present in the air due to natural and anthropogenic emissions, normally joined to particles. These metals can affect life organisms via inhalation or ingestion, causing damages in human health and ecosystems. Small particles are inhaled and embebed in lungs and alveolus more easily than coarse particles. The CHIMERE model is a eulerian air quality model extensively used in air quality modelling. Metals have been recently included in this model in a special version developed in the CIEMAT (Madrid, Spain) modelling group. Vivanco et al. (2011) and González et al. (2012) showed the model performance for some metals in Spain and Europe. However, in these studies, metals were considered as fine particles. Some studies based on observed heavy metals air concentration indicate the presence of metals also in the coarse fraction, in special for Cu and Zn. For this reason, a new attempt of modelling metals considering a fine (<2.5 micrometres) and coarse (2.5-10 micrometres) fraction has been done. Measurements of metal concentration in PM10, PM2.5 and PM1 recorded in Spain (Fernández-Camacho et al., 2012; Querol et al., 2008) were used to obtain the new metal particle distribution size. Results and the evaluation of the model performance at some minoring sites in Spain is presented. References: - Vivanco, M. G., M.A: González, I. Palomino, J. L. Garrido, X. Querol, B. Bessagnet, J.de la Rosa, A.M. Sánchez de la Campa, 2011. Modelling Arsenic, Lead, Cadmium and Nickel Ambient Air Concentrations in Spain, 2011. Proceedings of the 11 th International Conference on Computational Science and Its Applications (ICCSA 11) 243-246 - González, Ma Vivanco, Marta; Palomino, Inmaculada; Garrido, Juan; Santiago, Manuel; Bessagnet, Bertrand Modelling Some Heavy Metals Air Concentration in Europe. // Water, Air & Soil Pollution;Sep2012, Vol. 223 Issue 8, p5227

  2. Modeling of the chemical composition of fine particulate matter: Development and performance assessment of EASYWRF-Chem

    NASA Astrophysics Data System (ADS)

    Mendez, M.; Lebègue, P.; Visez, N.; Fèvre-Nollet, V.; Crenn, V.; Riffault, V.; Petitprez, D.

    2016-03-01

    The European emission Adaptation SYstem for the WRF-Chem model (EASYWRF-Chem) has been developed to generate chemical information supporting the WRF-Chem requirements from any emission inventory based on the CORINAIR methodology. Using RADM2 and RACM2 mechanisms, "emission species" are converted into "model species" thanks to the SAPRC methodology for gas phase pollutant and the PM10 and PM2.5 fractions. Furthermore, by adapting US EPA PM2.5 profiles, the processing of aerosol chemical speciation profiles separates the unspeciated PM2.5 emission into five chemical families: sulfates, nitrates, elemental carbon, organic aerosol and unspeciated aerosol. The evaluation of the model has been performed by separately comparing model outcomes with (i) meteorological measurements; (ii) NO2, O3, PM10 and PM2.5 mass concentrations from the regional air quality monitoring network; (iii) hourly-resolved data from four field campaign measurements, in winter and in summer, on two sites in the French northern region. In the latter, a High Resolution - Time of Flight - Aerosol Mass Spectrometer (HR-ToF-AMS) provided non-refractory PM1 concentrations of sulfate, nitrate and ammonium ions as well as organic matter (OM), while an aethalometer provided black carbon (BC) concentrations in the PM2.5 fraction. Meteorological data (temperature, wind, relative humidity) are well simulated for all the time series data except for specific events as wind direction changes or rainfall. For particulate matter, results are presented by considering firstly the total mass concentration of PM2.5 and PM10. EASYWRF-Chem simulations overestimated the PM10 mass concentrations by + 22% and + 4% for summer and winter periods respectively, whereas for the finer PM2.5 fraction, mass concentrations were overestimated by + 20% in summer and underestimated by - 13% in winter. Simulated sulfate concentrations were underestimated and nitrate concentrations were overestimated but hourly variations were well

  3. Study of the use of Metal-Oxide-Silicon (MOS) devices for particulate detection and monitoring in the earth's atmosphere

    NASA Technical Reports Server (NTRS)

    Brooks, A. D.; Monteith, L. K.; Wortman, J. J.; Mulligan, J. C.

    1974-01-01

    A metal-oxide-silicon (MOS) capacitor-type particulate sensor was evaluated for use in atmospheric measurements. An accelerator system was designed and tested for the purpose of providing the necessary energy to trigger the MOS-type sensor. The accelerator system and the MOS sensor were characterized as a function of particle size and velocity. Diamond particles were used as particulate sources in laboratory tests. Preliminary tests were performed in which the detector was mounted on an aircraft and flown in the vicinity of coal-fired electric generating plants.

  4. Development of methods for the speciation of metals in atmospheric particulate matter

    NASA Astrophysics Data System (ADS)

    Majestic, Brian J.

    2007-12-01

    This study focuses on advancing methods to measure and speciate trace-elements in atmospheric particulate matter (PM) to support human exposure and health studies. Methods were developed to measure Fe(II) and Fe(III) in PM samples using samplers collecting daily average particulate matter samples and personal exposure samples. Low-cost wet-chemical methods were also developed to measure the oxidation state of leachable iron, chromium and manganese present in low-volume PM samples. In addition, a study was conducted to determine if metals collected by different personal exposure samplers currently used in exposure and health studies were comparable. Results from the intercomparison study between co-located personal and fixed-site ambient samplers showed that different personal sampler designs display biases that are largest for metals predominating in the super-micron fraction. Using one consistent personal exposure sampler, a pilot study was conducted to examine trace-metal concentrations in personal exposure samples from individuals residing in an assisted-living home. These results were compared to ambient outdoor and fixed-indoor concentrations, and generally, outdoor > indoor > personal exposure concentrations. The pilot study demonstrated that adequate tools exist to measure trace-element exposures under real-world conditions. Using the methods developed in the study, labile Fe(II) and Fe(III) as well as total soluble manganese and soluble oxidized manganese from atmospheric PM were routinely detected in ambient and personal exposure samples. Samples extracted in a variety of environmentally and biologically relevant fluids showed that leachable iron and manganese strongly depends on the extractant. Atmospheric samples from a residential location in Toronto (which uses the fuel additive, MMT) showed that a significant fraction of oxidized labile manganese is present in the PM2.5 fraction, in contrast to US cities that do not use MMT. Both the wet-chemical and

  5. The Distribution between the Dissolved and the Particulate Forms of 49 Metals across the Tigris River, Baghdad, Iraq

    PubMed Central

    Hamad, Samera Hussein; Schauer, James Jay; Shafer, Martin Merrill; Abed Al-Raheem, Esam; Satar, Hyder

    2012-01-01

    The distribution of dissolved and particulate forms of 49 elements was investigated along transect of the Tigris River (one of the major rivers of the world) within Baghdad city and in its major tributary (Diyala River) from 11 to 28 July 2011. SF-ICP-MS was used to measure total and filterable elements at 17 locations along the Tigris River transect, two samples from the Diyala River, and in one sample from the confluence of the two rivers. The calculated particulate forms were used to determine the particle-partition coefficients of the metals. No major changes in the elements concentrations down the river transect. Dissolved phases dominated the physical speciation of many metals (e.g., As, Mo, and Pt) in the Tigris River, while Al, Fe, Pb, Th, and Ti were exhibiting high particulate fractions, with a trend of particle partition coefficients of [Ti(40) > Th(35) > Fe(15) > Al(13) > Pb(4.5)] ∗ 106 L/kg. Particulate forms of all metals exhibited high concentrations in the Diyala River, though the partition coefficients were low due to high TSS (~270 mg/L). A comparison of Tigris with the major rivers of the world showed that Tigris quality in Baghdad is comparable to Seine River quality in Paris. PMID:23304083

  6. Exposure to fine airborne particulate matter induces macrophage infiltration, unfolded protein response, and lipid deposition in white adipose tissue

    PubMed Central

    Mendez, Roberto; Zheng, Ze; Fan, Zhongjie; Rajagopalan, Sanjay; Sun, Qinghua; Zhang, Kezhong

    2013-01-01

    Recent epidemiological studies have suggested a link between exposure to ambient air-pollution and susceptibility to metabolic disorders such as Type II diabetes mellitus. Previously, we provided evidence that both short- and long-term exposure to concentrated ambient particulate matter with aerodynamic diameter <2.5 μm (PM2.5) induces multiple abnormalities associated with the pathogenesis of Type II diabetes mellitus, including insulin resistance, visceral adipose inflammation, brown adipose mitochondrial adipose changes, and hepatic endoplasmic reticulum (ER) stress. In this report, we show that chronic inhalation exposure to PM2.5 (10 months exposure) induces macrophage infiltration and Unfolded Protein Response (UPR), an intracellular stress signaling that regulates cell metabolism and survival, in mouse white adipose tissue in vivo. Gene expression studies suggested that PM2.5 exposure induces two distinct UPR signaling pathways mediated through the UPR transducer inositol-requiring 1α (IRE1α): 1) ER-associated Degradation (ERAD) of unfolded or misfolded proteins, and 2) Regulated IRE1-dependent Decay (RIDD) of mRNAs. Along with the induction of the UPR pathways and macrophage infiltration, expression of genes involved in lipogenesis, adipocyte differentiation, and lipid droplet formation was increased in the adipose tissue of the mice exposed to PM2.5. In vitro study confirmed that PM2.5 can trigger phosphorylation of the UPR transducer IRE1α and activation of macrophages. These results provide novel insights into PM2.5-triggered cell stress response in adipose tissue and increase our understanding of pathophysiological effects of particulate air pollution on the development of metabolic disorders. PMID:23573366

  7. Acute exposure to fine and coarse particulate matter and infant mortality in Tokyo, Japan (2002-2013).

    PubMed

    Yorifuji, Takashi; Kashima, Saori; Doi, Hiroyuki

    2016-05-01

    Few studies have evaluated the effect of short-term exposure to particulate matter (PM) less than 2.5μm in diameter (PM2.5) or to coarse particles on infant mortality. We evaluated the association between short-term exposure to PM and infant mortality in Japan and assessed whether adverse health effects were observable at PM concentrations below Japanese air quality guidelines. We used a time-stratified, case-crossover design. The participants included 2086 infants who died in the 23 urbanized wards of the Tokyo Metropolitan Government between January 2002 and December 2013. We obtained measures of PM2.5 and suspended particulate matter (SPM; PM<7μm in diameter) from one general monitoring station. As a measure of coarse particles, we calculated PM7-2.5 by subtracting PM2.5 from SPM. We then used conditional logistic regression to analyze the data. Same-day PM2.5 was associated with increased risks of infant and postneonatal mortality, especially for mortality related to respiratory causes. For a 10μg/m(3) increase in PM2.5, the odds ratios were 1.06 (95% confidence interval: 1.01-1.12) for infant mortality and 1.10 (1.02-1.19) for postneonatal mortality. PM7-2.5 was also associated with an increased risk of postneonatal mortality, independent of PM2.5. Even when PM2.5 and SPM concentrations were below Japanese air quality guidelines, we observed adverse health effects. This study provides further evidence that acute exposure to PM2.5 and coarse particles (PM7-2.5) is associated with an increased risk of infant mortality. Further, rigorous evaluation of air quality guidelines for daily average PM2.5 and larger particles is needed. PMID:26874762

  8. Characterization of the origin of fine particulate matter in a medium size urban area in the Mediterranean

    NASA Astrophysics Data System (ADS)

    Pikridas, Michael; Tasoglou, Antonios; Florou, Kalliopi; Pandis, Spyros N.

    2013-12-01

    A multi-stage methodology for investigating particulate pollution is developed and implemented for the case study area of Patras, Greece. Initially a low cost particulate matter mass monitor was used to assess aerosol mass concentrations indicating that the city, despite its small size (population around 200,000) and lack of heavy industry, violates both the daily and annual European Union PM standards. Increased PM10 concentrations were observed during the winter but local vehicular traffic was estimated to account for only 12 ± 4% of the PM10 concentration on an annual basis. In the second stage, PM2.5 chemical composition was measured at the urban center and biomass burning was identified as a major PM source during the colder months. In the third stage, PM2.5 concentration and chemical composition was also followed at a mostly upwind rural site around 40 km from the city. The transported pollution was found to account for 50% of the PM2.5 during winter and for more than 70% during the rest of the year. Almost all of the sulfates and 40-90%, depending on the season, of the organic aerosol are transported to the city from other areas. In the last stage, an intensive campaign took place during winter in order to quantify PM sources during the most polluted period. Nighttime sharp increases of the aerosol levels were observed with organic aerosol levels exceeding 80 μg m-3. Local biomass combustion and fossil fuel emissions for domestic heating were responsible for these levels.

  9. Evaluation of the Emission, Transport, and Deposition of Mercury, Fine Particulate Matter, and Arsenic from Coal-Based Power Plants in the Ohio River Valley Region

    SciTech Connect

    Kevin Crist

    2006-04-02

    As stated in the proposal: Ohio University, in collaboration with CONSOL Energy, Advanced Technology Systems, Inc (ATS) and Atmospheric and Environmental Research, Inc. (AER) as subcontractors, is evaluating the impact of emissions from coal-fired power plants in the Ohio River Valley region as they relate to the transport and deposition of mercury, arsenic, and associated fine particulate matter. This evaluation will involve two interrelated areas of effort: ambient air monitoring and regional-scale modeling analysis. The scope of work for the ambient air monitoring will include the deployment of a surface air monitoring (SAM) station in southeastern Ohio. The SAM station will contain sampling equipment to collect and measure mercury (including speciated forms of mercury and wet and dry deposited mercury), arsenic, particulate matter (PM) mass, PM composition, and gaseous criteria pollutants (CO, NO{sub x}, SO{sub 2}, O{sub 3}, etc.). Laboratory analysis of time-integrated samples will be used to obtain chemical speciation of ambient PM composition and mercury in precipitation. Near-real-time measurements will be used to measure the ambient concentrations of PM mass and all gaseous species including Hg0 and RGM. Approximately 18 months of field data will be collected at the SAM site to validate the proposed regional model simulations for episodic and seasonal model runs. The ambient air quality data will also provide mercury, arsenic, and fine particulate matter data that can be used by Ohio Valley industries to assess performance on multi-pollutant control systems. The scope of work for the modeling analysis will include (1) development of updated inventories of mercury and arsenic emissions from coal plants and other important sources in the modeled domain; (2) adapting an existing 3-D atmospheric chemical transport model to incorporate recent advancements in the understanding of mercury transformations in the atmosphere; (3) analyses of the flux of Hg{sup 0

  10. Evaluation of the Emission, Transport, and Deposition of Mercury, Fine Particulate Matter, and Arsenic from Coal-Based Power Plants in the Ohio River Valley Region

    SciTech Connect

    Kevin Crist

    2005-10-02

    Ohio University, in collaboration with CONSOL Energy, Advanced Technology Systems, Inc (ATS) and Atmospheric and Environmental Research, Inc. (AER) as subcontractors, is evaluating the impact of emissions from coal-fired power plants in the Ohio River Valley region as they relate to the transport and deposition of mercury, arsenic, and associated fine particulate matter. This evaluation will involve two interrelated areas of effort: ambient air monitoring and regional-scale modeling analysis. The scope of work for the ambient air monitoring will include the deployment of a surface air monitoring (SAM) station in southeastern Ohio. The SAM station will contain sampling equipment to collect and measure mercury (including speciated forms of mercury and wet and dry deposited mercury), arsenic, particulate matter (PM) mass, PM composition, and gaseous criteria pollutants (CO, NOx, SO{sub 2}, O{sub 3}, etc.). Laboratory analysis of time-integrated samples will be used to obtain chemical speciation of ambient PM composition and mercury in precipitation. Near-real-time measurements will be used to measure the ambient concentrations of PM mass and all gaseous species including Hg{sup 0} and RGM. Approximately of 18 months of field data will be collected at the SAM site to validate the proposed regional model simulations for episodic and seasonal model runs. The ambient air quality data will also provide mercury, arsenic, and fine particulate matter data that can be used by Ohio Valley industries to assess performance on multi-pollutant control systems. The scope of work for the modeling analysis will include (1) development of updated inventories of mercury and arsenic emissions from coal plants and other important sources in the modeled domain; (2) adapting an existing 3-D atmospheric chemical transport model to incorporate recent advancements in the understanding of mercury transformations in the atmosphere; (3) analyses of the flux of Hg0, RGM, arsenic, and fine

  11. EVALUATION OF THE EMISSION, TRANSPORT, AND DEPOSITION OF MERCURY, FINE PARTICULATE MATTER, AND ARSENIC FROM COAL-BASED POWER PLANTS IN THE OHIO RIVER VALLEY REGION

    SciTech Connect

    Kevin Crist

    2004-04-02

    Ohio University, in collaboration with CONSOL Energy, Advanced Technology Systems, Inc. (ATS) and Atmospheric and Environmental Research, Inc. (AER) as subcontractors, is evaluating the impact of emissions from coal-fired power plants in the Ohio River Valley region as they relate to the transport and deposition of mercury, arsenic, and associated fine particulate matter. This evaluation will involve two interrelated areas of effort: ambient air monitoring and regional-scale modeling analysis. The scope of work for the ambient air monitoring will include the deployment of a surface air monitoring (SAM) station in southeastern Ohio. The SAM station will contain sampling equipment to collect and measure mercury (including speciated forms of mercury and wet and dry deposited mercury), arsenic, particulate matter (PM) mass, PM composition, and gaseous criteria pollutants (CO, NOx, SO{sub 2}, O{sub 3}, etc.). Laboratory analysis of time-integrated samples will be used to obtain chemical speciation of ambient PM composition and mercury in precipitation. Near-real-time measurements will be used to measure the ambient concentrations of PM mass and all gaseous species including Hg{sup 0} and RGM. Approximately 18 months of field data will be collected at the SAM site to validate the proposed regional model simulations for episodic and seasonal model runs. The ambient air quality data will also provide mercury, arsenic, and fine particulate matter data that can be used by Ohio Valley industries to assess performance on multi-pollutant control systems. The scope of work for the modeling analysis will include (1) development of updated inventories of mercury and arsenic emissions from coal-fired power plants and other important sources in the modeled domain; (2) adapting an existing 3-D atmospheric chemical transport model to incorporate recent advancements in the understanding of mercury transformations in the atmosphere; (3) analyses of the flux of Hg{sup 0}, RGM, arsenic

  12. EVALUATION OF THE EMISSION, TRANSPORT, AND DEPOSITION OF MERCURY, FINE PARTICULATE MATTER, AND ARSENIC FROM COAL-BASED POWER PLANTS IN THE OHIO RIVER VALLEY REGION

    SciTech Connect

    Kevin Crist

    2004-10-02

    Ohio University, in collaboration with CONSOL Energy, Advanced Technology Systems, Inc (ATS) and Atmospheric and Environmental Research, Inc. (AER) as subcontractors, is evaluating the impact of emissions from coal-fired power plants in the Ohio River Valley region as they relate to the transport and deposition of mercury, arsenic, and associated fine particulate matter. This evaluation will involve two interrelated areas of effort: ambient air monitoring and regional-scale modeling analysis. The scope of work for the ambient air monitoring will include the deployment of a surface air monitoring (SAM) station in southeastern Ohio. The SAM station will contain sampling equipment to collect and measure mercury (including speciated forms of mercury and wet and dry deposited mercury), arsenic, particulate matter (PM) mass, PM composition, and gaseous criteria pollutants (CO, NOx, SO{sub 2}, O{sub 3}, etc.). Laboratory analysis of time-integrated samples will be used to obtain chemical speciation of ambient PM composition and mercury in precipitation. Near-real-time measurements will be used to measure the ambient concentrations of PM mass and all gaseous species including Hg{sup 0} and RGM. Approximately of 18 months of field data will be collected at the SAM site to validate the proposed regional model simulations for episodic and seasonal model runs. The ambient air quality data will also provide mercury, arsenic, and fine particulate matter data that can be used by Ohio Valley industries to assess performance on multi-pollutant control systems. The scope of work for the modeling analysis will include (1) development of updated inventories of mercury and arsenic emissions from coal plants and other important sources in the modeled domain; (2) adapting an existing 3-D atmospheric chemical transport model to incorporate recent advancements in the understanding of mercury transformations in the atmosphere; (3) analyses of the flux of Hg{sup 0}, RGM, arsenic, and fine

  13. EVALUATION OF THE EMISSION, TRANSPORT, AND DEPOSITION OF MERCURY, FINE PARTICULATE MATTER, AND ARSENIC FROM COAL-BASED POWER PLANTS IN THE OHIO RIVER VALLEY REGION

    SciTech Connect

    Kevin Crist

    2005-04-02

    Ohio University, in collaboration with CONSOL Energy, Advanced Technology Systems, Inc (ATS) and Atmospheric and Environmental Research, Inc. (AER) as subcontractors, is evaluating the impact of emissions from coal-fired power plants in the Ohio River Valley region as they relate to the transport and deposition of mercury, arsenic, and associated fine particulate matter. This evaluation will involve two interrelated areas of effort: ambient air monitoring and regional-scale modeling analysis. The scope of work for the ambient air monitoring will include the deployment of a surface air monitoring (SAM) station in southeastern Ohio. The SAM station will contain sampling equipment to collect and measure mercury (including speciated forms of mercury and wet and dry deposited mercury), arsenic, particulate matter (PM) mass, PM composition, and gaseous criteria pollutants (CO, NO{sub x}, SO{sub 2}, O{sub 3}, etc.). Laboratory analysis of time-integrated samples will be used to obtain chemical speciation of ambient PM composition and mercury in precipitation. Near-real-time measurements will be used to measure the ambient concentrations of PM mass and all gaseous species including Hg{sup 0} and RGM. Approximately of 18 months of field data will be collected at the SAM site to validate the proposed regional model simulations for episodic and seasonal model runs. The ambient air quality data will also provide mercury, arsenic, and fine particulate matter data that can be used by Ohio Valley industries to assess performance on multi-pollutant control systems. The scope of work for the modeling analysis will include (1) development of updated inventories of mercury and arsenic emissions from coal plants and other important sources in the modeled domain; (2) adapting an existing 3-D atmospheric chemical transport model to incorporate recent advancements in the understanding of mercury transformations in the atmosphere; (3) analyses of the flux of Hg{sup 0}, RGM, arsenic, and

  14. Evaluation of the Emission, Transport, and Deposition of Mercury and Fine Particulate Matter from Coal-Based Power Plants in the Ohio River Valley Region

    SciTech Connect

    Kevin Crist

    2008-12-31

    As stated in the proposal: Ohio University, in collaboration with CONSOL Energy, Advanced Technology Systems, Inc (ATS) and Atmospheric and Environmental Research, Inc. (AER) as subcontractors, evaluated the impact of emissions from coal-fired power plants in the Ohio River Valley region as they relate to the transport and deposition of mercury and associated fine particulate matter. This evaluation involved two interrelated areas of effort: ambient air monitoring and regional-scale modeling analysis. The scope of work for the ambient air monitoring included the deployment of a surface air monitoring (SAM) station in southeastern Ohio. The SAM station contains sampling equipment to collect and measure mercury (including speciated forms of mercury and wet and dry deposited mercury), particulate matter (PM) mass, PM composition, and gaseous criteria pollutants (CO, NOx, SO2, O3, etc.). Laboratory analyses of time-integrated samples were used to obtain chemical speciation of ambient PM composition and mercury in precipitation. Nearreal- time measurements were used to measure the ambient concentrations of PM mass and all gaseous species including Hg0 and RGM. Approximately 30 months of field data were collected at the SAM site to validate the proposed regional model simulations for episodic and seasonal model runs. The ambient air quality data provides mercury, and fine particulate matter data that can be used by Ohio Valley industries to assess performance on multi-pollutant control systems. The scope of work for the modeling analysis includes (1) development of updated inventories of mercury emissions from coal plants and other important sources in the modeled domain; (2) adapting an existing 3-D atmospheric chemical transport model to incorporate recent advancements in the understanding of mercury transformations in the atmosphere; (3) analyses of the flux of Hg0, RGM, and fine particulate matter in the different sectors of the study region to identify key transport

  15. EVALUATION OF THE EMISSION, TRANSPORT, AND DEPOSITION OF MERCURY, FINE PARTICULATE MATTER, AND ARSENIC FROM COAL-BASED POWER PLANTS IN THE OHIO RIVER VALLEY REGION

    SciTech Connect

    Kevin Crist

    2003-10-02

    Ohio University, in collaboration with CONSOL Energy, Advanced Technology Systems, Inc (ATS) and Atmospheric and Environmental Research, Inc. (AER) as subcontractors, is evaluating the impact of emissions from coal-fired power plants in the Ohio River Valley region as they relate to the transport and deposition of mercury, arsenic, and associated fine particulate matter. This evaluation will involve two interrelated areas of effort: ambient air monitoring and regional-scale modeling analysis. The scope of work for the ambient air monitoring will include the deployment of a surface air monitoring (SAM) station in southeastern Ohio. The SAM station will contain sampling equipment to collect and measure mercury (including speciated forms of mercury and wet and dry deposited mercury), arsenic, particulate matter (PM) mass, PM composition, and gaseous criteria pollutants (CO, NO{sub x}, SO{sub 2}, O{sub 3}, etc.). Laboratory analysis of time-integrated samples will be used to obtain chemical speciation of ambient PM composition and mercury in precipitation. Near-real-time measurements will be used to measure the ambient concentrations of PM mass and all gaseous species including Hg{sup 0} and RGM. Approximately of 18 months of field data will be collected at the SAM site to validate the proposed regional model simulations for episodic and seasonal model runs. The ambient air quality data will also provide mercury, arsenic, and fine particulate matter data that can be used by Ohio Valley industries to assess performance on multi-pollutant control systems. The scope of work for the modeling analysis will include (1) development of updated inventories of mercury and arsenic emissions from coal plants and other important sources in the modeled domain; (2) adapting an existing 3-D atmospheric chemical transport model to incorporate recent advancements in the understanding of mercury transformations in the atmosphere; (3) analyses of the flux of Hg{sup 0}, RGM, arsenic, and

  16. Micron-pore-sized metallic filter tube membranes for filtration of particulates and water purification

    SciTech Connect

    Phelps, Tommy Joe; Palumbo, Anthony Vito; Fagan, Lisa Anne; Bischoff, Brian L; Miller, Curtis Jack; Drake, Meghan M; Judkins, Roddie Reagan

    2008-01-01

    Robust filtering techniques capable of efficiently removing particulates and biological agents from water or air suffer from plugging, poor rejuvenation, low permeance, and high backpressure. Operational characteristics of pressure-driven separations are in part controlled by the membrane pore size, charge of particulates, transmembrane pressure and the requirement for sufficient water flux to overcome fouling. With long term use filters decline in permeance due to filter-cake plugging of pores, fouling, or filter deterioration. Though metallic filter tube development at ORNL has focused almost exclusively on gas separations, a small study examined the applicability of these membranes for tangential filtering of aqueous suspensions of bacterial-sized particles. A mixture of fluorescent polystyrene microspheres ranging in size from 0.5 to 6 {micro}m in diameter simulated microorganisms in filtration studies. Compared to a commercial filter, the ORNL 0.6 {micro}m filter averaged approximately 10-fold greater filtration efficiency of the small particles, several-fold greater permeance after considerable use and it returned to approximately 85% of the initial flow upon backflushing versus 30% for the commercial filter. After filtering several liters of the particle-containing suspension, the ORNL composite filter still exhibited greater than 50% of its initial permeance while the commercial filter had decreased to less than 20%. When considering a greater filtration efficiency, greater permeance per unit mass, greater percentage of rejuvenation upon backflushing (up to 3-fold), and likely greater performance with extended use, the ORNL 0.6 {micro}m filters can potentially outperform the commercial filter by factors of 100-1000 fold.

  17. Atmospheric Light Detection and Ranging (LiDAR) Coupled With Point Measurement Air Quality Samplers to Measure Fine Particulate Matter (PM) Emissions From Agricultural Operations: The Los Banos CA Fall 2007 Tillage Campaign.

    EPA Science Inventory

    Airborne particles, especially fine particulate matter 2.5 micrometers (μm) or less in aerodynamic diameter (PM2.5), are microscopic solids or liquid droplets that can cause serious health problems, including increased respiratory symptoms such as coughing or difficulty breathing...

  18. Short-term Associations between Fine and Coarse Particulate Matter and Hospitalizations in Southern Europe: Results from the MED-PARTICLES Project

    PubMed Central

    Samoli, Evangelia; Alessandrini, Ester; Cadum, Ennio; Ostro, Bart; Berti, Giovanna; Faustini, Annunziata; Jacquemin, Benedicte; Linares, Cristina; Pascal, Mathilde; Randi, Giorgia; Ranzi, Andrea; Stivanello, Elisa; Forastiere, Francesco

    2013-01-01

    Background: Evidence on the short-term effects of fine and coarse particles on morbidity in Europe is scarce and inconsistent. Objectives: We aimed to estimate the association between daily concentrations of fine and coarse particles with hospitalizations for cardiovascular and respiratory conditions in eight Southern European cities, within the MED-PARTICLES project. Methods: City-specific Poisson models were fitted to estimate associations of daily concentrations of particulate matter with aerodynamic diameter ≤ 2.5 μm (PM2.5), ≤ 10 μm (PM10), and their difference (PM2.5–10) with daily counts of emergency hospitalizations for cardiovascular and respiratory diseases. We derived pooled estimates from random-effects meta-analysis and evaluated the robustness of results to co-pollutant exposure adjustment and model specification. Pooled concentration–response curves were estimated using a meta-smoothing approach. Results: We found significant associations between all PM fractions and cardiovascular admissions. Increases of 10 μg/m3 in PM2.5, 6.3 μg/m3 in PM2.5–10, and 14.4 μg/m3 in PM10 (lag 0–1 days) were associated with increases in cardiovascular admissions of 0.51% (95% CI: 0.12, 0.90%), 0.46% (95% CI: 0.10, 0.82%), and 0.53% (95% CI: 0.06, 1.00%), respectively. Stronger associations were estimated for respiratory hospitalizations, ranging from 1.15% (95% CI: 0.21, 2.11%) for PM10 to 1.36% (95% CI: 0.23, 2.49) for PM2.5 (lag 0–5 days). Conclusions: PM2.5 and PM2.5–10 were positively associated with cardiovascular and respiratory admissions in eight Mediterranean cities. Information on the short-term effects of different PM fractions on morbidity in Southern Europe will be useful to inform European policies on air quality standards. Citation: Stafoggia M, Samoli E, Alessandrini E, Cadum E, Ostro B, Berti G, Faustini A, Jacquemin B, Linares C, Pascal M, Randi G, Ranzi A, Stivanello E, Forastiere F, the MED-PARTICLES Study Group. 2013. Short

  19. Position-sensitive change in the transition metal L-edge fine structures

    SciTech Connect

    Gulec, Ahmet; Phillips, Patrick J.; Klie, Robert F.

    2015-10-05

    Studying the structure and composition of solid-state materials on the atomic scale has become nearly routine in transmission electron microscopy with the development of novel electron optics and electron sources. In particular, with spatial resolutions better than 0.1 nm and energy resolution smaller than 100 meV, the stoichiometry, bonding, and coordination can now be examined on similar scales. Aberration-corrected scanning transmission electron microscopy and electron energy-loss spectroscopy (EELS) have played a crucial role in identifying charge ordering, valence, and as spin state transitions in transition metal perovskite oxides. In this letter, we investigate the effects of ever-decreasing electron-probe sizes on the measured near-edge fine-structure of the transition metal core-loss edge using EELS. We find that for certain transition metal perovskites, the position of the electron probe with respect to the atomic column is crucial in determining the correct valence state. Several reasons for the observed position-sensitive EELS fine-structure are discussed.

  20. Association between short term exposure to fine particulate matter and heart rate variability in older subjects with and without heart disease

    PubMed Central

    Sullivan, J; Schreuder, A; Trenga, C; Liu, S; Larson, T; Koenig, J; Kaufman, J

    2005-01-01

    Background: Short term increases in exposure to particulate matter (PM) air pollution are associated with increased cardiovascular morbidity and mortality. The mechanism behind this effect is unclear, although changes in autonomic control have been observed. It was hypothesised that increases in fine PM measured at the subjects' home in the preceding hour would be associated with decreased high frequency heart rate variability (HF-HRV) in individuals with pre-existing cardiac disease. Methods: Two hundred and eighty five daily 20 minute measures of HRV (including a paced breathing protocol) were made in the homes of 34 elderly individuals with (n = 21) and without (n = 13) cardiovascular disease (CVD) over a 10 day period in Seattle between February 2000 and March 2002. Fine PM was continuously measured by nephelometry at the individuals' homes. Results: The median age of the study population was 77 years (range 57–87) and 44% were male. Models that adjusted for health status, relative humidity, temperature, mean heart rate, and medication use did not find a significant association between a 10 µg/m3 increase in 1 hour mean outdoor PM2.5 before the HRV measurement and a change in HF-HRV power in individuals with CVD (3% increase in median HF-HRV (95% CI –19 to 32)) or without CVD (5% decrease in median HF-HRV (95% CI –34 to 36)). Similarly, no association was evident using 4 hour and 24 hour mean outdoor PM2.5 exposures before the HRV measurement. Conclusion: No association was found between increased residence levels of fine PM and frequency domain measures of HRV in elderly individuals. PMID:15923245

  1. Capacitance monitoring of the infiltration of ceramic particulate preforms with liquid metals at 750 to 850 C

    SciTech Connect

    Jonas, T.R.; Cornie, J.A.; Russell, K.C. )

    1993-06-01

    The authors previously developed a capacitance technique to determine the position of the infiltration front as a function of time during the pressure infiltration of ceramic particulate preforms with liquid metals. In the present work, the technique was extended to higher temperatures and was used to monitor the infiltration of alumina particulate preforms with Al-Mg alloys and silicon carbide particulate preforms with Sn and an Al-Si alloy. The infiltration front position could be determined in the alumina preforms. However, it was not possible to clearly interpret the results obtained from the infiltration of semiconducting silicon carbide preforms. The observed range of capacitance circuit voltage to infiltration distance ratios agreed with the predicted range for both simulated and alumina preform infiltration experiments. Formation of unstable infiltration fronts could also be detected.

  2. Metal particulate matter components affect gene expression and beat frequency of neonatal rat ventricular myocytes.

    PubMed

    Graff, Donald W; Cascio, Wayne E; Brackhan, Joseph A; Devlin, Robert B

    2004-05-01

    Soluble particulate matter (PM) components (e.g., metals) have the potential to be absorbed into the bloodstream and transported to the heart where they might induce the expression of inflammatory cytokines and remodel electrical properties. We exposed cultured rat ventricular myocytes to similar concentrations of two metals [zinc (Zn) and vanadium (V)] found commonly in PM and measured changes in spontaneous beat rate. We found statistically significant reductions in spontaneous beat rate after both short-term (4-hr) and long-term (24-hr) exposures, with a more substantial effect seen with Zn. We also measured the expression of genes associated with inflammation and a number of sarcolemmal proteins associated with electrical impulse conduction. Exposure to Zn or V (6.25-50 microM) for 6 hr produced significant increases in IL-6, IL-1 alpha, heat shock protein 70, and connexin 43 (Cx43). After 24 hr exposure, Zn induced significant changes in the gene expression of Kv4.2 and KvLQt (potassium channel proteins), the alpha 1 subunit of the L-type calcium channel, and Cx43, as well as IL-6 and IL-1 alpha. In contrast, V produced a greater effect on Cx43 and affected only one ion channel (KvLQT1). These results show that exposure of rat cardiac myocytes to noncytotoxic concentrations of Zn and V alter spontaneous beat rate as well as the expression of ion channels and sarcolemmal proteins relevant to electrical remodeling and slowing of spontaneous beat rate, with Zn producing a more profound effect. As such, these data suggest that the cardiac effects of PM are largely determined by the relative metal composition of particles. PMID:15159208

  3. Effect of flood events on transport of suspended sediments, organic matter and particulate metals in a forest watershed in the Basque Country (Northern Spain).

    PubMed

    Peraza-Castro, M; Sauvage, S; Sánchez-Pérez, J M; Ruiz-Romera, E

    2016-11-01

    An understanding of the processes controlling sediment, organic matter and metal export is critical to assessing and anticipating risk situations in water systems. Concentrations of suspended particulate matter (SPM), dissolved (DOC) and particulate (POC) organic carbon and metals (Cu, Ni, Pb, Cr, Zn, Mn, Fe) in dissolved and particulate phases were monitored in a forest watershed in the Basque Country (Northern Spain) (31.5km(2)) over three hydrological years (2009-2012), to evaluate the effect of flood events on the transport of these materials. Good regression was found between SPM and particulate metal concentration, making it possible to compute the load during the twenty five flood events that occurred during the study period at an annual scale. Particulate metals were exported in the following order: Fe>Mn>Zn>Cr>Pb>Cu>Ni. Annual mean loads of SPM, DOC and POC were estimated at 2267t, 104t and 57t, respectively, and the load (kg) of particulate metals at 76 (Ni), 83 (Cu), 135 (Pb), 256 (Cr), 532 (Zn), 1783 (Mn) and 95170 (Fe). Flood events constituted 91%-SPM, 65%-DOC, 71%-POC, 80%-Cu, 85%-Ni, 72%-Pb, 84%-Cr, 74%-Zn, 87%-Mn and 88%-Fe of total load exported during the three years studied. Flood events were classified into three categories according to their capacity for transporting organic carbon and particulate metals. High intensity flood events are those with high transport capacity of SPM, organic carbon and particulate metals. Most of the SPM, DOC, POC and particulate metal load was exported by this type of flood event, which contributed 59% of SPM, 45% of organic carbon and 54% of metals. PMID:27392333

  4. Enhancement of room-temperature plasticity in a bulk metallic glass by finely dispersed porosity

    NASA Astrophysics Data System (ADS)

    Wada, Takeshi; Inoue, Akihisa; Greer, Alan Lindsay

    2005-06-01

    Melts of Pd42.5Cu30Ni7.5P20 (at. %) held under pressurized hydrogen are cast into bulk metallic glass (BMG) rods with fine (20-30μm diameter) pores uniformly dispersed. The low overall porosities (<4%) lead to only small reductions in Young modulus and yield strength, but to dramatically enhanced plasticity in compression: Rupture energy as high as 295MJm-3, compared to 16MJm-3 for the pore-free BMG. The pores force the proliferation of shear bands below the overall failure stress, a process of interest for toughening BMGs, materials for which shear localization in deformation restricts structural applications.

  5. A particulate model of solid waste incineration in a fluidized bed combining combustion and heavy metal vaporization

    SciTech Connect

    Mazza, G.; Falcoz, Q.; Gauthier, D.; Flamant, G.

    2009-11-15

    This study aims to develop a particulate model combining solid waste particle combustion and heavy metal vaporization from burning particles during MSW incineration in a fluidized bed. The original approach for this model combines an asymptotic combustion model for the carbonaceous solid combustion and a shrinking core model to describe the heavy metal vaporization. A parametric study is presented. The global metal vaporization process is strongly influenced by temperature. Internal mass transfer controls the metal vaporization rate at low temperatures. At high temperatures, the chemical reactions associated with particle combustion control the metal vaporization rate. A comparison between the simulation results and experimental data obtained with a laboratory-scale fluid bed incinerator and Cd-spiked particles shows that the heavy metal vaporization is correctly predicted by the model. The predictions are better at higher temperatures because of the temperature gradient inside the particle. Future development of the model will take this into account. (author)

  6. Temperature as a modifier of the effects of fine particulate matter on acute mortality in Hong Kong.

    PubMed

    Sun, Shengzhi; Cao, Peihua; Chan, King-Pan; Tsang, Hilda; Wong, Chit-Ming; Thach, Thuan-Quoc

    2015-10-01

    Interactions between particulate matter with aerodynamic diameter less than or equal to 2.5 μm (PM2.5) and temperature on mortality have not been well studied, and results are difficult to synthesize. We aimed to assess modification of temperature on the association between PM2.5 and cause-specific mortality by stratifying temperature into low, medium, and high stratum in Hong Kong, using data from 1999 to 2011. The mortality effects of PM2.5 were stronger in low temperature stratum than those in high. The excess risk (%) per 10 μg/m(3) increase in PM2.5 at lag 0-1 in low temperature stratum were 0.94% (95% confidence interval: 0.65, 1.24) for all natural, 0.88% (0.38, 1.37) for cardiovascular, and 1.15% (0.51, 1.79) for respiratory mortality. We found statistically significant interaction of PM2.5 and temperature between low and high temperature stratum for all natural mortality. Our results suggested that temperature might modify mortality effects of PM2.5 in Hong Kong. PMID:26123725

  7. An approach towards risk assessment for the use of a synergistic metallic diesel particulate filter (DPF) regeneration additive

    NASA Astrophysics Data System (ADS)

    Cook, S. L.; Richards, P. J.

    The motivations for legislation to set diesel emissions limits requiring the use of diesel particulate filters (DPF) are summarised. If the DPF is to be used, demonstration of regeneration (combustion of collected carbonaceous material) without additional emission problems is important. Potential metal emissions resulting from use of a synergistic Fe/Sr fuel-borne DPF regeneration catalyst are evaluated. Measurements over legislated drive cycle estimate the metals to comprise 1-2% of the solid material emitted, and the DPF to collect >99% of such material. Diesel particulate matter is used as a marker, and from existing air quality and emission inventory measurements, maximum conceivable increases of <1 ng m -3 and <250 pg m -3 for iron and strontium, respectively, are calculated. From environmental assessment levels, derived from occupational exposure limits, these are not significant. For humans, daily ingress of airborne Sr is estimated at 3.5 ng. This is small compared to the known Sr contents of lungs, blood and the daily diet. In the context of reductions of other metals, particulate matter and pollutant emissions, the overall assessment is that the use of these metals to enable use of a DPF allows significant net environmental benefit to be obtained.

  8. Insights into metals in individual fine particles from municipal solid waste using synchrotron radiation-based micro-analytical techniques.

    PubMed

    Zhu, Yumin; Zhang, Hua; Shao, Liming; He, Pinjing

    2015-01-01

    Excessive inter-contamination with heavy metals hampers the application of biological treatment products derived from mixed or mechanically-sorted municipal solid waste (MSW). In this study, we investigated fine particles of <2mm, which are small fractions in MSW but constitute a significant component of the total heavy metal content, using bulk detection techniques. A total of 17 individual fine particles were evaluated using synchrotron radiation-based micro-X-ray fluorescence and micro-X-ray diffraction. We also discussed the association, speciation and source apportionment of heavy metals. Metals were found to exist in a diffuse distribution with heterogeneous intensities and intense hot-spots of <10 μm within the fine particles. Zn-Cu, Pb-Fe and Fe-Mn-Cr had significant correlations in terms of spatial distribution. The overlapped enrichment, spatial association, and the mineral phases of metals revealed the potential sources of fine particles from size-reduced waste fractions (such as scraps of organic wastes or ceramics) or from the importation of other particles. The diverse sources of heavy metal pollutants within the fine particles suggested that separate collection and treatment of the biodegradable waste fraction (such as food waste) is a preferable means of facilitating the beneficial utilization of the stabilized products. PMID:25597689

  9. Particulate flux calculation based on metal contents and suspended sediment concentrations relationship: case study of turbid alpine river (Isere, France)

    NASA Astrophysics Data System (ADS)

    Dutordoir, Solene; Nemery, Julien; Guedron, Stéphane; Arnaud, Jérémy; Minaudo, Camille; Belleudy, Philippe; Landas-Maneval, Jacqueline; Rivière, Carlos

    2013-04-01

    In the context of increasing stress on aquatic environment, the improvement of pollutant flux quantification in large rivers presents a strong stake. Isere at Grenoble city (5570 km2) is an alpine river in the Northern French Alps with high suspended sediment transport reaching 10 to 20 g L-1 during floods. It is known that for elements like P, Ni, Mn, Cr, Pb, Fe et Al, most of river transport is done under particulate forms. Isere River is susceptible to transport particulate pollutants such as metals, given mining history and industrial activities at the upstream watershed. Moreover, this river receives Grenoble city's effluents (500 000 inhabitants) and stormwaters during rain events. Three metals (Hg, Ni, Pb) identified as priority substances regarding European Water Framework Directive and As known to be one of the most metal of concern were chosen in this study. High frequency samplings of suspended sediments were realized between 2011 and 2012 in order to evaluate the temporal variation of metals contents and to determine geochemical background during high flow periods. In the same sampling site (situated upstream urban effluents of Grenoble city), discharge and suspended sediment concentration by turbidity were measured at 30 min frequency by a monitoring station. The use of historical and new databases ranging between low and high discharge (10 years return flood) allowed determining relationships between metal contents and suspended sediment concentrations and discharges. Results show a good correlation for the studied metals and permit to defined the geochemical backgrounds for each metals measured above 0.5 g L-1, (Hg = 68 +/- 48 ng g-1, Ni = 30 +/- 10 mg g-1, Pb = 43 +/-13 mg g-1, As = 15 +/- 4 mg g-1). These models were validated on a separated period than the one used for the calibration and applied to calculate particulate metals concentrations and associated incertitude at 30 min frequency using SSC and discharge database. Cumulative 30 minutes

  10. Oxidative stress, apoptosis, and cell cycle arrest are induced in primary fetal alveolar type II epithelial cells exposed to fine particulate matter from cooking oil fumes.

    PubMed

    Liu, Ying; Chen, Yan-Yan; Cao, Ji-Yu; Tao, Fang-Biao; Zhu, Xiao-Xia; Yao, Ci-Jiang; Chen, Dao-Jun; Che, Zhen; Zhao, Qi-Hong; Wen, Long-Ping

    2015-07-01

    Epidemiological studies demonstrate a linkage between morbidity and mortality and particulate matter (PM), particularly fine particulate matter (PM2.5) that can readily penetrate into the lungs and are therefore more likely to increase the incidence of respiratory and cardiovascular diseases. The present study investigated the compositions of cooking oil fume (COF)-derived PM2.5, which is the major source of indoor pollution in China. Furthermore, oxidative stress, cytotoxicity, apoptosis, and cell cycle arrest induced by COF-derived PM2.5 in primary fetal alveolar type II epithelial cells (AEC II cells) were also detected. N-acetyl-L-cysteine (NAC), a radical scavenger, was used to identify the role of oxidative stress in the abovementioned processes. Our results suggested that compositions of COF-derived PM2.5 are obviously different to PM2.5 derived from other sources, and COF-derived PM2.5 led to cell death, oxidative stress, apoptosis, and G0/G1 cell arrest in primary fetal AEC II cells. Furthermore, the results also showed that COF-derived PM2.5 induced apoptosis through the endoplasmic reticulum (ER) stress pathway, which is indicated by the increased expression of ER stress-related apoptotic markers, namely GRP78 and caspase-12. Besides, the induction of oxidative stress, cytotoxicity, apoptosis, and cell cycle arrest was reversed by pretreatment with NAC. These findings strongly suggested that COF-derived PM2.5-induced toxicity in primary fetal AEC II cells is mediated by increased oxidative stress, accompanied by ER stress which results in apoptosis. PMID:25634364

  11. Regional air quality: local and interstate impacts of NOx and SO{sub 2} emissions on ozone and fine particulate matter in the eastern United States

    SciTech Connect

    Michelle S. Bergin; Jhih-Shyang Shih; Alan J. Krupnick; James W. Boylan; James G. Wilkinson; M. Talat Odman; Armistead G. Russell

    2007-07-01

    While the U.S. air quality management system is largely designed and managed on a state level, many critical air quality problems are now recognized as regional. In particular, concentrations of two secondary pollutants, ozone and particulate matter, are often above regulated levels and can be dependent on emissions from upwind states. Here, impacts of statewide emissions on concentrations of local and downwind states' ozone and fine particulate matter are simulated for three seasonal periods in the eastern United States using a regional Eulerian photochemical model. Impacts of ground level NOx (e.g., mobile and area sources), elevated NOx (e.g., power plants and large industrial sources), and SO{sub 2} emissions are examined. An average of 77% of each state's ozone and PM2.5 concentrations that are sensitive to the emissions evaluated here are found to be caused by emissions from other states. Delaware, Maryland, New Jersey, Virginia, Kentucky, and West Virginia are shown to have high concentrations of ozone and PM2.5 caused by interstate emissions. When weighted by population, New York receives increased interstate contributions to these pollutants and contributions to ozone from local emissions are generally higher. When accounting for emission rates, combined states from the western side of the modeling domain and individual states such as Illinois, Tennessee, Indiana, Kentucky, and Georgia are major contributors to interstate ozone. Ohio, Indiana, Tennessee, Kentucky, and Illinois are the major contributors to interstate PM2.5. When accounting for an equivalent mass of emissions, Tennessee, Kentucky, West Virginia, Virginia, and Alabama contribute large fractions of these pollutants to other states. 46 refs., 9 figs.

  12. Water-soluble ionic species of coarse and fine particulate matter and gas precursor characteristics at urban and rural sites of central Taiwan.

    PubMed

    Tsai, Jiun-Horng; Tsai, Su-Mei; Wang, Wei-Chi; Chiang, Hung-Lung

    2016-08-01

    Coarse and fine particulate matter (PM) were taken by a dichotomous sampler, and gas precursors were determined by a denuder sampler at two stations in central Taiwan. Water-soluble ionic constituents of PM and their precursor gases were analyzed by ionic chromatograph. In summer, the daytime/nighttime PM10 concentrations were 37 ± 10/41 ± 18 μg m(-3) and 36 ± 14/34 ± 18 μg m(-3) for Xitun and Jhushan, respectively. Average PM10 concentration in winter was 1.55 and 1.76 times that of summer for Xitun and Jhushan, respectively. PM mass concentrations were similar for both stations, although one station is located in the downtown area of Taichung, and the other is in a rural area with no heavy pollution sources. Water-soluble ionic species content was 38-53 % of PM2.5 and 43-48 % of PM10 mass concentration. HNO3, HCl, and SO2 were high in the daytime; the daytime-to-nighttime concentration ratio was 3.75-6.88 for HNO3,1.7-7.8 for HCl, and 1.45-2.77 for SO2. High NH3 levels were determined in the area, especially in winter, which could be a precursor of NH4 (+) to form particulate matter. In Xitun, motor vehicles downtown and in the industrial district could be sources of air pollution. In contrast, there are few industrial sources at Jhushan; therefore, the transport of air pollutants from upwind of other regions and the accumulation of pollutants could be important PM sources at Jhushan. PMID:27184148

  13. Response of fine particulate matter to emission changes of oxides of nitrogen and anthropogenic volatile organic compounds in the eastern United States

    SciTech Connect

    Alexandra P. Tsimpidi; Vlassis A. Karydis; Spyros N. Pandis

    2008-11-15

    A three-dimensional chemical transport model (Particulate Matter Comprehensive Air Quality Model with Extensions) is used to investigate changes in fine particle (PM2.5) concentrations in response to 50% emissions changes of oxides of nitrogen (NOx) and anthropogenic volatile organic compounds (VOCs) during July 2001 and January 2002 in the eastern United States. The reduction of NOx emissions by 50% during the summer results in lower average oxidant levels and lowers PM2.5 (8% on average), mainly because of reductions of sulfate (9-11%), nitrate (45-58%), and ammonium (7-11%). The organic particulate matter (PM) slightly decreases in rural areas, whereas it increases in cities by a few percent when NOx is reduced. Reduction of NOx during winter causes an increase of the oxidant levels and a rather complicated response of the PM components, leading to small net changes. Sulfate increases (8-17%), nitrate decreases (18-42%), organic PM slightly increases, and ammonium either increases or decreases a little. The reduction of VOC emissions during the summer causes on average a small increase of the oxidant levels and a marginal increase in PM2.5. This small net change is due to increases in the inorganic components and decreases of the organic ones. Reduction of VOC emissions during winter results in a decrease of the oxidant levels and a 5-10% reduction of PM2.5 because of reductions in nitrate (4-19%), ammonium (4-10%), organic PM (12-14%), and small reductions in sulfate. Although sulfur dioxide (SO{sub 2}) reduction is the single most effective approach for sulfate control, the coupled decrease of SO{sub 2} and NOx emissions in both seasons is more effective in reducing total PM2.5 mass than the SO{sub 2} reduction alone. 34 refs., 7 figs., 1 tab.

  14. An investigation of potential regional and local source regions affecting fine particulate matter concentrations in Delhi, India.

    PubMed

    Ghosh, Saikat; Biswas, Jhumoor; Guttikunda, Sarath; Roychowdhury, Soma; Nayak, Mugdha

    2015-02-01

    In this study, potential regional and local sources influencing PM2.5 (particulate matter with an aerodynamic diameter >2.5 μm) concentrations in Delhi, India, are identified and their possible impact evaluated through diverse approaches based on study of variability of synoptic and local airflow patterns that transport aerosol concentrations from these emission sources to an urban receptor site in Delhi, India. Trajectory clustering of 72-hr and 48-hr back trajectories simulated at arrival heights of 500 m and 100 m, respectively, every hour for representative years 2008-2010 are used to assess the relative influence of long-distance, regional, and subregional sources on this site. Nonparametric statistical procedures are employed on trajectory clusters to better delineate various distinct regional pollutant source regions. Trajectory clustering and concentration-weighted trajectory (CWT) analyses indicate that regional and subregional PM2.5 emission sources in neighboring country of Pakistan and adjacent states of Punjab, Haryana, and Uttar Pradesh contribute significantly to the total surplus of aerosol concentrations in the Delhi region. Conditional probability function and Bayesian approach used to identify local source regions have established substantial influence from highly urbanized satellite towns located southwest (above 25%) and southeast (above 45%) of receptor location. There is significant seasonal variability in synoptic and local air circulation patterns, which is discerned in variability in seasonal concentrations. Mean of daily averaged PM2.5 concentrations at the Income Tax Office (ITO) receptor site over Delhi at 95% confidence level is highest in winter, ranging between 209 and 185 μg m⁻³ for the entire study period. The annual variability in air transport pathways is more in winter than in other seasons. Year-to-year variability is present in aerosol concentrations, especially during winter, with standard deviations varying from a

  15. Exposures of elderly volunteers with and without chronic obstructive pulmonary disease (COPD) to concentrated ambient fine particulate pollution.

    PubMed

    Gong, Henry; Linn, William S; Terrell, Sheryl L; Anderson, Karen R; Clark, Kenneth W; Sioutas, Costantinos; Cascio, Wayne E; Alexis, Neil; Devlin, Robert B

    2004-01-01

    The elderly and individuals who have chronic obstructive pulmonary disease (COPD) may be sensitive to particulate matter (PM) air pollution. We evaluated short-term health responses of 13 elderly volunteers with COPD and 6 age-matched healthy adults to controlled exposures of ambient PM pollution in suburban Los Angeles. Using a Harvard particle concentrator and a whole-body chamber, we exposed each person on separate occasions to approximately 200 microg/m(3) concentrated ambient particles (CAP) less than 2.5 mum in diameter and to filtered air (FA). Each exposure lasted 2 h with intermittent mild exercise. We found no significant effects of CAP on symptoms, spirometry, or induced sputum. A significant negative effect of CAP on arterial oxygenation (measured by pulse oximetry) immediately postexposure was more pronounced in healthy subjects. Peripheral blood basophils increased after CAP in healthy but not in COPD subjects. In both groups, red cell counts increased slightly 1 day after exposure to FA but not to CAP. Preexposure ectopic heartbeats were infrequent in healthy subjects, but increased modestly during/after CAP exposure relative to FA. Ectopic beats were more frequent in COPD subjects, but decreased modestly during/after CAP relative to FA. Heart-rate variability over multi-hour intervals was lower after CAP than after FA in healthy elderly subjects but not in COPD subjects. Thus, in this initial small-scale study of older volunteers experimentally exposed to ambient PM, some acute cardiopulmonary responses were consistent with effects reported from epidemiologic studies. Unexpectedly, individuals with COPD appeared less susceptible than healthy elderly individuals. Further investigation of older adults is warranted to understand the pathophysiology and public health significance of these findings. PMID:16036744