Science.gov

Sample records for fine-grained duplex tial

  1. Mechanical response and microcrack formation in a fine-grained duplex TiAl at different strain rates and temperatures

    SciTech Connect

    Jin, Z.; Cady, C.; Gray, G.T. III; Kim, Y.-W.

    1996-10-01

    Compressive behavior of this alloy was studied at strain rates of 0. 001 and 2000 sec{sup -1} and temperatures from -196 C to 1200 C. Temperature dependence of yield stress was found to depend on strain rate: At the quasi-static strain rate, 0.001 sec{sup -1}, the yield stress decreases with temperature with a plateau between 200 and 800 C. At the high strain rate, 2000 sec{sup -1}, the yield stress exhibits a positive temperature dependence above 600 C. Strain hardening rate decreases dramatically with temperature in the very low and high temperature regions with a plateau at intermediate temperatures for both strain rates. As the strain rate increases, the strain hardening rate plateaus extended to higher temperatures. The strain rate sensitivity increases slightly with temperature (but less than 0.1) for strain rates above 0.001 sec{sup -1}. However, at a strain rate of 0.001 sec{sup -1}, there is a dramatic increase in the strain rate sensitivity with temperature; above 1100 C, the rate sensitivity becomes much larger. Microcracks occurring in grain interiors and at grain boundaries were observed at all strain rates and temperatures. Formation and distribution of microcracks were found to vary depending on strain rate and deformation temperature.

  2. Dense, finely, grained composite materials

    DOEpatents

    Dunmead, Stephen D.; Holt, Joseph B.; Kingman, Donald D.; Munir, Zuhair A.

    1990-01-01

    Dense, finely grained composite materials comprising one or more ceramic phase or phase and one or more metallic and/or intermetallic phase or phases are produced by combustion synthesis. Spherical ceramic grains are homogeneously dispersed within the matrix. Methods are provided, which include the step of applying mechanical pressure during or immediately after ignition, by which the microstructures in the resulting composites can be controllably selected.

  3. Making Pure Fine-Grained Inorganic Powder

    NASA Technical Reports Server (NTRS)

    Wood, C.

    1985-01-01

    Sustained arc plasma chemical reactor fabricates very-fine-grained inorganic solids having low thermal conductivity. Powder fabrication method, based on plasma tube technique produces pure solids without contamination commonly produced by grinding.

  4. Synthesis of fine-grained TATB

    DOEpatents

    Lee, Kien-Yin; Kennedy, James E.

    2003-04-15

    A method for producing fine-grained triamino-trinitrobenzene (TATB) powders having improved detonation-spreading performance and hence increased shock sensitivity when compared with that for ultrafine TATB is described. A single-step, sonochemical amination of trichloro-trinitrobenzene using ammonium hydroxide solution in a sealed vessel yields TATB having approximately 6 .mu.m median particle diameter and increased shock sensitivity.

  5. Chondrule synthesis using fine-grained precursors

    NASA Astrophysics Data System (ADS)

    Fox, George Ernest

    2002-11-01

    High temperature petrologic experiments have been used in order to reproduce the textures of chondrules, which are rounded to irregularly shaped ferromagnesion silicate objects. Such experiments shed light on the conditions that existed and mechanisms that operated in the early solar nebula, as natural chondrules are believed to have formed there due to some type of heating event. The exact nature of this heating event and the conditions that existed at the time of the formation of the solar nebula are not completely understood. Chondrules, which are believed to be composed of some of the oldest remnants of the solar system, nebular condensates, are the basic components of chondrites. Chondrites comprise ˜82% of all meteorites. Despite years of petrographic examination and experimental petrology, the thermal history of chondrules still remains uncertain. Natural chondrules exhibit a variety of different textures ranging from glassy, barred, porphyritic, microporphyritc to protoporphyritc. Petrologic experiments in a muffle tube furnace under controlled fugacity conditions using type IAB bulk composition analogs have been successful in reproducing each of these textures in the laboratory. Charges are prepared, heated, water quenched, mounted, polished and photographed using back-scattered electron imagery. Subsequent analysis provides numerical data, which can then be used to calculate the nominal grain size of the olivine crystals in each charge. Porphyritic chondrules are the most abundant in nature by far and any model for chondrule formation must be capable of producing porphyritic textures. To reproduce this texture in the laboratory, however, seems to require a very narrow range of maximum temperature and soak time parameters even when using a variety of different types of fine-grained and agglomerated olivine precursor material. Experiments undertaken in this study bring into question some of the basic assumptions of various classical models of chondrule

  6. A generic fine-grained parallel C

    NASA Technical Reports Server (NTRS)

    Hamet, L.; Dorband, John E.

    1988-01-01

    With the present availability of parallel processors of vastly different architectures, there is a need for a common language interface to multiple types of machines. The parallel C compiler, currently under development, is intended to be such a language. This language is based on the belief that an algorithm designed around fine-grained parallelism can be mapped relatively easily to different parallel architectures, since a large percentage of the parallelism has been identified. The compiler generates a FORTH-like machine-independent intermediate code. A machine-dependent translator will reside on each machine to generate the appropriate executable code, taking advantage of the particular architectures. The goal of this project is to allow a user to run the same program on such machines as the Massively Parallel Processor, the CRAY, the Connection Machine, and the CYBER 205 as well as serial machines such as VAXes, Macintoshes and Sun workstations.

  7. Method of making fine-grained triaminotrinitrobenzene

    DOEpatents

    Benziger, T.M.

    1983-07-26

    A method is given for forming a fine-grained species of the insensitive high explosive sym-triaminotrinitrobenzene (TATB) without grinding. In accordance with the method, 1,3,5-trichloro-2,4,6-trinitrobenzene (TCTNB) is aminated by reaction with gaseous ammonia in an emulsion of toluene in water. The ratio of water to toluene in the emulsion is selected so that toluene is the dispersed phase in the emulsion. The size of the dispersed TCTNB-containing toluene droplets determines the particle size of the resulting TATB. The emulsion is preferably formed with an emulsifier such as ammonium oleate, which may be generated in situ from oleic acid, and stabilized with a protective colloid such as polyvinyl alcohol.

  8. Method of making fine-grained triaminotrinitrobenzene

    DOEpatents

    Benziger, Theodore M.

    1984-01-01

    A method of forming a fine-grained species of the insensitive high explosive sym-triaminotrinitrobenzene (TATB) without grinding. In accordance with the method, 1,3,5-trichloro-2,4,6-trinitrobenzene (TCTNB) is aminated by reaction with gaseous ammonia in an emulsion of toluene in water. The ratio of water to toluene in the emulsion is selected so that toluene is the dispersed phase in the emulsion. The size of the dispersed TCTNB-containing toluene droplets determines the particle size of the resulting TATB. The emulsion is preferably formed with an emulsifier such as ammonium oleate, which may be generated in situ from oleic acid, and stabilized with a protective colloid such as polyvinyl alcohol.

  9. IRSL from fine-grained glacifluvial sediment

    NASA Astrophysics Data System (ADS)

    Gemmell, Alastair M. D.

    1999-02-01

    Samples of suspended sediment were obtained from the Dora di Ferret, a glacifluvial stream in the Italian Alps, over a period of 24 h. IRSL analysis of the sediment indicates that the residual ( INAT) signal is almost completely zeroed within 3 km of fluvial transport during daylight hours. In contrast, samples collected at night possess environmental doses ( DE) in excess of 100 Gy, probably the luminescence signal of the parent till from which the fine-grained suspended load has been derived. Quaternary deposits of glacifluvial sediment will contain a mixture of daylight and night transported mineral grains, the resulting complex behaviour accounting for difficulties in luminescence dating such materials. Adaptations of single-aliquot protocols and single-grain protocols appear to offer the best chance of dating glacifluvial deposits accurately.

  10. Dislocation creep of fine-grained olivine

    NASA Astrophysics Data System (ADS)

    Faul, U. H.; Fitz Gerald, J. D.; Farla, R. J. M.; Ahlefeldt, R.; Jackson, I.

    2011-01-01

    Deformation experiments conducted in a gas medium apparatus at temperatures from 1200 to 1350°C with a fine-grained, solution-gelation derived Fe-bearing olivine show a stress dependence of the strain rate at stresses above ˜150 MPa, which is much stronger than previously reported for polycrystalline samples. The data can be fit by a power law with ??σn with n ˜ 7-8, or equally well by a Peierls creep law with exponential stress dependence. Due to the observed strong stress dependence the samples deform at significantly higher strain rates at a given stress than single crystals or coarse-grained polycrystals with n ˜ 3.5. TEM observations indicate the presence of dislocations with at least two different Burgers vectors, with free dislocations predominantly of screw character. Subgrain walls are present but are only weakly developed and have small misorientation angles. Both the rheology and dislocation structures are consistent with creep rate-limited by dislocation glide or cross slip for aggregates with grain sizes smaller than or approaching the recrystallized grain size. Deformation mechanism maps extrapolated to lithospheric temperatures using the melt-free diffusion creep rheology of Faul and Jackson (2007), the dislocation creep rheology of Hirth and Kohlstedt (2003), and the results described here indicate that deformation conditions of ultramylonitic shear zones fall near the triple point of Peierls, dislocation, and diffusion creep.

  11. Fine-grained representation learning in convolutional autoencoders

    NASA Astrophysics Data System (ADS)

    Luo, Chang; Wang, Jie

    2016-03-01

    Convolutional autoencoders (CAEs) have been widely used as unsupervised feature extractors for high-resolution images. As a key component in CAEs, pooling is a biologically inspired operation to achieve scale and shift invariances, and the pooled representation directly affects the CAEs' performance. Fine-grained pooling, which uses small and dense pooling regions, encodes fine-grained visual cues and enhances local characteristics. However, it tends to be sensitive to spatial rearrangements. In most previous works, pooled features were obtained by empirically modulating parameters in CAEs. We see the CAE as a whole and propose a fine-grained representation learning law to extract better fine-grained features. This representation learning law suggests two directions for improvement. First, we probabilistically evaluate the discrimination-invariance tradeoff with fine-grained granularity in the pooled feature maps, and suggest the proper filter scale in the convolutional layer and appropriate whitening parameters in preprocessing step. Second, pooling approaches are combined with the sparsity degree in pooling regions, and we propose the preferable pooling approach. Experimental results on two independent benchmark datasets demonstrate that our representation learning law could guide CAEs to extract better fine-grained features and performs better in multiclass classification task. This paper also provides guidance for selecting appropriate parameters to obtain better fine-grained representation in other convolutional neural networks.

  12. Fine-grained uncertainty relation and nonlocality of tripartite systems

    NASA Astrophysics Data System (ADS)

    Pramanik, T.; Majumdar, A. S.

    2012-02-01

    The upper bound of the fine-grained uncertainty relation is different for classical physics, quantum physics, and no-signaling theories with maximal nonlocality (superquantum correlation), as was shown in the case of bipartite systems [J. Oppenheim and S. Wehner, ScienceSCIEAS0036-807510.1126/science.1192065 330, 1072 (2010)]. Here, we extend the fine-grained uncertainty relation to the case of tripartite systems. We show that the fine-grained uncertainty relation determines the nonlocality of tripartite systems as manifested by the Svetlichny inequality, discriminating between classical physics, quantum physics, and superquantum correlations.

  13. Process for preparing fine grain silicon carbide powder

    DOEpatents

    Wei, G.C.

    Method of producing fine-grain silicon carbide powder comprises combining methyltrimethoxysilane with a solution of phenolic resin, acetone and water or sugar and water, gelling the resulting mixture, and then drying and heating the obtained gel.

  14. Development of High Sensitivity Nuclear Emulsion and Fine Grained Emulsion

    NASA Astrophysics Data System (ADS)

    Kawahara, H.; Asada, T.; Naka, T.; Naganawa, N.; Kuwabara, K.; Nakamura, M.

    2014-08-01

    Nuclear emulsion is a particle detector having high spacial resolution and angular resolution. It became useful for large statistics experiment thanks to the development of automatic scanning system. In 2010, a facility for emulsion production was introduced and R&D of nuclear emulsion began at Nagoya university. In this paper, we present results of development of the high sensitivity emulsion and fine grained emulsion for dark matter search experiment. Improvement of sensitivity is achieved by raising density of silver halide crystals and doping well-adjusted amount of chemicals. Production of fine grained emulsion was difficult because of unexpected crystal condensation. By mixing polyvinyl alcohol (PVA) to gelatin as a binder, we succeeded in making a stable fine grained emulsion.

  15. AGGREGATION AND DISAGGREGATION OF FINE-GRAINED LAKE SEDIMENTS

    EPA Science Inventory

    The effects of fluid shear and sedimentation concentration on the aggregation, and especially disaggregation, of fine-grained sediments in lake waters continues to be an important research area. It has been shown in previous studies that the steady-state median floc size decrease...

  16. Process development for producing fine-grain casting in space

    NASA Technical Reports Server (NTRS)

    Gelles, S. H.; Malik, R. K.

    1975-01-01

    Assessment of grain growth kinetics at temperatures near the melting point and investigation into the use of potential nucleating agents in combination with the naturally occurring BeO led to the definition of critical low-g experiments which would help to determine whether one or both of these possibilities are valid and whether space processing would be able to yield fine grain ingot beryllium.

  17. Resonance interaction in LBNE fine-grained-tracker near detector

    NASA Astrophysics Data System (ADS)

    Duyang, Hongyue; Tian, Xinchun; Mishra, Sanjib R.

    2015-10-01

    This talk is devoted to resonance interaction (RES) in the proposed fine-grained tracker detector (FGT) for LBNE experiment. We use fast MC to study the sensitivity of FGT to RES, and use this measurement as a handle to constrain nuclear effects. Similar analysis is performed on NOMAD data for validation and better understanding. Preliminary RES measurement result using NOMAD data will be reported.

  18. Process for preparing fine-grain metal carbide powder

    DOEpatents

    Kennedy, C.R.; Jeffers, F.P.

    Fine-grain metal carbide powder suitable for use in the fabrication of heat resistant products is prepared by coating bituminous pitch on SiO/sub 2/ or Ta/sub 2/O/sub 5/ particles, heating the coated particles to convert the bituminous pitch to coke, and then heating the particles to a higher temperature to convert the particles to a carbide by reaction of said coke therewith.

  19. Resonance interaction in LBNE fine-grained-tracker near detector

    SciTech Connect

    Duyang, Hongyue; Tian, Xinchun; Mishra, Sanjib R.

    2015-10-15

    This talk is devoted to resonance interaction (RES) in the proposed fine-grained tracker detector (FGT) for LBNE experiment. We use fast MC to study the sensitivity of FGT to RES, and use this measurement as a handle to constrain nuclear effects. Similar analysis is performed on NOMAD data for validation and better understanding. Preliminary RES measurement result using NOMAD data will be reported.

  20. Mid frequency shallow water fine-grained sediment attenuation measurements.

    PubMed

    Holland, Charles W; Dosso, Stan E

    2013-07-01

    Attenuation is perhaps the most difficult sediment acoustic property to measure, but arguably one of the most important for predicting passive and active sonar performance. Measurement techniques can be separated into "direct" measurements (e.g., via sediment probes, sediment cores, and laboratory studies on "ideal" sediments) which are typically at high frequencies, O(10(4)-10(5)) Hz, and "indirect" measurements where attenuation is inferred from long-range propagation or reflection data, generally O(10(2)-10(3)) Hz. A frequency gap in measurements exists in the 600-4000 Hz band and also a general acknowledgement that much of the historical measurements on fine-grained sediments have been biased due to a non-negligible silt and sand component. A shallow water measurement technique using long range reverberation is critically explored. An approximate solution derived using energy flux theory shows that the reverberation is very sensitive to depth-integrated attenuation in a fine-grained sediment layer and separable from most other unknown geoacoustic parameters. Simulation using Bayesian methods confirms the theory. Reverberation measurements across a 10 m fine-grained sediment layer yield an attenuation of 0.009 dB/m/kHz with 95% confidence bounds of 0.006-0.013 dB/m/kHz. This is among the lowest values for sediment attenuation reported in shallow water. PMID:23862792

  1. Decoding the neural representation of fine-grained conceptual categories.

    PubMed

    Ghio, Marta; Vaghi, Matilde Maria Serena; Perani, Daniela; Tettamanti, Marco

    2016-05-15

    Neuroscientific research on conceptual knowledge based on the grounded cognition framework has shed light on the organization of concrete concepts into semantic categories that rely on different types of experiential information. Abstract concepts have traditionally been investigated as an undifferentiated whole, and have only recently been addressed in a grounded cognition perspective. The present fMRI study investigated the involvement of brain systems coding for experiential information in the conceptual processing of fine-grained semantic categories along the abstract-concrete continuum. These categories consisted of mental state-, emotion-, mathematics-, mouth action-, hand action-, and leg action-related meanings. Thirty-five sentences for each category were used as stimuli in a 1-back task performed by 36 healthy participants. A univariate analysis failed to reveal category-specific activations. Multivariate pattern analyses, in turn, revealed that fMRI data contained sufficient information to disentangle all six fine-grained semantic categories across participants. However, the category-specific activity patterns showed no overlap with the regions coding for experiential information. These findings demonstrate the possibility of detecting specific patterns of neural representation associated with the processing of fine-grained conceptual categories, crucially including abstract ones, though bearing no anatomical correspondence with regions coding for experiential information as predicted by the grounded cognition hypothesis. PMID:26883065

  2. The transport of fine-grained sediments in shallow waters

    NASA Astrophysics Data System (ADS)

    Ziegler, Carl Kirk; Lick, Wilbert

    1988-02-01

    A numerical model of the resuspension, deposition, and transport of fine-grained, cohesive sediments has been developed and applied. An essential part of this model is an accurate and physically realistic description of the sediment bed and the resuspension of the bottom sediments due to physical processes. The description is based on data from recent experimental and field work on fine-grained sediments. Pertinent results from this work have been incorporated into the present model, and as part of the calculation, changes in the resuspension properties of the sediment bed with time due to resuspension, deposition, and compaction can be approximately determined. Vertically integrated differential equations were used to approximate the hydrodynamic and sediment transport equations. A volume integral method was used to derive finite difference equations which are second-order accurate, explicit, and locally conservative. A unique feature of the numerical model is that it can successfully treat conditions at open boundaries where both incoming and outgoing waves or disturbances may be present. The model has been applied to the resuspension, deposition, and transport of fine-grained sediments in (1) the Raisin River, a small polluted stream flowing into Lake Erie; (2) a river flowing into a lake or ocean with a cross-flow; and (3) a time-dependent flow in a simple estuary as affected by tidal currents. The formation of erosional and depositional areas under various conditions is demonstrated.

  3. Scintillating optical fibers for fine-grained hodoscopes

    SciTech Connect

    Borenstein, S.R.; Strand, R.C.

    1981-01-01

    Fast detectors with fine spatial resolution will be needed to exploit high event rates at ISABELLE. Scintillating optical fibers for fine grained hodoscopes have been developed by the authors. A commercial manufacturer of optical fibers has drawn and clad PVT scintillator. Detection efficiencies greater than 99% have been achieved for a 1 mm fiber with a PMT over lengths up to 60 cm. Small diameter PMT's and avalanche photodiodes have been tested with the fibers. Further improvements are sought for the fiber and for the APD's sensitivity and coupling efficiency with the fiber.

  4. Fine-Grained Turbidites: Facies, Attributes and Process Implications

    NASA Astrophysics Data System (ADS)

    Stow, Dorrik; Omoniyi, Bayonle

    2016-04-01

    Within turbidite systems, fine-grained sediments are still the poor relation and sport several contrasting facies models linked to process of deposition. These are volumetrically the dominant facies in deepwater and, from a resource perspective, they form important marginal and tight reservoirs, and have great potential for unconventional shale gas, source rocks and seals. They are also significant hosts of metals and rare earth elements. Based on a large number of studies of modern, ancient and subsurface systems, including 1000s of metres of section logging, we define the principal genetic elements of fine-grained deepwater facies, present a new synthesis of facies models and their sedimentary attributes. The principal architectural elements include: non-channelised slope-aprons, channel-fill, channel levee and overbank, turbidite lobes, mass-transport deposits, contourite drifts, basin sheets and drapes. These comprise a variable intercalation of fine-grained facies - thin-bedded and very thin-bedded turbidites, contourites, hemipelagites and pelagites - and associated coarse-grained facies. Characteristic attributes used to discriminate between these different elements are: facies and facies associations; sand-shale ratio, sand and shale geometry and dimensions, sand connectivity; sediment texture and small-scale sedimentary structures; sediment fabric and microfabric; and small-scale vertical sequences of bed thickness. To some extent, we can relate facies and attribute characteristics to different depositional environments. We identify four distinct facies models: (a) silt-laminated mud turbidites, (b) siliciclastic mud turbidites, (c) carbonate mud turbidites, (d) disorganized silty-mud turbidites, and (e) hemiturbidites. Within the grainsize-velocity matrix turbidite plot, these all fall within the region of mean size < 0.063mm, maximum grainsize (one percentile) <0.2mm, and depositional velocity 0.1-0.5 m/s. Silt-laminated turbidites and many mud

  5. Cumulative plastic deformation for fine-grained subgrade soils

    SciTech Connect

    Li, D.Q.; Selig, E.T.

    1996-12-01

    Improvements to existing methods in the literature have been made for predicting cumulative plastic deformation for fine-grained subgrade soils. The soil deviator stress, number of stress applications, soil physical state, and soil type are considered. The improved method incorporates multilevels of deviator stresses and multisoil physical states that result from load-level variations, as well as seasonal and weather changes throughout traffic. Measurements of plastic deformation for a railroad-track subgrade are presented and show a significant influence of soil physical state, soil type, traffic tonnage, and wheel loads on the accumulation of plastic deformation. Comparisons between predicted and experimental results show good applicability of the improved method.

  6. Ultra fine grained Ti prepared by severe plastic deformation

    NASA Astrophysics Data System (ADS)

    Lukáč, F.; Čížek, J.; Knapp, J.; Procházka, I.; Zháňal, P.; Islamgaliev, R. K.

    2016-01-01

    The positron annihilation spectroscopy was employed for characterisation of defects in pure Ti with ultra fine grained (UFG) structure. UFG Ti samples were prepared by two techniques based on severe plastic deformation (SPD): (i) high pressure torsion (HPT) and (ii) equal channel angular pressing (ECAP). Although HPT is the most efficient technique for grain refinement, the size of HPT-deformed specimens is limited. On the other hand, ECAP is less efficient in grain refinement but enables to produce larger samples more suitable for industrial applications. Characterisation of defects by positron annihilation spectroscopy was accompanied by hardness testing in order to monitor the development of mechanical properties of UFG Ti.

  7. Physics sensitivity studies of Fine-Grained Tracker

    SciTech Connect

    Tian, Xinchun; Mishra, Sanjib R.; Petti, Roberto; Hongyue, Duyang

    2015-10-15

    The reference design of the near detector for the LBNE experiment is a high-resolution Fine-Grained Tracker (FGT). We performed sensitivity studies – critical to constraining the systematics in oscillation searches – of measurements of (1) the absolute neutrino flux, (2) neutrino-nucleon quasi-elastic (QE) and (3) resonance (Res) interactions. In QE and Res emphasis is laid in identifying in situ measurables that help constrain nuclear effects such as initial state pair wise correlations and final state interactions.

  8. Constraints on chondrule agglomeration from fine-grained chondrule rims

    NASA Technical Reports Server (NTRS)

    Metzler, K.; Bischoff, A.

    1994-01-01

    Fine-grained rims around chondrules, Ca,Al-rich inclusions, and other coarse-grained components occur in most types of unequilibrated chondrites, most prominently in carbonaceous chondrites of the CM group. Based on mineralogical and petrographic investigations, it was suggested that rim structures in unequilibrated ordinary chondrites could have formed in the solar nebula by accretion of dust on the surfaces of the chondrules. Dust mantles in CM chondrites seem to have formed by accretion of dust on the surfaces of chondrules and other components during their passage through dust-rich regions in the solar nebula. Concentric mantles with compositionally different layers prove the existence of various distinct dust reservoirs in the vicinity of the accreting parent body. Despite mineralogical and chemical differences, fine-grained rims from other chondrite groups principally show striking similarities to dust mantle textures in CM chondrite. This implies that the formation of dust mantles was a cosmically significant event like the chondrule formation itself. Dust mantles seem to have formed chronologically between chondrule-producing transient heating events and the agglomeration of chondritic parent bodies. For this reason the investigation of dust mantle structures may help to answer the question of how a dusty solar nebula was transformed into a planetary system.

  9. Primitive Fine-Grained Matrix in the Unequilbrated Enstatite Chondrites

    NASA Technical Reports Server (NTRS)

    Weisberg, M. K.; Zolensky, M. E.; Kimura, M.; Ebel, D. S.

    2014-01-01

    Enstatite chondrites (EC) have important implications for constraining conditions in the early solar system and for understanding the evolution of the Earth and other inner planets. They are among the most reduced solar system materials as reflected in their mineral compositions and assemblage. They are the only chondrites with oxygen as well as Cr, Ti, Ni and Zn stable isotope compositions similar to the earth and moon and most are completely dry, lacking any evidence of hydrous alteration; the only exception are EC clasts in the Kaidun breccia which have hydrous minerals. Thus, ECs likely formed within the snow line and are good candidates to be building blocks of the inner planets. Our goals are to provide a more detailed characterization the fine-grained matrix in E3 chondrites, understand its origin and relationship to chondrules, decipher the relationship between EH and EL chondrites and compare E3 matrix to matrices in C and O chondrites as well as other fine-grained solar system materials. Is E3 matrix the dust remaining from chondrule formation or a product of parent body processing or both?

  10. Separability conditions based on local fine-grained uncertainty relations

    NASA Astrophysics Data System (ADS)

    Rastegin, Alexey E.

    2016-06-01

    Many protocols of quantum information processing use entangled states. Hence, separability criteria are of great importance. We propose new separability conditions for a bipartite finite-dimensional system. They are derived by using fine-grained uncertainty relations. Fine-grained uncertainty relations can be obtained by consideration of the spectral norms of certain positive matrices. One of possible approaches to separability conditions is connected with upper bounds on the sum of maximal probabilities. Separability conditions are often formulated for measurements that have a special structure. For instance, mutually unbiased bases and mutually unbiased measurements can be utilized for such purposes. Using resolution of the identity for each subsystem of a bipartite system, we construct some resolution of the identity in the product of Hilbert spaces. Separability conditions are then formulated in terms of maximal probabilities for a collection of specific outcomes. The presented conditions are compared with some previous formulations. Our results are exemplified with entangled states of a two-qutrit system.

  11. Genetic Effects on Fine-Grained Human Cortical Regionalization.

    PubMed

    Cui, Yue; Liu, Bing; Zhou, Yuan; Fan, Lingzhong; Li, Jin; Zhang, Yun; Wu, Huawang; Hou, Bing; Wang, Chao; Zheng, Fanfan; Qiu, Chengxiang; Rao, Li-Lin; Ning, Yuping; Li, Shu; Jiang, Tianzi

    2016-09-01

    Various brain structural and functional features such as cytoarchitecture, topographic mapping, gyral/sulcal anatomy, and anatomical and functional connectivity have been used in human brain parcellation. However, the fine-grained intrinsic genetic architecture of the cortex remains unknown. In the present study, we parcellated specific regions of the cortex into subregions based on genetic correlations (i.e., shared genetic influences) between the surface area of each pair of cortical locations within the seed region. The genetic correlations were estimated by comparing the correlations of the surface area between monozygotic and dizygotic twins using bivariate twin models. Our genetic subdivisions of diverse brain regions were reproducible across 2 independent datasets and corresponded closely to fine-grained functional specializations. Furthermore, subregional genetic correlation profiles were generally consistent with functional connectivity patterns. Our findings indicate that the magnitude of the genetic covariance in brain anatomy could be used to delineate the boundaries of functional subregions of the brain and may be of value in the next generation human brain atlas. PMID:26250778

  12. Occurence characteristics of hydrates in fine-grained sediments

    NASA Astrophysics Data System (ADS)

    Lee, Joo Yong; Ahn, Taewoong; Lee, Jaehyoung; Kim, Sejoon

    2016-04-01

    Hydrate occurrences in sediments are affected by the sediment characteristics in various aspects and scales. The grain-displacing hydrates form in fine-grained sediments since filling pre-existing fractures or inducing frost heaves takes less energy than overcoming capillarity induced inhibition in fine-grained sediments. The geometry of grain-displacing hydrate formed by filling pre-existing hydrates are mostly governed by the geometry of fracture, whereas those formed by heaving mechanisms are governed by in-situ stress conditions and geomechanical properties. The thickness, spacing, dip angle, and number of grain-displacing hydrates have been extracted using X-ray CT images of pressure cores recovered from Ulleug Basin, East Sea, Korea. The thickness of both horizontal and vertical grain-displacing hydrates, and the number of horizontal hydrates decreases with depth (i.e. with the increase of the overburden stress) while the number of vertical hydrates does not decrease with depth, implying that the formation mechanisms of horizontal and vertical hydrates differ while growth mechanisms are similar to each other in different growth directions.

  13. Separability conditions based on local fine-grained uncertainty relations

    NASA Astrophysics Data System (ADS)

    Rastegin, Alexey E.

    2016-03-01

    Many protocols of quantum information processing use entangled states. Hence, separability criteria are of great importance. We propose new separability conditions for a bipartite finite-dimensional system. They are derived by using fine-grained uncertainty relations. Fine-grained uncertainty relations can be obtained by consideration of the spectral norms of certain positive matrices. One of possible approaches to separability conditions is connected with upper bounds on the sum of maximal probabilities. Separability conditions are often formulated for measurements that have a special structure. For instance, mutually unbiased bases and mutually unbiased measurements can be utilized for such purposes. Using resolution of the identity for each subsystem of a bipartite system, we construct some resolution of the identity in the product of Hilbert spaces. Separability conditions are then formulated in terms of maximal probabilities for a collection of specific outcomes. The presented conditions are compared with some previous formulations. Our results are exemplified with entangled states of a two-qutrit system.

  14. Fine grained recognition of masonry walls for built heritage assessment

    NASA Astrophysics Data System (ADS)

    Oses, N.; Dornaika, F.; Moujahid, A.

    2015-01-01

    This paper presents the ground work carried out to achieve automatic fine grained recognition of stone masonry. This is a necessary first step in the development of the analysis tool. The built heritage that will be assessed consists of stone masonry constructions and many of the features analysed can be characterized according to the geometry and arrangement of the stones. Much of the assessment is carried out through visual inspection. Thus, we apply image processing on digital images of the elements under inspection. The main contribution of the paper is the performance evaluation of the automatic categorization of masonry walls from a set of extracted straight line segments. The element chosen to perform this evaluation is the stone arrangement of masonry walls. The validity of the proposed framework is assessed on real images of masonry walls using machine learning paradigms. These include classifiers as well as automatic feature selection.

  15. Synthesis and characterization of fine grain diamond films

    NASA Technical Reports Server (NTRS)

    Wu, Richard L. C.; Rai, A. K.; Garscadden, Alan; Kee, Patrick; Desai, Hemant D.; Miyoshi, Kazuhisa

    1992-01-01

    A fine grain diamond film has been developed by microwave plasma assisted chemical vapor deposition. Various analytical techniques, including Rutherford backscattering, proton recoil analysis, Raman spectroscopy, and X-ray diffraction, were utilized to characterize the diamond films. The grain size of the film was determined from bright and dark field electron micrographs, and found to be 200-1000 A. The films exhibited good optical transmission between 2.5 and 10 microns, with a calculated absorption coefficient of 490/cm. The friction coefficients of this film were found to be 0.035 and 0.030 at dry nitrogen and humid air environments, respectively, and the films had low wear rates.

  16. Olivine and Pyroxene Compositions in Fine-Grained Chondritic Materials

    NASA Technical Reports Server (NTRS)

    Zolensky, Michael E.; Frank, D.

    2011-01-01

    Our analyses of the Wild-2 samples returned by the Stardust Mission have illuminated critical gaps in our understanding of related astromaterials. There is a very large database of olivine and low-calcium pyroxene compositions for coarse-grained components of chondrites, but a sparse database for anhydrous silicate matrix phases. In an accompanying figure, we present comparisons of Wild-2 olivine with the available chondrite matrix olivine major element data. We thus have begun a long-term project measuring minor as well as major element compositions for chondrite matrix and chondritic IDPs, and Wild 2 grains. Finally, we wish to re-investigate the changes to fine-grained olivine and low-Ca pyroxene composition with progressive thermal metamorphism. We have examined the LL3-4 chondrites which because of the Hayabusa Mission have become very interesting.

  17. Fine-grained Einstein-Podolsky-Rosen-steering inequalities

    NASA Astrophysics Data System (ADS)

    Pramanik, Tanumoy; Kaplan, Marc; Majumdar, A. S.

    2014-11-01

    We derive a steering inequality based on a fine-grained uncertainty relation to capture Einstein-Podolsky-Rosen steering for bipartite systems. Our steering inequality improves over previous ones since it can experimentally detect all steerable two-qubit Werner state with only two measurement settings on each side. According to our inequality, pure entangled states are maximally steerable. Moreover, by slightly changing the setting, we can express the amount of violation of our inequality as a function of their violation of the Clauser-Horne-Shimony-Holt inequality. Finally, after deriving a monogamy relation we prove that the amount of violation of our steering inequality is, up to a constant factor, a lower bound on the key rate of a one-sided device-independent quantum key distribution protocol secure against individual attacks.

  18. Fine-grained precursors dominate the micrometeorite flux

    NASA Astrophysics Data System (ADS)

    Taylor, Susan; Matrajt, Graciela; Guan, Yunbin

    2012-04-01

    We optically classified 5682 micrometeorites (MMs) from the 2000 South Pole collection into textural classes, imaged 2458 of these MMs with a scanning electron microscope, and made 200 elemental and eight isotopic measurements on those with unusual textures or relict phases. As textures provide information on both degree of heating and composition of MMs, we developed textural sequences that illustrate how fine-grained, coarse-grained, and single mineral MMs change with increased heating. We used this information to determine the percentage of matrix dominated to mineral dominated precursor materials (precursors) that produced the MMs. We find that at least 75% of the MMs in the collection derived from fine-grained precursors with compositions similar to CI and CM meteorites and consistent with dynamical models that indicate 85% of the mass influx of small particles to Earth comes from Jupiter family comets. A lower limit for ordinary chondrites is estimated at 2-8% based on MMs that contain Na-bearing plagioclase relicts. Less than 1% of the MMs have achondritic compositions, CAI components, or recognizable chondrules. Single mineral MMs often have magnetite zones around their peripheries. We measured their isotopic compositions to determine if the magnetite zones demarcate the volume affected by atmospheric exchange during entry heating. Because we see little gradient in isotopic composition in the olivines, we conclude that the magnetites are a visual marker that allows us to select and analyze areas not affected by atmospheric exchange. Similar magnetite zones are seen in some olivine and pyroxene relict grains contained within MMs.

  19. Stabilizing soft fine-grained soils with fly ash

    SciTech Connect

    Edil, T.B.; Acosta, H.A.; Benson, C.H.

    2006-03-15

    The objective of this study was to evaluate the effectiveness of self-cementing fly ashes derived from combustion of subbituminous coal at electric power plants for stabilization of soft fine-grained soils. California bearing ratio (CBR) and resilient modulus (M{sub r}) tests were conducted on mixtures prepared with seven soft fine-grained soils (six inorganic soils and one organic soil) and four fly ashes. The soils were selected to represent a relatively broad range of plasticity, with plasticity indices ranging between 15 and 38. Two of the fly ashes are high quality Class C ashes (per ASTM C 618) that are normally used in Portland cement concrete. The other ashes are off-specification ashes, meaning they do not meet the Class C or Class F criteria in ASTM C 618. Tests were conducted on soils and soil-fly ash mixtures prepared at optimum water content (a standardized condition), 7% wet of optimum water content (representative of the typical in situ condition in Wisconsin), and 9-18% wet of optimum water content (representative of a very wet in situ condition). Addition of fly ash resulted in appreciable increases in the CBR and M{sub r} of the inorganic soils. For water contents 7% wet of optimum, CBRs of the soils alone ranged between 1 and 5. Addition of 10% fly ash resulted in CBRs ranging between 8 and 17, and 18% fly ash resulted in CBRs between 15 and 31. Similarly, M{sub r} of the soil alone ranged between 3 and 15 MPa at 7% wet of optimum, whereas addition of 10% fly ash resulted in M{sub r} between 12 and 60 MPa and 18% fly ash resulted in M{sub r} between 51 and 106 MPa. In contrast, except for one fly ash, addition of fly ash generally had little effect on CBR or M{sub r} of the organic soil.

  20. Fine-grained multithreading support for hybrid threaded MPI programming.

    SciTech Connect

    Balaji, P.; Buntinas, D.; Goodell, D.; Gropp, W.; Thakur, R.

    2010-02-01

    As high-end computing systems continue to grow in scale, recent advances in multi- and many-core architectures have pushed such growth toward more dense architectures, that is, more processing elements per physical node, rather than more physical nodes themselves. Although a large number of scientific applications have relied so far on an MPI-everywhere model for programming high-end parallel systems; this model may not be sufficient for future machines, given their physical constraints such as decreasing amounts of memory per processing element and shared caches. As a result, application and computer scientists are exploring alternative programming models that involve using MPI between address spaces and some other threaded model, such as OpenMP, Pthreads, or Intel TBB, within an address space. Such hybrid models require efficient support from an MPI implementation for MPI messages sent from multiple threads simultaneously. In this paper, we explore the issues involved in designing such an implementation. We present four approaches to building a fully thread-safe MPI implementation, with decreasing levels of critical-section granularity (from coarse-grain locks to fine-grain locks to lock-free operations) and correspondingly increasing levels of complexity. We present performance results that demonstrate the performance implications of the different approaches.

  1. The T2K fine-grained detectors

    NASA Astrophysics Data System (ADS)

    Amaudruz, P.-A.; Barbi, M.; Bishop, D.; Braam, N.; Brook-Roberge, D. G.; Giffin, S.; Gomi, S.; Gumplinger, P.; Hamano, K.; Hastings, N. C.; Hastings, S.; Helmer, R. L.; Henderson, R.; Ieki, K.; Jamieson, B.; Kato, I.; Khan, N.; Kim, J.; Kirby, B.; Kitching, P.; Konaka, A.; Lenckowski, M.; Licciardi, C.; Lindner, T.; Mahn, K.; Mathie, E. L.; Metelko, C.; Miller, C. A.; Minamino, A.; Mizouchi, K.; Nakaya, T.; Nitta, K.; Ohlmann, C.; Olchanski, K.; Oser, S. M.; Otani, M.; Poffenberger, P.; Poutissou, R.; Poutissou, J.-M.; Qian, W.; Retiere, F.; Tacik, R.; Tanaka, H. A.; Vincent, P.; Wilking, M.; Yen, S.; Yokoyama, M.

    2012-12-01

    T2K is a long-baseline neutrino oscillation experiment searching for νe appearance in a νμ beam. The beam is produced at the J-PARC accelerator complex in Tokai, Japan, and the neutrinos are detected by the Super-Kamiokande detector located 295 km away in Kamioka. A suite of near detectors (ND280) located 280 m downstream of the production target is used to characterize the components of the beam before they have had a chance to oscillate and to better understand various neutrino interactions on several nuclei. This paper describes the design and construction of two massive fine-grained detectors (FGDs) that serve as active targets in the ND280 tracker. One FGD is composed solely of scintillator bars while the other is partly scintillator and partly water. Each element of the FGDs is described, including the wavelength shifting fiber and Multi-Pixel Photon Counter used to collect the light signals, the readout electronics, and the calibration system. Initial tests and in situ results of the FGDs' performance are also presented.

  2. Fine-grained nociceptive maps in primary somatosensory cortex

    PubMed Central

    Mancini, Flavia; Haggard, Patrick; Iannetti, Gian Domenico; Longo, Matthew R.; Sereno, Martin I.

    2012-01-01

    Topographic maps of the receptive surface are a fundamental feature of neural organization in many sensory systems. While touch is finely mapped in the cerebral cortex, it remains controversial how precise any cortical nociceptive map may be. Given that nociceptive innervation density is relatively low on distal skin regions such as the digits, one might conclude that the nociceptive system lacks fine representation of these regions. Indeed, only gross spatial organization of nociceptive maps has been reported so far. However, here we reveal the existence of fine-grained somatotopy for nociceptive inputs to the digits in human primary somatosensory cortex (SI). Using painful nociceptive-selective laser stimuli to the hand, and phase-encoded fMRI analysis methods, we observed somatotopic maps of the digits in contralateral SI. These nociceptive maps were highly aligned with maps of non-painful tactile stimuli, suggesting comparable cortical representations for, and possible interactions between, mechanoreceptive and nociceptive signals. Our findings may also be valuable for future studies tracking the timecourse and the spatial pattern of plastic changes in cortical organization involved in chronic pain. PMID:23197708

  3. Fine-Grained Access Control for Electronic Health Record Systems

    NASA Astrophysics Data System (ADS)

    Hue, Pham Thi Bach; Wohlgemuth, Sven; Echizen, Isao; Thuy, Dong Thi Bich; Thuc, Nguyen Dinh

    There needs to be a strategy for securing the privacy of patients when exchanging health records between various entities over the Internet. Despite the fact that health care providers such as Google Health and Microsoft Corp.'s Health Vault comply with the U.S Health Insurance Portability and Accountability Act (HIPAA), the privacy of patients is still at risk. Several encryption schemes and access control mechanisms have been suggested to protect the disclosure of a patient's health record especially from unauthorized entities. However, by implementing these approaches, data owners are not capable of controlling and protecting the disclosure of the individual sensitive attributes of their health records. This raises the need to adopt a secure mechanism to protect personal information against unauthorized disclosure. Therefore, we propose a new Fine-grained Access Control (FGAC) mechanism that is based on subkeys, which would allow a data owner to further control the access to his data at the column-level. We also propose a new mechanism to efficiently reduce the number of keys maintained by a data owner in cases when the users have different access privileges to different columns of the data being shared.

  4. Electro-Osmotic Remediation of Fine-Grained Sediments

    SciTech Connect

    Cherepy, N.J.; McNab, W.W.; Wildenschild, D.; Ruiz, R.; Elsholz, A.

    1999-11-22

    The coupled-flow phenomenon, electro-osmosis, whereby water flow results from an applied electrical potential gradient, is being used at Lawrence Livermore National Laboratory to induce water flow through deep (25-40 meters below surface) fine-grained sediments. The scoping work described here lays the groundwork for implementation of this technology to remediate solvent-contaminated clayey zones at the LLNL site. The electro-osmotic conductivity (k{sub e}) measured in-situ between two 37 m deep wells, 3 m apart of 2.3 x 10{sup -9} m{sup 2}/s-V is in good agreement with the value determined from bench-top studies on the core extracted from one of the wells of 0.94 {+-} 0.29 x 10{sup -9} m{sup 2}/s-V. Hydraulic conductivity (k{sub h}) of the same core is measured to be 2.03 {+-} 0.36 x 10{sup -10} m/s. Thus, a voltage gradient of 1 V/cm produces an effective hydraulic conductivity of {approx}1 x 10{sup -7} m/s; an increase in conductivity of nearly three orders of magnitude.

  5. Benzene and MTBE Sorption in Fine Grain Sediments

    NASA Astrophysics Data System (ADS)

    Leal-Bautista, R. M.; Lenczewski, M. E.

    2003-12-01

    The practice of adding methyl tert-butyl ether (MTBE) to gasoline started in the late 1970s and increased dramatically in the 1990s. MTBE first was added as a substitute for tetra-ethyl lead then later as a fuel oxygenate. Although the use of MTBE has resulted in significant reduction in air pollution, it has become a significant groundwater contaminant due to its high solubility in water, high environmental mobility, and low potential for biodegradation. A recent report (1999-2001) by the Metropolitan Water District of Southern California in collaboration with United State Geological Survey and the Oregon Health and Science University found that MTBE was the second most frequent detected volatile organic compound in groundwater. In Illinois, MTBE has been found in 26 of the 1,800 public water supplies. MTBE has also been blended in Mexico into two types of gasoline sold in the country by the state oil company (PEMEX) but is not monitored in groundwater at this time. Early research on MTBE considered it unable to adsorb to soils and sediments, however, by increasing the organic matter and decreasing the size of the grains (silts or clays) this may increase sorption. The objective of this study is to determine if fine grained materials have the potential for sorption of MTBE due to its high specific surface area (10-700 m 2/g) and potentially high organic matter (0.5-3.8%). The experiment consisted of sorption isotherms to glacial tills from DeKalb, Illinois and lacustrine clays from Chalco, Mexico. Experiments were performed with various concentrations of MTBE and benzene (10, 50, 100, 500 and 1000 ug/L) at 10° C and 25° C. Results showed a range of values for the distribution coefficient (Kd, linear model). At 10° C the Kd value for MTBE was 0.187 mL/g for lacustrine clay while the glacial loess had a value of 0.009 mL/g. The highest Kd values with MTBE were 0.2859 mL/g for organic rich lacustrine clays and 0.014 mL/g for glacial loess at 25° C. The highest

  6. Study of a Fine Grained Threaded Framework Design

    NASA Astrophysics Data System (ADS)

    Jones, C. D.

    2012-12-01

    Traditionally, HEP experiments exploit the multiple cores in a CPU by having each core process one event. However, future PC designs are expected to use CPUs which double the number of processing cores at the same rate as the cost of memory falls by a factor of two. This effectively means the amount of memory per processing core will remain constant. This is a major challenge for LHC processing frameworks since the LHC is expected to deliver more complex events (e.g. greater pileup events) in the coming years while the LHC experiment's frameworks are already memory constrained. Therefore in the not so distant future we may need to be able to efficiently use multiple cores to process one event. In this presentation we will discuss a design for an HEP processing framework which can allow very fine grained parallelization within one event as well as supporting processing multiple events simultaneously while minimizing the memory footprint of the job. The design is built around the libdispatch framework created by Apple Inc. (a port for Linux is available) whose central concept is the use of task queues. This design also accommodates the reality that not all code will be thread safe and therefore allows one to easily mark modules or sub parts of modules as being thread unsafe. In addition, the design efficiently handles the requirement that events in one run must all be processed before starting to process events from a different run. After explaining the design we will provide measurements from simulating different processing scenarios where the processing times used for the simulation are drawn from processing times measured from actual CMS event processing.

  7. Geochemistry of Fine-grained Sediments and Sedimentary Rocks

    NASA Astrophysics Data System (ADS)

    Sageman, B. B.; Lyons, T. W.

    2003-12-01

    paleosalinity). Authors of a single chapter can hope, at best, to present a cursory glance at the many biogeochemical proxies currently used and under development in sedimentary studies. Our goal, instead, is to focus on a selected suite of tools of particular value in the reconstruction of paleo-environments preserved in fine-grained siliciclastic sedimentary rocks.Fine-grained, mixed siliciclastic-biogenic sedimentary facies - commonly termed hemipelagic (mainly calcareous or siliceous mudrocks containing preserved organic matter (OM)) - are ideal for unraveling the geological past and are thus the focus of this chapter. These strata accumulate in predominantly low-energy basinal environments where the magnitude (and frequency) of lacunae is diminished, resulting in relatively continuous, though generally condensed sequences. Fortunately, condensation tends to benefit geochemical analysis as it helps to amplify some subtle environmental signals. Because hemipelagic facies include contributions from both terrigenous detrital and pelagic biogenic systems, as well as from authigenic components reflecting the burial environment (Figure 1), they are rich archives of geochemical information. In this chapter we present a conceptual model linking the major processes of detrital, biogenic, and authigenic accumulation in fine-grained hemipelagic settings. This model is intended to be a fresh synthesis of decades of prior research on the geochemistry of modern and ancient mudrocks, including our own work.

  8. A unique, (almost) unaltered spinel-rich fine-grained inclusion in Kainsaz

    NASA Technical Reports Server (NTRS)

    Holmberg, B. B.; Hashimoto, A.

    1992-01-01

    A unique, spinel-rich, extremely porous fine-grained inclusion in the Kainsaz (CO3) meteorite is reported. This inclusion is the least altered fine-grained inclusion yet discovered, having escaped almost entirely the secondary alterations experienced by Allende fine-grained inclusions. The inclusion is comprised of loosely packed 5-30 microns spinel grains mantled by thin layers of melilite, anorthite, and diopsidic pyroxene. The inclusion, which has over 30 vol pct void space, is one of the most spinel-rich, most porous fine-grained inclusions seen to date. The mineralogy of the inclusion matches that which has been predicted for a precursor of the altered mineral assemblages of Allende fine-grained inclusions, though a lack of interstitial material in the Kainsaz inclusion reduces the likelihood of a direct genetic relationship between the two (Allende fine-grained inclusions contain abundant interstitial material). Its mineralogical composition confirms that the precursors of other, more altered, fine-grained inclusions were assemblages of refractory minerals exclusively.

  9. Ultra fined-grained atmospheric particulate studied by magnetic analysis

    NASA Astrophysics Data System (ADS)

    Saragnese, F.; Lanci, L.; Lanza, R.

    2009-04-01

    We present the result of an investigation on the presence of ultrafine atmospheric particulate in the urban area of Turin by magnetic methods. Magnetic minerals are a common component of atmospheric particulate, mostly arising from a number of anthropogenic activities. Atmospheric particulate is well known to represent a serious health problem in urban area and recently the attention focused especially on fine (< 2.5 μm) and ultrafine (< 0.1 m) particulates which are proven to be particularly dangerous because if inhaled they penetrate deep and reach lungs alveoli. In the last few years number studies took advantage of magnetic techniques to successfully identify atmospheric particulate matter through the magnetic analysis, however they did not draw much attention to the grain size problem. Indeed magnetic techniques have the ability to distinguish very fine-grained material by using the thermal relaxation effect and thus they potentially constitute a useful analysis tool to recognize ultrafine fractions of atmospheric particulate. We have performed low and room temperature isothermal remanent magnetization (IRM) and hysteresis loop measurements on atmospheric particulate samples in order to estimate the concentration of fine and ultrafine particles. Magnetic mineralogy was studied using IRM at room and liquid nitrogen temperature. Low temperature hysteresis and thermomagnetic curves were used study the grain size distribution that showed the presence of a mixture of low-coercivity particles, magnetite-like, and a variable grain-size populations. Samples were taken from filters collecting particulates matter with diameter < 10 µm (PM10) in different city areas, the particulate mass on the filter was also measured. Results confirm the general correlation between magnetization and concentration of particulate in air. The comparison between suburban and high-traffic area also support the previous finding that anthropogenic particulate has a large concentration of

  10. I/O Router Placement and Fine-Grained Routing on Titan to Support Spider II

    SciTech Connect

    Ezell, Matthew A; Dillow, David; Oral, H Sarp; Wang, Feiyi; Tiwari, Devesh; Maxwell, Don E; Leverman, Dustin B; Hill, Jason J

    2014-01-01

    The Oak Ridge Leadership Computing Facility (OLCF) introduced the concept of Fine-Grained Routing in 2008 to improve I/O performance between the Jaguar supercomputer and Spider, OLCF s center-wide Lustre file system. Fine-grained routing organizes I/O paths to minimize congestion. Jaguar has since been upgraded to Titan, providing more than a ten-fold improvement in peak performance. To support the center s increased computational capacity and I/O demand, the Spider file system has been replaced with Spider II. Building on the lessons learned from Spider, an improved method for placing LNET routers was developed and implemented for Spider II. The fine-grained routing scripts and configuration have been updated to provide additional optimizations and better match the system setup. This paper presents a brief history of fine-grained routing at OLCF, an introduction to the architectures of Titan and Spider II, methods for placing routers in Titan, and details about the fine-grained routing configuration.

  11. A TEM Investigation of the Fine-Grained Matrix of the Martian Basaltic Breccia NWA 7034

    NASA Technical Reports Server (NTRS)

    Muttik, N.; Keller, L. P.; Agee, C. B.; McCubbin, F. M.; Santos, A. R.; Rahman, Z.

    2014-01-01

    The martian basaltic breccia NWA 7034 is characterized by fine-grained groundmass containing several different types of mineral grains and lithologic clasts. The matrix composition closely resembles Martian crustal rock and soil composition measured by recent rover and orbiter missions. The first results of NWA 7034 suggest that the brecciation of this martian meteorite may have formed due to eruptive volcanic processes; however, impact related brecciation processes have been proposed for paired meteorites NWA 7533 and NWA 7475]. Due to the very fine grain size of matrix, its textural details are difficult to resolve by optical and microprobe observations. In order to examine the potential nature of brecciation, transmission electron microscopy (TEM) studies combined with focused ion-beam technique (FIB) has been undertaken. Here we present the preliminary observations of fine-grained groundmass of NWA 7034 from different matrix areas by describing its textural and mineralogical variations and micro-structural characteristics.

  12. An Action-Based Fine-Grained Access Control Mechanism for Structured Documents and Its Application

    PubMed Central

    Su, Mang; Li, Fenghua; Tang, Zhi; Yu, Yinyan; Zhou, Bo

    2014-01-01

    This paper presents an action-based fine-grained access control mechanism for structured documents. Firstly, we define a describing model for structured documents and analyze the application scenarios. The describing model could support the permission management on chapters, pages, sections, words, and pictures of structured documents. Secondly, based on the action-based access control (ABAC) model, we propose a fine-grained control protocol for structured documents by introducing temporal state and environmental state. The protocol covering different stages from document creation, to permission specification and usage control are given by using the Z-notation. Finally, we give the implementation of our mechanism and make the comparisons between the existing methods and our mechanism. The result shows that our mechanism could provide the better solution of fine-grained access control for structured documents in complicated networks. Moreover, it is more flexible and practical. PMID:25136651

  13. Ice rafting of fine-grained sediment, a sorting and transport mechanism, Beaufort Sea, Alaska.

    USGS Publications Warehouse

    Barnes, P.W.; Reimnitz, E.; Fox, D.

    1982-01-01

    The presence of turbid, sediment-rich fast ice in the Arctic is a major factor affecting transport of fine-grained sediment. Observers have documented the widespread, sporadic occurrence of sediment- rich fast ice in both the Beaufort and Bering Seas. The occurrence of sediment in only the upper part of the seasonal fast ice indicates that sediment-rich ice forms early during ice growth. The most likely mechanism requires resuspension of nearshore bottom sediment during storms, accompanied by formation of frazil ice and subsequent lateral advection before the fast ice is stabilized. We estimate that the sediment incorporated in the Beaufort ice canopy formed a significant proportion of the seasonal influx of terrigenous fine-grained sediment. The dominance of fine-grained sediment suggests that in the Arctic and sub-Arctic these size fractions may be ice rafted in greater volumes than the coarse fraction of traditionally recognized ice-rafted sediment. -from Authors

  14. Origin of zoned fine-grained inclusions in the Allende meteorite

    NASA Technical Reports Server (NTRS)

    Mcgurie, Anne V.; Hashimoto, Akihiko

    1989-01-01

    The mineral and bulk compositions in the three zones of the fine-grained Ca-Al-rich inclusion in the Allende meteorite are studied. Mineral analyses for the inclusions are presented and the principle mineral composition for the three zones of the inclusions are described. The nature of the alteration and the physical and chemical environment which caused the three-fold zonation are examined. An alteration and origin of zonation for the Allende inclusions are proposed. It is noted that the fine-grained inclusions display alteration processes such as Ca-Fe-silicate condensation and characteristics of the primary inclusion such as different rim type.

  15. FLOCCULATION OF FINE-GRAINED LAKE SEDIMENTS DUE TO A UNIFORM SHEAR STRESS

    EPA Science Inventory

    Experiments were performed to investigate the effects of fluid shear on the flocculation of fine-grained lake sediments in fresh water. In these experiments, a Couette viscometer was used to apply a uniform shear stress to a sediment suspension. he sediments were from the Detroit...

  16. Weakly Supervised Fine-Grained Categorization With Part-Based Image Representation

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Wei, Xiu-Shen; Wu, Jianxin; Cai, Jianfei; Lu, Jiangbo; Nguyen, Viet-Anh; Do, Minh N.

    2016-04-01

    In this paper, we categorize fine-grained images without using any object / part annotation neither in the training nor in the testing stage, a step towards making it suitable for deployments. Fine-grained image categorization aims to classify objects with subtle distinctions. Most existing works heavily rely on object / part detectors to build the correspondence between object parts by using object or object part annotations inside training images. The need for expensive object annotations prevents the wide usage of these methods. Instead, we propose to select useful parts from multi-scale part proposals in objects, and use them to compute a global image representation for categorization. This is specially designed for the annotation-free fine-grained categorization task, because useful parts have shown to play an important role in existing annotation-dependent works but accurate part detectors can be hardly acquired. With the proposed image representation, we can further detect and visualize the key (most discriminative) parts in objects of different classes. In the experiment, the proposed annotation-free method achieves better accuracy than that of state-of-the-art annotation-free and most existing annotation-dependent methods on two challenging datasets, which shows that it is not always necessary to use accurate object / part annotations in fine-grained image categorization.

  17. Homotypic and Heterotypic Continuity of Fine-Grained Temperament during Infancy, Toddlerhood, and Early Childhood

    ERIC Educational Resources Information Center

    Putnam, Samuel P.; Rothbart, Mary K.; Gartstein, Maria A.

    2008-01-01

    Longitudinal continuity was investigated for fine-grained and factor-level aspects of temperament measured with the Infant Behaviour Questionnaire-Revised (IBQ-R), Early Childhood Behaviour Questionnaire (ECBQ), and Children's Behaviour Questionnaire (CBQ). Considerable homotypic continuity was found. Convergent and discriminant validity of the…

  18. Tracing the provenance of fine-grained dust deposited on the central Chinese Loess Plateau

    NASA Astrophysics Data System (ADS)

    Sun, Youbin; Tada, Ryuji; Chen, Jun; Liu, Qingsong; Toyoda, Shin; Tani, Atsushi; Ji, Junfeng; Isozaki, Yuko

    2008-01-01

    Eolian dust deposits in north China provide an excellent means of determining past variations in continental paleoclimate and atmospheric circulation. However, debate still exists on which deserts in east Asia are the dominant sources of Chinese loess and whether the dust provenance has shifted significantly at different time scales. Here we present new constraints on the provenance of fine-grained dust deposited on the central Chinese Loess Plateau (CLP) by combining electron spin resonance signal intensity and crystallinity index of fine-grained quartz contained in samples from two loess-paleosol sequences. Our results show that the fine-grained dust deposits on the CLP originate mainly from the Gobi desert in southern Mongolia and the sandy deserts in northern China (primarily the Badain Juran and Tengger deserts), rather than from the Taklimakan desert in western China, at least during the last climatic cycle. The dominant source of fine-grained dust varied significantly, from southern Mongolia during cold periods, to northern China during warm periods. The glacial-interglacial provenance fluctuations are strongly coupled with changes in the intensity of the near-surface northwesterly winter monsoon.

  19. ENTRAINMENT, DEPOSITION, AND TRANSPORT OF FINE-GRAINED SEDIMENTS IN LAKES

    EPA Science Inventory

    Recent work on the settling, diffusion, entrainment, and deposition of fine-grained sediments in fresh water is reviewed and synthesized in the report. Particular attention is given to the dependence of these processes on sediment properties such as particle size. The application...

  20. A heat treatment procedure to produce fine-grained lamellar microstructures in a P/M titanium aluminide alloy

    NASA Astrophysics Data System (ADS)

    Au, Peter

    A process for fabricating advanced aerospace titanium aluminide alloys starting from metal powders (the hot isostatically consolidated P/M process) is presented in this thesis. This process does not suffer the difficulties of chemical inhomogeneities and coarse grain structure of castings. In addition heat treatments which take advantage of the refined structure of HIP processed materials are developed to achieve microstructure control and subsequent mechanical property control. It is shown that a better "property balance" is possible after the heat treatment of HIP consolidated materials than it is with alternative processing. It is well understood that the standard microstructures (near-gamma, duplex, nearly lamellar, and fully lamellar) do not have the balanced mechanical properties (tensile, yield, creep and fatigue strength, ductility and fracture toughness) necessary for optimal performance in aero engine and automotive applications. In this work a fine-grained fully lamellar (FGFL) microstructure is developed for property control and in particular for achieving a much improved property balance. A heat treatment procedure for this purpose which consists of cyclic processing in the alpha transus temperature region to achieve an FGFL structure with grain sizes in the range of 50 mum to 150 mum is presented. Compared with conventional duplex structured materials, the minimum creep rate is an order of magnitude lower with only a 10% loss in tensile yield strength. Moreover, a three-fold increase in tensile elongation is possible by converting to an FGFL structure with only a 30% loss in minimum creep rate. These are attractive trade-offs when considering the use of these alloys for aerospace purposes. A thorough literature review of the mechanisms of formation of standard microstructures and their deformation under mechanical loading is contained in the thesis. In addition, conventional techniques to produce FGFL microstructures in wrought and cast materials are

  1. Importance of Pore Size Distribution of Fine-grained Sediments on Gas Hydrate Equilibrium

    NASA Astrophysics Data System (ADS)

    Kwon, T. H.; Kim, H. S.; Cho, G. C.; Park, T. H.

    2015-12-01

    Gas hydrates have been considered as a new source of natural gases. For the gas hydrate production, the gas hydrate reservoir should be depressurized below the equilibrium pressure of gas hydrates. Therefore, it is important to predict the equilibrium of gas hydrates in the reservoir conditions because it can be affected by the pore size of the host sediments due to the capillary effect. In this study, gas hydrates were synthesized in fine-grained sediment samples including a pure silt sample and a natural clayey silt sample cored from a hydrate occurrence region in Ulleung Basin, East Sea, offshore Korea. Pore size distributions of the samples were obtained by the nitrogen adsorption and desorption test and the mercury intrusion porosimetry. The equilibrium curve of gas hydrates in the fine-grained sediments were found to be significantly influenced by the clay fraction and the corresponding small pores (>50 nm in diameter). For the clayey silt sample, the equilibrium pressure was higher by ~1.4 MPa than the bulk equilibrium pressure. In most cases of oceanic gas hydrate reservoirs, sandy layers are found interbedded with fine-grained sediment layers while gas hydrates are intensively accumulated in the sandy layers. Our experiment results reveal the inhibition effect of fine-grained sediments against gas hydrate formation, in which greater driving forces (e.g., higher pressure or lower temperature) are required during natural gas migration. Therefore, gas hydrate distribution in interbedded layers of sandy and fine-grained sediments can be explained by such capillary effect induced by the pore size distribution of host sediments.

  2. A Deployment of Fine-Grained Sensor Network and Empirical Analysis of Urban Temperature

    PubMed Central

    Thepvilojanapong, Niwat; Ono, Takahiro; Tobe, Yoshito

    2010-01-01

    Temperature in an urban area exhibits a complicated pattern due to complexity of infrastructure. Despite geographical proximity, structures of a group of buildings and streets affect changes in temperature. To investigate the pattern of fine-grained distribution of temperature, we installed a densely distributed sensor network called UScan. In this paper, we describe the system architecture of UScan as well as experience learned from installing 200 sensors in downtown Tokyo. The field experiment of UScan system operated for two months to collect long-term urban temperature data. To analyze the collected data in an efficient manner, we propose a lightweight clustering methodology to study the correlation between the pattern of temperature and various environmental factors including the amount of sunshine, the width of streets, and the existence of trees. The analysis reveals meaningful results and asserts the necessity of fine-grained deployment of sensors in an urban area. PMID:22294924

  3. Assessing the benefits of fine-grain parallelism in dataflow programs

    SciTech Connect

    Culler, A.D.E.; Maa, G.K. )

    1988-01-01

    A method for assessing the benefits of fine-grain parallelism in ''real'' programs is presented. The method is based on parallelism profiles and speed up curves derived by executing dataflow graphs on an interpreter under progressively more realistic assumptions about processor resources and communication costs. Even using traditional algorithms, the programs exhibit ample parallelism when parallelism is exposed at all levels. The bias introduced by the language Id and the compiler is examined. A method of estimating speedup through analysis of the ideal parallelism profile is developed, avoiding repeated execution of programs. It is shown that fine-grain parallelism can be used to mask large, unpredictable memory latency and synchronization waits in architectures employing dataflow instruction execution mechanisms. Finally, the effects of grouping portions of dataflow programs, and requiring that the operators in a group execute on a single processor, are explored.

  4. Emission characteristics of dispenser cathodes with a fine-grained tungsten top layer

    NASA Astrophysics Data System (ADS)

    Kimura, S.; Higuchi, T.; Ouchi, Y.; Uda, E.; Nakamura, O.; Sudo, T.; Koyama, K.

    1997-02-01

    In order to improve the emission stability of the Ir-coated dispenser cathode under ion bombardment, a fine-grained tungsten top layer was applied on the substrate porous tungsten plug before Ir coating. The emission characteristics were studied after being assembled in a CRT gun. Cathode current was measured under pulse operation in a range of 0.1-9% duty. Remarkable anti-ion bombardment characteristics were observed over the range of 1-6% duty. The improved cathode showed 1.5 times higher emission current than that of a conventional Ir-coated dispenser cathode at 4% duty. AES analysis showed that the recovering rates of surface Ba and O atoms after ion bombardment were 2.5 times higher. From these results it is confirmed that the Ir coated cathode with a fine-grained tungsten top layer is provided with a good tolerance against the ion bombardment.

  5. Elevated Temperature Strength of Fine-Grained INCONEL Alloy MA754

    SciTech Connect

    T.C. Totemeier; T.M. Lillo; J.A. Simpson

    2005-09-01

    Elevated temperature tensile and creep-rupture tests were performed on INCONEL alloy MA754 in an as-rolled, fine-grained condition. Tensile tests were performed at 25, 800, 900, and 1000°C; creep-rupture tests were performed at 800, 900, and 1000°C. The elevated temperature strength in the fine-grained condition was approximately 25% of the standard, coarse-grained annealed condition. While good ductility was observed in tensile tests at a nominal strain rate of 1×10-3 sec-1, ductility in creep-rupture tests was very low, with failure elongations less than 5% and no reduction in area. Creep deformation appeared to occur solely by cavity formation and growth.

  6. Synthesis of Dense, Fine-Grained YIG Ceramics by Two-Step Sintering

    NASA Astrophysics Data System (ADS)

    Li, X. X.; Zhou, J. J.; Deng, J. X.; Zheng, H.; Zheng, L.; Zheng, P.; Qin, H. B.

    2016-06-01

    A two-step sintering (TSS) process has been used to fabricate yttrium iron garnet (YIG) ceramics with high density and fine grain size. The densification, microstructure, and magnetic properties were investigated. The sample prepared by the TSS process with first-step sintering temperature (T 1) of 1350°C, second-step sintering temperature (T 2) of 1300°C, and holding time of 18 h had density above 99% of theoretical and exhibited uniform microstructure with small average grain size (2.4 μm). The saturation magnetization (M S) of this sample reached 27.4 emu/g. These results indicate that the TSS process can effectively suppress grain-boundary migration while maintaining active grain-boundary diffusion to obtain dense, fine-grained YIG ceramics with appropriate magnetic properties.

  7. Generation and emplacement of fine-grained ejecta in planetary impacts

    USGS Publications Warehouse

    Ghent, R.R.; Gupta, V.; Campbell, B.A.; Ferguson, S.A.; Brown, J.C.W.; Fergason, R.L.; Carter, L.M.

    2010-01-01

    We report here on a survey of distal fine-grained ejecta deposits on the Moon, Mars, and Venus. On all three planets, fine-grained ejecta form circular haloes that extend beyond the continuous ejecta and other types of distal deposits such as run-out lobes or ramparts. Using Earth-based radar images, we find that lunar fine-grained ejecta haloes represent meters-thick deposits with abrupt margins, and are depleted in rocks 1cm in diameter. Martian haloes show low nighttime thermal IR temperatures and thermal inertia, indicating the presence of fine particles estimated to range from ???10??m to 10mm. Using the large sample sizes afforded by global datasets for Venus and Mars, and a complete nearside radar map for the Moon, we establish statistically robust scaling relationships between crater radius R and fine-grained ejecta run-out r for all three planets. On the Moon, ???R-0.18 for craters 5-640km in diameter. For Venus, radar-dark haloes are larger than those on the Moon, but scale as ???R-0.49, consistent with ejecta entrainment in Venus' dense atmosphere. On Mars, fine-ejecta haloes are larger than lunar haloes for a given crater size, indicating entrainment of ejecta by the atmosphere or vaporized subsurface volatiles, but scale as R-0.13, similar to the ballistic lunar scaling. Ejecta suspension in vortices generated by passage of the ejecta curtain is predicted to result in ejecta run-out that scales with crater size as R1/2, and the wind speeds so generated may be insufficient to transport particles at the larger end of the calculated range. The observed scaling and morphology of the low-temperature haloes leads us rather to favor winds generated by early-stage vapor plume expansion as the emplacement mechanism for low-temperature halo materials. ?? 2010 Elsevier Inc.

  8. The dynamics of fine-grain sediment dredged from Santa Cruz Harbor

    USGS Publications Warehouse

    Storlazzi, Curt D.; Conaway, Christopher H.; Presto, M. Katherine; Logan, Joshua B.; Cronin, Katherine; van Ormondt, Maarten; Lescinski, Jamie; Harden, E. Lynne; Lacy, Jessica R.; Tonnon, Pieter K.

    2011-01-01

    In the fall and early winter of 2009, a demonstration project was done at Santa Cruz Harbor, California, to determine if 450 m3/day of predominantly (71 percent) mud-sized sediment could be dredged from the inner portion of the harbor and discharged to the coastal ocean without significant impacts to the beach and inner shelf. During the project, more than 7600 m3 of sediment (~5400 m3 of fine-grain material) was dredged during 17 days and discharged approximately 60 m offshore of the harbor at a depth of 2 m on the inner shelf. The U.S. Geological Survey's Pacific Coastal and Marine Science Center was funded by the U.S. Army Corps of Engineers and the Santa Cruz Port District to do an integrated mapping and process study to investigate the fate of the mud-sized sediment dredged from the inner portion of Santa Cruz Harbor and to determine if any of the fine-grain material settled out on the shoreline and/or inner shelf during the fall and early winter of 2009. This was done by collecting highresolution oceanographic and sediment geochemical measurements along the shoreline and on the continental shelf of northern Monterey Bay to monitor the fine-grain sediment dredged from Santa Cruz Harbor and discharged onto the inner shelf. These in place measurements, in conjunction with beach, water column, and seabed surveys, were used as boundary and calibration information for a three-dimensional numerical circulation and sediment dynamics model to better understand the fate of the fine-grain sediment dredged from Santa Cruz Harbor and the potential consequences of disposing this type of material on the beach and on the northern Monterey Bay continental shelf.

  9. Detecting Densely Distributed Graph Patterns for Fine-Grained Image Categorization.

    PubMed

    Zhang, Luming; Yang, Yang; Wang, Meng; Hong, Richang; Nie, Liqiang; Li, Xuelong

    2016-02-01

    Fine-grained image categorization is a challenging task aiming at distinguishing objects belonging to the same basic-level category, e.g., leaf or mushroom. It is a useful technique that can be applied for species recognition, face verification, and so on. Most of the existing methods either have difficulties to detect discriminative object components automatically, or suffer from the limited amount of training data in each sub-category. To solve these problems, this paper proposes a new fine-grained image categorization model. The key is a dense graph mining algorithm that hierarchically localizes discriminative object parts in each image. More specifically, to mimic the human hierarchical perception mechanism, a superpixel pyramid is generated for each image. Thereby, graphlets from each layer are constructed to seamlessly capture object components. Intuitively, graphlets representative to each super-/sub-category is densely distributed in their feature space. Thus, a dense graph mining algorithm is developed to discover graphlets representative to each super-/sub-category. Finally, the discovered graphlets from pairwise images are integrated into an image kernel for fine-grained recognition. Theoretically, the learned kernel can generalize several state-of-the-art image kernels. Experiments on nine image sets demonstrate the advantage of our method. Moreover, the discovered graphlets from each sub-category accurately capture those tiny discriminative object components, e.g., bird claws, heads, and bodies. PMID:26595921

  10. Microstructure and mechanical properties of fine grain seamless Nb tube by a novel shear deformation process

    NASA Astrophysics Data System (ADS)

    Balachandran, S.; Seymour, N.; Mezyenski, R.; Barber, R.; Hartwig, K. T.

    2014-01-01

    The objective of this work is to demonstrate a seamless tube fabrication method for obtaining uniform fine grained microstructures by a novel shear deformation process for tubular metal products. The manufacture of fine grained RRR Nb superconducting radio frequency (SRF) cavities, and other tubular Nb products requires strict microstructure control with respect to grain size and texture for good formability. The major challenges in SRF cavity fabrication and performance stems from: a) the high cost of pure Nb, b) a poor and inconsistent microstructure in the starting material, and c) seam welding to manufacture multi-cell cavities. The approach presented by the authors indicates a possible strategy to obtain fine grain Nb tube by an innovative shear process. Grain size less than 30μm and tensile ductility greater than 40 percent in the orthogonal direction are achieved. The tensile properties correlate with the strongest texture component in the processed tube. Based on preliminary results, the proposed methodology maybe a viable and cost effective approach to fabricating a seamless Nb tube with good hydroformability.

  11. Interdisciplinary study of the Nile deep-sea fan fine-grained sediments

    NASA Astrophysics Data System (ADS)

    Murat, A.; Gonthier, E.; Mulder, T.; Courp, T.; Bernasconi, S. M.; Mascle, J.

    2003-04-01

    The Nile deep-sea fan is the most important sedimentary accumulation within the eastern Mediterranean. Seven piston cores have been collected in the different geomorphological settings of the eastern, central and western provinces during the Fanil cruise (October 2000): Eratosthenes escarpment, graben, mud volcanoes, channel and lobe of the western part of the deep-sea fan. As a consequence, the sediments recovered display a great variability of lithologic facies: pelagic and hemipelagic muds, turbidites, debrites and volcanoes muds. Furthermore, the eastern Mediterranean basin is characterized by episodic deposition of organic-rich dark pelagic and hemipelagic layers called sapropels. The objective of this study is to characterize the lithologic facies by granulometry, X-ray, clay mineralogy, organic carbon, mineral carbon and sulfur contents in order to improve the understanding of the sedimentary processes and their variability. Preliminary results show gravity flow deposits such as debrites and fine-grained turbidites. Cores taken in a channel and related lobe show a clear coarsening and thickening up trend over approximately twenty turbidite sequences. One of the main difficulties is the distinction between sapropels generally recovered in pelagic sediments but with lower carbonate content than classical ones, and fine-grained turbidites. These two facies could have very similar lithologies and need detailed studies. On the base of three geochemical parameters mineral carbon (biogenic carbonates supply), organic carbon (organic matter preservation) and total sulfur (sulfate reduction and early diagenesis) we propose a new ternary diagram as a tool for fine-grained sediments characterization.

  12. Data Quality Objectives Summary Report for Characterization of Fine Grained Sediments at Area C

    SciTech Connect

    PETERSEN, S.W.

    2003-09-04

    Approximately 200 surface barriers will be required to cover waste sites on the Central Plateau. These barriers will serve to limit or eliminate recharge through the waste sites, effectively isolating contamination from the underlying groundwater. Barrier design will begin in fiscal year (FY) 2004 in support of U Plant waste site closure; construction of these barriers is scheduled to begin in FY 2005. A vital part of barrier design is the evapotranspiration (ET) layer. This is the top layer, which retains precipitation during the rainy season and allows it to evaporate and/or be transpired by plants in the dry season. This layer will consist of fine-grained silt/loam, which only occurs in a few areas on and near the Hanford Site. A large volume of this type of soil is needed to meet the needs of waste site barrier construction at the U Plant waste sites, the BIC Cribs areas, and other 200 Area waste sites. A previous study (BHI-01551, ''Alternative Fine-Grained Soil Borrow Source Study Find Report'') that investigated four borrow source areas on or near the Hanford Site concluded that Area C, located south of the Rattlesnake Barricade and Highway 240, is the only site with the potential to meet the needs of the numerous 200 Area waste sites. The data indicate that Area C has substantial reserves, and that it occurs as a continuous body suitable for exploitation. The amount of suitable material identified in BHI-01551 carried a large uncertainty, with volume estimates ranging from 1.9 to 6.6 million m3. This data quality objective (DQO) is being performed to reduce the uncertainties associated with the fine-grained borrow soils in Area C suitable for use as an ET barrier. This DQO summary report focuses on identifying the types and amount of data that must be collected to confirm that enough suitable and exploitable fine-grained soils are available in Area C to meet construction requirements for 200 Area surface barriers. This effort directly supports remediation

  13. Friction and Wear of Ion-Beam-Deposited Diamondlike Carbon on Chemical-Vapor-Deposited, Fine-Grain Diamond

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa; Wu, Richard L. C.; Lanter, William C.

    1996-01-01

    Friction and wear behavior of ion-beam-deposited diamondlike carbon (DLC) films coated on chemical-vapor-deposited (CVD), fine-grain diamond coatings were examined in ultrahigh vacuum, dry nitrogen, and humid air environments. The DLC films were produced by the direct impact of an ion beam (composed of a 3:17 mixture of Ar and CH4) at ion energies of 1500 and 700 eV and an RF power of 99 W. Sliding friction experiments were conducted with hemispherical CVD diamond pins sliding on four different carbon-base coating systems: DLC films on CVD diamond; DLC films on silicon; as-deposited, fine-grain CVD diamond; and carbon-ion-implanted, fine-grain CVD diamond on silicon. Results indicate that in ultrahigh vacuum the ion-beam-deposited DLC films on fine-grain CVD diamond (similar to the ion-implanted CVD diamond) greatly decrease both the friction and wear of fine-grain CVD diamond films and provide solid lubrication. In dry nitrogen and in humid air, ion-beam-deposited DLC films on fine-grain CVD diamond films also had a low steady-state coefficient of friction and a low wear rate. These tribological performance benefits, coupled with a wider range of coating thicknesses, led to longer endurance life and improved wear resistance for the DLC deposited on fine-grain CVD diamond in comparison to the ion-implanted diamond films. Thus, DLC deposited on fine-grain CVD diamond films can be an effective wear-resistant, lubricating coating regardless of environment.

  14. Investigating the Stability of Fine-Grain Digit Somatotopy in Individual Human Participants

    PubMed Central

    Makin, Tamar R.; Jbabdi, Saad; Clare, Stuart; Stagg, Charlotte J.; Johansen-Berg, Heidi

    2016-01-01

    Studies of human primary somatosensory cortex (S1) have placed a strong emphasis on the cortical representation of the hand and the propensity for plasticity therein. Despite many reports of group differences and experience-dependent changes in cortical digit somatotopy, relatively little work has considered the variability of these maps across individuals and to what extent this detailed functional architecture is dynamic over time. With the advent of 7 T fMRI, it is increasingly feasible to map such detailed organization noninvasively in individual human participants. Here, we extend the ability of ultra-high-field imaging beyond a technological proof of principle to investigate the intersubject variability of digit somatotopy across participants and the stability of this organization across a range of intervals. Using a well validated phase-encoding paradigm and an active task, we demonstrate the presence of highly reproducible maps of individual digits in S1, sharply contrasted by a striking degree of intersubject variability in the shape, extent, and relative position of individual digit representations. Our results demonstrate the presence of very stable fine-grain somatotopy of the digits in human S1 and raise the issue of population variability in such detailed functional architecture of the human brain. These findings have implications for the study of detailed sensorimotor plasticity in the context of both learning and pathological dysfunction. The simple task and 10 min scan required to derive these maps also raises the potential for this paradigm as a tool in the clinical setting. SIGNIFICANCE STATEMENT We applied ultra-high-resolution fMRI at 7 T to map sensory digit representations in the human primary somatosensory cortex (S1) at the level of individual participants across multiple time points. The resulting fine-grain maps of individual digits in S1 reveal the stability in this fine-grain functional organization over time, contrasted with the

  15. PRAM C:a new programming environment for fine-grain and coarse-grain parallelism.

    SciTech Connect

    Brown, Jonathan Leighton; Wen, Zhaofang.

    2004-11-01

    In the search for ''good'' parallel programming environments for Sandia's current and future parallel architectures, they revisit a long-standing open question. Can the PRAM parallel algorithms designed by theoretical computer scientists over the last two decades be implemented efficiently? This open question has co-existed with ongoing efforts in the HPC community to develop practical parallel programming models that can simultaneously provide ease of use, expressiveness, performance, and scalability. Unfortunately, no single model has met all these competing requirements. Here they propose a parallel programming environment, PRAM C, to bridge the gap between theory and practice. This is an attempt to provide an affirmative answer to the PRAM question, and to satisfy these competing practical requirements. This environment consists of a new thin runtime layer and an ANSI C extension. The C extension has two control constructs and one additional data type concept, ''shared''. This C extension should enable easy translation from PRAM algorithms to real parallel programs, much like the translation from sequential algorithms to C programs. The thin runtime layer bundles fine-grained communication requests into coarse-grained communication to be served by message-passing. Although the PRAM represents SIMD-style fine-grained parallelism, a stand-alone PRAM C environment can support both fine-grained and coarse-grained parallel programming in either a MIMD or SPMD style, interoperate with existing MPI libraries, and use existing hardware. The PRAM C model can also be integrated easily with existing models. Unlike related efforts proposing innovative hardware with the goal to realize the PRAM, ours can be a pure software solution with the purpose to provide a practical programming environment for existing parallel machines; it also has the potential to perform well on future parallel architectures.

  16. Fabrication of ultra-fine grained aluminium tubes by RTES technique

    SciTech Connect

    Jafarzadeh, H. Abrinia, K.

    2015-04-15

    Recently, repetitive tube expansion and shrinking have been exploited as a means for producing ultra-fine grained and nano-crystalline microstructures for magnesium alloy tubes. This method includes two different half-cycles and was based on pressing a tubular part through an angular channel die with two shear zones. Since the aluminium alloys are the most widely used materials in industries, in this study, repetitive tube expansion and shrinking as a new severe plastic deformation technique was applied to commercially pure aluminium for fabricating ultra-fine grained aluminium tubes for the first time and the ability of this process in significant grain refinement is determined even after single cycle. Transmission electron microscopy and X-ray diffraction were used to evaluate the microstructure of the repetitive tube expansion and shrinking processed materials and the examinations showed ultra-fine grains with the average grain size of 320 nm after one cycle of repetitive tube expansion and shrinking. The yield strength, ultimate tensile strength increased notably by the factor of 2.17 and 1.27 respectively, after one cycle of repetitive tube expansion and shrinking, whereas the elongation to failure as well as the uniform elongation decreased. Furthermore, micro-hardness distribution through the part's section proposed the hardness increasing to ~ 55 HV from the initial value of ~ 28 HV after one cycle of repetitive tube expansion and shrinking. - Highlights: • RTES was introduced for fabricating the UFGed AA1050 tubes for the first time. • Nano-grained AA1050 tube was obtained by RTES process. • Grain size of ~ 320 nm was obtained after two half-cycles of RTES process. • Yield and ultimate strength increased by the factor of 2.17 and 1.27 respectively. • The microhardness increased to ~ 55 HV from the initial value of ~ 28 HV.

  17. Origin of fine-grained Holocene shallow marine carbonate sediment on the Florida-Bahama Platform

    SciTech Connect

    Steinen, R. ); Tennet, P. )

    1990-05-01

    Fine-grained sediments present in Florida Bay, the inner reef tract of Florida, and the Great Bahama Bank are formed by three processes. The sediments differ primarily in the amount of 4-{mu}m-long aragonite needles that comprise the sediment, but also in the amount of aragonite. Florida Bay muds are composed primarily of equant 1 {mu}m grains; less than 20% are needles. The fine-grained fraction from the inner reef tract of Florida contains more aragonite needles than Florida Bay muds. Some samples contain nearly 90% needles, whereas samples, from adjacent localities contain only 50%. Sediment from both areas is deposited and mixed by bioturbation on the deltas at tidal passes through the Florida Keys. The amount of needle sediment diminishes rapidly away from the tidal passes in Florida Bay. The fine-grained fraction on the Great Bahama Bank is dominated by 4-{mu}m-long needles of aragonite but may contain fragments and whole tests of foraminifers. In general, the more abundant the aragonite-needle content is in any of the sediment, the greater the aragonite content of that sediment. The three main processes responsible for mud production on the Florida-Bahama Platform are (1) disintegration of skeletal encrustations, mainly red algae and spirobid worm tubules, on Thalassia grass blades; (2) postmortem disaggregation of aragonite needles from green algae; and (3) direct precipitation of aragonite and Mg-calcite from supersaturated marine waters. Where sufficient nutrients exist in the water column, such as in Florida Bay, mud production is dominated by the epibionts on the Thalassia grass community. Less nutrients in the water column of the inner reef tract results in fewer encrustations.

  18. Response of the Colorado River to a late Pleistocene pulse of fine-grained sediment

    NASA Astrophysics Data System (ADS)

    Malmon, D.; Howard, K. A.; Lundstrom, S. C.; Felger, T. J.

    2006-12-01

    In many regions, global warming is expected to produce conditions favoring accelerated surface erosion, due to increased fire frequency and/or reduced vegetative cover. Such changes can be expected to dramatically increase the supply of fine-grained sediment to large rivers. Although many of these rivers are now impounded by dams, a distinctive subset of the Pleistocene stratigraphy of the Colorado River below its emergence from Grand Canyon appears to document the natural response of a large river to such a pulse of fine-grained sediment introduced from upstream. These deposits - the Chemehuevi Formation of Longwell (1936) - are dominantly sand through clay, contrasting starkly with underlying coarse fluvial sand and gravel (which may represent a previous oversupply of coarse-grained sediment from upstream). We use field mapping, fine-scale stratigraphy and particle size analyses, multiple geochronologic methods (including both new and previously published data), and GIS analyses of high-precision GPS field measurements on over 100 outcrops from the mouth of Grand Canyon to the international border with Mexico order to better understand the nature and timing of the deposition of the Chemehuevi beds, and to characterize the topographic and geomorphic changes recorded in the deposits. Multiple lines of geochronologic evidence favor the interpretation that most or all the Chemehuevi remnants are related to a single rapid aggradation/degradation episode, as opposed to multiple events. The episode occurred sometime between 40-70 ka and buried the valley with dominantly fine grained sediment to a maximum depth of more than 150m. A longitudinal survey of the deposits demonstrates that at the peak of aggradation, the valley was roughly twice as steep as the modern valley over a distance of over 600 valley kilometers, providing evidence that the episode was caused by a pulse of fine-grained sediment introduced from upstream rather than a base level rise. The sediment pulse

  19. Fabrication of Fine-Grained Positive Temperature Coefficient Ceramics from Chemically Prepared Powder

    NASA Astrophysics Data System (ADS)

    Deguchi, Takeshi; Sumiyama, Tomoko; Yamaguchi, Iwao; Kinugasa, Masanori; Igarashi, Hideji

    1991-09-01

    Fine barium titanate powders were prepared by chemical synthesis to fabricate positive temperature coefficient ceramics. The calcining condition adapted for the chemical powder was experimentally determined to be a lower temperature than that for conventional powders. Microstructure and temperature dependence of resistivity of the fired samples were examined as a function of firing temperature. Niobium ions doped at a synthesizing stage of barium titanate were homogeneously diffused into a titanium lattice at a low temperature of 1150°C, and fine-grained PTC ceramics with grain sizes of 2˜3 μm were fabricated at that temperature.

  20. Fine-grained variation in caregivers’ /s/ predicts their infants’ /s/ categorya

    PubMed Central

    Cristià, Alejandrina

    2011-01-01

    Within the debate on the mechanisms underlying infants’ perceptual acquisition, one hypothesis proposes that infants’ perception is directly affected by the acoustic implementation of sound categories in the speech they hear. In consonance with this view, the present study shows that individual variation in fine-grained, subphonemic aspects of the acoustic realization of ∕s/ in caregivers’ speech predicts infants’ discrimination of this sound from the highly similar ∕∫∕, suggesting that learning based on acoustic cue distributions may indeed drive natural phonological acquisition. PMID:21568428

  1. Spatial distribution of defects in ultra fine grained copper prepared by high pressure torsion

    NASA Astrophysics Data System (ADS)

    Čížek, J.; Melikhova, O.; Procházka, I.; Janeček, M.; Hruška, P.; Dobatkin, S.

    2016-01-01

    Bulk materials with ultra fine grain structure can be fabricated by severe plastic deformation. Among variety of techniques based on severe plastic deformation high pressure torsion is the most efficient method for grain refinement down to nano-scale. In torsion deformation the strain distribution across the sample is non-uniform and increases with increasing radial distance from the centre of the sample corresponding to the axis of torsional straining. Due to this reason it is very important to examine homogeneity of ultra fine grained structure of samples prepared by high pressure torsion. In the present work positron annihilation spectroscopy was employed for mapping of spatial distribution of defects in ultra fine grained copper prepared by high pressure torsion. Spatial distribution of defects was examined by means of (i) Doppler broadening using S parameter for mapping of defect density and (ii) positron lifetime spectroscopy. Spatially resolved positron annihilation studies were combined with mapping by microhardness testing. Hardness is sensitive to dislocation density due to work hardening but is practically not affected by vacancies while positron annihilation is sensitive both to dislocations and vacancies. Our investigations revealed that ultra fine grained copper contains dislocations and vacancy clusters created by agglomeration of deformation-induced vacancies. Average size of vacancy clusters increases with increasing radial distance from the centre of the sample due to higher production rate of vacancies resulting in larger clusters. During high pressure torsion deformation microhardness increases firstly at the periphery of the sample due to the highest imposed strain. With increasing number of high pressure torsion revolutions the hardness increases also in the centre and finally becomes practically uniform across the whole sample indicating the homogeneous distribution of dislocations. Doppler broadening mapping revealed a remarkable increase of

  2. Design and Development of a Dense, Fine Grained Silicon Tungsten Calorimeter with Integrated Electronics

    NASA Astrophysics Data System (ADS)

    Strom, D.; Frey, R.; Breidenbach, M.; Freytag, D.; Graf, N.; Haller, G.; Milgrome, O.; Radeka, V.

    2005-02-01

    A fine grained silicon-tungsten calorimeter is ideal for use as the electromagnetic calorimeter in a linear collider detector that is optimized for particle-flow reconstruction. Our design is based on readout chips which are bump bonded to the silicon wafers that serve as the active medium in the calorimeter. By using integrated electronics we plan to demonstrate that fine granularity can be achieved at a reasonable price. Our design minimizes the gap between tungsten layers leading to a small Molière radius. The size of the Molière radius is an important figure of merit for energy-flow detectors.

  3. Thermal and microstructural properties of fine-grained material at the Viking Lander 1 site

    NASA Astrophysics Data System (ADS)

    Paton, M. D.; Harri, A.-M.; Savijärvi, H.; Mäkinen, T.; Hagermann, A.; Kemppinen, O.; Johnston, A.

    2016-06-01

    As Viking Lander 1 touched down on Mars one of its footpads fully penetrated a patch of loose fine-grained drift material. The surrounding landing site, as observed by VL-1, was found to exhibit a complex terrain consisting of a crusted surface with an assortment of rocks, large dune-like drifts and smaller patches of drift material. We use a temperature sensor attached to the buried footpad and covered in fine-grained material to determine the thermal properties of drift material at the VL-1 site. The thermal properties are used to investigate the microstructure of the drift material and understand its relevance to surface-atmosphere interactions. We obtained a thermal inertia value of 103 ± 22 tiu. This value is in the upper range of previous thermal inertia estimates of martian dust as measured from orbit and is significantly lower than the regional thermal inertia of the VL-1 site, of around 283 tiu, obtained from orbit. We estimate a thermal inertia of around 263 ± 29 tiu for the duricrust at the VL-1 site. It was noted the patch of fine-grained regolith around the footpad was about 20-30 K warmer compared to similar material beyond the thermal influence of the lander. An effective diameter of 8 ± 5 μm was calculated for the particles in the drift material. This is larger than atmospheric dust and large compared to previous estimates of the drift material particle diameter. We interpret our results as the presence of a range of particle sizes, <8 μm, in the drift material with the thermal properties being controlled by a small amount of large particles (˜8 μm) and its cohesion being controlled by a large amount of smaller particles. The bulk of the particles in the drift material are therefore likely comparable in size to that of atmospheric dust. The possibility of larger particles being locked into a fine-grained material has implications for understanding the mobilisation of wind blown materials on Mars.

  4. Analysis of Grain Boundary Character in a Fine-Grained Nickel-Based Superalloy 718

    NASA Astrophysics Data System (ADS)

    Araujo, L. S.; dos Santos, D. S.; Godet, S.; Dille, J.; Pinto, A. L.; de Almeida, L. H.

    2014-11-01

    In the current work, sheets of superalloy 718 were processed via thermomechanical route by hot and cold rolling, followed by annealing below the δ phase solvus temperature and precipitation hardening to optimum strength. Grain boundary character distribution throughout the processing was mapped via EBSD and its evolution discussed. The results show that it is possible to process the alloy to a fine grain size obtaining concomitantly a considerably high proportion of special boundaries Σ3, Σ9, and Σ27. The precipitation of δ phase presented a strong grain refining role, without significantly impairing the twinning mechanism and, consequently, the Σ3, Σ9, and Σ27 boundary formations.

  5. Near-Threshold Fatigue Crack Growth Behavior of Fine-Grain Nickel-Based Alloys

    NASA Technical Reports Server (NTRS)

    Newman, John A.; Piascik, Robert S.

    2003-01-01

    Constant-Kmax fatigue crack growth tests were performed on two finegrain nickel-base alloys Inconel 718 (DA) and Ren 95 to determine if these alloys exhibit near-threshold time-dependent crack growth behavior observed for fine-grain aluminum alloys in room-temperature laboratory air. Test results showed that increases in K(sub max) values resulted in increased crack growth rates, but no evidence of time-dependent crack growth was observed for either nickel-base alloy at room temperature.

  6. Fine-grained suspended sediment dynamics in the Eel River flood plume

    NASA Astrophysics Data System (ADS)

    Curran, Kristian J.; Hill, Paul S.; Milligan, Timothy G.

    2002-11-01

    Small rivers (drainage basins <10 4 km2) discharging runoff from mountainous terrain are major contributors of mud to the marine environment. However, little understanding of the dispersal mechanisms and fate of discharged fine-grained sediments to the continental shelf is known due to the episodic and unpredictable nature of discharge from these rivers. This study used a helicopter-based sampling program to capture unprecedented measures of Eel River, northern California, flood plume events during 1997, 1998, and 1999. In situ measures of floc size and estimated floc fraction show no relationship with concentration, turbulent-kinetic-energy, time from river mouth, wind speed, wave height, or discharge. A relationship apparently does exist between effective settling velocity (bulk mean settling velocity) of plume sediments and wind speed/direction, as well as with tides. Results implicate the energetic nearshore as a source of suspended sediment resupply to the offshore region of the plume. Future studies focusing on surf zone suspended fine-grained sediment dynamics are needed in order to understand the fate of flood plume sediments discharged to exposed, energetic shelves, such as the Eel River margin.

  7. A comparison of dense region detectors for image search and fine-grained classification.

    PubMed

    Iscen, Ahmet; Tolias, Giorgos; Gosselin, Philippe-Henri; Jegou, Herve

    2015-08-01

    We consider a pipeline for image classification or search based on coding approaches like bag of words or Fisher vectors. In this context, the most common approach is to extract the image patches regularly in a dense manner on several scales. This paper proposes and evaluates alternative choices to extract patches densely. Beyond simple strategies derived from regular interest region detectors, we propose approaches based on superpixels, edges, and a bank of Zernike filters used as detectors. The different approaches are evaluated on recent image retrieval and fine-grained classification benchmarks. Our results show that the regular dense detector is outperformed by other methods in most situations, leading us to improve the state-of-the-art in comparable setups on standard retrieval and fined-grained benchmarks. As a byproduct of our study, we show that existing methods for blob and superpixel extraction achieve high accuracy if the patches are extracted along the edges and not around the detected regions. PMID:25879947

  8. Fine-grained bird recognition by using contour-based pose transfer

    NASA Astrophysics Data System (ADS)

    Zhu, Leqing; Lv, Yaoyao; Zhang, Daxing; Zhou, Yadong; Yan, Guoli; Wang, Huiyan; Wang, Xun

    2015-10-01

    We propose a pose transfer method for fine-grained classifications of birds that have wide variations in appearance due to different poses and subcategories. Specifically, bird pose is transferred by using Radon-transform-based contour descriptor, k-means clustering, and K nearest neighbors (KNN) classifier. During training, we clustered annotated image samples into certain poses based on their normalized part locations and used the cluster centers as their consistent part constellations for a particular pose. At the testing stage, Radon-transform-based contour descriptor is used to find the pose a sample belongs to with a KNN classifier by using cosine similarity, and normalized part constellations are transferred to the unannotated image according to the pose type. Bag-of-visual words with OpponentSIFT and color names extracted from each part and from the global image are concatenated as feature vector, which is input to support vector machine for classification. Experimental results demonstrate significant performance gains from our method on the Caltech-UCSD Birds-2011 dataset for the fine-grained bird classification task.

  9. Fine grained Ba(1-x)Sr(x)TiO3 ceramics by spark plasma sintering.

    PubMed

    Tian, Huyong; Chen, Wanpin; Buckley, C E; Chan, H L W

    2008-11-01

    Fine grained Ba(0.75)Sr(0.25)TiO3 (BST) ceramics were prepared via spark plasma sintering technique. BST nano-powders freshly prepared by a low-temperature direct solution synthesis technique were used as starting materials. X-ray diffraction measurements indicated that the ceramics had a pure perovskite phase and the observation under scanning electron microscope revealed that the ceramic had a grain size in the range of 50 to 300 nm. The dielectric properties of the fine-grained BST ceramics were determined at different temperatures and frequencies. At room temperature, the ceramics exhibited a moderate dielectric constant (3962 +/- 10), a good dielectric tunability (53.84% under a dc bias of 19.72 kV/cm). The highest tunability and figure of merit (FOM) values are 83.27% at 50.2 degrees C and 289.28 at 62.3 degrees C, respectively. These results suggested that the BST ceramics are suitable for use in tunable microwave devices. PMID:19198325

  10. HIGH-STRAIN RATE RESPONSE OF ULTRA-FINE GRAINED COPPER: EXPERIMENTS AND ANALYSIS

    SciTech Connect

    Mishra, Anuj; Kad, Bimal; Martin, Morgana; Thadhani, Naresh; Kenik, Edward A; Myers, Marc A.

    2008-07-01

    The high-strain rate response of ultra-fine grained (UFG) copper processed by Equal Channel Angular Pressing (ECAP) was characterized by reverse Taylor impact and Hopkinson-bar experiments. Two types of copper samples are tested using Hopkinson bar: (a) cylindrical samples to investigate the response at high strain-rates,(b) hat shaped samples to compare the shear band characteristics in UFG copper with the ones that have been studied in coarse grained samples. This can be attributed to the high strain-rate sensitivity of the fine grained FCC metals. Upon impact, the samples were found to undergo heat induced static recrystallization at a calculated temperature of 360K, indicating that the UFG copper is thermally unstable. Reverse Taylor tests were conducted on as-received OFHC Cu rod and ECAP specimens with sequential ECAP passes (2 and 8). The dynamic deformations of the samples are modeled using AUTODYN-2D and a modified Johnson-Cook constitutive equation was found to capture the dynamic response. Similar to the compression test results, the impacted front of the samples were found to recrystallize extensively and preferentially.

  11. Microstructural evolution in ultra-fine grained copper processed by severe plastic deformation

    NASA Astrophysics Data System (ADS)

    Mishra, Anuj

    Equal Channel Angular Pressing (ECAP) is a severe plastic deformation technique that was used to produce ultra-fine grained copper. The microstructure was optimized using different deformation sequences. A steady state grain size of 200--500 nm was routinely obtained after eight passes (with an effective strain of ˜1 per pass). This resulted in a random texture evidenced by EBSD results. The mechanical response was obtained under quasi-static and dynamic conditions. The evolution of microstructure upon repeated ECAP passes was characterized by TEM and EBSD techniques. The features of grain refinement process were captured using analytical models. The minimum grain size obtained, 200--500 nm, was quantitatively explained by means of grain boundary rotation and grain boundary mobility calculations at the temperature reached in deformation process (˜360 K). The ultra-fine grained structure produced in Cu by ECAP was found to be thermally unstable. The microstructure recrystallized upon being dynamically deformed due to the adiabatic temperature rise imparted by plastic deformation. This was observed in three modes of high-strain rate plastic deformation experiments: cylindrical and hat-shaped specimens in Hopkinson bar experiments and cylindrical specimens in reverse Taylor impact experiments.

  12. Fabrication of fine-grain tantalum diffusion barrier tube for Nb3Sn conductors

    NASA Astrophysics Data System (ADS)

    Hartwig, K. T.; Balachandran, S.; Mezyenski, R.; Seymour, N.; Robinson, J.; Barber, R. E.

    2014-01-01

    Diffusion barriers used in Nb3Sn wire are often fabricated by wrapping Ta sheet into a tube with an overlap seam. A common result of such practice is non-uniform deformation in the Ta sheet as it thins by wire drawing because of non-uniform grain size and texture in the original Ta sheet. Seamless Ta tube with a fine-grain and uniform microstructure would be much better for the diffusion barrier application, but such material is expensive and difficult to manufacture. This report presents results on a new fabrication strategy for Ta tube that shows promise for manufacture of less costly tube with an improved microstructure. The fabrication method begins with seam-welded tube but gives a fine-grain uniform microstructure with little difference between the longitudinal seam weld region and the parent metal after post-weld processing. Severe plastic deformation processing (SPD) applied by area reduction extrusion and tube equal channel angular extrusion (tECAE) are used to refine and homogenize the microstructure. Microstructure and mechanical property results are presented for Ta tubes fabricated by this new processing strategy.

  13. In-situ Phase transformation study in fine grained heat affected zone of Grade 91 steels

    SciTech Connect

    Babu, Sudarsanam Suresh; Yamamoto, Yukinori; Santella, Michael L; Yu, Xinghua; Komizo, Prof. Y; Terasaki, Prof. H

    2014-01-01

    Creep strength-enhanced ferritic (CSEF) steels such as the 9 Cr steel [ASTM A387 Grade 91] are widely used as tubing and piping in the new generation of fossil fired power plants. Microstructures in the fine-grained heat affected zone (FGHAZ) may significantly reduce creep strength leading Type IV failures. Current research suggest that reducing pre-weld tempering temperature from 760 C (HTT) to 650 C (LTT) has the potential to double the creep life of these welds. To understand this improvement, time-resolved X-ray diffraction (TRXRD) measurement with synchrotron radiation was used to characterize the microstructure evolution during fine grained heat-affected zone (HAZ) thermal cycling of grade 91 steel. The measurements showed both M23C6 (M=Fe, Cr) and MX (M=Nb, V; X=C,N) are present in the sample after the HTT condition. Near equilibrium fraction of M23C6 was measured in high temperature tempering condition (HTT, 760 C). However, the amount of M23C6 in LTT condition was very low since the diffraction peaks are close to the background. During simulated FGHAZ thermal cycling, the M23C6 partially dissolved in HTT sample. Interestingly, MX did not dissolve in both LTT and HTT samples. Hypothesis for correlation of M23C6 carbide distribution and pre-mature creep failure in FGHAZ will be made.

  14. Optimizing Fine-grained Communication in a Biomolecular Simulation Application on Cray XK6

    SciTech Connect

    Sun, Yanhua; Zheng, Gengbin; Mei, Chao; Phillips, James C.; Kale, Laxmikant V; Jones, Terry R

    2012-01-01

    Achieving good scaling for fine-grained communication intensive applications on modern supercomputers remains challenging. In our previous work, we have shown that such an application NAMD scales well on the full Jaguar XT5 without long-range interactions; Yet, with them, the speedup falters beyond 64K cores. Although the new Gemini interconnect on Cray XK6 has improved network performance, the challenges remain, and are likely to remain for other such networks as well. We analyze communication bottlenecks in NAMD and its CHARM++ runtime, using the Projections performance analysis tool. Based on the analysis, we optimize the runtime, built on the uGNI library for Gemini. We present several techniques to improve the fine-grained communication. Consequently, the performance of running 92224-atom Apoa1 with GPUs on TitanDev is improved by 36%. For 100-million-atom STMV, we improve upon the prior Jaguar XT5 result of 26 ms/step to 13 ms/step using 298,992 cores on Jaguar XK6.

  15. Grain growth and fracture toughness of fine-grained silicon carbide ceramics

    SciTech Connect

    Kim, Y.W.; Mitomo, Mamoru; Hirotsuru, Hideki

    1995-11-01

    Fine-grained silicon carbide ceramics with an average grain size of 0.11 {micro}m were liquid-phase sintered from fine {beta}-SiC powder by hot pressing. The hot-pressed materials were subsequently annealed to enhance grain growth. The diameters and aspect ratios of grains in the hot-pressed and annealed materials were measured on polished and etched surfaces. The bimodal grain size distribution in annealed materials was obtained at 1,850 C without appreciable phase transformation. The average diameter and average aspect ratio increased with annealing time. The fracture toughness of a fine-grained silicon carbide ceramic determined by the Vickers indentation method was 1.9 MPa {center_dot} m{sup 1/2}. The fracture toughness increased to 6.1 MPa {center_dot} m{sup 1/2} after grain growth by annealing at 1,850 C for 12 h. Higher fracture toughness of annealed materials is due to bridging by elongated grains as evidenced by R-curve-like behavior.

  16. Fabrication of fine-grain tantalum diffusion barrier tube for Nb{sub 3}Sn conductors

    SciTech Connect

    Hartwig, K. T.; Balachandran, S.; Mezyenski, R.; Seymour, N.; Robinson, J.; Barber, R. E.

    2014-01-27

    Diffusion barriers used in Nb{sub 3}Sn wire are often fabricated by wrapping Ta sheet into a tube with an overlap seam. A common result of such practice is non-uniform deformation in the Ta sheet as it thins by wire drawing because of non-uniform grain size and texture in the original Ta sheet. Seamless Ta tube with a fine-grain and uniform microstructure would be much better for the diffusion barrier application, but such material is expensive and difficult to manufacture. This report presents results on a new fabrication strategy for Ta tube that shows promise for manufacture of less costly tube with an improved microstructure. The fabrication method begins with seam-welded tube but gives a fine-grain uniform microstructure with little difference between the longitudinal seam weld region and the parent metal after post-weld processing. Severe plastic deformation processing (SPD) applied by area reduction extrusion and tube equal channel angular extrusion (tECAE) are used to refine and homogenize the microstructure. Microstructure and mechanical property results are presented for Ta tubes fabricated by this new processing strategy.

  17. Mechanical properties and structural evolution during deformation of fine grain magnesium and aluminum alloys

    NASA Astrophysics Data System (ADS)

    Yang, Qi

    Grain refinement improves the formability and the strength of wrought Mg and Al alloys. Ultrafine grain Mg is produced by a new process for severe plastic deformation, called Alternate Biaxial Reverse Corrugation (ABRC). Fine grain structure in Al is produced by creating a new composition capable of precipitating dispersed intermetallics in the alloy. Slip and twinning subdivide an initial bimodal grain structure of Mg alloy during processing. Dynamic recovery and recrystallization lead to the formation of nearly uniform ultrafine microstructure of average grain size 1.4mum, containing many submicron grains. In Mg, twinning causes grain refinement in the early stages, but it is inhibited when grain size becomes finer. A strong basal texture is created after several corrugation and flattening steps, but eventually weakened as grain size becomes finer. Grain rotation and possible dynamic recrystallization are believed to cause a drop in the intensity of basal texture. At room temperature, grain refinement causes a considerable increase in strain rate sensitivity of flow stress (m) leading to the enhancement of post-uniform elongation. Yield strength increases, and becomes more isotropic due to the inhibition of twinning in fine grain Mg alloy, compared to coarse grain alloy. Normal anisotropy ratio (R value) for fine grain Mg at room temperature is higher than that for coarse grain alloy. At warm temperatures, formability is significantly increased due to an increase in strain rate sensitivity of flow stress and diffuse quasistable flow in fine grain Mg, as compared with coarse grain alloy. At 200°C and strain rates below 2x10-4s-1, the fine grain alloy demonstrates a high rate of strain hardening up to a true strain of 0.6 in addition to its high strain rate sensitivity (m ˜ 0.4-0.5), leading to a high elongation of 300-400%. There is competition between dynamic grain growth and grain refinement during straining at warm temperature. Mg exhibits isotropic

  18. Nontoxic chemical process for in situ permeability enhancement and accelerated decontamination of fine-grain subsurface sediments

    DOEpatents

    Kansa, E.J.; Wijesinghe, A.M.; Viani, B.E.

    1997-01-14

    The remediation of heterogeneous subsurfaces is extremely time consuming and expensive with current and developing technologies. Although such technologies can adequately remove contaminants in the high hydraulic conductivity, coarse-grained sediments, they cannot access the contaminated low hydraulic conductivity fine-grained sediments. The slow bleed of contaminants from the fine-grained sediments is the primary reason why subsurface remediation is so time-consuming and expensive. This invention addresses the problem of remediating contaminated fine-grained sediments. It is intended that, in the future, a heterogeneous site be treated by a hybrid process that first remediates the high hydraulic conductivity, coarse-grained sediments, to be followed by the process, described in this invention, to treat the contaminated low hydraulic conductivity fine-grained sediments. The invention uses cationic flocculants and organic solvents to collapse the swelling negative double layer surrounding water saturated clay particles, causing a flocculated, cracked clay structure. The modification of the clay fabric in fine-grained sediments dramatically increases the hydraulic conductivity of previously very tight clays many orders of magnitude. 8 figs.

  19. Nontoxic chemical process for in situ permeability enhancement and accelerated decontamination of fine-grain subsurface sediments

    DOEpatents

    Kansa, Edward J.; Wijesinghe, Ananda M.; Viani, Brian E.

    1997-01-01

    The remediation of heterogeneous subsurfaces is extremely time consuming and expensive with current and developing technologies. Although such technologies can adequately remove contaminants in the high hydraulic conductivity, coarse-grained sediments, they cannot access the contaminated low hydraulic conductivity fine-grained sediments. The slow bleed of contaminants from the fine-grained sediments is the primary reason why subsurface remediation is so time-consuming and expensive. This invention addresses the problem of remediating contaminated fine-grained sediments. It is intended that, in the future, a heterogeneous site be treated by a hybrid process that first remediates the high hydraulic conductivity, coarse-grained sediments, to be followed by the process, described in this invention, to treat the contaminated low hydraulic conductivity fine-grained sediments. The invention uses cationic flocculents and organic solvents to collapse the swelling negative double layer surrounding water saturated clay particles, causing a flocculated, cracked clay structure. The modification of the clay fabric in fine-grained sediments dramatically increases the hydraulic conductivity of previously very tight clays many orders of magnitude.

  20. Nearshore disposal of fine-grained sediment in a high-energy environment: Santa Cruz Harbor case study

    USGS Publications Warehouse

    Cronin, Katherine; van Ormondt, Maarten; Storlazzi, Curt D.; Presto, Katherine; Tonnon, Pieter K.

    2011-01-01

    Current regulations in California prohibit the disposal of more than 20% fine-grained sediment in the coastal zone; this threshold is currently being investigated to determine if this environmental regulation can be improved upon. A field monitoring and numerical modeling experiment took place late 2 009 to determine the fate of fine-grained dredge disposal material from Santa Cruz Harbor, California, U.S.A. A multi-nested, hydrodynamic-sediment transport modeling approach was used to simulate the direction and dispersal of the dredge plume. Result s show that the direction and dispersal of the plume was influenced by the wave  climate, a large proportion of which moved in a easterly direction during wave events. Therefore it is vitally important to accurately simulate the tides, waves, currents, temperature and salinity when modeling the dispersal of the fine-grained dredge plume. 

  1. Mechanical and chemical compaction in fine-grained shallow-water limestones.

    USGS Publications Warehouse

    Shinn, E.A.; Robbin, D.M.

    1983-01-01

    Significant mechanical compaction resulted from pressures simulating less than 305 m of burial. Increasing loads to an equivalent of more than 3400 m did not significantly increase compaction or reduce sediment core length. Chemical compaction (pressure dissolution) was detected only in sediment cores compacted to pressures greater than 3400 m of burial. These short-term experiments suggest that chemical compaction would begin at much shallower depths given geologic time. Compaction experiments that caused chemical compaction lend support to the well-established hypothesis; that cement required to produce a low-porosity/low-permeability fine-grained limestone is derived internally. Dissolution, ion diffusion, and reprecipitation are considered the most likely processes for creating significant thicknesses of dense limestone in the geologic record. Continuation of chemical compaction after significant porosity reduction necessitates expulsion of connate fluids, possibly including hydrocarbons. -from Authors

  2. Breakthrough adsorption study of migratory nickel in fine-grained soil.

    PubMed

    Ghosh, S; Mukherjee, S N; Kumar, Sunil; Chakraborty, P; Fan, Maohong

    2007-09-01

    The present study was conducted to evaluate the breakthrough curve for nickel adsorption in fine-grained soil from a nearby ash pond site of a thermal power plant. Nickel was found to be the major polluting solute in the ash sluicing wastewater. The adsorption of nickel by vertical soil column batch test and horizontal migration test was carried out in the laboratory. Field investigation was conducted also, by installing test wells around the ash pond site. Experimental results showed a good adsorptive capacity of soil for nickel ions. The breakthrough curves showed a reasonable fitting with a one-dimensional mathematical model. The breakthrough curves yielded from field test results showed good agreement with a two-dimensional mathematical model. PMID:17910372

  3. A unique Critical State two-surface hyperplasticity model for fine-grained particulate media

    NASA Astrophysics Data System (ADS)

    Coombs, W. M.; Crouch, R. S.; Augarde, C. E.

    2013-01-01

    Even mild compression can cause re-arrangement of the internal structure of clay-like geomaterials, whereby clusters of particles rotate and collapse as face-to-face contacts between the constituent mineral platelets increase at the expense of edge-to-face (or edge-to-edge) contacts. The collective action of local particle re-orientation ultimately leads to path-independent isochoric macroscopic deformation under continuous shearing. This asymptotic condition is the governing feature of Critical State elasto-plasticity models. Unlike earlier formulations, the two-surface anisotropic model proposed herein is able to reproduce a unique isotropic Critical State stress envelope which agrees well with test data. Material point predictions are compared against triaxial experimental results and five other existing constitutive models. The hyperplastic formulation is seen to offer a significantly improved descriptor of the anisotropic behaviour of fine-grained particulate materials.

  4. A Fine-Grained Pipelined Implementation for Large-Scale Matrix Inversion on FPGA

    NASA Astrophysics Data System (ADS)

    Zhou, Jie; Dou, Yong; Zhao, Jianxun; Xia, Fei; Lei, Yuanwu; Tang, Yuxing

    Large-scale matrix inversion play an important role in many applications. However to the best of our knowledge, there is no FPGA-based implementation. In this paper, we explore the possibility of accelerating large-scale matrix inversion on FPGA. To exploit the computational potential of FPGA, we introduce a fine-grained parallel algorithm for matrix inversion. A scalable linear array processing elements (PEs), which is the core component of the FPGA accelerator, is proposed to implement this algorithm. A total of 12 PEs can be integrated into an Altera StratixII EP2S130F1020C5 FPGA on our self-designed board. Experimental results show that a factor of 2.6 speedup and the maximum power-performance of 41 can be achieved compare to Pentium Dual CPU with double SSE threads.

  5. Optically stimulated luminescence signals of polymineral fine grains in the JSC Mars-1 soil simulant sample.

    PubMed

    Banerjee, D; Blair, M; Lepper, K; McKeever, S W S

    2002-01-01

    The results of various experiments which characterise the optically stimulated luminescence (OSL) signals from polymineral fine grains of a Martian soil simulant sample (JSC Mars-1) are presented. The blue-green stimulated luminescence signal has greater thermal stability than the infrared stimulated luminescence signal for pre-heat temperatures between 250 degrees C and 400 degrees C. Fading tests over a 2 month storage period at 20 degrees C indicate that in some aliquots of JSC Mars-1 both the blue-green stimulated luminescence and the infrared stimulated luminescence signals fade by as much as 50%, whereas in others there is no evidence of significant fading. Dose recovery experiments demonstrate that equivalent dose (measured/given) ratio varies from aliquot to aliquot, and the underestimation in dose is less than 5% for at least one aliquot, for both the infrared and blue-green stimulated luminescence signals. PMID:12382760

  6. Fine-grained facial phenotype-genotype analysis in Wolf-Hirschhorn syndrome.

    PubMed

    Hammond, Peter; Hannes, Femke; Suttie, Michael; Devriendt, Koen; Vermeesch, Joris Robert; Faravelli, Francesca; Forzano, Francesca; Parekh, Susan; Williams, Steve; McMullan, Dominic; South, Sarah T; Carey, John C; Quarrell, Oliver

    2012-01-01

    Wolf-Hirschhorn syndrome is caused by anomalies of the short arm of chromosome 4. About 55% of cases are due to de novo terminal deletions, 40% from unbalanced translocations and 5% from other abnormalities. The facial phenotype is characterized by hypertelorism, protruding eyes, prominent glabella, broad nasal bridge and short philtrum. We used dense surface modelling and pattern recognition techniques to delineate the milder facial phenotype of individuals with a small terminal deletion (breakpoint within 4p16.3) compared to those with a large deletion (breakpoint more proximal than 4p16.3). Further, fine-grained facial analysis of several individuals with an atypical genotype and/or phenotype suggests that multiple genes contiguously contribute to the characteristic Wolf-Hirschhorn syndrome facial phenotype. PMID:21792232

  7. Microstructure and embrittlement of the fine-grained heat-affected zone of ASTM4130 steel

    NASA Astrophysics Data System (ADS)

    Li, Li-Ying; Wang, Yong; Han, Tao; Li, Chao-Wen

    2011-08-01

    The mechanical properties and microstructure features of the fine-grained heat-affected zone (FGHAZ) of ASTM4130 steel was investigated by optical microscope (OM), scanning electron microscope (SEM), transmission electron microscope (TEM), and welding thermal simulation test. It is found that serious embrittlement occurs in the FGHAZ with an 81.37% decrease of toughness, compared with that of the base metal. Microstructure analysis reveals that the FGHAZ is mainly composed of acicular, equiaxed ferrite, granular ferrite, martensite, and martensite-austenite (M-A) constituent. The FGHAZ embrittlement is mainly induced by granular ferrite because of carbides located at its boundaries and sub-boundaries. Meanwhile, the existence of martensite and M-A constituent, which distribute in a discontinuous network, is also detrimental to the mechanical properties.

  8. A Microanalytical (TEM) Study of Fine-grained Chondrule Rims in NWA 5717

    NASA Technical Reports Server (NTRS)

    Bigolski, J. N.; Frank, D. R.; Zolensky, Michael E.; Weisberg, M. K.; Ebel, D. S.; Rahman, Z.

    2013-01-01

    Northwest Africa (NWA) 5717 is a highly primitive ordinary chondrite of petrologic type 3.05 with ubiquitous fine-grained chondrule rims [1, 2]. Rims appear around approximately 60% of chondrules and are comprised of micron-sized mineral and lithic fragments and microchondrules that are embdedded in an FeO-rich submicron groundmass that compositionally resembles fayalitic olivine. Some rim clasts appear overprinted with FeO-rich material, suggesting secondary alteration that postdates rim formation. Here we present a microanalytical (TEM) study of the submicron component (i.e. the groundmass) of the rims in order to determine the crystal structures and compositions of their constituent phases and decipher the accretion and alteration history recorded in rims.

  9. Fine Grained Silicon-Tungsten Calorimetry for a Linear Collider Detector

    SciTech Connect

    Strom, D.; Frey, R.; Breidenbach, M.; Freytag, D.; Graf, N.; Haller, G.; Milgrome, O.; Radeka, V.; /Brookhaven

    2006-02-08

    A fine grained silicon-tungsten calorimeter is ideal for use as the electromagnetic calorimeter in a linear collider detector optimized for particle-flow reconstruction. We are designing a calorimeter that is based on readout chips which are bump bonded to the silicon wafers that serve as the active medium in the calorimeter. By using integrated electronics we plan to demonstrate that fine granularity can be achieved at a reasonable price. Our design minimizes the gap between tungsten layers leading to a small Moliere radius, an important figure of merit for particle-flow detectors. Tests of the silicon detectors to be used in a test beam prototype as well as timing measurements based on similar silicon detectors are discussed.

  10. The effects of grain size composition on the efficiency of fine-grained coal separation

    SciTech Connect

    Blahova, O.; Rezek, K.; Novacek, J.

    1994-12-31

    One factor that favorably affects the economics of exploitation and preparation of coal is reducing the loss of coal matter in the tailings from washeries. Thus, it is necessary to modify existing technologies for the preparation of coking coal. This study of the effects of grain size composition for run-of-mine coal on the efficiency of coal separation, as well as on the quality of the products, was performed on the following equipment used for fine-grained coal separation: fine coal jigs (0.5 to 10/15 mm); jigs (0.5 to 40 mm); heavy medium cyclones (0.5 to 10 mm); slurry hydrocyclones (0.0 to 0.5 mm); HIRST hydrocyclones (0.0 to 0.5 mm); and spiral concentrators (0.0 to 3.0 mm). The results of the study lead to the following conclusions. (1) It is impossible to attain efficient separation in a wide range of fine grain sizes processed simultaneously in a single piece of equipment. (2) Among the equipment available for separation, one type can be found with the highest efficiency for a given grain size of fine coal. (3) The newly introduced spiral concentrators have attained such an efficiency of separation and are so economical that they could be included with advantage between the jigs and the lotion process. This would favorably affect the output and the efficiency of separation of all the equipment involved in the process. (4) All measures to be taken in the flow sheet of coal preparation plants and designed to increase the efficiency of separation should be documented with data that show the expected economic benefits of any change for both the mine and the preparation plant.

  11. Fine-grained semantic categorization across the abstract and concrete domains.

    PubMed

    Ghio, Marta; Vaghi, Matilde Maria Serena; Tettamanti, Marco

    2013-01-01

    A consolidated approach to the study of the mental representation of word meanings has consisted in contrasting different domains of knowledge, broadly reflecting the abstract-concrete dichotomy. More fine-grained semantic distinctions have emerged in neuropsychological and cognitive neuroscience work, reflecting semantic category specificity, but almost exclusively within the concrete domain. Theoretical advances, particularly within the area of embodied cognition, have more recently put forward the idea that distributed neural representations tied to the kinds of experience maintained with the concepts' referents might distinguish conceptual meanings with a high degree of specificity, including those within the abstract domain. Here we report the results of two psycholinguistic rating studies incorporating such theoretical advances with two main objectives: first, to provide empirical evidence of fine-grained distinctions within both the abstract and the concrete semantic domains with respect to relevant psycholinguistic dimensions; second, to develop a carefully controlled linguistic stimulus set that may be used for auditory as well as visual neuroimaging studies focusing on the parametrization of the semantic space beyond the abstract-concrete dichotomy. Ninety-six participants rated a set of 210 sentences across pre-selected concrete (mouth, hand, or leg action-related) and abstract (mental state-, emotion-, mathematics-related) categories, with respect either to different semantic domain-related scales (rating study 1), or to concreteness, familiarity, and context availability (rating study 2). Inferential statistics and correspondence analyses highlighted distinguishing semantic and psycholinguistic traits for each of the pre-selected categories, indicating that a simple abstract-concrete dichotomy is not sufficient to account for the entire semantic variability within either domains. PMID:23825625

  12. Duplex ultrasound

    MedlinePlus

    Vascular ultrasound; Peripheral vascular ultrasound ... A duplex ultrasound combines traditional ultrasound with Doppler ultrasound . Traditional ultrasound uses sound waves that bounce off blood vessels to create ...

  13. Resistance spot welding of ultra-fine grained steel sheets produced by constrained groove pressing: Optimization and characterization

    SciTech Connect

    Khodabakhshi, F.; Kazeminezhad, M. Kokabi, A.H.

    2012-07-15

    Constrained groove pressing as a severe plastic deformation method is utilized to produce ultra-fine grained low carbon steel sheets. The ultra-fine grained sheets are joined via resistance spot welding process and the characteristics of spot welds are investigated. Resistance spot welding process is optimized for welding of the sheets with different severe deformations and their results are compared with those of as-received samples. The effects of failure mode and expulsion on the performance of ultra-fine grained sheet spot welds have been investigated in the present paper and the welding current and time of resistance spot welding process according to these subjects are optimized. Failure mode and failure load obtained in tensile-shear test, microhardness, X-ray diffraction, transmission electron microscope and scanning electron microscope images have been used to describe the performance of spot welds. The region between interfacial to pullout mode transition and expulsion limit is defined as the optimum welding condition. The results show that optimum welding parameters (welding current and welding time) for ultra-fine grained sheets are shifted to lower values with respect to those for as-received specimens. In ultra-fine grained sheets, one new region is formed named recrystallized zone in addition to fusion zone, heat affected zone and base metal. It is shown that microstructures of different zones in ultra-fine grained sheets are finer than those of as-received sheets. - Highlights: Black-Right-Pointing-Pointer Resistance spot welding process is optimized for joining of UFG steel sheets. Black-Right-Pointing-Pointer Optimum welding current and time are decreased with increasing the CGP pass number. Black-Right-Pointing-Pointer Microhardness at BM, HAZ, FZ and recrystallized zone is enhanced due to CGP.

  14. Spatially Resolved XRF, XRD and Fe-XANES Analysis of Fine-Grained Rims in the Murchison (CM2) Meteorite

    NASA Astrophysics Data System (ADS)

    King, A. J.; Schofield, P. F.; Mosselmans, J. F. W.; Russell, S. S.

    2014-09-01

    Fe3+/ΣFe ratios suggest that hydration of fine-grained rims and matrix in the Murchison meteorite occurred in a similar environment. However, local variations in mineralogy and crystal chemistry indicate that the alteration varied at the μm-scale.

  15. OSL dating of fine-grained quartz from Holocene Yangtze delta sediments

    NASA Astrophysics Data System (ADS)

    Sugisaki, S.; Buylaert, J. P.; Murray, A. S.; Tada, R.; Zheng, H.; Ke, W.; Saito, K.; Irino, T.; Chao, L.; Shiyi, L.; Uchida, M.

    2014-12-01

    Flood events in the Yangtze River are associated with variation in East Asian Summer Monsoon (EASM) precipitation. Understanding the frequency and scale of the EASM precipitation during the Holocene is a key to understanding the mechanism and cyclicity of floods and droughts. Because about 70% of the annual discharge occurs during the flood season, the Yangtze delta sediments provide a good archive of EASM precipitation. In this study, we investigate the possibility of applying OSL dating to establishing high-resolution chronologies for the Yangtze delta sediment cores YD13-1H and G3. The objectives of this study are: (1) test whether fine grained quartz in present day suspended particle matter (SPM) is fully bleached or reset before deposition, (2) where possible, test quartz fine- and coarse-grain OSL dating against radiocarbon shell ages, (3) interpret the sediment transport processes through the differential bleaching of quartz and feldspar OSL signals. We show that the SPM collected from the surface water column of the Yangtze River during the flood season is well-bleached (offset ~60 years). Fine-grained pro-delta sediments are thus potentially a good dosimeter for OSL dating. OSL ages sediment cores indicate a pronounced change in sedimentation rate at ~6 ka and ~2ka. These events are consistent with what is known of the evolution of the Yangtze catchment and delta. The delta began to build at ~6 ka (Zhao et al., 1979), and human activities increased significantly in the catchment at ~2ka (Chen et al., 1985). It is however surprising that the entire top 9 m of sediment only records these two events. The question of whether significant deposition was limited to 2 ka and 6 ka, or whether the record has been disturbed by erosion/reworking remains. These issues are discussed in terms of the reliability of the quartz OSL ages, the degree of bleaching by comparison with polymineral OSL signals, and the relationship of the OSL ages to the sedimentary record.

  16. Fine-grained data assimilation algorithm with uncertainty assessment in variational modeling technology

    NASA Astrophysics Data System (ADS)

    Penenko, Alexey; Penenko, Vladimir; Tsvetova, Elena

    2013-04-01

    We consider an approach to data-assimilation schemes design based on introduction of the special control functions into the structure of the model equations to take into account various uncertainties. In the presence of measurement data this augmented model is treated with variation technique for the functional describing the misfit between measured and calculated values with the introduced control functions as the quantities to be minimized in the phase space of the augmented model state functions. Due to uncertainty, the weak-constraint variational principle is formulated. Then a discrete analogue of the variational principle functional is constructed by means of decomposition, splitting and finite-volume methods. From the stationary conditions for the variational principle functionals the systems of direct and adjoint equations as well as the uncertainty equations are obtained [1, 2]. In general case the systems can be solved iteratively with some conditions imposed to the parameters. As the splitting schemes is used, we propose to assimilate all available data at one model time step but on the corresponding splitting stages by means of direct algorithms without iterations. The approach can be called fine-grained data-assimilation. Such versions of algorithms are cost-effective, easy to be parallelized and may be useful for integrated models of atmospheric dynamics and chemistry. In the case of convection-diffusion stage and one time step analysis window the multidimensional model can be further decomposed with the splitting technique to a set of one-dimensional models. Each resulting one-dimensional fragment has the form of three diagonal block-matrix linear problem that can be solved with the matrix sweep method [3]. In the case of assimilation windows longer than one time step the result of fine-grained algorithm analysis can be used as initial guess. The work is partially supported by the Programs No 4 of Presidium RAS and No 3 of Mathematical Department of

  17. Jupiter's Satellite Europa: Evidence for an Extremely Fine-Grained, High Porosity Surface

    NASA Astrophysics Data System (ADS)

    Nelson, Robert M.; Boryta, Mark D.; Hapke, Bruce W.; Manatt, Ken S.; Nebedum, Adaeze; Kroner, Desiree; Shkuratov, Yuriy; Psarev, Vladimir; Smythe, William D.

    2015-11-01

    We have measured the polarization phase curves of highly reflective, fine-grained, particulate materials that simulate Europa’s predominately water ice regolith. Our laboratory measurements exhibit polarization phase curves that are remarkably similar to results reported by experienced astronomers (Rosenbush et al., 1997, 2015). Our previous reflectance phase curve measurements of the same materials were in agreement with the same astronomical observers. In addition, we found that these materials exhibit an increase in circular polarization ratio with decreasing phase angle. This is consistent with coherent backscattering (CB) of photons in the regolith (Nelson et al., 2000, 2002). Shkuratov et al. (2002) report that the polarization properties of these particulate media are also consistent with the CB enhancement process (Shkuratov, 1989; Muinonen, 1990).We have reconfigured a goniometric photopolarimeter (Nelson et al., 2000, 2002) to undertake measurements of the polarization phase curves of these particulate materials. Our reconfiguration applies the Helmholtz Reciprocity Principle (Hapke, 2012, p264) - i.e. we present our samples with linearly polarized light and measure the intensity of the reflected component. These laboratory measurements are physically equivalent to the astronomical polarization measurements. We report here the polarization phase curves of high albedo Aluminium Oxide particulates of size 0.1fine-grained, with remarkably high porosity

  18. Fine-grained suspended sediment source identification for the Kharaa River basin, northern Mongolia

    NASA Astrophysics Data System (ADS)

    Rode, Michael; Theuring, Philipp; Collins, Adrian L.

    2015-04-01

    Fine sediment inputs into river systems can be a major source of nutrients and heavy metals and have a strong impact on the water quality and ecosystem functions of rivers and lakes, including those in semiarid regions. However, little is known to date about the spatial distribution of sediment sources in most large scale river basins in Central Asia. Accordingly, a sediment source fingerprinting technique was used to assess the spatial sources of fine-grained (<10 microns) sediment in the 15 000 km2 Kharaa River basin in northern Mongolia. Five field sampling campaigns in late summer 2009, and spring and late summer in both 2010 and 2011, were conducted directly after high water flows, to collect an overall total of 900 sediment samples. The work used a statistical approach for sediment source discrimination with geochemical composite fingerprints based on a new Genetic Algorithm (GA)-driven Discriminant Function Analysis, the Kruskal-Wallis H-test and Principal Component Analysis. The composite fingerprints were subsequently used for numerical mass balance modelling with uncertainty analysis. The contributions of the individual sub-catchment spatial sediment sources varied from 6.4% (the headwater sub-catchment of Sugnugur Gol) to 36.2% (the Kharaa II sub-catchment in the middle reaches of the study basin) with the pattern generally showing higher contributions from the sub-catchments in the middle, rather than the upstream, portions of the study area. The importance of riverbank erosion was shown to increase from upstream to midstream tributaries. The source tracing procedure provides results in reasonable accordance with previous findings in the study region and demonstrates the general applicability and associated uncertainties of an approach for fine-grained sediment source investigation in large scale semi-arid catchments. The combined application of source fingerprinting and catchment modelling approaches can be used to assess whether tracing estimates are

  19. Synthesis of fine grain YAG:RE3+ phosphors for low-voltage display devices

    NASA Astrophysics Data System (ADS)

    Rao, Ravi P.

    1996-03-01

    Low voltage operated display devices require thin fluorescent screens of 3 to 4 micrometer, consist of 0.1 to 2.0 micrometer size phosphor particles. Fine grain phosphors are synthesized by hydrothermal, combustion and sol-gel processes. In sol-gel process, the pores in dried gels are often extremely small and the components of homogeneous gels are intimately mixed. The surface area of powders produced from sol-gel is very high, leading to a lower processing temperature. Stable sols of Y(OH)3, Al(OH)3 and RE(OH)3 were prepared by passing respective nitrates through an ion exchange column. Stiochematric amounts of these sols were mixed to obtain YAG:RE (0.001 to 5.0 m/o) phosphors. DTA/TGA analysis showed weight loss corresponding to the loss of water molecules and oxidation. XRD of the samples fired at 1200 degrees Celsius showed only YAG phase. SEM studies revealed that the phosphor particles are nearly spherical in shape and uniform in size. Emission spectra from these samples excited by 200 to 5000 eV, exhibited a number of lines in blue, green and red regions corresponding to Tm3+, Tb3+ and Eu3+ transitions. Introduction of inhibitors (Li+) and sensitizes (Pr3+) appears promising in improving the morphology as well as the efficiency of the phosphors.

  20. Computer simulation of the forging of fine grain IN-718 alloy

    NASA Astrophysics Data System (ADS)

    Srinivasan, R.; Ramnarayan, V.; Deshpande, U.; Jain, V.; Weiss, I.

    1993-09-01

    In recent years, there has been great emphasis on the use of computer-aided tools in process design. The key to the success of any computer modeling is the accurate knowledge of the mechanical and thermal properties of the various components of a manufacturing system. In order to develop a data base of forging properties of the nickel-base alloy IN-718, isothermal constant strain-rate compression tests were conducted on the annealed fine-grain material over the temperature range 871 °C to 1149 °C (1600 °F to 2100 °F) and strain-rate range 0. 001 to 10 s-1. Empirical relationships among flow stress, strain rate, and temperature developed based on these tests, along with experimentally measured heat-transfer and friction coefficients, were used in the program ALPID to simulate nonisothermal forging of “double-cone” specimens. The simulation results were compared with actual forging in an industrial forge press. The good agreement between simulation and forging results indicates that when a complete data base of materials properties is available, computer modeling can be used effectively to study the forging process.

  1. Computer simulation of the forging of fine grain IN-718 alloy

    SciTech Connect

    Srinivasan, R.; Deshpande, U.; Weiss, I. . Mechanical and Materials Engineering Dept.); Ramnarayan, V. ); Jain, V. . Mechanical and Aerospace Engineering Dept.)

    1993-09-01

    In recent years, there has been great emphasis on the use of computer-aided tools in process design. The key to the success of any computer modeling is the accurate knowledge of the mechanical and thermal properties of the various components of a manufacturing system. In order to develop a data base of forging properties of the nickel-base alloy IN-718, isothermal constant strain-rate compression tests were conducted on the annealed fine-grain material over the temperature range 871 C to 1,149 C (1,600 F to 2,100 F) and strain-rate range 0.001 to 10 s[sup [minus]1]. Empirical relationships among flow stress, strain rate, and temperature developed based on these tests, along with experimentally measured heat-transfer and friction coefficients, were used in the program ALPID to simulate nonisothermal forging of double-cone specimens. The simulation results were compared with actual forging in an industrial forge press. The good agreement between simulation and forging results indicates that when a complete data base of materials properties is available, computer modeling can be used effectively to study the forging process.

  2. Modeling methane bubble growth in fine-grained muddy aquatic sediments: correlation with sediment properties

    NASA Astrophysics Data System (ADS)

    Katsman, Regina

    2015-04-01

    Gassy sediments contribute to destabilization of aquatic infrastructure, air pollution, and global warming. In the current study a precise shape and size of the buoyant mature methane bubble in fine-grained muddy aquatic sediment is defined by numerical and analytical modeling, their results are in a good agreement. A closed-form analytical solution defining the bubble parameters is developed. It is found that the buoyant mature bubble is elliptical in its front view and resembles an inverted tear drop in its cross-section. The size and shape of the mature bubble strongly correlate with sediment fracture toughness. Bubbles formed in the weaker sediments are smaller and characterized by a larger surface-to volume ratio that induces their faster growth and may lead to their faster dissolution below the sediment-water interface. This may prevent their release to the water column and to the atmosphere. Shapes of the bubbles in the weaker sediments deviate further from the spherical configuration, than those in the stronger sediments. Modeled bubble characteristics, important for the acoustic applications, are in a good agreement with field observations and lab experiments.

  3. Ability of bacteria to promote the formation of fine-grained minerals on their surfaces

    NASA Astrophysics Data System (ADS)

    Beveridge, Terry J.

    1997-07-01

    The surfaces of bacteria are highly interactive with their environment. Whether the bacterium is gram-negative or gram- positive, most surfaces are charged at neutral pH because of the ionization of the reactive chemical groups which stud them. Since prokaryotes have a high surface area-to-volume ratio, this can have surprising ramifications. For example, many bacteria can concentrate dilute environmental metals and silicates on their surfaces and initiate the development of fine-grained minerals. In natural environments, it is not unusual to find such bacteria closely associated with the minerals which they have helped develop. Since bacteria usually prefer to grow as biofilms on macroscopic surfaces in most natural ecosystems (supposedly to take advances of the nutrient concentrative effect of the interface), they can form films micrometers -to-mm-thick. Using a gram-negative bacterial model, we have found that lipopolysaccharide (a surface component) is important in the initial attachment of the bacterium to the substratum. This macromolecule is also important for the entrapment of metals and the instigation of mineral development. Eventually, biofilms become so mineralized that the shape and form of the constituent bacteria are preserved and embedded in the rock as it forms. These mineralized bacteria are called `microfossils' and it is possible that the same set of circumstances could have preserved small lifeforms on Mars given similar environmental conditions.

  4. FMOE-MR: content-driven multiresolution MPEG-4 fine grained scalable layered video encoding

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, S.; Luo, X.; Bhandarkar, S. M.; Li, K.

    2007-01-01

    The MPEG-4 Fine Grained Scalability (FGS) profile aims at scalable layered video encoding, in order to ensure efficient video streaming in networks with fluctuating bandwidths. In this paper, we propose a novel technique, termed as FMOEMR, which delivers significantly improved rate distortion performance compared to existing MPEG-4 Base Layer encoding techniques. The video frames are re-encoded at high resolution at semantically and visually important regions of the video (termed as Features, Motion and Objects) that are defined using a mask (FMO-Mask) and at low resolution in the remaining regions. The multiple-resolution re-rendering step is implemented such that further MPEG-4 compression leads to low bit rate Base Layer video encoding. The Features, Motion and Objects Encoded-Multi- Resolution (FMOE-MR) scheme is an integrated approach that requires only encoder-side modifications, and is transparent to the decoder. Further, since the FMOE-MR scheme incorporates "smart" video preprocessing, it requires no change in existing MPEG-4 codecs. As a result, it is straightforward to use the proposed FMOE-MR scheme with any existing MPEG codec, thus allowing great flexibility in implementation. In this paper, we have described, and implemented, unsupervised and semi-supervised algorithms to create the FMO-Mask from a given video sequence, using state-of-the-art computer vision algorithms.

  5. Developing a Fine-Grained Learning Progression Framework for Carbon-Transforming Processes

    NASA Astrophysics Data System (ADS)

    Jin, Hui; Zhan, Li; Anderson, Charles W.

    2013-07-01

    Science educators have called for using the learning progression approach to align curriculum, instruction, and assessment. In line with this trend, we conducted both assessments and teaching experiments with students from grades 4 to 12 (717 students participated in the pre-assessments and 682 students participated in the post-assessments). The goal of the study is to develop a learning progression framework that provides effective guidance for curriculum and instruction on carbon-transforming processes in socio-ecological systems. We conducted the study in three research cycles. We developed a matter-and-energy learning progression framework during the first two cycles. This learning progression framework was used to guide the teaching intervention in the third research cycle. Clinical interviews and written assessments were implemented before and after the teaching intervention. In the process of data analysis, we found that the matter-and-energy learning progression framework did not provide a fine-grained depiction of students' reasoning. Therefore, we developed the five-practice learning progression framework, and used it to re-analyze data. Results indicate that the teaching intervention has helped students to achieve significant learning gains, but it was not effective enough in helping students achieve the upper anchor of the learning progression framework-constructing sophisticated scientific explanations. The results also indicate that students tended to rely on coherent and consistent reasoning to construct explanations. Based on the findings, we provide instructional suggestions and discuss the implications for climate change education and learning progression research.

  6. Physical Simulation of Hot Rolling of Ultra-fine Grained Pure Titanium

    NASA Astrophysics Data System (ADS)

    Polyakov, Alexander; Gunderov, Dmitry; Sitdikov, Vil'; Valiev, Ruslan; Semenova, Irina; Sabirov, Ilchat

    2014-12-01

    Complex thermo-mechanical processing routes are often developed for fabrication of ultra-fine grained (UFG) metallic materials with superior mechanical properties. The processed UFG metallic materials often have to undergo additional metalforming operations for fabrication of complex shape parts or tools that can significantly affect their microstructure and crystallographic texture, thus further changing their mechanical properties. The development of novel thermo-mechanical processing routes for fabrication of UFG metallic materials or for further metalforming operations is very time-consuming and expensive due to much higher cost of the UFG metallic materials. The objective of this work is to perform physical simulation of hot rolling of UFG pure Ti obtained via severe plastic deformation and to analyze the effect of hot rolling on the microstructure, crystallographic texture, and hardness of the material. It is demonstrated that physical simulation of metalforming processes for UFG metallic materials can significantly reduce the amount of material required for development of processing routes as well as to increase the efficiency of experimental work.

  7. MROrchestrator: A Fine-Grained Resource Orchestration Framework for MapReduce Clusters

    SciTech Connect

    Sharma, Bikash; Prabhakar, Ramya; Kandemir, Mahmut; Das, Chita; Lim, Seung-Hwan

    2012-01-01

    Efficient resource management in data centers and clouds running large distributed data processing frameworks like MapReduce is crucial for enhancing the performance of hosted applications and boosting resource utilization. However, existing resource scheduling schemes in Hadoop MapReduce allocate resources at the granularity of fixed-size, static portions of nodes, called slots. In this work, we show that MapReduce jobs have widely varying demands for multiple resources, making the static and fixed-size slot-level resource allocation a poor choice both from the performance and resource utilization standpoints. Furthermore, lack of co-ordination in the management of mul- tiple resources across nodes prevents dynamic slot reconfigura- tion, and leads to resource contention. Motivated by this, we propose MROrchestrator, a MapReduce resource Orchestrator framework, which can dynamically identify resource bottlenecks, and resolve them through fine-grained, co-ordinated, and on- demand resource allocations. We have implemented MROrches- trator on two 24-node native and virtualized Hadoop clusters. Experimental results with a suite of representative MapReduce benchmarks demonstrate up to 38% reduction in job completion times, and up to 25% increase in resource utilization. We further show how popular resource managers like NGM and Mesos when augmented with MROrchestrator can hike up their performance.

  8. Storage media pipelining: Making good use of fine-grained media

    NASA Technical Reports Server (NTRS)

    Vanmeter, Rodney

    1993-01-01

    This paper proposes a new high-performance paradigm for accessing removable media such as tapes and especially magneto-optical disks. In high-performance computing the striping of data across multiple devices is a common means of improving data transfer rates. Striping has been used very successfully for fixed magnetic disks improving overall system reliability as well as throughput. It has also been proposed as a solution for providing improved bandwidth for tape and magneto-optical subsystems. However, striping of removable media has shortcomings, particularly in the areas of latency to data and restricted system configurations, and is suitable primarily for very large I/Os. We propose that for fine-grained media, an alternative access method, media pipelining, may be used to provide high bandwidth for large requests while retaining the flexibility to support concurrent small requests and different system configurations. Its principal drawback is high buffering requirements in the host computer or file server. This paper discusses the possible organization of such a system including the hardware conditions under which it may be effective, and the flexibility of configuration. Its expected performance is discussed under varying workloads including large single I/O's and numerous smaller ones. Finally, a specific system incorporating a high-transfer-rate magneto-optical disk drive and autochanger is discussed.

  9. Fine grained event processing on HPCs with the ATLAS Yoda system

    NASA Astrophysics Data System (ADS)

    Calafiura, Paolo; De, Kaushik; Guan, Wen; Maeno, Tadashi; Nilsson, Paul; Oleynik, Danila; Panitkin, Sergey; Tsulaia, Vakhtang; Van Gemmeren, Peter; Wenaus, Torre

    2015-12-01

    High performance computing facilities present unique challenges and opportunities for HEP event processing. The massive scale of many HPC systems means that fractionally small utilization can yield large returns in processing throughput. Parallel applications which can dynamically and efficiently fill any scheduling opportunities the resource presents benefit both the facility (maximal utilization) and the (compute-limited) science. The ATLAS Yoda system provides this capability to HEP-like event processing applications by implementing event-level processing in an MPI-based master-client model that integrates seamlessly with the more broadly scoped ATLAS Event Service. Fine grained, event level work assignments are intelligently dispatched to parallel workers to sustain full utilization on all cores, with outputs streamed off to destination object stores in near real time with similarly fine granularity, such that processing can proceed until termination with full utilization. The system offers the efficiency and scheduling flexibility of preemption without requiring the application actually support or employ check-pointing. We will present the new Yoda system, its motivations, architecture, implementation, and applications in ATLAS data processing at several US HPC centers.

  10. Clay mineral associations in fine-grained surface sediments of the North Sea

    NASA Astrophysics Data System (ADS)

    Irion, Georg; Zöllmer, Volker

    1999-03-01

    With the help of about 500 samples of surface sediments from the North Sea crude maps of the distributions of the clay minerals illite, chlorite, smectite and kaolinite were constructed. Illite, with 51%, is the dominant clay mineral, followed by smectite (27%), chlorite (12%), and kaolinite (10%). There are well-distinguished areas of different concentrations of the individual clay mineral associations. Illite and chlorite show highest values in the north, kaolinite concentrations are high in a corridor a few hundred kilometres wide between the east coast of the UK and the Danish/south Norwegian coast. Smectite is high in the German Bight and in the southwestern North Sea. The distribution patterns of the clay mineral associations are mainly explained by late Quaternary history and by recent to sub-recent sedimentary processes. During the Pleistocene cold periods illite- and chlorite-rich sediments from the Fennoscandian Shield were transported by the great inland ice-masses in a southward direction. The present high sea-level erosion on the east coast of Great Britain provides the North Sea with kaolinite-rich fine-grained sediments. Smectites inherited from Elsterian deposits in the southeast corner and probably from sub-recent Elbe sediments are responsible for their higher values in the German Bight. The high values of smectite in the southwest may have originated from Cretaceous sediments eroded on the banks of the Strait of Dover. The present contribution of riverine suspended load to the North Sea appears to be low.

  11. Multimodal particle size distributions of fine-grained sediments: mathematical modeling and field investigation

    NASA Astrophysics Data System (ADS)

    Lee, Byung Joon; Toorman, Erik; Fettweis, Michael

    2014-03-01

    Multimodal particle size distributions (PSDs) of fine-grained cohesive sediments are common in marine and coastal environments. The curve-fitting software in this study decomposed such multimodal PSDs into subordinate log-normal PSDs. Four modal peaks, consisting of four-level ordered structures of primary particles, flocculi, microflocs, and macroflocs, were identified and found to alternately rise and sink in a flow-varying tidal cycle due to shear-dependent flocculation. The four modal PSD could be simplified further into two discrete size groups of flocculi and flocs. This allowed the development of a two-class population balance equation (TCPBE) model with flocculi and flocs to simulate flocculation involving multimodal PSDs. The one-dimensional vertical (1-DV) TCPBE model further incorporated the Navier-Stokes equation with the k- ɛ turbulence closure and the sediment mass balance equations. Multimodal flocculation as well as turbulent flow and sediment transport in a flow-varying tidal cycle could be simulated well using the proposed model. The 1-DV TCPBE was concluded to be the simplest model that is capable of simulating multimodal flocculation in the turbulent flow field of marine and coastal zones.

  12. Ultra-fine grained Al-Mg alloys with superior strength via physical simulation

    NASA Astrophysics Data System (ADS)

    Sabirov, I.; Enikeev, N.; Kazykhanov, V.; Valiev, R.; Murashkin, M.

    2014-08-01

    The Al 5xxx alloys are widely used in form of sheets in marine, transport, and chemical engineering and, thus, they are often have to undergo hot/cold rolling as the final metal forming operations. Recent investigations have demonstrated that ultra-fine grained (UFG) Al 5xxx alloys have a significant potential for industrial applications due to their improved mechanical properties and enhanced corrosion resistance. However, the development of hot/cold rolling routes for the UFG Al alloys is very time consuming due to numerous experimental trials and very expensive due to higher cost of the UFG processed materials. In this work, physical simulation of cold rolling is applied to the UFG Al 5083 alloy obtained via equal channel angular pressing with parallel channels to analyze the effect of cold rolling on the microstructure and microhardness of the material. The cold rolling parameters are chosen based on the outcomes of physical simulation and the UFG Al 5083 alloy is successfully subjected to cold rolling resulting in superior mechanical strength of the material. It is concluded that physical simulation can significantly increase the efficiency of experimental work on development of thermo-mechanical processing routes.

  13. Fine-grained material of 81P/Wild 2 in interaction with the Stardust aerogel

    NASA Astrophysics Data System (ADS)

    Leroux, Hugues

    2012-04-01

    The deceleration tracks in the Stardust aerogel display a wide range of morphologies, which reveal a large diversity of incoming particles from comet 81P/Wild 2. If the large and dense mineral grains survived the extreme conditions of hypervelocity capture, this was not the case for the fine-grained material that is found strongly damaged within the aerogel. Due to their low mechanical strength, these assemblages were disaggregated, dispersed, and flash melted in the aerogel in walls of bulbous deceleration tracks. Their petrologic and mineralogical properties are found significantly modified by the flash heating of the capture. Originating from a quenched melt mixture of comet material and aerogel, the representative microstructure consists of silica-rich glassy clumps containing Fe-Ni-S inclusions, vesicles and "dust-rich" patches, the latter being remnants of individual silicate components of the impacting aggregate. The average composition of these melted particle fragments is close to the chondritic CI composition. They might originate from ultrafine-grained primitive components comparable to those found in chondritic porous IDPs. Capture effects in aerogel and associated sample biases are discussed in terms of size, chemical and mineralogical properties of the grains. These properties are essential for the grain survival in the extremely hot environment of hypervelocity impact capture in aerogel, and thus for inferring the correct properties of Wild 2 material.

  14. The Temperature Influence On The Properties Of The Fine - Grained Suspension Used In Underground Workings

    NASA Astrophysics Data System (ADS)

    Pomykała, Radosław; Kępys, Waldemar; Piotrowski, Zbigniew; Łyko, Paulina; Grzywa, Aleksandra

    2015-12-01

    Underground hard coal exploitation is often done under conditions of spontaneous fire hazard. The primary way to combat this threat is advanced, active or passive fire prevention. An important activity is the isolation of gobs using aqueous suspensions of fly ash as well as mineral binders. Therefore, the fine-grained suspension are often used in conditions of elevated temperature. The paper presents results of research on the effect of temperature (up to 80°C) on the properties of suspensions in a liquid state, including their rheological parameters and setting time. Suspensions prepared using the ashes from the hard coal combustion in fluidized bed boilers, and with the addition of Portland cement CEM I 42.5. During the research it was noted that the increased temperature significantly affect the acceleration of solidification processes of suspensions. In the case of rheological properties, the effect of temperature is ambiguous, among others, due to the phenomenon of sedimentation. However, in most cases, particularly for suspensions of higher solids content a marked increase in shear stress and viscosity of the suspensions with increasing temperature were observed.

  15. Fine grain separation for the production of biomass fuel from mixed municipal solid waste.

    PubMed

    Giani, H; Borchers, B; Kaufeld, S; Feil, A; Pretz, T

    2016-01-01

    The main goal of the project MARSS (Material Advanced Sustainable Systems) is to build a demonstration plant in order to recover a renewable biomass fuel suitable for the use in biomass power plants out of mixed municipal solid waste (MMSW). The demonstration plant was constructed in Mertesdorf (Germany), working alongside an existing mechanical-biological treatment plant, where the MMSW is biological dried under aerobe conditions in rotting boxes. The focus of the presented sorting campaign was set on the processing of fine grain particles minor than 11.5mm which have the highest mass content and biogenic energy potential of the utilized grain size fractions. The objective was to produce a biomass fuel with a high calorific value and a low content of fossil (plastic, synthetic) materials while maximizing the mass recovery. Therefore, the biogenic components of the dried MMSW are separated from inert and fossil components through various classification and sifting processes. In three experimental process setups of different processing depths, the grain size fraction 4-11.5mm was sifted by the use of air sifters and air tables. PMID:26272710

  16. Laser {sup 40}Ar/{sup 39}Ar microprobe analyses of fine-grained illite

    SciTech Connect

    Onstott, T.C.; Mueller, C.; Vrolijk, P.J.; Pevear, D.R.

    1997-09-01

    Fine-grained (<0.02 {mu}m) to coarse-grained (2.0-0.2 {mu}m) illite separates and finely powdered muscovite standards were analyzed with a microencapsulation technique and an {sup 40}Ar/{sup 39}Ar laser microprobe. The integrated ages of the illite agreed within error with conventional K/Ar analyses, even though the sample sizes, 1-100 micrograms, were at least a 10,000-fold less. Incremental laser heating of an artificial mixture of illite and muscovite of two different ages yielded a stair step profile, where the youngest and oldest incremental ages approximately coincided with their K/Ar ages. The thermally activated argon release rate from illite was distinct from that of the muscovite and may result from differences in grain thickness, lower K concentration, and the presence of cis vs. trans-sited vacancies. Incremental heating, therefore, may prove capable of delineating detrital from authigenic components in illite extracted from shale and sandstone. Microencapsulation and laser {sup 40}Ar/{sup 39}Ar analyses, when combined with sophisticated techniques for separating clays, will permit dating of samples where clay is a minor constituent, such as sandstones and meteorites, and will enhance identification of endmember ages in naturally occurring clay. 45 refs., 9 figs., 2 tabs.

  17. Deformation mechanisms responsible for the creep resistance of Ti-Al alloys

    SciTech Connect

    Morris, M.A.; Lipe, T.

    1997-12-31

    Two {gamma}-based Ti-Al alloys with similar grain sizes and, respectively, lamellar and duplex microstructures have been creep tested at 700 C and constant stresses ranging between 280 and 430 MPa. TEM observations have confirmed that the duplex alloy deforms by extensive mechanical twinning whose density increases with applied stress and increasing strain. The new twin interfaces subdivide the {gamma} grains throughout the primary stage of creep. At the onset of the minimum creep rate, the twin interfaces in the duplex alloy behave in the same way as the {gamma}/{gamma} or the {alpha}{sub 2}/{gamma} interfaces in the lamellar alloy. However, single dislocations were also present and it appears that in both alloys the deformation process is controlled by the accumulation and emission of dislocations from the different interfaces.

  18. Explosive Fabrication of Intermetallics In Ti-Al System from Nano-Al and Coarse-Ti Powders

    NASA Astrophysics Data System (ADS)

    Chikhradze, Mikheil; Gigineishvili, Akaki; Cikhradze, Nikoloz

    2011-12-01

    Theoretical and experimental Investigations of shock wave consolidation processes of Ti-Al nano sized and ultra-disperse powder compositions are discussed. For theoretical calculations of the shock wave loaded materials were used the hydrodynamic theory and experimental adiabatics of Ti and Al. The normal and tangential stresses in the cylindrical steel tube (containers of Ti-Al reaction mixtures) were estimated using the partial solutions of elasticity theory. The mixtures of ultra-disperse Ti and nano sized (max≤50 nm) Al powder compositions were consolidated to full or near-full density by explosive-compaction technology. The ammonium nitride based industrial explosives were used for generation of shock waves. To form ultra-fine grained bulk TiAl intermetallides with different compositions, ultra-disperse Ti particles were mixed with nano-crystalline Al. Each reaction mixture was placed in a sealed container and explosively compacted using a normal and cylindrical detonation set-up. Explosive compaction experiments were performed in range of pressure impulse (5-20 GPA) at elevated temperatures. X-ray diffraction (XRD), structural investigations (SEM) and micro-hardness measurements were used to characterize the intermetallides phase composition and mechanical properties. The results of analysis revealing the effects of the compacting conditions and precursor particles sizes, affecting the consolidation and the properties of this new ultra high performance alloys are discussed.

  19. Permeability Enhancement in Fine-Grained Sediments by Chemically Induced Clay Fabric Shrinkage

    SciTech Connect

    Wijesinghe, A M; Kansa, E J; Viani, B E; Blake, R G; Roberts, J J; Huber, R D

    2004-02-26

    The National Research Council [1] identified the entrapment of contaminants in fine-grained clay-bearing soils as a major impediment to the timely and cost-effective remediation of groundwater to regulatory standards. Contaminants trapped in low-permeability, low-diffusivity, high-sorptivity clays are not accessible to advective flushing by treatment fluids from permeable zones, and slowly diffuse out to recontaminate previously cleaned permeable strata. We propose to overcome this barrier to effective remediation by exploiting the ability of certain nontoxic EPA-approved chemicals (e.g., ethanol) to shrink and alter the fabric of clays, and thereby create macro-porosity and crack networks in fine-grained sediments. This would significantly reduce the distance and time scales of diffusive mass transport to advectively flushed boundaries, to yield orders of magnitude reduction in the time required to complete remediation. Given that effective solutions to this central problem of subsurface remediation do not yet exist, the cost and time benefits of successful deployment of this novel concept, both as a stand-alone technology and as an enabling pre-treatment for other remedial technologies that rely on advective delivery, is likely to be very large. This project, funded as a 1-year feasibility study by LLNL's LDRD Program, is a multi-directorate, multi-disciplinary effort that leverages expertise from the Energy & Environment Directorate, the Environmental Restoration Division, and the Manufacturing & Materials Evaluation Division of Mechanical Engineering. In this feasibility study, a ''proof-of-principle'' experiment was performed to answer the central question: ''Can clay shrinkage induced by ethanol in clay-bearing sediments overcome realistic confining stresses, crack clay, and increase its effective permeability by orders of magnitude within a time that is much smaller than the time required for diffusive mass transport of ethanol in the unaltered sediment

  20. Periodic Viscous Shear Heating Instability in Fine-Grained Shear Zones: Mechanism for Intermediate Depth Earthquakes

    NASA Astrophysics Data System (ADS)

    Coon, E.; Kelemen, P.; Hirth, G.; Spiegelman, M.

    2005-12-01

    Kelemen and Hirth (Fall 2004 AGU) presented a model for periodic, viscous shear heating instabilities along pre-existing, fine grained shear zones. This provides an attractive alternative to dehydration embrittlement for explaining intermediate-depth earthquakes, especially those in a narrow thermal window within the mantle section of subducting oceanic plates (Hacker et al JGR03). Ductile shear zones with widths of cm to m are common in shallow mantle massifs and peridotite along oceanic fracture zones. Pseudotachylites in a mantle shear zone show that shear heating temperatures exceeded the mantle solidus (Obata & Karato Tectonophys95). Olivine grain growth in shear zones is pinned by closely spaced pyroxenes; thus, once formed, these features do not `heal' on geological time scales in the absence of melt or fluid (Warren & Hirth EPSL05). Grain-size sensitive creep will be localized within these shear zones, in preference to host rocks with olivine grain size from 1 to 10 mm. Inspired by the work of Whitehead & Gans (GJRAS74), we proposed that such pre-existing shear zones might undergo repeated shear heating instabilities. This is not a new concept; what is new is that viscous deformation is limited to a narrow shear zone, because grain boundary sliding, sensitive to both stress and grain size, may accommodate creep even at high stress and high temperature. These new ideas yield a new result: simple models for a periodic shear heating instability. Last year, we presented a 1D numerical model using olivine flow laws, assuming that viscous deformation remains localized in shear zones, surrounded by host rocks undergoing elastic deformation. Stress evolves due to elastic strain and drives viscous deformation in a shear zone of specified width. Shear heating and thermal diffusion control T. A maximum of 1400 C (substantial melting of peridotite ) was imposed. Grain size evolves due to recrystallization and diffusion. For strain rates of E-13 to E-14 per sec and

  1. Physical and Mechanical Properties of a Thermally Cracked Fine-Grained Granite

    NASA Astrophysics Data System (ADS)

    Wang, X.; Schubnel, A.; Fortin, J.; Gueguen, Y.; Ge, H.

    2013-12-01

    Effects of thermal-crack damage on the rupture processes of a fine-grained granite were investigated under triaxial stress, under water (wet) and argon gas (dry) saturated conditions, and room temperature. Thermal cracking was introduced by slowly heating and cooling two samples of La Peyratte granite up to 700oC, which were compared to two intact specimens. For each rock sample, a hydrostatic test was first carried up to 90 MPa effective pressure (5 MPa constant pore pressure). The samples were then deformed to failure at a constant strain rate of 2.10-6 s-1, at 30 MPa effective pressure. Our results show that: (1) permeability of heat-treated specimens was 4-5 orders of magnitude larger than that of intact specimens at low effective mean pressure; (2) nevertheless, at our experimental conditions (2.10-6s-1), thermal cracking had no significant influence on the brittle strength: (3) similarly, no obvious water weakening effect was observed; (4) however, with increasing stress, elastic anisotropy appeared at lower differential stress in heat-treated specimens than in intact ones, but close to failure, the magnitude of P wave anisotropy was approximately the same for both types of specimens; (5) acoustic emission hypocenter locations and P wave velocity anisotropy in the basal plane demonstrate that strain localization started right at the onset of dilatancy for heat-treated specimens, later in the intact specimens; (6) inverting wave velocities for crack density, we show that failure was reached for vertical crack densities of 0.35 for dry specimens, and possibly 0.5 for water-saturated specimens.

  2. Sources of fine-grained sediment to streams using fallout radionuclides in the Midwestern United States

    NASA Astrophysics Data System (ADS)

    Gellis, A.; Fuller, C. C.; Van Metre, P. C.

    2014-12-01

    Fluvial sediment is a major factor in aquatic habitat degradation. Understanding the sources of this sediment is a necessary component of management plans and policies aimed at reducing sediment inputs. Because of the time intensive framework of most sediment-source studies, spatial interpretations are often limited to the study watershed. To address sediment sources on a larger scale, the U.S. Geological Survey- National Water Quality Assessment (NAWQA) Program as part of the Midwest Stream Quality Assessment, used fallout radioisotopes (excess lead-210, cesium-137, and beryllium-7) to determine the source ((upland (surface runoff) or channel derived)) of fine-grained (<0.063 mm) bed sediment in the Cornbelt Ecoregion. The study area encompassed parts of 11 states in the Midwestern United States covering 648,239 km2 of the United States. Sampling occurred in July and August of 2013, in conjunction with water chemistry, aquatic-habitat and ecological community assessments. Ninety-nine watersheds were sampled, the majority of which were predominately agricultural, with contributing areas ranging between 6.7 to 5,893 km2. Using the ratio of beryllium-7 to excess lead-210, the percent of upland to channel-derived sediment was estimated. Results indicate that sediment sources vary among the 99 watersheds. Channel sediment is an important source presumably from bank erosion. Upland sediment was not the dominant source of sediment in many of these agricultural watersheds. Suspended-sediment samples collected over an 8-week period for 3 watersheds also show that the percent of upland versus channel sediment varies spatially and temporally.

  3. High temperature deformation behavior of a fine-grained tetragonal zirconia

    SciTech Connect

    Morita, K.; Hiraga, K.

    1999-12-31

    The stress exponent, n, defined in the following creep equation has often been regarded as a primary parameter to characterize superplastic deformation in fine-grained tetragonal zirconia containing 2.5 {approximately} 4 mol% yttria (Y-TZP): {var_epsilon} = A{sigma}{sup n}/d{sup p} where {var_epsilon} is the strain rate, {sigma} is the stress, d is the grain size, n is the stress exponent, p is the grain size exponent and A is a material constant. Recent studies have noted that the stress exponents of high-purity Y-TZP can be divided into two categories: n {approximately} 3 at low stresses and n {approximately} 2 at high stresses, where the stress dividing the deformation regions depends on both temperature and grain size. To argue the origins of such regions and relating mechanisms, however, some additional examination seems to be necessary for confirming that the regions characterized with n {approximately} 2 and {approximately} 3 are the genuine ones. This is because experimental limitations have tended to prevent the examination of deformation behavior by Eq. (1) in a strict sense. For example, the n-values have been derived from the overall strain rates that may indispensably include the effects of deformation around the grips of tensile specimens or those of constrained deformation near both sides of compression specimens. Furthermore, the data were obtained under an assumption that the effects of grain growth on the strain rate is negligible in Y-TZP. There seems to be rather little assurance, however, that these situations did not affect the evaluation of the stress exponent. From this point of view, the present study was conducted (1) to examine the effects of grain growth and some other experimental factors on creep behavior and (2) to evaluate the stress exponent from creep strain-rate curves corrected for both instantaneous stress and strain in a high purity Y-TZP.

  4. High strain rate superplasticity in three contrasting fine grained aluminum alloys

    SciTech Connect

    Todd, R.I.; Kim, J.S.; Zahid, G.H.; Prangnell, P.B.

    2000-07-01

    The superplastic properties and microstructures of three contrasting fine grained aluminum alloys were investigated. These included (1) a powder metallurgy MMC, (2) a severely deformed spray cast alloy, and (3) the Zn-22% Al eutectoid alloy. The results showed some differences in the details of behavior between the alloys. One of these was the presence of true work hardening, associated with dislocation activity, in the MMC, and its absence in the microduplex Zn-Al eutectoid alloy. In addition, the powder route MMC had the high threshold stress (up to 10 MPa) commonly encountered in such materials, whereas this was not the case with the cast and severely deformed alloy, indicating that the threshold stress was associated with the presence of ceramic particles in the MMC (oxide + reinforcement). In all the alloys, however, the m value tended to increase with temperature, and this led to a corresponding increase in elongation with temperature until the microstructure became destabilized. In the two predominantly single phase alloys studied this destabilization corresponded to the solvus temperature. The constantly changing m value indicates that there is no unique value of this parameter. The same was found to be true of the grain size exponent, p. The direct interpretation of apparent activation energies in terms of simple physical processes should be made with care in the light of the present results, as (1) the microstructures of two of the alloys were found to change continuously and significantly with small changes in temperature, and (2) the fact that m is a function of temperature necessarily implies that the apparent activation energy is a function of stress.

  5. Rheology of fine-grained forsterite aggregate at deep upper mantle conditions

    NASA Astrophysics Data System (ADS)

    Nishihara, Yu; Ohuchi, Tomohiro; Kawazoe, Takaaki; Spengler, Dirk; Tasaka, Miki; Kikegawa, Takumi; Suzuki, Akio; Ohtani, Eiji

    2014-01-01

    High-pressure and high-temperature deformation experiments on fine-grained synthetic dunite (forsterite aggregate) were conducted to determine the dominant deformation mechanism in the deep upper mantle. The sintered starting material has 90% forsterite, 10% enstatite, and an average grain size of ~1 µm. Deformation experiments were performed using a deformation-DIA apparatus at pressures of 3.03-5.36 GPa, temperatures of 1473-1573 K, and uniaxial strain rates of 0.91 × 10-5 to 18.6 × 10-5 s-1 at dry circumstances <50 H/106Si. The steady state flow stress was determined at each deformation condition. Derived stress-strain rate data is analyzed together with that reported from similar but low-pressure deformation experiments using flow law equations for diffusion creep (stress exponent of n = 1, grain-size exponent of p = 2) and for dislocation-accommodated grain-boundary sliding (GBS-disl, n = 3, p = 1). The activation volume for diffusion creep (V*dif) and for GBS-disl (V*GBS) of dunite is determined to be 8.2 ± 0.9 and 7.5 ± 1.0 cm3/mol, respectively. Calculations based on these results suggest that both diffusion creep and dislocation creep play an important role for material flow at typical deformation conditions in the Earth's asthenospheric upper mantle whereas the contribution of GBS-disl is very limited, and dislocation creep is the dominant deformation mechanism during the deformation of olivine in sheared peridotite xenolith. Though these conclusions are not definitive, these are the first results on potential deformation mechanisms of forsterite aggregate based on extrapolation in the pressure, temperature, stress, and grain-size space.

  6. Irradiation creep properties and strength of a fine-grained isotropic graphite

    NASA Astrophysics Data System (ADS)

    Oku, T.; Eto, M.; Ishiyama, S.

    1990-06-01

    An irradiation creep test was conducted on a fine-grained isotropic graphite, IG-110, for the high temperature gas-cooled reactor under development in Japan Atomic Energy Research Institute (JAERI). The dimensions, Young's modulus, tensile and bending strengths of specimens were measured before and after the irradiation creep test. Irradiation creep coefficients were obtained on the basis of the difference of dimensions of the unstressed and creeped specimens before and after the irradiation creep test. As a result, the irradiation creep coefficient was determined to be 3.4 × 10 -29 -4.8 × 10 -29 (MPa· {n}/{m 2}) -1 at 756-984°C up to 1.8 × 10 25{n}/{m 2} (E > 29 fJ) . The average value was ( 4.22 ± 0.65) ×10 -29 (MPa· {n}/{m 2}) -1, provided that the difference in irradiation temperature is neglected. Young's modulus increased 38-48% after irradiation. The increase in tensile strength of irradiation creeped specimen was 23-45% smaller than the bending strength. This suggests that the applied stress to the creep specimens under neutron irradiation gives rise to recovery of irradiation damage, compared with the case of unstressed specimens. The relation between the Young'a modulus ratio (E/E 0) and the bending strength ratio ( σb/ σ0) can be expressed by the equation: σ b/σ o = ( {E}/{E 0}) z, where z is a constant.

  7. Geochemical and petrographical characterization of fine-grained carbonate particles along proximal to distal transects

    NASA Astrophysics Data System (ADS)

    Turpin, Mélanie; Emmanuel, Laurent; Immenhauser, Adrian; Renard, Maurice

    2012-12-01

    The origin of carbonate ooze particles is often poorly understood. This is due to their polygenic origin and potential post-depositional alteration. Here, the outcome of a physical separation study with regard to different component classes of micritic carbonates is shown. The focus is on grain size and morphology, mineralogy and isotope signatures. Two contrasting proximal-to-distal transects were investigated: (1) the Miocene leeward margin of Great Bahama Bank (ODP Leg 166) and (2) the transition between the Maiella platform and the Umbria-Marche basin in central Italy near the Cenomanian-Turonian boundary. In both case settings, carbonate particles of biogenic origin include at least three groups of organisms: (i) planktonic foraminifera, (ii) calcareous nannofossils and (iii) fragments of unspecified neritic skeletal material. Two further particle types lack diagnostic structures, and based on particle size and mineralogy, are here referred to as (iv) macroparticles (5-20 μm, mainly xenomorphic) and (v) microparticles (< 12 μm, mainly automorphic to sub-automorphic). Macro- and microparticles represent 50 to 80% of the carbonate phase in slope and toe-of-slope domains and share characteristic carbon and oxygen isotope signatures. Macro- and microparticles are considered shallow-water precipitation products subsequently exported into the slope and toe-of-slope domains. Macroparticles are probably related to the fragmentation of neritic skeletal components while microparticles point to inorganic and/or bioinduced precipitation in the water column. In some cases, macro- and microparticles may have an early diagenetic origin. The identification of the origin of fine-grained particles allows for a quantitative assessment of exported, in situ and diagenetic carbonate materials in periplatform environments. The data shown here represent an important step towards a more complete characterization of carbonate ooze and micrite.

  8. Fine-grained policy control in U.S. Army Research Laboratory (ARL) multimodal signatures database

    NASA Astrophysics Data System (ADS)

    Bennett, Kelly; Grueneberg, Keith; Wood, David; Calo, Seraphin

    2014-06-01

    The U.S. Army Research Laboratory (ARL) Multimodal Signatures Database (MMSDB) consists of a number of colocated relational databases representing a collection of data from various sensors. Role-based access to this data is granted to external organizations such as DoD contractors and other government agencies through a client Web portal. In the current MMSDB system, access control is only at the database and firewall level. In order to offer finer grained security, changes to existing user profile schemas and authentication mechanisms are usually needed. In this paper, we describe a software middleware architecture and implementation that allows fine-grained access control to the MMSDB at a dataset, table, and row level. Result sets from MMSDB queries issued in the client portal are filtered with the use of a policy enforcement proxy, with minimal changes to the existing client software and database. Before resulting data is returned to the client, policies are evaluated to determine if the user or role is authorized to access the data. Policies can be authored to filter data at the row, table or column level of a result set. The system uses various technologies developed in the International Technology Alliance in Network and Information Science (ITA) for policy-controlled information sharing and dissemination1. Use of the Policy Management Library provides a mechanism for the management and evaluation of policies to support finer grained access to the data in the MMSDB system. The GaianDB is a policy-enabled, federated database that acts as a proxy between the client application and the MMSDB system.

  9. Assessment of heavy metal enrichment in the offshore fine-grained sediments of the Caspian Sea.

    PubMed

    Pakzad, Hamid Reza; Pasandi, Mehrdad; Yeganeh, Siavash; Lahijani, Hamid Alizadeh Ketek

    2016-05-01

    Sampling of the offshore seabed sediments of southwestern part of the Caspian Sea was carried out by gravity corer in order to study heavy metal concentration and the physicochemical factors controlling their distribution in the fine-grained fraction. The grain size distribution, amount, and type of clay minerals, total organic carbon (TOC) content, and Eh-pH of the sediments were determined. The average concentrations of the heavy metals in ppm are Mn (563), Cu (207.5), Sr (187), Zn (94), Pb (26.3), Ni (14.5), Co (11.5), Cd (2.56), and Ag (1.04) in their order of abundances. Co and Zn mostly indicate increase in silt-size fraction of the sediments suggesting their probable detrital provenance but the Mn, Ni, Cu, Sr, Pb, Cd, and Ag concentrations show a similar trend to distribution of the clay-size fraction. The concentrations of Mn, Co, and Cd increase with increase in the TOC content but the Cu, Pb, Ni, Ag, and Sr concentrations decrease with increase of the TOC content. The amounts of Zn, Cu, Sr, Pb, Cd, and Ag increase with increase in the CaCO3 content. The calculated enrichment factor indicates that the sediments are very strong to extremely enriched in Ag, significantly enriched in Cu and Cd, and depleted to mineral for Pb, Sr, Co, Ni, and Zn. Variations of the Cu, Sr, Cd, Ag, and Pb concentrations are similar to the clay and CaCO3 distributions. PMID:27102772

  10. Supercooled interfacial water in fine-grained soils probed by dielectric spectroscopy

    NASA Astrophysics Data System (ADS)

    Lorek, A.; Wagner, N.

    2013-12-01

    Water substantially affects nearly all physical, chemical and biological processes on the Earth. Recent Mars observations as well as laboratory investigations suggest that water is a key factor of current physical and chemical processes on the Martian surface, e.g. rheological phenomena. Therefore it is of particular interest to get information about the liquid-like state of water on Martian analogue soils for temperatures below 0 °C. To this end, a parallel plate capacitor has been developed to obtain isothermal dielectric spectra of fine-grained soils in the frequency range from 10 Hz to 1.1 MHz at Martian-like temperatures down to -70 °C. Two Martian analogue soils have been investigated: a Ca-bentonite (specific surface of 237 m2 g-1, up to 9.4% w / w gravimetric water content) and JSC Mars 1, a volcanic ash (specific surface of 146 m2 g-1, up to 7.4% w / w). Three soil-specific relaxation processes are observed in the investigated frequency-temperature range: two weak high-frequency processes (bound or hydrated water as well as ice) and a strong low-frequency process due to counter-ion relaxation and the Maxwell-Wagner effect. To characterize the dielectric relaxation behaviour, a generalized fractional dielectric relaxation model was applied assuming three active relaxation processes with relaxation time of the ith process modelled with an Eyring equation. The real part of effective complex soil permittivity at 350 kHz was used to determine ice and liquid-like water content by means of the Birchak or CRIM equation. There are evidence that bentonite down to -70 °C has a liquid-like water content of 1.17 monolayers and JSC Mars 1 a liquid-like water content of 1.96 monolayers.

  11. Supercooled interfacial water in fine grained soils probed by dielectric spectroscopy

    NASA Astrophysics Data System (ADS)

    Lorek, A.; Wagner, N.

    2013-04-01

    Water as thermodynamic state parameter affects nearly all physical, chemical and biological processes on the earth. Recent Mars observations as well as laboratory investigations suggest that water is also a key factor of current physical and chemical processes on the martian surface, e.g. rheological phenomena. Therefore it is of particular interest to get information about the liquid like state of water on martian analog soils in the temperature range below 0 °C. In this context, a parallel plate capacitor has been developed to obtain isothermal dielectric spectra of fine grained soils in the frequency range from 10 Hz to 1.1 MHz at martian like temperatures down to -70 °C. Two martian analogue soils have been investigated: a Ca-Bentonite (specific surface of 237 m2 g-1, up to 9.4% w/w gravimetric water content) and JSC Mars 1, a volcanic ash (specific surface of 146 m2 g-1, up to 7.4% w/w). Three soil-specific relaxation processes are observed in the investigated frequency-temperature range: two weak high frequency processes (bound or hydrated water as well as ice) and a strong low frequency process due to counter ion relaxation and the Maxwell-Wagner effect. To characterize the dielectric relaxation behavior, a generalized fractional dielectric relaxation model is applied assuming three active relaxation processes with relaxation time of the ith process according to an Eyring equation. The real part of effective complex soil permittivity at 350 kHz was used to determine ice and liquid like water content by means of the Birchak or CRIM equation. There are evidence that Bentonite down to -70 °C has a liquid like water content of 1.17 monolayers and JSC Mars 1 a liquid like water content of 1.96 mono layers.

  12. Laboratory Investigation of Electro-Osmotic Remediation of Fine-Grained Sediments

    SciTech Connect

    Cherepy, N.; Wildenschild, D.; Elsholz, A.

    2000-02-23

    Electro-osmosis, a coupled-flow phenomenon in which an applied electrical potential gradient drives water flow, may be used to induce water flow through fine-grained sediments. We plan to use this technology to remediate chlorinated solvent-contaminated clayey zones at the LLNL site. The electro-osmotic conductivity (k{sub e}) determined from bench-top studies for a core extracted from a sediment zone 36.4-36.6 m below surface was initially 7.37 x 10{sup -10} m{sup 2}/s-V, decreasing to 3.44 x 10{sup -10} m{sup 2}/s-V, after electro-osmotically transporting 0.70 pore volumes of water through it (195 ml). Hydraulic conductivity (k{sub h}) of the same core was initially measured to be 5.00 x 10{sup -10} m/s, decreasing to 4.08 x 10{sup -10} m/s at the end of processing. This decline in permeability is likely due to formation of a chemical precipitation zone within the core. Water splitting products and ions electromigrate and precipitate within the core; H{sup +} and metal cations migrate toward the cathode, and OH{sup -} from the cathode moves toward the anode. We are now exploring how to minimize this effect using pH control. The significance of this technology is that for this core, a 3 V/cm voltage gradient produced an initial effective hydraulic conductivity of 2.21 x 10{sup -7} m/s, >400x greater than the initial hydraulic conductivity.

  13. Fine-grained, local maps and coarse, global representations support human spatial working memory.

    PubMed

    Katshu, Mohammad Zia Ul Haq; d'Avossa, Giovanni

    2014-01-01

    While sensory processes are tuned to particular features, such as an object's specific location, color or orientation, visual working memory (vWM) is assumed to store information using representations, which generalize over a feature dimension. Additionally, current vWM models presume that different features or objects are stored independently. On the other hand, configurational effects, when observed, are supposed to mainly reflect encoding strategies. We show that the location of the target, relative to the display center and boundaries, and overall memory load influenced recall precision, indicating that, like sensory processes, capacity limited vWM resources are spatially tuned. When recalling one of three memory items the target distance from the display center was overestimated, similar to the error when only one item was memorized, but its distance from the memory items' average position was underestimated, showing that not only individual memory items' position, but also the global configuration of the memory array may be stored. Finally, presenting the non-target items at recall, consequently providing landmarks and configurational information, improved precision and accuracy of target recall. Similarly, when the non-target items were translated at recall, relative to their position in the initial display, a parallel displacement of the recalled target was observed. These findings suggest that fine-grained spatial information in vWM is represented in local maps whose resolution varies with distance from landmarks, such as the display center, while coarse representations are used to store the memory array configuration. Both these representations are updated at the time of recall. PMID:25259601

  14. Fine-grained rutile in the Gulf of Maine - diagenetic origin, source rocks, and sedimentary environment of deposition

    USGS Publications Warehouse

    Valentine, P.C.; Commeau, J.A.

    1990-01-01

    The Gulf of Maine, an embayment of the New England margin, is floored by shallow, glacially scoured basins that are partly filled with late Pleistocene and Holocene silt and clay containing 0.7 to 1.0 wt percent TiO2 chiefly in the form of silt-size rutile. Much of the rutile in the Gulf of Maine mud probably formed diagenetically in poorly cemented Carboniferous and Triassic coarse-grained sedimentary rocks of Nova Scotia and New Brunswick after the dissolution of titanium-rich detrital minerals (ilmenite, ilmenomagnetite). The diagenesis of rutile in coarse sedimentary rocks (especially arkose and graywacke) followed by erosion, segregation, and deposition (and including recycling of fine-grained rutile from shales) can serve as a model for predicting and prospecting for unconsolidated deposits of fine-grained TiO2. -from Authors

  15. Crack arrestability of ship hull steel plate in accidental conditions: Application of high arrestability endowed ultra fine-grain surface layer steel

    SciTech Connect

    Ishikawa, Tadashi; Hagiwara, Yukito; Oshita, Shigeru; Inoue, Takehiro; Hashimoto, Kunifumi; Kuroiwa, Takashi; Tada, Masuo; Yajima, Hiroshi

    1996-12-01

    A new type steel plate with ultra fine-grained surface layers (SUF steel) has been developed to improve crack arrestability. The application of this new type steel makes it possible to prevent catastrophic brittle fracture accidents of ship hull structures in emergency conditions, such as in serious collisions or groundings. It will reduce further the risk of casualties and environmental pollutions, caused by accidents of large crude oil carriers (VLCCs). The authors have investigated the validity for the application of the new type steel with ultra-high crack arrestability. Both computer simulations for collision of two VLCCs and large-scale fracture testings for crack arrestability have been carried out to study the accidental cases. The simulation results suggest that a collision generates a significant amount of plastic strain damage for the hull plate around a struck part. For example, the sheer strake plate near the struck part suffers 5 to 10% of plastic strain, before an inner-hull ruptures. Therefore, the effect of plastic strain (10% level) on crack arrestability of steel plates (the SUF plate and a conventional TMCP plate) was examined by standard ESSO tests, ultra wide-plate duplex ESSO tests, and sheer strake model tests. The test results are as follows: (1) Plastic strain deteriorates crack arrestability of steel plates. (2) Sufficient crack arrestability at 0 deg. C cannot be expected in the conventional TMCP steel plate plastically strained by about 10%. (3) The SUF plate maintains high crack arrestability even after introducing 10% plastic strain, at design temperature of 0 deg. C.

  16. Influence of Carbide Precipitation and Dissolution on the Microstructure of Ultra-Fine-Grained Intercritically Annealed Medium Manganese Steel

    NASA Astrophysics Data System (ADS)

    Lee, Sangwon; De Cooman, Bruno C.

    2016-04-01

    The influence of cementite precipitation and dissolution on the formation of the carbide-free, ultra-fine-grained, ferrite + austenite microstructure of medium manganese steel was analyzed. During heating to the intercritical temperature, cementite nucleates at low-angle lath martensite boundaries, austenite subsequently nucleates at ferrite/cementite boundaries, and the cementite is gradually replaced by the growing austenite grains. The intercritical austenite carbon is therefore due to cementite dissolution, rather than carbon partitioning between ferrite and austenite.

  17. Toward the discrimination of fine-grained ferrimagnets by magnetic measurements in lake and near-shore marine sediments

    NASA Astrophysics Data System (ADS)

    Oldfield, F.

    1994-05-01

    The magnetic properties of low field susceptibility (chi), frequency dependent susceptibility (Chi(sub fd)), and susceptibility of anhysteretic remanent magnetisation (Chi(sub ARM)) are used to define sets of natural soil and sediment samples within which, by the criteria of King et al. (1982) and Maher (1988), the modal ferrimagnetic grain diameter is less than approximately 0.07 - 0.1 micrometers. Within this sample set, two distinct groups with low and high values, respectively, for the quotients chi(sub ARM)/chi and chi(sub arm)/chi(sub fd) are defined. The first group includes sediment samples from sites where published studies propose a detrital origin for the fine-grained ferrimagnetic content. Where catchment samples are available for comparison, they fall within the same envelope, as do clays from palaeosol samples within Chinese loess. This envelope of low quotient values also overlaps with the values for the fine grained synthetic magnetite samples within Maher's (1988) New MT series. The high quotient envelope of values includes sediments from the Adriatic Sea and clays from saltmarsh and shallow water marine sediments in NW Britain. In these cases, no catchment source is postulated for the fine-grained magnetite. The size range of magnetite in this set appears to be almost exclusively stable single domain (SSD), and a bacterial origin seems likely. Sample sets from estuarine environments between river inflow sites and the open sea show intermediate values which, in the case of the Potomac, are ordered by distance down river. Although at this stage, magnetic measurements alone cannot discriminate between bacterial and fine-grained detrital ferrimagnets in sediments, they hold out some promise of doing so provided the distinctions proposed here can be substantiated by transmission electron microscopy.

  18. Influence of Carbide Precipitation and Dissolution on the Microstructure of Ultra-Fine-Grained Intercritically Annealed Medium Manganese Steel

    NASA Astrophysics Data System (ADS)

    Lee, Sangwon; De Cooman, Bruno C.

    2016-07-01

    The influence of cementite precipitation and dissolution on the formation of the carbide-free, ultra-fine-grained, ferrite + austenite microstructure of medium manganese steel was analyzed. During heating to the intercritical temperature, cementite nucleates at low-angle lath martensite boundaries, austenite subsequently nucleates at ferrite/cementite boundaries, and the cementite is gradually replaced by the growing austenite grains. The intercritical austenite carbon is therefore due to cementite dissolution, rather than carbon partitioning between ferrite and austenite.

  19. Numerical simulations of heavily polluted fine-grained sediment remobilization using 1D, 1D+, and 2D channel schematization.

    PubMed

    Kaiglová, Jana; Langhammer, Jakub; Jiřinec, Petr; Janský, Bohumír; Chalupová, Dagmar

    2015-03-01

    This article used various hydrodynamic and sediment transport models to analyze the potential and the limits of different channel schematizations. The main aim was to select and evaluate the most suitable simulation method for fine-grained sediment remobilization assessment. Three types of channel schematization were selected to study the flow potential for remobilizing fine-grained sediment in artificially modified channels. Schematization with a 1D cross-sectional horizontal plan, a 1D+ approach, splitting the riverbed into different functional zones, and full 2D mesh, adopted in MIKE by the DHI modeling suite, was applied to the study. For the case study, a 55-km stretch of the Bílina River, in the Czech Republic, Central Europe, which has been heavily polluted by the chemical and coal mining industry since the mid-twentieth century, was selected. Long-term exposure to direct emissions of toxic pollutants including heavy metals and persistent organic pollutants (POPs) resulted in deposits of pollutants in fine-grained sediments in the riverbed. Simulations, based on three hydrodynamic model schematizations, proved that for events not exceeding the extent of the riverbed profile, the 1D schematization can provide comparable results to a 2D model. The 1D+ schematization can improve accuracy while keeping the benefits of high-speed simulation and low requirements of input DEM data, but the method's suitability is limited by the channel properties. PMID:25687259

  20. Opaque minerals in chondrules and fine-grained chondrule rims in the Bishunpur (LL3.1) chondrite

    NASA Astrophysics Data System (ADS)

    Lauretta, D. S.; Buseck, P. R.

    2003-01-01

    We present a detailed petrographic and electron microprobe study of metal grains and related opaque minerals in the chondrule interiors and rims of the Bishunpur (LL3.1) ordinary chondrite. There are distinct differences between metal grains that are completely encased in chondrule interiors and those that have some portion of their surface exposed outside of the chondrule boundary, even though the two types of metal grains can be separated by only a few microns. Metal grains in chondrule interiors exhibit minor alteration in the form of oxidized P-, Cr-, and Si-bearing minerals. Metal grains at chondrule boundaries and in chondrule rims are extensively altered into troilite and fayalite. The results of this study suggest that many metal grains in Bishunpur reacted with a type-I chondrule melt and incorporated significant amounts of P, Cr, and Si. As the system cooled, some metal oxidation occurred in the chondrule interior, producing metal-associated phosphate, chromite, and silica. Metal that migrated to chondrule boundaries experienced extensive corrosion as a result of exposure to the external atmosphere present during chondrule formation. It appears that chondrule- derived metal and its corrosion products were incorporated into the fine-grained rims that surround many type-I chondrules, contributing to their Fe-rich compositions. We propose that these fine- grained rims formed by a combination of corrosion of metal expelled from the chondrule interior and accretion of fine-grained mineral fragments and microchondrules.

  1. Estimating suspended sediment using acoustics in a fine-grained riverine system, Kickapoo Creek at Bloomington, Illinois

    USGS Publications Warehouse

    Manaster, Amanda D.; Domanski, Marian M.; Straub, Timothy D.; Boldt, Justin A.

    2016-01-01

    Acoustic technologies have the potential to be used as a surrogate for measuring suspended-sediment concentration (SSC). This potential was examined in a fine-grained (97-100 percent fines) riverine system in central Illinois by way of installation of an acoustic instrument. Acoustic data were collected continuously over the span of 5.5 years. Acoustic parameters were regressed against SSC data to determine the accuracy of using acoustic technology as a surrogate for measuring SSC in a fine-grained riverine system. The resulting regressions for SSC and sediment acoustic parameters had coefficients of determination ranging from 0.75 to 0.97 for various events and configurations. The overall Nash-Sutcliffe model-fit efficiency was 0.95 for the 132 observed and predicted SSC values determined using the sediment acoustic parameter regressions. The study of using acoustic technologies as a surrogate for measuring SSC in fine-grained riverine systems is ongoing. The results at this site are promising in the realm of surrogate technology.

  2. Sealing shales versus brittle shales: A threshold in the properties and uses of fine-grained sedimentary rocks

    NASA Astrophysics Data System (ADS)

    Bourg, I. C.

    2015-12-01

    Fine-grained sedimentary rocks (shale, mudstone) play important roles in global CO2 abatement efforts through their importance in carbon capture and storage (CCS), radioactive waste storage, and shale gas extraction. These different technologies rely on seemingly conflicting premises regarding the sealing properties of shale and mudstone, suggesting that fine-grained rocks that lend themselves to hydrocarbon extraction may not be optimal seals for CCS or radioactive waste storage, and vice versa. In this paper, a compilation of experimental data on the properties of well-characterized shale and mudstone formations is used to demonstrate that clay mineral mass fraction, Xclay, is a master variable that controls key material properties of these formations and that a remarkably sharp threshold at Xclay ~ 1/3 separates fine-grained rocks with very different properties. This threshold coincides with the predictions of a simple conceptual model of the microstructure of sedimentary rocks and is reflected in the applications of shale and mudstone formations for CCS, radioactive waste storage, and shale gas extraction.

  3. Enhancing of chemical compound and drug name recognition using representative tag scheme and fine-grained tokenization

    PubMed Central

    2015-01-01

    Background The functions of chemical compounds and drugs that affect biological processes and their particular effect on the onset and treatment of diseases have attracted increasing interest with the advancement of research in the life sciences. To extract knowledge from the extensive literatures on such compounds and drugs, the organizers of BioCreative IV administered the CHEMical Compound and Drug Named Entity Recognition (CHEMDNER) task to establish a standard dataset for evaluating state-of-the-art chemical entity recognition methods. Methods This study introduces the approach of our CHEMDNER system. Instead of emphasizing the development of novel feature sets for machine learning, this study investigates the effect of various tag schemes on the recognition of the names of chemicals and drugs by using conditional random fields. Experiments were conducted using combinations of different tokenization strategies and tag schemes to investigate the effects of tag set selection and tokenization method on the CHEMDNER task. Results This study presents the performance of CHEMDNER of three more representative tag schemes-IOBE, IOBES, and IOB12E-when applied to a widely utilized IOB tag set and combined with the coarse-/fine-grained tokenization methods. The experimental results thus reveal that the fine-grained tokenization strategy performance best in terms of precision, recall and F-scores when the IOBES tag set was utilized. The IOBES model with fine-grained tokenization yielded the best-F-scores in the six chemical entity categories other than the "Multiple" entity category. Nonetheless, no significant improvement was observed when a more representative tag schemes was used with the coarse or fine-grained tokenization rules. The best F-scores that were achieved using the developed system on the test dataset of the CHEMDNER task were 0.833 and 0.815 for the chemical documents indexing and the chemical entity mention recognition tasks, respectively. Conclusions The

  4. From bird to sparrow: Learning-induced modulations in fine-grained semantic discrimination.

    PubMed

    De Meo, Rosanna; Bourquin, Nathalie M-P; Knebel, Jean-François; Murray, Micah M; Clarke, Stephanie

    2015-09-01

    Recognition of environmental sounds is believed to proceed through discrimination steps from broad to more narrow categories. Very little is known about the neural processes that underlie fine-grained discrimination within narrow categories or about their plasticity in relation to newly acquired expertise. We investigated how the cortical representation of birdsongs is modulated by brief training to recognize individual species. During a 60-minute session, participants learned to recognize a set of birdsongs; they improved significantly their performance for trained (T) but not control species (C), which were counterbalanced across participants. Auditory evoked potentials (AEPs) were recorded during pre- and post-training sessions. Pre vs. post changes in AEPs were significantly different between T and C i) at 206-232ms post stimulus onset within a cluster on the anterior part of the left superior temporal gyrus; ii) at 246-291ms in the left middle frontal gyrus; and iii) 512-545ms in the left middle temporal gyrus as well as bilaterally in the cingulate cortex. All effects were driven by weaker activity for T than C species. Thus, expertise in discriminating T species modulated early stages of semantic processing, during and immediately after the time window that sustains the discrimination between human vs. animal vocalizations. Moreover, the training-induced plasticity is reflected by the sharpening of a left lateralized semantic network, including the anterior part of the temporal convexity and the frontal cortex. Training to identify birdsongs influenced, however, also the processing of C species, but at a much later stage. Correct discrimination of untrained sounds seems to require an additional step which results from lower-level features analysis such as apperception. We therefore suggest that the access to objects within an auditory semantic category is different and depends on subject's level of expertise. More specifically, correct intra

  5. High-flux plasma exposure of ultra-fine grain tungsten

    DOE PAGESBeta

    Kolasinski, R. D.; Buchenauer, D. A.; Doerner, R. P.; Fang, Z. Z.; Ren, C.; Oya, Y.; Michibayashi, K.; Friddle, R. W.; Mills, B. E.

    2016-05-12

    Here we examine the response of an ultra-fine grained (UFG) tungsten material to high-flux deuterium plasma exposure. UFG tungsten has received considerable interest as a possible plasma-facing material in magnetic confinement fusion devices, in large part because of its improved resistance to neutron damage. However, optimization of the material in this manner may lead to trade-offs in other properties. Moreover, we address two aspects of the problem in this work: (a) how high-flux plasmas modify the structure of the exposed surface, and (b) how hydrogen isotopes become trapped within the material. The specific UFG tungsten considered here contains 100 nm-widthmore » Ti dispersoids (1 wt%) that limit the growth of the W grains to a median size of 960 nm. Metal impurities (Fe, Cr) as well as O were identified within the dispersoids; these species were absent from the W matrix. To simulate relevant particle bombardment conditions, we exposed specimens of the W-Ti material to low energy (100 eV), high-flux (> 1022 m-2 s-1) deuterium plasmas in the PISCES-A facility at the University of California, San Diego. To explore different temperature-dependent trapping mechanisms, we considered a range of exposure temperatures between 200 °C and 500 °C. For comparison, we also exposed reference specimens of conventional powder metallurgy warm-rolled and ITER-grade tungsten at 300 °C. Post-mortem focused ion beam profiling and atomic force microscopy of the UFG tungsten revealed no evidence of near-surface bubbles containing high pressure D2 gas, a common surface degradation mechanism associated with plasma exposure. Thermal desorption spectrometry indicated moderately higher trapping of D in the material compared with the reference specimens, though still within the spread of values for different tungsten grades found in the literature database. Finally, for the criteria considered here, these results do not indicate any significant obstacles to the potential use of UFG

  6. Uranium Isotopes in Fine-grained Clastic Sediments: A New Perspective on Erosion and Sedimentation

    NASA Astrophysics Data System (ADS)

    Depaolo, D. J.; Maher, K.; Christensen, J. N.; McManus, J.

    2005-12-01

    High precision uranium isotope measurements may provide a means of determining the timescale associated with the transformation of bedrock to sediment, which includes the time required to mechanically break down rock into transportable fragments, the residence time of sediment particles in soils, streambeds, floodplains, dunes, and moraines, and their transport by wind, rivers and ocean currents to the site of final deposition on the seafloor or in lakes. The interpretation of variations in the 234U/238U ratios in sediments is based on a model for the disruption of the 238U decay series due to the loss of the decay product 234Th by recoil associated with the alpha decay of 238U. This paper presents the results of a study of 234U/238U ratios, as well as O, Nd and Sr isotopes, in fine-grained deep sea sediments, 0 to about 400 ky in age, cored in the North Atlantic Ocean at Ocean Drilling Program Site 984A. The sediments are largely siliciclastic, but have a significant carbonate component that varies between a few and 30 per cent by volume. The O isotope data obtained on separated foraminifera clearly show the last several glacial cycles, and thus provide a detailed temporal framework for the sediments. The Nd and Sr isotopic data show that the provenance of the sediment has oscillated, roughly but not exactly, in concert with the extent of continental ice volume, between a local source - probably volcanic rocks from Iceland - and a continental source. An unexpected finding is that the 234U/238U ratios of the siliciclastic portion of the sediment, isolated by leaching, show large and systematic variations that are correlated with glacial cycles and to some degree with sediment provenance. The U isotope variations are inferred to reflect differences in the transport time of the sediment - the time elapsed between the generation of the small sediment particles on Iceland and the continental source areas, and the time of deposition on the seafloor in the North Atlantic

  7. Itinerant antiferromagnetism of TiAl alloys

    NASA Astrophysics Data System (ADS)

    Petrişor, T.; Pop, I.; Giurgiu, A.; Farbaş, N.

    1986-06-01

    Magnetic susceptibility measurements of TiAl alloys are reported. Aluminium, by alloying, acts on the Néel temperature of pure titanium giving rise to a complicated phase diagram. A theoretical model, based on the itinerant antiferromagnetism model of chromium is proposed in order to explain the magnetic phase diagram of TiAl alloys. The experimental and theoretical magnetic phase diagram are in good agreement.

  8. Variational fine-grained data assimilation schemes for atmospheric chemistry transport and transformation models

    NASA Astrophysics Data System (ADS)

    Penenko, Alexey; Penenko, Vladimir; Tsvetova, Elena

    2015-04-01

    The paper concerns data assimilation problem for an atmospheric chemistry transport and transformation models. Data assimilation is carried out within variation approach on a single time step of the approximated model. A control function is introduced into the model source term (emission rate) to provide flexibility to adjust to data. This function is evaluated as the minimum of the target functional combining control function norm to a misfit between measured and model-simulated analog of data. This provides a flow-dependent and physically-plausible structure of the resulting analysis and reduces the need to calculate model error covariance matrices that are sought within conventional approach to data assimilation. Extension of the atmospheric transport model with a chemical transformations module influences data assimilation algorithms performance. This influence is investigated with numerical experiments for different meteorological conditions altering convection-diffusion processes characteristics, namely strong, medium and low wind conditions. To study the impact of transformation and data assimilation, we compare results for a convection-diffusion model (without data assimilation), convection-diffusion with assimilation, convection-diffusion-reaction (without data assimilation) and convection-diffusion-reaction-assimilation models. Both high dimensionalities of the atmospheric chemistry models and a real-time mode of operation demand for computational efficiency of the algorithms. Computational issues with complicated models can be solved by using a splitting technique. As the result a model is presented as a set of relatively independent simple models equipped with a kind of coupling procedure. With regard to data assimilation two approaches can be identified. In a fine-grained approach data assimilation is carried out on the separate splitting stages [1,2] independently on shared measurement data. The same situation arises when constructing a hybrid model

  9. In vitro and in vivo studies of biodegradable fine grained AZ31 magnesium alloy produced by equal channel angular pressing.

    PubMed

    Ratna Sunil, B; Sampath Kumar, T S; Chakkingal, Uday; Nandakumar, V; Doble, Mukesh; Devi Prasad, V; Raghunath, M

    2016-02-01

    The objective of the present work is to investigate the role of different grain sizes produced by equal channel angular pressing (ECAP) on the degradation behavior of magnesium alloy using in vitro and in vivo studies. Commercially available AZ31 magnesium alloy was selected and processed by ECAP at 300°C for up to four passes using route Bc. Grain refinement from a starting size of 46μm to a grain size distribution of 1-5μm was successfully achieved after the 4th pass. Wettability of ECAPed samples assessed by contact angle measurements was found to increase due to the fine grain structure. In vitro degradation and bioactivity of the samples studied by immersing in super saturated simulated body fluid (SBF 5×) showed rapid mineralization within 24h due to the increased wettability in fine grained AZ31 Mg alloy. Corrosion behavior of the samples assessed by weight loss and electrochemical tests conducted in SBF 5× clearly showed the prominent role of enhanced mineral deposition on ECAPed AZ31 Mg in controlling the abnormal degradation. Cytotoxicity studies by MTT colorimetric assay showed that all the samples are viable. Additionally, cell adhesion was excellent for ECAPed samples particularly for the 3rd and 4th pass samples. In vivo experiments conducted using New Zealand White rabbits clearly showed lower degradation rate for ECAPed sample compared with annealed AZ31 Mg alloy and all the samples showed biocompatibility and no health abnormalities were noticed in the animals after 60days of in vivo studies. These results suggest that the grain size plays an important role in degradation management of magnesium alloys and ECAP technique can be adopted to achieve fine grain structures for developing degradable magnesium alloys for biomedical applications. PMID:26652384

  10. Mechanical properties of diamond films: A comparative study of polycrystalline and smooth fine-grained diamonds by Brillouin light scattering

    NASA Astrophysics Data System (ADS)

    Djemia, P.; Dugautier, C.; Chauveau, T.; Dogheche, E.; De Barros, M. I.; Vandenbulcke, L.

    2001-10-01

    Brillouin light scattering, Raman light scattering and x-ray diffraction were used to investigate the elastic and microstructural properties of polycrystalline and smooth fine-grained diamond films of varying diamond quality. They were deposited on a titanium alloy by a two-step microwave plasma-assisted chemical vapor deposition process at 600 °C. Their morphology and roughness were studied by scanning electron microscopy and atomic force microscopy. Their refractive indices were determined by the M-line spectroscopy technique. The diamond purity of all these coatings in terms of the sp3 bonding fraction was deduced from visible and UV Raman spectroscopy as a function of the deposition conditions. All the samples were found to be textured with a <011> crystallographic direction normal to the film plane, leading to essentially hexagonal symmetry of the elastic tensor. By taking advantage of the detection of a number of different acoustic modes, complete elastic characterization of the films was achieved. The elastic constants C11 and C66, respectively, were selectively determined from the frequency of the longitudinal and shear horizontal bulk modes traveling parallel to the film surface. The three remaining elastic constants, namely, C44, C33 and C13, were obtained from detection of the Rayleigh surface wave a bulk shear wave and the bulk longitudinal wave propagating at different angles from the normal to the surface. The values of the elastic constants depend on the deposition conditions and on the microstructural properties of the films, especially the diamond quality and the polycrystalline or smooth fine-grained nature of the diamond. For the polycrystalline diamond film with the best quality, the elastic constants are rather close to the Voigt or Reuss average estimate values using known bulk elastic constants of diamond, whereas those of the smooth fine-grained diamond films are reduced because of the poorer diamond quality leading to lower residual stress

  11. Experimental approaches to marine and meteoric dissolution-to-repreciptiation cycles of fine-grained marine carbonate sediments

    NASA Astrophysics Data System (ADS)

    Immenhauser, Adrian; Buhl, Dieter; Riechelmann, Sylvia; Kwiecien, Ola; Lokier, Stephen; Neuser, Rolf

    2016-04-01

    Fine-grained carbonate (carbonate ooze), or microcrystalline carbonate (micrite), its lithified counterpart, forms a main constituent of limestones throughout much of Earth's history. Fine-grained carbonates are deposited below the permanent fair-weather wave base in neritic lagoonal environments or below the storm-wave base in basinal settings. The origin of components forming these fine-grained carbonates often remains poorly understood and represents a major challenge in carbonate sedimentology, particularly when these materials are used as carbonate archives (bulk micrite geochemistry). Here we present a novel experimental approach exposing natural, fine-grained carbonate sediments to dissolution-reprecipitation cycles under non-sterile conditions that mimick earth-surface conditions. In a first stage, the experiment simulated subaerial exposure of an ooid (aragonite) shoal and leaching and carbonate dissolution under meteoric phreatic conditions. In a second stage, CO2 was added to the experimental fluid (natural rainwater) representing soil-zone activity. In a third stage, partly dissolved (micro-karstified) sediments were exposed to marine phreatic conditions simulating renewed flooding of the shoal carbonates. During the third stage, precipitation was induced by degassing the CO2 in the fluid with N2. Degassing induced nucleation and growth of a diagenetic inorganic aragonite (and subordinate calcite) phase upon the surface of carbonate particles. The outcome of these first experiments is promising. The CO2 concentration of the fluid and the air are low under atmospheric conditions and increase as expected due to adding CO2 to the experiment resulting in a lower pH. Carbonate dissolution increases conductivity, alkalinity, and calcium concentration reaching a plateau at the end of the first experimental phase. Small surficial damages to ooids represent zones of weakness and form the preferred sites of dissolution leading to a deepening and widening of these

  12. A high-speed multiplexer-based fine-grain pipelined architecture for digital fuzzy logic controllers

    NASA Astrophysics Data System (ADS)

    Rashidi, Bahram; Masoud Sayedi, Sayed

    2015-12-01

    Design and implementation of a high-speed multiplexer-based fine-grain pipelined architecture for a general digital fuzzy logic controller has been presented. All the operators have been designed at gate level. For the multiplication, a multiplexer-based modified Wallace tree multiplier has been designed, and for the division and addition multiplexer-based non-restoring parallel divider and multiplexer-based Manchester adder have been used, respectively. To further increase the processing speed, fine-grain pipelining technique has been employed. By using this technique, the critical path of the circuit is broken into finer pieces. Based on the proposed architecture, and by using Quartus II 9.1, a sample two-input, one-output digital fuzzy logic controller with eight rules has been successfully synthesised and implemented on Stratix II field programmable gate array. Simulations were carried out using DSP Builder in the MATLAB/Simulink tool at a maximum clock rate of 301.84 MHz.

  13. Hot deformation behavior of uniform fine-grained GH4720Li alloy based on its processing map

    NASA Astrophysics Data System (ADS)

    Yu, Qiu-ying; Yao, Zhi-hao; Dong, Jian-xin

    2016-01-01

    The hot deformation behavior of uniform fine-grained GH4720Li alloy was studied in the temperature range from 1040 to 1130°C and the strain-rate range from 0.005 to 0.5 s-1 using hot compression testing. Processing maps were constructed on the basis of compression data and a dynamic materials model. Considerable flow softening associated with superplasticity was observed at strain rates of 0.01 s-1 or lower. According to the processing map and observations of the microstructure, the uniform fine-grained microstructure remains intact at 1100°C or lower because of easily activated dynamic recrystallization (DRX), whereas obvious grain growth is observed at 1130°C. Metallurgical instabilities in the form of non-uniform microstructures under higher and lower Zener-Hollomon parameters are induced by local plastic flow and primary γ' local faster dissolution, respectively. The optimum processing conditions at all of the investigated strains are proposed as 1090-1130°C with 0.08-0.5 s-1 and 0.005-0.008 s-1 and 1040-1085°C with 0.005-0.06 s-1.

  14. First-order description of the mechanical fracture behavior of fine-grained surficial marine sediments during gas bubble growth

    NASA Astrophysics Data System (ADS)

    Barry, M. A.; Boudreau, B. P.; Johnson, B. D.; Reed, A. H.

    2010-12-01

    Bubbles in sediments, imaged via Computed Tomography (CT) scanning, and in surrogate transparent material (gelatin), are well-described geometrically as eccentric oblate spheroids. While sediments are undoubtedly visco-elasto-plastic solids, only part of that complex behavior appears to influence significantly the formation and shape of gas bubbles. Specifically, the shape of these bubbles can be explained if the mechanical response of fine-grained sediment is approximated by Linear Elastic Fracture Mechanics (LEFM). To determine the adequacy of the LEFM approximation for gas bubble growth in fine-grained sediments, a number of gas bubbles were injected and grown in natural sediments, while monitoring the size and shape using an industrial CT scanner. A comparison of measured inverse aspect ratios (IARs) of the injected bubbles with calculated IARs from pressure records provides support for the LEFM theory. Deviations from LEFM are observable in the data, but as bubbles grow larger they trend more closely toward the theory. The use of LEFM has been shown to describe gas bubble growth in shallow coastal sediments to first order.

  15. Evidence of fine-grained sediment transport and deposition in Sheboygan River, Wisconsin, based on sediment core chemical tracer profiles

    NASA Astrophysics Data System (ADS)

    Bzdusek, Philip A.; Lu, Jianhang; Christensen, Erik R.

    2005-04-01

    Fine-grained sediment transport and deposition is observed in nine dated sediment cores obtained from the Sheboygan River. The sediment cores were dated by 137Cs and 210Pb methods. Sediment dating was supported by a polychlorinated biphenyl (PCB) analysis and U.S. Army Corps of Engineers (USACE) hydrographic surveys from 1976 to 2002. Plots of 137Cs activity versus depth show distinct peaks related to peak Sheboygan River discharges in the years 1966, 1975, 1979, and 1989. These peaks result from the scouring of sediments during storm discharges and the increased deposition of the fine-grained fraction of particles, including colloidal clay particles (associated with 137Cs and, to some extent, PCBs), in place of the scoured sediments. Core SR1a, upstream of the Pennsylvania Avenue Bridge, and cores SR5-SR8, farther downstream, show continuous sedimentation (1.2-11.8 cm/yr) since the late 1950s, whereas net sediment accumulation virtually ceased after 1988 at the intermediate sites of cores SR1-SR4. The maximum PCB concentration (161 ppm) occurs in 1969 in core SR4.

  16. A comparison between fine grain and epitaxial superconducting tunneling junctions for use as high energy resolution x-ray detectors

    NASA Astrophysics Data System (ADS)

    Saulnier, Gregory Gerard

    1994-01-01

    Superconducting tunneling junctions (STJ) show great promise in high energy resolution x-ray spectroscopy for use in x-ray astrophysics. An STJ is a sandwich of an insulator between two superconductors (S-I-S). Such a device has an intrinsic energy resolution an order of magnitude better than any existing semiconductor device, including the charge coupled device (CCD). The potential impact on x-ray astrophysics is enormous, with possible future use on sounding rockets and other as yet undefined satellite missions. This thesis compares two STJ's that have been fabricated using Nb/Al/Al2O3/Nb in the same ultra-high vacuum chamber with the same layer thicknesses with the only difference being that the base layers are either fine grain (polycrystalline) or epitaxial. The testing was done at temperatures between 0.4 K and 4.2 K. The comparison included subgap spectra from an Fe-55 x-ray source. The findings showed that the fine grain junction had a tunnel barrier of much higher quality and yielded higher energy resolution. It was determined that the epitaxial junction was much more sensitive to substrate events. Two peaks were found in the x-ray spectra. Each peak was attributed to x-ray interactions within one or the other superconducting films of the junction.

  17. Durability Assessment of Gamma Tial

    NASA Technical Reports Server (NTRS)

    Draper, Susan L.; Lerch, Bradley A.; Pereira, J. Michael; Miyoshi, Kazuhisa; Arya, Vinod K.; Zhuang, Wyman

    2004-01-01

    Gamma TiAl was evaluated as a candidate alloy for low-pressure turbine blades in aeroengines. The durability of g-TiAl was studied by examining the effects of impact or fretting on its fatigue strength. Cast-to-size Ti-48Al-2Cr-2Nb was studied in impact testing with different size projectiles at various impact energies as the reference alloy and subsequently fatigue tested. Impacting degraded the residual fatigue life. However, under the ballistic impact conditions studied, it was concluded that the impacts expected in an aeroengine would not result in catastrophic damage, nor would the damage be severe enough to result in a fatigue failure under the anticipated design loads. In addition, other gamma alloys were investigated including another cast-to-size alloy, several cast and machined specimens, and a forged alloy. Within this Ti-48-2-2 family of alloys aluminum content was also varied. The cracking patterns as a result of impacting were documented and correlated with impact variables. The cracking type and severity was reasonably predicted using finite element models. Mean stress affects were also studied on impact-damaged fatigue samples. The fatigue strength was accurately predicted based on the flaw size using a threshold-based, fracture mechanics approach. To study the effects of wear due to potential applications in a blade-disk dovetail arrangement, the machined Ti-47-2-2 alloy was fretted against In-718 using pin-on-disk experiments. Wear mechanisms were documented and compared to those of Ti-6Al-4V. A few fatigue samples were also fretted and subsequently fatigue tested. It was found that under the conditions studied, the fretting was not severe enough to affect the fatigue strength of g-TiAl.

  18. Impact Melting of Ordinary Chondrite Regoliths and the Production of Fine-grained Fe(sup 0)

    NASA Technical Reports Server (NTRS)

    Hoerz, Friedrich; Cintala, Mark J.; See, Thomas H.

    2003-01-01

    The detailed study of individual lunar soil grains provides evidence that the major optical properties of the lunar surface are primarily related to the production of fine-grained (< 20 nm, super-paramagnetic) Fe-particles in agglutinitic impact melts and to iron-rich vapor deposits on the surfaces of individual grains. These Fe-rich materials are derived from oxidized species due to high post-shock temperatures in the presence of solar-wind derived H2; part of the Fe-rich grain surfaces may also be due to sputtering processes. Identical processes were recently suggested for the optical maturation of S-type asteroid surfaces, the parent objects of ordinary chondrites (OCs). OCs, however, do not contain impact-produced soil melts, and should thus also be devoid of impact-triggered vapor condensates. The seeming disparity can only be understood if all OCs resemble relatively immature impact debris, akin to numerous lunar highland breccias. It is possible to assess this scenario by evaluating experimentally whether impact velocities of 5- 6 km/s, typical for the present day asteroid belt, suffice to produce both impact melts and fine-grained metallic iron. We used 125-250 m powders of the L6 chondrite ALH85017. These powders were aliquots from fines that were produced by collisionally disrupting a single, large (461g) chunk of this meteorite during nine impacts and by subjecting the resulting rubble to an additional 50 impacts. As a consequence, the present shock-recovery experiments employ target materials of exceptional fidelity (i.e., a real chondrite that was impact pulverized). The target powders were packed into tungsten-alloy containers to allow for the potential investigation of freshly produced, fine-grained iron and impacted by stainless-steel and tungsten flyer plates; the packing density varied between 38 and 45% porosity. Peak pressures ranged from 14.5 to 67 GPa and were attained after multiple reverberations of the shock wave at the interface of the

  19. Pore-Scale Controls on Permeability, Fluid Flow, and Methane Hydrate Distribution in Fine-Grained Sediments

    NASA Astrophysics Data System (ADS)

    Daigle, Hugh Callahan

    2011-12-01

    Permeability in fine-grained sediments is governed by the surface area exposed to fluid flow and tortuosity of the pore network. I modify an existing technique of computing permeability from nuclear magnetic resonance (NMR) data to extend its applicability beyond reservoir-quality rocks to the fine-grained sediments that comprise the majority of the sedimentary column. This modification involves correcting the NMR data to account for the large surface areas and disparate mineralogies typically exhibited by fine-grained sediments. Through measurements on resedimented samples composed of controlled mineralogies, I show that this modified NMR permeability algorithm accurately predicts permeability over 5 orders of magnitude. This work highlights the importance of pore system surface area and geometry in determining transport properties of porous media. I use these insights to probe the pore-scale controls on methane hydrate distribution and hydraulic fracturing behavior, both of which are controlled by flux and permeability. To do this I employ coupled poromechanical models of hydrate formation in marine sediments. Fracture-hosted methane hydrate deposits are found at many sites worldwide, and I investigate whether pore occlusion and permeability reduction due to hydrate formation can drive port fluid pressures to the point at which the sediments fracture hydraulically. I find that hydraulic fractures may form in systems with high flux and/or low permeability; that low-permeability layers can influence the location of fracture initiation if they are thicker than a critical value that is a function of flux and layer permeability; that capillary-driven depression of the triple point of methane in fine-gained sediments causes hydrate to form preferentially in coarse-grained layers; that the relative fluxes of gas and water in multiphase systems controls hydrate distribution and the location of fracture initiation; and that methane hydrate systems are dynamic systems in

  20. Autonomous Information Unit for Fine-Grain Data Access Control and Information Protection in a Net-Centric System

    NASA Technical Reports Server (NTRS)

    Chow, Edward T.; Woo, Simon S.; James, Mark; Paloulian, George K.

    2012-01-01

    As communication and networking technologies advance, networks will become highly complex and heterogeneous, interconnecting different network domains. There is a need to provide user authentication and data protection in order to further facilitate critical mission operations, especially in the tactical and mission-critical net-centric networking environment. The Autonomous Information Unit (AIU) technology was designed to provide the fine-grain data access and user control in a net-centric system-testing environment to meet these objectives. The AIU is a fundamental capability designed to enable fine-grain data access and user control in the cross-domain networking environments, where an AIU is composed of the mission data, metadata, and policy. An AIU provides a mechanism to establish trust among deployed AIUs based on recombining shared secrets, authentication and verify users with a username, X.509 certificate, enclave information, and classification level. AIU achieves data protection through (1) splitting data into multiple information pieces using the Shamir's secret sharing algorithm, (2) encrypting each individual information piece using military-grade AES-256 encryption, and (3) randomizing the position of the encrypted data based on the unbiased and memory efficient in-place Fisher-Yates shuffle method. Therefore, it becomes virtually impossible for attackers to compromise data since attackers need to obtain all distributed information as well as the encryption key and the random seeds to properly arrange the data. In addition, since policy can be associated with data in the AIU, different user access and data control strategies can be included. The AIU technology can greatly enhance information assurance and security management in the bandwidth-limited and ad hoc net-centric environments. In addition, AIU technology can be applicable to general complex network domains and applications where distributed user authentication and data protection are

  1. Explanation of Europa's Unusual Polarization Properties: The Regolith is Sub-micron, Fine-Grained, High Porosity Material

    NASA Astrophysics Data System (ADS)

    Nelson, R. M.; Boryta, M. D.; Hapke, B. W.; Manatt, K. S.; Nebedum, A.; Kroner, D. O.; Shkuratov, Y.; Psarev, V.; Vanderoort, K.; Smythe, W. D.

    2015-12-01

    For several decades, unusual reflectance and polarization phase curves have been reported on Europa by experienced ground based astronomers (Rosenbush et al., 1997, 2015). The observed reflectance phase curve is consistent with the phase curves reported in the laboratory in fine grained particulate media (Nelson et al., 2000, 2002, Shkuratov et al., 2002). Shkuratov et al. (2002) also measured polarization properties of fine grained media showing that they relate to the coherent backscatter enhancement phenomenon and are consistent with the astronomical data. We have reconfigured a goniometric photopolarimeter (GPP) (Nelson et al., 2000, 2002) to measure in the laboratory the polarization phase curves of highly reflective particulate materials that simulate the Europa's predominately water ice regolith. We apply the Helmholtz Reciprocity Principle - we present our samples with linearly polarized light and measure the change in the intensity of the reflected component with phase angle from 0.05 to 15 degrees. This is physically equivalent to the astronomical polarization measurements. We report here the polarization phase curves for a suite of high albedo particulates of size 0.1fine grained and with very high porosity, perhaps with void space exceeding 90%. If a reflectance phase curve and a polarization phase curve of solar system object can be obtained (even at a very small range of phase angles), it will soon be possible to determine (or at least constrain) important regolith properties. Future missions to the Jovian

  2. Temperature dependence of magnetic behaviour in very fine grained, spark plasma sintered NiCuZn ferrites

    SciTech Connect

    Ahmadi, Behzad; Zehani, Karim; LoBue, Martino; Loyau, Vincent; Mazaleyrat, Frederic

    2012-04-01

    Recently, using spark plasma sintering technique, a family of very fine grained, fully dense NiCuZn ferrites have been produced, which show constant permeability up to several 10 MHz. These ferrites can be used for filtering purposes in high frequency applications where a wide frequency band is required. In this paper, we study the magnetization processes taking place in these nano grained materials, in the frequency interval of 100 kHz to 5 MHz. Using a fluxmetric hysteresis graph, permeability, loss, and BH loops are measured at different temperatures, from -5 deg. C to 110 deg. C. Results are compared to the behavior of micrometric grain size ferrites, which are commonly used for power electronic and high frequency applications.

  3. Microwave resonance thermomagnetic analysis - A new method for characterizing fine-grained ferromagnetic constituents in lunar materials

    NASA Technical Reports Server (NTRS)

    Griscom, D. L.; Marquardt, C. L.; Friebele, E. J.

    1975-01-01

    Microwave resonance thermomagnetic analysis (MRTA) is the name given to a newly evolved technique for inferring the natures of fine-grained ferromagnetic constituents in lunar materials. Based on standard ferromagnetic resonance (FMR) procedures, the method makes use of the microwave skin effect for diagnosing the presence of metallic iron. Modelling experiments carried out on well-characterized iron and magnetitelike precipitates produced independently in simulated lunar glasses, coupled with published data for magnetite, provide a potential basis for detecting and discriminating between iron metal and ferric iron spinel, even when both are present in an unknown sample. Application of the technique to the lunar samples indicates the possible existence of magnetitelike phases in amounts up to about 0.3 wt% in soils from seven samples regions of the moon. These findings do not require any special geologic processes for their explanation, although some evidence supports the suggestion that fumarolic activity may have occurred in the lunar highlands.

  4. Sources of fine-grained sediment in the Linganore Creek watershed, Frederick and Carroll Counties, Maryland, 2008-10

    USGS Publications Warehouse

    Gellis, Allen C.; Noe, Gregory B.; Clune, John W.; Myers, Michael K.; Hupp, Cliff R.; Schenk, Edward R.; Schwarz, Gregory E.

    2015-01-01

    Management implications of this study indicate that both agriculture and streambanks are important sources of sediment in Linganore Creek where the delivery of agriculture sediment was 4 percent and the delivery of streambank sediment was 44 percent. Fourth order streambanks, on average, had the highest rates of bank erosion. Combining the sediment fingerprinting and sediment budget results indicates that 96 percent of the eroded fine-grained sediment from agriculture went into storage. Flood plains and ponds are effective storage sites of sediment in the Linganore Creek watershed. Flood plains stored 8 percent of all eroded sediment with 4th and 5th order flood plains, on average, storing the most sediment. Small ponds in the Linganore Creek watershed, which drained 16 percent of the total watershed area, stored 15 percent of all eroded sediment. Channel beds were relatively stable with the greatest erosion generally occurring in 4th and 5th order streams.

  5. Microbial colonization and degradation of polyethylene and biodegradable plastic bags in temperate fine-grained organic-rich marine sediments.

    PubMed

    Nauendorf, Alice; Krause, Stefan; Bigalke, Nikolaus K; Gorb, Elena V; Gorb, Stanislav N; Haeckel, Matthias; Wahl, Martin; Treude, Tina

    2016-02-15

    To date, the longevity of plastic litter at the sea floor is poorly constrained. The present study compares colonization and biodegradation of plastic bags by aerobic and anaerobic benthic microbes in temperate fine-grained organic-rich marine sediments. Samples of polyethylene and biodegradable plastic carrier bags were incubated in natural oxic and anoxic sediments from Eckernförde Bay (Western Baltic Sea) for 98 days. Analyses included (1) microbial colonization rates on the bags, (2) examination of the surface structure, wettability, and chemistry, and (3) mass loss of the samples during incubation. On average, biodegradable plastic bags were colonized five times higher by aerobic and eight times higher by anaerobic microbes than polyethylene bags. Both types of bags showed no sign of biodegradation during this study. Therefore, marine sediment in temperate coastal zones may represent a long-term sink for plastic litter and also supposedly compostable material. PMID:26790603

  6. Coarse-grained and fine-grained parallel optimization for real-time en-face OCT imaging

    NASA Astrophysics Data System (ADS)

    Kapinchev, Konstantin; Bradu, Adrian; Barnes, Frederick; Podoleanu, Adrian

    2016-03-01

    This paper presents parallel optimizations in the en-face (C-scan) optical coherence tomography (OCT) display. Compared with the cross-sectional (B-scan) imagery, the production of en-face images is more computationally demanding, due to the increased size of the data handled by the digital signal processing (DSP) algorithms. A sequential implementation of the DSP leads to a limited number of real-time generated en-face images. There are OCT applications, where simultaneous production of large number of en-face images from multiple depths is required, such as real-time diagnostics and monitoring of surgery and ablation. In sequential computing, this requirement leads to a significant increase of the time to process the data and to generate the images. As a result, the processing time exceeds the acquisition time and the image generation is not in real-time. In these cases, not producing en-face images in real-time makes the OCT system ineffective. Parallel optimization of the DSP algorithms provides a solution to this problem. Coarse-grained central processing unit (CPU) based and fine-grained graphics processing unit (GPU) based parallel implementations of the conventional Fourier domain (CFD) OCT method and the Master-Slave Interferometry (MSI) OCT method are studied. In the coarse-grained CPU implementation, each parallel thread processes the whole OCT frame and generates a single en-face image. The corresponding fine-grained GPU implementation launches one parallel thread for every data point from the OCT frame and thus achieves maximum parallelism. The performance and scalability of the CPU-based and GPU-based parallel approaches are analyzed and compared. The quality and the resolution of the images generated by the CFD method and the MSI method are also discussed and compared.

  7. Evaluation of rock powdering methods to obtain fine-grained samples for CHEMIN, a combined XRD/XRF instrument

    SciTech Connect

    Chipera, S. J.; Vaniman, D. T.; Bish, D. L.; Sarrazin, P.; Feldman, S.; Blake, D.; Bearman, G. H.; Bar-Cohen, Yoseph

    2004-01-01

    A miniature XRD/XRD (X-ray diffraction/X-ray fluorescence) instrument, CHEMIN, is currently being developed for definite mineralogic analysis of soils and rocks on Mars. One of the technical issues that must be addressed to enable remote XRD analysis is how best to obtain a representative sample powder for analysis. For powder XRD analyses, it is beneficial to have a fine-grained sample to reduce preferred orientation effects and to provide a statistically significant number of crystallites to the X-ray beam. Although a two-dimensional detector as used in the CHEMIN instrument produces good results even with poorly prepared powder, the quality of the data improves and the time required for data collection is reduced if the sample is fine-grained and randomly oriented. A variety of methods have been proposed for XRD sample preparation. Chipera et al. presented grain size distributions and XRD reuslts from powders generated with an Ultrasonic/Sonic Driller/Corer (USDC) currently being developed at JPL. The USDC was shown to be an effective instrument for sampling rock to produce powder suitable for XRD. In this paper, they compare powder prepared using the USDC with powder obtained with a miniaturized rock crusher developed at JPL and with powder obtained with a rotary tungsten carbide bit to powders obtained from a laboratory bench-scale Retsch mill (provides benchmark mineralogical data). These comparisons will allow assessment of the suitability of these methods for analysis by an XRD/XRD instrument such as CHEMIN.

  8. Evaluation of Rock Powdering Methods to Obtain Fine-grained Samples for CHEMIN, a Combined XRD/XRF Instrument

    NASA Technical Reports Server (NTRS)

    Chipera, S. J.; Vaniman, D. T.; Bish, D. L.; Sarrazin, P.; Feldman, S.; Blake, D. F.; Bearman, G.; Bar-Cohen, Y.

    2004-01-01

    A miniature XRD/XRF (X-ray diffraction / X-ray fluorescence) instrument, CHEMIN, is currently being developed for definitive mineralogic analysis of soils and rocks on Mars. One of the technical issues that must be addressed to enable remote XRD analysis is how best to obtain a representative sample powder for analysis. For powder XRD analyses, it is beneficial to have a fine-grained sample to reduce preferred orientation effects and to provide a statistically significant number of crystallites to the X-ray beam. Although a two-dimensional detector as used in the CHEMIN instrument will produce good results even with poorly prepared powder, the quality of the data will improve and the time required for data collection will be reduced if the sample is fine-grained and randomly oriented. A variety of methods have been proposed for XRD sample preparation. Chipera et al. presented grain size distributions and XRD results from powders generated with an Ultrasonic/Sonic Driller/Corer (USDC) currently being developed at JPL. The USDC was shown to be an effective instrument for sampling rock to produce powder suitable for XRD. In this paper, we compare powder prepared using the USDC with powder obtained with a miniaturized rock crusher developed at JPL and with powder obtained with a rotary tungsten carbide bit to powders obtained from a laboratory bench-scale Retsch mill (provides benchmark mineralogical data). These comparisons will allow assessment of the suitability of these methods for analysis by an XRD/XRF instrument such as CHEMIN.

  9. A grain-fluid mixture model to characterize the dynamics of active landslides in fine-grained soils

    NASA Astrophysics Data System (ADS)

    Spickermann, Anke; Toussaint, Renaud; Travelletti, Julien; Malet, Jean-Philippe; van Asch, Theo

    2013-04-01

    Dynamic continuum modeling of slow-moving landslides in fine-grained material is generally performed by means of visco-plastic models applying the approach of one-phase material. Shortcomings of this approach are the uncertainty of using physical realistic material parameters and that solid and fluid stresses are not considered separately. The objective of this work is to overcome the problems of the one-phase material approach by adopting the theory of grain-fluid mixture. Applying a two-phase model approach enables to distinguish explicitly between 25 e.g. solid friction stress, fluid shear stress (viscous stress), buoyancy and momentum exchange between solid and fluid (seepage). The model is implemented in a GIS (Geographic Information System) scripting language, which facilitate the use of complex three-dimensional (3D) topographies. The model is applied to and tested on the well-documented Super-Sauze landslide developed in reworked clay-shales. It is shown that the temporal and spatial varying moving pattern of the landslide can be reproduced. The numerical analysis reveals that viscous stresses produced by the fluid are irrelevant. Movements are mainly controlled by buoyancy, related to the evolution of the ground water level within the landslide that comes from water infiltration, and is introduced as a boundary condition. It is concluded that a two-phase, grain-fluid mixture model is convenient when landslide motion in fine-grained material is mainly controlled by the hydrological conditions (i.e. changes in pore water pressures), as in this example. The material parameters, as viscosity, calibrated to reproduce such landslide motion in models using the one-phase material approach, would take unrealistic values.

  10. Distribution, thickness, and volume of fine-grained sediment from precipitation of metals from acid-mine waters in Keswick Reservoir, Shasta County, California

    USGS Publications Warehouse

    Bruns, Terry R.; Alpers, Charles N.; Carlson, Paul

    2006-01-01

    In February 1993, the U.S. Geological Survey (USGS) acquired high-resolution seismic-reflection data to map the distribution and thickness of fine-grained sediments associated with acid-mine drainage in Keswick Reservoir on the Sacramento River, near Redding, California. In the Spring Creek Arm of Keswick Reservoir, the sediments occurred in three distinct accumulations; thicknesses are greater than 2 meters (m) in the western accumulation, greater than 5 m in the central accumulation, and up to 8 m in the eastern accumulation. In Keswick Reservoir, fine-grained sediments related to acid-mine drainage were present from slightly north of the Spring Creek Arm downstream to the Keswick Dam. Sediment thickness varies from about 3 m opposite the mouth of the Spring Creek Arm to less than 1 m near Keswick Dam. Our estimate for the total volume of fine-grained sediments in the Spring Creek Arm at the time of the geophysical survey in February 1993 is about 152,000 cubic meters in three sediment accumulations, with about 14,000, 32,000, and 105,000 cubic meters respectively in the western, central, and eastern accumulations. We interpreted that an additional 110, 000 cubic meters of material was present in the main part of Keswick Reservoir. At the time of data collection, we therefore estimate that the total volume of fine-grained sediment was 260,000 cubic meters. In the main part of Keswick Reservoir, 42% to 50% of the reservoir area contiguous to Spring Creek Arm had mappable fine-grained sediments. Decreasing sediment supply down-reservoir meant that mappable sediment covered only about 35% of the reservoir in the area to the south, decreasing to about 12% near Keswick Dam. Much of the reservoir bottom below the Spring Creek Arm could have had a thin (less than 20-30 cm) cover of fine-grained sediment that was not mappable using the seismic-reflection data.

  11. Durability Assessment of TiAl Alloys

    NASA Technical Reports Server (NTRS)

    Draper, Susan L.; Lerch, Bradley A.

    2008-01-01

    The durability of TiAl is a prime concern for the implementation of TiAl into aerospace engines. Two durability issues, the effect of high temperature exposure on mechanical properties and impact resistance, have been investigated and the results are summarized in this paper. Exposure to elevated temperatures has been shown to be detrimental to the room temperature ductility of gamma alloys with the most likely mechanisms being the ingress of interstitials from the surface. Fluorine ion implantation has been shown to improve the oxidation resistance of gamma alloys, and ideally it could also improve the environmental embrittlement of high Nb content TiAl alloys. The effect of F ion implantation on the surface oxidation and embrittlement of a third generation, high Nb content TiAl alloy (Ti-45Al-5Nb-B-C) were investigated. Additionally, the ballistic impact resistance of a variety of gamma alloys, including Ti-48Al-2Cr- 2Nb, Ti-47Al-2Cr-2Nb, ABB-2, ABB-23, NCG359E, 95A and Ti-45Al-5Nb-B-C was accessed. Differences in the ballistic impact properties of the various alloys will be discussed, particularly with respect to their manufacturing process, microstructure, and tensile properties.

  12. Petrographic Studies of Fine-grained Rims in the Yamato 791198 cm Carbonaceous Chondrite and Comparison to Murchison and ALH81002

    NASA Technical Reports Server (NTRS)

    Chizmadia, L. J.; Brearley, A. J.

    2001-01-01

    Fine-grained rims in Y791198 (CM2) have been studied in detail using SEM and EPMA techniques. In comparison with the more highly altered CM chondrite, ALH 81002, the rims are texturally and compositionally more heterogeneous. Additional information is contained in the original extended abstract.

  13. Origin and depositional environment of fine-grained sediments since the last glacial maximum in the southeastern Yellow Sea: evidence from rare earth elements

    NASA Astrophysics Data System (ADS)

    Um, In Kwon; Choi, Man Sik; Lee, Gwang Soo; Chang, Tae Soo

    2015-12-01

    Despite the well-reconstructed seismic stratigraphy of the Holocene mud deposit in the southeastern Yellow Sea, known as the Heuksan mud belt (HMB), the provenances of these sediments and their depositional environments are unclear, especially for the fine-grained sediments. According to seismic data (extracted from another article in this special issue), the HMB comprises several sedimentary units deposited since the last glacial maximum. Based on analytical results on rare earth elements, fine-grained sediments in all sedimentary units can be interpreted as mixtures of sediments discharged from Chinese and Korean rivers. The proportions of fine-grained sediments from Chinese rivers (74.5 to 80.0%) were constant and higher than those from Korean rivers in all units. This fact demonstrates that all units have the same fine-grained sediment provenance: units III-b and III-a, located in the middle and northern parts of the HMB and directly deposited from Chinese rivers during the sea-level lowstand, could be the sediment source for units II-b and II-a. Unit I, while ambiguous, is of mixed origin combining reworked sediments from nearby mud deposits and Changjiang River-borne material with those of the Keum River. The results of this study indicate that at least 18.6% of bulk sediments in the HMB clearly originate from Chinese rivers, despite its location close to the southwestern coast of Korea.

  14. Determination of the effects of fine-grained sediment and other limiting variables on trout habitat for selected streams in Wisconsin

    USGS Publications Warehouse

    Scudder, Barbara C.; Selbig, J.W.; Waschbusch, R.J.

    2000-01-01

    Two Habitat Suitability Index (HSI) models, developed by the U.S. Fish and Wildlife Service, were used to evaluate the effects of fine-grained (less than 2 millimeters) sediment on brook trout (Salvelinusfontinalis, Mitchill) and brown trout (Salmo trutta, Linnaeus) in 11 streams in west-central and southwestern Wisconsin. Our results indicated that fine-grained sediment limited brook trout habitat in 8 of 11 streams and brown trout habitat in only one stream. Lack of winter and escape cover for fry was the primary limiting variable for brown trout at 61 percent of the sites, and this factor also limited brook trout at several stations. Pool area or quality, in stream cover, streambank vegetation for erosion control, minimum flow, thalweg depth maximum, water temperature, spawning substrate, riffle dominant substrate, and dissolved oxygen also were limiting to trout in the study streams. Brook trout appeared to be more sensitive to the effects of fine-grained sediment than brown trout. The models for brook trout and brown trout appeared to be useful and objective screening tools for identifying variables limiting trout habitat in these streams. The models predicted that reduction in the amount of fine-grained sediment would improve brook trout habitat. These models may be valuable for establishing instream sediment-reduction goals; however, the decrease in sediment delivery needed to meet these goals cannot be estimated without quantitative data on land use practices and their effects on sediment delivery and retention by streams.

  15. A Comprehensive Study of Pristine, Fine-grained, Spinel-rich Inclusions from the Leoville and Efremovka CV3 Chondrites. 1; Petrology

    NASA Technical Reports Server (NTRS)

    MacPherson, G. J.; Krot, A. N.; Ulyanov, A. A.; Hicks, T.

    2002-01-01

    Fine-grained spinel-rich CAI from Efremovka and Leoville lack the overprint of Na and Fe metasomatism seen in Allende. They contain spinel, pyroxene, anorthite, and melilite; most have a zoned structure with spinel-rich cores, melilite-rich mantles. Additional information is contained in the original extended abstract.

  16. Fine-grained impact ejecta on the Moon: Views from Earth-based radar and the LRO Diviner thermal mapper

    NASA Astrophysics Data System (ADS)

    Ghent, R. R.; Koziar, J.; Paige, D. A.; Vasavada, A. R.

    2009-12-01

    The goal of this work is to use Diviner thermal mapper observations to constrain the surface block populations of fine-grained impact ejecta on the Moon. The statistical distribution of rocks in impact ejecta deposits is important because it constrains the processes by which fragmentary impact debris is produced and subsequently deposited on the surface. Earth-based radar observations have revealed meters-thick haloes of material depleted in blocks 1cm and greater in diameter, surrounding nearside impact craters. Radar observations allow characterization of the bulk properties of the upper ~10m of material, but do not yield direct information about the surface rock distribution. Diviner’s four thermal infrared channels, ranging from 12.5 to 200 microns, provide the means to investigate variations in surface thermophysical properties between impact ejecta and surrounding regolith. In this paper, we will report on comparisons between Diviner thermal infrared and Earth-based radar observations for nearside craters with radar-dark, fine-grained ejecta haloes. The brightness temperature of the lunar surface as measured by Diviner is a function of albedo, emissivity, and thermal inertia, and the bulk thermal inertia of a given mixture of soil and rocks varies with rock fraction. The resulting differences in brightness temperature are most pronounced during the night, and the particular way in which the temperature varies with rock fraction depends on the soil emissivity. The spatial resolution of the Diviner measurements (320 m / pixel) is close to that of existing 70-cm wavelength radar images (at 400 m / pixel), which facilitates comparison between the two data sets. Preliminary work indicates that radar-bright, blocky ejecta close to crater rims show higher pre-dawn brightness temperatures than either more distal fine ejecta or background regolith, and the location of the transition correlates closely between the two data sets. Current work is focused on extending

  17. Dynamics of deposited fly-ash and fine grained magnetite in sandy material of different porosity (column experiments)

    NASA Astrophysics Data System (ADS)

    Kapicka, Ales; Kodesova, Radka; Petrovsky, Eduard; Grison, Hana

    2010-05-01

    Several studies confirm that soil magnetometry can serve as proxy of industrial immisions as well as heavy-metal contamination. The important assumption for magnetic mapping of contaminated soils is that atmospherically deposited particulate matter, including the ferrimagnetic phase, accumulates in the top soil horizons and remains there over long period. Only if this is true, large areas can be reliably mapped using soil magnetometry, and, moreover, this method can be used also for long-term monitoring. However, in soil types such as sandy soils with different porosity or soils with substantial variability of water regime, translocation of the deposited anthropogenic particles may result in biased (underestimated) values of the measured topsoil magnetic susceptibility. From the physical point of view, this process may be considered as colloid transport through porous medium. In our column experiments in laboratory we used three technical sands with different particle sizes (0,63 - 1.25mm, 0,315-0,80mm, 0,10-0,63mm). Sands in cylinders were contaminated on the surface by fly-ashes from coal-burning power plant (mean grain size 10μm) and fine grained Fe3O4 (grain size < 20 μm). Soil moisture sensors were used to monitor water regime within the sand columns after controlled rain simulation and temperature distribution in sand column was measured as well. Vertical migration of ferrimagnetic particles-tracers presented in the fly-ash was measured by SM 400 Kappameter. By means of magnetic susceptibility distribution we studied two parameters: gradual shift of peak concentration of contaminants (relative to surface layer) and maximum penetration depth. Results indicated that after rain simulation (pulls infiltration of defined water volume) the positions of peak values moved downwards compared to the initial state and gradual decrease of susceptibility peak values were detected in all studied sand formations. Fly-ash migrated more or less freely in coarse sand

  18. Quantitative compositional analysis of sedimentary materials using thermal emission spectroscopy: 2. Application to compacted fine-grained mineral mixtures and assessment of applicability of partial least squares methods

    NASA Astrophysics Data System (ADS)

    Pan, C.; Rogers, A. D.; Thorpe, M. T.

    2015-11-01

    Fine-grained sedimentary deposits on planetary surfaces require quantitative assessment of mineral abundances in order to better understand the environments in which they formed. One way that planetary surface mineralogy is commonly assessed is through thermal emission (~6-50 µm) spectroscopy. To that end, we characterized the TIR spectral properties of compacted, very fine-grained mineral mixtures of oligoclase, augite, calcite, montmorillonite, and gypsum. Nonnegative linear least squares minimization (NNLS) is used to assess the linearity of spectral combination. A partial least squares (PLS) method is also applied to emission spectra of fine-grained synthetic mixtures and natural mudstones to assess its applicability to fine-grained rocks. The NNLS modeled abundances for all five minerals investigated are within ±10% of the known abundances for 39% of the mixtures, showing the relationships between known and modeled abundance follow nonlinear curves. The poor performance of NNLS is due to photon transmission through small grains over portions of the wavelength range and multiple reflections in the volume. The PLS method was able to accurately recover the known abundances (to within ±10%) for 78-90% of synthetic mixtures and for 85% of the mudstone samples chosen for this study. The excellent agreement between known and modeled abundances is likely due to high absorption coefficients over portions of the thermal infrared (TIR) spectral range, and thus, combinations are linear over portions of the range. PLS can be used to recover abundances from very fine-grained rocks from TIR measurements and could potentially be applied to landed or orbital TIR observations.

  19. Oxygen isotopic composition of coarse- and fine-grained material from comet 81P/Wild 2

    NASA Astrophysics Data System (ADS)

    Ogliore, Ryan C.; Nagashima, Kazuhide; Huss, Gary R.; Westphal, Andrew J.; Gainsforth, Zack; Butterworth, Anna L.

    2015-10-01

    Individual particles from comet 81P/Wild 2 collected by NASA's Stardust mission vary in size from small sub-μm fragments found in the walls of the aerogel tracks, to large fragments up to tens of μm in size found towards the termini of tracks. The comet, in an orbit beyond Neptune since its formation, retains an intact a record of early-Solar-System processes that was compromised in asteroidal samples by heating and aqueous alteration. We measured the O isotopic composition of seven Stardust fragments larger than ∼2 μm extracted from five different Stardust aerogel tracks, and 63 particles smaller than ∼2 μm from the wall of a Stardust track. The larger particles show a relatively narrow range of O isotopic compositions that is consistent with 16O-poor phases commonly seen in meteorites. Many of the larger Stardust fragments studied so far have chondrule-like mineralogy which is consistent with formation in the inner Solar System. The fine-grained material shows a very broad range of O isotopic compositions (-70‰ < Δ17O < +60‰) suggesting that Wild 2 fines are either primitive outer-nebula dust or a very diverse sampling of inner Solar System compositional reservoirs that accreted along with a large number of inner-Solar-System rocks to form comet Wild 2.

  20. Correlation of shape and size of methane bubbles in fine-grained muddy aquatic sediments with sediment fracture toughness

    NASA Astrophysics Data System (ADS)

    Katsman, Regina

    2015-01-01

    Gassy sediments contribute to destabilization of aquatic infrastructure, air pollution, and global warming. In the current study a precise shape and size of the buoyant mature methane bubble in fine-grained muddy aquatic sediment is defined by numerical and analytical modeling, their results are in a good agreement. A closed-form analytical solution defining the bubble parameters is developed. It is found that the buoyant mature bubble is elliptical in its front view and resembles an inverted tear drop in its cross-section. The size and shape of the mature bubble strongly correlate with sediment fracture toughness. Bubbles formed in the weaker sediments are smaller and characterized by a larger surface-to-volume ratio that induces their faster growth and may lead to their faster dissolution below the sediment-water interface. This may prevent their release to the water column and to the atmosphere. Shapes of the bubbles in the weaker sediments deviate further from the spherical configuration, than those in the stronger sediments. Modeled bubble characteristics, important for the acoustic applications, are in a good agreement with field observations and lab experiments.

  1. Surface morphology changes and deuterium retention in Toughened, Fine-grained Recrystallized Tungsten under high-flux irradiation conditions

    NASA Astrophysics Data System (ADS)

    Oya, M.; Lee, H. T.; Ueda, Y.; Kurishita, H.; Oyaidzu, M.; Hayashi, T.; Yoshida, N.; Morgan, T. W.; De Temmerman, G.

    2015-08-01

    Surface morphology changes and deuterium (D) retention in Toughened, Fine-Grained Recrystallized Tungsten (TFGR W) with TaC dispersoids (W-TaC) and pure tungsten exposed to D plasmas to a fluence of 1026 D/m2 s were studied as a function of the D ion flux (1022-1024 D/m2 s). As the flux increased from 1022 D/m2 s to 1024 D/m2 s, the numbers of blisters increased for both materials. However, smaller blisters were observed on W-TaC compared to pure W. In W-TaC, cracks beneath the surface along grain boundaries were observed, which were comparable to the blister sizes. The reason for the smaller blister sizes may arise from smaller grain sizes of W-TaC. In addition, reduction of the D retention in W-TaC was observed for higher flux exposures. D depth profiles indicate this reduction arises due to decrease in trapping in the bulk.

  2. Surface modifications on toughened, fine-grained, recrystallized tungsten with repetitive ELM-like pulsed plasma irradiation

    NASA Astrophysics Data System (ADS)

    Kikuchi, Y.; Sakuma, I.; Kitagawa, Y.; Asai, Y.; Onishi, K.; Fukumoto, N.; Nagata, M.; Ueda, Y.; Kurishita, H.

    2015-08-01

    Surface modifications of toughened, fine-grained, recrystallized tungsten (TFGR W) materials with 1.1 wt.% TiC and 3.3 wt.% TaC dispersoids due to repetitive ELM-like pulsed (∼0.15 ms) helium plasma irradiation have been investigated by using a magnetized coaxial plasma gun. No surface cracking at the center part of the TFGR W samples exposed to 20 plasma pulses of ∼0.3 MJ m-2 was observed. The suppression of surface crack formation due to the increase of the grain boundary strength by addition of TiC and TaC dispersoids was confirmed in comparison with a pure W material. On the other hand, surface cracks and small pits appeared at the edge part of the TFGR W sample after the pulsed plasma irradiation. Erosion of the TiC and TaC dispersoids due to the pulsed plasma irradiation could cause the small pits on the surface, resulting in the surface crack formation.

  3. Fine-Grained Rims in the Allan Hills 81002 and Lewis Cliff 90500 CM2 Meteorites: Their Origin and Modification

    NASA Technical Reports Server (NTRS)

    Hua, X.; Wang, J.; Buseck, P. R.

    2002-01-01

    Antarctic CM meteorites Allan Hills (ALH) 8 1002 and Lewis Cliff (LEW) 90500 contain abundant fine-grained rims (FGRs) that surround a variety of coarse-grained objects. FGRs from both meteorites have similar compositions and petrographic features, independent of their enclosed objects. The FGRs are chemically homogeneous at the 10 m scale for major and minor elements and at the 25 m scale for trace elements. They display accretionary features and contain large amounts of volatiles, presumably water. They are depleted in Ca, Mn, and S but enriched in P. All FGRs show a slightly fractionated rare earth element (REE) pattern, with enrichments of Gd and Yb and depletion of Er. Gd is twice as abundant as Er. Our results indicate that those FGRs are not genetically related to their enclosed cores. They were sampled from a reservoir of homogeneously mixed dust, prior to accretion to their parent body. The rim materials subsequently experienced aqueous alteration under identical conditions. Based on their mineral, textural, and especially chemical similarities, we conclude that ALH 8 1002 and LEW 90500 likely have a similar or identical source.

  4. Design of a Fine-Grained Knowledge Model for the Formalization of Clinical Practice Guidelines: Comparison with GEM.

    PubMed

    Bouaud, Jacques; Galopin, Alexandre; Oulad Kouider, Assia; Seroussi, Brigitte

    2016-01-01

    Published as textual documents, clinical practice guidelines (CPGs) didn't demonstrate to impact physician practices when disseminated in their original format. However, when computerized and embedded in clinical decision support systems, they appeared to be more effective. In order to ease the translation from textual to computerized CPGs, we have elaborated a fine-grained knowledge model of CPGs (FGKM) to be used when authoring CPGs. The work has been conducted on VIDALRecos® CPGs. The building of the model has followed a bottom-up iterative process starting with 15 different CPGs. The first version of the FGKM has been assessed on two new complex CPGs, and was enriched by comparison with the Guideline Elements Model (GEM). The final version of the FGKM has been tested on the 2014 Hypertension CPGs. We compared the rules automatically derived from FGKM instances to those manually extracted from textual CPGs for decision support. Results showed that difficulties such as text normalization have to be solved. The FGKM is intended to be used upstream of the process of CPGs authoring in order to ease the implementation and the update of both textual and computerized CPGs. PMID:27577430

  5. Effect of Film Formation Potential on Passive Behavior of Ultra-Fine-Grained 1050 Al Alloy Fabricated via ARB Process

    NASA Astrophysics Data System (ADS)

    Fattah-alhosseini, A.; Gashti, S. O.; Keshavarz, M. K.

    2016-04-01

    In this work, the effect of film formation potential on the passive behavior of ultra-fine-grained 1050 Al alloy in a borate buffer solution is investigated. For this purpose, the specimens were fabricated via accumulative roll bonding (ARB) process up to 1, 3, 5, and 7 passes. To determine the evolution of microstructure as a function of ARB process, atomic force microscopy (AFM) and transmission electron microscopy (TEM) were used. AFM images revealed that the grain size values decreased as the number of ARB passes increased. Moreover, TEM micrograph showed that mean grain size of the sample reached to about 340 nm after applying 7 passes of ARB. Potentiodynamic polarization plots indicated that, as the number of ARB passes increased, the corrosion and passive current densities decreased. Also, electrochemical impedance spectroscopy measurements showed that at selected applied potential above open circuit potential, the corrosion resistance of the 1050 Al alloy was systematically increased by applying further ARB passes. It was found that passive behavior of the ARBed 1050 Al alloy specimens were improved by reducing the grain size.

  6. Evaluation of the initial stage of the reactivated Cotopaxi volcano - analysis of the first ejected fine-grained material

    NASA Astrophysics Data System (ADS)

    Toulkeridis, T.; Arroyo, C. R.; Cruz D'Howitt, M.; Debut, A.; Vaca, A. V.; Cumbal, L.; Mato, F.; Aguilera, E.

    2015-11-01

    Fine-grained volcanic samples were collected at different locations near the Cotopaxi volcano on the same day of its reactivation and some days afterwards in August 2015. The wind-directions charged with such materials have been determined and compared with the existing data-base allowing preventive measures about local warning. The obtained data yielded the less expected wind-directions and therefore ash precipitation in usually less affected areas towards the northern and eastern side of Cotopaxi volcano. The collected samples were studied basically for their morphology, content in minerals and rock fragments as well as the chemical composition. The results obtained from this study allowed to identify and classify the origin of the expelled material being hydroclasts of andesites and dacites with rare appearances of rhyodacites and associated regular as well as accessory minerals all being present in the conduct and crater forming part of previous eruptive activities of the volcano. A further evaluation has been performed to determine the activity stage of the volcanic behavior. The resulting interpretation appears to point to a volcanic behavior a more frequent sporadic event with a relatively low probability of lahar generation rather than any other known destructive phase, which includes a less-frequent but tremendously more catastrophic scenario.

  7. Corrosion Behavior of Ultra-fine Grained 1050 Aluminum Alloy Fabricated by ARB Process in a Buffer Borate Solution

    NASA Astrophysics Data System (ADS)

    Fattah-alhosseini, A.; Gashti, S. O.

    2015-09-01

    Accumulative roll bonding (ARB) has been used as a severe plastic deformation process for the industrial production of ultra-fine grained (UFG) and nano-crystalline sheets with excellent mechanical properties. In the present study, the effect of the ARB process on the corrosion behavior of UFG and nano-crystalline 1050 aluminum alloy in a buffer borate solution (pH 5.5) has been investigated. The result of microhardness tests revealed that microhardness values increase with an increasing number of ARB cycles. A sharp increase in microhardness is seen after three ARB cycles, whereas moderate additional increases are observed afterward for up to nine cycles. Also, the XRD results showed that the mean crystallite size decreased to about 91 nm after nine cycles. The potentiodynamic plots show that as a result of ARB, the corrosion behavior of the UFG and nano-crystalline specimens improves, compared to the annealed 1050 aluminum alloy. Moreover, electrochemical impedance spectroscopy measurements showed that the polarization resistance increases with an increasing number of ARB cycles.

  8. Magnetic properties of FeCu (3 d transition metals) SiB alloys with fine grain structure

    SciTech Connect

    Sawa, T. ); Takahashi, Y. )

    1990-05-01

    Soft magnetic properties were investigated together with crystallization process and grain size for FeCu (3{ital d} transition metals) SiB alloys with fine grains. They were rapidly quenched from the melt to achieve amorphous states and then annealed above their crystallization temperatures. In the group of 3{ital d} transition metals studied, low magnetic core loss at high frequency was obtained for V-substituted Fe-based alloys, because only a bcc Fe solid solution with diameter of about 20 nm precipitated. On the other hand, Cr- or Mn-substituted alloys could not be attained with good soft magnetic properties because of the existence of Fe-metalloid compounds besides the bcc phase by annealing above their crystallization temperatures. The effect of grain size on the soft magnetic properties is more prominent at lower frequency. Diffraction peaks which are characteristics of an ordered phase (DO{sub 3}) are observed, which is the origin of excellent soft magnetic properties in FeAlSi alloys.

  9. Manufacturing and high heat flux loading of tungsten coatings on fine grain graphite for the ASDEX-upgrade divertor

    NASA Astrophysics Data System (ADS)

    Deschka, S.; García-Rosales, C.; Hohenauer, W.; Duwe, R.; Gauthier, E.; Linke, J.; Lochter, M.; Malléner, W.; Plöchl, L.; Rödhammer, P.; Salito, A.

    1996-10-01

    Fine grain graphite tiles coated with tungsten layers by plasma spray (PS, thickness 100-550 μm) and physical vapour deposition (PVD, 30-200 μm), respectively, were subjected to thermal loads up to 17 MW/m 2 and 2 s pulse duration. The damage limit was evaluated by increasing the heat flux and the pulse length stepwise. The results proved that PS coatings are capable of withstanding heat loads up to 15 MW/m 2 at 2 s pulse length without any structural changes, and cyclic loading with 1000 cycles at 10 MW/m 2. The highly dense PVD coatings suffered damage by crack formation at slightly lower heat loads, and thin PVD layers failed under cyclic loading with 1000 cycles at 10 MW/m 2 due to thermal fatigue and melting. The good performance of PS coatings is related to their porosity, which provides a crack arresting mechanism, and to their mechanical strength, depending on the density of the PS layer.

  10. The effect of high fluence neutron irradiation on the properties of a fine-grained isotropic nuclear graphite

    NASA Astrophysics Data System (ADS)

    Ishiyama, S.; Burchell, T. D.; Strizak, J. P.; Eto, M.

    1996-05-01

    A fine-grained isotropic nuclear graphite (IG-110), manufactured from a petroleum coke, was irradiated to a total neutron dose of 3.8 × 10 26 n/m 2 or 25 displacements per atom (dpa) at 600°C in the high flux isotope reactor (HFIR) at Oak Ridge: National Laboratory (ORNL). The effect of irradiation and the influence of post-irradiation thermal annealing on the properties of the graphite were evaluated. Volume change turnaround was clearly observed at 15—20 dpa and the return to original volume ( {ΔV}/{V 0} = 0 ) can be estimated to occur at ˜ 30 dpa. Strength and elastic moduli of the irradiated graphite increased by a factor of 2-3, and maximums in the {δ}/{δ 0}, and {E}/{E o} curves were at ˜20 dpa at 600°C. Recovery of volume, fracture strength and thermal conductivity by thermal annealing were found., and thermal conductivity returned to better than about 30% of the unirradiated value after 1200°C thermal annealing.

  11. Fine grained hodoscopes based on scintillating optical fibers. Final technical report, June 1, 1983-May 31, 1984

    SciTech Connect

    Borenstein, S.R.

    1984-05-31

    This is the final technical report on a project which undertook to develp and test scintillating optical fibers for use in a fine grained hodoscope for experiments in High Energy Physics. After a brief discussion of the need for such a device in experiments in high rate environments, a description is given of the process of drawing and cladding plastic scintillator to form scintillating optical fibers. This is followed by a description of the test procedures used to evaluate the resultant fibers both in the laboratory and at the accelerator. A discussion of three possible readout schemes then follows. These are individual photomultiplier tubes, avalanche photodiodes and microchannel plates with segmented anodes. The results of this study are then presented. The present status of the project is then summarized, in which it is pointed out that significant improvement in useful fiber length has been achieved as a result of this development program. The difficulty of quality control in fiber production remains a serious limitation, and a satisfactory readout scheme with good optical coupling between many hodoscope elements and photodetectors has yet to be achieved.

  12. In situ conditions and interactions between microbes and minerals in fine-grained marine sediments: A TEM microfabric perspective

    SciTech Connect

    Ransom, B.; Bennett, R.H.; Baerwald, R.; Hulbert, M.H.; Burkett, P.J.

    1999-01-01

    Microbes, their exocellular secretions, and their impact on the mineralogy and microfabric of fine-grained continental margin sediments were investigated by transmission electron microscopy. Techniques were used that retained the in situ spatial relations of both bio-organic and mineralogical constituents. Photomicrographs were taken of characteristic mineral-microbe associations in the first meter of burial at conditions ranging from aerobic to anaerobic. Single-celled prokaryotes, prokaryotic colonies, and eukaryotic organisms were observed as were motile, sessile, and predatory species. Bacterial cells dominate the assemblage. The most commonly observed mineral-biological interaction was the surrounding, or close association, of isolated heterotrophic bacterial cells by clay minerals. Almost without exception, the external surfaces of the bacteria were covered with secreted exocellular slimes composed of cross-linked polysaccharide fibrils. These fibrils act to bind sediment grains into relatively robust microaggregates, roughly {le} 25 {micro}m in diameter. These exocellular polymers can significantly impact the interaction between microbes and minerals, as well as the chemical and physical transport of fluids and dissolved aqueous species through the sediment. Although pore water chemical profiles from the field sites studied have dissolved Fe and Mn, no close association was found between the microbes imaged and precipitated metal oxyhydroxides or other authigenic minerals, such as is commonly reported from laboratory cultures.

  13. Fabrication, tribological and corrosion behaviors of ultra-fine grained Co-28Cr-6Mo alloy for biomedical applications.

    PubMed

    Ren, Fuzeng; Zhu, Weiwei; Chu, Kangjie

    2016-07-01

    Nickel and carbides free Co-28Cr-6Mo alloy was fabricated by combination of mechanical alloying and warm pressing. The microstructure, mechanical properties, pin-on-disk dry sliding wear and corrosion behavior in simulated physiological solution were investigated. The produced Co-28Cr-6Mo alloy has elongated ultra-fine grained (UFG) structure of ε-phase with average grain size of 600nm in length and 150nm in thickness. The hardness and modulus were determined to be 8.87±0.56GPa and 198.27±7.02GPa, respectively. The coefficient of friction upon dry sliding against alumina is pretty close to that of the forged Co-29Cr-6Mo alloy. The initial ε-phase and UFG microstructure contribute to reduce the depth of severe plastic deformation region during wear and enable the alloy with excellent wear resistance. The corrosion potential of such UFG Co-Cr-Mo alloy has more positive corrosion potential and much lower corrosion current density than those of ASTM alloy. PMID:26807770

  14. Current status of ultra-fine grained W TiC development for use in irradiation environments

    NASA Astrophysics Data System (ADS)

    Kurishita, H.; Kobayashi, S.; Nakai, K.; Arakawa, H.; Matsuo, S.; Takida, T.; Takebe, K.; Kawai, M.

    2007-03-01

    Ultra-fine grained (UFG) W-TiC with a high purity matrix of low dislocation density is expected to exhibit improve resistance to irradiation with neutrons and helium ions and the room temperature mechanical properties. Aiming at such UFG W-TiC with the desired microstructure, powders of W with 0.25-0.8 wt% TiC additions were subjected to mechanical alloying (MA) and hot isostatic pressing (HIP), where purified H2 and Ar were used as the MA atmosphere. Microstructural observations and room- and high-temperature mechanical tests were performed for UFG W-TiC before and after neutron irradiation to a fluence of 2×1024 n m-2 at 873 K. It is shown that the MA atmosphere significantly affects grain refinement, room-temperature strength and high-temperature tensile plasticity of UFG W-TiC. W-0.5TiC with H2 in MA (W-0.5TiC-H2) shows a larger strain rate sensitivity of flow stress, m, of 0.5~0.6 at temperatures from 1673 to 1973 K, which is a feature of superplastic materials. Whereas W-0.5TiC-Ar shows a smaller m value of approximately 0.2. No radiation hardening is recognized in UFG W-0.5TiC-H2 and W-0.5TiC-Ar.

  15. Origin and modification of magnetic fabric in fine-grained detrital sediment by depositional and postdepositional processes

    SciTech Connect

    Brennan, W.J. )

    1991-03-01

    Glaciolacustrine varved clay of late Wisconsinan age in western New York has stable remanent magnetization and anisotropic magnetic susceptibility (AMS). The results of rock magnetic tests demonstrate that remanence is carried by interacting single domain grains of magnetite, but coarse multidomain grains of magnetite are also present. As in many fine-grained detrital sediments, remanent inclination is anomalously shallow, given the latitude of the area of deposition and the existence of a geocentric dipole field at the time of deposition. The AMS consists of a foliation that is gently inclined to bedding and a weaker lineation in the plane of foliation. Independence of magnetic fabric and direction of remanence can be demonstrated by comparing remanence and AMS at closely spaced sites in the same beds and also between widely spaced sites of different age. The magnetic fabric suggests that deposition is accompanied by transient density currents which align large multidomain grains; magnetic alignment of single domain grains occurs later in a dilute slurry at rest on the surface of deposition, rather than during settling in still water. Compaction after deposition results in decrease of remanent inclination and increase in magnetic foliation. Remanent declination and magnetic lineation are unaffected by compaction.

  16. AraPPISite: a database of fine-grained protein-protein interaction site annotations for Arabidopsis thaliana.

    PubMed

    Li, Hong; Yang, Shiping; Wang, Chuan; Zhou, Yuan; Zhang, Ziding

    2016-09-01

    Knowledge about protein interaction sites provides detailed information of protein-protein interactions (PPIs). To date, nearly 20,000 of PPIs from Arabidopsis thaliana have been identified. Nevertheless, the interaction site information has been largely missed by previously published PPI databases. Here, AraPPISite, a database that presents fine-grained interaction details for A. thaliana PPIs is established. First, the experimentally determined 3D structures of 27 A. thaliana PPIs are collected from the Protein Data Bank database and the predicted 3D structures of 3023 A. thaliana PPIs are modeled by using two well-established template-based docking methods. For each experimental/predicted complex structure, AraPPISite not only provides an interactive user interface for browsing interaction sites, but also lists detailed evolutionary and physicochemical properties of these sites. Second, AraPPISite assigns domain-domain interactions or domain-motif interactions to 4286 PPIs whose 3D structures cannot be modeled. In this case, users can easily query protein interaction regions at the sequence level. AraPPISite is a free and user-friendly database, which does not require user registration or any configuration on local machines. We anticipate AraPPISite can serve as a helpful database resource for the users with less experience in structural biology or protein bioinformatics to probe the details of PPIs, and thus accelerate the studies of plant genetics and functional genomics. AraPPISite is available at http://systbio.cau.edu.cn/arappisite/index.html . PMID:27338257

  17. The role of fine-grained annotations in supervised recognition of risk factors for heart disease from EHRs.

    PubMed

    Roberts, Kirk; Shooshan, Sonya E; Rodriguez, Laritza; Abhyankar, Swapna; Kilicoglu, Halil; Demner-Fushman, Dina

    2015-12-01

    This paper describes a supervised machine learning approach for identifying heart disease risk factors in clinical text, and assessing the impact of annotation granularity and quality on the system's ability to recognize these risk factors. We utilize a series of support vector machine models in conjunction with manually built lexicons to classify triggers specific to each risk factor. The features used for classification were quite simple, utilizing only lexical information and ignoring higher-level linguistic information such as syntax and semantics. Instead, we incorporated high-quality data to train the models by annotating additional information on top of a standard corpus. Despite the relative simplicity of the system, it achieves the highest scores (micro- and macro-F1, and micro- and macro-recall) out of the 20 participants in the 2014 i2b2/UTHealth Shared Task. This system obtains a micro- (macro-) precision of 0.8951 (0.8965), recall of 0.9625 (0.9611), and F1-measure of 0.9276 (0.9277). Additionally, we perform a series of experiments to assess the value of the annotated data we created. These experiments show how manually-labeled negative annotations can improve information extraction performance, demonstrating the importance of high-quality, fine-grained natural language annotations. PMID:26122527

  18. Use of Buried Sediment Traps to Estimate Deposition of Fine-Grained Sediment and Organic Contaminants in Salmon Spawning Gravels

    NASA Astrophysics Data System (ADS)

    Anderson, C.

    2005-05-01

    Deposition of fine-grained sediments into spawning gravels was estimated in the McKenzie River, OR, in conjunction with reservoir drawdown. Collapsed bags were buried at a depth of 40 cm during August 2003 and retrieved in July 2004. The deployment period included several mid-winter storms when sediment transport was high. Retrieval captured the column of bed sediment overlying the bags, including possible contaminants. Grain size distribution, percent and mass of fine material, chlorinated organic compounds, and organic carbon were measured in the retrieved sediment and pore waters. Deposition of fine materials was least in upstream reference areas, greatest in tributaries downstream of two different reservoirs, and intermediate downstream on the mainstem McKenzie River. Low-levels of organochlorine compounds were detected at two of the five sites, including below one reservoir where historical DDT spraying had occurred, and at the downstream mainstem location. The collapsed bag design, with Teflon lining, was an effective method to estimate time-integrated deposition of fine sediment and contaminants into a streambed.

  19. Fine-grained sediment dynamics during a strong storm event in the inner-shelf of the Gulf of Lion (NW Mediterranean)

    NASA Astrophysics Data System (ADS)

    Ferré, B.; Guizien, K.; Durrieu de Madron, X.; Palanques, A.; Guillén, J.; Grémare, A.

    2005-12-01

    A 1-month survey, comprising moored instruments and high-frequency sampling, was carried out in a shallow Mediterranean embayment during the autumn of 1999, to assess the effect of strong and unpredictable meteorological events on the near-bed, fine-grained sediment dynamics. A 1DV Reynolds Averaged Navier-Stokes (RANS) model for the wave-current boundary layer [Guizien et al., 2003. 1DV bottom boundary layer modeling under combined wave and current: turbulent separation and phase lag effects. Journal of Geophysical Research 108(C1), 3016] is tested, against the recorded suspended sediment concentration data (SSC); it is used then to determine the sediment resuspension and flux in the embayment. A strong southeasterly storm occurred on November 12, 1999, which generated a large swell ( H=7m, T=10s), a sea surface rise of about 0.5 m and near-bottom currents of up to 35 cm s -1. During the storm, the SSC increased throughout the whole of the water column and reached 70 mg l -1, at 25.8 m (0.5 m above the bottom). Numerical computations of SSC profiles, based upon local sandy sediment grain size distribution, are in good agreement with the measured SSC profiles during the onset of the storm over the first 2 h. These observations confirm that the measured SSC profiles, during the storm, resulted from the resuspension of the fine-grained fraction (<60 μm); that is consistent with the grain size of material collected in sediment traps. Following the first 2 h, numerical simulations suggest that bed armouring occurred, after the surficial fine-grained fraction was winnowed. Computations of mud fraction SSC, along a cross-shore transect, which displays a seaward-fining texture of the sediment, indicate that strong resuspension during this severe storm event only affected water depths shallower than 35 m. This water depth coincides approximately with the transition from sand to mud, on the Gulf of Lion shelf, which is located around 30 m. Computations of the horizontal

  20. FINE GRAIN NUCLEAR EMULSION

    DOEpatents

    Oliver, A.J.

    1962-04-24

    A method of preparing nuclear track emulsions having mean grain sizes less than 0.1 microns is described. The method comprises adding silver nitrate to potassium bromide at a rate at which there is always a constant, critical excess of silver ions. For minimum size grains, the silver ion concentration is maintained at the critical level of about pAg 2.0 to 5.0 during prectpitation, pAg being defined as the negative logarithm of the silver ion concentration. It is preferred to eliminate the excess silver at the conclusion of the precipitation steps. The emulsion is processed by methods in all other respects generally similar to the methods of the prior art. (AEC)

  1. Transition in magnetic fabric types in progressively deformed, fine-grained sedimentary rocks of Central Armorica (Brittany, France)

    NASA Astrophysics Data System (ADS)

    Haerinck, Tom; Hirt, Ann M.; Debacker, Timothy N.; Sintubin, Manuel

    2014-05-01

    The anisotropy of magnetic susceptibility (AMS) of progressively deformed, fine-grained sedimentary rocks is determined for different tectonometamorphic settings in Central Armorica (Brittany, France). Low-temperature AMS and high-field torque magnetometry on a representative selection of samples indicate that the magnetic fabric is dominantly paramagnetic and the ferromagnetic (s.l.) contribution can be neglected. The AMS documents a progressive transition of intermediate fabrics to tectonic fabrics and increasingly stronger developed tectonic fabrics. An integrated magnetic-mineralogical approach is performed in order to assess whether we can use this evolution as a quantitative indicator for the intensity of cleavage development in Central Armorica. During the magnetic fabric transition, the maximum susceptibility axis (K1) remains stationary oriented parallel to the bedding - cleavage intersection, whereas the minimum susceptibility axis (K3) orientation distribution changes from a moderate girdle distribution in the intermediate fabric types, to a strongly clustered distribution parallel to the cleavage pole for the tectonic fabric types. A Woodcock two-axis ratio plot is used to evaluate this change in K3 distribution. This shows a regional pattern with intermediate fabrics in the southern part of Central Armorica and tectonic fabrics in the northern part of Central Armorica. Quantitative analysis of the observed magnetic fabrics shows that the fabric transition described above is accompanied by an evolution from prolate susceptibility ellipsoids with a relatively low degree of anisotropy to oblate ellipsoid with an increasingly higher degree of anisotropy. In a graph of the shape parameter T against the corrected degree of anisotropy PJ, this evolution has a hockey-stick shaped pattern with the vertical branch reflecting the actual transition from intermediate to tectonic fabric type and the horizontal branch reflecting progressively stronger developed

  2. Mechanical behavior of ultra-fine grained and nanocrystalline metals and single crystals: Experiments, modeling and simulations

    NASA Astrophysics Data System (ADS)

    Liu, Jian

    Ultra-fine grained (ufg, 100 nm < grain size < 1microm) and nanocrystalline materials (nc, grain size < 100 nm) have been the subject of widespread research over the past couple of decades. In this study, the mechanical behavior of ultra-fine grained and nanocrystalline metals were studied both experimentally and numerically. High quality bulk ultrafine-grained/nanocrystalline (ufg/nc) titanium samples were prepared through room temperature mechanical milling and conventional consolidation processes. The prepared bulk samples show high purity, very low porosity and high ductility under compression. The dependency of yield stress and post-yielding behavior on grain size, strain rate and temperature are comprehensively studied. The texture evolution of the ufg/nc samples under compression is measured by synchrotron X-Ray Diffraction (XRD). On the macroscopic scale, the viscoplastic phenomenological Khan--Liang--Farrokh (KLF) model is used to correlate the experimental results of the ufg/nc Ti. Crystal Plasticity Finite Element Method (CPFEM) with three different single crystal plasticity constitutive models is used for the purpose of incorporating strain rate and temperature effects into CPFEM. The classical and two newly developed single crystal plasticity models are used to simulate the deformation responses of single crystal aluminum. A constitutive model based on intragranular dislocation slip is shown to correlate closely to the stain rate effect and latent hardening behavior of single crystal Al. For ufg/nc face-centered cubic (FCC) material, we assume that dislocation slip is still the most important deformation mechanism while there is no interaction between dislocations within grains. We develop a constitutive model based on dislocation glide within ufg/nc grains and include all stages of dislocation activities especially their interactions with GB. An Arrhenius type rate is established based on the thermal activated depinning of dislocations from GB

  3. Monitoring Fine-Grained Sediment in the Colorado River Ecosystem, Arizona - Control Network and Conventional Survey Techniques

    USGS Publications Warehouse

    Hazel, Joseph E., Jr.; Kaplinski, Matt; Parnell, Roderic A.; Kohl, Keith; Schmidt, John C.

    2008-01-01

    In 2002, fine-grained sediment (sand, silt, and clay) monitoring in the Colorado River downstream from Glen Canyon Dam was initiated to survey channel topography at scales previously unobtainable in this canyon setting. This report presents the methods used to establish the high-resolution global positioning system (GPS) control network required for this effort as well as the conventional surveying techniques used in the study. Using simultaneous, dual-frequency GPS vector-based methods, the network points were determined to have positioning accuracies of less than 0.03 meters (m) and ellipsoidal height accuracies of between 0.01 and 0.10 m at a 95-percent degree of confidence. We also assessed network point quality with repeated, electronic (optical) total-station observations at 39 points for a total of 362 measurements; the mean range was 0.022 m in horizontal and 0.13 in vertical at a 95-percent confidence interval. These results indicate that the control network is of sufficient spatial and vertical accuracy for collection of airborne and subaerial remote-sensing technologies and integration of these data in a geographic information system on a repeatable basis without anomalies. The monitoring methods were employed in up to 11 discrete reaches over various time intervals. The reaches varied from 1.3 to 6.4 kilometers in length. Field results from surveys in 2000, 2002, and 2004 are described, during which conventional surveying was used to collect more than 3000 points per day. Ground points were used as checkpoints and to supplement areas just below or above the water surface, where remote-sensing data are not collected or are subject to greater error. An accuracy of +or- 0.05 m was identified as the minimum precision of individual ground points. These results are important for assessing digital elevation model (DEM) quality and identifying detection limits of significant change among surfaces generated from remote-sensing technologies.

  4. Geochemical imprint of depositional conditions on organic matter in laminated-Bioturbated interbeds from fine-grained marine sequences

    USGS Publications Warehouse

    Pratt, L.M.; Claypool, G.E.; King, J.D.

    1986-01-01

    Laminated organic-rich shales are interbedded at a scale of centimeters to a few meters with bioturbated organic-poor mudstones or limestones in some fine-grained marine sequences. We have analyzed the organic matter in pairs of laminated/bioturbated interbeds from Cretaceous and Devonian rocks deposited in epicontinental and oceanic settings for the purpose of studying the influence of depositional and early diagenetic environment on the organic geochemical properties of marine shales. Results of these analyses indicate that for rocks that are still in a diagenetic stage of thermal alteration, the relative abundance of biomarker compounds and specific biomarker indices can be useful indicators of depositional and early diagenetic conditions. Pristane/phytane ratios are generally highest for laminated rocks from epicontinental basins and appear to reflect the input of isoprenoid precursors more than oxygenated versus anoxic depositional conditions. The thermally immature laminated rocks are characterized by relatively high contents of 17??(H), 21??(H)-hopanes, hopenes, sterenes and diasterenes, and by strong predominance of the 22R over 22S homohopane isomers. Thermally immature bioturbated samples are characterized by absence of the ??,??-hopanes, by low contents of both saturated and unsaturated polycyclic hydrocarbons, and by slight or no predominance of the 22R over 22S homohopane isomers. There are less obvious compositional differences between the saturated hydrocarbons in the laminated and bioturbated units from the thermally mature sequences. For both the thermally mature and immature laminated samples, the degree of isomerization at the 22C position for hopanes and at the 20C position for steranes is generally consistent with the degree of thermal maturity interpreted from other properties of the organic matter. The bioturbated samples, however, exhibit inconsistent and anomalously high degrees of isomerization for the homohopanes, resulting either from

  5. Fine-Grained Distribution of a Non-Native Resource Can Alter the Population Dynamics of a Native Consumer

    PubMed Central

    2015-01-01

    New interactions with non-native species can alter selection pressures on native species. Here, we examined the effect of the spatial distribution of a non-native species, a factor that determines ecological and evolutionary outcomes but that is poorly understood, particularly on a fine scale. Specifically, we explored a native butterfly population and a non-native plant on which the butterfly oviposits despite the plant’s toxicity to larvae. We developed an individual-based model to describe movement and oviposition behaviors of each butterfly, which were determined by plant distribution and the butterfly's host preference genotype. We estimated the parameter values of the model from rich field data. We simulated various patterns of plant distributions and compared the rates of butterfly population growth and changes in the allele frequency of oviposition preference. Neither the number nor mean area of patches of non-native species affected the butterfly population, whereas plant abundance, patch shape, and distance to the nearest native and non-native patches altered both the population dynamics and genetics. Furthermore, we found a dramatic decrease in population growth rates when we reduced the distance to the nearest native patch from 147 m to 136 m. Thus changes in the non-native resource distribution that are critical to the fate of the native herbivore could only be detected at a fine-grained scale that matched the scale of a female butterfly’s movement. In addition, we found that the native butterfly population was unlikely to be rescued by the exclusion of the allele for acceptance of the non-native plant as a host. This study thus highlights the importance of including both ecological and evolutionary dynamics in analyses of the outcome of species interactions and provides insights into habitat management for non-native species. PMID:26575843

  6. SPAR: a random forest-based predictor for self-interacting proteins with fine-grained domain information.

    PubMed

    Liu, Xuhan; Yang, Shiping; Li, Chen; Zhang, Ziding; Song, Jiangning

    2016-07-01

    Protein self-interaction, i.e. the interaction between two or more identical proteins expressed by one gene, plays an important role in the regulation of cellular functions. Considering the limitations of experimental self-interaction identification, it is necessary to design specific bioinformatics tools for self-interacting protein (SIP) prediction from protein sequence information. In this study, we proposed an improved computational approach for SIP prediction, termed SPAR (Self-interacting Protein Analysis serveR). Firstly, we developed an improved encoding scheme named critical residues substitution (CRS), in which the fine-grained domain-domain interaction information was taken into account. Then, by employing the Random Forest algorithm, the performance of CRS was evaluated and compared with several other encoding schemes commonly used for sequence-based protein-protein interaction prediction. Through the tenfold cross-validation tests on a balanced training dataset, CRS performed the best, with the average accuracy up to 72.01 %. We further integrated CRS with other encoding schemes and identified the most important features using the mRMR (the minimum redundancy maximum relevance) feature selection method. Our SPAR model with selected features achieved an average accuracy of 92.09 % on the human-independent test set (the ratio of positives to negatives was about 1:11). Besides, we also evaluated the performance of SPAR on an independent yeast test set (the ratio of positives to negatives was about 1:8) and obtained an average accuracy of 76.96 %. The results demonstrate that SPAR is capable of achieving a reasonable performance in cross-species application. The SPAR server is freely available for academic use at http://systbio.cau.edu.cn/zzdlab/spar/ . PMID:27074717

  7. Removal of contaminants from fine grained soils using electrokinetic (EK) flushing. Final report, September 30, 1987--June 30, 1993

    SciTech Connect

    Reed, B.E.; Berg, M.T.

    1993-10-01

    Recently, attention has focused on developing cost effective techniques to remove inorganic contaminants from soils in-situ. For most in-situ techniques hydraulic pressure is used to disperse the chemical additives and collect the contaminated groundwater. In-situ treatment technologies have had success at sites containing sandy soils but have not shown much promise for soils with large amounts of clay and silt. This is due primarily to difficulty in transporting groundwater, contaminants, and chemical additives through the subsurface. Unfortunately, soils high in clay and silt are known to sequester large quantities of inorganic and organic contaminants. Thus, soils having low hydraulic conductivity`s are generally efficient in sequestering pollutants but are resistant to standard in-situ remediation techniques because of the difficulty in transporting groundwater and contaminants. A candidate technology for the in-situ remediation of low permeability soils is electrokinetic (EK) soil flushing. In EK soil flushing, groundwater and contaminants are transported under an a plied voltage. The transport of groundwater electroosmotically does not depend directly on the soil`s hydraulic conductivity. Thus, soils that would otherwise require excavation and treatment can be remediated in-situ if electrokinetics is used as the driving force for liquid and contaminant transport. This report details the results from work conducted on the use of EK soil flushing to remediate a fine grained soil contaminated with lead. The first portion of the experimental work entailed soil collection and characterization, soil adsorption and desorption of lead, and EK reactor construction and testing. The second phase of the research consisted of investigating the efficacy of using EK soil flushing on an actual soil using bench-scale EK reactors. For the second phase of the research the affect of initial conditions on the efficiency of EK soil flushing was studied.

  8. A Comparison of Residual Stress Development in Inertia Friction Welded Fine Grain and Coarse Grain Nickel-Base Superalloy

    NASA Astrophysics Data System (ADS)

    Iqbal, N.; Rolph, J.; Moat, R.; Hughes, D.; Hofmann, M.; Kelleher, J.; Baxter, G.; Withers, P. J.; Preuss, M.

    2011-12-01

    The effect of the base material microstructure on the development of residual stresses across the weld line in inertia friction welds (IFWs) of high-strength nickel-base superalloy RR1000 was studied using neutron diffraction. A comparison was carried out between tubular IFW specimens generated from RR1000 heat treated below (fine grain (FG) structure) and above (coarse grain (CG) structure) the γ'-solvus. Residual stresses were mapped in the as-welded (AW) condition and, after a postweld heat treatment (PWHT), optimized for maximum alloy strength. The highest tensile stresses were generally found in the hoop direction at the weld line near the inner diameter of the tubular-shaped specimens. A comparison between the residual stresses generated in FG and CG RR1000 suggests that the starting microstructure has little influence on the maximum residual stresses generated in the weld even though different levels of energy must be input to achieve a successful weld in each case. The residual stresses in the postweld heat treated samples were about 35 pct less than for the AW condition. Despite the fact that the high-temperature properties of the two parent microstructures are different, no significant differences in terms of stress relief were found between the FG and CG RR1000 IFWs. Since the actual weld microstructures of FG and CG RR1000 inertia welds are very similar, the results suggest that it is the weld microstructure and its associated high-temperature properties rather than the parent material that affects the overall weld stress distribution and its subsequent stress relief.

  9. Morphobathymetric analysis of the large fine-grained sediment waves over the Gulf of Valencia continental slope (NW Mediterranean)

    NASA Astrophysics Data System (ADS)

    Ribó, Marta; Puig, Pere; Muñoz, Araceli; Lo Iacono, Claudio; Masqué, Pere; Palanques, Albert; Acosta, Juan; Guillén, Jorge; Gómez Ballesteros, María

    2016-01-01

    Detailed analysis of recently acquired swath bathymetry, together with high-resolution seismic profiles and bottom sediment samples, revealed the presence of large-scale fine-grained sediment waves over the Gulf of Valencia continental slope. As many other deep-water sediment waves, these features were previously attributed to gravitational slope failure, related to creep-like deformation, and are here reinterpreted as sediment wave fields extending from 250 m depth to the continental rise, at ~ 850 m depth. Geometric parameters were computed from the high-resolution multibeam dataset. Sediment wave lengths range between 500 and 1000 m, and maximum wave heights of up to 50 m are found on the upper slope, decreasing downslope to minimum values of 2 m high. Sediment waves on the lower part of the slope are quasi-stationary vertically accreting, whereas they show an upslope migrating pattern from the mid-slope to the upper part of the continental slope. High-resolution seismic profiles show continuous internal reflectors, with sediment waves merging down-section and sediment wave packages decreasing in thickness downslope. These sediment packages are thicker on the crest of each individual sediment wave and thinner on the downslope flank. 210Pb analyses conducted on sediment cores collected over the sediment wave fields also indicate slightly higher sediment accumulation rates on the wave crests. Sediment wave formation processes have been inferred from contemporary hydrodynamic observations, which reveal the presence of near-inertial internal waves interacting with the Gulf of Valencia continental slope. Internal wave activity is suggested to be the preferential mechanism for the transport and deposition of sediment, and the maintenance of the observed sediment wave fields.

  10. Fluid movement and diagenesis in fine-grained geopressured sediments of Frio Formation (Oligocene), Kaplan field, southwestern Louisiana

    SciTech Connect

    Davis, B.A.; Ferrell, R.E.

    1983-03-01

    Investigation of structure, temperature, pressure, salinity, and core samples at Kaplan field yields information on diagenesis of fine-grained sandstones deposited in an outer shelf/upper slope depositional environment The shallow occurrence of geopressure is related to structure and a high shale/sand ratio. Low isothermal surfaces in the down fault blocks accompanied by anomalous high temperatures in the upthrown blocks indicate vertical leakage of fluids along growth faults from underlying geopressured aquifers. The Frio Formation core samples from 16,700 to 19,600 ft (5090 to 5974 m) of depth, representing channel and channel-edge turbidite sandstones, were examined petrographically and by SEM. The arkosic composition of late stage diagenesis sandstones at Kaplan field suggests an original arkose or lithic arkose composition (classification of McBride). Nonferroan calcite cementation, chlorite rims and cement, and quartz overgrowths characterize early diagenesis. At a middle stage of diagenesis secondary porosity is developed by dissolution of unstable grains and calcite cement. Samples flushed by geopressured waters from greater depth show kaolinite pore-fill and quartz over-growths, chlorite (polytype IIb) and illite cement, and feldspar overgrowths in the late diagenetic stage. The low permeability of sandstones with extensive early chlorite cement (channel-edge sandstones) precludes development of extensive secondary porosity. In contrast, sandstones with little early chlorite cement develop and maintain secondary porosity through the late diagenetic stage. Restriction of fluid movement by early chlorite cement has ramifications for migration of hydrocarbons or geothermal waters, and for gas production at Kaplan field.

  11. A multi-disciplinary study of deformation of the basaltic cover over fine-grained valley fills: a case study from Eastern Sardinia, Italy

    NASA Astrophysics Data System (ADS)

    Deiana, Rita; Dieni, Iginio; Massari, Francesco; Perri, Maria Teresa; Rossi, Matteo; Brovelli, Alessandro

    2016-06-01

    The Pliocene to Early Pleistocene volcanic activity which generated the basaltic plateau of the Orosei-Dorgali area in Eastern Sardinia led to the disruption of the local hydrographic network by damming some tracts of the fluvial valleys incised in the granite basement. This resulted in the formation of lacustrine basins, whose fine-grained fills were partly interfingered and eventually covered by younger lava flows. In the SW part of the plateau, close to the Galtellì village, a number of unknown depressions, locally named "Paules," were formed. In order to reconstruct their subsurface structure, two electrical resistivity tomography surveys were carried out across these depressions. The geophysical results, which demonstrate the existence of a disrupted layered system, were used to build a numerical geomechanical model that suggest the depressions originated by local collapses of the basaltic cover due to the compaction of the underlying fine-grained valley fills.

  12. TEM/AEM characterization of fine-grained clay minerals in very-low-grade rocks: Evaluation of contamination by EMPA involving celadonite family minerals

    SciTech Connect

    Li, Gejing; Peacor, D.R.; Coombs, D.S.; Kawachi, Y.

    1996-12-31

    Recent advances in transmission electron microscopy (TEM) and analytical electron microscopy (AEM) have led to many new insights into the structural and chemical characteristics of very fine-grained, optically homogeneous mineral aggregates in sedimentary and very low-grade metamorphic rocks. Chemical compositions obtained by electron microprobe analysis (EMPA) on such materials have been shown by TEM/AEM to result from beam overlap on contaminant phases on a scale below resolution of EMPA, which in turn can lead to errors in interpretation and determination of formation conditions. Here we present an in-depth analysis of the relation between AEM and EMPA data, which leads also to the definition of new mineral phases, and demonstrate the resolution power of AEM relative to EMPA in investigations of very fine-grained mineral aggregates in sedimentary and very low-grade metamorphic rocks.

  13. Can computer autoacquisition of medical information meet the needs of the future? A feasibility study in direct computation of the fine grained electronic medical record.

    PubMed Central

    Warren, J. R.; Posey, B.; Thornton, T.; Parang, P.

    1999-01-01

    The project describes feasibility testing of a two-year clinical deployment of an electronic record keeping system for primary care medicine that allowed financial medical management and clinical disease study without the encumbrance of human encoding. The software used an expert system for acquisition of historical information and automatic database encoding of each independent fact. The historical acquisition system was combined with a screen-based physician data entry system to create a fine-grained medical record. Fine-grained data allowed direct computer processing to mimic the ends that presently require human encoding--gatekeeping, disease characterization and remote disease surveillance. The project demonstrated the possibility of real time gatekeeping through direct analysis of data. Detection and characterization of disease states using statistical methods within the database was possible, however, limited in this study because of the large numbers of patient interviews required. The possibilities for remote disease monitoring and clinical studies are also discussed. PMID:10566398

  14. Middle Triassic shallow-water limestones from the Upper Muschelkalk of eastern France: the origin and depositional environment of some early Mesozoic fine-grained limestones

    NASA Astrophysics Data System (ADS)

    Duringer, Philippe; Vecsei, Adam

    1998-10-01

    We have analyzed the sedimentary structures, depositional geometries, and petrography of a Middle Triassic fine-grained limestone succession from the Upper Muschelkalk in the intracratonic Germanic Basin. The limestones occur in a unit, several metres thick, that extends over an area of at least 2500 km 2 in eastern France. The geometry of specific wave ripples and small channels filled by lateral-accretion bedded limestones, and the cyclic sedimentation of the Upper Muschelkalk in eastern France indicate deposition on a very shallow subtidal shelf, commonly under the influence of relatively strong currents. The limestones mostly consist of microspar with a few skeletal grains. The formation of current ripples in the fine-grained limestones appear to be incompatible with an originally muddy grain size. The major part of the microsparite may thus have originated from the recrystallization of silt-size carbonate grains, e.g., calcispheres or peloids.

  15. Effect of the Fine-Grained Structure on the Fatigue Properties of the Heat-Resistant Nickel-Iron Alloy Inconel 718

    NASA Astrophysics Data System (ADS)

    Mukhtarov, Sh. Kh.; Shakhov, R. V.

    2015-10-01

    It is well known that ultrafine-grained nickel alloys with average grain sizes d = 0.1-1 μm possess improved hot workability and can be used for superplastic forming or rolling. However, microstructure refinement can worsen some performance characteristics of the alloy, for example, heat-resistant or fatigue properties. In the present work, fatigue characteristics of the fine-grained alloy Inconel 718 are investigated. Ultrafine-grained alloys with average grain sizes d = 0.1-1 μm were manufactured by multiple forging with stage-by-stage deformation temperature decrease. During standard heat treatment of the alloy performed to obtain the desired properties, the γ-grain size was controlled by precipitations of δ-phase particles along the boundaries. Results of low-cycle fatigue tests of the fine-grained alloy at room and elevated temperatures are compared with the properties of the coarse-grained alloy.

  16. A Study of the Frictional Layer of TiAl-12Ag-5TiB2 Composite During Dry Sliding Wear

    NASA Astrophysics Data System (ADS)

    Xu, Zengshi; Yao, Jie; Shi, Xiaoliang; Zhai, Wenzheng; Ibrahim, Ahmed Mohamed Mahmoud; Xiao, Yecheng; Chen, Long; Zhu, Qingshuai; Zhang, Ao

    2015-08-01

    Many studies have shown that the excellent tribological properties of materials are primarily attributed to the formation of expected frictional layer on the worn surface. This article is dedicated to explore the possible formation and acting mechanism of frictional layer of TiAl-12Ag-5TiB2 composite. At normal load of 12 N, a frictional layer that consists of wear-induced layer and plastic deformation layer is observed. The soft wear-induced layer supported by the harder plastic deformation layer leads to the low friction coefficient and high wear resistance. The harder plastic deformation layer is induced by repetitive tribo-contact and considerable plastic deformation. Its high hardness improves the wear resistance of composite, and fine-grained structure promotes the diffusion of lubricating phase during dry friction process. The soft wear-induced layer can be divided into tribofilm and mechanically mixed layer. The mechanically mixed layer that consists of Ag and Ti-Al Oxides can continuously be provided to the worn surface to form a tribofilm with low shearing stress junctions, lowering the friction coefficient.

  17. Cost-Effective TiAl based Materials

    NASA Technical Reports Server (NTRS)

    Moxson, V. S.; Sun, Fusheng; Draper, Susan L.; Froes, F. H.; Duz, V.

    2003-01-01

    Because of their inherent low ductility, TiAl-based materials are difficult to fabricate, especially thin gage titanium gamma aluminide (TiAl) sheet and foil. In this paper, an innovative powder metallurgy approach for producing cost-effective thin gage TiAl sheets (with 356 mm long and 235 mm wide, and a thickness of 0.74, 1.09, 1.55, and 2.34 mm, respectively) is presented. The microstructures and tensile properties at room and elevated temperatures of the thin gage TiAl are studied. Results show that these TiAl sheets have a relatively homogenous chemistry, uniform microstructure, and acceptable mechanical properties. This work demonstrates a cost-effective method for producing both flat products (sheet/foil) and complex chunky parts of TiAl for various advanced applications including aerospace and automotive industries.

  18. An Upper Turonian fine-grained shallow marine stromatolite bed from the Muñecas Formation, Northern Iberian Ranges, Spain

    NASA Astrophysics Data System (ADS)

    Rodríguez-Martínez, M.; Sánchez, F.; Walliser, E. O.; Reitner, J.

    2012-07-01

    A fine-grained stromatolite bed, laterally continuous on the kilometer scale and with small synoptic relief, crops out in the Muñecas Formation in the Northern Iberian Ranges. The Muñecas Fm. was deposited during the late Turonian on a shallow water platform in the Upper Cretaceous intracratonic Iberian basin. The stromatolite bed has a tabular to domed biostromal macrostructure. Its internal mesostructure consists of planar, wavy to hemispherical stromatoids that display a broad spectrum of microstructures, including dense micrite, bahamite peloids, peloidal to clotted microfabrics, irregular micritic-wall tubes, which are suggestive of algae and filamentous microframeworks, which are suggestive of filamentous cyanobacteria. Various stromatolite growth stages have been linked to the dominance of different accretion processes. The accretion of the entire fine-grained stromatolite involves a complex mosaic of processes: trapping and binding of quartz-silt grains and bahamites, which form the agglutinated parts of some laminae, and microbially induced precipitation, which forms spongiostromic and micritic laminae. Tubiform and filamentous microframeworks resembling porostromatate or skeletal stromatolitic growth were also recognized. Laser ICP-MS measurements of Al, Si, Mg, Mn, Sr, S and Fe were analyzed to detect the influence of siliciclastic inputs and major trends during stromatolite accretion. Carbon and oxygen isotopic compositions from the stromatolite and associated facies were used to identify possible microbial signatures. These data describes a unique and well-preserved example of a shallow marine Upper Turonian fine-grained stromatolite.

  19. Tracking Fine-Grain Phenological Dynamics at a Landscape Extent Using a Network of Near-Surface Digital Repeat Photography Stations in West Greenland

    NASA Astrophysics Data System (ADS)

    Kerby, J.; Post, E.

    2014-12-01

    The phenology of vegetation emergence in the Arctic is highly sensitive to climatic fluctuations. Spring phenology drives ecological processes across local, population, and ecosystem scales. Traditional approaches to capturing spatio-temporal variation in the annual timing and pace of Arctic green-up, like satellite-derived and plot-level records, are limited by trade-offs in the grain and extent of monitoring through both space and time. Recent studies demonstrate the utility of tracking canopy phenology using near-surface digital repeat photography (phenocams) to overcome spatial and temporal grain limitations at the extent of individual plants or vegetation stands. However, our understanding of how fine-grain phenological dynamics scale to landscape extents is incomplete. Here we report on the fine-grain green-up dynamics of a low-Arctic tundra system in West Greenland at the extent of a caribou calving range (40 km2) using three years (2012-2014) of phenological records derived from a network of 50 phenocams, field observations, and high-resolution satellite imagery. Using geostatistics and multiple-regression models, we characterize spatiotemporal patterns of plant phenology, landscape controls on the timing of emergence of common shrub and graminoid species, and assess scale-dependency in patterns of vegetation green-up. We link these results with coarse-grained satellite records of plant phenology to clarify how fine-grained dynamics contribute to the widely reported broad-scale patterns of phenological and ecological change in the Arctic.

  20. Development of manufacturing systems for nanocrystalline and ultra-fine grain materials employing indexing equal channel angular pressing

    NASA Astrophysics Data System (ADS)

    Hester, Michael Wayne

    Nanotechnology offers significant opportunities in providing solutions to existing engineering problems as well as breakthroughs in new fields of science and technology. In order to fully realize benefits from such initiatives, nanomanufacturing methods must be developed to integrate enabling constructs into commercial mainstream. Even though significant advances have been made, widespread industrialization in many areas remains limited. Manufacturing methods, therefore, must continually be developed to bridge gaps between nanoscience discovery and commercialization. A promising technology for integration of top-down nanomanufacturing yet to receive full industrialization is equal channel angular pressing, a process transforming metallic materials into nanostructured or ultra-fine grained materials with significantly improved performance characteristics. To bridge the gap between process potential and actual manufacturing output, a prototype top-down nanomanufacturing system identified as indexing equal channel angular pressing (IX-ECAP) was developed. The unit was designed to capitalize on opportunities of transforming spent or scrap engineering elements into key engineering commodities. A manufacturing system was constructed to impose severe plastic deformation via simple shear in an equal channel angular pressing die on 1100 and 4043 aluminum welding rods. 1/4 fraction factorial split-plot experiments assessed significance of five predictors on the response, microhardness, for the 4043 alloy. Predictor variables included temperature, number of passes, pressing speed, back pressure, and vibration. Main effects were studied employing a resolution III design. Multiple linear regression was used for model development. Initial studies were performed using continuous processing followed by contingency designs involving discrete variable length work pieces. IX-ECAP offered a viable solution in severe plastic deformation processing. Discrete variable length work piece

  1. Production of Seamless Superconducting Radio Frequency Cavities from Ultra-fine Grained Niobium, Phase II Final Report

    SciTech Connect

    Roy Crooks, Ph.D., P.E.

    2009-10-31

    The positron and electron linacs of the International Linear Collider (ILC) will require over 14,000, nine-cell, one meter length, superconducting radio frequency (SRF) cavities [ILC Reference Design Report, 2007]. Manufacturing on this scale will benefit from more efficient fabrication methods. The current methods of fabricating SRF cavities involve deep drawing of the halves of each of the elliptical cells and joining them by high-vacuum, electron beam welding, with at least 19 circumferential welds per cavity. The welding is costly and has undesirable effects on the cavity surfaces, including grain-scale surface roughening at the weld seams. Hydroforming of seamless tubes avoids welding, but hydroforming of coarse-grained seamless tubes results in strain-induced surface roughening. Surface roughness limits accelerating fields, because asperities prematurely exceed the critical magnetic field and become normal conducting. This project explored the technical and economic feasibility of an improved processing method for seamless tubes for hydroforming. Severe deformation of bulk material was first used to produce a fine structure, followed by extrusion and flow-forming methods of tube making. Extrusion of the randomly oriented, fine-grained bulk material proceeded under largely steady-state conditions, and resulted in a uniform structure, which was found to be finer and more crystallographically random than standard (high purity) RRR niobium sheet metal. A 165 mm diameter billet of RRR grade niobium was processed into five, 150 mm I.D. tubes, each over 1.8 m in length, to meet the dimensions used by the DESY ILC hydroforming machine. Mechanical properties met specifications. Costs of prototype tube production were approximately twice the price of RRR niobium sheet, and are expected to be comparable with economies of scale. Hydroforming and superconducting testing will be pursued in subsequent collaborations with DESY and Fermilab. SRF Cavities are used to construct

  2. Key parameters for low-grade fine-grained iron ore valorization: lower environmental impact through reduced waste.

    NASA Astrophysics Data System (ADS)

    Wagner, Christiane; Orberger, Beate; Tudryn, Alina; Baptiste, Benoît; Wirth, Richard; Morgan, Rachel; Miska, Serge

    2016-04-01

    In low-grade banded iron formations (BIFs), a large part of the iron is related to micro- and nano- metric iron-bearing inclusions within quartz and/or carbonates, mainly dolomite (~ 20 to 50 μm). Low-grade fine grained iron ore present two types of environmental risks: a) they are often stocked as tailings. For example, the recent disaster (5th of November 2015) in the Minas Gerais district, Brazil, was caused by the collapse of the Fundão tailings dam at an open cast mine; b) during beneficiation significant amounts of dust are generated also leading to metal loss. A laminated BIF studied from a drill core at Àguas Claras Mine, Quadrilátero Ferrífero, Brazil, contains 26.71 wt. % total iron, 0.2 wt. % SiO2, 0.32 wt.% MnO, 15.46 wt. % MgO, 22.32 wt.% CaO, 0.09 wt. % P2O5, < 0.05 wt. % Al2O3, 0.15 wt. % H2O and 34.08 wt. % CO2. Environmental hazardous elements are present as traces (As: 3-20 ppm, Cd: 0-0.7 ppm; Cr: 0.05-60 ppm, Pb: up to 55 ppm; U: up to 8 ppm). Dolomite and quartz bands alternate with hematite bands. Raman spectroscopy, X-ray diffraction and FIB-TEM analyses reveal that the micro- and nano- metric inclusions in dolomite are hematite and minor goethite, partly occurring as clusters in voids. Curie Balance analyses were carried out at different heating steps and temperatures on whole rock samples and a synthetic mix of decarbonated sample and pure dolomite. X-ray diffraction on the products of the heating experiments shows that that hematite is stable and new phases: magnesioferrite (MgFe2O4), lime (CaO), periclase (MgO), portlandite (Ca(OH)2) and srebrodoskite (Ca2Fe2O5) were formed between 680 °C and 920 °C. These findings promote the economic use of low grade ores rather than their stockpiling as tailings. The presence of OH-bearing goethite reduces the sintering temperature. After having separated coarse hematite from barren dolomite and quartz, a low temperature sintering of the inclusion-bearing dolomite/quartz leads to transformations

  3. Algal blooms and "Marine snow": Mechanisms that enhance preservation of organic carbon in ancient fine-grained sediments

    USGS Publications Warehouse

    Macquaker, J.H.S.; Keller, M.A.; Davies, S.J.

    2010-01-01

    Combined petographic and geochemical methods are used to investigate the microfabrics present in thin sections prepared from representative organic carbon-rich mudstones collected from three successions (the Kimmeridge Clay Formation, the Jet Rock Member of the Whitby Mudstone Formation, and the pebble shale and Hue Shale). This study was initiated to determine how organic carbon-rich materials were being delivered to the sediment-water interface, and what happened to them after deposition, prior to deep burial. Analyses of the fabrics present shows that they exhibit many common attributes. In particular they are all: (1) highly heterogeneous on the scale of a thin section, (2) organized into thin beds (< 10 mm thick) composed mainly of mineral mixtures of fine-grained siliciclastic detritus and carbonate materials, and (3) contain significant concentrations of organic carbon, much of which is organized into laminasets that contain abundant organomineralic aggregates and pellets. In addition, framboidal pyrite (range of sizes from < 20 urn to < 1 ??m) and abundant agglutinated foraminifers are present in some units. The individual beds are commonly sharp-based and overlain by thin, silt lags. The tops of many of the beds have been homogenized and some regions of the pelleted laminasets contain small horizontal burrows. The organomineralic aggregates present in these mudstones are interpreted to be ancient examples of marine snow. This marine snow likely formed in the water column, particularly during phytoplankton blooms, and was then transported rapidly to the seafloor. The existence of the thin beds with homogenized tops and an in-situ infauna indicates that between blooms there was sufficient oxygen and time for a mixed layer to develop as a result of sediment colonization by diminutive organisms using either aerobic or dysaerobic metabolic pathways. These textures suggest that the constituents of these mudstones were delivered neither as a continuous rain of

  4. Dating loess with high temperature IRSL signals from polymineral fine grains: luminescence characteristics and comparison with conventional techniques

    NASA Astrophysics Data System (ADS)

    Thiel, C.; Buylaert, J.-P.; Murray, A. S.; Tsukamoto, S.; Jain, M.; Frechen, M.

    2009-04-01

    It is well known that loess deposits contain detailed terrestrial archives of palaeoenvironmental changes. Unfortunately, loess sequences often lack a reliable absolute chronology, and thus these changes are difficult to constrain in time. Luminescence dating is the technique of choice to address this issue. Quartz and feldspar are the most commonly used dosimeters in luminescence dating. The age range of standard quartz OSL is usually limited by the saturation level of ~200 Gy (corresponding to ~50 ka). In contrast, the age range of feldspar IRSL signals - which usually have a more extended growth curve (up to ~2000 Gy) - is hampered by anomalous fading for which a reliable correction is still not available. Recently, Thomsen et al. (2008) identified several laboratory-induced feldspar signals which show less anomalous fading than the standard IRSL signal stimulated at 50°C. Based on this work, Buylaert et al. (accepted) tested a post-IR IR signal, i.e. IR bleach at 50°C and subsequent IRSL measurement at 225°C, and observed significantly lower fading rates in nature for a number of coarse-grained K-feldspar samples. In this study we explore the possibility of using such a post-IR IR signal from polymineral fine grains extracted from loess. Murray et al. (accepted) showed that a more stringent preheat treatment (320°C for 60 s) can be safely used for feldspar; as a result, we have been able to use a post-IR IR measurement temperature of 290°C, higher than that in the study of Buylaert et al. (accepted), with the expectation that this might further reduce the observed fading rate. The results of the elevated temperature IRSL signal fading measurements clearly indicate a significantly lower fading rate (g2days values typically 1-1.5 %/decade) than the standard IRSL measured at 50°C (g2days values typically 3 %/decade). Results of the performance in the SAR protocol (recycling ratios, recuperation and dose recovery) are very encouraging (measured dose within 15

  5. Erosion characteristics of fine-grained, beach-building sediment along the Colorado River in Grand Canyon

    NASA Astrophysics Data System (ADS)

    Akahori, R.; Schmeeckle, M. W.; Topping, D. J.

    2004-12-01

    In the Grand Canyon segment of the Colorado River, eddy sandbars, which form in lateral recirculation eddies, are important for endangered fish habitat, riparian habitat, protection of archeological sites, and recreation. By virtue of the 1963 closure of Glen Canyon Dam, sediment (i.e., sand, silt, and clay) supply to the Colorado River at the upstream boundary of Grand Canyon National Park has been reduced to about 5% of the pre-dam supply. This has caused substantial reduction in the size of eddy sandbars. The major supplier of sediment in the first 123 km downstream from Glen Canyon Dam is the Paria River, and its sediment consists mainly of clay, silt, and finer sand. During large floods on the Paria River, about 50% of the load is silt and clay, and the median size of the sand is about 0.11-0.12 mm. In order to restore the eroded eddy sandbars in the upper portion of Grand Canyon, an experimental controlled flood, i.e., Beach Habitat Building Flow (BHBF), has been proposed following enrichment of the sediment supply by flooding on the Paria River. Deposits produced by this BHBF should be fine-grained and cohesive. Understanding the sediment-transport behavior of this cohesive sediment is essential for the prediction and evaluation of the influence of the BHBF on rebuilding bars and increasing turbidity in the main channel. In this study, cohesive sediment samples of beach bars were collected from bars in the Colorado River in the Lake Mead delta. Laboratory experiments have tested the bulk density, erosion rate, and critical shear stress of these collected samples. The erosion rate of each sample was tested several times at different boundary shear stresses in a laboratory flume, allowing for estimation of the critical shear stress. Samples were placed in a 10-cm diameter cylinder below the flume. The sample was pushed out of the cylinder as it was eroded, such that the sample surface remained at the same height as the flume floor. Boundary shear stresses were

  6. OSL dating as a possible tool for provenance study of fine grained quartz/polymineral from Lake Suigetsu sediments

    NASA Astrophysics Data System (ADS)

    Sugisaki, S.; Murray, A. S.; Buylaert, J.; Tada, R.; Suzuki, Y.; Nagashima, K.; Schwenninger, J.; Haraguchi, T.; Gotanda, K.; Nakagawa, T.

    2013-12-01

    m fraction was extracted from the sediments, and equivalent doses were measured using a double SAR (infrared (IR) and blue light) and post-IR IR (pIRIR 180) respectively. The results show that quartz and polyminerals from type 1 lithology give relatively low and similar equivalent doses throughout each section, whilst quartz and polyminerals in layers of type 2 and 3 give up to 6 times higher equivalent dose than those of adjacent type 1 sediments. We discuss the possible source of quartz in each type of lithology based on fine-grained quartz and polymineral OSL and identify the most suitable lithology for OSL dating for future study.

  7. Chemical diversity among fine-grained soils at Gale (Mars): a chemical transition as the rover is approaching the Bagnold Dunes?

    NASA Astrophysics Data System (ADS)

    Cousin, Agnès; Forni, Olivier; Meslin, Pierre-Yves; Schroeder, Susanne; Gasnault, Olivier; Bridges, Nathan; Ehlmann, Bethany; Maurice, Sylvestre; Wiens, Roger

    2016-04-01

    The ChemCam instrument has the capability to study the chemical composition of soils at a sub-millimeter scale, thus providing an unpreceedented spatial resolution for their study. More than 300 soils have been sampled so far with ChemCam and these targets are analyzed frequently in order to monitor any change in composition along the traverse. Detailed chemical analysis as a function of grain size is of great importance in order to better constrain soils formation. Curiosity is approaching the Bagnold Dunes, the first active dune field accessible for in-situ analyses. One of the main goals is to determine or constrain the dune material chemistry as well as its provenance. This study is focusing on recent soils analyzed when ap-proaching the dunes, for a comparison with previous soil targets, and with dunes specifically. Chemical composition of fine-grained soils as we approach the Bagnold Dunes has been compared with previous fine-grained soils analyzed along the traverse. These new soils have an average sum of oxides that is significantly higher than what has been previously analyzed. This would suggest that these soils are less hydrated and probably less altered than previous ones.An enrichment in SiO2, FeO and alkali is also observed in these new fine-grained soils, which could be related to a contamination by local rocks due to erosion. Some coarser grains could correspond to an olivine component. This analysis is on-going and will be detailed as the dedicated Bagnold Dunes campaign starts. We will also report in the hydratation level of the dunes.

  8. The Effect of the Second Phase Particle Size on Fracture Behavior of Cu - 0.1% Sn Ultra-Fine-Grained Alloy

    NASA Astrophysics Data System (ADS)

    Faizova, S. N.; Raab, G. I.; Faizov, I. A.; Aksenov, D. A.; Zaripov, N. G.; Faizov, R. A.; Semenov, V. I.; Zemlyakova, N. V.

    2016-05-01

    The fracture behavior of Cu - 0.1% Sn alloy in samples of two types, namely with similar characteristics of ultra-fine-grained structure, but different in the second phase particle size has been investigated. These two types of samples were obtained by means of equal channel angular pressing with different number of passes. It has been found that with increase in the total strain the morphology and orientation of the fracture surface demonstrate changes corresponding to the development of shear mode. The arguments for the hypothesis that the fracture behavior change is connected with the decrease of the particle size and increase of their distribution density are given.

  9. Iron valence state of fine-grained material from the Jupiter family comet 81P/Wild 2 - A coordinated TEM/STEM EDS/STXM study

    NASA Astrophysics Data System (ADS)

    Stodolna, Julien; Gainsforth, Zack; Leroux, Hugues; Butterworth, Anna L.; Tyliszczak, Tolek; Jacob, Damien; Westphal, Andrew J.

    2013-12-01

    The oxidation state of transition metal elements is an indicator of the environmental conditions during formation and history of extraterrestrial materials. We studied the iron valence state of fine-grained material from a bulbous track extracted from the Stardust cometary collector. It likely originated from primitive material of the comet Wild 2. We used synchrotron-based Scanning Transmission X-ray Microscopy (STXM) to collect Fe L3-XANES spectra at a spatial resolution of about 20 nm. Maps of Fe valence state were combined with the elemental maps recorded by energy dispersive X-ray spectroscopy (EDS) with a transmission electron microscope (TEM), on the same areas and with a comparable electron probe size (5-20 nm). As for most Stardust fine-grained material, the samples are severely damaged by the hypervelocity impact in the aerogel collector blocks. They show of a wide range of oxidation state at a micrometer scale, from Fe metal to Fe3+. This heterogeneity of oxidation state can be due to the extreme conditions of the collection. Two major parameters can favor changes in redox state. The first is the high temperature regime, known to be highly heterogeneous and to have locally reached extreme values (up to 2000 K). The second is the local chemical environment. It may contain elements that could favor a reduction or oxidation reaction within the flash-heated Wild 2 fragments. Comparison of maps by STXM and EDS shows evidence for several correlation trends between element concentrations and the iron valence state. These observations, together with the study of a melted rim of a larger particle, suggest that the redox state was not completely redistributed within the impact melts. These local signatures are compatible with precursors that could have been close to primitive matrix material of chondrites or to chondritic interplanetary dust particles. On average, the fine-grained material from Wild 2 displays a molar fraction (Fe2+oxide + Fe3+oxide)/(total Fe

  10. The influence of grain size, grain color, and suspended-sediment concentration on light attenuation: Why fine-grained terrestrial sediment is bad for coral reef ecosystems

    NASA Astrophysics Data System (ADS)

    Storlazzi, Curt D.; Norris, Ben K.; Rosenberger, Kurt J.

    2015-09-01

    Sediment has been shown to be a major stressor to coral reefs globally. Although many researchers have tested the impact of sedimentation on coral reef ecosystems in both the laboratory and the field and some have measured the impact of suspended sediment on the photosynthetic response of corals, there has yet to be a detailed investigation on how properties of the sediment itself can affect light availability for photosynthesis. We show that finer-grained and darker-colored sediment at higher suspended-sediment concentrations attenuates photosynthetically active radiation (PAR) significantly more than coarser, lighter-colored sediment at lower concentrations and provide PAR attenuation coefficients for various grain sizes, colors, and suspended-sediment concentrations that are needed for biophysical modeling. Because finer-grained sediment particles settle more slowly and are more susceptible to resuspension, they remain in the water column longer, thus causing greater net impact by reducing light essential for photosynthesis over a greater duration. This indicates that coral reef monitoring studies investigating sediment impacts should concentrate on measuring fine-grained lateritic and volcanic soils, as opposed to coarser-grained siliceous and carbonate sediment. Similarly, coastal restoration efforts and engineering solutions addressing long-term coral reef ecosystem health should focus on preferentially retaining those fine-grained soils rather than coarse silt and sand particles.

  11. The influence of grain size, grain color, and suspended-sediment concentration on light attenuation: why fine-grained terrestrial sediment is bad for coral reef ecosystems

    USGS Publications Warehouse

    Storlazzi, Curt; Norris, Benjamin; Rosenberger, Kurt

    2015-01-01

    Sediment has been shown to be a major stressor to coral reefs globally. Although many researchers have tested the impact of sedimentation on coral reef ecosystems in both the laboratory and the field and some have measured the impact of suspended sediment on the photosynthetic response of corals, there has yet to be a detailed investigation on how properties of the sediment itself can affect light availability for photosynthesis. We show that finer-grained and darker-colored sediment at higher suspended-sediment concentrations attenuates photosynthetically active radiation (PAR) significantly more than coarser, lighter-colored sediment at lower concentrations and provide PAR attenuation coefficients for various grain sizes, colors, and suspended-sediment concentrations that are needed for biophysical modeling. Because finer-grained sediment particles settle more slowly and are more susceptible to resuspension, they remain in the water column longer, thus causing greater net impact by reducing light essential for photosynthesis over a greater duration. This indicates that coral reef monitoring studies investigating sediment impacts should concentrate on measuring fine-grained lateritic and volcanic soils, as opposed to coarser-grained siliceous and carbonate sediment. Similarly, coastal restoration efforts and engineering solutions addressing long-term coral reef ecosystem health should focus on preferentially retaining those fine-grained soils rather than coarse silt and sand particles.

  12. Microstructure stability of ultra-fine grained magnesium alloy AZ31 processed by extrusion and equal-channel angular pressing (EX–ECAP)

    SciTech Connect

    Stráská, Jitka; Janeček, Miloš; Čížek, Jakub; Stráský, Josef; Hadzima, Branislav

    2014-08-15

    Thermal stability of the ultra-fine grained (UFG) microstructure of magnesium AZ31 alloy was investigated. UFG microstructure was achieved by a combined two-step severe plastic deformation process: the extrusion (EX) and subsequent equal-channel angular pressing (ECAP). This combined process leads to refined microstructure and enhanced microhardness. Specimens with UFG microstructure were annealed isochronally at temperatures 150–500 °C for 1 h. The evolution of microstructure, mechanical properties and dislocation density was studied by electron backscatter diffraction (EBSD), microhardness measurements and positron annihilation spectroscopy (PAS). The coarsening of the fine-grained structure at higher temperatures was accompanied by a gradual decrease of the microhardness and decrease of dislocation density. Mechanism of grain growth was studied by general equation for grain growth and Arrhenius equation. Activation energies for grain growth were calculated to be 115, 33 and 164 kJ/mol in temperature ranges of 170–210 °C, 210–400 °C and 400–500 °C (443–483 K, 483–673 K and 673–773 K), respectively. - Highlights: • Microhardness of UFG AZ31 alloy decreases with increasing annealing temperature. • This fact has two reasons: dislocation annihilations and/or grain growth. • The activation energies for grain growth were calculated for all temperature ranges.

  13. Effects of salinity and particle concentration on sediment hydrodynamics and critical bed-shear-stress for erosion of fine grained sediments used in wetland restoration projects

    NASA Astrophysics Data System (ADS)

    Ghose-Hajra, M.; McCorquodale, A.; Mattson, G.; Jerolleman, D.; Filostrat, J.

    2015-03-01

    Sea-level rise, the increasing number and intensity of storms, oil and groundwater extraction, and coastal land subsidence are putting people and property at risk along Louisiana's coast, with major implications for human safety and economic health of coastal areas. A major goal towards re-establishing a healthy and sustainable coastal ecosystem has been to rebuild Louisiana's disappearing wetlands with fine grained sediments that are dredged or diverted from nearby rivers, channels and lakes to build land in open water areas. A thorough geo-hydrodynamic characterization of the deposited sediments is important in the correct design and a more realistic outcome assessment of the long-term performance measures for ongoing coastal restoration projects. This paper evaluates the effects of salinity and solid particle concentration on the re-suspension characteristics of fine-grained dredged sediments obtained from multiple geographic locations along the Gulf coast. The critical bed-shear-stress for erosion has been evaluated as a function of sedimentation time. The sediment hydrodynamic properties obtained from the laboratory testing were used in a numerical coastal sediment distribution model to aid in evaluating sediment diversions from the Mississippi River into Breton Sound and Barataria Bay.

  14. Synthesis, thermal stability and mechanical behavior of cryomilled nanostructured and ultra-fine grained f.c.c. systems

    NASA Astrophysics Data System (ADS)

    Rodriguez, Rodolfo

    tensile and creep behavior of a cyromilled Inconel 625 alloy were investigated. The microstructure in the consolidated form is duplex with grain sizes ranging from 200 nm at the smallest to about 10 mum at the largest. Normal work hardening is observed in uniaxial tension and the stress-strain behavior follows a power law. (Abstract shortened by UMI.)

  15. Rare earth and major element geochemistry of Eocene fine-grained sediments in oil shale- and coal-bearing layers of the Meihe Basin, Northeast China

    NASA Astrophysics Data System (ADS)

    Bai, Yueyue; Liu, Zhaojun; Sun, Pingchang; Liu, Rong; Hu, Xiaofeng; Zhao, Hanqing; Xu, Yinbo

    2015-01-01

    The Meihe Basin is a Paleogene pull-apart basin. Long-flame coal, lignite and oil shale are coexisting energy resources deposited in this basin. Ninety-seven samples, including oil shales, coals, brown to gray silt and mudstone, have been collected from the oil shale- and coal-bearing layers to discover the rare earth element geochemistry. The total REE contents of oil shales and coals are 137-256 μg/g and 64-152 μg/g respectively. The chondrite-normalized patterns of oil shales and coals show LREE enrichments, HREE deficits, negative Eu anomalies and negligible Ce anomalies. The chemical index of alteration (CIA) as well as some trace elements is often used to reflect the paleoenvironment at the time of deposition. The results show that fine-grained sediments in both layers were deposited in dysoxic to oxic conditions and in a warm and humid climate, and coals were deposited in a warmer and more humid climate than oil shales. Oil shales and coals are both in the early stage of diagenesis and of terrigenous origin. Besides, diagrams of some major, trace and rare earth elements show that the fine-grained sediments of both layers in the Meihe Basin are mainly from the felsic volcanic rocks and granite, and that their source rocks are mostly deposited in the continental inland arc setting. The analysis of major elements shows that Si, Al, K and Ti, in both layers, are found mainly in a mixed clay mineral assemblage and that Si is also found in quartz. Sodium occurs primarily in clay minerals, whereas Ca is found mainly in the organic matter. In the coal-bearing layer, iron is mainly controlled by organic matter rather than detrital minerals. In contrast, in the oil shale-bearing layer, neither detrital minerals nor organic matter exert a control on the iron content. Analyzing the relationship between rare earth elements and major elements shows that REEs in the oil shales and the coals are both of terrigenous origin and are mainly controlled by detrital minerals

  16. Lead isotope variability of fine-grained river sediments in Tibetan Plateau water catchments: Implications for geochemical provinces and crustal evolution

    NASA Astrophysics Data System (ADS)

    Tan, Hongbing; Chen, Jun; Rao, Wenbo; Yang, Jiedong; Ji, Junfeng; Chivas, Allan R.

    2014-03-01

    The crustal structure of the Tibetan Plateau records the dynamic processes of several terranes that underwent disaggregation, aggregation, and amalgamation. The dynamic evolution of continental crusts is best understood from these three processes. However, the detailed geochemical province division of the Tibetan Plateau and the palaeo-tectonic affinity or evolution of terranes remains unclear. In this paper, the acid-insoluble fraction of fine-grained river sediments from catchments in the whole Tibetan Plateau was measured for lead isotopes and trace elements. This study aims to reveal lead isotopic characteristics, to delineate different lead isotope geochemical provinces, and to trace and uncover the tectonic affinities of various terranes in the Tibetan Plateau. Results show that by weak acid chemical treatment, the characteristics of the Pb isotopes of fine-grained river sediments can be utilized to represent and discriminate geochemical provinces. The characteristics of Pb isotopes enable the identification of different geochemical provinces and the palaeo-affinity of various tectonic units. Constrained by tectonic evolution, the Tibetan Plateau tectonic units can be divided into the following five Pb isotope geochemical provinces: 1) Qilian Terrane; 2) Northern Tibetan Plateau geochemical province, including Eastern Kunlun-Qaidam, Songpan-Ganzi and Eastern Qiangtang Terrane; 3) Northern Lhasa Terrane; 4) Southern Lhasa Terrane, and 5) Himalaya Terrane. In relation to the controversy concerning the palaeo-affinity of the Qilian and Songpan-Ganzi Terranes, the Pb isotopic compositions of fine-grained river sediments suggest that they were much more likely separated from the Yangtze Craton than from the North China Craton. The characteristics of Pb isotopes and trace elements of the Eastern Kunlun-Qaidam and Eastern Qiangtang Terrane show some similarities with the Songpan-Ganzi Terrane, which indicate that they also possibly originated from the disaggregation

  17. Plasma torch production of Ti/Al nanoparticles

    SciTech Connect

    Phillips, Jonathan; Zea, Hugo; Cheng, Lily; Luhrs, Claudia; Courtney, Matthew

    2009-01-01

    Using the Aerosol-through-Plasma (A-T-P) technique high surface area bi-cationic (Ti-Al) oxide particles of a range of stoichiometries were produced that showed remarkable resistance to sintering. Specifically, we found that homogeneous nanoparticles with surface areas greater than 150 m{sup 2}/gm were produced at all stoichiometries. In particular, for particles with a Ti:Al ratio of 1:3 a surface area of just over 200 m{sup 2}/gm was measured using the BET method. The most significant characteristic of these particles was that their sinter resistance was far superior to that of TiAl particles produced using any other method. For example, A-T-P generated particles retained >70% of their surface area even after sintering at 1000 C for five hours. In contrast, particles made using all other methods lost virtually all of their surface area after an 800 C treatment.

  18. A method for the concentration of fine-grained rutile (TiO2) from sediment and sedimentary rocks by chemical leaching

    USGS Publications Warehouse

    Commeau, Judith A.; Valentine, Page C.

    1991-01-01

    Most of the sample analyzed by the method described were marine muds collected from the Gulf of Maine (Valentine and Commeau, 1990). The silt and clay fraction (up to 99 wt% of the sediment) is composed of clay minerals (chiefly illite-mica and chlorite), silt-size quartz and feldspar, and small crystals (2-12 um) of rutile and hematite. The bulk sediment samples contained an average of 2 to 3 wt percent CaCO3. Tiher samples analyzed include red and gray Carboniferous and Triassic sandstones and siltstones exposed around the Bay of Fundy region and Paleozoic sandstones, siltstones, and shales from northern Maine and New Brunswick. These rocks are probable sources for the fine-grained rutile found in the Gulf of Maine.

  19. Accumulation of selenium in benthic bivalves and fine-grained sediments of San Francisco Bay, the Sacramento-San Joaquin Delta, and selected tributaries, 1984-1986

    USGS Publications Warehouse

    Johns, C.; Luoma, S.N.

    1987-01-01

    Fine-grained, oxidized, surface sediments and two benthic bivalves (Corbicula sp., a suspension-feeding freshwater clam, and Macoma balthica, a deposit-feeding brackish water clam) were used to examine spatial distributions of selenium within San Francisco Bay and the Sacramento/San Joaquin River Delta and to compare riverine with local inputs of biologically available selenium to this large, complex, urbanized estuary. Selenium concentrations in Corbicula were elevated in the western Delta and northern reach of San Francisco Bay compared to concentrations in Corbicula from river systems not enriched in selenium. Biologically available selenium did not appear to enter the southern Delta or northern reach of the Bay from the San Joaquin River, a possible source, in levels that could measurably influence bioaccumulation by Corbicula. Selenium concentrations in Macoma balthica also were elevated in southern South San Francisco Bay and near the western edge of Suisun Bay.

  20. Upwelling-driven reworking of a MTD's fine-grained plume: an example at the Cariaco Basin/Cariaco Gulf connection.

    NASA Astrophysics Data System (ADS)

    Aguilar, Iliana; Beck, Christian; Audemard, Franck; Crouzet, Christian; Sabatier, Pierre; Develle, Anne-Lise; Boussafir, Mohammed; Campos, Corina

    2016-04-01

    The Cariaco Basin is a 1400 m-deep and 90 km-wide pull-apart basin, in the south-eastern corner of the Caribbean Sea. To the East, it is connected to the Cariaco Gulf, a 60 km-long, 15 km-wide, and 90 m-deep appendix. Both are E-W elongated and developed upon the south-eastern transform boundary of the Caribbean Plate, an active limit here mainly represented by the El Pilar Fault. The Gulf of Cariaco entrance is a 55 m-deep, and 5 km-wide sill mainly controlled by the large Manzanares River delta, which western foreset slope is facing the Basin's eastern edge. Within this connection area, two particular sedimentary processes have been previously documented: 1) strong seasonal upwelling responsible for the transfer of deep particulate organic matter from the Basin into the Gulf; 2) the recent occurrence, in the Basin, of a fine-grained suspension related to a submarine landslide; this event was detected after the 1997 Cariaco earthquake (Thunell et al., 1999; Lorenzoni et al., 2012) and was related to a slope failure of the Manzanares delta western foreset. From short gravity cores retrieved in the Gulf, we analysed the last millennium of sedimentation (components, transport and settling processes) using classical proxies and physical properties. All parameters led to underline: - a permanent mixed provenance of particulate Organic Matter in the main part of the Gulf: i) in situ and ii) allochtonous; - the occurrence of coarse siliciclastic layers related to flooding from the southern edge of the Gulf; - the occurrence of one peculiar fine-grained siliciclastic layer with a widespread distribution, dated around 1850 AD; - an abrupt increase of open marine influence just after the above-mentioned layer. Concerning the "background" permanent sedimentation, these results confirm the importance of upwelling through the connection between the Gulf and the Basin (transfer of the "allochtonous" O.M.). For the fine-grained silicilastic "event", we could discard a

  1. An analysis of strain in fine-grained clastic rocks of the Appalachian Mountains using a best-fit ellipse search of center-to-center data

    SciTech Connect

    Engelder, T. . Dept. of Geosciences)

    1993-03-01

    Fine-grained clastic rocks are often more poorly sorted than their coarser brethren. When viewed in thin section such sorting gives the impression that relatively coarse grains are floating in a finer matrix. Do these relatively coarse grains act as passive markers in a deforming matrix In order to answer this question samples of both very fine-grained siltstone and shale were collected from the Ordovician Reedsville shale of the Appalachian Valley and Ridge and the Devonian Catskill Delta of the Appalachian Plateau. Strain, as recorded by larger grains floating in a matrix, was evaluated using a center-to-center approach. The visual center of grains with a diameter larger than a predetermined size (usually 15 [mu]m) was used as a datum. Centers were digitized to produce Fry-type scatter plots using a version of the INSTRAIN program. Fry plots produced in this manner often have a scattering of points so sparse that a best-fit ellipse could not be identified with confidence. As a consequence, a best-fit ellipse was calculated using a search routine according to the following plan. An elliptical template of a predetermined size and shape was centered over the inner portion of the Fry plot. A goodness of fit between the selected data points and the calculated ellipse was determined using a simple root-mean-square average. A goodness of fit was calculated for data points falling inside the template for each combination of template shape and size. The best fit ellipse was then identified as that ellipse with smallest the RMS average. Preliminary work using Ordovician samples from the Valley and Ridge suggests that layer-parallel shortening strain as measured using this modified center-to-center technique is consistent with layer-parallel shortening indicated by deformed fossils within the Reedsville.

  2. A Novel Powder Metallurgy Processing Approach to Prepare Fine-Grained Cu-Al-Ni Shape-Memory Alloy Strips from Elemental Powders

    NASA Astrophysics Data System (ADS)

    Vajpai, S. K.; Dube, R. K.; Chatterjee, P.; Sangal, S.

    2012-07-01

    The current work describes the experimental results related to the successful preparation of fine-grained, Cu-Al-Ni, high-temperature shape-memory alloy (SMA) strips from elemental Cu, Al, and Ni powders via a novel powder metallurgy (P/M) processing approach. This route consists of short time period ball milling of elemental powder mixture, preform preparation from milled powder, sintering of preforms, hot-densification rolling of unsheathed sintered powder preforms under protective atmosphere, and postconsolidation homogenization treatment of the hot-rolled strips. It has been shown that it is possible to prepare chemically homogeneous Cu-Al-Ni SMA strips consisting of equiaxed grains of average size approximately 6 μm via the current processing approach. It also has been shown that fine-grained microstructure in the finished Cu-Al-Ni SMA strips resulted from the pinning effect of nanosized alumina particles present on the grain boundaries. The finished SMA strips were almost fully martensitic in nature, consisting of a mixture of β1^' } - and γ1^' } -type martensites. The Cu-Al-Ni SMA strips had 677 MPa average fracture strength, coupled with 13 pct average fracture strain. The fractured surfaces of the specimens exhibited primarily dimpled ductile type of fracture, together with some transgranular mode of fracture. The Cu-Al-Ni strips exhibited an almost 100 pct one-way shape recovery after bending followed by unconstrained heating at 1, 2, and 4 pct applied deformation prestrain. The two-way shape-memory strain was found approximately 0.35 pct after 15 training cycles at 4 pct applied training prestrain.

  3. Concentrations and Distribution of Slag-Related Trace Elements and Mercury in Fine-Grained Beach and Bed Sediments of Lake Roosevelt, Washington, April-May 2001

    USGS Publications Warehouse

    Majewski, Michael S.; Kahle, Sue C.; Ebbert, James C.; Josberger, Edward G.

    2003-01-01

    A series of studies have documented elevated concentrations of trace elements such as arsenic, cadmium, copper, lead, mercury, and zinc in the water, bed sediment, or fish of Lake Roosevelt and the upstream reach of the Columbia River. Elevated concentrations of some trace elements in this region are largely attributable to the transport of slag and metallurgical waste discharged into the Columbia River from a smelter in Canada. Although most recent studies have focused on contamination levels in water, bed sediment, and fish, there is growing concern in the region over the potential threat of airborne contaminants to human health. In response to these concerns, the U.S. Geological Survey conducted an assessment of trace-element concentrations in the relatively shallow fine-grained sediment along the shore of Lake Roosevelt that is exposed annually during periods of reservoir drawdown. During each winter and spring, the water level of Lake Roosevelt is lowered as much as about 80 feet to provide space to capture high river flows from spring runoff, exposing vast expanses of lake-bottom sediment for a period of several months. Upon drying, these exposed areas provide an extremely large source for wind-blown dust. This study concluded that trace elements associated with slag and metallurgical waste are present in the fine-grained fraction (less than 63 micrometers) of bed sediments along the length of Lake Roosevelt, and as such, could be components of the airborne dust resulting from exposure, drying, and wind mobilization of the sediments exposed during the annual drawdowns of the reservoir. Trace-element concentrations in the surficial bed sediment varied, but the major components in slag?arsenic, cadmium, copper, lead, and zinc?showed generally pronounced gradients of decreasing concentrations from near the International Border to the Grand Coulee Dam. The results of this study provide base-line information needed to plan and conduct air monitoring of trace

  4. Considerations in Duplex Investment.

    ERIC Educational Resources Information Center

    Wright, Arthur; Goen, Tom

    Problems of duplex investment are noted in the introduction to this booklet designed to provide a technique by which the investment decision can be approached, develop estimates of typical costs and returns under differing conditions, and encourage investors to analyze objectives and conditions before the decision to buy or build is made. A…

  5. Duplex tab exhaust nozzle

    NASA Technical Reports Server (NTRS)

    Gutmark, Ephraim Jeff (Inventor); Martens, Steven (nmn) (Inventor)

    2012-01-01

    An exhaust nozzle includes a conical duct terminating in an annular outlet. A row of vortex generating duplex tabs are mounted in the outlet. The tabs have compound radial and circumferential aft inclination inside the outlet for generating streamwise vortices for attenuating exhaust noise while reducing performance loss.

  6. The Duplex Society.

    ERIC Educational Resources Information Center

    Schorr, Alvin L.

    1984-01-01

    The duplex society, in which the poor live in close proximity to others but in a separate compartment, is already with us. Unless something deeply changes about family income, more than one-third of future generations will come to adulthood having spent a portion of their childhood in official poverty. (RM)

  7. TiAl Scramjet Inlet Flap Subelement Designed and Fabricated

    NASA Technical Reports Server (NTRS)

    Draper, Susan L.

    2004-01-01

    Next-generation launch vehicles are being designed with turbine-based combined cycle (TBCC) propulsion systems having very aggressive thrust/weight targets and long lives. Achievement of these goals requires advanced materials in a wide spectrum of components. TiAl has been identified as a potential backstructure material for maintainable composite panel heat exchangers (HEX) in the inlet, combustor, and nozzle section of a TBCC propulsion system. Weight reduction is the primary objective of this technology. Design tradeoff studies have assessed that a TiAl structure, utilizing a high-strength, hightemperature TiAl alloy called Gamma MET PX,1 reduce weight by 41 to 48 percent in comparison to the baseline Inconel 718 configuration for the TBCC propulsion system inlet, combustor, and nozzle. A collaborative effort between the NASA Glenn Research Center, Pratt & Whitney, Engineering Evaluation & Design, PLANSEE AG (Austria), and the Austrian Space Agency was undertaken to design, manufacture, and validate a Gamma-MET PX TiAl structure for scramjet applications. The TiAl inlet flap was designed with segmented flaps to improve manufacturability, to better control thermal distortion and thermal stresses, and to allow for maintainable HEX segments. The design philosophy was to avoid excessively complicated shapes, to minimize the number of stress concentrations, to keep the part sizes reasonable to match processing capabilities, and to avoid risky processes such as welding. The conceptual design used a standard HEX approach with a double-pass coolant concept for centrally located manifolds. The flowpath side was actively cooled, and an insulation package was placed on the external side to save weight. The inlet flap was analyzed structurally, and local high-stress regions were addressed with local reinforcements.

  8. Nanophase, Low-Ni Metal Grains in Fine-grained Rims in the Murchison CM2 Chondrite: Insights into the Survival of Metal Grains During Aqueous Alteration

    NASA Technical Reports Server (NTRS)

    Brearley, Adrian J.

    2003-01-01

    Aqueous alteration has played a significant role in the geological evolution of almost all the chondrite groups and attests to the importance of water during the earliest history of the solar system. Among the chondrites that show evidence of aqueous alteration the CM chondrites, in particular, have received considerable attention, because of their primitive composition and the fact that they preserve a record of incomplete hydration. Petrologic studies of this group of meteorites have helped provide important insights into aqueous alteration processes and the nature of the alteration products. However, due to the complex history of these chondrites, important details of the alteration remain enigmatic. Among the major problems to be resolved are the location and timing of aqueous alteration as well as the relationship between alteration and brecciation. Although many authors favor aqueous alteration within a parent body environment, there is also evidence that some of the components of CM chondrites may have experienced aqueous alteration prior to accretion. One of the key lines of evidence for alteration in a pre-accretionary environment is the presence of unaltered metal grains associated with hydrated phases. Low-Ni metal (kamacite) is typically one of the first phases in CM chondrites that alters in the presence of water. However, in some CM chondrites, such as Yamato 791198, micron-sized metal grains are present within the hydrated fine-grained rim material around chondrules. In addition, nanometer-sized grains that have been interpreted as being unaltered metal particles have been reported in the relatively heavily altered CM chondrite, ALH 81002. In most cases, these occurrences have been interpreted as being the result of mixing of anhydrous and hydrous materials prior to accretion. According to this hypothesis, the metal grains remain unaltered because little or no post-accretionary alteration took place. Whilst such a scenario is plausible, no

  9. Large to intermediate-scale aquifer heterogeneity in fine-grain dominated alluvial fans (Cenozoic As Pontes Basin, northwestern Spain): insight based on three-dimensional geostatistical reconstruction

    NASA Astrophysics Data System (ADS)

    Falivene, O.; Cabrera, L.; Sáez, A.

    2007-08-01

    Facies reconstructions are used in hydrogeology to improve the interpretation of aquifer permeability distribution. In the absence of sufficient data to define the heterogeneity due to geological processes, uncertainties in the distribution of aquifer hydrofacies and characteristics may appear. Geometric and geostatistical methods are used to understand and model aquifer hydrofacies distribution, providing models to improve comprehension and development of aquifers. However, these models require some input statistical parameters that can be difficult to infer from the study site. A three-dimensional reconstruction of a kilometer scale fine-grain dominated Cenozoic alluvial fan derived from more than 200 continuously cored, closely spaced, and regularly distributed wells is presented. The facies distributions were reconstructed using a genetic stratigraphic subdivision and a deterministic geostatistical algorithm. The reconstruction is only slightly affected by variations in the geostatistical input parameters because of the high-density data set. Analysis of the reconstruction allowed identification in the proximal to medial alluvial fan zones of several laterally extensive sand bodies with relatively higher permeability; these sand bodies were quantified in terms of volume, mean thickness, maximum area, and maximum equivalent diameter. These quantifications provide trends and geological scenarios for input statistical parameters to model aquifer systems in similar alluvial fan depositional settings.

  10. A fine grained parallel smooth particle mesh Ewald algorithm for biophysical simulation studies: Application to the 6-D torus QCDOC supercomputer

    NASA Astrophysics Data System (ADS)

    Fang, Bin; Martyna, Glenn; Deng, Yuefan

    2007-08-01

    In order to model complex heterogeneous biophysical macrostructures with non-trivial charge distributions such as globular proteins in water, it is important to evaluate the long range forces present in these systems accurately and efficiently. The Smooth Particle Mesh Ewald summation technique (SPME) is commonly used to determine the long range part of electrostatic energy in large scale molecular simulations. While the SPME technique does not give rise to a performance bottleneck on a single processor, current implementations of SPME on massively parallel, supercomputers become problematic at large processor numbers, limiting the time and length scales that can be reached. Here, a synergistic investigation involving method improvement, parallel programming and novel architectures is employed to address this difficulty. A relatively simple modification of the SPME technique is described which gives rise to both improved accuracy and efficiency on both massively parallel and scalar computing platforms. Our fine grained parallel implementation of the modified SPME method for the novel QCDOC supercomputer with its 6D-torus architecture is then given. Numerical tests of algorithm performance on up to 1024 processors of the QCDOC machine at BNL are presented for two systems of interest, a β-hairpin solvated in explicit water, a system which consists of 1142 water molecules and a 20 residue protein for a total of 3579 atoms, and the HIV-1 protease solvated in explicit water, a system which consists of 9331 water molecules and a 198 residue protein for a total of 29508 atoms.

  11. Bulk dense fine-grain (1-x)BiScO{sub 3}-xPbTiO{sub 3} ceramics with high piezoelectric coefficient

    SciTech Connect

    Zou Tingting; Wang Xiaohui; Wang Han; Zhong Caifu; Li Longtu; Chen, I-W.

    2008-11-10

    High density fine grain (1-x)BiScO{sub 3}-xPbTiO{sub 3} ceramics were successfully prepared by two-step sintering and their ferroelectric properties were investigated. Experimental evidence indicates the existence of a morphotropic phase boundary at the composition x=0.635, which exhibits a piezoelectric coefficient d{sub 33} of 700 pC/N at room temperature, significantly higher than the reported values to date. Furthermore, a higher electromechanical coupling factor Kp=0.632 and a larger remnant polarization P{sub r}=47.3 {mu}C/cm{sup 2} were obtained. The paraelectric-to-ferroelectric phase transition occurs at 446 deg. C, slightly lower than in the coarse grain ceramics with a similar composition, suggesting a grain size effect. The local effective piezoelectric coefficient d{sub 33}* was estimated to be 795 pC/N at 2.29 V, measured by scanning probe microscopy. Further atomic force microscope observation revealed the existence of 90 deg. domains of about 60-70 nm in width, confirming the previous results that small domain structure enhances the piezoelectric properties.

  12. A Bi-Modal Distribution of ALHA77307 Matrix Olivine: Evidence for Fine-Grained Mixing from Multiple Reservoirs in the CO Formation Zone

    NASA Technical Reports Server (NTRS)

    Frank, D.; Zolensky, Michael E.; Brearley, A.; Le, L.

    2011-01-01

    The CO 3.0 chondrite ALHA77307 is thought to be the least metamorphosed of all the CO chondrites [1]. As such, the fine-grained (<30 m) olivine found in its matrix is a valuable resource for investigating the CO formation environment since its compositions should be primary. In the CO matrix, we indeed find a wide range of major element compositions (Fa(0.5-71)). However, more importantly, we find that the olivines make up two compositionally distinct populations (Fa(0.5-5) and Fa(21-71)). Grains from both populations are found within an extremely close proximity and we see no obvious evidence of two distinct lithologies within our samples. Therefore, we conclude that the olivine grains found in the ALHA77307 matrix must have crystallized within two unique formation conditions and were later mixed at a very fine scale during the accretion epoch. Here, we propose a possible explanation based on Cr and Mn concentrations in the olivine.

  13. Mineralogy and Textural Characteristics of Fine-grained Rims in the Yamato 791198 CM2 Carbonaceous Chondrite: Constraints on the Location of Aqueous Alteration

    NASA Technical Reports Server (NTRS)

    Chizmadia, Lysa J.; Brearley, Adrian J.

    2003-01-01

    Carbonaceous chondrites provide important clues into the nature of physical and chemical processes in the early solar system. A question of key importance concerns the role of water in solar nebular and asteroidal processes. The effects of water on primary mineral assemblages have been widely recognized in chondritic meteorites, especially the CI and CM carbonaceous chondrites. These meteorites have undergone extensive aqueous alteration that occurred prior to their arrival on Earth. In the case of the CM chondrites, this alteration has resulted in the partial to complete replacement of the primary nebular phases with secondary alteration phases. Considerable controversy exists as to the exact location where the alteration of the CM chondrites occurred. Several textural lines of evidence have been cited in support of aqueous alteration prior to the accretion of the final parent asteroid. An important line of evidence to support this hypothesis is the dis-equilibrium nature of fine-grained rims and matrix materials. [2] also noted the juxtaposition of micron-sized Fe-Ni metal grains and apparently unaltered chondrule glass against hydrated rim silicates. Conversely, there is a large body of evidence in favor of parent body alteration such as the occurrence of undisturbed Fe-rich aureoles and the systematic redistribution of elemental components over millimeters, e.g., Mg(+2) into the matrix and Fe(+2) into chondrules etc.

  14. Geochemistry of fine-grained sediments in the Yangtze River and the implications for provenance and chemical weathering in East Asia

    NASA Astrophysics Data System (ADS)

    He, Mengying; Zheng, Hongbo; Clift, Peter D.; Tada, Ryuji; Wu, Weihua; Luo, Chao

    2015-12-01

    In order to interpret the marine clastic record preserved in the sedimentary basins of the East Asian marginal seas, it is important to understand how sediment transport and chemical weathering affect the composition of sediment enroute to its sink. Here we present a new data set for fine-grained sediment (<63 μm) from the Yangtze River and its major tributaries, which represents a baseline for interpreting sediment in the East China Sea. We demonstrate that there is no significant coherent downstream variation in the major element contents, which are generally more enriched than the average upper continental crust, except for water-soluble elements including Sr, Rb, Na, and K. Nd isotopes show that most of the sediment comes from the eastern and middle Yangtze Craton, as well as the Songpan-Garze Terrane. Chemical weathering varies significantly across the basin with upstream tributary sediments being relatively unweathered compared to those in the lower reaches. However, sediments in the main Yangtze stream show no trend in chemical weathering along its course, with some of the least weathered materials being found closest to the delta. Grain size and the abundance of hydrodynamically sorted heavy minerals affect the bulk geochemistry, especially the rare earth elements (REEs).

  15. Fine-grained parallelization of the Car-Parrinello ab initio molecular dynamics method on the IBM Blue Gene/L supercomputer

    SciTech Connect

    E. Bohm A. Bhatele L. V. Kale M. E. Tuckerman S. Kumar J. A. Gunnels G. J. Martyna; Bohm, E.; Bhatele, A.; Kale, L. V.; Tuckerman, M. E.; Kumar, S.; Gunnels, J. A.; Martyna, G. J.

    2008-01-01

    Important scientific problems can be treated via ab initio-based molecular modeling approaches, wherein atomic forces are derived from an energy Junction that explicitly considers the electrons. The Car-Parrinello ab initio molecular dynamics (CPAIMD) method is widely used to study small systems containing on the order of 10 to 103 atoms. However, the impact of CPAIMD has been limited until recently because of difficulties inherent to scaling the technique beyond processor numbers about equal to the number of electronic states. CPAIMD computations involve a large number of interdependent phases with high interprocessor communication overhead. These phases require the evaluation of various transforms and non-square matrix multiplications that require large interprocessor data movement when efficiently parallelized. Using the Charm++ parallel programming language and runtime system, the phases are discretized into a large number of virtual processors, which are, in turn, mapped flexibly onto physical processors, thereby allowing interleaving of work. Algorithmic and IBM Blue Gene/L(tm) system-specific optimizations are employed to scale the CPAIMD method to at least 30 times the number of electronic states in small systems consisting of 24 to 768 atoms (32 to 1,024 electronic states) in order to demonstrate fine-grained parallelism. The largest systems studied scaled well across the entire machine (20,480 nodes).

  16. Effects of grain size on high temperature creep of fine grained, solution and dispersion hardened V -1.6Y -8W -0.8TiC

    NASA Astrophysics Data System (ADS)

    Furuno, T.; Kurishita, H.; Nagasaka, T.; Nishimura, A.; Muroga, T.; Sakamoto, T.; Kobayashi, S.; Nakai, K.; Matsuo, S.; Arakawa, H.

    2011-10-01

    Creep resistance is the major concern of vanadium and its alloys for fusion reactor structural applications. In order to elucidate the effects of grain size on the creep behavior of solution and dispersion strengthened vanadium alloys, V-1.6Y-8W-0.8TiC specimens with fine grain sizes from 0.58 to 1.45 μm were prepared by mechanical alloying and HIP without any plastic working and tested at 1073 K and 250 MPa in vacuum. It is shown that the creep resistance of V-1.6Y-8W-0.8TiC depends strongly on grain size and increases with increasing grain size: The creep life for the grain size of 1.45 μm is almost one order longer than that of 0.58 μm, and about two orders longer than that of V-4Cr-4Ti (NIFS-Heat 2) although the grain size of V-4Cr-4Ti is as large as 17.8 μm. The observed creep behavior is discussed in terms of grain size effects on dislocation glide and grain boundary sliding.

  17. Fine-grained clay fraction (,0.2 {mu}m): An interesting tool to approach the present thermal and permeability state in active geothermal systems

    SciTech Connect

    Patrier, P.; Papapanagiotou, P.; Beaufort, D.; Traineau, H.; Bril, H.

    1992-01-01

    We have investigated by X-ray diffraction the very fine grained secondary minerals (< 0.2 {micro}m) developed in geothermal systems, in relation with their present thermal and permeability state. Because the smallest particles are the most reactive part of a rock, they are the youngest mineral phases of the geothermal fields. This study has been performed on two active geothermal fields: Milos field, Greece (130 < T < 320 C) and Chipilapa field, Salvador (90 < T < 215 C). In the Milos field, the mineralogical composition of the < 0.2 {micro}m clay fraction observed in the reservoir strongly differs from the overlying altered metamorphic schists in the presence of abundant quantities of saponite and talc/saponite interstratified minerals at unusually high temperature. These phases are considered to be kinetically control-led ''metastable'' minerals which rapidly evolve towards actinolite and talc for present temperatures higher than 300 C. Their occurrence is a good indicator of discharge in highly permeable zones. In the geothermal field of Chipilapa, the mineralogical composition of the < 0.2 {micro}m clay fractions fairly agrees with the temperatures presently measured in the wells, whereas several discrepancies may be pointed out from the compositions of coarser clay fractions (< 5 {micro}m) which contain minerals inherited from higher temperature stages. Permeable zones may be evidenced from an increase of expandable components in the interstratified minerals and a decrease of the coherent domain of the unexpandable clay particles (chlorite).

  18. Microstructure and Mechanical Properties of Ultra-fine-Grained Al-Mg-Si Tubes Produced by Parallel Tubular Channel Angular Pressing Process

    NASA Astrophysics Data System (ADS)

    Faraji, G.; Roostae, S.; Seyyed Nosrati, A.; Kang, J. Y.; Kim, H. S.

    2015-04-01

    In the present work, commercial Al-6061 alloy tubes were processed via multi-pass parallel tubular channel angular pressing (PTCAP). The effects of the number of passes on grain refinement and mechanical properties were investigated. The microstructural evolution was characterized using electron back-scattered diffraction (EBSD) and scanning electron microscopy. The mechanical properties were evaluated using tensile tests and hardness measurements. The EBSD analyses presented that the elongated subgrains or grains with ~800 nm in size and a high fraction of low-angle grain boundaries were formed after two PTCAP passes. After four passes, the elongated subgrains have transformed to almost equiaxed grains with ~400 nm in size and high-angle grain boundaries. Microhardness of the processed tube increased from 38.9 to 63.4 HV (~63 pct) after three PTCAP passes. An increase in the number of PTCAP passes after three passes has no more effect on the microhardness. Yield and ultimate tensile strength were increased by 2.1 and 1.6 times, respectively, after four PTCAP passes ( ɛ ~6.4) compared to the annealed sample. Ductile fracture with an extensive necking zone and many big dimples occur in the annealed sample, while fine dimples and limited ductile fracture features were observed in the ultra-fine grained PTCAP-processed samples.

  19. Nanocrystalline TiAl compacts prepared by HDDR and hot pressing

    SciTech Connect

    Aoki, K.; Itoh, Y.; Kawamura, Y.; Inoue, A.; Masumoto, T.

    1997-12-31

    Nanocrystalline TiAl powder was formed by the modified HDDR (hydrogenation-disproportion-dehydrogenation-recombination) method utilizing ball milling in a hydrogen atmosphere. That is, TiAl compound powder decomposed into TiH{sub 2} and Al-rich TiAl powders by mechanical grinding in a hydrogen atmosphere (HD process). Dehydrogenation-recombination (realloying) resulted in the formation of nanocrystalline TiAl powder when heated to about 700 K in an argon atmosphere (DR process). Almost fully dense nanocrystalline TiAl compacts were prepared by a combination of HDDR and hot-pressing at 873 K which is lower than the usual consolidation temperature by about 300 K. The TiAl compact thus made was brittle in the as-pressed state but showed compressive ductility after annealing.

  20. Knudsen Cell Studies of Ti-Al Thermodynamics

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan S.; Copland, Evan H.; Mehrotra, Gopal M.; Auping, Judith; Gray, Hugh R. (Technical Monitor)

    2002-01-01

    In this paper we describe the Knudsen cell technique for measurement of thermodynamic activities in alloys. Numerous experimental details must be adhered to in order to obtain useful experimental data. These include introduction of an in-situ standard, precise temperature measurement, elimination of thermal gradients, and precise cell positioning. Our first design is discussed and some sample data on Ti-Al alloys is presented. The second modification and associated improvements are also discussed.

  1. Thermal infrared spectral analysis of compacted fine-grained mineral mixtures: implications for spectral interpretation of lithified sedimentary materials on Mars

    NASA Astrophysics Data System (ADS)

    Pan, C.; Rogers, D.

    2012-12-01

    Characterizing the thermal infrared (TIR) spectral mixing behavior of compacted fine-grained mineral assemblages is necessary for facilitating quantitative mineralogy of sedimentary surfaces from spectral measurements. Previous researchers have demonstrated that TIR spectra from igneous and metamorphic rocks as well as coarse-grained (>63 micron) sand mixtures combine in proportion to their volume abundance. However, the spectral mixing behavior of compacted, fine-grained mineral mixtures that would be characteristic of sedimentary depositional environments has received little attention. Here we characterize the spectral properties of pressed pellet samples of <10 micron mineral mixtures to 1) assess linearity of spectral combinations, 2) determine whether there are consistent over- or under-estimations of different types of minerals in spectral models and 3) determine if model accuracy can be improved by including both fine- and coarse-grained end-members. Major primary and secondary minerals found on the Martian surface including feldspar, pyroxene, smectite, sulfate and carbonate were crushed with an agate mortar and pestle and centrifuged to obtain less than 10 micron size. Pure phases and mixtures of two, three and four components were made in varying proportions by volume. All of the samples were pressed into pellets at 15000PSI to minimize volume scattering. Thermal infrared spectra of pellets were measured in the Vibrational Spectroscopy Laboratory at Stony Brook University with a Thermo Fisher Nicolet 6700 Fourier transform infrared Michelson interferometer from ~225 to 2000 cm-1. Our preliminary results indicate that some pelletized samples have contributions from volume scattering, which leads to non-linear spectral combinations. It is not clear if the transparency features (which arise from multiple surface reflections of incident photons) are due to minor clinging fines on an otherwise specular pellet surface or to partially transmitted energy through

  2. Numerical modelling of fine-grained sediments remobilization in heavily polluted streams. Case study: Elbe and Bílina River, Czech Republic.

    NASA Astrophysics Data System (ADS)

    Kaiglová, Jana; Langhammer, Jakub; Jiřinec, Petr; Janský, Bohumír; Chalupová, Dagmar

    2014-05-01

    river and the riparian sediment evaluation the 2D schematization (MIKE 21 C) was selected. It enabled to distinguish flow characteristics in the zone with complicated hydrodynamic conditions. The risk of remobilization of fine-grained sediments was evaluated in order to define a threshold discharge value after that the spreading of pollution can be expected. The major contribution of the study, realized in the framework of international iniciative ELSA was the identification of threshold values for potential remobilization of sediment burdened by old loads in different environments. These threshold values are important information for identification and mitigation of risks related with old loads and hydrological extremes. From methodological point of view the study verified validity of applied distinct approaches for fine-grained sediment remobilization assessment and identified limits for their application. Key words: sediment, remobilization, old loads, modelling, hydrodynamics, Elbe river

  3. On 10 to 30 m-scale fracture networks in Gale Crater: Contraction of fine-grained sediments due to drying or of frozen sediments due to cooling?

    NASA Astrophysics Data System (ADS)

    Sletten, Ronald; Hallet, Bernard

    2014-05-01

    The area in Gale Crater north of the Curiosity landing site has been identified as an alluvial fan [1] and features diverse geological units [2], some with abundant contraction cracks that delineate polygons on the order of 10-30 meters across. These polygons are much larger than the < 1m flagstones seen in Yellowknife by Curiosity [3] and are more suggestive of polygonal patterned ground seen at higher latitudes on Mars [4] and Earth; however, current conditions indicate that ground ice is not stable in Gale Crater [4]. Nevertheless, past conditions, e.g. obliquity changes, may have allowed permafrost to develop and ground ice to form. The domains between the larger polygons are several meters wide, which is consistent with cyclic ratcheting of ice-cemented permafrost (thermal contraction with fractures opening, debris infilling the fractures, and the fractures not closing fully when the ground warms and expands). On the other hand, the large-scale crack networks often seem to be associated with certain lithologic units, including the thinly-bedded, lightly-colored mudstones exposed at Yellowknife. This suggests that the contraction cracks defining these 10 to 30-m polygons, as well as those defining the < 1m flagstones, formed in moist fine-grained sediments that contracted upon desiccation. If the fractures were due to contraction of ice-cemented permafrost, they would be insensitive to the type of sediments they formed in because the mechanical properties would be dominated by ice. The interpretation of the larger-scale crack network is limited to satellite images since Curiosity did not visit this area, and to evidence about surface materials elsewhere in the vicinity of the rover. This evidence points to the former presence of flowing water in Gale Crater and existence of shallow lakes of relatively low salinity and near-neutral pH at Yellowknife [5]. The large amount of contraction in Yellowknife deposits is consistent with a desiccation origin in these

  4. Improving the aeration of critical fine-grained landfill top cover material by vegetation to increase the microbial methane oxidation efficiency.

    PubMed

    Bohn, Sonja; Brunke, Paul; Gebert, Julia; Jager, Johannes

    2011-05-01

    The natural methane oxidation potential of methanotrophic bacteria in landfill top covers is a sustainable and inexpensive method to reduce methane emissions to the atmosphere. Basically, the activity of methanotrophic bacteria is limited by the availability of oxygen in the soil. A column study was carried out to determine whether and to what extent vegetation can improve soil aeration and maintain the methane oxidation process. Tested soils were clayey silt and mature compost. The first soil is critical in light of surface crusting due to vertical erosion of an integral part of fine-grained material, blocking pores required for the gas exchange. The second soil, mature compost, is known for its good methane oxidation characteristics, due to high air-filled porosity, favorable water retention capacity and high nutrient supply. The assortment of plants consisted of a grass mixture, Canadian goldenrod and a mixture of leguminous plants. The compost offered an excellent methane oxidation potential of 100% up to a CH(4)-input of 5.6l CH(4)m(-2)h(-1). Whereas the oxidation potential was strongly diminished in the bare control column filled with clayey silt even at low CH(4)-loads. By contrast the planted clayey silt showed an increased methane oxidation potential compared to the bare column. The spreading root system forms secondary macro-pores, and hence amplifies the air diffusivity and sustain the oxygen supply to the methanotrophic bacteria. Water is produced during methane oxidation, causing leachate. Vegetation reduces the leachate by evapotranspiration. Furthermore, leguminous plants support the enrichment of soil with nitrogen compounds and thus improving the methane oxidation process. In conclusion, vegetation is relevant for the increase of oxygen diffusion into the soil and subsequently enhances effective methane oxidation in landfill cover soils. PMID:21169005

  5. Extreme ductile deformation of fine-grained salt by coupled solution-precipitation creep and microcracking: Microstructural evidence from perennial Zechstein sequence (Neuhof salt mine, Germany)

    NASA Astrophysics Data System (ADS)

    Závada, Prokop; Desbois, Guillaume; Schwedt, Alexander; Lexa, Ondrej; Urai, Janos L.

    2012-04-01

    Microstructural study revealed that the ductile flow of intensely folded fine-grained salt exposed in an underground mine (Zechstein-Werra salt sequence, Neuhof mine, Germany) was accommodated by coupled activity of solution-precipitation (SP) creep and microcracking of the halite grains. The grain cores of the halite aggregates contain remnants of sedimentary microstructures with straight and chevron shaped fluid inclusion trails (FITs) and are surrounded by two concentric mantles reflecting different events of salt precipitation. Numerous intra-granular or transgranular microcracks originate at the tips of FITs and propagate preferentially along the interface between sedimentary cores and the surrounding mantle of reprecipitated halite. These microcracks are interpreted as tensional Griffith cracks. Microcracks starting at grain boundary triple junctions or grain boundary ledges form due to stress concentrations generated by grain boundary sliding (GBS). Solid or fluid inclusions frequently alter the course of the propagating microcracks or the cracks terminate at these inclusions. Because the inner mantle containing the microcracks is corroded and is surrounded by microcrack-free outer mantle, microcracking is interpreted to reflect transient failure of the aggregate. Microcracking is argued to play a fundamental role in the continuation and enhancement of the SP-GBS creep during halokinesis of the Werra salt, because the transgranular cracks (1) provide the ingress of additional fluid in the grain boundary network when cross-cutting the FITs and (2) decrease grain size by splitting the grains. More over, the ingress of additional fluids into grain boundaries is also provided by non-conservative grain boundary migration that advanced into FITs bearing cores of grains. Described readjustments of the microstructure and mechanical and chemical feedbacks for the grain boundary diffusion flow in halite-brine system are proposed to be comparable to other rock-fluid or

  6. Fine-grained adaptive divergence in an amphibian: genetic basis of phenotypic divergence and the role of nonrandom gene flow in restricting effective migration among wetlands.

    PubMed

    Richter-Boix, Alex; Quintela, María; Kierczak, Marcin; Franch, Marc; Laurila, Anssi

    2013-03-01

    phenotypic divergence at a fine-grained spatial scale. PMID:23294180

  7. Surface-water-quality assessment of the Yakima River basin in Washington; analysis of major and minor elements in fine-grained streambed sediment, 1987

    USGS Publications Warehouse

    Fuhrer, G.J.; McKenzie, S.W.; Rinella, J.F.; Sanzolone, R.F.; Skach, K.A.

    1993-01-01

    Fine-grained streambed sediment from the Yakima River Basin was sampled from 448 locations and analyzed for 45 elements. Anomalous major- and minor-element concentrations were based on baseline values established from element concentrations in streambed sediment in the basin. The largest number of anomalies occurred for antimony, arsenic, cerium, copper, and zinc; at least 10 percent of these element concentrations exceeded the threshold values of 0.7 mg/g (micrograms per gram), 8.5 mg/g, 57 mg/g, 40 mg/g, and 120 mg/g, respectively. Concentrations of arsenic as large as 31 and 61 mg/g occurred in streambed sediment formed from the pre-Tertiary metamorphic and intrusive rocks geologic unit and from the nonmarine sedimentary rocks geologic unit, respectively. These geologic units were probable sources of arsenic to smaller headwater streams; however, arsenic concentrations from these geologic sources rapidly attenuated downstream in the Yakima River. Geologic sources of arsenic were generally small in agricultural land-use areas; however, concentrations as large as 140 mg/g were found in samples of soils that were historically treated with the lead-arsenate pesticide. In addition, concentrations of lead, as large as 890 mg/g, occurred in these pesticide- treated soils. Streambed sediment formed from the pre-Tertiary metamorphic and intrusive rocks geologic unit also contained concentrations as large as 1,700 mg/g for chromium, 140 mg/g for cobalt, and 1,900 mg/g for nickel. Like arsenic, concentrations of chromium (in addition to mercury and nickel) were attenuated in the Yakima River. The application of zinc sulphate to orchards was probably responsible for concentrations of zinc as large as 150 mg/g in soils of and 180 mg/g in streambed sediment from the agricultural land-use area.

  8. Injection Seeding of Ti:Al2O3 in an unstable resonator theory and experiment

    NASA Technical Reports Server (NTRS)

    Barnes, J. C.; Wang, L. G.; Barnes, N. P.; Edwards, W. C.; Cheng, W. A.; Hess, R. V.; Lockard, G. E.; Ponsardin, P. L.

    1991-01-01

    Injection Seeding of a Ti:Al2O3 unstable resonator using both a pulsed single-mode Ti:Al2O3 laser and a continuous wave laser diode has been characterized. Results are compared with a theory which calculates injection seeding as function of seed and resonator alignment, beam profiles, and power.

  9. XRD-based 40Ar/39Ar age correction for fine-grained illite, with application to folded carbonates in the Monterrey Salient (northern Mexico)

    NASA Astrophysics Data System (ADS)

    Fitz-Díaz, Elisa; Hall, Chris M.; van der Pluijm, Ben A.

    2016-05-01

    of retention capability, degassing spectra were modeled for site XCA averages and overall XCA average. Modeling shows that local site age average best match the measured spectra, instead of a global average age, indicating that illite growth reflects local deformation, and is not the result of regional metamorphism. Modeling also shows that Ar-degassing spectra are very sensitive to grain size, such that age interpretation based on Ar-plateaus is meaningless for most fine-grained clays.

  10. An improved sample preparation method for non-destructive analyses of fine-grained subseafloor sediments using micro-focus X-ray CT and SEM

    NASA Astrophysics Data System (ADS)

    Uramoto, G.; Morono, Y.; Uematsu, K.; Inagaki, F.

    2012-12-01

    Spatial arrangement of particles in fine-grained marine subsurface sediments is a key factor for the physical property of sediments. The pore space provides micro-niches for chemical, physical, and microbiological components in the subsurface geosphere and biosphere. However, the standard techniques conventionally used for the sample preparation have some critical issues to understand accurate nature of fine-scale particle arrangement because of the possible deformation of micro-structures during the sample fixation. Here we tested the resin-embedding method for ocean drilling core samples, which technique has been applied mainly for biological samples. Using micro-focus X-ray CT-computed tomography and SEM we compared the images with the conventional t-butyl alcohol freeze-drying methods. Using the t-butyl alcohol freeze-dried sediment samples, we observed large number of micrometer-scale cracks in both SEM and X-CT image analyses, indicating the significant disturbance of sediment microstructure during sample processing. On the other hand, when we employed mini-coring, agar infiltration, and related biological sample-processing techniques for the resin-embedding method, no observable cracks were evident, most likely due to the rapid resin impregnation into sediments without sample drying. On SEM images of the flattened sample surface, we compared the porosity assessed with the resin-embedded samples to those measured onboard by the moisture and density method, showing a good agreement of the porosity values. In high-porosity surficial sediments embedded with resin, we observed structures that sediment particles are floating in the space, which may represent the results of physico-chemical interaction among sediment particles. However, almost no such particle arrangements were observed in t-butyl alcohol freeze-dried samples, indicating that drying of interstitial fluids may impact on the physico-chemical forces within particulate compounds. Conclusively, our

  11. Multi-Scale Transport Properties of Fine-Grained Rocks: A Case Study of the Kirtland Formation, San Juan Basin, USA

    NASA Astrophysics Data System (ADS)

    Heath, J. E.; Dewers, T. A.; McPherson, B. J.; Wilson, T. H.; Flach, T.

    2009-12-01

    Understanding and characterizing transport properties of fine-grained rocks is critical in development of shale gas plays or assessing retention of CO2 at geologic storage sites. Difficulties arise in that both small scale (i.e., ~ nm) properties of the rock matrix and much larger scale fractures, faults, and sedimentological architecture govern migration of multiphase fluids. We present a multi-scale investigation of sealing and transport properties of the Kirtland Formation, which is a regional aquitard and reservoir seal in the San Juan Basin, USA. Sub-micron dual FIB/SEM imaging and reconstruction of 3D pore networks in core samples reveal a variety of pore types, including slit-shaped pores that are co-located with sedimentary structures and variations in mineralogy. Micron-scale chemical analysis and XRD reveal a mixture of mixed-layer smectite/illite, chlorite, quartz, and feldspar with little organic matter. Analysis of sub-micron digital reconstructions, mercury capillary injection pressure, and gas breakthrough measurements indicate a high quality sealing matrix. Natural full and partially mineralized fractures observed in core and in FMI logs include those formed from early soil-forming processes, differential compaction, and tectonic events. The potential impact of both fracture and matrix properties on large-scale transport is investigated through an analysis of natural helium from core samples, 3D seismic data and poro-elastic modeling. While seismic interpretations suggest considerable fracturing of the Kirtland, large continuous fracture zones and faults extending through the seal to the surface cannot be inferred from the data. Observed Kirtland Formation multi-scale transport properties are included as part of a risk assessment methodology for CO2 storage. Acknowledgements: The authors gratefully acknowledge the U.S. Department of Energy’s (DOE) National Energy Technology Laboratory for sponsoring this project. The DOE’s Basic Energy Science

  12. The preparation of the Ti-Al alloys based on intermetallic phases

    NASA Astrophysics Data System (ADS)

    Kosova, N.; Sachkov, V.; Kurzina, I.; Pichugina, A.; Vladimirov, A.; Kazantseva, L.; Sachkova, A.

    2016-01-01

    This article deals with a method of obtaining materials in the Ti-Al system. Research was carried out in accordance with the phase diagram of the system state. It was established, that both single-phase and multiphase systems, containing finely dispersed intermetallic compositions of phases Ti3Al, TiAl and TiAl3, are formed. Additionally, it was found that the pure finely dispersed (coherent-scattering region (CSR) up to 100 nm) intermetallic compound TiAl3 is formed at molar ratio of Ti:Al = 1:3. Experimentally proved the possibility of produce the complex composition of alloys and intermetallic compounds and products based on them.

  13. Fretting Fatigue of Gamma TiAl Studied

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa; Lerch, Bradley A.; Draper, Susan L.

    2003-01-01

    Gamma titanium-aluminum alloy (g-TiAl) is an attractive new material for aerospace applications because of its low density and high specific strength in comparison to currently used titanium and nickel-base alloys. Potential applications for this material are compressor and low-pressure turbine blades. These blades are fitted into either the compressor or turbine disks via a dovetail connection. The dovetail region experiences a complex stress state due to the alternating centrifugal force and the natural high-frequency vibration of the blade. Because of the dovetail configuration and the complex stress state, fretting is often a problem in this area. Furthermore, the local stress state becomes more complex when the influence of the metal-metal contact and the edge of the contact is evaluated. Titanium and titanium-based alloys in the clean state exhibit strong adhesive bonds when in contact with themselves and other materials (refs. 1 and 2). This adhesion causes heavy surface damage and high friction in practical cases. Although the wear produced by fretting may be mild, the reduction in fatigue life can be substantial. Thus, there is the potential for fretting problems with these TiAl applications. Since TiAl is an emerging material, there has been limited information about its fretting behavior.

  14. Conditions for CET in a gamma TiAl alloy

    NASA Astrophysics Data System (ADS)

    Mooney, R. P.; Lapin, J.; Klimová, A.; McFadden, S.

    2015-06-01

    The solidification of gamma TiAl alloys is of interest to the aerospace and automotive industries. A gamma TiAl multicomponent alloy: Ti-45.5Al-4.7Nb-0.2C-0.2B (at. %) has been the focus of a study to investigate the solidification conditions that led to a Columnar to Equiaxed Transition (CET) in a directional solidification experiment where traditional Bridgman solidification was combined in series with the power down method. In this paper, a numerical modelling result (a locus plot of columnar growth rate and temperature gradient) from this experiment is superimposed onto CET maps generated using an established analytical model for CET from the literature. A parametric study is carried out over suitable ranges of nucleation undercooling and nuclei density values. The predicted CET positions are compared with the experimentally measured CET position. Reasonable agreement is found at low levels of nuclei density. The paper concludes with estimates for the solidification conditions (nuclei density and nucleation undercooling) that led to the CET.

  15. Drilling of intermetallic alloys gamma TiAl

    SciTech Connect

    Beranoagirre, A.; Olvera, D.; Lopez de Lacalle, L. N.; Urbicain, G.

    2011-01-17

    Due to their high strength/weight ratio and resistance to corrosion and wear, superalloys such as gamma TiAl or Inconel 718 appear as the best choice for the high mechanical/thermal demands in the vicinity of the combustion chamber of aircraft engines. There are assembled parts such as cases, disks or blisks; in the manufacturing of these components the last drilling operation could jeopardize the full work integrity adding new costs to the just very expensive parts. Therefore drilling is a high-added value step in the complete sequence. The present work is framed within the study of hole making in advanced materials used for lightweight applications in aerospace sector. Within this context, the paper presents the results from milling tests on three types of gamma TiAl alloys (extruded MoCuSi, ingot MoCuSi and TNB) to define an optimal set of cutting parameters, which will contribute to open the increase in use of these special alloys. Drilling tools made of integral hard metal were used, applying different feeds and cutting speeds. The influence of cutting speed and feed is discussed.

  16. Analysis of cast TiAl properties for engine materials

    SciTech Connect

    Nakagawa, Y.G.; Matsuda, K.; Masaki, S.; Imamura, R.; Arai, M.

    1995-12-31

    A gamma TiAl alloy, Alloy01, was developed for casting aeroengine hot parts in an effort to replace current Ni-base superalloys. To evaluate engineering applicability, many commercial size ingots of Alloy01 were melted, and cast into various component shapes. Property measurements were made on cast-size specimens and in some cases on machined from blade samples. These included tensile strength and ductility, creep and creep rupture strength, low and high cycle fatigue, fracture toughness, crack growth rate, and some physical properties. Some of the important observations were made as follows; the room temperature (RT) strength and ductility are believed to be determined by three major factors, aluminum content, oxygen content, and macro-structural elements. Among those the macrostructure (grain size, grain structures, and shrinkage porosity) was considered most important. The best ductility obtained for as-cast specimens was 0.5%, but a HIP treatment increased the ductility to more than 1%. The alloy exhibited an excellent creep and fatigue strength. A comparison of the property data with those of a superalloy indicated that the TiAl is technically qualified for some of the components without major design changes.

  17. Plasticity and interfacial dislocation structures in Ti-Al

    SciTech Connect

    Parrini, L.; Heinrich, H.; Kostorz, G.

    1997-12-31

    The alloy Ti-48.6Al-1.9Cr-1.9Nb-1B with an equiaxed {gamma} microstructure, obtained by heat treatment at 1,200 C for 4 h, and with a lamellar microstructure, obtained by heat treatment at 1,380 C for 1 h, is characterized by compression tests and transmission electron microscopy. A lower activity of superdislocations and a more frequent pinning of ordinary dislocations are detected in the lamellar Ti-Al specimens in comparison with the non-lamellar ones during deformation at room temperature. The activity of superdislocations and the pinning of ordinary dislocations are responsible for the differences in yield stress and brittleness between lamellar and non-lamellar Ti-Al. A very high density of ordinary interfacial dislocations is found in the lamellar structure. These influence the activity of superdislocations and the pinning of ordinary dislocations. At high temperature a change in the deformation mechanism occurs. Above the brittle-to-ductile transition, the material is remarkably softer and the mechanical properties are insensitive to the presence of the lamellar interfaces.

  18. Fluid distribution in grain boundaries of natural fine-grained rock salt deformed at low shear stress: implications for rheology and transport properties

    NASA Astrophysics Data System (ADS)

    Desbois, G.; Urai, J. L.; De Bresser, J. H. P.

    2012-04-01

    We used a combination of broad ion beam (BIB) cross-sectioning and high resolution (cryogenic) SEM to image polished surfaces and corresponding pairs of fractured grain boundaries in an investigation of grain boundary (GB) microstructures and fluid distribution in naturally deformed halite from a salt glacier (Kum Quh, central Iran). At the scale of observations, four types of fluid or gas filled grain boundaries can be distinguished: (1) straight boundaries with thick (up to 10 µm) GB tubes (2) straight boundaries with narrow (about 50 nm) GB tubes (3) wavy (tens of µm wavelength) GB with isolated inclusions of a few µm, and (4) wavy (µm wavelength) GB with small (µm) isolated inclusions. Grain boundary fluid inclusions can have three types of morphologies: the inclusion of Type 1 is intruded completely in one grain, inclusion of Type 2 has its major part included in one grain with a minor part in the second grain and the inclusion of Type 3 is located in both grains. Solid second phases in GB are mainly euhedral anhydrite crystals. The mobility of the brine is shown after cutting the inclusions by BIB in vacuum and fine-grained halite forms efflorescence and precipitates on internal walls of inclusions. At cryogenic temperature, in-situ brine is seen as continuous film in GB of type (1) and (2), and in isolated inclusions in GB of type (3) and (4). The structure of halite-halite contact between isolated fluid inclusions in GB of type (3) and (4) is below the resolution of SEM. GB of type (3) and (4) are interpreted to have formed by healing of mobile fluid films. First results of deformation experiments on the same samples under shear stress corresponding to conditions of natural salt glacier, show very low strain rates (7.43x10-10 s-1 and 1x10-9 s-1), up to one order of magnitude below of expected strain rates by solution precipitation creep. Both microstructures and deformation experiments suggest interfacial energy-driven GB healing, in agreement with the

  19. Switch to duplex stainless steels

    SciTech Connect

    Quik, J.M.A.; Geudeke, M.

    1994-11-01

    Duplex stainless steels contain approximately equal proportions of ferrite and austenite. These stainless steels have become an established material of construction in the chemical process industries (CPI). Duplexes offer benefits over austenitic stainless steels and carbon steels because of their higher strength, and good toughness and ductility, in combination with equivalent resistance to general corrosion, as well as better resistance to localized corrosion and stress corrosion cracking. Additionally, duplex materials have thermal-conductivity and thermal-expansion coefficients similar to those of ferritic materials, are tough at low (sub-zero) temperatures, and have a high resistance to erosion and abrasion. In some of the highly corrosive environments encountered in the CPI, the super duplex stainless steels offer cost-effective options not possible with the standard austenitic stainless steels. The initial applications were almost exclusively as heat exchanger tubing in water-cooled service. In recent times, duplex stainless steels have been used in the oil, gas, and chemical industries. Examples include service in sweet and mildly sour corrosive environments, on offshore platforms where weight savings can be realized, and as a replacement for standard austenitic stainless steel in chemical-processing plants.

  20. Effects of Al Contents on Carburization Behavior and Corrosion Resistance of TiAl Alloys

    NASA Astrophysics Data System (ADS)

    Liao, Cui Jiao; He, Yue Hui; Ming, Xing Zu

    2015-10-01

    TiAl alloys with Al contents of 30.7, 37, 46.5, and 54.2 at.% were carburized. Corrosion resistance of the untreated and the carburized TiAl alloys was comparatively analyzed. The phase and microstructure of the carburized TiAl alloys were studied by x-ray diffraction and scanning electron microscopy, respectively. Electrochemical corrosion behavior of the untreated and the carburized TiAl alloys was investigated using potentiodynamic polarization and electrochemical impedance spectroscopy. Experimental results indicate that different Al contents bring about distinct microstructure of the carburized layers. The lower Al content leads to the formation of the thicker binary carbides and the thinner Ti2AlC phase. Additionally, the lower Al content leads to higher corrosion resistance in the untreated and the carburized states.

  1. Characterization of micron-sized Fe,Ni metal grains in fine-grained rims in the Y-791198 CM2 carbonaceous chondrite: Implications for asteroidal and preaccretionary models for aqueous alteration.

    NASA Astrophysics Data System (ADS)

    Chizmadia, L. J.; Xu, Y.; Schwappach, C.; Brearley, A. J.

    2008-11-01

    The presence of apparently unaltered, micron-sized Fe,Ni metal grains, juxtaposed against hydrated fine-grained rim materials in the CM2 chondrite Yamato (Y-) 791198 has been cited as unequivocal evidence of preaccretionary alteration. We have examined the occurrence, composition, and textural characteristics of 60 Fe,Ni metal grains located in fine-grained rims in Y-791198 using scanning electron microscopy (SEM) and electron microprobe analysis. In addition, three metal grains, prepared by focused ion beam (FIB) sample preparation techniques were studied by transmission electron microscopy (TEM). The metal grains are heterogeneously distributed within the rims. Electron microprobe analyses show that all the metal grains are kamacite with minor element contents (P, Cr, and Co) that lie either within or close to the range for other CM2 metal grains. X-ray maps obtained by electron microprobe show S, P, and/or Ca enrichments on the outermost parts of many of the metal grains. Z-contrast STEM imaging of FIB-prepared Fe,Ni metal grains show the presence of a small amount of a lower Z secondary phase on the surface of the grains and within indentations on the grain surfaces. Energy-filtered TEM (EFTEM) compositional mapping shows that these pits are enriched in oxygen and depleted in Fe relative to the metal. These observations are consistent with pitting corrosion of the metal on the edges of the grains and we suggest may be the result of the formation of Fe(OH)2, a common oxidation product of Fe metal. The presence of such a layer could have inhibited further alteration of the metal grains. These findings are consistent with alteration by an alkaline fluid as suggested by Zolensky et al. (1989), but the location of this alteration remains unconstrained, because Y-791198 was recovered from Antarctica and therefore may have experienced incipient terrestrial alteration. However, we infer that the extremely low degree of oxidation of the metal is inconsistent with

  2. Cavitation erosion of duplex and super duplex stainless steels

    SciTech Connect

    Kwok, C.T.; Man, H.C.; Cheng, F.T.

    1998-10-05

    Owing to their excellent corrosion resistance, stainless steels are widely used both in the marine, urban water, chemical and food industries. In addition to the corrosive environment, high fluid flow speeds are always encountered for components used in these industries. The cavitation characteristics of S30400 and S31600 austenitic stainless steels and duplex stainless steels were studied in detail by a number of authors. It was generally agreed that S30400 has higher cavitation erosion resistance than that of S31600 due to higher tendency of strain induced martensitic transformation under high impulse of stress. A considerable number of results on stress corrosion cracking characteristics of SDSS and duplex stainless steels have been published but data concerning their cavitation erosion property are extremely rare.

  3. Effect of initial microstructure on the compactability of rapidly solidified Ti-rich TiAl powder

    SciTech Connect

    Nishida, M.; Chiba, A.; Morizono, Y.; Kai, T.; Sugimoto, J.

    1997-12-31

    Initial microstructure dependence of compactability at elevated temperature in rapidly solidified Ti-rich TiAl alloy powders produced by plasma rotating electrode process (PREP) has been investigated. There were two kinds of powders with respect to the microstructure. The first one had a surface relief of a martensitic phase, which was referred as M powder. The second one had a dendritic structure, which was referred as D powder. {alpha}{sub 2}+{gamma} microduplex and {alpha}{sub 2}/{gamma} lamellar structures were formed in M and D powders of the Ti-40 at%Al alloy by heat treatment at 1,273 K, respectively. The microduplex structure consisted of {gamma} precipitate in the twin related {alpha}{sub 2} matrix with the usual orientation relationship. It was difficult to compact the D powder by hot pressing at 1,273 K under 50 MPa for 14.4 ks. On the other hand, the M powder was compacted easily by hot pressing with the same condition. The twin related {alpha}{sub 2} and {alpha}{sub 2} boundary changed to random ones and the {alpha}{sub 2} and {gamma} phases lost the usual orientation relationship in the duplex structure during the hot pressing. In other words, the low energy boundaries were changed to the high energy ones suitable for grain boundary sliding. Dislocations were scarcely observed inside of both the {alpha}{sub 2} and {gamma} crystal grains. It was concluded that the grain boundary sliding was a predominant deformation mode in the M powder during the hot pressing. D and M powders in Ti-45 and 47 at%Al alloys showed the same tendency as those in Ti-40 at%Al alloy during hot pressing.

  4. Individual and cumulative effects of agriculture, forestry and metal mining activities on the metal and phosphorus content of fluvial fine-grained sediment; Quesnel River Basin, British Columbia, Canada.

    PubMed

    Smith, Tyler B; Owens, Philip N

    2014-10-15

    The impact of agriculture, forestry and metal mining on the quality of fine-grained sediment (<63 μm) was investigated in the Quesnel River Basin (QRB) (~11,500 km(2)) in British Columbia, Canada. Samples of fine-grained sediment were collected monthly during the snow-free season in 2008 using time-integrated samplers at replicate sites representative of agriculture, forestry and mining activities in the basin (i.e. "impacted" sites). Samples were also collected from replicate reference sites and also from the main stem of the Quesnel River at the downstream confluence with the Fraser River. Generally, metal(loid) and phosphorus (P) concentrations for "impacted" sites were greater than for reference sites. Furthermore, concentrations of copper (forestry and mining sites), manganese (agriculture and forestry sites) and selenium (agriculture, forestry and mining sites) exceeded upper sediment quality guideline (SQG) thresholds. These results suggest that agriculture, forestry and metal mining activities are having an influence on the concentrations of sediment-associated metal(loid)s and P in the Quesnel basin. Metal(loid) and P concentrations of sediment collected from the downstream site were not significantly greater than values for the reference sites, and were typically lower than the values for the impacted sites. This suggests that the cumulative effects of agriculture, forestry and mining activities in the QRB are presently not having a measureable effect at the river basin-scale. The lack of a cumulative effect at the basin-scale is thought to reflect: (i) the relatively recent occurrence of land use disturbances in this basin; (ii) the dominance of sediment contributions from natural forest and agriculture; and (iii) the potential for storage of contaminants on floodplains and other storage elements between the locations of disturbance activities and the downstream sampling site, which may be attenuating the disturbance signal. PMID:25105754

  5. 60 Years of duplex stainless steel applications

    SciTech Connect

    Olsson, J.; Liljas, M.

    1994-12-31

    In this paper the history of wrought duplex stainless steel development and applications is described. Ferritic-austenitic stainless steels were introduced only a few decades after stainless steels were developed. The paper gives details from the first duplex stainless steels in the 1930`s to the super duplex stainless steel development during the 1980`s. During the years much effort has been devoted to production and welding metallurgy as well as corrosion research of the duplex stainless steels. Therefore, duplex stainless steels are to-day established in a wide product range. Numerous important applications are exemplified. In most cases the selection of a duplex steel has been a result of the combination high strength excellent corrosion resistance. In the pulp and paper industry the most interesting use is as vessel material in digesters. For chemical process industry, the duplex steels are currently used in heat exchangers. The largest application of duplex steels exists in the oil and gas/offshore industry. Hundreds of kms of pipelines are installed and are still being installed. An increased use of duplex steels is foreseen in areas where the strength is of prime importance.

  6. POWDER METALLURGY TiAl ALLOYS: MICROSTRUCTURES AND PROPERTIES

    SciTech Connect

    Hsiung, L

    2006-12-11

    The microstructures and properties of powder metallurgy TiAl alloys fabricated by hot extrusion of gas-atomized powder at different elevated temperatures were investigated. Microstructure of the alloy fabricated at 1150 C consisted of a mixture of fine ({gamma} + {alpha}{sub 2}) equiaxed grains and coarse ordered B2 grains. Particles of ordered hexagonal {omega} phase were also observed in some B2 grains. The alloy containing B2 grains displayed a low-temperature superplastic behavior: a tensile elongation of 310% was measured when the alloy was tested at 800 C under a strain rate of 2 x 10{sup -5} s{sup -1}. Microstructure of the alloy fabricated at 1250 C consisted of a mixture of fine ({gamma} + {alpha}{sub 2}) equiaxed grains, coarse {alpha}{sub 2} grains, and lamellar ({gamma} + {alpha}{sub 2}) colonies. An observation of stacking faults associated with fine {gamma} lamellae in {alpha}{sub 2} grains reveals that the stacking fault of {alpha}{sub 2} phase plays an important role in the formation of lamellar ({gamma} + {alpha}{sub 2}) colonies. Unlike the alloy fabricated at 1150{sup o}, the alloy fabricated at 1250{sup o} displayed no low-temperature superplasticity, but a tensile elongation of 260% at 1000 C was measured. Microstructure of the alloy fabricated at 1400 C consisted of fully lamellar ({gamma} + {alpha}{sub 2}) colonies with the colony size ranging between 50 {micro}m and 100 {micro}m, in which the width of {gamma} lamella is in a range between 100 nm and 350 nm, and the width of {alpha}{sub 2} lamella is in a range between 10 nm and 50 nm. Creep behavior of the ultrafine lamellar alloy and the effects of alloying addition on the creep resistance of the fully lamellar alloy are also investigated.

  7. Effect of Milling Parameters on Microstructure of Ti/Al Composite Powder Produced by Discus Milling

    NASA Astrophysics Data System (ADS)

    Raynova, S.; Cao, P.; Gabbitas, B.; Zhang, D.

    The motivation of this research is to develop a process for producing Ti/Al composite powders that enable synthesis of a single-phase TiAl intermetallic bulk material, which is then used as a target for physical vapour deposition (PVD) coating. This study reports the effects of milling time, amount of process control agent (PCA) added as well as the powder-to-medium ratio on the microstructure of the Ti/Al composite powder. Optical microscopy and scanning electron microscopy (SEM) were used to evaluate the level of mixing and the resulting powder particle size. X-ray diffraction analysis and differential thermal analysis were used for determining the phase constituents and the solid state reaction temperature of the as-milled powders.

  8. Conducting High Cycle Fatigue Strength Step Tests on Gamma TiAl

    NASA Technical Reports Server (NTRS)

    Lerch, Brad; Draper, Sue; Pereira, J. Mike

    2002-01-01

    High cycle fatigue strength testing of gamma TiAl by the step test method is investigated. A design of experiments was implemented to determine if the coaxing effect occurred during testing. Since coaxing was not observed, step testing was deemed a suitable method to define the fatigue strength at 106 cycles.

  9. Development and Evaluation of TiAl Sheet Structures for Hypersonic Applications

    NASA Technical Reports Server (NTRS)

    Draper, S. L.; Krause, D.; Lerch, B.; Locci, I. E.; Doehnert, B.; Nigam, R.; Das, G.; Sickles, P.; Tabernig, B.; Reger, N.; Rissbacher, K.

    2007-01-01

    A cooperative program between the National Aeronautics and Space Administration (NASA), the Austrian Space Agency (ASA), Pratt & Whitney, Engineering Evaluation and Design, and Plansee AG was undertaken to determine the feasibility of achieving significant weight reduction of hypersonic propulsion system structures through the utilization of TiAl. A trade study defined the weight reduction potential of TiAl technologies as 25 to 35 percent compared to the baseline Ni-base superalloy for a stiffener structure in an inlet, combustor, and nozzle section of a hypersonic scramjet engine (ref. 1). A scramjet engine inlet cowl flap was designed, along with a representative subelement, using design practices unique to TiAl. A sub-element was fabricated and tested to assess fabricability and structural performance and validate the design system. The TiAl alloy selected was Plansee's third generation alloy Gamma Met PX (Plansee AG ), a high temperature, high strength gamma-TiAl alloy with high Nb content (refs. 2 and 3). Characterization of Gamma Met PX sheet, including tensile, creep, and fatigue testing was performed. Additionally, design-specific coupons were fabricated and tested in order to improve subelement test predictions. Based on the sheet characterization and results of the coupon tests, the subelement failure location and failure load were accurately predicted.

  10. Synchrotron X-ray CT characterization of friction-welded joints in tial turbocharger components

    NASA Astrophysics Data System (ADS)

    Sun, J. G.; Kropf, A. J.; Vissers, D. R.; Sun, W. M.; Katsoudas, J.; Yang, N.; Fei, D.

    2012-05-01

    Titanium aluminide (TiAl) is an advanced intermetallic material and is being investigated for application in turbocharger components for diesel engines. A TiAl turbocharger rotor consists of a cast TiAl turbine wheel and a Ti-alloy shaft that are joined by friction welding. Although friction welding is an established industrial process, it is still challenging to join dissimilar materials especially for brittle intermetallics. These joints are therefore required to be inspected using a nondestructive evaluation (NDE) method. In this study, synchrotron X-ray computed tomography (CT) developed at the Advanced Photon Source at Argonne National Laboratory was used for NDE characterization of friction-welded joint in three TiAl turbocharger rotors. The filtered synchrotron X-ray source has high peak energies to penetrate thick metallic materials, and the detector (imager) has high spatial resolutions to resolve small flaws. The CT inspections revealed detailed 3D crack distributions within poorly welded joints. The crack detection sensitivity and resolution was calibrated and found to be correlated well with destructive examination.

  11. Field assisted sintering of fine-grained Li7-3xLa3Zr2AlxO12 solid electrolyte and the influence of the microstructure on the electrochemical performance

    NASA Astrophysics Data System (ADS)

    Botros, Miriam; Djenadic, Ruzica; Clemens, Oliver; Möller, Matthias; Hahn, Horst

    2016-03-01

    The synthesis and processing of fine-grained Li7-3xLa3Zr2AlxO12 (x = 0.15, 0.17, 0.20) solid electrolyte (LLZO) is performed for the first time using a combination of nebulized spray pyrolysis (NSP) and field assisted sintering technique (FAST). Using FAST, the grain growth is suppressed and highly dense ceramics with 93% of the theoretical density are obtained. A tetragonal lattice distortion is observed after the sintering process. Although this structural modification has been reported to have lower Li-ion mobility compared to the cubic modification, the total conductivity of the sample at room temperature is found to be 0.33 mS cm-1, i.e. comparable to phase-pure cubic LLZO. The activation energy of 0.38 eV is also comparable to the literature values. Galvanostatic cycling of a symmetrical cell Li|LLZO|Li shows a good cycling stability over 100 h. The interfacial resistance in contact with Li-metal is determined using alternating current impedance spectroscopy to be 76 Ω cm2 and 69 Ω cm2 before and after cycling at different current densities, respectively.

  12. Duplex Direct Data Distribution System

    NASA Technical Reports Server (NTRS)

    Greenfield, Israel (Technical Monitor)

    2001-01-01

    The NASA Glenn Research Center (GRC) is developing and demonstrating communications and network technologies that are helping to enable the near-Earth space Internet. GRC envisions several service categories. The first of these categories is direct data distribution or D3 (pronounced "D-cubed"). Commercially provided D3 will make it possible to download a data set from a spacecraft, like the International Space Station. as easily as one can extract a file from a remote server today, using a file transfer protocol. In a second category, NASA spacecraft will make use of commercial satellite communication (SATCOM) systems. Some of those services will come from purchasing time on unused transponders that cover landmasses. While it is likely there will be gaps in service coverage, Internet services should be available using these systems. This report addresses alternative methods of implementing a full duplex enhancement of the GRC developed experimental Ka-Band Direct Data Distribution (D3) space-to-ground communication link. The resulting duplex version is called the Duplex Direct Data Distribution (D4) system. The D4 system is intended to provide high-data-rate commercial direct or internet-based communications service between the NASA spacecraft in low earth orbit (LEO) and the respective principal investigators associated with these spacecraft. Candidate commercial services were assessed regarding their near-term potential to meet NASA requirements. Candidates included Ka-band and V-band geostationary orbit and non-geostationary orbit satellite relay services and direct downlink ("LEO teleport") services. End-to-end systems concepts were examined and characterized in terms of alternative link layer architectures. Alternatives included a Direct Link, a Relay Link, a Hybrid Link, and a Dual Mode Link. The direct link assessment examined sample ground terminal placements and antenna angle issues. The SATCOM-based alternatives examined existing or proposed commercial

  13. Plasticity in Ultra Fine Grained Materials

    SciTech Connect

    Koslowski, Marisol

    2015-04-15

    Understanding the mechanisms of deformation of nanocrystalline (nc) materials is critical to the design of micro and nano devices and to develop materials with superior fracture strength and wear resistance for applications in new energy technologies. In this project we focused on understanding the following plastic deformation processes described in detail in the following sections: 1. Plastic strain recovery (Section 1). 2. Effect of microstructural variability on the yield stress of nc metals (Section 2). 3. The role of partial and extended full dislocations in plastic deformation of nc metals (Section 3).

  14. Fine-grained zirconium-base material

    DOEpatents

    Van Houten, G.R.

    1974-01-01

    A method is described for making zirconium with inhibited grain growth characteristics, by the process of vacuum melting the zirconium, adding 0.3 to 0.5% carbon, stirring, homogenizing, and cooling. (Official Gazette)

  15. "Fine grain Nb tube for SRF cavities"

    SciTech Connect

    Robert E. Barber

    2012-07-08

    Superconducting radio frequency (SRF) cavities used in charged particle linear accelerators, are currently fabricated by deep drawing niobium sheets and welding the drawn dishes together. The Nb sheet has a non-uniform microstructure, which leads to unpredictable cavity shape and surface roughness, and inconsistent "spring-back" during forming. In addition, weld zones cause hot spots during cavity operation. These factors limit linear accelerator performance and increase cavity manufacturing cost. Equal channel angular extrusion (ECAE) can be used to refine and homogenize the microstructure of Nb tube for subsequent hydroforming into SRF cavities. Careful selection of deformation and heat treatment conditions during the processing steps can give a uniform and consistent microstructure in the tube, leading to improved deformability and lower manufacturing costs. Favorable microstructures were achieved in short test samples of RRR Nb tube, which may be particularly suitable for hydroforming into SRF cavity strings. The approach demonstrated could be applicable to microstructure engineering of other tube materials including tantalum, titanium, and zirconium.

  16. Effect of Al on the Wetting Behavior Between TiC x and Molten Ti-Al Alloys

    NASA Astrophysics Data System (ADS)

    Liu, Xuyang; Lv, Xuewei; Dong, Hongbiao; Li, Chunxin; Bai, Chenguang

    2015-10-01

    The wetting behavior and the interfacial reactions between TiC x substrate and molten Ti-Al alloys with different Al contents were studied using the Sessile Drop method at 1758 K (1485 °C) in argon atmosphere. It is found that the wettability and interface reaction products depend on Al content in the molten alloy. The initial contact angles between the molten Ti-Al alloy and TiC0.78 surface reduces from 110 to 80 deg when Al content in the alloy changes from 40 to 80 wt pct. The reduction in the initial contact angle is due to the decrease of surface tension of the molten Ti-Al alloys with increasing Al contents. The segregation of Al atoms to the surface occurred at all bulk concentrations of Ti-Al alloys. Al with lower surface tension tends to segregate on the surface of liquid Ti-Al alloy. In the spreading stage, the interfacial reaction led to the decrease in the contact angle. The adhesion in Ti-Al/TiC x system can be interpreted in terms of strong chemical interactions, which is greatly affected by the diffusion of C. The equilibrium contact angle was measured less than 10 deg. Finally, the reaction sequence at the Ti-Al melt and TiC x substrate interface is proposed.

  17. Tribological Behavior of TiAl Matrix Composites with MoO3 Tabular Crystal

    NASA Astrophysics Data System (ADS)

    Zhang, Ao; Shi, Xiaoliang; Zhai, Wenzheng; Yang, Kang; Wang, Zhihai

    2015-11-01

    The friction and wear behaviors of TiAl matrix self-lubricating composites (TMSC) with MoO3 tabular crystal (MTC) against GCr15 steel ball are tested using a constant load of 10 N and a constant speed of 0.2 m/s from room temperature to 600 °C. The result shows that, during the sliding friction and wear process, the MTC which has the microstructure of multiple layers could reduce the shear stress, leading to the reduction of friction coefficient. Meanwhile, TMSC with MTC exhibits the excellent tribological performance over a wide temperature range, if compared to TiAl based alloy. Moreover, MTC can improve the tribological properties of TMSC obviously below 400 °C.

  18. Microscopic Properties of Long-Period Ordering in Al-Rich TiAl Alloys

    NASA Astrophysics Data System (ADS)

    Hata, S.; Nakano, T.; Kuwano, N.; Itakura, M.; Matsumura, S.; Umakoshi, Y.

    2008-07-01

    The ordering mechanism of long-period superstructures (LPSs) in Al-rich TiAl alloys has been investigated by high-resolution transmission electron microscopy (HRTEM). The LPSs are classified in terms of arrangements of base clusters with different shapes and compositions formed in Ti-rich (002) layers of L10-TiAl matrix: square Ti4Al, fat rhombus Ti3Al, and lean rhombus Ti2Al type clusters. The HRTEM observations revealed that antiphase boundaries of long-range-ordered LPS domains and short-range-ordered microdomains are constructed by various space-filling arrangements of the base clusters. Such a microscopic property characterized by the base clusters and their arrangements is markedly analogous to that of the {left< {{text{1,1/2,0}}} rightrangle } * special-point ordering alloys such as Ni-Mo.

  19. Real space analysis of Compton profile of Heusler alloy Ni2TiAl

    NASA Astrophysics Data System (ADS)

    Sahariya, Jagrati; Mund, H. S.; Ahuja, B. L.

    2012-06-01

    Electron momentum density of Ni2TiAl alloy has been studied using Compton scattering technique. The experiment has been performed using 20 Ci 137Cs (661.65 keV) Compton spectrometer at an intermediate resolution of 0.34 a.u. To interpret the experimental data, we have calculated the Compton profiles using Hartree Fock and density functional theories within the frame work of linear combination of atomic orbitals (LCAO) method. The experimental data have been interpreted in term of autocorrelation function B(z) of the one electron wave function. The experimental B(z) function has been compared with the LCAO based theoretical B(z), to analyze the electronic and structural properties of Ni2TiAl.

  20. Thermodynamics, Solubility, and Diffusivity of Oxygen in Titanium and Ti-Al Alloys

    NASA Technical Reports Server (NTRS)

    Mehrotra, Gopal M.

    1992-01-01

    Titanium aluminides and titanium aluminide-based composites are attractive candidate materials for high-temperature structural applications. As these materials may be exposed to oxidizing environments durine their use at elevated temperatures, it is essential that they possess a good oxidation resistance. Previous studies have shown that the oxidation resistance of Al-rich alloys in the Ti-Al system is superior to that of the Ti-rich alloys. The scales formed on the surface of the Al-rich and Ti-rich alloys have been reported to be predominantly Al2O3 and TiO2, respectively. Since the relative stabilities of the oxides of Al and Ti at various temperatures and oxygen pressures can be assessed from their thermodynamic data, it is possible, With the help of thermodynamic calculations, to determine the compositions of the alloys which would form scales of Al2O3, TiO(x) or a ternary oxide such as TiAl2O5 during oxidation at a given temperature. The thermodynamic calculations require reliable activity data for the Ti-Al system. These data have not been determined for the entire composition and temperature range of interest. Using the data available in the literature, recently performed thermodynamic calculations and concluded that the stable oxide changed from TiO to Al2O3 in the existence region of the tial phase. In the case of titanium aluminide-based composites, another major concern is the mutual chemical compatibility of the matrix material with the reinforcement phase. Fibers of SiC, TiB2 and Al2O3 are currently being investigated for reinforcement of titanium aluminide matrices.

  1. Duplex sampling apparatus and method

    DOEpatents

    Brown, Paul E.; Lloyd, Robert

    1992-01-01

    An improved apparatus is provided for sampling a gaseous mixture and for measuring mixture components. The apparatus includes two sampling containers connected in series serving as a duplex sampling apparatus. The apparatus is adapted to independently determine the amounts of condensable and noncondensable gases in admixture from a single sample. More specifically, a first container includes a first port capable of selectively connecting to and disconnecting from a sample source and a second port capable of selectively connecting to and disconnecting from a second container. A second container also includes a first port capable of selectively connecting to and disconnecting from the second port of the first container and a second port capable of either selectively connecting to and disconnecting from a differential pressure source. By cooling a mixture sample in the first container, the condensable vapors form a liquid, leaving noncondensable gases either as free gases or dissolved in the liquid. The condensed liquid is heated to drive out dissolved noncondensable gases, and all the noncondensable gases are transferred to the second container. Then the first and second containers are separated from one another in order to separately determine the amount of noncondensable gases and the amount of condensable gases in the sample.

  2. Polysynthetic twinned TiAl single crystals for high-temperature applications.

    PubMed

    Chen, Guang; Peng, Yingbo; Zheng, Gong; Qi, Zhixiang; Wang, Minzhi; Yu, Huichen; Dong, Chengli; Liu, C T

    2016-08-01

    TiAl alloys are lightweight, show decent corrosion resistance and have good mechanical properties at elevated temperatures, making them appealing for high-temperature applications. However, polysynthetic twinned TiAl single crystals fabricated by crystal-seeding methods face substantial challenges, and their service temperatures cannot be raised further. Here we report that Ti-45Al-8Nb single crystals with controlled lamellar orientations can be fabricated by directional solidification without the use of complex seeding methods. Samples with 0° lamellar orientation exhibit an average room temperature tensile ductility of 6.9% and a yield strength of 708 MPa, with a failure strength of 978 MPa due to the formation of extensive nanotwins during plastic deformation. At 900 °C yield strength remains high at 637 MPa, with 8.1% ductility and superior creep resistance. Thus, this TiAl single-crystal alloy could provide expanded opportunities for higher-temperature applications, such as in aeronautics and aerospace. PMID:27322822

  3. Polysynthetic twinned TiAl single crystals for high-temperature applications

    NASA Astrophysics Data System (ADS)

    Chen, Guang; Peng, Yingbo; Zheng, Gong; Qi, Zhixiang; Wang, Minzhi; Yu, Huichen; Dong, Chengli; Liu, C. T.

    2016-08-01

    TiAl alloys are lightweight, show decent corrosion resistance and have good mechanical properties at elevated temperatures, making them appealing for high-temperature applications. However, polysynthetic twinned TiAl single crystals fabricated by crystal-seeding methods face substantial challenges, and their service temperatures cannot be raised further. Here we report that Ti-45Al-8Nb single crystals with controlled lamellar orientations can be fabricated by directional solidification without the use of complex seeding methods. Samples with 0° lamellar orientation exhibit an average room temperature tensile ductility of 6.9% and a yield strength of 708 MPa, with a failure strength of 978 MPa due to the formation of extensive nanotwins during plastic deformation. At 900 °C yield strength remains high at 637 MPa, with 8.1% ductility and superior creep resistance. Thus, this TiAl single-crystal alloy could provide expanded opportunities for higher-temperature applications, such as in aeronautics and aerospace.

  4. Theoretical Prediction of Transition Metal Alloying Effects on the Lightweight TiAl Intermetallic

    NASA Astrophysics Data System (ADS)

    Liu, Shuai; Tang, Chenghuang; Zhan, Yongzhong

    2016-03-01

    The structural, mechanical properties and Debye temperature of doped intermetallic Ti7Al8X (X = Sc, Ti, V, Cr, Y, Zr, Nb, Mo, Hf, Ta, W) have been investigated by employing the pseudo-potential plane-wave approach based on density functional theory, within the generalized gradient approximation (GGA) function. The calculated lattice constants of TiAl are found to be within 1 pct error, compared with the experimental values. The stability of calculated structures of Ti7Al8X at 0 GPa is measured by studying mechanical stability conditions and formation energy. All the single crystals are proved to be elastically anisotropic. The Young's modulus as a function of crystal orientations has been systematically investigated. Mechanical properties of polycrystals are computed from values of shear modulus ( G), bulk modulus ( B), Young's modulus ( E), Poisson's ratio ( υ), and microhardness parameter ( H) for Ti7Al8X. It is indicated that addition of alloying elements reduces the brittleness and microhardness of TiAl intermetallic. Debye temperature of TiAl calculated using elastic data of the present work is found to be influenced by the addition of alloying elements, which is further confirmed by the phonon dispersions of Ti8Al8, Ti7Al8Zr, and Ti7Al8Hf.

  5. Measurement of twinning elements in PST TiAl single crystals

    SciTech Connect

    Lu, L.; Pope, D.P.

    1997-12-31

    Twinning is the major deformation mode at room temperature in TiAl polysynthetically twinned (PST) crystals (lamellar structure, TiAl is the major phase and Ti{sub 3}Al is the minor phase). The authors present here the results of Atomic Force Microscope (AFM) observations of deformation twinning displacements measured on the free surfaces of PST single crystals. AFM is used in this experiment because of its very high resolution for topological measurements and its ability to measure surface displacements from very small twins. Measurements were made on samples with different compression axes and surface orientations. When a twin intersects a free surface, a definite displacement is produced which is easily related to the twinning elements. The majority of the surface offsets observed correspond to those for ordinary twinning, within a very small deviation. Thus it is concluded that these are ordinary twins. The widths of the twinning bands are around 300nm, smaller than the widths of the TiAl lamellae. Slip bands are also observed. They are characterized by a much more irregular geometry than the twinning bands. At some places where twins intersect a domain boundary slip bands are produced in the adjacent domain.

  6. Creep deformation of a two-phase TiAl/Ti[sub 3]Al lamellar alloy and the individual TiAl and Ti[sub 3]Al constituent phases

    SciTech Connect

    Bartholomeusz, M.F.; Wert, J.A. ); Qibin Yang )

    1993-08-01

    Two-phase TiAl/Ti[sub 3]Al alloys in which the constituent phases form a lamellar microstructure are reported to possess good combinations of low-temperature fracture toughness, tensile strength and fatigue resistance. However, information about the high-temperature creep properties of the two-phase TiAl/Ti[sub 3]Al alloys with lamellar microstructures (referred to as lamellar alloys in the remainder of the paper) is limited. Based on a simple rule of mixtures model of strength, it would be expected that the creep rates of the lamellar alloy would be between the creep rates of TiAl and Ti[sub 3]Al. In contrast to composite model predictions of strength, Polvani and coworkers found that the minimum creep rates of two duplex alloys, a [gamma]/[gamma][prime] nickel-base superalloy and NiAl/Ni[sub 2]AlTi, were significantly lower than the minimum creep rates of either of the constituent phases. They also reported that most dislocations in the two-phase NiAl/Ni[sub 2]AlTi alloy were contained within the semi-coherent interfacial dislocation networks between the two phases. Based on this observation they proposed that the creep rate is controlled by the rate at which dislocations moving through both phases are emitted and absorbed by the interphase dislocation networks. The greater strain hardening rate of the lamellar TiAl/Ti[sub 3]Al alloy suggests that it may exhibit lower steady-state creep rates that the individual constituent phases. The objective of the present study is to evaluate the creep properties of a TiAl/ Ti[sub 3]Al lamellar alloy and of the individual constituent phases. In this paper, the results of this investigation will be presented and compared with previously published results for this alloy system.

  7. FACILITY 810, REAR OF DUPLEX SHOWING COURTYARD BETWEEN WINGS, OBLIQUE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    FACILITY 810, REAR OF DUPLEX SHOWING COURTYARD BETWEEN WINGS, OBLIQUE VIEW FACING EAST. - Schofield Barracks Military Reservation, Duplex Housing Type with Corner Entries, Between Hamilton & Tidball Streets near Williston Avenue, Wahiawa, Honolulu County, HI

  8. Extensional duplex in the Purcell Mountains of southeastern British Columbia

    SciTech Connect

    Root, K.G. )

    1990-05-01

    An extensional duplex consisting of fault-bounded blocks (horses) located between how-angle normal faults is exposed in Proterozoic strata in the Purcell Mountains of British Columbia, Canada. This is one of the first documented extensional duplexes, and it is geometrically and kinematically analogous to duplexes developed in contractional and strike-slip fault systems. The duplex formed within an extensional fault with a ramp and flat geometry when horses were sliced from the ramp and transported within the fault system.

  9. Hydraulic Models for the Accumulation of Mercury-Contaminated Fine-Grained Sediment in Forested and Non-Forested Near-Bank Regions of the South River, Virginia, 1930-2007

    NASA Astrophysics Data System (ADS)

    Pizzuto, J. E.; Skalak, K.

    2010-12-01

    Mercury was released into the South River from a textile manufacturing facility in Waynesboro, Virginia, beginning in 1930. Because mercury strongly adsorbs to fine particles, it is a useful tracer for fine-grained sediment transport processes. Mercury concentrations were measured on sediment samples from 29 cores taken from near-bank environments up to 14 km downstream from the textile plant. Mercury concentrations average around 20 ppm, with a maximum of 839 ppm and a minimum of <1 ppm. The total inventory of mercury in each core ranged from 0.0008 to 0.2 kg/m^2. These data were used to calibrate simple hydraulic models of mercury accumulation at each coring site since 1930. Previous studies document the concentration of mercury on suspended sediment through time, allowing our models to estimate the history of mercury accumulation and to infer rates of sedimentation. Rating curves for each coring site were computed based on Total Station surveys of channel morphology and flow records interpolated between 3 U.S. Geological Survey gauging stations. Hydraulic roughness parameters were obtained from a HEC-RAS model calibrated to measured stage-discharge relationships. The calibrated mercury accumulation model explains 69% of the variability in the observed mercury inventories. At forested sites, each inundation event deposited an average of 0.00065 kg of mercury, while deposition at non-forested sites (mostly in pasture), averaged 0.00009 kg of mercury per event, lower by a factor of 7. At 6 sites where lateral migration increased accommodation space, mercury deposition was increased by an order of magnitude. If particle-associated mercury accumulation is assumed to result only from reduced basal shear stresses, critical shear stresses for deposition are unreasonably low, which suggests that a significant amount of the observed inventory of mercury-contaminated sediment accumulates on plant stems and leaves, rather than only being deposited on the ground. 58% of the

  10. Determining the turnover time of mercury-contaminated fine-grained sediment in the gravel bed of the South River, Virginia using Pb-210, Be-7 and Cs-137

    NASA Astrophysics Data System (ADS)

    Pomraning, S. N.; Pizzuto, J. E.; Jurk, D.

    2010-12-01

    Fine-grained sediment and associated contaminants mediate important geochemical cycles in the hyporheic zone of gravel-bed rivers, but the turnover time of fine particles in these environments has rarely been measured. We analyzed the activities of Pb-210, Cs-137 and Be-7 in samples from four cores obtained on November 2, 2009 from a representative section of the bed composed of a mixture of sand, pebbles, and cobbles. The median grain size is 25.5 mm, the 84th percentile grain diameter is 57.8 mm, and 5.7% of the bed is composed of sediment smaller than 2 mm (sand sized or smaller sediment). The cores were sampled at five centimeter depth increments and each sample was sieved to extract the silt- and clay-sized particles. After freeze-drying the samples, equivalent depth intervals from all the cores were combined to yield a spatially averaged sample with depth intervals of 0-5 cm, 5-10 cm, 10-15 cm, 15-20 cm and 20-25 cm. Radionuclide activities were measured using a Canberra low energy germanium detector (model GL2020R). Activities of Pb-210 at the time of deposition were estimated from suspended sediment samples collected during a high flow event (recurrence interval 0.24 years) that occurred on November 13, 2009. At a depth of 2.5 cm, the Pb-210 dating indicates that the silt-clay fine fraction of the hyporheic zone is 21.3 years old; fine sediment at a depth of 17.5 cm is 29.3 years old. Assuming that the time-averaged bed elevation has not changed over time, and that sediment at depth is periodically removed by scour and subsequently replaced by fill, methods of reservoir theory suggest that the turnover time of silt- and clay-sized particles in the hyporheic zone is about two years. Because deep scour events are apparently relatively rare, approximately 21 years are required to rework 90% of the bed. These results have important implications for contaminant remediation. Even if all ongoing sources of mercury to the South River are removed, several decades

  11. Measuring secondary phases in duplex stainless steels

    NASA Astrophysics Data System (ADS)

    Calliari, I.; Brunelli, K.; Dabalà, M.; Ramous, E.

    2009-01-01

    The use of duplex stainless steels is limited by their susceptibility to the formation of dangerous intermetallic phases resulting in detrimental effects on impact toughness and corrosion resistance. This precipitation and the quantitative determinations of the phases have received considerable attention and different precipitation sequences (σ phase, χ phase, and carbides) have been suggested. This study investigates the phase transformation during continuous cooling and isothermal treatments in commercial duplex stainless steel grades and the effects on alloy properties, and compares the most common techniques of analysis.

  12. Case of herpes zoster duplex bilateralis.

    PubMed

    Shin, Bong Seok; Seo, Hyun Deok; Na, Chan Ho; Choi, Kyu Chul

    2009-02-01

    Non-contiguously simultaneous development of herpes zoster is very rare. It is named either herpes zoster duplex unilateralis or bilaterarlis, depending on whether one or both sides of the body are involved. Herein, we report a 21-year-old man, who had been treated for ulcerative colitis with prednisolone, and presented with painful grouped vesicles of the lower abdomen and back in a relatively symmetrical distribution. A Tzanck smear and punch biopsy were performed on the vesicles of the back. We report a rare case of symmetrical herpes zoster duplex bilateralis. PMID:19284453

  13. Full-duplex optical communication system

    NASA Technical Reports Server (NTRS)

    Shay, Thomas M. (Inventor); Hazzard, David A. (Inventor); Horan, Stephen (Inventor); Payne, Jason A. (Inventor)

    2004-01-01

    A method of full-duplex electromagnetic communication wherein a pair of data modulation formats are selected for the forward and return data links respectively such that the forward data electro-magnetic beam serves as a carrier for the return data. A method of encoding optical information is used wherein right-hand and left-hand circular polarizations are assigned to optical information to represent binary states. An application for an earth to low earth orbit optical communications system is presented which implements the full-duplex communication and circular polarization keying modulation format.

  14. Oxidation Behavior of Thermal Barrier Coatings with a TiAl3 Bond Coat on γ-TiAl Alloy

    NASA Astrophysics Data System (ADS)

    Wang, Jiqiang; Kong, Lingyan; Li, Tiefan; Xiong, Tianying

    2015-02-01

    The thermal barrier coatings investigated in this paper included a TiAl3 bond coat and a yttria partially stabilized zirconia (YSZ) layer. The TiAl3 bond coat was prepared by deposition of aluminum by cold spray, followed by a heat-treatment. The YSZ layer was prepared by air plasma spray. The isothermal and cyclic oxidation tests were conducted at 900 °C for 1000 h and 500 cycles to test the oxidation resistance of the thermal barrier coatings. The microstructure and composition of the γ-TiAl alloy with and without the thermal barrier coatings after oxidation were investigated. The results showed that a dense TGO layer about 5 μm had grown between the YSZ layer and the TiAl3 bond coat. The TGO had good adhesion to both the YSZ layer and the bond coat even after the TiAl3 bond coat entirely degraded into the TiAl2 phase, which decreased the inward oxygen diffusion. Thus, the thermal barrier coatings improved the oxidation resistance of γ-TiAl alloy effectively.

  15. Duplex stainless steels for osteosynthesis devices.

    PubMed

    Cigada, A; Rondelli, G; Vicentini, B; Giacomazzi, M; Roos, A

    1989-09-01

    The austenitic stainless steels used today for the manufacture of osteosynthesis devices are sensitive to crevice corrosion. In this study the corrosion properties of some duplex stainless steels were evaluated and compared to traditional austenitic stainless steels. According to our results the following ranking was established: 23Cr-4Ni less than AISI 316L less than ASTM F138 less than 22Cr-5Ni-3Mo less than 27Cr-31Ni-3.5Mo less than 25Cr-7Ni-4Mo-N. In particular the results showed that the high-performance 25Cr-7Ni-4Mo-N duplex stainless steel, with high molybdenum and nitrogen contents, can be considered not susceptible to crevice corrosion in the human body. The duplex stainless steels have also better mechanical properties at the same degree of cold working compared with austenitic stainless steels. Hence the 25Cr-7Ni-4Mo-N duplex stainless steel can be considered a convenient substitute of ASTM F138 for orthopedic and osteosynthesis devices. PMID:2777835

  16. Ultra-short silicon MMI duplexer

    NASA Astrophysics Data System (ADS)

    Yi, Huaxiang; Huang, Yawen; Wang, Xingjun; Zhou, Zhiping

    2012-11-01

    The fiber-to-the-home (FTTH) systems are growing fast these days, where two different wavelengths are used for upstream and downstream traffic, typically 1310nm and 1490nm. The duplexers are the key elements to separate these wavelengths into different path in central offices (CO) and optical network unit (ONU) in passive optical network (PON). Multimode interference (MMI) has some benefits to be a duplexer including large fabrication tolerance, low-temperature dependence, and low-polarization dependence, but its size is too large to integrate in conventional case. Based on the silicon photonics platform, ultra-short silicon MMI duplexer was demonstrated to separate the 1310nm and 1490nm lights. By studying the theory of self-image phenomena in MMI, the first order images are adopted in order to keep the device short. A cascaded MMI structure was investigated to implement the wavelength splitting, where both the light of 1310nm and 1490nm was input from the same port, and the 1490nm light was coupling cross the first MMI and output at the cross-port in the device while the 1310nm light was coupling through the first and second MMI and output at the bar-port in the device. The experiment was carried on with the SOI wafer of 340nm top silicon. The cascaded MMI was investigated to fold the length of the duplexer as short as 117μm with the extinct ratio over 10dB.

  17. Duplex Design Project: Science Pilot Test.

    ERIC Educational Resources Information Center

    Center for Research on Evaluation, Standards, and Student Testing, Los Angeles, CA.

    Work is reported towards the completion of a prototype duplex-design assessment instrument for grade-12 science. The student course-background questionnaire and the pretest section of the two-stage instrument that was developed were administered to all 134 12th-grade students at St. Clairsville High School (Ohio). Based on the information obtained…

  18. A Porous TiAl6V4 Implant Material for Medical Application

    PubMed Central

    Ebel, Thomas; Willumeit, Regine

    2014-01-01

    Increased durability of permanent TiAl6V4 implants still remains a requirement for the patient's well-being. One way to achieve a better bone-material connection is to enable bone “ingrowth” into the implant. Therefore, a new porous TiAl6V4 material was produced via metal injection moulding (MIM). Specimens with four different porosities were produced using gas-atomised spherical TiAl6V4 with different powder particle diameters, namely, “Small” (<45 μm), “Medium” (45–63 μm), “Mix” (90% 125–180 μm + 10% <45 μm), and “Large” (125–180 μm). Tensile tests, compression tests, and resonant ultrasound spectroscopy (RUS) were used to analyse mechanical properties. These tests revealed an increasing Young's modulus with decreasing porosity; that is, “Large” and “Mix” exhibit mechanical properties closer to bone than to bulk material. By applying X-ray tomography (3D volume) and optical metallographic methods (2D volume and dimensions) the pores were dissected. The pore analysis of the “Mix” and “Large” samples showed pore volumes between 29% and 34%, respectively, with pore diameters ranging up to 175 μm and even above 200 μm for “Large.” Material cytotoxicity on bone cell lines (SaOs-2 and MG-63) and primary cells (human bone-derived cells, HBDC) was studied by MTT assays and highlighted an increasing viability with higher porosity. PMID:25386191

  19. Initial oxidation of TiAl: An ab-initio investigation

    SciTech Connect

    Bakulin, Alexander V. Kulkova, Svetlana E.; Hu, Qing-Miao; Yang, Rui

    2014-11-14

    We present ab-initio investigation of oxygen adsorption up to two monolayer coverage on the stoichiometric TiAl(100) surface to illustrate the initial oxidation stage. The formation of band gap near the Fermi level demonstrates the transformation from metal to oxide surface with increasing oxygen coverage. The oxidation of Ti rather than Al is observed from our electronic structure calculations. The energy barriers of oxygen diffusion between different sites on surface as well as in subsurface and bulk region are derived. It is shown that the diffusion of oxygen is much easier on the surface than that into the subsurface region.

  20. Electronic structure of Ni2TiAl: Theoretical aspects and Compton scattering measurement

    NASA Astrophysics Data System (ADS)

    Sahariya, Jagrati; Ahuja, B. L.

    2012-11-01

    In this paper, we report electron momentum density of Ni2TiAl alloy using an in-house 20 Ci 137Cs (661.65 keV) Compton spectrometer. The experimental data have been analyzed in terms of energy bands and density of states computed using linear combination of atomic orbitals (LCAO) method. In the LCAO computations, we have considered local density approximation, generalized gradient approximation and recently developed second order generalized gradient approximation within the frame work of density functional theory. Anisotropies in theoretical Compton profiles along [1 0 0], [1 1 0] and [1 1 1] directions are also explained in terms of energy bands.

  1. Redistribution of Ti and Al in deuterium charged TiAl

    NASA Technical Reports Server (NTRS)

    Legzdina, D.; Robertson, I. M.; Birnbaum, H. K.

    1992-01-01

    The redistribution of titanium and aluminum in a single-phase TiAl alloy that has been exposed to a high pressure of deuterium gas at high temperature is studied. The microstructure in the as-received, uncharged condition consisted of single-phase gamma TiAl grains and a random distribution of precipitates. Precipitates were distributed throughout the matrix and along the grain boundaries. The chemistry of the precipitates varied considerably; some were rich in Al, while other were mostly Ti with some Si and Al. The dislocation density in most grains was low, although in a few grains a high dislocation density was observed. FCC deuterides with a lattice parameter of 0.45 nm form in a Ti-52.1Al-2.1Ta (at. pct) alloy after exposure to 1.38 MPa of deuterium gas at 650 C for 213 hr. The structure and lattice parameter are consistent with the formation of Ti(l)D2. The deuterides that form in this alloy are enriched in Ti and deficient in Al and Ta compared to the deuteride-free matrix. Regions of the matrix contiguous with the deuterides have a correspondingly enhanced aluminum and tantalum concentration.

  2. The nitriding behavior of Ti-Al alloys at 1000 C

    SciTech Connect

    Magnan, J.; Weatherly, G.C.; Cheynet, M.C.

    1999-01-01

    The nitriding behavior of a series of alloys in the binary Ti-Al system has been determined at 1000 C, under a controlled atmosphere of pure nitrogen gas, for times ranging between 7 and 100 hours. The scales and subscales were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, energy dispersive and wavelength dispersive X-ray analysis, electron energy loss spectroscopy, and optical microscopy. Upon formation of a surface nitride scale, the subscale became enriched in Al and resulted in the formation of a series of Al-rich intermetallic phases. This enrichment has been linked to the transport processes in the scale and subscale and a shifting of the diffusion path toward the Al-rich corner of the ternary isotherm. The formation of Al-rich intermetallic phases in the subscale was shown to result in rapid breakaway nitriding of the TiAl and TiAl{sub 2} alloys. The stoichiometry of the binary nitrides AlN and TiN was measured, as well as the composition of the ternary nitride Ti{sub 2}AlN.

  3. Development of lasers optimized for pumping Ti:Al2O3 lasers

    NASA Technical Reports Server (NTRS)

    Rines, Glen A.; Schwarz, Richard A.

    1994-01-01

    Laboratory demonstrations that were completed included: (1) an all-solid-state, broadly tunable, single-frequency, Ti:Al2O3 master oscillator, and (2) a technique for obtaining 'long' (nominally 100- to 200-ns FWHM) laser pulses from a Q-switched, Nd oscillator at energy levels commensurate with straightforward amplification to the joule level. A diode-laser-pumped, Nd:YLF laser with intracavity SHG was designed, constructed, and evaluated. With this laser greater than 0.9 W of CW, output power at 523.5 nm with 10 W of diode-laser pump power delivered to the Nd:YLF crystal was obtained. With this laser as a pump source, for the first time, to our knowledge, an all solid-state, single frequency, Ti:Al203 laser with sufficient output power to injection seed a high-energy oscillator over a 20-nm bandwidth was demonstrated. The pulsed laser work succeeded in demonstrating pulse-stretching in a Q-switched Nd:YAG oscillator. Pulse energies greater than 50-mJ were obtained in pulses with 100- to 200-ns pulsewidths (FWHM).

  4. Redistribution of Ti and Al in deuterium charged TiAl

    SciTech Connect

    Legzdina, D.; Robertson, I.M.; Birnbaum, H.K. )

    1992-06-01

    The redistribution of titanium and aluminum in a single-phase TiAl alloy that has been exposed to a high pressure of deuterium gas at high temperature is studied. The microstructure in the as-received, uncharged condition consisted of single-phase gamma TiAl grains and a random distribution of precipitates. Precipitates were distributed throughout the matrix and along the grain boundaries. The chemistry of the precipitates varied considerably; some were rich in Al, while other were mostly Ti with some Si and Al. The dislocation density in most grains was low, although in a few grains a high dislocation density was observed. FCC deuterides with a lattice parameter of 0.45 nm form in a Ti-52.1Al-2.1Ta (at. pct) alloy after exposure to 1.38 MPa of deuterium gas at 650 C for 213 hr. The structure and lattice parameter are consistent with the formation of Ti(l)D2. The deuterides that form in this alloy are enriched in Ti and deficient in Al and Ta compared to the deuteride-free matrix. Regions of the matrix contiguous with the deuterides have a correspondingly enhanced aluminum and tantalum concentration. 10 refs.

  5. Symptomatic “H” Type Duplex Gallbladder

    PubMed Central

    Khandelwal, Radha Govind; Srinivasa Reddy, Thallu Venkata; Swamy Balachandar, Tirupporur Govinda; Palaniswamy, K.R.

    2010-01-01

    Gallbladder duplication with an incidence at autopsy of about 1 in 4000 is important in clinical practice, because it may cause some clinical, surgical, and diagnostic problems. Preoperative identification of this rare anomaly avoids biliary injuries and the other consequences of missed diagnosis. In this report, we present a case of ductular type duplex gallbladder diagnosed preoperatively by magnetic resonance cholangiopancreatography (MRCP) and ultrasound and managed successfully by laparoscopy. PMID:21605535

  6. A Duplex Stainless Steel for Chloride Environments

    NASA Astrophysics Data System (ADS)

    Sridhar, N.; Kolts, J.; Flasche, L. H.

    1985-03-01

    This paper examines the effects of microstructural changes on the corrosion, stress corrosion cracking and corrosion fatigue resistance of a duplex stainless steel to chloride environments. The microstructural changes can be precipitation of phases such as sigma and carbides, or changes in the distribution of austenite and ferrite. The former can be important in hot forming operations while the latter is important in welding. The methods of minimizing these deleterious effects can sometimes be different from those used for austenitic stainless steel.

  7. Influence of impact speed on water droplet erosion of TiAl compared with Ti6Al4V

    PubMed Central

    Mahdipoor, M.S.; Kirols, H.S.; Kevorkov, D.; Jedrzejowski, P.; Medraj, M.

    2015-01-01

    Water Droplet Erosion (WDE) as a material degradation phenomenon has been a concern in power generation industries for decades. Steam turbine blades and the compressor blades of gas turbines that use water injection usually suffer from WDE. The present work focuses on studying erosion resistance of TiAl as a potential alloy for turbine blades compared to Ti6Al4V, a frequently used blade alloy. Their erosion behaviour is investigated at different droplet impact speeds to determine the relation between erosion performance and impact speed. It is found that the relationship is governed by a power law equation, ER ~ Vn, where the speed exponent is 7–9 for Ti6Al4V and 11–13 for TiAl. There is a contrast between the observed speed exponent in this work and the ones reported in the literature for Ti6Al4V. It is attributed to the different erosion setups and impingement conditions such as different droplet sizes. To verify this, the erosion experiments were performed at two different droplet sizes, 464 and 603 μm. TiAl showed superior erosion resistance in all erosion conditions; however, its erosion performance exhibits higher sensitivity to the impact speed compared to Ti6Al4V. It means that aggressive erosion conditions decrease the WDE resistance superiority of TiAl. PMID:26391370

  8. Influence of impact speed on water droplet erosion of TiAl compared with Ti6Al4V

    NASA Astrophysics Data System (ADS)

    Mahdipoor, M. S.; Kirols, H. S.; Kevorkov, D.; Jedrzejowski, P.; Medraj, M.

    2015-09-01

    Water Droplet Erosion (WDE) as a material degradation phenomenon has been a concern in power generation industries for decades. Steam turbine blades and the compressor blades of gas turbines that use water injection usually suffer from WDE. The present work focuses on studying erosion resistance of TiAl as a potential alloy for turbine blades compared to Ti6Al4V, a frequently used blade alloy. Their erosion behaviour is investigated at different droplet impact speeds to determine the relation between erosion performance and impact speed. It is found that the relationship is governed by a power law equation, ER ~ Vn, where the speed exponent is 7-9 for Ti6Al4V and 11-13 for TiAl. There is a contrast between the observed speed exponent in this work and the ones reported in the literature for Ti6Al4V. It is attributed to the different erosion setups and impingement conditions such as different droplet sizes. To verify this, the erosion experiments were performed at two different droplet sizes, 464 and 603 μm. TiAl showed superior erosion resistance in all erosion conditions; however, its erosion performance exhibits higher sensitivity to the impact speed compared to Ti6Al4V. It means that aggressive erosion conditions decrease the WDE resistance superiority of TiAl.

  9. Influence of impact speed on water droplet erosion of TiAl compared with Ti6Al4V.

    PubMed

    Mahdipoor, M S; Kirols, H S; Kevorkov, D; Jedrzejowski, P; Medraj, M

    2015-01-01

    Water Droplet Erosion (WDE) as a material degradation phenomenon has been a concern in power generation industries for decades. Steam turbine blades and the compressor blades of gas turbines that use water injection usually suffer from WDE. The present work focuses on studying erosion resistance of TiAl as a potential alloy for turbine blades compared to Ti6Al4V, a frequently used blade alloy. Their erosion behaviour is investigated at different droplet impact speeds to determine the relation between erosion performance and impact speed. It is found that the relationship is governed by a power law equation, ER ~ V(n), where the speed exponent is 7-9 for Ti6Al4V and 11-13 for TiAl. There is a contrast between the observed speed exponent in this work and the ones reported in the literature for Ti6Al4V. It is attributed to the different erosion setups and impingement conditions such as different droplet sizes. To verify this, the erosion experiments were performed at two different droplet sizes, 464 and 603 μm. TiAl showed superior erosion resistance in all erosion conditions; however, its erosion performance exhibits higher sensitivity to the impact speed compared to Ti6Al4V. It means that aggressive erosion conditions decrease the WDE resistance superiority of TiAl. PMID:26391370

  10. Intracavity frequency doubling of a 2,5-kHz pulsed Ti:Al2O3 laser

    NASA Astrophysics Data System (ADS)

    Poirier, P.; Hanson, F.

    1993-11-01

    An intracavity frequency doubled Ti:Al2O3 laser using a cw-pumped, repetitively Q-switched Nd:YAG laser as pump source is reported. Thus an efficient tunable blue source is obtained that provides a reliable all solid state system based on laser diode pumping.

  11. Electron Beam Welding of Duplex Steels with using Heat Treatment

    NASA Astrophysics Data System (ADS)

    Schwarz, Ladislav; Vrtochová, Tatiana; Ulrich, Koloman

    2010-01-01

    This contribution presents characteristics, metallurgy and weldability of duplex steels with using concentrated energy source. The first part of the article describes metallurgy of duplex steels and the influence of nitrogen on their solidification. The second part focuses on weldability of duplex steels with using electron beam aimed on acceptable structure and corrosion resistance performed by multiple runs of defocused beam over the penetration weld.

  12. Deformation-induced {alpha}{sub 2} {yields} {gamma} phase transformation in TiAl alloys

    SciTech Connect

    Chen, C.L.; Lu, W.; Sun Dai; He, L.L.; Ye, H.Q.

    2010-11-15

    Deformation-induced {alpha}{sub 2} {yields} {gamma} phase transformation in high Nb containing TiAl alloys was investigated using high-resolution transmission electron microscopy (HREM) and energy dispersive X-ray spectroscopy (EDS). The dislocations appearing at the tip of deformation-induced {gamma} plate (DI-{gamma}) and the stacking sequence change of the {alpha}{sub 2} matrix were two key evidences for determining the occurrence of the deformation-induced {alpha}{sub 2} {yields} {gamma} phase transformation. Compositional analysis revealed that the product phase of the room-temperature transformation was not standard {gamma} phase; on the contrary, the product phase of the high-temperature transformation was standard {gamma} phase.

  13. Time-dependent stress concentration and microcrack nucleation in TiAl

    SciTech Connect

    Yoo, M.H.

    1995-07-01

    Localized stress evolution associated with the interaction of slip or twinning with an interface is treated by means of a superposition of the {open_quotes}internal loading{close_quotes} of a crystalline subsystem by dynamic dislocation pile-up and the stress relaxation by climb of interfacial dislocations. The peak value of a stress concentration factor depends on both the angular function that includes the effect of mode mixity and the ratio of characteristic times for stress relaxation and internal loading. The available experimental data on orientation and strain-rate dependences of interfacial fracture mode in polysynthetically twinned TiAl crystals are discussed in view of the theoretical concepts presented in this paper.

  14. Third-Generation TiAl Alloy Tested: Exhibits Promising Properties for Rotating Components

    NASA Technical Reports Server (NTRS)

    Draper, Susan L.; Locci, Ivan E.; Whittenberger, J. Daniel; Lerch, Bradley A.

    2004-01-01

    The Revolutionary Turbine Accelerator/Turbine-Based Combined Cycle (RTA/TBCC) Program for the next-generation launch vehicle has targeted gamma titanium aluminide as a potential compressor and structural material. Because of the high compressor inlet and exit temperatures, the TBCC engine requires higher temperature materials than conventional Ti alloys, and because of its stringent thrust-to-weight requirements, the engine requires low-density material to be utilized wherever possible. Third-generation gamma alloys offer higher temperature capability along with low density and high stiffness. A high-temperature, high-strength *-TiAl alloy with a high Nb-content (Gamma MET PX1) was selected for evaluation. The microstructure and mechanical properties of Gamma Met PX (GMPX) in both the as-extruded and a lamellar heat-treated condition and the influence of the microstructure on the tensile, creep, and fatigue properties were investigated in-house.

  15. Influence of microstructure refinement on strength, ductility and toughness of TiAl alloys

    SciTech Connect

    Morris, M.A.; Leboeuf, M.

    1997-12-31

    Different Ti-Al alloys with grain sizes ranging from 7 {micro}m to 320 nm have been prepared by consolidation of atomized and mechanically milled powders of nominal composition Ti-48Al-2Mn-2Nb and containing carbon additions. The materials obtained consist of equiaxed {gamma} grains containing a distribution of {alpha}{sub 2} phase mostly along grain or powder boundaries. The high flow strength and low fracture toughness obtained from these materials have been correlated to the fine scale of the microstructure and the transfer of slip across adjacent {gamma} grains. The existence of stress concentrations at boundaries between {gamma} grains leads to emission of curved dislocations and twins. The low mobility of emitted dislocations is responsible for the lack of tensile ductility in these alloys which fail by microcrack formation at grain boundaries.

  16. Deformation of polysynthetically twinned (PST) TiAl crystals at high strain rate and high temperature

    SciTech Connect

    Jin, Z.; Gray, G.T. III; Yamaguchi, Masaharu

    1997-12-31

    Deformation microstructures in a 435{degree} <{bar 3}21> oriented polysynthetically twinned (PST) TiAl crystal deformed in compression at 3000 s{sup {minus}1} and 800 C was studied. Deformation of this PST crystal is characterized as follows: (1) Deformation of domains [III] and [IV] is dominated by 1/6[11{bar 2}](111) parallel twinning (twinning parallel to lamellar interfaces). Ordinary dislocations observed in these domains are found to be a complementary deformation mode. (2) Deformation of domains [II], [V] and [VI] is controlled by ordinary dislocation slip. Complementary deformation modes in these domains are ordinary dislocation slip, superdislocation slip and cross-twinning. (3) Domain [I] is not deformed after the specimen deforms up to {approximately}7% strain.

  17. Designing Gamma TiAl Alloys (K5 Based) for Use at 840 C and Above

    NASA Technical Reports Server (NTRS)

    Kim, Young-Won; Kim, Sang-Lan

    2002-01-01

    The objective of this program was to investigate how carbon additions and Al content variation affects RT tensile properties and creep performance in gamma TiAl alloys. On the basis of the results from the work four alloys were selected within the composition range of Ti-(44.7-47.0) Al-(1.0-1.7)Cr-3.0Nb-0.2W-0.2B-(0.23-0.43)C-(0, 0.2)Si. Through extensive annealing/aging experiments, detailed observations of microstructure evolution, property measurements and analyses, comprehensive understanding was made in the carbide formation process. It was found that creep properties depend on the distribution of carbide particles, which is controlled not only by the aging process but also the amount ratio fo Al and carbon. From the results and analysis, new creep-resistant alloy compositions are suggested for further development.

  18. Full Duplex, Spread Spectrum Radio System

    NASA Technical Reports Server (NTRS)

    Harvey, Bruce A.

    2000-01-01

    The goal of this project was to support the development of a full duplex, spread spectrum voice communications system. The assembly and testing of a prototype system consisting of a Harris PRISM spread spectrum radio, a TMS320C54x signal processing development board and a Zilog Z80180 microprocessor was underway at the start of this project. The efforts under this project were the development of multiple access schemes, analysis of full duplex voice feedback delays, and the development and analysis of forward error correction (FEC) algorithms. The multiple access analysis involved the selection between code division multiple access (CDMA), frequency division multiple access (FDMA) and time division multiple access (TDMA). Full duplex voice feedback analysis involved the analysis of packet size and delays associated with full loop voice feedback for confirmation of radio system performance. FEC analysis included studies of the performance under the expected burst error scenario with the relatively short packet lengths, and analysis of implementation in the TMS320C54x digital signal processor. When the capabilities and the limitations of the components used were considered, the multiple access scheme chosen was a combination TDMA/FDMA scheme that will provide up to eight users on each of three separate frequencies. Packets to and from each user will consist of 16 samples at a rate of 8,000 samples per second for a total of 2 ms of voice information. The resulting voice feedback delay will therefore be 4 - 6 ms. The most practical FEC algorithm for implementation was a convolutional code with a Viterbi decoder. Interleaving of the bits of each packet will be required to offset the effects of burst errors.

  19. 53. Photocopy of copy of original Officers' Duplex Quarters drawing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    53. Photocopy of copy of original Officers' Duplex Quarters drawing by A.G.D., 7 April 1932 (original in possession of Veterans Administration, Wichita, Kansas, copy at Ablah Library, Wichita State University). Electrical - Veterans Administration Center, Officers Duplex Quarters, 5302 East Kellogg (Legal Address); 5500 East Kellogg (Common Address), Wichita, Sedgwick County, KS

  20. 51. Photocopy of copy of original Officers' Duplex Quarters drawing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    51. Photocopy of copy of original Officers' Duplex Quarters drawing by B.S. Elliott, 7 April 1932 (original in possession of Veterans Administration, Wichita, Kansas, copy at Ablah Library, Wichita State University). Plumbing - Veterans Administration Center, Officers Duplex Quarters, 5302 East Kellogg (Legal Address); 5500 East Kellogg (Common Address), Wichita, Sedgwick County, KS

  1. FACILITY 209, SINGLESTORY DUPLEX, VIEW OF FRONT FROM CENTER DRIVE, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    FACILITY 209, SINGLE-STORY DUPLEX, VIEW OF FRONT FROM CENTER DRIVE, FACING SE. - U.S. Naval Base, Pearl Harbor, Housing Area 1, Single Story Duplex Type, Bounded by Kamehameha Highway, Plantation Drive, South Avenue, Pearl City, Honolulu County, HI

  2. FACILITY 209, SINGLESTORY DUPLEX, VIEW OF SIDE FROM FACILITY 210 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    FACILITY 209, SINGLE-STORY DUPLEX, VIEW OF SIDE FROM FACILITY 210 SIDE, FACING SW. - U.S. Naval Base, Pearl Harbor, Housing Area 1, Single Story Duplex Type, Bounded by Kamehameha Highway, Plantation Drive, South Avenue, Pearl City, Honolulu County, HI

  3. FACILITY 224, TWOSTORY DUPLEX, UNIT 319 (UNOCCUPIED), INTERIOR OF UPSTAIRS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    FACILITY 224, TWO-STORY DUPLEX, UNIT 319 (UNOCCUPIED), INTERIOR OF UPSTAIRS HALL FROM BATH, VIEW FACING NW. - U.S. Naval Base, Pearl Harbor, Housing Area 1, Two-Story Duplex Type, Bounded by Kamehameha Highway, Plantation Drive, South Avenue, Pearl City, Honolulu County, HI

  4. FACILITY 209, SINGLESTORY DUPLEX, FRONT OBLIQUE VIEW OF FRONT FROM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    FACILITY 209, SINGLE-STORY DUPLEX, FRONT OBLIQUE VIEW OF FRONT FROM CENTER DRIVE, FACING SW. - U.S. Naval Base, Pearl Harbor, Housing Area 1, Single Story Duplex Type, Bounded by Kamehameha Highway, Plantation Drive, South Avenue, Pearl City, Honolulu County, HI

  5. FACILITY 210, TWOSTORY DUPLEX, REAR OBLIQUE FROM CENTER DRIVE, VIEW ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    FACILITY 210, TWO-STORY DUPLEX, REAR OBLIQUE FROM CENTER DRIVE, VIEW FACING EAST. - U.S. Naval Base, Pearl Harbor, Housing Area 1, Two-Story Duplex Type, Bounded by Kamehameha Highway, Plantation Drive, South Avenue, Pearl City, Honolulu County, HI

  6. FACILITY 210, TWOSTORY DUPLEX, VIEW FROM CENTER DRIVE BY FACILITY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    FACILITY 210, TWO-STORY DUPLEX, VIEW FROM CENTER DRIVE BY FACILITY 201 FACING SE. - U.S. Naval Base, Pearl Harbor, Housing Area 1, Two-Story Duplex Type, Bounded by Kamehameha Highway, Plantation Drive, South Avenue, Pearl City, Honolulu County, HI

  7. FACILITY 226, SINGLESTORY DUPLEX, UNIT 327 (UNOCCUPIED), INTERIOR FROM HALL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    FACILITY 226, SINGLE-STORY DUPLEX, UNIT 327 (UNOCCUPIED), INTERIOR FROM HALL LOOKING INTO BEDROOMS WITH DIFFERENT WINDOW ARRANGEMENTS. - U.S. Naval Base, Pearl Harbor, Housing Area 1, Single Story Duplex Type, Bounded by Kamehameha Highway, Plantation Drive, South Avenue, Pearl City, Honolulu County, HI

  8. FACILITY 224, TWOSTORY DUPLEX, UNIT 319 (UNOCCUPIED), INTERIOR OF LIVING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    FACILITY 224, TWO-STORY DUPLEX, UNIT 319 (UNOCCUPIED), INTERIOR OF LIVING ROOM FROM DINING AREA. KITCHEN TO LEFT, VIEW FACING SW. - U.S. Naval Base, Pearl Harbor, Housing Area 1, Two-Story Duplex Type, Bounded by Kamehameha Highway, Plantation Drive, South Avenue, Pearl City, Honolulu County, HI

  9. FACILITY 226, SINGLESTORY DUPLEX, UNIT 327 (UNOCCUPIED ). INTERIOR OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    FACILITY 226, SINGLE-STORY DUPLEX, UNIT 327 (UNOCCUPIED ). INTERIOR OF LIVING ROOM LOOKING TOWARD FRONT DOOR FROM DINING AREA - U.S. Naval Base, Pearl Harbor, Housing Area 1, Single Story Duplex Type, Bounded by Kamehameha Highway, Plantation Drive, South Avenue, Pearl City, Honolulu County, HI

  10. FACILITY 210, TWO STORY DUPLEX, FRONT OBLIQUE. FACILITY 209 TO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    FACILITY 210, TWO STORY DUPLEX, FRONT OBLIQUE. FACILITY 209 TO LEFT, 201 TO RIGHT, VIEW FACING NW. - U.S. Naval Base, Pearl Harbor, Housing Area 1, Two-Story Duplex Type, Bounded by Kamehameha Highway, Plantation Drive, South Avenue, Pearl City, Honolulu County, HI

  11. 52. Photocopy of copy of original Officers' Duplex Quarters drawing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    52. Photocopy of copy of original Officers' Duplex Quarters drawing by Copeland, 7 April 1932 (Original in possession of Veterans Administration, Wichita, Kansas, copy at Ablah Library, Wichita State University). Heating - Veterans Administration Center, Officers Duplex Quarters, 5302 East Kellogg (Legal Address); 5500 East Kellogg (Common Address), Wichita, Sedgwick County, KS

  12. 50. Photocopy of copy of original Officers' Duplex Quarters drawing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    50. Photocopy of copy of original Officers' Duplex Quarters drawing by Turner, 7 April 1932 (original in possession of Veterans Administration, Wichita, Kansas, copy at Ablah Library, Wichita State University. Detail of front entrance and of gable dormer - Veterans Administration Center, Officers Duplex Quarters, 5302 East Kellogg (Legal Address); 5500 East Kellogg (Common Address), Wichita, Sedgwick County, KS

  13. 48. Photocopy of copy of original Officers' Duplex Quarters drawing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    48. Photocopy of copy of original Officers' Duplex Quarters drawing by Turner, 7 April 1932 (original in possession of Veterans Administration, Wichita, Kansas, copy at Ablah Library, Wichita State University). Attic and roof, basement, first floor, and second floor plans - Veterans Administration Center, Officers Duplex Quarters, 5302 East Kellogg (Legal Address); 5500 East Kellogg (Common Address), Wichita, Sedgwick County, KS

  14. 49. Photocopy of copy of original Officers' Duplex Quarters drawing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    49. Photocopy of copy of original Officers' Duplex Quarters drawing by Turner, 7 April 1932 (original in possession of Veterans Administration, Wichita, Kansas, copy at Ablah Library, Wichita State University). Front, rear, and side elevations, and cross-section - Veterans Administration Center, Officers Duplex Quarters, 5302 East Kellogg (Legal Address); 5500 East Kellogg (Common Address), Wichita, Sedgwick County, KS

  15. Structural properties of g,t-parallel duplexes.

    PubMed

    Aviñó, Anna; Cubero, Elena; Gargallo, Raimundo; González, Carlos; Orozco, Modesto; Eritja, Ramon

    2010-01-01

    The structure of G,T-parallel-stranded duplexes of DNA carrying similar amounts of adenine and guanine residues is studied by means of molecular dynamics (MD) simulations and UV- and CD spectroscopies. In addition the impact of the substitution of adenine by 8-aminoadenine and guanine by 8-aminoguanine is analyzed. The presence of 8-aminoadenine and 8-aminoguanine stabilizes the parallel duplex structure. Binding of these oligonucleotides to their target polypyrimidine sequences to form the corresponding G,T-parallel triplex was not observed. Instead, when unmodified parallel-stranded duplexes were mixed with their polypyrimidine target, an interstrand Watson-Crick duplex was formed. As predicted by theoretical calculations parallel-stranded duplexes carrying 8-aminopurines did not bind to their target. The preference for the parallel-duplex over the Watson-Crick antiparallel duplex is attributed to the strong stabilization of the parallel duplex produced by the 8-aminopurines. Theoretical studies show that the isomorphism of the triads is crucial for the stability of the parallel triplex. PMID:20798879

  16. Acoustical and perceptual influence of duplex stringing in grand pianos.

    PubMed

    Öberg, Fredrik; Askenfelt, Anders

    2012-01-01

    This study investigates the acoustical and perceptual influence of the string parts outside the speaking length in grand pianos (front and rear duplex strings). Acoustical measurements on a grand piano in concert condition were conducted, measuring the fundamental frequencies of all main and duplex strings in the four octaves D4-C8. Considerable deviations from the nominal harmonic relations between the rear duplex and main string frequencies, as described by the manufacturer in a patent, were observed. Generally the rear duplex strings were tuned higher than the nominal harmonic relations with average and median deviations approaching +50 cent. Single keys reached +190 and -100 cent. The spread in deviation from harmonic relations within trichords was also substantial with average and median values around 25 cent, occasionally reaching 60 cent. Contributions from both front and rear duplex strings were observed in the bridge motion and sound. The audibility of the duplex strings was studied in an ABX listening test. Complete dampening of the front duplex was clearly perceptible both for an experiment group consisting of musicians and a control group with naive subjects. The contribution from the rear duplex could also be perceived, but less pronounced. PMID:22280708

  17. Methods And Devices For Characterizing Duplex Nucleic Acid Molecules

    DOEpatents

    Akeson, Mark; Vercoutere, Wenonah; Haussler, David; Winters-Hilt, Stephen

    2005-08-30

    Methods and devices are provided for characterizing a duplex nucleic acid, e.g., a duplex DNA molecule. In the subject methods, a fluid conducting medium that includes a duplex nucleic acid molecule is contacted with a nanopore under the influence of an applied electric field and the resulting changes in current through the nanopore caused by the duplex nucleic acid molecule are monitored. The observed changes in current through the nanopore are then employed as a set of data values to characterize the duplex nucleic acid, where the set of data values may be employed in raw form or manipulated, e.g., into a current blockade profile. Also provided are nanopore devices for practicing the subject methods, where the subject nanopore devices are characterized by the presence of an algorithm which directs a processing means to employ monitored changes in current through a nanopore to characterize a duplex nucleic acid molecule responsible for the current changes. The subject methods and devices find use in a variety of applications, including, among other applications, the identification of an analyte duplex DNA molecule in a sample, the specific base sequence at a single nulceotide polymorphism (SNP), and the sequencing of duplex DNA molecules.

  18. Zoster duplex: a clinical report and etiologic analysis

    PubMed Central

    Zhang, Feng; Zhou, Jin

    2015-01-01

    Objective: Herpes zoster (HZ) duplex is a rare disease presentation. The mechanisms of varicella zoster virus (VZV) reactivation in multiple dermal regions are unknown. To present a HZ duplex case occurring in an immunocompetent woman and to analyze the possible underlying causes of HZ duplex. Methods: We present a HZ duplex case in an immunocompetent woman and analyzed the possible contributing factors in 36 HZ duplex cases. Continuously distributed variables were categorized by numbers and percentages. Results: In our study, 24 cases (66.7%) were from Asia, 16 cases (44.4%) were in individuals ≥ 50 years of age, and 17 cases (47.2%) occurred in immunocompromised patients. Of the 36 cases, 23 involved women (63.9%) and 13 involved men. Eighteen patients suffering from HZ duplex, 13 of which were women (72.2%), did not suffer from any chronic systemic disease or have a long history of taking drugs. Conclusion: HZ duplex is a rare event that can occur in both immunocompetent and immunosuppressed individuals. HZ duplex might be associated with the Asia region, advanced age, immunosuppression, and being female. PMID:26379899

  19. Corrosion behavior of 2205 duplex stainless steel.

    PubMed

    Platt, J A; Guzman, A; Zuccari, A; Thornburg, D W; Rhodes, B F; Oshida, Y; Moore, B K

    1997-07-01

    The corrosion of 2205 duplex stainless steel was compared with that of AISI type 316L stainless steel. The 2205 stainless steel is a potential orthodontic bracket material with low nickel content (4 to 6 wt%), whereas the 316L stainless steel (nickel content: 10 to 14 wt%) is a currently used bracket material. Both stainless steels were subjected to electrochemical and immersion (crevice) corrosion tests in 37 degrees C, 0.9 wt% sodium chloride solution. Electrochemical testing indicates that 2205 has a longer passivation range than 316L. The corrosion rate of 2205 was 0.416 MPY (milli-inch per year), whereas 316L exhibited 0.647 MPY. When 2205 was coupled to 316L with equal surface area ratio, the corrosion rate of 2205 reduced to 0.260 MPY, indicating that 316L stainless steel behaved like a sacrificial anode. When 316L is coupled with NiTi, TMA, or stainless steel arch wire and was subjected to the immersion corrosion test, it was found that 316L suffered from crevice corrosion. On the other hand, 2205 stainless steel did not show any localized crevice corrosion, although the surface of 2205 was covered with corrosion products, formed when coupled to NiTi and stainless steel wires. This study indicates that considering corrosion resistance, 2205 duplex stainless steel is an improved alternative to 316L for orthodontic bracket fabrication when used in conjunction with titanium, its alloys, or stainless steel arch wires. PMID:9228844

  20. Structural properties of Al and TiAl3 metallic glasses — An embedded atom method study

    NASA Astrophysics Data System (ADS)

    Tahiri, M.; Trady, S.; Hasnaoui, A.; Mazroui, M.; Saadouni, K.; Sbiaai, K.

    2016-06-01

    In this paper, we investigated the structural properties of metallic glasses (MGs). We emphasized our study on monatomic Al and binary TiAl3 systems. The calculations are performed by using the molecular dynamics (MD) simulation based on semi-empirical many-body potentials derived from the embedded atom method. The structure is analyzed using the radial distribution function (RDF), the common neighbor analysis (CNA) and the coordination numbers (CNs). Our results demonstrated that it is possible to form MGs in both systems upon fast cooling from the liquid state. This is confirmed by the fact that the system energy and/or volume during the cooling stage decrease continuously with a slight change and by atomic scale analysis using the RDF, CNA and CN analyzing techniques. Furthermore, this specific study shows that under the same conditions, the icosahedral structures appeared in TiAl3 are more abundant than in pure Al. Implications of these findings are discussed.

  1. Amplified spontaneous emission measurement of a line-narrowed, tunable, Ti:Al2O3 amplifier using rubidium absorption

    NASA Technical Reports Server (NTRS)

    Barnes, James C.; Barnes, Norman P.; Lockard, George E.; Cross, Patricia L.

    1989-01-01

    Amplified spontaneous emission, ASE, generated by a Ti:Al2O3 laser amplifier has been measured as a function of pump energy, and thus gain, using the atomic absorption of rubidium, Rb, gas at 0.780 micron. By tuning the Ti:Al2O3 laser, the Rb cell could selectively absorb the narrow spectral bandwidth laser radiation while transmitting the wide spectral bandwidth ASE. Transmission of laser amplifier pulses through a Rb absorption cell, measured at various temperatures, thus allows the measurement of the weak ASE in the vicinity of the strong laser pulse. A model for the transmission of Rb as a function of temperature and wavelength has been developed. The measured transmissions are in good agreement with the transmission model predictions.

  2. Effect of trace amounts of NaCl vapor on high-temperature oxidation of TiAl

    SciTech Connect

    Hara, M.; Kitagawa, Y.

    1999-08-01

    The effect of trace amounts of NaCl vapor on the high-temperature oxidation of TiAl was examined by thermogravimetry and analysis of the scale formed on TiAl. The mass gain due to oxidation at 1273 K in O{sub 2} with trace amounts of NaCl vapor was far lower than that in pure O{sub 2} without NaCl vapor. This low mass gain in the atmosphere with trace amounts of NaCl vapor resulted from the saturation behavior of mass gain during the initial period of oxidation. It was found from X-ray photoemission spectroscopy (XPS) analyses of the specimen surface that the oxide film formed during the initial period in the atmosphere with trace amounts of NaCl vapor consisted of dense Al{sub 2}O{sub 3}, thus, the low oxidation rate of TiAl was attributed to a protective oxide film of dense Al{sub 2}O{sub 3}.

  3. Interaction of Al2O3-ZrO2 fibers with a Ti-Al matrix during pressure casting

    NASA Astrophysics Data System (ADS)

    Nourbakhsh, S.; Liang, F. L.; Margolin, H.

    1990-01-01

    Electron and optical electron microscopy, together with energy dispersive X-ray (EDX) chemical microanalysis, were employed to examine the microstructure of a pressure-cast composite consisting of a Ti-48.4 at. pct Al-1 at. pct Mn matrix reinforced with DuPont’s PRD-166 A12O3 fibers containing 20 wt pct partially stabilized ZrO2. The originally cylindrical fibers were found to have a scalloped surface, and a zone just below the surface was free of ZrO2. In addition, the fibers contained entrapped TiAl, and a small portion of the fiber periphery was covered by ZrO2 particles, which were free of the Y2O3 and HfO2 oxides present in the ZrO2 within the fibers. The matrix consisted of a mixture of TiAl and a lamellar structure of TiAl and Ti3Al and contained Zr not originally present in the matrix alloy. An analysis of the origin of this microstructure is presented.

  4. Nitrogen containing shielding gases for GTAW duplex stainless steels

    SciTech Connect

    Creffield, G.K.; Cole, M.H.; Paciej, R.; Huang, W.; Urmston, S.

    1993-12-31

    The duplex stainless steel are alloys characterized as consisting of two phases; austenite and ferrite. As such, they combine the benefits of both phases i.e. good ductility and general corrosion resistance of austenite, but with improved stress corrosion cracking resistance and strength associate with ferrite. Carefully controlled manufacturing techniques are employed to produce this combination in roughly equal proportions to ensure optimum properties. The range of duplex alloys studied in this work covered both the standard grade (2205) and the latest generation of super duplex (2507) alloys; typical compositions are shown in Table 1. Although the standard duplex is the most commonly available and widely used, super duplexes, which are characterized by higher chromium, nickel, molybdenum and nitrogen contents, have even better corrosion properties and are finding increasing applications in the offshore industry. To benefit from the superior properties of duplex, it is vital that these alloys can be welded effectively and that the properties of the welded joint match those of the parent weld. The objective of the current investigation was to study the effect of nitrogen, in both the shielding and purge gas, on the weld metal nitrogen content, microstructure and corrosion resistance, with the eventual aim of recommending an effective shielding gas mixture for duplex stainless steels.

  5. Streamlined analysis of duplex sequencing data with Du Novo.

    PubMed

    Stoler, Nicholas; Arbeithuber, Barbara; Guiblet, Wilfried; Makova, Kateryna D; Nekrutenko, Anton

    2016-01-01

    Duplex sequencing was originally developed to detect rare nucleotide polymorphisms normally obscured by the noise of high-throughput sequencing. Here we describe a new, streamlined, reference-free approach for the analysis of duplex sequencing data. We show the approach performs well on simulated data and precisely reproduces previously published results and apply it to a newly produced dataset, enabling us to type low-frequency variants in human mitochondrial DNA. Finally, we provide all necessary tools as stand-alone components as well as integrate them into the Galaxy platform. All analyses performed in this manuscript can be repeated exactly as described at http://usegalaxy.org/duplex . PMID:27566673

  6. Lubrication for high load duplex bearings

    SciTech Connect

    Steinhoff, R.G.

    1997-08-01

    Three ES and H-compatible lubricants (Environment, Safety and Health) for high load duplex bearing applications were evaluated and compared against trichlorotrifluoroethane (Freon) deposition of low molecular weight polytetrafluoroethylene (PTFE) bearing lubricant extracted from Vydax{trademark}. Vydax is a product manufactured by DuPont consisting of various molecular weights of PTFE suspended in trichlorotrifluoroethane (Freon) which is an ozone-depleting solvent. Bearings with Supercritical CO{sub 2} deposition of PTFE extracted from Vydax AR/IPA, bearings with titanium carbide coated balls, and bearings with diamond-like carbon races and retainers were evaluated. Bearings with Supercritical CO{sub 2} deposition of PTFE from Vydax AR/IPA performed as well as bearings with Freon deposition of PTFE from Freon-based Vydax.

  7. Corrosion behavior of sensitized duplex stainless steel.

    PubMed

    Torres, F J; Panyayong, W; Rogers, W; Velasquez-Plata, D; Oshida, Y; Moore, B K

    1998-01-01

    The present work investigates the corrosion behavior of 2205 duplex stainless steel in 0.9% NaCl solution after various heat-treatments, and compares it to that of 316L austenitic stainless steel. Both stainless steels were heat-treated at 500, 650, and 800 degrees C in air for 1 h, followed by furnace cooling. Each heat-treated sample was examined for their microstructures and Vickers micro-hardness, and subjected to the X-ray diffraction for the phase identification. Using potentiostatic polarization method, each heat-treated sample was corrosion-tested in 37 degrees C 0.9% NaCl solution to estimate its corrosion rate. It was found that simulated sensitization showed an adverse influence on both steels, indicating that corrosion rates increased by increasing the sensitization temperatures. PMID:9713683

  8. Role of interfacial dislocations on creep of a fully lamellar tial

    SciTech Connect

    Hsiung, L M; Nieh, T G

    1999-08-16

    Deformation mechanisms of a fully lamellar TiAl ({gamma} lamellae: 100 {approximately} 300 nm thick, {alpha}{sub 2} lamellae: 10 {approximately} 50 nm thick) crept at 760 C have been investigated. It was found that, as a result of a fine structure, the motion and multiplication of dislocations within both {gamma} and {alpha}{sub 2} lamellae are limited at low creep stresses (< 400 MPa). Thus, the glide and climb of lattice dislocations have insignificant contribution to creep deformation. In contrast, the motion of interfacial dislocations on {gamma}{alpha}{sub 2} and {gamma}{gamma} interfaces (i.e. interface sliding) dominates the deformation at low stresses. The major obstacles impeding the motion of interfacial dislocations was found to be lattice dislocations impinging on lamellar interfaces. The number of impinging lattice dislocations increases as the applied stress increases and, subsequently, causes the pileup of interfacial dislocations on the interfaces. The pileup further leads to the formation of deformation twins. Deformation twinning activated by the pileup of interfacial dislocations is suggested to be the dominant deformation mechanism at high stresses (> 400 MPa).

  9. Effect of Impact Damage on the Fatigue Response of TiAl Alloy-ABB-2

    NASA Technical Reports Server (NTRS)

    Draper, S. L.; Lerch, B. A.; Pereira, J. M.; Nathal, M. V.; Nazmy, M. Y.; Staubli, M.; Clemens, D. R.

    2001-01-01

    The ability of gamma-TiAl to withstand potential foreign or domestic object damage is a technical risk to the implementation of gamma-TiAl in low pressure turbine (LPT) blade applications. In the present study, the impact resistance of TiAl alloy ABB-2 was determined and compared to the impact resistance of Ti(48)Al(2)Nb(2)Cr. Specimens were impacted with four different impact conditions with impact energies ranging from 0.22 to 6.09 J. After impacting, the impact damage was characterized by crack lengths on both the front and backside of the impact. Due to the flat nature of gamma-TiAl's S-N (stress vs. cycles to failure) curve, step fatigue tests were used to determine the fatigue strength after impacting. Impact damage increased with increasing impact energy and led to a reduction in the fatigue strength of the alloy. For similar crack lengths, the fatigue strength of impacted ABB-2 was similar to the fatigue strength of impacted Ti(48)Al(2)Nb(2)Cr, even though the tensile properties of the two alloys are significantly different. Similar to Ti(48)Al(2)Nb(2)Cr, ABB-2 showed a classical mean stress dependence on fatigue strength. The fatigue strength of impacted ABB-2 could be accurately predicted using a threshold analysis.

  10. Electronic and mechanical properties of Zr{sub 2}TiAl: A first principles study

    SciTech Connect

    Reddy, P. V. Sreenivasa Kanchana, V.

    2014-04-24

    First principles study of electronic and mechanical properties of ternary phase Zr{sub 2}TiAl intermetallic compound has been carried out by using full potential linear augmented plane wave (FP-LAPW) method. Our calculated lattice parameter is in good agreement with the experiment. We find the magnetic phase of the compound to be stable with a magnetic moment of 1.95 μ{sub B}. The major contribution to the total magnetic moment arises mainly from the Ti atom with the local magnetic moment of 1.22 μ{sub B}. From the density of states plots we find the Ti-d and Zr-d to dominate at the Fermi level (E{sub F}) with enhanced crystal field splitting and exchange splitting found in Ti. The mechanical stability of the compound is confirmed from the calculated elastic constants, and we find the compound to be ductile in nature from the calculated Pugh’s ratio and Cauchy’s pressure.

  11. Mechanical properties of submicron-grained TiAl alloys prepared by mechanical alloying

    NASA Astrophysics Data System (ADS)

    Oehring, M.; Appel, F.; Pfullmann, Th.; Bormann, R.

    1995-02-01

    Ti-48 at. % Al powders of the metastable hexagonal-closed-packed solid solution with a grain size of 15 nm were prepared by mechanical alloying. The powders were consolidated to a density of greater than 99.5% by hot isostatic pressing (HIP) at 800 °C. After HIP the material exhibits a globular microstructure of the equilibrium phases α2 and γ with a mean grain size of 150 nm. Microhardness measurements show a Hall-Petch type [E. O. Hall, Proc. Phys. Soc. B 64, 747 (1951); N. J. Petch, J. Iron Steel Inst. 174, 25 (1953)] dependence on grain size. Room temperature compression tests reveal low ductility, but high fracture strengths ≥1800 MPa. On increasing the test temperature the yield strength drops sharply in the temperature range 600-800 °C to very low values. The results indicate that submicron-grained TiAl alloys can be deformed at much lower temperatures than coarse-grained material, making them suitable as precursors for net shaping, in particular if high deformation ratios are required.

  12. 43. View of station from southwest side with duplex keepers' ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    43. View of station from southwest side with duplex keepers' dwelling to the left. USLHB photo by Herbert Bamber, June 9, 1893. - Bodie Island Light Station, Off Highway 12, Nags Head, Dare County, NC

  13. Thermoacoustic Duplex Technology for Cooling and Powering a Venus Lander

    NASA Astrophysics Data System (ADS)

    Walker, A. R.; Haberbusch, M. S.; Sasson, J.

    2015-04-01

    A Thermoacoustic Stirling Heat Engine (TASHE) is directly coupled to a Pulse Tube Refrigerator (PTR) in a duplex configuration, providing simultaneous cooling and electrical power, thereby suiting the needs of a long-lived Venus lander.

  14. Perspective view of Building No. 61 from northwest. These duplex ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Perspective view of Building No. 61 from northwest. These duplex quarters were built during the 1920s on the south edge of the Northwestern Branch campus. This building is sited on a rise and shares paths and lawn with two similar structures - Buildings 56 and 79. Now located directly adjacent to the current hospital complex (background), all three duplexes are slated for demolition. - National Home for Disabled Volunteer Soldiers, Northwestern Branch, Quarters, 5000 West National Avenue, Milwaukee, Milwaukee County, WI

  15. Probing the duplex stainless steel phases via magnetic force microscopy

    NASA Astrophysics Data System (ADS)

    Gheno, S. M.; Santos, F. S.; Kuri, S. E.

    2008-03-01

    Duplex stainless steels are austenitic-ferritic alloys used in many applications, thanks to their excellent mechanical properties and high corrosion resistance. In this work, chemical analyses, x-ray diffraction, and magnetic force microscopy (MFM) were employed to characterize the solution annealed and aged duplex stainless steel. The samples exhibited no changes in lattice parameters and the MFM technique proved successful in clearly imaging the magnetic domain structure of the ferrite phase.

  16. Phase transformations in cast duplex stainless steels

    NASA Astrophysics Data System (ADS)

    Kim, Yoon-Jun

    Duplex stainless steels (DSS) constitute both ferrite and austenite as a matrix. Such a microstructure confers a high corrosion resistance with favorable mechanical properties. However, intermetallic phases such as sigma (sigma) and chi (chi) can also form during casting or high-temperature processing and can degrade the properties of the DSS. This research was initiated to develop time-temperature-transformation (TTT) and continuous-cooling-transformation (CCT) diagrams of two types of cast duplex stainless steels, CD3MN (Fe-22Cr-5Ni-Mo-N) and CD3MWCuN (Fe-25Cr-7Ni-Mo-W-Cu-N), in order to understand the time and temperature ranges for intermetallic phase formation. The alloys were heat treated isothermally or under controlled cooling conditions and then characterized using conventional metallographic methods that included tint etching, and also using electron microscopy (SEM, TEM) and wavelength dispersive spectroscopy (WDS). The kinetics of intermetallic-phase (sigma + chi) formation were analyzed using the Johnson-Mehl-Avrami (JMA) equation in the case of isothermal transformations and a modified form of this equation in the case of continuous cooling transformations. The rate of intermetallic-phase formation was found to be much faster in CD3MWCuN than CD3MN due mainly to differences in the major alloying contents such as Cr, Ni and Mo. To examine in more detail the effects of these elements of the phase stabilities, a series of eight steel castings was designed with the Cr, Ni and Mo contents systematically varied with respect to the nominal composition of CD3MN. The effects of varying the contents of alloying additions on the formation of intermetallic phases were also studied computationally using the commercial thermodynamic software package, Thermo-Calc. In general, a was stabilized with increasing Cr addition and chi by increasing Mo addition. However, a delicate balance among Ni and other minor elements such as N and Si also exists. Phase equilibria in

  17. Phase Transformations in Cast Duplex Stainless Steels

    SciTech Connect

    Yoon-Jun Kim

    2004-12-19

    Duplex stainless steels (DSS) constitute both ferrite and austenite as a matrix. Such a microstructure confers a high corrosion resistance with favorable mechanical properties. However, intermetallic phases such as {sigma} and {chi} can also form during casting or high-temperature processing and can degrade the properties of the DSS. This research was initiated to develop time-temperature-transformation (TTT) and continuous-cooling-transformation (CCT) diagrams of two types of cast duplex stainless steels, CD3MN (Fe-22Cr-5Ni-Mo-N) and CD3MWCuN (Fe-25Cr-7Ni-Mo-W-Cu-N), in order to understand the time and temperature ranges for intermetallic phase formation. The alloys were heat treated isothermally or under controlled cooling conditions and then characterized using conventional metallographic methods that included tint etching, and also using electron microscopy (SEM, TEM) and wavelength dispersive spectroscopy (WDS). The kinetics of intermetallic-phase ({sigma} + {chi}) formation were analyzed using the Johnson-Mehl-Avrami (MA) equation in the case of isothermal transformations and a modified form of this equation in the case of continuous cooling transformations. The rate of intermetallic-phase formation was found to be much faster in CD3MWCuN than CD3MN due mainly to differences in the major alloying contents such as Cr, Ni and Mo. To examine in more detail the effects of these elements of the phase stabilities; a series of eight steel castings was designed with the Cr, Ni and Mo contents systematically varied with respect to the nominal composition of CD3MN. The effects of varying the contents of alloying additions on the formation of intermetallic phases were also studied computationally using the commercial thermodynamic software package, Thermo-Calc. In general, {sigma} was stabilized with increasing Cr addition and {chi} by increasing Mo addition. However, a delicate balance among Ni and other minor elements such as N and Si also exists. Phase equilibria in

  18. Topologically non-linked circular duplex DNA.

    PubMed

    Biegeleisen, Ken

    2002-05-01

    The discovery of circular DNA, over 30 years ago, introduced an element of uneasiness in what had been, up to that point, the almost picture-perfect story of the elucidation of the molecular biology of heredity. If DNA indeed has the Watson-Crick right-handed helical secondary structure, then in circular DNA, thousands, or perhaps even millions of twists must be removed in each generation, and re-wound in the next generation. Although enzyme systems adequate for this task have long since been found and characterized, there have nevertheless arisen a number of proposals for alternative DNA structures in which the strands are topologically non-linked, so that they might separate during replication without having to be unwound. These structures have generally been put forth as theory only, and have been largely unaccompanied by experimental evidence to support their applicability to native DNA from living systems. Recently, however, a report has emerged suggesting that it might be possible to separate, intact, the individual single-stranded circular half-chromosomes which constitute the double-stranded circular chromosomes of certain plasmids. This would not be possible unless the chromosomes had one of the alternative, topologically non-linked structures. It is widely believed that after a half-century of worldwide DNA research, any significant change to the Watson-Crick structure is unlikely to stand up to scrutiny. Nevertheless, the present author has found that in many instances in which the behavior of circular duplex DNA is considered to be explicable only in terms of the topologically linked helical model, it is also possible to explain that same behavior in terms of a topologically non-linked model. It is necessary, in these instances, to make certain logical assumptions which cannot be conclusively proven at the present time. The author herein offers an example of one such instance, namely an examination of the behavior of circular duplex DNA in an alkaline

  19. Mechanically driven phase transformation from crystal to glass in Ti-Al binary system

    SciTech Connect

    Fan, G.J.; Quan, M.X.; Hu, Z.Q. . National Key Lab for RSA)

    1995-01-15

    Metastable phases such as metallic glass have been widely studied during the past few years. A number of techniques have been employed to synthesize these alloys, among which, mechanical alloying (MA) was considered to be a promising tool for large production and economical operation. However, the mechanism of formation of the metastable phases during mechanical alloying/ball milling have not been well determined. Previous studies of amorphization by mechanical alloying of pure elements or ball milling of intermetallics have proposed the following mechanics: rapid quenching of local melts produced by mechanical impacts, high density of defects generated by mechanical deformation which raises the free energy of compound to above that of the amorphous phase, effective local temperature rise at the collision site which gives rise to a solid-state reaction similar to thin film diffusion couples. Most of the studies have suggested that solid-state-type reactions are most likely to be responsible for vitrification during mechanical alloying, and the kinetics was controlled by the point and lattice defects generated by mechanical deformation. In the Zr-Al alloy system, however, another mechanisms was proposed by Fecht et al. based on a chemically induced catastrophic transition. The amorphization was interpreted with the elastic instability of crystal caused by the atomic mismatch of two components in supersaturated solid solution; when solute concentration reaches a critical value, the supersaturated solid solution becomes metastable and a polymorphous melting'' transition to a glass may occur. This hypothesis has been further examined by Ma and Atzmon with calorimeter measurements. In this paper, it will be shown experimentally that this mechanism may be valid in the Ti-Al binary system.

  20. High temperature creep behaviour of Al-rich Ti-Al alloys

    NASA Astrophysics Data System (ADS)

    Sturm, D.; Heilmaier, M.; Saage, H.; Aguilar, J.; Schmitz, G. J.; Drevermann, A.; Palm, M.; Stein, F.; Engberding, N.; Kelm, K.; Irsen, S.

    2010-07-01

    Compared to Ti-rich γ-TiAl-based alloys Al-rich Ti-Al alloys offer an additional reduction of in density and a better oxidation resistance which are both due to the increased Al content. Polycrystalline material was manufactured by centrifugal casting. Microstructural characterization was carried out employing light-optical, scanning and transmission electron microscopy and XRD analyses. The high temperature creep of two binary alloys, namely Al60Ti40 and Al62Ti38 was comparatively assessed with compression tests at constant true stress in a temperature range between 1173 and 1323 K in air. The alloys were tested in the cast condition (containing various amounts of the metastable phases Al5Ti3 and h-Al2Ti) and after annealing at 1223 K for 200 h which produced (thermodynamically stable) lamellar γ-TiAl + r-Al2Ti microstructures. In general, already the as-cast alloys exhibit a reasonable creep resistance at 1173 K. Compared with Al60Ti40, both, the as-cast and the annealed Al62Ti38 alloy exhibit better creep resistance up to 1323 K which can be rationalized by the reduced lamella spacing. The assessment of creep tests conducted at identical stress levels and varying temperatures yielded apparent activation energies for creep of Q = 430 kJ/mol for the annealed Al60Ti40 alloy and of Q = 383 kJ/mol for the annealed Al62Ti38 material. The latter coincides well with that of Al diffusion in γ-TiAl, whereas the former can be rationalized by the instability of the microstructure containing metastable phases.

  1. New Economical 19Cr Duplex Stainless Steels

    NASA Astrophysics Data System (ADS)

    Li, Jun; Zhang, Zixing; Chen, Hong; Xiao, Xueshan; Zhao, Junliang; Jiang, Laizhu

    2012-02-01

    New economical duplex stainless steels (DSSs) containing 19Cr-6Mn- xNi-1.0Mo-0.5W-0.5Cu-0.2N ( x = 0.5 to 2.0) were developed, and the microstructure, impact property, and corrosion resistance of the alloys were studied. The ferrite content increases with the solution treatment temperature, but decreases with an increase in nickel. The sigma phase is not found precipitating in the alloys treated with solution from 1023 K to 1523 K (750 °C to 1250 °C). The low-temperature impact energy of the experimental alloys increases first and then decreases rapidly with an increase in nickel, which is mainly due to the martensite transformation with an increase in austenite. The alloys have a better mechanical property and pitting corrosion resistance than AISI 304. Among the designed DSS alloys, 19Cr-6Mn-1.3Ni-1.0Mo-0.5W-0.5Cu-0.2N is found to be an optimum alloy with proper phase proportion, a better combination of mechanical strength and elongation, and higher pitting corrosion resistance compared with those of the other alloys.

  2. ES and H-compatible lubrication for duplex bearings

    SciTech Connect

    Steinhoff, R.G.

    1997-10-01

    Two ES and H-compatible lubricants (environment, safety, and health) for duplex bearing applications and one hybrid material duplex bearing were evaluated and compared against duplex bearings with trichlorotrifluoroethane (Freon) deposition of low molecular weight polytetrafluoroethylene (PTFE) bearing lubricant extracted from Vydax{trademark}. Vydax is a product manufactured by DuPont consisting of various molecular weights of PTFE suspended in trichlorotrifluoroethane (Freon), which is an ozone-depleting solvent. Vydax has been used as a bearing lubricant in strong link mechanisms since 1974. Hybrid duplex bearings with silicon nitride balls and molded glass-nylon-Teflon retainers, duplex bearings lubricated with sputtered MoS{sub 2} on races and retainers, and duplex bearings lubricated with electrophoretic deposited MoS{sub 2} were evaluated. Bearings with electrophoretic deposited MoS{sub 2} performed as well as bearings with Freon deposition of PTFE from Freon-based Vydax. Hybrid bearings with silicon nitride balls performed worse than bearings lubricated with Vydax, but their performance would still be acceptable for most applications. Bearings lubricated with sputtered MoS{sub 2} on the races and retainers had varying amounts of film on the bearings. This affected the performance of the bearings. Bearings with a uniform coating performed to acceptable levels, but bearings with no visible MoS{sub 2} on the races and retainers did not perform as well as bearings with the other coatings. Unless process controls are incorporated in the sputtering process or the bearings are screened, they do not appear to be acceptable for duplex bearing applications.

  3. Microstructural evolution and hardness of TiAl3 and TiAl2 phases on Ti-45Al-2Nb-2Mn-1B by plasma pack aluminizing

    NASA Astrophysics Data System (ADS)

    Rastkar, Ahmad Reza; Parseh, Pejman; Darvishnia, Naser; Hadavi, Seyed Mohammad Mehdi

    2013-07-01

    The surface of Ti-45Al-2Nb-2Mn-1B (at%) titanium aluminide was aluminized in a so called plasma pack aluminizing by packing the substrate in a mixture of aluminum copper alloy and application of an 18 kHz pulsed DC glow discharge plasma in argon gas. The plasma energy provided the necessary heat for melting and mutual diffusion of titanium and aluminum at the surface of titanium aluminide alloy in less than 1 h without any further heat treatment. The microstructure and hardness of different phases on the surface of Ti-45Al-2Nb-2Mn-1B alloy were characterized using optical and electron microscopy, X-ray diffraction (XRD), EDX analysis and Vickers microhardness tests. The thickness of the surface layers was up to 300 μm. The surface layers consisted mainly of TiAl3 and TiAl2 compounds. These compounds appeared in blocky and round shapes with different micrometer sizes in a matrix of aluminum alloy phase. The hardness of the surface layers was up to 600 HV0.1, which was higher than that of Ti-45Al-2Nb-2Mn-1B substrate (330 HV0.1).

  4. Duplex Ultrasonography in Assessing Restenosis of Renal Artery Stents

    SciTech Connect

    Bakker, Jeannette; Beutler, Jaap J.; Elgersma, Otto E.H.; Lange, Eduard E. de; Kort, Gerard A.P. de; Beek, Frederik J. A.

    1999-11-15

    Purpose: To determine the accuracy and optimal threshold values of duplex ultrasonography (US) in assessing restenosis of renal artery stents. Methods: Twenty-four consecutive patients with 33 renal arteries that had previously been treated with placement of a Palmaz stent underwent duplex US prior to intraarterial digital subtraction angiography (DSA), which was the reference standard. Diagnostic accuracy of in-stent peak systolic velocity (PSV) and reno-aortic ratio (RAR = PSV renal stent/PSV aorta) in detecting > 50% in-stent restenosis were evaluated by the receiver operating characteristic curve. Sensitivity and specificity were determined using the optimal threshold values, and using published threshold values: RAR > 3.5 and in-stent PSV > 180 cm/sec. Results: Six examinations were technically inadequate. Nine stents had residual or restenosis > 50% at DSA. The two duplex parameters were equally accurate since areas under the curves were similar (0.943). With optimal threshold values of 226 cm/sec for PSV and 2.7 for RAR, sensitivities and specificities were 100% and 90%, and 100% and 84%, respectively. Using the published duplex criteria resulted in sensitivities and specificities of 100% and 74% for PSV, and 50% and 89% for RAR. Conclusion: Duplex US is a sensitive modality for detecting in-stent restenosis if laboratory-specific threshold values are used.

  5. FACILITY 210, TWOSTORY DUPLEX, VIEW FACING SW. U.S. Naval ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    FACILITY 210, TWO-STORY DUPLEX, VIEW FACING SW. - U.S. Naval Base, Pearl Harbor, Housing Area 1, Two-Story Duplex Type, Bounded by Kamehameha Highway, Plantation Drive, South Avenue, Pearl City, Honolulu County, HI

  6. Effects of MoS2 and Multiwalled Carbon Nanotubes on Tribological Behavior of TiAl Matrix Composite

    NASA Astrophysics Data System (ADS)

    Yang, Kang; Shi, Xiaoliang; Zhai, Wenzheng

    2016-03-01

    The sliding velocities and applied loads are often varied to minimize friction and decrease mechanical energy dissipation in moving mechanical assemblies. In this study, TiAl matrix composites containing MoS2 and multiwalled carbon nanotubes (MWCNTs) are fabricated using spark plasma sintering. The testing conditions are chosen as 0.3 m/s-6.5 N; 0.5 m/s-11.4 N; and 0.7 m/s-16.3 N. The sliding tribological property of TiAl matrix composite containing MoS2 and MWCNTs (TMC-MM) is evaluated based on a ball-on-disk tribometer. The results show that the tribological performance of TMC-MM is excellent for the lower friction coefficient and less wear rate at 0.7 m/s-16.3 N. Massive MWCNTs are pulled out from TMC-MM at 0.7 m/s-16.3 N, and made to adhere to wear surface due to the existence of MoS2 with high adhesion property, resulting in the formation of smooth isolated island-like layer. It could protect the lubrication film formed on the worn surface, and be beneficial to the excellent tribological behavior of TMC-MM.

  7. Characteristics of Ti-Nb, Ti-Zr and Ti-Al containing hydrogenated carbon nitride films

    NASA Astrophysics Data System (ADS)

    Balaceanu, M.; Braic, V.; Braic, M.; Vladescu, A.; Zoita, C. N.; Grigorescu, C. E. A.; Grigore, E.; Ripeanu, R.

    2009-10-01

    Nanocomposite Me-C-N:H coatings (Me is TiNb, TiZr or TiAl), with relatively high non-metal/metal ratios, were prepared by cathodic arc method using TiNb, TiZr and TiAl alloy cathodes in a CH 4 + N 2 atmosphere. For comparison purposes, a-C-N:H films were also produced through evaporating a graphite cathode in a similar atmosphere. The films were characterized in terms of elemental and phase compositions, chemical bonds, texture, hardness, adhesion and friction behavior by GDOES, XPS, Raman spectroscopy and XRD techniques, surface profilometry, hardness and scratch adhesion measurements, and tribological tests. The nanocomposite films consisted of a mixture of crystalline metal carbonitride and amorphous carbon nitride. The non-metal/metal ratio in the films composition was found to range between 1.8 and 1.9. For the metal containing nanocomposites, grain size in the range 7-23 nm, depending on the metal nature, were determined. As compared with the a-C-N:H, the Me-C-N:H films exhibited a much higher hardness (up to about 39 GPa for Ti-Zr-C-N:H) and a better adhesion strength, while the coefficients of friction were somewhat higher (0.2-0.3 for Me-C-N:H and 0.1 for a-C-N:H).

  8. Transition characteristics and thermodynamic analysis of DNA duplex formation: a quantitative consideration for the extent of duplex association

    PubMed Central

    Wu, Peng; Sugimoto, Naoki

    2000-01-01

    Transition characteristics and thermodynamic properties of the single-stranded self-transition and the double-stranded association were investigated and analyzed for 9-, 15- and 21-bp non-self-complementary DNA sequences. The multiple transition processes for the single-stranded self-transition and the double-stranded association were further put forth. The experimental results confirmed that the double-stranded association transition was generally imperfect and the thermodynamic properties of the single-stranded self-transition would exert an influence on a duplex formation. Combining ultraviolet melting experiments in various molar ratios, the extent of duplex association was estimated for three double-stranded DNAs. In our experimental range, the extent of duplex association decreases with increasing the number of base pairs in DNA sequences, which suggest that the short oligonucleotides may proceed in a two-state transition while the long oligonucleotides may not. When the extent of duplex association was considered, the true transition enthalpies of a duplex formation derived from UV and differential scanning calorimetry measurements were in good agreement. PMID:11095688

  9. Cavitation Erosion of Sensitized UNS S31803 Duplex Stainless Steels

    NASA Astrophysics Data System (ADS)

    Mitelea, Ion; Micu, Lavinia Mădălina; Bordeaşu, Ilare; Crăciunescu, Corneliu Marius

    2016-05-01

    During processing or use, duplex steels can be subjected to heating at high temperatures that can affect their behavior. This work aims to correlate the influence of the sensitization treatment on the ultrasonic cavitation erosion behavior of a UNS S31803 (X2CrNiMoN22-5-3) duplex stainless steel. Duplex stainless steels, formed as a result of rapid cooling after solution annealing, are sensitized at temperatures of 475 and 850 °C, respectively, leading to hardening and embrittlement due to the spinodal decomposition of the ferrite and the precipitation of secondary phases. The ultrasonic cavitation erosion experiments showed that the sensitization at 850 °C reduced the mean depth of erosion by about 11% and the mean depth of erosion rate by 28%. By contrast, the sensitization at 475 °C deteriorates the cavitation erosion resistance, increasing the erosion parameters by up to 22%, compared to the solution annealed state.

  10. Cavitation Erosion of Sensitized UNS S31803 Duplex Stainless Steels

    NASA Astrophysics Data System (ADS)

    Mitelea, Ion; Micu, Lavinia Mădălina; Bordeaşu, Ilare; Crăciunescu, Corneliu Marius

    2016-04-01

    During processing or use, duplex steels can be subjected to heating at high temperatures that can affect their behavior. This work aims to correlate the influence of the sensitization treatment on the ultrasonic cavitation erosion behavior of a UNS S31803 (X2CrNiMoN22-5-3) duplex stainless steel. Duplex stainless steels, formed as a result of rapid cooling after solution annealing, are sensitized at temperatures of 475 and 850 °C, respectively, leading to hardening and embrittlement due to the spinodal decomposition of the ferrite and the precipitation of secondary phases. The ultrasonic cavitation erosion experiments showed that the sensitization at 850 °C reduced the mean depth of erosion by about 11% and the mean depth of erosion rate by 28%. By contrast, the sensitization at 475 °C deteriorates the cavitation erosion resistance, increasing the erosion parameters by up to 22%, compared to the solution annealed state.

  11. In vivo behavior of a high performance duplex stainless steel.

    PubMed

    Cigada, A; De Santis, G; Gatti, A M; Roos, A; Zaffe, D

    1993-01-01

    An in vivo investigation of a new high molybdenum and nitrogen duplex stainless steel (25Cr--7Ni--4Mo--0.3N) has been performed. Cylindrical pins and specially developed devices, to test in static conditions the in vivo localized corrosion resistance, made of this new duplex steel and of a common austenitic stainless steel were implanted in rabbit's femurs for 6 and 12 months. After sacrifice, SEM observations and EDS microanalyses to detect metallic ion release were carried out on the femur sections surrounding the pins. Morphologic observations with stereoscope and SEM were performed on the metallic surfaces of the special devices in order to detect the presence of localized corrosion. Both ion release and localized corrosion were observed for the specimens made of austenitic stainless steel, but not for those made of 25Cr--7Ni--4Mo--0.3N duplex stainless steel. PMID:10148344

  12. Corrosion induced by cathodic hydrogen in 2205 duplex stainless steel

    NASA Astrophysics Data System (ADS)

    Michalska, J.

    2011-05-01

    In this work new results about the influence of cathodic hydrogen on passivity and corrosion resistance of 2205 duplex stainless steel are described. The results were discussed by taking into account hydrogen charged samples and without hydrogen. The corrosion resistance to pitting was qualified with the polarization curves. The conclusion is that, hydrogen deteriorated the passive film stability and corrosion resistance to pitting of 2205 duplex stainless steel. The presence of hydrogen in passive films increases corrosion current density and decreases the potential of the film breakdown. It was also found that degree of susceptibility to hydrogen action was dependent on the hydrogen charging conditions.

  13. Renal cell carcinoma arising in ipsilateral duplex system.

    PubMed

    Mohan, Harsh; Kundu, Reetu; Dalal, Usha

    2014-09-01

    Congenital anomalies of the kidney and urinary tract are common and include a wide anatomic spectrum. Duplex systems are one of the more common renal anomalies, with the majority being asymptomatic. Little is known about the molecular pathogenesis of these anomalies; however, certain causative genes have been implicated. The finding of renal cell carcinoma arising in a kidney with the duplication of pelvicalyceal system and ureters, as in the present case, is uncommon. The association between a duplex system and renal cell carcinoma may be more than a coincidence, requiring a deeper insight and further elucidation. PMID:26328175

  14. Microstructure and properties of the Ti/Al2O3/NiCr composites fabricated by explosive compaction/cladding.

    PubMed

    Wang, Bingfeng; Xie, Fangyu; Wang, Bin; Luo, Xiaozhou

    2015-05-01

    Titanium/aluminum oxide/nickel chromium (Ti/Al2O3/NiCr) composite bar prepared by explosive compaction/cladding technique represents a new kind of sandwich-structural composites for medical application. Formation of the interfaces of Ti/Al2O3 and Al2O3/NiCr govern the properties of the composite material. The electrical resistivity and microstructure of the intermediate layer and the interfaces of the Ti/Al2O3/NiCr explosive compaction/cladding bar are investigated by means of four-point probe analysis, optical microscopy, scanning electron microscopy, electron microprobe analysis, and X-ray diffraction. The Ti/Al2O3/NiCr composite bar is characterized by the consolidated ceramic intermediate layer and the metallurgical bonding interfaces. The intermediate ceramic layer plays a role of insulation and thermal conductance in this composite. The average shear strength of the composite bar is about 9.36 MPa. The heat affected zone characterized by relatively larger sizes of grains is distinguished from the other part of the Ti tube. The intermetallics AlTi3 and Al0.9Ni4.22 are generated at the intermediate ceramic layer. Formation mechanism of the interfaces of the explosive compaction/cladding bar are described. PMID:25746277

  15. How Finely Grained Does Summative Assessment Need to Be?

    ERIC Educational Resources Information Center

    Yorke, Mantz

    2010-01-01

    Assessors in higher education are often faced with the need to grade student work on lengthy scales. Is such fine granularity in assessment really necessary? The question can be addressed at different levels of the assessment system: here the focus is on the difference that would be made to honours degree classifications if so-called percentage…

  16. Fine-grained dengue forecasting using telephone triage services

    PubMed Central

    Abdur Rehman, Nabeel; Kalyanaraman, Shankar; Ahmad, Talal; Pervaiz, Fahad; Saif, Umar; Subramanian, Lakshminarayanan

    2016-01-01

    Thousands of lives are lost every year in developing countries for failing to detect epidemics early because of the lack of real-time disease surveillance data. We present results from a large-scale deployment of a telephone triage service as a basis for dengue forecasting in Pakistan. Our system uses statistical analysis of dengue-related phone calls to accurately forecast suspected dengue cases 2 to 3 weeks ahead of time at a subcity level (correlation of up to 0.93). Our system has been operational at scale in Pakistan for the past 3 years and has received more than 300,000 phone calls. The predictions from our system are widely disseminated to public health officials and form a critical part of active government strategies for dengue containment. Our work is the first to demonstrate, with significant empirical evidence, that an accurate, location-specific disease forecasting system can be built using analysis of call volume data from a public health hotline. PMID:27419226

  17. Friction stir weld tools having fine grain structure

    DOEpatents

    Grant, Glenn J.; Frye, John G.; Kim, Jin Yong; Lavender, Curt A.; Weil, Kenneth Scott

    2016-03-15

    Tools for friction stir welding can be made with fewer process steps, lower cost techniques, and/or lower cost ingredients than other state-of-the-art processes by utilizing improved compositions and processes of fabrication. Furthermore, the tools resulting from the improved compositions and processes of fabrication can exhibit better distribution and homogeneity of chemical constituents, greater strength, and/or increased durability. In one example, a friction stir weld tool includes tungsten and rhenium and is characterized by carbide and oxide dispersoids, by carbide particulates, and by grains that comprise a solid solution of the tungsten and rhenium. The grains do not exceed 10 micrometers in diameter.

  18. Situated Learning for Fine Grain Microcomputer Design Education

    NASA Astrophysics Data System (ADS)

    Takahashi, Ryuichi; Ohiwa, Hajime

    In a microcomputer design educational environment City-1, where individual junior student in Hiroshima city university designs and fabricates an original computer on an A4-board with field programmable gate array (FPGA) in 15 weeks every year, a new education theory known as “situated learning”, introduced by Lave and Wenger, has been applied successfully. The very first step is called way-in, which we have found very critical for the success of the whole learning. Instruction-issue-logic has been chosen as such way-in, because it is the central part of the superscalar microprocessors. In 2004, 16 out of 52 junior students were successful in bringing their original devices into their microprocessors. In 2005, a couple of the students contributed to a project named dynamically-reconfigurable-issue-logic (DRIL), which is an experiment to construct dynamically-reconfigurable-superscalar (DRSS) microprocessors which can control the energy efficiency in a single clock cycle.

  19. Sinter-forging characteristics of fine-grained zirconia

    SciTech Connect

    Panda, P.C.; Wang, J.; Raj, R.

    1988-12-01

    Powder preforms of zirconia, containing 2.85 mol% yttria, were sinter-forged in simple uniaxial compression at 1400/sup 0/C by applying constant displacement rates to the specimens. Shear and densification strains and the uniaxial stress were measured as a function of time. In contrast with alumina and silicon nitride, zirconia appears to densify by a dislocation mechanism. As a consequence, the densification rate is linked to the applied strain rather than to the applied hydrostatic pressure: the powder compact requires a critical amount of compressive strain to consolidate to full density, irrespective of the strain rate or the stress at which that strain is applied.

  20. Casting fine grained, fully dense, strong inorganic materials

    SciTech Connect

    Brown, Sam W.; Spencer, Larry S.; Phillips, Michael R.

    2015-11-24

    Methods and apparatuses for casting inorganic materials are provided. The inorganic materials include metals, metal alloys, metal hydrides and other materials. Thermal control zones may be established to control the propagation of a freeze front through the casting. Agitation from a mechanical blade or ultrasonic energy may be used to reduce porosity and shrinkage in the casting. After solidification of the casting, the casting apparatus may be used to anneal the cast part.

  1. Geochemistry of Fine-grained Sediments and Sedimentary Rocks

    NASA Astrophysics Data System (ADS)

    Sageman, B. B.; Lyons, T. W.

    2003-12-01

    The nature of detrital sedimentary (siliciclastic) rocks is determined by geological processes that occur in the four main Earth surface environments encountered over the sediment's history from source to final sink: (i) the site of sediment production (provenance), where interactions among bedrock geology, tectonic uplift, and climate control weathering and erosion processes; (ii) the transport path, where the medium of transport, gradient, and distance to the depositional basin may modify the texture and composition of weathered material; (iii) the site of deposition, where a suite of physical, chemical, and biological processes control the nature of sediment accumulation and early burial modification; and (iv) the conditions of later burial, where diagenetic processes may further alter the texture and composition of buried sediments. Many of these geological processes leave characteristic geochemical signatures, making detrital sedimentary rocks one of the most important archives of geochemical data available for reconstructions of ancient Earth surface environments. Although documentation of geochemical data has long been a part of the study of sedimentation (e.g., Twenhofel, 1926, 1950; Pettijohn, 1949; Trask, 1955), the development and application of geochemical methods specific to sedimentary geological problems blossomed in the period following the Second World War ( Degens, 1965; Garrels and Mackenzie, 1971) and culminated in recent years, as reflected by the publication of various texts on marine geochemistry (e.g., Chester, 1990, 2000), biogeochemistry (e.g., Schlesinger, 1991; Libes, 1992), and organic geochemistry (e.g., Tissot and Welte, 1984; Engel and Macko, 1993).Coincident with the growth of these subdisciplines a new focus has emerged in the geological sciences broadly represented under the title of "Earth System Science" (e.g., Kump et al., 1999). Geochemistry has played the central role in this revolution (e.g., Berner, 1980; Garrels and Lerman, 1981; Berner et al., 1983; Kump et al., 2000), with a shifting emphasis toward sophisticated characterization of the linkages among solid Earth, oceans, biosphere, cryosphere, atmosphere, and climate, mediated by short- and long-term biogeochemical cycles. As a result, one of the primary objectives of current geological inquiry is improved understanding of the interconnectedness and associated feedback among the cycles of carbon, nitrogen, phosphorous, oxygen, and sulfur, and their relationship to the history of Earth's climate. This "Earth System" approach involves uniformitarian extrapolations of knowledge gained from modern environments to proxy-based interpretations of environmental change recorded in ancient strata. The strength of modern data lies with direct observations of pathways and products of physical, chemical, and biological processes, but available time-series are short relative to the response times of many of the biogeochemical systems under study. By contrast, stratigraphically constrained geological data offer time-series that encompass a much fuller range of system response. But with the enhanced breadth of temporal resolution and signal amplitude provided by ancient sedimentary records comes a caveat - we must account for the blurring of primary paleo-environmental signals by preservational artifacts and understand that proxy calibrations are extended from the modern world into a nonsubstantively uniformitarian geological past.Fortunately, detrital sedimentary rocks preserve records of multiple proxies (dependent and independent) that illuminate the processes and conditions of sediment formation, transport, deposition, and burial. An integrated multiproxy approach offers an effective tool for deconvolving the history of biogeochemical cycling of, among other things, carbon and sulfur, and for understanding the range of associated paleo-environmental conditions (e.g., levels of atmospheric oxygen and carbon dioxide, oceanic paleoredox, and paleosalinity). Authors of a single chapter can hope, at best, to present a curs

  2. Fine-Grained Targets for Laser Synthesis of Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Smith, Michael W. (Inventor); Park, Cheol (Inventor)

    2015-01-01

    A mechanically robust, binder-free, inexpensive target for laser synthesis of carbon nanotubes and a method for making same, comprising the steps of mixing prismatic edge natural flake graphite with a metal powder catalyst and pressing the graphite and metal powder mixture into a mold having a desired target shape.

  3. High-Temperature Creep of Fine-Grained Anorthite Aggregate

    NASA Astrophysics Data System (ADS)

    Yabe, K.; Koizumi, S.; Hiraga, T.

    2014-12-01

    Rheology of the lower crust has often been compared to the creep properties of polycrystalline anorthite. Samples that have been used in previous studies (Dimanov et al., 1999; Rybacki and Dresen, 2000) were prepared through crystallization of anorthite glass which can remain in the experiment and also contain some impurities such as absorbed water, TiO2, MgO and Fe2O3. In this study, we synthesized genuinely pure polycrystalline anorthite using the technique that does not allow the contamination of water and glass phase. Also, we prepared anorthite aggregates with glass phase and/or a small amount (1wt%) of MgO to investigate the creep properties of pure and impure anorthite aggregates. Pure anorthite powders were prepared through high temperature reaction of highly pure and nano-sized powders of CaCO3, Al2O3 and SiO2 and then they were vacuum sintered (Koizumi et al., 2010). For MgO doping, we added Mg(OH)2powders at the synthesis of anorthite powders. Glass phase was introduced to the samples by sintering above melting temperature and subsequent quenching. Constant load tests under 1 atmosphere were performed at temperatures ranging from 1150 to 1380˚C and stresses of 10 to 120 MPa. We measured Arithmetic mean grain size of specimens by microstructural observations using scanning electron microscopy (SEM) before and after creep tests. Grain sizes of all the specimens were around 1 μm before and after the creep test. Log stress versus log strain rate showed a linear relationship where its slope gave a stress exponent, n of 1, indicating that all the samples were deformed under diffusion creep. Anorthite containing MgO and glass phase were more than two and one orders of magnitude weaker than genuinely pure anorthite aggregates, respectively. Further, our pure aggregate exhibited three orders of magnitude lager strength compared to the "pure" aggregate used in previous studies. These results indicate that a small amount of glass and/or impurities including water have a great influence on the strength of polycrystalline anorthite aggregates.

  4. Process for preparing fine grain silicon carbide powder

    DOEpatents

    Wei, G.C.

    Finely divided silicon carbide powder is obtained by mixing colloidal silica and unreacted phenolic resin in either acetone or methanol, evaporating solvent from the obtained solution to form a gel, drying and calcining the gel to polymerize the phenolic resin therein, pyrolyzing the dried and calcined gel at a temperature in the range of 500 to 1000/sup 0/C, and reacting silicon and carbon in the pyrolyzed gel at a temperature in the range of 1550 to 1700/sup 0/C to form the powder.

  5. Process for preparing fine grain titanium carbide powder

    DOEpatents

    Janey, Mark A.

    1986-01-01

    A method for preparing finely divided titanium carbide powder in which an organotitanate is reacted with a carbon precursor polymer to provide an admixture of the titanium and the polymer at a molecular-level due to a crosslinking reaction between the organotitanate and the polymer. The resulting gel is dried, pyrolyzed to drive off volatile components and provide carbon. The resulting solids are then heated at an elevated temperature to convert the titanium and carbon to high-purity titanium carbide powder in a submicron size range.

  6. Process for preparing fine grain titanium carbide powder

    DOEpatents

    Janney, M.A.

    1985-03-12

    A method for preparing finely divided titanium carbide powder in which an organotitanate is reacted with a carbon precursor polymer to provide an admixture of the titanium and the polymer at a molecular level due to a crosslinking reaction between the organotitanate and the polymer. The resulting gel is dried, pyrolyzed to drive off volatile components and provide carbon. The resulting solids are then heated at an elevated temperature to convert the titanium and carbon to high-purity titanium carbide powder in a submicron size range.

  7. Fine-grained dengue forecasting using telephone triage services.

    PubMed

    Abdur Rehman, Nabeel; Kalyanaraman, Shankar; Ahmad, Talal; Pervaiz, Fahad; Saif, Umar; Subramanian, Lakshminarayanan

    2016-07-01

    Thousands of lives are lost every year in developing countries for failing to detect epidemics early because of the lack of real-time disease surveillance data. We present results from a large-scale deployment of a telephone triage service as a basis for dengue forecasting in Pakistan. Our system uses statistical analysis of dengue-related phone calls to accurately forecast suspected dengue cases 2 to 3 weeks ahead of time at a subcity level (correlation of up to 0.93). Our system has been operational at scale in Pakistan for the past 3 years and has received more than 300,000 phone calls. The predictions from our system are widely disseminated to public health officials and form a critical part of active government strategies for dengue containment. Our work is the first to demonstrate, with significant empirical evidence, that an accurate, location-specific disease forecasting system can be built using analysis of call volume data from a public health hotline. PMID:27419226

  8. Duplex Doppler ultrasound study of the temporomandibular joint

    PubMed Central

    Stagnitti, A.; Marini, A.; Impara, L.; Drudi, F.M.; Lo mele, L.; Lillo Odoardi, G.

    2012-01-01

    Introduction The anatomy and physiology of the temporomandibular joint can be studied clinically and by diagnostic imaging. Magnetic resonance imaging (MRI), radiography (X-ray) and computed tomography (CT) have thus for many years contributed to the study of the kinetics in the mandibular condyle. However, also duplex Doppler ultrasound (US) examination is widely used in the study of structures during movement, particularly vascular structures. Materials and methods A total of 30 patients were referred by the Department of Orthodontics to the Department of Radiological, Oncological and Pathological Sciences, University of Rome “La Sapienza”. All patients underwent duplex Doppler ultrasound (US) examination of the temporomandibular joint using Toshiba APLIO SSA-770A equipment and duplex Doppler multi-display technique, which allows simultaneous display of US images and color Doppler signals. A linear phased array probe with crystal elements was used operating at a basic frequency of 6 MHz during pulsed Doppler spectral analysis and 7.5 MHz during US imaging. Results In normal patients a regular alternation in the spectral Doppler waveforms was obtained, while in patients with temporomandibular joint meniscus dysfunction there was no regularity in the sum of the Fourier series with an unsteady waveform pattern related to irregular movements of the temporomandibular joint. Conclusions In all cases duplex Doppler US examination proved able to differentiate between normal and pathological patients and among the latter this technique permitted identification of the most significant aspects of the dysfunctional diseases. PMID:23397016

  9. Perspective view from northeast of former Surgeon's Quarters. This duplex ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Perspective view from northeast of former Surgeon's Quarters. This duplex structure also housed the Secretary and was built in 1887. It is attributed to architect Henry C. Koch, due to the similarity between this Shingle Style house and his contemporary design for the Soldiers' Home Chapel. - National Home for Disabled Volunteer Soldiers, Northwestern Branch, Surgeon's Quarters, 5000 West National Avenue, Milwaukee, Milwaukee County, WI

  10. FRONT VIEW OF FACILITY 561, WHICH WAS ORIGINALLY A DUPLEX. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    FRONT VIEW OF FACILITY 561, WHICH WAS ORIGINALLY A DUPLEX. PHOTO SHOWS THE ONLY UNIT REMAINING, UNIT B (UNIT A WAS DEMOLISHED AFTER A FIRE). VIEW FACING NORTH - Camp H.M. Smith and Navy Public Works Center Manana Title VII (Capehart) Housing, Intersection of Acacia Road and Brich Circle, Pearl City, Honolulu County, HI

  11. Computer Maintenance Operations Center (CMOC), showing duplexed cyber 170174 computers ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Computer Maintenance Operations Center (CMOC), showing duplexed cyber 170-174 computers - Beale Air Force Base, Perimeter Acquisition Vehicle Entry Phased-Array Warning System, Techinical Equipment Building, End of Spencer Paul Road, north of Warren Shingle Road (14th Street), Marysville, Yuba County, CA

  12. Renal pelvis urothelial carcinoma of the upper moiety in complete right renal duplex: a case report

    PubMed Central

    Zhang, Yiran; Yu, Quanfeng; Zhang, Zhihong; Liu, Ranlu; Xu, Yong

    2015-01-01

    Urothelial carcinoma (UC) originated from renal pelvis is the common tumor of the urinary system, however, neoplasia of the renal pelvis in duplex kidneys is extremely rare, especially in the complete renal and ureteral duplex cases. We present the first case of renal pelvis UC of the upper moiety in a complete right renal duplex. This male patient has bilateral complete renal and ureteral duplex. To the best of our knowledge, this is the first reported case of renal pelvis UC in a complete renal duplex system. After this experience we feel that the diagnosis of renal pelvis UC in duplex kidneys is not so easy, and once the diagnosis is determined, the whole renal duplex units and bladder cuff or ectopic orifice should be excised radically. PMID:26823906

  13. Ion Mobility Spectrometry Reveals Duplex DNA Dissociation Intermediates

    NASA Astrophysics Data System (ADS)

    Burmistrova, Anastasia; Gabelica, Valérie; Duwez, Anne-Sophie; De Pauw, Edwin

    2013-11-01

    Electrospray ionization (ESI) soft desolvation is widely used to investigate fragile species such as nucleic acids. Tandem mass spectrometry (MS/MS) gives access to the gas phase energetics of the intermolecular interactions in the absence of solvent, by following the dissociation of mass-selected ions. Ion mobility mass spectrometry (IMS) provides indications on the tridimensional oligonucleotide structure by attributing a collision cross section (CCS) to the studied ion. Electrosprayed duplexes longer than eight bases pairs retain their helical structure in a solvent-free environment. However, the question of conformational changes under activation in MS/MS studies remains open. The objective of this study is to probe binding energetics and characterize the unfolding steps occurring prior to oligonucleotide duplex dissociation. Comparing the evolution of CCS with collision energy and breakdown curves, we characterize dissociation pathways involved in CID-activated DNA duplex separation into single strands, and we demonstrate here the existence of stable dissociation intermediates. At fixed duplex length, dissociation pathways were found to depend on the percentage of GC base pairs and on their position in the duplex. Our results show that pure GC sequences undergo a gradual compaction until reaching the dissociation intermediate: A-helix. Mixed AT-GC sequences were found to present at least two conformers: a classic B-helix and an extended structure where the GC tract is a B-helix and the AT tract(s) fray. The dissociation in single strands takes place from both conformers when the AT base pairs are enclosed between two GC tracts or only from the extended conformer when the AT tract is situated at the end(s) of the sequence.

  14. Oxide formation on NbAl{sub 3} and TiAl due to ion implantation of {sup 18}O

    SciTech Connect

    Hanrahan, R.J. Jr.; Verink, E.D. Jr.; Withrow, S.P.; Ristolainen, E.O.

    1993-12-31

    Surface modification by ion implantation of {sup 18}O ions was investigated as a technique for altering the high-temperature oxidation of aluminide intermetallic compounds and related alloys. Specimens of NbAl{sub 3} and TiAl were implanted to a dose of 1 {times} 10{sup 18} ions/cm{sup 2} at 168 keV. Doses and accelerating energies were calculated to obtain near-stoichiometric concentrations of oxygen. Use of {sup 18}O allowed the implanted oxygen profiles to be measured using secondary ion mass spectroscopy (SIMS). The near surface oxides formed were studied using x-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy. Specimens were also examined using x-ray diffraction and SEM. This paper presents results for specimens examined in the as-implanted state. The oxide formed due to implantation is a layer containing a mixture of Nb or Ti and amorphous Al oxides.

  15. Deformation behaviour and 6H-LPSO structure formation at nanoindentation in lamellar high Nb containing TiAl alloy

    NASA Astrophysics Data System (ADS)

    Song, L.; Xu, X. J.; Peng, C.; Wang, Y. L.; Liang, Y. F.; Shang, S. L.; Liu, Z. K.; Lin, J. P.

    2015-02-01

    Microstructure and deformation mechanisms at a nanoindentation in the lamellar colony of high Nb containing TiAl alloy have been studied using the focused ion beam and the transmission electron microscopy. Considerable deformation twins are observed around the nanoindentation, and a strain gradient is generated. A continuous change in the bending angle of the lamellar structure can be derived, and a strain-induced grain refinement process is observed as various active deformations split the γ grains into subgrains. In addition to all possible deformation mechanisms (ordinary dislocation, super-dislocation and deformation twining) activated due to the heavy plastic deformation, a 6-layer hexagonal (6H) long-period stacking ordered structure is identified for the first time near the contact zone and is thought to be closely related to the glide of partial dislocations.

  16. Electrochemical discrimination between G-quadruplex and duplex DNA.

    PubMed

    De Rache, Aurore; Doneux, Thomas; Buess-Herman, Claudine

    2014-08-19

    Analytical tools enabling the discrimination between duplex DNA and G-quadruplex DNA are necessary to unravel the biological function(s) of G-quadruplexes. A methodology relying on the electrochemical response of the electroactive hexaammineruthenium(III) cation at DNA-modified surfaces is presented. A characteristic voltammetric peak is evidenced for all the investigated G-quadruplex sequences, encompassing various types of folding and numbers of quartets. In contrast, no such peak is detected for dsDNA sequences. The occurrence of the voltammetric peak is the consequence of a strong association between the hexaammineruthenium ligand and the surface-immobilized G-quadruplexes. The peak potential points to a significant contribution of nonelectrostatic interactions between the electroactive ligand and G-quadruplexes. The very good efficiency of the discrimination methodology is demonstrated by comparing a G-quadruplex and its corresponding duplex. PMID:25048277

  17. Hangingwall strain: A function of duplex shape and footwall topography

    NASA Astrophysics Data System (ADS)

    Butler, Robert W. H.

    1982-10-01

    The concept of piggy-back thrust tectonics implies that foreland is progressively accreted onto a developing thrust sheet during duplex formation. Lateral shape changes in duplexes in the hangingwall of a thrust and corrugations in the footwall will fold higher thrust sheets to give culminations and depressions. Balancing of parts of high level thrust sheets with lower sheets and foreland requires a sequence of extensional and compressional strains orientated normal to the thrust transport direction. Culmination walls will be sites of strike-parallel extension. Subsequent adjacent culminations will compress early culmination walls which will result in a sequence of irrotational strains. Examples of this geometry are given from the Moine Thrust zone of Northwest Scotland. The model allows a re-examination of strains and hangingwall evolution in some thrust sheets in the Helvetic and external zones of the Alps.

  18. Gas-fired duplex free-piston Stirling refrigerator

    NASA Astrophysics Data System (ADS)

    Urieli, L.

    1984-03-01

    The duplex free-piston Stirling refrigerator is a potentially high efficiency, high reliability device which is ideally suited to the home appliance field, in particular as a gas-fired refrigerator. It has significant advantages over other equivalent devices including freedom from halogenated hydrocarbons, extremely low temperatures available at a high efficiency, integrated water heating, and simple burner system control. The design and development of a portable working demonstration gas-fired duplex Stirling refrigeration unit is described. A unique combination of computer aided development and experimental development was used, enabling a continued interaction between the theoretical analysis and practical testing and evaluation. A universal test rig was developed in order to separately test and evaluate major subunits, enabling a smooth system integration phase.

  19. Duplex stainless steels for the pulp and paper industry

    SciTech Connect

    Alfonsson, E.; Olsson, J.

    1999-07-01

    The metallurgy and corrosion resistance of duplex stainless steel, particularly with regards to applications in the pulp and paper industry, are described. Practical experiences from pressure vessel installations in cooking plants and bleach plants as well as from non-pressurized items in different parts along the fiber line, are given. The paper also reviews corrosion test results presented previously and compares these with recent test data and the practical experiences. Though most of the installations have been successful, some cases of corrosion attacks on duplex stainless steel have been reported, although these are very limited in number: one digester, one calorifier, two pulp storage towers, and two bleach plant filter washers, of a total of more than 700 identified installations.

  20. Laser Safety Method For Duplex Open Loop Parallel Optical Link

    DOEpatents

    Baumgartner, Steven John; Hedin, Daniel Scott; Paschal, Matthew James

    2003-12-02

    A method and apparatus are provided to ensure that laser optical power does not exceed a "safe" level in an open loop parallel optical link in the event that a fiber optic ribbon cable is broken or otherwise severed. A duplex parallel optical link includes a transmitter and receiver pair and a fiber optic ribbon that includes a designated number of channels that cannot be split. The duplex transceiver includes a corresponding transmitter and receiver that are physically attached to each other and cannot be detached therefrom, so as to ensure safe, laser optical power in the event that the fiber optic ribbon cable is broken or severed. Safe optical power is ensured by redundant current and voltage safety checks.

  1. Direct surface-enhanced Raman scattering analysis of DNA duplexes.

    PubMed

    Guerrini, Luca; Krpetić, Željka; van Lierop, Danny; Alvarez-Puebla, Ramon A; Graham, Duncan

    2015-01-19

    The exploration of the genetic information carried by DNA has become a major scientific challenge. Routine DNA analysis, such as PCR, still suffers from important intrinsic limitations. Surface-enhanced Raman spectroscopy (SERS) has emerged as an outstanding opportunity for the development of DNA analysis, but its application to duplexes (dsDNA) has been largely hampered by reproducibility and/or sensitivity issues. A simple strategy is presented to perform ultrasensitive direct label-free analysis of unmodified dsDNA with the means of SERS by using positively charged silver colloids. Electrostatic adhesion of DNA promotes nanoparticle aggregation into stable clusters yielding intense and reproducible SERS spectra at nanogram level. As potential applications, we report the quantitative recognition of hybridization events as well as the first examples of SERS recognition of single base mismatches and base methylations (5-methylated cytosine and N6-methylated Adenine) in duplexes. PMID:25414148

  2. Three dimensional analysis of the pore space in fine-grained Boom Clay, using BIB-SEM (broad-ion beam scanning electron microscopy), combined with FIB (focused ion-beam) serial cross-sectioning, pore network modeling and Wood's metal injection

    NASA Astrophysics Data System (ADS)

    Hemes, Susanne; Klaver, Jop; Desbois, Guillaume; Urai, Janos

    2014-05-01

    The Boom Clay is, besides the Ypresian clays, one of the potential host rock materials for radioactive waste disposal in Belgium (Gens et al., 2003; Van Marcke & Laenen, 2005; Verhoef et al., 2011). To access parameters, which are relevant for the diffusion controlled transport of radionuclides in the material, such as porosity, pore connectivity and permeability, it is crucial to characterize the pore space at high resolution (nm-scale) and in 3D. Focused-ion-beam (FIB) serial cross-sectioning in combination with high resolution scanning electron microscopy (SEM), pore network modeling, Wood's metal injection and broad-ion-beam (BIB) milling, constitute a superior set of methods to characterize the 3D pore space in fine-grained, clayey materials, down to the nm-scale resolution. In the present study, we identified characteristic 3D pore space morphologies, determined the 3D volume porosity of the material and applied pore network extraction modeling (Dong and Blunt, 2009), to access the connectivity of the pore space and to discriminate between pore bodies and pore throats. Moreover, we used Wood's metal injection (WMI) in combination with BIB-SEM imaging to assess the pore connectivity at a larger scale and even higher resolution. The FIB-SEM results show a highly (~ 90 %) interconnected pore space in Boom Clay, down to the resolution of ~ 3E+03 nm³ (voxel-size), with a total volume porosity of ~ 20 %. Pore morphologies of large (> 5E+08 nm³), highly interconnected pores are complex, with high surface area to volume ratios (shape factors G ~ 0.01), whereas small (< 1E+06 nm³), often isolated pores are much more compact and show higher shape factors (G) up to 0.03. WMI in combination with BIB-SEM, down to a resolution of ~ 50 nm² pixel-size, indicates an interconnected porosity fraction of ~ 80 %, of a total measured 2D porosity of ~ 20 %. Determining and distinguishing between pore bodies and pore throats enables us to compare 3D FIB-SEM pore

  3. A novel TiAl3/Al2O3 composite coating on γ-TiAl alloy and evaluating the oxidation performance

    NASA Astrophysics Data System (ADS)

    Wang, Jiqiang; Kong, Lingyan; Li, Tiefan; Xiong, Tianying

    2016-01-01

    A novel TiAl3/Al2O3 composite coating was prepared on γ-TiAl alloy. The process included two steps: (1) TiAl3/Al2O3 composite powders were prepared by high energy ball milling of pure Al and nano-TiO2 powders, followed by a heat-treatment; (2) the as-prepared composite powders were deposited on γ-TiAl substrate by cold spray. The cyclic oxidation was conducted at 900 °C to test the performance of the composite coating. The results showed that the composite coating had good crack resistance and effectively decreased the oxidation rate of the substrate.

  4. Compact, precision duplex bearing mount for high vibration environments

    NASA Technical Reports Server (NTRS)

    Bouzakis, George Elias (Inventor); Bowman, James Edward (Inventor); Devine, Edward J. (Inventor); Joffe, Benjamin (Inventor); Segal, Kenneth Neal (Inventor); Webb, Merritt J. (Inventor)

    2002-01-01

    A duplex bearing mount including at least one duplex bearing having an inner race and an outer race, the inner race disposed within the outer race and being rotatable relative to the outer race about an axis, the inner race having substantially no relative movement relative to the outer race in at least one direction along the axis, the inner and outer races each having first and second axial faces which are respectively located at the same axial end of the duplex bearing. The duplex bearing is radially supported by a housing, and a shaft extends through the inner race, the shaft radially and axially supported by the inner race. A first retainer is connected to the housing and engages the first axial surface of a bearing race, the movement of which race in a first direction along the axis being constrained by the first retainer. A second, resilient retainer is connected to the housing or the shaft and is deflected through engagement with the second axial face of a bearing race, the movement of which race in a second direction along the axis, opposite to the first direction, being constrained by the deflected second retainer. The bearing is preloaded by its being clamped between the first and second retainers, and the second retainer forms at least a portion of a spring having the characteristic of a substantially constant force value correlating to a range of various deflection values, whereby the preload of the bearing is substantially unaffected by variations in the deflection of the second retainer.

  5. SURVEY AND SUMMARY: Unusual DNA duplex and hairpin motifs

    PubMed Central

    Chou, Shan-Ho; Chin, Ko-Hsin; Wang, Andrew H.-J.

    2003-01-01

    Single-stranded DNA or double-stranded DNA has the potential to adopt a wide variety of unusual duplex and hairpin motifs in the presence (trans) or absence (cis) of ligands. Several principles for the formation of those unusual structures have been established through the observation of a number of recurring structural motifs associated with different sequences. These include: (i) internal loops of consecutive mismatches can occur in a B-DNA duplex when sheared base pairs are adjacent to each other to confer extensive cross- and intra-strand base stacking; (ii) interdigitated (zipper-like) duplex structures form instead when sheared G·A base pairs are separated by one or two pairs of purine·purine mismatches; (iii) stacking is not restricted to base, deoxyribose also exhibits the potential to do so; (iv) canonical G·C or A·T base pairs are flexible enough to exhibit considerable changes from the regular H-bonded conformation. The paired bases become stacked when bracketed by sheared G·A base pairs, or become extruded out and perpendicular to their neighboring bases in the presence of interacting drugs; (v) the purine-rich and pyrimidine-rich loop structures are notably different in nature. The purine-rich loops form compact triloop structures closed by a sheared G·A, A·A, A·C or sheared-like Ganti·Csyn base pair that is stacked by a single residue. On the other hand, the pyrimidine-rich loops with a thymidine in the first position exhibit no base pairing but are characterized by the folding of the thymidine residue into the minor groove to form a compact loop structure. Identification of such diverse duplex or hairpin motifs greatly enlarges the repertoire for unusual DNA structural formation. PMID:12736295

  6. View from east to west of family housing unit (duplex; ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View from east to west of family housing unit (duplex; either #27 or #87, as only the 7 is visible). Unit #27 was three-bedroom and located on 9th Street south. Unit #87 was a two-bedroom located on 4th Street north. These housing units have been removed - Stanley R. Mickelsen Safeguard Complex, Family Housing Units, In area bounded by Tenth Street North, Avenue A, & Avenue J, Nekoma, Cavalier County, ND

  7. Herpes zoster duplex bilateralis in an immunocompetent host.

    PubMed

    Gahalaut, Pratik; Chauhan, Sandhya

    2012-01-01

    Varicella zoster virus causes both chicken pox and herpes zoster. The phenomenon of herpes zoster occurring concurrently in two non-contiguous dermatomes involving different halves of the body is termed herpes zoster duplex bilateralis (HZDB). Few cases, reported in the literature, were seen in either an immunosuppressed host or in the older age group. Here we present a case of HZDB in an immunocompetent host, probably the first in India. PMID:23130258

  8. All-atom crystal simulations of DNA and RNA duplexes

    PubMed Central

    Liu, Chunmei; Janowski, Pawel A.; Case, David A.

    2014-01-01

    Background Molecular dynamics simulations can complement experimental measures of structure and dynamics of biomolecules. The quality of such simulations can be tested by comparisons to models refined against experimental crystallographic data. Methods We report simulations of a DNA and RNA duplex in their crystalline environment. The calculations mimic the conditions for PDB entries 1D23 [d(CGATCGATCG)2] and 1RNA [(UUAUAUAUAUAUAA)2], and contain 8 unit cells, each with 4 copies of the Watson-Crick duplex; this yields in aggregate 64 µs of duplex sampling for DNA and 16 µs for RNA. Results The duplex structures conform much more closely to the average structure seen in the crystal than do structures extracted from a solution simulation with the same force field. Sequence-dependent variations in helical parameters, and in groove widths, are largely maintained in the crystal structure, but are smoothed out in solution. However, the integrity of the crystal lattice is slowly degraded in both simulations, with the result that the interfaces between chains become heterogeneous. This problem is more severe for the DNA crystal, which has fewer inter-chain hydrogen bond contacts than does the RNA crystal. Conclusions Crystal simulations using current force fields reproduce many features of observed crystal structures, but suffer from a gradual degradation of the integrity of the crystal lattice. General significance The results offer insights into force-field simulations that tests their ability to preserve weak interactions between chains, which will be of importance also in non-crystalline applications that involve binding and recognition. PMID:25255706

  9. Duplex structures and imbricate thrust systems: geometry, structural position, and hydrocarbon potential

    SciTech Connect

    Mitra, S.

    1986-09-01

    Duplexes and imbricate thrust systems form some of the most complex hydrocarbon traps in overthrust belts. The geometry of a duplex is controlled by the ramp angle (theta) and height (h/sub r/), the final spacing between adjacent thrusts (a'), and the relative displacements on them (d/sub 1/-d/sub 2/). For constant theta and h/sub r/, three different classes are recognized: (1) independent ramp anticlines and hinterland sloping duplexes, (2) true duplexes, and (3) overlapping ramp anticlines. Several types of duplexes and imbricate thrust systems form important hydrocarbon traps. Examples include the system of independent anticlines of the Turner Valley and Highwood oil and gas fields, the hinterland sloping duplex consisting of the Chestnut Ridge-Sandy Ridge system of the Ben Hur oil field, the partly overlapping anticlines of the Waterton and Savanna Creek gas fields, and the completely overlapping anticlines of the Rose Hill oil field. 27 figures.

  10. Duplex-Selective Ruthenium-based DNA Intercalators

    PubMed Central

    Shade, Chad M.; Kennedy, Robert D.; Rouge, Jessica L.; Rosen, Mari S.; Wang, Mary X.; Seo, Soyoung E.; Clingerman, Daniel J.

    2016-01-01

    We report the design and synthesis of small molecules that exhibit enhanced luminescence in the presence of duplex rather than single-stranded DNA. The local environment presented by a well-known [Ru(dipyrido[2,3-a:3',2'-c]phenazine)L2]2+-based DNA intercalator was modified by functionalizing the bipyridine ligands with esters and carboxylic acids. By systematically varying the number and charge of the pendant groups, it was determined that decreasing the electrostatic interaction between the intercalator and the anionic DNA backbone reduced single-strand interactions and translated to better duplex specificity. In studying this class of complexes, a single RuII complex emerged that selectively luminesces in the presence of duplex DNA with little to no background from interacting with single stranded DNA. This complex shows promise as a new dye capable of selectively staining double versus single-stranded DNA in gel electrophoresis, which cannot be done with conventional SYBR dyes. PMID:26119581

  11. First-principles investigation on the structural and elastic properties of cubic-Fe2TiAl under high pressures

    NASA Astrophysics Data System (ADS)

    Liu, Xian-Kun; Liu, Cong; Zheng, Zhou; Lan, Xiao-Hua

    2013-08-01

    The structural, elastic, and thermodynamic properties of cubic-Fe2TiAl under high temperatures and pressures are investigated by performing ab initio calculation and using the quasi-harmonic Debye model. Some ground state properties such as lattice constant, bulk modulus, pressure derivative of the bulk modulus, and elastic constants are in good agreement with the available experimental results and theoretical data. The thermodynamic properties of Fe2TiAl such as thermal expansion coefficient, Debye temperature, and heat capacity in ranges of 0 K—1200 K and 0 GPa—250 GPa are also obtained. The calculation results indicate that the heat capacities at different pressures all increase with temperature increasing and are close to the Dulong—Petit limit at higher temperatures, Debye temperature decreases with temperature increasing, and increases with pressure rising. The cubic-Fe2TiAl is stable mechanically under 250 GPa. Moreover, under lower pressure, thermal expansion coefficient rises rapidly with temperature increasing, and the increasing rate becomes slow at higher pressure.

  12. Effects of Al Content and Addition of Third Element on Fabrication of Ti-Al Intermetallic Coatings by Heat Treatment of Warm-Sprayed Precursors

    NASA Astrophysics Data System (ADS)

    Sienkiewicz, J.; Kuroda, S.; Minagawa, K.; Murakami, H.; Araki, H.; Kurzydłowski, K. J.

    2015-06-01

    Four powder mixtures of titanium and aluminum with 50:50, 40:60, 30:70, and 20:80 atomic ratios were used as feedstock for Warm Spray process to produce composite coatings. A two-stage heat treatment at 600 and 1000 °C was applied to the deposits in order to obtain titanium aluminide intermetallic phases. The microstructure, chemical, and phase composition of the as-deposited and heat-treated coatings were investigated using SEM, EDS, and XRD. It was found that the Al content affects on the thickness expansion of the heat-treated Ti-Al coatings significantly and also has a major influence on the porosity development, which is caused by the Kirkendall effect. The effects of adding a third element Si and heat treatment with pressure to produce denser Ti-Al intermetallic coating were also examined. The investigated hot-pressed coatings with addition of Si exhibited much denser microstructure and contained Ti-Al intermetallic phases with titanium silicide precipitates.

  13. Characterization of microstructure and texture across dissimilar super duplex/austenitic stainless steel weldment joint by super duplex filler metal

    SciTech Connect

    Eghlimi, Abbas; Shamanian, Morteza; Eskandarian, Masoomeh; Zabolian, Azam; Szpunar, Jerzy A.

    2015-08-15

    In the present paper, microstructural changes across an as-welded dissimilar austenitic/duplex stainless steel couple welded by a super duplex stainless steel filler metal using gas tungsten arc welding process is characterized with optical microscopy and electron back-scattered diffraction techniques. Accordingly, variations of microstructure, texture, and grain boundary character distribution of base metals, heat affected zones, and weld metal were investigated. The results showed that the weld metal, which was composed of Widmanstätten austenite side-plates and allotriomorphic grain boundary austenite morphologies, had the weakest texture and was dominated by low angle boundaries. The welding process increased the ferrite content but decreased the texture intensity at the heat affected zone of the super duplex stainless steel base metal. In addition, through partial ferritization, it changed the morphology of elongated grains of the rolled microstructure to twinned partially transformed austenite plateaus scattered between ferrite textured colonies. However, the texture of the austenitic stainless steel heat affected zone was strengthened via encouraging recrystallization and formation of annealing twins. At both interfaces, an increase in the special character coincident site lattice boundaries of the primary phase as well as a strong texture with <100> orientation, mainly of Goss component, was observed. - Graphical abstract: Display Omitted - Highlights: • Weld metal showed local orientation at microscale but random texture at macroscale. • Intensification of <100> orientated grains was observed adjacent to the fusion lines. • The austenite texture was weaker than that of the ferrite in all duplex regions. • Welding caused twinned partially transformed austenites to form at SDSS HAZ. • At both interfaces, the ratio of special CSL boundaries of the primary phase increased.

  14. Effect of ultrafine grain on tensile behaviour and corrosion resistance of the duplex stainless steel.

    PubMed

    Jinlong, Lv; Tongxiang, Liang; Chen, Wang; Limin, Dong

    2016-05-01

    The ultrafine grained 2205 duplex stainless steel was obtained by cold rolling and annealing. The tensile properties were investigated at room temperature. Comparing with coarse grained stainless steel, ultrafine grained sample showed higher strength and plasticity. In addition, grain size changed deformation orientation. The strain induced α'-martensite was observed in coarse grained 2205 duplex stainless steel with large strain. However, the grain refinement inhibited the transformation of α'-martensite;nevertheless, more deformation twins improved the strength and plasticity of ultrafine grained 2205 duplex stainless steel. In addition, the grain refinement improved corrosion resistance of the 2205 duplex stainless steel in sodium chloride solution. PMID:26952459

  15. Force-Induced Rupture of a DNA Duplex: From Fundamentals to Force Sensors.

    PubMed

    Mosayebi, Majid; Louis, Ard A; Doye, Jonathan P K; Ouldridge, Thomas E

    2015-12-22

    The rupture of double-stranded DNA under stress is a key process in biophysics and nanotechnology. In this article, we consider the shear-induced rupture of short DNA duplexes, a system that has been given new importance by recently designed force sensors and nanotechnological devices. We argue that rupture must be understood as an activated process, where the duplex state is metastable and the strands will separate in a finite time that depends on the duplex length and the force applied. Thus, the critical shearing force required to rupture a duplex depends strongly on the time scale of observation. We use simple models of DNA to show that this approach naturally captures the observed dependence of the force required to rupture a duplex within a given time on duplex length. In particular, this critical force is zero for the shortest duplexes, before rising sharply and then plateauing in the long length limit. The prevailing approach, based on identifying when the presence of each additional base pair within the duplex is thermodynamically unfavorable rather than allowing for metastability, does not predict a time-scale-dependent critical force and does not naturally incorporate a critical force of zero for the shortest duplexes. We demonstrate that our findings have important consequences for the behavior of a new force-sensing nanodevice, which operates in a mixed mode that interpolates between shearing and unzipping. At a fixed time scale and duplex length, the critical force exhibits a sigmoidal dependence on the fraction of the duplex that is subject to shearing. PMID:26575598

  16. Fatigue Strength Prediction for Titanium Alloy TiAl6V4 Manufactured by Selective Laser Melting

    NASA Astrophysics Data System (ADS)

    Leuders, Stefan; Vollmer, Malte; Brenne, Florian; Tröster, Thomas; Niendorf, Thomas

    2015-09-01

    Selective laser melting (SLM), as a metalworking additive manufacturing technique, received considerable attention from industry and academia due to unprecedented design freedom and overall balanced material properties. However, the fatigue behavior of SLM-processed materials often suffers from local imperfections such as micron-sized pores. In order to enable robust designs of SLM components used in an industrial environment, further research regarding process-induced porosity and its impact on the fatigue behavior is required. Hence, this study aims at a transfer of fatigue prediction models, established for conventional process-routes, to the field of SLM materials. By using high-resolution computed tomography, load increase tests, and electron microscopy, it is shown that pore-based fatigue strength predictions for a titanium alloy TiAl6V4 have become feasible. However, the obtained accuracies are subjected to scatter, which is probably caused by the high defect density even present in SLM materials manufactured following optimized processing routes. Based on thorough examination of crack surfaces and crack initiation sites, respectively, implications for optimization of prediction accuracy of the models in focus are deduced.

  17. Effects of interface roughness on the annealing behaviour of laminated Ti-Al composite deformed by hot rolling

    NASA Astrophysics Data System (ADS)

    Du, Y.; Fan, G. H.; Yu, T.; Hansen, N.; Geng, L.; Huang, X.

    2015-08-01

    A laminated Ti-Al composite has been fabricated by hot compaction and hot rolling of alternate layers of commercial purity Ti and Al sheets with a thickness of 200 μm. The hot compaction temperature was 500°C and in a following step the composite has been reduced 50% in thickness by hot rolling. The fully consolidated composite has been annealed at 300°C and 500°C for different length of time. As a result of the differences in crystal structure and mechanical properties between Ti and Al protrusions and retrusions formed at the interface. A heterogeneous interface has thereby been created. The heterogeneity affected the recovery kinetics of the aluminium phase which at 300°C was faster near the interface than in the middle of the Al layer. This effect of a heterogeneous interface is of relevance when optimizing the thermomechanical processing of the composite to obtain high strength and formability for application.

  18. Influence of Si and W additions on high temperature oxidation of {gamma}-{alpha}{sub 2} Ti-Al alloys

    SciTech Connect

    Tomasi, A.; Noseda, C.; Nazmy, M.; Gialanella, S.

    1997-12-31

    Titanium aluminides have potential interest for high temperature applications because of their low density and high temperature strength. In this study the isothermal oxidation behavior in air and in the temperature range 700--850 C of {gamma}-{alpha}{sub 2}Ti-Al bulk alloys with different additions of W (0--9.5 wt.%) and Si (0--5.0 wt.%) was investigated. The samples were prepared by arc-melting starting from pure element powders (99.99%). After thermal treatments, for homogenization and phase stabilization, the samples were tested using a thermal analysis apparatus in order to evaluate their oxidation resistance. The oxidation rates show the beneficial effect of the W and Si additions. The growth and adherence to the protective scale on alloys have been investigated in conjunction with detailed oxide scale characterization using the techniques of scanning electron microscopy (SEM) and X-ray diffraction (XRD). The results of the study are used for critical assessment of the oxidation mechanisms leading to the formation of surface layers of different compositions.

  19. High temperature oxidation resistance of fluorine-treated TiAl alloys: Chemical vs. ion beam fluorination techniques

    NASA Astrophysics Data System (ADS)

    Neve, Sven; Masset, Patrick J.; Yankov, Rossen A.; Kolitsch, Andreas; Zschau, Hans-Eberhard; Schütze, Michael

    2010-11-01

    The modification of the alloy surface by halogens significantly improves their oxidation behaviour at high temperature. It corresponds to the preferential reaction of the aluminium with the applied fluorine at the oxide/alloy interface and it promotes the growth of an adherent and stable alumina layer. Well-defined fluorine profiles beneath the surface of the material can be achieved by either fluorine beam line ion implantation (BLI 2) or plasma immersion ion implantation (PI 3). As an alternative to the implantation-based approach, chemical fluorination techniques such as gas-phase treatment and dipping in F-based solutions were also investigated. The fluorine depth-profiles were measured before and after oxidation at 900 °C using non destructive ion beam analyses: Proton Induced Gamma-ray Emission (PIGE), Rutherford Backscattering Spectroscopy (RBS) as well as Elastic Recoil Detection Analysis (ERDA). It enables to control and to optimise the fluorination conditions of technical TiAl alloys for an industrial application.

  20. FACILITY 209, SINGLESTORY DUPLEX, OBLIQUE VIEW OF REAR FROM 6TH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    FACILITY 209, SINGLE-STORY DUPLEX, OBLIQUE VIEW OF REAR FROM 6TH STREET, FACING NORTH. - U.S. Naval Base, Pearl Harbor, Housing Area 1, Single Story Duplex Type, Bounded by Kamehameha Highway, Plantation Drive, South Avenue, Pearl City, Honolulu County, HI

  1. Isolated hydatid cyst in a single moiety of an incomplete duplex kidney.

    PubMed

    Priyadarshi, Vinod; Mishra, Shwetank; Bera, Malay Kumar; Pal, Dilip Kumar

    2015-01-01

    Isolated hydatid cyst of kidney is very rare. Hydatid cyst of a duplex renal system is even more rare. We report a 13-year old girl with duplex system of right kidney with isolated hydatid cyst in upper moiety. Right nephrectomy was done to cure the condition. PMID:25628991

  2. Use of duplex stainless steel castings in control valves

    SciTech Connect

    Gossett, J.L.

    1996-07-01

    Duplex stainless steels have enjoyed rapidly increasing popularity in recent years. For numerous reasons the availability of these alloys in the cast form has lagged behind the availability of the wrought form. Commercial demand for control valves in these alloys has driven development of needed information to move into production. A systematic approach was used to develop specifications, suppliers and weld procedures. Corrosion, stress corrosion cracking (SCC), sulfide stress cracking (SSC) and hardness results are also presented for several alloys including; CD3MN (UNS J92205), CD4MCu (UNS J93370) and CD7MCuN (cast UNS S32550).

  3. Local Skin Warming Enhances Color Duplex Imaging of Cutaneous Perforators.

    PubMed

    Li, Haizhou; Du, Zijing; Xie, Feng; Zan, Tao; Li, QingFeng

    2015-07-01

    The perforator flap is one of the most useful techniques in reconstructive surgery. The operative procedure for these flaps will be greatly simplified if accurate localization of the course of the perforator can be preoperatively confirmed. However, small vessels with diameters less than 0.5 mm cannot be readily traced with conventional imaging techniques. Local skin warming temporarily increases cutaneous blood flow and vasodilation. In this study, we established a local skin warming procedure, and performed this before color duplex imaging to improve preoperative perforator mapping and enable precise flap design. PMID:23903089

  4. Microstructures of duplex (beta + gamma) silver-tin alloys.

    PubMed

    Abbott, J R; Miller, D R; Netherway, D J

    1985-05-01

    The microstructures of (beta + gamma) silver-tin alloys are especially influenced by both homogenization temperature and subsequent heat treatment. When the alloy is cooled from homogenization temperatures above approximately 200 degrees C, lenticular regions of the ordered orthorhombic gamma phase precipitate from within the disordered h.c.p. beta phase on three structurally equivalent planes, (1210), (1120), and (2110), to form a Widmanstatten structure. When the duplex alloys were homogenized at temperatures below approximately 200 degrees C, where the beta/(beta + gamma) phase boundary is vertical, these structures were not observed. PMID:3858310

  5. Evaluation of Microstructure and Mechanical Properties in Dissimilar Austenitic/Super Duplex Stainless Steel Joint

    NASA Astrophysics Data System (ADS)

    Rahmani, Mehdi; Eghlimi, Abbas; Shamanian, Morteza

    2014-10-01

    To study the effect of chemical composition on microstructural features and mechanical properties of dissimilar joints between super duplex and austenitic stainless steels, welding was attempted by gas tungsten arc welding process with a super duplex (ER2594) and an austenitic (ER309LMo) stainless steel filler metal. While the austenitic weld metal had vermicular delta ferrite within austenitic matrix, super duplex stainless steel was mainly comprised of allotriomorphic grain boundary and Widmanstätten side plate austenite morphologies in the ferrite matrix. Also the heat-affected zone of austenitic base metal comprised of large austenite grains with little amounts of ferrite, whereas a coarse-grained ferritic region was observed in the heat-affected zone of super duplex base metal. Although both welded joints showed acceptable mechanical properties, the hardness and impact strength of the weld metal produced using super duplex filler metal were found to be better than that obtained by austenitic filler metal.

  6. Duplex development and abandonment during evolution of the Lewis thrust system, southern Glacier National Park, Montana

    NASA Astrophysics Data System (ADS)

    Yin, An; Kelty, Thomas K.; Davis, Gregory A.

    1989-09-01

    Geologic mapping in southern Glacier National Park, Montana, reveals the presence of two duplexes sharing the same floor thrust fault, the Lewis thrust. The westernmost duplex (Brave Dog Mountain) includes the low-angle Brave Dog roof fault and Elk Mountain imbricate system, and the easternmost (Rising Wolf Mountain) duplex includes the low-angle Rockwell roof fault and Mt. Henry imbricate system. The geometry of these duplexes suggests that they differ from previously described geometric-kinematic models for duplex development. Their low-angle roof faults were preexisting structures that were locally utilized as roof faults during the formation of the imbricate systems. Crosscutting of the Brave Dog fault by the Mt. Henry imbricate system indicates that the two duplexes formed at different times. The younger Rockwell-Mt. Henry duplex developed 20 km east of the older Brave Dog-Elk Mountain duplex; the roof fault of the former is at a higher structural level. Field relations confirm that the low-angle Rockwell fault existed across the southern Glacier Park area prior to localized formation of the Mt. Henry imbricate thrusts beneath it. These thrusts kinematically link the Rockwell and Lewis faults and may be analogous to P shears that form between two synchronously active faults bounding a simple shear system. The abandonment of one duplex and its replacement by another with a new and higher roof fault may have been caused by (1) warping of the older and lower Brave Dog roof fault during the formation of the imbricate system (Elk Mountain) beneath it, (2) an upward shifting of the highest level of a simple shear system in the Lewis plate to a new decollement level in subhorizontal belt strata (= the Rockwell fault) that lay above inclined strata within the first duplex, and (3) a reinitiation of P-shear development (= Mt. Henry imbricate faults) between the Lewis thrust and the subparallel, synkinematic Rockwell fault.

  7. Thermal Aging Phenomena in Cast Duplex Stainless Steels

    NASA Astrophysics Data System (ADS)

    Byun, T. S.; Yang, Y.; Overman, N. R.; Busby, J. T.

    2016-02-01

    Cast stainless steels (CASSs) have been extensively used for the large components of light water reactor (LWR) power plants such as primary coolant piping and pump casing. The thermal embrittlement of CASS components is one of the most serious concerns related to the extended-term operation of nuclear power plants. Many past researches have concluded that the formation of Cr-rich α'-phase by Spinodal decomposition of δ-ferrite phase is the primary mechanism for the thermal embrittlement. Cracking mechanism in the thermally-embrittled duplex stainless steels consists of the formation of cleavage at ferrite and its propagation via separation of ferrite-austenite interphase. This article intends to provide an introductory overview on the thermal aging phenomena in LWR-relevant conditions. Firstly, the thermal aging effect on toughness is discussed in terms of the cause of embrittlement and influential parameters. An approximate analysis of thermal reaction using Arrhenius equation was carried out to scope the aging temperatures for the accelerated aging experiments to simulate the 60 and 80 years of services. Further, an equilibrium precipitation calculation was performed for model CASS alloys using the CALPHAD program, and the results are used to describe the precipitation behaviors in duplex stainless steels. These results are also to be used to guide an on-going research aiming to provide knowledge-based conclusive prediction for the integrity of the CASS components of LWR power plants during the service life extended up to and beyond 60 years.

  8. Thermal treatment effects on laser surface remelting duplex stainless steel

    NASA Astrophysics Data System (ADS)

    do Nascimento, Alex M.; Ierardi, Maria Clara F.; Aparecida Pinto, M.; Tavares, Sérgio S. M.

    2008-10-01

    In this paper the microstructural changes and effects on corrosion resistance of duplex stainless steels UNS S32304 and UNS S32205, commonly used by the petroleum industry, were studied, following the execution of laser surface remelting (LSM) and post-thermal treatments (TT). In this way, data was obtained, which could then be compared with the starting condition of the alloys. In order to analyze the corrosion behaviour of the alloys in the as-received conditions, treated with laser and after post-thermal treatments, cyclic polarization tests were carried out. A solution of 3.5% NaCl (artificial sea water) was used, as duplex stainless steels are regularly used by the petroleum industry in offshore locations. The results obtained showed that when laser surface treated, due to rapid resolidification, the alloys became almost ferritic, and since the level of nitrogen in the composition of both alloys is superior to their solubility limit in ferrite, a precipitation of Cr2N (chromium nitrides) occurred in the ferritic matrix, causing loss of corrosion resistance, thus resulting in an increase in surface hardness. However, after the post-thermal treatment the alloys corrosion resistance was restored to values close to those of the as-received condition.

  9. Duplex Identification of Staphylococcus aureus by Aptamer and Gold Nanoparticles.

    PubMed

    Chang, Tianjun; Wang, Libo; Zhao, Kexu; Ge, Yu; He, Meng; Li, Gang

    2016-06-01

    Staphylococcus aureus is the top common pathogen causing infections and food poisoning. Identification of S. aureus is crucial for the disease diagnosis and regulation of food hygiene. Herein, we report an aptamer-AuNPs based method for duplex identification of S. aureus. Using AuNPs as an indicator, SA23, an aptamer against S. aureus, can well identify its target from Escherichia coli, Listeria monocytogenes and Pseudomonas aeruginosa. Furthermore, we find citrate-coated AuNPs can strongly bind to S. aureus, but not bind to Salmonella enterica and Proteus mirabilis, which leads to different color changes in salt solution. This colorimetric response is capable of distinguishing S. aureus from S. enteritidis and P. mirabilis. Thus, using the aptasensor and AuNPs together, S. aureus can be accurately identified from the common pathogens. This duplex identification system is a promising platform for simple visual identification of S. aureus. Additionally, in the aptasensing process, bacteria are incubated with aptamers and then be removed before the aptamers adding to AuNPs, which may avoid the interactions between bacteria and AuNPs. This strategy can be potentially applied in principle to detect other cells by AuNPs-based aptasensors. PMID:27427591

  10. Resonance energy transfer in DNA duplexes labeled with localized dyes.

    PubMed

    Cunningham, Paul D; Khachatrian, Ani; Buckhout-White, Susan; Deschamps, Jeffrey R; Goldman, Ellen R; Medintz, Igor L; Melinger, Joseph S

    2014-12-18

    The growing maturity of DNA-based architectures has raised considerable interest in applying them to create photoactive light harvesting and sensing devices. Toward optimizing efficiency in such structures, resonant energy transfer was systematically examined in a series of dye-labeled DNA duplexes where donor-acceptor separation was incrementally changed from 0 to 16 base pairs. Cyanine dyes were localized on the DNA using double phosphoramidite attachment chemistry. Steady state spectroscopy, single-pair fluorescence, time-resolved fluorescence, and ultrafast two-color pump-probe methods were utilized to examine the energy transfer processes. Energy transfer rates were found to be more sensitive to the distance between the Cy3 donor and Cy5 acceptor dye molecules than efficiency measurements. Picosecond energy transfer and near-unity efficiencies were observed for the closest separations. Comparison between our measurements and the predictions of Förster theory based on structural modeling of the dye-labeled DNA duplex suggest that the double phosphoramidite linkage leads to a distribution of intercalated and nonintercalated dye orientations. Deviations from the predictions of Förster theory point to a failure of the point dipole approximation for separations of less than 10 base pairs. Interactions between the dyes that alter their optical properties and violate the weak-coupling assumption of Förster theory were observed for separations of less than four base pairs, suggesting the removal of nucleobases causes DNA deformation and leads to enhanced dye-dye interaction. PMID:25397906

  11. Thermal Aging Phenomena in Cast Duplex Stainless Steels

    SciTech Connect

    Byun, T. S.; Yang, Y.; Overman, N. R.; Busby, J. T.

    2015-11-12

    We used cast stainless steels (CASSs)for the large components of light water reactor (LWR) power plants such as primary coolant piping and pump casing. The thermal embrittlement of CASS components is one of the most serious concerns related to the extended-term operation of nuclear power plants. Many past researches have concluded that the formation of Cr-rich alpha-phase by Spinodal decomposition of delta-ferrite phase is the primary mechanism for the thermal embrittlement. Cracking mechanism in the thermally-embrittled duplex stainless steels consists of the formation of cleavage at ferrite and its propagation via separation of ferrite-austenite interphase. This article intends to provide an introductory overview on the thermal aging phenomena in LWR-relevant conditions. Firstly, the thermal aging effect on toughness is discussed in terms of the cause of embrittlement and influential parameters. Moreover, an approximate analysis of thermal reaction using Arrhenius equation was carried out to scope the aging temperatures for the accelerated aging experiments to simulate the 60 and 80 years of services. Further, an equilibrium precipitation calculation was performed for model CASS alloys using the CALPHAD program, and the results are used to describe the precipitation behaviors in duplex stainless steels. Our results are also to be used to guide an on-going research aiming to provide knowledge-based conclusive prediction for the integrity of the CASS components of LWR power plants during the service life extended up to and beyond 60 years.

  12. Comparative study of different venous reflux duplex quantitation parameters.

    PubMed

    Valentín, L I; Valentín, W H

    1999-09-01

    The objective of this study was to compare different quantitation parameters of venous reflux by duplex scan in different venous disease manifestations. Duplex scan is a new modality to quantify venous reflux. Several studies propose different parameters. In addition, there is controversy about the importance of deep and superficial involvement in different disease manifestations. It is not clear whether there is an increased venous reflux associated with varied clinical stages. Venous conditions were classified in seven stages and their differences for several quantitation variables studied. Most quantitation variables, such as average and peak velocity, average and peak flow, and reflux volume disclosed significantly increased reflux from normal, pain only, and edema group to varicose vein, with or without edema, to lipodermatosclerosis and ulcer groups at every location in the lower extremity. Reflux time was not as consistent as other variables. Totalization of the results of every parameter for the whole extremity points to an increased reflux from pain only to edema and from lipodermatosclerosis to ulcer group. Chronic edema is not usually associated with increased venous reflux. The greater saphenous vein (superficial system) seems to be the main contributor to reflux in all stages of disease. Different quantitation methods of venous reflux are equivalent. Increased deep and superficial reflux and its totalization are associated with a more advanced disease stage. Reflux time may be the least useful variable. Chronic edema is frequently not associated with venous reflux. Greater saphenectomy may be the most useful intervention, even in the presence of deep vein reflux. PMID:10496498

  13. Stress corrosion cracking of duplex stainless steels in caustic solutions

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Ananya

    Duplex stainless steels (DSS) with roughly equal amount of austenite and ferrite phases are being used in industries such as petrochemical, nuclear, pulp and paper mills, de-salination plants, marine environments, and others. However, many DSS grades have been reported to undergo corrosion and stress corrosion cracking in some aggressive environments such as chlorides and sulfide-containing caustic solutions. Although stress corrosion cracking of duplex stainless steels in chloride solution has been investigated and well documented in the literature but the SCC mechanisms for DSS in caustic solutions were not known. Microstructural changes during fabrication processes affect the overall SCC susceptibility of these steels in caustic solutions. Other environmental factors, like pH of the solution, temperature, and resulting electrochemical potential also influence the SCC susceptibility of duplex stainless steels. In this study, the role of material and environmental parameters on corrosion and stress corrosion cracking of duplex stainless steels in caustic solutions were investigated. Changes in the DSS microstructure by different annealing and aging treatments were characterized in terms of changes in the ratio of austenite and ferrite phases, phase morphology and intermetallic precipitation using optical micrography, SEM, EDS, XRD, nano-indentation and microhardness methods. These samples were then tested for general and localized corrosion susceptibility and SCC to understand the underlying mechanisms of crack initiation and propagation in DSS in the above-mentioned environments. Results showed that the austenite phase in the DSS is more susceptible to crack initiation and propagation in caustic solutions, which is different from that in the low pH chloride environment where the ferrite phase is the more susceptible phase. This study also showed that microstructural changes in duplex stainless steels due to different heat treatments could affect their SCC

  14. Base Pair Opening in a Deoxynucleotide Duplex Containing a cis-syn Thymine Cyclobutane Dimer Lesion

    PubMed Central

    Wenke, Belinda B.; Huiting, Leah N.; Frankel, Elisa B.; Lane, Benjamin F.; Núñez, Megan E.

    2014-01-01

    The cis-syn thymine cyclobutane dimer is a DNA photoproduct implicated in skin cancer. We compared the stability of individual base pairs in thymine dimer-containing duplexes to undamaged parent 10-mer duplexes. UV melting thermodynamic measurements, CD spectroscopy, and 2D NOESY NMR spectroscopy confirm that the thymine dimer lesion is locally and moderately destabilizing within an overall B-form duplex conformation. We measured the rates of exchange of individual imino protons by NMR using magnetization transfer from water and determined the equilibrium constant for the opening of each base pair Kop. In the normal duplex Kop decreases from the frayed ends of the duplex toward the center, such that the central TA pair is the most stable with a Kop of 8×10−7. In contrast, base pair opening at the 5’T of the thymine dimer is facile. The 5’T of the dimer has the largest equilibrium constant (Kop =3×10−4) in its duplex, considerably larger than even the frayed penultimate base pairs. Notably, base pairing by the 3’T of the dimer is much more stable than by the 5’T, indicating that the predominant opening mechanism for the thymine dimer lesion is not likely to be flipping out into solution as a single unit. The dimer asymmetrically affects the stability of the duplex in its vicinity, destabilizing base pairing on its 5’ side more than on the 3’ side. The striking differences in base pair opening between parent and dimer duplexes occur independently of the duplex-single strand melting transitions. PMID:24328089

  15. Hybridization accompanying FRET event in labeled natural nucleoside-unnatural nucleoside containing chimeric DNA duplexes.

    PubMed

    Bag, Subhendu Sekhar; Das, Suman K; Pradhan, Manoj Kumar; Jana, Subhashis

    2016-09-01

    Förster resonance energy transfer (FRET) is a highly efficient strategy in illuminating the structures, structural changes and dynamics of DNA, proteins and other biomolecules and thus is being widely utilized in studying such phenomena, in designing molecular/biomolecular probes for monitoring the hybridization event of two single stranded DNA to form duplex, in gene detection and in many other sensory applications in chemistry, biology and material sciences. Moreover, FRET can give information about the positional status of chromophores within the associated biomolecules with much more accuracy than other methods can yield. Toward this end, we want to report here the ability of fluorescent unnatural nucleoside, triazolylphenanthrene ((TPhen)BDo) to show FRET interaction upon hybridization with fluorescently labeled natural nucleosides, (Per)U or (OxoPy)U or (Per)U, forming two stable chimeric DNA duplexes. The pairing selectivity and the thermal duplex stability of the chimeric duplexes are higher than any of the duplexes with natural nucleoside formed. The hybridization results in a Förster resonance energy transfer (FRET) from donor triazolylphenanthrene of (TPhen)BDo to acceptor oxopyrene of (OxoPy)U and/or to perylene chromophore of (Per)U, respectively, in two chimeric DNA duplexes. Therefore, we have established the FRET process in two chimeric DNA duplexes wherein a fluorescently labeled natural nucleoside ((OxoPy)U or (Per)U) paired against an unnatural nucleoside ((TPhen)BDo) without sacrificing the duplex stability and B-DNA conformation. The hybridization accompanying FRET event in these classes of interacting fluorophores is new. Moreover, there is no report of such designed system of chimeric DNA duplex. Our observed phenomenon and the design can potentially be exploited in designing more of such efficient FRET pairs for useful application in the detection and analysis of biomolecular interactions and in material science application. PMID:27498231

  16. The Crystal Structure of Non-Modified and Bipyridine-Modified PNA Duplexes

    SciTech Connect

    Yeh, Joanne I.; Pohl, Ehmke; Truan, Daphne; He, Wei; Sheldrick, George M.; Du, Shoucheng; Achim, Catalina

    2011-09-28

    Peptide nucleic acid (PNA) is a synthetic analogue of DNA that commonly has an N-aminoethyl glycine backbone. The crystal structures of two PNA duplexes, one containing eight standard nucleobase pairs (GGCATGCC)2, and the other containing the same nucleobase pairs and a central pair of bipyridine ligands, have been solved with a resolution of 1.22 and 1.10 {angstrom}, respectively. The non-modified PNA duplex adopts a P-type helical structure similar to that of previously characterized PNAs. The atomic-level resolution of the structures allowed us to observe for the first time specific modes of interaction between the terminal lysines of the PNA and the backbone and the nucleobases situated in the vicinity of the lysines, which are considered an important factor in the induction of a preferred handedness in PNA duplexes. Our results support the notion that whereas PNA typically adopts a P-type helical structure, its flexibility is relatively high. For example, the base-pair rise in the bipyridine-containing PNA is the largest measured to date in a PNA homoduplex. The two bipyridines bulge out of the duplex and are aligned parallel to the major groove of the PNA. In addition, two bipyridines from adjacent PNA duplexes form a p-stacked pair that relates the duplexes within the crystal. The bulging out of the bipyridines causes bending of the PNA duplex, which is in contrast to the structure previously reported for biphenyl-modified DNA duplexes in solution, where the biphenyls are p stacked with adjacent nucleobase pairs and adopt an intrahelical geometry. This difference shows that relatively small perturbations can significantly impact the relative position of nucleobase analogues in nucleic acid duplexes.

  17. The Crystal Structure of Non-Modified and Bipyridine-Modified PNA Duplexes

    PubMed Central

    Yeh, Joanne I.; Pohl, Ehmke; Truan, Daphne; He, Wei; Sheldrick, George M.; Du, Shoucheng; Achim, Catalina

    2011-01-01

    Peptide nucleic acid (PNA) is a synthetic analogue of DNA that commonly has an N-aminoethlyl-glycine backbone. The crystal structure of two PNA duplexes, one containing eight standard nucleobase pairs (GGCATCGG)2 (pdb: 3MBS), and the other containing the same nucleobase pairs and a central pair of bipyridine ligands (pdb: 3MBU), has been solved with a resolution of 1.2 Å and 1.05 Å, respectively. The non-modified PNA duplex adopts a P-type helical structure s i m i l a r t o that of previously characterized PNAs. The atomic-level resolution of the structures allowed us to observe for the first time specific modes of interaction between the terminal lysines of the PNA and the backbone and nucleobases situated in the vicinity of the lysines, which are considered an important factor in the induction of a preferred handedness in PNA duplexes. These results support the notion that while PNA typically adopts a P-type helical structure, its flexibility is relatively high. For example, the base pair rise in the bipyridine-containing PNA is the largest measured to date in a PNA homoduplex. The two bipyridines are bulged out of the duplex and are aligned parallel to the minor groove of the PNA. In the case of the bipyridine-containing PNA, two bipyridines from adjacent PNA duplexes form a π-stacked pair that relates the duplexes within the crystal. The bulging out of the bipyridines causes bending of the PNA duplex, which is in contrast to the structure previously reported for biphenyl-modified DNA duplexes in solution, where the biphenyls are π-stacking with adjacent nucleobase pairs and adopt an intrahelical geometry [Johar et al., Chem. Eur. J., 2008, 14, 2080]. This difference shows that relatively small perturbations can significantly impact the relative position of nucleobase analogues in nucleic acid duplexes. PMID:20859960

  18. Duplex development and abandonment during evolution of the Lewis thrust system, southern Glacier National Park, Montana

    SciTech Connect

    Yin, An; Kelty, T.K.; Davis, G.A. )

    1989-09-01

    The westernmost duplex (Brave Dog Mountain) includes the low-angle Brave Dog roof fault and Elk Mountain imbricate system, and the easternmost (Rising Wolf Mountain) duplex includes the low-angle Rockwell roof fault and Mt. Henry imbricate system. The geometry of these duplexes suggests that they differ from previously described geometric-kinematic models for duplex development. Their low-angle roof faults were preexisting structures that were locally utilized as roof faults during the formation of the imbricate systems. Crosscutting of the Brave Dog fault by the Mt. Henry imbricate system indicates that the two duplexes formed at different times. The younger Rockwell-Mt. Henry duplex developed 20 km east of the older Brave Dog-Elk Mountain duplex; the roof fault of the former is at a higher structural level. Field relations confirm that the low-angle Rockwell fault existed across the southern Glacier Park area prior to localized formation of the Mt. Henry imbricate thrusts beneath it. These thrusts kinematically link the Rockwell and Lewis faults and may be analogous to P shears that form between two synchronously active faults bounding a simple shear system. The abandonment of one duplex and its replacement by another with a new and higher roof fault may have been caused by (1) warping of the older and lower Brave Dog roof fault during the formation of the imbricate system (Elk Mountain) beneath it, (2) an upward shifting of the highest level of a simple shear system in the Lewis plate to a new decollement level in subhorizontal belt strata (= the Rockwell fault) that lay above inclined strata within the first duplex, and (3) a reinitiation of P-shear development (= Mt. Henry imbricate faults) between the Lewis thrust and the subparallel, synkinematic Rockwell fault.

  19. Isothermal DNA amplification strategies for duplex microorganism detection.

    PubMed

    Santiago-Felipe, Sara; Tortajada-Genaro, Luis Antonio; Morais, Sergi; Puchades, Rosa; Maquieira, Ángel

    2015-05-01

    A valid solution for micro-analytical systems is the selection of a compatible amplification reaction with a simple, highly-integrated efficient design that allows the detection of multiple genomic targets. Two approaches under isothermal conditions are presented: recombinase polymerase amplification (RPA) and multiple displacement amplification (MDA). Both methods were applied to a duplex assay specific for Salmonella spp. and Cronobacter spp., with excellent amplification yields (0.2-8.6 · 10(8) fold). The proposed approaches were successfully compared to conventional PCR and tested for the milk sample analysis as a microarray format on a compact disc (support and driver). Satisfactory results were obtained in terms of resistance to inhibition, selectivity, sensitivity (10(1)-10(2)CFU/mL) and reproducibility (below 12.5%). The methods studied are efficient and cost-effective, with a high potential to automate microorganisms detection by integrated analytical systems working at a constant low temperature. PMID:25529713

  20. Fault Injection Campaign for a Fault Tolerant Duplex Framework

    NASA Technical Reports Server (NTRS)

    Sacco, Gian Franco; Ferraro, Robert D.; von llmen, Paul; Rennels, Dave A.

    2007-01-01

    Fault tolerance is an efficient approach adopted to avoid or reduce the damage of a system failure. In this work we present the results of a fault injection campaign we conducted on the Duplex Framework (DF). The DF is a software developed by the UCLA group [1, 2] that uses a fault tolerant approach and allows to run two replicas of the same process on two different nodes of a commercial off-the-shelf (COTS) computer cluster. A third process running on a different node, constantly monitors the results computed by the two replicas, and eventually restarts the two replica processes if an inconsistency in their computation is detected. This approach is very cost efficient and can be adopted to control processes on spacecrafts where the fault rate produced by cosmic rays is not very high.

  1. Hydrogen effects in duplex stainless steel welded joints - electrochemical studies

    NASA Astrophysics Data System (ADS)

    Michalska, J.; Łabanowski, J.; Ćwiek, J.

    2012-05-01

    In this work results on the influence of hydrogen on passivity and corrosion resistance of 2205 duplex stainless steel (DSS) welded joints are described. The results were discussed by taking into account three different areas on the welded joint: weld metal (WM), heat-affected zone (HAZ) and parent metal. The corrosion resistance was qualified with the polarization curves registered in a synthetic sea water. The conclusion is that, hydrogen may seriously deteriorate the passive film stability and corrosion resistance to pitting of 2205 DSS welded joints. The presence of hydrogen in passive films increases corrosion current density and decreases the potential of the film breakdown. It was also found that degree of susceptibility to hydrogen degradation was dependent on the hydrogen charging conditions. WM region has been revealed as the most sensitive to hydrogen action.

  2. Electromagnetic non-destructive technique for duplex stainless steel characterization

    NASA Astrophysics Data System (ADS)

    Rocha, João Vicente; Camerini, Cesar; Pereira, Gabriela

    2016-02-01

    Duplex stainless steel (DSS) is a two-phase (ferrite and austenite) material, which exhibits an attractive combination of mechanical properties and high corrosion resistance, being commonly employed for equipment of petrochemical plants, refining units and oil & gas platforms. The best properties of DSS are achieved when the phases are in equal proportions. However, exposition to high temperatures (e.g. welding process) may entail undesired consequences, such as deleterious phases precipitation (e.g. sigma, chi) and different proportion of the original phases, impairing dramatically the mechanical and corrosion properties of the material. A detailed study of the magnetic behavior of DSS microstructure with different ferrite austenite ratios and deleterious phases content was accomplished. The non destructive method evaluates the electromagnetic properties changes in the material and is capable to identify the presence of deleterious phases into DSS microstructure.

  3. Researches upon cavitation erosion behavior of some duplex steels

    NASA Astrophysics Data System (ADS)

    Bordeasu, I.; Popoviciu, M. O.; Mitelea, I.; Micu, L. M.; Bordeasu, C.; Ghera, C.; Iosif, A.

    2016-02-01

    This paper presents the cavitation erosion behavior of two stainless steels having a duplex structure formed by austenite and ferrite. The conclusions were obtained by using both the cavitation erosion characteristic curves and the pictures of the eroded surfaces obtained with performing optic microscopes. The researches were focused upon the optimal correlation between the cavitation erosion resistance and the rate of the two structural constituents. The tests were done with T2 facility, with ceramic crystals, which integrally respects the ASTM G32-2010 Standard. The obtained results present the cumulative effect upon cavitation erosion of the chemical composition, mechanical properties and the structural constituents. The results of the researches are of importance for the specialists which establishes the composition of the stainless steels used for manufacturing hydraulic machineries or other devices subjected to cavitation erosion.

  4. Pyrazinetetracarboxamide: A Duplex Ligand for Palladium(II).

    PubMed

    Lohrman, Jessica; Telikepalli, Hanumaiah; Johnson, Thomas S; Jackson, Timothy A; Day, Victor W; Bowman-James, Kristin

    2016-06-01

    Tetraethylpyrazine-2,3,5,6-tetracarboxamide forms a dipalladium(II) complex with acetates occupying the fourth coordination sites of the two bound metal ions. Crystallographic results indicate that the "duplex" dipincer has captured two protons that serve as the counterions. The protons lie between adjacent amide carbonyl groups with very short O···O distances of 2.435(5) Å. In the free base, the adjacent carbonyl groups are farther apart, averaging 3.196(3) Å. While the dipalladium(II) complexes stack in an ordered stepwise fashion along the a axis, the free base molecules stack on top of each other, with each pincer rotated by about 60° from the one below. PMID:27187158

  5. Nucleic acid duplexes incorporating a dissociable covalent base pair

    NASA Technical Reports Server (NTRS)

    Gao, K.; Orgel, L. E.; Bada, J. L. (Principal Investigator)

    1999-01-01

    We have used molecular modeling techniques to design a dissociable covalently bonded base pair that can replace a Watson-Crick base pair in a nucleic acid with minimal distortion of the structure of the double helix. We introduced this base pair into a potential precursor of a nucleic acid double helix by chemical synthesis and have demonstrated efficient nonenzymatic template-directed ligation of the free hydroxyl groups of the base pair with appropriate short oligonucleotides. The nonenzymatic ligation reactions, which are characteristic of base paired nucleic acid structures, are abolished when the covalent base pair is reduced and becomes noncoplanar. This suggests that the covalent base pair linking the two strands in the duplex is compatible with a minimally distorted nucleic acid double-helical structure.

  6. Plastic anisotropy in a superplastic duplex stainless steel

    SciTech Connect

    Song, J.L.; Bate, P.S.

    1997-07-01

    Measurements of the plastic anisotropy in uniaxial tension of the duplex stainless steel, SAF2304, have been made at room temperature and under conditions where the material was superplastic. There was significant plastic anisotropy in both types of deformation and there were some similarities between the low and high temperature variations with tensile axis orientation. Although it was possible to model the high temperature anisotropy using a grain boundary sliding model, the assumed distribution of sliding boundaries was considered to be unrealistic. This, together with aspects of microstructural and textural development, indicated that deformation was principally occurring by intragranular slip with a significant contribution caused by mechanical inhomogeneity in the two-phase material.

  7. Nucleic acid duplexes incorporating a dissociable covalent base pair.

    PubMed

    Gao, K; Orgel, L E

    1999-12-21

    We have used molecular modeling techniques to design a dissociable covalently bonded base pair that can replace a Watson-Crick base pair in a nucleic acid with minimal distortion of the structure of the double helix. We introduced this base pair into a potential precursor of a nucleic acid double helix by chemical synthesis and have demonstrated efficient nonenzymatic template-directed ligation of the free hydroxyl groups of the base pair with appropriate short oligonucleotides. The nonenzymatic ligation reactions, which are characteristic of base paired nucleic acid structures, are abolished when the covalent base pair is reduced and becomes noncoplanar. This suggests that the covalent base pair linking the two strands in the duplex is compatible with a minimally distorted nucleic acid double-helical structure. PMID:10611299

  8. Thermal Aging Phenomena in Cast Duplex Stainless Steels

    DOE PAGESBeta

    Byun, T. S.; Yang, Y.; Overman, N. R.; Busby, J. T.

    2015-11-12

    We used cast stainless steels (CASSs)for the large components of light water reactor (LWR) power plants such as primary coolant piping and pump casing. The thermal embrittlement of CASS components is one of the most serious concerns related to the extended-term operation of nuclear power plants. Many past researches have concluded that the formation of Cr-rich alpha-phase by Spinodal decomposition of delta-ferrite phase is the primary mechanism for the thermal embrittlement. Cracking mechanism in the thermally-embrittled duplex stainless steels consists of the formation of cleavage at ferrite and its propagation via separation of ferrite-austenite interphase. This article intends to providemore » an introductory overview on the thermal aging phenomena in LWR-relevant conditions. Firstly, the thermal aging effect on toughness is discussed in terms of the cause of embrittlement and influential parameters. Moreover, an approximate analysis of thermal reaction using Arrhenius equation was carried out to scope the aging temperatures for the accelerated aging experiments to simulate the 60 and 80 years of services. Further, an equilibrium precipitation calculation was performed for model CASS alloys using the CALPHAD program, and the results are used to describe the precipitation behaviors in duplex stainless steels. Our results are also to be used to guide an on-going research aiming to provide knowledge-based conclusive prediction for the integrity of the CASS components of LWR power plants during the service life extended up to and beyond 60 years.« less

  9. Tribological behavior of UHMWPE against TiAl6V4 and CoCr28Mo alloys under dry and lubricated conditions.

    PubMed

    Guezmil, M; Bensalah, W; Mezlini, S

    2016-10-01

    This work is focused on the study of the tribological behavior of TiAl6V4 and CoCr28Mo against UHMWPE. Wear tests were achieved on a reciprocating pin-on-disc tribometer under dry and lubricated conditions. Four bio-lubricants were retained namely: saline solution (NaCl 0.9%), sesame oil, nigella sativa oil and Hyalgan® which is a pharmaceutical intra-articular injection containing sodium hyaluronate active agent (20mg/2mL). The coefficient of friction and wear volume of UHMWPE were evaluated after tribological tests. It is found that, the friction and wear behaviors of CoCr28Mo/UHMWPE pair under dry and bio-lubrication were the best. Results show that the use of natural oils improved significantly the tribological behavior of CoCr28Mo/UHMWPE and TiAl6V4/UHMWPE pairs. Microscopic and chemical analyses of wear tracks on UHMWPE were carried out and wear mechanisms were proposed for each materials pair. The tribological performance of the used oils was linked to their chemical composition and to their adsorption ability on the metallic surfaces. PMID:27454523

  10. On the preparation of TiAl alloy by direct reduction of the oxide mixtures in calcium chloride melt

    SciTech Connect

    Prabhat K. Tripathy; Derek J. Fray

    2011-11-01

    In recent years, TiAl-based intermetallic alloys are being increasingly considered for application in areas such as (i) automobile/transport sector (passenger cars, trucks and ships) (ii) aerospace industry (jet engines and High Speed Civil Transport propulsion system) and (iii) industrial gas turbines. These materials offer excellent (i) high temperature properties (at higher than 6000C) (ii) mechanical strength and (iii) resistance to corrosion and as a result have raised renewed interest. The combination of these properties make them possible replacement materials for traditional nickel-based super-alloys, which are nearly as twice as dense (than TiAl based alloys). Since the microstructures of these intermetallic alloys affect, to a significant extent, their ultimate performance, further improvements (by way of alteration/modification of these microstructures), have been the subject matter of intense research investigations. It has now been established that the presence of alloy additives, such as niobium, tantalum, manganese, boron, chromium, silicon, nickel and yttrium etc, in specific quantities, impart marked improvement to the properties, viz. fatigue strength, fracture toughness, oxidation resistance and room temperature ductility, of these alloys. From a number of possible alloy compositions, {gamma}-TiAl and Ti-Al-Nb-Cr have, of late, emerged as two promising engineering alloys/materials. . The conventional fabrication process of these alloys include steps such as melting, forging and heat treatment/annealing of the alloy compositions. However, an electrochemical process offers an attractive proposition to prepare these alloys, directly from the mixture of the respective oxides, in just one step. The experimental approach, in this new process, was, therefore, to try to electrochemically reduce the (mixed) oxide pellet to an alloy phase. The removal of oxygen, from the (mixed) oxide pellet, was effected by polarizing the oxide pellet against a graphite

  11. Applications and experiences with super duplex stainless steel in wet FGD scrubber systems

    SciTech Connect

    Francis, R.; Byrne, G.; Warburton, G.; Hebdon, S.

    1998-12-31

    The paper presents the properties of the author`s company`s proprietary super duplex stainless steel. Work is presented showing the development of a more realistic laboratory solution representing typical limestone slurries found in real flue gas desulfurization (FGD) systems. The importance of additions of metal ions such as Fe{sup 3+} and Mn{sup 2+} as well as partially oxidized sulfur species is demonstrated. Results are presented comparing the crevice corrosion resistance of super duplex stainless steel in these slurries with other commonly used wrought and cast stainless steels, for both simulated anthracite and lignite type slurries. Data from loop tests on the erosion resistance of a range of alloys in simulated FGD slurries is presented. The results clearly show the superior resistance of super duplex stainless steel to both crevice corrosion and erosion in FGD slurries. Finally the experiences in UK FGD systems with both cast and wrought super duplex stainless steel are presented.

  12. Electrochemical Investigation of Interaction between a Bifunctional Probe and GG Mismatch Duplex.

    PubMed

    Li, Jiao; He, Hanping; Peng, Xiaoqian; Huang, Min; Zhang, Xiuhua; Wang, Shengfu

    2015-01-01

    A bifunctional probe (FecNC), containing a recognition part and an electrochemical active center, was applied to electrochemical detection of GG mismatch duplexes. The preparation of gold electrodes modified by mismatch and complementatry duplexes was characterized by electrochemical impedance spectroscopy (EIS) and optimized for better detection in terms of self-assembly time, hybridization time, and incubation time. The interaction between FecNC and DNA duplexes modified on the surface of a gold electrode was explored by square wave voltammetry (SWV) and EIS. The results showed that the DNA duplexes with GG mismatch on the surface of a gold electrode was easily detected by the largest electrochemical signal of the bifunctional probe because of its selective binding to GG mismatches. The bifunctional probe could offer a simple, effective electrochemical detection of GG mismatches, and theoretical bases for development of electrochemical biosensors. Further, the method would be favorable for diagnosis of genetic diseases. PMID:26165289

  13. Rapid method to detect duplex formation in sequencing by hybridization methods

    DOEpatents

    Mirzabekov, A.D.; Timofeev, E.N.; Florentiev, V.L.; Kirillov, E.V.

    1999-01-19

    A method for determining the existence of duplexes of oligonucleotide complementary molecules is provided. A plurality of immobilized oligonucleotide molecules, each of a specific length and each having a specific base sequence, is contacted with complementary, single stranded oligonucleotide molecules to form a duplex. Each duplex facilitates intercalation of a fluorescent dye between the base planes of the duplex. The invention also provides for a method for constructing oligonucleotide matrices comprising confining light sensitive fluid to a surface and exposing the light-sensitive fluid to a light pattern. This causes the fluid exposed to the light to coalesce into discrete units and adhere to the surface. This places each of the units in contact with a set of different oligonucleotide molecules so as to allow the molecules to disperse into the units. 13 figs.

  14. Helically Assembled Pyrene Arrays on an RNA Duplex That Exhibit Circularly Polarized Luminescence with Excimer Formation.

    PubMed

    Nakamura, Mitsunobu; Suzuki, Junpei; Ota, Fuyuki; Takada, Tadao; Akagi, Kazuo; Yamana, Kazushige

    2016-06-27

    Circularly polarized luminescence (CPL) was observed in pyrene zipper arrays helically arranged on an RNA duplex. Hybridization of complementary RNA strands having multiple (two to five) 2'-O-pyrenylmethyl modified nucleosides affords an RNA duplex with normal thermal stability. The pyrene fluorophores are assembled like a zipper in a well-defined helical manner along the axis of RNA duplex, which, upon 350 nm UV illumination, resulted in CPL emission with pyrene excimer formation. CPL (glum ) levels observed for the pyrene arrays in dilute aqueous solution were +2×10(-2) -+3.5×10(-2) , which are comparable with |glum | for chiral organic molecules and related systems. The positive CPL signals are consistent with a right-handed helical structure. Temperature dependence on CPL emission indicates that the stable rigid RNA structure is responsible for the strong CPL signals. The single pyrene-modified RNA duplex did not show any CPL signal. PMID:27150679

  15. Replication of linear duplex DNA in vitro with bacteriophage T5 DNA polymerase

    SciTech Connect

    Fujimura, R. K.; Das, S. K.; Allison, D. P.; Roop, B. C.

    1980-01-01

    Two sets of experiments are presented that attempt to contribute to understanding the mechanisms of DNA replication. The specific areas discussed are fidelity of DNA replication and initiation of replication of duplex DNA. (ACR)

  16. A γ-cyclodextrin duplex connected with two disulfide bonds: synthesis, structure and inclusion complexes.

    PubMed

    Volkov, Sergey; Kumprecht, Lukáš; Buděšínský, Miloš; Lepšík, Martin; Dušek, Michal; Kraus, Tomáš

    2015-03-14

    Per(2,3,6-tri-O-benzyl)-γ-cyclodextrin was debenzylated by DIBAL-H to produce a mixture of C6(I),C6(IV) and C6(I),C6(V) isomeric diols, which were separated and isolated. The C2-symmetrical C6(I),C6(V) diol was transformed into dithiol and dimerized to produce a γ-cyclodextrin duplex structure. A crystal structure revealed tubular cavity whose peripheries are slightly elliptically distorted. The solvent accessible volume of the cavity of the γ-CD duplex is about 740 Å(3). Due to this large inner space the duplex forms very stable inclusion complexes with steroids; bile acids examined in this study show binding affinities to the γ-cyclodextrin duplex in the range of 5.3 × 10(7) M(-1)-1.9 × 10(8) M(-1). PMID:25616110

  17. Comparison of intraoperative completion flowmeter versus duplex ultrasonography and contrast arteriography for carotid endarterectomy.

    PubMed

    Winkler, Gabor A; Calligaro, Keith D; Kolakowski, Steven; Doerr, Kevin J; McAffee-Bennett, Sandy; Muller, Kathy; Dougherty, Matthew J

    Intraoperative completion studies of the internal carotid artery following carotid endarterectomy are recommended to ensure technical perfection of the repair. Transit time ultrasound flowmeter does not require trained technicians, requires less time than other completion studies such as duplex ultrasonography and contrast arteriography, and is noninvasive. Flowmetry was compared with duplex ultrasonography and contrast arteriography to determine if the relatively simpler flowmetry could replace these two more widely accepted completion studies in the intraoperative assessment of carotid endarterectomy. Comparative intraoperative assessment was performed in 116 carotid endarterectomies using all three techniques between December 1, 2000 and November 30, 2003. Eversion endarterectomy was performed in 51 cases and standard endarterectomy with prosthetic patching in 65 cases. Patients underwent completion flowmetry, duplex ultrasonography, and contrast arteriography studies of the exposed arteries, which were performed by vascular fellows or senior surgical residents under direct supervision of board-certified vascular surgeons. Duplex ultrasonography surveillance was performed 1 and 6 months postoperatively and annually thereafter. Mean follow-up was 18 months (range, 6-42 months). The combined ipsilateral stroke and death rate was 0%. The mean internal carotid artery flow using flowmetry was 249 mL/min (range, 60-750 mL/min). Five (4.3%) patients had flow < 100 mL/min as measured with flowmetry, but completion contrast arteriography and duplex ultrasonography were normal and none of the arteries were re-explored. One carotid endarterectomy was re-explored based on completion duplex ultrasonography that showed markedly elevated internal carotid artery peak systolic velocity (> 500 cm/sec); however, exploration was normal and completion flowmetry and contrast arteriography were normal. Duplex ultrasonography studies revealed internal carotid artery peak systolic

  18. The first crystal structures of RNA–PNA duplexes and a PNA-PNA duplex containing mismatches—toward anti-sense therapy against TREDs

    PubMed Central

    Kiliszek, Agnieszka; Banaszak, Katarzyna; Dauter, Zbigniew; Rypniewski, Wojciech

    2016-01-01

    PNA is a promising molecule for antisense therapy of trinucleotide repeat disorders. We present the first crystal structures of RNA–PNA duplexes. They contain CUG repeats, relevant to myotonic dystrophy type I, and CAG repeats associated with poly-glutamine diseases. We also report the first PNA–PNA duplex containing mismatches. A comparison of the PNA homoduplex and the PNA–RNA heteroduplexes reveals PNA's intrinsic structural properties, shedding light on its reported sequence selectivity or intolerance of mismatches when it interacts with nucleic acids. PNA has a much lower helical twist than RNA and the resulting duplex has an intermediate conformation. PNA retains its overall conformation while locally there is much disorder, especially peptide bond flipping. In addition to the Watson–Crick pairing, the structures contain interesting interactions between the RNA's phosphate groups and the Π electrons of the peptide bonds in PNA. PMID:26717983

  19. Probing of miniPEGγ-PNA-DNA Hybrid Duplex Stability with AFM Force Spectroscopy

    PubMed Central

    Dutta, Samrat; Armitage, Bruce A.; Lyubchenko, Yuri L.

    2016-01-01

    Peptide nucleic acids (PNA) are synthetic polymers, the neutral peptide backbone of which provides elevated stability to PNA-PNA and PNA-DNA hybrid duplex. It was demonstrated that incorporation of diethylene glycol (miniPEG) at the γ position of the peptide backbone increased the thermal stability of the hybrid duplexes (Sahu, B. et al. (2011) Journal of Organic Chemistry 76, 5614-5627). Here, we applied atomic force microscopy (AFM) based single molecule force spectroscopy (SMFS) and dynamic force spectroscopy (DFS) to test the strength and stability of the hybrid 10 bp duplex. This hybrid duplex consisted of miniPEGγ-PNA and DNA of the same length (γMPPNA-DNA), which we compared to a DNA duplex with a homologous sequence. AFM force spectroscopy data obtained at the same conditions showed that γMPPNA-DNA hybrid is more stable than the DNA counterpart, 65 ± 15 pN vs 47 ± 15 pN, respectively. The DFS measurements performed in a range of pulling speeds analyzed in the framework of the Bell-Evans approach yielded a dissociation constant, koff ∼ 0.030 ± 0.01 sec-1 for γMPPNA-DNA hybrid duplex vs. 0.375 ± 0.18 sec-1 for the DNA-DNA duplex suggesting that the hybrid duplex is much more stable. Correlating the high affinity of γMPPNA-DNA to slow dissociation kinetics is consistent with prior bulk characterization by surface plasmon resonance. Given the growing interest in γMPPNA as well as other synthetic DNA analogues, the use of single molecule experiments along with computational analysis of force spectroscopy data will provide direct characterization of various modifications as well as higher order structures such as triplexes and quadruplexes. PMID:26898903

  20. Long-lived fluorescence of homopolymeric guanine-cytosine DNA duplexes.

    PubMed

    Vayá, Ignacio; Changenet-Barret, Pascale; Gustavsson, Thomas; Zikich, Dragoslav; Kotlyar, Alexander B; Markovitsi, Dimitra

    2010-09-24

    The fluorescence spectrum of the homopolymeric double helix poly(dG) x poly(dC) is dominated by emission decaying on the nanosecond time-scale, as previously reported for the alternating homologue poly(dGdC) x poly(dGdC). Thus, energy trapping over long periods of time is a common feature of GC duplexes which contrast with AT duplexes. The impact of such behaviour on DNA photodamage needs to be evaluated. PMID:20714677