Science.gov

Sample records for fine particulate emissions

  1. FINE PARTICULATE MATTER EMISSIONS FROM CANDLES

    EPA Science Inventory

    The paper gives reulst of testing five types of candles, purchased from local stores, for fine particulate matter (PM) emissions under close-to-realistic conditions in a research house. The test method allows for determination of both the emission and deposition rates. Most tes...

  2. Mechanisms governing fine particulate emissions from coal flames

    SciTech Connect

    Clark, W.D.; Chen, S.L.; Kramlich, J.C.; Newton, G.H.; Seeker, W.R. ); Samuelsen, G.S. )

    1988-11-01

    The overall objectives of this project are to provide a basic understanding of the principal processes that govern fine particulate formation in pulverized coal flames, and develop procedures to predict the levels of emission of fine particles from pulverized coal combustors. (VC)

  3. The environmental cost of reducing agricultural fine particulate matter emissions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The US Environmental Protection Agency (EPA) revised the National Ambient Air Quality Standards (NAAQS) in 2006, reducing acceptable fine particulate (PM2.5) levels; state environmental protection agencies in states with non-attainment areas are required to draft State Implementation Plans (SIP) det...

  4. Mechanisms governing fine particulate emissions from coal flames. Final report

    SciTech Connect

    Newton, G.H.; Schieber, C.; Socha, R.G.; Kramlich, J.C.

    1990-04-01

    The primary objective of this program was to provide a basic understanding of the principal processes that govern the formation of particulate matter in the 0.5--10 {mu}m size range in pulverized coal flames. The mechanism that produces ash particles in this size range is not clear. Particle sizes smaller than the 0.5--10 {mu}m size range are generally accepted to result from a vaporization/condensation mechanism while particles larger than this size result from the coalescence of ash in coal particles which may breakup as they burn. This program combined experimental and theoretical studies to understand the mechanisms which control the production of ash in the 0.5--10 {mu}m size range. (VC)

  5. Mechanisms governing fine particulate emissions from coal flames

    SciTech Connect

    Newton, G.H.; Schieber, C.; Socha, R.G.; Kramlich, J.C.

    1990-04-01

    The primary objective of this program was to provide a basic understanding of the principal processes that govern the formation of particulate matter in the 0.5--10 {mu}m size range in pulverized coal flames. The mechanism that produces ash particles in this size range is not clear. Particle sizes smaller than the 0.5--10 {mu}m size range are generally accepted to result from a vaporization/condensation mechanism while particles larger than this size result from the coalescence of ash in coal particles which may breakup as they burn. This program combined experimental and theoretical studies to understand the mechanisms which control the production of ash in the 0.5--10 {mu}m size range. (VC)

  6. Application of a microscale emission factor model for particulate matter to calculate vehicle-generated contributions to fine particulate emissions.

    PubMed

    Singh, Rakesh B; Desloges, Catherine; Sloan, James J

    2006-01-01

    This paper discusses the evaluation and application of a new generation of particulate matter (PM) emission factor model (MicroFacPM). MicroFacPM that was evaluated in Tuscarora Mountain Tunnel, Pennsylvania Turnpike, PA shows good agreement between measured and modeled emissions. MicroFacPM application is presented to the vehicle traffic on the main approach road to the Ambassador Bridge, which is one of the most important international border entry points in North America, connecting Detroit, MI, with Windsor, Ontario, Canada. An increase in border security has forced heavy-duty diesel vehicles to line up for several kilometers through the city of Windsor causing concern about elevated concentrations of ambient PM. MicroFacPM has been developed to model vehicle-generated PM (fine [PM2.5] and coarse < or = 10 microm [PM10]) from the on-road vehicle fleet, which in this case includes traffic at very low speeds (10 km/h). The Windsor case study gives vehicle generated PM2.5 sources and their breakdown by vehicle age and class. It shows that the primary sources of vehicle-generated PM2.5 emissions are the late-model heavy-duty diesel vehicles. We also applied CALINE4 and AERMOD in conjunction with MicroFacPM, using Canadian traffic and climate conditions, to describe the vehicle-generated PM2.5 dispersion near this roadway during the month of May in 2003. PMID:16499145

  7. Tracking Petroleum Refinery Emission Events Using Lanthanum and Lanthanides as Elemental Markers for Fine Particulate Matter

    NASA Astrophysics Data System (ADS)

    Kulkarni, P.; Chellam, S.; Fraser, M. P.

    2007-12-01

    This presentation reports the development and application of an analytical method to quantify the rare earth elements (REEs) in atmospheric particulate matter and emissions of catalyst material from the petroleum refining industry. Inductively coupled plasma - mass spectrometry following high temperature/high pressure microwave digestion has been used to study the REE composition of several fresh and spent catalysts used in fluidized-bed catalytic cracking (FCC) units in petroleum refineries as well as in ambient atmospheric fine particulate matter collected in Houston, TX. The results show that the routine emissions from local FCC units in Houston contribute a constant and low amount to ambient PM2.5 of ~0.1 micrograms per cubic meter. However, a significant (33 - 106 fold) increase in the contributions of FCC emissions to PM2.5 is quantified during an upset emission event compared with background levels associated with routine operation. The impact of emissions from the local refinery that reported the emission event was tracked to a site approximately 50 km downwind from the source, illustrating the potential exposure of humans over a large geographical area through the long-range transport of atmospheric fine particles as well as the power of elemental signatures to understand the sources of fine particles.

  8. Contribution of ship emissions to the fine particulate in the community near an international port in Hong Kong

    NASA Astrophysics Data System (ADS)

    Yau, P. S.; Lee, S. C.; Cheng, Y.; Huang, Y.; Lai, S. C.; Xu, X. H.

    2013-04-01

    Fine particulates from ship exhaust are proved to be harmful to human health. To better understand the impact of ship emissions on the particulate matter (PM) level of port-side residential areas, fine particulates (PM2.5) were collected near Kwai Chung and Tsing Yi Container Terminals (KTCT) in Hong Kong during August 2009 to March 2010. The average PM2.5 concentration was 30.5 μg/m3. The contribution of ship emissions on fine particulates near the container port was demonstrated by source apportionment. By positive matrix factorization (PMF) analysis, eight potential sources, i.e., residual oil (RO) combustion, marine diesel oil (MDO) combustion, vehicle emission, coal combustion, incineration, crustal and sea-salt, secondary sulfate and secondary nitrate were identified. Among the identified sources, RO combustion and MDO combustion were regarded as ship emissions and accounted for 12% and 7% of PM2.5 respectively. An estimate of 1.8 μg/m3 (6%) of secondary sulfate corresponded to 3.6 μg/m3 of primary fine particulates from RO combustion. Together with primary PM emitted from ships, the total ambient PM2.5 mass associated with ship emissions at the sampling site was 7.6 μg/m3 (25%).

  9. THE ENVIRONMENTAL COST OF REDUCING AGRICULTURAL FINE PARTICULATE (PM2.5) DUST EMISSIONS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Revisions to the National Ambient Air Quality Standards (NAAQS) were promulgated by the US Environmental Protection Agency (EPA) in 2006, reducing acceptable fine particulate (PM2.5) levels. Non-attainment findings are scheduled for release in 2010. State environmental protection agencies in state...

  10. HEAVY DUTY DIESEL FINE PARTICULATE MATTER EMISSIONS: DEVELOPMENT AND APPLICATION OF ON-ROAD MEASUREMENT CAPABILITIES

    EPA Science Inventory

    The report discusses EPA's On-Road Diesel Emissions Characterization Facility, which has been collecting real-world gaseous emissions data for the past 6 years. It has recently undergone extensive modifications to enhance its particulate matter (PM) measurement capabilities, with...

  11. Controlling fine particulate and acid mist emissions from a residual oil fired utility boiler with an EDV{trademark} system

    SciTech Connect

    Olen, K.R.; Vincent, H.B.; Jones, G.

    1995-06-01

    Florida Power & Light Company (FPL), in cooperation with the Electric Power Research Institute (EPRI) and Belco Technologies Corporation, evaluated the performance of an EDV system to remove fine particulate and acid mist from untreated flue gas from a residual oil-fired utility boiler. The cosponsored project was carried out using a full-scale EDV module in a slip stream from one of the 400 MW wall-fired boilers at FPL`s Sanford Plant. Particulate, acid gas and chemical analytical data are presented, and used to illustrate the effects of operating variables on EDV performance. EDV system efficiencies of 90% were achieved, which resulted in controlled particulate and SO{sub 3} emissions of less than 10 mg/Nm{sup 3} (0.0065 lbs/10{sup 6}Btu) and 1 ppmv, respectively.

  12. Mechanisms governing fine particulate emissions from coal flames. Quarterly technical progress reports Nos. 3 and 4, April 1, 1988--September 30, 1988

    SciTech Connect

    Clark, W.D.; Chen, S.L.; Kramlich, J.C.; Newton, G.H.; Seeker, W.R.; Samuelsen, G.S.

    1988-11-01

    The overall objectives of this project are to provide a basic understanding of the principal processes that govern fine particulate formation in pulverized coal flames, and develop procedures to predict the levels of emission of fine particles from pulverized coal combustors. (VC)

  13. Fuel-based fine particulate and black carbon emission factors from a railyard area in Atlanta.

    PubMed

    Galvis, Boris; Bergin, Mike; Russell, Armistead

    2013-06-01

    Railyards have the potential to influence localfine particulate matter (aerodynamic diameter < or = 2.5 microm; PM2.5) concentrations through emissions from diesel locomotives and supporting activities. This is of concern in urban regions where railyards are in proximity to residential areas. Northwest of Atlanta, Georgia, Inman and Tilford railyards are located beside residential neighborhoods, industries, and schools. The PM2.5 concentrations near the railyards is the highest measured amongst the state-run monitoring sites (Georgia Environmental Protection Division, 2012; http://www.georgiaair.org/amp/report.php). The authors estimated fuel-based black carbon (BC) and PM2.5 emission factors for these railyards in order to help determine the impact of railyard activities on PM2.5 concentrations, and for assessing the potential benefits of replacing current locomotive engines with cleaner technologies. High-time-resolution measurements of BC, PM2.5, CO2, and wind speed and direction were made at two locations, north and south of the railyards. Emissions factors (i.e., the mass of BC or PM2.5 per gallon of fuel burned) were estimated by using the downwind/upwind difference in concentrations, wavelet analysis, and an event-based approach. By the authors' estimates, diesel-electric engines used in the railyards have average emission factors of 2.8 +/- 0.2 g of BC and 6.0 +/- 0.5 g of PM2.5 per gallon of diesel fuel burned. A broader mix of railyard supporting activities appear to lead to average emission factors of 0.7 +/- 0.03 g of BC and 1.5 +/- 0.1 g of PM2.5 per gallon of diesel fuel burned. Railyard emissions appear to lead to average enhancements of approximately 1.7 +/- 0.1 microg/m3 of PM2.5 and approximately 0.8 +/- 0.01 microg/m3 of BC in neighboring areas on an annual average basis. Uncertainty not quantified in these results could arise mainly from variability in downwind/upwind differences, differences in emissions of the diverse zones within the

  14. Advanced Fine Particulate Characterization Methods

    SciTech Connect

    Steven Benson; Lingbu Kong; Alexander Azenkeng; Jason Laumb; Robert Jensen; Edwin Olson; Jill MacKenzie; A.M. Rokanuzzaman

    2007-01-31

    The characterization and control of emissions from combustion sources are of significant importance in improving local and regional air quality. Such emissions include fine particulate matter, organic carbon compounds, and NO{sub x} and SO{sub 2} gases, along with mercury and other toxic metals. This project involved four activities including Further Development of Analytical Techniques for PM{sub 10} and PM{sub 2.5} Characterization and Source Apportionment and Management, Organic Carbonaceous Particulate and Metal Speciation for Source Apportionment Studies, Quantum Modeling, and High-Potassium Carbon Production with Biomass-Coal Blending. The key accomplishments included the development of improved automated methods to characterize the inorganic and organic components particulate matter. The methods involved the use of scanning electron microscopy and x-ray microanalysis for the inorganic fraction and a combination of extractive methods combined with near-edge x-ray absorption fine structure to characterize the organic fraction. These methods have direction application for source apportionment studies of PM because they provide detailed inorganic analysis along with total organic and elemental carbon (OC/EC) quantification. Quantum modeling using density functional theory (DFT) calculations was used to further elucidate a recently developed mechanistic model for mercury speciation in coal combustion systems and interactions on activated carbon. Reaction energies, enthalpies, free energies and binding energies of Hg species to the prototype molecules were derived from the data obtained in these calculations. Bimolecular rate constants for the various elementary steps in the mechanism have been estimated using the hard-sphere collision theory approximation, and the results seem to indicate that extremely fast kinetics could be involved in these surface reactions. Activated carbon was produced from a blend of lignite coal from the Center Mine in North Dakota and

  15. Evaluation of the European population intake fractions for European and Finnish anthropogenic primary fine particulate matter emissions

    NASA Astrophysics Data System (ADS)

    Tainio, Marko; Sofiev, Mikhail; Hujo, Mika; Tuomisto, Jouni T.; Loh, Miranda; Jantunen, Matti J.; Karppinen, Ari; Kangas, Leena; Karvosenoja, Niko; Kupiainen, Kaarle; Porvari, Petri; Kukkonen, Jaakko

    The intake fraction (iF) has been defined as the integrated incremental intake of a pollutant released from a source category or region summed over all exposed individuals. In this study we evaluated the iFs in the population of Europe for emissions of anthropogenic primary fine particulate matter (PM 2.5) from sources in Europe, with a more detailed analysis of the iF from Finnish sources. Parameters for calculating the iFs include the emission strengths, the predicted atmospheric concentrations, European population data, and the average breathing rate per person. Emissions for the whole of Europe and Finland were based on the inventories of the European Monitoring and Evaluation Programme (EMEP) and the Finnish Regional Emission Scenario (FRES) model, respectively. The atmospheric dispersion of primary PM 2.5 was computed using the regional-scale dispersion model SILAM. The iFs from Finnish sources were also computed separately for six emission source categories. The iFs corresponding to the primary PM 2.5 emissions from the European countries for the whole population of Europe were generally highest for the densely populated Western European countries, second highest for the Eastern and Southern European countries, and lowest for the Northern European and Baltic countries. For the entire European population, the iF values varied from the lowest value of 0.31 per million for emissions from Cyprus, to the highest value of 4.42 per million for emissions from Belgium. These results depend on the regional distribution of the population and the prevailing long-term meteorological conditions. Regarding Finnish primary PM 2.5 emissions, the iF was highest for traffic emissions (0.68 per million) and lowest for major power plant emissions (0.50 per million). The results provide new information that can be used to find the most cost-efficient emission abatement strategies and policies.

  16. Regional Background Fine Particulate Matter

    EPA Science Inventory

    A modeling system composed of the global model GEOS-Chem providing hourly lateral boundary conditions to the regional model CMAQ was used to calculate the policy relevant background level of fine particulate: matter. Simulations were performed for the full year of 2004 over the d...

  17. INVERTING CASCADE IMPACTOR DATA FOR SIZE-RESOLVED CHARACTERIZATION OF FINE PARTICULATE SOURCE EMISSIONS

    EPA Science Inventory

    Cascade impactors are particularly useful in determining the mass size distributions of particulate and individual chemical species. The impactor raw data must be inverted to reconstruct a continuous particle size distribution. An inversion method using a lognormal function for p...

  18. DEVELOPMENT OF FINE PARTICULATE EMISSION FACTORS AND SPECIATION PROFILES FOR OIL AND GAS-FIRED COMBUSTION SYSTEMS

    SciTech Connect

    Glenn C. England

    2004-10-20

    In 1997, the United States Environmental Protection Agency (EPA) promulgated new National Ambient Air Quality Standards (NAAQS) for particulate matter, including for the first time particles with aerodynamic diameter smaller than 2.5 micrometers ({micro}m) referred to as PM2.5. PM2.5 in the atmosphere also contributes to reduced atmospheric visibility, which is the subject of existing rules for siting emission sources near Class 1 areas and new Regional Haze rules. There are few existing data regarding emissions and characteristics of fine aerosols from oil, gas and power generation industry combustion sources, and the information that is available is generally outdated and incomplete. Traditional stationary source air emission sampling methods tend to underestimate or overestimate the contribution of the source to ambient aerosols because they do not properly account for primary aerosol formation, which occurs after the gases leave the stack. Primary aerosol includes both filterable particles that are solid or liquid aerosols at stack temperature plus those that form as the stack gases cool through mixing and dilution processes in the plume downwind of the source. These deficiencies in the current methods can have significant impacts on regulatory decision-making. PM2.5 measurement issues were extensively reviewed by the American Petroleum Institute (API) (England et al., 1998), and it was concluded that dilution sampling techniques are more appropriate for obtaining a representative particulate matter sample from combustion systems for determining PM2.5 emission rate and chemical speciation. Dilution sampling is intended to collect aerosols including those that condense and/or react to form solid or liquid aerosols as the exhaust plume mixes and cools to near-ambient temperature immediately after the stack discharge. These techniques have been widely used in recent research studies. For example, Hildemann et al. (1994) and McDonald et al. (1998) used filtered

  19. Chemical Composition and Emission Sources of the Fine Particulate Matters in a Southeast Asian Mega City (Dhaka, Bangladesh)

    NASA Astrophysics Data System (ADS)

    Salam, Abdus

    2016-04-01

    Air pollution has significant impact on human health, climate change, agriculture, visibility reduction, and also on the atmospheric chemistry. There are many studies already reported about the direct relation of the human mortality and morbidity with the increase of the atmospheric particulate matters. Especially, fine particulate matters can easily enter into the human respiratory system and causes many diseases. Particulate matters have the properties to absorb the solar radiation and impact on the climate. Dhaka, Bangladesh is a densely populated mega-city in the world. About 16 million inhabitants are living within an area of 360 square kilometers. Air quality situation has been degrading due to unplanned growth, increasing vehicles, severe traffic jams, brick kilns, industries, construction, and also transboundary air pollution. A rapidly growing number of vehicles has worsen the air quality in spite of major policy interventions, e.g., ban of two-stroke and three-wheeled vehicles, phase out of 20 years old vehicles, conversion to compressed natural gas (CNGs), etc. Introduction of CNGs to reduce air pollution was not the solution for fine particles at all, as evidence shows that CNGs and diesel engines are the major sources of fine particles. High concentration of the air pollutants in Dhaka city such as PM, carbonaceous species (black and organic carbon), CO, etc. has already been reported. PM2.5 mass, chemical composition (e.g., BC, OC, SO42-, NO3-, trace elements, etc.), aerosol Optical Depth (AOD) and emission sources of our recent measurements at the highly polluted south East Asian Mega city (Dhaka) Bangladesh will be presented in the conference. PM2.5 samples were collected on filters with Digital PM2.5 sampler (Switzerland) and Air photon, USA. BC was measured from filters (with thermal and optical method) and also real time with an Aethalometer AE42 (Magee Scitific., USA). Water soluble ions were determined from filters with ion chromatogram. AOD

  20. Development of an empirical model to estimate real-world fine particulate matter emission factors: the traffic air quality model.

    PubMed

    Soliman, Ahmed S M; Jacko, Robert B; Palmer, George M

    2006-11-01

    The purpose of the study was to quantify the impact of traffic conditions, such as free flow and congestion, on local air quality. The Borman Expressway (I-80/94) in Northwest Indiana is considered a test bed for this research because of the high volume of class 9 truck traffic traveling on it, as well as the existing and continuing installation of the Intelligent Transportation System (ITS) to improve traffic management along the highway stretch. An empirical traffic air quality (TAQ) model was developed to estimate the fine particulate matter (PM2.5) emission factors (grams per kilometer) based solely on the measured traffic parameters, namely, average speed, average acceleration, and class 9 truck density. The TAQ model has shown better predictions that matched the measured emission factor values more than the U.S. Environmental Protection Agency (EPA)-PART5 model. During congestion (defined as flow-speeds < 50 km/hr [30 mi/hr]), the TAQ model, on average, overpredicted the measured values only by a factor of 1.2, in comparison to a fourfold underprediction using the EPA-PART5 model. On the other hand, during free flow (defined as flow-speeds > 80 km/hr [50 mi/hr]), the TAQ model was conservative in that it overpredicted the measured values by 1.5-fold. PMID:17117739

  1. NONLINEARITIES IN THE SULFATE SECONDARY FINE PARTICULATE RESPONSE TO NOX EMISSIONS REDUCTIONS AS MODELED BY THE REGIONAL ACID DEPOSITION MODEL

    EPA Science Inventory

    Attention is increasingly being devoted to the health effects of fine particulates. In regions that have a large production of sulfate, sulfuric acid and nitric acid compete for the available ammonia to form aerosols. In addition, the available nitric acid is the result of ur...

  2. Network Analysis of Fine Particulate Matter (PM2.5) Emissions in China

    PubMed Central

    Yan, Shaomin; Wu, Guang

    2016-01-01

    Specification of PM2.5 spatial and temporal characteristics is important for understanding PM2.5 adverse effects and policymaking. We applied network analysis to studying the dataset MIX, which contains PM2.5 emissions recorded from 2168 monitoring stations in China in 2008 and 2010. The results showed that for PM2.5 emissions from industrial sector 8 clusters were found in 2008 but they merged together into a huge cluster in 2010, suggesting that industrial sector underwent an integrating process. For PM2.5 emissions from electricity generation sector, strong locality of clusters was revealed, implying that each region had its own electricity generation system. For PM2.5 emissions from residential sector, the same pattern of 10 clusters was uncovered in both years, implicating the household energy consumption unchanged from 2008 to 2010. For PM2.5 emissions from transportation sector, the same pattern of 5 clusters with many connections in-between was unraveled, indicating the high-speed development of transportation nationalwidely. Except for the known elements, mercury (Hg) surfaced as an element for particle nucleation. To our knowledge, this is the first network study in this field. PMID:27608625

  3. Network Analysis of Fine Particulate Matter (PM2.5) Emissions in China.

    PubMed

    Yan, Shaomin; Wu, Guang

    2016-01-01

    Specification of PM2.5 spatial and temporal characteristics is important for understanding PM2.5 adverse effects and policymaking. We applied network analysis to studying the dataset MIX, which contains PM2.5 emissions recorded from 2168 monitoring stations in China in 2008 and 2010. The results showed that for PM2.5 emissions from industrial sector 8 clusters were found in 2008 but they merged together into a huge cluster in 2010, suggesting that industrial sector underwent an integrating process. For PM2.5 emissions from electricity generation sector, strong locality of clusters was revealed, implying that each region had its own electricity generation system. For PM2.5 emissions from residential sector, the same pattern of 10 clusters was uncovered in both years, implicating the household energy consumption unchanged from 2008 to 2010. For PM2.5 emissions from transportation sector, the same pattern of 5 clusters with many connections in-between was unraveled, indicating the high-speed development of transportation nationalwidely. Except for the known elements, mercury (Hg) surfaced as an element for particle nucleation. To our knowledge, this is the first network study in this field. PMID:27608625

  4. DEVELOPMENT OF FINE PARTICULATE EMISSION FACTORS AND SPECIATION PROFILES FOR OIL AND GAS FIRED COMBUSTION SYSTEMS

    SciTech Connect

    Glenn England; Oliver Chang; Stephanie Wien

    2002-02-14

    This report provides results from the second year of this three-year project to develop dilution measurement technology for characterizing PM2.5 (particles with aerodynamic diameter smaller than 2.5 micrometers) and precursor emissions from stationary combustion sources used in oil, gas and power generation operation. Detailed emission rate and chemical speciation tests results for a gas turbine, a process heater, and a commercial oil/gas fired boiler are presented. Tests were performed using a research dilution sampling apparatus and traditional EPA methods. A series of pilot tests were conducted to identify the constraints to reduce the size of current research dilution sampler for future stack emission tests. Based on the test results, a bench prototype compact dilution sampler developed and characterized in GE EER in August 2002.

  5. AMMONIA EMISSIONS AND THEIR IMPLICATIONS ON FINE PARTICULATE MATTER FORMATION IN NORTH CAROLINA

    EPA Science Inventory

    Ammonia (NH3) is an important atmospheric pollutant that plays a key role in several air pollution problems. The accuracy of NH3 emissions can have a large effect on air quality model (AQM) predictions of aerosol sulfate, nitrate, and ammonium concentration...

  6. Southern Fine Particulate Monitoring Project

    SciTech Connect

    Ashley Williamson

    2003-05-31

    This final project report presents experimental details, results and analysis of continuous onsite ambient fine particulate data at the North Birmingham sampling site during the October, 2001-September, 2002 study period.The host site for these measurement activities is the North Birmingham PM monitoring station by the Jefferson County Health Department in Birmingham, AL.The continuous data include PM{sub 2.5} mass concentrations measured by TEOM, particle sulfate using the R&P 8400S monitor, particle size distributions measured by SMPS and APS monitors, and PM{sub 2.5} light scattering extinction coefficient as measured by nephelometer. During the course of the project, measurement intercomparison data were developed for these instruments and several complementary measurements at the site. The report details the instrument set and operating procedures and describes the resulting data. Report subsections present an overview summary of the data, followed by detailed description of the systematic time behavior of PM{sub 2.5} and other specific particulate size fractions. Specific subsections are included for particle size distribution, light scattering, and particle sulfate data. The final subsection addresses application of the measurements to the practical questions of fine PM generation and transport, source attribution, and PM{sub 2.5} management strategies.

  7. Cardiovascular effects in patrol officers are associated with fine particulate matter from brake wear and engine emissions.

    PubMed

    Riediker, Michael; Devlin, Robert B; Griggs, Thomas R; Herbst, Margaret C; Bromberg, Philip A; Williams, Ronald W; Cascio, Wayne E

    2004-12-01

    BACKGROUND: Exposure to fine particulate matter air pollutants (PM2.5) affects heart rate variability parameters, and levels of serum proteins associated with inflammation, hemostasis and thrombosis. This study investigated sources potentially responsible for cardiovascular and hematological effects in highway patrol troopers. RESULTS: Nine healthy young non-smoking male troopers working from 3 PM to midnight were studied on four consecutive days during their shift and the following night. Sources of in-vehicle PM2.5 were identified with variance-maximizing rotational principal factor analysis of PM2.5-components and associated pollutants. Two source models were calculated. Sources of in-vehicle PM2.5 identified were 1) crustal material, 2) wear of steel automotive components, 3) gasoline combustion, 4) speed-changing traffic with engine emissions and brake wear. In one model, sources 1 and 2 collapsed to a single source. Source factors scores were compared to cardiac and blood parameters measured ten and fifteen hours, respectively, after each shift. The "speed-change" factor was significantly associated with mean heart cycle length (MCL, +7% per standard deviation increase in the factor score), heart rate variability (+16%), supraventricular ectopic beats (+39%), % neutrophils (+7%), % lymphocytes (-10%), red blood cell volume MCV (+1%), von Willebrand Factor (+9%), blood urea nitrogen (+7%), and protein C (-11%). The "crustal" factor (but not the "collapsed" source) was associated with MCL (+3%) and serum uric acid concentrations (+5%). Controlling for potential confounders had little influence on the effect estimates. CONCLUSION: PM2.5 originating from speed-changing traffic modulates the autonomic control of the heart rhythm, increases the frequency of premature supraventricular beats and elicits pro-inflammatory and pro-thrombotic responses in healthy young men. PMID:15813985

  8. DEVELOPMENT OF A NEW MOBILE LABORATORY FOR CHARACTERIZATION OF THE FINE PARTICULATE EMISSIONS FROM HEAVY-DUTY DIESEL TRUCKS.

    EPA Science Inventory

    This paper describes the development of a new mobile laboratory for the determination of the fine particle and gaseous emissions from a Class 8 diesel tractor-trailer research vehicle. The new laboratory (Diesel Emissions Aerosol Laboratory or DEAL) incorporates plume sampling ca...

  9. Infrared spectral behavior of fine particulate solids

    USGS Publications Warehouse

    Hunt, G.R.

    1976-01-01

    Transmission and emission spectra of clouds and layers of fine particulate samples of quartz, magnesium oxide, and aluminum oxide in the 6.5-35-??m wavelength range are presented. They demonstrate that the behavior of layers of particles constitutes a good analogue for a cloud of particles; that individual micrometer-sized particles emit most where they absorb most; that as the size of the particle is increased, the emission features reverse polarity and the spectrum approaches that of one obtained from a polished plate; and that as the particle layer-thickness increases, radiative interaction becomes increasingly important so that the emission maximum shifts from the strongest to weaker features, or produces a maximum at the Christiansen wavelength.

  10. PARTICULATE EMISSION CONTROL

    EPA Science Inventory

    Particle or particulate matter is defined as any finely divided solid or liquid material, other than uncombined water, emitted to the ambient air as measured by applicable reference methods, or an equivalent or alternative method, or by a test method specified in 40CFR50.

  11. Regional air quality: local and interstate impacts of NOx and SO{sub 2} emissions on ozone and fine particulate matter in the eastern United States

    SciTech Connect

    Michelle S. Bergin; Jhih-Shyang Shih; Alan J. Krupnick; James W. Boylan; James G. Wilkinson; M. Talat Odman; Armistead G. Russell

    2007-07-01

    While the U.S. air quality management system is largely designed and managed on a state level, many critical air quality problems are now recognized as regional. In particular, concentrations of two secondary pollutants, ozone and particulate matter, are often above regulated levels and can be dependent on emissions from upwind states. Here, impacts of statewide emissions on concentrations of local and downwind states' ozone and fine particulate matter are simulated for three seasonal periods in the eastern United States using a regional Eulerian photochemical model. Impacts of ground level NOx (e.g., mobile and area sources), elevated NOx (e.g., power plants and large industrial sources), and SO{sub 2} emissions are examined. An average of 77% of each state's ozone and PM2.5 concentrations that are sensitive to the emissions evaluated here are found to be caused by emissions from other states. Delaware, Maryland, New Jersey, Virginia, Kentucky, and West Virginia are shown to have high concentrations of ozone and PM2.5 caused by interstate emissions. When weighted by population, New York receives increased interstate contributions to these pollutants and contributions to ozone from local emissions are generally higher. When accounting for emission rates, combined states from the western side of the modeling domain and individual states such as Illinois, Tennessee, Indiana, Kentucky, and Georgia are major contributors to interstate ozone. Ohio, Indiana, Tennessee, Kentucky, and Illinois are the major contributors to interstate PM2.5. When accounting for an equivalent mass of emissions, Tennessee, Kentucky, West Virginia, Virginia, and Alabama contribute large fractions of these pollutants to other states. 46 refs., 9 figs.

  12. 77 FR 50446 - Approval and Promulgation of Implementation Plans; Tennessee; Knoxville; Fine Particulate Matter...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-21

    ... Particulate Matter 2002 Base Year Emissions Inventory AGENCY: Environmental Protection Agency (EPA). ACTION: Proposed rule. SUMMARY: EPA is proposing to approve the 1997 annual fine particulate matter (PM 2.5 )...

  13. CHARACTERIZATION OF FINE PARTICULATE MATTER

    EPA Science Inventory

    Size distribution data processing and fitting
    Ultrafine, very fine and fine PM were collected nearly continuously from December 2000 through March 2003 at a Washington State Department of Ecology site on Beacon Hill in Seattle. Particle size distributio...

  14. SOURCE SAMPLING FINE PARTICULATE MATTER: WOOD-FIRED INDUSTRIAL BOILER

    EPA Science Inventory

    The report provides a profile for a wood-fired industrial boiler equipped with a multistage electrostatic precipitator control device. Along with the profile of emissions of fine particulate matter of aerodynamic diameter of 2.5 micrometers or less (PM-2.5), data are also provide...

  15. Response of fine particulate matter to emission changes of oxides of nitrogen and anthropogenic volatile organic compounds in the eastern United States

    SciTech Connect

    Alexandra P. Tsimpidi; Vlassis A. Karydis; Spyros N. Pandis

    2008-11-15

    A three-dimensional chemical transport model (Particulate Matter Comprehensive Air Quality Model with Extensions) is used to investigate changes in fine particle (PM2.5) concentrations in response to 50% emissions changes of oxides of nitrogen (NOx) and anthropogenic volatile organic compounds (VOCs) during July 2001 and January 2002 in the eastern United States. The reduction of NOx emissions by 50% during the summer results in lower average oxidant levels and lowers PM2.5 (8% on average), mainly because of reductions of sulfate (9-11%), nitrate (45-58%), and ammonium (7-11%). The organic particulate matter (PM) slightly decreases in rural areas, whereas it increases in cities by a few percent when NOx is reduced. Reduction of NOx during winter causes an increase of the oxidant levels and a rather complicated response of the PM components, leading to small net changes. Sulfate increases (8-17%), nitrate decreases (18-42%), organic PM slightly increases, and ammonium either increases or decreases a little. The reduction of VOC emissions during the summer causes on average a small increase of the oxidant levels and a marginal increase in PM2.5. This small net change is due to increases in the inorganic components and decreases of the organic ones. Reduction of VOC emissions during winter results in a decrease of the oxidant levels and a 5-10% reduction of PM2.5 because of reductions in nitrate (4-19%), ammonium (4-10%), organic PM (12-14%), and small reductions in sulfate. Although sulfur dioxide (SO{sub 2}) reduction is the single most effective approach for sulfate control, the coupled decrease of SO{sub 2} and NOx emissions in both seasons is more effective in reducing total PM2.5 mass than the SO{sub 2} reduction alone. 34 refs., 7 figs., 1 tab.

  16. Combustor for fine particulate coal

    DOEpatents

    Carlson, Larry W.

    1988-01-01

    A particulate coal combustor with two combustion chambers is provided. The first combustion chamber is toroidal; air and fuel are injected, mixed, circulated and partially combusted. The air to fuel ratio is controlled to avoid production of soot or nitrogen oxides. The mixture is then moved to a second combustion chamber by injection of additional air where combustion is completed and ash removed. Temperature in the second chamber is controlled by cooling and gas mixing. The clean stream of hot gas is then delivered to a prime mover.

  17. Combustor for fine particulate coal

    DOEpatents

    Carlson, L.W.

    1988-01-26

    A particulate coal combustor with two combustion chambers is provided. The first combustion chamber is toroidal; air and fuel are injected, mixed, circulated and partially combusted. The air to fuel ratio is controlled to avoid production of soot or nitrogen oxides. The mixture is then moved to a second combustion chamber by injection of additional air where combustion is completed and ash removed. Temperature in the second chamber is controlled by cooling and gas mixing. The clean stream of hot gas is then delivered to a prime mover. 4 figs.

  18. Combustor for fine particulate coal

    DOEpatents

    Carlson, L.W.

    1988-11-08

    A particulate coal combustor with two combustion chambers is provided. The first combustion chamber is toroidal; air and fuel are injected, mixed, circulated and partially combusted. The air to fuel ratio is controlled to avoid production of soot or nitrogen oxides. The mixture is then moved to a second combustion chamber by injection of additional air where combustion is completed and ash removed. Temperature in the second chamber is controlled by cooling and gas mixing. The clean stream of hot gas is then delivered to a prime mover. 4 figs.

  19. Long-Term Exposure to Traffic Emissions and Fine Particulate Matter and Lung Function Decline in the Framingham Heart Study

    PubMed Central

    Ljungman, Petter L.; Wilker, Elissa H.; Dorans, Kirsten S.; Gold, Diane R.; Schwartz, Joel; Koutrakis, Petros; Washko, George R.; O’Connor, George T.; Mittleman, Murray A.

    2015-01-01

    Rationale: Few studies have examined associations between long-term exposure to fine particulate matter (PM2.5) and lung function decline in adults. Objectives: To determine if exposure to traffic and PM2.5 is associated with longitudinal changes in lung function in a population-based cohort in the Northeastern United States, where pollution levels are relatively low. Methods: FEV1 and FVC were measured up to two times between 1995 and 2011 among 6,339 participants of the Framingham Offspring or Third Generation studies. We tested associations between residential proximity to a major roadway and PM2.5 exposure in 2001 (estimated by a land-use model using satellite measurements of aerosol optical thickness) and lung function. We examined differences in average lung function using mixed-effects models and differences in lung function decline using linear regression models. Current smokers were excluded. Models were adjusted for age, sex, height, weight, pack-years, socioeconomic status indicators, cohort, time, season, and weather. Measurements and Main Results: Living less than 100 m from a major roadway was associated with a 23.2 ml (95% confidence interval [CI], −44.4 to −1.9) lower FEV1 and a 5.0 ml/yr (95% CI, −9.0 to −0.9) faster decline in FEV1 compared with more than 400 m. Each 2 μg/m3 increase in average of PM2.5 was associated with a 13.5 ml (95% CI, −26.6 to −0.3) lower FEV1 and a 2.1 ml/yr (95% CI, −4.1 to −0.2) faster decline in FEV1. There were similar associations with FVC. Associations with FEV1/FVC ratio were weak or absent. Conclusions: Long-term exposure to traffic and PM2.5, at relatively low levels, was associated with lower FEV1 and FVC and an accelerated rate of lung function decline. PMID:25590631

  20. SPATIAL PREDICTION OF FINE PARTICULATE MATTER

    EPA Science Inventory

    A new national monitoring network for the measurement of fine particular matter (PM2.5) is currently under development. A primary goal of this network is to collect monitoring data in residential communities for the evaluation of compliance with particulate air quality standards...

  1. Evaluation of the Emission, Transport, and Deposition of Mercury and Fine Particulate Matter from Coal-Based Power Plants in the Ohio River Valley Region

    SciTech Connect

    Kevin Crist

    2008-12-31

    As stated in the proposal: Ohio University, in collaboration with CONSOL Energy, Advanced Technology Systems, Inc (ATS) and Atmospheric and Environmental Research, Inc. (AER) as subcontractors, evaluated the impact of emissions from coal-fired power plants in the Ohio River Valley region as they relate to the transport and deposition of mercury and associated fine particulate matter. This evaluation involved two interrelated areas of effort: ambient air monitoring and regional-scale modeling analysis. The scope of work for the ambient air monitoring included the deployment of a surface air monitoring (SAM) station in southeastern Ohio. The SAM station contains sampling equipment to collect and measure mercury (including speciated forms of mercury and wet and dry deposited mercury), particulate matter (PM) mass, PM composition, and gaseous criteria pollutants (CO, NOx, SO2, O3, etc.). Laboratory analyses of time-integrated samples were used to obtain chemical speciation of ambient PM composition and mercury in precipitation. Nearreal- time measurements were used to measure the ambient concentrations of PM mass and all gaseous species including Hg0 and RGM. Approximately 30 months of field data were collected at the SAM site to validate the proposed regional model simulations for episodic and seasonal model runs. The ambient air quality data provides mercury, and fine particulate matter data that can be used by Ohio Valley industries to assess performance on multi-pollutant control systems. The scope of work for the modeling analysis includes (1) development of updated inventories of mercury emissions from coal plants and other important sources in the modeled domain; (2) adapting an existing 3-D atmospheric chemical transport model to incorporate recent advancements in the understanding of mercury transformations in the atmosphere; (3) analyses of the flux of Hg0, RGM, and fine particulate matter in the different sectors of the study region to identify key transport

  2. EVALUATION OF THE EMISSION, TRANSPORT, AND DEPOSITION OF MERCURY, FINE PARTICULATE MATTER, AND ARSENIC FROM COAL-BASED POWER PLANTS IN THE OHIO RIVER VALLEY REGION

    SciTech Connect

    Kevin Crist

    2003-10-02

    Ohio University, in collaboration with CONSOL Energy, Advanced Technology Systems, Inc (ATS) and Atmospheric and Environmental Research, Inc. (AER) as subcontractors, is evaluating the impact of emissions from coal-fired power plants in the Ohio River Valley region as they relate to the transport and deposition of mercury, arsenic, and associated fine particulate matter. This evaluation will involve two interrelated areas of effort: ambient air monitoring and regional-scale modeling analysis. The scope of work for the ambient air monitoring will include the deployment of a surface air monitoring (SAM) station in southeastern Ohio. The SAM station will contain sampling equipment to collect and measure mercury (including speciated forms of mercury and wet and dry deposited mercury), arsenic, particulate matter (PM) mass, PM composition, and gaseous criteria pollutants (CO, NO{sub x}, SO{sub 2}, O{sub 3}, etc.). Laboratory analysis of time-integrated samples will be used to obtain chemical speciation of ambient PM composition and mercury in precipitation. Near-real-time measurements will be used to measure the ambient concentrations of PM mass and all gaseous species including Hg{sup 0} and RGM. Approximately of 18 months of field data will be collected at the SAM site to validate the proposed regional model simulations for episodic and seasonal model runs. The ambient air quality data will also provide mercury, arsenic, and fine particulate matter data that can be used by Ohio Valley industries to assess performance on multi-pollutant control systems. The scope of work for the modeling analysis will include (1) development of updated inventories of mercury and arsenic emissions from coal plants and other important sources in the modeled domain; (2) adapting an existing 3-D atmospheric chemical transport model to incorporate recent advancements in the understanding of mercury transformations in the atmosphere; (3) analyses of the flux of Hg{sup 0}, RGM, arsenic, and

  3. Evaluation of the Emission, Transport, and Deposition of Mercury, Fine Particulate Matter, and Arsenic from Coal-Based Power Plants in the Ohio River Valley Region

    SciTech Connect

    Kevin Crist

    2006-04-02

    As stated in the proposal: Ohio University, in collaboration with CONSOL Energy, Advanced Technology Systems, Inc (ATS) and Atmospheric and Environmental Research, Inc. (AER) as subcontractors, is evaluating the impact of emissions from coal-fired power plants in the Ohio River Valley region as they relate to the transport and deposition of mercury, arsenic, and associated fine particulate matter. This evaluation will involve two interrelated areas of effort: ambient air monitoring and regional-scale modeling analysis. The scope of work for the ambient air monitoring will include the deployment of a surface air monitoring (SAM) station in southeastern Ohio. The SAM station will contain sampling equipment to collect and measure mercury (including speciated forms of mercury and wet and dry deposited mercury), arsenic, particulate matter (PM) mass, PM composition, and gaseous criteria pollutants (CO, NO{sub x}, SO{sub 2}, O{sub 3}, etc.). Laboratory analysis of time-integrated samples will be used to obtain chemical speciation of ambient PM composition and mercury in precipitation. Near-real-time measurements will be used to measure the ambient concentrations of PM mass and all gaseous species including Hg0 and RGM. Approximately 18 months of field data will be collected at the SAM site to validate the proposed regional model simulations for episodic and seasonal model runs. The ambient air quality data will also provide mercury, arsenic, and fine particulate matter data that can be used by Ohio Valley industries to assess performance on multi-pollutant control systems. The scope of work for the modeling analysis will include (1) development of updated inventories of mercury and arsenic emissions from coal plants and other important sources in the modeled domain; (2) adapting an existing 3-D atmospheric chemical transport model to incorporate recent advancements in the understanding of mercury transformations in the atmosphere; (3) analyses of the flux of Hg{sup 0

  4. Evaluation of the Emission, Transport, and Deposition of Mercury, Fine Particulate Matter, and Arsenic from Coal-Based Power Plants in the Ohio River Valley Region

    SciTech Connect

    Kevin Crist

    2005-10-02

    Ohio University, in collaboration with CONSOL Energy, Advanced Technology Systems, Inc (ATS) and Atmospheric and Environmental Research, Inc. (AER) as subcontractors, is evaluating the impact of emissions from coal-fired power plants in the Ohio River Valley region as they relate to the transport and deposition of mercury, arsenic, and associated fine particulate matter. This evaluation will involve two interrelated areas of effort: ambient air monitoring and regional-scale modeling analysis. The scope of work for the ambient air monitoring will include the deployment of a surface air monitoring (SAM) station in southeastern Ohio. The SAM station will contain sampling equipment to collect and measure mercury (including speciated forms of mercury and wet and dry deposited mercury), arsenic, particulate matter (PM) mass, PM composition, and gaseous criteria pollutants (CO, NOx, SO{sub 2}, O{sub 3}, etc.). Laboratory analysis of time-integrated samples will be used to obtain chemical speciation of ambient PM composition and mercury in precipitation. Near-real-time measurements will be used to measure the ambient concentrations of PM mass and all gaseous species including Hg{sup 0} and RGM. Approximately of 18 months of field data will be collected at the SAM site to validate the proposed regional model simulations for episodic and seasonal model runs. The ambient air quality data will also provide mercury, arsenic, and fine particulate matter data that can be used by Ohio Valley industries to assess performance on multi-pollutant control systems. The scope of work for the modeling analysis will include (1) development of updated inventories of mercury and arsenic emissions from coal plants and other important sources in the modeled domain; (2) adapting an existing 3-D atmospheric chemical transport model to incorporate recent advancements in the understanding of mercury transformations in the atmosphere; (3) analyses of the flux of Hg0, RGM, arsenic, and fine

  5. EVALUATION OF THE EMISSION, TRANSPORT, AND DEPOSITION OF MERCURY, FINE PARTICULATE MATTER, AND ARSENIC FROM COAL-BASED POWER PLANTS IN THE OHIO RIVER VALLEY REGION

    SciTech Connect

    Kevin Crist

    2004-04-02

    Ohio University, in collaboration with CONSOL Energy, Advanced Technology Systems, Inc. (ATS) and Atmospheric and Environmental Research, Inc. (AER) as subcontractors, is evaluating the impact of emissions from coal-fired power plants in the Ohio River Valley region as they relate to the transport and deposition of mercury, arsenic, and associated fine particulate matter. This evaluation will involve two interrelated areas of effort: ambient air monitoring and regional-scale modeling analysis. The scope of work for the ambient air monitoring will include the deployment of a surface air monitoring (SAM) station in southeastern Ohio. The SAM station will contain sampling equipment to collect and measure mercury (including speciated forms of mercury and wet and dry deposited mercury), arsenic, particulate matter (PM) mass, PM composition, and gaseous criteria pollutants (CO, NOx, SO{sub 2}, O{sub 3}, etc.). Laboratory analysis of time-integrated samples will be used to obtain chemical speciation of ambient PM composition and mercury in precipitation. Near-real-time measurements will be used to measure the ambient concentrations of PM mass and all gaseous species including Hg{sup 0} and RGM. Approximately 18 months of field data will be collected at the SAM site to validate the proposed regional model simulations for episodic and seasonal model runs. The ambient air quality data will also provide mercury, arsenic, and fine particulate matter data that can be used by Ohio Valley industries to assess performance on multi-pollutant control systems. The scope of work for the modeling analysis will include (1) development of updated inventories of mercury and arsenic emissions from coal-fired power plants and other important sources in the modeled domain; (2) adapting an existing 3-D atmospheric chemical transport model to incorporate recent advancements in the understanding of mercury transformations in the atmosphere; (3) analyses of the flux of Hg{sup 0}, RGM, arsenic

  6. EVALUATION OF THE EMISSION, TRANSPORT, AND DEPOSITION OF MERCURY, FINE PARTICULATE MATTER, AND ARSENIC FROM COAL-BASED POWER PLANTS IN THE OHIO RIVER VALLEY REGION

    SciTech Connect

    Kevin Crist

    2004-10-02

    Ohio University, in collaboration with CONSOL Energy, Advanced Technology Systems, Inc (ATS) and Atmospheric and Environmental Research, Inc. (AER) as subcontractors, is evaluating the impact of emissions from coal-fired power plants in the Ohio River Valley region as they relate to the transport and deposition of mercury, arsenic, and associated fine particulate matter. This evaluation will involve two interrelated areas of effort: ambient air monitoring and regional-scale modeling analysis. The scope of work for the ambient air monitoring will include the deployment of a surface air monitoring (SAM) station in southeastern Ohio. The SAM station will contain sampling equipment to collect and measure mercury (including speciated forms of mercury and wet and dry deposited mercury), arsenic, particulate matter (PM) mass, PM composition, and gaseous criteria pollutants (CO, NOx, SO{sub 2}, O{sub 3}, etc.). Laboratory analysis of time-integrated samples will be used to obtain chemical speciation of ambient PM composition and mercury in precipitation. Near-real-time measurements will be used to measure the ambient concentrations of PM mass and all gaseous species including Hg{sup 0} and RGM. Approximately of 18 months of field data will be collected at the SAM site to validate the proposed regional model simulations for episodic and seasonal model runs. The ambient air quality data will also provide mercury, arsenic, and fine particulate matter data that can be used by Ohio Valley industries to assess performance on multi-pollutant control systems. The scope of work for the modeling analysis will include (1) development of updated inventories of mercury and arsenic emissions from coal plants and other important sources in the modeled domain; (2) adapting an existing 3-D atmospheric chemical transport model to incorporate recent advancements in the understanding of mercury transformations in the atmosphere; (3) analyses of the flux of Hg{sup 0}, RGM, arsenic, and fine

  7. EVALUATION OF THE EMISSION, TRANSPORT, AND DEPOSITION OF MERCURY, FINE PARTICULATE MATTER, AND ARSENIC FROM COAL-BASED POWER PLANTS IN THE OHIO RIVER VALLEY REGION

    SciTech Connect

    Kevin Crist

    2005-04-02

    Ohio University, in collaboration with CONSOL Energy, Advanced Technology Systems, Inc (ATS) and Atmospheric and Environmental Research, Inc. (AER) as subcontractors, is evaluating the impact of emissions from coal-fired power plants in the Ohio River Valley region as they relate to the transport and deposition of mercury, arsenic, and associated fine particulate matter. This evaluation will involve two interrelated areas of effort: ambient air monitoring and regional-scale modeling analysis. The scope of work for the ambient air monitoring will include the deployment of a surface air monitoring (SAM) station in southeastern Ohio. The SAM station will contain sampling equipment to collect and measure mercury (including speciated forms of mercury and wet and dry deposited mercury), arsenic, particulate matter (PM) mass, PM composition, and gaseous criteria pollutants (CO, NO{sub x}, SO{sub 2}, O{sub 3}, etc.). Laboratory analysis of time-integrated samples will be used to obtain chemical speciation of ambient PM composition and mercury in precipitation. Near-real-time measurements will be used to measure the ambient concentrations of PM mass and all gaseous species including Hg{sup 0} and RGM. Approximately of 18 months of field data will be collected at the SAM site to validate the proposed regional model simulations for episodic and seasonal model runs. The ambient air quality data will also provide mercury, arsenic, and fine particulate matter data that can be used by Ohio Valley industries to assess performance on multi-pollutant control systems. The scope of work for the modeling analysis will include (1) development of updated inventories of mercury and arsenic emissions from coal plants and other important sources in the modeled domain; (2) adapting an existing 3-D atmospheric chemical transport model to incorporate recent advancements in the understanding of mercury transformations in the atmosphere; (3) analyses of the flux of Hg{sup 0}, RGM, arsenic, and

  8. Diesel particulate emissions

    SciTech Connect

    Abbass, M.K.; Andrews, G.E.; Williams, P.T.; Bartle, K.D.; Davies, I.L.; Tanui, L.K.

    1988-01-01

    The objective was to investigate combustion generated PAH in Diesel engine particulate emissions using a pure single component fuel, hexadecane, in a Perkins 4-236 engine in a single cylinder format. The results were compared with those using a conventional Diesel fuel and with the particulates collected by motoring the engine. To minimise any influence of contamination from the PAH in used lubricating oil, all the tests were carried out with fresh PAH free lubricating oil. The hexadecane particulates were found to contain 6-25% of the PAH and 5-9% of the n-alkanes for Diesel and the motoring tests were found to give 10% of the PAH and 50-200% of the n-alkane for hexadecane. It was concluded that there was an internal source of n-alkane and PAH in the engine and exhaust system, probably absorbed in engine deposits. It was therefore not possible to conclude that the PAH with hexadecane was pyrosynthesised.

  9. Estimating source-attributable health impacts of ambient fine particulate matter exposure: global premature mortality from surface transportation emissions in 2005

    NASA Astrophysics Data System (ADS)

    Chambliss, S. E.; Silva, R.; West, J. J.; Zeinali, M.; Minjares, R.

    2014-10-01

    Exposure to ambient fine particular matter (PM2.5) was responsible for 3.2 million premature deaths in 2010 and is among the top ten leading risk factors for early death. Surface transportation is a significant global source of PM2.5 emissions and a target for new actions. The objective of this study is to estimate the global and national health burden of ambient PM2.5 exposure attributable to surface transportation emissions. This share of health burden is called the transportation attributable fraction (TAF), and is assumed equal to the proportional decrease in modeled ambient particulate matter concentrations when surface transportation emissions are removed. National population-weighted TAFs for 190 countries are modeled for 2005 using the MOZART-4 global chemical transport model. Changes in annual average concentration of PM2.5 at 0.5 × 0.67 degree horizontal resolution are based on a global emissions inventory and removal of all surface transportation emissions. Global population-weighted average TAF was 8.5 percent or 1.75 μg m-3 in 2005. Approximately 242 000 annual premature deaths were attributable to surface transportation emissions, dominated by China, the United States, the European Union and India. This application of TAF allows future Global Burden of Disease studies to estimate the sector-specific burden of ambient PM2.5 exposure. Additional research is needed to capture intraurban variations in emissions and exposure, and to broaden the range of health effects considered, including the effects of other pollutants.

  10. Characterization of Fine Airborne Particulate Collected in Tokyo and Major Atmospheric Emission Sources by Using Single Particle Measurement of SEM-EDX

    NASA Astrophysics Data System (ADS)

    Sato, K.; Iijima, A.; Furuta, N.

    2008-12-01

    In our long-term monitoring of size-classified Airborne Particulate Matter (APM) in Tokyo since 1995, it had been demonstrated that toxic elements such as As, Se, Cd, Sb and Pb were extremely enriched in fine APM (PM2.5). However, in that study, total sampled APM on a filter was digested with acids, and thus only averaged elemental composition in fine APM could be obtained. One of the effective methods to determine the origin of APM is single particle measurement by using SEM-EDX. By using characteristic shapes observed by SEM and marker elements contained in APM measured by EDX, detailed information for source identification can be obtained. In this study, fine APM (PM2.5) was collected at various locations such as roadside, diesel vehicle exhaust, a heavy oil combustion plant and a waste incineration plant as well as ambient atmosphere in Tokyo, and characteristics of fine particles that will be utilized for identification of emission sources are elucidated. Fine particles can be classified into 3 main characteristic shape groups; edge-shaped, cotton-like and spherical. Shape of particles collected in a heavy oil combustion plant and a waste incineration plant was mostly spherical, and these particles may be associated with thermal process. Diesel exhaust particles were predominantly cotton-like which may consist of coagulated nano-sized particles. Most of brake abrasion dusts were edge-shaped, which may be associated with mechanical abrasion of brake pads. In the elemental analysis of fine particles, high concentrations of Sb, Cu, Ti and Ba were detected in brake abrasion dusts. Since these elements are major constituents of brake pads, these can be used for marker elements of brake abrasion dusts. High concentration of C was detected in diesel exhaust particles and oil combustion particles, and thus C can be used for marker elements of their origin. Furthermore, high concentrations of C, Ca and K were detected in fly ash from a waste incineration plant, which

  11. Changes in inorganic fine particulate matter sensitivities to precursors due to large-scale US emissions reductions.

    PubMed

    Holt, Jareth; Selin, Noelle E; Solomon, Susan

    2015-04-21

    We examined the impact of large US emissions changes, similar to those estimated to have occurred between 2005 and 2012 (high and low emissions cases, respectively), on inorganic PM2.5 sensitivities to further NOx, SO2, and NH3 emissions reductions using the chemical transport model GEOS-Chem. Sensitivities to SO2 emissions are larger year-round and across the US in the low emissions case than the high emissions case due to more aqueous-phase SO2 oxidation. Sensitivities to winter NOx emissions are larger in the low emissions case, more than 2× those of the high emissions case in parts of the northern Midwest. Sensitivities to NH3 emissions are smaller (∼40%) in the low emissions case, year-round, and across the US. Differences in NOx and NH3 sensitivities indicate an altered atmospheric acidity. Larger sensitivities to SO2 and NOx in the low emissions case imply that reducing these emissions may improve air quality more now than they would have in 2005; conversely, NH3 reductions may not improve air quality as much as previously assumed. PMID:25816113

  12. Comparing the impact of fine particulate matter emissions from industrial facilities and transport on the real age of a local community

    NASA Astrophysics Data System (ADS)

    Geelen, Loes M. J.; Huijbregts, Mark A. J.; Jans, Henk W. A.; Ragas, Ad M. J.; den Hollander, Henri A.; Aben, Jan M. M.

    2013-07-01

    For policy-making, human health risks of fine particulate m(PM2.5) are commonly assessed by comparing environmental concentrations with reference values, which does not necessarily reflect the impact on health in a population. The goal of this study was to compare health impacts in the Moerdijk area, The Netherlands resulting from local emissions of PM2.5 from industry and traffic in a case study using the risk advancement period (RAP) of mortality. The application of the RAP methodology on the local scale is a promising technique to quantify potential health impacts for communication purposes. The risk advancement period of mortality is the time period by which the mortality risk is advanced among exposed individuals conditional on survival at a baseline age. The RAP showed that road traffic was the most important local emission source that affects human health in the study area, whereas the estimated health impact from industry was a factor of 3 lower. PM2.5 due to highway-traffic was the largest contributor to the health impact of road traffic. This finding is in contrast with the risk perception in this area.

  13. Contributions of regional air pollutant emissions to ozone and fine particulate matter-related mortalities in eastern U.S. urban areas.

    PubMed

    Hou, Xiangting; Strickland, Matthew J; Liao, Kuo-Jen

    2015-02-01

    Ground-level ozone and fine particulate matter (PM2.5) are associated with adverse human health effects such as lung structure dysfunction, inflammation and infection, asthma, and premature deaths. This study estimated contributions of emissions of anthropogenic nitrogen oxides (NOx), volatile organic compounds (VOCs) and sulfur dioxides (SO2) from four regions to summertime (i.e., June, July, and August) ozone and PM2.5-related mortalities in seven major Metropolitan Statistical Areas (MSAs with more than 4 million people) in the eastern United States (U.S.). A photochemical transport model, Community Multi-scale Air Quality (CMAQ) with sensitivity analyses, was applied to quantify the contribution of the regional anthropogenic emissions to ambient ozone and PM2.5 concentrations in the seven MSAs. The results of the sensitivity analysis, along with estimates of concentration-response from published epidemiologic studies, were used to estimate excess deaths associated with changes in ambient daily 8-h average ozone and daily PM2.5 concentrations during the summer of 2007. The results show that secondary PM2.5 (i.e., PM2.5 formed in the atmosphere) had larger effects on mortality (95% confidence interval (C.I.) ranged from 700 to 3854) than ambient ozone did (95% C.I. was 470-1353) in the seven MSAs. Emissions of anthropogenic NOx, VOCs and SO2 from the northeastern U.S. could cause up to about 2500 ozone and PM2.5-related deaths in the urban areas examined in this study. The results also show that the contributions of emissions from electrical generating units (EGUs) and anthropogenic non-EGU sources to ozone-related mortality in the MSAs were similar. However, emissions from EGUs had a more significant impact on PM2.5-related deaths than anthropogenic emissions from non-EGUs sources did. Anthropogenic NOx and VOCs emissions from the regions where the MSAs are located had the most significant contributions to ozone-related mortalities in the eastern U.S. urban

  14. Source-receptor reconciliation of fine-particulate emissions from residential wood combustion in the southeastern United States

    NASA Astrophysics Data System (ADS)

    Napelenok, Sergey L.; Vedantham, Ram; Bhave, Prakash V.; Pouliot, George A.; Kwok, Roger H. F.

    2014-12-01

    An extensive collection of speciated PM2.5 measurements including organic tracers permitted a detailed examination of the emissions from residential wood combustion (RWC) in the southeastern United States over an entire year (2007). The Community Multiscale Air Quality model-based Integrated Source Apportionment Method (CMAQ-ISAM) was used in combination with the U.S. National Emissions Inventory (NEI) to compute source contributions from ten categories of biomass combustion, including RWC. A novel application of the receptor-based statistical model, Unmix, was used to subdivide the observed concentrations of levoglucosan, a unique tracer of biomass combustion. Using the CMAQ-ISAM and Unmix models together, we find that the emission-based RWC contribution to ambient carbonaceous PM2.5 predicted by the model is approximately a factor of two lower than indicated by observations. Recommendations for improving the temporal allocation of the emissions are proposed and tested to show a potential improvement in model RWC predictions, quantified by approximately 15% less bias. Further improvements in the sector predictions could be achieved with a survey-based analysis of detailed RWC emission patterns.

  15. Source-receptor reconciliation of fine-particulate emissions from residential wood combustion in the southeastern United States

    EPA Science Inventory

    An extensive collection of speciated PM2.5 measurements including organic tracers permitted a detailed examination of the emissions from residential wood combustion (RWC) in the southeastern United States over an entire year (2007). The Community Multiscale Air Quality model-base...

  16. Impacts of Global Climate Change and Emissions on Regional Ozone and Fine Particulate Matter Concentrations over United States

    SciTech Connect

    Tagaris, Efthimios; Manomaiphiboon, Kasemsan; Liao, Kuo-Jen; Leung, Lai R.; Woo, Jung-Hun; He, Shan; Amar, Praveen; Russell, Armistead G.

    2007-07-31

    Simulated future summers (i.e., 2049-2051) and annual (i.e., 2050) average regional O 3 and PM2.5 concentrations over North America are compared with historic (i.e., 2000-2002 summers and all of 2001) levels to investigate the potential impacts of global climate change on regional air quality. Meteorological inputs to the CMAQ chemical transport model are developed by downscaling the GISS Global Climate Model simulations using an MM5-based regional climate model. Future-year emissions for North America are developed by growing the US EPA CAIR inventory, Mexican and Canadian emissions and by using the IMAGE model with the IPCC A1B emissions scenario that is also used in projecting future climate. Reductions of more than 50% in NOX and SO2 emissions are forecast. The impacts of global climate change alone on regional air quality are small compared to impacts from emission control-related reductions in the US and Canada. The combined effect of climate change and emission reductions lead to a 20% decrease (regionally varying from -11% to -28% regionally) in the mean summer maximum daily 8-hr ozone levels (M8hO3) over the US, -8% over Canada and -10% over Northern Mexico. The mean annual PM2.5 concentrations are estimated to be 23% lower (varies from -9% to -32%) over the US, -7% and -15% over Western and Eastern Canada, respectively and -25% over Northern Mexico. Major reductions are expected in sulfate, nitrate and ammonium fractions of annually-averaged PM2.5 for all sub-regions. The limited reduction in organic carbon over the US and Northern Mexico and the higher concentrations over Canada suggests that organic carbon will be the dominant component of PM2.5 mass over most of the continent in the future. Regionally, the Eastern US benefits more than the rest of the regions from reductions in both M8hO3 and PM2.5, due to both spatial variations in the meteorological and emissions changes. Reduction in the higher M8hO3 concentrations is also estimated for all sub

  17. DEVELOPMENT OF FINE PARTICULATE EMISSION FACTORS AND SPECIATION PROFILES FOR OIL AND GAS-FIRED COMBUSTION SYSTEMS

    SciTech Connect

    Glenn C. England; Stephanie Wien; Mingchih O. Chang

    2002-08-01

    This report provides results from the first year of this three-year project to develop dilution measurement technology for characterizing PM2.5 (particles with aerodynamic diameter smaller than 2.5 micrometers) and precursor emissions from stationary combustion sources used in oil, gas and power generation operations. Detailed emission rate and chemical speciation test results for a refinery gas-fired process heater and plans for cogeneration gas turbine tests and pilot-scale tests are presented. Tests were performed using a research dilution sampling apparatus and traditional EPA methods to compare PM2.5 mass and chemical speciation. Test plans are presented for a gas turbine facility that will be tested in the fourth quarter of 2002. A preliminary approach for pilot-scale tests is presented that will help define design constraints for a new dilution sampler design that is smaller, lighter, and less costly to use.

  18. CONTROLLING EMISSIONS OF PARTICULATES

    EPA Science Inventory

    The report gives a semi-technical overview of the contribution of particulate matter to the overall U.S. air pollution problem. It also discusses contributions of the Particulate Technology Branch of EPA's Industrial Environmental Research Laboratory at Research Triangle Park, N....

  19. 77 FR 12769 - Approval and Promulgation of Implementation Plans; Georgia; Macon; Fine Particulate Matter 2002...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-02

    ... Matter 2002 Base Year Emissions Inventory AGENCY: Environmental Protection Agency (EPA). ACTION: Proposed rule. SUMMARY: EPA is proposing to approve the fine particulate matter (PM 2.5 ) 2002 base...

  20. Diesel particulate emissions

    SciTech Connect

    Williams, P.T.; Abbass, M.K.; Andrews, G.E.; Bartle, K.D.

    1989-01-01

    The relationship between diesel fuel composition and that of the solvent organic fraction of diesel particulates was investigated for an old DI Petter engine and a modern DI Perkins engine. Polycyclic aromatic compounds (PAC) were identified using high-resolution capillary column chromatography with a parallel triple detector system for polycyclic aromatic hydrocarbons (PAH), nitrogen-containing PAH, and sulphur-containing PAH. Identification of the PAC using retention indexes was confirmed using an ion trap detector, which was also used to quantify the low-concentration (<1 ppm) benzo(a)pyrene. It was conclusively shown for both engines that the bulk of the particulate solvent organic fraction, including the PAH fraction, was unburned fuel. However, there was some evidence that high molecular weight five-ring PAH may have an in-cylinder formation contribution, and it is postulated that this could be due to pyrolysis of lower molecular weight unburned fuel PAH. The contribution of lubricating oil to the particulate PAC is discussed, and evidence is presented that shows the unburned fuel PAC accumulates in the lubricating oil and thus contributes to the particulate PAC via the large lubricating oil component of the particulate PAC.

  1. PAVED ROAD PARTICULATE EMISSIONS: SOURCE CATEGORY REPORT

    EPA Science Inventory

    The report gives results of extensive field tests to develop emission factors for particulate emissions generated by traffic entrainment of paved road surface particulate matter. Using roadway surface silt loading as the basis, predictive emission factor equations for each partic...

  2. Emission Standards for Particulates

    ERIC Educational Resources Information Center

    Walsh, George W.

    1974-01-01

    Promulgation of standards of performance under Section 111 and national emission standards for hazardous pollutants under Section 112 of the Clean Air Act is the responsibility of the Emission Standards and Engineering Division of the Environmental Protection Agency. The problems encountered and the bases used are examined. (Author/BT)

  3. Fine particle emissions in three different combustion conditions of a wood chip-fired appliance - Particulate physico-chemical properties and induced cell death

    NASA Astrophysics Data System (ADS)

    Leskinen, J.; Tissari, J.; Uski, O.; Virén, A.; Torvela, T.; Kaivosoja, T.; Lamberg, H.; Nuutinen, I.; Kettunen, T.; Joutsensaari, J.; Jalava, P. I.; Sippula, O.; Hirvonen, M.-R.; Jokiniemi, J.

    2014-04-01

    A biomass combustion reactor with a moving grate was utilised as a model system to produce three different combustion conditions corresponding to efficient, intermediate, and smouldering combustion. The efficient conditions (based on a CO level of approximately 7 mg MJ-1) corresponded to a modern pellet boiler. The intermediate conditions (CO level of approximately 300 mg MJ-1) corresponded to non-optimal settings in a continuously fired biomass combustion appliance. The smouldering conditions (CO level of approximately 2200 mg MJ-1) approached a batch combustion situation. The gaseous and particle emissions were characterised under each condition. Moreover, the ability of fine particles to cause cell death was determined using the particle emissions samples. The physico-chemical properties of the emitted particles and their toxicity were considerably different between the studied combustion conditions. In the efficient combustion, the emitted particles were small in size and large in number. The PM1 emission was low, and it was composed of ash species. In the intermediate and smouldering combustion, the PM1 emission was higher, and the particles were larger in size and smaller in number. In both of these conditions, there were high-emission peaks that produced a significant fraction of the emissions. The PAH emissions were the lowest in the efficient combustion. The smouldering combustion conditions produced the largest PAH emissions. In efficient combustion conditions, the emitted fine particles had the highest potential to cause cell death. This finding was most likely observed because these fine particles were mainly composed of inorganic ash species, and their relative contents of Zn were high. Thus, even the PM1 from optimal biomass combustion might cause health effects, but in these conditions, the particle emissions per energy unit produced were considerably lower.

  4. PARTICULATE EMISSION MEASUREMENTS FROM CONTROLLED CONSTRUCTION ACTIVITIES

    EPA Science Inventory

    The report summarized the results of field testing of the effectiveness of control measures for sources of fugitive particulate emissions found at construction sites. The effectiveness of watering temporary, unpaved travel surfaces on emissions of particulate matter with aerodyna...

  5. NONFERROUS INDUSTRY PARTICULATE EMISSIONS: SOURCE CATEGORY REPORT

    EPA Science Inventory

    The report gives results of the development of particulate emission factors based on cutoff size for inhalable particles for the nonferrous industry. After a review of available information characterizing particulate emissions from nonferrous plants, the data were summarized and ...

  6. EXTERNAL COMBUSTION PARTICULATE EMISSIONS: SOURCE CATEGORY REPORT

    EPA Science Inventory

    The report gives results of the development of particulate emission factors based on cutoff size for inhalable particles for external combustion sources. After a review of available information characterizing particulate emissions from external combustion sources, the data were s...

  7. Molecular composition of organic fine particulate matter in Houston, TX

    NASA Astrophysics Data System (ADS)

    Fraser, M. P.; Yue, Z. W.; Tropp, R. J.; Kohl, S. D.; Chow, J. C.

    Organic fine particulate matter collected in Houston, TX between March 1997 and March 1998 was analyzed to determine the concentration of individual organic compounds. Samples from four sites were analyzed including two industrial locations (Houston Regional Monitoring Corporation (HRM-3) site in Channelview and Clinton Drive site near the Ship Channel Turning Basin), one suburban location (Bingle Drive site in Northwest Houston) and one background site (Galveston Island). At the three urban locations, samples were divided into three seasonal sample aggregates (spring, summer and winter), while at the background site a single annual average sample pool was used. Between 10 and 16 individual samples were pooled to get aggregate samples with enough organic carbon mass for analysis. Overall, 82 individual organic compounds were quantified. These include molecular markers which are compounds unique to specific fine particle sources and can be used to track the relative contribution of source emissions to ambient fine particle levels. The differences both spatially and temporally in these tracers can be used to evaluate the variability in emission source strengths.

  8. Fine particulate chemical composition and light extinction at Meadview, AZ.

    PubMed

    Eatough, Delbert J; Cui, Wenxuan; Hull, Jeffery; Farber, Robert J

    2006-12-01

    The concentration of fine particulate nitrate, sulfate, and carbonaceous material was measured for 12-hr day-night samples using diffusion denuder samplers during the Project Measurement of Haze and Visibility Effects (MOHAVE) July to August 1992 Summer Intensive study at Meadview, AZ, just west of Grand Canyon National Park. Organic material was measured by several techniques. Only the diffusion denuder method measured the semivolatile organic material. Fine particulate sulfate and nitrate (using denuder technology) determined by various groups agreed. Based on the various collocated measurements obtained during the Project MOHAVE study, the precision of the major fine particulate species was +/- 0.6 microg/m3 organic material, +/- 0.3 microg/m3 ammonium sulfate, and +/- 0.07 microg/m3 ammonium nitrate. Data were also available on fine particulate crustal material, fine and coarse particulate mass from the Interagency Monitoring of Protected Visual Environments sampling system, and relative humidity (RH), light absorption, particle scattering, and light extinction measurements from Project MOHAVE. An extinction budget was obtained using mass scattering coefficients estimated from particle size distribution data. Literature data were used to estimate the change in the mass scattering coefficients for the measured species as a function of RH and for the absorption of light by elemental carbon. Fine particulate organic material was the principal particulate contributor to light extinction during the study period, with fine particulate sulfate as the second most important contributor. During periods of highest light extinction, contributions from fine particulate organic material, sulfate, and light-absorbing carbon dominated the extinction of light by particles. Particle light extinction was dominated by sulfate and organic material during periods of lowest light extinction. Combination of the extinction data and chemical mass balance analysis of sulfur oxides

  9. Highly-resolved Modeling of Emissions and Concentrations of Carbon Monoxide, Carbon Dioxide, Nitrogen Oxides, and Fine Particulate Matter in Salt Lake City, Utah

    NASA Astrophysics Data System (ADS)

    Mendoza, D. L.; Lin, J. C.; Mitchell, L.; Ehleringer, J. R.

    2014-12-01

    Accurate, high-resolution data on air pollutant emissions and concentrations are needed to understand human exposures and for both policy and pollutant management purposes. An important step in this process is also quantification of uncertainties. We present a spatially explicit and highly resolved emissions inventory for Salt Lake County, Utah, and trace gas concentration estimates for carbon monoxide (CO), carbon dioxide (CO2), nitrogen oxides (NOx) and fine particles (PM2.5) within Salt Lake City. We assess the validity of this approach by comparing measured concentrations against simulated values derived from combining the emissions inventory with an atmospheric model. The emissions inventory for the criteria pollutants was constructed using the 2011 National Emissions Inventory (NEI). The spatial and temporal allocation methods from the Emission Modeling Clearinghouse data set are used to downscale the NEI data from annual to hourly scales and from county-level to 500 m x 500 m resolution. Onroad mobile source emissions were estimated by combining a bottom-up emissions calculation approach for large roadway links with a top-down spatial allocation approach for other roadways. Vehicle activity data for road links were derived from automatic traffic responder data. The emissions inventory for CO2 was obtained from the Hestia emissions data product at an hourly, building, facility, and road link resolution. The AERMOD and CALPUFF dispersion models were used to transport emissions and estimate air pollutant concentrations at an hourly temporal and 500 m x 500 m spatial resolution. Modeled results were compared against measurements from a mobile lab equipped with trace gas measurement equipment traveling on pre-determined routes in the Salt Lake City area. The comparison between both approaches to concentration estimation highlights spatial locations and hours of high variability/uncertainty. Results presented here will inform understanding of variability and

  10. Fine particulate chemical composition and light extinction at Meadview, AZ

    SciTech Connect

    Delbert J. Eatough; Wenxuan Cui; Jeffery Hull; Robert J. Farber

    2006-12-15

    The concentration of fine particulate nitrate, sulfate, and carbonaceous material was measured for 12-hr daynight samples using diffusion denuder samplers during the Project Measurement of Haze and Visibility Effects (MOHAVE) July to August 1992 Summer Intensive study at Meadview, AZ, just west of Grand Canyon National Park. Organic material was measured by several techniques. Only the diffusion denuder method measured the semivolatile organic material. Fine particulate sulfate and nitrate (using denuder technology) determined by various groups agreed. Based on the various collocated measurements obtained during the Project MOHAVE study, the precision of the major fine particulate species was {+-} 0.6 {mu}g/m{sup 3} organic material, {+-} 0.3 {mu}g/m{sup 3} ammonium sulfate, and {+-} 0.07 {mu}g/m{sup 3} ammonium nitrate. Fine particulate organic material was the principal particulate contributor to light extinction during the study period, with fine particulate sulfate as the second most important contributor. Particle light extinction was dominated by sulfate and organic material during periods of lowest light extinction. Combination of the extinction data and chemical mass balance analysis of sulfur oxides sources in the region indicate that the major anthropogenic contributors to light extinction were from the Los Angeles, CA, and Las Vegas, NV, urban areas. Mohave Power Project associated secondary sulfate was a negligible contributor to light extinction. 49 refs., 12 figs., 7 tabs.

  11. PARTICULATE CONTROL HIGHLIGHTS: FINE PARTICLE SCRUBBER RESEARCH

    EPA Science Inventory

    The report gives highlights of fine particle scrubber research performed by, or under the direction of, EPA's Industrial Environmental Research Laboratory (IERL-RTP) at Research Triangle Park, North Carolina. The U.S. EPA has been actively involved in research and development in ...

  12. Sources, trends and regional impacts of fine particulate matter in southern Mississippi valley: significance of emissions from sources in the Gulf of Mexico coast

    NASA Astrophysics Data System (ADS)

    Chalbot, M.-C.; McElroy, B.; Kavouras, I. G.

    2013-04-01

    The sources of fine particles over a 10 yr period at Little Rock, Arkansas, an urban area in the southern Mississippi Valley, were identified by positive matrix factorization. The annual trends of PM2.5 and its sources, and their associations with the pathways of air mass backward trajectories were examined. Seven sources were apportioned, namely, primary traffic particles, secondary nitrate and sulphate, biomass burning, diesel particles, aged/contaminated sea salt and mineral/road dust, accounting for more than 90% of measured PM2.5 (particles with aerodynamic diameter less than 2.5 μm) mass. The declining trend of PM2.5 mass (0.4 μg m-3 per year) was related to lower levels of SO42- (0.2 μg m-3 per year) due to SO2 reductions from point and mobile sources. The slower decline for NO3- particles (0.1 μg m-3 per year) was attributed to the increasing NH3 emissions in the Midwest. The annual variation of biomass burning particles was associated with fires in the southeast and northwest US. Of the four regions within 500 km from the receptor site, the Gulf Coast and the southeast US accounted cumulatively for more than 65% of PM2.5 mass, nitrate, sulphate and biomass burning aerosol. Overall, more than 50% of PM2.5 and its components originated from sources outside the state. Sources within the Gulf Coast and western Gulf of Mexico include 65% of the busiest ports in the US, intense marine traffic within 400 km of the coast burning rich in S diesel, and a large number of offshore oil and natural gas platforms and many refineries. This approach allowed for the quantitative assessment of the impacts of transport from regions representing diverse mixtures of sources and weather conditions for different types of particles. The findings of this effort demonstrated the influences of emission controls on SO2 and NOx on PM2.5 mass, the potential effect of events (i.e. fires) sensitive to climate change phenomena on air pollution and the potential of offshore activities

  13. Ultra fined-grained atmospheric particulate studied by magnetic analysis

    NASA Astrophysics Data System (ADS)

    Saragnese, F.; Lanci, L.; Lanza, R.

    2009-04-01

    We present the result of an investigation on the presence of ultrafine atmospheric particulate in the urban area of Turin by magnetic methods. Magnetic minerals are a common component of atmospheric particulate, mostly arising from a number of anthropogenic activities. Atmospheric particulate is well known to represent a serious health problem in urban area and recently the attention focused especially on fine (< 2.5 μm) and ultrafine (< 0.1 m) particulates which are proven to be particularly dangerous because if inhaled they penetrate deep and reach lungs alveoli. In the last few years number studies took advantage of magnetic techniques to successfully identify atmospheric particulate matter through the magnetic analysis, however they did not draw much attention to the grain size problem. Indeed magnetic techniques have the ability to distinguish very fine-grained material by using the thermal relaxation effect and thus they potentially constitute a useful analysis tool to recognize ultrafine fractions of atmospheric particulate. We have performed low and room temperature isothermal remanent magnetization (IRM) and hysteresis loop measurements on atmospheric particulate samples in order to estimate the concentration of fine and ultrafine particles. Magnetic mineralogy was studied using IRM at room and liquid nitrogen temperature. Low temperature hysteresis and thermomagnetic curves were used study the grain size distribution that showed the presence of a mixture of low-coercivity particles, magnetite-like, and a variable grain-size populations. Samples were taken from filters collecting particulates matter with diameter < 10 µm (PM10) in different city areas, the particulate mass on the filter was also measured. Results confirm the general correlation between magnetization and concentration of particulate in air. The comparison between suburban and high-traffic area also support the previous finding that anthropogenic particulate has a large concentration of

  14. 77 FR 1894 - Approval and Promulgation of Implementation Plans; Georgia; Rome; Fine Particulate Matter 2002...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-12

    ...EPA is proposing to approve the fine particulate matter (PM2.5) 2002 base year emissions inventory portion of the State Implementation Plan (SIP) revision submitted by the State of Georgia on October 27, 2009. The emissions inventory is part of the Rome, Georgia PM2.5 attainment demonstration that was submitted for the 1997 annual PM2.5 National Ambient Air......

  15. EVALUATION OF FOUR NOVEL FINE PARTICULATE COLLECTION DEVICES

    EPA Science Inventory

    The report gives results of an experimental performance evaluation of four novel fine particulate control devices: the Johns-Manville Cleanable High-Efficiency Air Filtration (CHEAF) System, the APS Electrostatic Scrubber, the APS Electrotube, and the TRW Charged Droplet Scrubber...

  16. PREDICTION OF FINE PARTICULATE LEVELS AT UNMONITORED LOCATIONS

    EPA Science Inventory

    In November and December of 1999, air concentrations of ultrafine, fine, and coarse particulate matter were measured at two intensive sites in El Paso, Texas. The intensive sites included collocated measurements of NO2 and volatile organic compounds (VOCs) in the air from both...

  17. SPATIO-TEMPORAL MODELING OF FINE PARTICULATE MATTER

    EPA Science Inventory

    Studies indicate that even short-term exposure to high concentrations of fine atmospheric particulate matter (PM2.5) can lead to long-term health effects. In this paper, we propose a random effects model for PM2.5 concentrations. In particular, we anticipa...

  18. DESIGN, DEVELOPMENT, AND DEMONSTRATION OF A FINE PARTICULATE MEASURING DEVICE

    EPA Science Inventory

    The report describes the design, development, and testing of a fine particulate source monitoring instrument for real-time measurement of mass concentration as a function of aerodynamic particle size. It includes a literature review and selection of the operating principle on whi...

  19. Sources, trends and regional impacts of fine particulate matter in southern Mississippi Valley: significance of emissions from sources in the Gulf of Mexico coast

    NASA Astrophysics Data System (ADS)

    Chalbot, M.-C.; McElroy, B.; Kavouras, I. G.

    2013-01-01

    The sources of fine particles over a 10 yr period at Little Rock, Arkansas, an urban area in southern Mississippi Valley, were identified by positive matrix factorization. The annual trends of PM2.5 and its sources and their associations with the pathways of air mass backward trajectories were examined. Seven sources were apportioned, namely, primary traffic particles, secondary nitrate and sulphate, biomass burning, diesel particles, aged/contaminated sea salt and mineral/road dust, accounting for more than 90% of measured PM2.5 mass. The declining trend of PM2.5 mass (0.4 μg m-3 yr-1) was related to lower levels of SO42- (0.2 μg m-3 yr-1) due to SO2 reductions from point and mobile sources. The slower decline for NO3- particles (0.1 μg m-3 yr-1) was attributed to the spatial variability of NH3 in Midwest. The annual variation of biomass burning particles was associated with wildland fires in southeast and northwest US that are sensitive to climate changes. The four regions within 500 km from the receptor site, the Gulf Coast and southeast US accounted cumulatively for more than 65% of PM2.5 mass, nitrate, sulphate and biomass burning aerosol. Overall, more than 50% of PM2.5 and its sources originated from sources outside the state. Sources within the Gulf Coast and western Gulf of Mexico include 65% of the busiest ports in the US, intense marine traffic within 400 km of the coast burning rich in S diesel, and a large number of offshore oil and natural gas platforms and many refineries along the coast. This approach allowed for quantitatively assessing the impacts of transport from regions representing diverse mixtures of sources and weather conditions for different types of particles. The findings of this effort demonstrated the influences of emission controls on SO2 and NOx on PM2.5 mass, the potential effect of events (i.e. fires) sensitive to climate change phenomena on air pollution and the potential of offshore activities and shipping emissions to

  20. Compositional Analysis of Fine Particulate Matter in Fairbanks, Alaska

    NASA Astrophysics Data System (ADS)

    Nattinger, K.; Simpson, W. R.; Huff, D.

    2015-12-01

    Fairbanks, AK experiences extreme pollution episodes that result in winter violations of the fine particulate matter (PM2.5) National Ambient Air Quality Standards. This poses a significant health risk for the inhabitants of the area. These high levels result from trapping of pollution in a very shallow boundary layer due to local meteorology, but the role of primary (direct emission) of particulate matter versus secondary production (in the atmosphere) of particulate matter is not understood. Analysis of the PM2.5 composition is being conducted to provide insight into sources, trends, and chemistry. Methods are developed to convert carbon data from IMPROVE (post-2009 analysis method) to NIOSH (pre-2009 method) utilizing blank subtraction, sampler bias adjustment, and inter-method correlations from co-located samples. By converting all carbon measurements to a consistent basis, long-term trends can be analyzed. The approach shows excellent mass closure between PM2.5 mass reconstructed from constituents and gravimetric-analyzed mass. This approach could be utilized in other US locations where the carbon analysis methods also changed. Results include organic and inorganic fractional mass percentages, analyzed over an eight-year period for two testing sites in Fairbanks and two in the nearby city of North Pole. We focus on the wintertime (Nov—Feb) period when most air quality violations occur and find that the particles consist primarily of organic carbon, with smaller percentages of sulfate, elemental carbon, ammonium, and nitrate. The Fairbanks area PM2.5 organic carbon / elemental carbon partitioning matches the source profile of wood smoke. North Pole and Fairbanks PM2.5 have significant compositional differences, with North Pole having a larger percentage of organic matter. Mass loadings in SO42-, NO3-, and total PM2.5 mass correlate with temperature. Multi-year temporal trends show little if any change with a strong effect from temperature. Insights from this

  1. Atmospheric mercury in the vapor phase, and in fine and coarse particulate matter at Perch River, New York

    NASA Astrophysics Data System (ADS)

    Ames, Michael; Gullu, Gulen; Olmez, Ilhan

    Daily samples of size segregated atmospheric particulate matter ( da < 2.5 μm, and 2.5 μm < da < 10 μm), and vapor-phase mercury have been collected at five locations in upstate New York over a period of two years. Atmospheric concentrations were determined for mercury and, in the particulate matter, for up to 38 other elements by Instrumental Neutron Activation Analysis (INAA). At the Perch River sampling site, the average vapor-phase mercury concentration was 2.4 ng m -3 with a seasonal pattern of higher winter and lower summer concentrations observed over both years of sampling. The average fine and coarse particulate concentrations were 0.058 and 0.025 ng m -3, respectively. Concentrations for the particulate concentrations followed a log-normal frequency distribution with the most frequently occurring value for fine particulates being 0.012 ng m -3 and for coarse particulates 0.009 ng m -3. Episodic high concentrations of both fine and coarse particulate mercury indicate the impact of specific s ources. No correlation was found among the three different types of samples on either an overall or daily basis. By applying factor analysis (FA) to the data and using known marker species for specific types of emissions, the sources of the particulate mercury were identified and their contributions estimated. Fine particulate mercury concentrations were primarily associated with regional sources in the midwestern U.S.A., with copper smelting, and with the combined influence of aluminum and precious metals processing. Coarse particulate mercury concentrations were principally related to local aluminum processing facilities. The source identification results of the FA were confirmed by examining back-projected, mixed-layer wind trajectories. From February 1993 through the end of the particulate sampling in September 1993 fine particulate mercury concentrations declined significantly possibly due to the installation of particulate controls at one or more of the copper

  2. Measurement of vehicle particulate emissions.

    PubMed Central

    Beltzer, M

    1975-01-01

    A constant volume sampler (CVS) compatible auto exhaust particulate sampling system has been built which samples exhaust isokinetically at constant temperature. This system yields internally consistent results and is capable of frequent and convenient operation. PMID:50931

  3. Atmospheric Light Detection and Ranging (LiDAR) Coupled With Point Measurement Air Quality Samplers to Measure Fine Particulate Matter (PM) Emissions From Agricultural Operations: The Los Banos CA Fall 2007 Tillage Campaign.

    EPA Science Inventory

    Airborne particles, especially fine particulate matter 2.5 micrometers (μm) or less in aerodynamic diameter (PM2.5), are microscopic solids or liquid droplets that can cause serious health problems, including increased respiratory symptoms such as coughing or difficulty breathing...

  4. [Coal fineness effect on primary particulate matter features during pulverized coal combustion].

    PubMed

    Lü, Jian-yi; Li, Ding-kai

    2007-09-01

    Three kinds of coal differed from fineness were burned in a laboratory-scale drop tube furnace for combustion test, and an 8-stage Andersen particle impactor was employed for sampling the primary particulate matter (PM), in order to study coal fineness effect on primary PM features during pulverized coal combustion. It has been shown that the finer the coal was, the finer the PM produced. PM, emission amount augmented with coal fineness decreased, and the amount of PM10 increased from 13 mg/g to 21 mg/g respectively generated by coarse coal and fine coal. The amount of PM2.5 increased from 2 mg/g to 8 mg/g at the same condition. Constituents and content in bulk ash varied little after three different fineness coal combustion, while the appearance of grading PM differed visibly. The value of R(EE) increased while the coal fineness deceased. The volatility of trace elements which were investigated was Pb > Cr > Zn > Cu > Ni in turn. The concentration of poisonous trace elements was higher which generated from fine coal combustion. The volatilization capacity was influenced little by coal fineness, but the volatilization extent was influenced differently by coal fineness. Fine coal combustion affects worse environment than coarse coal does. PMID:17990536

  5. FINE P M EMISSIONS CHARACTERIZATION--BIOMASS

    EPA Science Inventory

    FINE PM EMISSIONS CHARACTERIZATION -- BIOMASS The APPCD fine particle research team was funded (FY 2000) to perform emission characterization and source chemical profile analysis of major particle source emissions in the U.S. The focus of this task is to analyze these data on ai...

  6. ANALYSIS OF LEAD IN CANDLE PARTICULATE EMISSIONS BY XRF USING UNIQUANT 4

    EPA Science Inventory

    As part of an extensive program to study the small combustion sources of indoor fine particulate matter (PM), candles with lead-core wicks were burned in a 46-L glass flow- through chamber. The particulate emissions with aerodynamic diameters <10 micrometers (PM10) were captured ...

  7. FINE PARTICLE EMISSIONS INFORMATION SYSTEM REFERENCE MANUAL

    EPA Science Inventory

    The report is a basic reference manual on the Fine Particle Emissions Information System (FPEIS), a computerized database on primary fine particle emissions to the atmosphere from stationary point sources. The FPEIS is a component of the Environmental Assessment Data Systems (EAD...

  8. METALLURGICAL COKE INDUSTRY PARTICULATE EMISSIONS: SOURCE CATEGORY REPORT

    EPA Science Inventory

    The report gives results of a study to develop particulate emission factors based on cutoff size for inhalable particles for the metallurgical coke industry. After a review of available information characterizing particulate emissions from metallurgical coke plants, the data were...

  9. CHARACTERIZATION OF PARTICULATE EMISSIONS FROM NON-FERROUS SMELTERS

    EPA Science Inventory

    Chemical composition and particle size data for particulate emissions for stationary sources are required for environmental health effect assessments, air chemistry studies, and air quality modelling Investigations such as source apportionment. n this study, particulate emissions...

  10. ASPHALTIC CONCRETE INDUSTRY PARTICULATE EMISSIONS: SOURCE CATEGORY REPORT

    EPA Science Inventory

    The report describes the development of particulate emission factors based on cutoff size for inhalable particles for the asphaltic concrete industry. After review of available information characterizing particulate emissions from asphalt concrete plants, the data were summarized...

  11. PARTICULATE EMISSIONS FROM CONSTRUCTION ACTIVITIES

    EPA Science Inventory

    Although it has long been recognized that road and building construction activity constitutes an important source of PM emissions throughout the United States, until recently only limited research has been directed to its characterization. This paper presents the results of PM10...

  12. Continuous measurement of diesel particulate emissions

    SciTech Connect

    Cha, S.; Black, F.; King, F.

    1988-01-01

    Evaluation of emerging diesel-particulate emissions control technology will require analytical procedures capable of continuous measurement of transient organic and elemental carbon emissions. Procedures based on the flame ionization properties of organic carbon and the opacity or light extinction properties of elemental carbon are described. The instrumentation provided adequate time resolution to observe the transient concentrations associated with typical automobile driving patterns. Accuracy and precision are evaluated by comparing integrated average results to measurements, using classical gravimetric filtration techniques. Emissions from two diesel passenger cars with substantially different chemical compositions are examined. Mass-specific extinction coefficients are developed using the Beer-Lambert Law and a simplified linear model that proved adequate for particulate concentrations typical of diluted passenger-car exhaust.

  13. Fine particulate matter in acute exacerbation of COPD

    PubMed Central

    Ni, Lei; Chuang, Chia-Chen; Zuo, Li

    2015-01-01

    Chronic obstructive pulmonary disease (COPD) is a common airway disorder. In particular, acute exacerbations of COPD (AECOPD) can significantly reduce pulmonary function. The majority of AECOPD episodes are attributed to infections, although environmental stress also plays a role. Increasing urbanization and associated air pollution, especially in developing countries, have been shown to contribute to COPD pathogenesis. Elevated levels of particulate matter (PM) in polluted air are strongly correlated with the onset and development of various respiratory diseases. In this review, we have conducted an extensive literature search of recent studies of the role of PM2.5 (fine PM) in AECOPD. PM2.5 leads to AECOPD via inflammation, oxidative stress (OS), immune dysfunction, and altered airway epithelial structure and microbiome. Reducing PM2.5 levels is a viable approach to lower AECOPD incidence, attenuate COPD progression and decrease the associated healthcare burden. PMID:26557095

  14. Fine particulate matter in acute exacerbation of COPD.

    PubMed

    Ni, Lei; Chuang, Chia-Chen; Zuo, Li

    2015-01-01

    Chronic obstructive pulmonary disease (COPD) is a common airway disorder. In particular, acute exacerbations of COPD (AECOPD) can significantly reduce pulmonary function. The majority of AECOPD episodes are attributed to infections, although environmental stress also plays a role. Increasing urbanization and associated air pollution, especially in developing countries, have been shown to contribute to COPD pathogenesis. Elevated levels of particulate matter (PM) in polluted air are strongly correlated with the onset and development of various respiratory diseases. In this review, we have conducted an extensive literature search of recent studies of the role of PM2.5 (fine PM) in AECOPD. PM2.5 leads to AECOPD via inflammation, oxidative stress (OS), immune dysfunction, and altered airway epithelial structure and microbiome. Reducing PM2.5 levels is a viable approach to lower AECOPD incidence, attenuate COPD progression and decrease the associated healthcare burden. PMID:26557095

  15. Effects of Crayfish on Quality of Fine Particulate Organic Matter

    NASA Astrophysics Data System (ADS)

    Montemarano, J. J.; Kershner, M. W.; Leff, L. G.

    2005-05-01

    The origin and ontogeny of detritus often determines its bioavailability. Crayfish shred and consume detrital organic matter, influencing fine particulate organic matter (FPOM) availability, composition and quality. Given consumption of FPOM by many invertebrates, crayfish can indirectly affect these organisms by altering FPOM bioavailability through organic matter fragmentation, biofilm disturbance, and defecation. These effects may or may not vary among coarse particulate organic matter (CPOM) from different leaf species. To assess crayfish effects on FPOM quality, crayfish were fed stream-conditioned maple or oak leaves in hanging 1-mm mesh-bottom baskets in aquaria. After 12 h, crayfish and remaining leaves were removed. FPOM fragments that fell through the mesh were vacuum filtered and analyzed for percent organic matter, C:N ratio, and bacterial abundance. The same analyses were conducted on crayfish feces collected using finger cots encasing crayfish abdomens. C:N ratios did not differ between feces and maple leaf CPOM, but were lower in FPOM produced through fragmentation and disturbance (P = 0.023). Overall, crayfish alter the ontogeny of detritus, which may, in turn, affect stream FPOM dynamics.

  16. 75 FR 45075 - Federal Implementation Plans To Reduce Interstate Transport of Fine Particulate Matter and Ozone

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-02

    ... Interstate Transport of Fine Particulate Matter and Ozone AGENCY: Environmental Protection Agency (EPA... the proposed rule ``Federal Implementation Plans to Reduce Interstate Transport of Fine Particulate Matter and Ozone'' (Transport Rule) which is published elsewhere in today's issue of the Federal...

  17. 76 FR 63251 - Revisions to Federal Implementation Plans To Reduce Interstate Transport of Fine Particulate...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-12

    ... Interstate Transport of Fine Particulate Matter and Ozone AGENCY: Environmental Protection Agency (EPA... Interstate Transport of Fine Particulate Matter and Ozone'', which was signed on October 6, 2011 and posted... comments regarding proposed revisions to EPA's Final Transport Rule (Federal Implementation...

  18. ENVIRONMENTAL ASSESSMENT DATA SYSTEMS USER GUIDE: FINE PARTICLE EMISSIONS INFORMATION SYSTEM

    EPA Science Inventory

    The report is a user guide to the Fine Particle Emissions Information System (FPEIS), a computerized data base on particulate emissions from stationary point sources. The FPEIS is one of four waste stream data bases which are components of the Environmental Assessment Data System...

  19. ON LINE MEASUREMENT OF PRIMARY FINE PARTICULATE MATTER

    SciTech Connect

    Dale R. Tree

    1999-09-01

    The measurement of fine particulate in pulverized coal flames has several applications of importance. These include but are not limited to: (1) The detection of fine particulate in the effluent for pollution control; (2) The detection of soot and fuel burnout in real time within a boiler; and (3) The quantification of soot within coal flame for improved understanding of pulverized coal flame heat transfer and soot modeling. A method has been investigated using two-color extinction along a line of sight within the flame which provides a continuous real-time measurement of the soot concentration. The method uses two inexpensive HeNe lasers and simple light detectors. The results of testing the method on a pilot scale 0.2 MW pulverized coal reactor demonstrate the method is working well in a qualitative sense and an error analysis performed on the uncertainty of the assumed values demonstrates the method to be accurate to within {+-} 30%. Additional experiments designed to quantify the measurement more accurately are ongoing. Measurements at the end of the reactor just prior to the exit showed soot could not be detected until the overall equivalence ratio became greater than 1.0. The detection limit for the method was estimated to be 1 x 10{sup -8} soot volume fraction. Peak soot concentration was found to approach a level of 0.88 x 10{sup -6} at the sootiest condition. The method was used to obtain an axial profile of soot concentration aligned with the down-fired pulverized coal flame for three different flame swirls of 0, 0.5 and 1.5 and an overall equivalence ratio of 1.2. The axial measurements showed the soot concentration to increase initially and level off to a constant maximum value. At 0.5 swirl the soot volume fraction increased more rapidly near the burner and both the 0.5 and 1.5 swirl cases showed that soot had reached a maximum by 0.9 m, but the 0 swirl soot concentration was still increasing. Previous measurements of species and velocity in the reactor

  20. FINE PARTICLE EMISSIONS INFORMATION SYSTEM: SUMMARY REPORT (SUMMER 1976)

    EPA Science Inventory

    The report summarizes the initial loading of data into the Fine Particle Emissions Information System (FPEIS), a computerized database on primary fine particle emissions to the atmosphere from stationary sources, designed to assist engineers and scientists engaged in fine particl...

  1. Vehicular particulate matter emissions in road tunnels in Sao Paulo, Brazil.

    PubMed

    Sánchez-Ccoyllo, Odón R; Ynoue, Rita Y; Martins, Leila D; Astolfo, Rosana; Miranda, Regina M; Freitas, Edmilson D; Borges, Alessandro S; Fornaro, Adalgiza; Freitas, Helber; Moreira, Andréa; Andrade, Maria F

    2009-02-01

    In the metropolitan area of São Paulo, Brazil, ozone and particulate matter (PM) are the air pollutants that pose the greatest threat to air quality, since the PM and the ozone precursors (nitrogen oxides and volatile organic compounds) are the main source of air pollution from vehicular emissions. Vehicular emissions can be measured inside road tunnels, and those measurements can provide information about emission factors of in-use vehicles. Emission factors are used to estimate vehicular emissions and are described as the amount of species emitted per vehicle distance driven or per volume of fuel consumed. This study presents emission factor data for fine particles, coarse particles, inhalable particulate matter and black carbon, as well as size distribution data for inhalable particulate matter, as measured in March and May of 2004, respectively, in the Jânio Quadros and Maria Maluf road tunnels, both located in São Paulo. The Jânio Quadros tunnel carries mainly light-duty vehicles, whereas the Maria Maluf tunnel carries light-duty and heavy-duty vehicles. In the Jânio Quadros tunnel, the estimated light-duty vehicle emission factors for the trace elements copper and bromine were 261 and 220 microg km(-1), respectively, and 16, 197, 127 and 92 mg km(-1), respectively, for black carbon, inhalable particulate matter, coarse particles and fine particles. The mean contribution of heavy-duty vehicles to the emissions of black carbon, inhalable particulate matter, coarse particles and fine particles was, respectively 29, 4, 6 and 6 times higher than that of light-duty vehicles. The inhalable particulate matter emission factor for heavy-duty vehicles was 1.2 times higher than that found during dynamometer testing. In general, the particle emissions in São Paulo tunnels are higher than those found in other cities of the world. PMID:18228152

  2. Exploring Variation and Predictors of Residential Fine Particulate Matter Infiltration

    PubMed Central

    Clark, Nina A.; Allen, Ryan W.; Hystad, Perry; Wallace, Lance; Dell, Sharon D.; Foty, Richard; Dabek-Zlotorzynska, Ewa; Evans, Greg; Wheeler, Amanda J.

    2010-01-01

    Although individuals spend the majority of their time indoors, most epidemiological studies estimate personal air pollution exposures based on outdoor levels. This almost certainly results in exposure misclassification as pollutant infiltration varies between homes. However, it is often not possible to collect detailed measures of infiltration for individual homes in large-scale epidemiological studies and thus there is currently a need to develop models that can be used to predict these values. To address this need, we examined infiltration of fine particulate matter (PM2.5) and identified determinants of infiltration for 46 residential homes in Toronto, Canada. Infiltration was estimated using the indoor/outdoor sulphur ratio and information on hypothesized predictors of infiltration were collected using questionnaires and publicly available databases. Multiple linear regression was used to develop the models. Mean infiltration was 0.52 ± 0.21 with no significant difference across heating and non-heating seasons. Predictors of infiltration were air exchange, presence of central air conditioning, and forced air heating. These variables accounted for 38% of the variability in infiltration. Without air exchange, the model accounted for 26% of the variability. Effective modelling of infiltration in individual homes remains difficult, although key variables such as use of central air conditioning show potential as an easily attainable indicator of infiltration. PMID:20948956

  3. Hormesis for fine particulate matter (PM 2.5).

    PubMed

    Cox, Louis Anthony Tony

    2012-01-01

    The hypothesis of hormesis - that substances that harm health at high exposures can reduce risks below background at low exposures, e.g., if they activate defenses without overwhelming them - becomes important for practical policy making if it holds for regulated substances. Recently, the U.S. EPA concluded that reductions in ambient concentrations of fine particulate matter (PM2.5) in air caused trillions of dollars worth of human health benefits for a compliance cost of only about $65 billion per year. This conclusion depends on an unverified assumption of a positive, causal, straight-line relation between PM2.5 concentrations and mortality risks. We review empirical data on PM2.5 and mortality risks (and their precursors, inflammatory responses) and conclude that the PM2.5 concentration-response relation may be J-shaped, rather than linear. This possibility implies that the 1990 Clean Air Act Amendment may well have produced no (or negative) human health benefits, rather than the trillions of dollars worth of reduced mortalities ascribed to it by EPA; and that attempts to achieve further risk-reduction benefits by further reducing PM2.5 concentrations may be counterproductive. This creates a very high value for scientific information that better reveals the true shape of the PM2.5 concentration-response function at and below current ambient levels. PMID:22740783

  4. Airborne endotoxin in fine particulate matter in Beijing

    NASA Astrophysics Data System (ADS)

    Guan, Tianjia; Yao, Maosheng; Wang, Junxia; Fang, Yanhua; Hu, Songhe; Wang, Yan; Dutta, Anindita; Yang, Junnan; Wu, Yusheng; Hu, Min; Zhu, Tong

    2014-11-01

    Endotoxin is an important biological component of particulate matter (PM) which, upon inhalation, can induce adverse health effects, and also possibly complicate the diseases in combination with other pollutants. From 1 March 2012 to 27 February 2013 we collected air samples using quartz filters daily for the quantification of airborne endotoxin and also fine PM (PM2.5) in Beijing, China. The geometric means for endotoxin concentration and the fraction of endotoxin in PM were 0.65 EU/m3 (range: 0.10-75.02) and 10.25 EU/mg PM2.5 (range: 0.38-1627.29), respectively. The endotoxin concentrations were shown to vary greatly with seasons, typically with high values in the spring and winter seasons. Temperature and relative humidity, as well as concentrations of sulfur dioxide and nitrogen oxides were found to be significantly correlated with airborne endotoxin concentrations (p < 0.05). Additionally, positive correlations were also detected between endotoxin concentrations and natural sources of Na+, K+, Mg2+, and F-, while negative correlations were observed between endotoxin concentrations and anthropogenic sources of P, Co, Zn, As, and Tl. Oxidative potential analysis revealed that endotoxin concentrations were positively correlated with reactive oxygen species (ROS), but not dithiothreitol (DTT) of PM. This study provided the first continuous time series of airborne endotoxin concentrations in Beijing, and identifies its potential associations with atmospheric factors. The information developed here can assist in the assessment of health effects of air pollution in Beijing.

  5. The pilot scale testing of a circulating fluid bed fine particulate and mercury control device

    SciTech Connect

    Helfritch, D.J.; Feldman, P.L.

    1998-07-01

    US utilities are faced with new economic challenges to remain competitive in light of deregulation initiatives and increased competition. In addition, environmental pressures are forcing many of these utilities to be prepared to reduce the air emissions such as NO{sub x}, SO{sub x}, fine particulates and mercury from coal-burning plants. The proposed PM{sub 2.5} regulations will demand improved fine particle control from existing equipment, and potential mercury vapor regulations would impose the installation of new control equipment. The device described here employs a circulating fluid bed in order to achieve a high particle density, which promotes the agglomeration of particles. The fine particles entering the system are formed into larger agglomerates, which are then more readily captured by a conventional electrostatic precipitator. Activated carbon cab be injected into the circulating bed for the adsorption of mercury vapor. High residence time, due to the recirculation, allows very effective utilization of the carbon. The fluid bed device was operated for a three-month period on a slipstream of gas exiting a coal-fired boiler at PSE and G's Mercer Generating Station. The results showed that fine particles and mercury vapor can be significantly reduced by passage through a fluidized bed of fly ash and activated carbon. The addition of lime to the fluid bed resulted in effective capture of SO{sub 2} and HCI. These results and the effects of various parameters on capture efficiencies are presented.

  6. Particulate Emission Abatement for Krakow Boilerhouses

    SciTech Connect

    1998-09-14

    Environmental clean-up and pollution control are considered the foremost national priorities in Poland. The target of this cleanup is the Polish coal industry, which supplies the fuel to generate over 78% of Poland`s primary energy production. This project addresses the problem of airborne dust and uncontrolled particulate emissions from boilerhouses, which represent a large fraction of the total in Poland. In Krakow alone, there are numerous uncontrolled boilers accounting for about half the total fuel use. the large number of low-capacity boilers poses both technical and economic challenges, since the cost of control equipment is a significant factor in the reduction of emissions. A new concept in dust collection, called a Core Separator, is proposed for this important application. The Core Separator is an advanced technology developed through research sponsored by the Department of Energy.

  7. Particulate Emission Abatement for Krakow Boiler Houses

    SciTech Connect

    1998-09-01

    Environmental clean-up and pollution control are considered the foremost national priorities in Poland. The target of this cleanup is the Polish coal industry, which currently comprises over 78% of Poland`s primary energy production. This project addresses the problem of airborne dust and uncontrolled particulate emissions from boilerhouses, which represent a large fraction of the total in Poland. In Krakow alone, there are more than 2,000 uncontrolled boilers accounting for about half the total fuel use. The large number of low- capacity boilers poses both technical and economic challenges, since the cost of control equipment is a significant factor in the reduction of emissions. A new concept in dust collection, called a Core Separator, is proposed for this important application. The Core Separator is an advanced technology developed through research sponsored by the Department of Energy.

  8. HEAVY-DUTY DIESEL FINE PM EMISSIONS

    EPA Science Inventory

    Fine PM emissions from diesel powered vehicles continues to be a concern for those responsible for implementating the PM-2.5 National Ambient Air Quality Standards (NAAQS). Diesel generated PM is nanometer in size, incorporates a number of toxic air pollutants (including carcinog...

  9. Particulate emission abatement for Krakow boiler houses

    SciTech Connect

    Wysk, R.

    1995-12-31

    Among the many strategies for improving air quality in Krakow, one possible method is to adapt new and improved emission control technology. This project focuses on such a strategy. In order to reduce dust emissions from coal-fueled boilers, a new device called a Core Separator has been introduced in several boiler house applications. This advanced technology has been successfully demonstrated in Poland and several commercial units are now in operation. Particulate emissions from the Core Separator are typically 3 to 5 times lower than those from the best cyclone collectors. It can easily meet the new standard for dust emissions which will be in effect in Poland after 1997. The Core Separator is a completely inertial collector and is based on a unique recirculation method. It can effectively remove dust particles below 10 microns in diameter, the so-called PM-10 emissions. Its performance approaches that of fabric filters, but without the attendant cost and maintenance. It is well-suited to the industrial size boilers located in Krakow. Core Separators are now being marketed and sold by EcoInstal, one of the leading environmental firms in Poland, through a cooperative agreement with LSR Technologies.

  10. Method and means for diesel exhaust particulate emission control

    SciTech Connect

    Ludecke, O.A.

    1983-04-19

    A method and means for controlling diesel particulate emissions involves providing an exhaust trap filter to collect exhaust particulates at a point near the engine exhaust ports and providing means to periodically vent burning combustion chamber gases to the exhaust filter to initiate combustion and incineration of the collected particulates. Various means for conducting burning mixture to ignite the particulates in the filter are disclosed.

  11. PEROXIDES AND MACROPHAGES IN THE TOXICITY OF FINE PARTICULATE MATTER IN RATS

    EPA Science Inventory

    The investigators will test the hypothesis that oxidants in ambient air, such as hydrogen peroxide, may be transported by fine particulate matter into the lungs and thus contribute to lung tissue injury.

  12. Comparison of gene expression profiles induced by coarse, fine, and ultrafile particulate matter

    EPA Science Inventory

    Coarse, fine, and ultrafine particulate matter (PM) fractions possess different physical properties and chemical compositions and may produce different adverse health effects. Studies were undertaken to determine whether or not gene expression patterns may be used to discriminate...

  13. Diagnostic Air Quality Model Evaluation of Source-Specific Primary and Secondary Fine Particulate Carbon

    EPA Science Inventory

    Ambient measurements of 78 source-specific tracers of primary and secondary carbonaceous fine particulate matter collected at four midwestern United States locations over a full year (March 2004–February 2005) provided an unprecedented opportunity to diagnostically evaluate...

  14. [Inhalable particulate matter and fine particulate matter: their basic characteristics, monitoring methods, and forest regulation functions].

    PubMed

    Wang, Hua; Lu, Shao-Wei; Li, Shao-Ning; Pan, Qing-Hua; Zhang, Yu-ping

    2013-03-01

    Both inhalable particulate matter (PM10) and fine particulate matter (PM2.5) are not only one of the main causes of air pollution, but also the primary pollutants in most cities. Based on the analysis of the impacts of PM10 and PM2.5 on the environment and human health, this paper summarized the components, sources, and mass concentration variations of PM10 and PM2.5 and related affecting factors, and introduced the network layout of PM10 and PM2.5 monitoring and its principles and features. The research methods on the removal of PM10 and PM2.5 by forests, the removal rates of PM10 and PM2.5 by different forests, and the related affecting mechanisms were summed up at regional and individual scales, and the existed problems in this research field were discussed. Due to the lack of the comparable observation studies on the atmospheric PM10 and PM2.5 along different gradients and in background areas, the joint effects of multiple factors on the PM10 and PM2.5 concentrations are not revealed. It was suggested that to make a rational network layout of PM10 and PM2.5 monitoring, to correctly select proper monitoring methods, and to compare and calibrate the observed results from classical manual methods would be the bases to guarantee the validity of PM10 and PM2.5 monitoring data. At present, there are few reports about the PM2.5 removal by forests, and it's not clear about the physiological processes and ecological mechanisms of PM10 and PM2.5 removal at cell, tissue, organ, and individual level. PMID:23755507

  15. 77 FR 28785 - Revisions to Federal Implementation Plans To Reduce Interstate Transport of Fine Particulate...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-16

    ... Particulate Matter and Ozone'' as a direct final rule on February 21, 2012. See 77 FR 10342. The direct final... Fine Particulate Matter and Ozone.'' 77 FR 10342. The EPA intends to act on the parallel ] proposal as... February 21, 2012, at 77 FR 10342. FOR FURTHER INFORMATION CONTACT: Jeremy Mark, U.S....

  16. Identification of haze-creating sources from fine particulate matter in Dhaka aerosol using carbon fractions.

    PubMed

    Begum, Bilkis A; Hopke, Philip K

    2013-09-01

    Fine particulate matter (PM2.5) samples were simultaneously collected on Teflon and quartz filters between February 2010 and February 2011 at an urban monitoring site (CAMS2) in Dhaka, Bangladesh. The samples were collected using AirMetrics MiniVol samplers. The samples on Teflon filters were analyzed for their elemental composition by PIXE and PESA. Particulate carbon on quartz filters was analyzed using the IMPROVE thermal optical reflectance (TOR) method that divides carbon into four organic carbons (OC), pyrolized organic carbon (OP), and three elemental carbon (EC) fractions. The data were analyzed by positive matrix factorization using the PMF2 program. Initially, only total OC and total EC were included in the analysis and five sources, including road dust, sea salt and Zn, soil dust, motor vehicles, and brick kilns, were obtained. In the second analysis, the eight carbon fractions (OC1, OC2, OC3, OC4, OP, EC1, EC2, EC3) were included in order to ascertain whether additional source information could be extracted from the data. In this case, it is possible to identify more sources than with only total OC and EC. The motor vehicle source was separated into gasoline and diesel emissions and a fugitive Pb source was identified. Brick kilns contribute 7.9 microg/m3 and 6.0 microg/m3 of OC and EC, respectively, to the fine particulate matter based on the two results. From the estimated mass extinction coefficients and the apportioned source contributions, soil dust, brick kiln, diesel, gasoline, and the Pb sources were found to contribute most strongly to visibility degradation, particularly in the winter. PMID:24151680

  17. FEDERAL REFERENCE AND EQUIVALENT METHODS FOR MEASURING FINE PARTICULATE MATTER

    EPA Science Inventory

    In the national ambient air quality standards specified by the U.S. Environmental Protection Agency in the Code of Federal Regulations, new standards were established for particulate matter on July 18, 1997. The new particulate matter standards specify mass concentration as the...

  18. Particulate Measurements and Emissions Characterization of Alternative Fuel Vehicle Exhaust

    SciTech Connect

    Durbin, T. D.; Truex, T. J.; Norbeck, J. M.

    1998-11-19

    The objective of this project was to measure and characterize particulate emissions from light-duty alternative fuel vehicles (AFVs) and equivalent gasoline-fueled vehicles. The project included emission testing of a fleet of 129 gasoline-fueled vehicles and 19 diesel vehicles. Particulate measurements were obtained over Federal Test Procedure and US06 cycles. Chemical characterization of the exhaust particulate was also performed. Overall, the particulate emissions from modern technology compressed natural gas and methanol vehicles were low, but were still comparable to those of similar technology gasoline vehicles.

  19. CONTINUOUS MEASUREMENT OF DIESEL PARTICULATE EMISSIONS (JOURNAL VERSION)

    EPA Science Inventory

    Evaluation of emerging diesel particulate emissions control technology will require analytical procedures capable of continuous measurement of transient organic and elemental carbon emissions. Procedures based on the flame ionization properties of organic carbon and the opacity o...

  20. IRON AND STEEL INDUSTRY PARTICULATE EMISSIONS: SOURCE CATEGORY REPORT

    EPA Science Inventory

    The report gives results of a study to develop particulate emission factors based on cutoff size for inhalable particles for the iron and steel industry. After reviewing available information characterizing particulate emissions from iron and steel plants, the data were summarize...

  1. 40 CFR 86.1778-99 - Calculations; particulate emissions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Calculations; particulate emissions. 86.1778-99 Section 86.1778-99 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Vehicles and Light-Duty Trucks § 86.1778-99 Calculations; particulate emissions. The provisions of §...

  2. 40 CFR 86.145-82 - Calculations; particulate emissions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Calculations; particulate emissions. 86.145-82 Section 86.145-82 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Complete Heavy-Duty Vehicles; Test Procedures § 86.145-82 Calculations; particulate emissions. (a)...

  3. Fine particulate matter and the risk of autism spectrum disorder.

    PubMed

    Talbott, Evelyn O; Arena, Vincent C; Rager, Judith R; Clougherty, Jane E; Michanowicz, Drew R; Sharma, Ravi K; Stacy, Shaina L

    2015-07-01

    The causes of autism spectrum disorder (ASD) are not well known. Recent investigations have suggested that air pollution, including PM2.5, may play a role in the onset of this condition. The objective of the present work was to investigate the association between prenatal and early childhood exposure to fine particulate matter (PM2.5) and risk for childhood ASD. A population-based case-control study was conducted in children born between January 1, 2005 and December 31, 2009 in six counties in Southwestern Pennsylvania. ASD cases were recruited from specialty autism clinics, local pediatric practices, and school-based special needs services. ASD cases were children who scored 15 or above on the Social Communication Questionnaire (SCQ) and had written documentation of an ASD diagnosis. Controls were children without ASD recruited from a random sample of births from the Pennsylvania state birth registry and frequency matched to cases on birth year, gender, and race. A total of 217 cases and 226 controls were interviewed. A land use regression (LUR) model was used to create person- and time-specific PM2.5 estimates for individual (pre-pregnancy, trimesters one through three, pregnancy, years one and two of life) and cumulative (starting from pre-pregnancy) key developmental time periods. Logistic regression was used to investigate the association between estimated exposure to PM2.5 during key developmental time periods and risk of ASD, adjusting for mother's age, education, race, and smoking. Adjusted odds ratios (AOR) were elevated for specific pregnancy and postnatal intervals (pre-pregnancy, pregnancy, and year one), and postnatal year two was significant, (AOR=1.45, 95% CI=1.01-2.08). We also examined the effect of cumulative pregnancy periods; noting that starting with pre-pregnancy through pregnancy, the adjusted odds ratios are in the 1.46-1.51 range and significant for pre-pregnancy through year 2 (OR=1.51, 95% CI=1.01-2.26). Our data indicate that both

  4. Impact of fine particulate fluctuation and other variables on Beijing's air quality index.

    PubMed

    Chen, Bo; Lu, Shaowei; Li, Shaoning; Wang, Bing

    2015-04-01

    We analyzed fluctuation in Beijing's air quality over 328 days, based on air quality grades and air quality data from 35 atmospheric monitoring stations. Our results show the air over Beijing is subject to pollution 152 days of the year, or 46.34%. Among all pollutants, fine particulates, solid or liquid, 2.5 μm or less in size (PM2.5), appeared most frequently as the primary pollutant: 249 days, or 76% of the sample year (328 days). Nitrogen dioxide (NO2) and coarse particulates (PM10) cause the least pollution, appearing only 7 and 3 days, or 2 and 1% of the sample year, respectively. In Beijing, fine particulates like PM2.5 vary seasonally: 154.54 ± 18.60 in winter > 145.22 ± 18.61 in spring > 140.16 ± 20.76 in autumn > 122.37 ± 13.42 in summer. Air quality is best in August and worst in December, while various districts in Beijing experience different air quality. To be specific, from south to north and from west to east, air quality tends to improve. Meteorological elements have a constraining effect on air pollutants, which means there is a linear correlation between the air quality index and humidity, rainfall, wind speed, and temperature. Under a typical pollution scenario, the higher the air quality index (AQI) value, the lower the wind speed and the greater the relative humidity; the lower the AQI value, the higher the wind speed and lower the relative humidity. Analysis of influencing factors reveals that the air pollution is mainly particulate matter produced by burning coal, vehicle emissions, volatile oils and gas, fast development of food services, emissions from the surrounding region, and natural dust clouds formed in arid areas to the northwest. Topography affects the distribution of meteorological conditions, in turn varying air quality over the region from one location to another. Human activities also exercise impact on urban air quality with dual functions. PMID:25563832

  5. Energy and environmental research emphasizing low-rank coal -- Task 2.4, Air toxic fine particulate control

    SciTech Connect

    Dunham, G.E.; Heidt, M.K.; Miller, S.J.

    1995-03-01

    Emission from coal-fired boilers is an issue because of the current concern over atmospheric air toxics, which contain high concentrations of trace elements. The best method of minimizing the emission of these air toxic trace elements to the atmosphere is to install high-efficiency fine-particle control devices. After collection, the dust must be removed from the filter bags or electrostatic precipitator (ESP) plates and transferred to the hopper without significant redispersion. Since it is more difficult to collect fine particles, the extent to which the dust is redispersed into its original particle-size distribution will have a major impact on the overall fine-particle collection efficiency of the filter or ESP and, subsequently, the collection efficiency of air toxic metals. The goal of Task 2.4 was to evaluate redispersion of dust in particulate control devices so that the appropriate methods to minimize redispersion can be implemented. The primary objective was to determine the extent that fly ash is redispersed as individual particles upon cleaning of the filters or ESP plates. The current research was to determine if the level of redispersion of fly ash correlates with measurable cohesive dust properties. This will contribute to the long-term project goal of developing models to the point where they can be used to help design particulate control devices for the lowest level of fine-particle emissions at a reasonable cost.

  6. Chemical speciation and source apportionment of fine particulate matter in Santiago, Chile, 2013.

    PubMed

    Villalobos, Ana M; Barraza, Francisco; Jorquera, Héctor; Schauer, James J

    2015-04-15

    Santiago is one of the largest cities in South America and has experienced high fine particulate matter (PM2.5) concentrations in fall and winter months for decades. To better understand the sources of fall and wintertime pollution in Santiago, PM2.5 samples were collected for 24 h every weekday from March to October 2013 for chemical analysis. Samples were analyzed for mass, elemental carbon (EC), organic carbon (OC), water soluble organic carbon (WSOC), water soluble nitrogen (WSTN), secondary inorganic ions, and particle-phase organic tracers for source apportionment. Selected samples were analyzed as monthly composites for organic tracers. PM2.5 concentrations were considerably higher in the coldest months (June-July), averaging (mean ± standard deviation) 62±15 μg/m(3) in these two months. Average fine particle mass concentration during the study period was 40±20 μg/m(3). Organic matter during the peak winter months was the major component of fine particles comprising around 70% of the particle mass. Source contributions to OC were calculated using organic molecular markers and a chemical mass balance (CMB) receptor model. The four combustion sources identified were wood smoke, diesel engine emission, gasoline vehicles, and natural gas. Wood smoke was the predominant source of OC, accounting for 58±42% of OC in fall and winter. Wood smoke and nitrate were the major contributors to PM2.5. In fall and winter, wood smoke accounted for 9.8±7.1 μg/m(3) (21±15%) and nitrate accounted for 9.1±4.8 μg/m(3) (20±10%) of fine PM. The sum of secondary inorganic ions (sulfate, nitrate, and ammonium) represented about 30% of PM2.5 mass. Secondary organic aerosols contributed only in warm months, accounting for about 30% of fine PM during this time. PMID:25617780

  7. Gaseous and particulate emission profiles during controlled rice straw burning

    NASA Astrophysics Data System (ADS)

    Sanchis, E.; Ferrer, M.; Calvet, S.; Coscollà, C.; Yusà, V.; Cambra-López, M.

    2014-12-01

    Burning of rice straw can emit considerable amounts of atmospheric pollutants. We evaluated the effect of rice straw moisture content (5%, 10%, and 20%) on the emission of carbon dioxide (CO2) and on the organic and inorganic constituents of released particulate matter (PM): dioxins, heavy metals, and polycyclic aromatic hydrocarbons (PAHs). Four burning tests were conducted per moisture treatment using the open chamber method. Additionally, combustion characteristics, including burning stages, durations, temperature, and relative humidity, were recorded. Burning tests showed flaming and smoldering stages were significantly longer in 20% moisture treatment (P < 0.05) compared with the rest. The amount of burned straw and ashes decreased with increasing straw moisture content (P < 0.001). Carbon dioxide was the main product obtained during combustion with emission values ranging from 692 g CO2 kg dry straw-1 (10% moisture content) to 835 g CO2 kg dry straw-1 (20% moisture content). Emission factors for PM were the highest in 20% moisture treatment (P < 0.005). Fine PM (PM2.5) accounted for more than 60% of total PM mass. Emission factors for dioxins increased with straw moisture content, being the highest in 20% moisture treatment, although showing a wide variability among burning tests (P > 0.05). Emissions factors for heavy metals were low and similar among moisture treatments (P > 0.05). Emission factors for individual PAHs were generally higher in 20% moisture treatment. Overall, emission factors of atmospheric pollutants measured in our study were higher in the 20% moisture content. This difference could be attributed to the incomplete combustion at higher levels of rice straw moisture content. According to our results, rice straw burning should be done after straw drying and under minimal moisture conditions to lower pollutant emission levels.

  8. Continuous particulate monitoring for emission control

    SciTech Connect

    Bock, A.H. )

    1993-08-01

    An optical continuous particle monitoring system has been developed to overcome common problems associated with emissions monitoring equipment. Opacity monitors generally use a single- or double-pass system to analyze the presence of dust particles in the flue gas stream. The particles scatter and absorb light as it passes through the stack. As the particle content in the gas stream increases due to bag failure or some other problem, the amount of light that is blocked also increases. The opacity monitor compares the amount of lost light energy to the total energy of the light available and translates the signal to percentage of opacity. Opacity monitors are typically installed to meet the requirements set forth by pollution control agencies. Most opacity monitors are designed to meet all of the requirements of the Environmental Protection Agency (EPA) 40 CFR, Part 60, Appendix B, Performance Specification. The new continuous particle monitor (CPM) increases the accuracy of emission monitoring and overcomes typical problems found in conventional emission monitoring devices. The CPM is an optically based, calibratible, continuous dust monitor that uses a microprocessor, transmitter head, and receiver head. When calibrated with an isokinetic sample, a continuous readout of particulate concentration (in mg/m[sup 3]) in the exhaust gas is provided. The system can be used as a filter bag failure system or a long-term emission trend analyzer. Formal testing was conducted to evaluate the effectiveness of the optically based CPM. The monitor was calibrated using particles of a range of compositions, size distributions, and concentrations. The feasibility of using the instrument to measure particle concentration as low as 10 mg/m[sup 3] was examined.

  9. Particulate emissions from concentrated animal feeding operations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Concentrated animal feeding operations (CAFOs), including open beef cattle feedlots, swine facilities, and poultry facilities, can emit large amounts of particulate matter, including TSP (total suspended particulates), PM10 (particulate matter with equivalent aerodynamic diameter of 10 mm or less) a...

  10. Sources of fine particulate species in ambient air over Lake Champlain Basin, VT

    SciTech Connect

    Ning Gao; Amy E. Gildemeister; Kira Krumhansl; Katherine Lafferty; Philip K. Hopke; Eugene Kim; Richard L. Poirot

    2006-11-15

    This study is a part of an ongoing investigation of the types and locations of emission sources that contribute fine particulate air contaminants to Underhill, VT. The air quality monitoring data used for this study are from the Interagency Monitoring of Protected Visual Environments network for the period of 2001-2003 for the Underhill site. The main source-receptor modeling techniques used are the positive matrix factorization (PMF) and potential source contribution function (PSCF). This new study is intended as a comparison to a previous study of the 1988-1995 Underhill data that successfully revealed a total of 11 types of emission sources with significant contributions to this rural site. This new study has identified a total of nine sources: nitrate-rich secondary aerosol, wood smoke, East Coast oil combustion, automobile emission, metal working, soil/dust, sulfur-rich aerosol type I, sulfur-rich aerosol type II, and sea salt/road salt. Furthermore, the mass contributions from the PMF identified sources that correspond with sampling days with either good or poor visibility were analyzed to seek possible correlations. It has been shown that sulfur-rich aerosol type I, nitrate aerosol, and automobile emission are the most important contributors to visibility degradation. Soil/dust and sea salt/road salt also have an added effect. 38 refs., 17 figs., 2 tabs.

  11. Particulate Emissions Hazards Associated with Fueling Heat Engines

    NASA Technical Reports Server (NTRS)

    Hendricks, Robert C.; Bushnell, Dennis M.

    2010-01-01

    All hydrocarbon- (HC-) fueled heat engine exhaust (tailpipe) emissions (<10 to 140 nm) contribute as health hazards, including emissions from transportation vehicles (e.g., aircraft) and other HC-fueled power systems. CO2 emissions are tracked, and when mapped, show outlines of major transportation routes and cities. Particulate pollution affects living tissue and is found to be detrimental to cardiovascular and respiratory systems where ultrafine particulates directly translocate to promote vascular system diseases potentially detectable as organic vapors. This paper discusses aviation emissions, fueling, and certification issues, including heat engine emissions hazards, detection at low levels and tracking of emissions, and alternate energy sources for general aviation.

  12. Origin of fine carbonaceous particulate matter in the Western Mediterranean Basin: fossil versus modern sources

    NASA Astrophysics Data System (ADS)

    Cruz Minguillón, María.; Perron, Nolwenn; Querol, Xavier; Szidat, Sönke; Fahrni, Simon; Wacker, Lukas; Reche, Cristina; Cusack, Michael; Baltensperger, Urs; Prévôt, André S. H.

    2010-05-01

    The present work was carried out in the frame of the international field campaign DAURE (Determination of the sources of atmospheric Aerosols in Urban and Rural Environments in the western Mediterranean). The objective of this campaign is to study the aerosol pollution episodes occurring at regional scale during winter and summer in the Western Mediterranean Basin. As part of this campaign, this work focuses on identifying the origin of fine carbonaceous aerosols. To this end, fine particulate matter (PM1) samples were collected during two different seasons (February-March and July 2009) at two sites: an urban site (Barcelona, NE Spain) and a rural European Supersite for Atmospheric Aerosol Research (Montseny, NE Spain). Subsequently, 14C analyses were carried out on these samples, both in the elemental carbon (EC) fraction and the organic carbon (OC) fraction, in order to distinguish between modern carbonaceous sources (biogenic emissions and biomass burning emissions) and fossil carbonaceous sources (mainly road traffic). Preliminary results from the winter period show that 40% of the OC at Barcelona has a fossil origin whereas at Montseny this percentage is 30%. These values can be considered as unexpected given the nature of the sites. Nevertheless, the absolute concentrations of fossil OC at Barcelona and Montseny differ by a factor of 2 (the first being higher), since the total OC at Montseny is lower than at Barcelona. Further evaluation of results and comparison with other measurements carried out during the campaign are required to better evaluate the origin of the fine carbonaceous matter in the Western Mediterranean Basin. Acknowledgements: Spanish Ministry of Education and Science, for a Postdoctoral Grant awarded to M.C. Minguillón in the frame of Programa Nacional de Movilidad de Recursos Humanos del Plan nacional de I-D+I 2008-2011. Spanish Ministry of Education and Science, for the Acción Complementaria DAURE CGL2007-30502-E/CLI.

  13. Fossil and nonfossil carbon in fine particulate matter: A study of five European cities

    NASA Astrophysics Data System (ADS)

    Glasius, Marianne; La Cour, Agnete; Lohse, Christian

    2011-06-01

    Fossil carbon in particulate matter comes from anthropogenic use and combustion of fossil fuels, while nonfossil carbon may originate from both biogenic (e.g., pollen, plant debris, fungal spores, and biogenic secondary organic aerosol (SOA)) and anthropogenic sources (e.g., cooking and residential wood combustion). We investigated the relative contributions of fossil and nonfossil sources to fine carbonaceous aerosols in five European cities by radiocarbon analysis of aerosol samples collected at four types of sites in 2002-2004. The average fraction of nonfossil carbon was 43 ± 11%, with the lowest fraction, 36 ± 7%, at urban curbside sites and the highest fraction, 54 ± 11%, at rural background sites, farthest away from the impact of man-made emissions. Generally, fossil carbon concentrations at urban curbside sites are elevated in comparison to background sites, which is expected because of their proximity to vehicular emissions. Contrary to what might be expected, the concentration of nonfossil carbon is also higher at curbside than at background sites. This may be attributable to differences between site categories in levels of primary biological aerosols, brake and tire wear in resuspended road dust, biofuels, emissions from cooking and residential wood combustion, or processes such as anthropogenic enhancement of biogenic SOA and increased partitioning of semivolatile compounds into the aerosol phase at urban sites. The exact causes should be investigated by future detailed source analyses.

  14. Particulate matter and black carbon optical properties and emission factors from prescribed fires in the southeastern United States

    EPA Science Inventory

    The aerosol emissions from prescribed fires in the Southeastern United States were measured and compared to emissions from laboratory burns with fuels collected from the site. Fine particulate matter (PM2.5), black carbon, and aerosol light scattering and absorption were characte...

  15. PARTICULATE EMISSION ABATEMENT FOR KRAKOW BOILERHOUSES

    SciTech Connect

    Bruce H. Easom; Leo A, Smolensky; S. Ronald Wysk; Jan Surowka; Miroslaw Litke; Jacek Ginter

    1998-09-30

    A U.S./Polish Bilateral Steering Committee (BSC) and the Department of Energy (DOE) selected LSR Technologies, Inc. as a contractor to participate in the Krakow Clean Fuels and Energy Efficiency Program. The objective of this program was the formation of business ventures between U.S. and Polish firms to provide equipment and services to reduce air emissions in the city of Krakow. A cooperative agreement was entered into by DOE and LSR to begin work in April 1994 involving implementation of particulate control technology called a Core Separator{trademark} for coal-fueled boilerhouses in the city. The major work tasks included: (1) conducting a market analysis, (2) completion of a formal marketing plan, (3) obtaining patent protection within Poland, (4) selecting a manufacturing partner, and (5) completing a demonstration unit and commercial installations. In addition to work performed by LSR Technologies, key contributors to this project were (1) the Polish Foundation for Energy Efficiency (FEWE), a non-profit consulting organization specializing in energy and environmental-related technologies, and (2) EcoInstal, a privately held Polish company serving the air pollution control market. As the project concluded in late 1998, five (5) Core Separator{trademark} installations had been implemented in the city of Krakow, while about 40 others were completed in other regions of Poland.

  16. CONTROL TECHNOLOGIES FOR PARTICULATE AND TAR EMISSIONS FROM COAL CONVERTERS

    EPA Science Inventory

    The report gives results of a characterization of solid and tar particulate emissions in raw product gases from several types of coal gasifiers, in terms of their total quantities, chemical composition, and size distribution. Fixed-bed gasifiers produce the smallest particulate l...

  17. A spatiotemporal land-use regression model of winter fine particulate levels in residential neighbourhoods.

    PubMed

    Smargiassi, Audrey; Brand, Allan; Fournier, Michel; Tessier, François; Goudreau, Sophie; Rousseau, Jacques; Benjamin, Mario

    2012-07-01

    Residential wood burning can be a significant wintertime source of ambient fine particles in urban and suburban areas. We developed a statistical model to predict minute (min) levels of particles with median diameter of <1 μm (PM1) from mobile monitoring on evenings of winter weekends at different residential locations in Quebec, Canada, considering wood burning emissions. The 6 s PM1 levels were concurrently measured on 10 preselected routes travelled 3 to 24 times during the winters of 2008-2009 and 2009-2010 by vehicles equipped with a GRIMM or a dataRAM sampler and a Global Positioning System device. Route-specific and global land-use regression (LUR) models were developed using the following spatial and temporal covariates to predict 1-min-averaged PM1 levels: chimney density from property assessment data at sampling locations, PM2.5 "regional background" levels of particles with median diameter of <2.5 μm (PM2.5) and temperature and wind speed at hour of sampling, elevation at sampling locations and day of the week. In the various routes travelled, between 49% and 94% of the variability in PM1 levels was explained by the selected covariates. The effect of chimney density was not negligible in "cottage areas." The R(2) for the global model including all routes was 0.40. This LUR is the first to predict PM1 levels in both space and time with consideration of the effects of wood burning emissions. We show that the influence of chimney density, a proxy for wood burning emissions, varies by regions and that a global model cannot be used to predict PM in regions that were not measured. Future work should consider using both survey data on wood burning intensity and information from numerical air quality forecast models, in LUR models, to improve the generalisation of the prediction of fine particulate levels. PMID:22549722

  18. DEVELOPMENT OF MEASUREMENT METHODOLOGY FOR EVALUATING FUGITIVE PARTICULATE EMISSIONS

    EPA Science Inventory

    A measurement methodology to evaluate fugitive particulate emissions was developed and demonstrated. The project focused on the application of the lidar (laser radar) technique under field conditions, but in circumstances that simplified and controlled the variables of the genera...

  19. Fine Particulate Matter Pollution and Hospital Admissions for Respiratory Diseases in Beijing, China.

    PubMed

    Xiong, Qiulin; Zhao, Wenji; Gong, Zhaoning; Zhao, Wenhui; Tang, Tao

    2015-09-01

    Fine particulate matter has become the premier air pollutant of Beijing in recent years, enormously impacting the environmental quality of the city and the health of the residents. Fine particles with aerodynamic diameters of 0~0.3 μm, 0.3~0.5 μm, and 0.5~1.0 μm, from the yeasr 2007 to 2012, were monitored, and the hospital data about respiratory diseases during the same period was gathered and calculated. Then the correlation between respiratory health and fine particles was studied by spatial analysis and grey correlation analysis. The results showed that the aerial fine particulate matter pollution was mainly distributed in the Zizhuyuan sub-district office. There was a certain association between respiratory health and fine particles. Outpatients with respiratory system disease in this study area were mostly located in the southeastern regions (Balizhuang sub-district office, Ganjiakou sub-district office, Wanshoulu sub-district office, and Yongdinglu sub-district office) and east-central regions (Zizhuyuan sub-district office and Shuangyushu sub-district office) of the study area. Correspondingly, PM₁ (particulate matter with aerodynamic diameter smaller than 1.0 um) concentrations in these regions were higher than those in any other regions. Grey correlation analysis results showed that the correlation degree of the fine particle concentration with the number of outpatients is high, and the smaller fine particles had more obvious effects on respiratory system disease than larger particles. PMID:26402691

  20. Fine Particulate Matter Pollution and Hospital Admissions for Respiratory Diseases in Beijing, China

    PubMed Central

    Xiong, Qiulin; Zhao, Wenji; Gong, Zhaoning; Zhao, Wenhui; Tang, Tao

    2015-01-01

    Fine particulate matter has become the premier air pollutant of Beijing in recent years, enormously impacting the environmental quality of the city and the health of the residents. Fine particles with aerodynamic diameters of 0~0.3 μm, 0.3~0.5 μm, and 0.5~1.0 μm, from the yeasr 2007 to 2012, were monitored, and the hospital data about respiratory diseases during the same period was gathered and calculated. Then the correlation between respiratory health and fine particles was studied by spatial analysis and grey correlation analysis. The results showed that the aerial fine particulate matter pollution was mainly distributed in the Zizhuyuan sub-district office. There was a certain association between respiratory health and fine particles. Outpatients with respiratory system disease in this study area were mostly located in the southeastern regions (Balizhuang sub-district office, Ganjiakou sub-district office, Wanshoulu sub-district office, and Yongdinglu sub-district office) and east-central regions (Zizhuyuan sub-district office and Shuangyushu sub-district office) of the study area. Correspondingly, PM1 (particulate matter with aerodynamic diameter smaller than 1.0 um) concentrations in these regions were higher than those in any other regions. Grey correlation analysis results showed that the correlation degree of the fine particle concentration with the number of outpatients is high, and the smaller fine particles had more obvious effects on respiratory system disease than larger particles. PMID:26402691

  1. Carcinogenicity of airborne fine particulate benzo(a)pyrene: an appraisal of the evidence and the need for control.

    PubMed Central

    Perera, F

    1981-01-01

    Benzo(a)pyrene(BaP) originating from fossil fuel and other organic combustion processes is largely adsorbed on fine particulate and hence is a widespread atmospheric pollutant. Available emissions and air quality data are based on the total weight of particulate matter without reference to size and give little information on trends and concentrations of fine particulate BaP. Greater reliance on coal, synfuels and diesel fuel for energy production and transportation will significantly increase ambient levels of BaP. Because of the particulate size, BaP is substantially deposited in the lower lung and readily eluted into surrounding tissue. After elution in the lung, BaP is metabolically activated to its electrophilic, carcinogenic from by a complex enzyme system whose activity is increased by prior exposure to air pollutants, cigarette smoke and certain drugs. The resultant diol epoxide metabolite has been shown to bind covalently with the DNA of the lung. In experimental animals, BaP is a potent initiating carcinogen whose action is enhanced by sulfur dioxide, promoting agents and carrier fine particles. The effect of small, divided doses of BaP has been shown to be greater than that of a single high dose; no threshold has been established. Epidemiological studies show that mixtures containing BaP (such as urban air, industrial emissions and cigarette smoke) are carcinogenic and may interact synergistically. Occupational studies indicate that the action of BaP-containing mixtures is enhanced in the presence of SO2. However, quantitative risk assessment for BaP is precluded by problems in extrapolating to the general population from small-scale animal studies; uncertainties in findings of epidemiology; and imprecise exposure data. Existing stationary and mobile controls preferentially remove coarse particulate matter and are inefficient collectors of the particulate BaP. In the current absence of health and environmental standards for BaP, there is little incentive

  2. Toxicity of coarse and fine particulate matter from sites with contrasting traffic profiles.

    PubMed

    Gerlofs-Nijland, Miriam E; Dormans, Jan A M A; Bloemen, Henk J T; Leseman, Daan L A C; John, A; Boere, F; Kelly, Frank J; Mudway, Ian S; Jimenez, Al A; Donaldson, Ken; Guastadisegni, Cecilia; Janssen, Nicole A H; Brunekreef, Bert; Sandström, Thomas; van Bree, Leendert; Cassee, Flemming R

    2007-10-01

    Residence in urban areas with much traffic has been associated with various negative health effects. However, the contribution of traffic emissions to these adverse health effects has not been fully determined. Therefore, the objective of this in vivo study is to compare the pulmonary and systemic responses of rats exposed to particulate matter (PM) obtained from various locations with contrasting traffic profiles. Samples of coarse (2.5 microm-10 microm) and fine (0.1 microm-2.5 microm) PM were simultaneously collected at nine sites across Europe with a high-volume cascade impactor. Six PM samples from various locations were selected on the basis of contrast in in vitro analysis, chemical composition, and traffic profiles. We exposed spontaneously hypertensive (SH) rats to a single dose (3 mg PM/kg body weight or 10 mg PM/kg body weight) of either coarse or fine PM by intratracheal instillation. We assessed changes in biochemical markers, cell differentials, and histopathological changes in the lungs and blood 24 h postexposure. The dose-related adverse effects that both coarse and fine PM induced in the lungs and vascular system were mainly related to cytotoxicity, inflammation, and blood viscosity. We observed clear differences in the extent of these responses to PM from the various locations at equivalent dose levels. There was a trend that suggests that samples from high-traffic sites were the most toxic. It is likely that the toxicological responses of SH rats were associated with specific PM components derived from brake wear (copper and barium), tire wear (zinc), and wood smoke (potassium). PMID:17957546

  3. SOURCES OF AIR POLLUTANTS INDOORS: VOC AND FINE PARTICULATE SPECIES

    EPA Science Inventory

    The average concentrations of a large number of fine particle aerosol and VOC species measured in ten Boise ID residences in wintertime have been apportioned according to their contributions from all inside sources and all outside sources, regarded as two composite source categor...

  4. Diagnostic air quality model evaluation of source-specific primary and secondary fine particulate carbon.

    PubMed

    Napelenok, Sergey L; Simon, Heather; Bhave, Prakash V; Pye, Havala O T; Pouliot, George A; Sheesley, Rebecca J; Schauer, James J

    2014-01-01

    Ambient measurements of 78 source-specific tracers of primary and secondary carbonaceous fine particulate matter collected at four midwestern United States locations over a full year (March 2004-February 2005) provided an unprecedented opportunity to diagnostically evaluate the results of a numerical air quality model. Previous analyses of these measurements demonstrated excellent mass closure for the variety of contributing sources. In this study, a carbon-apportionment version of the Community Multiscale Air Quality (CMAQ) model was used to track primary organic and elemental carbon emissions from 15 independent sources such as mobile sources and biomass burning in addition to four precursor-specific classes of secondary organic aerosol (SOA) originating from isoprene, terpenes, aromatics, and sesquiterpenes. Conversion of the source-resolved model output into organic tracer concentrations yielded a total of 2416 data pairs for comparison with observations. While emission source contributions to the total model bias varied by season and measurement location, the largest absolute bias of -0.55 μgC/m(3) was attributed to insufficient isoprene SOA in the summertime CMAQ simulation. Biomass combustion was responsible for the second largest summertime model bias (-0.46 μgC/m(3) on average). Several instances of compensating errors were also evident; model underpredictions in some sectors were masked by overpredictions in others. PMID:24245475

  5. Source apportionment of airborne fine particulate matter in an underground mine.

    PubMed

    McDonald, Jacob D; Zielinska, Barbara; Sagebiel, John C; McDaniel, Mark R; Mousset-Jones, Pierre

    2003-04-01

    The chemical mass balance source apportionment technique was applied to an underground gold mine to assess the contribution of diesel exhaust, rock dust, oil mists, and cigarette smoke to airborne fine (<2.5 microm) particulate matter (PM). Apportionments were conducted in two locations in the mine, one near the mining operations and one near the exit of the mine where the ventilated mine air was exhausted. Results showed that diesel exhaust contributed 78-98% of the fine particulate mass and greater than 90% of the fine particle carbon, with rock dust making up the remainder. Oil mists and cigarette smoke contributions were below detection limits for this study. The diesel exhaust fraction of the total fine PM was higher than the recently implemented mine air quality standards based on total carbon at both sample locations in the mine. PMID:12708502

  6. Evaluation of Methods for Physical Characterization of the Fine Particle Emissions from Two Residential Wood Combustion Appliances

    EPA Science Inventory

    The fine particulate matter (PM) emissions from a U. S. certified non-catalytic wood stove and a zero clearance fireplace burning Quercus rubra L. (northern red oak) and Pseudotsuga menziesii (Douglas fir) cordwood each at two different moisture levels were determined. Emission t...

  7. Impacts of Intercontinental Transport of Anthropogenic Fine Particulate Matter on Human Mortality

    NASA Technical Reports Server (NTRS)

    Anenberg, Susan C.; West, J. Jason; Hongbin, Yu; Chin, Mian; Schulz, Michael; Bergmann, Dan; Bey, Isabelle; Bian, Huisheng; Diehl, Thomas; Fiore, Arlene; Hess, Peter; Marmer, Elina; Montanaro, Veronica; Park, Rokjin; Shindell, Drew; Takemura, Toshihiko; Dentener, Frank

    2014-01-01

    Fine particulate matter with diameter of 2.5 microns or less (PM2.5) is associated with premature mortality and can travel long distances, impacting air quality and health on intercontinental scales. We estimate the mortality impacts of 20 % anthropogenic primary PM2.5 and PM2.5 precursor emission reductions in each of four major industrial regions (North America, Europe, East Asia, and South Asia) using an ensemble of global chemical transport model simulations coordinated by the Task Force on Hemispheric Transport of Air Pollution and epidemiologically-derived concentration-response functions. We estimate that while 93-97 % of avoided deaths from reducing emissions in all four regions occur within the source region, 3-7 % (11,500; 95 % confidence interval, 8,800-14,200) occur outside the source region from concentrations transported between continents. Approximately 17 and 13 % of global deaths avoided by reducing North America and Europe emissions occur extraregionally, owing to large downwind populations, compared with 4 and 2 % for South and East Asia. The coarse resolution global models used here may underestimate intraregional health benefits occurring on local scales, affecting these relative contributions of extraregional versus intraregional health benefits. Compared with a previous study of 20 % ozone precursor emission reductions, we find that despite greater transport efficiency for ozone, absolute mortality impacts of intercontinental PM2.5 transport are comparable or greater for neighboring source-receptor pairs, due to the stronger effect of PM2.5 on mortality. However, uncertainties in modeling and concentration-response relationships are large for both estimates.

  8. Fine particulate concentrations on sidewalks in five Southern California cities

    NASA Astrophysics Data System (ADS)

    Boarnet, Marlon G.; Houston, Douglas; Edwards, Rufus; Princevac, Marko; Ferguson, Gavin; Pan, Hansheng; Bartolome, Christian

    2011-08-01

    This research provides an exploratory examination of the factors associated with fine particle concentrations in intersection and sidewalk microenvironments in five study areas in the Los Angeles region. The study areas range from low-density, auto-oriented development patterns to dense urban areas with mid- and high-rise buildings. Average concentrations of FP DT (fine particle concentrations measured with DustTrak Aerosol Monitors) ranged from about 20 to 70 μg m -3 across study areas during stationary and mobile (walking) monitoring in morning, midday, and evening periods. Results suggest that fine particle concentrations are highly variable on urban sidewalks. A regression analysis shows that concentrations are associated with traffic and the proximate built environment characteristics after accounting for meteorological factors, time of day, and location in the region. Regressions show higher concentrations were associated with lower wind speeds and higher temperatures, higher adjacent passenger vehicle traffic, higher ambient concentrations, and street canyons with buildings of over five stories. Locations in street canyons with 2-5 story buildings and with more paving and open space had lower concentrations after accounting for other factors. The associations with traffic and built environment variables explained a small amount of the variation in FP DT concentrations, suggesting that future research should examine the relative role of localized traffic and built environment characteristics compared to regional ambient concentrations and meteorology.

  9. [Characteristic of Particulate Emissions from Concrete Batching in Beijing].

    PubMed

    Xue, Yi-feng; Zhou, Zhen; Zhong, Lian-hong; Yan, Jing; Qu, Song; Huang, Yu-hu; Tian, He- zhong; Pan, Tao

    2016-01-15

    With the economic development and population growth in Beijing, there is a strong need for construction and housing, which leads to the increase of the construction areas. Meanwhile, as a local provided material, the production of concrete has been raised. In the process of concrete production by concrete batching, there are numerous particulates emitted, which have large effect on the atmospheric environment, however, systematic study about the tempo-spatial characteristics of pollutant emission from concrete batching is still rare. In this study, we estimated the emission of particulates from concrete batching from 1991 to 2012 using emission factor method, analyzed the tempo-spatial characteristics of pollutant emission, established the uncertainty range by adopting Monte-Carlo method, and predicted the future emission in 2020 based on the relative environmental and economical policies. The results showed that: (1) the emissions of particulates from concrete batching showed a trend of "first increase and then decrease", reaching the maximum in 2005, and then decreased due to stricter emission standard and enhanced environmental management. (2) according to spatial distribution, the emission of particulates from concrete batch mainly concentrated in the urban area with more human activities, and the area between the fifth ring and the sixth ring contributed the most. (3) through scenarios analysis, for further reducing the emission from concrete batching in 2020, more stricter standard for green production as well as powerful supervision is needed. PMID:27078945

  10. 78 FR 78315 - Revision to the Idaho State Implementation Plan; Approval of Fine Particulate Matter Control...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-26

    ...On December 14, 2012, the Idaho Department of Environmental Quality (IDEQ) submitted a revision to the State Implementation Plan (SIP) to address Clean Air Act (CAA) requirements for the Idaho portion (hereafter referred to as ``Franklin County'') of the cross border Logan, Utah-Idaho fine particulate matter (PM2.5) nonattainment area (Logan UT-ID). The EPA is proposing a limited......

  11. CHEMICAL ANALYSIS OF WORLD TRADE CENTER FINE PARTICULATE MATTER FOR USE IN TOXICOLOGICAL ASSESSMENT

    EPA Science Inventory

    Chemical Analysis of World Trade Center Fine Particulate Matter for Use in Toxicological Assessment
    John K. McGee1, Lung Chi Chen2, Mitchell D. Cohen2, Glen R. Chee2, Colette M. Prophete2, Najwa Haykal-Coates1, Shirley J. Wasson3, Teri L. Conner4, Daniel L. Costa1, and Steph...

  12. EVALUATION OF FOAM SCRUBBING AS A METHOD FOR COLLECTING FINE PARTICULATE

    EPA Science Inventory

    The report summarizes the knowledge and data obtained during an investigation of foam scrubbing as a method for collecting fine particulate. The foam scrubber was tested at room temperature, using iron oxide aerosols at concentrations near 0.00137 mg/cu m. Inlet and outlet sample...

  13. Carbonaceous Aerosols in Fine Particulate Matter of Santiago Metropolitan Area, Chile

    PubMed Central

    Toro Araya, Richard; Flocchini, Robert; Morales Segura, Rául G. E.; Leiva Guzmán, Manuel A.

    2014-01-01

    Measurements of carbonaceous aerosols in South American cities are limited, and most existing data are of short term and limited to only a few locations. For 6 years (2002–2007), concentrations of fine particulate matter and organic and elemental carbon were measured continuously in the capital of Chile. The contribution of carbonaceous aerosols to the primary and secondary fractions was estimated at three different sampling sites and in the warm and cool seasons. The results demonstrate that there are significant differences in the levels in both the cold (March to August) and warm (September to February) seasons at all sites studied. The percent contribution of total carbonaceous aerosol fine particulate matter was greater in the cool season (53 ± 41%) than in the warm season (44 ± 18%). On average, the secondary organic carbon in the city corresponded to 29% of the total organic carbon. In cold periods, this proportion may reach an average of 38%. A comparison of the results with the air quality standards for fine particulate matter indicates that the total carbonaceous fraction alone exceeds the World Health Organization standard (10 µg/m3) and the United States Environmental Protection Agency standard (15 µg/m3) for fine particulate matter. PMID:24587753

  14. RESPIRATORY TOXICOLOGCAL EFFECTS OF WORLD TRADE CENTER FINE PARTICULATE MATTER IN MICE

    EPA Science Inventory


    ABSTRACT BODY:
    The destruction of the World Trade Center (WTC) caused the release of high levels of airborne pollutants which were reported to cause adverse respiratory responses in rescue workers and nearby residents. We examined whether WTC-derived fine particulate mat...

  15. DAILY SIMULATION OF OZONE AND FINE PARTICULATES OVER NEW YORK STATE: FINDINGS AND CHALLENGES

    EPA Science Inventory

    This study investigates the potential utility of the application of a photochemical modeling system in providing simultaneous forecasts of ozone (O3) and fine particulate matter (PM2.5) over New York State. To this end, daily simulations from the Community M...

  16. Vehicular emissions of organic particulate matter in Sao Paulo, Brazil

    NASA Astrophysics Data System (ADS)

    Oyama, B. S.; Andrade, M. F.; Herckes, P.; Dusek, U.; Röckmann, T.; Holzinger, R.

    2015-12-01

    Vehicular emissions have a strong impact on air pollution in big cities. Many factors affect these emissions: type of vehicle, type of fuel, cruising velocity, and brake use. This study focused on emissions of organic compounds by Light (LDV) and Heavy (HDV) duty vehicle exhaust. The study was performed in the city of Sao Paulo, Brazil, where vehicles run on different fuels: gasoline with 25 % ethanol (called gasohol), hydrated ethanol, and diesel (with 5 % of biodiesel). The vehicular emissions are an important source of pollutants and the principal contribution to fine particulate matter (smaller than 2.5 μm, PM2.5) in Sao Paulo. The experiments were performed in two tunnels: Janio Quadros (TJQ) where 99 % of the vehicles are LDV, and Rodoanel Mario Covas (TRA) where up to 30 % of the fleet was HDV. The PM2.5 samples were collected on quartz filters in May and July 2011 at TJQ and TRA, respectively, using two samplers operating in parallel. The samples were analyzed by Thermal-Desorption Proton-Transfer-Reaction Mass-Spectrometry (TD-PTR-MS), and by Thermal-Optical Transmittance (TOT). The organic aerosol (OA) desorbed at TD-PTR-MS represented around 30 % of the OA estimated by the TOT method, mainly due to the different desorption temperatures, with a maximum of 870 and 350 °C for TOT and TD-PTR-MS, respectively. Average emission factors (EF) organic aerosol (OA) and organic carbon (OC) were calculated for HDV and LDV fleet. We found that HDV emitted more OA and OC than LDV, and that OC emissions represented 36 and 43 % of total PM2.5 emissions from LDV and HDV, respectively. More than 700 ions were identified by TD-PTR-MS and the EF profiles obtained from HDV and LDV exhibited distinct features. Nitrogen-containing compounds measured in the desorbed material up to 350 °C contributed around 20 % to the EF values for both types of vehicles, possibly associated with incomplete fuel burning. Additionally, 70 % of the organic compounds measured from the aerosol

  17. Ambient Fine Particulate (PM2.5) Air Pollution Attributable to Household Cooking Fuel in Asia

    NASA Astrophysics Data System (ADS)

    Chafe, Z.; Mehta, S.; Smith, K. R.

    2011-12-01

    Using the Greenhouse Gas and Air Pollution Interactions and Synergies (GAINS) model, hosted by the International Institute for Applied Systems Analysis (IIASA), we estimate the proportion of fine particulate ambient air pollution (PM2.5) attributable to household fuel use for cooking in Asia. This analysis considers primary anthropogenic PM2.5 emissions in two years: 1990 and 2005. Only emissions from household cooking fuels-not heating or lighting-are considered. Due to data availability, this analysis focuses solely on Asian countries, notably India and China which are home to about half of the households using solid fuel use worldwide. Forest and grassland fires, dust, and other "natural" particle sources were omitted from this analysis. The impact of emission sources on secondary particles from aerosol precursors was not determined. In China, the proportion of total primary anthropogenic PM2.5 attributable to household cooking decreased from 44% to 31% between 1990 and 2005. In India, the percent of primary anthropogenic PM2.5 emissions attributable to household cooking decreased from 55% to 49% between 1990 and 2005. Total mass change in primary anthropogenic PM2.5 emissions was much more variable by state in India, between 1990 and 2005, than by province in China (where there was a general downward trend in the total mass emitted). Similarly, growth in industrial emissions was much more variable at the sub-national level, between 1990 and 2005, in India than in China. Energy production played a more prominent role in the growth of primary anthropogenic PM2.5 emissions in India than it did in China. Forward-looking GAINS scenarios show that the contribution of household cooking to total primary anthropogenic PM2.5 emissions is much greater than that from on-road transport in India and China between 1990 and 2030. On-road cars, trucks, and other transport vehicles are, however, the cause of important pollutants other than PM2.5 (as are as cooking stoves that do

  18. MODELING FINE PARTICULATE MASS AND VISIBILITY USING THE EPA REGIONAL PARTICULATE MODEL

    EPA Science Inventory

    Particulate matter in the atmosphere can adversely impact air quality and human health, as well as significantly affect the environment. articles in the submicrometer size range, when inhaled, may pose certain health hazards. articles in this size range also scatter light, causin...

  19. A preliminary particulate matter emission factor from cotton harvesting.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Particulate matter (PM) sampling of cotton harvesting operations at three locations in Texas was conducted during the summer of 2006. PM emissions generated by a two-row (John Deere Model 9910) and six-row (John Deere Model 9996) cotton picker were measured at each sampling location. The PM emission...

  20. Sources of fine urban particulate matter in Detroit, MI.

    PubMed

    Gildemeister, Amy E; Hopke, Philip K; Kim, Eugene

    2007-10-01

    Data from the speciation trends network (STN) was used to evaluate the amount and temporal patterns of particulate matter originating from local industrial sources and long-range transport at two sites in Detroit, MI: Allen Park, MI, southwest of both Detroit and the areas of heavy industrial activity; Dearborn, MI, located on the south side of Detroit near the most heavily industrialized region. Using positive matrix factorization (PMF) and comparing source contributions at Allen Park to those in Dearborn, contributions made by local industrial sources (power plants, coke refineries, iron smelting, waste incineration), local area sources (automobile and diesel truck) and long range sources of PM(2.5) can be distinguished in greater Detroit. Overall, the mean mass concentration measured at Dearborn was 19% higher than that measured at Allen Park. The mass at Allen Park was apportioned as: secondary sulfate 31%, secondary nitrate 28%, soil 8%, mixed aged sea and road salts 4%, gasoline 15%, diesel 4%, and biomass burning 3%. At Dearborn the mass was apportioned as: secondary sulfate 25%, secondary nitrate 20%, soil 12%, mixed aged sea and road salts 4%, gasoline 20%, diesel 8%, iron and steel, 5%, and mixed industrial 7%. The impact of the iron and steel, soil, and mixed aged sea and road salt was much higher at the Dearborn site than at the Allen Park site, suggesting that close proximity to a local industrial complex has a direct negative impact on local air quality. PMID:17537480

  1. PARTICULATE EMISSION PROFILE OF A COTTON GIN

    Technology Transfer Automated Retrieval System (TEKTRAN)

    PARTICULATE MATTER (PM) IS ONE OF SIX CRITERIA POLLUTANTS REGULATED BY THE ENVIRONMENTAL PROTECTION AGENCY (EPA) WITH NATIONAL AMBIENT AIR QUALITY STANDARDS (NAAQS). IN GENERAL, PM IS THE ONLY AIR POLLUTANT OF CONCERN EMITTED FROM COTTON GINS. THE EPA HAS NAAQS FOR PM10 (PARTICLES WITH AN AERODYNA...

  2. Waste Coal Fines Reburn for NOx and Mercury Emission Reduction

    SciTech Connect

    Stephen Johnson; Chetan Chothani; Bernard Breen

    2008-04-30

    Injection of coal-water slurries (CWS) made with both waste coal and bituminous coal was tested for enhanced reduction of NO{sub x} and Hg emissions at the AES Beaver Valley plant near Monaca, PA. Under this project, Breen Energy Solutions (BES) conducted field experiments on the these emission reduction technologies by mixing coal fines and/or pulverized coal, urea and water to form slurry, then injecting the slurry in the upper furnace region of a coal-fired boiler. The main focus of this project was use of waste coal fines as the carbon source; however, testing was also conducted using pulverized coal in conjunction with or instead of waste coal fines for conversion efficiency and economic comparisons. The host site for this research and development project was Unit No.2 at AES Beaver Valley cogeneration station. Unit No.2 is a 35 MW Babcock & Wilcox (B&W) front-wall fired boiler that burns eastern bituminous coal. It has low NO{sub x} burners, overfire air ports and a urea-based selective non-catalytic reduction (SNCR) system for NO{sub x} control. The back-end clean-up system includes a rotating mechanical ash particulate removal and electrostatic precipitator (ESP) and wet flue gas desulfurization (FGD) scrubber. Coal slurry injection was expected to help reduce NOx emissions in two ways: (1) Via fuel-lean reburning when the slurry is injected above the combustion zone. (2) Via enhanced SNCR reduction when urea is incorporated into the slurry. The mercury control process under research uses carbon/water slurry injection to produce reactive carbon in-situ in the upper furnace, promoting the oxidation of elemental mercury in flue gas from coal-fired power boilers. By controlling the water content of the slurry below the stoichiometric requirement for complete gasification, water activated carbon (WAC) can be generated in-situ in the upper furnace. As little as 1-2% coal/water slurry (heat input basis) can be injected and generate sufficient WAC for mercury

  3. Effects of Independence Day fireworks on atmospheric concentrations of fine particulate matter in the United States

    NASA Astrophysics Data System (ADS)

    Seidel, Dian J.; Birnbaum, Abigail N.

    2015-08-01

    Previous case studies have documented increases in air pollutants, including particulate matter (PM), during and following fireworks displays associated with various holidays and celebrations around the world. But no study to date has explored fireworks effects on air quality over large regions using systematic observations over multiple years to estimate typical regional PM increases. This study uses observations of fine PM (with particle diameters < 2.5 μm, PM2.5) from 315 air quality monitoring sites across the United States to estimate the effects of Independence Day fireworks on hourly and 24-hr average concentrations. Hourly PM2.5 concentrations during the evening of July 4 and morning of July 5 are higher than on the two preceding and following days in July, considered as control days. On national average, the increases are largest (21 μg/m3) at 9-10 pm on July 4 and drop to zero by noon on July 5. Average concentrations for the 24-hr period beginning 8 pm on July 4 are 5 μg/m3 (42%) greater than on control days, on national average. The magnitude and timing of the Independence Day increases vary from site to site and from year to year, as would be expected given variations in factors such as PM2.5 emissions from fireworks, local meteorological conditions, and distances between fireworks displays and monitoring sites. At one site adjacent to fireworks, hourly PM2.5 levels climb to ∼500 μg/m3, and 24-hr average concentrations increase by 48 μg/m3 (370%). These results have implications for potential improvements in air quality models and their predictions, which currently do not account for this emissions source.

  4. Local and regional sources of fine and coarse particulate matter based on traffic and background monitoring

    NASA Astrophysics Data System (ADS)

    Dimitriou, Konstantinos; Kassomenos, Pavlos

    2014-05-01

    The aim of this study was to identify local and exogenous sources affecting particulate matter (PM) levels in five major cities of Northern Europe namely: London, Paris, Hamburg, Copenhagen and Stockholm. Besides local emissions, PM profile at urban and suburban areas of the European Union (EU) is also influenced by regional PM sources due to atmospheric transport, thus geographical city distribution is of a great importance. At each city, PM10, PM2.5, NO2, SO2, CO and O3 air pollution data from two air pollution monitoring stations of the EU network were used. Different background characteristics of the selected two sampling sites at each city facilitated comparisons, providing a more exact analysis of PM sources. Four source apportionment methods: Pearson correlations among the levels of particulates and gaseous pollutants, characterisation of primal component analysis components, long-range transport analysis and extrapolation of PM size distribution ratios were applied. In general, fine (PM2.5) and coarse (PM10) particles were highly correlated, thus common sources are suggested. Combustion-originated gaseous pollutants (CO, NO2, SO2) were strongly associated to PM10 and PM2.5, primarily at areas severely affected by traffic. On the contrary, at background stations neighbouring important natural sources of particles or situated in suburban areas with rural background, natural emissions of aerosols were indicated. Series of daily PM2.5/PM10 ratios showed that minimum fraction values were detected during warm periods, due to higher volumes of airborne biogenic PM coarse, mainly at stations with important natural sources of particles in their vicinity. Hybrid single-particle Lagrangian integrated trajectory model was used, in order to extract 4-day backward air mass trajectories that arrived in the five cities which are under study during days with recorded PM10 exceedances. At all five cities, a significantly large fraction of those trajectories were classified

  5. The iron lung: a device for the continuous delivery of fine particulate matter.

    PubMed

    Arnold, I J; Berger, C; Chakrabarty, R K; Moosmüller, H; Sharma, N; Mazzoleni, C

    2014-02-01

    In aerosol research, bag-sampling techniques are commonly used for temporary storage of aerosols. They have been used for aging studies and to integrate over fluctuations in aerosol properties and concentrations. Here, we describe the design and operation of an iron lung aerosol sampler consisting of a large volume (∼277 l) drum and a conductive drum liner. This iron lung is used for the continuous delivery of fine particulate matter. Its performance for storage and sampling of fine particulate matter has been evaluated with soot from a kerosene lamp by characterizing the change of particle number and size distribution as function of time with a scanning mobility particle sizer. Changes in these properties have been shown to be smooth, demonstrating the utility of the iron lung described here. PMID:24593394

  6. Dispersion and Deposition of Fine Particulates, Heavy Metals and Nitrogen in Urban Landscapes

    NASA Astrophysics Data System (ADS)

    Whitlow, T. H.; Tong, Z.

    2015-12-01

    Cities are characterized by networks of heavily trafficked roads, abrupt environmental gradients and local sources of airborne pollutants. Because urban dwellers are inevitably in close proximity to near ground pollution, there has been recent interest in using trees and green roofs to reduce human exposure yet there have been few empirical studies documenting the effect of vegetation and spatial heterogeneity on pollution concentration, human exposure and food safety. In this paper we describe the results of 2 studies in the New York metropolitan area. The first describes the effect of roadside trees on the concentration of fine particulates downwind of a major highway. The second examines vertical attenuation of fine particulates between street level and a rooftop vegetable farm and the deposition of nitrogen and heavy metals to vegetables and soil on the roof.

  7. The methodologies and instruments of vehicle particulate emission measurement for current and future legislative regulations

    NASA Astrophysics Data System (ADS)

    Otsuki, Yoshinori; Nakamura, Hiroshi; Arai, Masataka; Xu, Min

    2015-09-01

    Since the health risks associated with fine particles whose aerodynamic diameters are smaller than 2.5 μm was first proven, regulations restricting particulate matter (PM) mass emissions from internal combustion engines have become increasingly severe. Accordingly, the gravimetric method of PM mass measurement is facing its lower limit of detection as the emissions from vehicles are further reduced. For example, the variation in the adsorption of gaseous components such as hydrocarbons from unburned fuel and lubricant oil and the presence of agglomerated particles, which are not directly generated in engine combustion but re-entrainment particulates from walls of sampling pipes, can cause uncertainty in measurement. The PM mass measurement systems and methodologies have been continuously refined in order to improve measurement accuracy. As an alternative metric, the particle measurement programme (PMP) within the United Nations Economic Commission for Europe (UNECE) developed a solid particle number measurement method in order to improve the sensitivity of particulate emission measurement from vehicles. Consequently, particle number (PN) limits were implemented into the regulations in Europe from 2011. Recently, portable emission measurement systems (PEMS) for in-use vehicle emission measurements are also attracting attention, currently in North America and Europe, and real-time PM mass and PN instruments are under evaluation.

  8. Spatial, temporal, and interspecies patterns in fine particulate matter in Texas

    SciTech Connect

    Kristi A. Gebhart; William C. Malm; Lowell L. Ashbaugh

    2005-11-01

    The Big Bend Regional Aerosol and Visibility Observational (BRAVO) field study was conducted from July to October 1999 and was followed by several years of modeling and data analyses to examine the causes of haze at Big Bend National Park TX (BBNP). During BRAVO, daily speciated fine (diameter <2.5 {mu}m) particulate concentrations were measured at 37 sites throughout Texas. At the primary receptor site, K-Bar Ranch, there were many additional measurements including a 'high-sensitivity' version of the 24-hr fine particulate elemental data. The spatial, temporal, and interspecies patterns in these data are examined here to qualitatively investigate source regions and source types influencing the fine particulate concentrations in Texas with an emphasis on sources of sulfates, the largest contributor to fine mass and light extinction. Peak values of particulate sulfur (S) varied spatially and seasonally. Maximum S was in Northeast Texas during the summer, whereas peak S at BBNP was in the fall. Sulfate acidity at BBNP also varied by month. Sources of Se were evident in Northeast Texas and from the Carbon I and II coal-fired plants. High S episodes at BBNP during BRAVO had several different trace element characteristics. Carbon concentrations at BBNP during BRAVO were probably mostly urban-related, with arrival from the Houston area likely. The Houston artificial tracer released during the second half of BRAVO was highly correlated with some carbon fractions. There was evidence of the influence of African dust at sites throughout Texas during the summer. Patterns in several trace elements were also examined. Vanadium was associated with air masses from Mexico. Lead concentrations in southern Texas have dropped dramatically over the past several years. 23 refs., 9 figs., 2 tabs.

  9. Spatial, temporal, and interspecies patterns in fine particulate matter in Texas.

    PubMed

    Gebhart, Kristi A; Malm, William C; Ashbaugh, Lowell L

    2005-11-01

    The Big Bend Regional Aerosol and Visibility Observational (BRAVO) field study was conducted from July to October 1999 and was followed by several years of modeling and data analyses to examine the causes of haze at Big Bend National Park TX (BBNP). During BRAVO, daily speciated fine (diameter <2.5 microm) particulate concentrations were measured at 37 sites throughout Texas. At the primary receptor site, K-Bar Ranch, there were many additional measurements including a "high-sensitivity" version of the 24-hr fine particulate elemental data. The spatial, temporal, and interspecies patterns in these data are examined here to qualitatively investigate source regions and source types influencing the fine particulate concentrations in Texas with an emphasis on sources of sulfates, the largest contributor to fine mass and light extinction. Peak values of particulate sulfur (S) varied spatially and seasonally. Maximum S was in Northeast Texas during the summer, whereas peak S at BBNP was in the fall. Sulfate acidity at BBNP also varied by month. Sources of Se were evident in Northeast Texas and from the Carbón I and II plants. High S episodes at BBNP during BRAVO had several different trace element characteristics. Carbon concentrations at BBNP during BRAVO were probably mostly urban-related, with arrival from the Houston area likely. The Houston artificial tracer released during the second half of BRAVO was highly correlated with some carbon fractions. There was evidence of the influence of African dust at sites throughout Texas during the summer. Patterns in several trace elements were also examined. Vanadium was associated with air masses from Mexico. Lead concentrations in southern Texas have dropped dramatically over the past several years. PMID:16350362

  10. Comparing Exposure Metrics for the Effects of Fine Particulate Matter on Emergency Hospital Admissions

    PubMed Central

    Mannshardt, Elizabeth; Sucic, Katarina; Jiao, Wan; Dominici, Francesca; Frey, H. Christopher; Reich, Brian; Fuentes, Montserrat

    2013-01-01

    A crucial step in an epidemiological study of the effects of air pollution is to accurately quantify exposure of the population. In this paper, we investigate the sensitivity of the health effects estimates associated with short-term exposure to fine particulate matter with respect to three potential metrics for daily exposure: ambient monitor data, estimated values from a deterministic atmospheric chemistry model, and stochastic daily average human exposure simulation output. Each of these metrics has strengths and weaknesses when estimating the association between daily changes in ambient exposure to fine particulate matter and daily emergency hospital admissions. Monitor data is readily available, but is incomplete over space and time. The atmospheric chemistry model output is spatially and temporally complete, but may be less accurate than monitor data. The stochastic human exposure estimates account for human activity patterns and variability in pollutant concentration across microenvironments, but requires extensive input information and computation time. To compare these metrics, we consider a case study of the association between fine particulate matter and emergency hospital admissions for respiratory cases for the Medicare population across three counties in New York. Of particular interest is to quantify the impact and/or benefit to using the stochastic human exposure output to measure ambient exposure to fine particulate matter. Results indicate that the stochastic human exposure simulation output indicates approximately the same increase in relative risk associated with emergency admissions as using a chemistry model or monitoring data as exposure metrics. However, the stochastic human exposure simulation output and the atmospheric chemistry model both bring additional information which helps to reduce the uncertainly in our estimated risk. PMID:23942393

  11. Anodic aluminum oxide with fine pore size control for selective and effective particulate matter filtering

    NASA Astrophysics Data System (ADS)

    Zhang, Su; Wang, Yang; Tan, Yingling; Zhu, Jianfeng; Liu, Kai; Zhu, Jia

    2016-07-01

    Air pollution is widely considered as one of the most pressing environmental health issues. Particularly, atmospheric particulate matters (PM), a complex mixture of solid or liquid matter suspended in the atmosphere, are a harmful form of air pollution due to its ability to penetrate deep into the lungs and blood streams, causing permanent damages such as DNA mutations and premature death. Therefore, porous materials which can effectively filter out particulate matters are highly desirable. Here, for the first time, we demonstrate that anodic aluminum oxide with fine pore size control fabricated through a scalable process can serve as effective and selective filtering materials for different types of particulate matters (such as PM2.5, PM10). Combining selective and dramatic filtering effect, fine pore size control and a scalable process, this type of anodic aluminum oxide templates can potentially serve as a novel selective filter for different kinds of particulate matters, and a promising and complementary solution to tackle this serious environmental issue.

  12. Characterization of Fine Particulate Matter (PM) and Secondary PM Precursor Gases in the Mexico City Metropolitan Area

    DOE R&D Accomplishments Database

    Molina, Luisa T.; Volkamer, Rainer; de Foy, Benjamin; Lei, Wenfang; Zavala, Miguel; Velasco, Erik; Molina; Mario J.

    2008-10-31

    This project was one of three collaborating grants funded by DOE/ASP to characterize the fine particulate matter (PM) and secondary PM precursors in the Mexico City Metropolitan Area (MCMA) during the MILAGRO Campaign. The overall effort of MCMA-2006, one of the four components, focused on i) examination of the primary emissions of fine particles and precursor gases leading to photochemical production of atmospheric oxidants and secondary aerosol particles; ii) measurement and analysis of secondary oxidants and secondary fine PM production, with particular emphasis on secondary organic aerosol (SOA), and iii) evaluation of the photochemical and meteorological processes characteristic of the Mexico City Basin. The collaborative teams pursued the goals through three main tasks: i) analyses of fine PM and secondary PM precursor gaseous species data taken during the MCMA-2002/2003 campaigns and preparation of publications; ii) planning of the MILAGRO Campaign and deployment of the instrument around the MCMA; and iii) analysis of MCMA-2006 data and publication preparation.

  13. Epidemiology of fine particulate air pollution and human health: biologic mechanisms and who's at risk?

    PubMed Central

    Pope, C A

    2000-01-01

    This article briefly summarizes the epidemiology of the health effects of fine particulate air pollution, provides an early, somewhat speculative, discussion of the contribution of epidemiology to evaluating biologic mechanisms, and evaluates who's at risk or is susceptible to adverse health effects. Based on preliminary epidemiologic evidence, it is speculated that a systemic response to fine particle-induced pulmonary inflammation, including cytokine release and altered cardiac autonomic function, may be part of the pathophysiologic mechanisms or pathways linking particulate pollution with cardiopulmonary disease. The elderly, infants, and persons with chronic cardiopulmonary disease, influenza, or asthma are most susceptible to mortality and serious morbidity effects from short-term acutely elevated exposures. Others are susceptible to less serious health effects such as transient increases in respiratory symptoms, decreased lung function, or other physiologic changes. Chronic exposure studies suggest relatively broad susceptibility to cumulative effects of long-term repeated exposure to fine particulate pollution, resulting in substantive estimates of population average loss of life expectancy in highly polluted environments. Additional knowledge is needed about the specific pollutants or mix of pollutants responsible for the adverse health effects and the biologic mechanisms involved. PMID:10931790

  14. Emission abatement system utilizing particulate traps

    DOEpatents

    Bromberg, Leslie; Cohn, Daniel R.; Rabinovich, Alexander

    2004-04-13

    Emission abatement system. The system includes a source of emissions and a catalyst for receiving the emissions. Suitable catalysts are absorber catalysts and selective catalytic reduction catalysts. A plasma fuel converter generates a reducing gas from a fuel source and is connected to deliver the reducing gas into contact with the absorber catalyst for regenerating the catalyst. A preferred reducing gas is a hydrogen rich gas and a preferred plasma fuel converter is a plasmatron. It is also preferred that the absorber catalyst be adapted for absorbing NO.sub.x.

  15. Particulate emissions from diesel engines: correlation between engine technology and emissions

    PubMed Central

    2014-01-01

    In the last 30 years, diesel engines have made rapid progress to increased efficiency, environmental protection and comfort for both light- and heavy-duty applications. The technical developments include all issues from fuel to combustion process to exhaust gas aftertreatment. This paper provides a comprehensive summary of the available literature regarding technical developments and their impact on the reduction of pollutant emission. This includes emission legislation, fuel quality, diesel engine- and exhaust gas aftertreatment technologies, as well as particulate composition, with a focus on the mass-related particulate emission of on-road vehicle applications. Diesel engine technologies representative of real-world on-road applications will be highlighted. Internal engine modifications now make it possible to minimize particulate and nitrogen oxide emissions with nearly no reduction in power. Among these modifications are cooled exhaust gas recirculation, optimized injections systems, adapted charging systems and optimized combustion processes with high turbulence. With introduction and optimization of exhaust gas aftertreatment systems, such as the diesel oxidation catalyst and the diesel particulate trap, as well as NOx-reduction systems, pollutant emissions have been significantly decreased. Today, sulfur poisoning of diesel oxidation catalysts is no longer considered a problem due to the low-sulfur fuel used in Europe. In the future, there will be an increased use of bio-fuels, which generally have a positive impact on the particulate emissions and do not increase the particle number emissions. Since the introduction of the EU emissions legislation, all emission limits have been reduced by over 90%. Further steps can be expected in the future. Retrospectively, the particulate emissions of modern diesel engines with respect to quality and quantity cannot be compared with those of older engines. Internal engine modifications lead to a clear reduction of the

  16. Particulate emissions from diesel engines: correlation between engine technology and emissions.

    PubMed

    Fiebig, Michael; Wiartalla, Andreas; Holderbaum, Bastian; Kiesow, Sebastian

    2014-01-01

    In the last 30 years, diesel engines have made rapid progress to increased efficiency, environmental protection and comfort for both light- and heavy-duty applications. The technical developments include all issues from fuel to combustion process to exhaust gas aftertreatment. This paper provides a comprehensive summary of the available literature regarding technical developments and their impact on the reduction of pollutant emission. This includes emission legislation, fuel quality, diesel engine- and exhaust gas aftertreatment technologies, as well as particulate composition, with a focus on the mass-related particulate emission of on-road vehicle applications. Diesel engine technologies representative of real-world on-road applications will be highlighted.Internal engine modifications now make it possible to minimize particulate and nitrogen oxide emissions with nearly no reduction in power. Among these modifications are cooled exhaust gas recirculation, optimized injections systems, adapted charging systems and optimized combustion processes with high turbulence. With introduction and optimization of exhaust gas aftertreatment systems, such as the diesel oxidation catalyst and the diesel particulate trap, as well as NOx-reduction systems, pollutant emissions have been significantly decreased. Today, sulfur poisoning of diesel oxidation catalysts is no longer considered a problem due to the low-sulfur fuel used in Europe. In the future, there will be an increased use of bio-fuels, which generally have a positive impact on the particulate emissions and do not increase the particle number emissions.Since the introduction of the EU emissions legislation, all emission limits have been reduced by over 90%. Further steps can be expected in the future. Retrospectively, the particulate emissions of modern diesel engines with respect to quality and quantity cannot be compared with those of older engines. Internal engine modifications lead to a clear reduction of the

  17. METHOD FOR ESTIMATING FUGITIVE PARTICULATE EMISSIONS FROM HAZARDOUS WASTE SITES

    EPA Science Inventory

    Control techniques are reviewed for applicability to fugitive particulate emissions from hazardous waste sites. Techniques judged applicable include chemical stabilization (40 to 100 percent efficiency, $520/acre-yr to $2,720/acre-yr), wet suppression (25 to 90 percent efficiency...

  18. CHARACTERIZAITON OF PARTICULATE EMISSIONS FROM MUNICIPAL WASTEWATER SLUDGE INCINERATORS

    EPA Science Inventory

    Particulate emissions from a group of municipal sludge incinerators with multiple-hearth furnaces, one with a fluidized-bed furnace were characterized. Three plants operated at or near autogenous burning conditions. Chemical element composition was determined for total and sized ...

  19. Chemical characterization of the fine particle emissions from commercial aircraft engines during the Aircraft Particle Emissions eXperiment (APEX) 1 to 3

    EPA Science Inventory

    This paper addresses the need for detailed chemical information on the fine particulate matter (PM2.5) generated by commercial aviation engines. The exhaust plumes of nine engine models were sampled during the three test campaigns of the Aircraft Particle Emissions eXperiment (AP...

  20. FLUX FORCE/CONDENSATION SCRUBBING FOR COLLECTING FINE PARTICULATE FROM IRON MELTING CUPOLAS

    EPA Science Inventory

    The report gives results of a 6-month test, demonstrating the industrial feasibility of a flux force/condensation (F/C) scrubbing system for controlling particulate emissions from an iron and steel melting cupola. The demonstration, conducted by A.P.T., Inc., under EPA contract, ...

  1. 77 FR 12526 - Approval and Promulgation of Implementation Plans; Georgia; Atlanta; Fine Particulate Matter 2002...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-01

    ... Particulate Matter 2002 Base Year Emissions Inventory AGENCY: Environmental Protection Agency (EPA). ACTION..., Pesticides and Toxics Management Division, U.S. Environmental Protection Agency, Region 4, 61 Forsyth Street... Planning Branch, Air, Pesticides and Toxics Management Division, U.S. Environmental Protection......

  2. Origin-Oriented Elemental Profile of Fine Ambient Particulate Matter in Central European Suburban Conditions.

    PubMed

    Rogula-Kozłowska, Wioletta; Majewski, Grzegorz; Błaszczak, Barbara; Klejnowski, Krzysztof; Rogula-Kopiec, Patrycja

    2016-01-01

    Twenty-four-hour samples of fine ambient particulate matter (PM2.5; particles with aerodynamic diameters ≤2.5 µm) were collected in a suburban (quasi-rural) area in Racibórz (Poland) between 1 January 2011 and 26 December 2012. The samples were analyzed for the contents of 28 elements. Sources of PM2.5 were identified and the contribution of each source to the PM2.5 concentration was assessed using an enrichment factor (EF) analysis, a principal component analysis (PCA), and multi-linear regression analysis (MLRA). In the cold season (January-March and October-December 2011-2012), the mean ambient concentration of PM2.5 in Racibórz was 48.7 ± 39.4 µg·m(-3), which was much higher than at other suburban or rural sites in Europe. Additionally the ambient concentrations of some toxic PM2.5-bound elements were also high, i.e., the mean ambient concentrations of PM2.5-bound As, Cd, and Pb were 11.3 ± 11.5, 5.2 ± 2.5, and 34.0 ± 34.2 ng·m(-3), respectively. In the warm season (April-September 2011-2012), the PM2.5 and PM2.5-bound element concentrations in Racibórz were comparable to the concentrations noted at other suburban (or rural) sites in Europe. Our findings suggest that elemental composition and concentrations of PM2.5 in Racibórz are mainly influenced by anthropogenic emissions, i.e., the energy production based on coal and biomass combustion, traffic, and industry. PMID:27428988

  3. Chemical characterization and source apportionment of fine and coarse particulate matter in Lahore, Pakistan

    NASA Astrophysics Data System (ADS)

    Stone, Elizabeth; Schauer, James; Quraishi, Tauseef A.; Mahmood, Abid

    2010-03-01

    Lahore, Pakistan is an emerging megacity that is heavily polluted with high levels of particle air pollution. In this study, respirable particulate matter (PM 2.5 and PM 10) were collected every sixth day in Lahore from 12 January 2007 to 19 January 2008. Ambient aerosol was characterized using well-established chemical methods for mass, organic carbon (OC), elemental carbon (EC), ionic species (sulfate, nitrate, chloride, ammonium, sodium, calcium, and potassium), and organic species. The annual average concentration (±one standard deviation) of PM 2.5 was 194 ± 94 μg m -3 and PM 10 was 336 ± 135 μg m -3. Coarse aerosol (PM 10-2.5) was dominated by crustal sources like dust (74 ± 16%, annual average ± one standard deviation), whereas fine particles were dominated by carbonaceous aerosol (organic matter and elemental carbon, 61 ± 17%). Organic tracer species were used to identify sources of PM 2.5 OC and chemical mass balance (CMB) modeling was used to estimate relative source contributions. On an annual basis, non-catalyzed motor vehicles accounted for more than half of primary OC (53 ± 19%). Lesser sources included biomass burning (10 ± 5%) and the combined source of diesel engines and residual fuel oil combustion (6 ± 2%). Secondary organic aerosol (SOA) was an important contributor to ambient OC, particularly during the winter when secondary processing of aerosol species during fog episodes was expected. Coal combustion alone contributed a small percentage of organic aerosol (1.9 ± 0.3%), but showed strong linear correlation with unidentified sources of OC that contributed more significantly (27 ± 16%). Brick kilns, where coal and other low quality fuels are burned together, are suggested as the most probable origins of unapportioned OC. The chemical profiling of emissions from brick kilns and other sources unique to Lahore would contribute to a better understanding of OC sources in this megacity.

  4. Origin-Oriented Elemental Profile of Fine Ambient Particulate Matter in Central European Suburban Conditions

    PubMed Central

    Rogula-Kozłowska, Wioletta; Majewski, Grzegorz; Błaszczak, Barbara; Klejnowski, Krzysztof; Rogula-Kopiec, Patrycja

    2016-01-01

    Twenty-four-hour samples of fine ambient particulate matter (PM2.5; particles with aerodynamic diameters ≤2.5 µm) were collected in a suburban (quasi-rural) area in Racibórz (Poland) between 1 January 2011 and 26 December 2012. The samples were analyzed for the contents of 28 elements. Sources of PM2.5 were identified and the contribution of each source to the PM2.5 concentration was assessed using an enrichment factor (EF) analysis, a principal component analysis (PCA), and multi-linear regression analysis (MLRA). In the cold season (January–March and October–December 2011–2012), the mean ambient concentration of PM2.5 in Racibórz was 48.7 ± 39.4 µg·m−3, which was much higher than at other suburban or rural sites in Europe. Additionally the ambient concentrations of some toxic PM2.5-bound elements were also high, i.e., the mean ambient concentrations of PM2.5-bound As, Cd, and Pb were 11.3 ± 11.5, 5.2 ± 2.5, and 34.0 ± 34.2 ng·m−3, respectively. In the warm season (April–September 2011–2012), the PM2.5 and PM2.5-bound element concentrations in Racibórz were comparable to the concentrations noted at other suburban (or rural) sites in Europe. Our findings suggest that elemental composition and concentrations of PM2.5 in Racibórz are mainly influenced by anthropogenic emissions, i.e., the energy production based on coal and biomass combustion, traffic, and industry. PMID:27428988

  5. Wintertime chemical compositions of coarse and fine fractions of particulate matter in Bolu, Turkey.

    PubMed

    Öztürk, Fatma; Keleş, Melek

    2016-07-01

    Coarse (particulate matter (PM)2.5-10) and fine (PM2.5) fraction of PM samples were collected between December 2014 and February 2015 at an urban sampling site located at the Bolu plain, of the western Black Sea region of Turkey. The collected samples were analyzed in terms of metals (Al, As, Ba, Ca, Cu, Fe, K, Mg, Mn, Na, Pb, S, Si, Ti, V, and Zn); elemental carbon (EC); and organic carbon (OC). Elevated concentrations measured in this wintertime study were ∼7.8 μg/m(3) in sum of PM2.5-10 and PM2.5 for SO4 (2-) and ∼59.9 μg/m(3) in PM2.5 for OC. The contributions of primary and secondary OC (POC and SOC, respectively) to total OC mass were 60 and 40 %, respectively, while contribution of SOC to OC increased by up to 74 % in stable atmospheric conditions. The significantly high OC/EC ratio (∼10.1) found in this study relative to other wintertime studies was attributed to increased emissions from residential heating and lower mixing height observed during the study. Two and three factors were resolved by factor analysis for PM2.5-10 and PM2.5, respectively. Two Saharan dust episodes were observed on 31 January and 1 February, during which crustal PM components such as Mg, Si, and Al increased as much as three times their background concentrations. PMID:27048328

  6. Spectral emissions and dosimetry of metal tritide particulates.

    PubMed

    Strom, D J; Stewart, R D; McDonald, J C

    2002-01-01

    Inference of intakes and doses from inhalation of metal tritide particles has come under scrutiny because of decommissioning and decontamination of US Department of Energy facilities. Since self-absorption of radiation is very significant for larger particles, interpretation of counting results of metal tritide particles by liquid scintillation requires information about emission spectra. Similarly, inference of dose requires knowledge of charged particle and photon spectra. The PENELOPE Monte Carlo radiation transport computer code was used to compute spectral emissions and other dosimetric quantities for tritide particulates of Sc, Ti, Zr, Er, and Hf. Emission fractions, radial absorbed dose distributions, specific energy distributions and related frequency-mean specific energies and lineal energies, and the emitted spectra of electrons and bremsstrahlung photons are presented for selected particulates with diameters ranging from about 0.01 microm to 25 microm. Results characterising the effects of uncertainties associated with the composition and density of the tritides are also presented. Emission spectra are used to illustrate trends in the relationship between apparent and observed activity as a function of particle type and size. Emissions from metal tritide particles are weakly penetrating, and electron emission spectra tend to 'harden' as particle size increases. Microdosimetric considerations suggest that the radiation emitted by metal tritides can be classified as a low linear energy transfer radiation source. For cells less than about 7 microm away from the surface of a metal tritide, the primary dose component is due to electrons. However, bremsstrahlung radiation may deposit some energy tens, hundreds or even thousands of micrometres away from the surface of a tritide particle. The data and analyses presented in this report will help improve the accuracy of dose determinations for particulates of five metal tritides. Future work on the spectral

  7. Source Apportionment of Primary and Secondary Fine Particulate Matter in China

    NASA Astrophysics Data System (ADS)

    Hu, J.; Zhang, H.; Ying, Q.

    2015-12-01

    In the past few decades, China have been facing extreme particulate matter (PM) pollution problems due to the combination of fast increase of population, industrialization, urbanization and associated energy consumption and lagging of sufficient emission control measures. Studies have identified the major components of fine PM (PM2.5) in China include primary PM (which is directly emitted into the atmosphere), sulfate and nitrate (which are mainly secondary PM, i.e., formed from gaseous precursors), and organic aerosols (which can be primary or secondary). Contributions of different source sectors to the different PM components are substantially different; therefore source apportionment of these components can provide critical information needed for policy makers to design effective emission control strategies. In the current study, a source-oriented version of the Community Multiscale Air Quality (CMAQ) model that directly tracks the contributions from multiple emission sources to primary and secondary PM2.5 is developed, and then applied to determine the regional contributions of power, industry, transportation and residential sectors to primary PM, nitrate and sulfate concentrations in China. Four months in 2012-2013 are simulated to predict the seasonal variations of source contributions. Model predictions are evaluated with ambient measured concentrations. The source-oriented CMAQ model is capable of reproducing most of the available PM10 and PM2.5 mass, and PM2.5 EC, POC, nitrate and sulfate observations. Predicted source contributions for EC also generally agree with to the source contributions estimated by receptor models reported in previous studies. Model predictions suggest residential is a major contributor to primary PM (30-70%) in the spring and winter, and industrial contributes 40-60% of primary PM in the summer and fall; Transportation is an important source for EC (20-30%); Power sector is the dominating source of nitrate and sulfate in both

  8. A confined vortex scrubber for fine particulate removal from flue gases

    SciTech Connect

    Loftus, P.J.; Stickler, D.B.; Diehl, R.C. )

    1992-02-01

    An innovative cleanup concept, based on a confined vortex scrubber (CVS), for fine particulate removal from combustion flue gases has been developed, tested and verified. The CVS consists of a cylindrical vortex chamber with multiple tangential flue gas inlets. The clean gas exit is via two central tubes. Water is introduced into the chamber and is confined within the vortex chamber by the extremely high centrifugal forces generated by the gas flow. The confined water forms a layer through which the flue gas is forced to bubble. Due to the high radial acceleration, the bubbles generated are very small, leading to a strong gas/liquid interaction, high inertial separation forces and extremely efficient fine particle cleanup. Collection efficiencies in excess of 99.5% have been measured for extremely fine fly ash. A collection efficiency of 98% has been measured for 0.3 micron diameter particles.

  9. Chemical tracers of particulate emissions from commercial shipping.

    PubMed

    Viana, Mar; Amato, Fulvio; Alastuey, Andrés; Querol, Xavier; Moreno, Teresa; Dos Santos, Saúl García; Herce, María Dolores; Fernández-Patier, Rosalía

    2009-10-01

    Despite the increase of commercial shipping around the world, data are yet relatively scarce on the contribution of these emissions to ambient air particulates. One of the reasons is the complexity in the detection and estimation of shipping contributions to ambient particulates in harbor and urban environments, given the similarity with tracers of other combustion sources. This study aimed to identify specific tracers of shipping emissions in a Mediterranean city with an important harbor (Melilla, Spain). Results showed that for 24 h PM10 and PM2.5 samples, valid tracers of commercial shipping emissions were ratios of V/Ni = 4-5 and V/EC < 2, whereas V/EC > 8 excluded the influence of shipping emissions. Other ratios (V/ S, La/Ce, Zn/Ni, Pb/Zn, OC/EC) and tracers (Pb, Zn) were also tested but did not correlate with this source. Due to the changing composition of diesel fuels, tracers in the Mediterranean Sea may not be representative in other regions of the world and vice versa. The contribution of shipping emissions to ambient particulate matter (PM) urban background levels was quantified by positive matrix factorization (PMF), resulting in 2% and 4% of mean annual PM10 levels (0.8 microg/m3 primary particles and 1.7 microg/m3 secondary particles, with 20% uncertainty) and 14% of mean annual PM2.5 levels (2.6 microg/m3). PMID:19848163

  10. Characterization of Fine Particulate Matter and Associations between Particulate Chemical Constituents and Mortality in Seoul, Korea

    PubMed Central

    Son, Ji-Young; Lee, Jong-Tae; Kim, Ki-Hyun; Jung, Kweon

    2012-01-01

    Background: Numerous studies have linked fine particles [≤ 2.5 µm in aerodynamic diameter (PM2.5)] and health. Most studies focused on the total mass of the particles, although the chemical composition of the particles varies substantially. Which chemical components of fine particles that are the most harmful is not well understood, and research on the chemical composition of PM2.5 and the components that are the most harmful is particularly limited in Asia. Objectives: We characterized PM2.5 chemical composition and estimated the effects of cause-specific mortality of PM2.5 mass and constituents in Seoul, Korea. We compared the chemical composition of particles to those of the eastern and western United States. Methods: We examined temporal variability of PM2.5 mass and its composition using hourly data. We applied an overdispersed Poisson generalized linear model, adjusting for time, day of week, temperature, and relative humidity to investigate the association between risk of mortality and PM2.5 mass and its constituents in Seoul, Korea, for August 2008 through October 2009. Results: PM2.5 and chemical components exhibited temporal patterns by time of day and season. The chemical characteristics of Seoul’s PM2.5 were more similar to PM2.5 found in the western United States than in the eastern United States. Seoul’s PM2.5 had lower sulfate (SO4) contributions and higher nitrate (NO3) contributions than that of the eastern United States, although overall PM2.5 levels in Seoul were higher than in the United States. An interquartile range (IQR) increase in magnesium (Mg) (0.05 μg/m3) was associated with a 1.4% increase (95% confidence interval: 0.2%, 2.6%) in total mortality on the following day. Several components that were among the largest contributors to PM2.5 total mass—NO3, SO4, and ammonium (NH4)—were moderately associated with same-day cardiovascular mortality at the p < 0.10 level. Other components with smaller mass contributions [Mg and

  11. Fine particulate matter source apportionment for the chemical speciation trends network site at Birmingham, Alabama, using positive matrix factorization

    SciTech Connect

    Baumann, K.; Jayanty, R.K.; Flanagan, J.B.

    2008-01-15

    The Positive Matrix Factorization (PMF) receptor model version 1.1 was used with data from the fine particulate matter (PM2.5) Chemical Speciation Trends Network (STN) to estimate source contributions to ambient PM2.5 in a highly industrialized urban setting in the southeastern United States. Model results consistently resolved 10 factors that are interpreted as two secondary, five industrial, one motor vehicle, one road dust, and one biomass burning sources. It was found that most PMF factors did not cleanly represent single source types and instead are 'contaminated' by other sources. Secondary particulate matter formed by atmospheric processes, such as sulfate and secondary OC, contribute the majority of ambient PM2.5 and exhibit strong seasonality 37 {+-} 10% winter vs. 55 {+-} 16% summer average. Motor vehicle emissions constitute the biggest primary PM2.5 mass contribution. In summary, this study demonstrates the utility of the EC tracer method to effectively blank-correct the OC concentrations in the STN dataset. In addition, examination of the effect of input uncertainty estimates on model results indicates that the estimated uncertainties currently being provided with the STN data may be somewhat lower than the levels needed for optimum modeling results. An appendix , available to members on the website www.awma lists stationary sources of PM2.5 within 10 km of the NHBM site and PM2.5 emissions greater than 1 ton per year. 71 refs., 7 figs., 9 tabs.

  12. Assessment of Population and Microenvironmental Exposure to Fine Particulate Matter (PM2.5)

    NASA Astrophysics Data System (ADS)

    Jiao, Wan

    A positive relationship exists between fine particulate matter (PM 2.5) exposure and adverse health effects. PM2.5 concentration-response functions used in the quantitative risk assessment were based on findings from human epidemiological studies that relied on areawide ambient concentrations as surrogate for actual ambient exposure, which cannot capture the spatial and temporal variability in human exposures. The goal of the study is to assess inter-individual, geographic and seasonal variability in population exposures to inform the interpretation of available epidemiological studies, and to improve the understanding of how exposure-related factors in important exposure microenvironments contribute to the variability in individual PM2.5 exposure. Typically, the largest percentage of time in which an individual is exposed to PM2.5 of ambient origin occurs in indoor residence, and the highest ambient PM2.5 concentrations occur in transportation microenvironments because of the proximity to on-road traffic emissions. Therefore, indoor residence and traffic-related transportation microenvironments were selected for further assessment in the study. Population distributions of individual daily PM2.5 exposures were estimated for the selected regions and seasons using the Stochastic Human Exposure and Dose Simulation Model for Particulate Matter (SHEDS-PM). For the indoor residence, the current practice by assuming the entire residence to be one large single zone for calculating the indoor residential PM 2.5 concentration was evaluated by applying an indoor air quality model, RISK, to compare indoor PM2.5 concentrations between single-zone and multi-zone scenarios. For the transportation microenvironments, one field data collection focused on in-vehicle microenvironment and was conducted to quantify the variability in the in-vehicle PM2.5 concentration with respect to the outside vehicle concentration for a wide range of conditions that affect intra-vehicle variability

  13. An Integrated Risk Function for Estimating the Global Burden of Disease Attributable to Ambient Fine Particulate Matter Exposure

    PubMed Central

    Pope, C. Arden; Ezzati, Majid; Olives, Casey; Lim, Stephen S.; Mehta, Sumi; Shin, Hwashin H.; Singh, Gitanjali; Hubbell, Bryan; Brauer, Michael; Anderson, H. Ross; Smith, Kirk R.; Balmes, John R.; Bruce, Nigel G.; Kan, Haidong; Laden, Francine; Prüss-Ustün, Annette; Turner, Michelle C.; Gapstur, Susan M.; Diver, W. Ryan; Cohen, Aaron

    2014-01-01

    Background: Estimating the burden of disease attributable to long-term exposure to fine particulate matter (PM2.5) in ambient air requires knowledge of both the shape and magnitude of the relative risk (RR) function. However, adequate direct evidence to identify the shape of the mortality RR functions at the high ambient concentrations observed in many places in the world is lacking. Objective: We developed RR functions over the entire global exposure range for causes of mortality in adults: ischemic heart disease (IHD), cerebrovascular disease (stroke), chronic obstructive pulmonary disease (COPD), and lung cancer (LC). We also developed RR functions for the incidence of acute lower respiratory infection (ALRI) that can be used to estimate mortality and lost-years of healthy life in children < 5 years of age. Methods: We fit an integrated exposure–response (IER) model by integrating available RR information from studies of ambient air pollution (AAP), second hand tobacco smoke, household solid cooking fuel, and active smoking (AS). AS exposures were converted to estimated annual PM2.5 exposure equivalents using inhaled doses of particle mass. We derived population attributable fractions (PAFs) for every country based on estimated worldwide ambient PM2.5 concentrations. Results: The IER model was a superior predictor of RR compared with seven other forms previously used in burden assessments. The percent PAF attributable to AAP exposure varied among countries from 2 to 41 for IHD, 1 to 43 for stroke, < 1 to 21 for COPD, < 1 to 25 for LC, and < 1 to 38 for ALRI. Conclusions: We developed a fine particulate mass–based RR model that covered the global range of exposure by integrating RR information from different combustion types that generate emissions of particulate matter. The model can be updated as new RR information becomes available. Citation: Burnett RT, Pope CA III, Ezzati M, Olives C, Lim SS, Mehta S, Shin HH, Singh G, Hubbell B, Brauer M, Anderson HR

  14. A Source Apportionment of U.S. Fine Particulate Matter Air Pollution

    PubMed Central

    Thurston, George D.; Ito, Kazuhiko; Lall, Ramona

    2011-01-01

    Using daily fine particulate matter (PM2.5) composition data from the 2000–2005 U.S. EPA Chemical Speciation Network (CSN) for over 200 sites, we applied multivariate methods to identify and quantify the major fine particulate matter (PM2.5) source components in the U.S. Novel aspects of this work were: (1) the application of factor analysis (FA) to multi-city daily data, drawing upon both spatial and temporal variations of chemical species; and, (2) the exclusion of secondary components (sulfates, nitrates and organic carbon) from the source identification FA to more clearly discern and apportion the PM2.5 mass to primary emission source categories. For the quantification of source-related mass, we considered two approaches based upon the FA results: 1) using single key tracers for sources identified by FA in a mass regression; and, 2) applying Absolute Principal Component Analysis (APCA). In each case, we followed a two-stage mass regression approach, in which secondary components were first apportioned among the identified sources, and then mass was apportioned to the sources and to other secondary mass not explained by the individual sources. The major U.S. PM2.5 source categories identified via FA (and their key elements) were: Metals Industry (Pb, Zn); Crustal/Soil Particles (Ca, Si); Motor Vehicle Traffic (EC, NO2); Steel Industry (Fe, Mn); Coal Combustion (As, Se); Oil Combustion (V, Ni); Salt Particles (Na, Cl) and Biomass Burning (K). Nationwide spatial plots of the source-related PM2.5 impacts were confirmatory of the factor interpretations: ubiquitous sources, such as Traffic and Soil, were found to be spread across the nation, more unique sources (such as Steel and Metals Processing) being highest in select industrialized cities, Biomass Burning was highest in the U.S. Northwest, while Residual Oil combustion was highest in cities in the Northeastern U.S. and in cities with major seaports. The sum of these source contributions and the secondary PM2

  15. Chemical characteristics and source apportionment of fine particulate organic carbon in Hong Kong during high particulate matter episodes in winter 2003

    NASA Astrophysics Data System (ADS)

    Li, Yun-Chun; Yu, Jian Zhen; Ho, Steven Sai Hang; Schauer, James J.; Yuan, Zibing; Lau, Alexis K. H.; Louie, Peter K. K.

    2013-02-01

    PM2.5 samples were collected at six general stations and one roadside station in Hong Kong in two periods of high particulate matter (PM) in 2003 (27 October-4 November and 30 November-13 December). The highest PM2.5 reached 216 μg m- 3 during the first high PM period and 113 μg m- 3 during the second high PM period. Analysis of synoptic weather conditions identified individual sampling days under dominant influence of one of three types of air masses, that is, local, regional and long-range transported (LRT) air masses. Roadside samples were discussed separately due to heavy influences from vehicular emissions. This research examines source apportionment of fine organic carbon (OC) and contribution of secondary organic aerosol on high PM days under different synoptic conditions. Six primary OC (POC) sources (vehicle exhaust, biomass burning, cooking, cigarette smoke, vegetative detritus, and coal combustion) were identified on the basis of characteristic organic tracers. Individual POC source contributions were estimated using chemical mass balance model. In the roadside and the local samples, OC was dominated by the primary sources, accounting for more than 74% of OC. In the samples influenced by regional and LRT air masses, secondary OC (SOC), which was approximated to be the difference between the total measured OC and the apportioned POC, contributed more than 54% of fine OC. SOC was highly correlated with water-soluble organic carbon and sulfate, consistent with its secondary nature.

  16. Power plant emissions: particulate matter-related health damages and the benefits of alternative emission reduction scenarios

    SciTech Connect

    Schneider, C.

    2004-06-15

    This report estimates the avoidable health effects of each of a series of alternative regulatory scenarios for power plants, focusing on the adverse human health effects due to exposure to fine particulate matter (PM2.5) This report uses the same analytical methods that the U.S. Environmental Protection Agency used in 2003 to prepare an analysis of the potential health effects of the proposed Clear Skies Act (EPA 2003). This report conducts an analysis of the impacts in 2010 and 2020 of three policy alternatives to the proposed Clear Skies Act, The Jeffords/Lieberman/Collins 'The Clean Power Act', S. 366, and the EPA August 2001 Straw Proposal (one of several alternatives EPA analyzed prior to the announcement of the Clear Skies Initiative in 2002). The report also examines the health impacts associated with the total emissions from coal fired electricity generating units in 2010. Chapter 2 describes the emissions inventory estimates, and the changes in the emissions associated with each scenario analyzed. Chapter 3 describes the methods used to estimate changes in particulate matter concentrations. Chapter 4 describes general issues arising in estimating and valuing changes in adverse health effects associated with changes in particulate matter. Chapter 5 describes in some detail the methods used for estimating and valuing adverse health effects, and Chapter 6 presents the results of these analyses. Chapter 7 presents estimates of the impact of these alternative policy options on the PM non-attainment status. 117 refs., 21 figs., 32 tabs., 3 apps.

  17. Emission characteristics of particulate matter and heavy metals from small incinerators and boilers

    NASA Astrophysics Data System (ADS)

    Yoo, Jong-Ik; Kim, Ki-Heon; Jang, Ha-Na; Seo, Yong-Chil; Seok, Kwang-Seol; Hong, Ji-Hyung; Jang, Min

    The characteristics of particulate matter (PM) emission such as the estimation of emission factors, size distributions and of heavy metal emission from small-size incinerators and boilers have been investigated. In PM-10 emission, a fine mode was found in the formation of sub-micron PM by growth of nucleated aerosol of metal vapor, having a bimodal particle size distribution in overall size range. The emission ratios of PM-10 to TPM (total PM) from boilers and incinerators ranged from 29% to 62% and 10% to 84%, respectively, which resulted in more and larger sized PM emission due to poorer combustion from solid waste incinerators than boilers. The targeted metals were copper, cadmium, manganese, chromium, magnesium, lead, zinc and copper, and their contents in bottom ash, fly ash and dust (PM) were compared. More volatile metals such as cadmium, lead and zinc showed higher enrichment in PM emitted through stack than bottom ashes. Cadmium, copper, lead and zinc on the fine PM under 2.5 μm accounted for approximately 90% of the total mass of each metal in PM-10. The effects of chlorine concentration and temperature on such metals emission were also observed due to their volatility changes.

  18. Atmospheric particulate emissions from dry abrasive blasting using coal slag

    SciTech Connect

    Bhaskar Kura; Kalpalatha Kambham; Sivaramakrishnan Sangameswaran; Sandhya Potana

    2006-08-15

    Coal slag is one of the widely used abrasives in dry abrasive blasting. Atmospheric emissions from this process include particulate matter (PM) and heavy metals, such as chromium, lead, manganese, nickel. Quantities and characteristics of PM emissions depend on abrasive characteristics and process parameters. Emission factors are key inputs to estimate emissions. Experiments were conducted to study the effect of blast pressure, abrasive feed rate, and initial surface contamination on total PM (TPM) emission factors for coal slag. Rusted and painted mild steel surfaces were used as base plates. Blasting was carried out in an enclosed chamber, and PM was collected from an exhaust duct using U.S. Environment Protection Agency source sampling methods for stationary sources. Results showed that there is significant effect of blast pressure, feed rate, and surface contamination on TPM emissions. Mathematical equations were developed to estimate emission factors in terms of mass of emissions per unit mass of abrasive used, as well as mass of emissions per unit of surface area cleaned. These equations will help industries in estimating PM emissions based on blast pressure and abrasive feed rate. In addition, emissions can be reduced by choosing optimum operating conditions. 40 refs., 5 figs., 2 tabs.

  19. Atmospheric particulate emissions from dry abrasive blasting using coal slag.

    PubMed

    Kura, Bhaskar; Kambham, Kalpalatha; Sangameswaran, Sivaramakrishnan; Potana, Sandhya

    2006-08-01

    Coal slag is one of the widely used abrasives in dry abrasive blasting. Atmospheric emissions from this process include particulate matter (PM) and heavy metals, such as chromium, lead, manganese, nickel. Quantities and characteristics of PM emissions depend on abrasive characteristics and process parameters. Emission factors are key inputs to estimate emissions. Experiments were conducted to study the effect of blast pressure, abrasive feed rate, and initial surface contamination on total PM (TPM) emission factors for coal slag. Rusted and painted mild steel surfaces were used as base plates. Blasting was carried out in an enclosed chamber, and PM was collected from an exhaust duct using U.S. Environment Protection Agency source sampling methods for stationary sources. Results showed that there is significant effect of blast pressure, feed rate, and surface contamination on TPM emissions. Mathematical equations were developed to estimate emission factors in terms of mass of emissions per unit mass of abrasive used, as well as mass of emissions per unit of surface area cleaned. These equations will help industries in estimating PM emissions based on blast pressure and abrasive feed rate. In addition, emissions can be reduced by choosing optimum operating conditions. PMID:16933653

  20. Sources and Processes Affecting Fine Particulate Matter Pollution over North China: An Adjoint Analysis of the Beijing APEC Period.

    PubMed

    Zhang, Lin; Shao, Jingyuan; Lu, Xiao; Zhao, Yuanhong; Hu, Yongyun; Henze, Daven K; Liao, Hong; Gong, Sunling; Zhang, Qiang

    2016-08-16

    The stringent emission controls during the APEC 2014 (the Asia-Pacific Economic Cooperation Summit; November 5-11, 2014) offer a unique opportunity to quantify factors affecting fine particulate matter (PM2.5) pollution over North China. Here we apply a four-dimensional variational data assimilation system using the adjoint model of GEOS-Chem to address this issue. Hourly surface measurements of PM2.5 and SO2 for October 15-November 14, 2014 are assimilated into the model to optimize daily aerosol primary and precursor emissions over North China. Measured PM2.5 concentrations in Beijing average 50.3 μg m(-3) during APEC, 43% lower than the mean concentration (88.2 μg m(-3)) for the whole period including APEC. Model results attribute about half of the reduction to meteorology due to active cold surge occurrences during APEC. Assimilation of surface measurements largely reduces the model biases and estimates 6%-30% lower aerosol emissions in the Beijing-Tianjin-Hebei region during APEC than in late October. We further demonstrate that high PM2.5 events in Beijing during this period can be occasionally contributed by natural mineral dust, but more events show large sensitivities to inorganic aerosol sources, particularly emissions of ammonia (NH3) and nitrogen oxides (NOx) reflecting strong formation of aerosol nitrate in the fall season. PMID:27434821

  1. Evaluation of coarse and fine particulate sources using a portable aerosol monitor in a desert community.

    PubMed

    Phalen, Robert N; Coleman, Ted

    2012-08-01

    The purpose of this study was to use a portable aerosol monitor as a preliminary screening tool to identify local sources of coarse (PM(10-2.5)) and fine (PM(2.5)) particulate matter within the Coachella Valley, a low-elevation desert community. The portable aerosol monitor proved to be useful in identifying particle sources unique to the region, namely, sand dunes with sparse ground cover (vegetation), a river wash, and diesel truck and freight train traffic. The general limitations relate to discrepancies in the fraction of PM(10-2.5) when compared to regional air quality data and a lack of accurate mass-based data. PMID:22617941

  2. Trends in primary particulate matter emissions from Canadian agriculture.

    PubMed

    Pattey, Elizabeth; Qiu, Guowang

    2012-07-01

    Particulate matter (PM) has long been recognized as an air pollutant due to its adverse health and environmental impacts. As emission of PM from agricultural operations is an emerging air quality issue, the Agricultural Particulate Matter Emissions Indicator (APMEI) has been developed to estimate the primary PM contribution to the atmosphere from agricultural operations on Census years and to assess the impact of practices adopted to mitigate these emissions at the soil landscape polygon scale as part of the agri-environmental indicator report series produced by Agriculture and Agri-Food Canada. In the APMEI, PM emissions from animal feeding operations, wind erosion, land preparation, crop harvest, fertilizer and chemical application, grain handling, and pollen were calculated and compared for the Census years of 1981-2006. In this study, we present the results for PM10 and PM2.5, which exclude chemical application and pollen sources as they only contribute to total suspended particles. In 2006, PM emissions from agricultural operations were estimated to be 652.6 kt for PM10 and 158.1 kt for PM2.5. PM emissions from wind erosion and land preparation account for most of PM emissions from agricultural operations in Canada, contributing 82% of PM10 and 76% of PM2.5 in 2006. Results from the APMEI show a strong reduction in PM emissions from agricultural operations between 1981 and 2006, with a decrease of 40% (442.8 kt) for PM10 and 47% (137.7 kt) for PM2.5. This emission reduction is mainly attributed to the adoption of conservation tillage and no-till practices and the reduction in the area of summer fallow land. PMID:22866575

  3. Characterization of chemical components and bioreactivity of fine particulate matter (PM2.5) during incense burning.

    PubMed

    Lui, K H; Bandowe, Benjamin A Musa; Ho, Steven Sai Hang; Chuang, Hsiao-Chi; Cao, Jun-Ji; Chuang, Kai-Jen; Lee, S C; Hu, Di; Ho, K F

    2016-06-01

    The chemical and bioreactivity properties of fine particulate matter (PM2.5) emitted during controlled burning of different brands of incense were characterized. Incenses marketed as being environmentally friendly emitted lower mass of PM2.5 particulates than did traditional incenses. However, the environmentally friendly incenses produced higher total concentrations of non-volatile polycyclic aromatic hydrocarbons (PAHs) and some oxygenated polycyclic aromatic hydrocarbons (OPAHs). Human alveolar epithelial A549 cells were exposed to the collected PM2.5, followed by determining oxidative stress and inflammation. There was moderate to strong positive correlation (R > 0.60, p < 0.05) between selected PAHs and OPAHs against oxidative-inflammatory responses. Strong positive correlation was observed between interleukin 6 (IL-6) and summation of total Group B2 PAHs/OPAHs (∑7PAHs/ΣOPAHs). The experimental data indicate that emissions from the environmentally friendly incenses contained higher concentrations of several PAH and OPAH compounds than did traditional incense. Moreover, these PAHs and OPAHs were strongly correlated with inflammatory responses. The findings suggest a need to revise existing regulation of such products. PMID:26994327

  4. Source Signatures of Fine Particulate Matter from Petroleum Refining and Fuel Use

    SciTech Connect

    Gerald P. Huffman; Frank E. Huggins; Naresh Shah; Robert Huggins

    1999-12-31

    Combustion experiments were carried out on four different residual fuel oils in a 732 kW boiler. Particulate matter (PM) emission samples were separated aerodynamically by a cyclone into fractions that were nominally less than and greater than 2.5 microns in diameter. However, examination of several of the samples by computer-controlled scanning electron microscopy (CCSEM) revealed that part of the <2.5 micron fraction (PM{sub 2.5}) in fact consists of carbonaceous cenospheres and vesicular particles that range up to 10 microns in diameter. X-ray absorption fine structure (XAFS) spectroscopy data were obtained at the S, V, Ni, Fe, Cu, Zn, and As Kedges, and at the Pb L-edge. Deconvolution of the x-ray absorption near edge structure (XANES) region of the S spectra established that the dominant molecular forms of S present were sulfate (26-84% of total S) and thiophene (13-39% of total S). Sulfate was greater in the PM{sub 2.5} samples than in the >2.5 micron samples (PM{sub 2.5+}). Inorganic sulfides and elemental sulfur were present in lower percentages. The Ni XANES spectra from all of the samples agree fairly well with that of NiSO4, while most of the V spectra closely resemble that of vanadyl sulfate (VO{center_dot}SO{sub 4}{center_dot}xH{sub 2}O). The other metals investigated (Fe, Cu, Zn, and Pb) were also present predominantly as sulfates. Arsenic is present as an arsenate (As{sup +5}). X-ray diffraction patterns of the PM{sub 2.5} fraction exhibit sharp lines due to sulfate compounds (Zn, V, Ni, Ca, etc.) superimposed on broad peaks due to amorphous carbons. All of the samples contain a significant organic component, with the LOI ranging from 64 to 87 % for the PM{sub 2.5} fraction and from 88 to 97% for the PM{sub 2.5+} fraction. {sup 13}C nuclear magnetic resonance (NMR) analysis indicates that the carbon is predominantly condensed in graphitic structures. Aliphatic structure was detected in only one of seven samples examined.

  5. Indoor air sampling for fine particulate matter and black carbon in industrial communities in Pittsburgh.

    PubMed

    Tunno, Brett J; Naumoff Shields, Kyra; Cambal, Leah; Tripathy, Sheila; Holguin, Fernando; Lioy, Paul; Clougherty, Jane E

    2015-12-01

    Impacts of industrial emissions on outdoor air pollution in nearby communities are well-documented. Fewer studies, however, have explored impacts on indoor air quality in these communities. Because persons in northern climates spend a majority of their time indoors, understanding indoor exposures, and the role of outdoor air pollution in shaping such exposures, is a priority issue. Braddock and Clairton, Pennsylvania, industrial communities near Pittsburgh, are home to an active steel mill and coke works, respectively, and the population experiences elevated rates of childhood asthma. Twenty-one homes were selected for 1-week indoor sampling for fine particulate matter (PM2.5) and black carbon (BC) during summer 2011 and winter 2012. Multivariate linear regression models were used to examine contributions from both outdoor concentrations and indoor sources. In the models, an outdoor infiltration component explained 10 to 39% of variability in indoor air pollution for PM2.5, and 33 to 42% for BC. For both PM2.5 models and the summer BC model, smoking was a stronger predictor than outdoor pollution, as greater pollutant concentration increases were identified. For winter BC, the model was explained by outdoor pollution and an open windows modifier. In both seasons, indoor concentrations for both PM2.5 and BC were consistently higher than residence-specific outdoor concentration estimates. Mean indoor PM2.5 was higher, on average, during summer (25.8±22.7 μg/m3) than winter (18.9±13.2 μg/m3). Contrary to the study's hypothesis, outdoor concentrations accounted for only little to moderate variability (10 to 42%) in indoor concentrations; a much greater proportion of PM2.5 was explained by cigarette smoking. Outdoor infiltration was a stronger predictor for BC compared to PM2.5, especially in winter. Our results suggest that, even in industrial communities of high outdoor pollution concentrations, indoor activities--particularly cigarette smoking--may play a larger

  6. Source identification of personal exposure to fine particulate matter using organic tracers

    NASA Astrophysics Data System (ADS)

    Brinkman, Gregory L.; Milford, Jana B.; Schauer, James J.; Shafer, Martin M.; Hannigan, Michael P.

    Personal exposure to fine particulate matter (PM2.5) is due to both indoor and outdoor sources. Contributions of sources to personal exposure can be quite different from those observed at ambient sampling locations. The primary goal of this study was to investigate the effectiveness of using trace organic speciation data to help identify sources influencing PM2.5 exposure concentrations. Sixty-four 24-h PM2.5 samples were obtained on seven different subjects in and around Boulder, CO. The exposure samples were analyzed for PM2.5 mass, elemental and organic carbon, organic tracer compounds, water-soluble metals, ammonia, and nitrate. This study is the first to measure a broad distribution of organic tracer compounds in PM2.5 personal samples. PM2.5 mass exposure concentrations averaged 8.4 μg m -3. Organic carbon was the dominant constituent of the PM2.5 mass. Forty-four organic species and 19 water-soluble metals were quantifiable in more than half of the samples. Fifty-four organic species and 16 water-soluble metals had measurement signal-to-noise ratios larger than two after blank subtraction. The dataset was analyzed by Principal Component Analysis (PCA) to determine the factors that account for the greatest variance. Eight significant factors were identified; each factor was matched to its likely source based primarily on the marker species that loaded the factor. The results were consistent with the expectation that multiple marker species for the same source loaded the same factor. Meat cooking was an important source of variability. The factor that represents meat cooking was highly correlated with organic carbon concentrations ( r = 0.84). The correlation between ambient PM2.5 and PM2.5 exposure was relatively weak ( r = 0.15). Time participants spent performing various activities was generally not well correlated with PCA factor scores, likely because activity duration does not measure emissions intensity. The PCA results demonstrate that organic tracers

  7. Fine structure line emission from supergiants

    NASA Technical Reports Server (NTRS)

    Haas, Michael R.; Glassgold, Alfred E.; Tielens, Alexander G. G. M.

    1995-01-01

    We have detected (O I) 63 micron and (Si II) 35 micron emission from the oxygen-rich, M supergiants alpha Orionis (Betelgeuse), alpha Scorpii (Antares), and alpha Herculis (Rasalgethi). The measured fluxes indicate that the emission originates in dense, warm gas in the inner envelope or transition region where molecules and dust are expected to form and the acceleration of the wind occurs. Mass-loss rates are derived, evidence for time variability is presented, and results for other evolved stars are included.

  8. Fine structure line emission from supergiants

    NASA Astrophysics Data System (ADS)

    Haas, Michael R.; Glassgold, Alfred E.; Tielens, Alexander G. G. M.

    We have detected (O I) 63 micron and (Si II) 35 micron emission from the oxygen-rich, M supergiants alpha Orionis (Betelgeuse), alpha Scorpii (Antares), and alpha Herculis (Rasalgethi). The measured fluxes indicate that the emission originates in dense, warm gas in the inner envelope or transition region where molecules and dust are expected to form and the acceleration of the wind occurs. Mass-loss rates are derived, evidence for time variability is presented, and results for other evolved stars are included.

  9. SOURCE SAMPLING FINE PARTICULATE MATTER--INSTITUTIONAL OIL-FIRED BOILER

    EPA Science Inventory

    EPA seeks to understand the correlation between ambient fine PM and adverse human health effects, and there are no reliable emission factors to use for estimating PM2.5 or NH3. The most common source of directly emitted PM2.5 is incomplete combustion of fossil or biomass fuels. M...

  10. Ensemble-Based Source Apportionment of Fine Particulate Matter and Emergency Department Visits for Pediatric Asthma

    PubMed Central

    Gass, Katherine; Balachandran, Sivaraman; Chang, Howard H.; Russell, Armistead G.; Strickland, Matthew J.

    2015-01-01

    Epidemiologic studies utilizing source apportionment (SA) of fine particulate matter have shown that particles from certain sources might be more detrimental to health than others; however, it is difficult to quantify the uncertainty associated with a given SA approach. In the present study, we examined associations between source contributions of fine particulate matter and emergency department visits for pediatric asthma in Atlanta, Georgia (2002–2010) using a novel ensemble-based SA technique. Six daily source contributions from 4 SA approaches were combined into an ensemble source contribution. To better account for exposure uncertainty, 10 source profiles were sampled from their posterior distributions, resulting in 10 time series with daily SA concentrations. For each of these time series, Poisson generalized linear models with varying lag structures were used to estimate the health associations for the 6 sources. The rate ratios for the source-specific health associations from the 10 imputed source contribution time series were combined, resulting in health associations with inflated confidence intervals to better account for exposure uncertainty. Adverse associations with pediatric asthma were observed for 8-day exposure to particles generated from diesel-fueled vehicles (rate ratio = 1.06, 95% confidence interval: 1.01, 1.10) and gasoline-fueled vehicles (rate ratio = 1.10, 95% confidence interval: 1.04, 1.17). PMID:25776011

  11. Analysis of semi-volatile materials (SVM) in fine particulate matter

    NASA Astrophysics Data System (ADS)

    Salvador, Christian Mark; Chou, Charles C.-K.

    2014-10-01

    The mass fraction of semi-volatile materials (SVM) in fine particulate matter (PM2.5) was investigated at a subtropical urban aerosol observatory (TARO, 25.0 °N, 121.5 °E) in Taipei, Taiwan during August 2013. In particular, an integrated Denuder-FDMS-TEOM system was employed to study the effectiveness of the coupling of FDMS and TEOM instruments. The charcoal and MgO denuders used in this study performed a removal efficiency of 89 and 95% for positive interferences in OC and nitrate measurements, respectively, and did not induce a significant particle loss during the field campaign, suggesting that denuders should be considered as a standard device in PM2.5 instrumentation. Analysis on the mass concentration and speciation data found that, as a result of SVM loss, FRM-based measurement underestimated PM2.5 by 21% in our case. Coupling FDMS to TEOM significantly improved the bias in PM2.5 mass concentration from -25% to -14%. The negative bias in FDMS-TEOM was attributed to the failure of FDMS in recovering the mass of lost SVOMs in PM2.5. The results of this study highlight the significance of SVM in a subtropical urban environment, give a warning of underestimated health risk relevant to PM2.5 exposure, and necessitate further development of instrument and/or technique to provide accurate ambient levels of fine particulate matters.

  12. Global chemical composition of ambient fine particulate matter for exposure assessment.

    PubMed

    Philip, Sajeev; Martin, Randall V; van Donkelaar, Aaron; Lo, Jason Wai-Ho; Wang, Yuxuan; Chen, Dan; Zhang, Lin; Kasibhatla, Prasad S; Wang, Siwen; Zhang, Qiang; Lu, Zifeng; Streets, David G; Bittman, Shabtai; Macdonald, Douglas J

    2014-11-18

    Epidemiologic and health impact studies are inhibited by the paucity of global, long-term measurements of the chemical composition of fine particulate matter. We inferred PM2.5 chemical composition at 0.1° × 0.1° spatial resolution for 2004-2008 by combining aerosol optical depth retrieved from the MODIS and MISR satellite instruments, with coincident profile and composition information from the GEOS-Chem global chemical transport model. Evaluation of the satellite-model PM2.5 composition data set with North American in situ measurements indicated significant spatial agreement for secondary inorganic aerosol, particulate organic mass, black carbon, mineral dust, and sea salt. We found that global population-weighted PM2.5 concentrations were dominated by particulate organic mass (11.9 ± 7.3 μg/m(3)), secondary inorganic aerosol (11.1 ± 5.0 μg/m(3)), and mineral dust (11.1 ± 7.9 μg/m(3)). Secondary inorganic PM2.5 concentrations exceeded 30 μg/m(3) over East China. Sensitivity simulations suggested that population-weighted ambient PM2.5 from biofuel burning (11 μg/m(3)) could be almost as large as from fossil fuel combustion sources (17 μg/m(3)). These estimates offer information about global population exposure to the chemical components and sources of PM2.5. PMID:25343705

  13. The use of a receptor model for fine particulate in Mexico City

    SciTech Connect

    Vega, E.; Garcia, I.; Ruiz, M.E.

    1997-12-31

    Mexico City Metropolitan Area (MCMA) faces severe pollution problems typical of large urban areas all over the world. The city is in an elevated basin (2,240 m) at a subtropical latitude (19.5N), with a high mountain chain at the West and South. This basin setting inhibits dispersion of pollution and contributes to the frequent wintertime thermal inversions which further trap pollutants near the surface. The study of atmospheric pollution and its control have been carried out using physico-chemical dispersion models, and the type known as receptor models often finds favor. The main objective of this paper is to present the results of a chemical mass balance receptor model applied to two different data sets of particulate matter. The twelve-hour samples were collected during day and night periods in the winter of 1989, previous to the introduction of catalytic converters in automobiles, and the other after 1991, since the catalytic converters are compulsory in all the new model vehicles. Samples of particulate matter were collected using a denuder and a Hi-Vol systems for the fine fraction (aerosols with diameter less than 2.5 {micro}m) and total suspended particles respectively. The results show that the major source contributions to the inhalable particulate matter for the first period are: automobiles (44%); secondary aerosols (19%); dust (10%).

  14. Global Chemical Composition of Ambient Fine Particulate Matter for Exposure Assessment

    PubMed Central

    2015-01-01

    Epidemiologic and health impact studies are inhibited by the paucity of global, long-term measurements of the chemical composition of fine particulate matter. We inferred PM2.5 chemical composition at 0.1° × 0.1° spatial resolution for 2004–2008 by combining aerosol optical depth retrieved from the MODIS and MISR satellite instruments, with coincident profile and composition information from the GEOS-Chem global chemical transport model. Evaluation of the satellite-model PM2.5 composition data set with North American in situ measurements indicated significant spatial agreement for secondary inorganic aerosol, particulate organic mass, black carbon, mineral dust, and sea salt. We found that global population-weighted PM2.5 concentrations were dominated by particulate organic mass (11.9 ± 7.3 μg/m3), secondary inorganic aerosol (11.1 ± 5.0 μg/m3), and mineral dust (11.1 ± 7.9 μg/m3). Secondary inorganic PM2.5 concentrations exceeded 30 μg/m3 over East China. Sensitivity simulations suggested that population-weighted ambient PM2.5 from biofuel burning (11 μg/m3) could be almost as large as from fossil fuel combustion sources (17 μg/m3). These estimates offer information about global population exposure to the chemical components and sources of PM2.5. PMID:25343705

  15. Global Chemical Composition of Ambient Fine Particulate Matter for Exposure Assessment

    DOE PAGESBeta

    Philip, Sajeev; Martin, Randall V.; van Donkelaar, Aaron; Lo, Jason Wai-Ho; Wang, Yuxuan; Chen, Dan; Zhang, Lin; Kasibhatla, Prasad S.; Wang, Siwen; Zhang, Qiang; et al

    2014-10-24

    Epidemiologic and health impact studies are inhibited by the paucity of global, long-term measurements of the chemical composition of fine particulate matter. We inferred PM2.5 chemical composition at 0.1° × 0.1° spatial resolution for 2004–2008 by combining aerosol optical depth retrieved from the MODIS and MISR satellite instruments, with coincident profile and composition information from the GEOS-Chem global chemical transport model. Evaluation of the satellite-model PM2.5 composition data set with North American in situ measurements indicated significant spatial agreement for secondary inorganic aerosol, particulate organic mass, black carbon, mineral dust, and sea salt. We found that global population-weighted PM2.5 concentrationsmore » were dominated by particulate organic mass (11.9 ± 7.3 μg/m3), secondary inorganic aerosol (11.1 ± 5.0 μg/m3), and mineral dust (11.1 ± 7.9 μg/m3). Secondary inorganic PM2.5 concentrations exceeded 30 μg/m3 over East China. Sensitivity simulations suggested that population-weighted ambient PM2.5 from biofuel burning (11 μg/m3) could be almost as large as from fossil fuel combustion sources (17 μg/m3). In conclusion, these estimates offer information about global population exposure to the chemical components and sources of PM2.5.« less

  16. Mechanisms governing fine particulate emissions from coal flames

    SciTech Connect

    Newton, G.H.; Schieber, C.; Socha, R.G.; Clark, W.D.; Kramlich, J.C.

    1989-10-01

    During this reporting period the global experiments were concluded. The final activities under these experiments involved measuring mineral content of coals as a function of coal particle size. The principal activities during this quarter involved the mechanistic experiments. Three baseline coals were cleaned and two of these sized. The ash from these various cuts were sampled from a bench scale reactor. The ash size distributions were compared to distributions predicted by the breakup model.

  17. FINE PARTICULATE MATTER (PM) AND ORGANIC SPECIATION OF FIREPLACE EMISSIONS

    EPA Science Inventory

    This paper presents a summary of fireplace particle size and organic speciation data gathered to date in an on-going project. Tests are being conducted in a residential wood combustion (RWC) laboratory on three factory-built fireplaces. RWC wood smoke particles <10?m (PM10) con...

  18. INSTRUMENTATION FOR MONITORING THE OPACITY OF PARTICULATE EMISSIONS CONTAINING CONDENSED WATER

    EPA Science Inventory

    On-stack instrumentation and methodology were developed to monitor the opacity of particulate pollutants in stationary source emissions containing condensed water. The instrument continuously extracts and measures the opacity of representative samples of particulate effluent. It ...

  19. The public health benefits of reducing fine particulate matter through conversion to cleaner heating fuels in New York City.

    PubMed

    Kheirbek, Iyad; Haney, Jay; Douglas, Sharon; Ito, Kazuhiko; Caputo, Steven; Matte, Thomas

    2014-12-01

    In recent years, both New York State and City issued regulations to reduce emissions from burning heating oil. To assess the benefits of these programs in New York City, where the density of emissions and vulnerable populations vary greatly, we simulated the air quality benefits of scenarios reflecting no action, partial, and complete phase-out of high-sulfur heating fuels using the Community MultiScale Air Quality (CMAQ) model conducted at a high spatial resolution (1 km). We evaluated the premature mortality and morbidity benefits of the scenarios within 42 city neighborhoods and computed benefits by neighborhood poverty status. The complete phase-out scenario reduces annual average fine particulate matter (PM2.5) by an estimated 0.71 μg/m(3) city-wide (average of 1 km estimates, 10-90th percentile: 0.1-1.6 μg/m(3)), avoiding an estimated 290 premature deaths, 180 hospital admissions for respiratory and cardiovascular disease, and 550 emergency department visits for asthma each year. The largest improvements were seen in areas of highest building and population density and the majority of benefits have occurred through the partial phase out of high-sulfur heating fuel already achieved. While emissions reductions were greatest in low-poverty neighborhoods, health benefits are estimated to be greatest in high-poverty neighborhoods due to higher baseline morbidity and mortality rates. PMID:25365783

  20. Temporalization of peak electric generation particulate matter emissions during high energy demand days.

    PubMed

    Farkas, Caroline M; Moeller, Michael D; Felder, Frank A; Baker, Kirk R; Rodgers, Mark; Carlton, Annmarie G

    2015-04-01

    Underprediction of peak ambient pollution by air quality models hinders development of effective strategies to protect health and welfare. The U.S. Environmental Protection Agency's community multiscale air quality (CMAQ) model routinely underpredicts peak ozone and fine particulate matter (PM2.5) concentrations. Temporal misallocation of electricity sector emissions contributes to this modeling deficiency. Hourly emissions are created for CMAQ by use of temporal profiles applied to annual emission totals unless a source is matched to a continuous emissions monitor (CEM) in the National Emissions Inventory (NEI). More than 53% of CEMs in the Pennsylvania-New Jersey-Maryland (PJM) electricity market and 45% nationally are unmatched in the 2008 NEI. For July 2006, a United States heat wave with high electricity demand, peak electric sector emissions, and elevated ambient PM2.5 mass, we match hourly emissions for 267 CEM/NEI pairs in PJM (approximately 49% and 12% of unmatched CEMs in PJM and nationwide) using state permits, electricity dispatch modeling and CEMs. Hourly emissions for individual facilities can differ up to 154% during the simulation when measurement data is used rather than default temporalization values. Maximum CMAQ PM2.5 mass, sulfate, and elemental carbon predictions increase up to 83%, 103%, and 310%, at the surface and 51%, 75%, and 38% aloft (800 mb), respectively. PMID:25705922

  1. Gaseous and particulate emissions from a DC arc melter.

    PubMed

    Overcamp, Thomas J; Speer, Matthew P; Griner, Stewart J; Cash, Douglas M

    2003-01-01

    Tests treating soils contaminated with metal compounds and radionuclide surrogates were conducted in a DC arc melter. The soil melted, and glassy or ceramic waste forms with a separate metal phase were produced. Tests were run in the melter plenum with either air or N2 purge gases. In addition to nitrogen, the primary emissions of gases were CO2, CO, oxygen, methane, and oxides of nitrogen (NO(x)). Although the gas flow through the melter was low, the particulate concentrations ranged from 32 to 145 g/m3. Cerium, a nonradioactive surrogate for plutonium and uranium, was not enriched in the particulate matter (PM). The PM was enriched in cesium and highly enriched in lead. PMID:12568249

  2. Fine particulate chemical composition and light extinction at Canyonlands National Park using organic particulate material concentrations obtained with a multisystem, multichannel diffusion denuder sampler

    NASA Astrophysics Data System (ADS)

    Eatough, Delbert J.; Eatough, David A.; Lewis, Laura; Lewis, Edwin A.

    1996-08-01

    The concentration of fine particulate carbonaceous material has been measured over a 1-year period at the Interagency Monitoring of Protected Visual Environments (IMPROVE) Canyonlands National Park, Utah sampling site using a Brigham Young University organic sampling system (BOSS) multisystem, multichannel diffusion denuder sampler. Samples were collected on the IMPROVE schedule of a 24-hour sample every Wednesday and Saturday. The concentrations of particulate C, determined using only a quartz filter pack sampling system, were low by an average of 39%, as a result of the loss of semi-volatile organic compounds from the particles collected on quartz filters during sampling. The loss was higher during the summer than during the winter sampling periods. The BOSS and IMPROVE quartz filter carbon measurements were in agreement except for a few samples collected during the summer. The fine particulate carbonaceous material concentrations determined using the BOSS have been combined with concentrations of particulate elemental C (soot), sulfate, nitrate, crustal material, and fine and coarse particulate mass from the IMPROVE sampling system, as well as relative humidity, light absorption, and transmissometer measurements of light extinction from IMPROVE. Extinction budgets have been calculated using multilinear regression analyses of the data set. Literature data were used to estimate the change in the mass extinction coefficients for the measured species as a function of relative humidity. The results show carbonaceous material to be the principal contributor to light extinction due to particles during the study period, with the major contributor to light extinction being light-absorbing carbonaceous material. However, the periods of maximum light extinction are associated with high humidity and the associated increased scattering of light due to particulate sulfate during the winter. The effect of particulate organic compounds on light extinction is greatest in the

  3. Characterization of Fine Particulate Matter (PM) and Secondary PM Precursor Gases in the Mexico City Metropolitan Area

    SciTech Connect

    Molina, Luisa T.; Molina, Mario J.; Volkamer, Rainer; de Foy, Benjamin; Lei, Wenfang; Zavaka, Miguel; Velasco, Erik

    2008-10-31

    This project was one of three collaborating grants funded by DOE/ASP to characterize the fine particulate matter (PM) and secondary PM precursors in the Mexico City Metropolitan Area (MCMA) during the MILAGRO Campaign. The overall effort of MCMA-2006, one of the four components, focused on i) examination of the primary emissions of fine particles and precursor gases leading to photochemical production of atmospheric oxidants and secondary aerosol particles; ii) measurement and analysis of secondary oxidants and secondary fine PM production, with particular emphasis on secondary organic aerosol (SOA), and iii) evaluation of the photochemical and meteorological processes characteristic of the Mexico City Basin. The collaborative teams pursued the goals through three main tasks: i) analyses of fine PM and secondary PM precursor gaseous species data taken during the MCMA-2002/2003 campaigns and preparation of publications; ii) planning of the MILAGRO Campaign and deployment of the instrument around the MCMA; and iii) analysis of MCMA-2006 data and publication preparation. The measurement phase of the MILAGRO Campaign was successfully completed in March 2006 with excellent participation from the international scientific community and outstanding cooperation from the Mexican government agencies and institutions. The project reported here was led by the Massachusetts Institute of Technology/Molina Center for Energy and the Environment (MIT/MCE2) team and coordinated with DOE/ASP-funded collaborators at Aerodyne Research Inc., University of Colorado at Boulder and Montana State University. Currently 24 papers documenting the findings from this project have been published. The results from the project have improved significantly our understanding of the meteorological and photochemical processes contributing to the formation of ozone, secondary aerosols and other pollutants. Key findings from the MCMA-2003 include a vastly improved speciated emissions inventory from on

  4. Fire environment effects on particulate matter emission factors in southeastern U.S. pine-grasslands

    NASA Astrophysics Data System (ADS)

    Robertson, Kevin M.; Hsieh, Yuch P.; Bugna, Glynnis C.

    2014-12-01

    Particulate matter (PM) emission factors (EFPM), which predict particulate emissions per biomass consumed, have a strong influence on event-based and regional PM emission estimates and inventories. PM < 2.5 μm aerodynamic diameter (PM2.5), regulated for its impacts to human health and visibility, is of special concern. Although wildland fires vary widely in their fuel conditions, meteorology, and fire behavior which might influence combustion reactions, the EFPM2.5 component of emission estimates is typically a constant for the region or general fuel type being assessed. The goal of this study was to use structural equation modeling (SEM) to identify and measure effects of fire environment variables on EFPM2.5 in U.S. pine-grasslands, which contribute disproportionately to total U.S. PM2.5 emissions. A hypothetical model was developed from past literature and tested using 41 prescribed burns in northern Florida and southern Georgia, USA with varying years since previous fire, season of burn, and fire direction of spread. Measurements focused on EFPM2.5 from flaming combustion, although a subset of data considered MCE and smoldering combustion. The final SEM after adjustment showed EFPM2.5 to be higher in burns conducted at higher ambient temperatures, corresponding to later dates during the period from winter to summer and increases in live herbaceous vegetation and ambient humidity, but not total fine fuel moisture content. Percentage of fine fuel composed of pine needles had the strongest positive effect on EFPM2.5, suggesting that pine timber stand volume may significantly influence PM2.5 emissions. Also, percentage of fine fuel composed of grass showed a negative effect on EFPM2.5, consistent with past studies. Results of the study suggest that timber thinning and frequent prescribed fire minimize EFPM2.5 and total PM2.5 emissions on a per burn basis, and that further development of PM emission models should consider adjusting EFPM2.5 as a function of common

  5. Efferent Modulation of Stimulus Frequency Otoacoustic Emission Fine Structure

    PubMed Central

    Zhao, Wei; Dewey, James B.; Boothalingam, Sriram; Dhar, Sumitrajit

    2015-01-01

    Otoacoustic emissions, sounds generated in the inner ear, have become a convenient non-invasive tool to examine the efferent modulation of cochlear mechanics. Activation of the medial olivocochlear (MOC) efferents has been shown to alter the magnitude of these emissions. When the effects of efferent activation on the detailed spectral structures of these emissions have been examined, a shift of the spectral patterns toward higher frequencies has been reported for distortion product and spontaneous otoacoustic emissions. Stimulus frequency otoacoustic emissions (SFOAEs) have been proposed as the preferred emission type in the study of efferent modulation due to the simplicity of their production leading to the possibility of clearer interpretation of results. The effects of efferent activation on the complex spectral patterns of SFOAEs have not been examined to the best of our knowledge. We have examined the effects of activating the MOC efferents using broadband noise in normal-hearing humans. The detailed spectral structure of SFOAEs, known as fine structure, was recorded with and without contralateral acoustic stimulation. Results indicate that SFOAEs are reduced in magnitude and their fine structure pushed to higher frequencies by contralateral acoustic stimulation. These changes are similar to those observed in distortion product or spontaneous otoacoustic emissions and behavioral hearing thresholds. Taken together with observations made about magnitude and phase changes in otoacoustic emissions and hearing thresholds upon contralateral acoustic stimulation, all changes in otoacoustic emission and hearing threshold fine structure appear to be driven by a common set of mechanisms. Specifically, frequency shifts in fine structure patterns appear to be linked to changes in SFOAE phase due to contralateral acoustic stimulation. PMID:26696843

  6. Fuel quality effects on particulate matter emissions from light- and heavy-duty diesel engines

    SciTech Connect

    Den Ouden, C.J.J.; Clark, R.H.; Cowley, L.T.; Stradling, R.J.; Lange, W.W.; Maillard, C.

    1994-10-01

    This paper gives an update of Shell`s ongoing research on correlations between diesel fuel quality and particulate emissions in both heavy and light duty applications. An exhaust oxidation catalyst selectively decreases the particulate hydrocarbon fraction, leaving the fixed carbon fraction unaffected. This overall particulates reduction mechanism explains why particulate emissions from catalyst vehicles are less sensitive towards changes in fuel quality. An attempt has been made to explain the differences observed between particulate emissions from heavy- and light-duty engines. It is tentatively concluded that differences originate mainly from intrinsic differences between the heavy- and light-duty test cycles. 27 refs., 14 figs., 5 tabs.

  7. Diesel particulate emissions from used cooking oil biodiesel.

    PubMed

    Lapuerta, Magín; Rodríguez-Fernández, José; Agudelo, John R

    2008-03-01

    Two different biodiesel fuels, obtained from waste cooking oils with different previous uses, were tested in a DI diesel commercial engine either pure or in 30% and 70% v/v blends with a reference diesel fuel. Tests were performed under a set of engine operating conditions corresponding to typical road conditions. Although the engine efficiency was not significantly affected, an increase in fuel consumption with the biodiesel concentration was observed. This increase was proportional to the decrease in the heating value. The main objective of the work was to study the effect of biodiesel blends on particulate emissions, measured in terms of mass, optical effect (smoke opacity) and size distributions. A sharp decrease was observed in both smoke and particulate matter emissions as the biodiesel concentration was increased. The mean particle size was also reduced with the biodiesel concentration, but no significant increases were found in the range of the smallest particles. No important differences in emissions were found between the two tested biodiesel fuels. PMID:17368887

  8. SENSITIVITY ANALYSIS AND EVALUATION OF MICROFACPM: A MICROSCALE MOTOR VEHICLE EMISSION FACTOR MODEL FOR PARTICULATE MATTER EMISSIONS

    EPA Science Inventory

    A microscale emission factor model (MicroFacPM) for predicting real-time site-specific motor vehicle particulate matter emissions was presented in the companion paper entitled "Development of a Microscale Emission Factor Model for Particulate Matter (MicroFacPM) for Predicting Re...

  9. Particulate exhaust emissions from an experimental combustor. [gas turbine engine

    NASA Technical Reports Server (NTRS)

    Norgren, C. T.; Ingebo, R. D.

    1975-01-01

    The concentration of dry particulates (carbon) in the exhaust of an experimental gas turbine combustor was measured at simulated takeoff operating conditions and correlated with the standard smoke-number measurement. Carbon was determined quantitatively from a sample collected on a fiberglass filter by converting the carbon in the smoke sample to carbon dioxide and then measuring the volume of carbon dioxide formed by gas chromatography. At a smoke of 25 (threshold of visibility of the smoke plume for large turbojets) the carbon concentration was 2.8 mg carbon/cu m exhaust gas, which is equivalent to an emission index of 0.17 g carbon/kg fuel.

  10. Filtration of Carbon Particulate Emissions from a Plasma Pyrolysis Assembly

    NASA Technical Reports Server (NTRS)

    Agui, Juan H.; Green, Robert; Vijayakumar, R.; Berger, Gordon; Greenwood, Zach; Abney, Morgan; Peterson, Elspeth

    2016-01-01

    NASA is investigating plasma pyrolysis as a candidate technology that will enable the recovery of hydrogen from the methane produced by the ISS Sabatier Reactor. The Plasma Pyrolysis Assembly (PPA) is the current prototype of this technology which converts the methane product from the Carbon Dioxide Reduction Assembly (CRA) to acetylene and hydrogen with 90% or greater conversion efficiency. A small amount of solid carbon particulates are generated as a side product and must be filtered before the acetylene is removed and the hydrogen-rich gas stream is recycled back to the CRA. We discuss developmental work on several options for filtering out the carbon particulate emissions from the PPA exit gas stream. The filtration technologies and concepts investigated range from fibrous media to monolithic ceramic and sintered metal media. This paper describes the different developed filter prototypes and characterizes their performance from integrated testing at the Environmental Chamber (E-Chamber) at MSFC. In addition, characterization data on the generated carbon particulates, that help to define filter requirements, are also presented.

  11. The relation between past exposure to fine particulate air pollution and prevalent anxiety: observational cohort study

    PubMed Central

    Kioumourtzoglou, Marianthi-Anna; Hart, Jaime E; Okereke, Olivia I; Laden, Francine; Weisskopf, Marc G

    2015-01-01

    Objective To determine whether higher past exposure to particulate air pollution is associated with prevalent high symptoms of anxiety. Design Observational cohort study. Setting Nurses’ Health Study. Participants 71 271 women enrolled in the Nurses’ Health Study residing throughout the contiguous United States who had valid estimates on exposure to particulate matter for at least one exposure period of interest and data on anxiety symptoms. Main outcome measures Meaningfully high symptoms of anxiety, defined as a score of 6 points or greater on the phobic anxiety subscale of the Crown-Crisp index, administered in 2004. Results The 71 271 eligible women were aged between 57 and 85 years (mean 70 years) at the time of assessment of anxiety symptoms, with a prevalence of high anxiety symptoms of 15%. Exposure to particulate matter was characterized using estimated average exposure to particulate matter <2.5 μm in diameter (PM2.5) and 2.5 to 10 μm in diameter (PM2.5-10) in the one month, three months, six months, one year, and 15 years prior to assessment of anxiety symptoms, and residential distance to the nearest major road two years prior to assessment. Significantly increased odds of high anxiety symptoms were observed with higher exposure to PM2.5 for multiple averaging periods (for example, odds ratio per 10 µg/m3 increase in prior one month average PM2.5: 1.12, 95% confidence interval 1.06 to 1.19; in prior 12 month average PM2.5: 1.15, 1.06 to 1.26). Models including multiple exposure windows suggested short term averaging periods were more relevant than long term averaging periods. There was no association between anxiety and exposure to PM2.5-10. Residential proximity to major roads was not related to anxiety symptoms in a dose dependent manner. Conclusions Exposure to fine particulate matter (PM2.5) was associated with high symptoms of anxiety, with more recent exposures potentially more relevant than more distant exposures. Research evaluating

  12. SETTING PRIORITIES FOR CONTROL OF FUGITIVE PARTICULATE EMISSIONS FROM OPEN SOURCES

    EPA Science Inventory

    The report describes setting priorities for controlling fugitive particulate emissions. Emission rate estimates of suspended particulates from open sources in the U.S. were obtained from emission factors and source extents in the literature. Major open sources, with their estimat...

  13. Emissions of particulate matter from animal houses in the Netherlands

    NASA Astrophysics Data System (ADS)

    Winkel, Albert; Mosquera, Julio; Groot Koerkamp, Peter W. G.; Ogink, Nico W. M.; Aarnink, André J. A.

    2015-06-01

    In the Netherlands, emissions from animal houses represent a major source of ambient particulate matter (PM). The objective of the present paper was to provide accurate and up to date concentrations and emission rates of PM10 and PM2.5 for commonly used animal housing systems, under representative inside and outside climate conditions and ventilation rates. We set up a national survey which covered 13 housing systems for poultry, pigs, and dairy cattle, and included 36 farms. In total, 202 24-h measurements were carried out, which included concentrations of inhalable PM, PM10, PM2.5, and CO2, ventilation rate, temperature, and relative humidity. On an animal basis, geometric mean emission rates of PM10 ranged from 2.2 to 12.0 mg h-1 in poultry and from 7.3 to 22.5 mg h-1 in pigs. The mean PM10 emission rate in dairy cattle was 8.5 mg h-1. Geometric mean emission rates of PM2.5 ranged from 0.11 to 2.41 mg h-1 in poultry and from 0.21 to 1.56 mg h-1 in pigs. The mean PM2.5 emission rate in dairy cattle was 1.65 mg h-1. Emissions are also reported per Livestock Unit and Heat Production Unit. PM emission rates increased exponentially with increasing age in broilers and turkeys and increased linearly with increasing age in weaners and fatteners. In laying hens, broiler breeders, sows, and dairy cattle, emission levels were variable throughout the year.

  14. Particulate Emissions from a Pre-Emissions Control Era Spark-Ignition Vehicle: A Historical Benchmark

    SciTech Connect

    John M.E. Storey; C. Scott Sluder; Douglas A. Blom; Erin Higinbotham

    2000-06-19

    This study examined the particulate emissions from a pre-emissions control era vehicle operated on both leaded and unleaded fuels for the purpose of establishing a historical benchmark. A pre-control vehicle was located that had been rebuilt with factory original parts to approximate an as-new vehicle prior to 1968. The vehicle had less than 20,000 miles on the rebuilt engine and exhaust. The vehicle underwent repeated FTP-75 tests to determine its regulated emissions, including particulate mass. Additionally, measurements of the particulate size distribution were made, as well as particulate lead concentration. These tests were conducted first with UTG96 certification fuel, followed by UTG96 doped with tetraethyl lead to approximate 1968 levels. Results of these tests, including transmission electron micrographs of individual particles from both the leaded and unleaded case are presented. The FTP composite PM emissions from this vehicle averaged 40.5 mg/mile using unleaded fuel. The results from the leaded fuel tests showed that the FTP composite PM emissions increased to an average of 139.5 mg/mile. Analysis of the particulate size distribution for both cases demonstrated that the mass-based size distribution of particles for this vehicle is heavily skewed towards the nano-particle range. The leaded-fuel tests showed a significant increase in mass concentration at the <0.1 micron size compared with the unleaded-fuel test case. The leaded-fuel tests produced lead emissions of nearly 0.04 g/mi, more than a 4-order-of-magnitude difference compared with unleaded-fuel results. Analysis of the size-fractionated PM samples showed that the lead PM emissions tended to be distributed in the 0.25 micron and smaller size range.

  15. A unique Critical State two-surface hyperplasticity model for fine-grained particulate media

    NASA Astrophysics Data System (ADS)

    Coombs, W. M.; Crouch, R. S.; Augarde, C. E.

    2013-01-01

    Even mild compression can cause re-arrangement of the internal structure of clay-like geomaterials, whereby clusters of particles rotate and collapse as face-to-face contacts between the constituent mineral platelets increase at the expense of edge-to-face (or edge-to-edge) contacts. The collective action of local particle re-orientation ultimately leads to path-independent isochoric macroscopic deformation under continuous shearing. This asymptotic condition is the governing feature of Critical State elasto-plasticity models. Unlike earlier formulations, the two-surface anisotropic model proposed herein is able to reproduce a unique isotropic Critical State stress envelope which agrees well with test data. Material point predictions are compared against triaxial experimental results and five other existing constitutive models. The hyperplastic formulation is seen to offer a significantly improved descriptor of the anisotropic behaviour of fine-grained particulate materials.

  16. Fine particulate matter estimated by mathematical model and hospitalizations for pneumonia and asthma in children

    PubMed Central

    César, Ana Cristina Gobbo; Nascimento, Luiz Fernando Costa; Mantovani, Katia Cristina Cota; Vieira, Luciana Cristina Pompeo

    2016-01-01

    Abstract Objective: To estimate the association between exposure to fine particulate matter with an aerodynamic diameter <2.5 microns (PM2.5) and hospitalizations for pneumonia and asthma in children. Methods: An ecological study of time series was performed, with daily indicators of hospitalization for pneumonia and asthma in children up to 10 years of age, living in Taubaté (SP) and estimated concentrations of PM2.5, between August 2011 and July 2012. A generalized additive model of Poisson regression was used to estimate the relative risk, with lag zero up to five days after exposure; the single pollutant model was adjusted by the apparent temperature, as defined from the temperature and relative air humidity, seasonality and weekday. Results: The values of the relative risks for hospitalization for pneumonia and asthma were significant for lag 0 (RR=1.051, 95%CI; 1.016 to 1.088); lag 2 (RR=1.066, 95%CI: 1.023 to 1.113); lag 3 (RR=1.053, 95%CI: 1.015 to 1.092); lag 4 (RR=1.043, 95%CI: 1.004 to 1.088) and lag 5 (RR=1.061, 95%CI: 1.018 to 1.106). The increase of 5mcg/m3 in PM2.5 contributes to increase the relative risk for hospitalization from 20.3 to 38.4 percentage points; however, the reduction of 5µg/m3 in PM2.5 concentration results in 38 fewer hospital admissions. Conclusions: Exposure to PM2.5 was associated with hospitalizations for pneumonia and asthma in children younger than 10 years of age, showing the role of fine particulate matter in child health and providing subsidies for the implementation of preventive measures to decrease these outcomes. PMID:26522821

  17. Fine particulate matter and carbon monoxide exposure concentrations in urban street transport microenvironments

    NASA Astrophysics Data System (ADS)

    Kaur, S.; Nieuwenhuijsen, M. J.; Colvile, R. N.

    Personal exposure studies are crucial alongside microenvironment and ambient studies in order to get a better understanding of the health risks posed by fine particulate matter and carbon monoxide in the urban transport microenvironment and for making informed decisions to manage and reduce the health risks. Studies specifically assessing the PM 2.5, ultrafine particle count and carbon monoxide personal exposure concentrations of adults in an urban transport microenvironment have steadily increased in number over the last decade. However, no recent collective summary is available, particularly one which also considers ultrafine particles; therefore, we present a review of the personal exposure concentration studies for the above named pollutants on different modes of surface transportation (walking, cycling, bus, car and taxi) in the urban transport microenvironment. Comparisons between personal exposure measurements and concentrations recorded at fixed monitoring sites are considered in addition to the factors influencing personal exposure in the transport microenvironment. In general, the exposure studies examined revealed pedestrians and cyclists to experience lower fine particulate matter and CO exposure concentrations in comparison to those inside vehicles—the vehicle shell provided no protection to the passengers. Proximity to the pollutant sources had a significant impact on exposure concentration levels experienced, consequently individuals should be encouraged to use back street routes. Fixed monitoring stations were found to be relatively poor predictors of CO and PM 2.5 exposure concentration levels experienced by individuals in the urban transport microenvironment. Although the mode of transport, traffic and meteorology parameters were commonly identified as significant factors influencing exposure concentrations to the different pollutants under examination, a large amount of the exposure concentration variation in the exposure studies remained

  18. Global Chemical Composition of Ambient Fine Particulate Matter for Exposure Assessment

    SciTech Connect

    Philip, Sajeev; Martin, Randall V.; van Donkelaar, Aaron; Lo, Jason Wai-Ho; Wang, Yuxuan; Chen, Dan; Zhang, Lin; Kasibhatla, Prasad S.; Wang, Siwen; Zhang, Qiang; Lu, Zifeng; Streets, David G.; Bittman, Shabtai; Macdonald, Douglas J.

    2014-10-24

    Epidemiologic and health impact studies are inhibited by the paucity of global, long-term measurements of the chemical composition of fine particulate matter. We inferred PM2.5 chemical composition at 0.1° × 0.1° spatial resolution for 2004–2008 by combining aerosol optical depth retrieved from the MODIS and MISR satellite instruments, with coincident profile and composition information from the GEOS-Chem global chemical transport model. Evaluation of the satellite-model PM2.5 composition data set with North American in situ measurements indicated significant spatial agreement for secondary inorganic aerosol, particulate organic mass, black carbon, mineral dust, and sea salt. We found that global population-weighted PM2.5 concentrations were dominated by particulate organic mass (11.9 ± 7.3 μg/m3), secondary inorganic aerosol (11.1 ± 5.0 μg/m3), and mineral dust (11.1 ± 7.9 μg/m3). Secondary inorganic PM2.5 concentrations exceeded 30 μg/m3 over East China. Sensitivity simulations suggested that population-weighted ambient PM2.5 from biofuel burning (11 μg/m3) could be almost as large as from fossil fuel combustion sources (17 μg/m3). In conclusion, these estimates offer information about global population exposure to the chemical components and sources of PM2.5.

  19. Application of satellite remote-sensing data for source analysis of fine particulate matter transport events.

    PubMed

    Engel-Cox, Jill A; Young, Gregory S; Hoff, Raymond M

    2005-09-01

    Satellite sensors have provided new datasets for monitoring regional and urban air quality. Satellite sensors provide comprehensive geospatial information on air quality with both qualitative imagery and quantitative data, such as aerosol optical depth. Yet there has been limited application of these new datasets in the study of air pollutant sources relevant to public policy. One promising approach to more directly link satellite sensor data to air quality policy is to integrate satellite sensor data with air quality parameters and models. This paper presents a visualization technique to integrate satellite sensor data, ground-based data, and back trajectory analysis relevant to a new rule concerning the transport of particulate matter across state boundaries. Overlaying satellite aerosol optical depth data and back trajectories in the days leading up to a known fine particulate matter with an aerodynamic diameter of <2.5 microm (PM2.5) event may indicate whether transport or local sources appear to be most responsible for high PM2.5 levels in a certain location at a certain time. Events in five cities in the United States are presented as case studies. This type of analysis can be used to help understand the source locations of pollutants during specific events and to support regulatory compliance decisions in cases of long distance transport. PMID:16259433

  20. Two Model-Based Methods for Policy Analyses of Fine Particulate Matter Control in China: Source Apportionment and Source Sensitivity

    NASA Astrophysics Data System (ADS)

    Li, X.; Zhang, Y.; Zheng, B.; Zhang, Q.; He, K.

    2013-12-01

    Anthropogenic emissions have been controlled in recent years in China to mitigate fine particulate matter (PM2.5) pollution. Recent studies show that sulfate dioxide (SO2)-only control cannot reduce total PM2.5 levels efficiently. Other species such as nitrogen oxide, ammonia, black carbon, and organic carbon may be equally important during particular seasons. Furthermore, each species is emitted from several anthropogenic sectors (e.g., industry, power plant, transportation, residential and agriculture). On the other hand, contribution of one emission sector to PM2.5 represents contributions of all species in this sector. In this work, two model-based methods are used to identify the most influential emission sectors and areas to PM2.5. The first method is the source apportionment (SA) based on the Particulate Source Apportionment Technology (PSAT) available in the Comprehensive Air Quality Model with extensions (CAMx) driven by meteorological predictions of the Weather Research and Forecast (WRF) model. The second method is the source sensitivity (SS) based on an adjoint integration technique (AIT) available in the GEOS-Chem model. The SA method attributes simulated PM2.5 concentrations to each emission group, while the SS method calculates their sensitivity to each emission group, accounting for the non-linear relationship between PM2.5 and its precursors. Despite their differences, the complementary nature of the two methods enables a complete analysis of source-receptor relationships to support emission control policies. Our objectives are to quantify the contributions of each emission group/area to PM2.5 in the receptor areas and to intercompare results from the two methods to gain a comprehensive understanding of the role of emission sources in PM2.5 formation. The results will be compared in terms of the magnitudes and rankings of SS or SA of emitted species and emission groups/areas. GEOS-Chem with AIT is applied over East Asia at a horizontal grid

  1. Response of global particulate-matter-related mortality to changes in local precursor emissions.

    PubMed

    Lee, Colin J; Martin, Randall V; Henze, Daven K; Brauer, Michael; Cohen, Aaron; Donkelaar, Aaron van

    2015-04-01

    Recent Global Burden of Disease (GBD) assessments estimated that outdoor fine-particulate matter (PM2.5) is a causal factor in over 5% of global premature deaths. PM2.5 is produced by a variety of direct and indirect, natural and anthropogenic processes that complicate PM2.5 management. This study develops a proof-of-concept method to quantify the effects on global premature mortality of changes to PM2.5 precursor emissions. Using the adjoint of the GEOS-Chem chemical transport model, we calculated sensitivities of global PM2.5-related premature mortality to emissions of precursor gases (SO2, NOx, NH3) and carbonaceous aerosols. We used a satellite-derived ground-level PM2.5 data set at approximately 10 × 10 km(2) resolution to better align the exposure with population density. We used exposure-response functions from the GBD project to relate mortality to exposure in the adjoint calculation. The response of global mortality to changes in local anthropogenic emissions varied spatially by several orders of magnitude. The largest reductions in mortality for a 1 kg km(-2) yr(-1) decrease in emissions were for ammonia and carbonaceous aerosols in Eastern Europe. The greatest reductions in mortality for a 10% decrease in emissions were found for secondary inorganic sources in East Asia. In general, a 10% decrease in SO2 emissions was the most effective source to control, but regional exceptions were found. PMID:25730303

  2. Implications of ammonia emissions from post-combustion carbon capture for airborne particulate matter.

    PubMed

    Heo, Jinhyok; McCoy, Sean T; Adams, Peter J

    2015-04-21

    Amine scrubbing, a mature post-combustion carbon capture and storage (CCS) technology, could increase ambient concentrations of fine particulate matter (PM2.5) due to its ammonia emissions. To capture 2.0 Gt CO2/year, for example, it could emit 32 Gg NH3/year in the United States given current design targets or 15 times higher (480 Gg NH3/year) at rates typical of current pilot plants. Employing a chemical transport model, we found that the latter emission rate would cause an increase of 2.0 μg PM2.5/m(3) in nonattainment areas during wintertime, which would be troublesome for PM2.5-burdened areas, and much lower increases during other seasons. Wintertime PM2.5 increases in nonattainment areas were fairly linear at a rate of 3.4 μg PM2.5/m(3) per 1 Tg NH3, allowing these results to be applied to other CCS emissions scenarios. The PM2.5 impacts are modestly uncertain (±20%) depending on future emissions of SO2, NOx, and NH3. The public health costs of CCS NH3 emissions were valued at $31-68 per tonne CO2 captured, comparable to the social cost of carbon itself. Because the costs of solvent loss to CCS operators are lower than the social costs of CCS ammonia, there is a regulatory interest to limit ammonia emissions from CCS. PMID:25811231

  3. PARTICULATE EMISSIONS AND CONTROL IN FLUIDIZED-BED COMBUSTION: MODELING AND PARAMETRIC PERFORMANCE

    EPA Science Inventory

    The report discusses a model, developed to describe the physical characteristics of the particulates emitted from fluidized-bed combustion (FBC) systems and to evaluate data on FBC particulate control systems. The model, which describes the particulate emissions profile from FBC,...

  4. Effects of a changing climate on summertime fine particulate matter levels in the eastern U.S.

    NASA Astrophysics Data System (ADS)

    Day, Melissa C.; Pandis, Spyros N.

    2015-06-01

    The chemical transport model PMCAMx is used to examine the effect of climate change on fine (under 2.5 µms) particulate matter (PM2.5) during the summer in the eastern United States. Meteorology from 10 years in the 1990s (present) and 10 years in the 2050s (future) based on the Intergovernmental Panel on Climate Change A2 scenario is used. Anthropogenic pollutant emissions are assumed to remain constant, while biogenic emissions are climate sensitive and, depending on species, increase between 15 and 27% on average. The predicted changes of PM2.5 are modest (increases of less than 10% on average across the domain) and quite variable in space, ranging from +13% in the Plains to -7% in the Northeast. Variability is driven concurrently by changes in temperature, wind speed, rainfall, and relative humidity, with no single dominant meteorological factor. Sulfate and organic aerosol are responsible for most of the PM2.5 change. The improved treatment of organic aerosol using the volatility basis set does not increase significantly its sensitivity to climate change compared to traditional treatments that neglect the volatility of primary particles and do not simulate the chemical aging processes. Future organic aerosol is predicted to be more oxidized due to increases of its secondary biogenic and anthropogenic components. These results suggest that the effects of planned and expected emission anthropogenic emission controls will be more important than those of climate change for PM2.5 concentrations in 2050. Maximum daily 8 h average ozone increases by 5% on average are predicted, with a marked increase in the Northeast, Southeast, and Midwest.

  5. Characterization of Fine Particulate Matter (PM) and Secondary PM Precursor Gases in Mexico City

    SciTech Connect

    Dr. Charles E. Kolb Dr. Douglas R. Worsnop Dr. Manjula R. Canagaratna Dr. Scott C. Herndon Dr. John T. Jayne Dr. W. Berk Knighton Dr. Timothy B. Onasch Dr. Ezra C. Wood Dr. Miguel Zavala

    2008-03-31

    This project was one of three collaborating grants designed to understand the atmospheric chemistry and aerosol particle microphysics impacting air quality in the Mexico City Metropolitan Area (MCMA) and its urban plume. The overall effort, titled MCMA- 2006, focused on: 1) the primary emissions of fine particles and precursor gases leading to photochemical production of atmospheric oxidants and secondary aerosol particles and 2) the measurement and analysis of secondary oxidants and secondary fine particular matter (PM) production, with particular emphasis on secondary organic aerosol (SOA). MCAM-2006 pursued it goals through three main activities: 1) performance and publication of detailed analyses of extensive MCMA trace gas and fine PM measurements made by the collaborating groups and others during earlier MCMA field campaigns in 2002 and 2003; 2) deployment and utilization of extensive real-time trace gas and fine PM instrumentation at urban and downwind MCMA sites in support of the MAX-Mex/MILAGRO field measurements in March, 2006; and, 3) analyses of the 2006 MCMA data sets leading to further publications that are based on new data as well as insights from analysis and publication of the 2002/2003 field data. Thirteen archival publications were coauthored with other MCMA-2003 participants. Documented findings included a significantly improved speciated emissions inventory from on-road vehicles, a greatly enhanced understanding of the sources and atmospheric loadings of volatile organic compounds, a unique analysis of the high fraction of ambient formaldehyde from primary emission sources, a much more extensive knowledge of the composition, size distributions and atmospheric mass loadings of both primary and secondary fine PM, including the fact that the rate of MCMA SOA production greatly exceeded that predicted by current atmospheric models, and evaluations of significant errors that can arise from standard air quality monitors for ozone and nitrogen

  6. DIFFERENTIAL CARDIAC ARRHYTHMIA PROFILES IN HYPERTENSIVE AND NORMAL RATS AFTER EMISSION SOURCE PARTICULATE EXPOSURE

    EPA Science Inventory

    Exposure to combustion-derived fine particulate air pollution is associated with increased cardiovascular morbidity and mortality. These effects are especially conspicuous in individuals with pre-existing cardiovascular diseases including hypertension and coronary heart disease...

  7. Modeled and observed fine particulate matter reductions from state attainment demonstrations.

    PubMed

    Cohan, Daniel S; Chen, Ran

    2014-09-01

    States rely upon photochemical models to predict the impacts of air quality attainment strategies, but the performance of those predictions is rarely evaluated retrospectively. State implementation plans (SIPs) developed to attain the 1997 U.S. standard for fine particulate matter (PM2.5; denoting particles smaller than 2.5 microns in diameter) by 2009 provide the first opportunity to assess modeled predictions of PM2.5 reductions at the state level. The SIPs were the first to rely upon a speciated modeled attainment test methodology recommended by the U.S. Environmental Protection Agency to predict PM2.5 concentrations and attainment status. Of the 23 eastern U.S. regions considered here, all but one achieved the 15 microg/m3 standard by 2009, and the other achieved it the following year with downward trends sustained in subsequent years. The attainment tests predicted 2009 PM2.5 design values at individual monitors with a mean bias of 0.38 microg/m3 and mean error of 0.68 microg/m3, and were 95% accurate in predicting whether a monitor would achieve the standard. All of the errors were false alarms, in which the monitor observed attainment after a modeled prediction of an exceedance; in these cases, the states used weight-of-evidence determinations to argue that attainment was likely. Overall, PM2.5 concentrations at monitors in the SIP regions declined by 2.6 microg/m3 from 2000-2004 to 2007-2009, compared with 1.6 microg/m3 in eastern U.S. regions originally designated as attainment. Air quality improvements tended to be largest at monitors that were initially the most polluted. Implications: As states prepare to develop plans for attaining a more stringent standard for fine particulate matter, this retrospective analysis documents substantial and sustained air quality improvements achieved under the previous standard. Significantly larger air quality improvements in regions initially designated nonattainment of the 1997 standard indicate that this status

  8. Uncontrolled combustion of shredded tires in a landfill - Part 1: Characterization of gaseous and particulate emissions

    NASA Astrophysics Data System (ADS)

    Downard, Jared; Singh, Ashish; Bullard, Robert; Jayarathne, Thilina; Rathnayake, Chathurika M.; Simmons, Donald L.; Wels, Brian R.; Spak, Scott N.; Peters, Thomas; Beardsley, Douglas; Stanier, Charles O.; Stone, Elizabeth A.

    2015-03-01

    In summer 2012, a landfill liner comprising an estimated 1.3 million shredded tires burned in Iowa City, Iowa. During the fire, continuous monitoring and laboratory measurements were used to characterize the gaseous and particulate emissions and to provide new insights into the qualitative nature of the smoke and the quantity of pollutants emitted. Significant enrichments in ambient concentrations of CO, CO2, SO2, particle number (PN), fine particulate (PM2.5) mass, elemental carbon (EC), and polycyclic aromatic hydrocarbons (PAH) were observed. For the first time, PM2.5 from tire combustion was shown to contain PAH with nitrogen heteroatoms (a.k.a. azaarenes) and picene, a compound previously suggested to be unique to coal-burning. Despite prior laboratory studies' findings, metals used in manufacturing tires (i.e. Zn, Pb, Fe) were not detected in coarse particulate matter (PM10) at a distance of 4.2 km downwind. Ambient measurements were used to derive the first in situ fuel-based emission factors (EF) for the uncontrolled open burning of tires, revealing substantial emissions of SO2 (7.1 g kg-1), particle number (3.5 × 1016 kg-1), PM2.5 (5.3 g kg-1), EC (2.37 g kg-1), and 19 individual PAH (totaling 56 mg kg-1). A large degree of variability was observed in day-to-day EF, reflecting a range of flaming and smoldering conditions of the large-scale fire, for which the modified combustion efficiency ranged from 0.85 to 0.98. Recommendations for future research on this under-characterized source are also provided.

  9. Assessment of Population Exposure to Coarse and Fine Particulate Matter in the Urban Areas of Chennai, India

    PubMed Central

    Prasannavenkatesh, Ramachandran; Andimuthu, Ramachandran; Kandasamy, Palanivelu; Rajadurai, Geetha; Subash Kumar, Divya; Radhapriya, Parthasarathy; Ponnusamy, Malini

    2015-01-01

    Research outcomes from the epidemiological studies have found that the course (PM10) and the fine particulate matter (PM2.5) are mainly responsible for various respiratory health effects for humans. The population-weighted exposure assessment is used as a vital decision-making tool to analyze the vulnerable areas where the population is exposed to critical concentrations of pollutants. Systemic sampling was carried out at strategic locations of Chennai to estimate the various concentration levels of particulate pollution during November 2013–January 2014. The concentration of the pollutants was classified based on the World Health Organization interim target (IT) guidelines. Using geospatial information systems the pollution and the high-resolution population data were interpolated to study the extent of the pollutants at the urban scale. The results show that approximately 28% of the population resides in vulnerable locations where the coarse particulate matter exceeds the prescribed standards. Alarmingly, the results of the analysis of fine particulates show that about 94% of the inhabitants live in critical areas where the concentration of the fine particulates exceeds the IT guidelines. Results based on human exposure analysis show the vulnerability is more towards the zones which are surrounded by prominent sources of pollution. PMID:26258167

  10. Fine particle and organic vapor emissions from staged tests of an in-use aircraft engine

    NASA Astrophysics Data System (ADS)

    Presto, Albert A.; Nguyen, Ngoc T.; Ranjan, Manish; Reeder, Aaron J.; Lipsky, Eric M.; Hennigan, Christopher J.; Miracolo, Marissa A.; Riemer, Daniel D.; Robinson, Allen L.

    2011-07-01

    Staged tests were conducted to measure the particle and vapor emissions from a CFM56-2B1 gas-turbine engine mounted on a KC-135T Stratotanker airframe at different engine loads. Exhaust was sampled using a rake inlet installed 1-m downstream of the engine exit plane of a parked and chocked aircraft and a dilution sampler and portable smog chamber were used to investigate the particulate matter (PM) emissions. Total fine PM mass emissions were highest at low (4%) and high (85%) load and lower at intermediate loads (7% and 30%). PM mass emissions at 4% load are dominated by organics, while at 85% load elemental carbon is dominant. Quantifying the primary organic aerosol (POA) emissions is complicated by substantial filter sampling artifacts. Partitioning experiments reveal that the majority of the POA is semivolatile; for example, the POA emission factor changed by a factor of two when the background organic aerosol concentration was increased from 0.7 to 4 μg m -3. Therefore, one cannot define a single non-volatile PM emission factor for aircraft exhaust. The gas- and particle-phase organic emissions were comprehensively characterized by analyzing canister, sorbent and filter samples with gas-chromatography/mass-spectrometry. Vapor-phase organic emissions are highest at 4% load and decrease with increasing load. Low-volatility organics (less volatile than a C 12n-alkane) contributed 10-20% of the total organic emissions. The low-volatility organic emissions contain signatures of unburned fuel and aircraft lubricating oil but are dominated by an unresolved complex mixture (UCM) of presumably branched and cyclic alkanes. Emissions at all loads contain more low-volatility organic vapors than POA; thus secondary organic aerosol formation in the aging plume will likely exceed POA emissions.