Science.gov

Sample records for fine-scale oscillatory banding

  1. Fine-scale oscillatory banding in otoliths from arctic charr (Salveninus alpinus) and pike (Esox lucius)

    SciTech Connect

    Meldrum, A.; Halden, N.M.

    1997-12-31

    Transmission electron microscopy of otoliths from the inner ear of arctic charr and pike has revealed the presence of fine banding on the scale of several nanometers. The thickness of the bands was observed to vary in different portions of the sample, and some areas were not banded. EDS analysis could not detect chemical differences within the bands, but electron diffraction showed that the crystallographic orientation of the bands is related by a lattice mismatch. Previously, banding on the scale of 50 to 100 microns was observed by SEM in otoliths from arctic charr and was attributed to seasonal variations in growth. The fine-scale banding observed in this study, however, is unlikely to represent a daily variation. Electron diffraction from the pike samples shows that the material is composed of CaCO{sub 3} having the both the vaterite and aragonite structure, and hydrous CaCO{sub 3} was also observed. The large-scale banding previously identified by SEM was not observed in the TEM despite attempts to intersect the boundaries of the micron-sized layers. The interaction of the electron beam with the sample material was investigated by conducting several electron-irradiation experiments. The electron beam was observed to interact strongly with the sample and caused the precipitation of cubic CaO from the calcium carbonate matrix. Bright-field imaging showed the development of fine grained ({approximately} 5 nm) randomly oriented crystallites which accumulated with increasing electron dose. These initial results suggest that the precipitation of CaO is not driven by electron-beam beating. Previously, a similar phase-change phenomenon has been observed in hydroxyapatite from dental enamel. Other Ca-bearing biominerals may therefore also be expected to be sensitive to electron irradiation.

  2. Fine-Scale Skeletal Banding Can Distinguish Symbiotic from Asymbiotic Species among Modern and Fossil Scleractinian Corals.

    PubMed

    Frankowiak, Katarzyna; Kret, Sławomir; Mazur, Maciej; Meibom, Anders; Kitahara, Marcelo V; Stolarski, Jarosław

    2016-01-01

    Understanding the evolution of scleractinian corals on geological timescales is key to predict how modern reef ecosystems will react to changing environmental conditions in the future. Important to such efforts has been the development of several skeleton-based criteria to distinguish between the two major ecological groups of scleractinians: zooxanthellates, which live in symbiosis with dinoflagellate algae, and azooxanthellates, which lack endosymbiotic dinoflagellates. Existing criteria are based on overall skeletal morphology and bio/geo-chemical indicators-none of them being particularly robust. Here we explore another skeletal feature, namely fine-scale growth banding, which differs between these two groups of corals. Using various ultra-structural imaging techniques (e.g., TEM, SEM, and NanoSIMS) we have characterized skeletal growth increments, composed of doublets of optically light and dark bands, in a broad selection of extant symbiotic and asymbiotic corals. Skeletons of zooxanthellate corals are characterized by regular growth banding, whereas in skeletons of azooxanthellate corals the growth banding is irregular. Importantly, the regularity of growth bands can be easily quantified with a coefficient of variation obtained by measuring bandwidths on SEM images of polished and etched skeletal surfaces of septa and/or walls. We find that this coefficient of variation (lower values indicate higher regularity) ranges from ~40 to ~90% in azooxanthellate corals and from ~5 to ~15% in symbiotic species. With more than 90% (28 out of 31) of the studied corals conforming to this microstructural criterion, it represents an easy and robust method to discriminate between zooxanthellate and azooxanthellate corals. This microstructural criterion has been applied to the exceptionally preserved skeleton of the Triassic (Norian, ca. 215 Ma) scleractinian Volzeia sp., which contains the first example of regular, fine-scale banding of thickening deposits in a fossil coral

  3. Fine-Scale Skeletal Banding Can Distinguish Symbiotic from Asymbiotic Species among Modern and Fossil Scleractinian Corals

    PubMed Central

    Frankowiak, Katarzyna; Kret, Sławomir; Mazur, Maciej; Meibom, Anders; Kitahara, Marcelo V.; Stolarski, Jarosław

    2016-01-01

    Understanding the evolution of scleractinian corals on geological timescales is key to predict how modern reef ecosystems will react to changing environmental conditions in the future. Important to such efforts has been the development of several skeleton-based criteria to distinguish between the two major ecological groups of scleractinians: zooxanthellates, which live in symbiosis with dinoflagellate algae, and azooxanthellates, which lack endosymbiotic dinoflagellates. Existing criteria are based on overall skeletal morphology and bio/geo-chemical indicators—none of them being particularly robust. Here we explore another skeletal feature, namely fine-scale growth banding, which differs between these two groups of corals. Using various ultra-structural imaging techniques (e.g., TEM, SEM, and NanoSIMS) we have characterized skeletal growth increments, composed of doublets of optically light and dark bands, in a broad selection of extant symbiotic and asymbiotic corals. Skeletons of zooxanthellate corals are characterized by regular growth banding, whereas in skeletons of azooxanthellate corals the growth banding is irregular. Importantly, the regularity of growth bands can be easily quantified with a coefficient of variation obtained by measuring bandwidths on SEM images of polished and etched skeletal surfaces of septa and/or walls. We find that this coefficient of variation (lower values indicate higher regularity) ranges from ~40 to ~90% in azooxanthellate corals and from ~5 to ~15% in symbiotic species. With more than 90% (28 out of 31) of the studied corals conforming to this microstructural criterion, it represents an easy and robust method to discriminate between zooxanthellate and azooxanthellate corals. This microstructural criterion has been applied to the exceptionally preserved skeleton of the Triassic (Norian, ca. 215 Ma) scleractinian Volzeia sp., which contains the first example of regular, fine-scale banding of thickening deposits in a fossil

  4. Fine-scale Textures

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site]

    Released 19 May 2003

    This image shows fine-scale textures around a crater southwest of Athabasca Vallis. These fine scale ridges are most likely the remnants of older flood eroded layered rocks and not longitudinal grooves carved out of the landscape by flooding. These features are ridges and not grooves. Also note the layers visible on the southeast side of the island.

    Image information: VIS instrument. Latitude 9.6, Longitude 155.9 East (204.1). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  5. Model calculation of oscillatory magnetic breakdown in metals with multiply degenerate bands

    NASA Astrophysics Data System (ADS)

    Thalmeier, P.; Falicov, L. M.

    1981-03-01

    We present a model calculation of the oscillatory magnetoresistance in a metal with three degenerate bands. We have in mind the example of body-centered cubic iron where, in the neighborhood of the H point of the Brillouin zone, three bands have multiple intersections and contacts. For magnetic fields along the [011] direction, the Fermi surface in the vicinity of H exhibits a complicated three-band interferometer which leads to complex oscillations in the magnetoresistance. A Fourier analysis of this magnetoresistance reveals that frequencies corresponding to split-beam interference, closed-orbit interference, and mixed type are all present with comparable strength. The connection to the experimental situation is discussed.

  6. Oscillatory alpha-band suppression mechanisms during the rapid attentional shifts required to perform an anti-saccade task.

    PubMed

    Belyusar, Daniel; Snyder, Adam C; Frey, Hans-Peter; Harwood, Mark R; Wallman, Josh; Foxe, John J

    2013-01-15

    Neuroimaging has demonstrated anatomical overlap between covert and overt attention systems, although behavioral and electrophysiological studies have suggested that the two systems do not rely on entirely identical circuits or mechanisms. In a parallel line of research, topographically-specific modulations of alpha-band power (~8-14 Hz) have been consistently correlated with anticipatory states during tasks requiring covert attention shifts. These tasks, however, typically employ cue-target-interval paradigms where attentional processes are examined across relatively protracted periods of time and not at the rapid timescales implicated during overt attention tasks. The anti-saccade task, where one must first covertly attend for a peripheral target, before executing a rapid overt attention shift (i.e. a saccade) to the opposite side of space, is particularly well-suited for examining the rapid dynamics of overt attentional deployments. Here, we asked whether alpha-band oscillatory mechanisms would also be associated with these very rapid overt shifts, potentially representing a common neural mechanism across overt and covert attention systems. High-density electroencephalography in conjunction with infra-red eye-tracking was recorded while participants engaged in both pro- and anti-saccade task blocks. Alpha power, time-locked to saccade onset, showed three distinct phases of significantly lateralized topographic shifts, all occurring within a period of less than 1s, closely reflecting the temporal dynamics of anti-saccade performance. Only two such phases were observed during the pro-saccade task. These data point to substantially more rapid temporal dynamics of alpha-band suppressive mechanisms than previously established, and implicate oscillatory alpha-band activity as a common mechanism across both overt and covert attentional deployments. PMID:23041338

  7. Fine-scale characteristics of interplanetary sector

    NASA Technical Reports Server (NTRS)

    Behannon, K. W.; Neubauer, F. M.; Barnstoff, H.

    1980-01-01

    The structure of the interplanetary sector boundaries observed by Helios 1 within sector transition regions was studied. Such regions consist of intermediate (nonspiral) average field orientations in some cases, as well as a number of large angle directional discontinuities (DD's) on the fine scale (time scales 1 hour). Such DD's are found to be more similar to tangential than rotational discontinuities, to be oriented on average more nearly perpendicular than parallel to the ecliptic plane to be accompanied usually by a large dip ( 80%) in B and, with a most probable thickness of 3 x 10 to the 4th power km, significantly thicker previously studied. It is hypothesized that the observed structures represent multiple traversals of the global heliospheric current sheet due to local fluctuations in the position of the sheet. There is evidence that such fluctuations are sometimes produced by wavelike motions or surface corrugations of scale length 0.05 - 0.1 AU superimposed on the large scale structure.

  8. The effects of L-theanine on alpha-band oscillatory brain activity during a visuo-spatial attention task.

    PubMed

    Gomez-Ramirez, Manuel; Kelly, Simon P; Montesi, Jennifer L; Foxe, John J

    2009-06-01

    Background/Objectives Ingestion of the non-proteinic amino acid L-theanine (gamma-glutamylethylamide) has been shown to influence oscillatory brain activity in the alpha band (8-14 Hz) in humans during resting electroencephalographic (EEG) recordings and also during cognitive task performance. We have previously shown that ingestion of a 250-mg dose of L-theanine significantly reduced tonic (background) alpha power during a demanding intersensory (auditory-visual) attentional cueing task. Further, cue-related phasic changes in alpha power, indexing the shorter-term anticipatory biasing of attention between modalities, were stronger on L-theanine compared to placebo. This form of cue-contingent phasic alpha activity is also known to index attentional biasing within visual space. Specifically, when a relevant location is pre-cued, anticipatory alpha power increases contralateral to the location to be ignored. Here we investigate whether the effects of L-theanine on tonic and phasic alpha activity, found previously during intersensory attentional deployment, occur also during a visuospatial task. Subjects/Methods 168-channel EEG data were recorded from thirteen neurologically normal individuals while engaged in a highly demanding visuo-spatial attention task. Participants underwent testing on two separate days, ingesting either a 250-mg colorless and tasteless solution of L-theanine mixed with water, or a water-based solution placebo on each day in counterbalanced order. We compared the alpha-band activity when subjects ingested L-Theanine vs. Placebo. Results We found a significant reduction in tonic alpha for the L-theanine treatment compared to placebo, which was accompanied by a shift in scalp topography, indicative of treatment-related changes in the neural generators of oscillatory alpha activity. However, L-theanine did not measurably affect cue-related anticipatory alpha effects. Conclusions This pattern of results implies that L-theanine plays a more general

  9. Temporal Expectation and Attention Jointly Modulate Auditory Oscillatory Activity in the Beta Band

    PubMed Central

    Todorovic, Ana; Schoffelen, Jan-Mathijs; van Ede, Freek; Maris, Eric; de Lange, Floris P.

    2015-01-01

    The neural response to a stimulus is influenced by endogenous factors such as expectation and attention. Current research suggests that expectation and attention exert their effects in opposite directions, where expectation decreases neural activity in sensory areas, while attention increases it. However, expectation and attention are usually studied either in isolation or confounded with each other. A recent study suggests that expectation and attention may act jointly on sensory processing, by increasing the neural response to expected events when they are attended, but decreasing it when they are unattended. Here we test this hypothesis in an auditory temporal cueing paradigm using magnetoencephalography in humans. In our study participants attended to, or away from, tones that could arrive at expected or unexpected moments. We found a decrease in auditory beta band synchrony to expected (versus unexpected) tones if they were unattended, but no difference if they were attended. Modulations in beta power were already evident prior to the expected onset times of the tones. These findings suggest that expectation and attention jointly modulate sensory processing. PMID:25799572

  10. Cell Type-Specific Control of Spike Timing by Gamma-Band Oscillatory Inhibition.

    PubMed

    Hasenstaub, Andrea; Otte, Stephani; Callaway, Edward

    2016-02-01

    Many lines of theoretical and experimental investigation have suggested that gamma oscillations provide a temporal framework for cortical information processing, acting to either synchronize neuronal firing, restrict neuron's relative spike times, and/or provide a global reference signal to which neurons encode input strength. Each theory has been disputed and some believe that gamma is an epiphenomenon. We investigated the biophysical plausibility of these theories by performing in vitro whole-cell recordings from 6 cortical neuron subtypes and examining how gamma-band and slow fluctuations in injected input affect precision and phase of spike timing. We find that gamma is at least partially able to restrict the spike timing in all subtypes tested, but to varying degrees. Gamma exerts more precise control of spike timing in pyramidal neurons involved in cortico-cortical versus cortico-subcortical communication and in inhibitory neurons that target somatic versus dendritic compartments. We also find that relatively few subtypes are capable of phase-based information coding. Using simple neuron models and dynamic clamp, we determine which intrinsic differences lead to these variations in responsiveness and discuss both the flexibility and confounds of gamma-based spike-timing systems. PMID:25778344

  11. Impairments in Background and Event-Related Alpha-Band Oscillatory Activity in Patients with Schizophrenia

    PubMed Central

    Abeles, Ilana Y.; Gomez-Ramirez, Manuel

    2014-01-01

    Studies show that patients with schizophrenia exhibit impaired responses to sensory stimuli, especially at the early stages of neural processing. In particular, patients’ alpha-band (8–14 Hz) event-related desynchronization (ERD) and visual P1 event-related potential (ERP) component tend to be significantly reduced, with P1 ERP deficits greater for visual stimuli biased towards the magnocellular system. In healthy controls, studies show that pre-stimulus alpha (background alpha) plays a pivotal role in sensory processing and behavior, largely by shaping the neural responses to incoming stimuli. Here, we address whether patients’ ERD and P1 deficits stem from impairments in pre-stimulus alpha mechanisms. To address this question we recorded electrophysiological activity in patients with schizophrenia and healthy controls while they engaged in a visual discrimination task with low, medium, and high contrast stimuli. The results revealed a significant decrease in patients’ ERDs, which was largely driven by reductions in pre-stimulus alpha. These reductions were most prominent in right-hemispheric areas. We also observed a systematic relationship between pre-stimulus alpha and the P1 component across different contrast levels. However, this relationship was only observed in healthy controls. Taken together, these findings highlight a substantial anomaly in patients’ amplitude-based alpha background activity over visual areas. The results provide further support that pre-stimulus alpha activity plays an active role in perception by modulating the neural responses to incoming sensory inputs, a mechanism that seems to be compromised in schizophrenia. PMID:24646909

  12. Fine scale heterogeneity in the Earth's mantle - observation and interpretation

    NASA Astrophysics Data System (ADS)

    Thybo, H.

    2012-12-01

    High resolution seismic data has over the last decade provided significant evidence for pronounced fine scale heterogeneity in the Earth's mantle at an unprecedented detail. Seismic tomography developed tremendously during the last 20-30 years. The results show overall structure in the mantle which can be correlated to main plate tectonic features, such as oceanic spreading centres, continental rift zones and subducting slabs. Much seismological mantle research is now concentrated on imaging fine scale heterogeneity, which may be detected and imaged with high-resolution seismic data with dense station spacing and at high frequency, e.g. from the Russian Peaceful Nuclear Explosion (PNE) data set and array recordings of waves from natural seismic sources. Mantle body waves indicate pronounced heterogeneity at three depth levels whereas other depth intervals appear transparent, at least in the frequency band of 0.5-15 Hz: (1) The Mantle Low-Velocity Zone (LVZ) is a global feature which has been detected in more than 50 long-range seismic profiles (Thybo and Perchuc, Science, 1997). Since then numerous studies based on receiver functions, surface waves, and controlled source seismology have confirmed the presence of this zone. The data demonstrates that the top of the LVZ everywhere is at a depth of 100±20 km. A pronounced coda shows that the zone is highly heterogeneous at characteristic scale lengths of 5-15 by 2-6 km. We interpret that the rocks in the LVZ have a temperature close to the solidus or even may contain small fractions of partial melt. The solidus of mantle rocks is very low below a depth of ca. 90 km if volatiles are present due to a characteristic kink in the solidus which is much lower than for dry mantle rocks. We suggest that the rocks are in a totally solid state below the LVZ and that the depth to the interface to fully solid rocks is an indicator of the thermal state of the upper mantle. (2) Significant scattering from around the top of the

  13. Fine-scale recombination and adaptive radiation could be linked.

    PubMed

    Bodilis, Josselin

    2013-09-15

    The difficult reconstruction of the evolutionary history of the major surface protein gene oprF highlighted an adaptive radiation in the Pseudomonas fluorescens group. The recent work of Hao (2013) showed that partial recombination events in oprF gene occurred specifically in a P. fluorescens lineage under ecological niche segregation. So, I suggest that identification of lineage-specific fine-scale recombination may be a way to detect putative adaptive radiation in bacteria. PMID:23774687

  14. Fine-scale human genetic structure in Western France

    PubMed Central

    Karakachoff, Matilde; Duforet-Frebourg, Nicolas; Simonet, Floriane; Le Scouarnec, Solena; Pellen, Nadine; Lecointe, Simon; Charpentier, Eric; Gros, Françoise; Cauchi, Stéphane; Froguel, Philippe; Copin, Nane; Balkau, B; Ducimetière, P; Eschwège;, E; Alhenc-Gelas, F; Girault, A; Fumeron, F; Marre, M; Roussel, R; Bonnet, F; Cauchi, S; Froguel, P; Cogneau, J; Born, C; Caces, E; Cailleau, M; Lantieri, O; Moreau, J G; Rakotozafy, F; Tichet, J; Le Tourneau, Thierry; Probst, Vincent; Le Marec, Hervé; Molinaro, Sabrina; Balkau, Beverley; Redon, Richard; Schott, Jean-Jacques; Blum, Michael GB; Dina, Christian

    2015-01-01

    The difficulties arising from association analysis with rare variants underline the importance of suitable reference population cohorts, which integrate detailed spatial information. We analyzed a sample of 1684 individuals from Western France, who were genotyped at genome-wide level, from two cohorts D.E.S.I.R and CavsGen. We found that fine-scale population structure occurs at the scale of Western France, with distinct admixture proportions for individuals originating from the Brittany Region and the Vendée Department. Genetic differentiation increases with distance at a high rate in these two parts of Northwestern France and linkage disequilibrium is higher in Brittany suggesting a lower effective population size. When looking for genomic regions informative about Breton origin, we found two prominent associated regions that include the lactase region and the HLA complex. For both the lactase and the HLA regions, there is a low differentiation between Bretons and Irish, and this is also found at the genome-wide level. At a more refined scale, and within the Pays de la Loire Region, we also found evidence of fine-scale population structure, although principal component analysis showed that individuals from different departments cannot be confidently discriminated. Because of the evidence for fine-scale genetic structure in Western France, we anticipate that rare and geographically localized variants will be identified in future full-sequence analyses. PMID:25182131

  15. Fine-scale human genetic structure in Western France.

    PubMed

    Karakachoff, Matilde; Duforet-Frebourg, Nicolas; Simonet, Floriane; Le Scouarnec, Solena; Pellen, Nadine; Lecointe, Simon; Charpentier, Eric; Gros, Françoise; Cauchi, Stéphane; Froguel, Philippe; Copin, Nane; Le Tourneau, Thierry; Probst, Vincent; Le Marec, Hervé; Molinaro, Sabrina; Balkau, Beverley; Redon, Richard; Schott, Jean-Jacques; Blum, Michael Gb; Dina, Christian

    2015-06-01

    The difficulties arising from association analysis with rare variants underline the importance of suitable reference population cohorts, which integrate detailed spatial information. We analyzed a sample of 1684 individuals from Western France, who were genotyped at genome-wide level, from two cohorts D.E.S.I.R and CavsGen. We found that fine-scale population structure occurs at the scale of Western France, with distinct admixture proportions for individuals originating from the Brittany Region and the Vendée Department. Genetic differentiation increases with distance at a high rate in these two parts of Northwestern France and linkage disequilibrium is higher in Brittany suggesting a lower effective population size. When looking for genomic regions informative about Breton origin, we found two prominent associated regions that include the lactase region and the HLA complex. For both the lactase and the HLA regions, there is a low differentiation between Bretons and Irish, and this is also found at the genome-wide level. At a more refined scale, and within the Pays de la Loire Region, we also found evidence of fine-scale population structure, although principal component analysis showed that individuals from different departments cannot be confidently discriminated. Because of the evidence for fine-scale genetic structure in Western France, we anticipate that rare and geographically localized variants will be identified in future full-sequence analyses. PMID:25182131

  16. Fine-Scale Movements of the Broadnose Sevengill Shark and Its Main Prey, the Gummy Shark

    PubMed Central

    Barnett, Adam; Abrantes, Kátya G.; Stevens, John D.; Bruce, Barry D.; Semmens, Jayson M.

    2010-01-01

    Information on the fine-scale movement of predators and their prey is important to interpret foraging behaviours and activity patterns. An understanding of these behaviours will help determine predator-prey relationships and their effects on community dynamics. For instance understanding a predator's movement behaviour may alter pre determined expectations of prey behaviour, as almost any aspect of the prey's decisions from foraging to mating can be influenced by the risk of predation. Acoustic telemetry was used to study the fine-scale movement patterns of the Broadnose Sevengill shark Notorynchus cepedianus and its main prey, the Gummy shark Mustelus antarcticus, in a coastal bay of southeast Tasmania. Notorynchus cepedianus displayed distinct diel differences in activity patterns. During the day they stayed close to the substrate (sea floor) and were frequently inactive. At night, however, their swimming behaviour continually oscillated through the water column from the substrate to near surface. In contrast, M. antarcticus remained close to the substrate for the entire diel cycle, and showed similar movement patterns for day and night. For both species, the possibility that movement is related to foraging behaviour is discussed. For M. antarcticus, movement may possibly be linked to a diet of predominantly slow benthic prey. On several occasions, N. cepedianus carried out a sequence of burst speed events (increased rates of movement) that could be related to chasing prey. All burst speed events during the day were across the substrate, while at night these occurred in the water column. Overall, diel differences in water column use, along with the presence of oscillatory behaviour and burst speed events suggest that N. cepedianus are nocturnal foragers, but may opportunistically attack prey they happen to encounter during the day. PMID:21151925

  17. Fine-scale movements of the Broadnose Sevengill shark and its main prey, the Gummy shark.

    PubMed

    Barnett, Adam; Abrantes, Kátya G; Stevens, John D; Bruce, Barry D; Semmens, Jayson M

    2010-01-01

    Information on the fine-scale movement of predators and their prey is important to interpret foraging behaviours and activity patterns. An understanding of these behaviours will help determine predator-prey relationships and their effects on community dynamics. For instance understanding a predator's movement behaviour may alter pre determined expectations of prey behaviour, as almost any aspect of the prey's decisions from foraging to mating can be influenced by the risk of predation. Acoustic telemetry was used to study the fine-scale movement patterns of the Broadnose Sevengill shark Notorynchus cepedianus and its main prey, the Gummy shark Mustelus antarcticus, in a coastal bay of southeast Tasmania. Notorynchus cepedianus displayed distinct diel differences in activity patterns. During the day they stayed close to the substrate (sea floor) and were frequently inactive. At night, however, their swimming behaviour continually oscillated through the water column from the substrate to near surface. In contrast, M. antarcticus remained close to the substrate for the entire diel cycle, and showed similar movement patterns for day and night. For both species, the possibility that movement is related to foraging behaviour is discussed. For M. antarcticus, movement may possibly be linked to a diet of predominantly slow benthic prey. On several occasions, N. cepedianus carried out a sequence of burst speed events (increased rates of movement) that could be related to chasing prey. All burst speed events during the day were across the substrate, while at night these occurred in the water column. Overall, diel differences in water column use, along with the presence of oscillatory behaviour and burst speed events suggest that N. cepedianus are nocturnal foragers, but may opportunistically attack prey they happen to encounter during the day. PMID:21151925

  18. Brain oscillatory activity during motor preparation: effect of directional uncertainty on beta, but not alpha, frequency band

    PubMed Central

    Tzagarakis, Charidimos; West, Sarah; Pellizzer, Giuseppe

    2015-01-01

    In time-constraint activities, such as sports, it is advantageous to be prepared to act even before knowing precisely what action will be needed. Here, we studied the relation between neural oscillations during motor preparation and amount of uncertainty about the direction of the upcoming target. Ten right-handed volunteers participated in a cued center-out task. A brief visual cue identified the region of space in which the target would appear. Three cue sizes were used to vary the amount of information about the direction of the upcoming target. The target appeared at a random location within the region indicated by the cue, and the participants moved a joystick-controlled cursor toward it. Time-frequency analyses showed phasic increases of power in low (delta/theta: <7 Hz) and high (gamma: >30 Hz) frequency-bands in relation to the onset of visual stimuli and of the motor response. More importantly in regard to motor preparation, there was a tonic reduction of power in the alpha (8–12 Hz) and beta (14–30 Hz) bands during the period between cue presentation and target onset. During motor preparation, the main source of change of power of the alpha band was localized over the contralateral sensorimotor region and both parietal cortices, whereas for the beta-band the main source was the contralateral sensorimotor region. During cue presentation, the reduction of power of the alpha-band in the occipital lobe showed a brief differentiation of condition: the wider the visual cue, the more the power of the alpha-band decreased. However, during motor preparation, only the power of the beta-band was dependent on directional uncertainty: the less the directional uncertainty, the more the power of the beta-band decreased. In conclusion, the results indicate that the power in the alpha-band is associated briefly with cue size, but is otherwise an undifferentiated indication of neural activation, whereas the power of the beta-band reflects the level of motor preparation

  19. A FRAMEWORK FOR FINE-SCALE COMPUTATIONAL FLUID DYNAMICS AIR QUALITY MODELING AND ANALYSIS

    EPA Science Inventory

    Fine-scale Computational Fluid Dynamics (CFD) simulation of pollutant concentrations within roadway and building microenvironments is feasible using high performance computing. Unlike currently used regulatory air quality models, fine-scale CFD simulations are able to account rig...

  20. Lithospheric discontinuities beneath Australia: interaction of large-scale and fine scale structure

    NASA Astrophysics Data System (ADS)

    Kennett, Brian L. N.; Yoshizawa, Kazunori

    2016-04-01

    Understanding the complex heterogeneity of the continental lithosphere involves a wide variety of spatial scales and the synthesis of multiple classes of information. Seismic surface waves and multiply reflected body waves provide the main information on broad-scale structure, and bounds on the extent of the lithosphere-asthenosphere transition (LAT) can be found from the vertical gradients of S wavespeed. Information on finer scale structures comes though body wave studies, including detailed seismic tomography and P wave reflectivity extracted from stacked autocorrelograms of continuous component records. With the inclusion of deterministic large-scale structure and realistic medium-scale stochastic features there is not a need for strong fine-scale variations. The resulting multi-scale heterogeneity model for the Australian region gives a good representation of the character of observed seismograms and their geographic variations and matches the observations of P wave reflectivity. The presence of reflections in the 0.5-3.0 Hz band in the uppermost mantle suggests variations on vertical scales of a few hundred metres with amplitudes of the order of 1%. There are some indications of a change of reflection character in the lower part of the lithosphere in the transition to the asthenosphere. In some parts of central Australia there is a reasonable tie between a change in reflectivity and other information on mid-lithospheric discontinuities. Individual seismic probes illuminate different aspects of the heterogeneity, but the full spectrum has to be taken into account to understand the properties of apparent discontinuities and their geodynamic implications. Once fine-scale structure is taken into consideration it becomes apparent that wave interference plays a very important role in determining the nature of apparent discontinuities seen with lower frequency probes such as S wave receiver functions. Changes in the character of fine-scale heterogeneity can

  1. Solar chromospheric fine scale structures: dynamics and energetics

    NASA Astrophysics Data System (ADS)

    Tziotziou, K.

    2012-01-01

    The solar chromosphere is a very inhomogeneous and dynamic layer of the solar atmosphere that exhibits several phenomena on a wide range of spatial and temporal scales. High-resolution and long-duration observations, employing mostly lines, such as Halpha, the Ca II infrared lines and the Ca II H and K lines, obtained both from ground-based telescope facilities (e.g. DST, VTT, THEMIS, SST, DOT), as well as state-of-the-art satellites (e.g. SOHO, TRACE, HINODE) reveal an incredibly rich, dynamic and highly structured chromospheric environment. What is known in literature as the chromospheric fine-scale structure mainly consists of small fibrilar-like features that connect various parts of quiet/active regions or span across the chromospheric network cell interiors, showing a large diversity of both physical and dynamic characteristics. The highly dynamic, fine-scale chromospheric structures are mostly governed by flows which reflect the complex geometry and dynamics of the local magnetic field and play an important role in the propagation and dissipation of waves. A comprehensive study of these structures requires deep understanding of the physical processes involved and investigation of their intricate link with structures/processes at lower photospheric levels. Furthermore, due to their large number present on the solar surface, it is essential to investigate their impact on the mass and energy transport to higher atmospheric layers through processes such as magnetic reconnection and propagation of waves. The in-depth study of all aforementioned characteristics and processes, with the further addition of non-LTE physics, as well as the use of three-dimensional numerical simulations poses a fascinating challenge for both theory and numerical modeling of chromospheric fine-scale structures.

  2. Tides, Interactions, and Fine-Scale Substructures in Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Conselice, Christopher J.; Gallagher, John S., III

    1999-01-01

    We present the results of a study on galaxy interactions, tides, and other processes that produce luminous fine-scale substructures in the galaxy clusters: Coma, Perseus, Abell 2199, AWM 3, and AWM 5. All unusual structures in these clusters can be categorized into seven morphologies: interacting galaxies, multiple galaxies (noninteracting), distorted galaxies, tailed galaxies, line galaxies, dwarf galaxy groups, and galaxy aggregates. The various morphologies are described, and a catalog is presented, of 248 objects in these five clusters along with color, and positional information obtained from CCD images taken with the WIYN 3.5 m telescope in broadband B and R filters. Distorted, interacting, and fine-scale substructures have a range of colors extending from blue objects with B-R~0 to redder colors at B-R~2.5. We also find that the structures with the most disturbed morphology have the bluest colors. In addition, the relative number distributions of these structures suggest that two separate classes of galaxy clusters exist: one dominated by distorted structures and the other dominated by galaxy associations. The Coma and Perseus clusters, respectively, are proposed as models for these types of clusters. These structures avoid the deep potentials of the dominant D or cD galaxies in the Coma and Perseus clusters, and tend to clump together. Possible mechanisms for the production of fine-scale substructure are reviewed and compared with observations of z~0.4 Butcher-Oemler clusters. We conclude, based on color, positional, and statistical data, that the most likely mechanism for the creation of these structures is through an interaction with the gravitational potential of the cluster, possibly coupled with effects of weak interactions with cluster ellipticals.

  3. Fine-Scale Filamentary Structure in Coronal Streamers

    NASA Technical Reports Server (NTRS)

    Woo, Richard; Armstrong, John W.; Bird, Michael K.; Paetzold, Martin

    1995-01-01

    Doppler scintillation measurements of a coronal streamer lasting several solar rotations have been conducted by Ulysses in 1991 over a heliocentric distance range of 14-77 R(sub 0). By showing that the solar corona is filamentary, and that Doppler frequency is the radio counterpart of white-light eclipse pictures processed to enhance spatial gradients, it is demonstrated that Doppler scintillation measurements provide the high spatial resolution that has long eluded white-light coronagraph measurements. The region of enhanced scintillation, spanning an angular extent of 1.8 deg in heliographic longitude, coincides with the radially expanding streamer stalk and represents filamentary structure with scale sizes at least as small as 340 km (0.5 sec) when extrapolated to the Sun. Within the stalk of the streamer, the fine-scale structure corresponding to scale sizes in the range of 20-340 km at the Sun and associated with closed magnetic fields amounts to a few percent of the mean density, while outside the stalk, the fine-scale structure associated with open fields is an order of magnitude lower. Clustering of filamentary structure that takes place within the stalk of the streamer is suggestive of multiple current sheets. Comparison with ISEE 3 in situ plasma measurements shows that significant evolution resulting from dynamic interaction with increasing heliocentric distance takes place by the time streamers reach Earth orbit.

  4. The TRMM Multi-satellite Precipitation Analysis (TMPA): Quasi-Global Precipitation Estimates at Fine Scales

    NASA Technical Reports Server (NTRS)

    Huffman, George J.; Adler, Robert F.; Bolvin, David T.; Gu, Guojun; Nelkin, Eric J.; Bowman, Kenneth P.; Stocker, Erich; Wolff, David B.

    2006-01-01

    The TRMM Multi-satellite Precipitation Analysis (TMPA) provides a calibration-based sequential scheme for combining multiple precipitation estimates from satellites, as well as gauge analyses where feasible, at fine scales (0.25 degrees x 0.25 degrees and 3-hourly). It is available both after and in real time, based on calibration by the TRMM Combined Instrument and TRMM Microwave Imager precipitation products, respectively. Only the after-real-time product incorporates gauge data at the present. The data set covers the latitude band 50 degrees N-S for the period 1998 to the delayed present. Early validation results are as follows: The TMPA provides reasonable performance at monthly scales, although it is shown to have precipitation rate dependent low bias due to lack of sensitivity to low precipitation rates in one of the input products (based on AMSU-B). At finer scales the TMPA is successful at approximately reproducing the surface-observation-based histogram of precipitation, as well as reasonably detecting large daily events. The TMPA, however, has lower skill in correctly specifying moderate and light event amounts on short time intervals, in common with other fine-scale estimators. Examples are provided of a flood event and diurnal cycle determination.

  5. Fine scale association mapping of disease loci using simplex families.

    PubMed

    Morris, A P; Whittaker, J C

    2000-05-01

    We present a new method for the fine scale mapping of disease loci based on samples of simplex families, each containing an affected child. The method is based on a generalisation of a single locus allele transmission model to multiple marker loci. The model is developed under the assumption of a single ancestral mutation and allows for the calculation of posterior probabilities that each allele at a particular marker was present on the founder chromosome. We illustrate the method using simulated family data for cystic fibrosis and Huntingtons disease, for which the locations of mutations in the disease genes are now known. For both diseases, our new method provides good estimates of the location of the mutations. PMID:11246474

  6. Parallel integer sorting with medium and fine-scale parallelism

    NASA Technical Reports Server (NTRS)

    Dagum, Leonardo

    1993-01-01

    Two new parallel integer sorting algorithms, queue-sort and barrel-sort, are presented and analyzed in detail. These algorithms do not have optimal parallel complexity, yet they show very good performance in practice. Queue-sort designed for fine-scale parallel architectures which allow the queueing of multiple messages to the same destination. Barrel-sort is designed for medium-scale parallel architectures with a high message passing overhead. The performance results from the implementation of queue-sort on a Connection Machine CM-2 and barrel-sort on a 128 processor iPSC/860 are given. The two implementations are found to be comparable in performance but not as good as a fully vectorized bucket sort on the Cray YMP.

  7. Fine-Scale Road Stretch Forecasting along Main Danish Roads

    NASA Astrophysics Data System (ADS)

    Mahura, A.; Petersen, C.; Sattler, K.; Sass, B.

    2009-09-01

    and fine height accuracy. The main aim of this study is to research, analyze, develop, and improve the quality of the road condition forecasts by refining, detalization, setting up, and running the fine-scale resolution numerical weather prediction (NWP) model with integration (from high resolution databases) of characteristics and derived parameters of surrounding roads the land-use, terrain, positioning and road properties at road stations/ stretches. The objectives include, at first, research and development of the existing road model based on input from a fine-scale NWP modelling. At second, it is analysis and integration of detailed data and derived parameters at road stations/stretches into the RCM based on available detailed Danish datasets on terrain, GPS positioning, land-use, and road properties. And at third, it is elaboration, testing, evaluation, and implementation of the methods and approaches suitable for forecasting and verification of the RCM performance for fine-scales. The results of this study are applicable for improvement of quality of detailed forecasts at road stretches. This will facilitate the use of data from the road stretch forecasting to automatic adjustment of control of the dosage spread by salting spreaders (i.e. for optimization of the salt amount spreaded in order to prevent the icing/freezing and better timing of salting schedule). It will lead to improvement of the overall safety of the winter road traffic. It will contribute to further development and improvement of the visualization tools for the road stretches forecasting. And it may reduce the environmental impact in the road surroundings due to an optimized spreading of the salt.

  8. The fine scale genetic structure of the British population

    PubMed Central

    Davison, Dan; Boumertit, Abdelhamid; Day, Tammy; Hutnik, Katarzyna; Royrvik, Ellen C; Cunliffe, Barry; Lawson, Daniel J; Falush, Daniel; Freeman, Colin; Pirinen, Matti; Myers, Simon; Robinson, Mark; Donnelly, Peter; Bodmer, Walter

    2015-01-01

    Summary Fine-scale genetic variation between human populations is interesting as a signature of historical demographic events and because of its potential for confounding disease studies. We use haplotype-based statistical methods to analyse genome-wide SNP data from a carefully chosen geographically diverse sample of 2,039 individuals from the United Kingdom (UK). This reveals a rich and detailed pattern of genetic differentiation with remarkable concordance between genetic clusters and geography. The regional genetic differentiation and differing patterns of shared ancestry with 6,209 individuals from across Europe carry clear signals of historical demographic events. We estimate the genetic contribution to SE England from Anglo-Saxon migrations to be under half, identify the regions not carrying genetic material from these migrations, suggest significant pre-Roman but post-Mesolithic movement into SE England from the Continent, and show that in non-Saxon parts of the UK there exist genetically differentiated subgroups rather than a general “Celtic” population. PMID:25788095

  9. A fine-scale nanostructure in γ-alumina

    NASA Astrophysics Data System (ADS)

    Paglia, Gianluca; Bozin, Emil; Billinge, Simon

    2006-03-01

    Despite the preeminent industrial importance of γ-alumina in catalysis, details of the structure remain unresolved due to its 15-30˜nm domain nanocrystalline nature. Diffraction patterns are broad and single crystals are not available making accurate structural solution difficult using conventional crystallographic methods. We have applied a local structural technique, the atomic pair distribution function (PDF) analysis of powder diffraction, to obtain a quantitative structure. This is a total scattering technique that incorporates both Bragg and diffuse scattering information in the PDF, allowing all diffracted intensities from the XRD pattern to be equally considered. Surprisingly, we find a previously unknown fine-scale nanostructure with a domain size ˜ 1 nm. Within these nanodomains the oxygen sublattice is modified from the average structure and retains aspects of the boehmite precursor. This results in a novel and unexpected view of the γ-alumina structure since earlier controversies about it centered on the arrangement of Al ions among different cation sites, whereas the oxygen sublattice arrangement was not usually questioned.

  10. A Parametric Study of Fine-scale Turbulence Mixing Noise

    NASA Technical Reports Server (NTRS)

    Khavaran, Abbas; Bridges, James; Freund, Jonathan B.

    2002-01-01

    The present paper is a study of aerodynamic noise spectra from model functions that describe the source. The study is motivated by the need to improve the spectral shape of the MGBK jet noise prediction methodology at high frequency. The predicted spectral shape usually appears less broadband than measurements and faster decaying at high frequency. Theoretical representation of the source is based on Lilley's equation. Numerical simulations of high-speed subsonic jets as well as some recent turbulence measurements reveal a number of interesting statistical properties of turbulence correlation functions that may have a bearing on radiated noise. These studies indicate that an exponential spatial function may be a more appropriate representation of a two-point correlation compared to its Gaussian counterpart. The effect of source non-compactness on spectral shape is discussed. It is shown that source non-compactness could well be the differentiating factor between the Gaussian and exponential model functions. In particular, the fall-off of the noise spectra at high frequency is studied and it is shown that a non-compact source with an exponential model function results in a broader spectrum and better agreement with data. An alternate source model that represents the source as a covariance of the convective derivative of fine-scale turbulence kinetic energy is also examined.

  11. The fine-scale genetic structure of the British population.

    PubMed

    Leslie, Stephen; Winney, Bruce; Hellenthal, Garrett; Davison, Dan; Boumertit, Abdelhamid; Day, Tammy; Hutnik, Katarzyna; Royrvik, Ellen C; Cunliffe, Barry; Lawson, Daniel J; Falush, Daniel; Freeman, Colin; Pirinen, Matti; Myers, Simon; Robinson, Mark; Donnelly, Peter; Bodmer, Walter

    2015-03-19

    Fine-scale genetic variation between human populations is interesting as a signature of historical demographic events and because of its potential for confounding disease studies. We use haplotype-based statistical methods to analyse genome-wide single nucleotide polymorphism (SNP) data from a carefully chosen geographically diverse sample of 2,039 individuals from the United Kingdom. This reveals a rich and detailed pattern of genetic differentiation with remarkable concordance between genetic clusters and geography. The regional genetic differentiation and differing patterns of shared ancestry with 6,209 individuals from across Europe carry clear signals of historical demographic events. We estimate the genetic contribution to southeastern England from Anglo-Saxon migrations to be under half, and identify the regions not carrying genetic material from these migrations. We suggest significant pre-Roman but post-Mesolithic movement into southeastern England from continental Europe, and show that in non-Saxon parts of the United Kingdom, there exist genetically differentiated subgroups rather than a general 'Celtic' population. PMID:25788095

  12. Modelling Fine Scale Movement Corridors for the Tricarinate Hill Turtle

    NASA Astrophysics Data System (ADS)

    Mondal, I.; Kumar, R. S.; Habib, B.; Talukdar, G.

    2016-06-01

    Habitat loss and the destruction of habitat connectivity can lead to species extinction by isolation of population. Identifying important habitat corridors to enhance habitat connectivity is imperative for species conservation by preserving dispersal pattern to maintain genetic diversity. Circuit theory is a novel tool to model habitat connectivity as it considers habitat as an electronic circuit board and species movement as a certain amount of current moving around through different resistors in the circuit. Most studies involving circuit theory have been carried out at small scales on large ranging animals like wolves or pumas, and more recently on tigers. This calls for a study that tests circuit theory at a large scale to model micro-scale habitat connectivity. The present study on a small South-Asian geoemydid, the Tricarinate Hill-turtle (Melanochelys tricarinata), focuses on habitat connectivity at a very fine scale. The Tricarinate has a small body size (carapace length: 127-175 mm) and home range (8000-15000 m2), with very specific habitat requirements and movement patterns. We used very high resolution Worldview satellite data and extensive field observations to derive a model of landscape permeability at 1 : 2,000 scale to suit the target species. Circuit theory was applied to model potential corridors between core habitat patches for the Tricarinate Hill-turtle. The modelled corridors were validated by extensive ground tracking data collected using thread spool technique and found to be functional. Therefore, circuit theory is a promising tool for accurately identifying corridors, to aid in habitat studies of small species.

  13. The fine-scale density wave structure of Saturn's rings

    NASA Astrophysics Data System (ADS)

    Griv, E.; Gedalin, M.

    2003-04-01

    A self-consistent system of the Boltzmann and the Poisson equations is used to study the dynamical evolution of Saturn's main A, B, C rings composed of discrete mutually gravitating particles. The simplified case of rare collisions between identical particles, when the collision frequency is smaller than the orbital frequency, is examined by exploring in the Boltzmann equation a Krook model integral of collisions. Equations describing the quasilinear (or weakly nonlinear) stage of Jeans instability of small gravity perturbations in Saturn's rings are derived and solved analytically. The theory, as applied to Saturn's rings, predicts for several features, such as numerous irregular Jeans-unstable density wakes, with size and spacing between them of the order of 2pi h <= 100 m, where h is the typical thickness of the system. The interaction of particles with these almost aperiodically growing gravity perturbations increases both the radial spread of the disk and random velocities of particles in a very short time scale of only 2-3 disk orbital revolutions. The latter leads to an eventual stabilization of the system, unless some effective ``cooling" mechanism exists, reducing the magnitude of the relative velocity of particles. It is suggested that inelastic (dissipative) interparticle impacts provide such a cooling mechanism, leading to the recurrent density waves activity. We predict that forthcoming in 2004 Cassini spacecraft high-resolution images will reveal this fine-scale recurrent ˜ 100 m or even less spiral density wave structure in low and moderately high optical depth regions (τ <= 1, where τ is the normal optical depth) of Saturn's main rings. Acknowledgements: Partial support for this work was provided by the Israel Science Foundation and the Israeli Ministry of Immigrant Absorption.

  14. On the Lundgren-Townsend model of turbulent fine scales

    NASA Astrophysics Data System (ADS)

    Pullin, D. I.; Saffman, P. G.

    1993-01-01

    The strained-spiral vortex model of turbulent fines scales given by Lundgren [Phys. Fluids 25, 2193 (1982)] is used to calculate vorticity and velocity-derivative moments for homogeneous isotropic turbulence. A specific form of the relaxing spiral vortex is proposed modeled by a rolling-up vortex layer embedded in a background containing opposite signed vorticity and with zero total circulation at infinity. The numerical values of two dimensionless groups are fixed in order to give a Kolmogorov constant and skewness which are within the range of experiment. This gives the result that the ratio of the ensemble average hyperskewness S2p+1≡ (∂u/∂x)2p+1/[(∂u/∂x)2](2p+1)/2 to the hyperflatness F2p≡(∂u/∂x)2p/[(∂u/∂x)2] p, p=2,3,..., is constant independent of Taylor-Reynolds number Rλ, as is the ratio of the 2pth moment of one component of the vorticity Ω2p≡ω2px/(ω2x)p to F2p. A cutoff in a relevant time integration is then used to eliminate vortex-sheet-induced divergences in the integrals corresponding to ω2px, p=2,3,..., and an assumption is made that the lateral scale of the spiral vortex in the model is the geometric mean of the Taylor and the Kolmogorov microscales. This gives Ω2p=Ω̂2pRλp/2-3/4, F2p=F̂2pRλp/2-3/4 and S2p+1=Ŝ2p+1Rλp/2-3/4, p=2,3,..., with explicit calculation of the numbers Ω̂2p, F̂2p, and Ŝ2p+1. The results of the model are compared with experimental compilation of Van Atta and Antonia [Phys. Fluids 23, 252 (1980)] for F4 and with the isotropic turbulence calculations of Kerr [J. Fluid Mech. 153, 31 (1985)] and of Vincent and Meneguzzi [J. Fluid Mech. 225, 1 (1991)].

  15. Jupiter's Great Red Spot: Fine-scale matches of model vorticity patterns to prevailing cloud patterns

    NASA Astrophysics Data System (ADS)

    Morales-Juberías, Raúl; Dowling, Timothy E.

    2013-07-01

    We report on a set of six new matches between fine-scale features in the vorticity field of a three-dimensional (3D), primitive-equation, finite-difference model of Jupiter's Great Red Spot that includes no clouds or cloud physics, and quasi-permanent structures in reflected visible-band images of the clouds. These add to similar success by Cho et al. (Cho, J., de la Torre Juárez, M., Ingersoll, A.P., Dritschel, D.G. [2001]. J. Geophys. Res. 106, 5099-5106), who earlier captured four characteristic features of the GRS, also reproduced here, using a 3D quasi-geostrophic, cloud-free contour-dynamics model. In that study and this, the key enabling model attribute is sufficient horizontal resolution, rather than the moist-convective and cloud-microphysics processes often required to match the patterns of clouds in terrestrial hurricanes. The only significant feature that these dry models do not capture is the episodic moist-convective plumes seen in the northwest quadrant adjacent to the GRS. We initialize with Jupiter's averaged zonal winds plus an approximately balanced, smooth 3D ellipsoidal anticyclone. The threshold horizontal grid-resolution to obtain the fine-scale matches is approximately Δy/Ld ≲ 0.15, where Δy ≲ 300 km is the meridional grid spacing and Ld ˜ 2000 km the Rossby deformation length. For models with this or finer horizontal resolution, the best correspondence with observations is reached after about six vortex turnaround times from initialization (˜30 Earth days), but good facsimiles of nearly all the studied features appear after only 1.5 turnaround times (˜7-8 days). We conclude that in images of Jupiter, it is not accurate to associate clouds with upward motion, since these dry models reproduce the observed cloud patterns without this association, and indeed the synoptic-scale vertical motions in the model, as well as those deduced from observations, do not at all correspond to the observed cloud patterns. Instead, Jupiter's cloud

  16. Fine-scale structure in the far-infrared Milky-Way

    NASA Technical Reports Server (NTRS)

    Waller, William H.; Wall, William F.; Reach, William T.; Varosi, Frank; Ebert, Rick; Laughlin, Gaylin; Boulanger, Francois

    1995-01-01

    This final report summarizes the work performed and which falls into five broad categories: (1) generation of a new data product (mosaics of the far-infrared emission in the Milky Way); (2) acquisition of associated data products at other wavelengths; (3) spatial filtering of the far-infrared mosaics and resulting images of the FIR fine-scale structure; (4) evaluation of the spatially filtered data; (5) characterization of the FIR fine-scale structure in terms of its spatial statistics; and (6) identification of interstellar counterparts to the FIR fine-scale structure.

  17. Fine-scale hydrodynamics influence the spatio-temporal distribution of harbour porpoises at a coastal hotspot

    NASA Astrophysics Data System (ADS)

    Jones, A. R.; Hosegood, P.; Wynn, R. B.; De Boer, M. N.; Butler-Cowdry, S.; Embling, C. B.

    2014-11-01

    The coastal Runnelstone Reef, off southwest Cornwall (UK), is characterised by complex topography and strong tidal flows and is a known high-density site for harbour porpoise (Phocoena phocoena); a European protected species. Using a multidisciplinary dataset including: porpoise sightings from a multi-year land-based survey, Acoustic Doppler Current Profiling (ADCP), vertical profiling of water properties and high-resolution bathymetry; we investigate how interactions between tidal flow and topography drive the fine-scale porpoise spatio-temporal distribution at the site. Porpoise sightings were distributed non-uniformly within the survey area with highest sighting density recorded in areas with steep slopes and moderate depths. Greater numbers of sightings were recorded during strong westward (ebbing) tidal flows compared to strong eastward (flooding) flows and slack water periods. ADCP and Conductivity Temperature Depth (CTD) data identified fine-scale hydrodynamic features, associated with cross-reef tidal flows in the sections of the survey area with the highest recorded densities of porpoises. We observed layered, vertically sheared flows that were susceptible to the generation of turbulence by shear instability. Additionally, the intense, oscillatory near surface currents led to hydraulically controlled flow that transitioned from subcritical to supercritical conditions; indicating that highly turbulent and energetic hydraulic jumps were generated along the eastern and western slopes of the reef. The depression and release of isopycnals in the lee of the reef during cross-reef flows revealed that the flow released lee waves during upslope currents at specific phases of the tidal cycle when the highest sighting rates were recorded. The results of this unique, fine-scale field study provide new insights into specific hydrodynamic features, produced through tidal forcing, that may be important for creating predictable foraging opportunities for porpoises at a

  18. Fine-scale radar observations of orographic precipitation features during a Wasatch Mountain winter storm

    NASA Astrophysics Data System (ADS)

    Campbell, Leah Suzanne

    Fine-scale spatiotemporal variations in orographic precipitation pose a major challenge for weather prediction in mountainous regions. Here we use ground-based X-band radar observations collected during IOP6 of the Storm Chasing Utah Style Study (SCHUSS) to provide an illustrative example of such variations during a cold-frontal passage over the Wasatch Mountains of northern Utah. Emphasis is placed on precipitation features in and around Little Cottonwood Canyon (LCC), which cuts orthogonally eastward into the Wasatch Mountains. This work also demonstrates the potential for improving weather analysis and forecasting of such variations in LCC using a gap-filling radar. Precipitation during the weakly stratified prefrontal storm stage of IOP6 featured a wave-like barrier-scale reflectivity maximum along the Wasatch Crest that extended weakly westward and upstream over the transverse ridges flanking LCC. These characteristics appeared to reflect a veering wind profile, which produced southwesterly flow over the ridges flanking LCC but cross-barrier westerly flow further aloft. Sublimation within dry subcloud air further diminished radar reflectivities over lower LCC. The cold front was associated with stronger reflectivities over lower LCC and at lower-to-mid elevations along the northwest-facing canyon wall, consistent with shallow, northwesterly upslope flow. Eventually, shallow precipitating cells developed in the moist-neutral postfrontal flow, with the depth, coverage and intensity of these cells increasing from over the Salt Lake Valley to upper LCC.

  19. Response of the Southern Benguela upwelling system to fine-scale modifications of the coastal wind

    NASA Astrophysics Data System (ADS)

    Desbiolles, F.; Blanke, B.; Bentamy, A.; Roy, C.

    2016-04-01

    We analyze the results of a regional model of the Southern Benguela upwelling system forced by wind stress fields derived from QuikSCAT observations. Two different horizontal resolutions are considered for the wind stress: QS25 and QS50, corresponding to native 25 and 50 km grids, respectively. The differences between both products highlight the primary importance of fine-scale momentum fluxes for both the structure and intensity of the wind- and wind-curl-driven upwelling. Using QS25, we show that the coastal Ekman transport is reduced, leading to a warmer SST and a reduced oceanic coastal jet. QS25 finer wind stress curl patterns also favor the development of a stronger and shallower poleward undercurrent. The addition of a coastal wind correction to QS25 lets us investigate the possible implications of an imbalance between Ekman transport and Ekman pumping: a wind reduction in the coastal band often reduces the SST cooling, but the two mechanisms compensate each other when the characteristic length scales of the coastal upwelling and the orography-induced wind drop-off are similar.

  20. Quantitative rainfall metrics for comparing volumetric rainfall retrievals to fine scale models

    NASA Astrophysics Data System (ADS)

    Collis, Scott; Tao, Wei-Kuo; Giangrande, Scott; Fridlind, Ann; Theisen, Adam; Jensen, Michael

    2013-04-01

    Precipitation processes play a significant role in the energy balance of convective systems for example, through latent heating and evaporative cooling. Heavy precipitation "cores" can also be a proxy for vigorous convection and vertical motions. However, comparisons between rainfall rate retrievals from volumetric remote sensors with forecast rain fields from high-resolution numerical weather prediction simulations are complicated by differences in the location and timing of storm morphological features. This presentation will outline a series of metrics for diagnosing the spatial variability and statistical properties of precipitation maps produced both from models and retrievals. We include existing metrics such as Contoured by Frequency Altitude Diagrams (Yuter and Houze 1995) and Statistical Coverage Products (May and Lane 2009) and propose new metrics based on morphology, cell and feature based statistics. Work presented focuses on observations from the ARM Southern Great Plains radar network consisting of three agile X-Band radar systems with a very dense coverage pattern and a C Band system providing site wide coverage. By combining multiple sensors resolutions of 250m2 can be achieved, allowing improved characterization of fine-scale features. Analyses compare data collected during the Midlattitude Continental Convective Clouds Experiment (MC3E) with simulations of observed systems using the NASA Unified Weather Research and Forecasting model. May, P. T., and T. P. Lane, 2009: A method for using weather radar data to test cloud resolving models. Meteorological Applications, 16, 425-425, doi:10.1002/met.150, 10.1002/met.150. Yuter, S. E., and R. A. Houze, 1995: Three-Dimensional Kinematic and Microphysical Evolution of Florida Cumulonimbus. Part II: Frequency Distributions of Vertical Velocity, Reflectivity, and Differential Reflectivity. Mon. Wea. Rev., 123, 1941-1963, doi:10.1175/1520-0493(1995)123<1941:TDKAME>2.0.CO;2.

  1. The function of oscillatory tongue-flicks in snakes: insights from kinematics of tongue-flicking in the banded water snake (Nerodia fasciata).

    PubMed

    Daghfous, Gheylen; Smargiassi, Maïté; Libourel, Paul-Antoine; Wattiez, Ruddy; Bels, Vincent

    2012-11-01

    Tongue-flicking is an important sensory behavior unique to squamate reptiles in which chemical stimuli gathered by the tongue are delivered the vomeronasal organ situated in the roof of the mouth. Because tongue-flick numbers can easily be quantified, this behavior has been widely used as a measure of vomeronasal sampling in snakes using related variables such as tongue-flick rate or tongue-flick/attack score. Surprisingly, the behavior itself and especially the function of the oscillatory tongue-flicks remains poorly understood. To describe the overall kinematics of tongue-flicking in the colubrid snake Nerodia fasciata and to test predictions on the function of oscillatory tongue-flicks, we filmed the tongue-flicks of 8 adult Nerodia fasciata using 4 synchronized high-speed cameras. Three-dimensional kinematic and performance variables were extracted from the videos in order to quantify tongue movements. Based on the kinematic analysis, we demonstrate the existence of 2 functional and behavioral tongue-flick categories. Tongue-flicks with oscillations meet all the criteria for being adapted to the collection of odorants; simple downward extensions appear better suited for the rapid pick up of nonvolatile chemical stimuli from the substrate or a food item. External stimuli such as tactile and/or vomeronasal stimulation can induce a shift between these categories. PMID:22942105

  2. Fine-scale topography in sensory systems: insights from Drosophila and vertebrates

    PubMed Central

    Kaneko, Takuya; Ye, Bing

    2015-01-01

    To encode the positions of sensory stimuli, sensory circuits form topographic maps in the central nervous system through specific point-to-point connections between pre- and post-synaptic neurons. In vertebrate visual systems, the establishment of topographic maps involves the formation of a coarse topography followed by that of fine-scale topography that distinguishes the axon terminals of neighboring neurons. It is known that intrinsic differences in the form of broad gradients of guidance molecules instruct coarse topography while neuronal activity is required for fine-scale topography. On the other hand, studies in the Drosophila visual system have shown that intrinsic differences in cell adhesion among the axon terminals of neighboring neurons instruct the fine-scale topography. Recent studies on activity-dependent topography in the Drosophila somatosensory system have revealed a role of neuronal activity in creating molecular differences among sensory neurons for establishing fine-scale topography, implicating a conserved principle. Here we review the findings in both Drosophila and vertebrates and propose an integrated model for fine-scale topography. PMID:26091779

  3. Fine-scale topography in sensory systems: insights from Drosophila and vertebrates.

    PubMed

    Kaneko, Takuya; Ye, Bing

    2015-09-01

    To encode the positions of sensory stimuli, sensory circuits form topographic maps in the central nervous system through specific point-to-point connections between pre- and postsynaptic neurons. In vertebrate visual systems, the establishment of topographic maps involves the formation of a coarse topography followed by that of fine-scale topography that distinguishes the axon terminals of neighboring neurons. It is known that intrinsic differences in the form of broad gradients of guidance molecules instruct coarse topography while neuronal activity is required for fine-scale topography. On the other hand, studies in the Drosophila visual system have shown that intrinsic differences in cell adhesion among the axon terminals of neighboring neurons instruct the fine-scale topography. Recent studies on activity-dependent topography in the Drosophila somatosensory system have revealed a role of neuronal activity in creating molecular differences among sensory neurons for establishing fine-scale topography, implicating a conserved principle. Here we review the findings in both Drosophila and vertebrates and propose an integrated model for fine-scale topography. PMID:26091779

  4. Computer-Assisted Experiments with Oscillatory Circuits

    ERIC Educational Resources Information Center

    Fernandes, J. C.; Ferraz, A.; Rogalski, M. S.

    2010-01-01

    A basic setup for data acquisition and analysis from an oscillatory circuit is described, with focus on its application as either low-pass, high-pass, band-pass or band-reject frequency filter. A homemade board containing the "RLC" elements allows for the interchange of some of them, in particular, for the easy change of the "R" value, and this…

  5. Downscaling future climate scenarios to fine scales for hydrologic and ecological modeling and analysis

    USGS Publications Warehouse

    Flint, Lorraine E.; Flint, Alan L.

    2012-01-01

    The methodology, which includes a sequence of rigorous analyses and calculations, is intended to reduce the addition of uncertainty to the climate data as a result of the downscaling while providing the fine-scale climate information necessary for ecological analyses. It results in new but consistent data sets for the US at 4 km, the southwest US at 270 m, and California at 90 m and illustrates the utility of fine-scale downscaling to analyses of ecological processes influenced by topographic complexity.

  6. Fine scale heterogeneity in the Earth's upper mantle - observation and interpretation

    NASA Astrophysics Data System (ADS)

    Thybo, Hans

    2014-05-01

    High resolution seismic data has over the last decade provided significant evidence for pronounced fine scale heterogeneity in the Earth's mantle at an unprecedented detail. Seismic tomography developed tremendously during the last 20-30 years. The results show overall structure in the mantle which can be correlated to main plate tectonic features, such as oceanic spreading centres, continental rift zones and subducting slabs. Much seismological mantle research is now concentrated on imaging fine scale heterogeneity, which may be detected and imaged with high-resolution seismic data with dense station spacing and at high frequency, e.g. from the Russian Peaceful Nuclear Explosion (PNE) data set and array recordings of waves from natural seismic sources. Mantle body waves indicate pronounced heterogeneity at three depth levels whereas other depth intervals appear transparent, at least in the frequency band of 0.5-15 Hz: (1) The Mantle Low-Velocity Zone (LVZ) is a global feature which has been detected in more than 50 long-range seismic profiles (Thybo and Perchuc, Science, 1997). Since then numerous studies based on receiver functions, surface waves, and controlled source seismology have confirmed the presence of this zone. The data demonstrates that the top of the LVZ everywhere is at a depth of 100±20 km. A pronounced coda shows that the zone is highly heterogeneous at characteristic scale lengths of 5-15 by 2-6 km. We interpret that the rocks in the LVZ have a temperature close to the solidus or even may contain small fractions of partial melt. The solidus of mantle rocks is very low below a depth of ca. 90 km if volatiles are present due to a characteristic kink in the solidus which is much lower than for dry mantle rocks. We suggest that the rocks are in a totally solid state below the LVZ and that the depth to the interface to fully solid rocks is an indicator of the thermal state of the upper mantle. (2) Significant scattering from around the top of the

  7. Fine scale heterogeneity in the Earth's upper mantle - observation and interpretation

    NASA Astrophysics Data System (ADS)

    Thybo, Hans

    2013-04-01

    High resolution seismic data has over the last decade provided significant evidence for pronounced fine scale heterogeneity in the Earth's mantle at an unprecedented detail. Seismic tomography developed tremendously during the last 20-30 years. The results show overall structure in the mantle which can be correlated to main plate tectonic features, such as oceanic spreading centres, continental rift zones and subducting slabs. Much seismological mantle research is now concentrated on imaging fine scale heterogeneity, which may be detected and imaged with high-resolution seismic data with dense station spacing and at high frequency, e.g. from the Russian Peaceful Nuclear Explosion (PNE) data set and array recordings of waves from natural seismic sources. Mantle body waves indicate pronounced heterogeneity at three depth levels whereas other depth intervals appear transparent, at least in the frequency band of 0.5-15 Hz: (1) The Mantle Low-Velocity Zone (LVZ) is a global feature which has been detected in more than 50 long-range seismic profiles (Thybo and Perchuc, Science, 1997). Since then numerous studies based on receiver functions, surface waves, and controlled source seismology have confirmed the presence of this zone. The data demonstrates that the top of the LVZ everywhere is at a depth of 100±20 km. A pronounced coda shows that the zone is highly heterogeneous at characteristic scale lengths of 5-15 by 2-6 km. We interpret that the rocks in the LVZ have a temperature close to the solidus or even may contain small fractions of partial melt. The solidus of mantle rocks is very low below a depth of ca. 90 km if volatiles are present due to a characteristic kink in the solidus which is much lower than for dry mantle rocks. We suggest that the rocks are in a totally solid state below the LVZ and that the depth to the interface to fully solid rocks is an indicator of the thermal state of the upper mantle. (2) Significant scattering from around the top of the

  8. Fine-Scale Habitat Segregation between Two Ecologically Similar Top Predators.

    PubMed

    Palomares, Francisco; Fernández, Néstor; Roques, Severine; Chávez, Cuauhtemoc; Silveira, Leandro; Keller, Claudia; Adrados, Begoña

    2016-01-01

    Similar, coexisting species often segregate along the spatial ecological axis. Here, we examine if two top predators (jaguars and pumas) present different fine-scale habitat use in areas of coexistence, and discuss if the observed pattern can be explained by the risk of interference competition between them. Interference competition theory predicts that pumas should avoid habitats or areas used by jaguars (the dominant species), and as a consequence should present more variability of niche parameters across study areas. We used non-invasive genetic sampling of faeces in 12 different areas and sensor satellite fine-scale habitat indices to answer these questions. Meta-analysis confirmed differences in fine-scale habitat use between jaguars and pumas. Furthermore, average marginality of the realized niches of pumas was more variable than those of jaguars, and tolerance (a measure of niche breadth) was on average 2.2 times higher in pumas than in jaguars, as expected under the interference competition risk hypothesis. The use of sensor satellite fine-scale habitat indices allowed the detection of subtle differences in the environmental characteristics of the habitats used by these two similar top predators, which, as a rule, until now were recorded using the same general habitat types. The detection of fine spatial segregation between these two top predators was scale-dependent. PMID:27187596

  9. CFD MODELING OF FINE SCALE FLOW AND TRANSPORT IN THE HOUSTON METROPOLITAN AREA, TEXAS

    EPA Science Inventory

    Fine scale modeling of flows and air quality in Houston, Texas is being performed; the use of computational fluid dynamics (CFD) modeling is being applied to investigate the influence of morphologic structures on the within-grid transport and dispersion of sources in grid models ...

  10. A FRAMEWORK FOR FINE-SCALE COMPUTATIONAL FLUID DYNAMICS AIR QUALITY MODELING AND ANALYSIS

    EPA Science Inventory

    This paper discusses a framework for fine-scale CFD modeling that may be developed to complement the present Community Multi-scale Air Quality (CMAQ) modeling system which itself is a computational fluid dynamics model. A goal of this presentation is to stimulate discussions on w...

  11. Fine-Scale Habitat Segregation between Two Ecologically Similar Top Predators

    PubMed Central

    Palomares, Francisco; Fernández, Néstor; Roques, Severine; Chávez, Cuauhtemoc; Silveira, Leandro; Keller, Claudia; Adrados, Begoña

    2016-01-01

    Similar, coexisting species often segregate along the spatial ecological axis. Here, we examine if two top predators (jaguars and pumas) present different fine-scale habitat use in areas of coexistence, and discuss if the observed pattern can be explained by the risk of interference competition between them. Interference competition theory predicts that pumas should avoid habitats or areas used by jaguars (the dominant species), and as a consequence should present more variability of niche parameters across study areas. We used non-invasive genetic sampling of faeces in 12 different areas and sensor satellite fine-scale habitat indices to answer these questions. Meta-analysis confirmed differences in fine-scale habitat use between jaguars and pumas. Furthermore, average marginality of the realized niches of pumas was more variable than those of jaguars, and tolerance (a measure of niche breadth) was on average 2.2 times higher in pumas than in jaguars, as expected under the interference competition risk hypothesis. The use of sensor satellite fine-scale habitat indices allowed the detection of subtle differences in the environmental characteristics of the habitats used by these two similar top predators, which, as a rule, until now were recorded using the same general habitat types. The detection of fine spatial segregation between these two top predators was scale-dependent. PMID:27187596

  12. 75 FR 60407 - Gulf of the Farallones National Marine Sanctuary Permit Application Project Titled: Fine Scale...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-30

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration Gulf of the Farallones National Marine Sanctuary Permit Application Project Titled: Fine Scale, Long-Term Tracking of Adult White Sharks AGENCY: Office of...

  13. Methods for Improving Fine-Scale Applications of the WRF-CMAQ Modeling System

    EPA Science Inventory

    Presentation on the work in AMAD to improve fine-scale (e.g. 4km and 1km) WRF-CMAQ simulations. Includes iterative analysis, updated sea surface temperature and snow cover fields, and inclusion of impervious surface information (urban parameterization).

  14. IMPLEMENTATION OF AN URBAN CANOPY PARAMETERIZATION FOR FINE-SCALE SIMULATIONS

    EPA Science Inventory

    The Pennsylvania State University/National Center for Atmospheric Research Mesoscale Model (MM5) (Grell et al. 1994) has been modified to include an urban canopy parameterization (UCP) for fine-scale urban simulations ( 1 - km horizontal grid spacing ). The UCP accounts for dr...

  15. Trim9 regulates activity-dependent fine-scale topography in Drosophila.

    PubMed

    Yang, Limin; Li, Ruonan; Kaneko, Takuya; Takle, Kendra; Morikawa, Rei K; Essex, Laura; Wang, Xin; Zhou, Jie; Emoto, Kazuo; Xiang, Yang; Ye, Bing

    2014-05-01

    Topographic projection of afferent terminals into 2D maps in the CNS is a general strategy used by the nervous system to encode the locations of sensory stimuli. In vertebrates, it is known that although guidance cues are critical for establishing a coarse topographic map, neural activity directs fine-scale topography between adjacent afferent terminals [1-4]. However, the molecular mechanism underlying activity-dependent regulation of fine-scale topography is poorly understood. Molecular analysis of the spatial relationship between adjacent afferent terminals requires reliable localization of the presynaptic terminals of single neurons as well as genetic manipulations with single-cell resolution in vivo. Although both requirements can potentially be met in Drosophila melanogaster [5, 6], no activity-dependent topographic system has been identified in flies [7]. Here we report a topographic system that is shaped by neuronal activity in Drosophila. With this system, we found that topographic separation of the presynaptic terminals of adjacent nociceptive neurons requires different levels of Trim9, an evolutionarily conserved signaling molecule [8-11]. Neural activity regulates Trim9 protein levels to direct fine-scale topography of sensory afferents. This study offers both a novel mechanism by which neural activity directs fine-scale topography of axon terminals and a new system to study this process at single-neuron resolution. PMID:24746793

  16. Distribution of fine-scale mantle heterogeneity from observations of Pdiff coda

    USGS Publications Warehouse

    Earle, P.S.; Shearer, P.M.

    2001-01-01

    We present stacked record sections of Global Seismic Network data that image the average amplitude and polarization of the high-frequency Pdiff coda and investigate their implications on the depth extent of fine-scale (~10 km) mantle heterogeneity. The extended 1-Hz coda lasts for at least 150 sec and is observed to a distance of 130??. The coda's polarization angle is about the same as the main Pdiff arrival (4.4 sec/deg) and is nearly constant with time. Previous studies show that multiple scattering from heterogeneity restricted to the lowermost mantle generates an extended Pdiff coda with a constant polarization. Here we present an alternative model that satisfies our Pdiff observations. The model consists of single scattering from weak (~1%) fine-scale (~2 km) structures distributed throughout the mantle. Although this model is nonunique, it demonstrates that Pdiff coda observations do not preclude the existence of scattering contributions from the entire mantle.

  17. Quad-plane stereoscopic PIV for fine-scale structure measurements in turbulence

    NASA Astrophysics Data System (ADS)

    Naka, Y.; Tomita, K.; Shimura, M.; Fukushima, N.; Tanahashi, M.; Miyauchi, T.

    2016-05-01

    The fine-scale structure in turbulence is investigated by quad-plane stereoscopic particle image velocimetry (QPSPIV). The quad-plane consists of two each of different polarizations and wavelengths, and it provides three velocity components at four independent parallel planes. Measurements have been undertaken in the developed region of a turbulent round jet with a spatial resolution sufficient to capture the small-scale structures. The advantage of the QPSPIV is presented in terms of the spectral response in the evaluation of the out-of-plane velocity gradient. The full velocity gradient tensor is computed with a fourth-order finite difference scheme in the out-of-plane direction as well as the in-plane directions. The turbulence quantities, such as the vorticity components, the energy dissipation rate and the second and third invariants of the velocity gradient tensor, are computed according to their faithful definitions. The coherent fine-scale eddies are extracted from the present QPSPIV data. The probability density functions of the diameter and the maximum azimuthal velocity of the extracted eddies exhibit their peak at approximately 8η and 1.5u_k, respectively, where η and u_k are the Kolmogorov length and velocity. These values agree well with the data in the literature. The phase-averaged distributions of turbulence quantities around the coherent fine-scale eddy indicate an apparent elliptic feature around the axis. Furthermore, the state of the strain rate exerting the eddy is quantified from the phase-averaged distributions of eigenvalues of the strain rate tensor and the alignment of the corresponding eigenvectors against the axis. The present study gives a solid experimental support of the coherent fine-scale structures in turbulence, and the technique can be applied to various flow fields and to the higher Reynolds number condition.

  18. Predictive Modelling to Identify Near-Shore, Fine-Scale Seabird Distributions during the Breeding Season.

    PubMed

    Warwick-Evans, Victoria C; Atkinson, Philip W; Robinson, Leonie A; Green, Jonathan A

    2016-01-01

    During the breeding season seabirds are constrained to coastal areas and are restricted in their movements, spending much of their time in near-shore waters either loafing or foraging. However, in using these areas they may be threatened by anthropogenic activities such as fishing, watersports and coastal developments including marine renewable energy installations. Although many studies describe large scale interactions between seabirds and the environment, the drivers behind near-shore, fine-scale distributions are not well understood. For example, Alderney is an important breeding ground for many species of seabird and has a diversity of human uses of the marine environment, thus providing an ideal location to investigate the near-shore fine-scale interactions between seabirds and the environment. We used vantage point observations of seabird distribution, collected during the 2013 breeding season in order to identify and quantify some of the environmental variables affecting the near-shore, fine-scale distribution of seabirds in Alderney's coastal waters. We validate the models with observation data collected in 2014 and show that water depth, distance to the intertidal zone, and distance to the nearest seabird nest are key predictors in the distribution of Alderney's seabirds. AUC values for each species suggest that these models perform well, although the model for shags performed better than those for auks and gulls. While further unexplained underlying localised variation in the environmental conditions will undoubtedly effect the fine-scale distribution of seabirds in near-shore waters we demonstrate the potential of this approach in marine planning and decision making. PMID:27031616

  19. Predictive Modelling to Identify Near-Shore, Fine-Scale Seabird Distributions during the Breeding Season

    PubMed Central

    Warwick-Evans, Victoria C.; Atkinson, Philip W.; Robinson, Leonie A.; Green, Jonathan A.

    2016-01-01

    During the breeding season seabirds are constrained to coastal areas and are restricted in their movements, spending much of their time in near-shore waters either loafing or foraging. However, in using these areas they may be threatened by anthropogenic activities such as fishing, watersports and coastal developments including marine renewable energy installations. Although many studies describe large scale interactions between seabirds and the environment, the drivers behind near-shore, fine-scale distributions are not well understood. For example, Alderney is an important breeding ground for many species of seabird and has a diversity of human uses of the marine environment, thus providing an ideal location to investigate the near-shore fine-scale interactions between seabirds and the environment. We used vantage point observations of seabird distribution, collected during the 2013 breeding season in order to identify and quantify some of the environmental variables affecting the near-shore, fine-scale distribution of seabirds in Alderney’s coastal waters. We validate the models with observation data collected in 2014 and show that water depth, distance to the intertidal zone, and distance to the nearest seabird nest are key predictors in the distribution of Alderney’s seabirds. AUC values for each species suggest that these models perform well, although the model for shags performed better than those for auks and gulls. While further unexplained underlying localised variation in the environmental conditions will undoubtedly effect the fine-scale distribution of seabirds in near-shore waters we demonstrate the potential of this approach in marine planning and decision making. PMID:27031616

  20. Experience-dependent emergence of fine-scale networks in visual cortex.

    PubMed

    Ishikawa, Ayako Wendy; Komatsu, Yukio; Yoshimura, Yumiko

    2014-09-10

    Visual cortical neurons selectively respond to particular features of visual stimuli and this selective responsiveness emerges from specific connectivity in the cortex. Most visual response properties are basically established by eye opening and are thereafter modified or refined by visual experience based on activity-dependent synaptic modifications during an early postnatal period. Visual deprivation during this period impairs development of visual functions, such as visual acuity. We previously demonstrated that fine-scale networks composed of a population of interconnected layer 2/3 (L2/3) pyramidal neurons receiving common inputs from adjacent neurons are embedded in a small area in rat visual cortex. We suggested that this network could be a functional unit for visual information processing. In this study, we investigated the effects of early visual experience on the development of fine-scale networks and individual synaptic connections in rat visual cortical slices. We used two kinds of deprivation, binocular deprivation and dark rearing, which allowed visual inputs with only diffuse light and no visual input, respectively. The probability and strength of excitatory connections to L2/3 pyramidal cells increased during the 2 weeks after eye opening, and these changes were prevented by dark rearing, but not binocular deprivation. Fine-scale networks were absent just after eye opening and established during the following 2 weeks in rats reared with normal visual experience, but not with either type of deprivation. These results indicate that patterned vision is required for the emergence of the fine-scale network, whereas diffuse light stimulation is sufficient for the maturation of individual synapses. PMID:25209295

  1. Roughness effects on fine-scale anisotropy and anomalous scaling in atmospheric flows

    NASA Astrophysics Data System (ADS)

    Katul, G. G.; Porporato, A.; Poggi, D.

    2009-03-01

    The effects of surface roughness on various measures of fine-scale intermittency within the inertial subrange were analyzed using two data sets that span the roughness "extremes" encountered in atmospheric flows, an ice sheet and a tall rough forest, and supplemented by a large number of existing literature data. Three inter-related problems pertaining to surface roughness effects on (i) anomalous scaling in higher-order structure functions, (ii) generalized dimensions and singularity spectra of the componentwise turbulent kinetic energy, and (iii) scalewise measures such local flatness factors and stretching exponents were addressed. It was demonstrated that surface roughness effects do not impact the fine-scale intermittency in u (the longitudinal velocity component), consistent with previous laboratory experiments. However, fine-scale intermittency in w (the vertical velocity component) increased with decreasing roughness. The consequence of this external intermittency (i.e., surface roughness induced) is that the singularity spectra of the scaling exponents are much broader for w when compared u in the context of the multifractal formalism for the local kinetic energy (instead of the usual conservative cascade studied for the dissipation rate). The scalewise evolution of the flatness factors and stretching exponents collapse when normalized using a global Reynolds number Rt=σLI/ν, where σ is the velocity standard deviation, LI is the integral length scale, and ν is the fluid viscosity.

  2. Fine-scale processes regulate the response of extreme events to global climate change

    NASA Astrophysics Data System (ADS)

    Diffenbaugh, Noah S.; Pal, Jeremy S.; Trapp, Robert J.; Giorgi, Filippo

    2005-11-01

    We find that extreme temperature and precipitation events are likely to respond substantially to anthropogenically enhanced greenhouse forcing and that fine-scale climate system modifiers are likely to play a critical role in the net response. At present, such events impact a wide variety of natural and human systems, and future changes in their frequency and/or magnitude could have dramatic ecological, economic, and sociological consequences. Our results indicate that fine-scale snow albedo effects influence the response of both hot and cold events and that peak increases in extreme hot events are amplified by surface moisture feedbacks. Likewise, we find that extreme precipitation is enhanced on the lee side of rain shadows and over coastal areas dominated by convective precipitation. We project substantial, spatially heterogeneous increases in both hot and wet events over the contiguous United States by the end of the next century, suggesting that consideration of fine-scale processes is critical for accurate assessment of local- and regional-scale vulnerability to climate change. extreme climate | RegCM3 | regional climate model | United States | CO2

  3. Multipoint MMS observations of fine-scale SAPS structure in the inner magnetosphere

    NASA Astrophysics Data System (ADS)

    Erickson, P. J.; Matsui, H.; Foster, J. C.; Torbert, R. B.; Ergun, R. E.; Khotyaintsev, Yu. V.; Lindqvist, P.-A.; Argall, M. R.; Farrugia, C. J.; Paulson, K. W.; Strangeway, R. J.; Magnes, W.

    2016-07-01

    We present detailed observations of dynamic, fine-scale inner magnetosphere-ionosphere coupling at ˜3.9 RE in the Region 2 Birkeland field-aligned current (FAC). We find that observed electrodynamic spatial/temporal scales are primarily characteristic of magnetically mapped ionospheric structure. On 15 September 2015, conjugate Magnetospheric Multiscale (MMS) spacecraft and Millstone Hill radar observations show plasmasphere boundary region subauroral polarization stream (SAPS) electric fields at L = 4.0-4.2 near 21 MLT. MMS observations reveal high-altitude ˜1 mV/m fine-scale radial and azimuthal electric field perturbations over ≤0.15 L with high spatial coherence over ≥2-3 min and show outward motion within a broader FAC of ˜0.12 μA/m2. Our analysis shows that MMS electric field fluctuations are most likely reflective of SAPS ionospheric structure at scales of ˜22 km and with ionospheric closure of small-scale filamentary FAC perturbations. The results highlight the ionosphere's importance in regulating fine-scale magnetosphere-ionosphere structure.

  4. European Invasion of North American Pinus strobus at Large and Fine Scales: High Genetic Diversity and Fine-Scale Genetic Clustering over Time in the Adventive Range

    PubMed Central

    Mandák, Bohumil; Hadincová, Věroslava; Mahelka, Václav; Wildová, Radka

    2013-01-01

    Background North American Pinus strobus is a highly invasive tree species in Central Europe. Using ten polymorphic microsatellite loci we compared various aspects of the large-scale genetic diversity of individuals from 30 sites in the native distribution range with those from 30 sites in the European adventive distribution range. To investigate the ascertained pattern of genetic diversity of this intercontinental comparison further, we surveyed fine-scale genetic diversity patterns and changes over time within four highly invasive populations in the adventive range. Results Our data show that at the large scale the genetic diversity found within the relatively small adventive range in Central Europe, surprisingly, equals the diversity found within the sampled area in the native range, which is about thirty times larger. Bayesian assignment grouped individuals into two genetic clusters separating North American native populations from the European, non-native populations, without any strong genetic structure shown over either range. In the case of the fine scale, our comparison of genetic diversity parameters among the localities and age classes yielded no evidence of genetic diversity increase over time. We found that SGS differed across age classes within the populations under study. Old trees in general completely lacked any SGS, which increased over time and reached its maximum in the sapling stage. Conclusions Based on (1) the absence of difference in genetic diversity between the native and adventive ranges, together with the lack of structure in the native range, and (2) the lack of any evidence of any temporal increase in genetic diversity at four highly invasive populations in the adventive range, we conclude that population amalgamation probably first happened in the native range, prior to introduction. In such case, there would have been no need for multiple introductions from previously isolated populations, but only several introductions from

  5. [Synchronized, oscillatory brain activity in visual perception].

    PubMed

    Braunitzer, Gábor

    2008-09-30

    The present study investigates one of the most promising developments of the brain-mind question, namely the possible links between synchronized oscillatory brain activity and certain (visual) perceptual processes. Through a review of the relevant literature, the author introduces the reader to the most important theories of coherent perception ('binding'), and makes an attempt to show how synchronization of EEG-registrable oscillatory activities from various frequency bands might explain binding. Finally, a number of clinical problems are also mentioned, regarding which the presented theoretical framework might deserve further consideration. PMID:18841649

  6. Theta-band oscillatory activity differs between gamblers and nongamblers comorbid with attention-deficit hyperactivity disorder in a probabilistic reward-learning task.

    PubMed

    Abouzari, Mehdi; Oberg, Scott; Tata, Matthew

    2016-10-01

    Problemgambling is thought to be comorbid with attention-deficit hyperactivity disorder (ADHD). We tested whether gamblers and ADHD patients exhibit similar reward-related brain activity in response to feedback in a gambling task. A series of brain electrical responses can be observed in the electroencephalogram (EEG) and the stimulus-locked event-related potentials (ERP), when participants in a gambling task are given feedback regardless of winning or losing the previous bet. Here, we used a simplified computerized version of the Iowa Gambling Task (IGT) to assess differences in reinforcement-driven choice adaptation between unmedicated ADHD patients with or without problem gambling traits and contrasted with a sex- and age-matched control group. EEG was recorded from the participants while they were engaged in the task which contained two choice options with different net payouts and win/loss probabilities. Learning trend which shows the ability to acquire and use knowledge of the reward outcomes to obtain a positive financial outcome was not observed in ADHD gamblers versus nongamblers. Induced theta-band (4-8Hz) power over frontal cortex was significantly higher in gamblers versus nongamblers in all different high-risk/low-risk win/lose conditions. Whereas induced low alpha (9-11Hz) power at frontal electrodes could only differentiate high-risk lose between gamblers and nongamblers but not the other three conditions between the two groups. The results indicate that ADHD nongamblers do not share with problem gamblers underlying deficits in reward learning. These pilot data highlight the need for studies of ADHD in gambling to elucidate how motivational states are represented during feedback processing. PMID:27318102

  7. Fine-scale spatial genetic structure of common and declining bumble bees across an agricultural landscape.

    PubMed

    Dreier, Stephanie; Redhead, John W; Warren, Ian A; Bourke, Andrew F G; Heard, Matthew S; Jordan, William C; Sumner, Seirian; Wang, Jinliang; Carvell, Claire

    2014-07-01

    Land-use changes have threatened populations of many insect pollinators, including bumble bees. Patterns of dispersal and gene flow are key determinants of species' ability to respond to land-use change, but have been little investigated at a fine scale (<10 km) in bumble bees. Using microsatellite markers, we determined the fine-scale spatial genetic structure of populations of four common Bombus species (B. terrestris, B. lapidarius, B. pascuorum and B. hortorum) and one declining species (B. ruderatus) in an agricultural landscape in Southern England, UK. The study landscape contained sown flower patches representing agri-environment options for pollinators. We found that, as expected, the B. ruderatus population was characterized by relatively low heterozygosity, number of alleles and colony density. Across all species, inbreeding was absent or present but weak (FIS  = 0.01-0.02). Using queen genotypes reconstructed from worker sibships and colony locations estimated from the positions of workers within these sibships, we found that significant isolation by distance was absent in B. lapidarius, B. hortorum and B. ruderatus. In B. terrestris and B. pascuorum, it was present but weak; for example, in these two species, expected relatedness of queens founding colonies 1 m apart was 0.02. These results show that bumble bee populations exhibit low levels of spatial genetic structure at fine spatial scales, most likely because of ongoing gene flow via widespread queen dispersal. In addition, the results demonstrate the potential for agri-environment scheme conservation measures to facilitate fine-scale gene flow by creating a more even distribution of suitable habitats across landscapes. PMID:24980963

  8. Fine-scale spatial genetic structure of common and declining bumble bees across an agricultural landscape

    PubMed Central

    Dreier, Stephanie; Redhead, John W; Warren, Ian A; Bourke, Andrew F G; Heard, Matthew S; Jordan, William C; Sumner, Seirian; Wang, Jinliang; Carvell, Claire

    2014-01-01

    Land-use changes have threatened populations of many insect pollinators, including bumble bees. Patterns of dispersal and gene flow are key determinants of species' ability to respond to land-use change, but have been little investigated at a fine scale (<10 km) in bumble bees. Using microsatellite markers, we determined the fine-scale spatial genetic structure of populations of four common Bombus species (B. terrestris, B. lapidarius, B. pascuorum and B. hortorum) and one declining species (B. ruderatus) in an agricultural landscape in Southern England, UK. The study landscape contained sown flower patches representing agri-environment options for pollinators. We found that, as expected, the B. ruderatus population was characterized by relatively low heterozygosity, number of alleles and colony density. Across all species, inbreeding was absent or present but weak (FIS = 0.01–0.02). Using queen genotypes reconstructed from worker sibships and colony locations estimated from the positions of workers within these sibships, we found that significant isolation by distance was absent in B. lapidarius, B. hortorum and B. ruderatus. In B. terrestris and B. pascuorum, it was present but weak; for example, in these two species, expected relatedness of queens founding colonies 1 m apart was 0.02. These results show that bumble bee populations exhibit low levels of spatial genetic structure at fine spatial scales, most likely because of ongoing gene flow via widespread queen dispersal. In addition, the results demonstrate the potential for agri-environment scheme conservation measures to facilitate fine-scale gene flow by creating a more even distribution of suitable habitats across landscapes. PMID:24980963

  9. Fine-Scale Habitat Heterogeneity Influences Occupancy in Terrestrial Mammals in a Temperate Region of Australia

    PubMed Central

    Stirnemann, Ingrid; Mortelliti, Alessio; Gibbons, Philip; Lindenmayer, David B.

    2015-01-01

    Vegetation heterogeneity is an inherent feature of most ecosystems, characterises the structure of habitat, and is considered an important driver of species distribution patterns. However, quantifying fine-scale heterogeneity of vegetation cover can be time consuming, and therefore it is seldom measured. Here, we determine if heterogeneity is worthwhile measuring, in addition to the amount of cover, when examining species distribution patterns. Further, we investigated the effect of the surrounding landscape heterogeneity on species occupancy. We tested the effect of cover and heterogeneity of trees and shrubs, and the context of the surrounding landscape (number of habitats and distance to an ecotone) on site occupancy of three mammal species (the black wallaby [Wallabia bicolor], the long-nosed bandicoot [Perameles nasuta], and the bush rat [Rattus fuscipes]) within a naturally heterogeneous landscape in a temperate region of Australia. We found that fine-scale heterogeneity of vegetation attributes is an important driver of mammal occurrence of two of these species. Further, we found that, although all three species responded positively to vegetation heterogeneity, different mammals vary in their response to different types of vegetation heterogeneity measurement. For example, the black wallaby responded to the proximity of an ecotone, and the bush rat and the long-nosed bandicoot responded to fine-scale heterogeneity of small tree cover, whereas none of the mammals responded to broad scale heterogeneity (i.e., the number of habitat types). Our results highlight the influence of methodological decisions, such as how heterogeneity vegetation is measured, in quantifying species responses to habitat structures. The findings confirm the importance of choosing meaningful heterogeneity measures when modelling the factors influencing occupancy of the species of interest. PMID:26394327

  10. The Impact of Fine-Scale Disturbances on the Predictability of Vegetation Dynamics and Carbon Flux.

    PubMed

    Hurtt, G C; Thomas, R Q; Fisk, J P; Dubayah, R O; Sheldon, S L

    2016-01-01

    Predictions from forest ecosystem models are limited in part by large uncertainties in the current state of the land surface, as previous disturbances have important and lasting influences on ecosystem structure and fluxes that can be difficult to detect. Likewise, future disturbances also present a challenge to prediction as their dynamics are episodic and complex and occur across a range of spatial and temporal scales. While large extreme events such as tropical cyclones, fires, or pest outbreaks can produce dramatic consequences, small fine-scale disturbance events are typically much more common and may be as or even more important. This study focuses on the impacts of these smaller disturbance events on the predictability of vegetation dynamics and carbon flux. Using data on vegetation structure collected for the same domain at two different times, i.e. "repeat lidar data", we test high-resolution model predictions of vegetation dynamics and carbon flux across a range of spatial scales at an important tropical forest site at La Selva Biological Station, Costa Rica. We found that predicted height change from a height-structured ecosystem model compared well to lidar measured height change at the domain scale (~150 ha), but that the model-data mismatch increased exponentially as the spatial scale of evaluation decreased below 20 ha. We demonstrate that such scale-dependent errors can be attributed to errors predicting the pattern of fine-scale forest disturbances. The results of this study illustrate the strong impact fine-scale forest disturbances have on forest dynamics, ultimately limiting the spatial resolution of accurate model predictions. PMID:27093157

  11. The Impact of Fine-Scale Disturbances on the Predictability of Vegetation Dynamics and Carbon Flux

    PubMed Central

    Hurtt, G. C.; Thomas, R. Q.; Fisk, J. P.; Dubayah, R. O.; Sheldon, S. L.

    2016-01-01

    Predictions from forest ecosystem models are limited in part by large uncertainties in the current state of the land surface, as previous disturbances have important and lasting influences on ecosystem structure and fluxes that can be difficult to detect. Likewise, future disturbances also present a challenge to prediction as their dynamics are episodic and complex and occur across a range of spatial and temporal scales. While large extreme events such as tropical cyclones, fires, or pest outbreaks can produce dramatic consequences, small fine-scale disturbance events are typically much more common and may be as or even more important. This study focuses on the impacts of these smaller disturbance events on the predictability of vegetation dynamics and carbon flux. Using data on vegetation structure collected for the same domain at two different times, i.e. “repeat lidar data”, we test high-resolution model predictions of vegetation dynamics and carbon flux across a range of spatial scales at an important tropical forest site at La Selva Biological Station, Costa Rica. We found that predicted height change from a height-structured ecosystem model compared well to lidar measured height change at the domain scale (~150 ha), but that the model-data mismatch increased exponentially as the spatial scale of evaluation decreased below 20 ha. We demonstrate that such scale-dependent errors can be attributed to errors predicting the pattern of fine-scale forest disturbances. The results of this study illustrate the strong impact fine-scale forest disturbances have on forest dynamics, ultimately limiting the spatial resolution of accurate model predictions. PMID:27093157

  12. Fine-Scale Habitat Heterogeneity Influences Occupancy in Terrestrial Mammals in a Temperate Region of Australia.

    PubMed

    Stirnemann, Ingrid; Mortelliti, Alessio; Gibbons, Philip; Lindenmayer, David B

    2015-01-01

    Vegetation heterogeneity is an inherent feature of most ecosystems, characterises the structure of habitat, and is considered an important driver of species distribution patterns. However, quantifying fine-scale heterogeneity of vegetation cover can be time consuming, and therefore it is seldom measured. Here, we determine if heterogeneity is worthwhile measuring, in addition to the amount of cover, when examining species distribution patterns. Further, we investigated the effect of the surrounding landscape heterogeneity on species occupancy. We tested the effect of cover and heterogeneity of trees and shrubs, and the context of the surrounding landscape (number of habitats and distance to an ecotone) on site occupancy of three mammal species (the black wallaby [Wallabia bicolor], the long-nosed bandicoot [Perameles nasuta], and the bush rat [Rattus fuscipes]) within a naturally heterogeneous landscape in a temperate region of Australia. We found that fine-scale heterogeneity of vegetation attributes is an important driver of mammal occurrence of two of these species. Further, we found that, although all three species responded positively to vegetation heterogeneity, different mammals vary in their response to different types of vegetation heterogeneity measurement. For example, the black wallaby responded to the proximity of an ecotone, and the bush rat and the long-nosed bandicoot responded to fine-scale heterogeneity of small tree cover, whereas none of the mammals responded to broad scale heterogeneity (i.e., the number of habitat types). Our results highlight the influence of methodological decisions, such as how heterogeneity vegetation is measured, in quantifying species responses to habitat structures. The findings confirm the importance of choosing meaningful heterogeneity measures when modelling the factors influencing occupancy of the species of interest. PMID:26394327

  13. Statistical evidence from fine-scale anisotropies in the cosmic background radiation

    NASA Astrophysics Data System (ADS)

    Zabotin, N. A.; Naselskij, P. D.

    1985-12-01

    The use of more sensitive radio telescopes to identify individual structural features in the distribution of Delta T/T over the celestial sphere, and thus obtain information on the fine-scale anisotropy of the cosmic background radiation, is discussed. By analyzing the statistical parameters of pips in the microwave background temperature fluctuations due to regions which had anomalously strong metric perturbations during the hydrogen recombination era, evidence on the correlation properties of that anisotropy can be gained even if the anisotropy is two to three times weaker than the prevailing noise levels of instrumental, atmospheric, galactic, and extragalactic origin.

  14. Patterns of fine-scale plant species richness in dry grasslands across the eastern Balkan Peninsula

    NASA Astrophysics Data System (ADS)

    Palpurina, Salza; Chytrý, Milan; Tzonev, Rossen; Danihelka, Jiří; Axmanová, Irena; Merunková, Kristina; Duchoň, Mário; Karakiev, Todor

    2015-02-01

    Fine-scale plant species richness varies across habitats, climatic and biogeographic regions, but the large-scale context of this variation is insufficiently explored. The patterns at the borders between biomes harbouring rich but different floras are of special interest. Dry grasslands of the eastern Balkan Peninsula, situated in the Eurasian forest-steppe zone and developed under Mediterranean influence, are a specific case of such biome transition. However, there are no studies assessing the patterns of fine-scale species richness and their underlying factors across the eastern Balkans. To explore these patterns, we sampled dry and semi-dry grasslands (phytosociological class Festuco-Brometea) across Bulgaria and SE Romania. In total, 172 vegetation plots of 10 × 10 m2 were sampled, in which all vascular plant species were recorded, soil depth was measured, and soil samples were collected and analysed in a laboratory for pH and plant-available nutrients. Geographic coordinates were used to extract selected climatic variables. Regression trees and linear regressions were used to quantify the relationships between species richness and environmental variables. Climatic factors were identified as the main drivers of species richness: (1) Species richness was strongly positively correlated with the mean temperature of the coldest month: sub-Mediterranean areas of S and E Bulgaria, characterized by warmer winters, were more species-rich. (2) Outside the sub-Mediterranean areas, species richness strongly increased with annual precipitation, which was primarily controlled by altitude. (3) Bedrock type and soil pH also significantly affected dry grassland richness outside the sub-Mediterranean areas. These results suggest that fine-scale species richness of dry grasslands over large areas is driven by processes at the regional level, especially by the difference in the species pools of large regions, in our case the Continental and Mediterranean biogeographic regions

  15. Influences of fluidic interfaces during formation of fine-scale composites by chaotic mixing of melts

    SciTech Connect

    Zhang, D.F.; Zumbrunnen, D.A.

    1995-12-31

    Two-dimensional chaotic mixing of Newtonian fluids with active interfaces was investigated numerically to disclose influences on the formation of fine-scale structures in melts which may be captured by solidification to yield composites. Mixing of two immiscible fluids was confined to a rectangular cavity with periodically driven upper and lower surfaces. Interfacial forces and the interactions via the interface with the transient flow fields in each phase were considered. The evolving morphologies of active interfaces and interactions with flow fields in both the minor and major phases were disclosed for different interfacial tensions and phase viscosity ratios.

  16. Modelling Soil-Landscapes in Coastal California Hills Using Fine Scale Terrestrial Lidar

    NASA Astrophysics Data System (ADS)

    Prentice, S.; Bookhagen, B.; Kyriakidis, P. C.; Chadwick, O.

    2013-12-01

    Digital elevation models (DEMs) are the dominant input to spatially explicit digital soil mapping (DSM) efforts due to their increasing availability and the tight coupling between topography and soil variability. Accurate characterization of this coupling is dependent on DEM spatial resolution and soil sampling density, both of which may limit analyses. For example, DEM resolution may be too coarse to accurately reflect scale-dependent soil properties yet downscaling introduces artifactual uncertainty unrelated to deterministic or stochastic soil processes. We tackle these limitations through a DSM effort that couples moderately high density soil sampling with a very fine scale terrestrial lidar dataset (20 cm) implemented in a semiarid rolling hillslope domain where terrain variables change rapidly but smoothly over short distances. Our guiding hypothesis is that in this diffusion-dominated landscape, soil thickness is readily predicted by continuous terrain attributes coupled with catenary hillslope segmentation. We choose soil thickness as our keystone dependent variable for its geomorphic and hydrologic significance, and its tendency to be a primary input to synthetic ecosystem models. In defining catenary hillslope position we adapt a logical rule-set approach that parses common terrain derivatives of curvature and specific catchment area into discrete landform elements (LE). Variograms and curvature-area plots are used to distill domain-scale terrain thresholds from short range order noise characteristic of very fine-scale spatial data. The revealed spatial thresholds are used to condition LE rule-set inputs, rendering a catenary LE map that leverages the robustness of fine-scale terrain data to create a generalized interpretation of soil geomorphic domains. Preliminary regressions show that continuous terrain variables alone (curvature, specific catchment area) only partially explain soil thickness, and only in a subset of soils. For example, at spatial

  17. Statistical evidence from fine-scale anisotropies in the cosmic background radiation

    SciTech Connect

    Zabotin, N.A.; Naselskii, P.D.

    1985-12-01

    The use of more sensitive radio telescopes to identify individual structural features in the distribution of Delta T/T over the celestial sphere, and thus obtain information on the fine-scale anisotropy of the cosmic background radiation, is discussed. By analyzing the statistical parameters of pips in the microwave background temperature fluctuations due to regions which had anomalously strong metric perturbations during the hydrogen recombination era, evidence on the correlation properties of that anisotropy can be gained even if the anisotropy is two to three times weaker than the prevailing noise levels of instrumental, atmospheric, galactic, and extragalactic origin. 7 references.

  18. Fine-scale genetic structure and gene flow within Costa Rican populations of mahogany (Swietenia macrophylla).

    PubMed

    Lowe, A J; Jourde, B; Breyne, P; Colpaert, N; Navarro, C; Wilson, J; Cavers, S

    2003-03-01

    Fine-scale structure of genetic diversity and gene flow were analysed in three Costa Rican populations of mahogany, Swietenia macrophylla. Population differentiation estimated using AFLPs and SSRs was low (38.3 and 24%) and only slightly higher than previous estimates for Central American populations based on RAPD variation (20%). Significant fine-scale spatial structure was found in all of the surveyed mahogany populations and is probably strongly influenced by the limited seed dispersal range of the species. Furthermore, a survey of progeny arrays from selected mother trees in two of the plots indicated that most pollinations involved proximate trees. These data indicate that very little gene flow, via either pollen or seed, is occurring between blocks of mahogany within a continuous or disturbed forest landscape. Thus, once diversity is removed from a forest population of mahogany, these data suggest that recovery would be difficult via seed or pollen dispersal, and provides an explanation for mahogany's apparent susceptibility to the pressures of logging. Evidence is reviewed from other studies of gene flow and seedling regeneration to discuss alternative extraction strategies that may maintain diversity or allow recovery of genetic resources. PMID:12634811

  19. Rare Variation Facilitates Inferences of Fine-Scale Population Structure in Humans

    PubMed Central

    O’Connor, Timothy D.; Fu, Wenqing; Mychaleckyj, Josyf C.; Logsdon, Benjamin; Auer, Paul; Carlson, Christopher S.; Leal, Suzanne M.; Smith, Joshua D.; Rieder, Mark J.; Bamshad, Michael J.; Nickerson, Deborah A.; Akey, Joshua M.

    2015-01-01

    Understanding the genetic structure of human populations has important implications for the design and interpretation of disease mapping studies and reconstructing human evolutionary history. To date, inferences of human population structure have primarily been made with common variants. However, recent large-scale resequencing studies have shown an abundance of rare variation in humans, which may be particularly useful for making inferences of fine-scale population structure. To this end, we used an information theory framework and extensive coalescent simulations to rigorously quantify the informativeness of rare and common variation to detect signatures of fine-scale population structure. We show that rare variation affords unique insights into patterns of recent population structure. Furthermore, to empirically assess our theoretical findings, we analyzed high-coverage exome sequences in 6,515 European and African American individuals. As predicted, rare variants are more informative than common polymorphisms in revealing a distinct cluster of European–American individuals, and subsequent analyses demonstrate that these individuals are likely of Ashkenazi Jewish ancestry. Our results provide new insights into the population structure using rare variation, which will be an important factor to account for in rare variant association studies. PMID:25415970

  20. Fine-Scale Crossover Rate Variation on the Caenorhabditis elegans X Chromosome

    PubMed Central

    Bernstein, Max R.; Rockman, Matthew V.

    2016-01-01

    Meiotic recombination creates genotypic diversity within species. Recombination rates vary substantially across taxa, and the distribution of crossovers can differ significantly among populations and between sexes. Crossover locations within species have been found to vary by chromosome and by position within chromosomes, where most crossover events occur in small regions known as recombination hotspots. However, several species appear to lack hotspots despite significant crossover heterogeneity. The nematode Caenorhabditis elegans was previously found to have the least fine-scale variation in crossover distribution among organisms studied to date. It is unclear whether this pattern extends to the X chromosome given its unique compaction through the pachytene stage of meiotic prophase in hermaphrodites. We generated 798 recombinant nested near-isogenic lines (NILs) with crossovers in a 1.41 Mb region on the left arm of the X chromosome to determine if its recombination landscape is similar to that of the autosomes. We find that the fine-scale variation in crossover rate is lower than that of other model species, and is inconsistent with hotspots. The relationship of genomic features to crossover rate is dependent on scale, with GC content, histone modifications, and nucleosome occupancy being negatively associated with crossovers. We also find that the abundances of 4- to 6-bp DNA motifs significantly explain crossover density. These results are consistent with recombination occurring at unevenly distributed sites of open chromatin. PMID:27172189

  1. Theory and data for simulating fine-scale human movement in an urban environment

    PubMed Central

    Perkins, T. Alex; Garcia, Andres J.; Paz-Soldán, Valerie A.; Stoddard, Steven T.; Reiner, Robert C.; Vazquez-Prokopec, Gonzalo; Bisanzio, Donal; Morrison, Amy C.; Halsey, Eric S.; Kochel, Tadeusz J.; Smith, David L.; Kitron, Uriel; Scott, Thomas W.; Tatem, Andrew J.

    2014-01-01

    Individual-based models of infectious disease transmission depend on accurate quantification of fine-scale patterns of human movement. Existing models of movement either pertain to overly coarse scales, simulate some aspects of movement but not others, or were designed specifically for populations in developed countries. Here, we propose a generalizable framework for simulating the locations that an individual visits, time allocation across those locations, and population-level variation therein. As a case study, we fit alternative models for each of five aspects of movement (number, distance from home and types of locations visited; frequency and duration of visits) to interview data from 157 residents of the city of Iquitos, Peru. Comparison of alternative models showed that location type and distance from home were significant determinants of the locations that individuals visited and how much time they spent there. We also found that for most locations, residents of two neighbourhoods displayed indistinguishable preferences for visiting locations at various distances, despite differing distributions of locations around those neighbourhoods. Finally, simulated patterns of time allocation matched the interview data in a number of ways, suggesting that our framework constitutes a sound basis for simulating fine-scale movement and for investigating factors that influence it. PMID:25142528

  2. Fine-scale genetic mapping based on linkage disequilibrium: theory and applications.

    PubMed

    Xiong, M; Guo, S W

    1997-06-01

    Linkage-disequilibrium mapping (LDM) recently has been hailed as a powerful statistical method for fine-scale mapping of disease genes. After reviewing its historical background and methodological development, we present a general, mathematical, and conceptually coherent framework for LDM that incorporates multilocus and multiallelic markers and mutational processes at the marker and disease loci. With this framework, we address several issues relevant to fine-scale mapping and propose some efficient computational methods for LDM. We implement various LDM methods that incorporate population growth, recurrent mutation, and marker mutations, on the basis of a general framework. We demonstrate these methods by applying them to published data on cystic fibrosis, Huntington disease, Friedreich ataxia, and progressive myoclonus epilepsy. Since the genes responsible for these diseases all have been cloned, we can evaluate the performance of our methods and can compare ours with that of other methods. Using the proposed methods, we successfully and accurately predicted the locations of genes responsible for these diseases, on the basis of published data only. PMID:9199574

  3. Fine-Scale Structure of the Moho From Receiver Functions: Effects of a Deforming Crust

    NASA Astrophysics Data System (ADS)

    Zandt, G.; Gilbert, H.; Ozacar, A.; Owens, T. J.

    2004-12-01

    Andrija Mohorovicic, a Croatian seismologist, is credited with the first estimation in 1906 of crustal thickness using the critically refracted phase Pn. The crust-mantle boundary has become commonly known as the Moho and its depth, structure, formation, and evolution remains an important research topic in seismology, petrology, and tectonics. Other seismic phases sensitive to Moho depth and structure are the converted phases Ps and Sp, and the associated 2p1s and 1p2s reverberation phases that are isolated in receiver function waveforms. With sufficient station coverage, multiple receiver functions can be migrated and stacked into cross-sections of the crust. Crustal cross-sections from tectonically active regions reveal dramatic variations in amplitude and frequency content of Moho phases that we associate with fine-scale structure, and possibly anisotropy at the crust-mantle boundary. The Moho amplitude or "brightness" is a measure of the crust-mantle impedance contrast, thickness and structure within the crust-mantle boundary, and effects of scattering from 3D structure. Processes directly related to these Moho structures include crustal thickening, crustal extension, crustal flow, delamination or convective removal, and eclogitization. Therefore, the fine-scale seismological structure of the Moho is an important constraint in regional tectonic reconstructions. Examples of receiver function crustal images and their tectonic implications from the western US, South American Andes, and the Tibetan plateau will be reviewed.

  4. Fine-Scale Crossover Rate Variation on the Caenorhabditis elegans X Chromosome.

    PubMed

    Bernstein, Max R; Rockman, Matthew V

    2016-01-01

    Meiotic recombination creates genotypic diversity within species. Recombination rates vary substantially across taxa, and the distribution of crossovers can differ significantly among populations and between sexes. Crossover locations within species have been found to vary by chromosome and by position within chromosomes, where most crossover events occur in small regions known as recombination hotspots. However, several species appear to lack hotspots despite significant crossover heterogeneity. The nematode Caenorhabditis elegans was previously found to have the least fine-scale variation in crossover distribution among organisms studied to date. It is unclear whether this pattern extends to the X chromosome given its unique compaction through the pachytene stage of meiotic prophase in hermaphrodites. We generated 798 recombinant nested near-isogenic lines (NILs) with crossovers in a 1.41 Mb region on the left arm of the X chromosome to determine if its recombination landscape is similar to that of the autosomes. We find that the fine-scale variation in crossover rate is lower than that of other model species, and is inconsistent with hotspots. The relationship of genomic features to crossover rate is dependent on scale, with GC content, histone modifications, and nucleosome occupancy being negatively associated with crossovers. We also find that the abundances of 4- to 6-bp DNA motifs significantly explain crossover density. These results are consistent with recombination occurring at unevenly distributed sites of open chromatin. PMID:27172189

  5. Nonlinear dendritic integration of electrical and chemical synaptic inputs drives fine-scale correlations

    PubMed Central

    Trenholm, Stuart; McLaughlin, Amanda J; Schwab, David J; Turner, Maxwell H; Smith, Robert G; Rieke, Fred; Awatramani, Gautam B

    2014-01-01

    Throughout the CNS, gap junction–mediated electrical signals synchronize neural activity on millisecond timescales via cooperative interactions with chemical synapses. However, gap junction–mediated synchrony has rarely been studied in the context of varying spatiotemporal patterns of electrical and chemical synaptic activity. Thus, the mechanism underlying fine-scale synchrony and its relationship to neural coding remain unclear. We examined spike synchrony in pairs of genetically identified, electrically coupled ganglion cells in mouse retina. We found that coincident electrical and chemical synaptic inputs, but not electrical inputs alone, elicited synchronized dendritic spikes in subregions of coupled dendritic trees. The resulting nonlinear integration produced fine-scale synchrony in the cells’ spike output, specifically for light stimuli driving input to the regions of dendritic overlap. In addition, the strength of synchrony varied inversely with spike rate. Together, these features may allow synchronized activity to encode information about the spatial distribution of light that is ambiguous on the basis of spike rate alone. PMID:25344631

  6. Fine-Scale Spatial Heterogeneity in the Distribution of Waterborne Protozoa in a Drinking Water Reservoir

    PubMed Central

    Burnet, Jean-Baptiste; Ogorzaly, Leslie; Penny, Christian; Cauchie, Henry-Michel

    2015-01-01

    Background: The occurrence of faecal pathogens in drinking water resources constitutes a threat to the supply of safe drinking water, even in industrialized nations. To efficiently assess and monitor the risk posed by these pathogens, sampling deserves careful design, based on preliminary knowledge on their distribution dynamics in water. For the protozoan pathogens Cryptosporidium and Giardia, only little is known about their spatial distribution within drinking water supplies, especially at fine scale. Methods: Two-dimensional distribution maps were generated by sampling cross-sections at meter resolution in two different zones of a drinking water reservoir. Samples were analysed for protozoan pathogens as well as for E. coli, turbidity and physico-chemical parameters. Results: Parasites displayed heterogeneous distribution patterns, as reflected by significant (oo)cyst density gradients along reservoir depth. Spatial correlations between parasites and E. coli were observed near the reservoir inlet but were absent in the downstream lacustrine zone. Measurements of surface and subsurface flow velocities suggest a role of local hydrodynamics on these spatial patterns. Conclusion: This fine-scale spatial study emphasizes the importance of sampling design (site, depth and position on the reservoir) for the acquisition of representative parasite data and for optimization of microbial risk assessment and monitoring. Such spatial information should prove useful to the modelling of pathogen transport dynamics in drinking water supplies. PMID:26404350

  7. Two-Locus Likelihoods Under Variable Population Size and Fine-Scale Recombination Rate Estimation.

    PubMed

    Kamm, John A; Spence, Jeffrey P; Chan, Jeffrey; Song, Yun S

    2016-07-01

    Two-locus sampling probabilities have played a central role in devising an efficient composite-likelihood method for estimating fine-scale recombination rates. Due to mathematical and computational challenges, these sampling probabilities are typically computed under the unrealistic assumption of a constant population size, and simulation studies have shown that resulting recombination rate estimates can be severely biased in certain cases of historical population size changes. To alleviate this problem, we develop here new methods to compute the sampling probability for variable population size functions that are piecewise constant. Our main theoretical result, implemented in a new software package called LDpop, is a novel formula for the sampling probability that can be evaluated by numerically exponentiating a large but sparse matrix. This formula can handle moderate sample sizes ([Formula: see text]) and demographic size histories with a large number of epochs ([Formula: see text]). In addition, LDpop implements an approximate formula for the sampling probability that is reasonably accurate and scales to hundreds in sample size ([Formula: see text]). Finally, LDpop includes an importance sampler for the posterior distribution of two-locus genealogies, based on a new result for the optimal proposal distribution in the variable-size setting. Using our methods, we study how a sharp population bottleneck followed by rapid growth affects the correlation between partially linked sites. Then, through an extensive simulation study, we show that accounting for population size changes under such a demographic model leads to substantial improvements in fine-scale recombination rate estimation. PMID:27182948

  8. Magnetic Signatures of Fine-scale Processes in the Ocean Surface Layer

    NASA Astrophysics Data System (ADS)

    Soloviev, A.; Dean, C.; Avera, W. E.

    2015-12-01

    Fine-scale processes in the upper ocean turbulent boundary layer may have a measurable electromagnetic signature. In order to study magnetic signatures of these fine-scale processes, we have applied a magnetohydrodynamic (MHD) model combining a 3D computational fluid dynamics model and electromagnetic block, based on ANSYS Fluent software. In addition, the hydrodynamic component of the MHD model is coupled with a radar imaging algorithm, which potentially provides a link to synthetic aperture radar (SAR) satellite imagery. Capabilities of this model have been demonstrated using a simulation and observation of an internal wave soliton in the Straits of Florida, observed with in situ instrumentation (ADCP mooring) and COSMO Sky Med (SAR) satellite image. We have applied this model to study magnetic signatures of surface waves, freshwater lenses, spatially coherent organized motions in the near-surface layer of the ocean (Langmuir circulation and ramp-like structures), and bio-turbulence induced by diel vertical migrations of zooplankton in some areas of the ocean. Investigation of electromagnetic signatures in upper ocean processes offers a valuable new prospect in air-sea interaction.

  9. Fine-scale population structure of blue whale wintering aggregations in the Gulf of California.

    PubMed

    Costa-Urrutia, Paula; Sanvito, Simona; Victoria-Cota, Nelva; Enríquez-Paredes, Luis; Gendron, Diane

    2013-01-01

    Population differentiation in environments without well-defined geographical barriers represents a challenge for wildlife management. Based on a comprehensive database of individual sighting records (1988-2009) of blue whales from the winter/calving Gulf of California, we assessed the fine-scale genetic and spatial structure of the population using individual-based approaches. Skin samples of 187 individuals were analyzed for nine microsatellite loci. A single population with no divergence among years and months and no isolation by distance (Rxy = 0.1-0.001, p>0.05) were found. We ran two bayesian clustering methods using Structure and Geneland softwares in two different ways: 1) a general analysis including all individuals in which a single cluster was identified with both softwares; 2) a specific analysis of females only in which two main clusters (Loreto Bay and northern areas, and San Jose-La Paz Bay area) were revealed by Geneland program. This study provides information indicating that blue whales wintering in the Gulf of California are part of a single population unit and showed a fine-scale structure among females, possibly associated with their high site fidelity, particularly when attending calves. It is likely that the loss of genetic variation is minimized by male mediated gene flow, which may reduce the genetic drift effect. Opportunities for kin selection may also influence calf survival and, in consequence, have a positive impact on population demography in this small and endangered population. PMID:23505485

  10. Modelling land cover dynamics: integration of fine-scale land cover data with landscape attributes

    NASA Astrophysics Data System (ADS)

    Mertens, Benoît; Lambin, Eric

    Land cover change detection based on remote sensing data allows the identification of major processes of change and, by inference, the characterization of land use dynamics. Empirical diagnostic models of land use/cover change can be developed from these observations. To grasp the complexity of landscape mosaics and changes in land use, fine-scale land cover and socio-economic data are required. Case studies need to be representative of conditions at a broader scale, and selected where sufficient knowledge on social and ecological processes leading to land use changes exists. For this reason, collaboration between remote sensing specialists and human ecologists conducting long-term field-based land use studies is extremely productive. Continental-scale analysis of Africa was conducted to detect land cover change "hot spots". Fine-scale analyses were performed for validation purposes and to understand better the land cover change processes. Spatial statistical models of land cover change can be developed in order to anticipate where changes are more likely to occur next. Such predictive information is essential to support the implementation of appropriate policy responses to, for example, land degradation that would lead to the depletion of essential resources. Results of a spatial model of deforestation in southern Cameroon are discussed.

  11. Theory and data for simulating fine-scale human movement in an urban environment.

    PubMed

    Perkins, T Alex; Garcia, Andres J; Paz-Soldán, Valerie A; Stoddard, Steven T; Reiner, Robert C; Vazquez-Prokopec, Gonzalo; Bisanzio, Donal; Morrison, Amy C; Halsey, Eric S; Kochel, Tadeusz J; Smith, David L; Kitron, Uriel; Scott, Thomas W; Tatem, Andrew J

    2014-10-01

    Individual-based models of infectious disease transmission depend on accurate quantification of fine-scale patterns of human movement. Existing models of movement either pertain to overly coarse scales, simulate some aspects of movement but not others, or were designed specifically for populations in developed countries. Here, we propose a generalizable framework for simulating the locations that an individual visits, time allocation across those locations, and population-level variation therein. As a case study, we fit alternative models for each of five aspects of movement (number, distance from home and types of locations visited; frequency and duration of visits) to interview data from 157 residents of the city of Iquitos, Peru. Comparison of alternative models showed that location type and distance from home were significant determinants of the locations that individuals visited and how much time they spent there. We also found that for most locations, residents of two neighbourhoods displayed indistinguishable preferences for visiting locations at various distances, despite differing distributions of locations around those neighbourhoods. Finally, simulated patterns of time allocation matched the interview data in a number of ways, suggesting that our framework constitutes a sound basis for simulating fine-scale movement and for investigating factors that influence it. PMID:25142528

  12. Fine-scale spatiotemporal patterns of genetic variation reflect budding dispersal coupled with strong natal philopatry in a cooperatively breeding mammal.

    PubMed

    Nichols, Hazel J; Jordan, Neil R; Jamie, Gabriel A; Cant, Michael A; Hoffman, Joseph I

    2012-11-01

    The relatedness structure of animal populations is thought to be a critically important factor underlying the evolution of mating systems and social behaviours. While previous work has shown that population structure is shaped by many biological processes, few studies have investigated how these factors vary over time. Consequently, we explored the fine-scale spatiotemporal genetic structure of an intensively studied population of cooperatively breeding banded mongooses (Mungos mungo) over a 10-year period. Overall population structure was strong (average F(ST)  = 0.129) but groups with spatially overlapping territories were not more genetically similar to one another than noncontiguous groups. Instead, genetic differentiation was associated with historical group-fission (budding) events, with new groups diverging from their parent groups over time. Within groups, relatedness was high within but not between the sexes, although the latter increased over time since group formation due to group founders being replaced by philopatric young. This trend was not mirrored by a decrease in average offspring heterozygosity over time, suggesting that close inbreeding may often be avoided, even when immigration into established groups is virtually absent and opportunities for extra-group matings are rare. Fine-scale spatiotemporal population structure could have important implications in social species, where relatedness between interacting individuals is a vital component in the evolution of patterns of inbreeding avoidance, reproductive skew and kin-selected helping and harming. PMID:22994210

  13. Strontium isotopes delineate fine-scale natal origins and migration histories of Pacific salmon

    USGS Publications Warehouse

    Brennan, Sean R.; Zimmerman, Christian E.; Fernandez, Diego P.; Cerling, Thure E.; McPhee, Megan V.; Wooller, Matthew J.

    2015-01-01

    Highly migratory organisms present major challenges to conservation efforts. This is especially true for exploited anadromous fish species, which exhibit long-range dispersals from natal sites, complex population structures, and extensive mixing of distinct populations during exploitation. By tracing the migratory histories of individual Chinook salmon caught in fisheries using strontium isotopes, we determined the relative production of natal habitats at fine spatial scales and different life histories. Although strontium isotopes have been widely used in provenance research, we present a new robust framework to simultaneously assess natal sources and migrations of individuals within fishery harvests through time. Our results pave the way for investigating how fine-scale habitat production and life histories of salmon respond to perturbations—providing crucial insights for conservation.

  14. Strontium isotopes delineate fine-scale natal origins and migration histories of Pacific salmon.

    PubMed

    Brennan, Sean R; Zimmerman, Christian E; Fernandez, Diego P; Cerling, Thure E; McPhee, Megan V; Wooller, Matthew J

    2015-05-01

    Highly migratory organisms present major challenges to conservation efforts. This is especially true for exploited anadromous fish species, which exhibit long-range dispersals from natal sites, complex population structures, and extensive mixing of distinct populations during exploitation. By tracing the migratory histories of individual Chinook salmon caught in fisheries using strontium isotopes, we determined the relative production of natal habitats at fine spatial scales and different life histories. Although strontium isotopes have been widely used in provenance research, we present a new robust framework to simultaneously assess natal sources and migrations of individuals within fishery harvests through time. Our results pave the way for investigating how fine-scale habitat production and life histories of salmon respond to perturbations-providing crucial insights for conservation. PMID:26601173

  15. Fine-scale spatial genetic structure of eight tropical tree species as analysed by RAPDs.

    PubMed

    Degen, B; Caron, H; Bandou, E; Maggia, L; Chevallier, M H; Leveau, A; Kremer, A

    2001-10-01

    The fine-scale spatial genetic structure of eight tropical tree species (Chrysophyllum sanguinolentum, Carapa procera, Dicorynia guianensis, Eperua grandiflora, Moronobea coccinea, Symphonia globulifera, Virola michelii, Vouacapoua americana) was studied in populations that were part of a silvicultural trial in French Guiana. The species analysed have different spatial distribution, sexual system, pollen and seed dispersal agents, flowering phenology and environmental demands. The spatial position of trees and a RAPD data set for each species were combined using a multivariate genetic distance method to estimate spatial genetic structure. A significant spatial genetic structure was found for four of the eight species. In contrast to most observations in temperate forests, where spatial structure is not usually detected at distances greater than 50 m, significant genetic structure was found at distances up to 300 m. The relationships between spatial genetic structure and life history characteristics are discussed. PMID:11737299

  16. MHD Wave Modes Resolved in Fine-Scale Chromospheric Magnetic Structures

    NASA Astrophysics Data System (ADS)

    Verth, G.; Jess, D. B.

    2016-02-01

    Due to its complex and dynamic fine-scale structure, the chromosphere is a particularly challenging region of the Sun's atmosphere to understand. It is now widely accepted that to model chromospheric dynamics, even on a magnetohydrodynamic (MHD) scale, while also calculating spectral line emission, one must realistically include the effects of partial ionization and radiative transfer in a multi-fluid plasma under non-LTE conditions. Accurate quantification of MHD wave energetics must be founded on a precise identification of the actual wave mode being observed. This chapter focuses on MHD kink-mode identification, MHD sausage mode identification, and MHD torsional Alfvén wave identification. It then reviews progress in determining more accurate energy flux estimations of specific MHD wave modes observed in the chromosphere. The chapter finally examines how the discovery of these MHD wave modes has helped us advance the field of chromospheric magnetoseismology.

  17. Strontium isotopes delineate fine-scale natal origins and migration histories of Pacific salmon

    PubMed Central

    Brennan, Sean R.; Zimmerman, Christian E.; Fernandez, Diego P.; Cerling, Thure E.; McPhee, Megan V.; Wooller, Matthew J.

    2015-01-01

    Highly migratory organisms present major challenges to conservation efforts. This is especially true for exploited anadromous fish species, which exhibit long-range dispersals from natal sites, complex population structures, and extensive mixing of distinct populations during exploitation. By tracing the migratory histories of individual Chinook salmon caught in fisheries using strontium isotopes, we determined the relative production of natal habitats at fine spatial scales and different life histories. Although strontium isotopes have been widely used in provenance research, we present a new robust framework to simultaneously assess natal sources and migrations of individuals within fishery harvests through time. Our results pave the way for investigating how fine-scale habitat production and life histories of salmon respond to perturbations—providing crucial insights for conservation. PMID:26601173

  18. Fine-scale detection of pollutants by a benthic marine jellyfish.

    PubMed

    Epstein, Hannah E; Templeman, Michelle A; Kingsford, Michael J

    2016-06-15

    Local sources of pollution can vary immensely on small geographic scales and short time frames due to differences in runoff and adjacent land use. This study examined the rate of uptake and retention of trace metals in Cassiopea maremetens, a benthic marine jellyfish, over a short time frame and in the presence of multiple pollutants. This study also validated the ability of C. maremetens to uptake metals in the field. Experimental manipulation demonstrated that metal accumulation in jellyfish tissue began within 24h of exposure to treated water and trended for higher accumulation in the presence of multiple pollutants. C. maremetens was found to uptake trace metals in the field and provide unique signatures among locations. This fine-scale detection and rapid accumulation of metals in jellyfish tissue can have major implications for both biomonitoring and the trophic transfer of pollutants through local ecosystems. PMID:27068562

  19. Ecological segregation drives fine-scale cytotype distribution of Senecio carniolicus in the Eastern Alps

    PubMed Central

    Hülber, Karl; Sonnleitner, Michaela; Flatscher, Ruth; Berger, Andreas; Dobrovsky, Rainer; Niessner, Sophie; Nigl, Thomas; Schneeweiss, Gerald M.; Kubešová, Magdalena; Rauchová, Jana; Suda, Jan; Schönswetter, Peter

    2011-01-01

    In order to uncover patterns and processes of segregation of co-existing cytotypes, we investigated a zone in the eastern Alps (Austria) where diploid and hexaploid individuals of the alpine herb Senecio carniolicus Willd. (Asteraceae) co-occur. Linking the fine-scale distribution of cytotypes to environmental and spatial factors revealed segregation along an ecological gradient, which was also reflected in the cytotype-associated plant assemblages. Compared to diploids, hexaploids are found in more species-rich and denser communities. This may be due to their better competitive ability and lower tolerance of abiotic stress compared to the diploids. The lack of any intermediate cytotypes suggests the presence of strong reproductive isolation mechanisms, whose nature is, however, elusive. PMID:22318659

  20. Effects of Fine-Scale Landscape Variability on Satellite-Derived Land Surface Temperature Products Over Sparse Vegetation Canopies

    NASA Astrophysics Data System (ADS)

    Powell, R. L.; Goulden, M.; Peterson, S.; Roberts, D. A.; Still, C. J.

    2015-12-01

    Temperature is a primary environmental control on biological systems and processes at a range of spatial and temporal scales, from controlling biochemical processes such as photosynthesis to influencing continental-scale species distribution. The Landsat satellite series provides a long record (since the mid-1980s) of relatively high spatial resolution thermal infrared (TIR) imagery, from which we derive land surface temperature (LST) grids. Here, we investigate fine spatial resolution factors that influence Landsat-derived LST over a spectrally and spatially heterogeneous landscape. We focus on paired sites (inside/outside a 1994 fire scar) within a pinyon-juniper scrubland in Southern California. The sites have nearly identical micro-meteorology and vegetation species composition, but distinctly different vegetation abundance and structure. The tower at the unburned site includes a number of in-situ imaging tools to quantify vegetation properties, including a thermal camera on a pan-tilt mount, allowing hourly characterization of landscape component temperatures (e.g., sunlit canopy, bare soil, leaf litter). We use these in-situ measurements to assess the impact of fine-scale landscape heterogeneity on estimates of LST, including sensitivity to (i) the relative abundance of component materials, (ii) directional effects due to solar and viewing geometry, (iii) duration of sunlit exposure for each compositional type, and (iv) air temperature. To scale these properties to Landsat spatial resolution (~100-m), we characterize the sub-pixel composition of landscape components (in addition to shade) by applying spectral mixture analysis (SMA) to the Landsat Operational Land Imager (OLI) spectral bands and test the sensitivity of the relationships established with the in-situ data at this coarser scale. The effects of vegetation abundance and cover height versus other controls on satellite-derived estimates of LST will be assessed by comparing estimates at the burned vs

  1. Breed Locally, Disperse Globally: Fine-Scale Genetic Structure Despite Landscape-Scale Panmixia in a Fire-Specialist

    PubMed Central

    Pierson, Jennifer C.; Allendorf, Fred W.; Drapeau, Pierre; Schwartz, Michael K.

    2013-01-01

    An exciting advance in the understanding of metapopulation dynamics has been the investigation of how populations respond to ephemeral patches that go ‘extinct’ during the lifetime of an individual. Previous research has shown that this scenario leads to genetic homogenization across large spatial scales. However, little is known about fine-scale genetic structuring or how this changes over time in ephemeral patches. We predicted that species that specialize on ephemeral habitats will delay dispersal to exploit natal habitat patches while resources are plentiful and thus display fine-scale structure. To investigate this idea, we evaluated the effect of frequent colonization of ephemeral habitats on the fine-scale genetic structure of a fire specialist, the black-backed woodpecker (Picoides arcticus) and found a pattern of fine-scale genetic structure. We then tested for differences in spatial structure between sexes and detected a pattern consistent with male-biased dispersal. We also detected a temporal increase in relatedness among individuals within newly burned forest patches. Our results indicate that specialist species that outlive their ephemeral patches can accrue significant fine-scale spatial structure that does not necessarily affect spatial structure at larger scales. This highlights the importance of both spatial and temporal scale considerations in both sampling and data interpretation of molecular genetic results. PMID:23825646

  2. Fine-scale features on bioreplicated decoys of the emerald ash borer provide necessary visual verisimilitude

    NASA Astrophysics Data System (ADS)

    Domingue, Michael J.; Pulsifer, Drew P.; Narkhede, Mahesh S.; Engel, Leland G.; Martín-Palma, Raúl J.; Kumar, Jayant; Baker, Thomas C.; Lakhtakia, Akhlesh

    2014-03-01

    The emerald ash borer (EAB), Agrilus planipennis, is an invasive tree-killing pest in North America. Like other buprestid beetles, it has an iridescent coloring, produced by a periodically layered cuticle whose reflectance peaks at 540 nm wavelength. The males perform a visually mediated ritualistic mating flight directly onto females poised on sunlit leaves. We attempted to evoke this behavior using artificial visual decoys of three types. To fabricate decoys of the first type, a polymer sheet coated with a Bragg-stack reflector was loosely stamped by a bioreplicating die. For decoys of the second type, a polymer sheet coated with a Bragg-stack reflector was heavily stamped by the same die and then painted green. Every decoy of these two types had an underlying black absorber layer. Decoys of the third type were produced by a rapid prototyping machine and painted green. Fine-scale features were absent on the third type. Experiments were performed in an American ash forest infested with EAB, and a European oak forest home to a similar pest, the two-spotted oak borer (TSOB), Agrilus biguttatus. When pinned to leaves, dead EAB females, dead TSOB females, and bioreplicated decoys of both types often evoked the complete ritualized flight behavior. Males also initiated approaches to the rapidly prototyped decoy, but would divert elsewhere without making contact. The attraction of the bioreplicated decoys was also demonstrated by providing a high dc voltage across the decoys that stunned and killed approaching beetles. Thus, true bioreplication with fine-scale features is necessary to fully evoke ritualized visual responses in insects, and provides an opportunity for developing insecttrapping technologies.

  3. Fine-scale temporal adaptation within a salmonid population: mechanism and consequences.

    PubMed

    Gharrett, Anthony J; Joyce, John; Smoker, William W

    2013-09-01

    We demonstrate a clear example of local adaptation of seasonal timing of spawning and embryo development. The consequence is a population of pink salmon that is segmented into spawning groups that use the same limited habitat. We synthesize published observations with results of new analyses to demonstrate that genetic variation of these traits results in survival differentials related to that variation, and that density-dependent embryo mortality and seasonally variable juvenile mortality are a mechanism of selection. Most examples of local adaptation in natural systems depend on observed correlations between environments and fitness traits, but do not fully demonstrate local adaptation: that the trait is genetically determined, exhibits different fitness in common environments or across different environments, and its variation is mechanistically connected to fitness differences. The geographic or temporal scales of local adaptation often remain obscure. Here, we show that heritable, fine-scale differences of timing of reproductive migration in a pink salmon (Oncorhynchus gorbuscha) resulted in temporal structure that persisted several generations; the differences enable a density-dependent population to pack more spawners into limited spawning habitat, that is, enhance its fitness. A balanced trade-off of survivals results because embryos from early-migrating fish have a lower freshwater survival (harsh early physical conditions and disturbance by late spawners), but emigrant fry from late-migrating fish have lower marine survivals (timing of their vernal emergence into the estuarine environment). Such fine-scale local adaptations increase the genetic portfolio of the populations and may provide a buffer against the impacts of climate change. PMID:23980763

  4. Unresolved fine-scale structure in solar coronal loop-tops

    SciTech Connect

    Scullion, E.; Van der Voort, L. Rouppe; Wedemeyer, S.; Antolin, P.

    2014-12-10

    New and advanced space-based observing facilities continue to lower the resolution limit and detect solar coronal loops in greater detail. We continue to discover even finer substructures within coronal loop cross-sections, in order to understand the nature of the solar corona. Here, we push this lower limit further to search for the finest coronal loop substructures, through taking advantage of the resolving power of the Swedish 1 m Solar Telescope/CRisp Imaging Spectro-Polarimeter (CRISP), together with co-observations from the Solar Dynamics Observatory/Atmospheric Image Assembly (AIA). High-resolution imaging of the chromospheric Hα 656.28 nm spectral line core and wings can, under certain circumstances, allow one to deduce the topology of the local magnetic environment of the solar atmosphere where its observed. Here, we study post-flare coronal loops, which become filled with evaporated chromosphere that rapidly condenses into chromospheric clumps of plasma (detectable in Hα) known as a coronal rain, to investigate their fine-scale structure. We identify, through analysis of three data sets, large-scale catastrophic cooling in coronal loop-tops and the existence of multi-thermal, multi-stranded substructures. Many cool strands even extend fully intact from loop-top to footpoint. We discover that coronal loop fine-scale strands can appear bunched with as many as eight parallel strands within an AIA coronal loop cross-section. The strand number density versus cross-sectional width distribution, as detected by CRISP within AIA-defined coronal loops, most likely peaks at well below 100 km, and currently, 69% of the substructure strands are statistically unresolved in AIA coronal loops.

  5. Lack of sex-biased dispersal promotes fine-scale genetic structure in alpine ungulates

    USGS Publications Warehouse

    Roffler, Gretchen H.; Talbot, Sandra L.; Luikart, Gordon; Sage, George K.; Pilgrim, Kristy L.; Adams, Layne G.; Schwartz, Michael K.

    2014-01-01

    Identifying patterns of fine-scale genetic structure in natural populations can advance understanding of critical ecological processes such as dispersal and gene flow across heterogeneous landscapes. Alpine ungulates generally exhibit high levels of genetic structure due to female philopatry and patchy configuration of mountain habitats. We assessed the spatial scale of genetic structure and the amount of gene flow in 301 Dall’s sheep (Ovis dalli dalli) at the landscape level using 15 nuclear microsatellites and 473 base pairs of the mitochondrial (mtDNA) control region. Dall’s sheep exhibited significant genetic structure within contiguous mountain ranges, but mtDNA structure occurred at a broader geographic scale than nuclear DNA within the study area, and mtDNA structure for other North American mountain sheep populations. No evidence of male-mediated gene flow or greater philopatry of females was observed; there was little difference between markers with different modes of inheritance (pairwise nuclear DNA F ST = 0.004–0.325; mtDNA F ST = 0.009–0.544), and males were no more likely than females to be recent immigrants. Historical patterns based on mtDNA indicate separate northern and southern lineages and a pattern of expansion following regional glacial retreat. Boundaries of genetic clusters aligned geographically with prominent mountain ranges, icefields, and major river valleys based on Bayesian and hierarchical modeling of microsatellite and mtDNA data. Our results suggest that fine-scale genetic structure in Dall’s sheep is influenced by limited dispersal, and structure may be weaker in populations occurring near ancestral levels of density and distribution in continuous habitats compared to other alpine ungulates that have experienced declines and marked habitat fragmentation.

  6. Unresolved Fine-scale Structure in Solar Coronal Loop-tops

    NASA Astrophysics Data System (ADS)

    Scullion, E.; Rouppe van der Voort, L.; Wedemeyer, S.; Antolin, P.

    2014-12-01

    New and advanced space-based observing facilities continue to lower the resolution limit and detect solar coronal loops in greater detail. We continue to discover even finer substructures within coronal loop cross-sections, in order to understand the nature of the solar corona. Here, we push this lower limit further to search for the finest coronal loop substructures, through taking advantage of the resolving power of the Swedish 1 m Solar Telescope/CRisp Imaging Spectro-Polarimeter (CRISP), together with co-observations from the Solar Dynamics Observatory/Atmospheric Image Assembly (AIA). High-resolution imaging of the chromospheric Hα 656.28 nm spectral line core and wings can, under certain circumstances, allow one to deduce the topology of the local magnetic environment of the solar atmosphere where its observed. Here, we study post-flare coronal loops, which become filled with evaporated chromosphere that rapidly condenses into chromospheric clumps of plasma (detectable in Hα) known as a coronal rain, to investigate their fine-scale structure. We identify, through analysis of three data sets, large-scale catastrophic cooling in coronal loop-tops and the existence of multi-thermal, multi-stranded substructures. Many cool strands even extend fully intact from loop-top to footpoint. We discover that coronal loop fine-scale strands can appear bunched with as many as eight parallel strands within an AIA coronal loop cross-section. The strand number density versus cross-sectional width distribution, as detected by CRISP within AIA-defined coronal loops, most likely peaks at well below 100 km, and currently, 69% of the substructure strands are statistically unresolved in AIA coronal loops.

  7. Fine-scale population genetic structure in a fission-fusion society.

    PubMed

    Archie, Elizabeth A; Maldonado, Jésus E; Hollister-Smith, Julie A; Poole, Joyce H; Moss, Cynthia J; Fleischer, Robert C; Alberts, Susan C

    2008-06-01

    Nonrandom patterns of mating and dispersal create fine-scale genetic structure in natural populations - especially of social mammals - with important evolutionary and conservation genetic consequences. Such structure is well-characterized for typical mammalian societies; that is, societies where social group composition is stable, dispersal is male-biased, and males form permanent breeding associations in just one or a few social groups over the course of their lives. However, genetic structure is not well understood for social mammals that differ from this pattern, including elephants. In elephant societies, social groups fission and fuse, and males never form permanent breeding associations with female groups. Here, we combine 33 years of behavioural observations with genetic information for 545 African elephants (Loxodonta africana), to investigate how mating and dispersal behaviours structure genetic variation between social groups and across age classes. We found that, like most social mammals, female matrilocality in elephants creates co-ancestry within core social groups and significant genetic differentiation between groups (Phi(ST) = 0.058). However, unlike typical social mammals, male elephants do not bias reproduction towards a limited subset of social groups, and instead breed randomly across the population. As a result, reproductively dominant males mediate gene flow between core groups, which creates cohorts of similar-aged paternal relatives across the population. Because poaching tends to eliminate the oldest elephants from populations, illegal hunting and poaching are likely to erode fine-scale genetic structure. We discuss our results and their evolutionary and conservation genetic implications in the context of other social mammals. PMID:18466226

  8. An Improvement of Fine Scale Wind Field Prediction using WRF/MMIF Models for CALPUFF Application.

    NASA Astrophysics Data System (ADS)

    Kim, A. L.; Koo, Y. S.

    2014-12-01

    Accurate simulation of CALPUFF dispersion modeling is largely dependent on the data sets which are properly resolved in the spatial and temporal evolution of meteorological field on a wide range of scales. The fine scale field wind of 100 m spatial resolution is required for the CALPUFF modeling in the complex terrain near the coastal area. The objective of this paper is to provide information how to calculate the fine scale wind field using recent advances in the meteorological model. The diagnostic model of CALMET has been used to generate fine grid scale wind field by interpolating output of mesoscale prognostic weather models of MM5 (short for Fifth-Generation Penn State/NCAR Mesoscale Model) and WRF (Weather Research and Forecast). The MMIF(The Mesoscale Model Interface Program) interfacial program directly converting WRF meteorological output to formats appropriate for CALPUFF modeling without diagnostic interpolations is recently developed. The modeling comparison between WRF/CALMET and WRF/MMIF was carried out to find out a best way in generating fine wind field in the complex geological conditions. For the WRF/CALMET modeling, WRF model output of 900m grid resolution was provided to CALMET model and CALMET then calculated the fine grid resolution of 100m by diagnostically interpolating the WRF output. For the WRF/MMIF modeling, the WRF model directly calculate the fine grid of 100m and the MMIF program was used to convert WRF data. In order to validate model performance of two methods, simulated variables of meteorological fields were compared with observations at the landfill site near the coast in KOREA. It is found that WRF/MMIF is in better agreement with observations than CALWRF/CALMET in respect to the statics of RMSE and IOA. CALPUFF modeling with landfill emission data of H2S was performed and compared with monitoring data to identify effects on meteorological data on the final outcome of CALPUFF dispersion modeling.

  9. Fine-scale chemical exposure differs in point and nonpoint source plumes.

    PubMed

    Lahman, Sara E; Moore, Paul A

    2015-05-01

    Increasing influxes of anthropogenic chemicals into aquatic ecosystems has led to growing global concern surrounding human and ecosystem health. As more freshwater systems are deemed not potable or usable for agricultural purposes, more attention is being paid to remediation and mitigation efforts. Predicting and preventing the impacts of the chemical inputs first requires a thorough understanding of the spatio-temporal distribution of chemical plumes in natural habitats. Plume dispersion is intimately tied to fluid mechanics; therefore, alterations in the way that chemical plumes are introduced to habitats can have profound effects on chemical distribution. Such alterations can subsequently alter the exposure to which organisms are subjected. This study examined the influence of point versus nonpoint sources in structuring the distribution of chemicals in a simulated flowing freshwater habitat. The fine-scale (molecular) spatio-temporal distribution of chemicals was measured in situ using an electrochemical detector. Molecular concentration at varying distance and height from the source was quantified using dopamine coupled with an electrochemical detection system. The fine-scale distribution of chemical plumes from point and nonpoint sources showed significant differences in how organisms will be exposed to chemicals. Overall, this study characterized plumes from nonpoint sources as having significantly longer peak lengths and rise times as well as greater peak heights and maximum slopes than plumes from point sources, thus providing a significantly different exposure paradigm. This quantification of how chemicals move differently throughout a fluid medium when introduced from point and nonpoint sources allows a greater understanding of how chemical plumes can potentially affect aquatic ecosystems. PMID:25552326

  10. Binary Oscillatory Crossflow Electrophoresis

    NASA Technical Reports Server (NTRS)

    Molloy, Richard F.; Gallagher, Christopher T.; Leighton, David T., Jr.

    1997-01-01

    Electrophoresis has long been recognized as an effective analytic technique for the separation of proteins and other charged species, however attempts at scaling up to accommodate commercial volumes have met with limited success. In this report we describe a novel electrophoretic separation technique - Binary Oscillatory Crossflow Electrophoresis (BOCE). Numerical simulations indicate that the technique has the potential for preparative scale throughputs with high resolution, while simultaneously avoiding many problems common to conventional electrophoresis. The technique utilizes the interaction of an oscillatory electric field and a transverse oscillatory shear flow to create an active binary filter for the separation of charged protein species. An oscillatory electric field is applied across the narrow gap of a rectangular channel inducing a periodic motion of charged protein species. The amplitude of this motion depends on the dimensionless electrophoretic mobility, alpha = E(sub o)mu/(omega)d, where E(sub o) is the amplitude of the electric field oscillations, mu is the dimensional mobility, omega is the angular frequency of oscillation and d is the channel gap width. An oscillatory shear flow is induced along the length of the channel resulting in the separation of species with different mobilities. We present a model that predicts the oscillatory behavior of charged species and allows estimation of both the magnitude of the induced convective velocity and the effective diffusivity as a function of a in infinitely long channels. Numerical results indicate that in addition to the mobility dependence, the steady state behavior of solute species may be strongly affected by oscillating fluid into and out of the active electric field region at the ends of the cell. The effect is most pronounced using time dependent shear flows of the same frequency (cos((omega)t)) flow mode) as the electric field oscillations. Under such conditions, experiments indicate that

  11. Multiplexing oscillatory biochemical signals.

    PubMed

    de Ronde, Wiet; ten Wolde, Pieter Rein

    2014-04-01

    In recent years it has been increasingly recognized that biochemical signals are not necessarily constant in time and that the temporal dynamics of a signal can be the information carrier. Moreover, it is now well established that the protein signaling network of living cells has a bow-tie structure and that components are often shared between different signaling pathways. Here we show by mathematical modeling that living cells can multiplex a constant and an oscillatory signal: they can transmit these two signals simultaneously through a common signaling pathway, and yet respond to them specifically and reliably. We find that information transmission is reduced not only by noise arising from the intrinsic stochasticity of biochemical reactions, but also by crosstalk between the different channels. Yet, under biologically relevant conditions more than 2 bits of information can be transmitted per channel, even when the two signals are transmitted simultaneously. These observations suggest that oscillatory signals are ideal for multiplexing signals. PMID:24685537

  12. Fine-Scale Relief in the Amazon Drives Large Scale Ecohydrological Processes

    NASA Astrophysics Data System (ADS)

    Nobre, A. D.; Cuartas, A.; Hodnett, M.; Saleska, S. R.

    2014-12-01

    Access to soil water by roots is a key ecophysiological factor for plant productivity in natural systems. Periodically during dry seasons or critically during episodic climate droughts, shortage of water supply can reduce or severely impair plant life. At the other extreme persistent soil waterlogging will limit root respiration and restrict local establishment to adapted species, usually leading to stunted and less productive communities. Soil-water availability is therefore a very important climate variable controlling plant physiology and ecosystem dynamics. Terra-firme, the non-seasonally floodable terrain that covers 82% of the landscape in Amazonia,[1] supports the most massive part of the rainforest ecosystem. The availability of soil water data for terra-firme is scant and very coarse. This lack of data has hampered observational and modeling studies aiming to develop a large-scale integrative ecohydrological picture of Amazonia and its vulnerability to climate change. We have mapped the Amazon basin with a new terrain model developed in our group (HAND, Height Above the Nearest drainage[2]), delineating soil water environments using topographical data from the SRTM digital elevation model (250 m horizontal interpolated resolution). The preliminary results show that more than 50% of Terra-firme has the water table very close to the surface (up to 2 m deep), while the remainder of the upland landscape has variable degree of dependence on non-saturated soil (vadose layer). The mapping also shows extremely heterogeneous patterns of fine-scale relief across the basin, which implies complex ecohydrological regional forcing on the forest physiology. Ecoclimate studies should therefore take into account fine-scale relief and its implications for soil-water availability to plant processes. [1] Melack, J. M., & Hess, L. L. (2011). Remote sensing of the distribution and extent of wetlands in the Amazon basin. In W. J. Junk & M. Piedade (Eds.), Amazonian floodplain

  13. Interferometric Redatuming and Imaging of Low Frequency Earthquakes for Fine-Scale Subduction Zone Structure

    NASA Astrophysics Data System (ADS)

    Nowack, R. L.; Bostock, M. G.

    2012-12-01

    We investigate the application of interferometric redatuming of seismic waveforms from low frequency earthquakes (LFE's) for fine-scale subduction zone structure. In this approach, seismic waveform data from two LFE sources recorded by an array at the Earth's surface are interferometrically redatumed to replace one of the sources at depth in the Earth by a virtual receiver. With many LFE sources along the top of a subducting plate, virtual source-receiver gathers can be constructed along the top of the plate boundary. Similar, but more involved approaches can also be applied to Wadati-Benioff seismic events which possess a wider depth distribution within the subducting plate. The construction of virtual shot-receiver profiles in the sub-surface has the advantage of effectively removing the distortion effects of the shallow structure above the plate and so affords the potential of providing more detailed images of the subduction zone structure itself. Here we perform initial numerical experiments for LFE sources and stations along a linear profile similar to that found in northern Cascadia. We first redatum synthetic P waveforms of LFE sources for a layered subduction zone structure including a dipping low velocity zone (LVZ) layer. The synthetic waveforms recorded at the surface array from a number of LFE sources are then redatumed to obtain a series of virtual common-source gathers along the top of the plate boundary, which can then be used for fine-scale imaging and velocity analysis of the plate itself. A second series of numerical experiments are performed using P waveforms of surface data from LFE sources to obtain virtual zero-offset profiles redatumed to the top of the plate structure. In these experiments a laterally varying lower boundary of the LVZ structure is imaged by the virtual zero-offset profiles at depth. In order to apply the redatuming approach to three-component seismic data recorded by LFE sources, an elastic formulation is required, however

  14. Geomorphometric analysis of fine-scale morphology for extensive areas: a new surface-texture operator

    NASA Astrophysics Data System (ADS)

    Trevisani, Sebastiano; Rocca, Michele

    2014-05-01

    The application of geomorphometric analysis to high resolution digital terrain models (HRDTM) amplifies our capability to characterize and interpret fine-scale solid earth surface morphology. In this context it is possible to analyze fine-scale morphology in term of surface texture (e.g. Trevisani, 2012; Lucieer, 2005) and retrieve information linked to the different geomorphic processes and factors; this kind of analysis has an interesting potential to be exploited in the context of quantitative geomorphologic/geologic interpretation and geo-engineering. We developed a multiscale texture operator capable to synthetize the main characteristics of local surface texture in an efficient way. The proposed operator can be viewed as an hybrid between classical geostatistical spatial continuity indexes (e.g. variogram, Atkinson, 2000) and the well-known operator based on (rotation invariant) local binary patterns (Ojala, 2002). An important characteristic of the operator is to derive information on surface texture in an easily interpretable form so as to facilitate its use by experts for the interpretation of geomorphic processes and factors. Moreover this surface texture operator could be used for the derivation of more complex and ad-hoc surface texture indexes. We present the application of the operator in the analysis of different HRDTMs, mainly in the context of alpine environment. A particular interesting example is the application of the surface texture analysis in an extensive area (hundreds of km2), including also urbanized zones, and the evaluation of potential links between surface texture and lithological and geo-structural factors. References Atkinson, P.M. & Lewis, P. 2000, "Geostatistical classification for remote sensing: An introduction", Computers and Geosciences, vol. 26, no. 4, pp. 361-371. Lucieer, A., Stein, A., 2005. Texture-based landform segmentation of LiDAR imagery. International Journal of Applied Earth Observation and Geoinformation 6, 261

  15. Fine-scale density wave structure of Saturn's A and B rings: Theory and simulations

    NASA Astrophysics Data System (ADS)

    Griv, Evgeny

    We examine the linear stability of the Saturnian ring disk of mutually gravitating and physically colliding particles with special emphasis on its fine-scale of the order of 100 m density wave structure, that is, almost regularly spaced, aligned cylindric density enhancements and optically-thin zones with the width and the spacing between them of roughly several tens particle diameters. We analyze the Jeans’ instabilities of gravity perturbations (e.g. those produced by a spontaneous disturbance) analytically by using the Navier-Stokes dynamical equations of a compressible fluid. For the first time in planetary ring dynamics, the theory is not restricted by any assumptions about the thickness of the system. We consider a simple model of the system consisting of a three-dimensional ring disk that is weakly inhomogeneous and whose structure is analyzed by making a horizontally local short-wave approximation. We demonstrate that the disk is Jeans-unstable and that gravity perturbations grow effectively within a few orbital periods. We find that self-gravitation plays a key role in the formation of the fine structure. The predictions of the theory are compared with observations of Saturn’s rings by the Cassini spacecraft and are found to be in good agreement. In particular, it appears very likely that some of the quasi-periodic microstructures observed in Saturn’s A and B rings - both axisymmetric and nonaxisymmetric ones - are manifestations of these effects. Thus, one can attribute the fine-scale structure observed in Saturn’s A and B rings in Cassini data to the development of free Lin-Shu type compression waves, or density waves -- normal modes -- developing in the plane of the system. From the well-developed theory of galactic spiral density waves, a free density wave is known to rotate in a rigid-body manner and to not be affected by differential rotation of the ring disk. We argue that the quasi-periodic density enhancements revealed in Cassini data are

  16. Fine-Scale Density Wave Structure of Saturn's Main Rings: A Hydrodynamic Theory

    NASA Astrophysics Data System (ADS)

    Griv, Evgeny; Gedalin, Michael

    The theoretical studies of Maxwell (1859) have showed that the rings around Saturn could not be solid or liquid, but rather a swarm of millions of individual particles rotating in separate concentric orbits at different speeds. A modern very popular model of the particles in Saturn's rings is a smooth ice sphere, whose restitution coefficient is quite high (exceeding 0.63) and decreases as the collision velocity increases. In this work, the linear stability of the Saturnian ring disk of mutually gravitating and physically colliding particles is examined with special emphasis on its fine-scale of the order of 100 m density wave structure, that is, almost regularly spaced, aligned cylindric density enhancements and optically-thin zones with the width and the spacing between them of roughly several tens particle diameters. Jeans' instabilities of small-amplitude gravity perturbations (e.g., those produced by a spontaneous disturbance) are analyzed analytically through the use of Navier-Stokes dynamical equations of a compressible fluid. An essential feature of this study is that the theory is not restricted by any assumptions regarding the thickness of the system. The simple model of the system is considered: the ring disk is considered to be thin, a weakly spatially inhomogeneous, and its structure is considered in a horizontally local short-wave approximation. We show that the disk is probably unstable and gravity perturbations grow effectively within a few orbital periods; self-gravitation plays a key role in the formation of the fine-scale structure while particle collisions play a secondary role. The predictions of the theory are compared with recent observations of Saturn's rings by the Cassini spacecraft and are found to be in good agreement. Particulary, it appears very likely that some of the microstructures observed in Saturn's A and B rings -both axisymmetric and nonaxisymmetric ones -are manifestations of these effects produced by Jeans' gravitational

  17. Novel laboratory methods for determining the fine scale electrical resistivity structure of core

    NASA Astrophysics Data System (ADS)

    Haslam, E. P.; Gunn, D. A.; Jackson, P. D.; Lovell, M. A.; Aydin, A.; Prance, R. J.; Watson, P.

    2014-12-01

    High-resolution electrical resistivity measurements are made on saturated rocks using novel laboratory instrumentation and multiple electrical voltage measurements involving in principle a four-point electrode measurement but with a single, moving electrode. Flat, rectangular core samples are scanned by varying the electrode position over a range of hundreds of millimetres with an accuracy of a tenth of a millimetre. Two approaches are tested involving a contact electrode and a non-contact electrode arrangement. The first galvanic method uses balanced cycle switching of a floating direct current (DC) source to minimise charge polarisation effects masking the resistivity distribution related to fine scale structure. These contacting electrode measurements are made with high common mode noise rejection via differential amplification with respect to a reference point within the current flow path. A computer based multifunction data acquisition system logs the current through the sample and voltages along equipotentials from which the resistivity measurements are derived. Multiple measurements are combined to create images of the surface resistivity structure, with variable spatial resolution controlled by the electrode spacing. Fine scale sedimentary features and open fractures in saturated rocks are interpreted from the measurements with reference to established relationships between electrical resistivity and porosity. Our results successfully characterise grainfall lamination and sandflow cross-stratification in a brine saturated, dune bedded core sample representative of a southern North Sea reservoir sandstone, studied using the system in constant current, variable voltage mode. In contrast, in a low porosity marble, identification of open fracture porosity against a background very low matrix porosity is achieved using the constant voltage, variable current mode. This new system is limited by the diameter of the electrode that for practical reasons can only be

  18. FINE SCALE AIR QUALITY MODELING USING DISPERSION AND CMAQ MODELING APPROACHES: AN EXAMPLE APPLICATION IN WILMINGTON, DE

    EPA Science Inventory

    Characterization of spatial variability of air pollutants in an urban setting at fine scales is critical for improved air toxics exposure assessments, for model evaluation studies and also for air quality regulatory applications. For this study, we investigate an approach that su...

  19. RESOLVING FINE SCALE IN AIR TOXICS MODELING AND THE IMPORTANCE OF ITS SUB-GRID VARIABILITY FOR EXPOSURE ESTIMATES

    EPA Science Inventory

    This presentation explains the importance of the fine-scale features for air toxics exposure modeling. The paper presents a new approach to combine local-scale and regional model results for the National Air Toxic Assessment. The technique has been evaluated with a chemical tra...

  20. A New Multibeam Sonar Technique for Evaluating Fine-Scale Fish Behavior Near Hydroelectric Dam Guidance Structures

    SciTech Connect

    Johnson, Robert L.; Simmons, Mary Ann; Simmons, Carver S.; Blanton, Susan L.; Coutant, C.

    2002-03-07

    This book chapter describes a Dual-Head Multibeam Sonar (DHMS) system developed by Battelle and deployed at two dam sites on the Snake and Columbia rivers in Washington State to evaluate the fine-scale (

  1. Polygamy and an absence of fine-scale structure in Dendroctonus ponderosae (Hopk.) (Coleoptera: Curcilionidae) confirmed using molecular markers

    PubMed Central

    Janes, J K; Roe, A D; Rice, A V; Gorrell, J C; Coltman, D W; Langor, D W; Sperling, F A H

    2016-01-01

    An understanding of mating systems and fine-scale spatial genetic structure is required to effectively manage forest pest species such as Dendroctonus ponderosae (mountain pine beetle). Here we used genome-wide single-nucleotide polymorphisms to assess the fine-scale genetic structure and mating system of D. ponderosae collected from a single stand in Alberta, Canada. Fine-scale spatial genetic structure was absent within the stand and the majority of genetic variation was best explained at the individual level. Relatedness estimates support previous reports of pre-emergence mating. Parentage assignment tests indicate that a polygamous mating system better explains the relationships among individuals within a gallery than the previously reported female monogamous/male polygynous system. Furthermore, there is some evidence to suggest that females may exploit the galleries of other females, at least under epidemic conditions. Our results suggest that current management models are likely to be effective across large geographic areas based on the absence of fine-scale genetic structure. PMID:26286666

  2. The Fine-Scale and Complex Architecture of Human Copy-Number Variation

    PubMed Central

    Perry, George H.; Ben-Dor, Amir; Tsalenko, Anya; Sampas, Nick; Rodriguez-Revenga, Laia; Tran, Charles W.; Scheffer, Alicia; Steinfeld, Israel; Tsang, Peter; Yamada, N. Alice; Park, Han Soo; Kim, Jong-Il; Seo, Jeong-Sun; Yakhini, Zohar; Laderman, Stephen; Bruhn, Laurakay; Lee, Charles

    2008-01-01

    Despite considerable excitement over the potential functional significance of copy-number variants (CNVs), we still lack knowledge of the fine-scale architecture of the large majority of CNV regions in the human genome. In this study, we used a high-resolution array-based comparative genomic hybridization (aCGH) platform that targeted known CNV regions of the human genome at approximately 1 kb resolution to interrogate the genomic DNAs of 30 individuals from four HapMap populations. Our results revealed that 1020 of 1153 CNV loci (88%) were actually smaller in size than what is recorded in the Database of Genomic Variants based on previously published studies. A reduction in size of more than 50% was observed for 876 CNV regions (76%). We conclude that the total genomic content of currently known common human CNVs is likely smaller than previously thought. In addition, approximately 8% of the CNV regions observed in multiple individuals exhibited genomic architectural complexity in the form of smaller CNVs within larger ones and CNVs with interindividual variation in breakpoints. Future association studies that aim to capture the potential influences of CNVs on disease phenotypes will need to consider how to best ascertain this previously uncharacterized complexity. PMID:18304495

  3. Optimal fine-scale structures in compliance minimization for a uniaxial load

    PubMed Central

    Kohn, Robert V.; Wirth, Benedikt

    2014-01-01

    We consider the optimization of the topology and geometry of an elastic structure O⊂R2 subjected to a fixed boundary load, i.e. we aim to minimize a weighted sum of material volume Vol(O), structure perimeter Per(O) and structure compliance Comp(O) (which is the work done by the load). As a first simple and instructive case, this paper treats the situation of an imposed uniform uniaxial tension load in two dimensions. If the weight ε of the perimeter is small, optimal geometries exhibit very fine-scale structure which cannot be resolved by numerical optimization. Instead, we prove how the minimum energy scales in ε, which involves the construction of a family of near-optimal geometries and thus provides qualitative insights. The construction is based on a classical branching procedure with some features unique to compliance minimization. The proof of the energy scaling also requires an ansatz-independent lower bound, which we derive once via a classical convex duality argument (which is restricted to two dimensions and the uniaxial load) and once via a Fourier-based refinement of the Hashin–Shtrikman bounds for the effective elastic moduli of composite materials. We also highlight the close relation to and the differences from shape optimization with a scalar PDE-constraint and a link to the pattern formation observed in intermediate states of type-I superconductors. PMID:25294972

  4. Fine-Scale Human Population Structure in Southern Africa Reflects Ecogeographic Boundaries.

    PubMed

    Uren, Caitlin; Kim, Minju; Martin, Alicia R; Bobo, Dean; Gignoux, Christopher R; van Helden, Paul D; Möller, Marlo; Hoal, Eileen G; Henn, Brenna M

    2016-09-01

    Recent genetic studies have established that the KhoeSan populations of southern Africa are distinct from all other African populations and have remained largely isolated during human prehistory until ∼2000 years ago. Dozens of different KhoeSan groups exist, belonging to three different language families, but very little is known about their population history. We examine new genome-wide polymorphism data and whole mitochondrial genomes for >100 South Africans from the ≠Khomani San and Nama populations of the Northern Cape, analyzed in conjunction with 19 additional southern African populations. Our analyses reveal fine-scale population structure in and around the Kalahari Desert. Surprisingly, this structure does not always correspond to linguistic or subsistence categories as previously suggested, but rather reflects the role of geographic barriers and the ecology of the greater Kalahari Basin. Regardless of subsistence strategy, the indigenous Khoe-speaking Nama pastoralists and the N|u-speaking ≠Khomani (formerly hunter-gatherers) share ancestry with other Khoe-speaking forager populations that form a rim around the Kalahari Desert. We reconstruct earlier migration patterns and estimate that the southern Kalahari populations were among the last to experience gene flow from Bantu speakers, ∼14 generations ago. We conclude that local adoption of pastoralism, at least by the Nama, appears to have been primarily a cultural process with limited genetic impact from eastern Africa. PMID:27474727

  5. Laboratory experiments of fine-scale mixing and mass transport within a coral canopy

    NASA Astrophysics Data System (ADS)

    Reidenbach, Matthew A.; Koseff, Jeffrey R.; Monismith, Stephen G.

    2007-07-01

    Laboratory experiments obtained fine scale measurements of turbulent shear stresses and rates of mixing and mass transfer over a nonliving bed of the coral, Porites compressa, the dominant species found in Kaneohe Bay, Hawaii. A reef canopy was placed in a recirculating wave-current flume and flow was generated that simulated the flow characteristics of the reef flat of Kaneohe Bay. Turbulence and velocity structure under both unidirectional and wave-dominated currents were measured using a two-dimensional laser Doppler anemometer. Mass transport measurements were made using a planar laser-induced fluorescence technique in which the scalar transport of Rhodamine 6G dye, fluxed from the surfaces of the coral, was quantified. Results show that the action of surface waves, interacting with the structure of the reef, can increase instantaneous shear and mixing up to six times compared to that of unidirectional currents. Maximum shear and mass transport events coincided with flow separation within the wave-current boundary layer and the ejection of vortices into the flow. Wave action also acted to increase the vertical flux of water from within the coral structure. The combined effects of increased turbulent stress and fluid exchange from the interior of the canopy increased mass flux due to wave action 2.3±0.5 times that measured for comparable unidirectional currents.

  6. Fine-scale genetic differentiation of a temperate herb: relevance of local environments and demographic change

    PubMed Central

    Sato, Yasuhiro; Kudoh, Hiroshi

    2014-01-01

    The genetic structure of a plant species is shaped by environmental adaptation and demographic factors, but their relative contributions are still unknown. To examine the environment- or geography-related differentiation, we quantified genetic variation among 41 populations of a temperate herb, Arabidopsis halleri subsp. gemmifera (Brassicaceae). We analysed 19 microsatellite loci, which showed a significant population differentiation and a moderate within-population genetic diversity (global Gst = 0.42 and Hs = 0.19). Our structure analysis and phylogenetic network did not detect more than two genetic groups across the Japanese mainland but found fine-scale genetic differentiations and admixed patterns around the central area. Across the Japanese mainland, we found significant evidence for isolation-by-distance but not for isolation-by-environments. However, at least within the central area, the magnitude of genetic differentiation tended to increase with microhabitat dissimilarity under light conditions and water availability. Furthermore, most populations have been estimated to experience a recent decline in the effective population size, indicating a possibility of bottleneck effects on the pattern of genetic variation. These findings highlight a potential influence of the microhabitat conditions and demographic changes on the local-scale genetic differentiation among natural plant populations. PMID:25387749

  7. Fine-scale behavioural differences distinguish resource use by ecomorphs in a closed ecosystem.

    PubMed

    Hawley, Kate L; Rosten, Carolyn M; Christensen, Guttorm; Lucas, Martyn C

    2016-01-01

    Temporal differences in habitat use and foraging specialisms between ecomorphs represent aspects of behavioural phenotype that are poorly understood with regard to the origin and maintenance of ecological diversity. We tested the role of behaviour in resource use divergence of two Arctic charr (Salvelinus alpinus) phenotypes, a slim, putatively pelagic-dwelling morph and a robust, putatively littoral-dwelling generalist morph, over an annual cycle, using biotelemetry and stable isotopes. Pelagic morph charr exhibited significantly greater δC(13) depletion, concordant with increased zooplanktivory, than for the Littoral morph. Although three-dimensional space-use of the morphs strongly overlapped, on average, the Littoral morph used that habitat 19.3% more than the Pelagic morph. Pelagic morph fish were significantly more active, further from the lake bed and at greater depth than Littoral fish (annual means respectively, Pelagic, 0.069 BL s(-1), 8.21 m and 14.11 m; Littoral, 0.047 BL s(-1), 5.87 m and 10.47 m). Patterns of habitat use differed between ecomorphs at key times, such as during autumn and at ice break, likely related to spawning and resumption of intensive foraging respectively. Extensive space-use overlap, but fine-scale differences in habitat use between charr ecomorphs, suggests the importance of competition for generating and maintaining polymorphism, and its potential for promoting reproductive isolation and evolution in sympatry. PMID:27098197

  8. Fine-scale genetic correlates to condition and migration in a wild cervid

    PubMed Central

    Northrup, Joseph M; Shafer, Aaron B A; Anderson, Charles R; Coltman, David W; Wittemyer, George

    2014-01-01

    The relationship between genetic variation and phenotypic traits is fundamental to the study and management of natural populations. Such relationships often are investigated by assessing correlations between phenotypic traits and heterozygosity or genetic differentiation. Using an extensive data set compiled from free-ranging mule deer (Odocoileus hemionus), we combined genetic and ecological data to (i) examine correlations between genetic differentiation and migration timing, (ii) screen for mitochondrial haplotypes associated with migration timing, and (iii) test whether nuclear heterozygosity was associated with condition. Migration was related to genetic differentiation (more closely related individuals migrated closer in time) and mitochondrial haplogroup. Body fat was related to heterozygosity at two nuclear loci (with antagonistic patterns), one of which is situated near a known fat metabolism gene in mammals. Despite being focused on a widespread panmictic species, these findings revealed a link between genetic variation and important phenotypes at a fine scale. We hypothesize that these correlations are either the result of mixing refugial lineages or differential mitochondrial haplotypes influencing energetics. The maintenance of phenotypic diversity will be critical to enable the potential tracking of changing climatic conditions, and these correlates highlight the need to consider evolutionary mechanisms in management, even in widely distributed panmictic species. PMID:25469172

  9. Mapping to Support Fine Scale Epidemiological Cholera Investigations: A Case Study of Spatial Video in Haiti

    PubMed Central

    Curtis, Andrew; Blackburn, Jason K.; Smiley, Sarah L.; Yen, Minmin; Camilli, Andrew; Alam, Meer Taifur; Ali, Afsar; Morris, J. Glenn

    2016-01-01

    The cartographic challenge in many developing world environments suffering a high disease burden is a lack of granular environmental covariates suitable for modeling disease outcomes. As a result, epidemiological questions, such as how disease diffuses at intra urban scales are extremely difficult to answer. This paper presents a novel geospatial methodology, spatial video, which can be used to collect and map environmental covariates, while also supporting field epidemiology. An example of epidemic cholera in a coastal town of Haiti is used to illustrate the potential of this new method. Water risks from a 2012 spatial video collection are used to guide a 2014 survey, which concurrently included the collection of water samples, two of which resulted in positive lab results “of interest” (bacteriophage specific for clinical cholera strains) to the current cholera situation. By overlaying sample sites on 2012 water risk maps, a further fifteen proposed water sample locations are suggested. These resulted in a third spatial video survey and an additional “of interest” positive water sample. A potential spatial connection between the “of interest” water samples is suggested. The paper concludes with how spatial video can be an integral part of future fine-scale epidemiological investigations for different pathogens. PMID:26848672

  10. Fine-scale genetic structure of grape phylloxera from the roots and leaves of Vitis.

    PubMed

    Corrie, A M; Hoffmann, A A

    2004-02-01

    Patterns of variation at microsatellite loci suggest that root populations of the pest grape phylloxera (Daktulosphaira vitifoliae) are largely parthenogenetic in Australian vineyards. To investigate reproduction in leaf galling phylloxera and the association between these individuals and phylloxera on roots, we examined in detail genetic variation in phylloxera from a vineyard block. Some genotypes found on leaf galls within this block were not present on roots, whereas others spanned both zones. There was no evidence that genotypes on roots were the product of sexual reproduction in leaf galls. mtDNA variation was not associated with the location of the phylloxera clones. The spatial distribution of genotypes within a root population was further investigated by intensively sampling phylloxera from another vineyard block. Join-count spatial autocorrelation statistics were used to explore fine-scale spatial structure. Clones were nonrandomly distributed within the block and there was evidence that the distribution of clones followed rows. These findings suggest firstly that there is limited dispersal of root and leaf feeding phylloxera, and secondly that factors, other than vine host, are likely to be important and contribute to clonal structure within populations. PMID:14679391

  11. Development of fine scale PZT ceramic fiber/polymer shell composite transducers

    SciTech Connect

    Livneh, S.S.; Janas, V.F.; Safari, A.

    1995-07-01

    The relic processing technique was used to fabricate fine-scale piezoelectric lead zirconate titanate (PZT) ceramic fiber/polymer shell composites. In this technique sacrificial activated carbon fabrics were soaked in a PZT precursor solution, dried, and heat treated to form piezoceramic relics. Relics were embedded with polymer, which was allowed to cure, and the resulting composites were polished, electroded, and poled. Different facets of the composite-forming process were examined: structural modifications, soaking, firing, and polymer impregnation. The physical and electromechanical properties of the unique resulting composite were evaluated. Optimized PZT shell composites with 39 vol% ceramic exhibited the following property values: K{approximately}200, tan {delta} {approximately} 5.5%, d{sub 33} {approximately} 290 pC/N, d{sub h} {approximately} 100 pC/N, d{sub h}g{sub h} {approximately} 6000 {times} 10 {sup {minus}15} m{sup 2}/N, k{sub p} {approximately} 0.19, and k{sub t} {approximately} 0.28.

  12. Fine-scale dissection of the subdomains of polarity protein BASL in stomatal asymmetric cell division

    PubMed Central

    Zhang, Ying; Bergmann, Dominique C.; Dong, Juan

    2016-01-01

    Cell polarity is a prerequisite for asymmetric cell divisions (ACDs) that generate cell type diversity during development of multicellular organisms. In Arabidopsis, stomatal lineage ACDs are regulated by the plant-specific protein BREAKING OF ASYMMETRY IN THE STOMATAL LINEAGE (BASL). BASL exhibits dynamic subcellular localization, accumulating initially in the nucleus, but then additionally in a highly polarized crescent at the cell cortex before division. BASL polarization requires a phosphorylation-mediated activation process, but how this is achieved remains unknown. In this study, we performed a fine-scale dissection of BASL protein subdomains and elucidated a nuclear localization sequence for nuclear import and a critical FxFP motif for cortical polarity formation, respectively. Artificially tethering BASL subdomains to the plasma membrane suggests that novel protein partner/s might exist and bind to an internal region of BASL. In addition, we suspect the existence of a protein degradation mechanism associated with the amino terminal domain of BASL that accounts for restricting its predominant expression to the stomatal lineage cells of the epidermis. Taken together, our results revealed that BASL, through its distinct subdomains, integrates multiple regulatory inputs to provide a mechanism that promotes difference during stomatal lineage ACDs. PMID:27422992

  13. Fine-scale Horizontal Structure of Arctic Mixed-Phase Clouds.

    SciTech Connect

    Rambukkange,M.; Verlinde, J.; Elorante, E.; Luke, E.; Kollias, P.; Shupe, M.

    2006-07-10

    Recent in situ observations in stratiform clouds suggest that mixed phase regimes, here defined as limited cloud volumes containing both liquid and solid water, are constrained to narrow layers (order 100 m) separating all-liquid and fully glaciated volumes (Hallett and Viddaurre, 2005). The Department of Energy Atmospheric Radiation Measurement Program's (DOE-ARM, Ackerman and Stokes, 2003) North Slope of Alaska (NSA) ARM Climate Research Facility (ACRF) recently started collecting routine measurement of radar Doppler velocity power spectra from the Millimeter Cloud Radar (MMCR). Shupe et al. (2004) showed that Doppler spectra has potential to separate the contributions to the total reflectivity of the liquid and solid water in the radar volume, and thus to investigate further Hallett and Viddaurre's findings. The Mixed-Phase Arctic Cloud Experiment (MPACE) was conducted along the NSA to investigate the properties of Arctic mixed phase clouds (Verlinde et al., 2006). We present surface based remote sensing data from MPACE to discuss the fine-scale structure of the mixed-phase clouds observed during this experiment.

  14. Fine-scale diversity and distribution of ectomycorrhizal fungal mycelium in a Scots pine forest.

    PubMed

    Anderson, Ian C; Genney, David R; Alexander, Ian J

    2014-03-01

    Ectomycorrhizal (ECM) mycelium is a key component of the ectomycorrhizal symbiosis, yet we know little regarding the fine-scale diversity and distribution of mycelium in ECM fungal communities. We collected four 20 × 20 × 2-cm(3) (800-cm(3)) slices of Scots pine (Pinus sylvestris) forest soil and divided each into 100 2 × 2 × 2-cm(3) (8-cm(3)) cubes. The presence of mycelium of ECM fungi was determined using an internal transcribed spacer (ITS) database terminal restriction fragment length polymorphism (T-RFLP) approach. As expected, many more ECM fungi were detected as mycelium than as ectomycorrhizas in a cube or slice. More surprisingly, up to one-quarter of the 43 species previously detected as ectomycorrhizas over an area of 400 m(2) could be detected in a single 8-cm(3) cube, and up to three-quarters in a single 800-cm(3) slice. ECM mycelium frequency decreased markedly with depth and there were distinct 'hotspots' of mycelium in the moss/F1 layer. Our data demonstrate a high diversity of ECM mycelium in a small (8-cm(3) ) volume of substrate, and indicate that the spatial scale at which ECM species are distributed as mycelium may be very different from the spatial scale at which they are distributed as tips. PMID:24345261

  15. The influence of density and sex on patterns of fine-scale genetic structure.

    PubMed

    Busch, Joseph D; Waser, Peter M; DeWoody, J Andrew

    2009-09-01

    Natal philopatry is expected to limit gene flow and give rise to fine-scale spatial genetic structure (SGS). The banner-tailed kangaroo rat (Dipodomys spectabilis) is unusual among mammals because both sexes are philopatric. This provides an opportunity to study patterns of local SGS faced by philopatric and dispersing animals. We evaluated SGS using spatial genetic autocorrelation in two D. spectabilis populations (Rucker and Portal) over a 14-year temporal series that covered low, medium, and high population densities. Significantly positive autocorrelation values exist up to 800 m at Rucker and 400 m at Portal. Density was negatively associated with SGS (low >medium >high), and suggests that increases in density are accompanied by greater spatial overlap of kin clusters. With regard to sex-bias, we find a small but significant increase in the SGS level of males over females, which matches the greater dispersal distances observed in females. We observed variation in SGS over the ecological time scale of this study, indicating genetic structure is temporally labile. Our study is the first temporal exploration of the influence of density and sex on spatial genetic autocorrelation in vertebrate populations. Because few organisms maintain discreet kin clusters, we predict that density will be negatively associated with SGS in other species. PMID:19453729

  16. Dynamics of land change in India: a fine-scale spatial analysis

    NASA Astrophysics Data System (ADS)

    Meiyappan, P.; Roy, P. S.; Sharma, Y.; Jain, A. K.; Ramachandran, R.; Joshi, P. K.

    2015-12-01

    Land is scarce in India: India occupies 2.4% of worlds land area, but supports over 1/6th of worlds human and livestock population. This high population to land ratio, combined with socioeconomic development and increasing consumption has placed tremendous pressure on India's land resources for food, feed, and fuel. In this talk, we present contemporary (1985 to 2005) spatial estimates of land change in India using national-level analysis of Landsat imageries. Further, we investigate the causes of the spatial patterns of change using two complementary lines of evidence. First, we use statistical models estimated at macro-scale to understand the spatial relationships between land change patterns and their concomitant drivers. This analysis using our newly compiled extensive socioeconomic database at village level (~630,000 units), is 100x higher in spatial resolution compared to existing datasets, and covers over 200 variables. The detailed socioeconomic data enabled the fine-scale spatial analysis with Landsat data. Second, we synthesized information from over 130 survey based case studies on land use drivers in India to complement our macro-scale analysis. The case studies are especially useful to identify unobserved variables (e.g. farmer's attitude towards risk). Ours is the most detailed analysis of contemporary land change in India, both in terms of national extent, and the use of detailed spatial information on land change, socioeconomic factors, and synthesis of case studies.

  17. Fine-Scale Mapping of Disease Loci via Shattered Coalescent Modeling of Genealogies

    PubMed Central

    Morris, A. P.; Whittaker, J. C.; Balding, D. J.

    2002-01-01

    We present a Bayesian, Markov-chain Monte Carlo method for fine-scale linkage-disequilibrium gene mapping using high-density marker maps. The method explicitly models the genealogy underlying a sample of case chromosomes in the vicinity of a putative disease locus, in contrast with the assumption of a star-shaped tree made by many existing multipoint methods. Within this modeling framework, we can allow for missing marker information and for uncertainty about the true underlying genealogy and the makeup of ancestral marker haplotypes. A crucial advantage of our method is the incorporation of the shattered coalescent model for genealogies, allowing for multiple founding mutations at the disease locus and for sporadic cases of disease. Output from the method includes approximate posterior distributions of the location of the disease locus and population-marker haplotype proportions. In addition, output from the algorithm is used to construct a cladogram to represent genetic heterogeneity at the disease locus, highlighting clusters of case chromosomes sharing the same mutation. We present detailed simulations to provide evidence of improvements over existing methodology. Furthermore, inferences about the location of the disease locus are shown to remain robust to modeling assumptions. PMID:11836651

  18. A nanobuffer reporter library for fine-scale imaging and perturbation of endocytic organelles

    PubMed Central

    Wang, Chensu; Wang, Yiguang; Li, Yang; Bodemann, Brian; Zhao, Tian; Ma, Xinpeng; Huang, Gang; Hu, Zeping; DeBerardinis, Ralph J.; White, Michael A.; Gao, Jinming

    2015-01-01

    Endosomes, lysosomes and related catabolic organelles are a dynamic continuum of vacuolar structures that impact a number of cell physiological processes such as protein/lipid metabolism, nutrient sensing and cell survival. Here we develop a library of ultra-pH-sensitive fluorescent nanoparticles with chemical properties that allow fine-scale, multiplexed, spatio-temporal perturbation and quantification of catabolic organelle maturation at single organelle resolution to support quantitative investigation of these processes in living cells. Deployment in cells allows quantification of the proton accumulation rate in endosomes; illumination of previously unrecognized regulatory mechanisms coupling pH transitions to endosomal coat protein exchange; discovery of distinct pH thresholds required for mTORC1 activation by free amino acids versus proteins; broad-scale characterization of the consequence of endosomal pH transitions on cellular metabolomic profiles; and functionalization of a context-specific metabolic vulnerability in lung cancer cells. Together, these biological applications indicate the robustness and adaptability of this nanotechnology-enabled ‘detection and perturbation' strategy. PMID:26437053

  19. Fine-Scale Survey of X Chromosome Copy Number Variants and Indels Underlying Intellectual Disability

    PubMed Central

    Whibley, Annabel C.; Plagnol, Vincent; Tarpey, Patrick S.; Abidi, Fatima; Fullston, Tod; Choma, Maja K.; Boucher, Catherine A.; Shepherd, Lorraine; Willatt, Lionel; Parkin, Georgina; Smith, Raffaella; Futreal, P. Andrew; Shaw, Marie; Boyle, Jackie; Licata, Andrea; Skinner, Cindy; Stevenson, Roger E.; Turner, Gillian; Field, Michael; Hackett, Anna; Schwartz, Charles E.; Gecz, Jozef; Stratton, Michael R.; Raymond, F. Lucy

    2010-01-01

    Copy number variants and indels in 251 families with evidence of X-linked intellectual disability (XLID) were investigated by array comparative genomic hybridization on a high-density oligonucleotide X chromosome array platform. We identified pathogenic copy number variants in 10% of families, with mutations ranging from 2 kb to 11 Mb in size. The challenge of assessing causality was facilitated by prior knowledge of XLID-associated genes and the ability to test for cosegregation of variants with disease through extended pedigrees. Fine-scale analysis of rare variants in XLID families leads us to propose four additional genes, PTCHD1, WDR13, FAAH2, and GSPT2, as candidates for XLID causation and the identification of further deletions and duplications affecting X chromosome genes but without apparent disease consequences. Breakpoints of pathogenic variants were characterized to provide insight into the underlying mutational mechanisms and indicated a predominance of mitotic rather than meiotic events. By effectively bridging the gap between karyotype-level investigations and X chromosome exon resequencing, this study informs discussion of alternative mutational mechanisms, such as noncoding variants and non-X-linked disease, which might explain the shortfall of mutation yield in the well-characterized International Genetics of Learning Disability (IGOLD) cohort, where currently disease remains unexplained in two-thirds of families. PMID:20655035

  20. Fine-scale behavioural differences distinguish resource use by ecomorphs in a closed ecosystem

    PubMed Central

    Hawley, Kate L.; Rosten, Carolyn M.; Christensen, Guttorm; Lucas, Martyn C.

    2016-01-01

    Temporal differences in habitat use and foraging specialisms between ecomorphs represent aspects of behavioural phenotype that are poorly understood with regard to the origin and maintenance of ecological diversity. We tested the role of behaviour in resource use divergence of two Arctic charr (Salvelinus alpinus) phenotypes, a slim, putatively pelagic-dwelling morph and a robust, putatively littoral-dwelling generalist morph, over an annual cycle, using biotelemetry and stable isotopes. Pelagic morph charr exhibited significantly greater δC13 depletion, concordant with increased zooplanktivory, than for the Littoral morph. Although three-dimensional space-use of the morphs strongly overlapped, on average, the Littoral morph used that habitat 19.3% more than the Pelagic morph. Pelagic morph fish were significantly more active, further from the lake bed and at greater depth than Littoral fish (annual means respectively, Pelagic, 0.069BLs−1, 8.21 m and 14.11 m; Littoral, 0.047BLs−1, 5.87 m and 10.47 m). Patterns of habitat use differed between ecomorphs at key times, such as during autumn and at ice break, likely related to spawning and resumption of intensive foraging respectively. Extensive space-use overlap, but fine-scale differences in habitat use between charr ecomorphs, suggests the importance of competition for generating and maintaining polymorphism, and its potential for promoting reproductive isolation and evolution in sympatry. PMID:27098197

  1. Late time vortex dynamics for a coherent structure interacting with fine-scale turbulence

    NASA Astrophysics Data System (ADS)

    Stout, Eric; Hussain, Fazle

    2015-11-01

    The vortex dynamics of perturbations to a coherent vortex column with fine-scale turbulence induced axial flow are examined using direct numerical simulation. Turbulence forms into azimuthally oriented filaments, which naturally results in axial flow as the filaments self-advect. Axial flow (W) modifies vorticity generation in two ways: 1) the radial gradient of W causes radial perturbation vorticity to tilt into the axial direction; and 2) axial perturbation vorticity tilts mean azimuthal vorticity (the vortical equivalent of W) into the radial direction. Given the cycle of radial and axial perturbation vorticity generation, with the concomitant generation of azimuthal vorticity by the column's mean strain, this provides a physical explanation for instability due to axial flow (i.e. instability of the Batchelor or q-vortex, where q is the ratio of peak azimuthal to peak axial velocities). Via this interpretation, the role of non-axisymmetric azimuthal modes in q-vortex instability is explained. Vorticity generation due to axial flow is explored using a simplified perturbation consisting of two, antiparallel helical vortex threads encircling a vortex column, which results in late time vorticity generation and energy production.

  2. Fine-scale community and genetic structure are tightly linked in species-rich grasslands

    PubMed Central

    Whitlock, Raj; Bilton, Mark C.; Grime, J. Phil; Burke, Terry

    2011-01-01

    Recent evidence indicates that grassland community structure and species diversity are influenced by genetic variation within species. We review what is known regarding the impact of intraspecific diversity on grassland community structure, using an ancient limestone pasture as a focal example. Two genotype-dependent effects appear to modify community structure in this system. First, the abundance of individual constituent species can depend upon the combined influence of direct genetic effects stemming from individuals within the population. Second, the outcome of localized interspecific interactions occurring within the community can depend on the genotypes of participating individuals (indicating indirect genetic effects). Only genotypic interactions are thought to be capable of allowing the long-term coexistence of both genotypes and species. We discuss the implications of these effects for the maintenance of diversity in grasslands. Next, we present new observations indicating that losses of genotypic diversity from each of two species can be predicted by the abundance of other coexisting species within experimental grassland communities. These results suggest genotype-specific responses to abundance in other coexisting species. We conclude that both direct and indirect genetic effects are likely to shape community structure and species coexistence in grasslands, implying tight linkage between fine-scale genetic and community structure. PMID:21444309

  3. Application of coalescent methods to reveal fine-scale rate variation and recombination hotspots.

    PubMed Central

    Fearnhead, Paul; Harding, Rosalind M; Schneider, Julie A; Myers, Simon; Donnelly, Peter

    2004-01-01

    There has been considerable recent interest in understanding the way in which recombination rates vary over small physical distances, and the extent of recombination hotspots, in various genomes. Here we adapt, apply, and assess the power of recently developed coalescent-based approaches to estimating recombination rates from sequence polymorphism data. We apply full-likelihood estimation to study rate variation in and around a well-characterized recombination hotspot in humans, in the beta-globin gene cluster, and show that it provides similar estimates, consistent with those from sperm studies, from two populations deliberately chosen to have different demographic and selectional histories. We also demonstrate how approximate-likelihood methods can be used to detect local recombination hotspots from genomic-scale SNP data. In a simulation study based on 80 100-kb regions, these methods detect 43 out of 60 hotspots (ranging from 1 to 2 kb in size), with only two false positives out of 2000 subregions that were tested for the presence of a hotspot. Our study suggests that new computational tools for sophisticated analysis of population diversity data are valuable for hotspot detection and fine-scale mapping of local recombination rates. PMID:15342541

  4. A multiple fine-scale satellite-derived landscape approach: example of bluetongue modelling in Corsica.

    PubMed

    Guis, Hélène; Tran, Annelise; Mauny, Frédéric; Baldet, Thierry; Barragué, Bruno; Gerbier, Guillaume; Viel, Jean-François; Roger, François; de La Rocque, Stéphane

    2007-01-01

    Landscape ecology is seldom used in epidemiology. The aim of this study is to assess the possible improvements that can be derived from the use of landscape approaches on several scales when exploring local differences in disease distribution, using bluetongue (BT) in Corsica as an example. The environment of BT-free and BT-infected sheep farms is described on a fine scale, using high resolution satellite images and a digital elevation model. Land-coverage is characterised by classifying the satellite image. Landscape metrics are calculated to quantify the number, diversity, length of edge and connectance of vegetation patches. The environment is described for three sizes of buffers around the farms. The models are tested with and without landscape metrics to see if such metrics improve the models. Internal and external validation of the models is performed and the relative impact of scale versus variables on the discriminatory ability of the models is explored. Results show that for all scales and irrespective of the number of parameters included, models with landscape metrics perform better than those without. The 1-km buffer model combines both the best scale of application and the best set of variables. It has a good discriminating ability and good sensitivity and specificity. PMID:20422549

  5. Restricted gene flow and fine-scale population structuring in tool using New Caledonian crows

    NASA Astrophysics Data System (ADS)

    Rutz, C.; Ryder, T. B.; Fleischer, R. C.

    2012-04-01

    New Caledonian crows Corvus moneduloides are the most prolific avian tool users. It has been suggested that some aspects of their complex tool use behaviour are under the influence of cultural processes, involving the social transmission—and perhaps even progressive refinement—of tool designs. Using microsatellite and mt-haplotype profiling of crows from three distinct habitats (dry forest, farmland and beachside habitat), we show that New Caledonian crow populations can exhibit significant fine-scale genetic structuring. Our finding that some sites of <10 km apart were highly differentiated demonstrates considerable potential for genetic and/or cultural isolation of crow groups. Restricted movement of birds between local populations at such small spatial scales, especially across habitat boundaries, illustrates how specific tool designs could be preserved over time, and how tool technologies of different crow groups could diverge due to drift and local selection pressures. Young New Caledonian crows have an unusually long juvenile dependency period, during which they acquire complex tool-related foraging skills. We suggest that the resulting delayed natal dispersal drives population-divergence patterns in this species. Our work provides essential context for future studies that examine the genetic makeup of crow populations across larger geographic areas, including localities with suspected cultural differences in crow tool technologies.

  6. Fine-scale urbanization affects Odonata species diversity in ponds of a megacity (Paris, France)

    NASA Astrophysics Data System (ADS)

    Jeanmougin, Martin; Leprieur, Fabien; Loïs, Grégoire; Clergeau, Philippe

    2014-08-01

    Current developments in urban ecology include very few studies focused on pond ecosystems, though ponds are recognized as biodiversity hotspots. Using Odonata as an indicator model, we explored changes in species composition in ponds localized along an urban gradient of a megacity (Paris, France). We then assessed the relative importance of local- and landscape-scale variables in shaping Odonata α-diversity patterns using a model-averaging approach. Analyses were performed for adult (A) and adult plus exuviae (AE) census data. At 26 ponds, we recorded 657 adults and 815 exuviae belonging to 17 Odonata species. The results showed that the Odonata species assemblage composition was not determined by pond localization along the urban gradient. Similarly, pond characteristics were found to be similar among urban, suburban and periurban ponds. The analyses of AE census data revealed that fine-scale urbanization (i.e., increased density of buildings surrounding ponds) negatively affects Odonata α-diversity. In contrast, pond localization along the urban gradient weakly explained the α-diversity patterns. Several local-scale variables, such as the coverage of submerged macrophytes, were found to be significant drivers of Odonata α-diversity. Together, these results show that the degree of urbanization around ponds must be considered instead of pond localization along the urban gradient when assessing the potential impacts of urbanization on Odonata species diversity. This work also indicates the importance of exuviae sampling in understanding the response of Odonata to urbanization.

  7. Fine-scale patterns of population stratification confound rare variant association tests.

    PubMed

    O'Connor, Timothy D; Kiezun, Adam; Bamshad, Michael; Rich, Stephen S; Smith, Joshua D; Turner, Emily; Leal, Suzanne M; Akey, Joshua M

    2013-01-01

    Advances in next-generation sequencing technology have enabled systematic exploration of the contribution of rare variation to Mendelian and complex diseases. Although it is well known that population stratification can generate spurious associations with common alleles, its impact on rare variant association methods remains poorly understood. Here, we performed exhaustive coalescent simulations with demographic parameters calibrated from exome sequence data to evaluate the performance of nine rare variant association methods in the presence of fine-scale population structure. We find that all methods have an inflated spurious association rate for parameter values that are consistent with levels of differentiation typical of European populations. For example, at a nominal significance level of 5%, some test statistics have a spurious association rate as high as 40%. Finally, we empirically assess the impact of population stratification in a large data set of 4,298 European American exomes. Our results have important implications for the design, analysis, and interpretation of rare variant genome-wide association studies. PMID:23861739

  8. Unexpected Fine-Scale Population Structure in a Broadcast-Spawning Antarctic Marine Mollusc

    PubMed Central

    Hoffman, Joseph I.; Clarke, Andy; Clark, Melody S.; Fretwell, Peter; Peck, Lloyd S.

    2012-01-01

    Several recent empirical studies have challenged the prevailing dogma that broadcast-spawning species exhibit little or no population genetic structure by documenting genetic discontinuities associated with large-scale oceanographic features. However, relatively few studies have explored patterns of genetic differentiation over fine spatial scales. Consequently, we used a hierarchical sampling design to investigate the basis of a weak but significant genetic difference previously reported between Antarctic limpets (Nacella concinna) sampled from Adelaide and Galindez Islands near the base of the Antarctic Peninsula. Three sites within Ryder Bay, Adelaide Island (Rothera Point, Leonie and Anchorage Islands) were each sub-sampled three times, yielding a total of 405 samples that were genotyped at 155 informative Amplified Fragment Length Polymorphisms (AFLPs). Contrary to our initial expectations, limpets from Anchorage Island were found to be subtly, but significantly distinct from those sampled from the other sites. This suggests that local processes may play an important role in generating fine-scale population structure even in species with excellent dispersal capabilities, and highlights the importance of sampling at multiple spatial scales in population genetic surveys. PMID:22403655

  9. Fine scale structure of an Anticyclonic eddy off Cape Verde peninsula observed from Glider

    NASA Astrophysics Data System (ADS)

    Kolodziejczyk, Nicolas; Testor, Pierre; Lazar, Alban; Echevin, Vincent; Krahmann, Gerd; Faye, Saliou; Wade, Malik; Estrade, Philippe; Capet, Xavier; Brehmer, Patrice

    2015-04-01

    Measurements from a joint French and German Glider transect along 14.7°N between Dakar/Senegal and the Cape Verde archipelago during March-April 2014 are used to investigate the transversal structure of an anticyclonic eddy. The anticyclone is centered around 14.7°N-21.6°W with a maximum surface azimuthal velocity of about 0.25 m s-1 and is located in a frontal region separating warm off-shore cooler near-shore surface waters. At depth (below 100 m) the anticyclone presents lower temperature and salinity than the surrounding water masses, but an oxygenated core. The surface relative vorticity derived from AVISO altimetry suggests that the anticyclone was formed about around 12°N just off the continental shelf. At depth the anticyclonic core is associated with fine-scale vertical and horizontal structures. These features exhibits vertical density-compensated property gradient at scales between 5-100 m. The spectra of isopycnal salinity and oxygen variance roll off as k-3/5-k-2 in the horizontal wavenumber range 10-100 km (with substantial uncertainties on the exact spectral slope). Overall, the submesoscale features accompanying the eddy are compatible with tracer stirring. Speculations on the impact of such anticyclonic eddies on the ventilation of the North Atlantic Oxygen Minimum Zone are proposed.

  10. Does temperature affect the accuracy of vented pressure transducer in fine-scale water level measurement?

    NASA Astrophysics Data System (ADS)

    Liu, Z.; Higgins, C. W.

    2015-03-01

    Submersible pressure transducers have been utilized for collecting water level data since the early 1960s. Together with a digital data logger, it is a convenient way to record water level fluctuations for long-term monitoring. Despite the wide use of pressure transducers for water level monitoring, little has been reported regarding their accuracy and performance under field conditions. The effects of temperature fluctuations on the output of vented pressure transducers were considered in this study. The pressure transducers were tested under both laboratory and field conditions. The results of this study indicate that temperature fluctuation has a strong effect on the transducer output. Rapid changes in temperature introduce noise and fluctuations in the water level readings under a constant hydraulic head while the absolute temperature is also related to sensor errors. The former is attributed to venting and the latter is attributed to temperature compensation effects in the strain gauges. Individual pressure transducers responded differently to the thermal fluctuations in the same testing environment. In the field of surface hydrology, especially when monitoring fine-scale water level fluctuations, ignoring or failing to compensate for the temperature effect can introduce considerable error into pressure transducer readings. It is recommended that a performance test for the pressure transducer is conducted before field deployment.

  11. Does temperature affect the accuracy of vented pressure transducer in fine-scale water level measurement?

    NASA Astrophysics Data System (ADS)

    Liu, Z.; Higgins, C. W.

    2014-09-01

    Submersible pressure transducers have been utilized for collecting water level data since early 1960s. Together with a digital datalogger, it is a convenient way to record water level fluctuations for long-term monitoring. Despite the widely use of pressure transducers for water level monitoring, little has been reported for their accuracy and performance under field conditions. The effect of temperature fluctuations on the output of vented pressure transducers were discussed in this study. The pressure transducer was tested under both laboratory and field conditions. The results of this study indicate that temperature fluctuation has a strong effect on the transducer output. Rapid changes in temperature introduce noise and fluctuations in the water level readings under a constant hydraulic head while the absolute temperature is also related to sensor errors. The former is attributed to venting and the latter is attributed to temperature compensation effect in the strain gauges. Individual pressure transducers responded differently to the thermal fluctuations in the same testing environment. In the field of surface hydrology, especially when monitoring fine-scale water level fluctuations, ignoring or failing to compensate for the temperature effect can introduce considerable error into pressure transducer readings. It is recommended that a performance test for the pressure transducer is conducted before field deployment.

  12. Fine-Scale Genetic Structure Arises during Range Expansion of an Invasive Gecko

    PubMed Central

    Short, Kristen Harfmann; Petren, Kenneth

    2011-01-01

    Processes of range expansion are increasingly important in light of current concerns about invasive species and range shifts due to climate change. Theoretical studies suggest that genetic structuring may occur during range expansion. Ephemeral genetic structure can have important evolutionary implications, such as propagating genetic changes along the wave front of expansion, yet few studies have shown evidence of such structure. We tested the hypothesis that genetic structure arises during range expansion in Hemidactylus mabouia, a nocturnal African gecko recently introduced to Florida, USA. Twelve highly variable microsatellite loci were used to screen 418 individuals collected from 43 locations from four sampling sites across Florida, representing a gradient from earlier (∼1990s) to very recent colonization. We found earlier colonized locations had little detectable genetic structure and higher allelic richness than more recently colonized locations. Genetic structuring was pronounced among locations at spatial scales of tens to hundreds of meters near the leading edge of range expansion. Despite the rapid pace of range expansion in this introduced gecko, dispersal is limited among many suitable habitat patches. Fine-scale genetic structure is likely the result of founder effects during colonization of suitable habitat patches. It may be obscured over time and by scale-dependent modes of dispersal. Further studies are needed to determine if such genetic structure affects adaptation and trait evolution in range expansions and range shifts. PMID:22053186

  13. Fine scale mapping of the breast cancer 16q12 locus.

    PubMed

    Udler, Miriam S; Ahmed, Shahana; Healey, Catherine S; Meyer, Kerstin; Struewing, Jeffrey; Maranian, Melanie; Kwon, Erika M; Zhang, Jinghui; Tyrer, Jonathan; Karlins, Eric; Platte, Radka; Kalmyrzaev, Bolot; Dicks, Ed; Field, Helen; Maia, Ana-Teresa; Prathalingam, Radhika; Teschendorff, Andrew; McArthur, Stewart; Doody, David R; Luben, Robert; Caldas, Carlos; Bernstein, Leslie; Kolonel, Laurence K; Henderson, Brian E; Wu, Anna H; Le Marchand, Loic; Ursin, Giske; Press, Michael F; Lindblom, Annika; Margolin, Sara; Shen, Chen-Yang; Yang, Show-Lin; Hsiung, Chia-Ni; Kang, Daehee; Yoo, Keun-Young; Noh, Dong-Young; Ahn, Sei-Hyun; Malone, Kathleen E; Haiman, Christopher A; Pharoah, Paul D; Ponder, Bruce A J; Ostrander, Elaine A; Easton, Douglas F; Dunning, Alison M

    2010-06-15

    Recent genome-wide association studies have identified a breast cancer susceptibility locus on 16q12 with an unknown biological basis. We used a set of single nucleotide polymorphism (SNP) markers to generate a fine-scale map and narrowed the region of association to a 133 kb DNA segment containing the largely uncharacterized hypothetical gene LOC643714, a short intergenic region and the 5' end of TOX3. Re-sequencing this segment in European subjects identified 293 common polymorphisms, including a set of 26 highly correlated candidate causal variants. By evaluation of these SNPs in five breast cancer case-control studies involving more than 23 000 subjects from populations of European and Southeast Asian ancestry, all but 14 variants could be excluded at odds of <1:100. Most of the remaining variants lie in the intergenic region, which exhibits evolutionary conservation and open chromatin conformation, consistent with a regulatory function. African-American case-control studies exhibit a different pattern of association suggestive of an additional causative variant. PMID:20332101

  14. Relative influence upon microwave emissivity of fine-scale stratigraphy, internal scattering, and dielectric properties

    USGS Publications Warehouse

    England, A.W.

    1976-01-01

    The microwave emissivity of relatively low-loss media such as snow, ice, frozen ground, and lunar soil is strongly influenced by fine-scale layering and by internal scattering. Radiometric data, however, are commonly interpreted using a model of emission from a homogeneous, dielectric halfspace whose emissivity derives exclusively from dielectric properties. Conclusions based upon these simple interpretations can be erroneous. Examples are presented showing that the emission from fresh or hardpacked snow over either frozen or moist soil is governed dominantly by the size distribution of ice grains in the snowpack. Similarly, the thickness of seasonally frozen soil and the concentration of rock clasts in lunar soil noticeably affect, respectively, the emissivities of northern latitude soils in winter and of the lunar regolith. Petrophysical data accumulated in support of the geophysical interpretation of microwave data must include measurements of not only dielectric properties, but also of geometric factors such as finescale layering and size distributions of grains, inclusions, and voids. ?? 1976 Birkha??user Verlag.

  15. Mapping to Support Fine Scale Epidemiological Cholera Investigations: A Case Study of Spatial Video in Haiti.

    PubMed

    Curtis, Andrew; Blackburn, Jason K; Smiley, Sarah L; Yen, Minmin; Camilli, Andrew; Alam, Meer Taifur; Ali, Afsar; Morris, J Glenn

    2016-02-01

    The cartographic challenge in many developing world environments suffering a high disease burden is a lack of granular environmental covariates suitable for modeling disease outcomes. As a result, epidemiological questions, such as how disease diffuses at intra urban scales are extremely difficult to answer. This paper presents a novel geospatial methodology, spatial video, which can be used to collect and map environmental covariates, while also supporting field epidemiology. An example of epidemic cholera in a coastal town of Haiti is used to illustrate the potential of this new method. Water risks from a 2012 spatial video collection are used to guide a 2014 survey, which concurrently included the collection of water samples, two of which resulted in positive lab results "of interest" (bacteriophage specific for clinical cholera strains) to the current cholera situation. By overlaying sample sites on 2012 water risk maps, a further fifteen proposed water sample locations are suggested. These resulted in a third spatial video survey and an additional "of interest" positive water sample. A potential spatial connection between the "of interest" water samples is suggested. The paper concludes with how spatial video can be an integral part of future fine-scale epidemiological investigations for different pathogens. PMID:26848672

  16. Fine-scale spatial ecology drives kin selection relatedness among cooperating amoebae.

    PubMed

    Smith, Jeff; Strassmann, Joan E; Queller, David C

    2016-04-01

    Cooperation among microbes is important for traits as diverse as antibiotic resistance, pathogen virulence, and sporulation. The evolutionary stability of cooperation against "cheater" mutants depends critically on the extent to which microbes interact with genetically similar individuals. The causes of this genetic social structure in natural microbial systems, however, are unknown. Here, we show that social structure among cooperative Dictyostelium amoebae is driven by the population ecology of colonization, growth, and dispersal acting at spatial scales as small as fruiting bodies themselves. Despite the fact that amoebae disperse while grazing, all it takes to create substantial genetic clonality within multicellular fruiting bodies is a few millimeters distance between the cells colonizing a feeding site. Even adjacent fruiting bodies can consist of different genotypes. Soil populations of amoebae are sparse and patchily distributed at millimeter scales. The fine-scale spatial structure of cells and genotypes can thus account for the otherwise unexplained high genetic uniformity of spores in fruiting bodies from natural substrates. These results show how a full understanding of microbial cooperation requires understanding ecology and social structure at the small spatial scales microbes themselves experience. PMID:26931797

  17. Coexistence of sympatric carnivores in relatively homogeneous Mediterranean landscapes: functional importance of habitat segregation at the fine-scale level.

    PubMed

    Soto, Carolina; Palomares, Francisco

    2015-09-01

    One of the main objectives of community ecology is to understand the conditions allowing species to coexist. However, few studies have investigated the role of fine-scale habitat use segregation in the functioning of guild communities in relatively homogeneous landscapes where opportunities for coexistence are likely to be the most restrictive. We investigate how the process of habitat use differentiation at the home range level according to the degree of specialism/generalism of species can lead to coexistence between guild species. We examine differences in fine-scale habitat use and niche separation as potential mechanisms explaining the coexistence of five sympatric carnivore species that differ in life history traits (Iberian lynx, Eurasian badger, Egyptian mongoose, common genet and red fox) by collecting data from systematic track censuses in a relatively homogeneous Mediterranean landscape. We found that a higher degree of specialism determines the segregation of species among the fine-scale ecological niche dimensions defined using quantitative elements associated with vegetation, landscape, prey availability and human disturbance. The species with the lowest total performance over the set of variables did not exhibit segregation in the use of habitat at this level. Our study indicates that in relatively homogeneous landscapes, there exist subtle patterns of habitat partitioning over small-scale gradients of habitat determinants as a function of the degree of specialism of carnivore species within a guild. Our results also suggest that coexistence between generalist species may be permitted by fine-scale spatial-temporal segregation of activity patterns or trophic resource consumption, but not fine-scale habitat use differentiation. PMID:25933639

  18. Oscillatory electrohydrodynamic gas flows

    SciTech Connect

    Lai, F.C.; McKinney, P.J.; Davidson, J.H.

    1995-09-01

    Prior numerical solutions of electrohydrodynamic flows in a positive-corona, wire-plate electrostatic precipitator are extended to reveal steady-periodic electrohydrodynamic flows. Previously, only steady solutions were reported. The present study includes results for flows with Reynolds numbers from 0 to 4,800 and with dimensionless electric number ranging from 0.06 to {infinity}. Results indicate that two regimes of low frequency oscillatory flow occur. The first regime is characterized by a single recirculating vortex that oscillates in strength between one and five Hertz. The second regime is characterized by two counter-rotating vortices that oscillate in strength at a frequency near one Hertz.

  19. SIMS analysis of fine-scale biogeochemical proxies in the Panoche-Tumey Hills paleoseep (PTHP)

    NASA Astrophysics Data System (ADS)

    Sample, J. C.; Schwartz, H. L.

    2009-12-01

    We have used secondary ionization mass spectrometery (SIMS) analysis of carbonate cements to investigate microchemical environments in fossiliferous regions of the Paleocene-aged PTHP. The cements are part of a paragenetic sequence that is commonly recognized in paleoseep environments. The early Paleocene PTHP studied here is one of largest recognized paleoseeps in the world, and lies above a well-exposed sandstone injectite feeder system at the edge of a former forearc basin. Analyses were focused on early authigenic cements surrounding or replacing well-preserved fossils in order to characterize fine-scale variations in stable carbon and oxygen isotopes. In addition, we collected data from transects across abiotic pipe structures to assess whether these preserve long-lived histories of seep fluids. Errors for δ18O were less than 0.3‰ (1σ) and for δ13C were 2.1‰ to 3.4‰. Our results include the lightest carbon isotope values from the PTHP to date (δ13C = -58‰), and ranges of up to 63‰ in δ13C and 10.5‰ in δ18O in single samples. Large isotopic differences were observed over distances of ≤200 micrometers. The lightest carbon isotopes occur in cements adjacent to fossil bivalves, and Teredolites trace fossils in permineralized wood. Locally, bivalve shells have been replaced by carbonate with similarly light values. Transects from early to late cements in abiotic pipe structures consistently show increasing δ13C and δ18O values from the rims to the cores of the pipes. One sample seems to preserve a long fluid history (as preserved in the isotope proxies), and a crossplot of δ13C vs. δ18O shows a mixing trend that is consistent with early carbon derived from the process of carbonate reduction, followed by a gradual increase of diagenetic fluids from dissolution of marine carbonate. This trend also tracks a gradual decrease in Mg content from rim to core observed in several pipe structures. These observations suggest that in a given seep

  20. Fine-Scale Analysis Reveals Cryptic Landscape Genetic Structure in Desert Tortoises

    PubMed Central

    Latch, Emily K.; Boarman, William I.; Walde, Andrew; Fleischer, Robert C.

    2011-01-01

    Characterizing the effects of landscape features on genetic variation is essential for understanding how landscapes shape patterns of gene flow and spatial genetic structure of populations. Most landscape genetics studies have focused on patterns of gene flow at a regional scale. However, the genetic structure of populations at a local scale may be influenced by a unique suite of landscape variables that have little bearing on connectivity patterns observed at broader spatial scales. We investigated fine-scale spatial patterns of genetic variation and gene flow in relation to features of the landscape in desert tortoise (Gopherus agassizii), using 859 tortoises genotyped at 16 microsatellite loci with associated data on geographic location, sex, elevation, slope, and soil type, and spatial relationship to putative barriers (power lines, roads). We used spatially explicit and non-explicit Bayesian clustering algorithms to partition the sample into discrete clusters, and characterize the relationships between genetic distance and ecological variables to identify factors with the greatest influence on gene flow at a local scale. Desert tortoises exhibit weak genetic structure at a local scale, and we identified two subpopulations across the study area. Although genetic differentiation between the subpopulations was low, our landscape genetic analysis identified both natural (slope) and anthropogenic (roads) landscape variables that have significantly influenced gene flow within this local population. We show that desert tortoise movements at a local scale are influenced by features of the landscape, and that these features are different than those that influence gene flow at larger scales. Our findings are important for desert tortoise conservation and management, particularly in light of recent translocation efforts in the region. More generally, our results indicate that recent landscape changes can affect gene flow at a local scale and that their effects can be

  1. Fine-scale analysis reveals cryptic landscape genetic structure in desert tortoises.

    PubMed

    Latch, Emily K; Boarman, William I; Walde, Andrew; Fleischer, Robert C

    2011-01-01

    Characterizing the effects of landscape features on genetic variation is essential for understanding how landscapes shape patterns of gene flow and spatial genetic structure of populations. Most landscape genetics studies have focused on patterns of gene flow at a regional scale. However, the genetic structure of populations at a local scale may be influenced by a unique suite of landscape variables that have little bearing on connectivity patterns observed at broader spatial scales. We investigated fine-scale spatial patterns of genetic variation and gene flow in relation to features of the landscape in desert tortoise (Gopherus agassizii), using 859 tortoises genotyped at 16 microsatellite loci with associated data on geographic location, sex, elevation, slope, and soil type, and spatial relationship to putative barriers (power lines, roads). We used spatially explicit and non-explicit Bayesian clustering algorithms to partition the sample into discrete clusters, and characterize the relationships between genetic distance and ecological variables to identify factors with the greatest influence on gene flow at a local scale. Desert tortoises exhibit weak genetic structure at a local scale, and we identified two subpopulations across the study area. Although genetic differentiation between the subpopulations was low, our landscape genetic analysis identified both natural (slope) and anthropogenic (roads) landscape variables that have significantly influenced gene flow within this local population. We show that desert tortoise movements at a local scale are influenced by features of the landscape, and that these features are different than those that influence gene flow at larger scales. Our findings are important for desert tortoise conservation and management, particularly in light of recent translocation efforts in the region. More generally, our results indicate that recent landscape changes can affect gene flow at a local scale and that their effects can be

  2. Fine-Scale Temporal Resolution of Sediment Source by Be-7

    NASA Astrophysics Data System (ADS)

    Stubblefield, A. P.; Whiting, P. J.; Fondran, C. L.; Matisoff, G.

    2005-05-01

    Understanding of erosional processes occurring at fine scales (cm) and over short time periods (min) in agricultural settings is essential for efforts to minimize landscape scarring, conserve surface nutrients, and reduce off-site impacts. Cosmogenic and fallout radionuclides have been successfully used in a variety of settings to determine sediment source and sediment transport processes. In this study we used the short-lived radionuclide Be-7 (t1/2= 53 d) to investigate erosional processes occurring during runoff from a 4 m by 9 m erosion plot. The plot was established in a 9.8% slope no-till corn field at the USDA ARS Deep Loess Research Station in Treynor, Iowa. Before and after the rainfall, fine resolution soil profiles were collected to determine the distribution of radionuclides and soil nutrients with depth. Be-7 was concentrated near the soil surface. Prior to the rainfall event, rare earth tagged soil particles were applied in three discrete strips, 0.5 m wide, along the contour. Forty runoff samples were collected during the course of a 5.7 cm thunderstorm event. Runoff efficiency was 25% and sediment yield was 0.234 kg m-2. Be-7 activities in runoff varied with hydrologic conditions and rainfall intensity, ranging from 0.06-0.6 Bq gm-1. Dominant erosional processes observed were rain splash erosion, overland flow and rill transport. Be-7 rich sediment was delivered at times corresponding corresponded to peaks in rainfall intensity, onset of overland flow, and development of hydrologic connectivity. Sediment had lower Be-7 activity during peak sediment delivery, probably due to dilution by large volumes of Be-7 poor sediment derived from deeper rill erosion. Soil tagged with the rare earth elements Ho, Tb, and Eu showed downslope movement in interrill areas, supporting conclusion of rain splash and sheetflow erosive mechanisms.

  3. Altimetric lagrangian advection to reconstruct Pacific Ocean fine scale surface tracer fields

    NASA Astrophysics Data System (ADS)

    Rogé, Marine; Morrow, Rosemary; Dencausse, Guillaume

    2015-04-01

    In past studies, lagrangian stirring of surface tracer fields by altimetric surface geostrophic currents has been performed in different mid to high-latitude regions, showing good results in reconstructing finer-scale tracer patterns. Here we apply the technique to three different regions in the eastern and western tropical Pacific, and in the subtropical southwest Pacific. Initial conditions are derived from weekly gridded temperature and salinity fields, based on hydrographic data and Argo. Validation of the improved fine-scale surface tracer fields is performed using satellite AMSRE SST data, and high-resolution ship thermosalinograph data. We test two kinds of lagrangian advection. The standard one-way advection is shown to introduce an increased tracer bias as the advection time increases. Indeed, since we only use passive stirring, a bias is introduced from the missing physics, such as air-sea fluxes or mixing. A second "backward-forward" advection technique is shown to reduce the seasonal bias, but more data is lost around coasts and islands, a strong handicap in the tropical Pacific with many small islands. In the subtropical Pacific Ocean, the mesoscale temperature and salinity fronts are well represented by the one-way advection over a 10-day advection time, including westward propagating features not apparent in the initial fields. In the tropics, the results are less clear. The validation is hampered by the complex vertical stratification, and the technique is limited by the lack of accurate surface currents for the stirring - the gridded altimetric fields poorly represent the meridional currents, and are not detecting the fast tropical instability waves, nor the wind-driven circulation. We suggest that the passive lateral stirring technique is efficient in regions with moderate the high mesoscale energy and correlated mesoscale surface temperature and surface height. In other regions, more complex dynamical processes may need to be included.

  4. Imaging of Non-Resolved Objects Using the Fine Scale Optical Range

    NASA Astrophysics Data System (ADS)

    Pollock, T.; Grubb, P. M.

    2012-09-01

    The Fine Scale Optical Range (FiScOR) has been designed and assembled at the Space Engineering Research Center(SERC) at Texas A&M University to study the efficacy of on-orbit debris characterization using small space-based cameras. Physically, this facility permits imaging of small, one to two centimeter models of simple or complex shapes from a distance sufficiently great to produce image sizes of about one pixel. The objects are designed in 3D CAD and produced in plastic by 3D printing. They are then surfaced with real materials such as multi-layer insulation (MLI) and silicon solar cell fragments. Details, such as slight faceting in solar cell arrays, are achieved to dimensions as fine as 200 micrometers. Mechanisms are provided to rotate and translate the object. Illumination sources approximating the solar spectrum are used. Light curves are recorded using CCD or CMOS cameras which may be cooled or operated at ambient temperature. This research supports a more extensive body of work for the Air Force Research Lab and others examining image processing with noise terms for cameras imaging in visible and near-visible light, and assessing operational effects using synthetic space images created in the lab. For the study reported herein, a few simple objects (cubes, cylinders, etc.), two satellite models, and some shapes representing debris were imaged using a high frame rate color (Bayer mask) camera. Data obtained were compared with Phong models, and to a limited extent, with night sky images obtained using the 0.8m telescope near Stephenville, TX and smaller instruments located near College Station, TX. In some tests, low lighting levels were used to permit estimation of the maximum range at which an equivalent orbiting object would be detected by a particular camera/lens combination. Results demonstrating the potential contribution of this approach to non resolved space object characterization will be presented.

  5. Air pollution, health and social deprivation: A fine-scale risk assessment.

    PubMed

    Morelli, Xavier; Rieux, Camille; Cyrys, Josef; Forsberg, Bertil; Slama, Rémy

    2016-05-01

    Risk assessment studies often ignore within-city variations of air pollutants. Our objective was to quantify the risk associated with fine particulate matter (PM2.5) exposure in 2 urban areas using fine-scale air pollution modeling and to characterize how this risk varied according to social deprivation. In Grenoble and Lyon areas (0.4 and 1.2 million inhabitants, respectively) in 2012, PM2.5 exposure was estimated on a 10×10m grid by coupling a dispersion model to population density. Outcomes were mortality, lung cancer and term low birth weight incidences. Cases attributable to air pollution were estimated overall and stratifying areas according to the European Deprivation Index (EDI), taking 10µg/m(3) yearly average as reference (counterfactual) level. Estimations were repeated assuming spatial homogeneity of air pollutants within urban area. Median PM2.5 levels were 18.1 and 19.6μg/m(3) in Grenoble and Lyon urban areas, respectively, corresponding to 114 (5.1% of total, 95% confidence interval, CI, 3.2-7.0%) and 491 non-accidental deaths (6.0% of total, 95% CI 3.7-8.3%) attributable to long-term exposure to PM2.5, respectively. Attributable term low birth weight cases represented 23.6% of total cases (9.0-37.1%) in Grenoble and 27.6% of cases (10.7-42.6%) in Lyon. In Grenoble, 6.8% of incident lung cancer cases were attributable to air pollution (95% CI 3.1-10.1%). Risk was lower by 8 to 20% when estimating exposure through background stations. Risk was highest in neighborhoods with intermediate to higher social deprivation. Risk assessment studies relying on background stations to estimate air pollution levels may underestimate the attributable risk. PMID:26852006

  6. Predicting fine-scale distributions of peripheral aquatic species in headwater streams

    SciTech Connect

    DeRolph, Christopher R.; Nelson, Stacy A. C.; Kwak, Thomas J.; Hain, Ernie F.

    2014-12-09

    Headwater species and peripheral populations that occupy habitat at the edge of a species range may hold an increased conservation value to managers due to their potential to maximize intraspecies diversity and species' adaptive capabilities in the context of rapid environmental change. The southern Appalachian Mountains are the southern extent of the geographic range of native Salvelinus fontinalis and naturalized Oncorhynchus mykiss and Salmo trutta in eastern North America. In this paper, we predicted distributions of these peripheral, headwater wild trout populations at a fine scale to serve as a planning and management tool for resource managers to maximize resistance and resilience of these populations in the face of anthropogenic stressors. We developed correlative logistic regression models to predict occurrence of brook trout, rainbow trout, and brown trout for every interconfluence stream reach in the study area. A stream network was generated to capture a more consistent representation of headwater streams. Each of the final models had four significant metrics in common: stream order, fragmentation, precipitation, and land cover. Strahler stream order was found to be the most influential variable in two of the three final models and the second most influential variable in the other model. Greater than 70% presence accuracy was achieved for all three models. The underrepresentation of headwater streams in commonly used hydrography datasets is an important consideration that warrants close examination when forecasting headwater species distributions and range estimates. Finally and additionally, it appears that a relative watershed position metric (e.g., stream order) is an important surrogate variable (even when elevation is included) for biotic interactions across the landscape in areas where headwater species distributions are influenced by topographical gradients.

  7. Predicting fine-scale distributions of peripheral aquatic species in headwater streams

    DOE PAGESBeta

    DeRolph, Christopher R.; Nelson, Stacy A. C.; Kwak, Thomas J.; Hain, Ernie F.

    2014-12-09

    Headwater species and peripheral populations that occupy habitat at the edge of a species range may hold an increased conservation value to managers due to their potential to maximize intraspecies diversity and species' adaptive capabilities in the context of rapid environmental change. The southern Appalachian Mountains are the southern extent of the geographic range of native Salvelinus fontinalis and naturalized Oncorhynchus mykiss and Salmo trutta in eastern North America. In this paper, we predicted distributions of these peripheral, headwater wild trout populations at a fine scale to serve as a planning and management tool for resource managers to maximize resistancemore » and resilience of these populations in the face of anthropogenic stressors. We developed correlative logistic regression models to predict occurrence of brook trout, rainbow trout, and brown trout for every interconfluence stream reach in the study area. A stream network was generated to capture a more consistent representation of headwater streams. Each of the final models had four significant metrics in common: stream order, fragmentation, precipitation, and land cover. Strahler stream order was found to be the most influential variable in two of the three final models and the second most influential variable in the other model. Greater than 70% presence accuracy was achieved for all three models. The underrepresentation of headwater streams in commonly used hydrography datasets is an important consideration that warrants close examination when forecasting headwater species distributions and range estimates. Finally and additionally, it appears that a relative watershed position metric (e.g., stream order) is an important surrogate variable (even when elevation is included) for biotic interactions across the landscape in areas where headwater species distributions are influenced by topographical gradients.« less

  8. Fine-scale genetic structure of Triatoma infestans in the Argentine Chaco.

    PubMed

    Piccinali, Romina Valeria; Gürtler, Ricardo Esteban

    2015-08-01

    The patterns of genetic structure in natural populations provide essential information for the improvement of pest management strategies including those targeting arthropod vectors of human diseases. We analyzed the patterns of fine-scale genetic structure in Triatoma infestans in a well-defined rural area close to Pampa del Indio, in the Argentine Arid-Humid Chaco transition, where a longitudinal study on house infestation and wing geometric morphometry is being conducted since 2007. A total of 228 insects collected in 16 domestic and peridomestic sites from two rural communities was genotyped for 10 microsatellite loci and analyzed. We did not find departures from Hardy-Weinberg expectations in collection sites, with three exceptions probably due to null alleles and substructuring. Domestic sites were more variable than peridomestic sites suggesting the presence of older bug populations in domestic sites or higher effective population sizes. Significant genetic structure was detected using F-statistics, a discriminant analysis of principal components and Bayesian clustering algorithms in an area of only 6.32 km(2). Microsatellite markers detected population structuring at a finer geographic scale (180-6300 m) than a previous study based on wing geometric morphometry (>4000 m). The spatial distribution of genetic variability was more properly explained by a hierarchical island than by an isolation-by-distance model. This study illustrates that, despite more than a decade without vector control interventions enhancing differentiation, genetic structure can be detected in T. infestans populations, particularly applying spatial information. This supports the potential of genetic studies to provide key information for hypothesis testing of the origins of house reinfestation. PMID:26027923

  9. Regulation of the demographic structure in isomorphic biphasic life cycles at the spatial fine scale.

    PubMed

    Vieira, Vasco Manuel Nobre de Carvalho da Silva; Mateus, Marcos Duarte

    2014-01-01

    Isomorphic biphasic algal life cycles often occur in the environment at ploidy abundance ratios (Haploid:Diploid) different from 1. Its spatial variability occurs within populations related to intertidal height and hydrodynamic stress, possibly reflecting the niche partitioning driven by their diverging adaptation to the environment argued necessary for their prevalence (evolutionary stability). Demographic models based in matrix algebra were developed to investigate which vital rates may efficiently generate an H:D variability at a fine spatial resolution. It was also taken into account time variation and type of life strategy. Ploidy dissimilarities in fecundity rates set an H:D spatial structure miss-fitting the ploidy fitness ratio. The same happened with ploidy dissimilarities in ramet growth whenever reproductive output dominated the population demography. Only through ploidy dissimilarities in looping rates (stasis, breakage and clonal growth) did the life cycle respond to a spatially heterogeneous environment efficiently creating a niche partition. Marginal locations were more sensitive than central locations. Related results have been obtained experimentally and numerically for widely different life cycles from the plant and animal kingdoms. Spore dispersal smoothed the effects of ploidy dissimilarities in fertility and enhanced the effects of ploidy dissimilarities looping rates. Ploidy dissimilarities in spore dispersal could also create the necessary niche partition, both over the space and time dimensions, even in spatial homogeneous environments and without the need for conditional differentiation of the ramets. Fine scale spatial variability may be the key for the prevalence of isomorphic biphasic life cycles, which has been neglected so far. PMID:24658603

  10. Predicting Fine-Scale Distributions of Peripheral Aquatic Species Populations in Headwater Streams

    DOE PAGESBeta

    DeRolph, Christopher R; Nelson, Dr. Stacy A.C.; Kwak, Dr. Thomas J.; Hain, Ernie F.

    2015-01-01

    Aim Peripheral populations that occupy habitat at the edge of a species range may hold an increased conservation value to managers due to their potential to maximize intra-species diversity and species' adaptive capabilities in the context of rapid environmental change. The Southern Appalachian Mountains are the southern extent of the geographic range of native Salvelinus fontinalis and naturalized Oncorhynchus mykiss and Salmo trutta in eastern North America. We predicted distributions of these peripheral, headwater wild trout populations at a fine scale to serve as a planning and management tool for resource managers to maximize resistance and resilience of these populationsmore » in the face of anthropogenic stressors. Location Southern Appalachian Mountains within North Carolina, U.S.A. (23,411 km2). Methods We developed correlative logistic regression models to predict occurrence of brook trout, rainbow trout, and brown trout for every interconfluence stream reach in the study area. A stream network was generated to capture a more consistent representation of headwater streams. Results Each of the final models had four significant metrics in common: stream order, fragmentation, precipitation, and land cover. Strahler stream order was found to be the most influential variable in two of the three final models and the second most influential variable in the other model. Greater than 70% presence accuracy was achieved for all three models. Main Conclusions The underrepresentation of headwater streams in commonly used hydrography datasets is an important consideration that warrants close examination when forecasting headwater species distributions and range estimates. Additionally, it appears that a relative watershed position metric (e.g. stream order) is an important surrogate variable (even when elevation is included) for biotic interactions across the landscape in areas where headwater species distributions are influenced by topographical gradients.« less

  11. Altimetric Lagrangian advection to reconstruct Pacific Ocean fine-scale surface tracer fields

    NASA Astrophysics Data System (ADS)

    Rogé, Marine; Morrow, Rosemary A.; Dencausse, Guillaume

    2015-09-01

    In past studies, Lagrangian stirring of surface tracer fields by altimetric surface geostrophic currents has been performed in different mid- to high-latitude regions, showing good results in reconstructing finer scale tracer patterns. Here, we explore the pertinence of the technique in the western equatorial Pacific and in the subtropical southwest Pacific. Initial conditions are derived from weekly gridded low-resolution temperature and salinity fields based on in situ hydrographic data. Validation of the reconstructed fine-scale surface tracer fields is performed using satellite AMSRE Sea Surface Temperature data and high-resolution ship thermosalinograph data. We test two kinds of Lagrangian advection. The standard one-way advection leads to an increased error as the advection time increases, due to the missing physics, such as air-sea fluxes or non-geostrophic dynamics. A second "backward-forward" advection technique is explored to reduce this bias in the tracer field, with improved results. In the subtropical southwest Pacific Ocean, the mesoscale temperature and salinity fronts are well represented by both Lagrangian advection techniques over a short 7- to 14-day advection time, including westward-propagating features not apparent in the initial fields. In the tropics, the results are less clear. The validation is hampered by the complex vertical stratification, and the lateral stirring technique is limited by the pertinence of using geostrophic surface current fields in the tropics. We suggest that the passive lateral stirring technique is efficient in regions with moderate to high mesoscale energy, where mesoscale surface tracer and surface height fields are correlated. In other regions, more complex dynamical processes may need to be included.

  12. Fine-scale genetic structure in a free-living ungulate population.

    PubMed

    Coltman, D W; Pilkington, J G; Pemberton, J M

    2003-03-01

    The fine-scale genetic structure of wild animal populations has rarely been analysed, yet is potentially important as a confounding factor in quantitative genetic and allelic association studies, as well as having implications for population dynamics, inbreeding and kin selection. In this study, we examined the extent to which the three spatial subunits, or hefts, of the Village Bay population of Soay sheep (Ovis aries) on St Kilda, Scotland, are genetically structured using data from 20 microsatellite and protein loci. Allele frequencies differed significantly among three hefts in all the study years we considered (1987-2000 inclusive). Small but significantly positive F(ST) and negative F(IS) values were observed in most years, indicating that the hefts are genetically differentiated, and that within each heft there is more observed heterozygosity than would be expected if each were an isolated breeding population. Males showed less fidelity to their natal heft, and as a consequence higher levels of relatedness within hefts were observed among females than among males. There was a significant negative relationship between geographical proximity and relatedness in pairwise comparisons involving females, and on average pairs of females located within 50 m of each other were related at the equivalent level of second cousins. Structure is therefore largely driven by incomplete postnatal dispersal by females. Mating appears to be random with respect to the spatial-genetic substructure of the hefts, and therefore genetic structure does not contribute to the overall rate of inbreeding in the population. However, genetic substructure can lead to allelic associations and generate environmental effects within lineages that have the potential to confound heritability analyses and allelic association studies. PMID:12675828

  13. Fine Scale ANUClimate Data for Ecosystem Modeling and Assessment of Plant Functional Types

    NASA Astrophysics Data System (ADS)

    Hutchinson, M. F.; Kesteven, J. L.; Xu, T.; Evans, B. J.; Togashi, H. F.; Stein, J. L.

    2015-12-01

    High resolution spatially extended values of climate variables play a central role in the assessment of climate and projected future climate in ecosystem modeling. The ground based meteorological network remains a key resource for deriving these spatially extended climate variables. We report on the production, and applications, of new anomaly based fine scale spatial interpolations of key climate variables at daily and monthly time scale, across the Australian continent. The methods incorporate several innovations that have significantly improved spatial predictive accuracy, as well as providing a platform for the incorporation of additional remotely sensed data. The interpolated climate data are supporting many continent-wide ecosystem modeling applications and are playing a key role in testing optimality hypotheses associated with plant functional types (PFTs). The accuracy, and robustness to data error, of anomaly-based interpolation has been enhanced by incorporating physical process aspects of the different climate variables and employing robust statistical methods implemented in the ANUSPLIN package. New regression procedures have also been developed to estimate "background" monthly climate normals from all stations with minimal records to substantially increase the density of supporting spatial networks. Monthly mean temperature interpolation has been enhanced by incorporating process based coastal effects that have reduced predictive error by around 10%. Overall errors in interpolated monthly temperature fields are around 25% less than errors reported by an earlier study. For monthly and daily precipitation, a new anomaly structure has been devised to take account of the skewness in precipitation data and the large proportion of zero values that present significant challenges to standard interpolation methods. The many applications include continent-wide Gross Primary Production modeling and assessing constraints on light and water use efficiency derived

  14. Fine-scale density wave structure of Saturn's rings: A hydrodynamic theory

    NASA Astrophysics Data System (ADS)

    Griv, E.; Gedalin, M.

    2010-10-01

    Aims: We examine the linear stability of the Saturnian ring disk of mutually gravitating and physically colliding particles with special emphasis on its fine-scale ~100 m density wave structure, that is, almost regularly spaced, aligned cylindric density enhancements and optically-thin zones with the width and the spacing between them of roughly several tens particle diameters. Methods: We analyze the Jeans' instabilities of gravity perturbations (e.g., those produced by a spontaneous disturbance) analytically by using the Navier-Stokes dynamical equations of a compressible fluid. The theory is not restricted by any assumptions about the thickness of the system. We consider a simple model of the system consisting of a three-dimensional ring disk that is weakly inhomogeneous and whose structure is analyzed by making a horizontally local short-wave approximation. Results: We demonstrate that the disk is probably unstable and that gravity perturbations grow effectively within a few orbital periods. We find that self-gravitation plays a key role in the formation of the fine structure. The predictions of the theory are compared with observations of Saturn's rings by the Cassini spacecraft and are found to be in good agreement. In particular, it appears very likely that some of the quasi-periodic microstructures observed in Saturn's A and B rings - both axisymmetric and nonaxisymmetric ones - are manifestations of these effects. We argue that the quasi-periodic density enhancements revealed in Cassini data are flattened structures, with a height to width ratio of about 0.3. One should analyze high-resolution of the order of 10 m data acquired for the A and B rings (and probably C ring as well) to confirm this prediction. We also show that the gravitational instability is a potential cluster-forming mechanism leading to the formation of porous 100-m-diameter moonlets of preferred mass ~107 g each embedded in the outer A ring, although this has yet to be directly measured.

  15. Predicting fine-scale distributions of peripheral aquatic species in headwater streams

    PubMed Central

    DeRolph, Christopher R; Nelson, Stacy A C; Kwak, Thomas J; Hain, Ernie F

    2015-01-01

    Headwater species and peripheral populations that occupy habitat at the edge of a species range may hold an increased conservation value to managers due to their potential to maximize intraspecies diversity and species' adaptive capabilities in the context of rapid environmental change. The southern Appalachian Mountains are the southern extent of the geographic range of native Salvelinus fontinalis and naturalized Oncorhynchus mykiss and Salmo trutta in eastern North America. We predicted distributions of these peripheral, headwater wild trout populations at a fine scale to serve as a planning and management tool for resource managers to maximize resistance and resilience of these populations in the face of anthropogenic stressors. We developed correlative logistic regression models to predict occurrence of brook trout, rainbow trout, and brown trout for every interconfluence stream reach in the study area. A stream network was generated to capture a more consistent representation of headwater streams. Each of the final models had four significant metrics in common: stream order, fragmentation, precipitation, and land cover. Strahler stream order was found to be the most influential variable in two of the three final models and the second most influential variable in the other model. Greater than 70% presence accuracy was achieved for all three models. The underrepresentation of headwater streams in commonly used hydrography datasets is an important consideration that warrants close examination when forecasting headwater species distributions and range estimates. Additionally, it appears that a relative watershed position metric (e.g., stream order) is an important surrogate variable (even when elevation is included) for biotic interactions across the landscape in areas where headwater species distributions are influenced by topographical gradients. PMID:25628872

  16. Causes and consequences of fine-scale population structure in a critically endangered freshwater seal

    PubMed Central

    2014-01-01

    Background Small, genetically uniform populations may face an elevated risk of extinction due to reduced environmental adaptability and individual fitness. Fragmentation can intensify these genetic adversities and, therefore, dispersal and gene flow among subpopulations within an isolated population is often essential for maintaining its viability. Using microsatellite and mtDNA data, we examined genetic diversity, spatial differentiation, interregional gene flow, and effective population sizes in the critically endangered Saimaa ringed seal (Phoca hispida saimensis), which is endemic to the large but highly fragmented Lake Saimaa in southeastern Finland. Results Microsatellite diversity within the subspecies (HE = 0.36) ranks among the lowest thus far recorded within the order Pinnipedia, with signs of ongoing loss of individual heterozygosity, reflecting very low effective subpopulation sizes. Bayesian assignment analyses of the microsatellite data revealed clear genetic differentiation among the main breeding areas, but interregional structuring was substantially weaker in biparentally inherited microsatellites (FST = 0.107) than in maternally inherited mtDNA (FST = 0.444), indicating a sevenfold difference in the gene flow mediated by males versus females. Conclusions Genetic structuring in the population appears to arise from the joint effects of multiple factors, including small effective subpopulation sizes, a fragmented lacustrine habitat, and behavioural dispersal limitation. The fine-scale differentiation found in the landlocked Saimaa ringed seal is especially surprising when contrasted with marine ringed seals, which often exhibit near-panmixia among subpopulations separated by hundreds or even thousands of kilometres. Our results demonstrate that population structures of endangered animals cannot be predicted based on data on even closely related species or subspecies. PMID:25005257

  17. Oscillatory counter-centrifugation

    NASA Astrophysics Data System (ADS)

    Xu, Shujing; Nadim, Ali

    2016-02-01

    In ordinary centrifugation, a suspended particle that is heavier than the displaced fluid migrates away from the rotation axis when the fluid-filled container rotates steadily about that axis. In contrast a particle that is lighter than the displaced fluid (e.g., a bubble) migrates toward the rotation axis in a centrifuge. In this paper, we show theoretically that if a fluid-filled container rotates in an oscillatory manner as a rigid body about an axis, at high enough oscillation frequencies, the sense of migration of suspended particles is reversed. That is, in that case particles denser than the fluid migrate inward, while those that are lighter than the fluid move outward. We term this unusual phenomenon "Oscillatory Counter-Centrifugation" or OCC, for short. Through application of the method of averaging to the equations of motion, we derive a simple criterion to predict the occurrence of OCC. The analysis also reveals that the time-average of the Coriolis force in the radial direction is the term that is responsible for this effect. In addition, we analyze the effects of the Basset history force and the Rubinow-Keller lift force on particle trajectories and find that OCC persists even when these forces are active. The phenomenon awaits experimental verification.

  18. Optimal Phase Oscillatory Network

    NASA Astrophysics Data System (ADS)

    Follmann, Rosangela

    2013-03-01

    Important topics as preventive detection of epidemics, collective self-organization, information flow and systemic robustness in clusters are typical examples of processes that can be studied in the context of the theory of complex networks. It is an emerging theory in a field, which has recently attracted much interest, involving the synchronization of dynamical systems associated to nodes, or vertices, of the network. Studies have shown that synchronization in oscillatory networks depends not only on the individual dynamics of each element, but also on the combination of the topology of the connections as well as on the properties of the interactions of these elements. Moreover, the response of the network to small damages, caused at strategic points, can enhance the global performance of the whole network. In this presentation we explore an optimal phase oscillatory network altered by an additional term in the coupling function. The application to associative-memory network shows improvement on the correct information retrieval as well as increase of the storage capacity. The inclusion of some small deviations on the nodes, when solutions are attracted to a false state, results in additional enhancement of the performance of the associative-memory network. Supported by FAPESP - Sao Paulo Research Foundation, grant number 2012/12555-4

  19. Fine Scale Structure observed in the Total Electron Content above the Sub-Auroral, Auroral, and Polar Ionosphere

    NASA Astrophysics Data System (ADS)

    Coster, A. J.; Thomas, E. G.; Vierinen, J.; Rideout, W. E.

    2015-12-01

    This paper details recent improvements in TEC observations made in the sub-auroral, auroral, and polar regions. The goal is high-resolution measurements of both medium and fine-scale TEC-gradients. To achieve this, the number of GNSS receivers processed was more than doubled, due to agreements made with multiple government and commercial agencies, such as those involved with highway transportation and precision farming. Following the increase in GNSS observations, additional improvements were made in the MIT Haystack GNSS data processing algorithms, allowing for finer grid spacing of the output TEC data. Merging data sets also increased sensitivity. Scintillation data from several GNSS receivers have been overlaid on top of all-sky camera images showing evidence of aurora. These data sets have been merged with the measured background TEC to monitor the development both medium and fine-scale TEC gradients. Data from multiple geomagnetic storms and auroral events in this solar cycle will be presented.

  20. Oscillatory Threshold Logic

    PubMed Central

    Borresen, Jon; Lynch, Stephen

    2012-01-01

    In the 1940s, the first generation of modern computers used vacuum tube oscillators as their principle components, however, with the development of the transistor, such oscillator based computers quickly became obsolete. As the demand for faster and lower power computers continues, transistors are themselves approaching their theoretical limit and emerging technologies must eventually supersede them. With the development of optical oscillators and Josephson junction technology, we are again presented with the possibility of using oscillators as the basic components of computers, and it is possible that the next generation of computers will be composed almost entirely of oscillatory devices. Here, we demonstrate how coupled threshold oscillators may be used to perform binary logic in a manner entirely consistent with modern computer architectures. We describe a variety of computational circuitry and demonstrate working oscillator models of both computation and memory. PMID:23173034

  1. A nanobuffer reporter library for fine-scale imaging and perturbation of endocytic organelles | Office of Cancer Genomics

    Cancer.gov

    Endosomes, lysosomes and related catabolic organelles are a dynamic continuum of vacuolar structures that impact a number of cell physiological processes such as protein/lipid metabolism, nutrient sensing and cell survival. Here we develop a library of ultra-pH-sensitive fluorescent nanoparticles with chemical properties that allow fine-scale, multiplexed, spatio-temporal perturbation and quantification of catabolic organelle maturation at single organelle resolution to support quantitative investigation of these processes in living cells.

  2. Fine-scale differences in diel activity among nocturnal freshwater planarias (Platyhelminthes: Tricladida)

    PubMed Central

    2011-01-01

    photonegative characteristics. The fine-scale differences in diel behavior among these three triclad species may not be sufficient to allow coexistence in the wild, with the nonnative D. tigrina eventually displacing D. polychroa and P. tenuis in many European waters. The link between planarian diel rhythms and ecological characteristics are worth of further, detailed investigation. PMID:21477354

  3. Patterns of precipitation: Fine-scale rain dynamics in the South of England

    NASA Astrophysics Data System (ADS)

    Callaghan, Sarah

    2010-05-01

    in the relative number of stratiform and convective events over the time period. Knowledge of the fine scale variability of rain (both in the spatial and temporal domains) is important for the development of accurate models for small-scale forecasting, as well as models for the implementation and operation of rain affected systems, such as microwave radio communications and flood mitigation. As the rain gauge measurements made at Chilbolton will continue for the foreseeable future, these datasets will become increasingly valuable, as they provide a "ground-truth" that can be compared with the results of climate and other models.

  4. Fine-scale temporal recovery, reconstruction and evolution of a post-supereruption magmatic system

    NASA Astrophysics Data System (ADS)

    Barker, Simon J.; Wilson, Colin J. N.; Allan, Aidan S. R.; Schipper, C. Ian

    2015-07-01

    Supereruptions (>1015 kg ≈ 450 km3 of ejected magma) have received much attention because of the challenges in explaining how and over what time intervals such large volumes of magma are accumulated, stored and erupted. However, the processes that follow supereruptions, particularly those focused around magmatic recovery, are less fully documented. We present major and trace-element data from whole-rock, glass and mineral samples from eruptive products from Taupo volcano, New Zealand, to investigate how the host magmatic system reestablished and evolved following the Oruanui supereruption at 25.4 ka. Taupo's young eruptive units are precisely constrained chronostratigraphically, providing uniquely fine-scale temporal snapshots of a post-supereruption magmatic system. After only ~5 kyr of quiescence following the Oruanui eruption, Taupo erupted three small volume (~0.1 km3) dacitic pyroclastic units from 20.5 to 17 ka, followed by another ~5-kyr-year time break, and then eruption of 25 rhyolitic units starting at ~12 ka. The dacites show strongly zoned minerals and wide variations in melt-inclusion compositions, consistent with early magma mixing followed by periods of cooling and crystallisation at depths of >8 km, overlapping spatially with the inferred basal parts of the older Oruanui silicic mush system. The dacites reflect the first products of a new silicic system, as most of the Oruanui magmatic root zone was significantly modified in composition or effectively destroyed by influxes of hot mafic magmas following caldera collapse. The first rhyolites erupted between 12 and 10 ka formed through shallow (4-5 km depth) cooling and fractionation of melts from a source similar in composition to that generating the earlier dacites, with overlapping compositions for melt inclusions and crystal cores between the two magma types. For the successively younger rhyolite units, temporal changes in melt chemistry and mineral phase stability are observed, which reflect the

  5. Fine-scale spatial variation in plant species richness and its relationship to environmental conditions in coastal marshlands

    USGS Publications Warehouse

    Mancera, J.E.; Meche, G.C.; Cardona-Olarte, P.P.; Castaneda-Moya, E.; Chiasson, R.L.; Geddes, N.A.; Schile, L.M.; Wang, H.G.; Guntenspergen, G.R.; Grace, J.B.

    2005-01-01

    Previous studies have shown that variations in environmental conditions play a major role in explaining variations in plant species richness at community and landscape scales. In this study, we considered the degree to which fine-scale spatial variations in richness could be related to fine-scale variations in abiotic and biotic factors. To examine spatial variation in richness, grids of 1 m(2) plots were laid out at five sites within a coastal riverine wetland landscape. At each site, a 5 x 7 array of plots was established adjacent to the river's edge with plots one meter apart. In addition to the estimation of species richness, environmental measurements included sediment salinity, plot microelevation, percent of plot recently disturbed, and estimated community biomass. Our analysis strategy was to combine the use of structural equation modeling (path modeling) with an assessment of spatial association. Mantel's tests revealed significant spatial autocorrelation in species richness at four of the five sites sampled, indicating that richness in a plot correlated with the richness of nearby plots. We subsequently considered the degree to which spatial autocorrelations in richness could be explained by spatial autocorrelations in environmental conditions. Once data were corrected for environmental correlations, spatial autocorrelation in residual species richness could not be detected at any site. Based on these results, we conclude that in this coastal wetland, there appears to be a fine-scale mapping of diversity to microgradients in environmental conditions.

  6. Frontal Oscillatory Dynamics Predict Feedback Learning and Action Adjustment

    ERIC Educational Resources Information Center

    van de Vijver, Irene; Ridderinkhof, K. Richard; Cohen, Michael X.

    2011-01-01

    Frontal oscillatory dynamics in the theta (4-8 Hz) and beta (20-30 Hz) frequency bands have been implicated in cognitive control processes. Here we investigated the changes in coordinated activity within and between frontal brain areas during feedback-based response learning. In a time estimation task, participants learned to press a button after…

  7. Hope for the Forests? Habitat Resiliency Illustrated in the Face of Climate Change Using Fine-Scale Modeling

    NASA Astrophysics Data System (ADS)

    Flint, L. E.; Flint, A. L.; Weiss, S. B.; Micheli, E. R.

    2010-12-01

    In the face of rapid climate change, fine-scale predictions of landscape change are of extreme interest to land managers that endeavor to develop long term adaptive strategies for maintaining biodiversity and ecosystem services. Global climate model (GCM) outputs, which generally focus on estimated increases in air temperature, are increasingly applied to species habitat distribution models. For sensitive species subject to climate change, habitat models predict significant migration (either northward or towards higher elevations), or complete extinction. Current studies typically rely on large spatial scale GCM projections (> 10 km) of changes in precipitation and air temperature: at this scale, these models necessarily neglect subtleties of topographic shading, geomorphic expression of the landscape, and fine-scale differences in soil properties - data that is readily available at meaningful local scales. Recent advances in modeling take advantage of available soils, geology, and topographic data to construct watershed-scale scenarios using GCM inputs and result in improved correlations of vegetation distribution with temperature. For this study, future climate projections were downscaled to 270-m and applied to a physically-based hydrologic model to calculate future changes in recharge, runoff, and climatic water deficit (CWD) for basins draining into the northern San Francisco Bay. CWD was analyzed for mapped vegetation types to evaluate the range of CWD for historic time periods in comparison to future time periods. For several forest communities (including blue oak woodlands, montane hardwoods, douglas-fir, and coast redwood) existing landscape area exhibiting suitable CWD diminishes by up 80 percent in the next century, with a trend towards increased CWD throughout the region. However, no forest community loses all suitable habitat, with islands of potential habitat primarily remaining on north facing slopes and deeper soils. Creation of new suitable habitat

  8. Magnesium content within the skeletal architecture of the coral Montastraea faveolata: locations of brucite precipitation and implications to fine-scale data fluctuations

    USGS Publications Warehouse

    Buster, N.A.; Holmes, C.W.

    2006-01-01

    Small portions of coral cores were analyzed using a high-resolution laser ablation inductively coupled plasma mass spectrometer (LA ICP-MS) to determine the geochemical signatures within and among specific skeletal structures in the large framework coral, Montastraea faveolata. Vertical transects were sampled along three parallel skeletal structures: endothecal (septal flank), corallite wall, and exothecal (costal flank) areas. The results demonstrate that trace element levels varied among the three structures. Magnesium (Mg) varied among adjacent structures and was most abundant within the exothecal portion of the skeleton. Scanning electron microscopy (SEM) revealed the presence of hexagonal crystals forming thick discs, pairs or doublets of individual crystals, and rosettes in several samples. High Mg within these crystals was confirmed with energy dispersive spectroscopy (EDS), infrared spectrometry, and LA ICP-MS. The chemical composition is consistent with the mineral brucite [Mg(OH2)]. These crystals are located exclusively in the exothecal area of the skeleton, are often associated with green endolithic algae, and are commonly associated with increased Mg levels found in the adjacent corallite walls. Although scattered throughout the exothecal, the brucite crystals are concentrated within green bands where levels of Mg increase substantially relative to other portions of the skeleton. The presence and locations of high-Mg crystals may explain the fine-scale fluctuations in Mg data researchers have been questioning for years.

  9. Fine-scale genetic assessment of sex-specific dispersal patterns in a multilevel primate society.

    PubMed

    Städele, Veronika; Van Doren, Vanessa; Pines, Mathew; Swedell, Larissa; Vigilant, Linda

    2015-01-01

    Like humans, hamadryas baboons (Papio hamadryas) are unusual among primates in having a multilevel social system and stable pair bonds, and are thus a useful model for the evolution of human sociality. While the kinship structure and sex-biased dispersal patterns that underlie human social organization have been extensively elucidated, the impact of these factors on the social system of hamadryas baboons is currently unclear. Here we use genetic analysis of individuals to elucidate the patterns of male and female dispersal across multiple levels of society in a wild population of hamadryas baboons. We characterized 244 members of five hamadryas bands at Filoha, Ethiopia by genotyping one Y-linked and 23 autosomal microsatellite loci and sequencing part of the mitochondrial hypervariable control region I. We found both male and female dispersal to be limited at the level of the band, with more movement of females than males among bands. By integrating long-term behavioral data for Band 1, we also found evidence for male and female philopatry at the clan level. We speculate that male philopatry at the clan level and female dispersal across one-male units and clans may enable both kin-based cooperation among males and the maintenance of kin bonds among females after dispersal. This would mean that, as in humans, kin bonds within both sexes are a core feature of the hamadryas social system, thus contributing to our understanding of the evolution of social organization in humans. PMID:25466516

  10. Spatial and seasonal patterns of fine-scale to mesoscale upper ocean dynamics in an Eastern Boundary Current System

    NASA Astrophysics Data System (ADS)

    Grados, Daniel; Bertrand, Arnaud; Colas, François; Echevin, Vincent; Chaigneau, Alexis; Gutiérrez, Dimitri; Vargas, Gary; Fablet, Ronan

    2016-03-01

    The physical forcing of the ocean surface includes a variety of energetic processes, ranging from internal wave (IW) to submesoscale and mesoscale, associated with characteristic horizontal scales. While the description of mesoscale ocean dynamics has greatly benefited from the availability of satellite data, observations of finer scale patterns remain scarce. Recent studies showed that the vertical displacements of the oxycline depth, which separates the well-mixed oxygenated surface layer from the less oxygenated deeper ocean, estimated by acoustics, provide a robust proxy of isopycnal displacements over a wide range of horizontal scales. Using a high-resolution and wide-range acoustic data set in the Northern Humboldt Current System (NHCS) off Peru, the spatial and temporal patterns of fine-scale-to-mesoscale upper ocean dynamics are investigated. The spectral content of oxycline/pycnocline profiles presents patterns characteristic of turbulent flows, from the mesoscale to the fine scale, and an energization at the IW scale (2 km-200 m). On the basis of a typology performed on 35,000 structures we characterized six classes of physical structures according to their shape and scale range. The analysis reveals the existence of distinct features for the fine-scale range below ∼2-3 km, and clearly indicates the existence of intense IW and submesoscale activity over the entire NHCS region. Structures at scales smaller than ∼2 km were more numerous and energetic in spring than in summer. Their spatiotemporal variability supports the interpretation that these processes likely relate to IW generation by interactions between tidal flows, stratification and the continental slope. Given the impact of the physical forcing on the biogeochemical and ecological dynamics in EBUS, these processes should be further considered in future ecosystem studies based on observations and models. The intensification of upper ocean stratification resulting from climate change makes such

  11. Green light: gross primary production influences seasonal stream N export by controlling fine-scale N dynamics.

    PubMed

    Lupon, Anna; Martí, Eugènia; Sabater, Francesc; Bernal, Susana

    2016-01-01

    Monitoring nutrient concentrations at fine-scale temporal resolution contributes to a better understanding of nutrient cycling in stream ecosystems. However, the mechanisms underlying fine-scale nutrient dynamics and its implications for budget catchent fluxes are still poorly understood. To gain understanding of patterns and controls of fine-scale stream nitrogen (N) dynamics and to assess how they affect hydrological N fluxes, we explored diel variation in stream nitrate (NO3-) concentration along a headwater stream with increasing riparian area and channel width. At the downstream site, the highest day-night variations occurred in early spring, when stream NO3- concentrations were 13% higher at night than at daytime. Such day-night variations were strongly related to daily light inputs (R2 = 0.74) and gross primary production (GPP; R2 = 0.74), and they showed an excellent fit with day-night NO- variations predicted from GPP (R2 = 0.85). These results suggest that diel fluctuations in stream NO3- concentration were mainly driven by photoautotrophic N uptake. Terrestrial influences were discarded because no simultaneous diel variations in stream discharge, riparian groundwater level, or riparian solute concentration were observed. In contrast to the downstream site, no diel variations in NO3- concentration occurred at the upstream site, likely because water temperature was colder (10 degrees C vs. 12 degrees C) and light availability was lower (4 vs. 9 mol x m(-2) x d(-1)). Although daily GPP was between 10- and 100-fold lower than daily respiration, photoautotrophic N uptake contributed to a 10% reduction in spring NO3- loads at the downstream site. Our study clearly shows that the activity of photoautotrophs can substantially change over time and along the stream continuum in response to key environmental drivers such as light and temperature, and further, that its capacity to regulate diel and seasonal N fluxes can be important even in low-productivity streams

  12. A palette of fine-scale eddy viscosity and residual-based models for variational multiscale formulations of turbulence

    NASA Astrophysics Data System (ADS)

    Oberai, Assad A.; Hughes, Thomas J. R.

    2016-04-01

    We explore a general family of eddy viscosity models for the large-eddy simulation of turbulence within the framework of the Variational Multiscale Method. Our investigation encompasses various fine-scale eddy viscosities and coarse-scale residual-based constructs. We delineate the domain of parameter space in which physically and mathematically suitable models exist, and identify several sub-families of potentially useful models that are either entirely new or extend previously proposed ones. We also combine classical modeling ideas, that lead to turbulent kinetic energy evolution equations, with the residual-based approach to derive a new residual-driven, one-equation dynamic model.

  13. Wavelet analysis of fine-scale structures in the Saturnian B and C rings using data from the Cassini spacecraft

    SciTech Connect

    Postnikov, E. B. Loskutov, A. Yu.

    2007-03-15

    A continuous wavelet transform with a complex Morlet basis offers an effective method for the analysis of an instant variable periodicity in the spatially inhomogeneous matter density in the radial structure of Saturn's rings. An original algorithm that reduces the integral transform to solving a Cauchy problem for a partial differential equation is used for an analysis of the images of Saturn's B and C rings, which were obtained in the second half of 2004 from the Cassini spacecraft. This paper is a continuation of our preceding study of the fine-scale structure of Saturn's rings reported in Zh. Eksp. Teor. Fiz. 128, 752 (2005) [JETP 101, 646 (2005)].

  14. Fine-Scale Habitat Associations of a Terrestrial Salamander: The Role of Environmental Gradients and Implications for Population Dynamics

    PubMed Central

    Peterman, William E.; Semlitsch, Raymond D.

    2013-01-01

    Environmental gradients are instrumental in shaping the distribution and local abundance of species because at the most fundamental level, an organism’s performance is constrained by the environment it inhabits. In topographically complex landscapes, slope, aspect, and vegetative cover interact to affect solar exposure, creating temperature-moisture gradients and unique microclimates. The significance of the interaction of abiotic gradients and biotic factors such as competition, movement, or physiology has long been recognized, but the scale at which these factors vary on the landscape has generally precluded their inclusion in spatial abundance models. We used fine-scale spatial data relating to surface-soil moisture, temperature, and canopy cover to describe the spatial distribution of abundance of a terrestrial salamander, Plethodon albagula, across the landscape. Abundance was greatest in dense-canopy ravine habitats with high moisture and low solar exposure, resulting in a patchy distribution of abundance. We hypothesize that these patterns reflect the physiological constraints of Plethodontid salamanders. Furthermore, demographic cohorts were not uniformly distributed among occupied plots on the landscape. The probability of gravid female occurrence was nearly uniform among occupied plots, but juveniles were much more likely to occur on plots with lower surface temperatures. The disconnect between reproductive effort and recruitment suggests that survival differs across the landscape and that local population dynamics vary spatially. Our study demonstrates a connection between abundance, fine-scale environmental gradients, and population dynamics, providing a foundation for future research concerning movement, population connectivity, and physiology. PMID:23671586

  15. Flight paths of seabirds soaring over the ocean surface enable measurement of fine-scale wind speed and direction.

    PubMed

    Yonehara, Yoshinari; Goto, Yusuke; Yoda, Ken; Watanuki, Yutaka; Young, Lindsay C; Weimerskirch, Henri; Bost, Charles-André; Sato, Katsufumi

    2016-08-01

    Ocean surface winds are an essential factor in understanding the physical interactions between the atmosphere and the ocean. Surface winds measured by satellite scatterometers and buoys cover most of the global ocean; however, there are still spatial and temporal gaps and finer-scale variations of wind that may be overlooked, particularly in coastal areas. Here, we show that flight paths of soaring seabirds can be used to estimate fine-scale (every 5 min, ∼5 km) ocean surface winds. Fine-scale global positioning system (GPS) positional data revealed that soaring seabirds flew tortuously and ground speed fluctuated presumably due to tail winds and head winds. Taking advantage of the ground speed difference in relation to flight direction, we reliably estimated wind speed and direction experienced by the birds. These bird-based wind velocities were significantly correlated with wind velocities estimated by satellite-borne scatterometers. Furthermore, extensive travel distances and flight duration of the seabirds enabled a wide range of high-resolution wind observations, especially in coastal areas. Our study suggests that seabirds provide a platform from which to measure ocean surface winds, potentially complementing conventional wind measurements by covering spatial and temporal measurement gaps. PMID:27457932

  16. Fine-scale habitat associations of a terrestrial salamander: the role of environmental gradients and implications for population dynamics.

    PubMed

    Peterman, William E; Semlitsch, Raymond D

    2013-01-01

    Environmental gradients are instrumental in shaping the distribution and local abundance of species because at the most fundamental level, an organism's performance is constrained by the environment it inhabits. In topographically complex landscapes, slope, aspect, and vegetative cover interact to affect solar exposure, creating temperature-moisture gradients and unique microclimates. The significance of the interaction of abiotic gradients and biotic factors such as competition, movement, or physiology has long been recognized, but the scale at which these factors vary on the landscape has generally precluded their inclusion in spatial abundance models. We used fine-scale spatial data relating to surface-soil moisture, temperature, and canopy cover to describe the spatial distribution of abundance of a terrestrial salamander, Plethodon albagula, across the landscape. Abundance was greatest in dense-canopy ravine habitats with high moisture and low solar exposure, resulting in a patchy distribution of abundance. We hypothesize that these patterns reflect the physiological constraints of Plethodontid salamanders. Furthermore, demographic cohorts were not uniformly distributed among occupied plots on the landscape. The probability of gravid female occurrence was nearly uniform among occupied plots, but juveniles were much more likely to occur on plots with lower surface temperatures. The disconnect between reproductive effort and recruitment suggests that survival differs across the landscape and that local population dynamics vary spatially. Our study demonstrates a connection between abundance, fine-scale environmental gradients, and population dynamics, providing a foundation for future research concerning movement, population connectivity, and physiology. PMID:23671586

  17. Genetic Geostatistical Framework for Spatial Analysis of Fine-Scale Genetic Heterogeneity in Modern Populations: Results from the KORA Study.

    PubMed

    Diaz-Lacava, A N; Walier, M; Holler, D; Steffens, M; Gieger, C; Furlanello, C; Lamina, C; Wichmann, H E; Becker, T

    2015-01-01

    Aiming to investigate fine-scale patterns of genetic heterogeneity in modern humans from a geographic perspective, a genetic geostatistical approach framed within a geographic information system is presented. A sample collected for prospective studies in a small area of southern Germany was analyzed. None indication of genetic heterogeneity was detected in previous analysis. Socio-demographic and genotypic data of German citizens were analyzed (212 SNPs; n = 728). Genetic heterogeneity was evaluated with observed heterozygosity (H O ). Best-fitting spatial autoregressive models were identified, using socio-demographic variables as covariates. Spatial analysis included surface interpolation and geostatistics of observed and predicted patterns. Prediction accuracy was quantified. Spatial autocorrelation was detected for both socio-demographic and genetic variables. Augsburg City and eastern suburban areas showed higher H O values. The selected model gave best predictions in suburban areas. Fine-scale patterns of genetic heterogeneity were observed. In accordance to literature, more urbanized areas showed higher levels of admixture. This approach showed efficacy for detecting and analyzing subtle patterns of genetic heterogeneity within small areas. It is scalable in number of loci, even up to whole-genome analysis. It may be suggested that this approach may be applicable to investigate the underlying genetic history that is, at least partially, embedded in geographic data. PMID:26258132

  18. Genetic Geostatistical Framework for Spatial Analysis of Fine-Scale Genetic Heterogeneity in Modern Populations: Results from the KORA Study

    PubMed Central

    Diaz-Lacava, A. N.; Walier, M.; Holler, D.; Steffens, M.; Gieger, C.; Furlanello, C.; Lamina, C.; Wichmann, H. E.; Becker, T.

    2015-01-01

    Aiming to investigate fine-scale patterns of genetic heterogeneity in modern humans from a geographic perspective, a genetic geostatistical approach framed within a geographic information system is presented. A sample collected for prospective studies in a small area of southern Germany was analyzed. None indication of genetic heterogeneity was detected in previous analysis. Socio-demographic and genotypic data of German citizens were analyzed (212 SNPs; n = 728). Genetic heterogeneity was evaluated with observed heterozygosity (HO). Best-fitting spatial autoregressive models were identified, using socio-demographic variables as covariates. Spatial analysis included surface interpolation and geostatistics of observed and predicted patterns. Prediction accuracy was quantified. Spatial autocorrelation was detected for both socio-demographic and genetic variables. Augsburg City and eastern suburban areas showed higher HO values. The selected model gave best predictions in suburban areas. Fine-scale patterns of genetic heterogeneity were observed. In accordance to literature, more urbanized areas showed higher levels of admixture. This approach showed efficacy for detecting and analyzing subtle patterns of genetic heterogeneity within small areas. It is scalable in number of loci, even up to whole-genome analysis. It may be suggested that this approach may be applicable to investigate the underlying genetic history that is, at least partially, embedded in geographic data. PMID:26258132

  19. Fine-scale ecological and economic assessment of climate change on olive in the Mediterranean Basin reveals winners and losers

    PubMed Central

    Ponti, Luigi; Gutierrez, Andrew Paul; Ruti, Paolo Michele; Dell’Aquila, Alessandro

    2014-01-01

    The Mediterranean Basin is a climate and biodiversity hot spot, and climate change threatens agro-ecosystems such as olive, an ancient drought-tolerant crop of considerable ecological and socioeconomic importance. Climate change will impact the interactions of olive and the obligate olive fruit fly (Bactrocera oleae), and alter the economics of olive culture across the Basin. We estimate the effects of climate change on the dynamics and interaction of olive and the fly using physiologically based demographic models in a geographic information system context as driven by daily climate change scenario weather. A regional climate model that includes fine-scale representation of the effects of topography and the influence of the Mediterranean Sea on regional climate was used to scale the global climate data. The system model for olive/olive fly was used as the production function in our economic analysis, replacing the commonly used production-damage control function. Climate warming will affect olive yield and fly infestation levels across the Basin, resulting in economic winners and losers at the local and regional scales. At the local scale, profitability of small olive farms in many marginal areas of Europe and elsewhere in the Basin will decrease, leading to increased abandonment. These marginal farms are critical to conserving soil, maintaining biodiversity, and reducing fire risk in these areas. Our fine-scale bioeconomic approach provides a realistic prototype for assessing climate change impacts in other Mediterranean agro-ecosystems facing extant and new invasive pests. PMID:24706833

  20. Flight paths of seabirds soaring over the ocean surface enable measurement of fine-scale wind speed and direction

    PubMed Central

    Yonehara, Yoshinari; Goto, Yusuke; Yoda, Ken; Watanuki, Yutaka; Young, Lindsay C.; Weimerskirch, Henri; Bost, Charles-André; Sato, Katsufumi

    2016-01-01

    Ocean surface winds are an essential factor in understanding the physical interactions between the atmosphere and the ocean. Surface winds measured by satellite scatterometers and buoys cover most of the global ocean; however, there are still spatial and temporal gaps and finer-scale variations of wind that may be overlooked, particularly in coastal areas. Here, we show that flight paths of soaring seabirds can be used to estimate fine-scale (every 5 min, ∼5 km) ocean surface winds. Fine-scale global positioning system (GPS) positional data revealed that soaring seabirds flew tortuously and ground speed fluctuated presumably due to tail winds and head winds. Taking advantage of the ground speed difference in relation to flight direction, we reliably estimated wind speed and direction experienced by the birds. These bird-based wind velocities were significantly correlated with wind velocities estimated by satellite-borne scatterometers. Furthermore, extensive travel distances and flight duration of the seabirds enabled a wide range of high-resolution wind observations, especially in coastal areas. Our study suggests that seabirds provide a platform from which to measure ocean surface winds, potentially complementing conventional wind measurements by covering spatial and temporal measurement gaps. PMID:27457932

  1. Fine-scale population genetic structure and sex-biased dispersal in the smooth snake (Coronella austriaca) in southern England

    PubMed Central

    Pernetta, A P; Allen, J A; Beebee, T J C; Reading, C J

    2011-01-01

    Human-induced alteration of natural habitats has the potential to impact on the genetic structuring of remnant populations at multiple spatial scales. Species from higher trophic levels, such as snakes, are expected to be particularly susceptible to land-use changes. We examined fine-scale population structure and looked for evidence of sex-biased dispersal in smooth snakes (Coronella austriaca), sampled from 10 heathland localities situated within a managed coniferous forest in Dorset, United Kingdom. Despite the limited distances between heathland areas (maximum <6 km), there was a small but significant structuring of populations based on eight microsatellite loci. This followed an isolation-by-distance model using both straight line and ‘biological' distances between sampling sites, suggesting C. austriaca's low vagility as the causal factor, rather than closed canopy conifer forest exerting an effect as a barrier to dispersal. Within population comparisons of male and female snakes showed evidence for sex-biased dispersal, with three of four analyses finding significantly higher dispersal in males than in females. We suggest that the fine-scale spatial genetic structuring and sex-biased dispersal have important implications for the conservation of C. austriaca, and highlight the value of heathland areas within commercial conifer plantations with regards to their future management. PMID:21343947

  2. Fine-scale nutrient and carbonate system dynamics around cold-water coral reefs in the northeast Atlantic.

    PubMed

    Findlay, Helen S; Hennige, Sebastian J; Wicks, Laura C; Navas, Juan Moreno; Woodward, E Malcolm S; Roberts, J Murray

    2014-01-01

    Ocean acidification has been suggested as a serious threat to the future existence of cold-water corals (CWC). However, there are few fine-scale temporal and spatial datasets of carbonate and nutrients conditions available for these reefs, which can provide a baseline definition of extant conditions. Here we provide observational data from four different sites in the northeast Atlantic that are known habitats for CWC. These habitats differ by depth and by the nature of the coral habitat. At depths where CWC are known to occur across these sites the dissolved inorganic carbon ranged from 2088 to 2186 μmol kg(-1), alkalinity ranged from 2299 to 2346 μmol kg(-1), and aragonite Ω ranged from 1.35 to 2.44. At two sites fine-scale hydrodynamics caused increased variability in the carbonate and nutrient conditions over daily time-scales. The observed high level of variability must be taken into account when assessing CWC sensitivities to future environmental change. PMID:24441283

  3. Fine-scale spatial genetic structure and clonal distribution of the cold-water coral Lophelia pertusa

    NASA Astrophysics Data System (ADS)

    Dahl, M. P.; Pereyra, R. T.; Lundälv, T.; André, C.

    2012-12-01

    Determining the spatial genetic structure within and among cold-water coral populations is crucial to understanding population dynamics, assessing the resilience of cold-water coral communities and estimating genetic effects of habitat fragmentation for conservation. The spatial distribution of genetic diversity in natural populations depends on the species' mode of reproduction, and coral species often have a mixed strategy of sexual and asexual reproduction. We describe the clonal architecture of a cold-water coral reef and the fine-scale population genetic structure (<35 km) of five reef localities in the NE Skagerrak. This study represents the first of this type of analysis from deep waters. We used thirteen microsatellite loci to estimate gene flow and genotypic diversity and to describe the fine-scale spatial distribution of clonal individuals of Lophelia pertusa. Within-population genetic diversity was high in four of the five reef localities. These four reefs constitute a genetic cluster with asymmetric gene flow that indicates metapopulation dynamics. One locality, the Säcken reef, was genetically isolated and depauperate. Asexual reproduction was found to be a highly important mode of reproduction for L. pertusa: 35 genetic individuals were found on the largest reef, with the largest clone covering an area of nearly 300 m2.

  4. Landscape Management of Fire and Grazing Regimes Alters the Fine-Scale Habitat Utilisation by Feral Cats

    PubMed Central

    McGregor, Hugh W.; Legge, Sarah; Jones, Menna E.; Johnson, Christopher N.

    2014-01-01

    Intensification of fires and grazing by large herbivores has caused population declines in small vertebrates in many ecosystems worldwide. Impacts are rarely direct, and usually appear driven via indirect pathways, such as changes to predator-prey dynamics. Fire events and grazing may improve habitat and/or hunting success for the predators of small mammals, however, such impacts have not been documented. To test for such an interaction, we investigated fine-scale habitat selection by feral cats in relation to fire, grazing and small-mammal abundance. Our study was conducted in north-western Australia, where small mammal populations are sensitive to changes in fire and grazing management. We deployed GPS collars on 32 cats in landscapes with contrasting fire and grazing treatments. Fine-scale habitat selection was determined using discrete choice modelling of cat movements. We found that cats selected areas with open grass cover, including heavily-grazed areas. They strongly selected for areas recently burnt by intense fires, but only in habitats that typically support high abundance of small mammals. Intense fires and grazing by introduced herbivores created conditions that are favoured by cats, probably because their hunting success is improved. This mechanism could explain why, in northern Australia, impacts of feral cats on small mammals might have increased. Our results suggest the impact of feral cats could be reduced in most ecosystems by maximising grass cover, minimising the incidence of intense fires, and reducing grazing by large herbivores. PMID:25329902

  5. Fine-scale ecological and economic assessment of climate change on olive in the Mediterranean Basin reveals winners and losers.

    PubMed

    Ponti, Luigi; Gutierrez, Andrew Paul; Ruti, Paolo Michele; Dell'Aquila, Alessandro

    2014-04-15

    The Mediterranean Basin is a climate and biodiversity hot spot, and climate change threatens agro-ecosystems such as olive, an ancient drought-tolerant crop of considerable ecological and socioeconomic importance. Climate change will impact the interactions of olive and the obligate olive fruit fly (Bactrocera oleae), and alter the economics of olive culture across the Basin. We estimate the effects of climate change on the dynamics and interaction of olive and the fly using physiologically based demographic models in a geographic information system context as driven by daily climate change scenario weather. A regional climate model that includes fine-scale representation of the effects of topography and the influence of the Mediterranean Sea on regional climate was used to scale the global climate data. The system model for olive/olive fly was used as the production function in our economic analysis, replacing the commonly used production-damage control function. Climate warming will affect olive yield and fly infestation levels across the Basin, resulting in economic winners and losers at the local and regional scales. At the local scale, profitability of small olive farms in many marginal areas of Europe and elsewhere in the Basin will decrease, leading to increased abandonment. These marginal farms are critical to conserving soil, maintaining biodiversity, and reducing fire risk in these areas. Our fine-scale bioeconomic approach provides a realistic prototype for assessing climate change impacts in other Mediterranean agro-ecosystems facing extant and new invasive pests. PMID:24706833

  6. Fine-scale flight strategies of gulls in urban airflows indicate risk and reward in city living.

    PubMed

    Shepard, Emily L C; Williamson, Cara; Windsor, Shane P

    2016-09-26

    Birds modulate their flight paths in relation to regional and global airflows in order to reduce their travel costs. Birds should also respond to fine-scale airflows, although the incidence and value of this remains largely unknown. We resolved the three-dimensional trajectories of gulls flying along a built-up coastline, and used computational fluid dynamic models to examine how gulls reacted to airflows around buildings. Birds systematically altered their flight trajectories with wind conditions to exploit updraughts over features as small as a row of low-rise buildings. This provides the first evidence that human activities can change patterns of space-use in flying birds by altering the profitability of the airscape. At finer scales still, gulls varied their position to select a narrow range of updraught values, rather than exploiting the strongest updraughts available, and their precise positions were consistent with a strategy to increase their velocity control in gusty conditions. Ultimately, strategies such as these could help unmanned aerial vehicles negotiate complex airflows. Overall, airflows around fine-scale features have profound implications for flight control and energy use, and consideration of this could lead to a paradigm-shift in the way ecologists view the urban environment.This article is part of the themed issue 'Moving in a moving medium: new perspectives on flight'. PMID:27528784

  7. Improving mesoscale QPF in regions of complex terrain using a fine-scaled nested model and satellite-retrieved data

    NASA Astrophysics Data System (ADS)

    Kuligowski, Robert Joseph

    2000-10-01

    Quantitative precipitation forecasting (QPF) has importance for a broad variety of applications, from agricultural and construction interests to flood forecasting. Both the accuracy and timeliness of QPF are crucial components in its usefulness, especially for hydrologic forecasting, but in general the present state of QPF is lacking in both areas. This thesis approaches QPF from a numerical weather prediction (NWP) model on two fronts. The first is to present a NWP model for predicting short-term precipitation at very fine scales (1-km) over regions with highly variable terrain, and an example from the Pocono Mountains in Pennsylvania is presented. The second is to improve the performance of the NWP model by using satellite data to estimate the initial fields of temperature and moisture used in the model. This use of satellite data has two steps. The first is to produce retrievals of temperature and moisture at individual points using an artificial neural network (ANN) trained on collocated satellite and radiosonde data. The second step is to us a fractal disaggregation scheme to re-scale the satellite images that are at three different horizontal resolutions to the fine spatial resolution of the NWP model. The results show that the fine-scale NWP model using the satellite- retrieved initial conditions has slightly better skill at predicting precipitation than a comparable model, but that the model variables not replaced with satellite- retrieved values still exert a significant influence on the model solution.

  8. Fine-scale nutrient and carbonate system dynamics around cold-water coral reefs in the northeast Atlantic

    PubMed Central

    Findlay, Helen S.; Hennige, Sebastian J.; Wicks, Laura C.; Navas, Juan Moreno; Woodward, E. Malcolm S.; Roberts, J. Murray

    2014-01-01

    Ocean acidification has been suggested as a serious threat to the future existence of cold-water corals (CWC). However, there are few fine-scale temporal and spatial datasets of carbonate and nutrients conditions available for these reefs, which can provide a baseline definition of extant conditions. Here we provide observational data from four different sites in the northeast Atlantic that are known habitats for CWC. These habitats differ by depth and by the nature of the coral habitat. At depths where CWC are known to occur across these sites the dissolved inorganic carbon ranged from 2088 to 2186 μmol kg−1, alkalinity ranged from 2299 to 2346 μmol kg−1, and aragonite Ω ranged from 1.35 to 2.44. At two sites fine-scale hydrodynamics caused increased variability in the carbonate and nutrient conditions over daily time-scales. The observed high level of variability must be taken into account when assessing CWC sensitivities to future environmental change. PMID:24441283

  9. Analyzing fine-scale wetland composition using high resolution imagery and texture features

    NASA Astrophysics Data System (ADS)

    Szantoi, Zoltan; Escobedo, Francisco; Abd-Elrahman, Amr; Smith, Scot; Pearlstine, Leonard

    2013-08-01

    In order to monitor natural and anthropogenic disturbance effects to wetland ecosystems, it is necessary to employ both accurate and rapid mapping of wet graminoid/sedge communities. Thus, it is desirable to utilize automated classification algorithms so that the monitoring can be done regularly and in an efficient manner. This study developed a classification and accuracy assessment method for wetland mapping of at-risk plant communities in marl prairie and marsh areas of the Everglades National Park. Maximum likelihood (ML) and Support Vector Machine (SVM) classifiers were tested using 30.5 cm aerial imagery, the normalized difference vegetation index (NDVI), first and second order texture features and ancillary data. Additionally, appropriate window sizes for different texture features were estimated using semivariogram analysis. Findings show that the addition of NDVI and texture features increased classification accuracy from 66.2% using the ML classifier (spectral bands only) to 83.71% using the SVM classifier (spectral bands, NDVI and first order texture features).

  10. Local Oscillatory Rheology from Echography

    NASA Astrophysics Data System (ADS)

    Saint-Michel, Brice; Gibaud, Thomas; Leocmach, Mathieu; Manneville, Sébastien

    2016-03-01

    Local oscillatory rheology from echography consists of a traditional rheology experiment synchronized with high-frequency ultrasonic imaging which gives access to the local material response to oscillatory shear. Besides classical global rheological quantities, this method provides quantitative time-resolved information on the local displacement across the entire gap of the rheometer. From the local displacement response, we compute and decompose the local strain in its Fourier components and measure the spatially resolved viscoelastic moduli. After benchmarking our method on homogeneous Newtonian fluids and soft solids, we demonstrate that this technique is well suited to characterize spatially heterogeneous samples, wall slip, and the emergence of nonlinearity under large-amplitude oscillatory stress in soft materials.

  11. Identifying Where REDD+ Financially Out-Competes Oil Palm in Floodplain Landscapes Using a Fine-Scale Approach.

    PubMed

    Abram, Nicola K; MacMillan, Douglas C; Xofis, Panteleimon; Ancrenaz, Marc; Tzanopoulos, Joseph; Ong, Robert; Goossens, Benoit; Koh, Lian Pin; Del Valle, Christian; Peter, Lucy; Morel, Alexandra C; Lackman, Isabelle; Chung, Robin; Kler, Harjinder; Ambu, Laurentius; Baya, William; Knight, Andrew T

    2016-01-01

    Reducing Emissions from Deforestation and forest Degradation (REDD+) aims to avoid forest conversion to alternative land-uses through financial incentives. Oil-palm has high opportunity costs, which according to current literature questions the financial competitiveness of REDD+ in tropical lowlands. To understand this more, we undertook regional fine-scale and coarse-scale analyses (through carbon mapping and economic modelling) to assess the financial viability of REDD+ in safeguarding unprotected forest (30,173 ha) in the Lower Kinabatangan floodplain in Malaysian Borneo. Results estimate 4.7 million metric tons of carbon (MgC) in unprotected forest, with 64% allocated for oil-palm cultivations. Through fine-scale mapping and carbon accounting, we demonstrated that REDD+ can outcompete oil-palm in regions with low suitability, with low carbon prices and low carbon stock. In areas with medium oil-palm suitability, REDD+ could outcompete oil palm in areas with: very high carbon and lower carbon price; medium carbon price and average carbon stock; or, low carbon stock and high carbon price. Areas with high oil palm suitability, REDD+ could only outcompete with higher carbon price and higher carbon stock. In the coarse-scale model, oil-palm outcompeted REDD+ in all cases. For the fine-scale models at the landscape level, low carbon offset prices (US $3 MgCO2e) would enable REDD+ to outcompete oil-palm in 55% of the unprotected forests requiring US $27 million to secure these areas for 25 years. Higher carbon offset price (US $30 MgCO2e) would increase the competitiveness of REDD+ within the landscape but would still only capture between 69%-74% of the unprotected forest, requiring US $380-416 million in carbon financing. REDD+ has been identified as a strategy to mitigate climate change by many countries (including Malaysia). Although REDD+ in certain scenarios cannot outcompete oil palm, this research contributes to the global REDD+ debate by: highlighting REDD

  12. Identifying Where REDD+ Financially Out-Competes Oil Palm in Floodplain Landscapes Using a Fine-Scale Approach

    PubMed Central

    MacMillan, Douglas C.; Xofis, Panteleimon; Ancrenaz, Marc; Tzanopoulos, Joseph; Ong, Robert; Goossens, Benoit; Koh, Lian Pin; Del Valle, Christian; Peter, Lucy; Morel, Alexandra C.; Lackman, Isabelle; Chung, Robin; Kler, Harjinder; Ambu, Laurentius; Baya, William; Knight, Andrew T.

    2016-01-01

    Reducing Emissions from Deforestation and forest Degradation (REDD+) aims to avoid forest conversion to alternative land-uses through financial incentives. Oil-palm has high opportunity costs, which according to current literature questions the financial competitiveness of REDD+ in tropical lowlands. To understand this more, we undertook regional fine-scale and coarse-scale analyses (through carbon mapping and economic modelling) to assess the financial viability of REDD+ in safeguarding unprotected forest (30,173 ha) in the Lower Kinabatangan floodplain in Malaysian Borneo. Results estimate 4.7 million metric tons of carbon (MgC) in unprotected forest, with 64% allocated for oil-palm cultivations. Through fine-scale mapping and carbon accounting, we demonstrated that REDD+ can outcompete oil-palm in regions with low suitability, with low carbon prices and low carbon stock. In areas with medium oil-palm suitability, REDD+ could outcompete oil palm in areas with: very high carbon and lower carbon price; medium carbon price and average carbon stock; or, low carbon stock and high carbon price. Areas with high oil palm suitability, REDD+ could only outcompete with higher carbon price and higher carbon stock. In the coarse-scale model, oil-palm outcompeted REDD+ in all cases. For the fine-scale models at the landscape level, low carbon offset prices (US $3 MgCO2e) would enable REDD+ to outcompete oil-palm in 55% of the unprotected forests requiring US $27 million to secure these areas for 25 years. Higher carbon offset price (US $30 MgCO2e) would increase the competitiveness of REDD+ within the landscape but would still only capture between 69%-74% of the unprotected forest, requiring US $380–416 million in carbon financing. REDD+ has been identified as a strategy to mitigate climate change by many countries (including Malaysia). Although REDD+ in certain scenarios cannot outcompete oil palm, this research contributes to the global REDD+ debate by: highlighting REDD

  13. A New Fine-Scale, Quasi-Global Combined Precipitation Estimate Based on TRMM

    NASA Technical Reports Server (NTRS)

    Huffman, George J.; Adler, R. F.; Bolvin, D. T.; Nelkin, E. J.; Starr, David OC. (Technical Monitor)

    2001-01-01

    A TRMM-based 3-hourly precipitation algorithm is currently under development, with the goal of producing 0.25 deg x 0.25 deg, 3-hourly gridded estimates for the period January 1999 to the present over the latitude band +/-50 deg. [Extension to higher latitudes will be undertaken next]. TMI precipitation estimates are used to calibrate SSM/I estimates, and AMSR, when available. Then a merger of the microwave estimates is used to create a calibrated IR estimate in a Probability-Matched-Threshold approach. The microwave and IR estimates are next combined at the individual 3-hour level. Early results will be shown, including typical tropical and extratropical storm evolution and examples of the diurnal cycle. Major issues will be discussed, including the choice of IR algorithm, the approach to merging the IR and microwave estimates, and extension to the GPCP One-Degree Daily product (for which the authors are responsible). The work described here provides one approach to using data from the future NASA Global Precipitation Measurement program, which is designed to provide full global coverage by low-orbit passive microwave satellites every three hours beginning around 2007.

  14. Fine-scale population structure and riverscape genetics of brook trout (Salvelinus fontinalis) distributed continuously along headwater channel networks

    USGS Publications Warehouse

    Kanno, Yoichiro; Vokoun, Jason C.; Letcher, Benjamin H.

    2011-01-01

    Linear and heterogeneous habitat makes headwater stream networks an ideal ecosystem in which to test the influence of environmental factors on spatial genetic patterns of obligatory aquatic species. We investigated fine-scale population structure and influence of stream habitat on individual-level genetic differentiation in brook trout (Salvelinus fontinalis) by genotyping eight microsatellite loci in 740 individuals in two headwater channel networks (7.7 and 4.4 km) in Connecticut, USA. A weak but statistically significant isolation-by-distance pattern was common in both sites. In the field, many tagged individuals were recaptured in the same 50-m reaches within a single field season (summer to fall). One study site was characterized with a hierarchical population structure, where seasonal barriers (natural falls of 1.5–2.5 m in height during summer base-flow condition) greatly reduced gene flow and perceptible spatial patterns emerged because of the presence of tributaries, each with a group of genetically distinguishable individuals. Genetic differentiation increased when pairs of individuals were separated by high stream gradient (steep channel slope) or warm stream temperature in this site, although the evidence of their influence was equivocal. In a second site, evidence for genetic clusters was weak at best, but genetic differentiation between individuals was positively correlated with number of tributary confluences. We concluded that the population-level movement of brook trout was limited in the study headwater stream networks, resulting in the fine-scale population structure (genetic clusters and clines) even at distances of a few kilometres, and gene flow was mitigated by ‘riverscape’ variables, particularly by physical barriers, waterway distance (i.e. isolation-by-distance) and the presence of tributaries.

  15. Effects of seed bank disturbance on the fine-scale genetic structure of populations of the rare shrub Grevillea macleayana.

    PubMed

    England, P R; Whelan, R J; Ayre, D J

    2003-11-01

    Dispersal in most plants is mediated by the movement of seeds and pollen, which move genes across the landscape differently. Grevillea macleayana is a rare, fire-dependent Australian shrub with large seeds lacking adaptations for dispersal; yet it produces inflorescences adapted to pollination by highly mobile vertebrates (eg birds). Interpreting fine-scale genetic structure in the light of these two processes is confounded by the recent imposition of anthropogenic disturbances with potentially contrasting genetic consequences: (1) the unusual foraging behaviour of exotic honeybees and 2. widespread disturbance of the soil-stored seedbank by road building and quarrying. To test for evidence of fine-scale genetic structure within G. macleayana populations and to test the prediction that such structure might be masked by disturbance of the seed bank, we sampled two sites in undisturbed habitat and compared their genetic structure with two sites that had been strongly affected by road building using a test for spatial autocorrelation of genotypes. High selfing levels inferred from genotypes at all four sites implies that pollen dispersal is limited. Consistent with this, we observed substantial spatial clustering of genes at 10 m or less in the two undisturbed populations and argue that this reflects the predicted effects of both high selfing levels and limited seed dispersal. In contrast, at the two sites disturbed by road building, spatial autocorrelation was weak. This suggests there has been mixing of the seed bank, counteracting the naturally low dispersal and elevated selfing due to honeybees. Pollination between near neighbours with reduced relatedness potentially has fitness consequences for G. macleayana in disturbed sites. PMID:14576740

  16. Effects of currents and tides on fine-scale use of marine bird habitats in a Southeast Alaska hotspot

    USGS Publications Warehouse

    Drew, Gary S.; Piatt, John F.; Hill, David J.

    2013-01-01

    Areas with high species richness have become focal points in the establishment of marine protected areas, but an understanding of the factors that support this diversity is still incomplete. In coastal areas, tidal currents—modulated by bathymetry and manifested in variable speeds—are a dominant physical feature of the environment. However, difficulties resolving tidally affected currents and depths at fine spatial-temporal scales have limited our ability to understand their influence the distribution of marine birds. We used a hydrographic model of the water mass in Glacier Bay, Alaska to link depths and current velocities with the locations of 15 common marine bird species observed during fine-scale boat-based surveys of the bay conducted during June of four consecutive years (2000-2003). Marine birds that forage on the bottom tended to occupy shallow habitats with slow-moving currents; mid-water foragers used habitats with intermediate depths and current speeds; and surface-foraging species tended to use habitats with fast-moving, deep waters. Within foraging groups there was variability among species in their use of habitats. While species obligated to foraging near bottom were constrained to use similar types of habitat, species in the mid-water foraging group were associated with a wider range of marine habitat characteristics. Species also showed varying levels of site use depending on tide stage. The dramatic variability in bottom topography—especially the presence of numerous sills, islands, headlands and channels—and large tidal ranges in Glacier Bay create a wide range of current-affected fine-scale foraging habitats that may contribute to the high diversity of marine bird species found there.

  17. Fine-scale Fractures on the Surface of 433 Eros: Implications for Structural Control and Tectonic Resurfacing of Craters

    NASA Astrophysics Data System (ADS)

    Prockter, L.; Barnouin-Jha, O.

    2003-12-01

    Detailed lineament mapping of the surface of Eros is underway, using high-resolution images obtained by the NEAR-Shoemaker spacecraft during its recent highly successful mission. It is likely that most of the grooves on the asteroid's surface are the result of disturbances of regolith overlying deeper fractures in a coherent substrate, an interpretation that is also plausible for other asteroids and small bodies such as Ida, Gaspra, and Phobos. The presence of numerous single and cross-cutting grooves which may be continuous for several kilometers, implies that the underlying material of which Eros is comprised is largely coherent, and that it is likely not a rubble pile. In addition to grooves, some regions of Eros' surface have a high density of fine-scale lineaments, spaced tens of meters apart. Preexisting structural features have clearly influenced the shapes of some craters, leading to squared-off outlines. Close examination of the surface shows that fine-scale fractures may also be responsible for erasing craters. This type of "tectonic resurfacing" has been inferred on Ganymede, where there are examples of craters strained tens of percent by the formation of fractures and grooves. On Eros, examples can be found of craters that are highly degraded due to numerous parallel fractures running through their interiors. Topographic profiles across these craters show that some are unusually shallow, in part because of regolith infilling, but also possibly as a result of tectonic disruption. We examine the hypothesis that closely-spaced fractures within craters post-date crater formation, since they may not survive the impact process. Such fractures may be the result of reactivation of preexisting structure by later, possibly distant, impact events and may cause subsequent degradation.

  18. Fine-scale mapping of vector habitats using very high resolution satellite imagery: a liver fluke case-study.

    PubMed

    De Roeck, Els; Van Coillie, Frieke; De Wulf, Robert; Soenen, Karen; Charlier, Johannes; Vercruysse, Jozef; Hantson, Wouter; Ducheyne, Els; Hendrickx, Guy

    2014-01-01

    The visualization of vector occurrence in space and time is an important aspect of studying vector-borne diseases. Detailed maps of possible vector habitats provide valuable information for the prediction of infection risk zones but are currently lacking for most parts of the world. Nonetheless, monitoring vector habitats from the finest scales up to farm level is of key importance to refine currently existing broad-scale infection risk models. Using Fasciola hepatica, a parasite liver fluke, as a case in point, this study illustrates the potential of very high resolution (VHR) optical satellite imagery to efficiently and semi-automatically detect detailed vector habitats. A WorldView2 satellite image capable of <5m resolution was acquired in the spring of 2013 for the area around Bruges, Belgium, a region where dairy farms suffer from liver fluke infections transmitted by freshwater snails. The vector thrives in small water bodies (SWBs), such as ponds, ditches and other humid areas consisting of open water, aquatic vegetation and/or inundated grass. These water bodies can be as small as a few m2 and are most often not present on existing land cover maps because of their small size. We present a classification procedure based on object-based image analysis (OBIA) that proved valuable to detect SWBs at a fine scale in an operational and semi-automated way. The classification results were compared to field and other reference data such as existing broad-scale maps and expert knowledge. Overall, the SWB detection accuracy reached up to 87%. The resulting fine-scale SWB map can be used as input for spatial distribution modelling of the liver fluke snail vector to enable development of improved infection risk mapping and management advice adapted to specific, local farm situations. PMID:25599638

  19. Fine-scale natal homing and localized movement as shaped by sex and spawning habitat in chinook salmon

    USGS Publications Warehouse

    Neville, Helen; Isaak, Daniel; Dunham, J.B.; Thurow, Russel; Rieman, B.

    2006-01-01

    Natal homing is a hallmark of the life history of salmonid fishes, but the spatial scale of homing within local, naturally reproducing salmon populations is still poorly understood. Accurate homing (paired with restricted movement) should lead to the existence of fine-scale genetic structuring due to the spatial clustering of related individuals on spawning grounds. Thus, we explored the spatial resolution of natal homing using genetic associations among individual Chinook salmon (Oncorhynchus tshawytscha) in an interconnected stream network. We also investigated the relationship between genetic patterns and two factors hypothesized to influence natal homing and localized movements at finer scales in this species, localized patterns in the distribution of spawning gravels and sex. Spatial autocorrelation analyses showed that spawning locations in both sub-basins of our study site were spatially clumped, but the upper sub-basin generally had a larger spatial extent and continuity of redd locations than the lower sub-basin, where the distribution of redds and associated habitat conditions were more patchy. Male genotypes were not autocorrelated at any spatial scale in either sub-basin. Female genotypes showed significant spatial autocorrelation and genetic patterns for females varied in the direction predicted between the two sub-basins, with much stronger autocorrelation in the sub-basin with less continuity in spawning gravels. The patterns observed here support predictions about differential constraints and breeding tactics between the two sexes and the potential for fine-scale habitat structure to influence the precision of natal homing and localized movements of individual Chinook salmon on their breeding grounds.

  20. Fine-scale genetic structure reflects sex-specific dispersal strategies in a population of sociable weavers (Philetairus socius).

    PubMed

    van Dijk, René E; Covas, Rita; Doutrelant, Claire; Spottiswoode, Claire N; Hatchwell, Ben J

    2015-08-01

    Dispersal is a critical driver of gene flow, with important consequences for population genetic structure, social interactions and other biological processes. Limited dispersal may result in kin-structured populations in which kin selection may operate, but it may also increase the risk of kin competition and inbreeding. Here, we use a combination of long-term field data and molecular genetics to examine dispersal patterns and their consequences for the population genetics of a highly social bird, the sociable weaver (Philetairus socius), which exhibits cooperation at various levels of sociality from nuclear family groups to its unique communal nests. Using 20 years of data, involving capture of 6508 birds and 3151 recaptures at 48 colonies, we found that both sexes exhibit philopatry and that any dispersal occurs over relatively short distances. Dispersal is female-biased, with females dispersing earlier, further, and to less closely related destination colonies than males. Genotyping data from 30 colonies showed that this pattern of dispersal is reflected by fine-scale genetic structure for both sexes, revealed by isolation by distance in terms of genetic relatedness and significant genetic variance among colonies. Both relationships were stronger among males than females. Crucially, significant relatedness extended beyond the level of the colony for both sexes. Such fine-scale population genetic structure may have played an important role in the evolution of cooperative behaviour in this species, but it may also result in a significant inbreeding risk, against which female-biased dispersal alone is unlikely to be an effective strategy. PMID:26172866

  1. Spatial Heterogeneity in Ecologically Important Climate Variables at Coarse and Fine Scales in a High-Snow Mountain Landscape

    PubMed Central

    Ford, Kevin R.; Ettinger, Ailene K.; Lundquist, Jessica D.; Raleigh, Mark S.; Hille Ris Lambers, Janneke

    2013-01-01

    Climate plays an important role in determining the geographic ranges of species. With rapid climate change expected in the coming decades, ecologists have predicted that species ranges will shift large distances in elevation and latitude. However, most range shift assessments are based on coarse-scale climate models that ignore fine-scale heterogeneity and could fail to capture important range shift dynamics. Moreover, if climate varies dramatically over short distances, some populations of certain species may only need to migrate tens of meters between microhabitats to track their climate as opposed to hundreds of meters upward or hundreds of kilometers poleward. To address these issues, we measured climate variables that are likely important determinants of plant species distributions and abundances (snow disappearance date and soil temperature) at coarse and fine scales at Mount Rainier National Park in Washington State, USA. Coarse-scale differences across the landscape such as large changes in elevation had expected effects on climatic variables, with later snow disappearance dates and lower temperatures at higher elevations. However, locations separated by small distances (∼20 m), but differing by vegetation structure or topographic position, often experienced differences in snow disappearance date and soil temperature as great as locations separated by large distances (>1 km). Tree canopy gaps and topographic depressions experienced later snow disappearance dates than corresponding locations under intact canopy and on ridges. Additionally, locations under vegetation and on topographic ridges experienced lower maximum and higher minimum soil temperatures. The large differences in climate we observed over small distances will likely lead to complex range shift dynamics and could buffer species from the negative effects of climate change. PMID:23762277

  2. Fine-Scale Genetic Structure and Cryptic Associations Reveal Evidence of Kin-Based Sociality in the African Forest Elephant

    PubMed Central

    Schuttler, Stephanie G.; Philbrick, Jessica A.; Jeffery, Kathryn J.; Eggert, Lori S.

    2014-01-01

    Spatial patterns of relatedness within animal populations are important in the evolution of mating and social systems, and have the potential to reveal information on species that are difficult to observe in the wild. This study examines the fine-scale genetic structure and connectivity of groups within African forest elephants, Loxodonta cyclotis, which are often difficult to observe due to forest habitat. We tested the hypothesis that genetic similarity will decline with increasing geographic distance, as we expect kin to be in closer proximity, using spatial autocorrelation analyses and Tau Kr tests. Associations between individuals were investigated through a non-invasive genetic capture-recapture approach using network models, and were predicted to be more extensive than the small groups found in observational studies, similar to fission-fusion sociality found in African savanna (Loxodonta africana) and Asian (Elephas maximus) species. Dung samples were collected in Lopé National Park, Gabon in 2008 and 2010 and genotyped at 10 microsatellite loci, genetically sexed, and sequenced at the mitochondrial DNA control region. We conducted analyses on samples collected at three different temporal scales: a day, within six-day sampling sessions, and within each year. Spatial autocorrelation and Tau Kr tests revealed genetic structure, but results were weak and inconsistent between sampling sessions. Positive spatial autocorrelation was found in distance classes of 0–5 km, and was strongest for the single day session. Despite weak genetic structure, individuals within groups were significantly more related to each other than to individuals between groups. Social networks revealed some components to have large, extensive groups of up to 22 individuals, and most groups were composed of individuals of the same matriline. Although fine-scale population genetic structure was weak, forest elephants are typically found in groups consisting of kin and based on matrilines

  3. Fine-Scale Exposure to Allergenic Pollen in the Urban Environment: Evaluation of Land Use Regression Approach

    PubMed Central

    Hjort, Jan; Hugg, Timo T.; Antikainen, Harri; Rusanen, Jarmo; Sofiev, Mikhail; Kukkonen, Jaakko; Jaakkola, Maritta S.; Jaakkola, Jouni J.K.

    2015-01-01

    Background: Despite the recent developments in physically and chemically based analysis of atmospheric particles, no models exist for resolving the spatial variability of pollen concentration at urban scale. Objectives: We developed a land use regression (LUR) approach for predicting spatial fine-scale allergenic pollen concentrations in the Helsinki metropolitan area, Finland, and evaluated the performance of the models against available empirical data. Methods: We used grass pollen data monitored at 16 sites in an urban area during the peak pollen season and geospatial environmental data. The main statistical method was generalized linear model (GLM). Results: GLM-based LURs explained 79% of the spatial variation in the grass pollen data based on all samples, and 47% of the variation when samples from two sites with very high concentrations were excluded. In model evaluation, prediction errors ranged from 6% to 26% of the observed range of grass pollen concentrations. Our findings support the use of geospatial data–based statistical models to predict the spatial variation of allergenic grass pollen concentrations at intra-urban scales. A remote sensing–based vegetation index was the strongest predictor of pollen concentrations for exposure assessments at local scales. Conclusions: The LUR approach provides new opportunities to estimate the relations between environmental determinants and allergenic pollen concentration in human-modified environments at fine spatial scales. This approach could potentially be applied to estimate retrospectively pollen concentrations to be used for long-term exposure assessments. Citation: Hjort J, Hugg TT, Antikainen H, Rusanen J, Sofiev M, Kukkonen J, Jaakkola MS, Jaakkola JJ. 2016. Fine-scale exposure to allergenic pollen in the urban environment: evaluation of land use regression approach. Environ Health Perspect 124:619–626; http://dx.doi.org/10.1289/ehp.1509761 PMID:26452296

  4. Hyper-temporal LiDAR for tracking fine-scale changes in vegetation structure, phenology, and physiology

    NASA Astrophysics Data System (ADS)

    Magney, T. S.; Vierling, L. A.; Eitel, J.; Greaves, H.

    2015-12-01

    Vegetation three-dimensional (3-D) structure is inherently dynamic - plants alter both the allocation of resources within the canopy and branch/shoot morphology at short time-steps to acclimate to local environmental conditions and maximize photosynthetic potential. However, 3-D structure is often ignored in ecological studies because it is difficult to characterize using traditional field methods. Terrestrial laser scanning (TLS) is a rapidly maturing technique to complement and enhance traditional field methods for quantifying 3-D geometric properties of ecosystems. Two major limitations of TLS include the low temporal resolution that often exists between each data acquisition, and the relatively high cost of such systems (entry level systems cost >$40,000 USD) that puts this method out of reach for many potential users. Consequently, TLS is currently limited as a mainstream method for capturing 3-D geometric ecosystem dynamics. Over the last several years, we have been developing a field-ready autonomously operating terrestrial laser scanner (ATLS) capable of monitoring fine-scale changes in vegetation structure on a daily time-step. We will present an overview of recent findings using the ATLS to track changes in vegetation structure in low-stature ecosystems - from cropping system dynamics to Arctic tundra phenology. Further, we will discuss the potential for laser intensity return information from both an ATLS and TLS to track changes in plant phenology and physiology (Chlorophyll content, photoprotective mechanisms, moisture) that occur simultaneously - or prior to - changes in vegetation structure. Our results suggest that fine-scale mapping of plant structure, phenology, and physiology using information from TLS and ATLS could provide new insights into vegetation dynamics in space and time.

  5. Psychoacoustic Tinnitus Loudness and Tinnitus-Related Distress Show Different Associations with Oscillatory Brain Activity

    PubMed Central

    Balkenhol, Tobias; Wallhäusser-Franke, Elisabeth; Delb, Wolfgang

    2013-01-01

    Background The phantom auditory perception of subjective tinnitus is associated with aberrant brain activity as evidenced by magneto- and electroencephalographic studies. We tested the hypotheses (1) that psychoacoustically measured tinnitus loudness is related to gamma oscillatory band power, and (2) that tinnitus loudness and tinnitus-related distress are related to distinct brain activity patterns as suggested by the distinction between loudness and distress experienced by tinnitus patients. Furthermore, we explored (3) how hearing impairment, minimum masking level, and (4) psychological comorbidities are related to spontaneous oscillatory brain activity in tinnitus patients. Methods and Findings Resting state oscillatory brain activity recorded electroencephalographically from 46 male tinnitus patients showed a positive correlation between gamma band oscillations and psychoacoustic tinnitus loudness determined with the reconstructed tinnitus sound, but not with the other psychoacoustic loudness measures that were used. Tinnitus-related distress did also correlate with delta band activity, but at electrode positions different from those associated with tinnitus loudness. Furthermore, highly distressed tinnitus patients exhibited a higher level of theta band activity. Moreover, mean hearing loss between 0.125 kHz and 16 kHz was associated with a decrease in gamma activity, whereas minimum masking levels correlated positively with delta band power. In contrast, psychological comorbidities did not express significant correlations with oscillatory brain activity. Conclusion Different clinically relevant tinnitus characteristics show distinctive associations with spontaneous brain oscillatory power. Results support hypothesis (1), but exclusively for the tinnitus loudness derived from matching to the reconstructed tinnitus sound. This suggests to preferably use the reconstructed tinnitus spectrum to determine psychoacoustic tinnitus loudness. Results also support

  6. Cerebral oscillatory activity during simulated driving using MEG

    PubMed Central

    Sakihara, Kotoe; Hirata, Masayuki; Ebe, Kazutoshi; Kimura, Kenji; Yi Ryu, Seong; Kono, Yoshiyuki; Muto, Nozomi; Yoshioka, Masako; Yoshimine, Toshiki; Yorifuji, Shiro

    2014-01-01

    We aimed to examine cerebral oscillatory differences associated with psychological processes during simulated car driving. We recorded neuromagnetic signals in 14 healthy volunteers using magnetoencephalography (MEG) during simulated driving. MEG data were analyzed using synthetic aperture magnetometry to detect the spatial distribution of cerebral oscillations. Group effects between subjects were analyzed statistically using a non-parametric permutation test. Oscillatory differences were calculated by comparison between “passive viewing” and “active driving.” “Passive viewing” was the baseline, and oscillatory differences during “active driving” showed an increase or decrease in comparison with a baseline. Power increase in the theta band was detected in the superior frontal gyrus (SFG) during active driving. Power decreases in the alpha, beta, and low gamma bands were detected in the right inferior parietal lobe (IPL), left postcentral gyrus (PoCG), middle temporal gyrus (MTG), and posterior cingulate gyrus (PCiG) during active driving. Power increase in the theta band in the SFG may play a role in attention. Power decrease in the right IPL may reflect selectively divided attention and visuospatial processing, whereas that in the left PoCG reflects sensorimotor activation related to driving manipulation. Power decreases in the MTG and PCiG may be associated with object recognition. PMID:25566017

  7. Cortico-pallidal oscillatory connectivity in patients with dystonia.

    PubMed

    Neumann, Wolf-Julian; Jha, Ashwani; Bock, Antje; Huebl, Julius; Horn, Andreas; Schneider, Gerd-Helge; Sander, Tillmann H; Litvak, Vladimir; Kühn, Andrea A

    2015-07-01

    Primary dystonia has been associated with an underlying dysfunction of a wide network of brain regions including the motor cortex, basal ganglia, cerebellum, brainstem and spinal cord. Dystonia can be effectively treated by pallidal deep brain stimulation although the mechanism of this effect is not well understood. Here, we sought to characterize cortico-basal ganglia functional connectivity using a frequency-specific measure of connectivity-coherence. We recorded direct local field potentials from the human pallidum simultaneously with whole head magnetoencephalography to characterize functional connectivity in the cortico-pallidal oscillatory network in nine patients with idiopathic dystonia. Three-dimensional cortico-pallidal coherence images were compared to surrogate images of phase shuffled data across patients to reveal clusters of significant coherence (family-wise error P < 0.01, voxel extent 1000). Three frequency-specific, spatially-distinct cortico-pallidal networks have been identified: a pallido-temporal source of theta band (4-8 Hz) coherence, a pallido-cerebellar source of alpha band (7-13 Hz) coherence and a cortico-pallidal source of beta band (13-30 Hz) coherence over sensorimotor areas. Granger-based directionality analysis revealed directional coupling with the pallidal local field potentials leading in the theta and alpha band and the magnetoencephalographic cortical source leading in the beta band. The degree of pallido-cerebellar coupling showed an inverse correlation with dystonic symptom severity. Our data extend previous findings in patients with Parkinson's disease describing motor cortex-basal ganglia oscillatory connectivity in the beta band to patients with dystonia. Source coherence analysis revealed two additional frequency-specific networks involving the temporal cortex and the cerebellum. Pallido-cerebellar oscillatory connectivity and its association with dystonic symptoms provides further confirmation of cerebellar involvement

  8. Oscillatory phase shapes syllable perception.

    PubMed

    Ten Oever, Sanne; Sack, Alexander T

    2015-12-29

    The role of oscillatory phase for perceptual and cognitive processes is being increasingly acknowledged. To date, little is known about the direct role of phase in categorical perception. Here we show in two separate experiments that the identification of ambiguous syllables that can either be perceived as /da/ or /ga/ is biased by the underlying oscillatory phase as measured with EEG and sensory entrainment to rhythmic stimuli. The measured phase difference in which perception is biased toward /da/ or /ga/ exactly matched the different temporal onset delays in natural audiovisual speech between mouth movements and speech sounds, which last 80 ms longer for /ga/ than for /da/. These results indicate the functional relationship between prestimulus phase and syllable identification, and signify that the origin of this phase relationship could lie in exposure and subsequent learning of unique audiovisual temporal onset differences. PMID:26668393

  9. Anomalous oscillatory magnetoresistance in superconductors

    NASA Astrophysics Data System (ADS)

    Kunchur, Milind N.; Dean, Charles L.; Ivlev, Boris I.

    2016-08-01

    We report oscillatory magnetoresistance in various superconducting films, with a magnetic-field period Δ B ˜0.1 T that is essentially independent of sample dimensions, temperature, transport current, and the magnitude and orientation of the magnetic field, including magnetic fields oriented parallel to the film plane. The characteristics of these oscillations seem hard to reconcile with previously established mechanisms for oscillations in magnetoresistance, suggesting the possibility of another type of physical origin.

  10. Fine-scale photochemical modeling of ozone and ammonium nitrate over California during CalNex 2010

    NASA Astrophysics Data System (ADS)

    Kelly, J.; Baker, K.; Misenis, C.; Gilman, J.; De Gouw, J. A.; Lerner, B. M.; Neuman, J. A.; Nowak, J. B.; Pollack, I. B.; Roberts, J. M.; Ryerson, T. B.; Warneke, C.; Williams, E. J.; Veres, P. R.; Murphy, J. G.; Markovic, M. Z.; VandenBoer, T. C.; Weber, R.

    2013-12-01

    Multiple areas of California are designated as nonattainment of the ozone and PM2.5 National Ambient Air Quality Standards making air quality (AQ) modeling for California an important aspect of national-scale modeling for EPA rulemaking. Fine-scale AQ modeling for key population centers in California is also useful to inform health and exposure studies. However, AQ modeling is challenging in California due to complex emissions, terrain, meteorology, and chemistry, and understanding model performance is difficult using routine network observations alone. In May-June 2010, the CalNex field study was conducted in California to answer important scientific questions related to air quality and climate processes. The field study provides a rich observational dataset for probing the performance of fine-scale AQ simulations and identifying causes of model performance limitations. In this study, we conduct fine-scale (4-km horizontal resolution) photochemical model simulations for California during May-June 2010 using the Community Multiscale Air Quality model with the Carbon Bond 05 and SAPRC07 gas-phase chemical mechanisms. Model predictions are then evaluated using observations from the CalNex ground, aircraft, and ship platforms in addition routine network observations. Our model evaluations focus on understanding predictions of ammonium nitrate and ozone concentrations given the importance of these pollutants to California's air quality. Model predictions of ammonium and nitrate have a slight low bias but are strongly correlated with network observations in Riverside and Bakersfield. The model tends to under-predict NH3 concentrations observed on the NOAA P3 aircraft near large NH3 sources in the San Joaquin Valley (SJV) and South Coast Air Basin (SoCAB). At the SJV ground site, NH3 predictions are of similar magnitude as observations, while NH3 tends to be over-predicted at the Pasadena ground site. Nitric acid is over-predicted during the day at the SJV ground site

  11. Interaction between fine-scale landforms and vegetation patterns in alkali landscapes - case study based on remotely sensed data

    NASA Astrophysics Data System (ADS)

    Deák, Balázs; Valkó, Orsolya; Tóthmérész, Béla; Alexander, Cici; Mücke, Werner; Kania, Adam; Tamás, János; Heilmeier, Hermann

    2015-04-01

    Vertical position is an important driver of vegetation zonation at multiple scales, via determining abiotic environmental parameters like climate, soil properties and water balance. Despite small-scale elevation differences are proven to significantly influence soil salt content and water balance; relationships between elevation and vegetation types are rarely studied in inland alkali landscapes. Alkali landscapes of the Pannonian biogeographical region comprise the most connected salt-affected landscape in continental Europe which provides unique opportunities for studying elevation-vegetation relationships. For linking elevation data with vegetation patterns, remote sensing techniques offer a vital solution. Application of airborne laser scanning is a feasible tool for providing an elevation model of extent areas. Our goal was to test the correlation between fine-scale differences in vertical position and vegetation patterns in inland alkali landscapes by using field vegetation data and elevation data generated using airborne laser scanning. We studied whether the vertical position influences vegetation patterns at the level of main vegetation categories or even at the level of associations. Our study sites were situated in a lowland alkali landscape in Hortobágy National Park (East-Hungary). Associations of the study site can be grouped into four main vegetation categories: (i) loess grasslands, (ii) alkali steppes, (iii) open alkali swards and (iv) alkali meadows. Even though we detected a very limited range in the vertical position (121 cm) of the main vegetation categories; they were well separated along their vertical positions. The detected elevation gradient likely corresponds to environmental gradients (soil type, salt accumulation and water balance). At the level of association types, a more detailed elevation-based distinction was also possible in many cases. Based on the digital terrain model, we revealed a fine-scale vertical vegetation gradient. Our

  12. Fine-scale spatial structure of the exploited infaunal bivalve Cerastoderma edule on the French Atlantic coast

    NASA Astrophysics Data System (ADS)

    Boldina, Inna; Beninger, Peter G.

    2013-02-01

    Investigations of biomass, production, and anthropogenic impact require knowledge of the spatial distribution of the species concerned. Studies of the spatial distribution of soft-sediment infauna are inherently difficult, because the organisms are generally not readily visible, necessitating painstaking excavation. Although the large-scale (tens of km) distribution patterns of infaunal bivalves have been studied previously, the fine-scale (1 to tens of meters) has received much less attention. We investigated the fine-scale spatial distribution of the edible cockle Cerastoderma edule at a fishing-impacted site and a non-impacted site on an intertidal mudflat in Bourgneuf Bay, France, in 2009-2010. A preliminary study using a 1 m spatial lag was performed to determine the optimum lags for a nested sampling design. Cohorts were identified using Bhattacharya-resolved size-frequency distributions and verification of isotropy, and the spatial characteristics of each cohort were determined using Moran's I auto-correlation coefficient. The non-impacted site presented one strongly-aggregated main cohort, C3, (Moran's I = 0.67 to - 0.34, spatial range 16 to 20 m, inter-patch distance 41 to 51 m). The impacted site presented two main cohorts, C2 (1.31 cm mean shell length, SL) and C3 (2.11 cm SL) both of which also showed a patchy spatial distribution (C2: Moran's I = 0.7 to - 0.72, spatial range 22 to 35 m; inter-patch distance 63 to 90 m; C3: Moran's I = 0.41 to - 0.63, spatial range 36 to 58 m, inter-patch distance not defined). The C3 cohort was less aggregated than the C2; possibly due to the homogenizing effect of fishing, which typically proceeds via a Lévy walk foraging model. Our results show that the spatial distributions of C. edule retained a strongly aggregated character over the 8 months of the study, suggesting that these characteristics are powerfully maintained by recruitment/post-recruitment processes, despite intense fishing pressure throughout the

  13. Fine-scale genetic structure of woodrat populations (Genus: Neotoma) and the spatial distribution of their tick-borne pathogens.

    PubMed

    Foley, Janet; Rejmanek, Daniel; Foley, Colin; Matocq, Marjorie

    2016-02-01

    Dusky-footed woodrats are territorial cricetid rodents that individually occupy large stick houses from which they foray to gather food, find mates, and engage in other activities. These rodents are often bitten by Ixodes spp. ticks and are reservoirs of some strains of tick-borne bacterial pathogens such as Anaplasma phagocytophilum and Borrelia burgdorferi. Limited dispersal by hosts and vectors could create fine-scale population structure where related hosts and pathogen exposure are co-distributed in space. To quantify population genetic structure and infection status, we genotyped 167 woodrats using a panel of 15 microsatellite loci from three northern California study sites: Soquel (SD), Cold Canyon (CC), and Quail Ridge (QR). We used quantitative PCR and serology to test for infection with A. phagocytophilum and B. burgdorferi. All three populations maintained similar, moderately high levels of genetic variation. For A. phagocytophilum, the PCR-prevalence was higher at SD (30.0%) than CC (13%) and QR (7%) whereas the seroprevalence was similar at all three sites (13-18%). The B. burgdorferi PCR-prevalence at CC was 11%, no woodrats were PCR-positive at QR, and none were tested at SD. We found a negative correlation between pairwise genetic relatedness and spatial distance with the majority of highest order relatives occurring within 200m of one another. Related dyads were more likely to be adult females than males, suggesting that adult female residents are the primary source of spatially proximate, high-order relatives in woodrat populations. Despite spatial genetic clustering of hosts, our spatial window test found no significant clustering of pathogens. Woodrats that were seropositive for A. phagocytophilum had higher heterozygosity than seronegative woodrats, which could be consistent with genetically diverse individuals having greater capacity to mount an immune response. Overall, our analyses show that limited dispersal of individual woodrats leads to

  14. Using fine-scale fuel measurements to assess wildland fuels, potential fire behavior and hazard mitigation treatments in the southeastern USA.

    SciTech Connect

    Ottmar, Roger, D.; Blake, John, I.; Crolly, William, T.

    2012-01-01

    The inherent spatial and temporal heterogeneity of fuelbeds in forests of the southeastern United States may require fine scale fuel measurements for providing reliable fire hazard and fuel treatment effectiveness estimates. In a series of five papers, an intensive, fine scale fuel inventory from the Savanna River Site in the southeastern United States is used for building fuelbeds and mapping fire behavior potential, evaluating fuel treatment options for effectiveness, and providing a comparative analysis of landscape modeled fire behavior using three different data sources including the Fuel Characteristic Classification System, LANDFIRE, and the Southern Wildfire Risk Assessment. The research demonstrates that fine scale fuel measurements associated with fuel inventories repeated over time can be used to assess broad scale wildland fire potential and hazard mitigation treatment effectiveness in the southeastern USA and similar fire prone regions. Additional investigations will be needed to modify and improve these processes and capture the true potential of these fine scale data sets for fire and fuel management planning.

  15. Mother–offspring distances reflect sex differences in fine-scale genetic structure of eastern grey kangaroos

    PubMed Central

    King, Wendy J; Garant, Dany; Festa-Bianchet, Marco

    2015-01-01

    Natal dispersal affects life history and population biology and causes gene flow. In mammals, dispersal is usually male-biased so that females tend to be philopatric and surrounded by matrilineal kin, which may lead to preferential associations among female kin. Here we combine genetic analyses and behavioral observations to investigate spatial genetic structure and sex-biased dispersal patterns in a high-density population of mammals showing fission–fusion group dynamics. We studied eastern grey kangaroos (Macropus giganteus) over 2 years at Wilsons Promontory National Park, Australia, and found weak fine-scale genetic structure among adult females in both years but no structure among adult males. Immature male kangaroos moved away from their mothers at 18–25 months of age, while immature females remained near their mothers until older. A higher proportion of male (34%) than female (6%) subadults and young adults were observed to disperse, although median distances of detected dispersals were similar for both sexes. Adult females had overlapping ranges that were far wider than the maximum extent of spatial genetic structure found. Female kangaroos, although weakly philopatric, mostly encounter nonrelatives in fission–fusion groups at high density, and therefore kinship is unlikely to strongly affect sociality. PMID:26045958

  16. Kinship, inbreeding and fine-scale spatial structure influence gut microbiota in a hindgut-fermenting tortoise.

    PubMed

    Yuan, Michael L; Dean, Samantha H; Longo, Ana V; Rothermel, Betsie B; Tuberville, Tracey D; Zamudio, Kelly R

    2015-05-01

    Herbivorous vertebrates rely on complex communities of mutualistic gut bacteria to facilitate the digestion of celluloses and hemicelluloses. Gut microbes are often convergent based on diet and gut morphology across a phylogenetically diverse group of mammals. However, little is known about microbial communities of herbivorous hindgut-fermenting reptiles. Here, we investigate how factors at the individual level might constrain the composition of gut microbes in an obligate herbivorous reptile. Using multiplexed 16S rRNA gene sequencing, we characterized the faecal microbial community of a population of gopher tortoises (Gopherus polyphemus) and examined how age, genetic diversity, spatial structure and kinship influence differences among individuals. We recovered phylotypes associated with known cellulolytic function, including candidate phylum Termite Group 3, suggesting their importance for gopher tortoise digestion. Although host genetic structure did not explain variation in microbial composition and community structure, we found that fine-scale spatial structure, inbreeding, degree of relatedness and possibly ontogeny shaped patterns of diversity in faecal microbiomes of gopher tortoises. Our findings corroborate widespread convergence of faecal-associated microbes based on gut morphology and diet and demonstrate the role of spatial and demographic structure in driving differentiation of gut microbiota in natural populations. PMID:25809385

  17. Fine-Scale Ecological and Genetic Population Structure of Two Whitefish (Coregoninae) Species in the Vicinity of Industrial Thermal Emissions

    PubMed Central

    Graham, Carly F.; Eberts, Rebecca L.; Morgan, Thomas D.; Boreham, Douglas R.; Lance, Stacey L.; Manzon, Richard G.; Martino, Jessica A.; Rogers, Sean M.; Wilson, Joanna Y.; Somers, Christopher M.

    2016-01-01

    Thermal pollution from industrial processes can have negative impacts on the spawning and development of cold-water fish. Point sources of thermal effluent may need to be managed to avoid affecting discrete populations. Correspondingly, we examined fine-scale ecological and genetic population structure of two whitefish species (Coregonus clupeaformis and Prosopium cylindraceum) on Lake Huron, Canada, in the immediate vicinity of thermal effluent from nuclear power generation. Niche metrics using δ13C and δ15N stable isotopes showed high levels of overlap (48.6 to 94.5%) in resource use by adult fish captured in areas affected by thermal effluent compared to nearby reference locations. Isotopic niche size, a metric of resource use diversity, was 1.3- to 2.8-fold higher than reference values in some thermally affected areas, indicative of fish mixing. Microsatellite analyses of genetic population structure (Fst, STRUCTURE and DAPC) indicated that fish captured at all locations in the vicinity of the power plant were part of a larger population extending beyond the study area. In concert, ecological and genetic markers do not support the presence of an evolutionarily significant unit in the vicinity of the power plant. Thus, future research should focus on the potential impacts of thermal emissions on development and recruitment. PMID:26807722

  18. Effect of a delta tab on fine scale mixing in a turbulent two-stream shear layer

    NASA Technical Reports Server (NTRS)

    Foss, J. K.; Zaman, K. B. M. Q.

    1996-01-01

    The fine scale mixing produced by a delta tab in a shear layer has been studied experimentally. The tab was placed at the trailing edge of a splitter plate which produced a turbulent two-stream mixing layer. The tab apex tilted downstream and into the high speed stream. Hot-wire measurements in the 3-D space behind the tab detailed the three velocity components as well as the small scale population distributions. These small scale eddies, which represent the peak in the dissipation spectrum, were identified and counted using the Peak-Valley-Counting technique. It was found that the small scale populations were greater in the shear region behind the tab, with the greatest increase occurring where the shear layer underwent a sharp turn. This location was near, but not coincident, with the core of the streamwise vortex, and away from the region exhibiting maximum turbulence intensity. Moreover, the tab increased the most probably frequency and strain rate of the small scales. It made the small scales smaller and more energetic.

  19. Intraspecific Differences in Lipid Content of Calanoid Copepods across Fine-Scale Depth Ranges within the Photic Layer

    PubMed Central

    Zarubin, Margarita; Farstey, Viviana; Wold, Anette; Falk-Petersen, Stig; Genin, Amatzia

    2014-01-01

    Copepods are among the most abundant and diverse groups of mesozooplankton in the world's oceans. Each species has a certain depth range within which different individuals (of the same life stage and sex) are found. Lipids are accumulated in many calanoid copepods for energy storage and reproduction. Lipid content in some species increases with depth, however studies so far focused mostly on temperate and high-latitude seasonal vertically migrating copepods and compared lipid contents among individuals either from coarse layers or between diapausing, deep-dwelling copepods and individuals found in the photic, near-surface layer. Here we examined whether lipid contents of individual calanoid copepods of the same species, life stage/sex differ between finer depth layers within the upper water column of subtropical and Arctic seas. A total of 6 calanoid species were collected from samples taken at precise depths within the photic layer in both cold eutrophic and warm oligotrophic environments using SCUBA diving, MOCNESS and Multinet. Measurements of lipid content were obtained from digitized photographs of the collected individuals. The results revealed significant differences in lipid content across depth differences as small as 12–15 meters for Mecynocera clausi C5 and Ctenocalanus vanus C5 (Red Sea), Clausocalanus furcatus males and two clausocalanid C5s (Mediterranean Sea), and Calanus glacialis C5 (Arctic). We suggest two possible explanations for the differences in lipid content with depth on such a fine scale: predator avoidance and buoyancy. PMID:24667529

  20. Coral habitat in the Aleutian Islands of Alaska: depth distribution, fine-scale species associations, and fisheries interactions

    NASA Astrophysics Data System (ADS)

    Stone, R. P.

    2006-05-01

    The first in situ exploration of Aleutian Island coral habitat was completed in 2002 to determine the distribution of corals, to examine fine-scale associations between targeted fish species and corals, and to investigate the interaction between the areas’ diverse fisheries and coral habitat. Corals, mostly gorgonians and hydrocorals, were present on all 25 seafloor transects and at depths between 27 and 363 m, but were most abundant between 100 and 200 m depth. Mean coral abundance (1.23 colonies m-2) far exceeded that reported for other high-latitude ecosystems and high-density coral gardens (3.85 colonies m-2) were observed at seven locations. Slope and offshore pinnacle habitats characterized by exposed bedrock, boulders, and cobbles generally supported the highest abundances of coral and fish. Overall, 85% of the economically important fish species observed on transects were associated with corals and other emergent epifauna. Disturbance to the seafloor from bottom-contact fishing gear was evident on 88% of the transects, and approximately 39% of the total area of the seafloor observed had been disturbed. Since cold-water corals appear to be a ubiquitous feature of seafloor habitats in the Aleutian Islands, fisheries managers face clear challenges integrating coral conservation into an ecosystem approach to fisheries management.

  1. Fine-Scale Ecological and Genetic Population Structure of Two Whitefish (Coregoninae) Species in the Vicinity of Industrial Thermal Emissions.

    PubMed

    Graham, Carly F; Eberts, Rebecca L; Morgan, Thomas D; Boreham, Douglas R; Lance, Stacey L; Manzon, Richard G; Martino, Jessica A; Rogers, Sean M; Wilson, Joanna Y; Somers, Christopher M

    2016-01-01

    Thermal pollution from industrial processes can have negative impacts on the spawning and development of cold-water fish. Point sources of thermal effluent may need to be managed to avoid affecting discrete populations. Correspondingly, we examined fine-scale ecological and genetic population structure of two whitefish species (Coregonus clupeaformis and Prosopium cylindraceum) on Lake Huron, Canada, in the immediate vicinity of thermal effluent from nuclear power generation. Niche metrics using δ13C and δ15N stable isotopes showed high levels of overlap (48.6 to 94.5%) in resource use by adult fish captured in areas affected by thermal effluent compared to nearby reference locations. Isotopic niche size, a metric of resource use diversity, was 1.3- to 2.8-fold higher than reference values in some thermally affected areas, indicative of fish mixing. Microsatellite analyses of genetic population structure (Fst, STRUCTURE and DAPC) indicated that fish captured at all locations in the vicinity of the power plant were part of a larger population extending beyond the study area. In concert, ecological and genetic markers do not support the presence of an evolutionarily significant unit in the vicinity of the power plant. Thus, future research should focus on the potential impacts of thermal emissions on development and recruitment. PMID:26807722

  2. Extensive cryptic species diversity and fine-scale endemism in the marine red alga Portieria in the Philippines

    PubMed Central

    Payo, Dioli Ann; Leliaert, Frederik; Verbruggen, Heroen; D'hondt, Sofie; Calumpong, Hilconida P.; De Clerck, Olivier

    2013-01-01

    We investigated species diversity and distribution patterns of the marine red alga Portieria in the Philippine archipelago. Species boundaries were tested based on mitochondrial, plastid and nuclear encoded loci, using a general mixed Yule-coalescent (GMYC) model-based approach and a Bayesian multilocus species delimitation method. The outcome of the GMYC analysis of the mitochondrial encoded cox2-3 dataset was highly congruent with the multilocus analysis. In stark contrast with the current morphology-based assumption that the genus includes a single, widely distributed species in the Indo-West Pacific (Portieria hornemannii), DNA-based species delimitation resulted in the recognition of 21 species within the Philippines. Species distributions were found to be highly structured with most species restricted to island groups within the archipelago. These extremely narrow species ranges and high levels of intra-archipelagic endemism contrast with the wide-held belief that marine organisms generally have large geographical ranges and that endemism is at most restricted to the archipelagic level. Our results indicate that speciation in the marine environment may occur at spatial scales smaller than 100 km, comparable with some terrestrial systems. Our finding of fine-scale endemism has important consequences for marine conservation and management. PMID:23269854

  3. Fine-scale distribution and spatial variability of benthic invertebrate larvae in an open coastal embayment in Nova Scotia, Canada.

    PubMed

    Daigle, Rémi M; Metaxas, Anna; deYoung, Brad

    2014-01-01

    This study quantified the fine- scale (0.5 km) of variability in the horizontal distributions of benthic invertebrate larvae and related this variability to that in physical and biological variables, such as density, temperature, salinity, fluorescence and current velocity. Larvae were sampled in contiguous 500-m transects along two perpendicular 10-km transects with a 200-µm plankton ring net (0.75-m diameter) in St. George's Bay, Nova Scotia, Canada, in Aug 2009. Temperature, conductivity, pressure and fluorescence were measured with a CTD cast at each station, and currents were measured with an Acoustic Doppler Current Profiler moored at the intersection of the 2 transects. Gastropod, bivalve and, to a lesser extent, bryozoan larvae had very similar spatial distributions, but the distribution of decapod larvae had a different pattern. These findings suggest that taxonomic groups with functionally similar larvae have similar dispersive properties such as distribution and spatial variability, while the opposite is true for groups with functionally dissimilar larvae. The spatial variability in larval distributions was anisotropic and matched the temporal/spatial variability in the current velocity. We postulate that in a system with no strong oceanographic features, the scale of spatially coherent physical forcing (e.g. tidal periodicity) can regulate the formation or maintenance of larval patches; however, swimming ability may modulate it. PMID:25153075

  4. A comparison of the fine-scale structure of the diurnal cycle of tropical rain and lightning

    NASA Astrophysics Data System (ADS)

    Venugopal, V.; Virts, K.; Sukhatme, J.; Wallace, J. M.; Chattopadhyay, B.

    2016-03-01

    In this study, the fine-scale structure of the diurnal variability of ground-based lightning is systematically compared with satellite-based rain. At the outset, it is shown that tropical variability of lightning exhibits a prominent diurnal mode, much like rain. A comparison of the geographical distribution of the timing of the diurnal maximum shows that there is very good agreement between the two observables over continental and coastal regions throughout the tropics. Following this global tropical comparison, we focus on two regions, Borneo and equatorial South America, both of which show the interplay between oceanward and landward propagations of the phase of the diurnal maximum. Over Borneo, both rain and lightning clearly show a climatological cycle of "breathing in" (afternoon to early morning) and "breathing out" (morning to early afternoon). Over the equatorial east coast of South America, landward propagation is noticed in rain and lightning from early afternoon to early morning. Along the Pacific coast of South America, both rain and lightning show oceanward propagation. Though qualitatively consistent, over both regions the propagation is seen to extend further in rainfall. Additionally, given that lightning highlights vigorous convection, the timing of its diurnal maximum often precedes that of rainfall in the convective life cycle.

  5. Fine-scale kin recognition in the absence of social familiarity in the Siberian jay, a monogamous bird species.

    PubMed

    Griesser, Michael; Halvarsson, Peter; Drobniak, Szymon M; Vilà, Carles

    2015-11-01

    Kin recognition is a critical element to kin cooperation, and in vertebrates, it is primarily based on associative learning. Recognition of socially unfamiliar kin occurs rarely, and it is reported only in vertebrate species where promiscuity prevents recognition of first-order relatives. However, it is unknown whether the recognition of socially unfamiliar kin can evolve in monogamous species. Here, we investigate whether genetic relatedness modulates aggression among group members in Siberian jays (Perisoreus infaustus). This bird species is genetically and socially monogamous and lives in groups that are formed through the retention of offspring beyond independence, and the immigration of socially unfamiliar nonbreeders. Observations on feeders showed that genetic relatedness modulated aggression of breeders towards immigrants in a graded manner, in that they chased most intensely the immigrant group members that were genetically the least related. However, cross-fostering experiments showed that breeders were equally tolerant towards their own and cross-fostered young swapped as nestlings. Thus, breeders seem to use different mechanisms to recognize socially unfamiliar individuals and own offspring. As Siberian jays show a high degree of nepotism during foraging and predator encounters, inclusive fitness benefits may play a role for the evolution of fine-scale kin recognition. More generally, our results suggest that fine-graded kin recognition can evolve independently of social familiarity, highlighting the evolutionary importance of kin recognition for social species. PMID:26460512

  6. Impact of soil matric potential on the fine-scale spatial distribution and activity of specific microbial degrader communities.

    PubMed

    Monard, Cécile; Mchergui, Chokri; Nunan, Naoise; Martin-Laurent, Fabrice; Vieublé-Gonod, Laure

    2012-09-01

    The impact of the soil matric potential on the relationship between the relative abundance of degraders and their activity and on the spatial distribution of both at fine scales was determined to understand the role of environmental conditions in the degradation of organic substrates. The mineralization of (13) C-glucose and (13) C-2,4-dichlorophenoxyacetic acid (2,4-D) was measured at different matric potentials (-0.001, -0.01 and -0.316 MPa) in 6 × 6 × 6 mm(3) cubes excised from soil cores. At the end of the incubation, total bacterial and 2,4-D degrader abundances were determined by quantifying the 16S rRNA and the tfdA genes, respectively. The mineralization of 2,4-D was more sensitive to changes in matric potential than was that of glucose. The amount and spatial structure of 2,4-D mineralization decreased with matric potential, whilst the spatial variability increased. On the other hand, the spatial variation of glucose mineralization was less affected by changes in matric potential. The relationship between the relative abundance of 2,4-D degraders and 2,4-D mineralization was significantly affected by matric potential: the relative abundance of tfdA needed to be higher to reach a given level of 2,4-D mineralization in dryer than in moister conditions. The data show how microbial interactions with their microhabitat can have an impact on soil processes at larger scales. PMID:22531018

  7. Fine-Scale Distribution and Spatial Variability of Benthic Invertebrate Larvae in an Open Coastal Embayment in Nova Scotia, Canada

    PubMed Central

    Daigle, Rémi M.; Metaxas, Anna; deYoung, Brad

    2014-01-01

    This study quantified the fine- scale (0.5 km) of variability in the horizontal distributions of benthic invertebrate larvae and related this variability to that in physical and biological variables, such as density, temperature, salinity, fluorescence and current velocity. Larvae were sampled in contiguous 500-m transects along two perpendicular 10-km transects with a 200-µm plankton ring net (0.75-m diameter) in St. George’s Bay, Nova Scotia, Canada, in Aug 2009. Temperature, conductivity, pressure and fluorescence were measured with a CTD cast at each station, and currents were measured with an Acoustic Doppler Current Profiler moored at the intersection of the 2 transects. Gastropod, bivalve and, to a lesser extent, bryozoan larvae had very similar spatial distributions, but the distribution of decapod larvae had a different pattern. These findings suggest that taxonomic groups with functionally similar larvae have similar dispersive properties such as distribution and spatial variability, while the opposite is true for groups with functionally dissimilar larvae. The spatial variability in larval distributions was anisotropic and matched the temporal/spatial variability in the current velocity. We postulate that in a system with no strong oceanographic features, the scale of spatially coherent physical forcing (e.g. tidal periodicity) can regulate the formation or maintenance of larval patches; however, swimming ability may modulate it. PMID:25153075

  8. Fine-scale spatial genetic structure analysis of the black truffle Tuber aestivum and its link to aroma variability.

    PubMed

    Molinier, Virginie; Murat, Claude; Frochot, Henri; Wipf, Daniel; Splivallo, Richard

    2015-08-01

    Truffles are symbiotic fungi in high demand by food connoisseurs. Improving yield and product quality requires a better understanding of truffle genetics and aroma biosynthesis. One aim here was to investigate the diversity and fine-scale spatial genetic structure of the Burgundy truffle Tuber aestivum. The second aim was to assess how genetic structuring along with fruiting body maturation and geographical origin influenced single constituents of truffle aroma. A total of 39 Burgundy truffles collected in two orchards were characterized in terms of aroma profile (SPME-GC/MS) and genotype (microsatellites). A moderate genetic differentiation was observed between the populations of the two orchards. An important seasonal and spatial genetic structuring was detected. Within one orchard, individuals belonging to the same genet were generally collected during a single season and in the close vicinity from each other. Maximum genet size nevertheless ranged from 46 to 92 m. Geographical origin or maturity only had minor effects on aroma profiles but genetic structuring, specifically clonal identity, had a pronounced influence on the concentrations of C8 - and C4 -VOCs. Our results highlight a high seasonal genetic turnover and indicate that the aroma of Burgundy truffle is influenced by the identity of single clones/genets. PMID:26036799

  9. Fine-scale habitat use of reintroduced black-footed ferrets on prairie dog colonies in New Mexico

    USGS Publications Warehouse

    Chipault, Jennifer G.; Biggins, Dean E.; Detling, James K.; Long, Dustin H.; Reich, Robin M.

    2012-01-01

    Black-footed ferrets (Mustela nigripes) are among the most endangered animals in North America. Reintroductions of captive-born ferrets onto prairie dog (Cynomys spp.) colonies are crucial to the conservation of the species. In September 2007, captive-born ferrets were released on a black-tailed prairie dog (Cynomys ludovicianus) colony at the Vermejo Park Ranch, New Mexico. Ferret kits experimentally released in areas of comparatively low and high prairie dog burrow densities were located via spotlight surveys. Some maturing ferret kits were subsequently translocated to areas of low and high burrow densities on nearby prairie dog colonies. For 2 months, fine-scale habitat use was quantified by mapping all burrow openings within a 30-m radius of each ferret location. Spatial statistics accounted for autocorrelation in the burrow densities in areas used by ferrets. It was hypothesized that ferrets would select areas of high burrow densities within colonies; however, burrow densities in areas used by ferrets were generally similar to the available burrow densities. Because ferrets used areas with burrow densities similar to densities available at the colony level and because of the potential energetic benefits for ferrets using areas with high burrow densities, releasing ferrets on colonies with high burrow densities might increase reintroduction success.

  10. Fine-scale chromatin interaction maps reveal the cis-regulatory landscape of human lincRNA genes

    PubMed Central

    Ma, Wenxiu; Ay, Ferhat; Lee, Choli; Gulsoy, Gunhan; Deng, Xinxian; Cook, Savannah; Hesson, Jennifer; Cavanaugh, Christopher; Ware, Carol B.; Krumm, Anton; Shendure, Jay; Blau, C. Anthony; Disteche, Christine M.; Noble, William S.; Duan, ZhiJun

    2014-01-01

    High-throughput methods based on chromosome conformation capture (3C) have greatly advanced our understanding of the three-dimensional (3D) organization of genomes but are limited in resolution by their reliance on restriction enzymes (REs). Here we describe a method called DNase Hi-C for comprehensively mapping global chromatin contacts that uses DNase I for chromatin fragmentation, leading to greatly improved efficiency and resolution compared to Hi-C. Coupling this method with DNA capture technology provides a high-throughput approach for targeted mapping of fine-scale chromatin architecture. We applied targeted DNase Hi-C to characterize the 3D organization of 998 lincRNA (long intergenic noncoding RNA) promoters in two human cell lines, thereby revealing that expression of lincRNAs is tightly controlled by complex mechanisms involving both super-enhancers and the polycomb repressive complex. Our results provide the first glimpse of a cell type-specific 3D organization of lincRNA genes. PMID:25437436